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Preface

PREFACE

One can hardly name a branch of natural science or technology in which

the problems of stability do not claim the attention of scholars, engineers,

and experts who investigate natural phenomena or operate designed ma-

chines or systems. If, for a process or a phenomenon, for example, atom

oscillations or a supernova explosion, a mathematical model is constructed

in the form of a system of differential equations, the investigation of the

latter is possible either by a direct (numerical as a rule) integration of the

equations or by its analysis by qualitative methods.

The direct Liapunov method based on scalar auxiliary function proves to

be a powerful technique of qualitative analysis of the real world phenomena.

This volume examines new generalizations of the matrix-valued auxiliary

function. Moreover the matrix-valued function is a structure the elements

of which compose both scalar and vector Liapunov functions applied in the

stability analysis of nonlinear systems.

Due to the concept of matrix-valued function developed in the book,

the direct Liapunov method becomes yet more versatile in performing the

analysis of nonlinear systems dynamics.

The possibilities of the generalized direct Liapunov method are opened

up to stability analysis of solutions to ordinary differential equations, sin-

gularly perturbed systems, and systems with random parameters.

The reader with an understanding of fundamentals of differential equa-

tions theory, elements of motion stability theory, mathematical analysis,

and linear algebra should not be confused by the many formulas in the

book. Each of these subjects is a part of the mathematics curriculum of

any university.

In view of the fact that beginners in motion stability theory usually

face some difficulties in its practical application, the sets of problems taken

from various branches of natural sciences and technology are solved at the

end of each chapter. The problems of independent value are integrated in

Chapter 5.
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Preface
viii PREFACE

A certain contribution to the development of the Liapunov matrix func-

tion method has been made by the scientists and experts of Belgrade Uni-

versity, Technical University in Zurich, and Stability of Processes Depart-

ment of Institute of Mechanics National Academy of Sciences of Ukraine.

The useful remarks by the reviewers of Marcel Dekker, Inc., have been

taken into account in the final version of the book. Great assistance in

preparing the manuscript for publication has been rendered by S.N. Rasshi-

valova, L.N. Chernetzkaya, A.N. Chernienko, and V.I. Goncharenko. The

author expresses his sincere gratitude to all these persons.

A. A. Martynyuk
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Notation

NOTATION

R the set of all real numbers

R+ = [0, +∞) ⊂ R the set of all nonnegative numbers

Rk k-th dimensional real vector space

R × Rn the Cartesian product of R and Rn

T = [−∞, +∞] = {t : −∞ ≤ t ≤ +∞} the largest time interval

Tτ = [τ, +∞) = {t : τ ≤ t < +∞} the right semi-open unbounded

interval associated with τ

Ti ⊆ R a time interval of all initial moments to under consideration (or,

all admissible t0)

T0 = [t0, +∞) = {t : t0 ≤ t < +∞} the right semi-open unbounded

interval associated with t0

�x� the Euclidean norm of x in Rn

χ(t; t0, x0) a motion of a system at t ∈ R iff x(t0) = x0, χ(t0; t0, x0) ≡ x0

Bε = {x ∈ Rn : �x� < ε} open ball with center at the origin and radius

ε > 0

δM (t0, ε) = max {δ : δ = δ(t0, ε) ∋ x0 ∈ Bδ(t0, ε) ⇒ χ(t; t0, x0) ∈ Bε,

∀t ∈ T0} the maximal δ obeying the definition of stability

∆M (t0) = max {∆: ∆ = ∆(t0), ∀ρ > 0, ∀x0 ∈ B∆, ∃τ(t0, x0, ρ) ∈ (0, +∞)

∋ χ(t; t0, x0) ∈ Bρ, ∀ t ∈ Tτ} the maximal ∆ obeying the definition

of attractivity

τm(t0, x0, ρ) = min {τ : τ = τ(t0, x0, ρ) ∋ χ(t; t0, x0) ∈ Bρ, ∀ t ∈ Tτ} the

minimal τ satisfying the definition of attractivity

N a time-invariant neighborhood of original of Rn

f : R ×N → Rn a vector function mapping R ×N into Rn

C(Tτ ×N ) the family of all functions continuous on Tτ ×N

C(i,j)(Tτ ×N ) the family of all functions i-times differentiable on Tτ and

j-times differentiable on N
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xii NOTATION

D+v(t, x) (D−v(t, x)) the upper right (left) Dini derivative of v along

χ(t; t0, x0) at (t, x)

D+v(t, x) (D−v(t, x)) the lower right (left) Dini derivative of v along

χ(t; t0, x0) at (t, x)

D∗v(t, x) denotes that both D+v(t, x) and D+v(t, x) can be used

Dv(t, x) the Eulerian derivative of v along χ(t; t0, x0) at (t, x)

λi(·) the i-th eigenvalue of a matrix (·)

λM (·) the maximal eigenvalue of a matrix (·)

λm(·) the minimal eigenvalue of a matrix (·)

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

11 

Preliminaries

1

PRELIMINARIES

1.1 Introduction

Nonlinear dynamics of systems is a branch of science that studies actual
equilibriums and motions of natural or artificial real objects. However it
is known that hardly every state of a really functioning system is observed
in practice that corresponds to a mathematically strict solution of either
equilibrium or differential motion equations. It has been found out that
only those equilibriums and motions of real systems are evident that possess
certain “resistivity” to the outer perturbations. The equilibrium states and
motions of this kind are referred to as stable while the others are called
unstable.

