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Foreword

Dear reader, On behalf of the four Scientific Statistical Societies – the SEIO,
Sociedad de Estadística e Investigación Operativa (Spanish Statistical Society and
Operation Research); SFdS, Société Française de Statistique (French Statistical
Society); SIS, Società Italiana di Statistica (Italian Statistical Society); and the SPE,
Sociedade Portuguesa de Estatística (Portuguese Statistical Society) – we would
like to inform you that this is a new book series of Springer entitled “Studies in
Theoretical and Applied Statistics,” with two lines of books published in the series:
“Advanced Studies” and “Selected Papers of the Statistical Societies.”

The first line of books offers constant up-to-date information on the most recent
developments and methods in the fields of theoretical statistics, applied statistics,
and demography. Books in this series are solicited in constant cooperation between
the statistical societies and need to show a high-level authorship formed by a team
preferably from different groups so as to integrate different research perspectives.

The second line of books presents a fully peer-reviewed selection of papers on
specific relevant topics organized by the editors, also on the occasion of conferences,
to show their research directions and developments in important topics, quickly and
informally, but with a high level of quality. The explicit aim is to summarize and
communicate current knowledge in an accessible way. This line of books will not
include conference proceedings and will strive to become a premier communication
medium in the scientific statistical community by receiving an Impact Factor, as
have other book series such as “Lecture Notes in Mathematics.”

The volumes of selected papers from the statistical societies will cover a broad
range of theoretical, methodological as well as application-oriented articles, surveys
and discussions. A major goal is to show the intensive interplay between various,
seemingly unrelated domains and to foster the cooperation between scientists in
different fields by offering well-founded and innovative solutions to urgent practice-
related problems.

On behalf of the founding statistical societies I wish to thank Springer,
Heidelberg and in particular Dr. Martina Bihn for the help and constant cooperation
in the organization of this new and innovative book series.

Rome, Italy Maurizio Vichi
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Preface

The material of this volume was inspired by selected papers presented at SPE
2011, the XIX Annual Congress of the Portuguese Statistical Society. The annual
congress of SPE is the most important statistics meeting taking place every year in
Portugal, constituting a primary forum for dissemination of Statistics in Portugal
and a privileged channel for scientific exchange between members of SPE and other
statistical societies.

SPE 2011 was organized by Instituto Superior Técnico—Technical University of
Lisbon and the School of Technology and Management—Polytechnic Institute of
Leiria, by invitation from the Directive Board of the Portuguese Statistical Society
(SPE). It took place from September 28 to October 1, at Hotel Miramar Sul, in the
beautiful picturesque Portuguese sea town of Nazaré.

SPE 2011 continued paving the success of previous SPE congresses having
an attendance in excess of 200 participants and included 140 communications
from authors from 11 countries (Argentina, Austria, Brazil, England, Germany,
the Netherlands, Portugal, Scotland, Spain, Switzerland, and the USA), aside from
a 1-day mini-course on Longitudinal Data Analysis, given by M. Salomé Cabral
(University of Lisbon) and M. Helena Gonçalves (University of Algarve).

For the pleasant and stimulating scientific and social environment enjoyed by
participants in the event, we must thank in a very special way the members of
the Organising Committee (Alexandra Seco, António Pacheco, Helena Ribeiro,
M. Rosário de Oliveira, Miguel Felgueiras, and Rui Santos) and the Scientific
Committee (António Pacheco, António St. Aubyn, Carlos A. Braumann, Carlos
Tenreiro, and M. Ivette Gomes).

Last but not least, we must also thank the following four distinguished invited
plenary speakers who have honoured us by contributing the first four papers of the
volume: Fernando Rosado (University of Lisbon), Graciela Boente (Universidad
de Buenos Aires), João A. Branco (Technical University of Lisbon), and M. Ivette
Gomes (University of Lisbon).

The publication of this volume, which is the last stone in the SPE 2011 building,
aims to disseminate some of the most important contributions presented at SPE
2011 to the international scientific community. The papers included in the volume
mix in a nice way new developments in the theory and applications of Probability

vii



viii Preface

and Statistics. There is a total of 27 papers which, for the convenience of readers,
were arranged into the following four parts:
• Statistical Science
• Probability and Stochastic Processes
• Extremes
• Statistical Applications

The editors would like to thank all authors who submitted papers to the volume,
the anonymous referees for their insightful criticism and excellent reviewing work
that contributed to improve the scientific quality and presentation of the accepted
papers, and the current Directive Board of SPE, especially Vice President Pedro
Oliveira, for assistance during the preparation of this volume. The included papers
were accepted for publication after a careful international review process that
involved a minimum of 2 referees per paper and a total of more than 70 referees
from 10 countries (Argentina, Belgium, France, Germany, Italy, Portugal, Russia,
Spain, Switzerland, and the USA).

The editors are very pleased that their work comes to an end at the International
Year of Statistics (Statistics 2013), which is a moment of worldwide celebration and
recognition of the contributions of statistical science to the humanity. In addition,
for them as well as for all participants in SPE 2011, it is a fond remembrance the
fact that SPE 2011 paid tribute to the following former presidents of SPE who had
retired in the previous year:
• M. Ivette Gomes (1990–1994)
• João A. Branco (1994–2000)
• Fernando Rosado (2000–2006)

SPE wanted, with the tribute, to thank these former popular presidents of SPE
for their invaluable work for the progress of the Portuguese Statistical Society
and its national and international recognition, as well as for the development of
statistics in Portugal, and pay homage also to their strong personal qualities. In this
respect, we and SPE would like to provide our most sincere thanks to Isabel Fraga
Alves, Manuela Souto de Miranda, and M. Manuela Neves for having promptly and
very kindly accepted to be first instance spokespersons in the tribute sessions of
M. Ivette Gomes, João A. Branco, and Fernando Rosado, respectively. It was also
very moving to the editors and the Organising Committee of SPE 2011 the fact that
this event took place close to the end of the mandate as president of SPE of
• Carlos A. Braumann (2007–2011)
whose support, as well as that of the Directive Board of SPE, was invaluable and
decisive for the great success of SPE 2011.

Lisbon, Portugal António Pacheco, M. Rosário de Oliveira,
Carlos Daniel Paulino

Leiria, Portugal Rui Santos
July 2013
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Part I

Statistical Science



The Non-mathematical Side of Statistics

João A. Branco

Abstract
It is well recognized and accepted that mathematics is vital to the development
and the application of statistical ideas. However, statistical reasoning and proper
statistical work are grounded on types of knowledge other than mathematics.
To help to understand the nature of statistics and what its goals are some
major aspects that make statistics different from mathematics are recalled. Then
non-mathematical features are considered and it is observed how these are
diverse and really indispensable to the functioning of statistics. Illustrations of
various non-mathematical facets are brought about after digging into statistical
analyses attempting to end the Mendel–Fisher controversy on Mendel’s data from
breeding experiments with garden peas. Any serious statistical study has to take
into account the mathematical and the non-mathematical sources of knowledge,
the two sides that form the pillars of statistics. A biased attention to one side or
the other not only impoverishes the study but also brings negative consequences
to other aspects of the statistical activity, such as the teaching of statistics.

1 Statistics andMathematics

Although there is a general consensus among statisticians that mathematics is
essential to the development and practice of statistics there is also disagreement and
confusion about the amount and the level of sophistication of mathematics used in
connection to statistical work. The role of mathematics has been viewed differently
throughout the times within the statistical community.

When statistics was at its beginnings, the need for some mathematics was felt,
surely because a theoretical basis for statistics was missing. The precise nature of
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the mathematical statistics that arose in the early twentieth century was naturally
associated with little data available and the lack of computing power. In William
Newmarch Presidential address to the Statistical Society of London on “Progress
and Present Conditions of Statistical Inquiry” [22] we can appreciate this concern.
Newmarch examines, together with seventeen other fields of statistical interest, the
topic “Investigations of the mathematics and logic of Statistical Evidence” saying
that it

: : : relates to the mathematics and logic of Statistics, and therefore, as many will think, to
the most fundamental enquire with which we can be occupied : : :This abstract portion of
the enquiries we cultivate is still, however, in the first stages of growth. (p. 373)

Ronald Fisher’s celebrated book Statistical Methods for Research Workers [5]
begins with a lapidary first sentence that had tremendous impact on the future
development of statistics:

The science of statistics is essentially a branch of Applied Mathematics, and may be
regarded as mathematics applied to observational data. (p. 1)

This view may be quite natural knowing that Fisher was involved in deep
mathematical thinking to establish the foundations of statistics [4]. This potential
definition of statistics could have had the same importance as any other, but coming
from such an outstanding scientist it had decisive influence in valuing, possibly too
highly, the role of mathematics and of mathematicians in the progress of statistics.
Too many mathematical abstractions invade the realm of statistics. Mathematical
Statistics was born and grew so strongly that it was identified, in some quarters,
with Statistics itself. Even today statistical courses and statistical research continue
to take place under the umbrella organization of departments of mathematics and
the teaching of statistics at school is conducted mainly by teachers of mathematics.

John Tukey was one of the first statisticians to perceive that this line of thought
was leaving aside crucial aspects of the subject matter of statistics. He opens his
revolutionary paper on “The Future of Data Analysis” [27], by showing his dissat-
isfaction with the inferential methodology as well as the historical development of
mathematical statistics and announcing a new era for statistics:

For a long time I have thought I was a statistician, interested in inferences from the particular
to the general. But as I have watched mathematical statistics evolve, I have had cause to
wonder and to doubt. : : : All in all, I have come to feel that my central interest is in data
analysis, : : : (p. 1)

Tukey’s insight of the nature of statistics appears even more profound if we take
into consideration the fact that he was a former pure mathematician and that his
paper was published in the Annals of Mathematical Statistics, a true sanctuary of
mathematical statistics. His ideas took time to be assimilated by the community
but they raise immediate discussions about the purpose of statistics and the role of
mathematics in the development of statistics. One wonders if Tukey’s paper had
any influence in the decision by the Institute of Mathematical Statistics to split
the Annals of Mathematical Statistics, just a few years later in 1972, into two
different journals, erasing the words “Mathematical Statistics” from the title list
of its journals. Many distinguished statisticians have made contributions to these
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discussions (see, for example, [2, 3, 15, 17, 18, 29]). In 1998 the statistical journal
The Statistician published four papers giving a critical appraisal on statistics and
mathematics [1, 11, 25, 26] commented by 21 qualified discussants. The debate is
very illuminating and reveals a general consensus among the four authors and the
discussants, possibly extensible to a great majority of statisticians, that mathematics
is a necessary tool to be used as much as statistics needs it, but no more than
that in what concerns statistical practice. More recently another author [20] gives
a retrospective of the influential role of Tukey’s 1962 paper, connected with the
issue of statistics and mathematics.

The idea of freeing statistics from the rigidity and limitations of classical infer-
ence and going in the direction of data analysis, as advanced by Tukey, was followed
by others, as in the area of robust statistics. In robust statistics [10,14] a unique true
model is not accepted. Instead robust statistics considers a family of approximate
models, a supermodel, and it tries to find estimates that are as good as possible for
all models of the family. The search for procedures that are optimal under a given
model gives way to the search for procedures that are stable under a supermodel.

The advent of new technologies has opened the door to the production of a
multitude of huge data sets of all kinds and in all fields of activity. It is evident
that classical statistical methods often relying on assumptions of independence,
normality, homogeneity and linearity, are not ready for a direct analysis of unstruc-
tured and non-homogenous data sets with a very large number of observations and
variables and where the number of dimensions sometimes exceeds the number of
observations. In these circumstances what can be done to analyse this kind of data?
According to the spirit emanating from Tukey’s concept of data analysis one should
do everything sensible, using all means, arguments and tools, including all standard
statistical methods and computing facilities, to get to the point, to answer as better as
possible the question that we think only the data can help to answer properly. There
was a time when statisticians were very interested in the study of methods to analyse
small data sets and the discovery of asymptotic behaviours was a temptation that
many were willing to try. Today we look around and see floods of data coming from
every field such as astronomy, meteorology, industry, economy, finance, genomics
and many others. Much of the immense work needed to analyse this sea of data is
being done by professionals other than statisticians, working in areas traditionally
not considered within the statistical arena (data mining, neural networks, machine
learning, data visualization, pattern recognition and image analysis) but having
some overlap with statistics. Since most of the tools of data analysis are of statistical
nature it comes as a surprise when we see that statisticians are somehow reluctant to
get involved with the analysis of large data sets [16]. That position can have negative
consequences for the future of statistics. At a time when new statistical methods are
needed, to face the complexity of modern data, statisticians should be committed to
develop necessary theoretical studies to guarantee the progress of statistics. But to
search for the convenient methods that statistics is needing, statisticians should first
understand what are the problems and difficulties one encounters when analysing
large data sets, and that can only be achieved with a steady involvement in the
analysis of this type of data.
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In this quick journey on a long road we have seen statistics and mathematics
always together but apart, showing different phases of engagement because they are
actually distinct undertakings. Next, in Sect. 2, differences between statistics and
mathematics are highlighted. In Sect. 3, we discuss an example to illustrate that
statistics appreciates its mathematics companionship but needs other companions to
arrive at its purposes. Final remarks are presented in Sect. 4.

2 Statistics Is Not Mathematics

No one is interested in discussing whether economics or physics is not mathematics,
but statisticians are usually attracted and concerned with the subject of the title of
this section. The reason may be found in the recurrent historical misunderstanding
between statistics and mathematics, as perceived by the contents of the previous
section and of the references found there. To distinguish statistics from mathematics
one could start from their definitions but we would find that there is not a unique
definition for any of the subjects. To avoid a long discussion and some philosophical
considerations we consider only a few characteristics typical of statistics that will
serve to highlight the differences of the two subjects. These characteristics have
been referred to by many statisticians at large, in particular by those interested in
the teaching of statistics, and are:
1. Origin: Mathematics and Statistics are both very old. One might say that

mathematics was born when primitive men first started to count objects and living
things. The origin of statistics is associated with the moment when men first felt
the need to register the results of counting, with the interest to remember the past
and try to foresee the future. However, statistics, as an academic discipline, is
much younger than mathematics, only a little over a century old, while one can
speak of hundreds and hundreds of years for the various branches that form the
present undergraduate students’ mathematical curriculum. Statistics grew outside
mathematics prompted primarily by questions and problems arising in all aspects
of human activity and all branches of science. The first statisticians were truly
experimental scientists [7]. Experimental scientists needing to analyse complex
data had—as they have now and will always have—an important catalyst role in
broadening the field of statistics and the development of new statistical methods.

2. Variability: In a world without variability, or variation, there would be no
statistics. But variability abounds in our world and the uncertainty it generates
is everywhere. The role of statistics is to understand variability by caring
about identifying sources, causes, and types of variation, and by measuring,
reducing and modelling variation with the purpose of control, prediction or
simple explanation. Statistical variation does not matter much to mathematics,
a relevant fact that has to be used to distinguish the two disciplines.

3. No unique solutions: Statistics results depend on many factors: data under
analysis, model choice and model assumptions, approach to statistical inference,
method employed and the personal views of the statistician who does the
analysis. Instead of well-identified solutions as is usual in mathematics, various
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solutions of a nondeterministic nature, leading to different interpretations and
decisions is a common scenario in statistics.

4. Inductive reasoning: Two types of reasoning that work in opposite directions
can be found in Mathematics and Statistics. Deductive reasoning is used in
mathematics: from a general principle known to be true we deduce that a special
case is true. Statistical inference uses inductive reasoning: the evidence we find in
a representative sample from a population is generalized to the whole population.

5. Scientific method: In [19], Mackay and Oldford view the statistical method as a
series of five stages: Problem, Plan, Data, Analysis and Conclusion (PPDAC). By
comparison with the scientific method for the empirical sciences they conclude
that the statistical method is not the same as the scientific method. But, although
statistics is a unique way of thinking, it follows the general principles of scientific
method. It is embedded in almost every kind of scientific investigations adding
rigor to the scientific process and scientific results. To the contrary, mathematics,
as generally accepted, does not follow the scientific method.

6. Context: Data needs statistics to be analysed and statistics needs data to work.
With no data one does not need any statistics. But data are numbers in a context,
and that is why context is essential in statistical work. Context is crucial even
before we have data because knowing context one can decide how data may be
collected to better conduct the statistical analysis. The conclusions of a statistical
study have to recall the context to answer properly the questions formulated in
the beginning of the study. The case of mathematics is different. The work of
mathematics is mainly abstract, it deals with numbers without a context. While
context is the soil that makes statistics grow well it may be a drawback that
disrupts the natural development of mathematics. That is why context may be
sometimes undesirable for mathematicians.

Other aspects typical of statistics but not of mathematics, and certainly not the
only ones, are the terminology and the language, the measurement and design
issues associated with the collection of proper statistical data, the interpretation of
statistical results and the communication of statistical ideas and statistical results to
a large and diverse audience.

The idea to set apart statistics from mathematics is not intended to say that
mathematics is not important to statistics but to justify that statistical knowledge
and statistical reasoning, specific as they are, must be envisioned and cared about
as a unique scientific process that must be let to develop freely without any
constraints from other fields, in particular from mathematics with which it has a
strong connection.

Any inattention to this is likely to distort the natural progress of statistics.
One area where this may happen is the teaching of statistics. If teachers and
scholars fail to explain clearly the true nature of statistics and the specificity of
statistical thinking, their students, detached from the reality of statistics, will tend
to propagate a wrong message. And this state of affairs is not uncommon if we
think that, on the one hand, the statistics taught at school level is often part of
the mathematics curriculum and the teachers who are trained to teach mathematics
have, in general, little contact with statistics and no experience whatsoever with the
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practice of statistics. On the other hand, at the university level, introductory courses
of statistics face the limitations of time allocated to these courses and with little
time the syllabus concentrates on formal methods putting sometimes more weight
on mathematical aspects than should be the case. Besides, statistics is a difficult
subject to teach: students don’t feel comfortable with uncertainty and probability,
and how do we teach, in the first instance, the ideas of variability or data analysis?
How can lecturers, in a limited amount of time, make their students understand that:
(1) to have a good knowledge of the context is important, (2) good interpretation of
statistical results requires ability, (3) making final decisions about a problem has to
be based upon conclusions of statistical analyses, generally not unique and (4) they
must exert good communication skills to dialogue with those who have posed the
problem, know well the context and expect to follow the statistical arguments and
results? Some aspects can only be learned by getting involved with problems of the
real world, that is, by doing statistics.

Interest in the teaching of statistics is not new [13, 28] but it grew tremendously
when it was felt that citizens living in a modern society should be statistically
literate and statistics was then introduced in the school mathematics curriculum.
Many obvious questions, that are not easy to answer, were then put forward: Who
is going to teach statistics? Who can? What to teach? How to do it? and so on. The
International Statistical Institute realizing the scale of the problem and its interest to
the community created IASE (International Association of Statistical Education)
to promote statistical education. IASE organizes conferences and other actions
concerning the teaching and the learning of statistics. Today statistical education
is a topic of research that attracts a large number of people who publish the results
of their investigations in specialized journals. Ideas of changing curricula, styles and
methods of teaching and learning are in the air [9, 12]. Although school elementary
courses and university introductory courses are very distinct and run in completely
different scenarios there are reasons to believe that the difficulties encountered in
passing the statistical message in both cases share some form of influence of two
general conditions: mathematical and non-mathematical aspects of statistics and the
relative importance that is given to each one of them.

Next, we look at a statistical article [23] trying to identify and discuss various
non-mathematical aspects of the analysis. Any other non-theoretical work could be
used to illustrate the role of the non-mathematical aspects but this particular one has
the advantage that the author of the present work is a joint author of that paper and
then he can review and quote from it more freely.

3 The Non-mathematical Side of Statistics

The title of the paper mentioned at the end of the previous section, “A statistical
model to explain the Mendel–Fisher controversy”, is self-explanatory in what the
authors want to do. The question is how they arrive at that model and what they are
doing with it. Let us review the various phases of this work.
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3.1 The Problem

Gregory Mendel, known as the founder of scientific genetics, published, as early
as 1866, his two laws of heredity (the principle of segregation and the principle
of independence) [21]. This amazing discovery was arrived at after continuous
meticulous work, during more than 7 years, on controlled experiments by cross-
breeding garden pea plants. Mendel cultivated and tested around 29,000 plants.
Inspired by good judgement and based on empirical calculations (proper statistical
methods did not exist at the time) on the registered data of the artificial fertilization
Mendel worked out the laws of hereditary. But despite being an extraordinarily
revolutionary achievement it was forgotten until 1900, during 35 years, when it was
rediscovered by independent researchers.

Ronald Fisher, known as the founder of modern statistics [24], and a great
geneticist, soon got interested in Mendel’s work. In 1911 he made a first analysis of
Mendel’s results, and having found that they were exceptionally good questioned the
authenticity of the data presented by Mendel. Twenty five years later, in 1936, Fisher
came back to review the problem and performed a thorough and rigorous analysis
of the same data and of all the Mendel experiments supposed to generate that data.
He reinforced his previous opinion concluding that the data are simply “too good
to be true” [6], what became a truly demolishing assessment for Mendel’s image.
Apparently Fisher’s veiled accusation of forgery was ignored until the centennial
celebration of Mendel’s 1866 publication when it suddenly came to light and a
stream of controversial opinions, about the relevant question, started to flood the
publication spaces with tens of papers, including the recent book “Ending the
Mendel–Fisher Controversy” [8] which really does not manage to accomplish what
its title promises. Pires and Branco [23] present a short chronological account of
the major facts of this controversy almost century-old controversy. They refer to the
vast bibliography that has been produced, some of which is very illuminating for the
sake of understanding the problem and the discussion of the analyses proposed by
the various contributors.

The relevant question is: is Fisher right? That is, has Mendel’s data been faked?
Since Mendel’s laws are right, we must start by asking if Fisher’s analysis is
correct, because if it is not then the reason for the accusation would be lost.
A second question is: if Fisher is right can we think of other possible reasons why
Mendel’s data conforms so well to his model, instead of immediately accusing him
of scientific misconduct?

3.2 Data in Context

To answer the first question Fisher’s analysis must be reviewed. As mentioned
in [23] only the part of Fisher’ paper related to a chi-square analysis is considered
here. It is in fact the extremely high p-value obtained by Fisher in that analysis that
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served mostly to support his attack on Mendel and that has also been the bone of
contention among the scientists involved in the debate.

To understand the data as prepared by Fisher in order to apply the chi-square
goodness-of-fit test it is necessary to get into the genetic background, to follow
the details of a large number of complex and delicate experiments, to be aware
of the subtle problems of measurement of the experimental results and finally to
understand Mendel’s theory. Mendel’s paper is simple, clear and certainly the best
to help the reader in these matters, but there are other useful sources. Pires and
Branco [23] give an organized summary of relevant aspects of the experimentation
and give comments on the data that help to understand why and how the chi-square
can be used. Knowing the context and understanding the data is essential also to
follow the arguments advanced by many researchers to defend their proposals to
solve the controversy.

Mendel concentrated on the transmission of seven binary traits or characteristics
of garden pea plants (two traits observed in the seeds and five observed in the
plants). One trait has two forms (phenotypes), A (named dominant) and a (named
recessive), just like seed shape (round, A, or wrinkled, a) and flower colour (purple,
A or white, a). He tried various types of cross fertilization and observing the traits
of the offsprings and comparing the results with his expectations he consolidated
his theory. Following [23] and a classification used by Fisher, the experiments can
be classified into single trait experiments, bifactorial experiments and trifactorial
experiments according to the number of traits considered in each crossing, one, two
or three. Fisher included in his analysis more complex experiments classified into
two new categories: gametic ratios and illustrations of plant variation experiments.
In accordance with Mendel’s theory, crossing a number of plants pure lines (those
whose offsprings are always similar to their parents) and then crossing the resulting
offsprings (no pure lines any more, called hybrids) then the offsprings of this last
crossing will be of the two original phenotypesA and a in the proportion of 3:1. That
is, in a population of n offsprings the number of phenotypesA (success), nA, will be
distributed as a binomial distribution, nA � Bin.n; p/, where p is the probability of
success (p D 3=4 in this case of the ratio 3:1), under the standard hypotheses: each
observation is considered a Bernoulli and trials are independent. A more thorough
and complete description of this interpretation, extended to all cases of cross
breading included in the study, is in [23]. To test Mendel’s theory we consider the
number of successes, nA � Bin.n; p/, and the hypothesisH0: p D p0, where p0 is
the true probability of success under Mendel’s theory. The observed value of the test
statistic to test H0 againstH1: p ¤ p0 is given by � D .n1 � np0/=

p
np0.1 � p0/.

Assuming n is large the p-value of the test is P
�
�21 > �

2
�
.

3.3 Fisher’s Chi-Square Analysis

Having assumed the binomial model (in some cases a multinomial model was
assumed) and independence of experiments Fisher tested H0 applying a chi-square
goodness of fit test and then he summed up all the chi-square statistics and degrees
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Table 1 Fisher’s chi-square analysis (“Deviations expected and observed in all experiments”)

Probability of exceeding
Experiments Expectation �2 deviations observed

3:1 ratios 7 2:1389 0.95
2:1 ratios 8 5:1733 0.74
Bifactorial 8 2:8110 0.94
Gametic ratios 15 3:6730 0.9987
Trifactorial 26 15:3224 0.95

Total 64 29:1186 0.99987
Illustrations of plant variation 20 12:4870 0.90

Total 84 41:6056 0.99993

of freedom in each class of experiments, having arrived at the results of Table 1
(Table 5 of [6]).

The first two lines of Table 1 referred to the single trait experiments. Gametic
ratios are 1:1 and the rest of the experiments have ratios of 2:1 or 3:1, which
means that in H0: p D p0, the possible values of p0 are: 3/4, 2/3 and 1/2. The
final value of the chi-square, after aggregation, leads to the amazing p-value of
0.99993. This means that, with data collected and reported correctly and under
the assumed distributional assumptions, the probability of getting an overall better
result, in a new sample of experiments, is 0.007 %. If 100,000 scientists, including
Mendel, were to repeat these experiments, only seven lucky ones would observe
data that agree with the theory better than Mendel’s original data. Fisher decided
that Mendel was not one of the lucky scientists and preferred to suggest that the data
may have been massaged, not necessarily by Mendel but by some of his dedicated
assistants. And what about Fisher, has he done a correct analysis? Pires and Branco
[23] repeated Fisher’ work and did a simulation study based on 1,000,000 random
replications of the experiments. They concluded that Fisher is correct if the assumed
assumptions are met. Pires and Branco [23] also did a study of a model based
on 84 separated binomials and the results are similar to the results found in the
two previous alternatives but as it attains a larger overall p-value, 0.99998, the
evidence against Mendel is even greater than that worked out by Fisher. This is
the model selected by Pires and Branco [23] for the rest of their investigations,
the less favourable to Mendel. Fisher’s accusation started a large debate involving
many scientists. According to Pires and Branco [23] most of the arguments that
have been put forward can be classified into three categories: (1) those who do not
believe in Fisher’s analysis, (2) those who accept that Fisher is correct but look
for other ways to analyse Mendel’s data and (3) those who believe in Fisher’s
analysis but, not accepting that Mendel has deliberately faked his data, look for
other methods or arguments that could explain the observed high p-value. Despite
so much interest and effort and so many, biological, statistical or methodological
explanations, attempting to solve the controversy no one has succeeded in refuting
Fisher’s analysis so that the hostile remark “too good to be true” could be dismissed.
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Fig. 1 Empirical cumulative distribution function of the p-values (stair steps line); cumulative
distribution function of the uniform (0,1) random variable (straight line); cumulative distribution
function of the maximum of two (0,1) uniform random variables (curve)

3.4 A Cute Little Theorem

Having concluded, based on the study of two models and a Monte Carlo simulation,
that Fisher’s analysis is correct, the authors turn to the distribution of the p-values
from the 84 binomial model. They realize that, accepting all model assumptions
are true and that Mendel’s theory is right, the application of the chi-square test is
correct and the p-values follow a uniform distribution. And in that case its empirical
cumulative distribution function (e.c.d.f.) is graphed as the diagonal of the square
.0; 1/� .0; 1/, as represented in Fig. 1, reproduced from [23]. The plot of the e.c.d.f.
of the p-values (stair steps line) is far from that diagonal, and this discrepancy is
also supported by the Kolmogorov–Smirnov goodness of fit test. Then the question
arises: what is the c.d.f. of the p-values and what is the reason that justifies that
distribution?

The authors, inspired by the visual of Fig. 1, notice that the plot of the e.c.d.f. of
the observed p-values lies between the diagonal (plot of the c.d.f. of the uniform)
and the plot of the c.d.f. of the maximum of two uniforms (0,1), y D x2. This
triggers the following hypothesis: the c.d.f. of the p-values that best fits the data
(e.c.d.f. of the observed p-values) probably lies between the two lines, y D x

and y D x2. One possible justification of this proposal is: Mendel repeated those
experiments that produced results that deviate markedly from his theory, and choose
only the best of the two. To model this proposal one assumes that an experiment is
repeated whenever its p-value is smaller than a value of a parameter, ˛, selected
by the experimenter. Then the experiment with the largest p-value is chosen.
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Assuming this selection procedure the authors proved that (a “cute little theorem”,
as the editor of Statistical Science called it during the revision process)

F˛.x/ D
(
x2; if 0 � x � ˛
.1C ˛/x � ˛; if ˛ < x � 1:

Repeating Fisher’s analysis under the proposed model (˛ is estimated from the
sample of 84 binomial p-values) the p-value, root of the controversy, drops down
to a reasonable value, not too close to one. This means that the conditions under
which Fisher did his analysis may not be right because the selection of the data may
have been done according to a procedure distinct from the one he was assuming.
Fisher overlooked other possible procedures as the one suggested in [23] to support
of their proposed model. In [23] it is shown that the proposed model is better than
any model within the family of models whose c.d.f. is a linear combination of the
extreme models, x and x2.

The authors of the paper we are discussing present a list of quotations from
Mendel’s paper that clearly support their proposed model. In the end, regarding
Mendel’s position in the controversy, the authors try to dismiss the accusation of
fraud and attribute his motivation to pure unconscious bias.

One of the latest attempts to solve the Mendel–Fisher controversy is described
in [23]. From this quick review of that paper one can see that there are some pieces
of mathematical statistics: the theorem, essential to the formulation of the model on
which the authors based their analysis, and eventually some formal aspects behind
the probability distributions used in the text, including those associated with the
chi-square and Kolmogorov–Smirnov tests. The rest of the paper can be considered
of non-mathematical nature, including the application of the statistical tests and
all the statistical reasoning used in the analysis. The computation needs are not
great: we should remember that Fisher did his analysis as rigorous as it can be
without any of the computational means we have today, but without a computer
the simulation study would not be possible. The context involving the controversy
is briefly described in Sects. 3.1 and 3.2 but it is constantly behind most of the
decisions concerning the global statistical analysis. Judgements of non-statistical
nature permeate this research and when correctly formulated they are illuminating
for the progress of the work. Bad judgements can cause irreparable damage to the
research. Fisher’s “too good to be true” is probably an imprudent judgement because
he could not prove his accusation and did not look for other possible reasons that
could explain the high observed p-value. That is what many people are doing now,
by trying to solve the controversy he started.

4 Final Remarks

The discipline of statistics is the result of many endeavours and ideas from many
people working in a great variety of fields, some interested in immediately solving
their real problems, some eager to devise rigorous and efficient methods of analysis
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and others devoted to the teaching and the spread of statistics. That is probably
why talking about statistics is a matter of experience and sometimes a controversial
subject. This text is a personal opinion about central features of statistics and should
be viewed only as such. The main point is to highlight aspects of statistics that
are not of a mathematical nature. It is unfortunate that these aspects are not given
the importance they actually have in the statistical work. Of course, mathematics is
an essential tool: formal statistical methods are a product of mathematics and they
would be of little value without the contribution of probability theory. But a good
knowledge of the context of the statistical problem, the efficient manipulation of
the computational tools and the ability to use other pieces of knowledge are crucial
for the selection of a convenient model and for the global analysis. Doing statistics
is like making a cake: various ingredients are needed and if they are combined in
the right proportions and mixed with artistic hands the expected product will have
a good chance of being delicious. In the discussion of the example presented in
Sect. 3 we can recognize statistical ingredients and observe how they are used to
arrive at a final product, just as in this allegory. Along the path of statistics we have
spotted important moments of change: the need for mathematics, the appearance of
mathematical statistics, the arrival of data analysis and the current wave of massive
data sets that is presenting enormous methodological challenges to statistics.

Statistics is a dynamic discipline that is continuously evolving and adapting to
different realities. It will find a new paradigm to succeed in the present demand and
in what will come next.
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Outliers: The Strength ofMinors

Fernando Rosado

Abstract
Let us think, particularly, about Statistics. Statistics is simply the science of data.
It is usually also “applied” because research, most of the times, also implies
an application. Statistics is interesting and useful because it provides strategies
and instruments to work the data in a way that we can better understand real
problems. Data are numbers (or the lack of numbers) inserted in a certain context
or experience. To determine the average of 50 numbers is pure algebra, it’s not
Statistics. To decide over that value of 50 and to choose whether we have a small
or a large sample is, in each case, to assume the difference of a certain value
(even if we use the average determined before!)—is, in fact, Statistics.

Moreover, let us think, what are the main topics of Statistics for the twenty-
first century? What is now “important” comes from the previous century? In one
recent ISI congress—International Statistical Institute—(now called ISI WSC—
World Statistics Congress) the topic “Water” was elected for a whole day of
scientific lectures. Why?

Thinking about investigation, let us bring up the expression “quos fama
obscura recondit”. [Thinking about investigation. This great expression by Virgil,
The Aeneid (Eneid, V, 302) is used, among many other, by Saint Augustine,
De civitate dei, (The City of God, volume I, Book VII, Chapter III, p. 611 and
so on. Education Service. Calouste Gulbenkian Foundation, 1991).] On the one
hand, in the dichotomy between the “minor reason” and “a higher reason”, should
the statistician have, as a goal, (only) the knowledge which allows him to cover
all the basic scientific requirements? On the other hand, that knowledge should
be the beginning and statistics still assumes the great importance of “scientific
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details” of those who are hidden by an obscure fame—let’s call them outliers.
They are stimulators of research and they can be originated by different values
of the same sample. A minority!

Are these “minors” who make science go forward?! The strength is in them!

1 Statistics as a Science

Science in general and Statistics in particular is a noble occupation, necessary to
the body and mind, compulsory to the well-being and to happiness. But the fact is
that science is expensive. This way, only the rich can make use of it : : : and the poor
become poorer if they employ it. Though great effort and dedication are demanded,
the solution (in spite of all this) should probably be in making science to walk out of
that dilemma. And this is what it is required to Portuguese statisticians brought
together by a leading project—SPE! The Portuguese Statistical Society (SPE in
Portuguese) joins both researchers and makers of Science. In the Memorial [6],
several authors wrote about research. The fact that the chapters are so up-to-date
makes that edition an important document in the search and creation of a story on
investigation. This topic is crucial for Science and for Statistics.

Statistics affects all and touches life in many situations. As citizens we help
to provide statistical information—our own birth and death are recorded to create
indexes and rates. Moreover, advertising leads us to believe in something or fools
us using statistical facts and figures to support their product.

That’s the importance of the individual/of an observation.
Leading a community, through its governmental institutions and trading, depends

a lot on the statistical information and that dependence increases even more as the
trade influences the economic and social life planning. The advertisers, managers
and administrative leaders who use (and sometimes abuse) statistics are a strong
number of people. But there are others, considering social science students and
politicians. All these people apply statistical facts and methods to build the starting
point of politics. Such facts and methods also have a very important place in the
development of sociology and economics as sciences. They are also relevant for
scientific researchers, considering biology, for instance, and for those who work
with the most exact sciences like physics, chemistry or engineering these facts and
methods become fundamental.

That’s the importance of Statistics.
The statistical ideas are the centre of many theories and, in fact, a “statistical

approach” is maybe one of the most distinguishing features of modern science.
Finally, statistics as a subject is naturally very interesting for the relatively small
group of professional statisticians. As a result of the various ways we found to look
at the topic, the word “statistics” and the ones connected to it (“statistical” as an
adjective and “statistician” as a noun) have several meanings. First of all, we have
the dictionary definitions in which statistics is referred to the topic as a whole and,
in a broader meaning, numeric data.
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Common sense says that statistics are just numbers. The ordinary user has the
tendency to think that a statistician is mainly someone who counts the number of
things.

For an economist, used to the economical theory ideas, “statistical” is almost a
synonym of “amount”. For a physicist, “statistical” is the opposite of the exact, as
for him statistics is a subject that above all considers groups and possibilities, more
than certainties. For the scientist and investigator who is used to get knowledge
from controlled experiments, statistical methods are those which he applies when
a rigorous control of an experiment is impossible or very difficult to maintain. The
field of application of statistics is mostly economical, but not totally economical—
that’s why the statistician is often considered an economist. On the other hand,
as statistical methods are basically mathematical, many people still think—even
today—that the statistician is a sort of mathematician. We could almost assert that
the mathematician accepts the statistician as an economist and that the economist
considers him a mathematician. Some (few?!) think that statistical methods are so
poorly rigorous that anyone can “prove” no matter what; others acknowledge that,
because they are such harsh methods, they prove nothing. The third group unites
those who state that, as a way to increase knowledge, the power of statistics is
unlimited and almost magical.

It is normal to start a book about Statistics, for instance, by defining and
illustrating the topic we are referring to. A book in which Statistics is the main
topic is obviously not an exception. A (random) reading of the first pages of a book
suggests two perspectives for the introductory definitions. These definitions are brief
and shallow most of the times. Others interleave identifiable subjects which restrict
the text. Let us reflect on the issue overall. Facing the topic of Statistics we can
consider many thoughts. The first one is considering that Statistics is at the same
time a science and an art. It is a science because its methods are basically systematic
and have a general application; it is an art because the success of its application can
(also) depend on the experience and the skill of the statistician and his knowledge of
the field of application he works in. However, it is not necessary to be a statistician to
appreciate the main beliefs that are its basis. As a science, Statistics and particularly
the statistical methods are a part of the scientific method in general and is based in
the same background and processes.

Thus Statistics, as many other subjects, is always evolving. It is sustained by a
theory : : : hence, it is also and above all, progressive! A theory is a set of primary
guidelines of a science or of an art with a certain doctrine about them.

Statistics is a science because, basically, it develops a rigorous and rational
understanding of a wide range of knowledge in a large sundry of purposes. So, it
must be an organised set of information rooted on objective verifiable interactions
and with a universal value.

It is obvious, commonly accepted and in a good dictionary we may find a
definition for Statistics: it is a science that studies the methodical grouping of social
facts which are usable for a numeric evaluation (of the population, of the birth
rate and mortality, of the income rate and taxes, of the agricultural crops, of the
criminal rate, of the religious beliefs, etc.). In a slender perspective, sometimes
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one also elects the word Statistic to refer to a part of applied mathematics which
uses probabilities to establish hypothesis based upon real events, in order to predict
occurrences. Progress has proved the first is stronger than the latter.

Statistics is the science of data, also applied because research often wants an
application. Statistics is interesting and useful because it provides strategies and
instruments to work the data in order to best “deal with” real issues. Data are
numbers (or the lack of them) inserted in a given context or experience. But to
determine the average of 50 numbers is pure arithmetic, not Statistics. To reason
over that value of 50, decide whether we have a small or a big sample and in
each case to conclude about the disparity of a specific value (even if one uses the
average calculated before!) is really Statistics. Though Statistics may be considered
a mathematical science, it is not a branch of maths and it shouldn’t be taught like
one. We can reason about statistical thought which stands and supports the decision
theory.

2 Statistical Science: Inference and Decision

Statistics, practically demands judgements. It is easy to list the mathematical
hypothesis that justify the use of a certain methodology but it is not so easy to
decide about that method, when it can “surely” be used in an empirical point of
view. Here, experience becomes crucial. Even in the simplest scientific analysis—
and less disputable?—assuming Statistics as a branch of applied mathematics, the
final goal is mostly related to predictions. Thus is the pragmatic point of view of
Statistics that we are talking about. However, prediction is directly connected to
Inference and Decision. Every theory illuminates an empirical point of view and
this informs the theory, in a dialectic correlation. Every time we question the users
(mainly those who are pragmatically dependent) there are “suggestions” that emerge
with “a lot of case studies” and “job offers” with “less theory and more practice”.
Yet, theoretical support is always acknowledged and it should always be around and
available!

We have therefore reached the Theory of Statistical Decision. It is the one where
it is founded and where the genesis of the “statistician’s job” remains. About this
topic—theory—we chose some key ideas by Murteira [4].

“Although man is called to make decisions on a daily basis, only recently have
problems with these decisions appeared and were dealt with under a scientific close
look.” (ib, p. 97). Historically, “the theory of statistical decision is essentially due
to A. Wald who followed Neyman–Pearson tradition and enhanced the horizons,
using the development of the game theory, by von Neumann and Morgenstern. The
great worth of Wald (: : :) is in a contribution for a debate where (: : :) generally
speaking, the standard procedures are peculiar cases of statistical decision” (ib,
pp. 108–109). Nevertheless, in order to avoid confusions, we should make clear that
“(: : :) the theory that is about to be thought about is connected to the individual
decision, not to a group decision. (: : :) the theory that is about to be analysed
isn’t trying to substitute the decision-maker—but to bestow a set of rules which
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help the decision-maker (: : :). Generally one might say that this is a problem of
decision when it becomes imperative to choose or opt at least between two courses
of action” (ib, p. 97). But are there others who believe Statistics is not a theory?
Could one accept that it is “an instrument or a tool in which its most relevant
applications are naturally on the scientific sphere of influence”?1 “In the scientific
assertion problems—or the ones related to statistical decision—one works most
of the times with a probabilistic model or, at least with a strong probabilistic
component” (ib, p. 23).

3 The Need of Outliers

All models2 are very important (they are fundamental!) in scientific research.
Besides, in modelling there is (also) the sample and each of its parts—(particularly)
its observations and its dimension. Searching for outliers in a sample is a research
issue that can be fixed : : : And it will generate (or create the need for support in
at least) a Theory! Some scientists assume Theory as a synonym for hypothesis.
But theory is different from hypothesis and from science as a global system. As,
in the scientific method, the hypothesis is a previous stage of the Theory. And it is
an integrant part of science, either theoretical or applied. Theory opposes praxis
or action, and yet they are complementary. As we know, the scientific method
goes through several stages: observation and experiences, hypothesis and drawing
conclusions, a general law or a Theory. This is a hypothesis which has been
confirmed by experience and is a part of Science. But there are several kinds of
Theory and Sciences. Nevertheless, we can only find possible two kinds of Theory:
the deductive kind and the inductive kind. As far as the deductive are concerned,
there is a series of valid statements or true premises (theorem) which is built upon a
group of primitive premises (axioms) by the application of certain rules of inference.
In the inductive we find a set of real or probable premises (theorems, axioms and
definitions) which is developed according to several particular cases under a process
of immediate and generalising inference. To many, the conclusion of induction is
only a probability. And the “probability of a law” grows with the number of cases
that confirm it. If after careful tests we “confirm a discordant value”, we have the
set or the core of rules that may form—one or the—theory of outliers.

One of the most general ways to define Statistics is to consider it a method
to choose between alternatives of action facing uncertainty, by collecting and
interpreting data about what it is being studied. Thus, in general, the Theory of
Outliers in Statistical Data becomes a capital gain for Statistical Science. Some
worries may follow its construction; yet, obstacles don’t seem insurmountable and
it is likely that a great future is ahead. The methods of scientific interpretation,

1Murteira in [4] quoting Gustavo de Castro, 1952, Mathematical Statistics as a Scientific Tool,
pp. 52–64.
2Brief summary on this topic. For further information read [7].
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theoretically speaking, are obviously meticulous and lead us to valid conclusions
from a scientific point of view. Besides, the quality of the data used—which affects
conclusions—cannot be the support of the accusation of those methods. Bad quality
can question methodology. Good data quality is a wishful statistical benefit. And
surely quality improves with the Theory of Outliers.

In conclusion, (one or the) theory of outliers should not only provide a set of
rules which helps the decision-maker but also build instruments that can evaluate
the quality of the decision. And with that hope : : :we must proceed, although theory
should be transmitted in order to grow and to develop itself.

4 Fortune/Chance Decide!?

Considering3 an analysis of outliers in statistical data, let us divide—or split
up—the data we are studying into two (two, and only two groups alone?): “the
selected”, which supposedly has the larger number of observations, the majority,
and “the suspicious”. The latter (always present?!) has less data points because
we ordinarily4 believe in only one or two discordant values. There is no evident
reason for that choice. Yet, it is (nearly always) done. The confirmation—of a
discordant/suspected value as an outlier—is (stronger as we proceed) in the use
of outliers significance tests in most scientific spheres and according to experts on
the applications, including statistical packages. Everybody wishes to improve the
quality of their work and conclusions through a “purification of the data”. Still, can
the suspicious hold more, better information than the selected? What is the reason
why we choose the selected and not the others? Why aren’t the suspicious—which
are hidden by an obscure fame—those which are selected in the most eloquent
statistical analysis? After all, this is a very important issue: showing5 which are
“the true ones”, although we don’t get all (the best!) clues out of them, and they
allow us to see all the frailties of conclusions. Once we divided the statistical data
between the selected and the suspicious, we should question “which is” or “why it
is” selected. Who provides that “statistical circumstance”?

Chance6 is the only thing that doesn’t happen randomly. Statistics7 is very old but
it has a very short history. It was considered a subject in schools8 only in the second

3The Roman goddess who, such as the Greek analogous Tyche, operated as she pleased, both
happiness and sorrow, according to her wit.
4Also for scientific reasons!
5It is always the search for Truth that is the issue!
6Talking about outliers, let us remind this topic. The sentence is from Almada Negreiros (p. 125,
Mathematics and Culture. Furtado Coelho et al., 1992. Edições Cosmos). This was a topic of
discussion in a conference held by Tiago de Oliveira (ib, pp. 125–149). Statistics goes well with
chance and they both create need. It is a recurring topic which entitled an edition of SPE—Statistics
with Chance and Need; Proceedings of the 11th Annual Congress.
7About this topic, read the “small expedition” presented by Tiago de Oliveira (ib, pp. 125–128).
8The articles by Efron and Rao on this matter are important, in [5].
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quarter of the twentieth century and its main architect was Fisher—also called the
founder of modern statistical science. Certainly Fortune is the leader; she assures us
all “the selection” or, on the other hand, “the obscurity”, more according to her wit,
rather than justice.

But how many are selected and how many are suspicious? If it is Fortune which
decides which are the obscure—those which hold “strength”—why doesn’t she get
that credit for herself? Is it because she suffered a difficult fate herself? In that case,
she honours others when she can’t honour herself—she is her own opponent! Should
the selected always be the majority? And do they deserve more attention? They are
often chosen because they are important for the study. Among the selected, which
are “the weakest”? Are they all just as good? What is the reason (or the cause)
for some selected be considered of minor importance (because they surely exist!)?
Moreover, how do we compare “minor selected” and “suspicious”? The latter,
already called outliers, can detain much more value. It is an outlier which allows
a deeper statistical analysis. This might be the origin of a work of excellence. It is
the choice of a study of outliers that can make the difference between a statistician
and a user of statistics. This also applies to research. Outliers—which are hidden
by an obscure fame—bestow data with life. Indeed chance is the one which assures
each statistician’s fame or obscurity. Let not the one worthy of honour be judged,
for he is among the selected. Stronger are those which chance—Mother Nature—
has provided with much more (statistical) information. To select them, let us create
(at least) a theory! Does Fortune/Chance also decide in research!?

5 Outliers: A Path in Research

Experience can turn research into passion. Basic scientific investigation, as well
as applied scientific investigation, represents a significant illustration of man over
Nature. On the one hand, investigation is leitmotiv on the search for Truth. This
investigation, on the other hand, stimulates the great(est) thought (ever) that wishes
for a reconciliation between reason and faith, which are often questionable. They
are like two wings on which the human spirit rises to the contemplation of truth. If
scientific investigation follows strict methods and keeps faithful to its own object
there is no room for discrepancy. And if the research is based on smaller support—
the background ones—it becomes easier to understand the two. They don’t actually
reach (apparently) contradictory goals.

All great theories start with a small step and, frequently based upon (statistical)
data. Because it involves so many subjects, Statistics is shared in Science and for
that reason, Research in Statistics is of great importance.

In Statistical Research, such as in many other subjects, one searches for truth.
Truth? Search is a permanent course patterned by small steps—unsure and fragile at
first—yet firm when experience and wisdom allows it. Notwithstanding, “there are
no paths, we have to walk!” (says the poet) because “a path only results in traces : : :”
and thus with Statistics.
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Let us walk!
As we walk—more this way, less that way—questions about “goals”, “interest”

or “value” of the “produced science” occur. In the end, there’s the “search for truth”
and its value : : :

Certainly small contributions are solid because they are easily “controlled”,
“assimilated” and “ordered”. So they occupy their place! Larger contributions, on
the other hand, may be more fragile because of the vulnerability of their small
support. And the latter, as a whole, create a theory.

Just the same, there are outliers in Statistics and many other subjects—from
Physics to Metaphysics. There are profound doubts in all of them. Looking at
outliers wherever they are, we create Science–particularly Statistics. Consequently,
we open a (another) path on the search for Truth.

It is the strength of the weakest—the minors!

6 In Perspective

Statistics is also associated with the collecting and use of data in order to support the
organisation of a certain state. The justice system is, in fact, one of the fundamental
pillars of a modern state and it is basics in the politics of most of the countries.
The most recent advance in the theory of outliers has emerged from the statistical
inference to interpret data in a legal point of view. The legal courts are introducing
new challenges for statisticians who are thus asked to speak upon non-traditional
lines of work—for instance, the correct application of laws involving authors’ rights
or, much stronger, the biostatistics or genetic evidences in certain proofs. It is the
rise of forensic statistics; probably the most recent topic of outlier study.

As we know, the definition of outlier depends on the area of statistics that we are
working on. According to this, it is not possible to find a “general definition”. Time
series, for instance, demand a difference between additive outliers and innovation
outliers. Spatial data, on the other hand, ask for a generalisation of the few existing
results for circular data, where the influence of its dimension leads us to multivariate
data. In multivariate data we are confronted with the additional difficulty of ordering
data, which had been crucial for the research of univariate data.

The outlier issue can also relate to the general challenge of teaching statistics—
from the conceptual point of view and from the pragmatic point of view. This subject
is firstly posed when the most part of students’ practical education is based on
academic exercises. We are much aware that the statistician is also educated by
professional practice. Yet, it is important to alert for the actual problems from the
experiment’s point of view, mainly in the “final education” subjects which involve
statistical modelling, for example.

Though with different difficulty levels, many areas of investigation are opened
to the study of outliers in statistical data. The choice9 we have made—according

9For details: Chapters 2–4, in [7].
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to a general approach—has the obvious advantage of turning the field of possible
applications vaster. On the other hand, it has limited the study of some primary
topics. Among these—has it has been said before—we underline the studies in time
series and in surveys or census, where the first developments are very recent. Sure
we can say that the general methodology we talked about before is applied here,
despite the specificities that come from there.

The existence of an outlier is always related to a certain model and an observation
can be discordant to a model and not to others.

The great goal in any outlier study will always be: What is an outlier and how to
deal with that statement.

Once we define a theory, as we have said before, it is very important to evaluate
the performance of the several tests of discordancy. This is also a sphere where there
is much work to do.

The Beckman and Cook [1] study—although it is over 30 years old—made an
excellent summary of the statistical approach of outliers, either from the historical
point of view or from the application of standard models of statistics. Maybe now it
is the moment to make a new up-to-date statement. In that study mentioned before,
Beckman and Cook ironically conclude that “Although much has been written, the
notion of outlier seems as vague today as it was 200 years ago”.

What would we say today?
Of course, from then on we have registered an advance, but there is yet much to

do.
The development of modern statistical theory has been a three—sided tug war

between the Bayesian, frequentist and Fisherian viewpoints. In 1975, Lindley [3]
foretold that the twenty-first century would be Bayesian—because 2020 was a
crucial year. The Bayesian methods are complicated mainly for the theory of outliers
where, as we have seen before, there is (always) much subjectivity involved a priori.
Is there a great topic of investigation here as well?

Symbolically, as a counteraction, in 1998, Efron [2] predicts that “the old Fisher
will have a very good 21st century”.

The theory and practice of Statistics span a range of diverse activities, which
are motivated and characterised by varying degrees of formal intent. Activity in
the context of initial data exploration is typically rather informal; activity relating
to concepts and theories of evidence and uncertainty is somewhat more formally
structured and activity directed at the mathematical abstraction and rigorous analysis
of these structures is intentionally highly formal. The world of applied statistics
demands an arrangement between the Bayesian and frequentist ways of thinking
and, for now, there is no substitute for the Fisher concept. It is interesting to register
ideas about the modified likelihood functions or the pseudo-likelihoods, that is to
say, functions of some or of all the data and a part of or all the parameters which
can be widely treated as genuine likelihoods.

How do all these questions relate to the statistical study of outliers? What is the
nature and scope of Bayesian Statistics within the “outlier problem”?
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In the study mentioned above, where is this topic in the “statistical triangle”?10

This is a scientific challenge for the future. Possibly, this challenge has extra
difficulty because we don’t know the number of outliers in a sample—“outlier
problem” or “outliers problem”?

Several topics are in need of more enhancement: the causes (deterministic and
statistic) of the presence of outliers and the question of their existence in structured
models (univariate and multivariate); the differences between simple outliers and
multiple outliers.

On the other hand, different goals we intend to reach when we study outliers in
a sample influence the conclusions. The outcome of the work done will be varied if
we only wish to approach the detection of outliers in a set of data, or, if we want
to put it together with more complex statistical models, involving for instance the
presence of influent observations. Here we will be addressing issues of strength that
intersect with the study of outliers but which are not the same. According to this,
we are not far from the theory of extreme values.

The general theory of outliers in statistical data, in several directions, has much
advanced in the last 40 years, and in it a great part of the first challenges found
the contributions that made it an area of knowledge which already existed as a field
of study. Once we reach that phase, we should proceed with wider developments
in the (already) explored areas—and the multivariate area will be one of them—
as other topics begin to show; and, among them, the most important seems to
be performance appraisal. In fact, statistical analysis of multivariate data requires
our work in a double way—the tests and models of discordancy. In this topic it is
important to produce new ideas because the complex structure of these data is an
enemy of the scientific simplicity we need to obtain the greatest success, especially
in applications.

In the future, outliers will increasingly continue to occupy a place in the centre of
statistical science and in statistical methods, because a discordant observation will
always be a challenge for the analyst and it can widely influence their final report
for the most important decision making. We are talking about excellence!

However, when everything is said and done, the main issue in the study of
(supposedly) suspicious observations continues to be the one which defied the first
investigators—What is an outlier and how should one work with that observation?

In the end of the second millennium, Time magazine organised a list of
significant figures of the last thousand years. The names were ordered according to a
vote. The first place of “the millennium person” was given to Saint Francis of Assisi,
followed by Gutenberg, Christopher Columbus, Michelangelo, Martin Luther,
Galileo, Shakespeare, Thomas Jefferson, Mozart and, in tenth place, Einstein.

A winner gathers values that give him distinction. Well, with the goal of electing
the person of the millennium, the voters would have ordered their own criteria. The
latter, coming from a set of rules, allowed the definition of a first place.

10[2] for details.
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Thinking about those variables—set of rules or “reasons for the election”—let
us bring up the expression “quos fama obscura recondit”. On the one hand, in the
dichotomy between the “minor reason” and “a higher reason”, should the statistician
have, as a goal, (only) the knowledge which allows him to cover all the basic
scientific requirements? On the other hand, that knowledge should be the beginning
and statistics still assumes the great importance of “scientific details” of those who
are hidden by an obscure fame—let’s call them outliers. They are stimulators of
research and they can be originated by different values of the same sample—one or
more. A minority!

Are these “minors” who make science go forward?! The strength is in them!
Saint Francis is always seen as a reference and a simple life role model. “Francis

poverty” is many times mentioned. His name is also connected to “ecology”—and
to “peace”. Which would have been, and how can we find out, the most important
variables that made Saint Francis the elected one?

The knowledge of the statistical components that allow to find (and define) a
discordant value in a sample is also a topic for the theory of outliers. In every model,
whatever the criteria of discordancy, to be in first place is to be an outlier! Facing
the demanding topics on outliers in statistical data described above—we quote this
“last outlier”—“at least let’s start working, because up to now we have done very
little”.
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ResamplingMethodologies in the Field
of Statistics of Univariate Extremes

M. Ivette Gomes

Abstract
In the field of statistics of univariate extremes, we deal with the importance of
resampling methodologies, such as the generalised jackknife and the bootstrap in
the derivation of a reliable semi-parametric estimate of a parameter of extreme or
even rare events. Among those parameters, we can refer high quantiles, expected
shortfalls, return periods of high levels or the primary parameter of extreme
events, the extreme value index (EVI), the parameter considered in this article.
In order to illustrate such topics, we consider minimum-variance reduced-bias
estimators of a positive EVI.

1 Extreme Value Theory: A Brief Introduction

We use the notation � for the extreme value index (EVI), the shape parameter in the
extreme value distribution function (d.f.),

EV� .x/ D
�

expf�.1C �x/�1=� g; 1C �x > 0 if � 6D 0
expf� exp.�x/g; x 2 R if � D 0; (1)

and we consider models with a heavy right-tail. Note that in the area of statistics
of extremes, and with the notation RVa standing for the class of regularly varying
functions at infinity with an index of regular variation equal to a 2 R, i.e. positive
measurable functionsg.�/ such that for any x > 0; g.tx/=g.t/! xa, as t !1 (see
[3], for details on regular variation), we usually say that a modelF has a heavy right-
tail F WD 1 � F whenever F 2 RV�1=� ; for some � > 0: Then, as first proved in
[14], F is in the domain of attraction for maxima of a Fréchet-type d.f., the EV� d.f.
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in (1), but with � > 0, and we use the notation F 2 DM .EV�>0/ DW DCM . This
means that given a sequence fXngn�1 of independent and identically distributed
random variables (r.v.’s), it is possible to normalise the sequence of maximum
values, fXnWn WD max.X1; : : : ; Xn/gn�1 so that it converges weakly to an r.v. with
the d.f. EV� , with � > 0.

In this same context of heavy right-tails, and with the notation U.t/ WD F .1�
1=t/; t � 1; being F .y/ WD inffx W F.x/ � yg the generalised inverse function
of F , we can further say that

F 2 DCM ” F 2 RV�1=� ” U 2 RV� ; (2)

the so-called first-order condition. The second equivalence in (2), F 2 DCM if and
only if U 2 RV� , was first derived in [7].