The notion of stability had been clearly intuited but difficult to for-
mulate and only Liapunov (see Liapunov [101]) managed to give accurate
definitions (for the historical aspect see Moiseev [146]).

Section 1.2 presents recent strict definitions of stability of nonautono-
mous systems and other general information necessary for proper under-
standing of the monograph. Presently there is a series of monographs and
textbooks that expose the direct Liapunov method of motion stability in-
vestigation based on auxiliary scalar function and provide a lot of many
illustrative examples of its application. The books by Chetaev [19], Malkin
[107], Lur’e [104], Duboshin [32], Demidovich [24], Krasovskii [89], Bar-
bashin [10], Zubov [177], Letov [99], Bellman [15], Hahn [66], Harris and
Milles [68], Yoshizawa [174], LaSalle and Lefschetz [98], Coppel [23], Lak-
shmikantham, Leela and Martynyuk [94] and others show the modern level
of Liapunov method development in qualitative theory of equations.

Section 1.3 (subsection 1.3.1) gives a brief account of results obtained in
this direction.

In 1962 it was proposed by Bellman [16], Martosov [132], and Melnikov
[139] to apply Liapunov functions consisting of more than one component.

Typeset by AMS-TEX
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2 1. PRELIMINARIES

Such functions were referred to as vector Liapunov functions. A quick
development of investigations in the field has been summarized in a se-
ries of monographs such as in Grujić [55], Michel and Miller [143], Šiljak
[167], Rouche, Habets and Laloy [159], LaSalle [97], Grujić, Martynyuk and
Ribbens-Pavella [57], Lakshmikantham, Matrosov and Sivasundaram [96],
Abdullin, Anapolskii et al. [1].

Section 1.3 (subsection 1.3.2) provides a short survey of the direct Lia-
punov method development in terms of vector function.

The preliminary information and the survey of the direct Liapunov me-
thod development in terms of both scalar and vector auxiliary functions are
cited here with the aim to prepare the reader to the study of a new method
in qualitative theory of equations called the method of matrix Liapunov
functions.

1.2 On Definition of Stability

1.2.1 Liapunov’s original definition

Liapunov started his investigations with the following (see Liapunov [101],
p.11):

Let us consider any material system with k degrees of freedom. Let
q1, q2, . . . , qk be k independent variables, which we use to determine
its position.

We shall assume that quantities taking real values for all real
system positions are taken for such variables.

Considering the mentioned variables as functions in time t we
shall denote their first time derivatives by q′1, q

′

2, . . . , q
′

k.
In every dynamic problem, in which forces are prespecified in a

certain way, such functions will satisfy some k second order differ-
ential equations.

Let any particular solution for such equations be found

q1 = f1(t), q2 = f2(t), . . . , qk = fk(t),

in which the quantities qj are expressed as real functions in t, which
at every t give only possible values to them.1

1It can happen that the quantities qj by their choice do not take all real values but

only those not greater than – and not less than certain bounds.
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1.2 ON DEFINITION OF STABILITY 3

To that particular solution will correspond a definite motion of
our system. Comparing it in a known sense with others, which are
possible under the same forces, we shall call that motion unper-
turbed, and all others, with which it is compared, perturbed.

For t0 understood a given instant, let us denote the values cor-
responding to it of quantities qj , q′j along any motion with qj0, q′j0.

Let

q10 = f1(t0) + ε1, q20 = f2(t0) + ε2, . . . , qko = fk(t0) + εk,

q′10 = f ′

1(t0) + ε′1, q
′

20 = f ′

2(t0) + ε′2, . . . , q
′

k0 = f ′

2(tk) + ε′k,

where εj , ε′j are real-valued constants.
Prespecifying the constants, which will be called perturbations,

a perturbed motion is determined. We shall assume that we may
prescribe them every number sufficiently small.

By speaking about perturbed motions, close to the unperturbed
one, we shall comprehend motions, for which the perturbations are
numerically small.

Let Q1, Q2, . . . , Qn be any given continuous real-valued functions
of quantities

q1, q2, . . . , qk, q′1, q
′

2, . . . , q
′

k.

Along the unperturbed motion they become known functions of t,
which will be denoted by F1, F2, . . . , Fn. Along a perturbed motion
they will be functions of quantities

t, ε1, ε2, . . . , εk, ε′1, ε′2, . . . , ε′k.

When all εj , ε′j are equal to zero, then quantities

Q1 − F1, Q2 − F2, . . . , Qn − Fn

will be equal to zero for every t. However, if the constants εj , ε′j
are not zero, but all are infinitely small, then a question rises: is it
possible to specify such the latter never become grater than their
values?

A solution of the question, which is the topic of our investiga-
tions, depends on both a character of the considered unperturbed
motion and a choice of the functions Q1, Q2, . . . , Qn and the instant
t0. Under a specific choice of the latter, the reply to the question,
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To that particular solution will correspond a definite motion of
our system. Comparing it in a known sense with others, which are
possible under the same forces, we shall call that motion unper-
turbed, and all others, with which it is compared, perturbed.
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responding to it of quantities qj , q′j along any motion with qj0, q′j0.

Let
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q′10 = f ′

1(t0) + ε′1, q
′

20 = f ′

2(t0) + ε′2, . . . , q
′

k0 = f ′

2(tk) + ε′k,

where εj , ε′j are real-valued constants.
Prespecifying the constants, which will be called perturbations,

a perturbed motion is determined. We shall assume that we may
prescribe them every number sufficiently small.

By speaking about perturbed motions, close to the unperturbed
one, we shall comprehend motions, for which the perturbations are
numerically small.

Let Q1, Q2, . . . , Qn be any given continuous real-valued functions
of quantities

q1, q2, . . . , qk, q′1, q
′

2, . . . , q
′

k.

Along the unperturbed motion they become known functions of t,
which will be denoted by F1, F2, . . . , Fn. Along a perturbed motion
they will be functions of quantities

t, ε1, ε2, . . . , εk, ε′1, ε′2, . . . , ε′k.

When all εj , ε′j are equal to zero, then quantities

Q1 − F1, Q2 − F2, . . . , Qn − Fn

will be equal to zero for every t. However, if the constants εj , ε′j
are not zero, but all are infinitely small, then a question rises: is it
possible to specify such the latter never become grater than their
values?

A solution of the question, which is the topic of our investiga-
tions, depends on both a character of the considered unperturbed
motion and a choice of the functions Q1, Q2, . . . , Qn and the instant
t0. Under a specific choice of the latter, the reply to the question,
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4 1. PRELIMINARIES

respectively, will characterize in some sense the unperturbed mo-
tion, by determining a feature of the latter, which will be called
stability, or that contrary to it, will be called instability.

We shall be exclusively interested in those cases in which the
solution of the considered question does not depend on a choice of
the instant t0, when perturbations are acting. Thus we accept the
following definition.

Let L1, L2, . . . , Ln be arbitrary given positive numbers. If all Ls,
regardless of how small they are, can be selected positive numbers
E1, E2, . . . , Ek, E′

1, E
′

2, . . . , E
′

k so that for all real εj, ε′j, satisfying

the conditions1

|εj | ≤ Ej , |ε′j | ≤ E′

j (j = 1, 2, . . . , k),

and for all t, greater than t0, the inequalities

|Q1 − F1| < L1, |Q2 − F2| < L2, . . . , |Qn − Fn| < Ln,

are satisfied, then the unperturbed motion is stable with respect to
the quantities Q1, Q2, . . . , Qn; otherwise it is unstable with respect
to the same quantities.

1.2.2 Comments on Liapunov’s original definition

Comment 1.2.1. The inequalities on |εj| and |ε′j | are weak and those on

|Qj −Fj | are strong. This asymmetry is usually avoided imposing the same
type of inequalities on all |εj |, |ε′j | and |Qj − Fj | , which yields stability
definitions equivalent to Liapunov’s original definition. This equivalence
can be easily proved.

Comment 1.2.2. Stability of the reference motion was defined by Lia-
punov with respect to arbitrary functions Qj that are continuous in all qi,
q′i. This has been very thoughtful and physically important because Qj can
represent energy or material flow. In this connection Liapunov introduced
new variables xi,

xi = Qi − Fi, i = 1, 2, . . . , n,

1In general |x| means the absolute value of a real-, or modulus of a complex quantity

x.
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1.2 ON DEFINITION OF STABILITY 5

and accepted the following (Liapunov [101], p.15):

We shall assume that the number n and the functions Qs, are
such, that the order of the system is n and that it is reducible
to the normal form

(1)
dx1

dt
= X1,

dx2

dt
= X2, . . . ,

dxn

dt
= Xn,

and everywhere in the sequel we shall consider these last equa-
tions, calling them the differential equations of a perturbed mo-
tion.

All Xs in the equations (1) are known functions of quantities

x1, x2, . . . , xn, t,

vanishing for
x1 = x2 = · · · = xn = 0.

Comment 1.2.3. Stability of the reference motion requires arbitrary
closeness of the perturbed motions to the reference motion provided their
sufficient closeness is assured at the initial instant t0.

Comment 1.2.4. The closeness of the perturbed motions to the refer-
ence motion is to be realized over unbounded time interval T ∗

0 = (t0, +∞],
i.e. for all t greater than t0. This point has been commonly neglected in
the literature. Namely, the closeness has been commonly required either
on T 0 = [t0, +∞] or on T0 = [t0, +∞), i.e. for all t not less then t0. This
difference can be crucial in cases when system motions are discontinuous
at t = t0.

Comment 1.2.5. A.M.Liapunov defined stability of the reference mo-
tion for cases when it is not influenced by t0. However, the initial moment
can essentially influence stability of the reference motion in cases when
system motions are not continuous in t. Besides, t0 can essentially influ-
ence the maximal admissible values of all Ej and E′

j even when all system
motions are continuous in t.