For a consistent semi-parametric EVI-estimation, in the whole DCM , we merely
need to assume the validity of the first-order condition, in (2), and to work with
adequate functionals, dependent on an intermediate tuning parameter k, related
to the number of top order statistics involved in the estimation. To say that k is
intermediate is equivalent to say that

k D kn !1 and kn D o.n/; i.e. k=n! 0; as n!1: (3)

To obtain information on the non-degenerate asymptotic behaviour of semi-
parametric EVI-estimators, we further need to work in DCM j2, assuming a second-
order condition, ruling the rate of convergence in the first-order condition, in (2).
The second-order parameter �.� 0/ rules such a rate of convergence, and it is the
parameter appearing in the limiting result,

lim
t!1

lnU.tx/ � lnU.t/ � � ln x

A.t/
D
(

x��1
�

if � < 0

lnx if � D 0; (4)

which we often assume to hold for all x > 0, and where jAj must be in RV�
[13]. For technical simplicity, we usually further assume that � < 0, and use the
parameterisation

A.t/ DW �ˇt�: (5)

We are then working with a class of Pareto-type models, with a right-tail function

F .x/ D Cx�1=�
�
1CD1x

�=� C o�x�=� �
�
; (6)

as x !1, with C > 0, D1 6D 0 and � < 0.
In order to obtain full information on the asymptotic bias of corrected-bias EVI-

estimators, it is further necessary to work in DCM j3, assuming a general third-order
condition, which guarantees that, for all x > 0,
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lim
t!1

lnU.tx/�lnU.t/�� ln x
A.t/

� x��1
�

B.t/
D x�C�0 � 1

�C �0 ; (7)

where jBj must then be in RV�0 . More restrictively, and equivalently to the
aforementioned third-order condition, in (7), but with � D �0 < 0, we often consider
a Pareto third-order condition, i.e. a class of Pareto-type models, with a right-tail
function

F .x/ D Cx�1=�
�
1CD1x

�=� CD2x
2�=� C o�x2�=� �

�
;

as x !1, with C > 0;D1; D2 6D 0 and � < 0, a large sub-class of the classes of
models in [26, 27]. Then we can choose in the general third-order condition, in (7),

B.t/ D ˇ0 t� D ˇ0A.t/
ˇ�

DW � A.t/
�

; ˇ; ˇ0 6D 0; � D ˇ0

ˇ
; (8)

with ˇ and ˇ0 “scale” second and third-order parameters, respectively.

2 EVI-Estimators Under Consideration

For models in DCM , the classical EVI-estimators are the Hill estimators [28],
averages of the scaled log-spacings or of the log-excesses, given by

Ui WD i
�

ln
Xn�iC1Wn
Xn�i Wn

�
and Vik WD ln

Xn�iC1Wn
Xn�kWn

; 1 � i � k < n;

respectively. We thus have

H.k/ � Hn.k/ WD 1
k

kX

iD1
Ui D 1

k

kX

iD1
Vik; 1 � k < n: (9)

But these EVI-estimators have often a strong asymptotic bias for moderate up
to large values of k, of the order of A.n=k/, with A.�/ the function in (4).
More precisely, for intermediate k, i.e. if (3) holds, and under the validity of the
general second-order condition in (4),

p
k .H.k/ � �/ is asymptotically normal

with variance �2 and a non-null mean value, equal to �=.1 � �/, wheneverp
k A.n=k/ ! � 6D 0, finite, the type of k-values which lead to minimal mean

square error (MSE). Indeed, it follows from the results in [8] that under the second-
order condition in (4), and with the notation N .�; �2/ standing for a normal r.v.
with mean � and variance �2,

p
k .H.k/ � �/ dD N .0; �2

H
/C bH

p
k A.n=k/C op

�p
k A.n=k/

�
;
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where �2
H
D �2, and the bias bH

p
k A.n=k/, equal to � ˇ

p
k .n=k/�=.1 � �/,

whenever (5) holds, can be very large, moderate or small (i.e. go to infinity,
constant or zero) as n ! 1. This non-null asymptotic bias, together with a rate
of convergence of the order of 1=

p
k, leads to sample paths with a high variance for

small k, a high bias for large k, and a very sharp MSE pattern, as a function of k.
The optimal k-value for the EVI-estimation through the Hill estimator, i.e. k0jH WD
arg mink MSE.H.k//, is well approximated by kAjH WD arg mink AMSE.H.k//,
with AMSE standing for asymptotic MSE, defined by

AMSE.H.k// D �2

k
C b2

H
A2.n=k/ DW AVAR.k/C ABIAS2.k/;

with AVAR and ABIAS standing for asymptotic variance and asymptotic bias. Then,
we can easily see that k0jH is of the order of n�2�=.1�2�/ due to the fact that

kAjH D arg min
k

�
1

k
C b2

H
ˇ2.n=k/2�

�
D
�

n�2�

ˇ2.�2�/.1 � �/�2
	1=.1�2�/

:

The adequate accommodation of this bias has recently been extensively
addressed. We mention the pioneering papers [1, 11, 18, 29], among others. In
these papers, authors are led to second-order reduced-bias (SORB) EVI-estimators,
with asymptotic variances larger than or equal to .� .1 � �/=�/2, where �.< 0/ is
the aforementioned “shape” second-order parameter, in (4). Recently, the authors
in [4, 19, 21] considered, in different ways, the problem of corrected-bias EVI-
estimation, being able to reduce the bias without increasing the asymptotic variance,
which was shown to be kept at �2, the asymptotic variance of Hill’s estimator. Those
estimators, called minimum-variance reduced-bias (MVRB) EVI-estimators, are all
based on an adequate “external” consistent estimation of the pair of second-order
parameters, .ˇ; �/ 2 .R;R�/, done through estimators denoted by . Ǒ; O�/. For
algorithms related to such estimation, see [17]. The estimation of ˇ has been
done through the class of estimators in [15]. The estimation of � has been usually
performed though the simplest class of estimators in [12].

We now consider the simplest class of MVRB EVI-estimators in [4], defined as

H.k/ � H Ǒ; O�.k/ WD H.k/
�
1 � Ǒ

1�O�
�
n
k

� O� �
: (10)

Under the same conditions as before, i.e. if as n ! 1,
p
k A.n=k/ ! �,

finite, possibly non-null,
p
k
�
H.k/ � �� is asymptotically normal with variance

also equal to �2 but with a null mean value. Indeed, from the results in [4], we know
that it is possible to adequately estimate the second-order parameters ˇ and �, so
that we get

p
k
�
H.k/ � �� dD N .0; �2/C op

�p
k A.n=k/

�
:
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Fig. 1 Typical patterns of
variance, bias and MSE of H
and H , as a function of the
sample fraction r D k=n

Consequently, H.k/ outperforms H.k/ for all k. Indeed, under the validity of the
aforementioned third-order condition related to the class of Pareto-type models, we
can then adequately estimate the vector of second-order parameters, .ˇ; �/, and
write [5],

p
k
�
H.k/� �� dD N .0; �2/C b

H

p
k A2.n=k/C op

�p
k A2.n=k/

�
;

where, with � defined in (8), b
H
D ��=.1 � 2�/ � 1=.1� �/2�=�:

In Fig. 1 we picture the comparative behaviour of the bias, variance and MSE of
H andH , in (9) and (10), respectively.

Now, k0jH WD arg mink MSE.H.k// can be asymptotically approximated by

kAjH D
�
n�4�=

�
ˇ2.�2�/b2

H

��1=.1�4�/
; i.e. k0jH is of the order of n�4�=.1�4�/ , and

depends not only on .ˇ; �/, as does k0jH , but also on .�; �/. Recent reviews on
extreme value theory and statistics of univariate extremes can be found in [2,20,31].

3 Resampling Methodologies

The use of resampling methodologies (see [10]) has revealed to be promising in the
estimation of the tuning parameter k, and in the reduction of bias of any estimator
of a parameter of extreme events. For a recent review on the subject, see [30].

If we ask how to choose k in the EVI-estimation, either throughH.k/ or through
H.k/, we usually consider the estimation of k0jH WD arg mink MSE.H.k// or
k0jH D arg mink MSE.H.k//. To obtain estimates of k0jH and k0jH one can then
use a double-bootstrap method applied to an adequate auxiliary statistic which tends
to be zero and has an asymptotic behaviour similar to either H.k/ (see [6, 9, 16],
among others) or H.k/ (see [22, 23], also among others). Such a double-bootstrap
method will be sketched in Sect. 3.2.

But at such optimal levels, we still have a non-null asymptotic bias. If we still
want to remove such a bias, we can make use of the generalised jackknife (GJ).
It is then enough to consider an adequate pair of estimators of the parameter of
extreme events under consideration and to build a reduced-bias affine combination
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of them. In [18], among others, we can find an application of this technique to
the Hill estimator, H.k/, in (9). In order to illustrate the use of these resampling
methodologies in the field of univariate extremes, we shall consider, in Sect. 3.1
and just as in [24], the application of the GJ methodology to the MVRB estimators
H.k/, in (10).

3.1 The Generalised JackknifeMethodology and Bias Reduction

The GJ-statistic was introduced in [25], and the main objective of the method is
related to bias reduction. Let T .1/n and T .2/n be two biased estimators of � , with
similar bias properties, i.e. Bias

�
T
.i/
n

� D 	.�/di .n/; i D 1; 2. Then, if q D qn D
d1.n/=d2.n/ 6D 1, the affine combination T GJ

n WD �
T
.1/
n � qT .2/n

�
=.1 � q/ is an

unbiased estimator of � .
Given H , and with bxc denoting the integer part of x, the most natural GJ r.v. is

the one associated with the random pair
�
H.k/;H.bk=2c/�, i.e.

H
GJ.q/

.k/ WD H.k/ � q H.bk=2c/
1 � q ; q > 0;

with

q D qn D ABIAS
�
H.k/

�

ABIAS
�
H.bk=2c/� D

A2.n=k/

A2.n=bk=2c/ �!
n=k!1 2

�2�:

It is thus sensible to consider q D 2�2�, and, with O� a consistent estimator of �, the
approximate GJ estimator,

H
GJ
.k/ WD 22 O� H.k/ �H.bk=2c/

22 O� � 1 : (11)

Then, and provided that O� � � D op.1/,
p
k
�
H

GJ
.k/ � �

�
dD N .0; �2

GJ
/C op

�p
k A2.n=k/

�
;

with �2
GJ
D �2

�
1 C 1=.2�2� � 1/2�: Further details on the estimators in (11) can

be found in [24]. As expected, we have again a trade-off between variance and bias.
The bias decreases, but the variance increases, and to try solving such a trade-off, an
adequate estimation of third-order parameters, still an almost open topic of research
in the area of statistics of extremes, would be needed. Anyway, at optimal levels,

H
GJ

can outperformH , as it is theoretically illustrated in Fig. 2.
A Monte-Carlo simulation of the mean value (E) and the root MSE (RMSE) of

the estimators under consideration have revealed similar patterns. On the basis of
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Fig. 2 Typical patterns of variance, bias and MSE of H , H and H
GJ

, as a function of the sample
fraction r D k=n

Fig. 3 Simulated mean values (left) and RMSEs (right) of the estimators under study, for a sample
of size n D 1;000 from an underlying Burr.�; �/ model, with .�; �/D .1;�0:5/

5,000 runs, and for a Burr.�; �/ parent, with d.f. F.x/ D 1� .1Cx��=� /1=�, x � 0,
with � D 1 and � D �0:5, we present Fig. 3, as an illustration of the results obtained
for different underlying parents and different sample sizes.

As usual, we define the relative efficiency of any EVI-estimator as the quotient
between the simulated RMSE of the H -estimator and the one of any of the
estimators under study, both computed at their optimal levels, i.e. for any T -statistic,
consistent for the EVI-estimation,

REFFT0jH0 WD
RMSE.H0/

RMSE.T0/
;

with T0 WD T .k0jT / and k0jT WD arg mink MSE.T .k//.
The simulation of those efficiencies for the same Burr model is based on 20 �

5;000 replicates and, as shown in Fig. 4, the REFF-indicators as a function of n,

are always larger than one, both for H , in (10) and for H
GJ

, in (11). Moreover,

H
GJ

, computed at its optimal level, in the sense of minimal MSE, just as mentioned
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Fig. 4 Simulated REFF
indicators, as a function of
the sample size n, for the
same Burr parent

above, attains the highest REFF for this Burr underlying parent, as well as for other
simulated parents with � > �1, unless n is very large. Details on multi-sample
Monte-Carlo simulation can be found in [16].

Some General Comments:
• The GJ-estimator has a bias always smaller than the one of the original estimator.
• Regarding MSE, we are able to go below the MSE of the MVRB H -estimator

for a large variety of underlying parents and small values of j�j, as was illustrated
here and can be further seen in [24].

• Apart from what happens for very small values of �, there is a high reduction in
the MSE of the GJ-estimator, at optimal levels, comparatively with the one of the
originalH -estimator, despite the already nice properties of theH EVI-estimator.

3.2 The BootstrapMethodology for the Estimation of Sample
Fractions

As already mentioned in Sect. 2,

kAjH.n/ D arg min
k

AMSE
�
H.k/

� D arg min
k

��2

k
C b2

H
A4.n=k/

�

D k0jH .n/.1C o.1//:

The bootstrap methodology enables us to estimate the optimal sample fraction,
k0jH.n/=n in a way similar to the one used for the classical EVI estimation, in
[6, 9, 16], now through the use of any auxiliary statistic, such as

Tn.k/ � T Hn .k/ WD H.bk=2c/�H.k/; k D 2; : : : ; n � 1;

which converges in probability to the known value zero, for intermediate k.
Moreover, under the third-order framework, in (7), we get:
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Tn.k/
dD � Pkp

k
C b

H
.22� � 1/ A2.n=k/COp

�
A.n=k/=

p
k
�
;

with Pk asymptotically standard normal. The AMSE of Tn.k/ is thus minimal at a
level k such that

p
k A2.n=k/! �0

A
6D 0. Consequently, denoting

kAjT .n/ WD arg min
k

AMSE
�
T Hn .k/

� D k0jT .1C o.1//;

we have

k0jH.n/ D k0jT .n/
�
1 � 22�� 2

1�4� .1C o.1//: (12)

Note also that, with the adequate simple modifications, a similar comment applies

to the GJ EVI-estimatorH
GJ
.k/, in (11).

Given the sample Xn D .X1; : : : ; Xn/ from an unknown model F , and the
functional Tn.k/ DW 	k.Xn/, 1 � k < n, consider for any n1 D O.n1�
/,
0 < 
 < 1, the bootstrap sample X�n1 D .X�1 ; : : : ; X�n1/; from the model
F �n .x/ D

Pn
iD1 IŒXi�x�=n; the empirical d.f. associated with our sample Xn.

Next, consider T �n1.k1/ WD 	k1.X
�
n1
/; 1 < k1 < n1: Then, with k�

0jT .n1/ D
arg mink1 MSE

�
T �n1.k1/

�
,

k�0jT .n1/=k0jT .n/ D .n1=n/
4�

1�4� .1C o.1//; as n!1:

To get a simpler way of computing k0jT .n/ it is then sensible to use a double
bootstrap, based on another sample size n2. Then for every ˛ > 1,

�
k�
0jT .n1/

�˛

k�
0jT .n2/

�
n˛1
n˛

n

n2

	� 4�
1�4�

D ˚k0jT .n/

˛�1

.1C o.1//:

It is then enough to choose n2 D
�
n
�
n1
n

�˛˘
, in order to have independence of �. If

we put n2 D bn21=nc, i.e. ˛ D 2, we have

�
k�0jT .n1/

�2
=k�0jT .n2/ D k0jT .n/.1C o.1//;

and the possibility of estimating k0jT .n/ on the basis of k�
0jT .n1/ and k�

0jT .n2/ only.
We are next able to estimate k0jH .n/, on the basis of (12) and any estimate O� of the

second-order parameter �. Then, with Ok�
0jT denoting the sample counterpart of k�

0jT ,
we have the estimate

Ok�
0jH .nIn1/ WD min

 

n � 1;
$

c O� . Ok�0jT .n1//2
Ok�
0jT .bn21=nc C 1/

%

C 1
!

; c O� D
�
1 � 22 O�

� 2
1�4 O�

:
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Fig. 5 Sample paths of the
EVI-estimators under study
and bootstrap estimates of the
k0j�-values, for a Burr
random sample with � D 1

and � D �0:5

The final estimate of � is then given by H
� � H�n;n1jT WD H Ǒ; O�. Ok0jH .nIn1//: And

a similar procedure can be used to estimate any other parameter of extreme events,

as well as the EVI, either throughH or throughH
GJ

.
The application of the associated bootstrap algorithm, with n1 D n0:975 and

B D 250 generations, to the first randomly generated Burr.�; �/ sample of size
n D 1;000, with � D 1 and � D �0:5 led us to Ok�

0jH D 76, Ok�
0jH D 157, and

Ok�
0jHGJ D 790. The bootstrap EVI-estimates were H� D 1:259, H

� D 1:108 and

H
GJ� D 1:049, a value indeed closer to the target value � D 1. In Fig. 5 we present

the sample paths of the EVI-estimators under study.

4 Concluding Remarks

A few practical questions and final remarks can now be raised.
• How does the asymptotic method work for moderate sample sizes? Is the method

strongly dependent on the choice of n1? Although aware of the theoretical need
of n1 D o.n/, what happens if we choose n1 D n � 1? Answers to these
questions have not yet been fully given for the class of GJ EVI-estimators, in (11),
but will surely be similar to the ones given for classical estimation and for the
MVRB estimation. Usually, the method does not depend strongly on n1 and
practically we can choose n1 D n � 1. And here we can mention again the
old controversy between theoreticians and practioners: The value n1 D bn1�
c
can be equal to n � 1 for small 
 and a large variety of values of n, finite. Also,
kn D Œc ln n� is intermediate for every constant c, and if we take, for instance,
c D 1=5, we get kn D 1 for every n � 22;026. And Hall’s formula of the
asymptotically optimal level for the Hill EVI-estimation (see [26]), given by

k0jH .n/ D
j�
.1 � �/2n�2�=� � 2 � ˇ2��1=.1�2�/

k
and valid for models in (6),

may lead, for a fixed n, and for several choices of .ˇ; �/, to k0jH.n/ either equal
to 1 or to n � 1 according as � is close to 0 or quite small, respectively.
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• Note that bootstrap confidence intervals as well as asymptotic confidence
intervals are easily associated with the estimates presented, and the smallest size

(with a high coverage probability) is usually related to the EVI-estimator H
GJ

,
in (11), as expected.
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Robust Functional Principal Component
Analysis

Juan Lucas Bali and Graciela Boente

Abstract
When dealing with multivariate data robust principal component analysis (PCA),
like classical PCA, searches for directions with maximal dispersion of the data
projected on it. Instead of using the variance as a measure of dispersion, a robust
scale estimator sn may be used in the maximization problem. In this paper, we
review some of the proposed approaches to robust functional PCA including one
which adapts the projection pursuit approach to the functional data setting.

1 Introduction

Functional data analysis provides modern analytical tools for data that are recoded
as images or as a continuous phenomenon over a period of time. Because of the
intrinsic nature of these data, they can be viewed as realizations of random functions
often assumed to be in L2.I /, with I a real interval or a finite dimensional
Euclidean set.

Principal component analysis (PCA) is a standard technique used in the context
of multivariate analysis as a dimension-reduction technique. The goal is to search
for directions with maximal dispersion of the data projected on it. The classical
estimators are obtained taking as dispersion the sample variance leading to estima-
tors which are sensitive to atypical observations. To overcome this problem, [16]
proposed a procedure based on the principles of projection-pursuit to define the
estimator of the first direction as

Oa D argmaxaWkakD1sn.aTx1; � � � ; aTxn/
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where x1; : : : ; xn are i.i.d. xi 2 R
p and sn is a robust scale estimator. The subsequent

loading vectors are then obtained by imposing orthogonality conditions. When
dealing with high dimensional data, the projection pursuit approach is preferable
to the plug-in approach that estimates the principal components as the eigenvectors
of a robust estimator of the covariance matrix. Effectively, as pointed out by Tyler
[24], when the dimension is larger than the sample size, the only affine equivariant
multivariate location statistic is the sample mean vector and any affine equivariant
scatter matrix must be proportional to the sample covariance matrix, with the
proportionality constant not being dependent on the data. Hence, in that case, any
affine equivariant scatter estimator loses its robustness, so that most commonly used
robust scatter estimators should be avoided for high dimensional data and projection
methods become useful. Croux and Ruiz-Gazen [6] derived the influence functions
of the projection-pursuit principal components, while their asymptotic distribution
was studied in [7]. A maximization algorithm for obtaining Oa was proposed in [5]
and adapted for high dimensional data in [4].

When dealing with functional data, an approach to functional PCA (FPCA) is to
consider the eigenvalues and eigenfunctions of the sample covariance operator. In a
very general setting, [8] studied their asymptotic properties. However, this approach
may produce rough principal components and in some situations, smooth ones may
be preferable. One argument in favour of smoothed principal components is that
smoothing might reveal more interpretable and interesting features of the modes of
variation for functional data. To provide smooth estimators, [3] considered a kernel
approach by regularizing the trajectories. A different approach was proposed by
Rice and Silverman [20] and studied by Pezzulli and Silverman [19]. It consists in
imposing an additive roughness penalty to the sample variance. On the other hand,
[22] considered estimators based on penalizing the norm rather than the sample
variance. More recent work on estimation of the principal components and the
covariance function includes [12, 13, 25].

Not much work has been done in the area of robust functional data analysis. Of
course, whenX 2 L2.I /, it is always possible to reduce the functional problem to a
multivariate one by evaluating the observations on a common output grid or by using
the coefficients of a basis expansion, as in [17]. However, as mentioned by Gervini
[9] discretizing the problem has several disadvantages which include the choice of
the robust scatter estimators when the size of the grid is larger than the number
of trajectories, as discussed above, the selection of the grid and the reconstruction
of the functional estimators from the values over the grid. Besides, the theoretical
properties of these procedures are not studied yet and they may produce an avoidable
smoothing bias see, for instance, [26]. For this reason a fully functional approach
to the problem is preferable. To avoid unnecessary smoothing steps, Gervini [9]
considered a functional version of the estimators defined in [17] and derived
their consistency and influence function. Also, [10] developed robust functional
principal component estimators for sparsely and irregularly observed functional
data and used it for outlier detection. Recently, [21] consider a robust approach
of principal components based on a robust eigen-analysis of the coefficients of the
observed data on some known basis. On the other hand, [15] gives an application



Robust Functional Principal Component Analysis 43

of a robust projection-pursuit approach, applied to smoothed trajectories. Recently,
[1] considered robust estimators of the functional principal directions using a
projection-pursuit approach that may include a penalization in the scale or in the
norm and derived their consistency and qualitative robustness.

In this paper, we review some notions related to robust estimation for functional
data. The paper is organized as follows, Sect. 2 states some preliminary concepts
and notation that will be helpful along the paper. Section 3 states the principal
component problem, Sect. 4 reviews the robust proposals previously studied while a
real data example is given in Sect. 5. Finally, Sect. 6 contains some final comments.

2 Preliminaries and Notation

Let us consider independent identically distributed random elements X1; : : : ; Xn
in a separable Hilbert space H (often L2.I /) with inner product h�; �i and norm
kuk D hu; ui1=2 and assume that EkX1k2 < 1. Denote by � 2 H the mean of
X � X1;� D E.X/ and by �X W H ! H the covariance operator of X . Let ˝
stand for the tensor product on H , e.g., for u; v 2H , the operator u˝v WH !H
is defined as .u˝v/w D hv;wiu. With this notation, the covariance operator �X can
be written as �X D Ef.X � �/˝ .X � �/g, which is just the functional version of
the variance–covariance matrix in the classical multivariate analysis. The operator
�X is linear, self-adjoint and continuous. Moreover, it is a Hilbert–Schmidt operator
having a countable number of eigenvalues, all of them real.

Let F denote the Hilbert space of Hilbert–Schmidt operators with inner product
defined by hH1;H2iF D trace.H1H2/ D P1

`D1hH1u`;H2u`i and norm kHkF D
hH;Hi1=2F D fP1`D1 kHu`k2g1=2, where fu` W ` � 1g is any orthonormal basis of
H , while H1, H2 and H are Hilbert–Schmidt operators, i.e., such that kHkF <1.
Choosing an orthonormal basis f	` W ` � 1g of eigenfunctions of �X related to the
eigenvalues f�` W ` � 1g such that �` � �`C1, we get k�Xk2F D

P1
`D1 �2`.

The Karhunen–Loève expansion for the process leads to X D � CP1
`D1 �

1=2

` f` 	`, where the random variables ff` W ` � 1g are the standardized

coordinates of X � � on the basis f	` W ` � 1g, that is, �1=2m fm D hX � �; 	mi.
Note that E.fm/ D 0, while E.f 2

m/ D 1 if �m ¤ 0, E.fm fs/ D 0 for m ¤ s, since
COV .hu; X � �i; hv; X � �i/ D hu; �Xvi. This expansion shows the importance
of an accurate estimation of the principal components as a way to predict the
observations and examine their atypicity.

3 The Problem

As in multivariate analysis, there are two major approaches to develop robust
estimators of the functional principal components. The first aims at developing
robust estimates of the covariance operator, which will then generate robust FPCA
procedures. The second approach aims directly at robust estimates of the principal
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direction bypassing a robust estimate of the covariance operator. They are based,
respectively, on the following properties of the principal components
• Property 1. The principal component correspond to the eigenfunction of �X

related to the largest eigenvalues.
• Property 2. The first principal component maximizes var .h˛;Xi/ over S D
f˛ W k˛k D 1g. The subsequent are obtained imposing orthogonality constraints
to the first ones.
Let X1; � � � ; Xn, 1 � i � n, be independent observations from X 2 H ,

X � P with mean � and covariance operator �X . A natural way to estimate the
covariance operators �X is to consider the empirical covariance operator given by
O�X D Pn

jD1
�
Xj � X

�˝ �Xj �X
�
=n, where X D Pn

jD1 Xj =n. Dauxois et al.

[8] proved that
p
n
� O�X � �X

�
converges in distribution to a zero mean Gaussian

random element U of F . Besides, they derived the asymptotic behaviour of the
eigenfunctions of the empirical covariance operator, leading to a complete study on
the behaviour of the classical unsmoothed estimators of the principal components.
As mentioned in the Introduction, smooth estimators of the covariance operators
were studied in [3] where also the asymptotic behaviour of its eigenfunctions was
obtained. This approach to principal components follows the lines established by
Property 1.

As is well known, FPCA is a data analytical tool to describe the major modes
of variation of the process as a way to understand it and also to predict each curve.
Once we have estimators O	` for the `-th principal component, 1 � ` � m, one can
predict each observation through OXi D X CPm

`D1 O�i` O	`, where O�i` are the scores
of Xi in the basis of principal components, i.e., O�i` D hXi � X; O	`i. In this sense,
FPCA offers an effective way for dimension reduction.

However, FPCA based on the sample covariance operator is not robust. Hence, if
one suspects that outliers may be present in the sample, robust estimators should
be preferred. We recall that robust statistics seeks for reliable procedures when
a small amount of atypical observations arise in the sample. In most cases, the
estimators are functionals over the set of probability measures evaluated at the
empirical probability measure and in this case, robustness is related to continuity
of the functional with respect to the Prohorov distance.

In a functional setting influential observations may occur in several different
ways. As mentioned by Locantore et al. [17] they may correspond to atypical
trajectories entirely outlying, that is, with extreme values for the L2 norm, also
to isolated points within otherwise typical trajectories (corresponding to a single
extreme measurement) or they can be related to an extreme on some principal
components, the latter being more difficult to detect. In the functional case, these
types of observations may significantly impact the empirical covariance operator,
even if they are not outlying in the sense of being faraway of their centre. Detection
of such observations is not easy and has been recently investigated by [23].

As an example for each type of influential observations, Fig. 1 shows n D 100

trajectories generated using a finite Karhunen–Loève expansion, Xi D Zi1	1 C
Zi2	2 C Zi3	3 where 	1.x/ D sin.4x/, 	2.x/ D cos.7x/ and 	3.x/ D
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Fig. 1 Different influential trajectories with (a) large values on the L2 norm, (b) a extreme value
over a small interval and (c) extreme score on a principal component. Boxplot of the scores of the
generated data c) over 	j , 1 � j � 3

cos.15x/. The uncontaminated trajectories correspond to Zij � N.0; �2j / with
�1 D 4, �2 D 2 and �3 D 1, Zij independent for all 1 � i � n and 1 � j � 3.
The atypical observations are plotted in thick lines and they correspond in each case
to
(a) add randomly to 10 % the trajectories a factor of 12,
(b) replace X2.t/ by X2.t/C 25 when �0:4 < t < �0:36
(c) generate the random variables Zi;j as Zi1 � N.0; �21 /,

�
Zi2
Zi3

	
� .1� 
/ N

��
0

0

	
; diag

�
�22 ; �

2
3

�	C 
 N
��

4

4

	
; diag .0:01; 0:01/

	

where 
 D 0:1, leading in this case to ten atypical observations, labelled 5, 7,
17, 32, 33, 40, 47, 69, 88 and 95.
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It is clear that the influential observations can be clearly distinguished from the plots
in cases (a) and (b) while they are more difficult to identify in (c). The boxplot of
the scores si;j D hXi ��; 	j i, for 1 � j � 3 are provided in (d), where the outliers
in the boxplot correspond to the atypical observations. It is worth noting that the
interdistance procedure described in [11] only detects observation 33 as outlier and
identifies four of the uncontaminated trajectories, labelled 64, 71, 84 and 39, as
atypical.

However, in practice the practitioner cannot construct the scores si;j and only
scores from estimators of the principal directions can be used. For that reason, it is
important to provide reliable estimators of the principal directions less sensitive to
influential observations.

4 Robust Proposals for FPCA

Recalling Property 1 of the principal components, an approach to robust functional
principal components is to consider the spectral value decomposition of a robust
covariance or scatter operator. The spherical principal components, which were
proposed by Locantore et al. [17] and further developed by Gervini [9], apply this
approach using the spatial covariance operator defined as V D E .Y ˝ Y /, where
Y D .X � �/=kX � �k with � being the spatial median, defined in [9], that is � D
argmin˛2H E .kX � ˛k � kXk/. The estimators of the principal directions are then
the eigenfunctions of the sample version of V, that is, OV DPn

iD1 Yi ˝ Yi=n, where
Yi D .Xi � O�/=kXi � O�k and O� D argmin˛2H

Pn
iD1 .kXi � ˛k � kXik/ =n.

Gervini [9] studied the properties of the eigenfunctions of OV for functional data
concentrated on an unknown finite-dimensional space. It is easy to see that if
X D � C P1

`D1 �
1=2

` f` 	` and f` have a symmetric distribution which ensures
that � D �, then, the functional spherical principal components estimate the true
directions since V has the same eigenfuntions as � . Indeed, V D P

`�1 Q�` 	` ˝ 	`
where Q�` D �`E

�
f 2
` .
P

s�1 �sf 2
s /
�1�.

From a different point of view, taking into account Property 2, [1] considered a
projection-pursuit approach combined with penalization to obtain robust estimators
of the principal directions which provide robust alternatives to the estimators defined
by Rice and Silverman [20] and Silverman [22].

To define these estimators, denote as P Œ˛� for the distribution of h˛;Xi when
X � P . Given �R.F / a robust univariate scale functional, define � W H ! R as
the map �.˛/ D �R.P Œ˛�/. Let s2n W H ! R be the empirical version of �2, that
is, s2n.˛/ D �2R .PnŒ˛�/, where �R.PnŒ˛�i/ stands for the functional �R computed at
the empirical distribution of h˛;X1i; : : : ; h˛;Xni.

Moreover, let us consider HS, the subset of “smooth elements” of H and D W
HS !H a linear operator, referred to as the “differentiator”. UsingD, they define
the symmetric positive semidefinite bilinear form d�; �e W HS �HS ! R, where
d˛; ˇe D hD˛;Dˇi. The “penalization operator” is then defined as � W HS ! R,
�.˛/ D d˛; ˛e, and the penalized inner product as h˛; ˇi� D h˛; ˇi C �d˛; ˇe.
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Therefore, k˛k2� D k˛k2 C ��.˛/. Besides, let fıigi�1 be a basis of H and denote
Hpn the linear space spanned by ı1; : : : ; ıpn and Spn D f˛ 2Hpn W k˛k D 1g.

The robust projection pursuit estimators are then defined as

( O	1 D argmax˛2Hpn ;k˛k�D1
˚
s2n.˛/ � ��.˛/




O	m D argmax
˛2 OBm;�

˚
s2n.˛/ � ��.˛/



2 � m; (1)

where OBm;� D f˛ 2 Hpn W k˛k� D 1; h˛; O	j i� D 0 ; 8 1 � j � m � 1g. In the
above definition, we understand that the products ��.˛/ or ��.˛/ are defined as 0
when � D 0 or � D 0, respectively, even when ˛ … HS for which case �.˛/ D 1
and when pn D1, Hpn DH .

With this definition and by taking pn D 1, the robust raw estimators are
obtained when � D � D 0, while the robust estimators penalizing the norm and
scale correspond to � D 0 and � D 0, respectively. On the other hand, the basis
expansion approach corresponds to a finite choice for pn and � D � D 0.

Bali et al. [1] derived the qualitative robustness of these estimators and show that
they turn out to be consistent with the functional principal component directions
defined as

(
	R;1.P / D argmaxk˛kD1�.˛/
	R;m.P / D argmaxk˛kD1;˛2Bm

�.˛/; 2 � m ;

where Bm D f˛ 2 H W h˛; 	R;j .P /i D 0; 1 � j � m � 1g. To provide an
explanation of what the directions 	R;m.P / represent, assume that there exists a
constant c > 0 and a self-adjoint, positive semidefinite and compact operator �0,
such that for any ˛ 2 H , �2.˛/ D ch˛; �0˛i. Moreover, denote by �1 � �2 � : : :
the eigenvalues of �0 and by 	j the eigenfunction of �0 associated with �j . Assume
that for some q � 2, and for all 1 � j � q, �1 > �2 > � � � > �q > �qC1, then
	R;j .P / D 	j . Conditions that guarantee that �2.˛/ D ch˛; �0˛i when a robust
scale is used are discussed in [1] where also the results of an extensive simulation
study showing the advantages of using robust procedures are reported.

As an example, we compute the robust projection-pursuit estimators for the
generated data in Fig. 1c. The robust estimators correspond to anM -scale with score

function, the Tukey’s function �c.y/ D min
�
3 .y=c/2 � 3 .y=c/4 C .y=c/6 ; 1

�

with tuning constant c D 1:56 and breakdown point 1=2. The choice c D 1:56

ensures that the M -scale functional is Fisher-consistent at the normal distribution.
We have also computed the classical estimators which correspond to select �R

as the standard deviation (SD). Figure 2 reports the results corresponding to the
raw estimators of each principal component. The solid line corresponds to the true
direction while the broken ones to the estimators. From these plots we observe the
sensitivity of the classical procedure to the influential observations introduced.

As detection rule, Fig. 3 gives parallel boxplots of the scores Osi;j D hXi � O�; O	j i
when O	j are the classical and robust estimators. For the classical estimators, O� D X ,
while for the robust ones O� D argmin�2H

Pn
iD1 .kXi � �k � kXik/ =n. Due to a



48 J.L. Bali and G. Boente

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

φ1 φ3φ2
SD

M−scale

Fig. 2 Estimators of the principal directions for the generated data c). The solid and broken line
correspond to the true and estimated directions, respectively
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Fig. 3 Boxplots of the estimated scores hXi ; O	j i for the generated data c)

masking effect, the boxplots of the scores over the classical estimators do not reveal
any outlier. On the other hand, when using the robust projection-pursuit estimators
the largest values of Osi;3 correspond to the atypical observations generated. It is
worth noting that the same conclusions are obtained if the plots of the residuals
squared norm kOrik2 D kXi � O� �P3

jD1 Osi;j O	j k2 are considered (see Fig. 4). The
residual plot corresponding to the M -scale clearly shows that the residual squared
norm of the atypical observations are out of bound. On the other hand, when
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Fig. 4 Residual plots for the generated data c)

considering the eigenfunctions of the sample covariance operator, the observations
with the largest residuals correspond to those labelled 19, 39, 40, 71 and 94, that is,
only one of the atypical observations appears with a large residual, so leading to the
wrong conclusions. It is worth noticing that, for this contamination, the boxplots of
the estimated scores obtained when considering the spherical principal components
considered in [9] do not detect any of the atypical observations (see Fig. 3). This is
mainly due to the fact that the spherical principal components are more biased in
this situation producing a masking effect on the scores. Indeed, as pointed out by
Boente and Fraiman [2], spherical principal components estimators are resistant for
any contamination model which preserves the property of being elliptical, while its
resistance is not guaranteed when other types of contamination are involved such as
the one we are considering. Even though, the residual plot corresponding to these
estimators show that the atypical data have large values of the residual squared norm.
Hence, highly resistant procedures should be preferred.

5 Lip Data Example

The following example was considered in [9] to show the effect of outliers on the
functional principal components. A subject was asked to say the word bob 32 times
and the position of lower lip was recorded at each time point. Lip movement data
was originally analyzed by Malfait and Ramsay [18]. In Fig. 5, the plotted curves
correspond to the 32 trajectories of the lower lip versus time. Three of these curves
(plotted with thick lines on Fig. 5a seem to be out of line, with delayed second peaks.
To determine whether or not these curves are within the normal range of variability,
it is necessary to estimate accurately the principal components.

As in [9], we have estimated five principal directions using the robust projection-
pursuit estimators defined in (1) related to theM -scale with Tukey’s score function.
The robust and classical principal components are given in Fig. 6 where the classical
and robust raw estimators are plotted with a solid line and with a broken line,
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Fig. 5 Lip movement data. Smoothed lower-lip trajectories of an individual pronouncing bob 32
times. (a) The trajectories 24, 25 and 27 are indicated with thick lines. (b) The trajectories 14, 24,
25 and 27 are indicated with thick lines
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Fig. 6 Estimators of the principal directions for the lip movement data. The solid line correspond
to the classical direction while the broken line to the robust ones

respectively. We refer to Gervini [9] to understand the type of variability explained
by these components. Besides, as described therein a positive component score will
be associated with curves that show a large first peak and a delayed second peak, as
those observed in the three atypical curves.
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Fig. 7 Lip movement data. (a) Boxplot of the scores Osi;j D hXi � O�; O	j i, (b) residual plots of

kOr.5/i k2, (c) adjusted boxplots of kOr.q/i k2 , 1 � q � 5 and (d) residuals plot Or.4/i based on a robust
fit. The thick curves correspond to the observations 24, 25 and 27 while the thick horizontal line to
the trajectory 14

Figure 7 presents the parallel boxplots of the scores Osi;j D hXi � O�; O	j i
when O	j are the robust estimators together with the plot of the squared

norm of the residuals kOr.q/i k2 D kXi � O� � Pq
jD1 Osi;j O	jk2 where O� D

argmin�2H
Pn

iD1 .kXi � �k � kXik/ =n. We only present the plots for the robust
fit since we have already shown that when considering the classical one a masking
effect may appear.

The residual plot corresponding to the M -scale shows clearly that the residual
squared norm of the atypical observations are out of bound. Figure 7 also presents
the boxplots of kOr.q/i k2. Due to the skewness of the distribution of the norm, we
have considered the adjusted boxplots (see [14]) instead of the usual ones. The
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two outliers appearing in the boxplot of the robust residuals kOr.1/i k2 and kOr.5/i k2
correspond to the observations 24 and 25. It is worth noticing that the trajectory
labelled 14 also corresponds to the large negative outlier appearing in the scores
Osi;4 while the observations 24, 25 and 27 appear as outliers with large negative
scores Osi;2. Trajectory 14 is almost completely explained by the first four principal
components, since the minimum and maximum of Or.4/i equal �1:084 � 10�18 and

9:758 � 10�19, respectively. Figure 7d gives the residual curves Or.4/i which do
not suggest that a finite four-dimensional Karhunen–Loève representation suffices
to explain the behaviour of the data while observation 14 may be explained
by O	1; : : : ; O	4 with the largest absolute scores on the first and fourth estimated
component. Figure 5b indicates with thick lines the observations 14, 24, 25 and
27. From this plot, the curve related to observation 14 has a large first peak, a very
smooth second peak while its fourth peak is clearly smaller and occurring before
the majority of the data.

6 Final Comments

In this paper, we have reviewed some of the procedures available for estimating
the principal directions for functional data, when one suspects that some atypical
observations may be present in the sample. The robust projection-pursuit procedures
described correspond to robust versions of the raw principal component estimators
and the estimators obtained either penalizing the scale or penalizing the norm. The
robust projection-pursuit estimators allow to detect atypical observations either by
considering their scores on the estimated directions or by using the squared residual
norm. For some outlier configurations, they avoid the masking effect appearing in
the scores, when considering the spherical principal components.

It is clear that one of the main issues when considering a projection-pursuit
approach is its computational complexity which is increased for functional data
since in infinite-dimensional spaces the ball is sparse. In [1], an algorithm to
compute the estimators is described. The numerical procedure adapts the finite-
dimensional maximization algorithm proposed in [5] to the functional setting in
order to deal with the penalization term included in the definition of the estimators.
The consistency of the first principal direction estimators obtained from this
algorithm is studied in Bali and Boente (2012, On the consistency of the projection
pursuit estimators computed through the Croux–Gazen algorithm, unpublished
manuscript)

Finally, it is worth noting that robust projection-pursuit methods may also be
helpful to provide statistical tools less sensitive to atypical data when considering
functional discrimination or functional canonical correlation.
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Testing theMaximum by theMean
in Quantitative Group Tests

João Paulo Martins, Rui Santos, and Ricardo Sousa

Abstract
Group testing, introduced by Dorfman in 1943, increases the efficiency of
screening individuals for low prevalence diseases. A wider use of this kind
of methodology is restricted by the loss of sensitivity inherent to the mixture
of samples. Moreover, as this methodology attains greater cost reduction in the
cases of lower prevalence (and, consequently, a higher optimal batch size), the
phenomenon of rarefaction is crucial to understand that sensitivity reduction.
Suppose, with no loss of generality, that an experimental individual test consists
in determining if the amount of substance overpasses some prefixed threshold l .
For a pooled sample of size n, the amount of substance of interest is represented
by .Y1; � � � ; Yn/, with mean Y n and maximum Mn. The goal is to know if any
of the individual samples exceeds the threshold l , that is, Mn > l: It is shown
that the dependence between Y n andMn has a crucial role in deciding the use of
group testing since a higher dependence corresponds to more information about
Mn given by the observed value of Y n.
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1 Introduction

The original idea of [1] was to use pooled samples on the screening of the defective
members of a population (classification problem) in order to reduce the expected
number of tests. In Dorfman’s algorithm first stage, specimens are grouped for
batched testing. If a pooled test is negative, all individuals in the pooled sample
are declared negative. Otherwise, individual tests are performed. The optimal batch
size minimizes the expected number of tests. Several extensions of this algorithm
may be found in [2, 10, 11]. Alternative algorithms are presented in [5].

The seminal work of [9] deals with the problem of estimating the proportion of
the defective members of a population (estimation problem).

The use of group testing schemes is usually restricted to qualitative analyses
(presence or absence of the infection), without measuring any quantitative variable
(antigens or antibodies or bacteria counts, or proportion of specific cells, or weight
or volume of some chemical compound). If some continuous test outcome is
available, it is usually transformed into a dichotomous outcome (cf. [13]). There are
few works that deal with continuous outcomes (cf. [12,13]), but even those consider
only the estimation problem. In this work, we present two possible methodologies
that allow the application of Dorfman’s algorithm to the classification problem when
the test outcome is a continuous variable.

This work outline is as follows. Section 2 presents a discussion on the group
testing procedure originally defined by Dorfman and the effect of the rarefaction
phenomenon or the dilution effect (cf. [4]) in the sensitivity and the specificity
of individual tests. In Sect. 3, two methodologies are proposed to conduct pooled
sample tests with continuous outcomes. The importance of the correlation between
the sample mean and the sample maximum is discussed when rarefaction may
disturb the quality of group testing. The final remarks are presented in Sect. 4, where
some suggestions for further investigation are given.

2 Dorfman’s Procedures and Its Extensions

Let p denote the prevalence rate of the infection and the independent Bernoulli
random variables Xi , with i D 1; � � � ; N , represent the presence .Xi D 1/ or
absence .Xi D 0/ of the infection in the i th population individual. Furthermore,
let C and � represent, respectively, the result of an individual test as positive and
negative. The error of an individual test is usually assessed by two probabilities:
the sensitivity and the specificity. The probability of getting a correct result on one
individual test performed on a healthy individual is defined as the test specificity,
that is, 'e D P .�j Xi D 0/. More important is the probability of detecting
an infected individual, that is, the test sensitivity 's D P .Cj Xi D 1/. These
definitions could be extended to pooled sample procedures (cf. [5,8]). Thus, using a
sample of size n, the pooled sensitivity is defined by 'Œn�

s
D P.CjPn

iD1 Xi > 0/ and
the pooled specificity by 'Œn�

e
D P.�jPn

iD1 Xi D 0/. The sensitivity 'Œn�
s

depends
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on the number m of infected members as a result of the dilution of the fluid and
its rarefaction. Therefore, using 'Œm;n�

s
D P.CjPn

iD1 Xi D m/ and applying Bayes
theorem we obtain

'Œn�
s
D
Pn

jD1 P
�C;Pn

iD1 Xi D j
�

P
�Pn

iD1 Xi > 0
� D

nX

jD1

�
n
j

�
pj .1 � p/n�j
1 � .1 � p/n 'Œj;n�

s
D

nX

jD1
�j '

Œj;n�

s
;

(1)

where
Pn

jD1 �j D 1.
In our problem both the healthy and the infected individual possess some

substance of interest in the samples for testing. Suppose also that the amount of
substance in a healthy individual follows some continuous distribution Y _ D�0

and that the amount of substance in an infected individual is Y � D ˇ0 C ˇ1Y

(or Y � _ D�1 where �0 and �1 stand for distinct parameter vectors). We consider
the cases where D is an exponential distribution, Gaussian distribution and Pareto
distribution.

For an individual test, the hypothesis to be considered are

H0 W Xi D 0 versusH1 W Xi D 1; (2)

where the null hypothesis is equivalent to state that the amount of substance of the
i th sample is described by Yi _ D�0 . A rule to decide if a sample is to be declared
positive or negative is well defined for a knownD�0 : For a significance level ˛, the
null hypothesis is to be rejected if the amount of substance Y exceeds some fixed
threshold l D F �1D�0

.1 � ˛/ where F�1D�0
.1 � ˛/ stands for the generalized inverse

of the distribution function D�0 at the point 1 � ˛ (a similar reasoning is applied
if the rule is to declare a positive sample when the amount of substance is lower
than some threshold l). Hence, the test significance level coincides with 1 � 'e
(i.e. 'e D 1 � ˛). The power of the test is given by the probability that an infected
sample is declared infected, that is, 1�ˇ D 1�FD�1

.l/. Thus, the power of the test
is equal to the sensitivity of the experimental test. Of course, if some further sources
of error in the experimental test are considered, this correspondence between the
two types of error of the hypothesis test and the two measures of the quality may
not be valid. However, our goal is to show the association between these concepts.

As an example, consider D�0 � N .�0; �0/ and D�1 � N .�1; �1/ where
N .�; �/ stands for a Gaussian distribution with mean � and standard deviation �:
We will assume, with no loss in generality, �1 > �0 and let � D �1=�0 and
� D �1��0 > 0. Thus, in (2) we have l D �0C�0˚�1 .1 � ˛/ and the power

of the test is 1 � ˇ D 1 � ˚
�
l��1
�1

�
D 1 � ˚

�
˚�1.1�˛/

�
� �

�1

�
, where ˚ denotes

the cumulative distribution function of a standard Gaussian random variable. It is
no surprise to verify that the test power increases with the difference of the mean
values � D �1 � �0.
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In Dorfman’s methodology and its extensions to a number of stages greater than
two, the decision whether a sample is or isn’t infected depends firstly on the result of
the pooled sample test. If the pooled sample test is considered to be positive further
individual/grouped sample tests have to be conducted. The main problem here is to
decide whether a pooled sample contains at least one infected individual since the
substance of interest may be present both in healthy and infected individuals. This
leads to the hypothesis test

H0 W
Xn

iD1 Xi D 0 versus H1 W
Xn

iD1 Xi > 0; (3)

where the null hypothesis is equivalent to state that the amount of substance of
interest is described by the

Pn
iD1 Yi of independent and identically distributed

random variables to Y _ D�0 . As in the individual tests, it is necessary to establish
a threshold (as a function of n) to decide if a pooled sample is or is not classified
as a mixture of at least one infected individual. In Sect. 3 we propose two different
methodologies in order to decide whether the null hypothesis should be rejected or
maintained.

The process of getting a pooled sample is as follows. The same amount of sample
is taken from n individuals and mixed (homogeneously). The new mixed sample is
now tested. In a low prevalence case, a maximum of one infected sample in the
pooled sample occurs with high probability. Hence, due to rarefaction the effect
of this sample in the total amount of some substance in the pooled sample could be
quite low. We raise this question in order to keep in mind that if the distributionsD�0

and D�1 are not quite different the pooled sensitivity of the test could be seriously
compromised. Some works incorporating rarefaction use some previous knowledge
about this phenomenon (i.e. [12]). However, those works don’t take advantage from
this possibly known distributions. These pooled sample tests will be treated in detail
in the next section.

3 The Pooled Sample Tests

When using pooled samples, the experimental test provides information on
the batched sample as a whole although the experimenter wants to know if any
of the individual samples exceeds the prefixed threshold l: The process of decision
of the hypothesis test (3) isn’t as obvious as the decision on individual testing
represented by (2), because to classify a pooled sample it is previously needed to
identify the samples in which Mn D max .Y1; � � � ; Yn/ overpasses the threshold l
using only the information of the sample mean (the only quantity observed). In this
work, we discuss two different methodologies for deciding whether to reject or to
maintain the null hypothesis of the pooled test (3).
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Table 1 Simulation of correlation between mean Y n and maximum Mn (1,000,000 replicates)

n Standard Gaussian Standard exponential Pareto � D 5 Pareto � D 3 Pareto � D 1

2 0.8585 0.9483 0.9679 0.9801 0.9999450
3 0.7699 0.9034 0.9412 0.9646 0.9999819
5 0.6632 0.8413 0.8977 0.9378 0.9999714
50 0.3283 0.4919 0.6330 0.7607 0.9999983
100 0.2323 0.4062 0.5473 0.6889 0.9999786

3.1 T1 Methodology: Using the Distribution of the Sample Mean

When mixing n healthy samples Y1; � � � ; Yn and then extracting a portion 1=n of the
total amount for batched testing, the amount of substance of interest is given by the
random variable C0;n where Cm;n is given by

Cm;n D
Pn�m

iD1 Yi C
Pm

iD1 Y �i
n

: (4)

The random variable Cm;n represents the amount of substance in a batched sample
of size n with m infected individual samples. The null hypothesis of the hypothesis
test (3) is rejected if C0;n > q1�˛ where FC0;n .q1�˛ / D 1 � ˛ and FC0;n stands for
the distribution function of the random variable C0;n.

If there is an infected individual in the pooled sample, the main problem is to
know whether the observed value of the “mean” random variableCm;n, withm � 1,
is influenced by the presence of m infected samples.

A pooled sample that contains at least one defective individual should be
screened as positive. Thus, a pooled sample is classified as defective if the sample
maximum Mn D max .Y1; � � � ; Yn/ overpasses the prefixed threshold l . However,
the researcher uses only information about the mean to attain a decision that con-
cerns only to the sample maximum. Hence, it is expected that the chance of deciding
correctly increases with the dependence between the sample mean and sample
maximum. For the three distributions mentioned above, the correlation between
the sample mean and the sample maximum is computed for different sample sizes.
All values presented in Table 1 were obtained by simulation (using software R)
although we can get the same results analytically for the exponential distributionh
�Mn;Y n

DPn
iD1 i�1

�
n
Pn

iD1 i�2
��0:5i

and by numerical approximation for the

Gaussian case (e.g. using �Mn;Y n
D �p

n�Mn
��1

with �Mn given in [7]). Thus, the
simulation is an excellent resource to obtain good approximations of the theoretical
value of the correlations.

The correlation decreases as n increases as expected. For the Pareto distribution,
with shape parameter � , the correlation is high even for n as high as 50. This is
probably related to the heavy tails of this distribution. Otherwise, the correlation is
quite moderate for the Gaussian distribution, and therefore, the power of test (3)
is expected to be rather low. We simulate the Pareto(1) case to point out that the
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sequence of correlations converges to 1 when � decreases (although, for � D 1,
the mean does not exist and therefore the simulation cannot be interpreted as
an estimate of the theoretical value of the correlations). For the exponential and
Gaussian distributions the correlations are independent of the parameters values.

3.2 T2 Methodology: Using a Simulation Method

Let ˛ be the significance level of the hypothesis test (3). The aim is to reject the
null hypothesis if at least one of the individual samples exceeds the threshold l .
Therefore, underH0,

P.Mn � l/DP .Y1 � l; � � � ; Yn � l/ DF n
D�0

.l/ D 1�˛, l DF�1D�0

�
.1�˛/ 1n

�
:

(5)

The computation of the generalized inverse distribution function F �1D�0
is not

generally straightforward but the use of simulation provides good approximations
for the value of l (quantile n

p
1 � ˛ of distribution D�0 ). Simulation is the core of

this methodology. Let
�
Y1j ; � � � ; Ynj

�
jD1;��� ;N be N samples of size n generated by

simulation that verify Yij _ D�0 : Consider the N samples ordered by the sample
maximum. Then, the k samples whose maximum is closest to l are chosen where
k is an arbitrary number (in the simulations performed in Sect. 3.3 it was used
N D 105 and k equals to 1 % of N ). The mean sample of those k samples is
computed and taken as the threshold l� of decision for the pooled sample test, that
is, if the mean sample exceeds l� the pooled sample is declared infected.

3.3 Simulations Results

In this subsection, we compare the use of these two methodologies and their effects
on sensitivity and specificity. Gaussian, exponential, and Pareto distribution are
considered. The calculations are all done using simulation (via software R) although
some calculus could be done analytically (Y n _ N

�
�0; �0=

p
n
�

if Y _ N .�0; �0/
and Y n _ Gamma

�
n; �

n

�
if Y _ Exp .�/).

Tables 2 and 3 present the specificity 'Œn�
e

and sensitivity 'Œn�
s

of a pooled sample
test, applying methodologies T1 and T2 and assuming for each distribution that
D�1 is just a translation of D�0 . The translation is chosen in order to keep both
sensitivity '

s
and specificity '

e
of individual tests equal to 0:95 (case 1) and to

0:995 (case 2). In all simulations we use the most efficient value for n in Dorfman’s
methodology [1].

The patterns observed in each methodology were already expectable according
to Liu et al. [6]. In the T1 methodology, the loss of specificity of the test is
low but it results in higher sensitivity loss than when using second methodology.
Otherwise, the T2 methodology specificity loss is very close to the one using the T1
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Table 2 Hypothesis tests simulation, Gaussian and exponential distribution (100,000 replicates)

Case 1: 'Œ1�
s
D 'Œ1�

e
D 0:95 Case 2: 'Œ1�

s
D 'Œ1�

e
D 0:995

T1 T2 T1 T2

p 1� ˛ 'Œn�
s

'Œn�
e

'Œn�
s

'Œn�
e

'Œn�
s

'Œn�
e

'Œn�
s

'Œn�
e

Gaussian distribution
0.15 0.90 0.7746 0.8994 0.8573 0.8283 0.9623 0.9002 0.9830 0.8231
(n D 3) 0.95 0.6627 0.9504 0.8012 0.8818 0.9229 0.9501 0.9728 0.8707

0.99 0.4310 0.9900 0.6902 0.9408 0.7835 0.9901 0.9319 0.9427
0.05 0.90 0.6127 0.9003 0.7636 0.7971 0.8628 0.8992 0.9371 0.7960
(n D 5) 0.95 0.4804 0.9501 0.7109 0.8417 0.7716 0.9500 0.9202 0.8320

0.99 0.2534 0.9901 0.9490 0.9082 0.5431 0.9900 0.8445 0.9137
0.01 0.90 0.4066 0.8997 0.6600 0.7343 0.6261 0.9001 0.8277 0.7404
(n D 11) 0.95 0.2759 0.9497 0.5917 0.7874 0.4880 0.9502 0.8122 0.7606

0.99 0.1061 0.9899 0.5266 0.8338 0.2491 0.9900 0.7337 0.8347
Exponential distribution
0.15 0.90 0.9423 0.8984 0.9923 0.8825 1.00 0.9019 1.00 0.8856
(n D 3) 0.95 0.5496 0.9492 0.6673 0.9339 1.00 0.9554 1.00 0.9429

0.99 0.1626 0.9894 0.2464 0.9792 0.6413 0.9895 0.9596 0.9820
0.05 0.90 0.8206 0.9005 0.9644 0.8698 1.00 0.8975 1.00 0.8667
(n D 5) 0.95 0.4240 0.9486 0.6660 0.9198 1.00 0.9494 1.00 0.9229

0.99 0.0792 0.9900 0.2195 0.9746 0.4019 0.9903 0.8979 0.9737
0.01 0.90 0.7668 0.9015 0.9907 0.8371 1.00 0.8957 1.00 0.8220
(n D 11) 0.95 0.3514 0.9487 0.8710 0.8842 0.9521 0.9472 1.00 0.8896

0.99 0.0256 0.9910 0.3292 0.9525 0.1896 0.9902 0.9367 0.9512

methodology and it performs better in what concerns to the sensitivity. We advise
the use of the second methodology, since it has a better sensitivity behaviour.

4 Conclusion

The phenomenon of rarefaction can have a great effect in the quality of a pooled
sample test. When the sample mean and the sample maximum correlation is high
this effect is minimized and the use of batched samples is recommended.

When the correlation is low, the presence of an infected individual in the pooled
sample has low effect on the amount of substance in the pooled sample. Therefore
it is difficult to detect this infected sample. In this case, we have to be very
careful when using pooled samples. Our recommendation is to use a pooled sample
dimension lower than the optimal size obtained just by considering the relative cost
of a specific methodology.