Comment 1.2.6. The stability of the reference motion was defined by
A.M.Liapunov with respect to initial perturbations of the general coordi-
nates qj , q′j , rather than with respect to persistent external disturbances.
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6 1. PRELIMINARIES

Comment 1.2.7. The stability definition does not care about the values
Ej and E′

j except that they must be positive. Hence, for large values of all

Lj, the maximal admissible Ej and E′

j can be so small that they are not
useful for engineering needs.

1.2.3 Relationship between the reference motion and the zero

solution

Let 2k be the order of the system and yi, i = 1, 2, . . . , 2k, be its i-th state
variable. Using basic physical laws (e.g. the law of the energy conservation
and the law of the material conservation) we can for a large class of systems
get state differential equations in the following scalar form

(1.2.1)
dyi

dt
= Yi(t, y1, . . . , y2k), i = 1, 2, . . . , 2k,

or in the equivalent vector form

(1.2.2)
dy

dt
= Y (t, y),

where∗ y = (y1, y2, . . . , y2k)
T ∈ R2k and Y = (Y1, Y2, . . . , Y2k)

T
, Y : T ×

R2k → R2k. A motion of (1.2.2) is denoted by η(t; t0, y0), η(t0; t0, y0) ≡
y0, and the reference motion ηr(t; t0, yr0). From the physical point of view
the reference motion should be realizable by the system. From the math-
ematical point of view this means that the reference motion is a solution
of (1.2.2),

(1.2.3)
dηr(t; t0, yr0)

dt
≡ Y [t, ηr(t; t0, yr0)].

Let the Liapunov transformation of coordinates be used,

(1.2.4) x = y − yr,

where yr(t) ≡ ηr(t; t0, yr0). Let f : T × R2k → R2k be defined by

(1.2.5) f(t, x) = Y [t, yr(t) + x] − Y [t, yr].

∗In Liapunov’s notation y =
(

q1, q2, . . . , qk, q
′

1
, q

′

2
, . . . , q

′

k

)

T
.
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1.2 ON DEFINITION OF STABILITY 7

It is evident that

(1.2.6) f(t, 0) ≡ 0.

Now (1.2.2) – (1.2.5) yield

(1.2.7)
dx

dt
= f(t, x).

In this way, the behavior of perturbed motions related to the reference
motion (in total coordinates) is represented by the behavior of the state
deviation x with respect to the zero state deviation. The reference motion
in the total coordinates yi is represented by the zero deviation x = 0 in
state deviation coordinates xi. With this in mind, the following result em-
phasizes complete generality of both Liapunov’s second method and results
represented in Liapunov [101] for the system (1.2.7). Let Q : R2k → Rn,
n = 2k is admissible but not required.

Theorem 1.2.1. Stability of x = 0 of the system (1.2.7) with respect to
Q = x is necessary and sufficient for stability of the reference motion ηr of
the system (1.2.2) with respect to every vector function Q that is continuous
in y.

Proof. Necessity. This part is true because Q(y) = y is contionuous in
y and evidently stability of x = 0 with respect to x is implied by stability
of ηr with respect to Q(y) = y.

Sufficiency. Let Li > 0, i = 1, 2, . . . , n, be arbitrarily chosen. Continu-
ity of Q in y implies existence of li >0, li = li(L, yr), L=(L1, L2, . . . , Ln)T,
i = 1, 2, . . . , n, such that |yi−yri| < li, ∀ i = 1, 2, . . . , 2k, implies |Qi(y)−
Qi(yr)| < Li, i = 1, 2, . . . , n. Stability of x = 0 of (1.2.7) (with respect
to x) guarantees existence of δi > 0, δi = δi(l), l = (l1, l2, . . . , l2k)T, such
that |xi0| < δi, i = 1, 2, . . . , 2k, where χ(t; t0, x0), χ(t0; t0, x0) ≡ x0, is
the solution of (1.2.7), χ = (χ1, χ2, . . . , χ2k)T. Finally, for every Li > 0,
i = 1, 2, . . . , n, there is δ∗j > 0, δ∗j = 1

2δj , j = 1, 2, . . . , n, such that

|yj0 − yrj0| ≤ δ∗j , j = 1, 2, . . . , n, implies

|Qi[η(t; t0, y0)] − Qi[ηr(t; t0, yr0)]| < Li, ∀ t ≥ t0, i = 1, 2, . . . , n.

This theorem reduced the problem of the stability of the reference motion
of (1.2.2) with respect to Q to the stability problem of x = 0 of (1.2.7)
with respect to x; it is stated and proved herein for the first time.
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deviation x with respect to the zero state deviation. The reference motion
in the total coordinates yi is represented by the zero deviation x = 0 in
state deviation coordinates xi. With this in mind, the following result em-
phasizes complete generality of both Liapunov’s second method and results
represented in Liapunov [101] for the system (1.2.7). Let Q : R2k → Rn,
n = 2k is admissible but not required.

Theorem 1.2.1. Stability of x = 0 of the system (1.2.7) with respect to
Q = x is necessary and sufficient for stability of the reference motion ηr of
the system (1.2.2) with respect to every vector function Q that is continuous
in y.

Proof. Necessity. This part is true because Q(y) = y is contionuous in
y and evidently stability of x = 0 with respect to x is implied by stability
of ηr with respect to Q(y) = y.

Sufficiency. Let Li > 0, i = 1, 2, . . . , n, be arbitrarily chosen. Continu-
ity of Q in y implies existence of li >0, li = li(L, yr), L=(L1, L2, . . . , Ln)T,
i = 1, 2, . . . , n, such that |yi−yri| < li, ∀ i = 1, 2, . . . , 2k, implies |Qi(y)−
Qi(yr)| < Li, i = 1, 2, . . . , n. Stability of x = 0 of (1.2.7) (with respect
to x) guarantees existence of δi > 0, δi = δi(l), l = (l1, l2, . . . , l2k)T, such
that |xi0| < δi, i = 1, 2, . . . , 2k, where χ(t; t0, x0), χ(t0; t0, x0) ≡ x0, is
the solution of (1.2.7), χ = (χ1, χ2, . . . , χ2k)T. Finally, for every Li > 0,
i = 1, 2, . . . , n, there is δ∗j > 0, δ∗j = 1

2δj , j = 1, 2, . . . , n, such that

|yj0 − yrj0| ≤ δ∗j , j = 1, 2, . . . , n, implies

|Qi[η(t; t0, y0)] − Qi[ηr(t; t0, yr0)]| < Li, ∀ t ≥ t0, i = 1, 2, . . . , n.

This theorem reduced the problem of the stability of the reference motion
of (1.2.2) with respect to Q to the stability problem of x = 0 of (1.2.7)
with respect to x; it is stated and proved herein for the first time.
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1.2.4 Accepted definitions of stability

By the very definition, stationary (time-invariant) systems are those whose
motions are not effected by (the choice of) the initial instant t0 ∈ R. How-
ever, such property is not characteristic for nonstationary (time-varying)
systems. It is therefore natural to consider the influence of t0 on stability
properties of nonstationary systems, which is motivation for accepting the
next definitions.

Definition 1.2.1. The state x = 0 of the system (1.2.7) is:

(i) stable with respect to Ti iff for every t0 ∈ Ti and every ε > 0 there
exists δ(t0, ε) > 0, such that �x0� < δ(t0, ε) implies

�χ(t; t0, x0)� < ε, ∀ t ∈ T0;

(ii) uniformly stable with respect to T0 iff both (i) holds and for every
ε > 0 the corresponding maximal δM obeying (i) satisfies

inf[δM (t, ε): t ∈ Ti] > 0;

(iii) stable in the whole with respect to Ti iff both (i) holds and

δM (t, ε) → +∞ as ε → +∞, ∀ t ∈ Ti;

(iv) uniformly stable in the whole with respect to Ti iff both (ii) and (iii)
hold;

(v) unstable with respect to Ti iff there are t0 ∈ Ti, ε ∈ (0, +∞)
and τ ∈ T0, τ > t0, such that for every δ ∈ (0, +∞) there is
x0, �x0� < δ, for which

�χ(τ ; t0, x0)� ≥ ε.

The expression “with respect to Ti” is omitted from (i) – (v) iff Ti = R.
These stability properties hold as t → +∞ but not for t = +∞.

Example 1.2.1. (see Grujić [45]). Let x ∈ R and ẋ = (1 − t)−1x.
Then,

χ(t; t0, x0) = (t − 1)−1(t0 − 1)x0 for t0 �= 1 and t �= 1.
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For t0 = 1 the motion is not defined and

�χ(t; t0, x0)� → +∞ as t → (1 − 0), ∀ t0 ∈ (−∞, 1), ∀ (x0 �= 0) ∈ R.

Hence,
δM (t, ε) = 0, ∀ ε > 0, ∀ t ∈ (−∞, 1].

However,
δM (t, ε) = ε, ∀ t ∈ (1, +∞).

The state x = 0 is uniformly stable in the whole with respect to every
Ti ⊆ (−1, +∞), but it is not stable.

Example 1.2.2. (see Grujić [45]). The first order nonstationary system
is defined by

dx

dt
=

(1 + t sin t + t2 cos t)x · exp{− 1
2π}

1
2π · exp{−t sin t} + t · exp{− 1

2π}
.

Solutions are found in the form

χ(t; t0, x0) =
1
2π + t0 exp{− 1

2π + t0 sin t0}
1
2π + t exp{− 1

2π + t sin t}
x0, t0 �= −

π

2
, t �= −

π

2
,

so that

|χ(t; t0, x0)| → +∞ as t →
�π

2
,−0

�

,

∀ t0 ∈
�

−∞,−
π

2

�

, ∀ (x0 �= 0) ∈ R.

This result and analysis of χ(t; t0, x0) yield

δM (t, ε) =











0, t ∈
�

−∞,−π
2

�

;

ε, t ∈
�

−π
2 , 0

�

;

επ
�

π + 2t · exp{−π
2 + t sin t}

�

−1
, t ∈ [0, +∞) .

The state x = 0 is stable in the whole with respect to
�

−π
2 , +∞

�

and uni-

formly stable in the whole with respect to every bounded Ti ⊂
�

−π
2 , +∞

�

,
but it is not stable.