Further investigation may be conducted by considering a different null hypothesis
in the test (3). As [3] points out, when the use of batched samples provides greatest
savings (low prevalences), an infected pooled sample is almost certainly a pooled
sample with just one infected sample (�1 	 1 for the efficient value for n in (1),
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Table 3 Hypothesis tests simulation, Pareto distribution (100,000 replicates)

Case 1: 'Œ1�
s
D 'Œ1�

e
D 0:95 Case 2: 'Œ1�

s
D 'Œ1�

e
D 0:995

T1 T2 T1 T2

p 1� ˛ 'Œn�
s

'Œn�
e

'Œn�
s

'Œn�
e

'Œn�
s

'Œn�
e

'Œn�
s

'Œn�
e

Pareto(5)
0:15 0.90 0.5813 0.9010 0.6300 0.8883 1.00 0.8995 1.00 0.8928
n D 3 0.95 0.3616 0.9473 0.3994 0.9408 1.00 0.9495 1.00 0.9422

0.99 0.0646 0.9896 0.0802 0.9874 0.4166 0.9898 0.5075 0.9873
0:05 0.90 0.4189 0.9001 0.4725 0.8827 0.9924 0.8861 0.9987 0.8861
n D 5 0.95 0.2248 0.9507 0.2875 0.9353 0.8087 0.9514 0.9084 0.9362

0.99 0.0406 0.9901 0.0583 0.9862 0.2526 0.9892 0.3350 0.9842
0:01 0.90 0.2585 0.9000 0.3555 0.8551 0.6771 0.9004 0.7738 0.8687
n D 11 0.95 0.1365 0.9504 0.2113 0.9207 0.4294 0.9497 0.5940 0.9168

0.99 0.0263 0.9900 0.0554 0.9800 0.1118 0.9902 0.2054 0.9881
Pareto(3)
0.15 0.90 0.5691 0.9019 0.5883 0.8978 1.00 0.8994 1.00 0.8905
(n D 3) 0.95 0.2900 0.9518 0.3216 0.9479 1.00 0.9534 1.00 0.9494

0.99 0.0287 0.9891 0.0325 0.9886 0.3409 0.9904 0.3840 0.9893
0.05 0.90 0.3669 0.9047 0.3996 0.8966 1.00 0.8984 1.00 0.8873
(n D 5) 0.95 0.1836 0.9529 0.2189 0.9457 0.9359 0.9529 0.9793 0.9472

0.99 0.0286 0.9901 0.0339 0.9887 0.1924 0.9903 0.2304 0.9886
0.01 0.90 0.2265 0.9032 0.2714 0.8803 0.7715 0.9002 0.8551 0.8768
(n D 11) 0.95 0.1030 0.9490 0.1337 0.9382 0.4418 0.9492 0.5234 0.9355

0.99 0.0183 0.9888 0.0220 0.9863 0.0772 0.9904 0.1089 0.9875

therefore the sensitivity 'Œ1;n�
s

is crucial in 'Œn�
s

determination). This means that the
study of the hypothesis test

H0 W
Xn

iD1 Xi D 1 versus H1 W
Xn

iD1 Xi D 0

is quite general and may be an alternative to follow up.
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Testing Serial Correlation Using
the Gauss–Newton Regression

Efigénio Rebelo, Patrícia Oom do Valle, and Rui Nunes

Abstract
This paper proposes two types of autocorrelation tests based on a methodology
that uses an auxiliary regression, named Gauss–Newton regression. All tests are
derived considering that the regression function contains contemporary values
of endogenous variables, situation in which the model is estimated using the
nonlinear instrumental variables method. The first type of test intends to identify
the presence of serial correlation, whether genuine or not. The second type of
test is proposed to distinguish the genuine serial correlation from the non-genuine
serial correlation, being the latter an evidence of misspecification. This study also
shows that this second type of test, called the “Common Factor Restrictions” test,
can be deduced as a �2 test or as a t test.

1 Introduction

The context of this study refers to the need of estimating and testing models with
serial correlation by focusing on first-order autoregressive errors. There will be no
loss of generality since all the results carry over to higher order processes in an
obvious fashion.

So, let us consider the model

yt D xtˇ C ut I ut D �ut�1 C �t ; �t IID � �0;w2� (1)

where xt is row t of matrix X; t D 1; 2; : : : ; n, and ˇ is a k-dimensional vector. In
(1), j�j < 1 is the necessary and sufficient condition for Var .ut / D �2 D w2

1��2 .
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The consequences of serial correlation in the model can be analysed in two
different situations: (1) if xt contains neither lagged dependent variables nor any
current endogenous variables, Ǒ (OLS) is unbiased, therefore consistent, but not

efficient. Worse than that, cVar
� Ǒ� D O�2 �XTX

��1
is a biased and inconsistent

estimator of the covariance matrix of the Ǒ’s. Therefore, in this case, the statistical
inference on the model is invalid because the standard errors of Ǒj ’s are inconsistent
with bias of unknown signal; (2) if xt contains lagged dependent variables and/or
current endogenous variables, Ǒ is not even a consistent estimator. Therefore, in this
situation, the statistical inference will also be invalid.

The Aitken’s transformation is often adopted to deal with the serial correlation
problem. Let us review how to obtain the Aitken’s model.

Based on model (1), and lagging it an observation, we obtain the model yt�1 D
xt�1ˇ C ut�1. After multiplying both members of this equality by �, the model
equals to �yt�1 D �xt�1ˇC �ut�1. This latter model can be subtracted from model
(1), allowing to obtain yt � �yt�1 D .xt � �xt�1/ ˇ C ut � �ut�1, or finally

yt D xtˇ C � .yt�1 � xt�1ˇ/C �t ; �t � IID
�
0;w2

�
: (2)

Model (2) is the Aitken’s model which is spherical, that is with well-behaved
disturbance terms, but nonlinear in the parameters since the regression function is
ft .ˇ; �/ D xtˇ C � .yt�1 � xt�1ˇ/ depending on ˇ as well as on � in a nonlinear
fashion.

In model (2), regardless of the existence of lagged dependent variables, if xt
does not contain contemporary values of endogeneous variables, the application
of nonlinear least squares (NLLS) produces consistent and asymptotically efficient
estimates for ˇ and �. Furthermore, the estimate of the covariance matrix of .ˇ; �/
will be consistent.

However, if xt in model (2) contains also contemporaneous values of endogenous
variables, only the application of the nonlinear instrumental variables method
(NLIVM) to this model will produce consistent estimates for ˇ, �, and for the
covariance matrix of .ˇ; �/.

Therefore, the use of the Aitken’s model is the solution to be adopted when the
errors are genuinely serially correlated. However, evidence of serial correlation may
result from two factors: (1) lack of dynamism in the model, transferring the missing
lags (from yt ) to ut ; (2) incorrect omission of an important variable, lagged or
not, transferring the phenomenon of serial correlation, always present in economic
variables, to ut . In any of these situations, misspecification of the regression function
(the main part of the model) will not be resolved by the Aitken’s model.

Within this framework, this study has two purposes. The first one is to propose
a test for apparent serial correlation using the Gauss–Newton Regression (GNR)
method, firstly proposed by Davidson and Mackinnon [1] in the context of non-
nested testing. In his study, Godfrey [2] proposed tests for apparent serial correlation
but using a different methodology. The second objective is to propose two tests to
distinguish between genuine serial correlation and non-genuine serial correlation
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(evidence of misspecification). As we will explain, these latter tests can be named as
Tests for Common Factor Restrictions. These tests were early proposed by Hendry
and Mizon [3], Mizon and Hendry [4] and Sargan [7] but only in the context in
which the estimation by OLS produces consistent estimates. In this study, Tests for
Common Factor Restrictions are derived using a different methodology, based on
the GNR, and assuming that xt contains current endogenous variable so that the
NLIVM must be used.

2 The Gauss–Newton Regression

The GNR is an auxiliary regression derived from the first-order Taylor expansion
around one point in order to obtain a linear approximation of a nonlinear function
as proposed in [1]. In a GNR the dependent variable is the residual variable of the
model and the regressors are obtained by differentiation of the regression function
with respect to the parameters as proposed in [5, 6].

Concerning model (2), its regression function is given by

ft .ˇ; �/ D xtˇ C � .yt�1 � xt�1ˇ/ : (3)

Thus, the corresponding GNR will be given by

�t D @ft .ˇ; �/

@̌
b C @ft .ˇ; �/

@�
r C error term

which is equivalent to

yt � xtˇ � � .yt�1 � xt�1ˇ/ D .xt � �xt�1/ b C .yt�1 � xt�1ˇ/ r C error term

and, finally,

.yt � �yt�1/ � .xt � �xt�1/ ˇ D .xt � �xt�1/ b C r .yt�1 � xt�1ˇ/C error term:
(4)

Any restrictions on the parameters of a nonlinear regression function can be
tested by estimating the corresponding GNR evaluated at restricted estimates,
provided the estimation methods involved produce consistent root-n estimates under
the null hypothesis.

3 Testing for Evidence of Serial Correlation

Consider again the regression function given by (3)

ft .ˇ; �/ D xtˇ C � .yt�1 � xt�1ˇ/
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with corresponding GNR

.yt � �yt�1/ � .xt � �xt�1/ ˇ D .xt � �xt�1/ b C r .yt�1 � xt�1ˇ/C error term:

Regarding our first purpose, testing for apparent serial correlation is to test
H0 W � D 0 against HA W � ¤ 0. Consider

�
ˇ�R; 0

�
any consistent root-n restricted

estimate of the parameter vector .ˇ; �/ under H0 W � D 0. Due to the existence
of contemporary variables in the right-hand side of the equation, this is ǑR, the
instrumental variables estimator (IVE) of model (1). Evaluated at these estimates,
the GNR becomes

yt � xt ǑR D xtb C r
�
yt�1 � xt�1 ǑR

�
C error term (5)

and its estimation using the instrumental variables method (IVM) produces consis-
tent estimates to b and r .

After this estimation, to test for serial correlation using the GNR approach, the
GNR from the restricted model needs to be obtained. In this sense, and under the
null hypothesis, the regression function itself is simply given by the linear function

ft .ˇ; �/ D xtˇ (6)

with corresponding GNR evaluated at ǑR given by:

yt � xt ǑR D xtb C error term: (7)

By comparing the GNRs (5) and (7), it is easy to see that to test the restriction
� D 0 it is the same as testing the significance of the extra term yt�1�xt�1 ǑR in the
GNR (5) by using the t statistics. Moreover, this extra term is the lagged residual of
model (1), Out�1, previously estimated using the IVM (as proposed by Godfrey [2],
using a different methodology).

It should be noted that both the estimation of GNR (5) and the estimate ǑR that
results from the estimation of ˇ in model (1) (after imposition the null hypothesis
� D 0) should be obtained using the same set of instruments used to create the
instrumental variables for xt . This procedure ensures that the test will be based on
the Lagrange multiplier principle, since only in this case OuR, the left-hand side of
Eq. (5) will be orthogonal to xt in GNR (5). In other words, just in this situation the
GNR (7), estimated by IVM has no asymptotic explanatory power.

This implies that, for efficiency reasons, the set of instruments should include
all predetermined variables included in fxt ; xt�1; yt�1g (of course without repeating
any of them) and other exogenous variables that explain the endogenous variables
contained in xt .
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4 Testing for Common Factor Restrictions

In their studies, Hendry and Mizon [3], Mizon and Hendry [4], and Sargan [7]
proposed this type of tests, but only in the context in which the estimation by OLS
produces consistent estimates. In this section, two new tests, based on the IVM and
using a GNR are proposed: a �2 test and a t test.

4.1 �2 Test

Let us return to model (2),

yt D xtˇ C � .yt�1 � xt�1ˇ/C �t ; �t � IID
�
0;w2

�

and consider, as alternative, model (8)

yt D xtˇ C �yt�1 C xt�1� C �t ; �t � IID
�
0;w2

�
: (8)

The former can be rewritten as

.1� �L/ yt D .1 � �L/ xtˇ C �t ; �t � IID
�
0;w2

�
(9)

where L is the lag operator, and the latter as

.1 � �L/ yt D xtˇ C Lxt� C �t ; �t � IID
�
0;w2

�
: (10)

The absence of a common factor in the right side of Eq. (10) justifies the name
given to the test. It is easily seen that model (9) is the restricted version of model
(10) when imposing the nonlinear restrictions � D ��ˇ.

Consider now the regression function of the alternative (unrestricted) model (8),

ft .ˇ; �; �/ D xtˇ C �yt�1 C xt�1� (11)

which is a linear function in their parameters. The corresponding GNR will be
given by

.yt � �yt�1/� .xtˇ C xt�1�/ D xtb C cyt�1 C xt�1d C error term: (12)

Consider now
�
ˇ�R; ��R;���Rˇ�R

�
, a restricted consistent root-n estimate of the

vector .ˇ; �; �/ under the null hypothesis H0 W � D ��ˇ. In that case, ˇ�R D Q̌
R

and ��R D Q�R [nonlinear IV estimates of model (2)].
Evaluating GNR (10) at this point, it becomes

.yt � Q�Ryt�1/� .xt � Q�Rxt�1/ Q̌R D xtb C cyt�1 C xt�1d C error term (13)

and its estimation by the IVM produces consistent estimates for b, c and d .
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The next step is to clarify how to test H0 W � D ��ˇ after this estimation. With
this aim, let us return to GNR (4), associated with the restricted model,

.yt � �yt�1/ � .xt � �xt�1/ ˇ D .xt � �xt�1/ b C r .yt�1 � xt�1ˇ/C error term:

This GNR assessed under the same nonlinear IV estimates becomes

.yt � Q�Ryt�1/ � .xt � Q�Rxt�1/ Q̌R D .xt � Q�Rxt�1/ b C r
�
yt�1 � xt�1 Q̌R

�

Cerror term (14)

or, taking into account the regression function in (3)

Q� D @ft .ˇ; �/

@̌

ˇ
ˇ
ˇ.ˇ;�/D. Q̌R; Q�R/ b C r

@ft .ˇ; �/

@�

ˇ
ˇ
ˇ.ˇ;�/D. Q̌R; Q�R/ C error term (15)

which allows us to conclude that this GNR has no explanatory asymptotic power,
because all regressor vectors are orthogonal (asymptotically) with Q�, the vector of
residuals of model (2), obtained by nonlinear IV (first order conditions of the IV
minimization process).

Under these circumstances, the comparison of the sum of squared residuals
(SSR) of the GNR’s (11) and (12) to test the restriction (using an F test)
becomes unnecessary. Instead, it is enough to perform a �2 test using the statistics
.n � k � 1/R2 .g/ calculated from (11). In fact, GNR (12), the restricted one, is
composed of k C 1 parameters and would be estimated based on n observations
(where n represents the number of observations actually used). The adjustment to
finite samples is thus given by n � k � 1.

It is also important to note that the number of degrees of freedom .g/ is not equal
to the number of non-redundant regressors in (11). It is rather given by the difference
between that number and kC 1 [number of parameters in GNR (12)]. For example,
if xt D f1; z1;t ; z2;t ; yt�1g, xt�1 D f1; z1;t�1; z2;t�1; yt�2g. Therefore, the number
of non-redundant regressors in (11) seven. Since in this case Eq. (12) contains five
parameters (four b’s plus one r), the number of degrees of freedom is two .g D 2/.

4.2 T Test

To complete the “Common Factor Restrictions” family of tests there is still another
test that can be proposed. So, let us return to model (2)

yt D xtˇ C � .yt�1 � xt�1ˇ/C �t
and consider, as alternative,

yt D xtˇ C �yt�1 � ıxt�1ˇ C �t : (16)
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It is easily seen to model (2) is the restricted version of model (13) when
imposing the linear restriction ı D �.

As an alternative, models (2) and (13) can be rewritten as

.1 � �L/ yt D .1 � �L/ xtˇ C �t (17)

and

.1 � �L/ yt D .1� ıL/ xtˇ C �t (18)

to clarify, once again, the name given to the test.
The regression function of this alternative model (non-restricted) is

ft .ˇ; �; ı/ D xtˇ C �yt�1 � ıxt�1ˇ (19)

which is nonlinear in the parameters. The corresponding GNR will be

.yt � �yt�1/� .xt � ıxt�1/ ˇ D .xt � ıxt�1/ b C ryt�1 � dxt�1ˇ C error term:
(20)

Consider now
�
ˇ�R; ��R; ı�R

�
, a restricted consistent root-n estimates of the vector

.ˇ; �; ı/ under the null hypothesis H0 W ı D �. Using, once again, the estimates
given by the NLIV applied to model (2), when evaluated at those estimates the
GNR becomes

.yt � Q�Ryt�1/� .xt � Q�Rxt�1/ Q̌R D .xt � Q�Rxt�1/ b C ryt�1 � dxt�1 Q̌R
Cerror term (21)

or, after subtracting and adding up the term rxt�1ˇ�R in the right-hand side of the
equation, and collecting terms,

.yt � Q�Ryt�1/ � .xt � Q�Rxt�1/ Q̌R D
.xt � Q�Rxt�1/ b C r

�
yt�1 � xt�1 Q̌R

�
� .r � d/ xt�1 Q̌R C error term:

(22)

Comparing (22) and (4), once evaluated at the same point,

.yt � Q�Ryt�1/ � .xt � Q�Rxt�1/ Q̌R D .xt � Q�Rxt�1/ b C r
�
yt�1 � xt�1 Q̌R

�

Cerror term

it is straightforward to conclude that, for testing the restriction ı D � it is enough
to use a simple t test to test the significance of the extra term xt�1 Q̌R in regression
(22), after its estimation with IV using the same set of instruments (the previously
used in the serial correlation test, in the previous section).
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5 Conclusions

In this work, two types of tests have been deduced using the same methodology,
based on the GNR. The first type allows identifying evidence of serial correlation
(if the null hypothesis is rejected). The second type, designated as “Common Factor
Restrictions” tests, intends to discriminate between genuine and non-genuine serial
correlation. Both the common factor tests should be carried out, as any one may
have better performance than the other (as reported by Mizon and Hendry [4] in an
OLS context).

Aitken’s model must be chosen if and only if both common factor tests do
not reject the corresponding null hypotheses. This is the case of genuine serial
correlation. Otherwise, if at least one of the common factor tests rejects the null
hypothesis, the Aitken’s model must be seen as a restricted version of more general
models, where false restrictions have been imposed. This is the case of non-genuine
serial correlation. In this situation, the NLIV estimates applied to the Aitken’s model
will be inconsistent and the inference based on those estimates will be invalid.
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Cantor Sets with RandomRepair

M. Fátima Brilhante, Dinis Pestana, and M. Luísa Rocha

Abstract
The effect of random repair in each step of the construction of Cantor-like sets,
defined by the union of segments determined by the minimum and maximum
of two independent observations from a population with support on Œ0; 1�, is
investigated here. Independence between the samples used in the damage and
repair stages is also assumed. The final assessment of the repair benefits is done
in terms of the mean diameter and mean total length of the set obtained after a
small number of iterations.

1 Introduction

In many important biological and industrial issues such as in the recovery of patients
with cerebral lesions, or in the recovery of information in damaged storage units, the
damage extent or the ability to repair what is damaged is often random. These kinds
of issues motivated us to evaluate the random repair benefits in Cantor-like sets (a
much simpler setting).
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A huge variety of deterministic and random Cantor-like sets can be constructed
using different iterative procedures. In most common constructions some part of
the set is deleted using a deterministic or stochastic rule in each step. Pestana and
Aleixo [1] introduced a stuttering procedure in which each deletion (damage) stage
is followed by a partial random reconstruction (repair) stage, and where redundancy
is allowed in the sense that repair can operate on non-damaged areas. In their study
they used order statistics from some Beta populations to model the segment to delete
or to repair. The assessment of the random repair benefits was done in terms of the
Hausdorff dimension of the fractal obtained as limit of the damage/repair iterative
procedure. (Note that the Hausdorff dimension allows to measure complicated
geometric forms such as fractals.)

In Aleixo et al. [2] a wider range for the beta parameters was considered in order
to reveal the asymptotic effect of different combinations of damage/repair. These
authors observed two important features: (1) the Hausdorff dimension is always
significantly lower for the fractals that only suffered damage stages, when compared
to the corresponding damage/repair fractals; (2) the Hausdorff dimension decreases
under randomness in the damage stage. For practical purposes Aleixo et al. [2]
also presented plots for some combinations of Beta damage/repair and of Beta or
BetaBoop damage/repair, for steps 2 and 3 of the construction procedure. (Note that
the BetaBoop family, introduced by Brilhante et al. [3], generalizes the Beta family.)

One of the nasty effects of random repair is obviously the possibility of repairing
what is not damaged—this is actually common in many aspects of our everyday
life. For example, in scheduled car maintenances, the automaker protocols often
establish that some auto parts (e.g., spark plugs and fan belt) should be replaced
even if in perfect conditions. Since it is important to observe what happens with
Cantor-like sets with random repair after a moderate number of steps, we decided
to compare the mean diameter and mean total length of each set obtained after a
small number of iterations, for some combinations of Beta damage/repair in order
to assess the actual repair benefits.

This paper is organized as follows. In Sect. 2 we describe how to construct a
stuttering Cantor-like random set and revisit some of its important features. In
Sect. 3 we tabulate the simulated mean diameter and mean total length, based on
5,000 runs, for a small number of iterations and for some combinations of Beta
damage/repair.

2 Stuttering Cantor-Like Random Sets Construction
Procedure

Let Fk , k D 1; 2; : : : , denote the set that we obtain after k steps of damage/repair.
Starting with F0 D Œ0; 1�, the set F1 is constructed in the following way:

Damaging Stage: Generate two independent random points X1 and X2 from a
parent populationX with support on Œ0; 1� and delete fromF0 the set .X1W2; X2W2/,
where Xj W2, j D 1; 2, represents the j th order statistic of the sample .X1;X2/;
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Table 1 Summary statistics for the estimated mean diameters and estimated mean total lengths
under deterministic damage stages

D1 D2 D3 D4 D5 D6 D7

No repair
Min 0.2974 0.0884 0.0263 0.0078 0.0023 0.0007 0.0002
Max 0.6429 0.4133 0.2657 0.1708 0.1098 0.0706 0.0454
Mean 0.4718 0.2358 0.1239 0.0677 0.0383 0.0222 0.0131
SD 0.1214 0.1161 0.0871 0.0604 0.0406 0.0268 0.0176
With repair
Min 0.3897 0.1686 0.0746 0.0340 0.0157 0.0073 0.0034
Max 0.7697 0.5915 0.4569 0.3516 0.2700 0.2088 0.1611
Mean 0.5899 0.3676 0.2352 0.1536 0.1018 0.0684 0.0465
SD 0.0937 0.1024 0.0909 0.0748 0.0594 0.0463 0.0358

L1 L2 L3 L4 L5 L6 L7

No repair
Min 0.5947 0.3537 0.2103 0.1251 0.0744 0.0442 0.0263
Max 0.7857 0.6173 0.4851 0.3811 0.2994 0.2353 0.1849
Mean 0.7369 0.5464 0.4075 0.3053 0.2297 0.1735 0.1314
SD 0.0619 0.0863 0.0909 0.0856 0.0761 0.0654 0.0549
With repair

Min 0.6898 0.4761 0.3272 0.2253 0.1553 0.1069 0.0736
Max 0.8911 0.7925 0.7052 0.6289 0.5598 0.4995 0.4448
Mean 0.8314 0.6933 0.5795 0.4859 0.4084 0.3441 0.2905
SD 0.0456 0.0740 0.0905 0.0987 0.1012 0.1000 0.0964

Repair Stage: Generate two other independent random points Y1 and Y2, inde-
pendent of X1 and X2, from a parent population Y with support on Œ0; 1�, and set
F1 D ŒF0 � .X1W2; X2W2/� [ .Y1W2; Y2W2/.
Construction of Fk , k D 2; 3; : : : :

Damaging Stage: For each segment Si;k�1 of Fk�1 D S

i

Si;k�1, generate two

independent random points X1Ii;k�1 and X2Ii;k�1 from the parent population
X truncated on Si;k�1 and delete from Si;k�1 the set .X1W2Ii;k�1; X2W2Ii;k�1/,
where Xj W2Ii;k�1, j D 1; 2, denotes the j th order statistic of the sample
.X1Ii;k�1; X2Ii;k�1/;

Repair Stage: For each segment Si;k�1, generate two other random points Y1Ii;k�1
and Y2Ii;k�1 from the parent population Y truncated on Si;k�1, independent of
X1Ii;k�1 and X2Ii;k�1, and set

Fk D
[

i

fŒSi;k�1 � .X1W2Ii;k�1; X2W2Ii;k�1/� [ .Y1W2Ii;k�1; Y2W2Ii;k�1/g :

The fractal F D
1T
kD1

Fk is the stuttering Cantor-like random set.
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Table 2 Summary statistics for the estimated mean diameters and estimated mean total lengths
under random damage stages

D1 D2 D3 D4 D5 D6 D7

No repair
Min 0.4964 0.2521 0.1310 0.0691 0.0369 0.0198 0.0106
Max 0.6540 0.4284 0.2807 0.1858 0.1228 0.0821 0.0546
Mean 0.5489 0.3094 0.1785 0.1050 0.0624 0.0377 0.0230
SD 0.0598 0.0668 0.0577 0.0450 0.0333 0.0241 0.0172
With repair
Min 0.5624 0.3233 0.1894 0.1133 0.0684 0.0411 0.0249
Max 0.7745 0.6024 0.4689 0.3653 0.2847 0.2227 0.1750
Mean 0.6452 0.4250 0.2847 0.1932 0.1325 0.0917 0.0640
SD 0.0536 0.0684 0.0675 0.0601 0.0509 0.0419 0.0339

L1 L2 L3 L4 L5 L6 L7

No repair
Min 0.5959 0.3585 0.2140 0.1277 0.0757 0.0450 0.0267
Max 0.7898 0.6207 0.4884 0.3845 0.3018 0.2371 0.1862
Mean 0.7369 0.5454 0.4074 0.3056 0.2297 0.1734 0.1312
SD 0.0621 0.0852 0.0904 0.0853 0.0759 0.0652 0.0548
With repair

Min 0.6883 0.4732 0.3243 0.2239 0.1536 0.1057 0.0726
Max 0.8860 0.7841 0.6966 0.6162 0.5462 0.4843 0.4281
Mean 0.8202 0.6744 0.5568 0.4610 0.3827 0.3185 0.2656
SD 0.0480 0.0765 0.0913 0.0976 0.0980 0.0949 0.0897

If in the previous construction procedure we establish a deterministic damaging
stage, the set to delete from each segment Si;k�1 is .E.X1W2Ii;k�1/;E.X2W2Ii;k�1//.
For example, the classical Cantor set only has deterministic damaging stages and
uses the expected value of the order statistics of samples of size 2 from the standard
uniform distribution.

Aleixo and Pestana [1] showed that when X and Y are both standard uniform
random variables,

F1 D

8
ˆ̂
ˆ̂̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂
:

Œ0; 1� if Y1W2 < X1W2 and Y2W2 > X2W2 (with probability 1
6
/

Œ0; X1W2�[ ŒX2W2; 1� if Y2W2 < X1W2 or Y1W2 > X2W2 (with probability 1
3
/

Œ0; Y2W2�[ ŒX2W2; 1� if Y1W2 < X1W2 < Y2W2 < X2W2 (with probability 1
6
/

Œ0; X1W2�[ ŒY1W2; 1� if X1W2 < Y1W2 < X2W2 < Y2W2 (with probability 1
6
/

Œ0; X1W2�[ ŒY1W2; Y2W2�[ ŒX2W2; 1� if X1W2 < Y1W2 < Y2W2 < X2W2 (with probability 1
6
/

(1)

and hence the random set F1 D
N1S

iD1
Si;1, where N1, which counts the number of

segments forming F1, has probability mass function P.N1 D 1/ D P.N1 D 3/ D 1
6

and P.N1 D 2/ D 2
3
. For other parent populations X and Y the random set F1

is also defined by (1), but with N1 having a different distribution. From the self-
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Table 3 Mean diameter under deterministic damage stages

(pd ; qd )/(pr ; qr) D1 D2 D3 D4 D5 D6 D7

(1,1)/no repair 0.33333 0.11111 0.03704 0.01235 0.00412 0.00137 0.00046
(1,1)/(0.5,0.5) 0.59340 0.38360 0.24784 0.16701 0.11020 0.07365 0.05015
(1,1)/(1,1) 0.55480 0.33483 0.20442 0.12791 0.08099 0.05207 0.03311
(1,1)/(1,2) 0.48028 0.25641 0.14067 0.07846 0.04426 0.02525 0.01461
(1,1)/(1,3) 0.41680 0.19225 0.09339 0.04614 0.02291 0.01150 0.00576
(1,1)/(2,1) 0.48807 0.26295 0.14336 0.08070 0.04568 0.02634 0.01500
(1,1)/(2,2) 0.50679 0.27920 0.15923 0.09189 0.05356 0.03123 0.01870
(1,1)/(2,3) 0.46801 0.24359 0.12979 0.07092 0.0385 0.02121 0.01179
(1,1)/(3,1) 0.41921 0.19348 0.09477 0.04657 0.02317 0.01164 0.00595
(1,1)/(3,2) 0.47533 0.24690 0.13119 0.07117 0.03939 0.02179 0.01219
(1,1)/(3,3) 0.47689 0.24342 0.12983 0.07155 0.03925 0.02184 0.01223
(3,2)/no repair 0.48571 0.23592 0.11459 0.05566 0.02703 0.01313 0.00638
(3,2)/(0.5,0.5) 0.68094 0.47254 0.33566 0.2387 0.17243 0.12507 0.09181
(3,2)/(1,1) 0.65354 0.4316 0.29214 0.20013 0.13832 0.09671 0.06748
(3,2)/(1,2) 0.57362 0.33386 0.19576 0.11727 0.07045 0.04275 0.02614
(3,2)/(1,3) 0.52282 0.2746 0.14578 0.07813 0.04209 0.02289 0.01246
(3,2)/(2,1) 0.62097 0.39492 0.25764 0.17022 0.11398 0.07628 0.05145
(3,2)/(2,2) 0.62089 0.38799 0.24599 0.15857 0.10294 0.06744 0.04424
(3,2)/(2,3) 0.57275 0.33179 0.19366 0.11434 0.06786 0.04058 0.0244
(3,2)/(3,1) 0.56763 0.33281 0.19765 0.12013 0.07321 0.04543 0.02821
(3,2)/(3,2) 0.61036 0.38155 0.24096 0.15436 0.10110 0.06645 0.04343
(3,2)/(3,3) 0.59508 0.36039 0.22041 0.13680 0.08554 0.05394 0.03434

similarity property of fractals it follows that Fk D
NkS

iD1
Si;k , k D 2; 3; : : : , where

Nk D
Nk�1P

iD1
N1;i and the N1;i ’s are independent replicas of N1. Note that if .X1;X2/

and .Y1; Y2/ in the construction procedure above are not identically distributed, the
mathematical analysis of the problem becomes more complex, since we no longer
can consider .X1;X2; Y1; Y2/ as a random sample from the same population, which
ultimately affects the distribution of the counting variablesNk .

3 Random Repair Benefits for Cantor-Like Sets

Since in reality no item undergoes infinite repair, it is crucial to see what happens
after a moderate number of cycles of damage/repair in the construction of Cantor-
like sets. In order to evaluate the effective random repair benefit, we shall compare
the mean diameter and mean total length of each set obtained after a moderate
number of steps for some combinations of Beta damage/repair. (The diversity of
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Table 4 Mean diameter under random damage stages

(pd ; qd )/(pr ; qr) D1 D2 D3 D4 D5 D6 D7

(1,1)/no repair 0.49947 0.25477 0.13401 0.07174 0.03861 0.02094 0.01135
(1,1)/(0.5,0.5) 0.67626 0.46719 0.32629 0.22826 0.16096 0.11579 0.08259
(1,1)/(1,1) 0.64736 0.42635 0.28304 0.18745 0.12570 0.08520 0.05771
(1,1)/(1,2) 0.59742 0.36590 0.22579 0.14037 0.08926 0.05715 0.03677
(1,1)/(1,3) 0.56406 0.32795 0.19294 0.11477 0.06835 0.04107 0.02486
(1,1)/(2,1) 0.60070 0.36815 0.22778 0.14451 0.09046 0.05750 0.03681
(1,1)/(2,2) 0.59895 0.36705 0.23001 0.1456 0.09201 0.05807 0.03772
(1,1)/(2,3) 0.58491 0.34727 0.21099 0.12907 0.07994 0.04929 0.03036
(1,1)/(3,1) 0.56244 0.32325 0.18941 0.11327 0.06860 0.04141 0.02492
(1,1)/(3,2) 0.58489 0.35171 0.21369 0.13171 0.08077 0.05089 0.03193
(1,1)/(3,3) 0.58239 0.34385 0.20649 0.12549 0.07694 0.04770 0.02987
(3,2)/no repair 0.52870 0.28481 0.15641 0.08659 0.04827 0.02699 0.01524
(3,2)/(0.5,0.5) 0.70856 0.51136 0.37223 0.27176 0.20045 0.14893 0.10952
(3,2)/(1,1) 0.68533 0.47660 0.33334 0.23497 0.16701 0.12009 0.08565
(3,2)/(1,2) 0.61797 0.38679 0.24678 0.15894 0.10386 0.06811 0.04494
(3,2)/(1,3) 0.57612 0.33651 0.20228 0.12120 0.07374 0.04514 0.02781
(3,2)/(2,1) 0.64779 0.43075 0.28931 0.19708 0.13486 0.09292 0.06474
(3,2)/(2,2) 0.64636 0.42672 0.28220 0.18854 0.12754 0.08752 0.05951
(3,2)/(2,3) 0.61491 0.38465 0.24352 0.15654 0.10108 0.06493 0.04232
(3,2)/(3,1) 0.60775 0.37737 0.24067 0.15501 0.10141 0.06554 0.04359
(3,2)/(3,2) 0.63287 0.41263 0.26968 0.17918 0.11899 0.08035 0.05429
(3,2)/(3,3) 0.62521 0.39594 0.25522 0.16389 0.10732 0.07062 0.04656

forms in the Beta family makes it an interesting candidate to model randomness
patterns in Œ0; 1�.)

Let Li;k denote the length of the segment Si;k in Fk D S

i

Si;k, and let also Dk

and Lk denote the mean diameter and the mean total length of Fk , respectively, i.e.

Dk D E
�

max
i
Li;k

�
and Lk D E

�X

i

Li;k
�
; k D 0; 1; 2; : : :

For the classical Cantor set we haveDk D
�
1
3

�k
and Lk D

�
2
3

�k
, k D 0; 1; 2; : : :

It is quite straightforward to obtain the exact values ofD1 and L1 for the Cantor set
under deterministic damaging stages and random repair stages, both modeled by the
standard uniform distribution (i.e., Beta(1,1) distribution). For this particular case
we know that
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Table 5 Mean total length under deterministic damage stages

(pd ; qd )/(pr ; qr) L1 L2 L3 L4 L5 L6 L7

(1,1)/no repair 0.66667 0.44444 0.29630 0.19753 0.13169 0.08779 0.05853
(1,1)/(0.5,0.5) 0.83147 0.69074 0.57210 0.47671 0.39562 0.32834 0.27271
(1,1)/(1,1) 0.82764 0.68559 0.56572 0.46823 0.38709 0.32058 0.26532
(1,1)/(1,2) 0.78708 0.62082 0.48911 0.38559 0.30392 0.23982 0.18919
(1,1)/(1,3) 0.74112 0.55107 0.40935 0.30351 0.22543 0.16747 0.12436
(1,1)/(2,1) 0.79220 0.62658 0.49332 0.38939 0.30669 0.24184 0.19055
(1,1)/(2,2) 0.81924 0.67168 0.55109 0.45133 0.37042 0.30382 0.24922
(1,1)/(2,3) 0.79916 0.64010 0.51208 0.40985 0.32777 0.26218 0.20968
(1,1)/(3,1) 0.74296 0.55192 0.41030 0.30483 0.22636 0.16816 0.12491
(1,1)/(3,2) 0.80113 0.64217 0.51425 0.41127 0.32906 0.26327 0.21058
(1,1)/(3,3) 0.81521 0.66237 0.53821 0.43805 0.35656 0.28992 0.2358
(3,2)/no repair 0.77143 0.59510 0.45908 0.35415 0.27320 0.21075 0.16258
(3,2)/(0.5,0.5) 0.88185 0.77799 0.68791 0.60720 0.53612 0.47340 0.41836
(3,2)/(1,1) 0.87879 0.77196 0.67809 0.59639 0.52451 0.46121 0.40539
(3,2)/(1,2) 0.83248 0.69339 0.57747 0.48115 0.40067 0.33370 0.27805
(3,2)/(1,3) 0.79882 0.63894 0.51139 0.40941 0.32789 0.26247 0.21011
(3,2)/(2,1) 0.87521 0.76524 0.66919 0.58531 0.51194 0.44754 0.39178
(3,2)/(2,2) 0.87377 0.76086 0.66260 0.57770 0.50345 0.43872 0.38226
(3,2)/(2,3) 0.83930 0.70431 0.59118 0.49611 0.41583 0.34864 0.29217
(3,2)/(3,1) 0.84708 0.71889 0.60965 0.51789 0.43935 0.37249 0.31618
(3,2)/(3,2) 0.87986 0.77486 0.68159 0.59859 0.52692 0.46368 0.4079
(3,2)/(3,3) 0.86593 0.75044 0.64996 0.56350 0.48751 0.42233 0.36562

F1 D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂:

Œ0; 1� if Y1W2 < 1
3

and Y2W2 > 2
3

(with probability 2
9
/

�
0; 1

3

[ � 2
3
; 1


if Y2W2 < 1
3

or Y1W2 > 2
3

(with probability 2
9
/

Œ0; Y2W2�[
�
2
3
; 1


if Y1W2 <
1
3
< Y2W2 <

2
3

(with probability 2
9
/

�
0; 1

3

[ ŒY1W2; 1� if 1
3
< Y1W2 <

2
3
< Y2W2 (with probability 2

9
/

�
0; 1

3

[ ŒY1W2; Y2W2�[
�
2
3
; 1


if 1
3
< Y1W2 < Y2W2 <

2
3

(with probability 1
9
/

(2)

(see Aleixo and Pestana [1]). If we denote by D�1 D maxi Li;1 and L�1 D
P

i Li;1
the diameter and total length of F1, respectively, it follows from (2) that D�1 can
be 1

3
, 1
2

and 1 with probability 3
9
, 4
9

and 2
9
, respectively, and L�1 can be 2

3
, 7
9
, 5
6

and
1 with probability 2

9
, 1
9
, 4
9

and 2
9
, respectively. Therefore, D1 D E.D�1 / D 5

9
and

L1 D E.L�1 / D 67
81

.
Comparing these values with the homologous values for the classical Cantor set,

we see that there is a significant repair benefit just after the first repair intervention
(an improvement of approximately 66.7 % for D1 and 24.1 % for L1). For k > 1 it
becomes unfeasible to obtain exact values for Dk and Lk , and even messier if we
try to use other beta models. However, this obstacle can be bypassed if we estimate
Dk and Lk through Monte Carlo methods.
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Table 6 Mean total length under random damage stages

(pd ; qd )/(pr ; qr) L1 L2 L3 L4 L5 L6 L7

(1,1)/no repair 0.66700 0.44241 0.29551 0.19751 0.13162 0.08786 0.05854
(1,1)/(0.5,0.5) 0.81462 0.66487 0.54424 0.44361 0.36198 0.29683 0.24213
(1,1)/(1,1) 0.80354 0.64421 0.51653 0.41308 0.33027 0.26421 0.21139
(1,1)/(1,2) 0.77185 0.59437 0.45774 0.35237 0.27157 0.20971 0.16192
(1,1)/(1,3) 0.74046 0.55071 0.41129 0.30672 0.22797 0.16967 0.12603
(1,1)/(2,1) 0.77376 0.59467 0.45832 0.35288 0.27190 0.20959 0.1615
(1,1)/(2,2) 0.77406 0.60272 0.46885 0.36482 0.28383 0.22022 0.17185
(1,1)/(2,3) 0.76488 0.58319 0.44518 0.33954 0.25957 0.19815 0.15135
(1,1)/(3,1) 0.74154 0.54932 0.40959 0.30550 0.22768 0.16926 0.12581
(1,1)/(3,2) 0.76445 0.58586 0.44724 0.34222 0.26118 0.20062 0.15323
(1,1)/(3,3) 0.76479 0.58202 0.44448 0.33938 0.25903 0.19796 0.15168
(3,2)/no repair 0.77248 0.59464 0.45883 0.35457 0.27329 0.21094 0.16274
(3,2)/(0.5,0.5) 0.87827 0.77066 0.67671 0.59450 0.52172 0.45820 0.40160
(3,2)/(1,1) 0.87190 0.75859 0.66134 0.57549 0.50156 0.43603 0.37935
(3,2)/(1,2) 0.83258 0.69136 0.57661 0.48104 0.40247 0.33582 0.28062
(3,2)/(1,3) 0.80760 0.65155 0.52705 0.42611 0.34473 0.27925 0.22575
(3,2)/(2,1) 0.85970 0.73975 0.63569 0.54758 0.47075 0.40544 0.34928
(3,2)/(2,2) 0.85848 0.73706 0.63148 0.54057 0.46307 0.39714 0.34021
(3,2)/(2,3) 0.83533 0.69846 0.58352 0.48893 0.40895 0.34211 0.28637
(3,2)/(3,1) 0.84099 0.70566 0.59342 0.49920 0.42057 0.35294 0.29724
(3,2)/(3,2) 0.85589 0.73376 0.62809 0.53793 0.46005 0.39424 0.33757
(3,2)/(3,3) 0.84829 0.71908 0.60992 0.51661 0.43735 0.37050 0.31397

The beta parameters considered in our simulation study are (0.5,0.5), (1,1),
(1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), and (3,3), and the maximum of seven
iterations was performed. Due to space restrictions, we only present here a small
subset of the results obtained, which are indicated in Tables 3, 4, 5, 6, and do not
indicate the standard errors associated with each estimate. However, we inform that
the maximum standard error of all estimates under deterministic damage stages is
less than 0.0041 for the mean diameters and less than 0.0025 for the mean total
lengths. Under random damage stages the standard errors are less than 0.0039 for the
mean diameter estimates and less than 0.0042 for the mean total length estimates.
In Tables 1 and 2 we indicate some summary statistics for the estimated values
under each type of damage stage, taking into consideration all combinations of Beta
damage/repair studied (Note that these summaries are based on samples of means,
where each value is obtained in a different setting.)

Analyzing individually each Tables 3, 4, 5, 6 we observe that higher values
are always attained when a damaging stage (deterministic or random) is followed
by a (random) repair stage. Comparing the homologous mean diameter values of
Tables 3 and 4, we see that the mean value is slightly higher under randomness
in the damage stage (with or without repair). On the other hand, if we compare
the homologous mean total length values of Tables 5 and 6, these are, in general,
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Fig. 1 Plots for the first four stages of a stuttering Cantor-like random set construction

higher under deterministic damage stages (with or without repair), although the
difference between some values can be quite small. We also notice that the lowest
Dk and Lk values are achieved for combinations of damage/repair involving the
Beta(1,3) or Beta(3,1) models (note that these two models have the highest and
lowest skewness coefficients of the group). The previous conclusions remain true
for all other cases which are not shown here. Comparing now values in Tables 1
and 2 with D0 D L0 D 1 for the initial set Œ0; 1�, we also see that there seems to
be some repair benefit even after seven iterations, although the range of possible
values within each case can be considerable, specially for the mean total length
under random repair stages.

In order to actually observe what happens in the first steps of a stuttering Cantor-
like random set, we show in Fig. 1 the first four stages of the construction using (1,1)
and (2,3) as Beta damage and Beta repair parameters, respectively. The plots in gray
represent the set obtained after damage is inflicted and the plots in black after repair.
In this case, there is always a partial reconstruction.
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Nearest Neighbor Connectivity
in Two-Dimensional MultihopMANETs

Gonçalo Jacinto, Nelson Antunes, and António Pacheco

Abstract
A Mobile Ad Hoc Network (MANET) is characterized to be a network with free,
cooperative, and dynamic nodes, self-organized in a random topology, without
any kind of infrastructure, where the communication between two nodes usually
occurs using multihop paths. The number of hops used in the multihop path is an
important metric for the design and performance analysis of routing protocols
in MANETs. In this paper, we derive the probability distribution of the hop
count of a multihop path between a source node and a destination node, fixed
at a known distance from each other, and when a fixed number of nodes are
uniformly distributed in a region of interest. This distribution is obtained by the
Poisson randomization method. To obtain the multihop path, we propose a novel
routing model in which the nearest distance routing protocol (NR) is analyzed.
Numerical results are obtained to evaluate the performance of the NR.

1 Introduction

When the source and destination nodes of a Mobile Ad Hoc Network (MANET) are
at a distance greater than the transmission range, the communication between them
is made via a multiple hop path that is determined by the routing protocol (cf., e.g.,
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[8]). One of the most popular strategies a node can use to decide to which neighbor
node it should forward a given packet is the nearest distance routing protocol (NR),
for which the packet is forwarded to the nearest relay node in the direction of the
destination node.

As stated in [7] and references therein, one of the most important metrics to
evaluate the performance of routing protocols is the number of hops of the multihop
path. In [1], we have derived the hop count distribution for the one-dimensional
scenario with relay nodes uniformly distributed between the source and destination
nodes. However, the derivation of the hop count distribution in a two-dimensional
scenario must take into account, among other factors, the transmission range and
the routing protocol, aside from the node spatial distribution. The interaction of
these characteristics turns the derivation of the hop count distribution a difficult
task. This is the reason why, despite its importance, there are few analytical studies
on the subject and most of them just consider single link models (cf. [5, 10]) and/or
approximation results (cf. [4, 7]).

In [5] relay nodes are assumed to be distributed according to a Poisson process
and the distribution of the distance from the source to the furthest neighbor node
within transmission range is derived. The analysis was extended in [10] to a model
where a finite number of relay nodes are uniformly distributed in a region of interest,
but again only assuming a single link model. Few papers focus their analysis in more
than a single link. In [4], an approximation for the relationship between the number
of hops and the distance between the source and the destination nodes is derived,
and an approximation for the probability of existence of a multihop path between
the source and destination nodes is derived in [7].

In [9] one of the few closed-form results on the hop count distribution is derived
for the case in which nodes are randomly distributed according to a Poisson process,
for both one-dimensional and two-dimensional networks, and using three routing
protocols: the nearest, the furthest, and the random routing protocol. However,
the average hop length has to be used and estimated, turning the obtained results
approximations of the exact hop count distribution.

In this paper, we derive the exact hop count probability distribution with an
arbitrary number of hops, when the source and destination nodes are fixed, at a
known distance form each other, and a known and fixed number of relay nodes are
uniformly distributed in a region of interest. To obtain the multihop path, we propose
a novel propagation model where the routing region of each relay node is defined by
a given angular span and a radius equal to the transmission range. Since the angular
span depends on the distance between the emitter and destination nodes, we call this
model the dynamic propagation model. Inside each routing region, we use the NR
protocol to choose the relay node to forward the packet.

The mathematical analysis of the problem of an existing path on a random set of
points, with the source and destination nodes at known locations, is often called a
navigation problem. Within this literature, the paper [2] proposes a model with the
nearest routing protocol using routing regions with a fixed angular span. The authors
proved that when the number of random nodes is large enough, almost surely exists
a path between the source and the destination nodes.
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As far as we know, our results are the first exact analytical results for the hop
count distribution with an arbitrary number of hops in a two-dimensional scenario,
when a finite number of relay nodes are uniformly distributed in an area of interest.
These results are suitable to use when the number of hops is not too large, because
the dynamic angular span decreases when the source or relay nodes are far way from
the destination node. However, in MANETs the number of hops between the source
and destination nodes cannot be large due to the small duration of multihop paths
with a large number of hops [6]. In dense networks that does not constitute a problem
since the multihop path is similar to a path on a straight line. Note that the usage
of the position-based protocols requires that a node knows its own geographical
position and the geographical position of the destination node, but the localization
problem of the nodes are not focused in this paper. We also should note that we
consider the transmission range of each node constant, not taking into account the
SINR (signal-to-interference noise ratio), which will be the scope of future research.

The outline of this paper is the following. In Sect. 2 we describe the dynamic
propagation model. In Sect. 3 we derive the hop count distribution for the NR
protocol. In Sect. 4 we present some numerical results to evaluate the performance
of the NR protocol. Finally, in Sect. 5, we conclude the paper.

2 Model Description

We consider an ad hoc network with the source node fixed at the origin and the
destination node fixed at a distance L from the source node. A multihop path with
m hops is defined as an existing path from the source to the destination node using
exactly m relay nodes. Denote by Xi ; 1 � i � m, the location of the relay node
i of a multihop path, with these nodes ordered according to their distance to the
origin, and let X0 D .0; 0/ and XmC1 D .L; 0/ denote the locations of the source
and destination nodes, respectively. Note that, without loss of generality, we have
assumed that the destination node is located in the x-axis. Given a fixed transmission
range R, 0 < R < L, equal for all nodes, nodes i and j are connected with zero
hops if kXi � Xjk < R.

We assume that the locations of the source node, the destination node, and all
relay nodes of the multihop path belong to a compact set ˝ 
 R

2, with area B .
The set ˝ is defined by an isosceles triangle with one vertice at the origin .0; 0/
with associated angle 	0 D 2 arctan .R=L/, and the height of the triangle lies
on the horizontal axis and is equal to L. The definition of the set ˝ is needed to
avoid analytical intractability and preclude that a given multihop path loops around
the destination, see [8]. For efficient routing progress towards the destination, we
consider that each relay node transmits within a routing region limited by the
transmission radius R and an angular span oriented to the destination node. The
angular span 	i of relay node i is chosen in a dynamic way, being dependent on
the location Xi of the relay node, and is such that it originates a triangle with
vertices at points .L;R/, .L;�R/ and Xi , increasing when it gets closer to the
destination node and decreasing when the relay node gets further away from the
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Fig. 1 Dynamic propagation model with the NR protocol for a path with three hops

destination node. This is the reason why we denominate the model as the dynamic
propagation model. Within each routing region the relay node chosen to forward the
packet will be the nearest relay node from the emitter node. The polar coordinates of
the location of relay node i relative to the location of relay node i�1 are denoted by
.ri ; �i /, assuming that � � �i �  . In Fig. 1 we can observe a multihop path with
three hops using the NR protocol and the dynamic propagation model. Note that if
a given node is in the range of the destination node, they will connect directly.

3 Hop Count Distribution

To describe the routing regions of each relay node, we make a translation and
rotation of the plane to locate the origin of the new plane at the current emitter node
(in this case at relay node i ), with horizontal axis being the line drawn from the
emitter node to the destination node. For a relay node i located at Xi , the routing
region relative to Xi is denoted by Ai � A .Xi ; XmC1; 	i / and, at each hop, an
angular slice of a circular disk with radius R and with area 	i

2
R2 is covered (see

Fig. 2). More precisely, the routing region of relay node i relative toXi is defined by

Ai � A .Xi ; XmC1; 	i / D
˚
.r; �/ W 0 < r < R;�	�i � � � 	Ci




The angular span 	i is dynamic and depends on the location of the relay node.
Given .ri ; �i / and the distance from relay node i � 1 to the destination node, di�1,
the distance from relay node i to the destination node, di , is given by the function

di � f .di�1; ri ; �i / D
p
.di�1 � ri cos �i /2 C .ri sin �i /2; 1 � i � m;
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Fig. 2 Routing regions and angular spans of relay nodes i � 1 and i

with d0 D L. The angle 	i of relay node i can then be written as a function of di�1
and .ri ; �i /, 	i � 	.di�1; ri ; �i /, and is given by

	i D arcsin

 
R � sign.�i /bi

sCi

!

C arcsin

�
RC sign.�i /bi

s�i

	
;

where bi D ri sin �i , so that jbi j is the minimum distance between Xi and the axis
that goes from Xi�1 to XmC1, and si̇ D

p
.di�1 � ri cos �i /2 C .R� sign.�i /bi /2

is the distance betweenXi and .L;˙R/; see Fig. 2. Using geometric arguments, we
can show that 	i D 	Ci C 	�i , where 	Ci is the angle formed by the points .L;R/,

Xi and XmC1, being given by 	Ci D arcsin

�
R�sign.�i /bi

s
C

i

	
C sign.�i / arcsin

�
bi
di

�
;

and 	�i is the angle formed by the points .L;�R/, Xi and XmC1, being given by

	�i D arcsin
�
RCsign.�i /bi

s�i

�
� sign.�i / arcsin

�
bi
di

�
:

Denote by Vi the vacant region of relay node i , defined to be the subset of the
routing region of relay node i that has no relay nodes. That is, since the relay node
selected is the closest one from the emitter node, the vacant region of relay node i
is given by the set of points that are closer to i than relay node i C 1, having an area
Vi D 	i

2
r2iC1; see Fig. 3.

The hop count probability distribution is obtained by using Poisson randomiza-
tion, [3], consisting in randomizing the number of relay nodes by assuming that
relay nodes are distributed in˝ according to a Poisson process with rate �. A precise
argument for the spatial Markov property in more general spaces can be found in
[11]. By conditioning in the number of relay nodes that lie in ˝ , the results for the
case in which a fixed and known number of relay nodes are uniformly distributed in
˝ pops up. Denote by lm D .l1; l2; : : : ; lm/ the vector of relative locations of the m
relay nodes, with li D .ri ; �i /, and let dlm D d�mdrmd�m�1drm�1 : : : d�1dr1. Recall
that B denotes the area of ˝ .
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Fig. 3 Routing regions and vacant regions of relay nodes i � 1 and i

Theorem 1. Given that there are n relay nodes uniformly distributed on ˝ , the
probability that the hop count is equal to m, for a multihop path selected by the
dynamic propagation model with the NR protocol, is given by

P.M D mjN D n/ D
Z

Nm

nŠ

.n �m/Š
1

Bm

 

1 � 1

B

m�1X

iD0
Vi

!n�m mY

iD1
ri dlm (1)

with K � m � n and Nm D
n
lm W li D .ri ; �i / 2 Ai�1; i D 1; 2; : : : ; m; dm < R �

dm�1
o
.

Proof. We first derive the joint location density of them relay nodes of the multihop

path. For that, fix .r1; �1/ 2 A0 D
n
.r 01; � 01/ W 0 < r 01 < R;�	02 < � 01 < 	0

2

o
and

define V0 D
n
.r 01; � 01/ W 0 < r 01 < r1;�	02 < � 01 < 	0

2

o
and V 


0 D f.r 01; � 01/ W r1 �
r 01 < r1 C 
1; �1 � � 01 < �1 C 
2g. Denote by N.A/ the number of points of the
Poisson process in A. By the independent increment property of a Poisson process,
we have

P
�
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The density of the location of the first relay node being at .r1; �1/ is given by

h.r1; �1/ D lim
1;
2!0C
P.N.V0/D0;N.V 


0 />0/

1
2

D �r1e�� 	02 r21 :
To derive the density location of the first two relay nodes, we make a rotation and

translation of the plane in order to place the origin of the new plane at .r1 C 
; �1/
with horizontal axis being the line drawn from .r1 C 
; �1/ to the destination
node. Proceeding in a similar way to the one used to derive the density of the
location of the first relay node, one may conclude (see [6]) that the density of the
locations of the first two relay nodes being .r1; �1/ and .r2; �2/ is h.r1; �1; r2; �2/ D
�2r1r2e��

	0
2 r

2
1 e��

	1
2 r

2
2 :

Proceeding in the same manner until the m-th relay node is connected with no
hops with the destination node, we obtain the joint density of the locations of the

m relay nodes of the multihop path, h.lm/ D �me��
Pm
iD1

	i�1
2 r2i

Qm
iD1 ri ; where

the node locations are in Nm and the last relay node is m because dm < R �
dm�1. Integrating h.lm/ over the set Nm D flm W li D .ri ; �i / 2 Ai�1; i D
1; 2; : : : ; m; dm < R � dm�1g, we obtain the probability that the hop count is m
for the NR, when the relay nodes are randomly distributed according to a Poisson
process:

P.M D m/ D
Z

Nm

�me��
Pm
iD1

	i�1
2 r2i

mY

iD1
dlm: (2)

Multiplying equation (2) by e�B , where B is the area of ˝ , we obtain

e�BP.M D m/ D e�B
Z

Nm

�me��
Pm�1
iD0 Vi

mY

iD1
ri dlm

D
Z

Nm

�m
1X

nD0

.�B/n

nŠ

 

1 � 1

B

m�1X

iD0
Vi

!n mY

iD1
ri dlm

D
1X

nDm

.�B/n

nŠ

Z

Nm

nŠ

.n�m/Š
1

Bm

 

1 � 1

B

m�1X

iD0
Vi

!n�m mY

iD1
ri dlm

where the change between the sum and the integral follows by the dominated
convergence theorem. On the other hand, conditioning on the value of N , which
is Poisson distributed with mean �B , by the total probability law e�BP.M D m/ DP1

nDm P.M D mjN D n/ .�B/
n

nŠ
: Since the coefficients of .�B/n

nŠ
in the previous two

expressions for e�BP.M D m/ must match, the result follows. ut
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Fig. 4 Connectivity
probability with the minimum
number of hops

4 Numerical Results

In this section we evaluate the performance of the dynamic propagation model for
the NR protocol. We scale all parameters with respect to the distance between the
source and destination nodes assuming that L D 1, leading the set ˝ to have area
B D RL. Therefore, depending on the value of R, for 1=.K C 1/ < R � 1=K ,
K 2 N, we have multihop paths with a minimum number of hops equal to K .
The results were obtained by numerical integration using a Monte Carlo algorithm.
Despite the multi-dimensional integration, it is relatively simple and not too much
time consuming the calculation over six hops, which is a very large number of hops
for a MANET [6].

Figure 4 shows the connectivity probability with the minimum number of hops
K , K D 1; 2; 3, with the NR protocol and for different values of the number of
nodes. We can observe that when the number of nodes increases the minimum hop
count probability decreases and approaches the value 0, and so the NR protocol is
ineffective in a dense network because it cannot transmit with a high probability
with the minimum number of hops. For the same number of relay nodes, the hop
count probability with the minimum number of hops decreases as K increases.

In Fig. 5, we obtain the hop count probability with different values of the number
of hops. We consider R D 0:3, and K D 3; 4; 5; 6, and observe that, when there
is a small number of nodes, the NR protocol with K C 1 D 4 hops has the
highest probability, whereas when there is a large number of nodes, the hop count
probability with K C 3 D 6 has the highest probability. Again the probability with
the minimum number of hops K with the NR protocol is very ineffective, since it
has the smallest probability. Despite that, all probabilities (K D 3; 4; 5; 6) approach
zero with the increase of the number of nodes, and the probabilities obtained for
paths with a large number of hops are generally larger than the ones obtained for
paths with a smaller number of hops.



Nearest Neighbor Connectivity in Two-Dimensional MultihopMANETs 93

Fig. 5 Connectivity
probability with hop count
equal to K D 3; 4; 5; 6

5 Conclusion

In this paper we focused on the connectivity in two-dimensional wireless ad-hoc
networks. We have assumed that the source and the destination nodes are fixed,
at a known distance from each other, and that a fixed and known number of relay
nodes are uniformly distributed in a region of interest. To find a multihop path, we
proposed a novel model called the dynamic propagation model. Using this model,
we derived the hop count probability distribution when the multihop path chosen
follows the NR. As far as we know, these are the first exact analytical results for
the hop count probability distribution. The numerical results derived allowed us to
conclude that the NR protocol is not suitable for dense networks.
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Modeling Human Population Death Rates:
A Bi-Dimensional Stochastic Gompertz Model
with Correlated Wiener Processes

Sandra Lagarto and Carlos A. Braumann

Abstract
This study presents an innovative approach to human mortality data analysis,
namely a transversal analysis across time using stochastic differential equation
models, as a form of considering random environmental oscillations on the
death rates. For each age between 0 and 99, we use a bi-dimensional stochastic
Gompertz model with correlated Wiener processes to model the dynamics of
female (first component of the stochastic process) and male (second component)
crude death rates of the Portuguese population over the period 1940–2009.
We test the complete model, with correlation between the unidimensional
Wiener processes associated with males and with females, against the model
without correlation effects. Results show significant correlations for most ages,
particularly on ages below 5 and above 50.

1 Introduction

Population aging is becoming a very pertinent issue. In several and different
contexts, like continuous health care and retirement funds, longevity is becoming
a challenging issue. In the last decades, mortality has been exhaustively studied
through both deterministic and stochastic models [1, 3, 8]. The most used of all,
currently with many variations, is the Lee–Carter model [2, 5].

So why doing a transversal analysis of mortality data and why modeling
death rates with stochastic differential equations (SDE) models? When analyzing
simultaneously death rates of distinct ages across time, instead of doing a cohort
(or longitudinal) data analysis, there is evidence that mortality at all ages is,
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Fig. 1 Crude death rates of Portuguese population (in number of deaths per 10,000 inhabitants):
1940–2009, age 0, by sex

for both males and females, influenced by random environmental fluctuations (this
variability overwhelmingly exceeds sampling errors, which are not considered in
this paper). Also, the death rates for all ages have a strong decreasing trend during
the last century. Considering these facts, we start by using a simple SDE model to
describe the dynamics over time of the crude death rates (CDR) of individuals of
a certain age and sex, namely a generalized stochastic Gompertz model (GSGM).
This model, with only three parameters, has previously been proposed to describe
animal growth [4].

This approach is quite different from the cohort approach, which uses cumber-
some models in order to cover the whole life span. This unidimensional model was
initially applied to each age and sex. Then, we noticed that, frequently, increases in
mortality and decreases in mortality occur for males and females of the same age
at the same time (see Fig. 1). This similar death behavior between the two sexes
suggests that the associated SDE driving Wiener processes must also be correlated
and this leads to a bi-dimensional (two-sexes) model.

In Sect. 2, we briefly describe and analyse the models. In Sect. 3, we present an
application of a bi-dimensional stochastic Gompertz model (BSGM) to the CDR
of the Portuguese population. Section 4 compares this correlated model with the
non-correlated one using a likelihood ratio test. Section 5 presents the conclusions.

2 The Stochastic Mortality Model

The GSGM consists in applying a transformation to the data and assume that the
transformed data satisfies the classical stochastic Gompertz model. In our case, the
logarithmic transformation is appropriate and we assume that X.t/ (CDR at time
t , of a certain age and sex) follows an unidimensional stochastic Gompertz model,
that is, Y.t/ D ln.X.t// follows the SDE

dY.t/ D b.A� Y.t//dtC �dW.t/; (1)
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with Y.t0/ D yt0 ,W.t/ a standard Wiener process and parametersA D ln.a/ (a, the
asymptotic death rate), b > 0 (rate of approach to the asymptotic regime) and � > 0
(measures the effect of the environmental fluctuations on the mortality dynamics).

The solution of Eq. (1) is easily obtained by Itô calculus (see, for example, [7]):

Y.t/ D AC .yt0 � A/ expf�b.t � t0/g C � expf�btg
Z t

t0

expfbsg dW.s/:

Therefore Y.t/ has a normal distribution:

Y.t/ _N .AC .yt0 � A/ expf�b.t � t0/g; �2.1 � expf�2b.t � t0/g/=2b/:

2.1 The Bi-Dimensional Stochastic GompertzModel
with CorrelatedWiener Processes

Considering that there is a random environmental variability which affects both
males and females, we coupled, for each age, the models for the two sexes, obtaining
the bi-dimensional SDE system

(
dY1.t/ D b1.A1 � Y1.t//dtC �1 dW�1 .t/
dY2.t/ D b2.A2 � Y2.t//dtC �2 dW�2 .t/

with Yi.t/ D ln.Xi .t//, Yi .t0/ D yi;t0 , Xi.t/ the CDR at time t for the age under
study (i D 1 for females; i D 2 for males), and W �i .t/ standard correlated Wiener
processes. We call this the BSGM.

Let � be the correlation coefficient between W �1 .t/ and W �2 .t/. To avoid
collapsing to the one-dimensional case, we assume j�j ¤ 1. Using two independent
standard Wiener processes W1.t/;W2.t/ _N .0; t/, we put

W �1 .t/ D ˛W1.t/C ˇW2.t/

W �2 .t/ D ˇW1.t/C ˛W2.t/;

with

˛ D ..1C .1 � �2/1=2/=2/1=2;

ˇ D sign.�/..1 � .1� �2/1=2/=2/1=2 D sign.�/.1� ˛2/1=2;

so that we have EŒW �i .t/2� D t and EŒW �1 .t/W �2 .t/� D �t .
The solution of the SDE system, for the age under study, at time t , is

(
Y1.t/DA1C .y1;t0 �A1/ expf�b1.t � t0/gC�1 expf�b1tg

R t
t0

expfb1sg dW�1 .s/
Y2.t/DA2C .y2;t0 �A2/ expf�b2.t � t0/gC�2 expf�b2tg

R t
t0

expfb2sg dW�2 .s/;
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with transient distributions

(
Y1.t/_N .A1C.y1;t0�A1/ expf � b1.t � t0/g; �21 .1� expf � 2b1.t � t0/g/=2b1/
Y2.t/_N .A2C.y2;t0�A2/ expf�b2.t�t0/g; �22 .1� expf � 2b2.t �ł; t0/g/=2b2/:

The joint .Y1; Y2/ distribution is bivariate normal, with correlation coefficient

r.t0; t/ D � .1 � expf�.b1 C b2/.t � t0/g/
.1� expf�2b1.t � t0/g/1=2.1 � expf�2b2.t � t0/g/1=2

2.b1b2/
1=2

b1 C b2 :

We use Maximum Likelihood (ML) estimation to obtain the parameters’ esti-
mates for the age under study.

Let tk D t0 C k .k D 0; 1; 2; : : : ; n/ be the years where CDR were observed and
let Yi;k D Yi .tk/ D ln.Xi .tk//. The transition p.d.f. of .Y1.t/; Y2.t// between tk�1
and tk is

f .y1; y2jY1;k�1 D y1;k�1; Y2;k�1 D y2;k�1/ D
1

2sY1;k sY2;k
p
1 � r2 expf�1

2
Qk.y1; y2/g;

with

Qk.y1; y2/ D 1

1 � r2
"�

y1 � �Y1;k
sY1

	2
� 2r .y1 � �Y1;k /.y2 � �Y2;k /

sY1;k sY2;k

C
�
y2 � �Y2;k
sY2;k

	2#

;

where

�Yi;k D Ai C .yi;k�1 � Ai/ expf�bi.tk � tk�1/g;
s2Yi;k D �2i .1 � expf�2bi.tk � tk�1/g/=2bi/

and

r D r.tk�1; tk/ D � .1 � expf�.b1 C b2/.tk � tk�1/g/
.1 � expf�2b1.tk � tk�1/g/1=2.1 � expf�2b2.tk � tk�1/g/1=2
2.b1b2/

1=2

b1 C b2 :

Let .y1;k; y2;k/ be the observed values of .Y1;k; Y2;k/. Using the Markov proper-
ties of the SDE solution, the log-likelihood function is given, for each age, by:
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L.A1; b1; �1; A2; b2; �2; r/ D
nX

kD1
ln.f .y1;k ; y2;k jY1;k�1 D y1;k�1; Y2;k�1 D y2;k�1//: (2)

The ML parameters’ estimates are obtained by maximization of Eq. (2), which we
did numerically. Obviously, for the model without correlation between sexes, we
can estimate the parameters the same way with r D 0.

If we have observations up to time tk and want to make predictions for a future
time t > tk , the Markov property gives

EŒYi.t/jY1;0; Y2;0; Y1;1; Y2;1; : : : ; Y1;k; Y2;k� D EŒYi;t jY1;k; Y2;k�:

Since

Yi.t/jY1;k.t/ D y1;k ; Y2;k.t/ D y2;k _

N .Ai C .yi;k �Ai/ expf�bi.t � tk/g; �2i .1 � expf�2bi.t � tk/g/=2bi/;

we can use, for the age under study, the long-term predictions

OYi.t/ D OEŒYi .t/jY1;k D y1;k ; Y2;k D y2;k � D OAi C .yi;k � OAi/ expf� Obi.t � tk/g:

The “one-step” (year-by-year) predictions are estimated the same way as men-
tioned but updating tk and the parameter estimates each time we get an estimate.

3 Application to Human Portuguese Population Death Rates

We fitted the BSGM to the Portuguese population CDR (death counts divided by the
estimate of midyear exposure-to-risk population). In Fig. 2 we illustrate the female
and male surfaces of the dataset. Annual data (from 1940 to 2009) were obtained
from the Human Mortality Database [6], by age (1-year age groups: 0,1,. . . ,99) and
sex.

For the time series of the age under study, we have used 60 “observations” to fit
the model (1940–1999) and have left 10 “observations” for prediction (2000–2009).
Computations were performed with R free software.

In Fig. 3, we represent estimated parameters, for all ages, for the complete
BSGM. We also estimate confidence intervals for the parameters using the Gaussian
asymptotic approximation of ML estimates and approximating the variance–
covariance matrix by the inverse of the empirical Fisher information matrix. Table 1
shows, as an example, the estimated values for age 80.

We chose age 0 (individuals with less than one complete year) to illustrate fitted
and predicted values of CDR (Fig. 4).
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Fig. 2 Surface of female (left) and male (right) mortality data from 1940 to 1999, ages 0–99
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Fig. 3 Parameters estimates for the BSGM, by age and sex

Table 1 Example (for age 80) of the ML estimates and semi-amplitude of the 95 % confidence
interval

Age A1 b1year�1 �1year�1=2 r A2 b2year�1 �2year�1=2

� � � � � � � � � � � � � � � � � � � � � � � �
80 �2:5327 0.0857 0.0770 0.8180 �2:1405 0.1333 0.0854

˙0:0150 ˙0:0879 ˙0:1841 ˙0:1105 ˙0:0168 ˙0:0168 ˙0:0168
� � � � � � � � � � � � � � � � � � � � � � � �
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Fig. 4 On top: Fitted (years 1940–1999) and (long-term) predicted values (years 2000–2009) for
CDR of age 0 females. Bottom left: Amplification of the prediction section of the top figure. Bottom
right: Corresponding one-step predictions

4 Testing for Correlations Between Sexes

Finally, we have used a likelihood ratio test to compare the complete BSGM with
the model without correlations. To test

H0 W r D 0 vs H1 W r ¤ 0

we use the test statistic

D D �2 ln

�
max. likelihood for model with r D 0
max. likelihood for model with r ¤ 0

	
;

which, under the null hypothesis, is approximately chi-squared distributed with one
degree of freedom. In Table 2, we report the values of the D test statistics for all
ages. Results suggest that the very young and the older individuals have mortality
rates significantly correlated with the rates of the other gender.

5 Conclusions/Future Work

The BSGM seems to be appropriate to this type of data, presenting satisfactory
fit and prediction for all ages. The likelihood ratio test suggests that the complete
BSGM (with correlations between the Wiener processes that measure the effect of
environmental fluctuations) has significant differences when compared to the model
without correlation effects, for almost every age after 50 and also for the very young.
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Table 2 Likelihood ratio test results, by age

Age D Age D Age D Age D

0 68:33150� 25 1:67865 50 3:53230 75 68:47583�

1 47:86390� 26 5:88632� 51 8:85401� 76 32:92903�

2 15:98596� 27 0:02848 52 39:76502� 77 92:84271�

3 12:15687� 28 0:62421 53 22:76972� 78 43:81416�

4 5:00230� 29 4:43612� 54 6:96348� 79 56:39553�

5 0:02140 30 3:79528 55 7:50503� 80 63:33385�

6 2:80414 31 0:00019 56 21:43279� 81 30:82691�

7 0:26830 32 2:26401 57 17:48574� 82 29:31415�

8 0:10529 33 1:23678 58 12:78173� 83 44:10562�

9 0:00000 34 0:51013 59 22:33432� 84 40:63140�

10 1:66353 35 0:01452 60 13:31082� 85 59:34599�

11 5:34736� 36 4:05373� 61 14:36165� 86 15:86499�

12 0:86281 37 5:02216� 62 37:07712� 87 36:90376�

13 2:67163 38 6:73935� 63 35:64075� 88 19:50755�

14 1:14750 39 0:71664 64 36:53741� 89 17:42499�

15 0:00688 40 4:02279� 65 46:17152� 90 23:87252�

16 0:09950 41 1:02278 66 16:15175� 91 27:90838�

17 0:33019 42 1:88173 67 56:88815� 92 15:31689�

18 8:12858� 43 0:48002 68 34:06079� 93 10:46706�

19 0:17147 44 0:13951 69 46:69097� 94 3:86429�

20 4:09134� 45 6:39170� 70 61:06492� 95 20:12945�

21 1:62040 46 2:63369 71 44:56891� 96 2:68888

22 5:15558� 47 0:04081 72 72:83185� 97 0:81996

23 1:54344 48 11:49340� 73 53:77353� 98 2:06987

24 7:55196� 49 2:34264 74 68:18138� 99 0:03821

�p < 0:05

For future work, we will continue to explore the correlation effect on mortality,
by sex, namely with different SDE models; additionally, we will consider correla-
tions among ages.
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Consequences of an Incorrect Model
Specification on Population Growth

Clara Carlos and Carlos A. Braumann

Abstract
We consider stochastic differential equations to model the growth of a population
in a randomly varying environment. These growth models are usually based on
classical deterministic models, such as the logistic or the Gompertz models, taken
as approximate models of the “true” (usually unknown) growth rate. We study
the effect of the gap between the approximate and the “true” model on model
predictions, particularly on asymptotic behavior and mean and variance of the
time to extinction of the population.

1 Introduction

In [4, 5] we study the extinction of population growth in a random environment
for the classical logistic and Gompertz stochastic models. These and other similar
models have been frequently proposed in the literature (see [2] for detailed
references). Braumann et al. [3] and Carlos et al. [6] study the first passage times
for generalized stochastic Gompertz models of individual growth in a random
environment.

However, we often do not know the exact form of the average growth rate and
so we assume that the “true” unknown rate differs from the one in the classical
logistic or Gompertz “incorrect” stochastic models by a small amount. The “true”
stochastic model will be called near-logistic or near-Gompertz, respectively, and its
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properties will be studied here (Sect. 2), as well as the population extinction times
(Sect. 3). In Sect. 3, we will also see how wrong we will be if we use the extinction
times of the “incorrect” logistic or Gompertz models instead of the extinction time
of the “true” near-logistic or near-Gompertz models. We illustrate the results with a
numerical example. Section 4 contains the conclusions.

2 Model

In the classical deterministic population growth models, the per capita growth rate
can be written in the form

1

X

dX

dt
D f .X/; X.0/ D x; (1)

where X D X.t/ is the population size at time t � 0. For instante, when
f .X/ D r �1 � X

K

�
we obtain the logistic model and, for f .X/ D r ln K

X
we obtain

the Gompertz model, having as parameters the intrinsic growth rate r > 0 and the
carrying capacity of the environmentK > 0.

Suppose that the “true” per capita growth rate is only approximated by the
logistic model or the Gompertz model and suppose that the deviation is ˛.X/ D
f .X/ � r �1 � X

K

�
or ˛.X/ D f .X/ � r ln K

X
, respectively, i.e.,

f .X/ D r
�
1 � X

K

	
C ˛.X/; (2)

or

f .X/ D r ln
K

X
C ˛.X/: (3)

Suppose ˛ is a C1 function and j˛.X/j
r

< ı, where 0 < ı < 1 is a kind of relative
error committed when we use the logistic or the Gompertz models instead of the
“true” model.

The stochastic differential equation (SDE) we present are generalizations of the
classical deterministic model but incorporate a random dynamical term, describing
the effects of environmental random fluctuations on the growth process. Now f .X/

should fluctuate randomly over time and, since growth is a multiplicative type
process, it should be taken as the geometric average per capita growth rate to which
we should add the random environmental fluctuations, assumed to be uncorrelated.
We obtain

1

X

dX

dt
D f .X/C �
.t/; X.0/ D x; (4)

where 
.t/ is a continuous-time standard white noise and � > 0 measures the
noise intensity. Since we use for f the geometric average growth rate, we will use
Sratonovich calculus, which is the appropriate one (see [2]).
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In this paper we use the near-logistic (2) or the near-Gompertz (3) models.
For both, the solution exists and is unique up to an explosion time (see, for
instance, [1]). We will show later that there is no explosion and therefore the solution
exists and is unique for all t � 0. The solution X.t/ is a homogeneous diffusion
process with drift coefficient

a.x/ D x
�
f .x/C �2

2

	
(5)

and diffusion coefficient

b2.x/ D �2x2: (6)

For the model (4) the state space is .0;C1/. We now define, in the interior of the
state space, the scale and speed measures of X.t/ (see, for instance, p. 194 of [7]).
The scale density is

s.y/ WD exp

�
�
Z y

n

2a.�/

b2.�/
d�

	
D C

y
exp

�
� 2
�2

Z y

n

f .�/

�
d�

	
(7)

and the speed density is

m.y/ WD 1

b2.y/s.y/
D 1

�2y2s.y/
; (8)

where n is an arbitrary (but fixed) point in the interior of the state space and
C > 0 is a constant. Different choices of n correspond to scale densities differing
by a multiplicative constant, which does not affect their relevant properties. The
“distribution” functions of these measures are S.z/ D R z

c
s.y/dy and M.z/ DR z

c
m.y/dy, the scale function and speed function, respectively, where c is an

arbitrary (but fixed) point in the interior of the state space. The scale and speed
measures of an interval .a; b/ are given by S.a; b/ D S.b/� S.a/ and M.a; b/ D
M.b/�M.a/, respectively.

The state space has boundariesX D 0 and X D C1.
One can see that X D 0 is non-attracting and therefore, “mathematical”

extinction has zero probability of occurring. It suffices to show that, for some
x0 > 0, S.0; x0� D

R x0
0
s.y/dy D C1 (see, for instance, p. 228 of [7]). Let

0 < x0 < n, g.�/ D �
1 � �

K

�
or g.�/ D ln K

�
. Choose n such that 0 < n < K and

sufficiently small to insure that g.n/�ı > 0. Then, since g is a decreasing function,
for y 2 .0; x0� we have

s.y/ � C

y
exp

�
2r

�2
.g.n/ � ı/

Z n

y

1

�
d�

	
D c1y�

2r

�2
.g.n/�ı/�1 (9)

and S.0; x0� � C1, with c1 > 0 constant.



108 C. Carlos and C.A. Braumann

One can see that X D C1 is non-attracting and therefore, explosion cannot
occur and the solution exists and is unique for all t > 0. It suffices to show that, for
some x0 > 0, SŒx0;C1/ D

R C1
x0

s.y/dy D C1 (see, for instance, p. 236 of [7]).
Let x0 > K . Then, for y 2 Œx0;C1/,

s.y/ � c2y�
2r

�2
ı�1 exp

�
�2r
�2

Z y

n

g.�/

�
d�

	
D s�.y/ (10)

with c2 positive constant, and so SŒx0;C1/ D C1 because s�.y/ ! C1 as
y ! C1.

Contrary to the deterministic model (1), the stochastic model (4) does not have an
equilibrium point, but there may exist an equilibrium probability distribution for the
population size, called the stationary distribution, with a probability density function
p.y/, known as stationary density. Indeed since the boundaries are non-attracting,
the stationary density exists if M D R C1

0C
m.y/dy < C1 (see p. 241 of [7]) and is

given by py.y/ D m.y/

M
, with 0 < y < C1.

We will now prove that, in model (4), the population size has a stationary density.
We need to show thatM < C1. Let y1 < K < y2 be such that 0 < y1 < n < y2 <
C1 and g.y2/ C ı < 0. Break the integration interval, M D M1 CM2 CM3 DR y1
0C
m.y/dyC R y2y1 m.y/dyC R C1y2

m.y/dy.
We first show that M1 is finite. Let y 2 .0; y1� and � 2 Œy; n�. Let

h.y/ D � 2r
�2
.g.n/ � ı/ R ny 1

�
d� , note that h.0C/ D �1. We have m.y/ �

c3
1
y
eh.y/ D c4

d.eh.y//
dy , with c3 and c4 are positive finites constants. Therefore

M1 � c4
�
eh.y1/ � eh.0C/

�
< C1.

We now prove that M3 < C1. Let y 2 Œy2;C1/ and � 2 Œn; y�. Decompose
2
�2

R y
n
f .�/

�
d� D 2

�2

R y2
n

f .�/

�
d� C 2

�2

R y
y2

f .�/

�
d� D A C B.y/. Obviously A <

C1 and B.y/ � 2r
�2
.g.y2/C ı/

R y
y2

1
�
d� D 2r

�2
.g.y2/C ı/ ln y

y2
. Then m.y/ �

c3e
.ACB.y// D c5y

2r

�2
.g.y2/Cı/�1, where c5 > 0 is a finite constant. Therefore, we get

M3 < C1.
Finally, we show that M2 < C1. Put M2 D M 02 C M 002 D

R n
y1
m.y/dy C

R y2
n m.y/dy. We will show thatM 02 is finite, the proof thatM 002 < C1 is similar. Let

y 2 Œy1; n� and � 2 Œy; n�. Therefore m.y/ � c3
y1

�
y

n

� 2r
�2
.g.n/�ı/ � c6

�
n
n

� 2r
�2
.g.n/�ı/

,
where c6 is positive finite constant. ThereforeM 02 is finite.

The stationary density is given by py.y/ D D
y

exp
�
� 2
�2

R n
y
f .�/

�
d�
�

, where D

is a constant such that
R C1
0

py.y/dy D 1.

3 Extinction Times

“Mathematical” extinction has zero probability of occurring, but we prefer the con-
cept of “realistic” extinction, meaning the population dropping below an extinction
threshold a > 0. We are interested in the time required for the population to reach
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the extinction threshold a for the first time. Let us denote this extinction time by
Ta D infft > 0 W X.t/ D ag. Assuming that the initial population x is above a
and the boundary X D C1 is non-attracting, we present expressions for the mean
ExŒTa� and variance VxŒTa� of the first passage time Ta.

In [3] or [6] one finds recursive expressions for the nth order moment of Ta. In
particular, the expression for the mean of the first passage time is

Ex ŒTa� D 2
Z x

a

s.�/

Z C1

�

m. /d d� (11)

and for the variance is

VxŒTa� D 8
Z x

a

s.�/

Z C1

�

s.�/

�Z C1

�

m. /d 

	2
d�d�: (12)

The expressions obtained are valid for the sufficiently regular homogeneous ergodic
diffusion processes with drift coefficient a and diffusion coefficient b2.

As usual in dynamical systems, to reduce the number of parameters and work
with adimensional quantities, let us consider ˇ.X/ D ˛.X/

r
, R D r

�2
, d D a

K

and z D x
a

. For the same reason, we will obtain expressions for the adimensional
quantities rExŒTa� and r2VxŒTa�.

In [4, 5] we obtain the expression for the mean and the variance for the standard
models. For the logistic model, the mean (multiplied by r) and variance (multiplied
by r2) of the first passage time Ta are given by

rEL.R;d/
x ŒTa� D 2R

Z 2Rdz

2Rd
y�2R�1ey� .2R; y/ dy; (13)

and

r2V L.R;d/
x ŒTa� D 8R2

Z 2Rdz

2Rd
y�2R�1ey

Z C1

y

u�2R�1eu .� .2R; u//2 du dy; (14)

with � .c; x/ D R C1
x

tc�1e�tdt. For the Gompertz model, the mean (multiplied by
r) and variance (multiplied by r2) of the first passage time Ta are given by

rEG.R;d/x ŒTa� D 2
p


Z pR ln.dz/

p
R ln.d/

ey
2
�
1 �˚.p2y/

�
dy (15)

and

r2V G.R;d/
x ŒTa� D 8

Z pR ln.dz/

p
R ln.d/

ey
2

Z C1

y

eu2
�
1 � ˚.p2u/

�2
du dy; (16)

with ˚ .z/ D 1p
2

R z
�1 exp

��t2=2� dt.
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For the near-logistic model, using (11) and the expressions (7) and (8), we obtain,
making the change of variables v D 2r

�2K
� , t D 2r

�2K
 and y D 2r

�2K
�,

rExŒTa� D 2R
Z 2Rdz

2Rd
y�2R�1ey

Z C1

y

t2R�1e�t exp

 

2R

Z t

y

ˇ
�

Kv
2R

�

v
dv

!

dt dy:

(17)

Using the condition ˇ.X/ > �ı, we obtain the following inequalities

rExŒTa� � 2R�

1 � ı
Z 2R�d�z

2R�d�

y�2R��1ey�
�
2R�; y

�
dy D 1

1 � ı rEL.R
�;d�/

x ŒTa�;

(18)

with R� D R.1 � ı/ and d� D d
1�ı . Therefore, this lower bound can be obtained

using the expression for the logistic model with K replaced by K� D K.1 � ı/.
Similarly, since ˇ.X/ < ı, one has

rExŒTa� � 2R��

1C ı
Z 2R��d��z

2R��d��

y�2R���1ey�
�
2R��; y

�
dyD 1

1C ı rEL.R
��;d��/

x ŒTa�;

(19)

with R�� D R.1C ı/ and d�� D d
.1Cı/ .

Using (12) and the expressions (7) and (8), with the same change of variables,
we obtain for the near-logistic model

r2VxŒTa� D 8R2
Z 2Rdz

2Rd
y�2R�1ey

Z C1

y

u�2R�1eu
Z C1

u
t2R�1e�t e2R

R t
y

ˇ. Kv
2R /
v dvdt

Z C1

u
t2R�1e�t e2R

R t
u

ˇ. Kv
2R /
v dvdt du dy: (20)

Using the condition jˇ.X/j > ı we obtain the following inequalities

r2VxŒTa� � 8R�2

.1 � ı/2
Z 2R�d�z

2R�d�

y�2R��1ey
Z C1

y

u�2R��1eu
�
�
�
2R�; u

��2
du dy

D 1

.1 � ı/2 r
2V L.R�;d�/

x ŒTa� (21)

and

r2VxŒTa� � 8R��2

.1C ı/2
Z 2R��d��z

2R��d��

y�2R��
�1ey

Z
C1

y

u�2R
��

�1eu
�
�
�
2R��; u

��2
du dy
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D 1

.1C ı/2 r
2V L.R��;d��/

x ŒTa�: (22)

For the near-Gompertz model, using (11) and the expressions (7) and (8), making

the change of variables v D
p
r

�
ln �

K
, t D

p
r

�
ln  

K
e y D

p
r

�
ln �

K
, we obtain

rExŒTa� D 2
Z pR ln.dz/

p
R ln d

ey
2

Z C1

y

e�t 2 exp

�
2
p
R

Z t

y

ˇ
�
Ke

v
p

R

�
dv

	
dt dy:

(23)

Since jˇ.X/j < ı and putting d� D deı and d�� D de�ı, we obtain the following
inequalities

rExŒTa� � 2
p


Z pR ln.d�z/

p
R ln.d�/

ey
2
�
1 �˚.p2y/

�
dy D rEG.R;d�/

x ŒTa� (24)

and

rExŒTa� � 2
p


Z pR ln.d��z/

p
R ln.d��/

ey
2
�
1 � ˚.p2y/

�
dy D rEG.R;d��/

x ŒTa�: (25)

Using (12) and the expressions (7) and (8), with the same change of variables,
we obtain for the near-Gompertz model

r2Vx ŒTa� D 8

Z p

R ln.dz/

p

R ln d
ey

2

Z
C1

y

eu2
Z

C1

u
e�t

2

exp
�
2
p
R

Z t

y

ˇ
�
Ke

v
p

R

�
dv

	
dt

Z
C1

u
e�t

2

exp

�
2
p
R

Z t

u
ˇ
�
Ke

v
p

R

�
dv

	
dt du dy: (26)

Similarly we get the following bounds for the variance,

r2Vx ŒTa� � 8
Z pR ln.d�z/

p
R ln.d�/

ey
2

Z C1

y

eu2
�
1 �˚.p2u/

�2
du dy D r2V G.R;d�/

x ŒTa�

(27)

and

r2Vx ŒTa� � 8
Z p

R ln.d��z/

p

R ln.d��/

ey
2

Z
C1

y

eu2
�
1 �˚.p2u/

�2
du dy D r2V G.R;d��/

x ŒTa�:

(28)
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Fig. 1 Behavior (solid lines) of the mean rExŒTa� (on the left) and the standard deviation
rSDxŒTa� (on the right) for the extinction time of the population as a function of z D x

a
for the

logistic (top figures) and Gompertz (bottom figures) models. The figure also shows the upper and
lower bounds for the near-logistic and near-Gompertz models, respectively, with relative errors
in f of ı D 0:01 (dotted lines) and ı D 0:1 (dashed lines). We consider R D r

�2
D 1 and

d D a
K
D 0:01

To give an example, consider R D 1, equivalent to r D �2, i.e., strong relative
noise intensity, and d D 0:01, equivalent to a D K

100
. In Fig. 1, we show the behavior

of the mean and the standard deviation (both multiplied by r) of the time required
for the population to reach size a for the first time (the extinction times) as a function
of z for the standard models (logistic and Gompertz models) and its upper and lower
bounds for the near-standard models (near-logistic and near-Gompertz models), for
the cases of relative errors in f of ı D 0:01 and ı D 0:1. The standard deviation
of the population extinction time is of the same order of magnitude as the mean
extinction time. So, use of means alone is not very informative.
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4 Conclusions

The qualitative behavior of the “true” models coincides with the behavior of the
near-standard models (near-logistic or near-Gompertz). “Mathematical” extinction
has zero probability of occurring and there is a stationary density. “Realistic”
extinction occurs with probability one.

If the true average growth rate is very close to the standard model (logistic or
Gompertz), the mean and standard deviation of the population extinction time are
close to the ones of the standard model. One can then use a standard model, which
is much simpler to deal with, as a convenient approximation. One can even have
bounds for the error committed. Otherwise, the use of the standard model may lead
to values quite different from the true ones.
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Individual Growth in a Random Environment:
An Optimization Problem

Patrícia A. Filipe, Carlos A. Braumann, Clara Carlos,
and Carlos J. Roquete

Abstract
We consider a class of stochastic differential equations model to describe
individual growth in a random environment. Applying these models to the weight
of mertolengo cattle, we compute the mean profit obtained from selling an animal
to the meat market at different ages and, in particular, determine which is the
optimal selling age. Using first passage time theory we can characterize the time
taken for an animal to achieve a certain weight of market interest for the first time.
In particular, expressions for the mean and standard deviation of these times are
presented and applied to real data. These last results can be used to determine the
optimal selling weight in terms of mean profit.

1 Introduction

In previous work (see, for instance, [4, 5]) we have presented a class of stochastic
differential equation (SDE) models for individual growth in randomly fluctuating
environments and we have applied such models using real data on the evolution of
bovine weight. The Gompertz and the Bertalanffy–Richards stochastic models are
particular cases of this more general class of SDE models. The work we present here
is dedicated to the optimization of the mean profit obtained by selling an animal.
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On the one hand, based on our models, we can compute the mean profit obtained
by selling an animal at different ages and, in particular, we can determine the optimal
age at which we should sell the animal in order to maximize the mean profit. We
can also obtain the probability distribution of the selling profit and then compute
probabilities involving that profit. On the other hand, knowing which animal weight
is demanded by the market, we can study the properties of the time required for an
animal to reach such weight for the first time. We present expressions for the mean
and variance of these times, known from first passage time theory (see, for instance,
[2]), and use these results to determine the optimal weight in order to obtain the
maximum mean profit. A comparison between these two approaches is presented.

2 SDEModel for Individual Growth

Denoting by Xt the size of the individual (organism) at age t , the individual growth
in a random environment can be described by stochastic differential equations of the
form

dY t D ˇ.˛ � Yt/dtC �dW t ; Yt0 D y0; (1)

where Yt D h.Xt/, with h a strictly increasing C1 function, and y0 D h.x0/, x0
being the size at age t0 (initial age). Notice that ˛ is the asymptotic mean value of Yt
and therefore A D h�1.˛/ is the asymptotic size or size at maturity. The parameter
ˇ is a growth coefficient, � is an environmental noise intensity parameter and Wt is
the standard Wiener process. Here, we will work with the stochastic versions of the
classical Gompertz model (SGM) and the Bertalanffy–Richards model (SBRM),
choosing h.x/ D lnx and h.x/ D x1=3, respectively, but there are other growth
models proposed in the literature that corresponds to different choices of h.

The solution of (1), Yt , is a homogeneous diffusion process with drift coefficient
a.y/ D ˇ .˛ � y/ and diffusion coefficient b.y/ D �2. The drift coefficient is the
mean speed of growth described by Yt and the diffusion coefficient gives a measure
of the local magnitude of the fluctuations. It can be seen, for instance in [1], that the
explicit solution of (1) is given by Yt D ˛ � .˛ � y0/e�ˇ.t�t0/ C �e�ˇt

R t
t0
eˇudWu;

and follows a Gaussian distribution with mean ˛ � .˛ � y0/e�ˇ.t�t0/ and variance
�2

2ˇ

�
1� e�2ˇ.t�t0/�.

In [4], we have applied maximum likelihood and non-parametric estimation
methods to our models. Here we will work with the maximum likelihood estimates
of the parameters A, ˇ and � involved in model (1) (Table 1). We will apply the
methods to data on the weight, in kilograms, of 97 females of mertolengo cattle
(2,129 observations).
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Table 1 Maximum
likelihood estimates and
approximate half-width of the
95 % confidence bands

SGM SBRM

A (kg) 411:2˙ 8:1 425:7˙ 9:5
ˇ (year�1) 1:676˙ 0:057 1:181˙ 0:057
� (year�1=2) 0:302˙ 0:009 0:597˙ 0:019

3 Optimization

Our SDE models can be useful in financial context. In our application, by having
more information on the growth of animals, growers can, for instance, optimize the
average profit obtained from selling an animal. We will explore two approaches to
study the problem of optimization of the mean profit. One consists in deciding to sell
the animal at a fixed age t chosen by the producer irrespective of the (random) size it
reaches at that age. The mean profit is a function of t and we determine the optimal
value of t , i.e., the value of t the producer should choose in order to maximize the
mean profit. The other approach consists in deciding to sell the animal when it first
reaches a fixed sizeQ� irrespective of the (random) time required to reach that size.
The mean profit is now a function of Q� and we determine the optimal value of
Q�, i.e., the value ofQ� the producer should choose in order to maximize the mean
profit.

The profit obtained from selling an animal is L D V � C , where V represents
the selling price and C the acquisition (if it is the case) and animal breeding costs.

3.1 Profit Optimization by Age

Let x0 be the weight of the animal at age t0 (the age, assumed known, when it
is bought) and t > t0 the selling age. We represent by P the sale price per kg
of carcass, by R the dressing proportion (carcass weight divided by live weight;
typically around 0.5), by C1 the fixed costs (initial price C veterinary costs C
transportation and commercialization costs) and by C2.t/ D c2.t � t0/ the variable
costs, supposed proportional to the breeding period. The profit at age t is given by
Lt D PRXt �C1�C2.t/. Since Xt D h�1.Yt /, we can write the profit as a function
of Yt . For the SGM and the SBRM, we obtain

Lt D lt .Yt / D
8
<

:

PReYt � C1 � c2.t � t0/; for SGM

PRY3t � C1 � c2.t � t0/; for SBRM.
(2)

Considering the Gaussian probability distribution of Yt , we can determine the

probability density function of Lt using fLt .u/ D fYt .l�1t .u//
ˇ
ˇ
ˇ dl�1t .u/

du

ˇ
ˇ
ˇ, where
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fYt .y/ D
1

q
2 �2

2ˇ
.1 � e�2ˇ.t�t0//

exp

 

�
�
y � ˛ � .y0 � ˛/ e�ˇ.t�t0/

�2

2 �
2

2ˇ
.1 � e�2ˇ.t�t0//

!

;

and

l�1t .u/ D

8
ˆ̂
<

ˆ̂
:

ln
�

uCC1Cc2.t�t0/
PR

�
; for SGM

�
uCC1Cc2.t�t0/

PR

�1=3
; for SBRM

(3)

dl�1t .u/
du

D

8
<̂

:̂

.uC C1 C c2.t � t0//�1 ; for SGM

.uCC1Cc2.t�t0//�2=3
3.PR/1=3

; for SBRM.
(4)

The expressions for the mean and variance of Lt are, respectively, given by

E ŒLt � D PRE ŒXt � � C1 � c2.t � t0/ (5)

and

Var ŒLt � D P2R2Var ŒXt � ; (6)

where the expressions for E ŒXt � and Var ŒXt � are determined, according to the
model used, as follows. In the SGM case, Xt follows a log-normal distribution,
and consequently

E ŒXt � D E
�
eYt
 D exp

�
E ŒYt �C Var ŒYt �

2

	
D

D exp

�
˛ C e�ˇ.t�t0/.ln x0 � ˛/C �2

4ˇ
.1 � e�2ˇ.t�t0//

	

and

Var ŒXt � D E
�
X2
t

 � E2 ŒXt � D E
�
e2Yt

 � E2
�
eYt
 D

D exp .2E ŒYt �C 2Var ŒYt �/ � exp .2E ŒYt �C Var ŒYt �/ D

D exp

�
2˛ C 2e�ˇ.t�t0/.lnx0 � ˛/C �2

ˇ
.1 � e�2ˇ.t�t0//

	
C

� exp

�
2˛ C 2e�ˇ.t�t0/.lnx0 � ˛/C �2

2ˇ
.1 � e�2ˇ.t�t0//

	
:
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Table 2 Typical costs, since weaning until slaughter (euro/animal)a

Transportation and commercialization Feeding/month Health Other

18.85 26.68 7.25 1.55
aValues do not consider subsidies for slaughter or RPU (unit income)

For the SBRM case, using Stein’s Lemma, we get

E ŒXt � D E
�
Y 3t
 D 3E ŒYt �Var ŒYt �CE ŒYt �3 D

D 3�2

2ˇ

�
˛ C e�ˇ.t�t0/.x1=30 � ˛/

�
.1 � e�2ˇ.t�t0//

C
�
˛ C e�ˇ.t�t0/.x1=30 � ˛/

�3

and

Var ŒXt � D E
�
X2
t

 �E2 ŒXt � D E
�
Y 6t
 �E2

�
Y 3t
 D

D 45E2 ŒYt �Var2 ŒYt �C 15E4 ŒYt �Var ŒYt �C 15Var3 ŒYt �C E6 ŒYt �C
�
�
3E ŒYt �Var ŒYt �C E ŒYt �3

�2 D
D 36E2 ŒYt �Var2 ŒYt �C 9E4 ŒYt �Var ŒYt �C 15Var3 ŒYt � D

D 9�4

ˇ2

�
˛ C e�ˇ.t�t0/.x1=30 � ˛/

�2
.1 � e�2ˇ.t�t0//2 C

C 9�2

2ˇ

�
˛ C e�ˇ.t�t0/.x1=30 � ˛/

�4
.1 � e�2ˇ.t�t0//

C15�
6

8ˇ3
.1 � e�2ˇ.t�t0//3:

For illustration, we will consider a mertolengo cow with 160 kg, raised with the
mother up to the age of 7 months, that is bought, for 200 euros, by a producer to be
raised for market sale. What is the expected profit of this producer when the animal
is marketed at age t (usually t D 16 months)?

We have used the maximum likelihood estimates of the model parameters given
in Table 1 and t0 D 0:583 years (7 months), x0 D 160 kg, R D 0:5, C1 D 200C
18:85C 7:25C 1:55 D 227:45 euros and c2 D 26:68/month � 12 D 320:16/year.
Maximizing expression (5) with respect to age t (using the routine optimize of the
R package), we have obtained the optimal age for selling the animal in order to
reach a maximum mean profit (Table 2). Table 3 shows, for both SGM and SBRM,
the optimal age t (Aopt) and correspondent weightEŒXAopt �), maximum mean profit
(EŒLAopt �) and standard deviation of the profit (sdŒLAopt �).
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Table 3 Results for optimization by age

P (euro/kg) Aopt EŒXAopt � EŒLAopt � sdŒLAopt �

MGE 3.00 0:97 253 29:41 91:11

3.25 1:05 271 62:19 109:60

3.50 1:13 285 96:94 127:00

3.75 1:19 296 133:26 143:72

MBRE 3.00 0:71 189 14:14 29:53

3.25 0:86 219 39:73 47:70

3.50 0:97 240 68:49 61:21

3.75 1:07 257 99:63 72:99

3.2 Profit Optimization byWeight

In [2] we have determined explicit expressions (in the form of simple integrals that
can be numerically computed) for the mean and standard deviation of the time
required for an animal to reach a given size for the first time. When that size is
the size at which the animal is supposed to be sold for the meat market, these results
can be used to compute the mean and variance of the profit and optimize the mean
profit by weight.

Let us consider thresholds q� and Q�, one low and one high, for the animal
size Xt . We are interested in the time required for an animal to reach a specific size
Q� for the first time. Since Yt and Xt are related through the strictly increasing
function h, this is also the first passage time of Yt (modified size) by Q D h.Q�/.
Let us denote it by TQ D inf ft > 0 W Yt D Qg.

One can see in [7] the definition, in the interior of the state space, of the scale

and speed measures of Yt . The scale density is s.y/ D exp
�
� R y

y�
2a.�/

b.�/
d�
�

and the

speed density is given bym.y/ D 1
s.y/b.y/

; where y� is an arbitrary (but fixed) point
in the interior of the state space (the choice of which is irrelevant for our purposes)
and where a and b are the drift and diffusion coefficients of Yt . In our case, we get

s.y/ D C exp

�
�2ˇ˛
�2

y C ˇ

�2
y2
	

and m.y/ D 1

�2s.y/
; (7)

where C is a constant. The “distribution” functions of these measures are the scale
function and speed function defined by S.z/ D R z

x�
s.u/du andM.z/ D R z

x�
m.u/du,

where x� is an arbitrary (but fixed) point in the interior of the state space.
Let q D h.q�/ and assume that�1 < q < y0 < Q < C1 (q andQ both in the

interior of the state space of Y ). Let Tq be the first passage time of Yt by q and let
TqQ D min .Tq; TQ/ be the first passage time of Yt through either of the thresholds
q andQ. Denote the k-th order moment of TqQ byUk.y0/ D EŒ.TqQ/kjY.0/ D y0�.
One can see, for instance in [6], that
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u.y0/ WD P ŒTQ < TqjY.0/ D y0� D S.y0/� S.q/
S.Q/� S.q/ (8)

and that Uk.y0/ satisfies 1
2
b.y0/

d2Uk.y0/

dy20
C a.y0/ dUk.y0/

dy0
C kUk�1.y0/ D 0; which is

easily seen to be equivalent to

1

2

d

dM.y0/

�
dUk.y0/

dS.y0/

	
C kUk�1.y0/ D 0: (9)

Integrating with respect to M.y0/ and with respect to S.y0/, using the conditions
Uk.q/ D Uk.Q/ D 0 (k D 1; 2; : : :) and (8), one obtains, for k D 1; 2; : : :, the
solution

Uk.y0/ D 2u.y0/
Z Q

y0

.S.Q/� S.�//kUk�1.�/m.�/d�

C2.1 � u.y0//
Z y0

q

.S.�/ � S.q//kUk�1.�/m.�/d�: (10)

Since U0.y0/ � 1, one can iteratively obtain the moments of any arbitrary order
of TqQ.

We can apply (10) to our model (1). Since the process Yt is ergodic (see [3]),
we can obtain the distribution (and moments) of TQ as the limiting case of the
distribution (moments) of TqQ when q # �1.

Let us denote by Vk.y0/ WD EŒ.TQ/
kjY.0/ D y0� the k-th order moment of TQ.

Taking the limit as q # �1 in expression (10), one obtains u.y0/ D 1 and,
therefore, Vk.y0/ D 2

RQ
y0
.S.Q/� S.�//kVk�1.�/m.�/d�: Since S.Q/� S.�/ D

R Q
� s.�/d� and exchanging the order of integration, we get

Vk.y0/ D 2
Z Q

y0

s.�/

 Z �

�1
kVk�1.�/m.�/d�

!

d�: (11)

For our model, (7) holds. Based on (11), after some algebraic work, one gets

EŒTQ� D V1.y0/ D 1

ˇ

Z p2ˇ.Q�˛/=�
p
2ˇ.y0�˛/=�

˚.y/

	.y/
dy (12)

and

VarŒTQ� D V2.y0/� .V1.y0//2 D 2

ˇ2

Z p2ˇ.Q�˛/=�
p
2ˇ.y0�˛/=�

Z z

�1
˚2.y/

	.y/	.z/
dydz; (13)
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Table 4 Results for optimization by weight

P (euro/kg) EŒAopt� Q�

opt EŒLQ�

opt
� sdŒLQ�

opt
�

MGE 3.00 1:04 271 33:14 57:03

3.25 1:14 292 68:38 88:79

3.50 1:23 309 105:95 79:85

3.75 1:31 324 145:43 91:13

MBRE 3.00 0:77 200 14:71 34:37

3.25 0:92 232 41:74 51:22

3.50 1:05 256 72:29 64:62

3.75 1:16 275 105:50 76:37

where˚ and 	 are the distribution function and the probability density function of a
standard normal random variable. To obtain the mean and variance of TQ, one needs
to numerically integrate in (12) and (13).

For the case in which we want to compute the profit obtained from selling the
animal when a certain weight Q� is achieved for the first time, we can use the
expression LQ� D PRQ� � C1 � c2TQ. Based on the above expressions (12) and
(13) for the mean and variance of the first passage time by Q D h.Q�/, we can
easily obtain the mean and variance of the profit

EŒLQ� � D PRQ� � C1 � c2EŒTQjY.0/ D y0� (14)

and

VarŒLQ� � D c22VarŒTQjY.0/ D y0�: (15)

Considering the situation described in the previous subsection (t0 D 0:583, x0 D
160 kg, R D 0:5, C1 D 227:45 euros and c2 D 26:68/month � 12 D 320:16/year),
we have started by using expression (12) to compute the expected times to achieve
weights from 200 to 400 kg. These results were then used in (14) and through the
maximization with respect to Q�, we have obtained the maximum mean profit
(EŒLQ�

opt
�), and corresponding optimal selling weight (Q�opt). The computations

were made using the software Maple. Table 4 shows these results for both models
(SGM and SBRM), as well as the standard deviation of the profit (sdŒLQ�

opt
�) and

expected age of the animal when the optimal weight is achieved (EŒAopt�). Since
the animal was bought at 7 months of age (0.583 years), the expected age when
Q�opt is achieved for the first time can be computed as EŒAopt� D 0:583C EŒTQopt �.

4 Final Remarks

With the goal of optimizing the mean profit obtained by selling an animal in the
cattle market, based on an SDE growth model, two approaches were studied in
Sects. 3.1 and 3.2. One consists in selling the animal at a fixed age (chosen in order
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to obtain an optimal mean profit), independently of the animal’s weight. The other
consists in selling the animal when a fixed weight (chosen in order to obtain an
optimal mean profit) is achieved for the first time, independently of the animal’s
age.

We have observed that, for typical market values, the second methodology
achieves a higher optimal mean profit compared with the first methodology, and
even provides a lower standard deviation for this optimal profit in the SGM case (in
the SBRM case the standard deviation was higher but only slightly).
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Valuation of Bond Options Under the CIR
Model: Some Computational Remarks

Manuela Larguinho, José Carlos Dias, and Carlos A. Braumann

Abstract
Pricing bond options under the Cox, Ingersoll and Ross (CIR) model of the
term structure of interest rates requires the computation of the noncentral chi-
square distribution function. In this article, we compare the performance in terms
of accuracy and computational time of alternative methods for computing such
probability distributions against an externally tested benchmark. All methods are
generally accurate over a wide range of parameters that are frequently needed
for pricing bond options, though they all present relevant differences in terms of
running times. The iterative procedure of Benton and Krishnamoorthy (Comput.
Stat. Data Anal. 43:249–267, 2003) is the most efficient in terms of accuracy
and computational burden for determining bond option prices under the CIR
assumption.
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1 Introduction

The CIR model is a general single-factor equilibrium model developed by Cox et al.
[3] and has been used throughout the years because of its analytical tractability and
the fact that the short rate is always positive, contrary to the well-known Vasicek
model of [8].

The CIR model is used to price zero-coupon bonds, coupon bonds and to price
options on these bonds. To compute option prices under this process we need to use
the noncentral chi-square distribution function. There exists an extensive literature
devoted to the efficient computation of this distribution function. In this article,
we will examine the methods proposed by Schroder [7], Ding [4] and Benton and
Krishnamoorthy [2]. The noncentral chi-square distribution function can also be
computed using methods based on series of incomplete gamma series, which will
be used as our benchmark.

2 Noncentral �2 Distribution and Alternative Methods

If Z1;Z2; : : : ; Zv are independent unit normal random variables, and ı1; ı2; : : : ; ıv

are constants, then Y DPv
jD1 .Zj C ıj /2 has a noncentral chi-square distribution

with v degrees of freedom and noncentrality parameter � D Pv
jD1 ı2j , which is

denoted as �
0

v
2
.�/. When ıj D 0 for all j , then Y is distributed as the central chi-

square distribution with v degrees of freedom, which is denoted as �2v . Hereafter,

P Œ�
0

v
2
.�/ � w� D F.wI v; �/ is the cumulative distribution function (CDF)of

�
0

v
2
.�/ and P Œ�2v � w� D F.wI v; 0/ is the CDF of �2v .

The CDF of �
0

v
2
.�/ is given by:

F.wI v; �/ D e��=2
1X

jD0

.�=2/j

j Š 2v=2Cj � .v=2C j /
Z w

0

yv=2Cj�1 e�y=2 dy; w > 0;

(1)

while F.wI v; �/ D 0 for w < 0. Alternatively, it is possible to express F.wI v; �/,
for w > 0, as a weighted sum of central chi-square probabilities with weights equal
to the probabilities of a Poisson distribution with expected value �=2, that is,

F.wI v; �/ D
1X

jD0

 
.�=2/j

j Š
e��=2

!

F.wI vC 2j; 0/; (2)

where the central chi-square probability function F.wI v C 2j; 0/ is given by
Abramowitz and Stegun [1, Eq. 26.4.1].
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2.1 The Gamma Series Method

It is well known that the function F.wI v C 2n; 0/ is related to the so-called
incomplete gamma function (see, for instance, [1, Eq. 26.4.19]). Hence, we may
express the function (2) using series of incomplete gamma functions as follows:

F.wI v; �/ D
1X

iD0

.�=2/i e��=2

i Š

�.v=2C i;w=2/
� .v=2C i/ ; (3)

with �.m; t/ and � .m/ being, respectively, the incomplete gamma function and
the Euler gamma function as defined by Abramowitz and Stegun [1, Eqs. 6.5.2 and
6.1.1].

While this method is accurate over a wide range of parameters, the number of
terms that must be summed increases with the noncentrality parameter �. To avoid
the infinite sum of the series we use the stopping rule as proposed by Knüsel and
Bablock [6] which allows the specification of a given error tolerance by the user.

For the numerical analysis of this article we will concentrate the discussion on
[4, 7] methods since both are commonly used in the finance literature. We will
also use the suggested approach of [2], since it is argued by the authors that their
algorithm is computationally more efficient than the one suggested by Ding [4].
A detailed explanation of how to compute the noncentral chi-square distribution
function using these three algorithms is presented below.

2.2 The Schroder Method

In the method proposed by Schroder [7], the noncentral chi-square distribution is
expressed as an infinite double sum of gamma densities which does not require the
computation of incomplete gamma functions, that is

F.wI v; �/ D
1X

nD1
g.nC v=2;w=2/

nX

iD1
g.i; �=2/; (4)

where g.m; u/ D e�uum�1=� .m/ is the standard form of the gamma density
function. As noted by Schroder [7], Eq. (4) allows the following simple iterative
algorithm to be used for computing the infinite sum when w and � are not too

large. First, initialize the following four variables (with n D 1): gA D e�w=2 .w=2/v=2

� .1Cv=2/ ,

gB D e��=2, Sg D gB, and R D gA� Sg. Then repeat the following loop beginning
with n D 2 and incrementing n by one after each iteration: gA  gA � w=2

nCv=2�1 ,

gB  gB � �=2

n�1 , Sg  SgC gB, and R  R C gA � Sg. The loop is terminated
when the contributions to the sum, R, are declining and very small.
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2.3 The DingMethod

A similar simple recursive algorithm for evaluating the noncentral chi-square

distribution is provided also by Ding [4]. Let us define t0 D 1
� .v=2C1/

�
w
2

�v=2
e�w=2,

ti D ti�1 w
vC2i , y0 D u0 D e��=2, ui D ui�1 �

2i
, and yi D yi�1 C ui . Then the

required probability that the variable with the noncentral chi-square distribution will
take values smaller than w is

F.wI v; �/ D
1X

iD0
yi ti : (5)

By taking a sufficient number of terms in the series or using the bound as defined
by Ding [4] for the error tolerance incurred by truncating the series, the required
accuracy can be obtained.

2.4 The Benton and KrishnamoorthyMethod

The function F.wI v; �/ is also expressed by Benton and Krishnamoorthy [2] using
series of incomplete gamma functions as given by Eq. (3), whereP.m; t/ D �.m;t/

� .m/
is

the standard gamma distribution function, with �.m; t/ and � .m/ as defined in (3).
To computeF.wI v; �/, [2] makes use of the following recurrence relations obtained
from [1, Eq. 6.5.21]:

P.aC 1; x/ D P.a; x/ � xa e�x

� .aC 1/ ; (6)

P.a � 1; x/ D P.a; x/C xa�1 e�x

� .a/
: (7)

From Eq. (6) it follows that

P.a; x/ D xa e�x

� .aC 1/

 

1C x

.aC 1/ C
x2

.aC 1/.aC 2/ C � � �
	
; (8)

which can be used to evaluate P.a; x/. The computational algorithm also differs
from the others essentially because, in order to compute the noncentral chi-square
distribution function F.wI v; �/, it starts by evaluating the kth term, where k is the
integer part of �=2, and then the other terms k ˙ i are computed recursively. The
proposed method runs in the following steps. First, evaluate Pk D P.Y D k/ D
e��=2.�=2/k=kŠ and P.v=2C k;w=2/ using Eq. (8). Then, compute P.Y D kC i/
and P.Y D k � i/, for i D 1; 2; : : : , using the initial value P.Y D k/, and
the recursion relations for Poisson probabilities PiC1 D �=2

iC1 Pi , Pi�1 D i
�=2

Pi .
Finally, using recursion relations (6) and (7) compute P.v=2 C k C i;w=2/ and
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P.v=2 C k � i;w=2/. By taking a sufficient number of terms in the series or by
specifying a given error tolerance the required accuracy is then obtained.

3 Bond Options Under the CIRModel

Under the risk-neutral measure Q, Cox et al. [3] modeled the evolution of the
interest rate, rt , by the stochastic differential equation (SDE):

drt D
�
�� � .�C �/rt


dt C �prtdW Q

t ; (9)

whereW Q
t is a standard Brownian motion underQ, �, � and � are positive constants

representing reversion rate, asymptotic rate and volatility parameters, respectively,
and � is the market risk. The condition 2�� > �2 has to be imposed to ensure that
the interest rate remains positive. Following [3], the price of a general interest rate
claim F.r; t/ with cash flow rate C.r; t/ satisfies the following partial differential
equation (PDE)

1

2
�2r

@2F.r; t/

@r2
C�.��r/@F.r; t/

@r
C @F.r; t/

@t
��r @F.r; t/

@r
�rF.r; t/CC.r; t/ D 0:

(10)

3.1 Zero-Coupon and Coupon Bonds

A bond is a contract that pays its holder a known amount, the principal, at a
known future date, called maturity. The bond may also pay periodically to its holder
fixed cash dividends, called coupons. When it gives no dividends, it is known as
a zero-coupon bond, sometimes referred to as pure discount bond. The price of a
zero-coupon bond with maturity at time s, Z.r; t; s/, satisfies the PDE (10), with
C.r; t/ D 0, subject to the boundary conditionZ.r; s; s/ D 1, and is given by

Z.r; t; s/ D A.t; s/e�B.t;s/r (11)

where A.t; s/ D
�

2� e

�
.�C�C�/.s�t /

�
=2

.�C�C�/
�

e�.s�t /�1
�
C2�

	 2��

�2

, B.t; s/ D 2
�

e�.s�t /�1
�

.�C�C�/
�

e�.s�t /�1
�
C2� , and

� D
�
.� C �/2 C 2�2

	1=2
.