In these examples, the motions χ are not continuous in all t ∈ R.
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Proposition 1.2.1. If there is a time-invariant neighborhood N ⊆ Rn

of x = 0 such that χ(t; t0, x0) is continuous in (t; t0, x0) ∈ T0 × R × N ,
then stability of x = 0 of the system (1.2.7) with respect to some non-empty
Ti implies its stability.

This result can be easily proved as well as the following:

Proposition 1.2.2. If x = 0 of (1.2.7) is stable (in the whole) then, re-
spectively, it is uniformly stable (in the whole) with respect to every bounded
Ti ⊂ R.

Example 1.2.3. (see Grujić [45]). Solutions of the first order non-
stationary system

dx

dt
= −

β + 2γt

α + βt + γt2
x, α > 0, β2 < 4αγ, γ > 0

are given by

χ(t; t0, x0) = (α + βt0 + γt20)(α + βt + γt2)−1x0.

In this case

δM (t, ε) =
(4αγ − β2)ε

8γ(α + βt + γt2)

[

1−sign

(

t +
β

2γ

)]

+
ε

2

[

1+sign

(

t +
β

2γ

)]

.

Hence,
inf [δM (t, ε) : t ∈ R] = 0, ∀ ε ∈ (0, +∞),

and
δM (t, ε) → +∞ as ε → +∞, ∀ t ∈ R.

The state x = 0 is stable in the whole but not uniformly.
However, it is uniformly stable in the whole with respect to Ti = [ζ, +∞)

for any ζ ∈ (−∞, +∞).

Definition 1.2.2. The state x = 0 of the system (1.2.7) is:

(i) attractive with respect to Ti iff for every t0 ∈ Ti there exists
∆(t0) > 0 and for every ζ > 0 there exists τ(t0; x0, ζ) ∈ [0, +∞)
such that �x0� < ∆(t0) implies �χ(t; t0, x0)� < ζ, ∀ t ∈ (t0 +
τ(t0; x0, ζ), +∞);

(ii) x0 – uniformly attractive with respect to Ti iff both (i) is true and
for every t0 ∈ Ti there exists ∆(t0) > 0 and for every ζ ∈ (0, +∞)
there exists τu[t0, ∆(t0), ζ] ∈ [0, +∞) such that

sup [τm(t0; x0, ζ) : x0 ∈ Ti] = τu(Ti, x0, ζ);
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(iii) t0 – uniformly attractive with respect to Ti iff (i) is true, there is ∆ >

0 and for every (x0, ζ) ∈ B∆ × (0, +∞) there exists τu(Ti, x0, ζ) ∈
[0, +∞) such that

sup [τm(t0); x0, ζ) : t0 ∈ Ti] = τu(Ti, x0, ζ);

(iv) uniformly attractive with respect to Ti iff both (ii) and (iii) hold, that
is, that (i) is true, there exists ∆ > 0 and for every ζ ∈ (0, +∞)
there is τu(Ti, ∆, ζ) ∈ [0, +∞) such that

sup [τm(t0; x0, ζ) : (t0, x0) ∈ Ti × B∆] = τ(Ti, ∆, ζ);

(v) The properties (i) – (iv) hold “in the whole” iff (i) true for every
∆(t0) ∈ (0, +∞) and every t0 ∈ Ti.

The expression “with respect to Ti” is omitted iff Ti = R.

Example 1.2.4. For the system of Example 1.2.1 the following are
found:

∆M (t) =

�

0, t ∈ (−∞, 1)

+∞, t ∈ (1, +∞)
;

τm(t, x, ζ) =







+∞, t ∈ (−∞, 1)

t − 1

ζ
|x| + 1, t ∈ (1, +∞)

.

The state x = 0 is:

(a) attractive in the whole with respect to Ti = (1, +∞),
(b) t0 – uniformly attractive in the whole with respect to any bounded

Ti ⊂ (1, +∞),
(c) x0 – uniformly attractive with respect to Ti = (1, +∞),
(d) uniformly attractive with respect to any bounded Ti ⊂ (1, +∞),
(e) not attractive.

The next results can be easily verified.

Proposition 1.2.3. If there is a time-invariant neighborhood N ⊆ Rn

of x = 0 such that χ(t; t0, x0) is continuous in (t; t0, x0) ∈ T0×R×N , then
attraction of x = 0 of the system (1.2.7) with respect to some nonempty
Ti implies its attraction.
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(iii) t0 – uniformly attractive with respect to Ti iff (i) is true, there is ∆ >

0 and for every (x0, ζ) ∈ B∆ × (0, +∞) there exists τu(Ti, x0, ζ) ∈
[0, +∞) such that

sup [τm(t0); x0, ζ) : t0 ∈ Ti] = τu(Ti, x0, ζ);

(iv) uniformly attractive with respect to Ti iff both (ii) and (iii) hold, that
is, that (i) is true, there exists ∆ > 0 and for every ζ ∈ (0, +∞)
there is τu(Ti, ∆, ζ) ∈ [0, +∞) such that

sup [τm(t0; x0, ζ) : (t0, x0) ∈ Ti × B∆] = τ(Ti, ∆, ζ);

(v) The properties (i) – (iv) hold “in the whole” iff (i) true for every
∆(t0) ∈ (0, +∞) and every t0 ∈ Ti.

The expression “with respect to Ti” is omitted iff Ti = R.