Since a coupon bond is just a portfolio of zero-coupon bonds of different
maturities, the value of any riskless coupon bond (under a one-dimensional setting)
can be expressed as a weighted sum of zero-coupon bond prices

P.r; t; s/ D
NX

iD1
aiZ.r; t; si /; (12)
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where s1; s2; � � � ; sN represent the N dates on which payments are made, and the
ai > 0 terms denote the amount of the payments made.1

3.2 Bond Options

A bond option provides the investor with the right, but not the obligation, to
buy or sell a given bond at a fixed price either or before a specific date. In this
article, we analyze European-style plain-vanilla options on bonds, which confer
the right to buy or sell at a known future date for a predetermined price, i.e. the
exercise price. Denote by czc.r; t; T; s;K/ the price at time t of a European call
option with maturity T > t , strike price K , written on a zero-coupon bond with
maturity at time s > T and with the instantaneous rate at time t given by rt .
K is restricted to be less than A.T; s/, the maximum possible bond price at time
T , since otherwise the option would never be exercised and would be worthless.
The option price will follow the basic valuation equation with terminal condition
czc.r; t; T; s;K/ D maxŒZ.r; T; s/ �K; 0� to the PDE (10), with C.r; t/ D 0, and is
given by

czc.r; t; T; s;K/ D Z.r; t; s/ F.x1I a; b1/� KZ.r; t; T / F.x2I a; b2/; (13)

where x1 D 2r�Œ	 C  C B.T; s/�, x2 D 2r�Œ	 C  �, a D 2��
�2

, b1 D 2	2re�.T�t /

	C CB.T;s/ ,

b2 D 2	2re�.T�t /

	C ,  D �C�C�
�2

, 	 D 2�

�2
�

e�.T�t /�1
� , r� D

�
ln

�
A.T;s/

K

	�
=B.T; s/,

F.:I �; �/ is the noncentral chi-square distribution function with � degrees of
freedom and non-centrality parameter �, and r� is the critical rate below which
exercise will occur, this is, K D Z.r�; T; s/.

To compute options on coupon bonds we will use the Jamshidian’s approach,
[5], which states that an option on a portfolio of zero-coupon bonds is equivalent
to a portfolio of options with appropriate strike prices. The individual options all
have the same maturity and are written on the individual zero-coupon bonds in the
bond portfolio. Based on this result, a European call option with exercise price K
and maturity T on a bond portfolio consisting ofN zero-coupon bonds with distinct
maturities si .i D 1; 2; � � � ; N and T < s1 < s2 < � � � < sN / and ai .ai > 0; i D
1; 2; � � � ; N / issues of each can be priced as

ccb.r; t; T; s;K/ D
NX

iD1
ai c

zc.r; t; T; si ; Ki/; (14)

whereKi D Z.r��; T; si / and r�� is the solution to
PN

iD1 aiZ.r��; T; si / D K .

1As an example, consider a 10-year 6% bond with a face amount of 100. In this case,N D 20 since
the bond makes 19 semiannual coupon payments of 3 as well as a final payment of 103. That is,
ai D 3; i D 1; 2; � � � ; 19, a20 D 3C 100 D 103, and s1 D 0:5; s2 D 1; � � � ; s19 D 9:5; s20 D 10.
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4 Numerical Analysis

This section aims to present computational comparisons of the alternative methods
of computing the noncentral chi-square distribution function for pricing European
options on bonds under the CIR diffusion. We examine this CIR option pricing
model using alternative combinations of input values over a wide range parameter
space. All the calculations in this article were made using Mathematica 7.0 running
on a Pentium IV (2.53 GHz) personal computer. We have truncated all the series
with an error tolerance of 1E�10. All values are rounded to four decimal places.
In order to understand the computational speed of the alternative algorithms, we
have computed the CPU times for all the algorithms using the function Timing[.]
available in Mathematica. Since the CPU time for a single evaluation is very small,
we have computed the CPU time for multiple computations. Note that the difference
in computation time among the alternative tested methods is clearly due to the
specific definition of each algorithm and the corresponding stopping rule, and not
on the particular software implementation.

4.1 Benchmark Selection

The noncentral chi-square distribution function F.wI v; �/ requires values for w,
�, and �. Our benchmark is the noncentral chi-square distribution F.wI �; �/
expressed as a gamma series (GS) as given by Eq. (3), with a predefined error
tolerance of 1E�10, which is tested against three external benchmarks based on
the Mathematica, Matlab, and R built-in-functions that are available for computing
the CDF of the noncentral chi-square distribution. The set of parameters used in
the benchmark selection: is � 2 f0:15; 0:25; � � � ; 0:85g, � 2 f0:03; 0:06; � � � ; 0:15g,
r 2 f0:01; 0:02; � � � ; 0:15g, � 2 f0:03; 0:05; � � � ; 0:15g, and � 2 f�0:1; 0g. We
also consider the next two set of parameters: for the bond maturity s D 2, we
have T 2 f1; 1:5; 1:75g, and in this case the strike price set is K 2 f0:90; 0:95g;
for the bond maturity of s D 10, we consider T 2 f3; 5; 7g, and in this situation
the strike prices are K 2 f0:25; 0:35g. These combinations of parameters produce
98; 280 probabilities.2 Table 1 reports the results obtained. The results show that
the maximum absolute error (MaxAE) and root mean absolute error (RMSE) are
higher for the comparison between the GS vs CDF of Mathematica, though the
number of times the absolute difference between the two methods exceeds 1E�07
(k1) is small in relative terms (it represents about 0:08% of the 98;280 computed
probabilities). However, the number of times a computed probability is greater than
1 (k2) is slightly higher for the CDF of Mathematica3 (about 1:80% of computed
probabilities computed). The results comparing the GS vs CDF of Matlab and

2We obtained these probabilities by computing the values of F.x1I �; b1/ for this set of parameters.
3This means that care must be taken if one wants to use the CDF built-in-function of Mathematica
for computing the noncentral chi-square distribution function.
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Table 1 Benchmark selection

Methods MaxAE RMSE k1 k2

GS vs CDF of Mathematica 1.29E�04 4.13E�07 79 1,769
GS vs CDF of Matlab 6.46E�11 1.16E�11 0 0
GS vs CDF of R 6.45E�11 1.16E�11 0 0

Table 2 Differences in approximations for each method compared against a benchmark

Methods MaxAE MaxRE RMSE MeanAE CPU time k1 k3

Panel A: Differences in probabilities
S89 3.79E�10 4.19E�01 1.21E�10 9.03E�11 9,773.37 0 –
D92 9.60E�11 1.83E�02 6.20E�11 5.94E�11 9,085.95 0 –
BK03 4.23E�11 1.71E�07 4.29E�12 1.29E�12 1,946.11 0 –
Panel B: Differences in call option prices on zero-coupon bonds
S89 1.22E�10 5.24EC00 2.60E�11 1.63E�11 9,796.68 – 0
D92 3.96E�11 3.43E�02 1.25E�11 1.00E�11 9,013.49 – 0
BK03 6.97E�12 4.76E�05 6.61E�13 1.59E�13 1,967.84 – 0
Panel C: Differences in call option prices on coupon bonds
S89 1.24E�08 1.52EC00 1.98E�09 1.35E�09 14,101.40 – 0
D92 7.00E�09 2.58E�01 2.06E�09 1.66E�09 13,309.00 – 0
BK03 2.03E�09 1.97E�06 1.58E�10 3.03E�11 6,274.70 – 0

GS vs CDF of R show that the corresponding differences are smaller and very
similar (never exceeds 1E�07). Under the selected wide parameter space we have
not obtained any probability value greater than 1 either in the gamma series method,
Matlab or R. In summary, the results show that the gamma series method is an
appropriate choice for the benchmark.

4.2 Bond Options with Alternative Methods

Now we want to evaluate the differences in approximations of noncentral chi-
square probabilities F.wI �; �/ and in zero-coupon and coupon bond option prices
using the iterative procedures of [7] (S89), [4] (D92) and [2] (BK03) compared
against the benchmark based on the gamma series approach. We will concentrate
our analysis on call options, but the same line of reasoning applies also for put
options. Panels A and B of Table 2 report such comparison results using the
following set of parameters: � 2 f0:35; 0:65g, � D 0:08, � 2 f0:04; 0:10; 0:16g,
r 2 f0:01; 0:02; � � � ; 0:15g, � 2 f�0:1; 0:0g, K 2 f0:25; 0:30g, T 2 f2; 5g, and
s 2 f10; 15g. Panel C of Table 2 analyzes the impact of these competing methods
for pricing call options on coupon bonds under the CIR diffusion. In this analysis
we used the following set of parameters:� 2 f0:35; 0:65g, � D 0:08, � 2 f0:04;
0:10; 0:16g, r 2 f0:01; 0:02; � � � ; 0:15g, � 2 f�0:1; 0:0g, K 2 f95; 100; 105g, face
value D 100, T 2 f2; 5g, s 2 f10; 15g, and a coupon rate 2 f0:10; 0:12g. The third
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rightmost column of the table reports the CPU time for computing 1;000 times the
2;880 probabilities and 1;440 unique contracts of zero-coupon bond options4 and
the CPU time for determining 100 times the 4;320 unique contracts of coupon bond
options. The MaxRE, MeanAE and k3 denote, respectively, the maximum relative
error, the mean absolute error, and the number of times the absolute difference
between the two methods exceeds $0:01.

5 Conclusion

In this article, we compare the performance of alternative algorithms for computing
the noncentral chi-square distribution function in terms of accuracy and computation
time for evaluating option prices under the CIR model. We find that all algorithms
are accurate over a wide range of parameters, though presenting significative
differences on computational expenses. Overall, we find that the [2] algorithm is
clearly the most accurate and efficient in terms of computation time needed for
determining option prices under the CIR assumption. Moreover, it has a running
time that does not vary significantly with the parameters w; v, and �.
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A Semi-parametric Estimator of a Shape
Second-Order Parameter

Frederico Caeiro and M. Ivette Gomes

Abstract
In extreme value theory, any second-order parameter is an important parameter
that measures the speed of convergence of the sequence of maximum values,
linearly normalized, towards its limit law. In this paper we study a new estimator
of a shape second-order parameter under a third-order framework.

1 Introduction

Let us assume thatX1;X2; : : : ; Xn are independent and identically distributed (i.i.d.)
random variables (r.v.’s), with a Pareto-type distribution function (d.f.) F satisfying

lim
t!1

F .tx/

F .t/
D x�1=� , lim

t!1
U.tx/

U.t/
D x� ; 8 x > 0; (1)

where � > 0, F .x/ WD 1 � F.x/, and U.t/ WD inffx W F.x/ � 1 � 1=tg. Then we
are in the max-domain of attraction of the Extreme Value distribution

EV� .x/ D expf�.1C �x/�1=� g; 1C �x > 0;
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where � is the extreme value index (EVI). This index measures the heaviness of the
right tail F , and the heavier the right tail, the larger the EVI is. Although we deal
with the right tail F , the results here presented are applicable to the left tail F , after
the change of variable Y D �X .

The estimation of the EVI is an important subject in Extreme Value Theory.
Many classical EVI-estimators, based on the k largest order statistics have a strong
asymptotic bias for moderate up to large values of k. To improve the estimation of �
through the adaptive selection of k or through the reduction of bias of the classical
EVI estimators, we usually need to know the nonpositive second-order parameter,
�, ruling the rate of convergence of the normalized sequence of maximum values
towards the limiting law EV� , in Eq. (1), through the limiting relation

lim
t!1

lnU.tx/� lnU.t/ � � ln x

A.t/
D x� � 1

�
; 8 x > 0; (2)

where jAj must be of regular variation with index � � 0 (9).
In this paper, we are interested in the estimation of the second-order parameter �

in (2). For technical reasons, we shall consider � < 0. In Sect. 2, after a brief review
of some estimators in the literature, we introduce a new class of estimators for the
second-order parameter �. In Sect. 3, we derive the asymptotic behavior of the �-
estimators. Finally, in Sect. 4 we provide some applications to real and simulated
data.

2 Estimation of the Second-Order Parameter �

2.1 A Review of Some Estimators in the Literature

Many estimators of the second-order parameter �, in Eq. (2), are based on the scaled
log-spacings Ui or on the log-excesses Vik defined by

Ui WD i
�

ln
Xn�iC1Wn
Xn�i Wn

�
and Vik WD ln

Xn�iC1Wn
Xn�kWn

; 1 � i � k < n; (3)

where Xi Wn denotes the i th ascending order statistic from a sample of size n.
The first estimator of � appears in [12]. Under the second-order condition in

(2), with � < 0 and A.t/ D � ˇ t�, the log-spacings Ui , 1 � i � k, in Eq. (3),
are approximately exponential with mean value � exp.ˇ.i=n/��/, 1 � i � k. [7]
considered the joint maximization, in order to � , ˇ, and �, of the approximate log-
likelihood of the scaled log-spacings. Such a maximization led Feuerverger and Hall
to an explicit expression for O� , as a function of Ǒ and O�, and to implicit estimators
of Ǒ D ǑFH

n .k/ and O� D O�FH
n .k/. More precisely,
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. Ǒ; O�/ WD arg min
.ˇ;�/

n
ln
� 1
k

kX

iD1
e�ˇ.i=n/�� Ui

�
C ˇ

� 1
k

kX

iD1
.i=n/��

�o
: (4)

[8, 11] worked with the log-excesses Vik , in (3), to obtain new estimators of
the second-order parameter �. As mentioned by Goegebeur et al. [10], the estimator
generally considered to be the best working one in practice is a particular member of
the class of estimators proposed by Fraga Alves et al. [8]. Such a class of estimators
has been first parameterized in a tuning parameter � � 0, but more generally, � can
be considered as a real number (3). Using the notation ab� D b ln a if � D 0, it is
defined as

O�FAGH
n .k/ D O�FAGH.�/

n .k/ WD min
n
0 ; 3.T

.�/

n;k � 1/=.T .�/n;k � 3/
o
; (5)

with

T
.�/

n;k WD
�
M

.1/

n;k

���
�
M

.2/

n;k=2
��=2

�
M

.2/

n;k=2
��=2�

�
M

.3/

n;k=6
��=3 ; � 2 R; M

.˛/

n;k WD
1

k

kX

iD1
.Vik/

˛; ˛ > 0:

Remark 1. The use of the estimator O�FAGH
n .k/ in several articles on reduced-bias tail

index estimation has led several authors to choose � D 0, if � � �1 and � D 1

if � < �1. However, practitioners should not choose blindly the value of � . It is
sensible to draw a few sample paths of k vs. O�FAGH

n .k/, for several values of � ,
electing the one which provides the highest stability for large k.

More recently, [6] extended the estimators in [11] and [8] and [10] introduced a new
class of estimators based on the scaled log-excesses Ui . Further details on this topic
can be found in [1] and references within.

2.2 A New Estimator for the Second-Order Parameter �

We will now propose a new estimator for the shape second-order parameter �. First
we will consider the ratio of a difference of estimators of the same parameter,

R
.�/

n;k D
�
N
.1/

n;k

�� �
�
N
.3=2/

n;k

��

�
N
.3=2/

n;k

�� �
�
N
.2/

n;k

�� ; � 2 R; (6)

with N.˛/

n;k WD ˛
k

Pk
iD1

�
i
k

�˛�1
Ui , ˛ � 1, consistent estimators of � > 0, and using

the notation a� D ln a whenever � D 0. The values ˛ D1, 3/2, and 2 could be
changed. But those values allow us to have a small asymptotic variance, for the
most common values of �. It will be shown that, under the second-order condition
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in (2), R.�/n;k will converge to 2��
1�� . Then, by inversion, we get the new estimator for

the shape second-order parameter � with functional expression,

O�CG
n .k/ D O�CG.�/

n .k/ WD min
n
0 ; 1C �1 �R.�/n;k

��1o
; � 2 R: (7)

3 Main Asymptotic Results

We shall next proceed with the study of the new class of �-estimator in (7). To
compare the new class of estimators with others in the literature, we also present
asymptotic results for the estimators in (4) and (5). We will need to work with
intermediate values of k, i.e., a sequence of integers k D kn, 1 � k < n, such
that

k D kn !1 and kn D o.n/; as n!1: (8)

In order to establish the asymptotic normality of the second-order estimators, it is
necessary to further assume a third-order condition, ruling the rate of convergence
in (2), and which guarantees that, for all x > 0,

lim
t!1

lnU.tx/�lnU.t/�� ln x
A.t/

� x��1
�

B.t/
D x�C�0 � 1

�C �0 ; (9)

where jB.t/j must then be of regular variation with index �0 � 0. There appears
then this extra nonpositive third-order parameter �0 � 0. Although � and �0 can also
be zero, we shall consider �, �0 < 0.

Remark 2. The third-order condition in (9) holds for models with a tail quantile
function

U.t/ D Ct�
�
1CD1t

� CD2t
�C�� C o�t�C����; (10)

as t !1, with C > 0, D1; D2 6D 0, �, �� < 0. For this models �0 D max.�; ��/.

Remark 3. Note that for most of the common heavy-tailed models (� > 0), we have
�0 D �. Among those models we mention: the Fréchet model, with d.f. F.x/ D
exp.�x�1=� /, x � 0, for which �0 D � D �1 and the generalized Pareto (GP)
model, with d.f. F.x/ D 1 � .1C �x/�1=� , x � 0, for which �0 D � D �� .

Theorem 1. Let � designate FH, FAGH, or CG and assume that O��n.k/ denotes any
of the �-estimators defined in (4), (5) or (7). If the second-order condition (2) holds,
with � < 0, k is intermediate and such that

p
k A.n=k/ ! 1, as n ! 1, then

O��n.k/ converges in probability to �. Under the third-order framework in (9),
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O��n.k/ dD �C
 

���W �kp
kA.n=k/

C b�1A.n=k/C b�2B.n=k/
!

.1C op.1//; (11)

with W �k an asymptotically standard normal r.v.,

�FH
� D � .1 � �/.1 � 2�/p1� 2�

j�j ;

�FAGH
� D �.1� �/3p2�2 � 2�C 1

j�j ;

�CG
� D � .1 � �/.2 � �/.3 � 2�/p4�2 � 4�C 7p

120j�j ;

and

bFH
1 D �

.1 � �/.1� 2�/2
��.1� 3�/2 ; bFH

2 D
.1 � �/.1 � 2�/.�C �0/�0
�.1 � � � �0/.1 � 2� � �0/ ;

bFAGH
1 D �

�
�.1 � 2�/2.3 � �/.3� 2�/C 6� �4.2� �/.1� �/2 � 1�

12�.1� �/2.1 � 2�/2 ;

bFAGH
2 D �0.�C �0/.1 � �/3

�.1 � � � �0/3 ;

bCG
1 D

.� � 1/�
2�

; bCG
2 D

.1 � �/.2� �/.3 � 2�/�0.�C �0/
�.1 � � � �0/.2 � � � �0/.3 � 2� � 2�0/ :

Moreover, if
p
k A2.n=k/ ! �A and

p
k A.n=k/B.n=k/ ! �B (both finite), as

n ! 1, then
p
kA.n=k/. O��n.k/ � �/ is asymptotically normal with mean value

�Ab
�
1 C �Bb�2 and variance .��� /2.

Proof. For the estimators O�FAGH
n .k/ and O�FH

n .k/ the proof can be found in [8] and
[4], respectively. Regarding the new estimator, O�CG

n .k/, we only need to prove
the asymptotic representation in (11). Then, consistency and asymptotic normality
follows straightforward. Notice that under the third-order condition, in (9), and for
intermediate k we have [5]

N
.˛/

n;k

dD�C � ˛ Z
.˛/

kp
.2˛ � 1/kC

˛A.n=k/

˛ � � COp
�
A.n=k/p

k

	
C˛A.n=k/B.n=k/

˛ � � � �0 .1Cop.1//;

where Z.˛/

k is asymptotically standard normal. Then, the use of Taylor expansion
.1Cx/�1 D 1�xCo.x2/, x ! 0 and after some cumbersome calculations we get
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R
.�/

n;k

dD 2 � �
1 � �

n
1C �R� Z

R
kp

kA.n=n/
C .� � 1/�
2� .1 � �/.2 � �/A.n=k/

�
1COp

�
1p
k

		

C .3 � 2�/�0.�C �0/
�.1 � � � �0/.2 � � � �0/.3� 2� � 2�0/B.n=k/.1C op.1//

o
;

with ZR
k an asymptotically standard normal r.v. and

�R� D
� .3 � 2�/p4�2 � 4�C 7p

120j�j :

Using again Taylor expansion for .1C x/�1, (11) follows.

Remark 4. From Theorem 1, we conclude that the tuning parameter � affects the
asymptotic bias of O�FAGH

n and O�CG
n , but not the asymptotic variance. Consequently

if � D �0 (B.n=k/ D O.A.n=k//), we can always choose � D �0 such that the
asymptotic bias is null, even when

p
k A.n=k/!1 and

p
k A2.n=k/! �A .

Figure 1 show us the values of the quotients of the asymptotic standard deviations
�FAGH
� =�FH

� and �CH� =�FH
� , for �4 � � < 0. The patterns allow us to conclude that

O�FH
n has the smallest asymptotic variance. Also �CG

� < �FAGH
� if � < �0:2821.

4 Applications to Simulated and Real Data

4.1 A Case Study in the Field of Insurance

We shall next consider an illustration through the analysis of automobile claim
amounts exceeding 1,200,000 Euro over the period 1988–2001, gathered from
several European insurance companies cooperating with the same re-insurer (Secura
Belgian Re). This data set is available in [2].
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Fig. 2 Secura data (left) and estimates of the second-order parameter � as function of k (right)

In Fig. 2, we present the value of the automobile claim amounts by year (left)
and the sample path of the estimates O�FH

n .k/, O�FAGH.�/
n .k/, and O�CG.�/

n .k/ in (4),

(5), and (7), respectively. We have chosen � D 0 and � D �1 for O�FAGH.�/
n and

O�CG.�/
n , respectively, based on the stability of the sample paths, as function of k. We

conclude that, for large values of k, the estimates given by O�FAGH.0/
n and O�CG.�1/

n are
very close and are both much stable than the estimates given by O�FH

n .

4.2 Simulated Data

We have implemented a multi-sample Monte Carlo simulation experiment, with 200
samples of size 2,000, to obtain the distributional behavior of the estimators O�FH

n ,
O�FAGH.�/
n , and O�CG.�/

n in (4), (5), and (7), respectively, for the Fréchet model with
� D 0:5 and d.f. given in Remark 3.
In Fig. 3, we present the simulated mean values (E) and root mean square errors
(RMSE) patterns of the abovementioned �-estimators, as functions of k, for n D
2;000. Since we have � D �1, we have used � D 0 in O�FAGH.�/

n .k/ (see Remark 1).
Using again the stability of the sample paths of the mean values and the RMSE, for
large k, we elect � D �1 in O�CG.�/

n .k/.
Figure 3 evidences that, with the proper choice of � , O�CG.�1/

n .k/ has the best
performance (not only in terms of bias but also in terms of RMSE), O�FAGH.0/

n .k/

is the second best and finally O�FH
n .k/ has the worst performance (although it is a

maximum likelihood estimator). The adaptive choice of � is outside the scope of
this paper.
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with � D 0:5 and n D 2;000
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Peaks Over Random Threshold Asymptotically
Best Linear Estimation of the Extreme Value
Index

Lígia Henriques-Rodrigues and M. Ivette Gomes

Abstract
A new class of location invariant estimators of a positive extreme value index
(EVI) is introduced. On the basis of second-order best linear unbiased estimators
of the EVI, a class of PORT best linear EVI-estimators is considered, with PORT
standing for peaks over random thresholds. A heuristic procedure for the adaptive
choice of the tuning parameters under play is proposed and applied to a set of
financial data.

1 Introduction and Scope of the Paper

The extreme value index (EVI) is the shape parameter in the extreme value (EV)
distribution function (d.f.), with the functional form

EV�.x/ D
�

exp
��.1C �x/�1=� � ; 1C �x > 0 if � 6D 0

exp.� exp.�x//; x 2 R if � D 0: (1)

Let Xi Wn denote the i -th ascending order statistic (o.s.), 1 � i � n, associated
with the random sample .X1; : : : ; Xn/ from a model F . The EV d.f. in (1) appears
as the possible limiting distribution of the linearized sequence of maximum values
fXnWngn�1, whenever such a nondegenerate limit exists. We then say that F is in
the max-domain of attraction of EV� , and use the notation F 2 DM .EV�/. We
shall work in a context of heavy-tailed models, i.e., we shall consider that � > 0

in (1). This type of heavy-tailed models appears often in practice, in fields such as
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finance, insurance, and ecology, among others (see [17]). Given the underlying d.f.
F and with F .y/ WD inf fx W F.x/ � yg being the generalized inverse function
of F , let us denote U.t/ D F .1 � 1=t/, t > 1, the reciprocal quantile function.
Let us also use the notation RV� for the class of regularly varying functions with
index of regularly variation � 2 R, i.e. positive measurable functions g such that
limt!1 g.tx/=g.t/ D x� , for all x > 0 (see [3] for details on regular variation).
Then, F 2 DM .EV�>0/ ” 1 � F 2 RV�1=� ” U 2 RV�; the so-called
first-order condition.

The second-order parameter rules the rate of convergence in the first-order
condition, and it is the nonpositive value � .� 0/ which appears in

lim
t!1

�
lnU.tx/ � lnU.t/ � � ln x

�
=A.t/ D

� �
x� � 1�=� if � < 0

lnx if � D 0; (2)

which is often assumed to hold for every x > 0, and where jAjmust then be in RV�
(see [7]). For technical simplicity, we shall assume that � < 0 and we shall also
slightly restrict the whole domain of attraction considering that [13],

U.t/ D C t� .1C A.t/=�C o.t�// ; A.t/ D O.t�/; � < 0; C > 0:

As usual in a semiparametric estimation of parameters of extreme events we shall
consider intermediate k-sequences, i.e. sequences of integer values k D k.n/,
between 1 and n, such that

k D k.n/!1 and k=n! 0 as n!1: (3)

In this paper, to make location invariant the asymptotically best linear unbiased
(ABLU) estimators considered in [9], we apply to them the peaks over random
threshold (PORT) methodology, introduced in [2]. These PORT EVI-estimators, to
be presented in Sect. 2, depend upon an extra tuning parameter q, 0 � q < 1, which
makes them highly flexible. In Sect. 3, we describe the ABLU estimators, studied
in [9], and introduce the PORT asymptotically best linear (ABL) EVI-estimators. In
Sect. 4, we provide an algorithm for the adaptive choice of the tuning parameters k
and q under play. Section 5 is dedicated to an application of the algorithm to a set
of financial data.

2 PORT EVI-Estimation

The classical EVI-estimators are Hill estimators [15], consistent for � > 0. They
are the averages of the k log-excesses over a high random threshold Xn�kWn, i.e.

H.k/ � H.kIXn/ WD
1

k

kX

iD1

n
ln
Xn�iC1Wn
Xn�kWn

o
: (4)
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The Hill estimators are scale-invariant, but not location-invariant, as often desired,
contrarily to the PORT-Hill estimators, introduced in [2] and further studied in [10].
The class of PORT-Hill estimators is based on a sample of excesses over a random
level XŒnq�C1Wn, with Œx� denoting, as usual, the integer part of x,

X.q/
n WD

�
XnWn �XŒnq�C1Wn; : : : ; Xn�kWn � XŒnq�C1Wn

�
; (5)

with 1 � k < nq , nq WD n � Œnq� � 1 and where
• 0 < q < 1 , for any F 2 DM .EV�>0/ (the random level is an empirical

quantile);
• q D 0, for d.f.’s with a finite left endpoint xF WD inffx W F.x/ > 0g (the random

threshold is the minimum).
The PORT-Hill estimators have the same functional form of the Hill estimators,

given in (4), but with the original sample Xn D .X1; : : : ; Xn/ replaced by the sample
of excesses X.q/

n . For 0 � q < 1 and k < nq , they are thus given by

H.q/.k/ WD H.kIX.q/
n / D

1

k

kX

iD1

n
ln
Xn�iC1Wn � XŒnq�C1Wn
Xn�kWn � XŒnq�C1Wn

o
; 0 � q < 1:

These estimators are now invariant for both changes of scale and location in the
data, and depend on the tuning parameter q, that provide a highly flexible class of
EVI-estimators. In what follows, we use the notation �q for the q-quantile of the
d.f. F . Then (see [17], among others),

XŒnq�C1Wn
p�!

n!1 �q WD F .q/; for 0 � q < 1 �
F .0/ D xF

�
: (6)

2.1 Second-Order Framework for Heavy-Tailed Models Under a
Non-Null Shift

If we induce any arbitrary shift, s, in the modelX underlying our data, with quantile
function UX.t/, the transformed r.v. Y D X C s has an associated quantile function
given by Us.t/ � UY .t/ D UX.t/C s. When applying the PORT-methodology, we
are working with the sample of excesses in (5), or equivalently, we are inducing a
random shift, strictly related to �q , in (6). We shall thus use the subscript q instead
of the subscript s, whenever we think of a shift �q . Consequently, the parameter �,
as well as the A-function, in (2), depends on such a shift �q , i.e. � D �q , A D Aq ,
and

�
Aq.t/; �q

� WD
8
<

:

�
��q=U0.t/;��

�
; if � C �0 < 0 ^ �q ¤ 0�

A0.t/C ��q=U0.t/; �0
�
; if � C �0 D 0

.A0.t/; �0/ ; otherwise;
(7)
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where �0, U0, and A0 are, respectively, the second-order parameter, the quantile
function, and the A-function associated with an unshifted model. For any interme-
diate sequence k as in (3), under the validity of the second-order condition in (2),
for any real q, 0 � q < 1, and with ZH

k an asymptotic standard normal distribution,
the PORT-Hill estimator has an asymptotic distributional representation (see [2]),

H.q/.k/
dD � C �2 ZH

kp
k
C
�

1

1 � �0 A0.n=k/C
�

1C �
�q

U0.n=k/

	
.1C op.1//:

(8)

3 Asymptotically Best Linear Unbiased Estimation of the EVI

In the general theory of Statistics, whenever we ask the question whether the
combination of information can improve the performance of an estimator, we are led
to think on BLU estimators, i.e., on unbiased linear combinations of an adequate set
of statistics, with minimum variance among the class of such linear combinations.

Given a vector of m statistics directly related to the EVI, � , say T �
.Tik; i D k �mC 1; : : : ; k/ ; 1 � m � k; let us assume that, asymptotically,
the covariance matrix of T is well approximated by �2˙ , i.e., it is known up to the
scale factor �2, and that its mean value is well approximated by � sC '.n; k/ b, as
in the main theorem underlying this theory (see [1] for further details). The linear
combination of our set of statistics with minimum variance and unbiased, in an
asymptotic sense, is called an ABLU estimator, and denoted by BLT . The ABLU
estimator is then given byBL.�/

T
.kIm/ WD a0 T, where a0 D .a1; a2; : : : ; am/ is such

that a0˙a is minimum, subject to the conditions a0 s D 1 and a0 b D 0. The solution
of such a problem is given by (see [9])

a D � 1
�

b0˙�1
�
s b0 � b s0

�
˙�1;

with � D ˇ
ˇ
ˇ
ˇP0˙�1P

ˇ
ˇ
ˇ
ˇ. Provided the results were not asymptotic, we could derive

that

Var
�
BL.�/

T
.kIm/� D �2 b0 ˙�1 b

�
:

The ABLU estimators considered in [9] are ABLU-Hill EVI-estimators, i.e.
asymptotically unbiased linear combinations of Hill’s estimators computed at
different intermediate levels k �mC 1; k �mC 2; : : : ; k, i.e., linear combinations
based on the vector H � .H.k �mC 1/; : : : ; H.k//, with the functional form

BL.k/ � BL.�/
H
.k/ D

kX

iD1
aHi .�/H.i/;
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and where the weights aHi D aHi .�/, i D 1; : : : ; k; are given in the Proposition 2.4
of [9], whenever we considerm D k > 2 levels.

We now advance with PORT-ABL-Hill EVI-estimators, based on the vector ofm
statistics H.q/ � �

H.q/.k �mC 1/; : : : ; H .q/.k/
�
, with the functional form

BL.q/.k/ � BL.�q/
H.q/
.k/ D

kX

iD1
aH

.q/

i .�q/H
.q/.i/; (9)

and where the weights aH
.q/

i .�q/ D aHi .� D �q/, with �q given in (7).

Remark 1. The ABLU-Hill EVI-estimators introduced in [9] are reduced bias
(RB) estimators. But for the class of PORT-ABL-Hill EVI-estimators introduced
in this work we can no longer guarantee a null asymptotic dominant component
of asymptotic bias. All depend on the value �q that appears in the distributional
representation of H.q/.k/, in (8).

4 Adaptive PORT-ABL-Hill Estimation

The estimates of the second-order shape parameter �q , O�.q/� .k/, k D 1; : : : ; nq � 1,
are obtained using the functional form introduced in [14]. The choice of k and
q in the PORT-ABL EVI-estimators is performed on the basis of the bootstrap
methodology (for more details on the bootstrap methodology see [8], among others)
and the adaptive PORT-ABL-Hill estimation was implemented according to the
following algorithm:
1. Given the observed sample (x1; x2; : : : ; xn), consider for q D 0.0:1/0:95, the

observed sample, x.q/n , with X.q/
n given in (5), and compute O�q � O�.q/0 �

O�.q/0 .k1I x.q/n /, with k1 D Œn0:999q �.

2. Next compute, for k D 1; 2; : : : ; nq � 1 the observed values of BL.q/.k/, with
BL.q/.k/ given in (9).

3. Consider sub-samples’ sizes m1 D o.nq/ D Œn1�"q � andm2 D Œm2
1=nq�C 1.

4. For l from 1 until B D 250, generate independently B bootstrap samples
.x�1 ; : : : ; x�m2/ and .x�1 ; : : : ; x�m2; x

�
m2C1; : : : ; x

�
m1
/, of sizes m2 and m1, respec-

tively, from the empirical d.f., F �nq .x/ D 1
nq

nqP

iD1
IfXi�xg, associated with x.q/n .

5. Denoting T �.k/ the bootstrap counterpart of the auxiliary statistic T .k/ WD
BL.q/.Œk=2�/ � BL.q/.k/, obtain .t�m1;l .k/; t

�
m2;l

.k//, 1 � l � B , observations
of the statistic T �mi .k/; i D 1; 2, and compute

MSE�.mi ; k/ D 1

B

BX

lD1

�
t�mi ;l .k/

�2
; k D 1; 2; : : : ; mi � 1; i D 1; 2:
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6. Obtain

Ok�0jT .mi/ WD arg min
1�k<mi

MSE�.mi ; k/; i D 1; 2:

7. Compute the threshold estimate

Ok�.q/0 � Ok�
0jBL.q/;T

WD min

0

@nq � 1;
2

4.1 � 2 O�q /1=.1�2 O�q/
� Ok�

0jT
.m1/

�2

Ok�
0jT
.m2/

3

5C 1
1

A :

If k�.q/0 � m2 return to Step 3 and decrease the value of ".

8. Obtain BL�.q/
m1jT WD BL.q/. Ok�.q/0 /.

9. With B�.mi ; k/ D 1
B

BP

lD1
t�mi ;l .k/, 1 � k < mi , i D 1; 2, compute Oq WD

arg minq bMSE. Ok�.q/0 I q/, where

bMSE.kI q/ WD
�
BL�.q/

m1jT
�2

k
C
 �

B�.m1; k/
�2

�
2 O�q � 1�B�.m2; k/

!2

;

with O�q , MSE�.mi ; k/; i D 1; 2 and BL�.q/
m1jT given in Steps 1, 5, and 8,

respectively.

10. With the notation Ok�. Oq/0 � Ok�
0jBL.Oq/;T

, obtain the final adaptive PORT-ABL EVI-

estimate,

BL�� � BL�. Oq/
m1jT WD BL�. Oq/. Ok�. Oq/0 /:

Remark 2. The value � D 0, considered in the description of the algorithm, has
revealed to be the most adequate choice whenever we are in the region j�j � 1, a
common region in the applications and the region where bias reduction is needed.
If there are negative elements in the sample, the value n should be replaced by
nC D Pn

iD1 Ixi>0, the number of positive values in the sample. The Monte Carlo
procedure in Steps 2 up to 10 of the algorithm can be replicated if we want to
build bootstrap confidence intervals for the estimated parameters. The adaptive
choice of the tuning parameters k and q can also be done through data-driven
heuristic procedures, such as the ones introduced in [12] for the PORT-MVRB EVI-
estimators, where MVRB stands for minimum variance reduced bias.

5 An Application to Financial Data

We shall now consider the performance of the algorithm provided in Sect. 4, when
applied to the analysis of log-returns, X , and standardized log-returns associated
with the daily closing values of the Microsoft Corp. (MSFT), collected from January
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Fig. 1 Box-and-whiskers plot (left) and Pareto QQ-plots of the daily log-returns X (center) and
of �X (right)

4, 1999, through November 17, 2005, with a size equal to n D 1;762, and previously
considered in [11, 12] under a weakly dependent and stationary setup.

From Fig. 1, with the box-and-whiskers plot of the data and the Pareto QQ-plots
of X and �X , we see that the available data provides evidence on the heaviness of
the right tail (gains), i.e. � > 0, as well as the left tail, i.e. the left endpoint, xF , is
infinite. The value q D 0 is thus not admissible for this data set.

The possible presence of clustered volatility is a question of particular relevance
in applied financial research, as extensively discussed in [16]. We have performed
Engle’s ARCH test for the presence of ARCH effects (see [6] and [4] for further
details on the test), and the ARCH/GARCH model, a typical model for this type
of empirical data, was not rejected for the analyzed log-returns. This test has also
shown significant evidence on support of GARCH effects (i.e., heteroskedasticity).
We have thus fitted the volatility model GARCH(1,1) in order to remove the
observed stock returns heteroskedasticity, and have then applied the algorithm to
the standardized log-returns of the MSFT data set, using an approach similar to the
one in [16] together with the methodology in this paper for the estimation of the EVI
of the standardized log-returns (for more details on the standardized log-returns of
the MSFT data set see [12]).

The application of the algorithm for m1 D Œn0:975q � led for the MSFT log-returns

to Oq D 0:2, Ok.0:2/0 D 498 and the adaptive EVI-estimate BL�� D 0:197, slightly
below the value 0.243 obtained in [12]. For the MSFT standardized log-returns we
were led to Oq D 0:1, Ok.0:1/0 D 534 and the adaptive EVI-estimate BL�� D 0:120,
also below the value 0.192 obtained in [12], as presented in Fig. 2, where we also
present the MVRB EVI-estimator in [5].

5.1 Some Final Remarks

The PORT-ABL-Hill EVI-estimators do not always outperform the ABLU-Hill
EVI-estimators. This fact had already happened with the PORT-Hill estimators
when compared with the Hill estimator, and happens for all models with a
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Fig. 2 Adaptive estimates of the PORT-ABL-Hill EVI-estimators for the daily log-returns (left)
and for the standardized daily log-returns (right) of the MSFT data

left endpoint xF greater than or equal to zero (see [2]). The double bootstrap
methodology provided in this paper enables us to choose the value of q that provides
what we think to be the best estimator of � . Just as happens in [12], such an estimator
is expected to compare favorably with second-order reduced bias estimators, such
as the one introduced in [5], but a comparative study of the estimators is out of the
scope of this paper. Note that the choice q D 0 is appealing in practice, but should be
used with care, as it can induce a problem of sub-estimation and even inconsistency
(see, for instance, [10]). As expected, the EVI-estimate of the standardized log-
returns is smaller than the EVI-estimate of the original log-returns. The robustness
of the algorithm to changes in the sub-sample sizem1 and the finite sample behavior
of the PORT-ABL-Hill EVI-estimators are also two other relevant topics out of the
scope of this paper.
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Extremal Quantiles, Value-at-Risk, Quasi-PORT
and DPOT

P. Araújo Santos and M.I. Fraga Alves

Abstract
Under the context of high quantiles, Value-at-Risk (VaR) models based on
the PORT Hill estimator, VaR models based on the DPOT method and other
unconditional and conditional models are compared through a out-of-sample
accuracy study. To obtain a reasonable number of violations for backtesting, the
log returns have been used from the Down Jones Industrial Average index, which
constitutes a financial time series with a very large data size.

1 Introduction

We are concerned with extraordinary events in financial markets—the so known
as “Black Swans” events—such as the Black Thursday (stock market crash on 24
October 1929), the Black Monday (stock market crash on 19 October 1987), the
turmoil in the bond market in February 1994 and the recent 2008 financial crisis.
These crises are characterized by extreme price changes and a major concern for
regulators and owners of financial institutions is the adequacy of capital to ensure
that they can still be in business after such extreme price changes. Considering time-
series of daily log returnsRt D log.Pt=Pt�1/, where Pt is the value of the portfolio
at time t , the VaR(p) for time t C 1, VaRtC1.p/, is defined by
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P ŒRtC1 � VaRtC1.p/� D p;

where p is the coverage rate or probability level. VaRtC1.p/ is a quantile p of
the return RtC1 distribution. Value-at-Risk (VaR) emerged as the primary tool for
financial risk assessment. Here, we are dealing with rare events and thus with much
lower probabilities than the usual p D 0:01 used for daily capital requirements
calculations under the Basel II Accord. In this work it will be considered the
probability of an adverse extreme price movement that is expected to occur
approximately once every 4 years (p D 0:001) or once every 8 years (p D 0:0005);
therefore, we fall in the context of extremal quantiles. This context may have interest
in the development of stress tests (e.g., [19]), which are directly related to the
occurrence of extremes in financial markets. Some authors (e.g., [5]) argued that
when small probabilities come into play, an unconditional approach is better suited
for VaR estimation, because extreme price changes do not appear to be related to a
particular level of volatility, nor exhibit time dependence. In fact, it is demonstrated
by de Haan et al. [6], that for certain dependent processes, such as ARCH, volatility
clustering vanishes at the level of extremes. Moreover, Resnick and Starica [23]
have shown the consistency of the Hill estimator under certain types of dependence,
such as GARCH.

In this work, both unconditional and conditional VaR models are compared. In
Sect. 2 the VaR methods used in the comparative study are summarized. In Sect. 3,
the results of the comparative out-of-sample study are presented.

2 VaRModels

For the out-of-sample study, the following models were considered.

2.1 Quasi-PORT

The Hill estimator for the tail index � [16] may exhibit a high asymptotic
bias. Recent developments in EVT involve the reduction of bias (see Peng [21],
Feuerverger and Hall [8], Gomes et al. [10, 12], among others). They achieved �
estimators with asymptotic variance equal or higher than .�.1��/=�/2 > �2, where
� is a second order parameter. More recently, Caeiro et al. [4], Gomes and Pestana
[11], Gomes et al. [13] and Gomes et al. [14] have proposed minimum variance
reduced bias (MVRB) estimators for � . They reduce bias without increasing the
asymptotic variance, which is kept at the value �2. A simple class of MVRB-
estimators is the one introduced in Caeiro et al. [4] with the functional form,

O�H
n;k; Ǒ; O� WD O�Hn

�
1 �

Ǒ
1 � O�

�n
k

� O��
; (1)
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where O�Hn is the Hill estimator and O� and Ǒ are consistent estimators of the second
order parameters � and ˇ. See Fraga Alves et al. [9] for � estimation and Gomes
et al. [14] for ˇ estimation.

The MVRB tail index estimators are not location invariant, but they are much
less sensitive to changes in location than the classical Hill estimator, thus, they
are “approximately” location invariant. Gomes et al. [15] have proposed to use
the PORT Hill estimator [3] instead of the Hill estimator [16] in the MVRB
estimator (1). This estimator was named “quasi-PORT” tail index estimator. For
the case of high quantiles, Gomes et al. [15] proposed to use the “quasi-PORT” tail
index estimator instead of the PORT Hill estimator in the PORT-Weissman-Hill high
quantile estimator [3]. This estimator was named “quasi-PORT” VaRp estimator.
The PORT estimators involve a tuning parameter q. With q D 0:25 and q D 0:5,
two unconditional VaR models based on the “quasi-PORT” VaRp estimator were
chosen. The estimates of � and ˇ were obtained using the algorithm suggested in
Gomes and Pestana [11].

2.2 DPOT

Araújo Santos and Fraga Alves [2] proposed a Peaks Over a Threshold (POT)
model with durations between excesses as covariates (DPOT) and the out-of-
sample performance was compared with other models, for forecasting 1-day-ahead
VaR(0.01) denoted by VaRtC1jt .0:01/. This is the VaR used by financial institutions
to compute daily capital requirements under the Basel II Accord. Here, for very
small values of p, the DPOT model was used in the comparative study of Sect. 3
with the most simple specification .v D 1; c D 1/ and with the specification with
better out-of-sample results in the comparative studies in [2] .v D 3; c D 0:75/.
In this model v denotes the number of previous excesses considered in the model
and c is a tuning parameter (details in [2]).

2.3 Other Models

We have chosen three more models from Extreme Value Theory (EVT). The
unconditional POT model, the conditional EVT model with normal innovations
(denoted here by CEVT-n) and the conditional EVT model with skewed t inno-
vations (denoted here by CEVT-sst). For a review of these models, see McNeil and
Frey [20] and Kuester et al. [17].

Finally, three parametric conditional models were used in the comparative study.
Fully parametric models in the location-scale class assumes for the returns,

Rt D �t C "t D �t CZt�t ;
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whereZt are a sequence of iid rv’s with zero mean and unit variance (also known as
innovations),�t the conditional mean and �t the conditional standard deviation. We
choose the RiskMetrics model [25] and the AR-APARCH model. In this last model
the �t is expressed as a first order autoregressive process based on returns and �t
expressed as in the APARCH(1,1) model proposed by Ding et al. [7]. We denote by
APARCH-n the AR-APARCH model with normal innovations and by APARCH-sst
the AR-APARCH model with skewed-t innovations.

3 Out-of-Sample Study with the DJIA Index

Under the context of extremal quantiles, we set p D 0:001 and p D 0:0005. To
achieve a reasonable number of violations for backtesting, it is important to have
a very large data size and this leads us to use the log returns of the Down Jones
Industrial Average index, one of the oldest stock indexes. From October 2, 1928,
until March 25, 2011, we compute 20,713 returns and with a moving windows of
size nw D 1;000 days, we obtain 19,713 one-day-ahead VaR forecasts for each
model. As in previous studies, for the EVT methods, we choose the number of top
order statistics k D 100; see McNeil and Frey [20] for a simulation study that
supports a similar choice. To test the unconditional coverage (UC) hypothesis we
apply the Kupiec test [18] and to test the independence (IND) hypothesis we apply
the maximum to median ratio test (Araújo Santos and Fraga Alves [1]) denoted by
MM independence test. The programs were written in the R language [22] and with
the fGarch [26] and POT [24] packages.

Tables 1 and 2 summarize the results, respectively, for p D 0:001 and
p D 0:0005. The APARCH-sst based on Skewed-t errors performs well in terms
of UC under p D 0:001. Empirical findings show that the Skewed-t is clearly
preferable to the normal for the distribution of the errors. The performance of
conditional parametric models based on the normal distribution (RiskMetrics and
APARCH-n) is extremely poor with the number of violations exceeding more than
five times the expected under UC.

Further to the tail, more poor are the results. With the smaller probability level
p D 0:0005, RiskMetrics produced 101 violations which represent more than
ten times the expected value equal to 9.8565, under UC. The APARCH-n model
produced 74 violations, more than seven times the expected. These results confirm
what is well known in the literature (see, for instance, Danielsson and Vries, 1997).
On the other hand, the accuracy of the best performers quasi-PORT(q D 0:5) and
DPOT(v D 1) is very good, with the number of violations very close to the expected
under UC. These two models have also good results in terms of independence. In
the group of EVT models they perform clearly better than the classic POT model
and than the CEVT hybrid model. Finally, it is interesting to note that one of the best
performers, quasi-PORT(q D 0:5), is based on the iid assumption and this provides
evidence that the iid assumption can work well when we are dealing with very small
probability levels.
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Table 1 Out-of-sample accuracy for VaR(0.001) applied to Down Jones Industrial Average index
returns from October 2, 1928 until March 25, 2011, with a rolling window of size 1,000a

Number Violation Kupiec MM ratio
Model of violations frequencies p-value p-value

Unconditional EVT models
POT 36 0.001826 0.0000 0.1254
Quasi-PORT(q D 0:25) 31 0.001573 0.0190 0.1048
Quasi-PORT(q D 0:5) 20 0.001015 0.9486 0.1849
Conditional EVT models
DPOT(v D 1) 22 0.001116 0.6130 0.1966
DPOT(v D 3) 32 0.001623 0.0112 0.5849
CEVT-n 31 0.001573 0.0190 0.8919
CEVT-sst 31 0.001573 0.0190 0.9631
Conditional parametric models
RiskMetrics 128 0.006493 0.0000 0.0015
APARCH-n 101 0.005124 0.0000 0.0141
APARCH-sst 22 0.001116 0.6130 0.0564
aFor each model, the number of 1-day-ahead VaR(0.001) forecasts is 19,713 and the expected
number of violations under the UC hypothesis is 19.713

Table 2 Out-of-sample accuracy for VaR(0.0005) applied to Down Jones Industrial Average
index returns from October 2, 1928 until March 25, 2011, with a rolling window of size 1,000a

Number Violation Kupiec MM ratio
Model of violations frequencies p-value p-value

Unconditional EVT models
POT 27 0.001370 0.0000 0.2102
quasi-PORT(q D 0:25) 14 0.000710 0.2146 0.0981
quasi-PORT(q D 0:5) 11 0.000558 0.7206 0.1562
Conditional EVT models
DPOT(v D 1) 10 0.000507 0.9636 0.2035
DPOT(v D 3) 24 0.001217 0.0001 0.1048
CEVT-n 24 0.001217 0.0001 0.7834
CEVT-sst 25 0.001268 0.0001 0.9922
Conditional parametric models

RiskMetrics 101 0.005124 0.0000 0.0288
APARCH- n 74 0.003754 0.0000 0.0105
APARCH- sst 16 0.000812 0.0729 0.0799
aFor each model, the number of 1-day-ahead VaR(0.0005) forecasts is 19,713 and the expected
number of violations under the UC hypothesis is 9.8565.

As future research, we plan to extend the out-of-sample study presented in this
section, to other indexes and other types of large financial time series, such as
individual stocks and foreign currencies.
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TheMOP EVI-Estimator Revisited

M. Fátima Brilhante, M. Ivette Gomes, and Dinis Pestana

Abstract
A simple generalisation of the classical Hill estimator of a positive extreme
value index (EVI) has been recently introduced in the literature. Indeed, the Hill
estimator can be regarded as the logarithm of the geometric mean, or equivalently
the logarithm of the mean of order p D 0, of a set of adequate statistics. Instead
of such a geometric mean, it is thus sensible to consider the mean of order p
(MOP) of those statistics, with p � 0. In this paper, a small-scale simulation
study and a closer look at the asymptotic behaviour at optimal levels of the class
of MOP EVI-estimators enable us to better understand their properties and to
suggest simple adaptive EVI-estimates.

1 Introduction and Preliminaries

Let .X1; : : : ; Xn/ denote the available random sample of size n, from an underlying
distribution function (d.f.)F . LetX1Wn � � � � � XnWn denote the associated ascending
order statistics (o.s.’s) and let us assume that there exist sequences of real constants
fan > 0g and fbn 2 Rg such that the maximum, linearly normalised, converges in
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distribution to a non-degenerate random variable (r.v.). Then, the limit distribution
is necessarily of the type of the general extreme value d.f.,

EV� .x/ D
�

exp.�.1C �x/�1=� /; 1C �x > 0 if � 6D 0
exp.� exp.�x//; x 2 R if � D 0: (1)

The d.f. F is said to belong to the max-domain of attraction of EV� in (1) and
we write F 2 DM

�
EV�

�
. The parameter � is the extreme value index (EVI), the

primary parameter of extreme events. This index measures the heaviness of the right
tail functionF WD 1�F and the heavier the right tail the larger � is. In this paper we
shall work with heavy-tailed distributions in DCM WD DM

�
EV�

�
�>0

. These heavy-
tailed models are quite common in the most diversified areas of application, among
which we mention insurance, finance and biostatistics.

For models in DCM , the classical EVI-estimators are the Hill estimators [12],
which are averages of log-excesses. We have

H.k/ WD 1

k

kX

iD1
Vik; Vik WD lnXn�iC1Wn � lnXn�kWn; 1 � i � k < n; (2)

and H.k/ is a consistent estimator of � if k D kn is an intermediate sequence of
integers, i.e. if

k D kn !1 and kn D o.n/; as n!1: (3)

Note now that we can write

H.k/ D
kX

iD1
ln

�
Xn�iC1Wn
Xn�kWn

	1=k
D ln

 
kY

iD1

Xn�iC1Wn
Xn�kWn

!1=k

; 1 � i � k < n;

the logarithm of the geometric mean of the statistics

Uik WD Xn�iC1Wn=Xn�kWn; 1 � i � k: (4)

More generally, and just as in [2], we shall now consider as basic statistics for the
EVI estimation, the mean of order p (MOP) of Uik, in (4), i.e. the class of statistics

Ap.k/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
:

 
1
k

kP

iD1
U
p
ik

!1=p
if p > 0

 
kQ

iD1
Uik

!1=k
if p D 0:

(5)
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We shall provide in Sect. 2 an indication on how to generalise the Hill estimator,
defined in (2), on the basis of the statistics in (5). In Sect. 3 we illustrate the
finite sample properties of such a class of EVI-estimators, through a small-scale
simulation study related to a model that depends directly not only on the EVI, � ,
but also on a second-order parameter � � 0, to be defined in Sect. 2. In Sect. 4, the
asymptotic behaviour of the class of MOP EVI-estimators at optimal levels, in the
sense of minimal mean square error (MSE) leads us to suggest a simple estimation
of p. Finally, in Sect. 5 we provide simple adaptive choices of the tuning parameters
p and k, which are simple and nice alternatives to the computer-intensive bootstrap
algorithm in [2].

2 The Class of MOP EVI-Estimators

Note that with F .x/ WD inffy W F.y/ � xg denoting the generalised inverse
function of F , and U.t/ WD F .1 � 1=t/; t � 1; the reciprocal quantile function,

we can write the distributional identity X
dD U.Y /, with Y a unit Pareto r.v., i.e. a

r.v. with d.f. FY .y/ D 1�1=y; y � 1. For the o.s.’s associated with a random Pareto
sample .Y1; : : : ; Yn/, the distributional identity Yn�iC1Wn=Yn�kWnDYk�iC1Wk, 1 � i �
k < n, holds. Moreover, k Yn�kWn=n

p�!
n!11, i.e. Yn�kWn

p� n=k. Consequently, and

provided that (3) holds, we get

Uik WD Xn�iC1Wn
Xn�kWn

D U.Yn�iC1Wn/
U.Yn�kWn/

D U.Yn�kWnYk�iC1Wk/
U.Yn�kWn/

D Y �k�iC1Wk.1C op.1//;

i.e. Uik
p� Y

�

k�iC1Wk . Hence, we have the approximation lnUik 	 � lnYk�iC1Wk D
�Ek�iC1Wk, 1 � i � k, withE denoting a standard exponential r.v. The log-excesses
Vik D lnUik, 1 � i � k, are thus approximately the k top o.s.’s of a sample of size k
from an exponential parent with mean value � . This justifies the Hill EVI-estimator,
in (2). We can further write Up

ik D Y �pk�iC1Wk.1C op.1//. Since E.Y a/ D 1=.1� a/
if a < 1, the law of large numbers enables us to say that if p < 1=� ,

Ap.k/
p�!

n!1
�
1=
�
1 � �p��1=p ; i.e.

�
1 � A�pp .k/

�
=p

p�!
n!1 �;

with Ap.k/ given in (5). Hence the reason for the class of MOP EVI-estimators,
introduced in [2], dependent on a tuning parameter p � 0, and defined by

Hp.k/ WD

8
<̂

:̂

1�A�p
p .k/

p
if p > 0

lnA0.k/ D H.k/ if p D 0:
(6)
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Let us denote by RVa the class of regularly varying functions at infinity, with an
index of regular variation equal to a 2 R, i.e. positive measurable functions g such
that for all x > 0, g.tx/=g.t/ ! xa, as t ! 1 (see [1], for details on regular
variation). We can guarantee that

F 2 DCM ” F 2 RV�1=� ” U 2 RV� : (7)

The first characterisation in (7) was proved in [7] and the second one in [3].
The second-order parameter � (� 0) rules the rate of convergence in the first-

order condition, in (7), i.e. the rate of convergence of
˚

lnU.tx/ � lnU.t/ � � ln x



to zero, and it is the non-positive parameter appearing in the limiting relation

lim
t!1

lnU.tx/ � lnU.t/ � � ln x

A.t/
D
(

x��1
�

if � < 0

lnx if � D 0; (8)

which is assumed to hold for every x > 0, and where jAj must then be of regular
variation with index � (see [6]).

Regarding the asymptotic properties of the Hill and more generally the MOP
EVI-estimators, we now state the following theorem, proved in [2], a generalisation
to p � 0 of Theorem 1, in [4], related to p D 0, i.e. related to the Hill estimator.

Theorem 1 ([2], Theorem 2). Under the validity of the first-order condition, in
(7), and for intermediate sequences k D kn, i.e. if (3) holds, the class of estimators
Hp.k/, in (6), is consistent for the estimation of � , provided that p < 1=� .

If we moreover assume the validity of the second-order condition, in (8), the
asymptotic distributional representation

Hp.k/
dD � C �.1� p�/Z.p/

kp
k
p
1 � 2p� C

1 � p�
1� p� � � A.n=k/C op.A.n=k//; (9)

holds for p < 1=.2�/, with Z.p/

k asymptotically standard normal.

Remark 1. Note that for all � > 0, the asymptotic standard deviation �p.�/ =
�.1� p�/=p1 � 2p� , appearing in (9), increases with p � 0. But for all � > 0,
� < 0 and p 6D .1 � �/=� , the asymptotic bias ruler, bp.� j�/ D .1 � p�/=.1 �
p� � �/, also in (9), decreases with p.

The facts in Remark 1 claim for a comparison of the class of estimators in (6),
already performed in [2], and revisited in Sects. 3 and 4, respectively, through a
small-scale Monte-Carlo simulation and a closer look at the asymptotic behaviour,
at optimal levels, of the class of MOP EVI-estimators.
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Fig. 1 Mean values (left) and root mean square errors (right) of Hp.k/ for a Burr.�; �/ d.f. with
.�; �/ D .0:25;�0:25/, and a sample size n D 1;000

3 Finite Sample Properties of theMOP
Class of EVI-Estimators

We shall now present some results associated with multi-sample Monte-Carlo
simulation experiments of size 5;000 � 20 for the class of MOP EVI-estimators,
in (6), and for sample sizes n D 100; 200; 500; 1;000; 2;000 and 5;000, from
underlying Burr.�; �/ parents, with d.f. F.x/ D 1 � .1C x��=� /1=�, x � 0, � > 0,
� < 0, with � varying from 0.1 until 1 and � varying from �1 until �0:1, with step
0.05. Other parents have been considered in [2]. Details on multi-sample simulation
can be found in [9].