Example 1.2.4. For the system of Example 1.2.1 the following are
found:

∆M (t) =

�

0, t ∈ (−∞, 1)

+∞, t ∈ (1, +∞)
;

τm(t, x, ζ) =







+∞, t ∈ (−∞, 1)

t − 1

ζ
|x| + 1, t ∈ (1, +∞)

.

The state x = 0 is:

(a) attractive in the whole with respect to Ti = (1, +∞),
(b) t0 – uniformly attractive in the whole with respect to any bounded

Ti ⊂ (1, +∞),
(c) x0 – uniformly attractive with respect to Ti = (1, +∞),
(d) uniformly attractive with respect to any bounded Ti ⊂ (1, +∞),
(e) not attractive.

The next results can be easily verified.

Proposition 1.2.3. If there is a time-invariant neighborhood N ⊆ Rn

of x = 0 such that χ(t; t0, x0) is continuous in (t; t0, x0) ∈ T0×R×N , then
attraction of x = 0 of the system (1.2.7) with respect to some nonempty
Ti implies its attraction.
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Example 1.2.5. We consider the system of Example 1.2.3 once again
and find:

inf [∆M (t) : t ∈ R] = +∞,

τm(t, ∆, ζ) =















min [0, (2γ)−1{[β2 − 4αγ + 4γζ−1 ∆(α + βt + γt2)]
1

2 − β}

for ∆ ≥ (4αγ − β2)ζ[4γ(α + βt + γt2)]−1,

0, for ∆ < (4αγ − β2)ζ[4γ(α + βt + γt2)]−1.

Hence,

sup [τm(t, ∆, ζ) : t ∈ R] = +∞ for ∆ ≥ (4αγ −β2)ζ[4γ(α + βt + γt2)]−1.

The state x = 0 is:

(a) attractive in the whole,
(b) x0 – uniformly attractive in the whole,
(c) t0 – uniformly attractive in the whole with respect to any bounded

Ti ⊂ R,

(d) uniformly attractive in the whole with respect to any bounded Ti ⊂
R,

(e) not uniformly attractive.

Definition 1.2.3. The state x = 0 of the system (1.2.7) is:

(i) asymptotically stable with respect to Ti iff it is both stable with
respect to Ti and attractive with respect to Ti;

(ii) equi-asymptotically stable with respect to Ti iff it is both stable with
respect to Ti and x0-uniformly attractive with respect to Ti;

(iii) quasi-uniformly asymptotically stable with respect to Ti iff it is both
uniformly stable with respect to Ti and t0-uniformly attractive with
respect to Ti;

(iv) uniformly asymptotically stable with respect to Ti iff it is both uni-
formly stable with respect to Ti and uniformly attractive with re-
spect to Ti;

(v) the properties (i) – (iv) hold “in the whole” iff both the correspond-
ing stability of x = 0 and the corresponding attraction of x = 0
hold in the whole;

(vi) exponentially stable with respect to Ti iff there are ∆ > 0 and real
numbers α ≥ 1 and β > 0 such that �x0� < ∆ implies

�χ(t; t0, x0)� ≤ α�x0� exp[−β(t − t0)], ∀ t ∈ T0, ∀ t0 ∈ Ti.

This holds in the whole iff it is true for ∆ = +∞.
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The expression “with respect to Ti” is omitted iff Ti = R.

Example 1.2.6. (see Grujić [45]). The second order system is described
by

dx

dt
= A(t)x, A(t) =

1

1 + t2

[

−t, 1
−1, −t

]

,

and its solutions are found in the form

χ(t; t0, x0) =
1

1 + t2

[

1 + t0t, t − t0
t0 − t, 1 + t0t

]

x0.

Hence,

δM (t, ε) =
ε

2

[

1 + (1 + t2)−1(1 − sign t) + sign t
]

,

which implies

inf [δM (t, ε) : t ∈ R] = 0, ∀ ε ∈ (0, +∞),

and

τm(t, �x�, ζ) =

{

[(1 + t2)
1

2 �x�ζ−1 − 1]
1

2 , for �x� ≥ ζ(1 + t2)−
1

2 ,

0, for 0 < �x� ≤ ζ(1 + t2)−
1

2 ,

which yields

sup [τm(t, ∆, ζ) : t ∈ R] = +∞ for 0 < ζ ≤ ∆(1 + t2)
1

2 , ∀∆ ∈ (0, +∞).

Therefore, the state x = 0 is:

(a) asymptotically stable in the whole,
(b) equi-asymptotically stable,
(c) uniformly asymptotically stable with respect to any bounded Ti ⊂

R,

(d) not equi-asymptotically stable in the whole,
(c) not uniformly asymptotically stable in the whole with respect to

any bounded Ti ⊂ R.

Notice that the system is linear.
The next results are straightforward corollaries to Propositions 1.2.1 –

1.2.4.
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Proposition 1.2.5. If there is a time-invariant neghborhood N ⊂ Rn

of x = 0 such that χ(t; t0, x0) is continuous in (t; t0, x0) ∈ T0 × R × N
then asymptotic stability of x = 0 of the system (1.2.7) with respect to
some nonempty Ti implies its asymptotic stability.