For each value of n and for each of the models, we have first simulated the mean
value (E) and the root mean square error (RMSE) of the estimatorsHp.k/, in (6), as
functions of the number of top order statistics k involved in the estimation and for
p D j=.10�/; j D 0; 1; 2; 3; 4. As an illustration, some of those p-values, based
on the first replicate with a size 5,000, are pictured in Fig. 1, related to an underlying
Burr.�; �/ parent, with .�; �/ D .0:25;�0:25/ and a sample size n D 1;000.

The simulation of the mean values at optimal levels (levels where MSEs are
minima as functions of k) of the EVI-estimators Hp.k/, in (6), again for p D
j=.10�/, j D 0; 1; 2; 3; 4, i.e. the simulation of the mean values of Hp0 WD
Hp.kp0/, kp0 WD arg mink MSE.Hp.k//, on the basis of the 20 replicates with 5,000
runs each, has shown that, as intuitively expected, Hp0 are decreasing in p until a
value smaller than 4=.10�/, and approaching the true value of � . Regarding bias,
we can safely take p D 4=.10�/. But we have to pay attention to variance, which
increases with p.

For the EVI-estimators Hp.k/, we have considered Hp0, the estimator Hp

computed at its simulated optimal level, again in the sense of minimum MSE, i.e. at
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the simulated value of kp0 WD arg mink MSE
�
Hp.k/

�
, and the simulated indicators

REFF
pj0
WD
q

MSE .H00/=MSE
�
Hp0

�
: (10)

Remark 2. An indicator higher than one means a better performance than the
Hill estimator. Consequently, the higher these indicators are, the better the Hp0-
estimators perform comparatively to H00.

In Table 1, and for some of the aforementioned models, we present in the
first row, the RMSE of H00, so that we can easily recover the MSEs of all other
estimatorsHp0. The following rows provide the REFF-indicators, REFF

pj0
, in (10),

for the different EVI-estimators under study. The estimator providing the highest
REFF-indicator (minimum MSE at optimal level) is underlined and in bold. The
value � D �1 was chosen in order to illustrate that the optimal p-value is not
always p D 4=.10�/.

4 A Brief Note on the Asymptotic Comparison of MOP
EVI-Estimators at Optimal Levels

With �p D �p.�/ and bp D bp.� j�/ given in Remark 1, the so-called asymptotic
mean square error (AMSE) is then given by AMSE

�
Hp.k/

� WD �2p=k C
b2p A

2.n=k/: Regular variation theory enables us to assert that, whenever bp ¤ 0,
there exists a function '.n/ D '.n; �; �/, such that

lim
n!1'.n/ AMSE

�
Hp0

� D
�
�2p

�� 2�
1�2�

�
b2p

� 1
1�2� DW LMSE

�
Hp0

�
:

Moreover, if we slightly restrict the second-order condition in (8), assuming that
A.t/ D �ˇt�; � < 0; we can write kp0 � kp0.n/ D arg mink MSE

�
Hp.k/

� D
�
�2p n

�2�=
�
b2p�

2ˇ2.�2�/�
�1=.1�2�/

.1C o.1//:We again consider the usual asymp-

totic relative efficiency,

AREFFpj0 � AREFFHp0jH00 WD
q

LMSE
�
H00

�
=LMSE

�
Hp0

�
:

Consequently, as derived in [2],

AREFFpj0 D
 �p

1 � 2p�
1 � p�

	�2� ˇˇ
ˇ
ˇ

1 � p� � �
.1 � �/.1 � p�/

ˇ
ˇ
ˇ
ˇ

! 1
1�2�

: (11)

For every .�; �/ there is always a positive p-value p0, such that AREFFpj0 � 1,
for any p 2 .0; p0/. Let pM denote the value of p in .0; p0/ where AREFFpj0 is
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Table 2 Values of p0 (first entry), pM D arg supp AREFFpj0 (second entry) and AREFF �
AREFFpMj0 (third entry), as a function of � (first column) and � (first row)

� � �0:1 �0:2 �0:3 �0:4 �0:5 �0:6 �0:7 �0:8 �0:9 �1:0
0.2 p0 2.001 1.923 1.851 1.784 1.722 1.663 1.609 1.558 1.510 1.465

pM 1.369 1.287 1.215 1.152 1.096 1.046 1.000 0.958 0.921 0.886
AREFF 1.015 1.022 1.025 1.025 1.025 1.023 1.022 1.021 1.020 1.018

0.4 p0 1.000 0.962 0.926 0.892 0.861 0.832 0.804 0.779 0.755 0.732
pM 0.684 0.643 0.608 0.576 0.548 0.523 0.500 0.479 0.460 0.443
AREFF 1.015 1.022 1.025 1.025 1.025 1.023 1.022 1.021 1.020 1.018

0.6 p0 0.667 0.641 0.617 0.595 0.574 0.554 0.536 0.519 0.503 0.488
pM 0.456 0.429 0.405 0.384 0.365 0.349 0.333 0.319 0.307 0.295
AREFF 1.015 1.022 1.025 1.025 1.025 1.023 1.022 1.021 1.020 1.018

0.8 p0 0.500 0.481 0.463 0.446 0.430 0.416 0.402 0.389 0.377 0.366
pM 0.342 0.322 0.304 0.288 0.274 0.261 0.250 0.240 0.230 0.221
AREFF 1.015 1.022 1.025 1.025 1.025 1.023 1.022 1.021 1.020 1.018

1.0 p0 0.400 0.385 0.370 0.357 0.344 0.333 0.322 0.312 0.302 0.293
pM 0.274 0.257 0.243 0.230 0.219 0.209 0.200 0.192 0.184 0.177
AREFF 1.015 1.022 1.025 1.025 1.025 1.023 1.022 1.021 1.020 1.018

Fig. 2 Values of pM , for
� D 0;�0:25 [coincident
with the curve p�

M
D 1=.4�/],

� D �0:5;�1, and
p��

M
D 4=.10�/, as a

function of �

maximised, i.e., pM WD arg supp AREFFpj0. The values of p0, pM and the AREFF-
indicator, AREFFpM j0, have been obtained analytically and are presented in Table 2
for a few values of .�; �/.

Note that AREFFpj0, in (11), depends on .p; �/ through p� . There thus
exists a function '.�/ such that pM D '.�/=� . If we consider the equation
d ln AREFFpj0=dp D 0, with AREFFpj0 given in (11), we are led to the equation
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2�=.1� 2a/� 1=.1� a � �/C .1� 2�/=.1� a/ D 0, with a D p� , and finally to
the second-order equation 2a2 � 2a.2 � �/C 1 D 0. We thus get

'.�/ D 1 � �=2�
p
�2 � 4�C 2

.
2: (12)

Note further that for � D �0:25, a quite common value in most practical situations,
'.�/ D '.�1=4/ D 1=4. Consequently, the choice p�

M
D 1=.4�/ can also work as

a simple nice approximation to pM , as can be seen in Fig. 2.

5 Simple Adaptive Selections of the Tuning Parameters

The maximisation of the AREFF indicator, in (11), led us to the valuepM D '.�/=� ,
with '.�/ given in (12). As we have nowadays reliable techniques for the estimation
of second-order parameters, we can easily provide optimal simple choices of p and
k, to be used in the building of an adaptive MOP estimate of � . Alternatively,
we could also rely on the heuristic choice p�

M
D 1=.4�/. The first two steps in

the algorithm were adapted from [10] and are suitable for models with � � �1,
the most relevant in practice, and where the Hill EVI-estimator does not perform
usually quite well. The estimators of ˇ and � used are the ones in [8] and [5],
respectively.
1. Given an observed sample .x1; : : : ; xn/, compute the observed values of the most

simple class of estimators in [5], given by

O�.k/ WD min

�
0;
3.Wk;n � 1/
Wk;n � 3

	
; Wk;n WD

ln
�
M

.1/

k;n

�
� 1

2
ln
�
M

.2/

k;n=2
�

1
2

ln
�
M

.2/

k;n=2
�
� 1

3
ln
�
M

.3/

k;n=6
�

where M.j /

k;n WD
Pk

iD1 V
j

ik =k, j D 1; 2; 3, with Vik given in (2).

2. Using the notation bxc for the integer part of x, work with O� � O�.k1/ and Ǒ �
Ǒ O�.k1/, with k1 D bn0:999c, being Ǒ O�.k/ the estimator in [8], given by

Ǒ O�.k/ WD
�
k

n

	 O�
dk. O�/ Dk.0/�Dk. O�/
dk. O�/ Dk. O�/ �Dk.2 O�/ ; (13)

dependent on the estimator O� D O�.k1/, and where, for any ˛ � 0,

dk.˛/ WD 1

k

kX

iD1

�
i

k

	�˛
; Dk.˛/ WD 1

k

kX

iD1

�
i

k

	�˛
Ui ; Ui D i

�
ln
Xn�iC1Wn
Xn�i Wn

�
:

3. Estimate the optimal level for the estimation through the Hill estimator (see [11]),
i.e. estimate k00 WD arg mink MSE.H0.k// through
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Ok00 D
��
.1 � O�/2n�2 O�=

� Ǒ2.�2 O�/
��1=.1�2 O�/�

:

4. Consider the EVI-estimate, OH00 WD H0. Ok00/.
5. Consider OpM D '. O�/= OH00, with '.�/ given in (12), and p�

M
D 1=.4 OH00/.

6. Compute OH OpM0
� H OpM

. OkM0. OpM// and OH Op�
M
0 � H Op�

M
. OkM0. Op�M//, with

OkM0.p/ WD
��
.1 � p OH00 � O�/2n�2 O�=

� Ǒ2.�2 O�/.1 � 2p OH00/
��1=.1�2 O�/�

:

The application of the algorithm to several randomly simulated samples led us
to the conclusion that, for values of � close to zero, Ok00 and OkM0 provide a clear
over-estimation of the corresponding optimal levels. This leads to a high bias of the
EVI-estimators under consideration for values of � close to zero. But, in general,
the bias of OH OpM0

is smaller than the bias of OH00, as can be seen in Table 3, where

we present the simulated bias of OH00, OH OpM 0
and OH Op�

M
0, respectively, denoted by

Ob00, Ob OpM 0 and Ob Op�M0
, as well as associated 95 % confidence intervals. The estimator

providing the smallest bias is underlined and in bold.
We further present Table 4, similar to Table 1, where we show in the first row,

the RMSE of OH00, so that we can easily recover the MSEs of the other two final
EVI-estimators, OH OpM 0 and OH Op�M0. The following rows provide the REFF-indicators
for the aforementioned EVI-estimators. The estimator providing the highest REFF
indicator (minimum MSE at optimal level) is again underlined and in bold.

We also provide the following comments:
• The comparison of Tables 1 and 4 leads us to point out the loss of efficiency in

the final estimates, when � is close to zero.
• However, regarding MSE the adaptive MOP EVI-estimates overpass the adaptive

Hill estimate for all values of .�; �/.
• The heuristic estimate OHp�M 0

outperforms, in general, OHpM 0.
• The obtained results claim for a further simulation study, out of the scope of this

paper.
• Also corrected-bias MOP EVI-estimators are welcome.
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Tail Dependence of a Pareto Process

Marta Ferreira

Abstract
Heavy-tailed autoregressive processes defined with minimum or maximum
operator are good alternatives to classic linear ARMA with heavy tail noises,
in what concerns extreme values modeling. In this paper we present a full
characterization of the tail dependence of the autoregressive minima process,
Yeh–Arnold–Robertson Pareto(III).

1 Introduction

Extreme value theory (EVT) provides tools that enable to estimate the probability
of events that are more extreme than any that have already been observed.
The classical result in EVT states that if the maximum of an independent and
identically distributed (i.i.d.) sequence of random variables (r.v.’s) converges to
some nondegenerate function G� , then it must be the generalized extreme value
(GEV) function,

G�.x/ D exp.�.1C �x/�1=� /, 1C �x > 0, � 2 R;

with the usual continuity correction G0.x/ D exp.�e�x/. The shape parameter � ,
known as the tail index, determines the tail behavior: if � > 0 we have a heavy
tail (Fréchet max-domain of attraction), � D 0 means an exponential tail (Gumbel
max-domain of attraction) and � < 0 indicates a short tail (Weibull max-domain of
attraction).
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The first results in EVT were developed under independence but, more recently,
models for extreme values have been constructed under more realistic assumption
of temporal dependence.

MARMA processes (maximum autoregressive moving average) with Fréchet
marginals, in particular ARMAX [or MARMA(1,0)], given by,

Xi D max.c Xi�1;Wi /;

with 0 < c < 1 and fWigi�1 i.i.d., have been successfully applied to time
series modeling in alternative to classical linear heavy-tailed ARMA (see [2]
and references therein). Generalizations of MARMA processes and respective
applications to financial time series can be seen in, e.g., [13] and [4]. Here we
shall focus on autoregressive Pareto processes, i.e., an autoregressive process whose
marginal distributions are of the Pareto or generalized Pareto form. As Pareto
observed [10], many economic variables have heavy-tailed distributions not well
modeled by the normal curve. Instead, he proposed a model, subsequently called, in
his honor, the Pareto distribution, whose tail function decreases at a negative power
of x as x ! 1, i.e., 1 � F.x/ � cx�˛; as x !1. Generalizations of Pareto’s
distribution have been proposed for modeling economic variables (a survey can be
seen in [1]).

We consider autoregressive Pareto(III) processes, more precisely, the
Yeh–Arnold–Robertson Pareto(III) [12], in short YARP(III)(1), given by

Xn D min
�
p�1=˛Xn�1;

1

1 � Un "n
�
;

where innovations f"ngn�1 are i.i.d. r.v.’s with distribution Pareto(III)(0,� ,˛), i.e., a
generalized type III Pareto, such that

1 � F".x/ D
h
1C

�x
�

�˛i�1
; x > 0:

with �; ˛ > 0. The sequence fUngn�1 has i.i.d. r.v.’s with a Bernoulli.p/ distribution
(independent of the innovations). We interpret 1=0 asC1. By conditioning on Un,
it is readily verified that the YARP(III)(1) process has a Pareto(III)(0,� ,˛) stationary
distribution and will be completely stationary if the distribution of the starting r.v.
X0 is also Pareto(III)(0,� ,˛).

In this paper we analyze the dependence behavior of the YARP(III)(1) process
in the right tail (the most used for applications). This process is almost unknown
in literature but has large potential as it presents a quite similar tail behavior to
ARMAX and more robust parameters estimation [3]. We characterize the lag-m
tail dependence (m D 1; 2; : : :) by computing several coefficients considered in
[5, 6], defined under a temporal approach. The lag-m tail dependence allows a
characterization of the process in time, analogous to the role of the ACF of a linear
time series. In addition, these measures are also important in applications, such as
risk assessment in financial time series or in engineering, to investigate how the best
performer in a system is attracted by the worst one.
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2 Measures of Tail Dependence

The tail-dependence coefficient (TDC), usually denoted �, was the first tail
dependence concept appearing in literature in a paper by Sibuya, who has shown
that, no matter how high we choose the correlation of normal random pairs, if we
go far enough into the tail, extreme events tend to occur independently in each
margin [11]. It measures the probability of occurring extreme values for one r.v.
given that another assumes an extreme value too. More precisely,

� D lim
t#0
P.F1.X1/ > 1 � t jF2.X2/ > 1 � t/;

where F1 and F2 are the distribution functions (d.f.’s) of r.v.’s X1 and X2,
respectively. It characterizes the dependence in the tail of a random pair .X1;X2/, in
the sense that, � > 0 corresponds to tail dependence whose degree is measured by
the value of �, whereas � D 0 means tail independence. Modern risk management
is highly interested in assessing the amount of tail dependence. As an example, the
Value-at-Risk at probability level 1 � t (VaR1�t ) of a random asset Z is given by
the quantile function evaluated at 1 � t , F�1Z .1 � t/ D inffx W FZ.x/ � 1� tg, and
estimation is highly sensitive towards the tail behavior and the tail dependence of
the portfolio’s asset-return distribution. Observe that the TDC can be formulated as

� D lim
t#0
P.X1 > VaR1�t .X1/jX2 > VaR1�t .X2//:

Generalizations of the TDC have been considered with several practical applica-
tions. In [6], for integers s and k such that 1 � s < d �kC1 � d , it was considered
the upper s; k-extremal coefficient of random vector X D .X1; : : : ; Xd /, defined by

�U .XsWd jXd�kC1Wd / � �U .UsWd jUd�kC1Wd /
D lim

t#0
P.UsWd > 1 � t jUd�kC1Wd > 1� t/;

where U1Wd � : : : � Ud Wd are the order statistics of .F1.X1/; : : : ; Fd .Xd // and Xi Wd
the inverse probability integral transform of Ui Wd . In engineering, the coefficient
�U .XsWd jXd�kC1Wd / can be interpreted as the limiting probability that the sth worst
performer in a system is attracted by the kth best one, provided the latter has an
extremely good performance. In mathematical finance, �U .XsWd jXd�kC1Wd / can be
viewed as the limiting conditional probability that XsWd violates its value-at-risk at
level 1 � t , given that Xd�kC1Wd has done so. If s D k D 1, we obtain the upper
extremal dependence coefficient, 
U , considered in [7].

The study of systemic stability is also an important issue within the context of
extreme risk dependence. The fragility of a system has been addressed through
the Fragility Index (FI) introduced in [8]. More precisely, consider a random
vector X D .X1; : : : ; Xd / with d.f. F and Nx WD Pd

iD1 1fXi>xg the number of
exceedances among X1; : : : ; Xd above a threshold x. The FI corresponding to X
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is the asymptotic conditional expected number of exceedances, given that there
is at least one exceedance, i.e., FI D limx!1E.NxjNx > 0/. The stochastic
system fX1; : : : ; Xd g is called fragile whenever FI > 1. In [5] it can be seen as
a generalization of the FI that measures the stability of a stochastic system divided
into blocks. More precisely, the block-FI of a random vector X D .X1; : : : ; Xd /

relative to a partition D D fI1; : : : ; Isg of D D f1; : : : ; d g is

FI.X;D/ D lim
x!1E.NxjNx > 0/;

where Nx is the number of blocks where it occurs at least one exceedance of x, i.e.,

Nx D
sX

jD1
1fXIj 6�xIj g;

and where XIj is a sub-vector of X whose components have indexes in Ij , with j D
1; : : : ; s (i.e., XIj is the j th block of random vector X) and xIj is a vector of length
jIj j with components equal to x 2 R. Observe that if we consider a partition D� D
fIj D fj g W j D 1; : : : d g, then the coefficient FI.X;D�/ is the FI introduced
in [8]. All operations and inequalities on vectors are meant componentwise.

Here we shall consider the abovementioned tail dependence coefficients defined
in a time series perspective. More precisely, consider a stationary process fXigi�1
with marginal d.f. FX . The lag-m TDC (m D 1; 2; : : :) is given by

�m D lim
t#0
P.FX.X1Cm/ > 1 � t jFX.X1/ > 1 � t/;

measuring the probability of occurring one extreme value observation given that
another assumes an extreme value too, whenever separated in time by a lag-m.
Analogously, we define the lag-m upper s; k-extremal coefficient,

�U .XsWmjXm�kC1Wm/ � �U .UsWmjUm�kC1Wm/
D lim

t#0
P.UsWm > 1 � t jUm�kC1Wm > 1 � t/;

a measure of the probability that, for a horizon of m successive time instants, the
sth worst performer is attracted by the kth best one, provided the latter has an
extremely good performance. If s D k D 1, we obtain the lag-m upper extremal
dependence coefficient, 
Um . Finally, the lag-m block-FI relative to a partition Dm of
Dm D f1; : : : ; mg is

FI.X;Dm/ D lim
x!1E.NxjNx > 0/;

where, for a horizon of m successive time instants, Nx is the number of blocks
where it occurs at least one exceedance of x. Hence it measures the stability within
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m successive time instants of a stochastic process divided into blocks. Analogously
we define the FI.X;D�m/ for a partition D� D fIj D fj g W j D 1; : : :mg as the
lag-m FI version of [8].

3 Tail Dependence of YARP(III)(1)

In this section we shall present a characterization of the dependence structure and
tail behavior of the YARP(III)(1) process. We start with the reference to some
existing results and then we compute the above mentioned measures.

In order to determine the distribution of the maximum, Mn D max0�i�n Xi , it
is convenient to consider a family of level crossing processes fZn.x/g indexed by
x > 0, defined by

Zn.x/ D
�
1 if Xn > x
0 if Xn � x:

These two processes are themselves Markov chains with corresponding transition
matrices given by

P D �1C � x
�

�˛��1
�

p C � x
�

�˛
1 � p

.1 � p/� x
�

�˛
1C p� x

�

�˛

�
:

Hence, we have

FMn.x/ D P.Mn � x/ D P.Z0.x/ D 0;Z1.x/ D 0; : : : ; Zn.x/ D 0/
D P.X0 � x/P.Zi .x/ D 0jZi�1.x/ D 0/n D

�
x
�

�˛

1C
�
x
�

�˛
�
pC
�
x
�

�˛

1C
�
x
�

�˛
�n

and n�1=˛

�
Mn

d! FrKechet.0; .1� p/�1; ˛/.

In [3] it was proved that the YARP(III)(1) process presents a ˇ-mixing depen-
dence structure. Hence, it satisfies the local dependence condition D.un/ of
Leadbetter [9] for any real sequence fungn�1 and so, for each � > 0 such that
n.1 � FX.un// ! � , as n ! 1, we have P.Mn � un/ ! e��� as n ! 1, with
� D 1�p (Proposition 2.2 of [3]). The parameter � , known in literature as extremal
index, is associated with the tendency of clustering of high levels: in case � < 1

large values tend to occur in clusters, i.e., near each other and tail dependence takes
place. Indeed, the YARP(III)(1) process presents tail dependence with lag-m TDC,
�m D pm (see Proposition 2.8 of [3]).
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The one-step transition probability function (tpf) of the YARP(III)(1) process is
given by:

Q.x; �0; y�/ D P.Xn � yjXn�1 D x/ D P.min.p�1=˛x; "n
1�Un / � y/

D
(
1 � P. "n

1�Un > y/ ; x > yp1=˛

1 ; x � yp1=˛
D
�
.1 � p/F".y/ ; x > yp1=˛

1 ; x � yp1=˛:

Similarly, we derive the m-step tpf:

Qm.x; �0; y�/ D
(
1 �Qm�1

jD0ŒF ".p
j=˛y/.1 � p/C p� ; x > ypm=˛

1 ; x � ypm=˛:
(1)

In the sequel we shall denote at the quantile function at 1 � t , i.e.,

at � F�1X .1� t/ D �.t�1 � 1/1=˛ (2)

and, for a set A, ˛.A/ and �.A/ denote the maximum and the minimum of A,
respectively.

Proposition 1. The YARP(III)(1) process has lag-m upper s; k-extremal coefficient,

�U .XsWmjXm�kC1Wm/

D

s�1X

iD0

X

I2Fi

X

J	I
.�1/jJ jp˛.I[J /��.I[J /

�
X

;6DJ	Dm
.�1/jJ jp˛.J /��.J /�

k�1X

iD1

X

I2Fi

X

J	I
.�1/jJ jp˛.I[J /��.I[J /

;

where Fi denotes the family of all subsets of Dm D f1; : : : ; mg with cardinal equal
to i and I the complement set of I 2 Fi in Dm.

Proof. Consider notation PA.t/ D P
�T

a2AfFX.Xa/ > 1 � tg�, for any set A.
From Propositions 2.1 and 2.9 in [6], we have

�U .XsWmjXm�kC1Wm/ D lim
t#0

s�1X

iD0

X

I2Fi

X

J	I
.�1/jJ jPI[J .t/=t

�
X

;6DJ	f1;:::;mg
.�1/jJ jPJ .t/=t�

k�1X

iD1

X

I2Fi

X

J	I
.�1/jJ jPI[J .t/=t

:
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Now just observe that, for i1 < i2 < i3, we have successively

Pfi1;i2;i3g.t/ D
Z 1

at

P.Xi3 > at ; Xi2 > at jXi1 D u1/dFX.u1/

D
Z 1

at

Z 1

at

P.Xi3 > at jXi2 D u2/Q.u1; du2/dFX.u1/

D
Z 1

at

Z 1

at

Œ1 �Qi3�i2 .u2; �0; at �/�Qi2�i1 .u1; du2/dFX.u1/;

where at is given in (2). Applying (1), we obtain

Pfi1;i2;i3g.t/ D t Œt C pi3�i2 .1 � t/�
Z 1

at

Z 1

at

Qi2�i1 .u1; du2/dFX.u1/

D t Œt C pi3�i2 .1 � t/�
Z 1

at

Œ1 �Qi2�i1 .u1; �0; at �/�dFX.u1/

D Œt C pi3�i2 .1 � t/�Œt C pi2�i1 .1 � t/�t:

A similar reasoning leads us to, for i1 < i2 < : : : < ik,

Pfi1;:::;ikg.t/

D
Z

1

at

: : :

Z
1

at

�
1 �Qik�ik�1

�
uik�1 ; �0; at �

��k�1Y

jD2

Qik�j�ik�jC1 .uik�j ; duik�jC1
/dFX.ui1 /

D Qk
jD2.t C pij�ij�1.1 � t //t ;

and hence

lim
t#0
Pfi1;:::;ikg.t/=t D lim

t#0

kY

jD2
.t C pij�ij�1 .1 � t// D pik�i1 : (3)

ut

Corollary 1. The YARP(III)(1) process has lag-m upper extremal dependence
coefficient,


Um D
pm�1

m � .m � 1/p :

A positive 
Um means the existence of extremal dependence on a time horizon of m
time instants.

Proposition 2. The YARP(III)(1) process has lag-m block-FI, relative to a partition
Dm of Dm D f1; : : : ; mg, given by
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FI.X;Dm/ D
Ps

jD1
P

k2Ij .�1/k�1
P

J	Ij IjJ jDk p
˛.J /��.J /

m � .m � 1/p :

Proof. Based on Propositions 3.1 and 5.2 in [5], we have

FI.X;Dm/ D lim
t#0

Ps
jD1 P.

S
i2Ij fFX.Xi / > 1 � tg/

1 � P.Ti2f1;:::mgfFX.Xi / < 1� tg/
D lim

t#0

Ps
jD1

P
k2Ij .�1/k�1

P
J	Ij IjJ jDk P.

T
i2J fFX.Xi/ > 1�tg/

1 � FMm�1 .at /
:

Now observe that, from (3), we have

lim
t#0
P.\i2J fFX.Xi/ > 1 � tg/=t D p˛.J /��.J /

and from (1) and (2), we have

lim
t#0
.1�FMm�1 .at //=t D lim

t#0
1

t

�
1� t

�1 � 1
t�1

�p C t�1 � 1
t�1

�m�1	 D m�.m�1/p :

ut

Corollary 2. The YARP(III)(1) process has lag-m FI,

FI.X;D�m/ D
m

m � .m � 1/p :

Therefore, on a time horizon of m (m > 1) time instants the process is strongly
fragile since FI > 1.

We remark that the tail measures given above only depend on the parameter p of
the YARP(III)(1) process and thus can be estimated through this latter. For a survey
on the estimation of p, see [3].
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Application of the Theory of Extremes
to the Study of Precipitation in Madeira
Island: Statistical Choice of Extreme
Domains of Attraction

Délia Gouveia, Luiz Guerreiro Lopes, and Sandra Mendonça

Abstract
In the past and nowadays, hydrology is one of the most natural fields of
application for the theory of extremes. This work presents an application of
univariate extreme value theory to the study of precipitation in Madeira Island.
The method for testing extreme value conditions investigated by Dietrich et al.
(Extremes 5:71–85, 2002) was applied to the monthly 1-day maxima precipita-
tion data for the rainy season from seven pluviometric stations maintained by the
Portuguese Meteorological Institute. The statistical procedures for the problem of
statistical choice of extreme domains of attraction analysed by Neves and Fraga
Alves (TEST 16:297–313, 2007) were also applied to each station data set. The
results of this analysis indicate the possible k upper extremes to be used for each
local sample and the sign of each extreme value index � .

1 Introduction

In the first book on statistics of extremes, Emil Gumbel [8] wrote that the oldest
problems connected with extreme values arise from the study of floods. As stated by
Katz et al. [11], early work in hydrology usually assumed an exponential distribution
for the excess over a high threshold, which is equivalent to a Gumbel distribution
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for the maximum. Nowadays, statistics of extremes for independent and identical
random variables are applied following two different methodologies: parametric and
semi-parametric. Unlike the parametric methodology, the only assumption in the
semi-parametric approach is that the distribution function F is in the domain of
attraction of an extreme value distribution. The statistical methodologies associated
with a semi-parametric set-up for peaks over random threshold (PORT) approach
are a result of the research of Laurens de Haan and collaborators [4].

In this work, data from seven pluviometric stations in Madeira Island provided
by the Portuguese Meteorological Institute (IM) were used. The assumption that
the distribution function F belongs to the domain of attraction of an extreme value
distribution for monthly 1-day maxima precipitation data was tested for the rainy
season, and the available data from each station was then analysed in order to find
the most suitable domain of attraction for the sampled distribution.

The volcanic island of Madeira, located in the Atlantic Ocean off the coast
of Northwest Africa has a near E–W-oriented orographic barrier, approximately
perpendicular to the prevailing NE wind direction, which induces a remarkable
variation of precipitation between the northern and southern slopes [2].

In the last two centuries, extreme precipitation events triggered at least thirty
significant flash floods (in terms of damages and loss of lives) in Madeira Island
[19]. Since 2001, at least nine events of this nature, with different intensities, have
occurred in the island, and the last and most significant one occurred on the 20th of
February 2010 [2].

The structure of this paper is as follows. Section 2 presents the methods of
univariate extreme value theory applied in this study and the available precipitation
data used. This is followed by Sect. 3, where the results of the analysis are presented.
Finally, Sect. 4 contains a summary and some final comments.

2 Methods and Data

Let X1;X2; : : : ; Xn be independent random variables with common distribution
function F . The assumption that F is in the domain of attraction of an extreme
value distribution, F 2 D.G�/, means that there are normalising constants an > 0

and bn 2 R such that, for all x,

lim
n!1P

�
max
1�i�n

Xi � bn
an

� x
	
D G�.x/ (1)

with

G�.x/ D
�

exp.�.1C �x/�1=� /, if 1C �x > 0, � ¤ 0;
exp.� exp.�x//, if x 2 R, � D 0: (2)

We shall use here the approach of Dietrich et al. [1] to test H0 W F 2 D.G�/,
for some � in R. Our choice is reinforced by Hüsler and Li’s work [10] and the
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study they made comparing the mentioned approach to two others. The test statistic
is given (with the usual notations) by:

En.k/ D k
Z 1

0

 
logXn�Œkt �Wn � logXn�kWn

O�C � t
�O�� � 1
O�� .1 � O��/

!2
t�dt (3)

where � > 0 and the estimates O�C and O�� for �C D maxf�; 0g and �� D minf�; 0g,
respectively, are the moment estimators. The integer k satisfies k ! 1, k=n ! 0

and k1=2A.n=k/! 0, as n!1, with A related to the second order condition.
The recommended procedure (see [10, 21]) for application of the test is:

1. Estimate O�C and O�� by the moment estimator and calculate the value of the test
statistic En.k/;

2. Determine the corresponding quantileQ1�˛; O� using the Table 1 in [10];
3. If En.k/ > Q1�˛; O� , then reject H0 with nominal type I error ˛.

When the hypothesis that F belongs to the domain of attraction of an extreme
value distribution is not rejected, it may be useful for applications to know what is
the most suitable domain of attraction for the sampled distribution. We shall use the
normalized versions of the Hasofer and Wang’s test statistic [9],

W �n .k/ D
p
k=4

 

k

 
1

k

.k�1
Pk

iD1 Zi /2

k�1
Pk

iD1 Z2
i � .k�1

Pk
iD1 Zi /2

!

� 1
!

(4)

and of the Greenwood’s test statistic [7],

R�n .k/ D
p
k=4

 
k�1

Pk
iD1 Z2

i

.k�1
Pk

iD1 Zi /2
� 2

!

(5)

both given by Neves and Fraga Alves [17], whereZi D fXn�iC1Wn�Xn�kWngiD1;:::;k
and k is the number of observations above the random threshold Xn�kWn. Under the
null hypothesis of the Gumbel domain of attraction and some additional (second
order) conditions, the test statisticsW �n .k/ andR�n .k/ are asymptotically normal, as
n!1.

The critical region for the two-sided test of a nominal size ˛, H0 W fF 2 D.G0/g
vs. H1 W fF 2 D.G�/�¤0g, is given by jW �n .k/j > z1� ˛2 and by jR�n .k/j > z1� ˛

2
,

where z1� ˛2 denotes the .1 � ˛=2/—quantile of the standard normal distribution.
The one-sided testing problem of testing the Gumbel domain against the Weibull
domain,H0 W fF 2 D.G0/g vs.H1 W fF 2 D.G� /�<0g, has the critical region given
by W �n .k/ > z1�˛ for the Hasofer and Wang’s test. To test H0 against the Fréchet
domain (H1 W fF 2 D.G�/�>0g), the rejection criterion to use is W �n .k/ < �z1�˛ .
Using the test statistic R�n .k/, the rejection criterion is R�n.k/ < �z1�˛ (R�n.k/ >
z1�˛) when we haveH1 W fF 2 D.G�/�<0g (H1 W fF 2 D.G� /�>0g).

In this paper we present the results of the application of these testing procedures
to the monthly 1-day maxima precipitation data for the rainy season from seven
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Table 1 Details of the pluviometric stations used in this study

Number Name Latitude Longitude Altitude (m) Period n

365 Santana 32ı480N 16ı530W 380 1942–2007 382
370 Bica da Cana 32ı450N 17ı030W 1; 560 1961–2009 286
373 Areeiro 32ı430N 16ı550W 1; 610 1961–1993 196
375 Santo da Serra 32ı430N 16ı490W 660 1970–2009 240
385 Lugar de Baixo 32ı400N 17ı050W 15 1961–2004 264
521 Santa Catarina 32ı410N 16ı460W 49 1961–2009 293
522 Funchal 32ı380N 16ı530W 58 1949–2009 366

weather stations in Madeira Island maintained by the IM. Each station is identified
by the name of the place where it is located. Besides the name, Table 1 provides
other information about each station, namely its number, geographical location and
altitude, the period considered and the sample size.

3 Results and Discussion

Our first step was to check if we can consider that, for each data set, the
corresponding distribution function F belongs to the domain of attraction of an
extreme value distribution. To apply the test statistic En.k/ to the data from each
station we used the R program code provided by Li at www.imsv.unibe.ch/~deyuan/
research.html, taking � D 2, as suggested by Hüsler and Li [10]. The values of
the test statistic En.k/ and its corresponding 0:95 quantile for varying k are shown
in Figs. 1 and 2. Table 2 shows possible values of k for which F 2 D.G� / is not
rejected.

This preliminary data analysis assumes that there exists an underlying dis-
tribution for the data in the attraction domain of some classical extreme value
distribution, either Gumbel, Fréchet, or Weibull. Classical extreme value distribu-
tions arise assuming stability of the limiting distribution of suitably normalized
independent and identical random variables. The restriction of the analysis to the
6 months period of the rainy season minimizes the heterogeneity of the data, but
does not guarantee the homogeneity for Santana, Santa Catarina and Santo da Serra
data sets according to the Anderson–Darling test [22]. Nevertheless, we applied the
same statistical procedure to all the data sets for the reasons exposed in Sect. 4.

Our next step was to find the most suitable domain of attraction for the sampled
distribution for each station data set. The test statistics W �n .k/ and R�n .k/ were
implemented in the R software language [20].

The application of test statistics W �n .k/ and R�n .k/ to the seven available data
sets yielded the plots in Figs. 3 and 4. For the values of k in Table 2 the choice
of the domains of attraction suggested by the test statistics W �n .k/ and R�n .k/ is
presented in Tables 3 and 4 by choices A and B, respectively. We observe that when
the Weibull domain is suggested by the test statistic W �n .k/, the choice by the test

www.imsv.unibe.ch/~deyuan/research.html
www.imsv.unibe.ch/~deyuan/research.html
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Fig. 1 Values of the test statistic En.k/ (solid) and the 0:95 quantile (dotted) applied to the data
sets from Areeiro (left), Santana (centre) and Santo da Serra (right) stations
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Fig. 2 Values of the test statistic En.k/ (solid) and the 0:95 quantile (dotted) applied to the data
sets from Bica da Cana (upper left), Funchal (upper right), Lugar de Baixo (down left) and Santa
Catarina (down right) stations
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Table 2 Possible values for k for each location

Station name Values of k

Santana 8 � k � 21; 23 � k � 111 ; 113 � k � 179
Bica da Cana 12 � k � 194
Areeiro 28 � k � 49; 69 � k � 145
Santo da Serra 23 � k � 117
Lugar de Baixo k � 137
Santa Catarina 44 � k � 177
Funchal 22 � k � 245
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Fig. 3 Values of the tests statistics W �

n and R�

n applied to the data sets from Funchal (upper left),
Santana (upper right), Lugar de Baixo (down left) and Santa Catarina (down right) stations

statistic R�n .k/ can be the Gumbel domain or also the Weibull domain, but for fewer
values of k. The difference between the test statistics was pointed out by Neves
and Fraga Alves [17], who refer that the Greenwood-type test barely detects small
negative values of � , and that the Hasofer and Wang’s test is the most powerful test
when analysing alternatives in the Weibull domain of attraction.
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Fig. 4 Values of the tests statistics W �

n and R�

n applied to the data sets from Areeiro (left),
Bica da Cana (centre) and Santo da Serra (right) stations

Table 3 Statistical choice of domain of attraction for the four locations with lower altitude

Choice Funchal Santana Lugar de Baixo Santa Catarina

A Weibull Weibull Fréchet Gumbel
(some values of k) (some values of k) (some values of k)

B Gumbel Gumbel Gumbel Gumbel

Table 4 Statistical choice of domain of attraction for the three locations with higher altitude

Choice Areeiro Bica da Cana Santo da Serra

A Weibull Weibull (some values of k) Weibull (some values of k)
B Weibull Weibull (some values of k) Gumbel

4 Final Remarks

The aim of this work was to present a preliminary application of univariate extreme
value theory to the study of precipitation in Madeira Island.

The extreme value index � is of primary interest in extreme value analysis and it
is the only parameter estimated under a semi-parametric approach. The estimation
of � is based on the k top order statistics in the sample and our analysis provides
information about the region of k values to use for each location. We notice that
for almost all locations there is an evidence for non-positive values of the shape
parameter for some values of k. However, the sign of the estimates of � , when
applying maximum likelihood and probability-weighted moments estimators, was
non-negative in all the cases.

For three locations the identical distribution hypothesis was rejected but that
does not invalidate our analysis because much progress has been achieved in
relaxing the independence and identicality assumptions. The identical distribution
hypothesis has been relaxed by Mejzler [12–16] who described a class of limit laws
which is the simile in extreme value theory to the Lévy–Khinchine’s L class of
self-decomposable laws. Observing that any univariate distribution is max-infinite
divisible, Graça Martins and Pestana [5, 6] defined classes of distribution functions
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Mr; r D 0; 1; : : : , M0 being the class of all distribution functions, M1 the Mejzler
class, Mr , for r > 1, the class of the distribution functions F such that G.x/ D
G.x C a/ Fa.x/, 8a > 0 when Fa 2Mr�1 and M1 D

1\

rD0
Mr , where G D F if R

is the support of the distribution function F , or a simple transformation whenever
its support is a proper subset of the real line, cf. Galambos [3]. Mejzler’s class can
be characterized in terms of log-concavity of G. Analogously, Graça Martins and
Pestana Mr classes may be characterized in terms of higher order monotonicity
(fully described by Pestana and Mendonça [18]) of the correspondingG, andM1 in
terms of complete monotonicity:F 2M1 if and only the correspondingG satisfies
G.x/ D expŒ�K.x/�, with K completely monotone. Hence, M1 is a non-trivial
extension of both the superclass of stable extreme value distributions for maxima,
and a subclass of Mejzler’s laws, that can provide a proper framework to analyse
maxima of linearly transformed data arising from various parent distributions. This
is postponed for future work, namely on kernel estimation of a fitting K .
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The Traveling Salesman Problem
and the Gnedenko Theorem

Tiago Salvador and Manuel Cabral Morais

Abstract
The traveling salesman problem (TSP) has three characteristics common to most
problems, which have attracted and intrigued mathematicians: the simplicity of
its definition, the wealth of its applications, and the inability to find its optimal
solution in polynomial-time.

In this paper, we provide point and interval estimates for the optimal cost
of several instances of the TSP, by using the solutions obtained by running
four approximate algorithms—the 2-optimal and 3-optimal algorithms and their
greedy versions—and considering the three-parameter Weibull model, whose
location parameter represents the (unknown) optimal cost of the TSP.

1 Traveling Salesman Problem: Definition and a Few
Milestones

Consider a salesperson seeking to visit each city on a given list of N .N > 3/ cities
exactly once and to return to his(her) city of origin, and assume that (s)he knows
the cost of traveling between any two cities i and j , cij .i; j D 1; : : : ; N /. The
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traveling salesman problem (TSP) consists in finding a sequence of cities such that
the associated total traveling cost is minimal—the optimal tour. In mathematical
terms, the TSP corresponds to the identification of the cyclic permutation  of the
integers from 1 to N that minimizes

PN
iD1 ci.i/.

It is hard to determine the origins of the TSP. It is believed that the term
“Traveling Salesman Problem” was introduced in mathematical circles in 1931–
1932 by H. Whitney [9, p. 5]; but, according to Hoffman and Wolfe [9, p. 5], the
TSP was first mentioned in a handbook for traveling salesmen from 1832. This
handbook includes example tours through Germany and Switzerland, however, no
mathematical treatment had been given to the problem [18]. Curiously enough,
mathematical problems related to the TSP problem were treated in the 1800s by
the mathematicians W.R. Hamilton and T.P. Kirkman [9, p. 3].

[9, pp. 6–9] also refers that the seminal paper [1] expressed the TSP as an integer
linear program problem, developed the cutting plane method for its solution and
solved an instance with 49 (American) cities to optimality, by constructing a tour
and proving that no other tour could be shorter. Since then the TSP is used as a
benchmark for many optimization methods, has several applications (such as in
scheduling, logistics, manufacture of microchips), and, unsurprisingly, is one of the
most intensively studied problems in computational mathematics.

2 Complexity, Approximate Algorithms, and Statistical
Approach

The TSP is an NP-hard problem [9, p. 7]; hence, we do not expect to find a
polynomial-time algorithm to solve it. However, several tour construction algo-
rithms and iterative improvement algorithms have been proposed; they do not
necessarily yield the optimal solution but can provide an approximate solution in
a reasonable amount of time.

In this paper, we will focus on the results yielded by the �-optimal algorithm
.� D 2; 3/, an iterative improvement algorithm whose description requires two
preliminary definitions taken from [11] and [4].

Definition 1. A tour is said to be �-optimal (or simply �-opt) if it is impossible to
obtain a tour with smaller cost by replacing any � of its edges by any other set of �
edges.

Definition 2. The �-neighborhood of a tour T ,N�.T /, is the set of all tours we can
obtain of T by replacing � of its edges.

The �-optimal algorithm can be described as follows:
Step 1 Randomly choose a tour T .
Step 2 If T is �-optimal, stop. Otherwise, go to Step 3.
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Step 3 Compute N�.T / and the associated costs of its tours.
Step 4 Choose T � as the tour in N�.T / with smallest cost and return to Step 2

with T D T �.
If instead of choosing the tour with the smallest cost at Step 4, we choose the

first one we find that has a smaller cost than T , we end up dealing with a variant
(and well-known first improvement strategy) of the original algorithm rightly called
�-optimal greedy algorithm and also addressed in this paper.

The computational complexity of the TSP and the inability to find the optimal
tour in polynomial-time justify a statistical approach to this optimization problem
[6]. This approach naturally requires the collection of data and the use of a
probabilistic model in order to make inferences on the cost of the optimal tour.

As for the data, let A be an algorithm for solving the TSP that will be run n
times, Xij be the cost of the tour at the iteration j of run i with ni .N / iterations for
N cities, Xi.1/ = minjD1;:::;ni .N / Xij be the cost of the approximate solution yielded
by algorithm A at run i , i D 1; : : : ; n. Then .X1.1/; : : : ; Xn.1// can be thought as a
random sample of n minimum costs (one random sample per run).

As far as the probabilistic model is concerned, the (Fisher–Tippett–)Gnedenko
theorem [3, 5], a fundamental result in extreme-value theory, provides a suitable
model. This theorem can be informally stated as follows: under certain conditions,
the standardized minimum of a random sample converges to one of the following
distributions—Fréchet, Weibull, or Gumbel. If we bear in mind that the Weibull
distribution is the only of those three limiting distributions with a range limited from
below and that the costs of the admissible tours are limited to the left by the cost
of the optimal tour, the Weibull model is the obvious choice for the distribution of
Xi.1/, FXi.1/ .:/, as we increase the number of cities N (thus, ni .N /). It is important
to note that the fact that the range of the costs Xij is limited to the left is a necessary
but not a sufficient condition for FXi.1/ .:/ to belong to the domain of attraction of
the Weibull distribution. Moreover, as [6] noticed, there is a clearly interdependence
among the intermediate solutions, hence assuming independence and applying the
Gnedenko theorem is disputable.

Although debatable, the idea of using the Weibull model is not new: [6] refers
that [13] was the first author to use this model, while dealing with combinatorially
explosive plant-layout problems. [6, 7, 12, 14, 16] have proceeded in a similar way,
with remarkable results. The Weibull model has been used by further authors in
the statistical approach to other combinatorial optimization problems, such as the
covering problem [17].

A random variableX has a three-parameter Weibull distribution if its probability

density function is given by fX.x/ D c
b
� � x�a

b

�c�1
e�. x�ab /

c � IŒa;C1/.x/, where
a > 0 (because costs cij are assumed nonnegative), b > 0, and c > 0 represent the
location, scale, and shape parameters, respectively.

Assuming that the three-parameter Weibull model is suitable to characterize the
costs of the approximate solutions of the TSP, we are supposed to estimate its
location parameter a, i.e. the cost of the optimal tour, by making use of the sample
.x1.1/; : : : ; xn.1// with the results of the n runs of an approximate algorithm A.
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The obvious choice is to consider the sample minimum, x.1/ D miniD1;:::;n xi.1/.
A more reasonable choice is the first component of the maximum likelihood (ML)
estimate of .a; b; c/, . Oa; Ob; Oc/, which is not as trivial to obtain as one might think
[15], thus, the need to resource to alternative estimates, such as the ones proposed
by Zanakis [20] and Wyckoff et al. [19], . Na; Nb; Nc/ and . Qa; Qb; Qc/, respectively, given by

 
x.1/ � x.n/ � x2.2/

x.1/ C x.n/ � 2 � x.2/ ;�NaC x.d0:63ne/; flog Œ� log .1 � pk/�

� log
�� log

�
1 � pj

�

= log

 
x.dnpke/ � Na
x.dnpj e/ � Na

!!

 
x.1/ � Nx

n1=Qc0

1 � 1

n1=Qc0

; exp

(
�

Qc0 C
1

n

nX

iD1
log.x.i/ � Qa/

)

;

n � kn
�Ps

iD1 log.x.i/ � Qa/C s
n�s

Pn
iDsC1 log.x.i/ � Qa/

	
;

where x.i/ represents the i th order statistic of the sample, dye denotes the ceiling of
the real number y, pj D 0:16731, pk D 0:97366, Nx is the arithmetic mean, s D
d0:84ne, Qc0 D

˚
logŒ� log.1 � pk/�� logŒ� log.1 � pj /�



=
˚
log Ê

�
x.dnpke/ � x.1/



� logŒx.dnpj e/ � x.1/�g, � ' 0:577215665 is the Euler constant, and kn is a constant
whose value depends on the dimension of the sample (for exact values of kn see
Table 6 in [2]).

As for confidence intervals (CI) for a, due to min-stability, X.1/ � Weibull�
a; b=n1=c; c

�
, and we can use this result to deriveP ŒX.1/�b < a < X.1/� D 1�e�n

and P ŒX.1/ � b=Œ�n= log.˛/�1=c < a < X.1/� D 1 � ˛. Thus, two CI for the cost of
the optimal tour immediately follow: CI.1�e�n/
100%.a/ D Œx.1/ � bI x.1/� (see [7]);
CI.1�˛/
100%.a/D Œx.1/�b=Œ�n= log.˛/�1=c I x.1/� (see [12]). Finally, let us remind
the reader that the parameters b and c are unknown, hence, by plugging-in the point
estimates of b and c, we can obtain the following approximate confidence intervals:

Golden–Alt [7] CIGA.a/ D Œx.1/ � ObI x.1/�
Golden–Alt–Zanakis [14] CIGAZ.a/ D Œx.1/ � NbI x.1/�
Golden–Alt–Wyckoff–Bain–Engelhardt [14] CIGAWBE.a/ D Œx.1/ � QbI x.1/�
Los–Lardinois [12] CILL.a/ D Œx.1/ � Ob= Œ�n= log.˛/�1=Oc I x.1/�
Los–Lardinois–Zanakis [14] CILLZ.a/ D Œx.1/ � Nb= Œ�n= log.˛/�1=Nc I x.1/�
Los-Lardinois–Wyckoff–Bain–Engelhardt [14] CILLWBE.a/ D Œx.1/ � Qb= Œ�n= log.˛/�1=Qc I x.1/�
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3 Statistical Analysis of the Results of the�-Optimal
and�-Optimal Greedy Algorithms; Concluding Remarks

Now, we focus on the statistical analysis of the approximate solutions obtained by
applying the �-optimal and �-optimal greedy algorithms .� D 2; 3/ to four different
instances of the TSP—with known optimal cost: Dantzig42 (49 cities [1]), Krolak
(100 cities [10]), Random (100 cities [16]), Gr120 (120 cities [16]).

These approximate solutions were obtained by existing programs, written
in Mathematica (demonstrations.wolfram.com/ComparingAlgorithmsForThe
TravelingSalesmanProblem) but modified to control the initial tour. The input of
every program is a random tour; and, to allow the comparison of results (for a given
problem), any run with the same number starts with the same randomly generated
tour. The output of each run is the minimum cost and the associated tour. Then
after 100 runs of each algorithm, we get a data set of minimum costs and compute
the ML estimates of .a; b; c/, using the NMaximize routine in Mathematica, as
well as the Zanakis and Wyckoff–Bain–Engelhardt (WBE) estimates. We also
obtain approximate confidence intervals for the optimal cost, as described in the
previous section, and used the program Concorde TSP Solver (www.tsp.gatech.edu/
concorde/index.html) in order to obtain the optimal cost and to confront it with its
point and interval estimates.

Finally, we computed the observed values of the Kolmogorov–Smirnov (K–S)
goodness-of-fit test statistic and the associated p-values, obtained by using the
ks.test routine of R; the three conjectured distributions are three-parameter Weibull
distributions with .a; b; c/ equal to ML, Zanakis and WBE estimates.

It is apparent from Fig. 1 that different algorithms lead to samples with different
sample location, scale, and skewness. For instance, the approximate solutions of the
2-optimal algorithms have a wider range than the ones obtained with the 3-optimal
algorithms; in addition, the 3-optimal algorithms are associated with minimum costs
closer to the optimal one, as expected.

The point estimates in Table 1 certainly deserve some comments. For example,
the more accurate the approximate algorithm is, the smaller are the estimates of
the location and scale parameters, confirming what was already apparent in the
histograms and suggesting that the 3-optimal algorithms tend to perform remarkably
better than the 2-optimal ones. As far as the WBE estimate of a is concerned, it is,
in general, the smallest one, hence one might think that it overly underestimates the
optimal cost. However, when we compare it to the optimal solution, we see that this
is not the case for the 2-optimal and 2-optimal greedy algorithms; in fact, for these
algorithms it is the most reasonable estimate of the location parameter.

We ought to add that, for the Dantzig42 instance of the TSP: we could not
compute the Zanakis estimate of the shape parameter for the 3-optimal greedy
algorithm because, when x.dnpj e/ D x.17/ D x.1/ and Na D x.1/, the denominator of

the third component of . Na; Nb; Nc/ involves a fraction with a null denominator; we were
unable to obtain the WBE estimates of the scale and shape parameters because we
had a similar problem while computing Qc0 and dealing with repeated observations.

www.tsp.gatech.edu/concorde/index. html
www.tsp.gatech.edu/concorde/index. html
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TSP
Algorithm Gr120RandomKrolakDantzig42

2-optimal

2-optimal greedy

3-optimal

3-optimal greedy

Fig. 1 Histograms of the minimum costs for four instances of the TSP—�-optimal and �-optimal
greedy .� D 2; 3/

Needless to say that the absence of these point estimates compromised the obtention
of the corresponding interval estimates for a, as reported in Table 2.

Table 2 shows that the approximate confidence intervals are very accurate, and
include the optimal cost in most cases. In fact, the three Golden–Alt approximate
confidence intervals always contain the optimal cost a, as opposed to the three
Los–Lardinois approximate 95% confidence intervals. This can be explained by
the approximate confidence level, .1 � e�100/ � 100%, which is very close to
100% for the Golden-Alt confidence intervals; a possible way out is to choose a
larger confidence level for the three Los–Lardinois confidence intervals. Table 2
also confirms the results obtained by Morais [14] and predicted by Golden and
Alt [7]: when we replace the 2-optimal algorithms by the 3-optimal algorithms
(respectively) there is a clear reduction of the relative ranges of the approximate
confidence intervals for the optimal cost. This is essentially due to the fact that
the range is an increasing function of the estimate of the scale parameter, which is
smaller when we use the 3-optimal algorithms.

The results of the K–S goodness-of-fit test condensed in Table 3 confirm that the
Weibull distribution is in fact reasonable for modelling the results of most instances
of the TSP and algorithms: most p-values are larger than the usual significance
levels, with the ML estimates being, in general, the ones that yield the best results.

This paper focuses on the statistical approach to the TSP, as described, for
instance, by Golden [6] and other authors. As far as additions to previous statistical
analyses of the TSP, we have: used greedy versions of the �-optimal algorithm
.� D 2; 3/ to obtain approximate costs; compared the approximate costs with the
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Table 2 Relative range of the six different confidence intervals and whether or not the optimal
solution belongs to the confidence interval for four instances of the TSP—listed in order
corresponding to the 2-optimal, 2-optimal greedy, 3-optimal, and 3-optimal greedy algorithms

TSP
Confidence intervals Dantzig42 Krolak Random Gr120

Golden–Alt 0.065399 Yes 0.072962 Yes 0.070432 Yes 0.070006 Yes
0.053698 Yes 0.051331 Yes 0.057432 Yes 0.045206 Yes
0.000489 Yes 0.021184 Yes 0.034940 Yes 0.021393 Yes
0.000546 Yes 0.007684 Yes 0.021310 Yes 0.032727 Yes

Golden–Alt Zanakis 0.058104 Yes 0.069189 Yes 0.062767 Yes 0.064441 Yes
0.054493 Yes 0.046069 Yes 0.052610 Yes 0.038725 Yes
0.013410 Yes 0.023125 Yes 0.026861 Yes 0.018805 Yes
0.013410 Yes 0.008292 Yes 0.020336 Yes 0.025672 Yes

Golden–Alt WBE 0.055390 Yes 0.076354 Yes 0.072677 Yes 0.083305 Yes
0.055217 Yes 0.053167 Yes 0.058023 Yes 0.050999 Yes
– – 0.020596 Yes 0.030561 Yes 0.021904 Yes
– – 0.007841 Yes 0.022871 Yes 0.032887 Yes

Los–Lardinois 0.015824 Yes 0.015297 Yes 0.018258 No 0.025475 No
0.008082 Yes 0.008907 Yes 0.013248 No 0.010057 No
0.000000 Yes 0.001072 Yes 0.010210 Yes 0.003186 Yes
0.000000 Yes 0.000033 Yes 0.003769 Yes 0.012354 Yes

Los–Lardinois Zanakis 0.008369 Yes 0.013022 Yes 0.013462 No 0.024874 No
0.007386 Yes 0.008006 Yes 0.010335 No 0.010181 No
– – 0.001169 Yes 0.005737 Yes 0.002471 No
– – 0.000174 Yes 0.003803 Yes 0.008171 No

Los–Lardinois WBE 0.010605 Yes 0.017299 Yes 0.020117 No 0.040499 Yes
0.008561 Yes 0.010391 Yes 0.014087 No 0.014211 No
– – 0.001335 Yes 0.007237 Yes 0.003156 No
– – 0.000200 Yes 0.004514 Yes 0.013215 Yes

optimal cost obtained by the Concorde TSP Solver; also considered more instances
of the TSP with slightly more cities or with randomly generated coordinates. (Please
note that we got similar results to the ones described in [14], for the 2- and 3-optimal
algorithms applied to the Krolak instance of the TSP.)

A possibility of further work, that certainly deserves some consideration, is to
confront the point estimates we obtained with the ones suggested by Hall and Wang
[8]. Another one is to investigate the benefits of using the 4-optimal algorithms
now that the computational power has largely increased and to apply the statistical
approach to very large instances of the TSP, which cannot be solved by the Concorde
TSP Solver in a reasonable amount of time.

We strongly hope that this paper gives a stimulus and contributes to fill the gap
between the performance analysis of approximate algorithms and Statistics.
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Table 3 Results of the K–S goodness-of-fit test for four instances of the TSP—listed in order
corresponding to the 2-optimal, 2-optimal greedy, 3-optimal, and 3-optimal greedy algorithms.

TSP

Dantzig42 Krolak Random Gr120

Conjectured
distribution Obs. value p-value Obs. value p-value Obs. value p-value Obs. value p-value

Weibull–ML 0.0814 0.5222 0.0496 0.9663 0.0396 0.9976 0.0784 0.5698
0.0623 0.8318 0.0765 0.6020 0.0394 0.9978 0.1533 0.0182
0.4375 0.0000 0.1263 0.0824 0.0508 0.9584 0.0750 0.6276
0.5306 0.0000 0.2596 0.0000 0.0797 0.5487 0.0639 0.8091

Weibull–Zanakis 0.1021 0.2477 0.0565 0.9068 0.0558 0.915 0.0685 0.7357
0.0958 0.3178 0.0971 0.3023 0.0447 0.9884 0.0935 0.3469
0.3700 0.0000 0.1092 0.1837 0.0660 0.7760 0.1023 0.2463
– – 0.1831 0.0024 0.0951 0.3267 0.0691 0.7267

Weibull–WBE 0.1179 0.1242 0.0581 0.8889 0.0450 0.9875 0.0645 0.7997
0.0655 0.7850 0.0678 0.7473 0.0400 0.9972 0.1014 0.2556
– – 0.1404 0.0388 0.0720 0.6785 0.0779 0.5789
– – 0.1931 0.0012 0.0917 0.3693 0.0531 0.9404
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Brugada Syndrome Diagnosis: Three
Approaches to Combining Diagnostic Markers

Carla Henriques, Ana Cristina Matos, and Luís Ferreira dos Santos

Abstract
Brugada syndrome (BS) is an inherited cardiopathy that predisposes individuals
without structural heart disease to sudden cardiac death. The diagnosis is
performed by detecting a typical pattern in the electrocardiogram (ECG), called
Type 1 Brugada pattern, but this is not always visible, so the diagnosis is not
straightforward. In this study, we investigated other ECG markers, independent
of the typical pattern, which exhibited a good ability to differentiate the carriers
and the non-carriers of the genetic mutation responsible for this disease. The
combination of these markers through linear models has led to enhancing the
ability of each marker to discriminate between the two groups. We found linear
combinations of these markers for which the area under the ROC curve (AUC)
was greater than 0.9, which suggests an excellent ability to discriminate between
the two groups. This study points towards good alternatives for diagnosing BS
which may prevent searching for the Type 1 Brugada pattern in an ECG, but these
alternatives should be investigated with a larger database in order to produce a
good effective predictive model.
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1 Introduction

Brugada syndrome (BS) is a disease characterized by a dysfunction of cardiac
sodium channels that results from a genetic mutation, in most cases inherited from
one parent, and which predisposes to malign cardiac arrhythmias and sudden cardiac
death (SCD). It is estimated that this disease is responsible for at least 20% of
the cases of sudden cardiac death in individuals with normal hearts and at least
4% of all cases of SCD [5], which clearly explains the growing scientific interest
around it. In fact, it is a very recent clinical entity, since it was first documented
in 1992 by Brugada and Brugada [1], but the number of publications covering this
disorder has grown considerably in recent years. Individuals carrying the genetic
mutation may never have any symptoms, however, SCD can be the first symptom
of the disease and, therefore, it is a kind of “threat,” sometimes “a silent threat,” in
relatives of carriers of the disease. The only way to eliminate the threat of sudden
death is the implantation of an implantable cardioverter defibrillator, but this is very
expensive, very uncomfortable for the patient, and can lead to complications, so
it is recommended only in high risk patients. The diagnosis is usually performed
detecting a specific pattern in an electrocardiogram (ECG), called Type 1 pattern
or Brugada ECG, in combination with other easily identifiable clinical criteria.
A major difficulty associated with the diagnosis is to detect the Type 1 pattern in an
ECG, as this is often intermittent (affected individuals have intermittently normal
ECGs and Brugada ECGs). Genetic tests are not an adequate solution, because
they are very expensive and it is sometimes difficult to detect the genetic mutation
associated with the disease. This work falls within this context. Based on the records
of 113 members of two Portuguese families, with 42 carriers of the genetic mutation
(identified by genetic tests), the electrocardiographic markers were investigated to
find some that could discriminate between mutation carriers and non-carriers, in
order to make a diagnosis without having to resort to Brugada pattern detection. Our
records were obtained from a proband with a Type 1 Brugada pattern ECG, making
the investigation of all family members mandatory (for more details see Santos
et al. [5]). Through the use of receiver operating characteristic (ROC) curves and
other statistical techniques, we have identified five ECG markers with a good ability
to discriminate between mutation carriers (C) and non-carriers (NC). The natural
question that followed was how to combine these markers in order to increase the
discriminative ability of each one individually. Three approaches were explored:
discriminant analysis, a distribution-free approach proposed by Pepe and Thompson
[4], and logistic regression. As a result of this effort, in this study we envisage ways
of combining these markers, which, in this data set, proved to be more efficient than
the detection of a Brugada pattern. The SPSS, version 19, and R packages were used
for the statistical analysis.
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Table 1 Area under the ROC curve (AUC) and 95 % confidence intervals for AUC, for each of
the five markers

PR QRSf LAS RMS40 dQT

AUC .p < 0:001/ 0.86 0.83 0.77 0.77 0.72
95 % IC (0.79, 0.93) (0.73, 0.93) (0.66, 0.88) (0.65, 0.88) (0.62, 0.82)

2 ECGMarkers to Identify Mutation Carriers

All the known ECG parameters of depolarization and repolarization were measured
and five were identified as being good discriminators between carriers and non-
carriers of the genetic mutation: P-wave duration (PR), transmural dispersion of
repolarization (dQT) between V1 and V3, filtered QRS duration (fQRS), where
QRS stands for the combination of three of the graphical deflections seen on a
typical ECG (typically an ECG has five deflections, arbitrarily named P, Q, R, S,
and T waves), low-amplitude signal duration (LAS), and root-mean-square of the
voltage in the last 40 ms of the fQRS (RMS40), the last three taken in a signal
average ECG. To achieve these ECG markers the experience of the physician
was conjugated with statistical tests to access the association of markers with the
presence of the mutation.

Unfortunately, not all of the 113 records had information about those five
markers, so, for the multivariate analysis, only 64 were considered, from which 37
were carriers. Some of the missing data relates to family members under 16 years
old, and we know that the ECG manifestation of the disease is rare in pediatric age.
We are involved in the construction of a national Brugada registry and we hope in
a near future to have more data to present, but we have to realize that Brugada is a
very rare diagnostic.

Univariate analysis for the five markers revealed that PR and QRSf were the
most strongly associated with the genetic mutation. In fact, significant differences
between C and NC were found in the five markers (p < 0:0005 both on T-test
and Mann–Whitney test), but the highest values of eta-squared were obtained for
PR and QRSf (0.4 and 0.3, respectively, while for the other three the values were
approximately 0.2). ROC curves indicate good ability of each one of the five markers
to identify mutation carriers, but again PR and QRSf appear to be the best ones (cf.
Table 1 and Fig. 1).

Pearson correlation coefficients among the five markers are displayed in Table 2.
The relatively high correlations between LAS and RMS40 and between these two
and QRSf suggest that some of these markers may be dispensable in a multivariate
model for the identification of mutation carriers.
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Fig. 1 ROC curves for the
five markers

Table 2 Pearson correlation coefficients among the five markers

QRSf LAS RMS40 dQT

PR 0.36 (nD64) 0.41 (nD64) �0:3 (nD64) 0.2 (nD102)
QRSf 0.76 (nD71) �0:71 (nD71) 0.37 (nD64)
LAS �0:78 (nD71) 0.25 (nD64)
RMS40 0.25 (nD64)

3 Combining the Markers: Multivariate Analysis

The question which naturally followed the univariate and bivariate analysis was to
find a simple way of combining the markers, that could be implemented easily as a
diagnostic tool, aiming to enhance the ability to discriminate between carriers and
non-carriers. In this work, several linear models were constructed and compared
in terms of the AUC, since this is a very valuable tool to measure accuracy of
a diagnostic test and is widely used in medical research. The simplest solution
was to add PR and QRSf, the two markers that seemed to best separate the two
groups. In fact, this simple solution was quite effective, as it yielded an ROC
curve with AUC D 0:927 (p < 0:001/. Later, we will present the ROC curve
for this sum comparing it with others. To investigate other solutions of combining
these markers, we resorted to three approaches: discriminant analysis, whose results
are illustrated in the next subsection, a distribution-free methodology proposed by
Pepe and Thompson [4], described in Sect. 3.2, and logistic regression analysis,
whose results are discussed in Sect. 3.3. In each subsection, we compare some
of the solutions given by these approaches, seeking effective guidelines toward a
combination of this markers serving as a means of diagnosis.
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Fig. 2 ROC curves for YDA1

and PRC QRSf

3.1 Discriminant Analysis

It is known that if the markers follow a multivariate normal distribution in both
groups, C and NC, then the linear combination that optimizes AUC is the linear
discriminant function [6]. However, the normality assumption is not supported by
our data (for example, the Shapiro–Wilk test will give a p-value of 0.008 for the NC
group when testing the normality of PR); consequently, while discriminant analysis
will give good solutions, they will not be the best solutions when compared with
other methodologies, as we will see in the following sections.

Applying discriminant analysis, first using solely PR and QRSf (which have
emerged as more discriminative), then using a stepwise procedure and finally all
five markers, the linear combinations obtained were, respectively:

YDA1 D �11:62C 0:031PRC 0:063QRSf ;

YDA2 D �10:877C 0:029PRC 0:051QRSf C 0:021dQT ;

YDA3 D �7:664C 0:031PRC 0:041QRSf � 0:043LAS � 0:04RMSC 0:022dQT :

The AUCs for the ROC curves associated with the above combinations are 0.935,
0.956, and 0.969, respectively (p < 0:001 for all three) each one higher than
the AUC obtained just adding PR with QRSf. Figure 2 displays the ROC curve
obtained for YDA1 comparing it with the one yielded for the sum of PR with QRSf.
On the right, Fig. 3 exhibits the ROC curves for the above three solutions of the
discriminant analysis. All ROC curves exhibit an excellent ability of the underlying
combinations to discriminate between C and NC, but YDA2 and YDA3 seem to perform
better.
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Fig. 3 ROC curves for YDA1,
YDA2, YDA3

3.2 Distribution-Free Approach

Pepe and Thompson [4] proposed a distribution-free approach to find a linear
combination of several diagnostic markers that optimizes the AUC. For two
diagnostic markers, Y1 and Y2, given the fact that the ROC curve is invariant for
monotone transformations, this problem is reduced to looking for the value ˛ that
maximizes the AUC of Y1 C ˛Y2. To implement this on our data, we followed
the strategy proposed in paper [4], which consists of evaluating the AUC for each
combination Y1 C �Y2, with � ranging from �1 to 1 with increments of 0:01, and
then do the same for �Y1 C Y2, which as the same AUC as Y1 C 1

�
Y2.

The best linear combination of PR and QRSf was YDF1 D 0:46PRCQRSf and
yielded an AUC=0.937 (p < 0:01), which seems better than the corresponding one
of the discriminant analysis.

For more than p > 2 markers, this last strategy requires a search in the p � 1
dimensional space, which is computationally demanding. Pepe and Thompson [4]
suggest a stepwise approach, searching first for the best linear combination of
two markers (implementing the previous strategy), then searching for the marker
that yields the best AUC when put in optimal linear combination with the linear
combination found in the previous step, and so on, until all markers are investigated.
Of course this strategy does not necessarily yield the optimal solution.

Implementing this approach on our data, we obtained precisely the last linear
combination YDF1 in the first step. So, as we have envisaged after the univariate
statistical analysis, PR and QRSf seem to distinguish themselves from the other
markers as having a greater potential to identify mutation carriers. In the second
step, dQT entered in the combination yielding YDF2 D 0:46PRCQRSf C 0:57dQT,
with AUC=0.961, a greater AUC than the corresponding solution from discriminant
analysis YDA2. In the third and final step, LAS enters into the linear combination
giving YDF2 D 0:46PRCQRSfC0:57dQTC0:11LAS, with AUC=0.963. To compare
the ROC curves of this three solutions we have plotted them in Fig. 4. As we can see,
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Fig. 4 ROC curves for YDF1,
YDF2, and YDF3

Fig. 5 ROC curves for YDF2

and YDA2

the difference between the solutions YDF2 and YDF3 is residual, so it seems that the
inclusion of the LAS in the last step did not augment considerably the discriminative
value of the combination. We have already noted that the AUC for YDF2 is greater
than the corresponding one obtained with the discriminant analysis. Comparing the
ROC curves, now, we come to the same conclusion (cf. Fig. 5).

3.3 Logistic Regression

We first estimated a logistic regression model with covariates PR and QRSf,
obtaining Ln.odds/ D �23:642C 0:066PRC 0:13QRSF, with AUC=0.936 (p <
0:001). Comparing this model with the YDF1 (AUC=0.937) from the last section, we
conclude that they are very similar (cf. Fig. 6). We also note that applying Bootstrap,
we obtain similar p-values for the Wald test and similar confidence intervals for
model coefficients, which supports the stability of the model against variation in the
data set (see Table 3).
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Fig. 6 ROC curves for the
logistic model with PR and
QRSf (Y_LR1) and for YDF1

Table 3 Logistic regression model with PR and QRSf as predictor variables

Bootstrap (1,000 samples)

Coeff. Std. err. Wald test 95 % CI BIAS Std. err. p 95 % CI

PR 0.066 0.02 10.8 (p=0.001) 0.03–0.11 0.034 0.27 0.001 0.04–0.24
QRSf 0.13 0.046 7.9 (p=0.005) 0.04–0.22 0.06 0.63 0.006 0.05–0.41

Fig. 7 ROC curves for the
logistic model with PR, QRSf
and dQT(Y_LR2) and YDF2

Applying a stepwise procedure for selecting or deleting variables, we end with
a logistic model that includes PR, QRSf, and dQT. This is in accordance with the
results of the previous subsections, where the third marker to come into the linear
combination was dQT. The model obtained, Ln.odds/ D �26:459 C 0:069PR C
0:13QRSFC 0:068dQT, is again very much similar to the one found in the distribu-
tion-free approach of the last subsection, in terms of discriminative ability, since
the estimated AUC is 0.96 against the 0.961 of YDF2. Also, the ROC curves are
almost indistinguishable (see Fig. 7). Still, our sample is too small to estimate a
logistic model with more than two covariates with reasonable precision (Peduzzi
et al. [3] suggest that the number of events per variable should be at least ten).
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In fact, for the models with more than two covariates, bootstrap standard errors for
the regression coefficients are quite big and bootstrap confidence intervals are very
large. Nevertheless, we estimated the model with the five covariates and obtained
Ln.odds/ D �22:1C0:127PRC:172QRSf�0:373LAS�0:252RMS40C0:109dQT,
with AUC=0.973, the best one obtained among all linear combinations studied.

4 Conclusions

All linear combinations studied lead to ROC curves with AUC> 0:9, which can
be interpreted as a remarkable ability to discriminate between mutation carriers and
non-carriers [2]. It seems clear that combining PR, QRSf, and dQT we obtain a quite
effective model in discriminating between the two groups, but the gain of including
also the information of LAS and RMS40 was not established. We emphasize that
each of the solutions is more efficient in identifying mutation carriers than detecting
a Brugada pattern in an ECG. As an example, we refer to Santos et al. [5], where 122
individuals were screened with several ECGs. For a single ECG, the authors report
a sensitivity of 12.5 % and a specificity of 100 % and with several ECGs, performed
during the follow-up, the sensitivity raised to 30 % maintaining the specificity (see
Table 1 of Santos el al. [5]). From the ROC curves of the linear combinations studied
in this paper, we can identify cutoff values with better sensitivity and/or specificity
with only one ECG. For example, combining only PR with QRSf, we can obtain
a sensitivity of 67.7 % and a specificity of 96.3 %. But combining PR, QRSf, and
dQT, we can raise the sensitivity to 92 % maintaining the specificity. Combining
the information of all five markers, cuttoff values may be chosen to have 100 %
specificity and 60 % sensitivity. To sum up, the combination of these markers has a
great potential for the diagnosis of Brugada Syndrome, but to be able to produce a
good prediction model it is necessary to work with more data.
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Hierarchical Normal Mixture Model to Analyse
HIV/AIDS LOS

Sara Simões Dias, Valeska Andreozzi, and Maria Oliveira Martins

Abstract
Inpatient length of stay (LOS) is an important measure of hospital activity and
is often considered as a proxy of hospital resource consumption. In Portugal,
hospitalizations related to HIV infection are some of the most expensive and
the second major diagnosis category with greatest average LOS. This paper
investigates factors associated with HIV/AIDS LOS. A hierarchical finite normal
mixture model was fitted to the logarithm of LOS, to account for the inherent
correlation of patients clustered in hospitals. We found that the model with two
components had the best fit. In addition associated risk factors were identified for
each component and the random effects make possible a comparison of relative
efficiencies among hospitals.

1 Introduction

Comprehensive and accurate information about length of stay (LOS) is crucial to
health planners and administrators, in order to develop strategic planning and to
effectively deploy financial, human, and physical hospital resources [9]. LOS is
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an indirect estimator of resources consumption and also an indicator of efficiency
in the use of beds [1]. In Portuguese public hospitals the case-mix scheme is the
one proposed by Fetter et al. [6]. The Diagnosis Related Group (DRG) provides a
classification system of hospitalized patients with clinically recognized definitions.
The DRG determines the payment allocated to the hospital and is based on the
characteristics of patients consuming similar quantities of resources, as a result of
a process of a similar care. The main assumption in funding is that patients with
very long inpatient LOS have different resource consumption patterns from those
assumed to have an usual LOS. For these reasons, it is crucial to understand and
model the distribution of LOS.

Skewness and heterogeneity of LOS represents a challenge for statistical analysis
[9]. In recent literature, several approaches have been adopted to analyse LOS,
such as survival models [3, 14], frequentist and Bayesian frameworks [15], and
latent class models [16, 18]. However, none of these approaches recognized that
hospitalizations from the same hospital are more likely to be related. Neglecting
the dependence of clustered (multilevel) data may result in spurious associations
and misleading inferences. Some authors have attempted to accommodate this risk
[11, 12], although not addressing the issues of skewness or the heterogeneity of
LOS. Recognizing that there may be subgroups of patients regarding LOS and
the multilevel structure of the DRG data, we propose a hierarchical modelling
approach to overcome the challenge derived from these two features. The model
includes variables at both levels (patients and hospitals) which allows us to estimate
differences in outcome that are not fully explained by observed patient or other
specific and known conditions.

2 Hierarchical Finite Mixture Model

It is very common that LOS data are skewed and contain atypical observations. For
this reason a mixture distribution analysis will be performed in order to determine
if the distribution is composed of several components or not. Data are initially
investigated without restriction in number, size, and location of possible components
to approximate the empirical distribution. This analysis results in models consisting
of a finite number of components, which are then compared with each other.
The suitable number of components is chosen via Akaike (AIC) and Bayesian
(BIC) information criteria calculated for distributions with different numbers of
components.

After the analysis of the LOS distribution, and taking into account two types of
heterogeneity (within patients and among hospitals), a hierarchical finite mixture
model will be fitted.

Consider yij (i D 1; : : : ; mI j D 1; : : : ; ni ) the logarithm of LOS for the j th
patient in the i th hospital, where m is the number of hospitals, ni is the number of
patients within hospital i resulting in N DPm

iD1 ni total patients. A finite mixture
model [5, 13] for the probability density function of yij takes the form:
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f .yijjxk;ij; �/ D
KX

kD1
kfk.yijjxk;ij; ˇk; 	ki/; (1)

where k denotes the proportion of patients belonging to the kth component andPK
kD1 k D 1, K is the number of components in the mixture; fk describes the

normal distribution of the kth component with mean expressed by

�k;ij D xTk;ijˇk C 	ki (2)

where xk;ij is the vector of covariates for the kth component, ˇk is the vector of
linear effect regression parameters that can be different for the K components; 	ki

are the random effect parameters that capture the hospital heterogeneity in each
component through the specification of a Gaussian density function with zero mean
and variance–covariance equal to �2	k Im (Im denotes an m �m identity matrix).

The vector �, which contains all the unknown parameters in model 1, is
estimated by the maximum likelihood approach through the application of EM
algorithm [2]. Once this has been estimated, estimates of the posterior probabilities
of population membership can be obtained by:

O�k.yijI O�/ D Okfk.yijjxijI Ǒk; O	ki/
PK

kD1 Okfk.yijjxijI Ǒk; O	ki/
: (3)

In order to form no overlapping components (clusters), each yij will be assigned
to the population that has the highest estimate posterior probability. All of the
statistical analyses were performed using the statistical software R [17] and its
package Flexmix [8, 10].

3 Application to HIV/AIDS LOS

This study is based on HIV/AIDS DRG 714 (infection with human immunode-
ficiency virus, with significant diagnosis related), and DRG 710 (infection with
human immunodeficiency virus, with multiple diagnoses major or significant,
without tuberculosis), occurred in 2008, which represent the DRG with more
hospitalizations amongst the 17 created for HIV/AIDS patients.

3.1 Data

The DRG database for 2008 were provided by the Central Health System Admin-
istration (ACSS) and hospital characteristics were obtained from the Portuguese
National Institute of Statistics.

All the hospitalizations meeting the following criteria were analysed: patients
aged 18 years or older; geo-referenced episodes, i.e., hospitalization with patient
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Table 1 Normal mixture distribution analysis for HIV/AIDS LOS DRG (without covariates)

DRG One component Two components Three components

714 �1 1 2.191 1 2.413 0.523 NC NC
�2 2 1.965 0.477 NC NC
�3 3 NC NC
AIC 2,852.132 2,820.130 NC
BIC 2,862.084 2,845.012 NC
Log-likelihood �1;424:066 �1;405:065 NC

710 �1 1 2.745 1 2.583 0.463 2.810 0.424
�2 2 2.886 0.537 5.074 0.318
�3 3 0.436 0.259
AIC 1,781.059 1,761.034 1,764.463
BIC 1,790.061 1,783.541 1,800.473
Log-likelihood �888:529 �875:517 �874:231

NC non-convergence

residence ward known; hospitalizations from hospitals with more than ten discharge
episodes and transfers to another hospital were eliminated (to avoid including the
inpatient episode twice, as the cause of the transfer was often lack of procedure
facilities). The above selection criteria resulted in 1,071 hospitalizations of DRG
714 that took place in 23 hospitals and a total of 637 hospitalizations of DRG 710
in 18 hospitals.

The outcome variable was the logarithm of the number of days between the
hospital admission and discharge dates. Patient’s demographic characteristics (age,
gender, death, and Euclidian distance to the hospital), health relevant factors
(urgent admission, number of secondary diagnoses, number of procedures, AIDS
as principal diagnosis, and presence of pneumonia) and hospital characteristics
(central hospitals, hospital offering more differentiated services) were considered
in the analysis.

3.2 Results

Table 1 lists the results from fitting k D 1; 2; and 3 components mixture distribution
for the logarithm of LOS. Figure 1 shows the empirical distribution of the logarithm
of LOS and fitted two-normal mixture distributions for the two DRGs.

Taking into account the covariates, and based on AIC and BIC, the model with
two components presents a better fit.

In Tables 2 and 3, we may observe some differences between covariate effects
for short-stay and long-stay latent subgroups. Although gender and age are not
statistically significant at the 10 % level, in both models they are kept in order to
control for possible confounding.

The estimated proportion for the short-stay subgroups is smaller in both DRGs
than the estimated proportion of long-stay subgroups.
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Fig. 1 Empirical distribution of HIV/AIDS LOS and fitted two-component normal mixture model

Table 2 Estimates of two-component hierarchical model for HIV/AIDS DRG 714

First component Second component
Coefficient S.E. p-Value Coefficient S.E. p-Value

Intercept 0.341 0.322 0.290 1.159 0.190 <0.001
Gender (male) 0.036 0.100 0.722 �0:108 0.060 0.071
Age/10 0.057 0.039 0.152 0.025 0.026 0.329
Status (death) �0:257 0.175 0.143 �0:530 0.094 <0.001
Type of admission (urgent) 0.513 0.134 <0.001 �0:188 0.084 0.026
No. of secondary diagnoses 0.083 0.023 <0.001 0.021 0.010 0.039
No. of procedures 0.131 0.019 <0.001 0.129 0.008 <0.001
AIDS as principal diagnosis 0.290 0.123 0.019 0.137 0.071 0.056
Euclidean distance (median) �0:089 0.092 0.330 0.153 0.053 0.004
Pneumonia �0:117 0.111 0.291 0.026 0.062 0.671
Central hospital �0:156 0.267 0.559 �0:250 0.128 0.051
Random effect (	ki) variance 0.127 0.027
Mixture proportion (k ) 0.44 0.56
AIC 2,482.527
BIC 2,616.889

We also plot the hospital random effects in order to observe discrepancies
in medical expertise, health care, and other unmeasurable characteristics of the
patients hospitalized in different hospitals. Figure 2 shows these effects and their,
respectively, 95 % confidence interval (CI) for both components and DRGs.

In 2008, there were 23 hospitals with more than 10 discharges of DRG 714, and
there were 18 hospitals (the same as DRG 714) with more than 10 discharges of
DRG 710. The hospitals have different effects for the two components. For DRG
714, the random effects of both components of hospital 1 are statistically significant
below zero; for DRG 710, hospital 1, 2, and 3 have the random effects of both
components statistically significant, and these three hospitals can be considered to
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Table 3 Estimates of two-component hierarchical model for HIV/AIDS DRG 710

First component Second component
Coefficient S.E. p-Value Coefficient S.E. p-Value

Intercept 1.322 2.332 0.570 1.430 0.333 <0.001
Gender (male) �0:074 0.109 0.496 �0:009 0.096 0.923
Age/10 0.005 0.005 0.219 0.005 0.004 0.183
Status (death) �0:880 0.140 <0.001 �0:285 0.107 0.008
Type of admission (urgent) 0.173 0.161 0.282 �0:214 0.198 0.280
No. of secondary diagnoses 0.043 0.018 0.018 0.017 0.014 0.003
No. of procedures 0.141 0.017 <0.001 0.014 0.013 <0.001
AIDS as principal diagnosis �0:083 0.144 0.562 0.494 0.146 <0.001
Euclidean distance (median) �0:089 0.098 0.150 0.032 0.082 0.700
Pneumonia 0.141 0.106 <0.001 �0:448 0.091 <0.001
Central hospital �0:325 2.328 0.889 �0:573 0.216 0.008
Random effect (	ki) variance 0.225 0.103
Mixture proportion (k ) 0.29 0.71
AIC 1,586.613
BIC 1,706.945
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Fig. 2 Random effects and their 95 % CI for each hospital
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be the most efficient. In contrast, three hospitals for DRG 714 (21, 22, and 23) and
two hospitals for DRG 710 (21 and 23) exhibited large positive effects prolonging
hospitalizations.

4 Discussion

The application of finite mixture distribution analysis emphasizes the heterogeneity
of LOS DRGs by locating two latent subgroups. The information of the relevant
covariates is important for analysing the LOS similarities and dissimilarities
between the short-stay and long-stay latent subgroups.

Patient’s gender and age are not statistically significant variables at the 10 %
level in explaining HIV/AIDS LOS. For both DRGs, deaths are associated with the
early days of the hospitalization, meaning that there is high mortality among those
patients who arrive at hospital in more severe and advanced states of AIDS-related
illness. On the other hand, the number of secondary diagnoses and the number
of procedures have a positive value, indicating a long-duration hospitalization, as
presumed. A great number of diagnoses or procedures usually indicate a more
severe condition of the patient and consequently, a delayed discharge [16, 19].
When AIDS is identified as the principal diagnosis, the hospitalizations tend to be
prolonged. Living distant from the hospital was only important to explain DRG
714. Patients from distant areas may have delayed their admission to hospital due
to transportation difficulties, which may prolong the hospitalization, mainly for
those in long-stay subgroup [4, 18]. Urgent admission was also only relevant to
explain DRG 714 and pneumonia was only important to explain DRG 710. The
present study also found that differentiated hospitals contributed to a curtailment
of prolonged hospitalization in the long-stay subgroup. Central hospitals are the
only ones that have communicable diseases departments, which can contribute to
reducing the LOS, especially in the case of the long-stay subgroup.

The hierarchical normal mixture model presented here suggests differences
amongst hospitals that emphasize the need for further research. DRG data violate
the independence assumptions of classical regression analysis, because patients
are nested within hospitals on the basis of their own choices (place of residence,
trust in a particular doctor, the hospital’s reputation, etc.). As a result, hierarchical
modelling is strongly advocated as a more appropriate statistical method for dealing
with multilevel structured data, such as patients clustered within hospitals [7].
Moreover, the hospital random effects, which acknowledge unmeasured factors
that are nonetheless important, should be interpreted as differences in hospital
quality/performance.

Hospitals 1, 2, and 3 are the most efficient in terms of risk-adjusted LOS. They
are large hospitals in metropolitan areas that offer more differentiated services.
Notwithstanding, three other hospitals exhibit large positive effects extending
hospitalizations. Two of these (21 and 22) are small hospitals that do not offer
differentiated services, located in small areas, as opposed to hospital 23, which is a
large hospital in a metropolitan area, offering differentiated services. These hospitals
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can be classified as less efficient. This study identifies factors associated with short-
stay and long-stay latent subgroups considering that the patients are nested within
hospitals.

5 Conclusion

The hierarchical normal mixture methodology has demonstrated to be useful for
analysing HIV/AIDS LOS, suggesting the presence of a finite mixture of two
subpopulations. This stands in contrast to linear regression (one-component model),
which imposes an average effect of LOS predictors for short-stay and long-stay
latent subgroups, thereby leading to misdirected interpretations. Accounting for
clustered observations, the hierarchical structure provides correct inferences about
the regression coefficients (ˇ).

Our findings are of great interest for clinical practice, discharge planning, and the
efficient management of LOS. For healthcare policy purposes, our identification of
“atypical” hospitals should caution policymakers not to regard all hospitals equally.
By targeting relevant factors influencing HIV/AIDS LOS, appropriate policies can
be developed to manage the hospital care and resources, as well as promote the
early prediction of HIV/AIDS patients requiring a longer period of hospitalization,
and the higher costs thus incurred. The drawback of this study resides in the use of
the LOS logarithm transformation, which in future research will be analysed in the
original scale, considering a generalized linear mixture approach.
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Volatility and Returns of theMain Stock Indices

Thelma Sáfadi and Airlane P. Alencar

Abstract
In this work we studied the association between cumulative returns and estimated
volatilities for the main world stock market indices. The analyzed series were
daily values from January 4th, 2008 to April 11th, 2011 for the indices: S&P500
(US), Shanghai Comp Index (China), FTSE100 (UK), CAC40 (France), DAX
(Germany), S&P/TSX (Canada), Bovespa (Brazil), Merval (Argentina), and
Nikkei 225 (Japan). The volatilities were estimated using APARCH models
and a cluster analysis was developed based on the correlation of estimated
volatilities and on the distance among estimates of APARCH parameters. Based
on the volatility, we identified three groups: Canada, Brazil, and Japan; the USA,
UK, France, Germany, and Argentina; and only China. Considering the cluster
analysis based on the APARCH parameter estimates, four groups were identified.
One of these groups is more distant from the others, composed by Brazil and
Argentina, and this group presents higher estimates of the ARCH parameter
and lower leverage effect. Based on the cumulative changes of the indices in
relation to 2008, we identified four groups: Brazil and Argentina, who already
have profits in relation to early 2008, France and Japan, recovering slowly; China
that fell dizzying in 2008, with cumulative loss of �39% in the period and the
other countries which were recovering in 2011.
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1 Introduction

The association between the indices of main stock indices has been studied by
several researchers with different objectives. A possible approach is focused on
risk and may be measured by an estimate of volatility for each country based on
daily returns of stock market indices, since larger volatilities may be associated with
larger probabilities of loss. In this study, we considered the series S&P500 (U.S.),
Shanghai Comp Index (China), FTSE100 (UK), CAC40 (France), DAX (Germany),
S&P/TSX (Canada), Bovespa (Brazil), Merval (Argentina), and Nikkei 225 (Japan)
during the period from January 4th, 2008 to April 11th, 2011.

In [9] the same daily returns from January, 2008 to May 10th, 2010 were
analyzed using a dynamic factor model with three factors. They noted that the
first factor indicated that the financial crisis mainly associated with the USA was
felt by all other markets in the world. The second factor is more associated with
Asian countries, China and Japan, and the third factor associated with the European
countries.

Considering S&P500 returns, Ding et al. [4] concluded that there is no obvious
reason why to assume that the process of the conditional variance is a linear function
of quadratic returns, as in GARCH model, or that the process of the conditional
standard deviation is a linear function of the absolute returns as in the Taylor model
[10]. That is, other powers of the conditional residuals exhibited significant temporal
dependencies. The Asymmetric Power ARCH, APARCH, model was proposed by
Ding et al. [4] to generalize the GARCH model [2]. The idea of this model is
based on empirically finding out that absolute returns present higher autocorrelation
than returns and squared returns. Then it was proposed a model that includes a
parameter ı that corresponds to the power of the standard deviation. Therefore, in
the APARCH model, the conditional standard deviation is modeled as a Box-Cox
power transformation of the conditional standard deviation process. Also, it includes
the leverage component that considers different effects for positive and negative
shocks.

The conditional standard deviation may be estimated using the APARCH model,
and these series may be used to cluster the stock indices based on the correlation
between each pair of volatilities series. Alencar and Sáfadi [1] estimated the
volatilities using APARCH models and used correlation coefficients to cluster
these indices. This analysis allows identifying that estimated conditional volatilities
present similar behavior in Brazil, Canada, and Argentina, and in another group
the USA, UK, Germany, and France. Also the estimated conditional volatility is
completely different in China, where it is lower and more stable.

In this study, we present an alternative cluster analysis based on the APARCH
estimates of the leverage, GARCH and ARCH components for stock indices in each
country. A completely different approach is based on the profitability perspective is
a cluster analysis based on the percentage changes of the stock indices in relation to
the indices registered in the beginning of 2008.
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In this paper, the main goal is to measure the association among these nine stock
indices based on the volatilities and parameter estimates for a comparable APARCH
model to estimate the conditional standard deviations (ı D 1) and also based on the
percentage changes of the stock indices.

2 Methods

As returns we calculated rt D lnYt � ln Yt�1, where Yt is the stock market index
at day t. In order to accommodate possible autocorrelations of the returns, the
following equation is included in the model:

rt D
pX

iD1
	i rt�i C 
t ; (1)

where 	i ; i D 1; : : : ; p; satisfy the stationarity conditions with the roots B of 1 �Pp
iD1 	iBi outside the unit circle [6].
Considering the asymmetric t-Student distribution for the errors, the APARCH

model is defined as


t D zt �t ;

zt � t�;�;

�ıt D ! C
pX

iD1
˛i .j
t�i j � �i 
t�i /ı C

qX

jD1
ˇj �

ı
t�j ; (2)

with ! � 0, ˛i � 0, ˇi � 0, ı > 0, and j�i j � 1, where �t is the conditional
standard deviation of the response variable and is known as volatility and t�;�
corresponds to the asymmetric t-Student distribution with asymmetric coefficient
equal to � and � degrees of freedom. The asymmetric Student t distribution was
parameterized as in [5]. Some restrictions in the parameter space must be imposed
to guarantee the positivity of the transformed conditional volatility �ıt , as discussed
in [4, 8], but in this paper we include the restriction ı D 1 because all parameters
ı are not statistically different from 1 in [1] and under ı D 1 the estimates of
all parameters are comparable. If the ı parameter is not constant, the parameters
!, ˛, ˇ, and � are not explaining always the same quantity like the variance or
the standard deviation. The residual analysis indicated that the assumptions of the
model are not violated.

The proposed models were fitted using the maximum likelihood method, imple-
mented in the library fGarch [12] in the free statistical software R [7]. The
maximization was performed using the Nelder–Mead algorithm after obtaining
the BFGS start values (option algorithmD“lbfgsbCnm” using garchFit command,
details and references in [12]).
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Based on the estimates of !, ˛, � , and ˇ for these nine indices, a hierarchical
cluster analysis with the Euclidean distance of the parameter estimates and the
complete linkage method was performed to identify groups of countries based on
the volatility model [11]. Caiado and Crato [3] proposed a similar cluster analysis
using the estimates, but their model is the broadly used GARCH(1,1) model. We
used only the estimates since our objective is a cluster analysis of only 9 indices,
instead of 27 indices analyzed in [3]. We decided not to include the estimates of the
density parameters (� and �) to follow the proposal of [3], which included only the
˛ and ˇ estimates of the GARCH(1,1) model, and also because they are not directly
related to the estimated volatilities.

An alternative approach is to identify groups of countries based on the direct
effects of the crisis and on their recovery. For this purpose another cluster analysis
is proposed to cluster the percentage cumulative changes of each daily stock market
index in relation to the index in the first day of 2008. These cumulative changes
measure the losses and gains of an investor who applied money in the stock in the
beginning of 2008. The cluster analysis used the complete method and the Spearman
correlation index [11].

3 Results

In [1], an APARCH model was fitted for the same returns and there was no
evidence to reject the hypothesis ı D 1 for all countries. This is in agreement
with [4], where the autocorrelation of the absolute returns of SP&500 is larger than
the autocorrelation of jrt jd , for d D 0:125; 0:25; 0:50; 0:75; 1:25; 1:5; 1:75; 2; 3.
The APARCH(1,1) models with ı D 1 were fitted to the series of returns and
the estimates are presented in Table 1. Only for the Japanese returns, the first
autoregressive parameter was significant ( O	1 D �0:0879, standard error D 0:0387,
p D 0:0230). The estimation results are presented in Table 1. Figure 1 presents
the log-returns and the volatilities defined as the estimated conditional standard
deviations of the log-returns. The autocorrelation of the standardized residuals and
their squared values indicate that all assumptions are met.

Almost all the estimates of the leverage parameter � are close to 1, indicating
that positive errors 
t will cause almost no effect in the volatility, unlike the negative
shocks that may impact the volatility in the same instant and in the future instants
depending on ˇ. Less leverage effects are estimated in Argentina ( O� D 0:45). The
parameters ˇ are responsible for the inertia in the volatility, and values close to 1
indicate that the �ıt will be close to �ıt�1. Most estimates of ˇ are close to 0.9, the
exceptions are the smaller value 0.83 in Argentina and 0.99 in China, indicating,
respectively, less and more inertia (stability) in the volatilities, which agree with the
estimated volatilities presented in Fig. 1.

The estimates of the skewness parameter � are all smaller than 1 and they are all
very similar, yielding a nearly symmetric error distribution, with the smallest value
for Canada (the most asymmetric distribution). Argentina is the country with the
larger kurtosis (smallest degree of freedom), followed by China.
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Table 1 Estimates, standard errors, and p-values corresponding to the parameters of the
APARCH(1,1) with ı D 1 model for each country

! ˛ � ˇ � �

US Estimate 0.0005 0.0984 1.0000 0.8980 0.8386 6.0722
Std. error 0.0001 0.0180 0.0179 0.0182 0.0410 1.5356
p 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 0.0001

UK Estimate 0.0005 0.0931 1.0000 0.8956 0.9718 8.9284
Std. error 0.0002 0.0169 0.0141 0.0194 0.0503 3.2013
p 0.0009 <0.0001 <0.0001 <0.0001 <0.0001 0.0053

France Estimate 0.0007 0.1018 1.0000 0.8798 0.9209 12.2600
Std. error 0.0002 0.0173 0.0152 0.0218 0.0507 5.8500
p 0.0008 <0.0001 <0.0001 <0.0001 <0.0001 0.0362

Germany Estimate 0.0005 0.0911 1.0000 0.9013 0.9231 7.9197
Std. error 0.0002 0.0175 0.0211 0.0195 0.0464 2.4520
p 0.0019 <0.0001 <0.0001 <0.0001 <0.0001 0.0012

Canada Estimate 0.0003 0.0978 0.7973 0.9039 0.7755 9.3423
Std. error 0.0001 0.0219 0.2037 0.0199 0.0474 2.9316
p 0.0011 <0.0001 0.0001 <0.0001 <0.0001 0.0014

Brazil Estimate 0.0006 0.1108 0.6417 0.8901 0.9151 6.9164
Std. error 0.0002 0.0255 0.1623 0.0255 0.0484 1.7763
p 0.0218 <0.0001 0.0001 <0.0001 <0.0001 0.0001

Argentina Estimate 0.0017 0.1622 0.4472 0.8265 0.8993 3.4722
Std. error 0.0014 0.0832 0.1632 0.1075 0.0376 0.5599
p 0.2456 0.0512 0.0061 <0.0001 <0.0001 <0.0001

Japan Estimate 0.0005 0.0769 0.8730 0.9109 0.8457 10.4258
Std. error 0.0002 0.0220 0.2892 0.0221 0.0455 3.6167
p 0.0024 0.0005 0.0025 <0.0001 <0.0001 0.0039

China Estimate 0.0000 0.0144 1.0000 0.9873 0.8879 4.8710
Std. error 0.0000 0.0030 0.0307 0.0023 0.0396 0.9690
p 0.4890 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

The smallest estimate of ! is 3 � 10�5 in China resulting in the lowest level
of unconditional volatility, completely different from other countries, as may be
visualized in the graphs of Fig. 1. The estimates for the APARCH models reveal
that China presents a completely different behavior with lower volatility level and
more stability and some countries present similar behavior as the USA, UK, France,
and Germany.

The cluster analysis of the estimated volatilities used the complete method and
the Spearman correlation (as suggested in [1]) and the corresponding dendrogram
is shown in Fig. 2a. In this graph there are three groups: the first consists of Canada,
Brazil, and Argentina, the second by the USA, UK, France, Germany, and Japan
and the third only with China.

Based on the estimates of !, ˛, � , and ˇ for these nine indices (Table 1), the
dendrogram of the hierarchical cluster analysis with the Euclidean distance of the
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Fig. 1 Log returns and estimated volatility from APARCH (1,1) with ı D 1. (a) Log returns, (b)
volatility estimated
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Fig. 2 Dendrogram of (a) estimated volatilities and of (b) estimates of the parameters
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Fig. 3 Percentage cumulative change in relation to 2008 and its corresponding dendrogram. (a)
Volatility, (b) dendrogram

parameter estimates and complete linkage method is presented in Fig. 2b. The most
distant group is composed by Argentina and Brazil and both of them present higher
estimates of the ARCH parameter and lower leverage estimates, indicating that the
volatility depends on the signal of the shock and is more susceptible to shocks.
China forms another group with the smallest level of volatility (lowest O!) and higher
inertia (highest Ǒ and lowest Ǫ ). All other countries present similar estimates.

The crisis known as subprime crisis reached the stock prices in October 2008.
Instead of presenting the indices, which varies in different ranges, Fig. 3a presents
the percentage change of each index in relation to the index observed in the first day
of 2008. The cumulative percentage changes in April, 11th are, respectively, �6:2,
�4:6, �25:9,�7:7, 1.6, 11.7, 62.0,�33:8, and�39:2%. An investor who started an
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investment in these stock indices in the beginning of 2008 had the larger losses in
China, Japan, and France. He could have a return of 62 % in Argentina and 12 % in
Brazil. Other indices did not recover the losses until April 2011. These similarities
between the countries are observed in the dendrogram Fig. 3b.

4 Conclusions

We conclude that Brazil and Argentina generally have higher estimated volatilities
throughout the analyzed period, indicating that these countries may be at greater
risk. Also these countries present higher ARCH estimated coefficients and lower
leverage estimated coefficients. However, only in these countries the stock markets
have already recovered after the crisis of 2008. The indices are 62 % higher in
Argentina compared to its value in the first day of 2008, and this cumulative change
was 11.7 % in Brazil. Using all the proposed cluster analysis, the indices of Brazil
and Argentina are similar.

The American and all European indices may form one group because they
presented similar estimates of all APARCH parameters (for the APARCH model
with ı D 1) and all of them presented the leverage estimate equals to 1, indicating
that the negative shocks affected the variance. They presented similar estimated
volatilities and all these indices present losses compared to the beginning of 2008. It
is worth to mention that the French index accumulated loss of�26% in April, 2011
compared to 2008 and the others indices presented smaller losses.

The Chinese index is completely different of all other indices, since in April,
2011 it still did not exhibit an increasing trend and maintained the same level of
mid-2009. Also, the estimated volatilities are lower than others. Contrary to the
usual stylized facts, the Chinese returns graph presents no cluster of volatilities. This
singularity was responsible for identifying the Chinese stock index as a separated
group using either the estimated volatility or the accumulated return.

The Japanese and Canadian estimates of the APARCH parameters are similar, but
Canada index reached in April 2011 the same value it registered before the crisis.
Meanwhile, the Japanese index showed a devaluation of �33% compared to 2008.
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Abstract
Within the context of accessing the risk of forest fires, Amaral-Turkman et al.
(Environ. Ecol. Stat. 18:601–617, 2011) have proposed a spatio-temporal hierar-
chical approach which jointly models the fire ignition probability and the fire’s
size, in a Bayesian framework. This is recovered and applied to Portuguese forest
fires data, with some necessary modifications in what concerns the format of
the data (not available in a regular lattice over the territory) and also because
of the estimation complications that arise due to the high dimensionality of
the neighbouring structure involved. To address the latter, as it compromises the
estimation via Markov Chain Monte Carlo (MCMC) methods, and having the
model be recognized as a latent Gaussian model, it was chosen to do the Bayesian
estimation also using an Integrated Nested Laplace Approximation approach,
with real computational advantages. Corresponding methodologies and results
are described and compared.
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1 Introduction

Forest fires are a major disturbance of the Mediterranean landscape [9], that has
considerably increased in the last decades, especially in Portugal where the burned
area over the last three decades corresponds to nearly 40 % of the total area of
mainland Portugal [6]. Several studies have shown that forest fires in Portugal
present high temporal as well as high spatial variability [7]. In order to choose
and apply effective measures to combat this problem it is crucial to understand
which factors contribute to it. The use of geographic information systems as well
as adequate statistical models can make an important contribution.

In the context of accessing the risk of fire, Amaral-Turkman et al. [1] have
proposed a spatio-temporal hierarchical model which jointly models the probability
of fire ignition and the size of the fire, in a Bayesian setting, for Australian data.

In the present work this method is recovered to model the risk of fire in
mainland Portugal. In Amaral-Turkman and colleagues’ approach [1] the region
under consideration is divided into small areas by a regular lattice, and the data are
collected in each one of these areas. However, the data in this study could only be
available within administrative units that divide the country, freguesias, forming an
irregular lattice. Nevertheless it was still possible to use the model.

The data available for analysis refer to the period from 2002 to 2007, although
we have chosen to work only, in a first approach, with data from 1 year, 2005.
Data comprehend the annual percentage of burned area in each freguesia, as well
as annual values of several covariates, from atmospheric conditions, topographic
information, road proximity and population density.

Because the number of freguesias that divide mainland Portugal is very high
(3,424 freguesias), the estimation via Markov Chain Monte Carlo (MCMC) tech-
niques [3], usual in the Bayesian models applied to spatio-temporal data, becomes
computationally very heavy or even unfeasible. In order to overcome this problem it
has been opted to do the estimation via an Integrated Nested Laplace Approximation
(INLA) approach [8], which presents very important computational advantages.
This approximated approach has been gaining relevance for the Bayesian estimation
of models that fit within the sub-class of regression models with additive structure,
the latent Gaussian models.

We describe in detail the genesis of the INLA inferential procedure, implement
it for the estimation of the above model in the application of forest fires in Portugal,
and we point out which concrete advantages/disadvantages we had, in relation to
the MCMC methods.

This paper organizes as follows: in Sect. 2 we present the model for forest fires
proposed by Amaral-Turkman et al. [1], in Sect. 3 we briefly describe the MCMC
and INLA methods for Bayesian inference, Sect. 4 encloses the application of this
model to the forest fires in mainland Portugal and finally we conclude the paper in
Sect. 5.



INLA for Modelling Portuguese Forest Fires 241

2 AModel for Forest Fires

In this section the spatio-temporal hierarchical model proposed by Amaral-Turkman
et al. [1], for simultaneously modeling the proportion of burned area within small
divisions (areal units) of the region under study and the probability of ignition, is
described in its spatial-only version. In the original work the areal units were defined
through a regular lattice, unlike what happens here, where Portugal mainland is
taken to be divided by an irregular lattice into freguesias. Other references for the
distribution of fires are available, as e.g., [10] or the ones in [1].

Let Y.i/ represent the proportion of burned area in freguesia i and let R.i/ be
the dichotomous variable indicating whether there has been a fire in freguesia i , i D
1; : : : ; 3;424, in a given year of interest (2005, in the application). A transformation
of the non-null Y s towards gaussianity is further considered. The model follows:

R.i/ j p.i/ � Bernoulli .p.i// logit
�
p.i/

� D ˇ CX.i/T �C V2.i/

Z.i/ D
(

log
�

Y.i/

1�Y.i/
�
; 0 < Y.i/ < 1

0; Y.i/ D 0
Z.i/ j R.i/ D 1 � N �

�.i/; �2
�

�.i/ D ˛ C X.i/T ı C V1.i/
V1.i/ D �1W0.i/C �2W1.i/ V2.i/ D W1.i/

W0 � ICAR.�0/ W1 � ICAR.�1/

where p.i/ is probability of ignition in freguesia i , X are covariates of interest, not
necessarily the same for p.i/ and �.i/, V2.i/ are unobserved explanatory spatial
variables influencing fire ignition, V1.i/ are unobserved explanatory spatial vari-
ables influencing fire size—V1.i/ and V2.i/ are dependent spatial random effects.
This dependence is induced by the shared spatial latent processW1, but might proof
not to be relevant in case the �2 parameter is not significantly different from zero.
Intrinsic autoregressive priors are considered for the independent spatial latent pro-
cessesW0 andW1. Gaussian prior distributions are taken for the covariate effects and
the � parameters. For precision parameters the usual gamma prior choice is made.
Prior independence between these parameters is considered. More information on
priors and other model details can be found in [1]. Let 	.x; �; �2/, 	2.x;�;C/
and � .x; a; b/ represent, respectively, the density function of a Gaussian random
variable, the density function of a bivariate Gaussian random vector and the density
function of a gamma distribution; let Nw0.i/ and Nw1.i/ represent, respectively, the
local mean of the W0 and of the W1 values in the neighbourhood of area i , with ni
neighbours. The corresponding posterior distribution of the parameters, given below
in simplified notation, is proportional to the model likelihood times the parameters
prior distributions:
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�ir.i/ � p.i/r.i/.1 � p.i//1�r.i/ �

� 	.ˇ; 0; 105/ �
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	.�m; 1; 10/ �

1Y

lD0
� .�l ; 0:01; 0:01/ � � . 1

�2
; 0:01; 0:01/ (1)

3 Bayesian Estimation

For the kind of complex, multidimensional hierarchical models as the one just
described, usually, the Bayesian estimation of the marginal posterior distributions
of the parameters involved is not possible from (1), not in a closed form. For the last
30 years this problem has been addressed through approximate methods or, more
frequently, through iterative simulation methods, only made possible for the huge
development of computer power.

3.1 Markov ChainMonte Carlo

MCMC methods are based on the idea of simulating a (ergodic) Markov chain
that has as its limiting distribution the target distribution .� jy/—the posterior
distribution of the model’s parameters � , in this case—known up to a constant term
(one cannot sample directly from it). From an initial distribution a �.0/ value is
sampled. Next, a �.1/ value is sampled from the distribution given by the Markov
chain kernel calculated for �.0/ and so forth, iteratively. As the number of iterations
increases the sampled � values become closer and closer to sampled values from
the limiting distribution  and can be considered as so, as well as all the subsequent
sampled values, due to stationarity.

The Gibbs sampler [4, 5] is the most commonly used algorithm to produce the
upper cited Markov chains with chain transition kernel defined by the complete
conditional distributions of �i .

The MCMC sample methods for this type of hierarchical models, with many
dependencies defined between the high number of parameters of the model, tend
to have a very weak performance precisely because of that dependencies. However,
the MCMC approach can obtain precise marginal posterior distributions, once the
MCMC errors can be arbitrarily small for an arbitrarily large computational time [8].
More efficient MCMC algorithms have been proposed [3], many based on Gaussian
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approximations, but for some complex models convergence might be very difficult
to attain within a reasonably amount of time [11].

3.2 Integrated Nested Laplace Approximation

A recent approach based on some old approximate methods has recently become
available for doing Bayesian estimation, the INLA, [8]. The core of this approach is
that it provides deterministic approximations of the posterior marginal distributions
in a computational efficient way. Its caveat is that being an approximation, the
estimation is never bias free.

This estimation approach is to be used whenever the model to be estimated
is a member of the special sub-class of structured additive regression models,
the latent Gaussian models, characterized for having the response variable Yi in
the exponential family with expected value �i , related to a structured additive
linear predictor �i through a “well-behaved” link function g.�i / D �i D ˛ CP

j f
.j /.uij/CPk ˇkzki C "i , where f .j / are unknown functions of the covariates

u, ˇk are the linear effects of the covariates z and " are the non-structured terms
(errors). For all the parameters in the predictor, ˛, f .j /, ˇk and "i , prior Gaussian
distributions can be assumed.

Let x D .˛; f .j /; ˇk; "i / be the vector of all latent Gaussian variables,.xj�1/ �
N .0;Q.�1//, where Q.�1/ is a precision matrix. Let y denote the vector of
the nd observations with density .yjx;�2/, whose elements are assumed to be
independent, conditional on x and �2; finally, let � D .�1;�2/ be the vector of the
hyperparameters (not necessarily Gaussian). In this setting, the posterior distribution
.x;�jy/ / .�/.xj�/Qi .yi jxi ;�/ becomes:

.x;�jy/ / .�/jQ.�/j 12 exp

(

�1
2

xTQ.�/xC
X

i

log..yi jxi ;�//
)

:

This INLA approach makes use of some (realistic) assumptions that enables the
use of numeric methods, faster and more efficient, namely that x (frequently high
dimensional, 100–100,000 elements) has properties of conditional independence
(i.e. is a Gaussian Markov random field, GMRF) and that the number of hyper-
parameters is small (lets say � 6). The objective is to approximate the marginal
posterior distributions .xi jy/, .� jy/ and .�j jy/ through nested approximations:

Q.xi jy/ D
Z
Q.xi j�; y/ Q.�jy/d� Q.�j jy/ D

Z
Q.�jy/d��j ;

where Q is an approximate (conditional) density.
The approximations of .xi jy/ are obtained approximating .xi j�; y/ and

.�jy/ and then using numerical integration (finite sum) to integrate out �—which
is possible of course given the low dimensionality of � . The same for .�j jy/.
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The Laplace approximation proposed for .� jy/ is Q.�jy/ / .x;� ;y/
QG.xj� ;y/

ˇ
ˇ
ˇ
xDx�.�/

,

where QG is the Gaussian approximation to the complete conditional distribution of
x and x�.�/ its mode, for a given � .

4 Application: Forest Fires in Mainland Portugal

Mainland Portugal has a total area of 89,000 km2, divided into 3,424 freguesias,
with an altitude that varies from the average level of the sea to 2,000 m above
it, an average annual temperature that varies from 7 to 18ıC, increasing NW-SE,
an average annual precipitation varying between 400 and 2,800 mm, decreasing
NW-SE. Forests and woods cover about 1

3
of the country (80 % of the forest area

is occupied by Maritime pine, eucalypt, cork oak and holm oak), 25 % is covered by
shrublands and about 30 % are agriculture fields [2].

The analysed data consist on the 2005 geo-referenced forest fires (obtained by
the remote detection lab of the Instituto Superior de Agronomia, by semi-automatic
classification of remote detection of high resolution data, Landsat Multi-Spectral
Scanner, Landsat Thematic Mapper and Landsat Enhanced). Additionally there
is the following covariate information: land cover type maps (produced using
Landsat Thematic Mapper Images from 2000, produced by the Remote Sensing
Group from Instituto Geográfico Português, at a scale of 1:100,000), altitude, slope,
proximity to roads, population density and precipitation. Variable selection and
their segmentation in ordinal levels were based on a detailed preliminary data
analysis [6].

The estimation via MCMC (Gibbs sampling) was done with WinBUGS software,
which was only capable of handling the north of mainland Portugal (2,654
freguesias). After a burn in of 1,000 iterations, the estimation was based on 5,000
iterations as the process in WinBUGS often stopped due to program traps. By this
process the estimation time is about 2 h.

The estimation via INLA was done with R-INLA http://www.r-inla.org/—11 min
of computational time for the north mainland data. However, because this is still
a software in progress, the model as it was proposed could not be estimated via
this method yet because of the linear combination of ICARs that constitute the V1
component—so we have set �1 D �2 D 1. Although a solution for this question has
been advanced by R-INLA authors, by noting that �1 is only re-scaling W0, until
this point it was not possible to implement it.

Naturally, in terms of the application, the choice of �1 D �2 D 1 is not an
interesting one as it forces dependence between the spatial random effects for the
proportion of burned area and ignition risk. From the MCMC estimation we have
obtained O�1 D 0:8 with standard error (SE) of 0.22 and O�2 D 0:2 (SE 0.04),
revealing some degree of dependence between the spatial random effects but not so
much as we are assuming now. Nevertheless, for comparison purposes, we proceed
like this, further running the MCMC estimation for this sub-model.

http://www.r-inla.org/
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Table 1 Covariate posterior effects estimated by MCMC and INLA and corresponding standard
errors, associated with each response; non-significant effects were replaced by (**)

MCMC INLA
Response Covariate: level estimate (SE) estimate (SE)

Prop. of burned area Land Cover: Hard Wood (**) 0.69 (0.11)
Prop. of burned area Land Cover: Hard and Soft Wood/Eucalyptus 0.60 (0.10) 0.68 (0.10)
Prop. of burned area Land Cover: Shrubs 0.84 (0.12) �0:35 (0.13)
Prop. of burned area Land Cover: Soft Wood 0.31 (0.10) 0.54 (0.10)
Prop. of burned area Altitude: Over 700 m (**) (**)
Prop. of burned area Altitude: 200–400 m 0.32 (0.11) 0.29 (0.11)
Prop. of burned area Altitude: 400–700 m 0.41 (0.10) (**)
Prop. of burned area Slope: 0–5 % 1.47 (0.12) �0:94 (0.12)
Prop. of burned area Slope: 5–10 % 1.61 (0.14) �0:70 (0.14)
Prop. of burned area Pop: Over 100 hab/km2 �0:95 (0.11) �2.35 (0.12)
Prop. of burned area Pop: 25–100 hab/km2 �0:86 (0.10) �1.78 (0.11)
Prop. of burned area Road Proximity: > 1 km 0.86 (0.11) (**)
Prop. of burned area Precipitation: 0–10 days of precipitation> 1 mm/year �0:47 (0.17) �1:50 (0.15)
Ignition Land Cover: Hard Wood �1:14 (0.14) �0:85 (0.11)
Ignition Land Cover: Hard and Soft Wood/Eucalyptus �0:76 (0.14) �0:25 (0.11)
Ignition Land Cover: Shrubs 0.48 (0.20) 0.53 (0.15)
Ignition Land Cover: Soft Wood �0:79 (0.13) �0:47 (0.11)
Ignition Altitude: Over 700 m �0:88 (0.15) �0:74 (0.12)
Ignition Altitude: 200–400 m �0:36 (0.16) (**)
Ignition Altitude: 400–700 m �0:38 (0.17) �0:33 (0.12)
Ignition Slope: 0–5 % 1.22 (0.20) 1.05 (0.15)
Ignition Slope: 5–10 % 1.87 (0.22) 1.48 (0.16)
Ignition Pop: Over 100 hab/km2 (**) �1:27 (0.12)
Ignition Pop: 25–100 hab/km2 (**) �1:11 (0.11)
Ignition Road Proximity: > 1 km (**) (**)
Ignition Precipitation: 0–10 days of precipitation> 1 mm/year �1:28 (0.19) �1:31 (0.14)

The estimated effects of the covariates of the considered sub-model, produced by
the two estimation methods, are depicted in Table 1, as well as their standard errors.
Most of the MCMC and INLA estimates agree in direction and in significance,
although not so much in value. The main conclusions from here are that the
larger proportions of estimated burned areas seem to be related to the land cover
(worst for hard and soft wood trees, eucalypts and shrubs), medium altitudes, larger
slopes, smaller population sizes, larger distance to roads and smaller precipitation
levels. The estimated ignition probability seems to be related to smaller slopes,
precipitation levels and altitudes and with land cover (worse for shrubs).

The spatial random effects estimated by MCMC and by INLA are depicted,
respectively, in Figs. 1 and 2, suggesting that there are still some spatial effects to
be accounted for. The ones estimated by MCMC are greater in magnitude, which
might have to do with the fact that the two estimation methods have not chosen as
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Fig. 1 Random effects estimated via MCMC. Greyscale for cut point values .�1;�1;�0:5;
0; 0:5; 1;C1/

Fig. 2 Random effects estimated via INLA. Greyscale for cut point values .�1;�1;�0:5;
0; 0:5; 1;C1/

significant the same set of covariates. Also note that within each estimation method
the V1 and V2 estimates are quite similar and, being V2 part of V1, this diminishes the
importance of the W0 spatial effect, suggesting that a single spatial random effect
might be enough to model both the proportion of burned area as well as the ignition
risk.

For both estimation methods the Deviance Information Criterion (DIC) was
obtained not only for the sub-model under consideration but also for other models
as, for example, the one with no spatial effects (only covariates), which always
proved to be worse. However the DIC values were quite different between methods,
not being useful for that comparison: for the MCMC estimation of the sub-model the
DIC was �8,070.02 and of the only covariates model the DIC was �6,399.11; for
the INLA estimation the corresponding DIC values were 12,797.25 and 13,140.94,
respectively.

5 Concluding Remarks

In this paper we have described computational advantages of using INLA over
MCMC approach in Bayesian estimation, for complicated hierarchical models,
within the context of forest fires—from enabling the use of models with many
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parameters (common in areal data applications where each area corresponds to at
least one parameter) to the huge savings in computational time. However there are
still some issues to be addressed as, for example, a better understanding of whether
the estimates differences obtained between the two methods are due to Winbugs
limitations to implement MCMC or due to the INLA approximations, which kept
us from estimating the model for each year of the 2002–2007 period for which data
were available. After figuring this up, we hope to be able to proceed for the next step
of the task of modeling the fire data in Portugal, that is a spatio-temporal analysis.

Acknowledgements The authors acknowledge Professor José Borges for providing access to
data collected by the Remote Sensing Laboratory of Instituto Superior de Agronomia, Professor
M. Antónia Amaral-Turkman for sharing the WinBugs code of the model in paper [1] and to the
anonymous referee for very useful and pertinent comments on a previous paper version. Research
partially sponsored by national funds through the Fundação Nacional para a Ciência e Tecnologia,
Portugal—FCT, under the projects PEst-OE/SAU/UI0447/2011 and PEst-OE/MAT/UI0006/2011.

References

1. Amaral-Turkman M.A., Turkman K.F., Le Page Y., Pereira J.M.C.: Hierarchical space-time
models for fire ignition and percentage of land burned by wildfires. Environ. Ecol. Stat. 18,
601–617 (2011)

2. Direcção Geral dos Recursos Florestais. Resultados IFN 2005/2006. Lisboa (2006)
3. Gamerman D., Lopes H.F.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian

Inference, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)
4. Gelfand A.E., Smith F.M.: Sampling-Based Approaches to Calculating Marginal Densities.

J. Am. Stat. Assoc. 85, 398–409 (1990)
5. Geman S., Geman D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restora-

tion of Images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721–741 (1984)
6. Marques S., Borges J.G., Garcia-Gonzalo J., Moreira F., Carreiras J.M.B., Oliveira M.M.,

Cantarinha A., Botequim B., Pereira J.M.C.: Characterization of wildfires in Portugal. Eur.
J. Forest Res. 130, 775–784 (2010)

7. Pereira M.G., Malamud B.D., Trigo R.M., Alves P.I.: The history and characteristics of the
Portuguese rural fire database. Nat. Hazards Earth Syst. Sci. 11, 3343–3358 (2011)

8. Rue H., Martino S., Chopin N.: Approximate Bayesian inference for lateny Gaussian models
by using integrated nested Laplace approximations. J. R. Stat. Soc. B. 71, 319–392 (2009)

9. Rundel P.W.: Landscape disturbance in Mediterranean ecosystems: an overview. In: Rundel
P.W., Monenegro G., Jaksic F.M. (eds.) Landscape disturbance and biodiversity in Mediterrean-
Type ecosystems, pp. 3–22. Springer, Berlin (1998)

10. Schoenberg F.P., Peng R., Woods J.: On the distribution of wildfire sizes. Environmetrics 14,
583–592 (2003)

11. Simpson, D., Lindgren, F., Rue, H.: Fast approximate inference with INLA: the past, the
present and the future. arXiv:1105.2982v1 [stat.CO]



Forecast Intervals with Boot.EXPOS

Clara Cordeiro and M. Manuela Neves

Abstract
Boot.EXPOS is an automatic computational procedure for forecasting time series

developed in the environment joining two very popular methodologies:
the exponential smoothing and the bootstrap. Results achieved in previous
studies showed that this “mix scheme” seems to be a good approach to obtain
point forecasts. This paper investigates the use of Boot.EXPOS in forecast
intervals through the application to some well-known data sets. Results obtained
show a very good performance of Boot.EXPOS in comparison with its “direct
competitors,” the exponential smoothing methods.

1 Introduction

A time series is a sequence of observations indexed by time, usually ordered in
equally spaced intervals. The most interesting and ambitious task in empirical time
series analysis is to forecast future values on basis of its recorded past, and also
to calculate prediction intervals. Adequate models need to be fitted to the series.
The search for the best model that describes the stochastic behavior of a time series
is done through statistical procedures. That model should be able to capture the
dynamics of the time series in order to be used in the analysis of the structure of the
process or for obtaining predictions.

Exponential smoothing refers to a set of methods that can be used to model and
to obtain forecasts. This is a versatile approach that continually updates a forecast,
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Table 1 EXPOS classification

Seasonal component
Trend N A M
component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M
A (Additive) A,N A,A A,M
Ad (Additive damped) Ad,N Ad,A Ad,M
M (Multiplicative) M,N M,A M,M
Md (Multiplicative damped) Md,N Md,A Md,M

emphasizing the most recent experience, i.e., to recent observations is given more
weight than to the older observations. Exponential smoothing methods (EXPOS)
stand out among other methods due to their versatility in the wide choice of models
that they include. Their widespread dissemination made them the most widely used
methods for modeling and forecasting time series. A first classification of EXPOS,
due to Pegel’s [22], considers the trend and seasonal patterns that a series reveals as
none, additive (linear) or multiplicative (nonlinear). Since then many researchers,
see [10, 16], have investigated and developed EXPOS methods in a total of fifteen
methods, see Table 1.

Analogous to many other areas in statistics, the analysis of time series has been
benefiting from the use of computer-intensive procedures to help in modeling and
predicting in the most complex analytic situations. Among those procedures the
bootstrap methodology is one of the most well known.

In time series, bootstrap is most frequently applied to residual resampling. Sieve
bootstrap, introduced in [1], is a model-based approach that considers an autoregres-
sive process fitted to a stationary time series, and then resamples the approximately
i.i.d. residuals, see [1, 17]. In previous works, Cordeiro and Neves [4, 5] compared
the use of EXPOS methods and bootstrap methodology. [6,7] present a first sketch of
an algorithm joining EXPOS methods and bootstrap. Boot.EXPOS was constructed
combining the use of EXPOS with the bootstrap methodology for modeling and
obtaining forecasts. It was applied in time series forecasting competitions, see
[7, 8, 19], standing among the best forecasting procedures [18]. Up to now only
point forecasts were considered. In [20] an extension of Boot.EXPOS for obtaining
forecast intervals was briefly presented but not developed, which is the proposal of
this paper.

Here, part of an extensive study [3] with several different examples of time series
is presented. Due to an improvement of the previous algorithm, more accurate point
forecasts and forecast intervals were obtained. Section 2 presents the connection
between the EXPOS and the bootstrap procedure leading to the Boot.EXPOS. The
case studies appear in Sect. 3 and finally, some concluding remarks are pointed out
in Sect. 4.
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Fig. 1 The computational scheme

2 Bootstrap and EXPOS Together: Boot.EXPOS, a TeamWork

Consider a time series fy1; y2; � � � ; yng to which one of the EXPOS models in
Table 1 is fitted. Model selection is based on the Akaike’s criterion (AIC). This
model selection criterion is preferable when compared to other selection criteria
because of the parsimonious model penalty, see [15] for more details. The estimates
of the exponential smoothing parameters, � D .˛; ˇ; �; 	/, are obtained by
minimizing the mean squared error (MSE) of the one-step-ahead forecast errors
.et D yt� Oyt ; t D 1; � � � ; n/ over the fitted period. As it is known, a good model must
have residuals that do not present significant patterns in its correlation structure.
Usually, the structure of white noise in the EXPOS context is not investigated but it
is common to observe some pattern left in the error term. So, autoregressive models
(AR) are suitable to model this error sequence. Given the, approximately, i.i.d nature
of the AR residuals, the IID bootstrap [9] can easily be extended to the dependent
case.

A scheme of the automatic algorithm that includes Boot.EXPOS is given in
Fig. 1. This computational scheme starts by selecting the most appropriate EXPOS
model (Table 1) and then investigates the stationarity of the EXPOS residuals
fe1; � � � ; eng, using the ADF (Augmented Dickey–Fuller) test [21]. If the null
hypothesis of nonstationarity is not rejected, an adequate transformation (Box-Cox
and differencing) is performed on fy1; y2; � � � ; yng and the process starts again.

Boot.EXPOS is ready to start when the component “EXPOS residuals” can
be assumed as stationary (rejection of the ADF null hypothesis). Boot.EXPOS
starts by performing an autoregressive (AR) adjustment on the EXPOS residuals.
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These second stage residuals, which we call AR residuals, are resampled and used
afterwards in a backward reconstruction of a new AR residuals series (using the
estimated AR coefficients). With this series and with the initial fitted EXPOS values
f Oy1; � � � ; Oyng, a bootstrap sample path of the original time series is obtained. Point
forecasts and forecast intervals are now calculated using this bootstrap time series
and also the parameters estimated in the initial EXPOS fit, O�0 D . Ǫ ; Ǒ; O�; O	/. The
description of the Boot.EXPOS steps is the following:

Step 1: Adjust an AR model to fe1; � � � ; eng, by the AIC selection criterion;
Step 2: Obtain the AR residuals and center them;

For b D 1; � � � ; B
Step 3: Draw a random sample from the centered residuals;
Step 4: Use AR model recursively for obtaining a bootstrap series of the

residuals;
Step 5: Construct a “bootstrapped” time series f Oy�1 ; � � � ; Oy�n g using f Oy1;� � � ; Oyng

and the bootstrap series of the residuals;
Step 6: From f Oy�1 ; � � � ; Oy�n g and using O�0 D . Ǫ ; Ǒ; O�; O	/, obtain:

Point forecasts: h step-ahead forecasts Qybh;
Forecast intervals: draw a random sample e�h of size h from fe1; � � � ; eng

and obtain Qy�bh D Qybh C e�h or Qy�bh D Qybh.1 C e�h / according to the error
type;

Step 7: For each h forecast horizon, calculate

Point forecast: Qyh as the average of f Qybh; b D 1; � � � ; Bg;
Forecast intervals: bootstrap percentile intervals for f Qy�bh; b D 1; � � � ; Bg;

As we referred to above the initial step before applying the Boot.EXPOS
procedure is to select the “best” EXPOS method using the AIC criterion and to
test the stationarity of EXPOS residuals. Time series fitted values f Oy1; � � � ; Oyng and
the optimized smoothing parameters O�0 D . Ǫ ; Ǒ; O�; O	/ are kept for later use at
Boot.EXPOS backstage, while the EXPOS residuals series fe1; � � � ; eng (Fig. 1) has
a leading role, since it is the input time series in Boot.EXPOS algorithm.

2.1 Forecast Intervals in EXPOS

The EXPOS method is a procedure that provides only a point forecast. So, in order
to obtain prediction intervals, a stochastic data generating process must be provided
by a statistical model. In this context, all the methods in Table 1 have an underlying
state space model [16]. For each method in Table 1, there are two possible state
space models: a model with additive errors and another one with multiplicative
errors. Thus, there are thirty EXPOS models associated with the methods in Table 1.
Additive and multiplicative models give identical point forecast (provided that the
same parameters are used), but their prediction intervals will differ [16].
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It is useful to compute the associated prediction distribution for each model,
i.e., the distribution of a future value of the series given the model. One simple
way of obtaining the prediction distributions is through a simulation approach (not
developed in this paper). Another way is to derive the distributions analytically
(already done in [16]). For linear models with homoscedastic errors the prediction
distribution is clearly Gaussian. In case of linear models with heteroscedastic errors
and models with multiplicative errors and multiplicative seasonality but additive
trend, the prediction distributions are non-Gaussian because of the nonlinearity
of the state space equations. However, prediction intervals based on the Gaussian
formula will give reasonably accurate results, see [16] for more details.

2.2 Forecast Intervals in Boot.EXPOS

In Cordeiro and Neves past studies, attention was dedicated to obtain point forecasts,
but a forecast interval gives a clearer indication of future uncertainty [2]. So to
calculate prediction intervals is necessary to incorporate some uncertainty into the
point forecast through forecasting errors obtained after fitting a model to past data.
Attention must be given now to Step 6 in the Boot.EXPOS algorithm where forecast
intervals are not calculated, despite the designation in the step. What is done there is
simply to “add” error uncertainty to the point forecast and only after performing
the B replications these intervals are calculated, as described in Step 8. Let Fh
be the empirical distribution function of the f Qy�bh; b D 1; � � � ; Bg. Considering the
percentile bootstrap methodology, [9], the .1� ˛/ � 100% confidence intervals are
given by ŒF �1h .˛=2/; F�1h .1�˛=2/�. For a 95 % confidence interval and B D 1;000
replications, the percentiles for determining the interval are F �1h .0:025/ D Qy�.25/bh

and F �1h .0:925/ D Qy�.975/bh .

3 Case Study

The case study presented here is limited to a group of six time series plotted in
Fig. 2. Each time series is splitted into two parts: the fitting set and the validation
set:

y1; y2; � � � ; yn�k;„ ƒ‚ …
fitting set

validation set
‚ …„ ƒ
yn�kC1; � � � ; yn:

To the fitting set fy1; � � � ; yn�kg is applied the Boot.EXPOS procedure and the
EXPOS too. For these family of methods, Hyndman and Khandakar [14] have

developed the ets() function in [13] that chooses the model (among those in
Table 1) that better fits the data, to obtain forecasts and forecast intervals. The
exponential smoothing procedure led to the following classification: time series
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Fig. 2 data sets: UKDriverDeaths (datasets [23]); elec, dole, and uselec (fma [12]); ukcars,
usgdp (expsmooth [11])

dole—ETS1(A,Ad,A); ukcars—ETS(A,N,A) and usgdp—ETS(A,Ad,N), so all of
them are linear models with homoscedastic errors; UKDriverDeaths—ETS(M,N,A)
also a linear model but with heteroscedastic errors; elec—ETS(M,Ad,M) and
uselec—ETS(M,N,M) are models with multiplicative errors and seasonality, but
additive trend. For the series under study, several accuracy measures have been
calculated, and Table 2 presents RMSE (Root Mean Squared Error), MAE (Mean
Absolute Error), and MAPE (Mean Absolute Percentage Error).

Figure 3 shows the exponential smoothing and the Boot.EXPOS forecast inter-
vals (all these are 95 % confidence intervals). As it can be seen forecast intervals
based on the proposed procedure are narrower than those obtained with ets().

4 Conclusions

This article concentrates on forecast intervals achieved by the Boot.EXPOS proce-
dure. This promising procedure has been developed for point forecasting as a first
purpose, but after a safe basis is being established, investigation went on in terms
of forecast intervals. These intervals are based on a nonparametric approach, while
those produced by EXPOS are based on a parametric approach. As showed in the

1ETS stands for Error, Trend, Seasonality.
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Table 2 Accuracy measures for time series in Fig. 1

Accuracy measures

Time series n-h s h ets function RMSE MAE MAPE

UKDriverDeaths 180 12 12 (M,N,A) ets 205:63 198:49 14:68

Boot.EXPOS 84:93 67:79 4:88

elec 464 12 12 (M,Ad,M) ets 348:87 305:88 2:19

Boot.EXPOS 333:90 300:85 2:17

dole 427 12 12 (A,Ad,A) ets 15;271:15 10;927:08 1:45

Boot.EXPOS 11;419:08 8;223:98 1:07

uselec 130 12 12 (M,N,M) ets 5:68 4:35 1:72

Boot.EXPOS 4:03 3:04 1:20

ukcars 105 4 8 (A,N,A) ets 19:46 16:05 3:95

Boot.EXPOS 15:58 11:56 2:88

usgdp 229 4 8 (A,Ad,N) ets 59:08 43:12 0:38

Boot.EXPOS 38:70 24:98 0:22

UKDriverDeaths

h

elec

h

dole

h

uselec

h

ukcars

h

2 4 6 8 10 12

80
0

10
00

12
00

14
00

16
00

18
00

20
00

2 4 6 8 10 12

12
00

0
13

00
0

14
00

0
15

00
0

16
00

0

2 4 6 8 10 12

70
00

00
75

00
00

80
00

00
85

00
00

90
00

00
95

00
00

2 4 6 8 10 12

22
0

24
0

26
0

28
0

30
0

32
0

1 2 3 4 5 6 7 8

30
0

35
0

40
0

45
0

50
0

1 2 3 4 5 6 7 8

10
60

0
10

80
0

11
00

0
11

20
0

11
40

0
11

60
0

11
80

0

usgdp

h

Fig. 3 Forecast intervals comparison: ets (solid line with triangle), Boot.EXPOS (plus sign with
solid line) and validation set (filled circle)

case study, the Boot.EXPOS approach produces narrower intervals when compared
to the other method.
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Table-Graph: A NewApproach to Visualize
Multivariate Data. Analysis of Chronic
Diseases in Portugal

Alexandra Pinto

Abstract
Chronic diseases are the world’s major cause of death and disability (WHO:
Chronic Diseases and Health Promotion, http://www.who.int/chp/about/
integrated-cd/en/index.html, 2012). The prevalences of chronic diseases in
Portugal were calculated from the fourth National Health Survey (NHS) and
then presented in different graphs, trying to find one that best represents this
data. There are several two-dimensional representations used to visualize
multivariate data. In this paper I propose and implement the Table-graph, a
graphical representation suitable for multivariate data. Table-graph can be used
as an alternative to multi-line charts and radar plots, when there are several
variables to present, especially if their values are similar, leading to confusing
charts. In this study, Table-graph proved to be an important technique in data
visualization and it was used to present data of chronic diseases.

According to NHS, high blood pressure, rheumatic pain and chronic pain
are the most prevalent chronic diseases in Portugal. In general, prevalences of
chronic disease obtained from NHS are underestimated because they are not
provided by medical diagnosis.

1 Introduction

Chronic diseases are long duration diseases and are the cause of 63 % of all
deaths [15]. Among chronic diseases, the main cause of mortality are: cardiovas-
cular diseases, cancer, chronic respiratory diseases, diabetes and obesity [15]. In
developing countries about 79 % of deaths are attributed to chronic diseases [16].
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In the fourth Portuguese National Health Survey (NHS) individuals were
inquired about 15 chronic diseases. All data obtained is based on individual
answers about chronic diseases. About 90 % of the diagnoses of chronic diseases
were made by doctors and nurses, except for obesity that occurred in 64.2 % of
individuals [1]. When we tried to visualize this data, some issues arose because of
its high dimensionality.

In recent years, data visualization has become a widely used tool to extract re-
levant information from data [12]. Data visualization is the process of converting
data into images [8] and is a powerful analysis tool that helps us discover patterns
and trends hidden in the data [11]. The main purpose of data visualization is to
extract as much information as possible from a data set, in a quick, clear and precise
way [14]. The major difficulties experienced in the visualization field are related
to the organization of data and the choice of the best graphical representation to
present the data [1, 2], which is becoming more complex due to the large variety of
available plots. Once these difficulties are overcome, researchers face the challenge
to produce a clear and appealing plot, in order to present an interesting insight on
their work [3].

To deal with the difficulty of analysing graphs with a high number of variables
or/and groups [7], I developed and implemented the Table-graph method, first
proposed by Tufte [13]. Table-graph is a tool to visualize multivariate data and
it looks like a mix between a table and a graph, providing a visual image of
each element of the chart, without loss of information. Tufte’s version (which he
called Table-graphic), not implemented, is more focused on a table. My version is
an improved version more focused in the graph. I propose three new approaches
to present data interactively, allowing the visualization of a progressive transition
between a common multi-line chart and a Table-graph. I also built a GUI (Graphical
User Interface) with the aim of producing a user-friendly tool that will soon be
available for researchers.

In order to compare graphical representations I also present data in a common
radar plot and multi-line charts.

2 Objectives, Material andMethods

The aim of this study is to propose and implement a new and interactive graphical
representation that solves some clutter caused by data. The new graph is presented
with data from the fourth NHS (2005/2006). The NHS is an instrument that deals
with health conditions of the population (individuals living in their usual residence
during the period of data collection). The fourth NHS is the first survey to cover the
autonomous regions of Açores and Madeira. In this survey, 41,193 individuals were
inquired and more than 400 variables were collected.

In this study I applied radar plot, multi-line charts and Table-graphs, to preva-
lences of chronic diseases obtained from the fourth NHS.
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These prevalences were calculated using the appropriate weight factors, provided
by INE,1 in order to get values related to all resident population [5]. The data set
was ordered by prevalences’ mean of the seven NUTS II2 regions of Portugal: Norte,
Centro, Lisboa e Vale do Tejo (LVT), Alentejo, Algarve, Açores and Madeira. Then
prevalences were presented graphically.

Table-graph was implemented in Matlab 7. Radar plot and multi-line charts were
produced in MS-Excel. The prevalences were calculated using IBM SPSS 18.

3 Table-Graph

Table-graph is a graphical representation of multivariate data, similar to a line chart,
that increments a leap value for each variable to prevent line intersection. The leap
is a value artificially added to the data, only for representation purposes; it is a new
gap between series3 that helps transforming a multiple line graph into a Table-graph.
With this leap lines do not intersect and the variations between them become more
clear. For each series, the value added grows in multiples of the leap (Values of series
n D Values of series n C n  leap). To calculate the leap value, a simple algorithm
was created. It finds the mean range of the series’ values which is then multiplied
by a factor. This factor was found by simple trial and error, and by comparing
the outputs. I found that value 5 provides the right gap between series, for several
examples tested. The formula to calculate the leap value is:

Leap value D ..mean.Series maxŒn�/ �mean.Series minŒn�//  5/
Leap factor slider:

Where:
• n D 1; : : :, number of groups (regions);
• Series max[n] is the vector of maximum of each series;
• Series min[n] is the vector of minimum of each series;
• Leap factor slider is an extra factor (varying between 0 and 1) that places each

line closer or farther away from the others. This factor can be controlled in GUI.
In the software created, the Leap factor slider controls the Table-graph’s leap,

from no leap (resulting in a multi-line chart) to the maximum leap (Table-graph
with the highest gap between series). This factor is controlled in GUI, with a slider,
providing an interactive graph, which is a major advantage of this graph.

The proposal software requires Excel data files as input.

1National Institute of Statistics of Portugal.
2Standard Nomenclature of Territorial Units for Statistics purposes. NUTS II refers to regions
larger than districts.
3In this paper “series” are the prevalences of each pathology along the seven regions.
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I propose three variants of Table-graph that enable different and optimized re-
presentations to analyse multivariate data. Researchers can choose the most suitable
representation for the data:
1. Regular: In this case, the series name and value labels are placed on a virtual line

defined by the mean range of each series. This representation is more suitable
when data series have small ranges. It deals well with some intersection.

2. On the series: In this case, the series names are positioned near the first value and
the value labels are placed on the series line. This is the most similar approach to
Tufte’s version. This variant is more suitable for large ranges.

3. On the reference line: In this case, the series name and value labels are placed
at a reference line (an extra line of reference values of the database; there is
one reference line for each series and it has only one position for each series).
The reference values are optional and this variant is not displayed if there are no
reference values as input (from Excel data file). This variant is suitable for those
case studies where reference values are important to make comparisons.

4 Results and Discussion

High blood pressure is the most prevalent chronic disease in Portugal, both in
general and in each NUTS II region. Rheumatic pain and chronic pain have also
high prevalence in all the country (Figs. 1, 2, 3, 4, and 5).

A radar plot (radial, spider or star plot) is a two-dimensional chart of multivariate
data that provides an easy way to analyse patterns across groups, showing differ-
ences or disparities within and between them [6,10]. Figure 1 shows a radar plot with
too many groups and similar values, leading to a cluttered and illegible graph. In this
case study, the solution would be creating one plot for each region. Nevertheless this
procedure highly increases eyes movement to perform comparisons between charts,
which are referred by Tufte as a negative issue that should be carefully considered
and avoided in data visualization [13].

The multi-line chart is an appropriate display when the number of variables is not
so high and values are not too similar [9]. The big disadvantage arises when lines
intersect each other, or even overlap (Fig. 2).

If we add value labels to Fig. 2, instead of providing more information we will
present an unreadable chart (Fig. 3).

The radar plot and the multi-line chart became even more cluttered after adding
a marker to distinguish each line, due to the need to make displays in a gray scale.

In Figs. 4 and 5 are shown two variants of Table-graph for chronic diseases data.
We can analyse prevalences of all chronic diseases mentioned in the NHS, for
each region, in both variants. The Regular variant does not fit this data properly.
The reference line (Fig. 5) presents the overall prevalences in Portugal and allows
comparisons between these values and prevalences of each region.

Table-graph tool deals well with data up to 15 variables but for more variables
the chart will show very flat series. This fact can be improved increasing chart size.
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Fig. 1 Radar plot—prevalences (%) for the 15 chronic diseases in each region

Fig. 2 Multi-line chart with markers—prevalences (%) for the 15 chronic diseases in each region

Fig. 3 Multi-line chart with markers and value labels—prevalences (%) for the 15 chronic
diseases in each region

The Table-graphic proposed by Tufte is presented in Fig. 6. In this chart the gaps
between series are not calculated by an algorithm, they are chosen arbitrary (case to
case) to avoid intersection. This method is not interactive, neither is implemented.
Tufte’s method is design in a way that the limit for number of variables is the length
of the sheet.



262 A. Pinto

Fig. 4 Table-graph—prevalences (%) for the 15 chronic diseases in each region. Variant: On the
Series

Fig. 5 Table-graph—prevalences (%) for the 15 chronic diseases in each region. Variant: On the
Reference line
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Fig. 6 Table-graph proposed
by Tufte with oncologic data
as example. Source: Tufte
[13]

In chronic diseases data obtained from NHS, some prevalences are underesti-
mated, especially for obesity, directly asked to the interviewed individuals, reaching
only 3.8 % overall. However, when this prevalence is calculated through BMI (body
mass index), almost a fourfold higher prevalence is found [1, 4].

5 Conclusion

High blood pressure, rheumatic pain and chronic pain are the most prevalent chronic
diseases in Portugal, according to the NHS of 2005/2006. Some prevalences of
chronic diseases are underestimated, especially obesity, because they were not
estimated by a doctor diagnosis.

In this study I propose the Table-graph, an interactive graph for multivariate data.
Table-graph allows us to make transversal comparisons between and within regions,
in the same representation.

When the original position of values is needed to make general comparisons or
to identify groups, Table-graph can be presented with no leap, leading to a common
multi-line chart. Researchers can switch (gradually or not) between a Table-graph
and a common multi-line chart. Researchers can choose the variant of Table-graph
that best fits each data set. Table-graph’s main advantage is the interactivity and
the possibility of analysing series without overlay. On the other hand the main
disadvantage of Table-graph is the flat effect when the number of series increases.

Table-graph is an improvement because it provides an alternative tool, presenting
data more clearly than common tools, when there are several variables and their
values are similar.

Acknowledgements I thank to Victor Lobo for his suggestions on an earlier version of this paper.
I also thank to anonymous reviewers for their helpful comments and suggestions.
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Application of Item Response Theory
toMathematics High School Exams in Portugal

Gonçalo Jacinto, Paulo Infante, and Claudia Pereira

Abstract
Item response theory (IRT) provides statistical models that relate an examinee’s
response to a test item to an underlying latent trait that is measured by the items.
Unlike classical test theory, IRT models focus on the responses to individual
questions instead on the total score obtained in the test.

In this paper we apply IRT models to the results of the quiz part of the first
and second calls of mathematics exams accomplished by high school graduating
students in Portugal, in the years 2008–2010. We concluded that the quiz part of
the first call exams had a difficulty level lower than the students median ability,
whereas the quiz part of the second call exams had a difficulty level higher than
the students median ability.

1 Introduction

The IRT provides models that relate the probability of a given question being
answered correctly to the unobservable latent traits (usually called ability or
proficiency level in the field under evaluation) of the individuals by means of the
way that responses are given to the questions (usually called items) in a test.

Unlike the classical test theory where only the final score in the exam is
considered as a measure of the proficiency level of the students, in IRT the items
of a test are the central elements. One of the advantages of IRT over the classical
test theory is that IRT allows for the comparison between two populations when
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the tests have some items in common, or it can compare individuals from the same
population even when the tests are completely different.

The different models used in IRT take into account the following characteristics:
(1) the nature of the question (if it is dichotomous or not); (2) the number of
populations involved (one or more); (3) the number of latent traits under study.
The models used in this paper only consider one latent trait or ability, being called
unidimensional models. These models are used in several countries, being powerful
instruments used by education institutions and in another fields where some kind of
ability needs to be measured.

We can see, for example, [1, 3, 7] for some applications of IRT. In [3] IRT was
applied to smaller-sized class examinations and [7] made a comparison between
the classical test theory and IRT, for the analysis of the results of a statistical
reasoning test. In [1] is proposed a methodological approach based on the two-
parameter logistic model to obtain a common test metric for future use that assures
the comparability of student scores over time.

In Portugal, as far as we know, the only existent studies applying IRT models
to the results of national exams [5] were made by GAVE (Gabinete de Avaliação
Educacional, an entity belonging to the Portuguese Ministry of Education), for the
exam results made by students of the fourth grade in the years 2008 and 2009.
In this study, a two-parameter logistic model was fitted to the responses given to
27 questions, being the results to the questions transformed in dichotomous or
polychotomous values (there is no information how that is made), and where the
goodness-of-fit of the model was not presented.

In this paper we applied IRT models to the results of the quiz part of the first
and second calls of mathematics exams accomplished by high-school graduating
students in Portugal, in the years 2008–2010. A random sample of 10,000 students
from each year was obtained from GAVE, being the sample proportion of students
from each call equal to the true proportion. We only consider IRT models for
dichotomous responses, and for that reason we have only analysed the first part of
the exams which have eight quiz questions. We assumed that only one latent trait is
under study: the proficiency level in mathematics. Using IRT models we concluded
that the first call exams had a difficulty level lower than the students median ability,
whereas the quiz part of the second call exams had a difficulty level higher than
the students median ability. Due to space restrictions, the results obtained for 2009
exams are not presented. However, the model fitted for the years of 2008 and 2010
was adjusted for 2009 and the same general conclusions were obtained.

This paper is organized as follows. In Sect. 2 the item response logistic model
for dichotomous items is presented. In Sect. 3 the results obtained for each call and
year are illustrated. Finally, in Sect. 4, we conclude and make some remarks.

2 Unidimensional IRT Models for Dichotomous Responses

To model the quiz part of the exams we fitted unidimensional IRT models for
dichotomous responses, mainly the one-, two-, and three-parameter logistic models.
For each call from each year we selected the model that fits the data best.
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In each case we checked the two key assumptions: unidimensionality and local
independence. We then proceed to analyse the estimated parameters.

The most simple model is called the one-parameter logistic model (ML1) or
Rasch model. This model considers the item difficulty as the only parameter to
explain the relation between the item itself, the ability of the individual and the
response given to the item. The item difficulty represents the location of the item
on the ability scale. That is, for dichotomous items, it is defined as the point in the
ability range where an individual has a probability equal to 0.50 to give the correct
answer.

Let ˇi denote the difficulty of item i and �j the ability of the individual j , then
P.Uij D 1j�j / denote the probability of individual j with ability �j to answer
correctly to question i , and the logistic model ML1 is given by

P.Uij D 1j�j / D 1

1C e�.�j�ˇi /
: (1)

In this model the item discrimination, that refers to how sharply an item
differentiates among different individuals who have different ability levels, is the
same across all items. However, the discrimination varies across the items, that is, if
an item has a high discrimination value it is likely to have different responses among
individuals that have different abilities, while if an item has a low discrimination
value it is likely to have similar responses among individuals that have different
abilities. When the discrimination value varies along the items, we have the two-
parameter logistic model (ML2). If ˛i denotes the discrimination value of item i ,
the model ML2 is given by

P.Uij D 1j�j / D 1

1C e�˛i .�j�ˇi /
: (2)

Finally, if we include in the model the guessing parameter �i , that denotes the
probability that an individual with low ability answer correctly to the item, we have
the three-parameter logistic model (ML3), given by

P.Uij D 1j�j / D �i C .1 � �i/ 1

1C e�˛i .�j�ˇi /
: (3)

To fit each model we use the software R project with the package ltm [6]. This
package uses the Marginal Maximum Likelihood Estimation (MMLE).

Formally, the model parameters are estimated by maximizing the observed data
log-likelihood obtained by integrating out the latent variables; the contribution of
the mth sample unit is

lm.�/ D log
Z
p.xmjzm; �/p.zm/dzm;
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where p.�/ denotes the probability density function, xm denotes the vector of
responses for the mth sample unit, zm denotes the individuals level and � D
.˛i ; ˇi ; �i /. This integral is approximated using the Gauss–Hermite quadrature rule
with 21 points when one latent variable is specified. The maximization of the
integrated log-likelihood with respect to � is achieved using BFGS algorithm [2].

As mentioned above we must verify two model assumptions: unidimensionality
and local independence. Unidimensionality means that all items in the test represent
the same latent trait. This is achieved by a procedure proposed in [2] for examining
the latent dimensionality of dichotomously scored item responses. The statistic used
for testing unidimensionality is the second eigenvalue of the tetrachoric correlations
matrix of the dichotomous items. The tetrachoric correlations are computed and the
largest one is taken as the communality estimate. A Monte Carlo procedure is used
to approximate the distribution of this statistic under the null hypothesis.

The assumption of local independence means that for the trait being measured
the items are uncorrelated among them. As referred in [4], unidimensionality
implies local independence, since the unique cause of response of the student is the
assumption of the dominant latent trait. Then if the unidimensionality assumption is
verified, local independence also is verified.

To investigate the fit of each model, we examine the two-way and three-way chi-
square residuals produced by the margins method. These residuals are calculated
by constructing all possible 2 � 2 contingency tables for the available items and
checking the model fit in each cell using the Pearson’s chi-square statistic.

3 Critical Analysis of the Obtained Results

All the exams have eight quiz questions. The first three questions are about
probability (usually probability theory or random variables), the next three questions
are about trigonometry and calculus (usually include questions about logarithms,
limits and differential calculus) and the final two questions are about complex
numbers. Usually the same topics, despite not in the same order, are evaluated in
both calls and years.

3.1 Results for the First and Second Calls of the 2008 Exams

In the phase of model fitting, questions 3, 6 and 8 were withdrawn from both
exams (by lack of model fitting) and the best model for both exams (first and
second calls) was the ML3 model. The estimated parameters are presented in
Table 1, and both models have verified the required assumptions: the chi-square
tests for the two-way and three-way margins are not significant at 10 %; the test to
evaluate the unidimensionality assumption had a p-value equal to 0.71 for the first
call and a p-value equal to 0.60 for the second call, which allowed us to assume
unidimensionality.

Regarding the first call exam, the easiest questions were questions number 2, 4
and 7 (about probabilities, logarithms and complex numbers, respectively), with a
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Table 1 Parameters of the IRT model for the 2008 Exams (C1—first call, C2—second call)

P Disc. Difficulty Guessing PXjZ Biserial Corr.

Item C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

1 0.58 0.74 2.14 1.53 0.47 0.00 0.34 0.47 0.52 0.74 0.60 0.52
2 0.85 0.80 2.24 2.13 �1.02 0.54 0.27 0.70 0.93 0.77 0.57 0.45
4 0.86 0.69 2.34 1.35 �0.96 �0.81 0.37 0.00 0.94 0.75 0.55 0.58
5 0.54 0.40 1.94 3.40 0.45 1.17 0.27 0.30 0.48 0.31 0.62 0.55
7 0.72 0.42 1.84 1.14 �0.65 0.46 0.12 0.03 0.79 0.40 0.64 0.60

P denotes the sample proportion of correct answers to the items; Disc. denotes the discrimination
parameters of each item;PXjZ denotes the probability that a median level student answers correctly
to the question, P.X D 1jZ D 0/
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Fig. 1 Item characteristic and item information functions for the first call of the 2008 exam

sample proportion of students with a correct answer equal to 0.85, 0.86 and 0.72,
respectively, and a probability that a median level student answers correctly equal to
0.93, 0.94 and 0.79, respectively. Note that the difficulty parameter of each of these
questions is negative, showing that their difficulty level is lower than the students
median ability.

The most difficult questions were questions number 1 and 5 (about probabilities
and limits), with a probability that a median ability student answers correctly
equal to 0.52 and 0.48, respectively, and a difficulty parameter of 0.47 and 0.45,
respectively.

In Fig. 1 we can observe the item discrimination and the item information
functions, where we can conclude that questions number 1 and 5 have a high
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Fig. 2 Item characteristic and item information curves for the second call exam of the 2008 exam

discrimination value for the highest ability students while questions number 2, 4
and 7 have a high discrimination value for students with lower ability. All questions
give high information about the students ability, but while questions number 1 and
5 give information about students with higher ability, questions number 2, 4 and 7
give information about students with lower ability.

Regarding the second call exam, only question number 4 (about limits) has
a difficulty level below the students median ability, with a sample proportion of
correct answers equal to 0.69 and a probability that a student with median ability
answers correctly equal to 0.75. All the other questions have a difficulty level higher
than the students median ability, which states the difficulty of this exam for a student
with median ability. The most difficult questions were questions number 5 and 7
(about limits and trigonometry, respectively), where only about 40 % of the students
gave the correct answer and with a probability that a student with median ability
answers correctly equal to 0.31 for question number 5 and equal to 0.40 for question
number 7.

In Fig. 2 we can observe the item discrimination and item information functions,
where we can conclude that questions number 1 and 2 (both about probabilities), and
question number 4, have a very low discrimination value, being useless to evaluate
the ability level of the students. On the other hand, question number 5 has a very
high discrimination value being able to distinguish the top 25 % of students. Only
one question (question number 4) gives information about the students with low
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Fig. 3 Item information curve for the first call (left) and second call (right) of the 2008 exams

ability, being question number 5 the one with highest information value for students
with higher ability.

Finally in Fig. 3 we compare the test information functions of both calls. We can
observe that the second call exam gives essential information about higher ability
students, while the first call exam gives essential information about the low ability
students. Therefore, unlike the first call exam, the second call exam is designed for
students with ability higher than the median. As a note, the Portuguese Mathematical
Society in a report made about both exams in 2008 classified the first call exam a
very easy one, with elementary questions while the second call exam was considered
much more difficult than the first call, being exactly what we have concluded by
modelling the quiz part of the exams by an IRT model.

3.2 Results for the First and Second Calls of the 2010 Exams

In the phase of model fitting question 8 was withdrawn from both models (by lack of
model fitting) and the best model for both exams (first and second call) was the ML3
model. The estimated parameters are presented in Table 2, and both models have
verified the required assumptions: the chi-square tests for the two-way and three-
way margins are not significant at 1 % level, and the unidimensionality assumption
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Table 2 Parameters of the IRT model for the 2010 Exams (C1—first call, C2—second call)

P Disc. Difficulty Guessing PXjZ Biserial Corr.

Item C1 C2 C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

1 0.92 0.82 2.62 0.74 �0.14 �2.23 0.85 0.01 0.94 0.84 0.30 0.41
2 0.58 0.48 1.44 1.28 �0.17 1.02 0.04 0.29 0.60 0.44 0.61 0.50
3 0.77 0.86 2.11 1.12 �0.93 �2.00 0.02 0.00 0.88 0.90 0.63 0.42
4 0.59 0.30 1.69 2.65 0.12 1.60 0.24 0.23 0.58 0.24 0.58 0.46
5 0.65 0.30 1.91 2.53 �0.47 1.11 0.03 0.14 0.72 0.19 0.67 0.54
6 0.63 0.43 1.63 2.05 �0.32 0.43 0.11 0.09 0.67 0.36 0.62 0.61
7 0.69 0.64 2.13 1.94 �0.40 �0.09 0.18 0.25 0.75 0.66 0.64 0.58

P denotes the sample proportion of correct answers to the items; Disc. denotes the discrimination
parameters of each item;PXjZ denotes the probability that a median level student answers correctly
to the question, P.X D 1jZ D 0/

was verified for both calls, with a p-value equal to 0.08 for the first call exam and a
p-value equal to 0.02 for the second call exam.

Similar conclusions as the ones taken for 2008 exams can be taken for 2010
exams. Questions about probability were the easiest ones: question number 3 from
first call, with 77 % of correct answers and a probability that a student with median
ability answers correctly equal to 0.88; and questions number 1 and 3 from second
call, with a probability that a student with median ability answers correctly equal to
0.84 and 0.90, respectively.

In the first call exam only question number 4 (about differential calculus) has a
difficulty parameter higher than the students median ability, and all questions have
a probability higher than 0.58 that a student with median ability answers correctly.
On the other hand, for the second call exam, only questions number 1 and 3 (about
probabilities) and question number 7 (about complex numbers) have a difficulty
below the students median ability, being question number 4 (about differential
calculus) the most difficult one.

Observing the discrimination and difficulty parameters from Table 2, for the
first call exam we can conclude that question number 1 (about probabilities) is
completely useless since it presents a very low discrimination value, being question
number 3 (about probabilities) the one that gives the higher information about the
worst students. It should be noted that none of the questions give information about
the high ability students. Contrasting with these results, three questions from the
second call exam allow to distinguish the high ability students: question number 4
(about differential calculus), question number 5 (about limits) and question number
6 (about differential calculus).

Finally, in Fig. 4 we present the test information functions for both calls. As in
2008 exams, we can conclude that second call exam gives information essentially
about students with ability higher than the median, while the first call exam gives
information essentially about students with ability lower than the median. The
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Fig. 4 Item information curve for the first call (left) and second call (right) of the 2010 exams

Portuguese Mathematical Society in its report about 2010 exams stated the higher
difficulty of the second call exam, which is in line with the conclusions we have
obtained.

4 Some Remarks

We have used IRT models to analyse the results of the quiz part of the first
and second calls of mathematical exams accomplished by high-school graduating
students in Portugal, in the years 2008–2010.

We have concluded that, for the 3 years, the quiz part of the first call exams had
a difficulty level lower than the students median ability, whereas the quiz part of the
second call exams had a difficulty level higher than the students median ability.

We also concluded that in the 3 years there were always useless questions. In
all the first call exams there was a very easy question about probabilities, and there
was always a question about probabilities that gives information about the students
with lower ability. Despite we have only analysed the quiz part of the exams,
the conclusions obtained were the same as the ones produced by the Portuguese
Mathematical Society. As future work, it is our intention to apply IRT models to
analyse the non-dichotomous questions and to compare the tests over the 3 years.
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Évora Residents and Sports Activity

Luísa Carvalho, Paulo Infante, and Anabela Afonso

Abstract
A healthy life is promoted by active practices that decrease sedentary lifestyles,
reducing the risks of occurrence of various diseases. The World Health Organiza-
tion recognizes the importance of physical activity in physical, mental, and social
health. This paper presents some of the results obtained from a survey realized in
collaboration with the Sports Division of Municipality of Évora to characterize
the physical activity of the residents. After an exploratory data analysis, and
some comparisons using parametric and nonparametric tests, we adjust a logistic
regression model to identify enhancers’ factors of physical activity. We conclude
that the residents in this municipality have a high physical activity rate and that
there are no significant differences in physical activity rate between genders.
Physical activity rate decreases drastically with age, varies with the professional
situation and increases with qualification. The more likely practitioner is a young
male, self-employed without higher education that knows some sports initiatives
and that is satisfied with municipality sports offer.

1 Introduction

The World Health Organization (WHO) recognizes the importance of sports activity
for our physical, mental and social health [5]. It refers the need of policies that
take into account the necessities and people resources, trying to integrate physical
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activity in all age groups and social sectors. In this way, WHO recommends a daily
minimum of 30 min of moderate-intensity physical activity for adults and at least 60
for young people.

The sedentary lifestyle, coupled with the increasing use of technology in
everyday life, is leading people to higher levels of inactivity in all age groups. In
this context, different municipalities have developed several initiatives to promote
the sport activity, seeking to create infrastructures that attempt to meet this objective
and the needs and desires of its residents.

In a comparative study [4] of sports activity in Portugal between 1988 and 1998,
there was a slight decline in the overall percentage of practitioners (27–23 %). The
sports participation depends on several factors such as age, gender, educational level
and occupational status. Young people practice more sport than older generations
and the rate of sports participation decreases with age. The physical activity in
females is generally less than in men.

The European Union (EU) has made some studies related with this theme. The
most recent [2] shows that in Portugal 33 % of citizens practice physical activity at
least once a week, a value similar to the EU percentage. Nordic countries, such as
Sweden and Finland, present a sports level activity of 72 %.

Several studies about sports activity have been made in some municipalities of
Portugal but they are mainly descriptive. The novelty of our work is the estimation of
the proportion of practitioners by age and area in the municipality of Évora and also
the construction of the practitioner profile. We start by characterizing the physical
activity of the residents in this municipality, which consists of 11 rural and 8 urban
parishes’ councils and has a very high rate of ageing population. In Sect. 2 we
described the methodology used in collecting the data. In Sect. 3 we present some
results that characterize the physical activity in this municipality. In Sect. 4, we give
the profile of the practitioner using a logistic regression model. Finally, we conclude
with some remarks.

2 Methodology

Between June 24 and August 11, 2011, a sample survey was applied to the
population resident in Évora having a fixed phone and aged 15 years and over, by
the sports section of the municipality of Évora.

According to National Institute of Statistics data, in 2001 Census, Évora munic-
ipality had 48,097 residents aged 15 or more years, living mostly in urban areas
(40,550 residents). Given that the population structure of the municipality of Évora
presents differences between rural and urban areas, and knowing from previous
studies [2,4] that sports in Portugal differs between age classes, we decided to break
the population into strata, whose differentiating variables are the age group and the
area of residence.

We used a stratified random sampling design [1] where the variable of interest
was the rate of physical activity in the municipality of Évora. To calculate the
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global sample size we considered as initial estimates the global indices obtained
for Portugal in [2], since there were no available rates for the municipality of Évora,
a maximum margin of error equal to 3.5 %, for a confidence level of 95 %. We used
proportional allocation to get the sample size by stratum, based on data from Census
2001.

We must point out that, despite of this study design was based on data available
to the sample survey application date (2001 Census), data from Census 2011, mean-
time available, allow us to conclude that the sample taken remains representative.
Indeed, despite the aging increase population, the populational differences between
2011 and 2001 on each stratum are small, and the samples sizes would not present
relevant changes. To analyze data we used exploratory data analysis and some
parametric and nonparametric tests. To obtain a profile for the practitioner it was
adjusted a logistic regression model. The significance level for all tests has been
fixed at 5 and at 10 % for the significance of the variables of logistic regression
model.

3 Sports Practice Characterization

This study had the participation of 653 residents in the municipality of Évora, most
of them were females (54 %). Participants age vary from 16 to 92 years, age average
is equal to 47 years (SD D 19:58) with females slightly older. Also, 80 % lives at
urban area, 55 % had education at the high school and superior, 55 % are workers
with 39 % employed by someone else.

With 95 % confidence, over half of the residents practice some physical activity
(56 %), with an error of the estimate equal to 3.7 %. The practitioner has, on average,
about 43 years of age, half of the practitioners have 28–57 years, and the older
practitioners have more than 80 years. About one in four residents already practiced
physical activity earlier and 18 % never practiced physical activity.

Physical activity rate decreases with the increasing of age: 72 % of young
practitioners against 38 % of elderly practitioners and did not significantly differ
from urban to rural areas (z D 0:704, p-value D 0:482). In rural areas the rate who
has never be a practitioner is 29 %, higher than in the urban area (18 %).

In urban area the rate of male practitioners tends to decrease with age (Fig. 1) but
is not statistically different between the age classes 25–39 and 40–64 (Z test with
Bonferroni correction: z D �0:70, p-value D 0:460), and the physical activity rate
is significantly lower in elderly women (Z tests with Bonferroni correction: p-values
< 0:05). In rural areas the estimated proportion of practitioners of both genders is
much lower for elderly people. In women the estimated rate decreases with age,
while for men higher percentages of practitioners were estimated for individuals
between 25 and 64 years old. We do not present the confidence intervals for the
rural area, since they were very wide due to the small number of respondents.

Individuals with lower levels of education have lower rates of physical activity;
retired persons and unemployed have the lowest percentages of practitioners;
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Fig. 1 Estimated physical activity rate by gender, age and area of residence, and correspondent
95 % confidence interval

Fig. 2 Physical activities more practiced

workers are those who have higher rates of physical activity (48 %) and the tertiary
sector is the one who have more practitioners.

We have identified a set of 25 individual and collective sport activities. Among
practitioners, 79 % have only one physical activity. Figure 2 shows the sports most
frequently cited by respondents, standing out walking (41 %) and fitness activities
(18%).

As expected, young people, between 15 and 20 years, practice physical activities
at school (Fig. 3). The age of combat sports activities practitioners is also very low,
on average 22.8 years, probably because of the recent availability of some of these
modalities for the residents in the municipality of Évora. The football players are
on average about 27 years (SD D 8:4), half of the swimmers have a maximum
of 32 years, and only 25 % are over 35.5 years. The activities hydro gymnastics,
walking/pedestrianism, and gymnastics are associated with elderly people. Note that
there are at least two swimmers that stand out from other swimmers because they
are a little older, and there is a practitioner of combat sports activities who is much
older than the others.
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Fig. 3 Practitioners age for the physical activities more practiced (at least 4 %)

Fig. 4 Physical activities more practiced by gender

There is a greater diversity of activities practiced in males and there are different
preferences in each gender: females tend to opt for maintenance activities and males
for leisure or competitive activities (Fig. 4).

The main reasons for physical activity identified by practitioners were: 40 %
health-related and 24 % entertainment. Figure 5 shows significant difference was
found between genders (Homogeneity Chi-square: �26 D 20:14, p-value D 0:003)
where health reasons were the more mentioned by females (51 %), while males are
divided between health reasons (32 %) and entertainment reasons (30 %).

Almost 70 % of the respondents who have practiced physical activity in the past
reported two reasons for the abandon of physical activity and only 4 % have not
present any justification. The main reason mentioned, by both genders, was the
lack of time. In general, the lack of time was due to family obligations (18 %),
professional/scholar reasons (24 %) and 58 % have not specify why.
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Fig. 5 Reasons for the practices of physical activity, by gender

4 Practitioner Profile

In this section we intend to identify some characteristics that explain the physical
activity in order to establish the profile of the practitioner. We adjust a logistic
regression model where the dependent variable assumes the value 1 if the respondent
is a practitioner and 0 otherwise. The sample was truncated excluding individuals
who reported walking as the only sports activity.

To adjust the model we have considered age (not age class), gender, residence
zone (urban or rural), work situation (self-employed, employed by someone else,
unemployed, student or retired), instruction (1st cycle, 2nd cycle, 3rd cycle, high
school or higher education), knowledge of sports facilities offers by municipality
(yes or no), satisfaction with sports provision (yes or no), and knowledge of
municipality sports initiatives (yes or no) as explanatory variables.

We conducted a verification of the model assumptions and a residual analysis
with evaluation of outliers and influential observations. The adjusted model fit well
to the data (goodness of fit Hosmer and Lemeshow test [3]: �28 D 9:7, p-value D
0:29). The adjusted model has a very good discriminative ability (AUC D 0:80,
95% CI W�0:76I 0:84Œ) with a sensitivity equal to 74 % and a specificity equal to
75 % if we use a cutoff point equal to 0.49.

Later, since the sample is relatively small (n D 522) to leave out some indivi-
duals for further validation of the model, we choose to conduct a cross-validation by
bootstrap, where different models were adjusted to 10 random samples consisting
of 90 % of individuals from original sample. Values were estimated by each model
for 10 % of individuals who were left out in each model and also we have recorded
the values of Chi-square statistical test of each model. The average value of the Chi-
square for the 10 models was equal to 9.4 with a minimum of 6.2 and a maximum of
13.9. To validate the model we obtain an AUC D 0:77 (95% CI W�0:73I 0:81Œ) that
reveals its internal consistency.

The enhancers’ factors of physical activity (and therefore increase the likelihood
of an individual be a practitioner) are: be male, be self-employed, do not live in
São Mamede or Senhora da Saúde, have lower age, have knowledge of municipality
sports initiatives, and be satisfied with sports provision of the municipality of Évora
(Table 1).
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Table 1 Estimated coefficients ( Ǒ), standard errors (SE), and p-value in the partitioner logistic
regression model

Variable Ǒ SE. Ǒ/ p-Value

Age �0:1035 0.0324 0.0014
Sexa 0:6056 0.2124 0.0044
Behalf of othersb �0:8885 0.3638 0.0150
Unemployedb �1:4203 0.4977 0.0043
Student or reformedb �0:1441 0.3735 0.6997
Higher educationc �1:7373 0.6737 0.0099
Know equipment �1:1710 1.1505 0.3087
Satisfied with offer 0:7868 0.2533 0.0019
Know initiatives 0:9718 0.3763 0.0098
Aread 0:5118 0.2754 0.0631
Age
Higher education 0:0557 0.0162 0.0006
Age
Know equipment 0:0586 0.0328 0.0745e

Constant 1:3246 1.2741 0.2985
a Female sex as the reference category
b The variable working situation has self-employed as the reference
c In the final model, instruction variable has two categories: higher education and others, the latter

being the reference
d In the final model Senhora da Saúde and São Mamede parish are the reference category and area

is formed by the remaining parishes
e p-Value equal to 0.03 using likelihood ratio test

Assuming that other values are fixed, the following conclusions can be drawn
for the residents in the municipality of Évora which physical activity is not only
walking:
1. A male person has about twice the possibility of being a practitioner than a

female person (odds ratio 95% CI W�1:2I 2:8Œ);
2. A self-employed has more than twice the possibility of being a practitioner than

employed by someone else (odds ratio 95% CI W�1:2I 4:9Œ) and about four times
more possibility than an unemployed (odds ratio 95% CI W�1:6I 11:0Œ);

3. For someone who knows some sports initiative of the municipality, the possibility
of being a practitioner has about twice the possibility than who knows no sports
initiative (odds ratio 95% CI W�1:3I 5:5Œ);

4. A person satisfied with sports offer has twice the possibility of being a practi-
tioner comparatively to an unmet person (odds ratio 95% CI W�1:3I 3:6Œ);

5. A resident in the parishes Senhora da Saúde or São Mamede has 40 % less
possibility of being a practitioner comparatively to a person resident in another
parish of this municipality (odds ratio 95% CI W�6%I 62%Œ);

6. For the one who does not have higher education and knows no sports facilities,
an increase of 5 years in age is associated with a 40 % reduction in the possibility
of being practitioner (odds ratio 95% CI W�19%I 57%Œ), while who does not
have higher education and knows sports facilities an increase of 5 years in age
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is associated with a 20 % reduction of being practitioner (odds ratio 95% CI W
�14%I 25%Œ);

7. In persons over 40 years higher education increases the possibility of practicing
sport: At the age 40, the possibility of being practitioner is almost twice higher
(odds ratio 95% CI W�1:0I 2:6Œ); At the age 50, the possibility of being practitioner
is about three times higher (odds ratio 95% CI W�1:6I 5:1Œ); At the age 60,
the possibility of being practitioner is five times more (odds ratio 95% CI W
�2:3I 11:1Œ); At the age 70, the possibility of being practitioner is about eight
and a half times higher (odds ratio 95% CI W�3:0I 25:5Œ); At the age 80, the
possibility of being practitioner is about fifteen times higher (odds ratio 95% CI W
�3:9I 59:7Œ).

5 Final Remarks

In this paper we have made a general characterization of the physical activity in the
municipality of Évora based on a survey to residents. On the basis of a logistic
regression model we intended to identify some enhancers’ factors of physical
activity in order to establish the profile of the practitioner.

We can highlight the following results: (a) The residents in this municipality
have a high physical activity rate (55 %), which is higher than in Portugal [2];
(b) unlike what was found in Portugal [4], in Évora no significant differences in
physical activity rate were found between genders. This rate is similar between
areas, decreases drastically with age, varies with the professional situation, and
increases with qualification, being important to emphasize that more than half of
the individuals with first cycle education never had practiced physical activity; (c)
more than 3=4 of the students practiced physical activity, while retired persons and
unemployed persons are who less practiced physical activity; (d) the reasons for
the practice are not the same for both sexes: the main reason given by females was
health, while males are divided between health and entertainment reasons; (e) the
more likely practitioner is a young male, self-employed, who knows some sports
initiatives and who is satisfied with municipality sports offer.
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