Proposition 1.2.6. If x = 0 of (1.2.7) is asymptotically stable then it
is uniformly asymptotically stable with respect to every bounded Ti ⊂ R.

1.2.5 Equilibrium states

For the sake of clarity we state

Definition 1.2.4. State x∗ of the system (1.2.7) is its equilibrium state
over Ti iff

(1.2.8) χ(t; t0, x
∗) = x∗, ∀ t ∈ T0, ∀ t0 ∈ Ti.

The expression “over Ti” is omitted iff Ti = R.

Proposition 1.2.7. For x∗ ∈ Rn to be an equilibrium state of the
system (1.2.7) over Ti it is necessary and sufficient that both

(1) for every t0 ∈ Ti there is the unique solution χ(t; t0, x
∗) of (1.2.7),

which is defined for all t0 ∈ T0

and

(2) f(t, x∗) = 0, ∀ t ∈ T0, ∀ t0 ∈ Ti.

Proof. Necessity. Necessity of (i) and (ii) for x∗ to be an equilibrium
state of (1.2.7) is evidently implied by (1.2.8).

Sufficiency. If x∗ satisfies the condition (ii) then x(t) = x(t; t0, x
∗) =

x∗, ∀ t ∈ T0 and ∀ t0 ∈ Ti, obeys

dx(t)

dt
= 0 = f(t, x∗) = f [t, x(t)], ∀ t ∈ T0, ∀ t0 ∈ Ti.

Hence, χ(t; t0, x
∗) = x∗ is a solution of (1.2.7) at (t0, x

∗) for all t0 ∈ Ti,

which is unique due to the condition (i).
Hence (1.2.8) holds.

The conditions for existence and uniqueness of the solutions can be found
in the books by Bellman [15], Hartman [69], Halanay [67] and Pontriagin
[154] (see also Kalman and Bertram [80]).
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Proposition 1.2.5. If there is a time-invariant neghborhood N ⊂ Rn

of x = 0 such that χ(t; t0, x0) is continuous in (t; t0, x0) ∈ T0 × R × N
then asymptotic stability of x = 0 of the system (1.2.7) with respect to
some nonempty Ti implies its asymptotic stability.

Proposition 1.2.6. If x = 0 of (1.2.7) is asymptotically stable then it
is uniformly asymptotically stable with respect to every bounded Ti ⊂ R.

1.2.5 Equilibrium states

For the sake of clarity we state

Definition 1.2.4. State x∗ of the system (1.2.7) is its equilibrium state
over Ti iff

(1.2.8) χ(t; t0, x
∗) = x∗, ∀ t ∈ T0, ∀ t0 ∈ Ti.

The expression “over Ti” is omitted iff Ti = R.

Proposition 1.2.7. For x∗ ∈ Rn to be an equilibrium state of the
system (1.2.7) over Ti it is necessary and sufficient that both

(1) for every t0 ∈ Ti there is the unique solution χ(t; t0, x
∗) of (1.2.7),

which is defined for all t0 ∈ T0

and

(2) f(t, x∗) = 0, ∀ t ∈ T0, ∀ t0 ∈ Ti.

Proof. Necessity. Necessity of (i) and (ii) for x∗ to be an equilibrium
state of (1.2.7) is evidently implied by (1.2.8).

Sufficiency. If x∗ satisfies the condition (ii) then x(t) = x(t; t0, x
∗) =

x∗, ∀ t ∈ T0 and ∀ t0 ∈ Ti, obeys

dx(t)

dt
= 0 = f(t, x∗) = f [t, x(t)], ∀ t ∈ T0, ∀ t0 ∈ Ti.

Hence, χ(t; t0, x
∗) = x∗ is a solution of (1.2.7) at (t0, x

∗) for all t0 ∈ Ti,

which is unique due to the condition (i).
Hence (1.2.8) holds.

The conditions for existence and uniqueness of the solutions can be found
in the books by Bellman [15], Hartman [69], Halanay [67] and Pontriagin
[154] (see also Kalman and Bertram [80]).
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Proposition 1.2.8. If x = 0 of the system (1.2.7) is stable with respect
to Ti then it is then it is an equilibrium state of the system over Ti.

Proof. Let x = 0 of (1.2.7) be stable with respect to Ti and ε > 0 be
arbitraril;y small. Then �χ(t; t0, 0)� < ε for all t ∈ T0 and every t0 ∈ Ti

because x0 = 0 and �x0� = 0 < δM (t0, ε). Let χ1 and χ2 be two solutions
of (1.2.7) through (t0, 0), t0 ∈ Ti. Then,

(1.2.9) �χ1(t; t0, 0) − χ2(t; t0, 0)� ≤ �χ1(t; t0, 0)� + �χ2(t; t0, 0)� < εn

for all t ∈ T0 and every t0 ∈ Ti because

�x0� = 0 < δM

(

t0,
εn

2

)

.

Let εn → 0 as n → +∞. It now follows from (1.2.9) that �χ1(t; t0, 0)−
χ2(t; t0, 0)� is less than εn no matter how large integer n is taken. Hence,

χ1(t; t0, 0) ≡ χ2(t; t0, 0)

and

�χi(t; t0, 0)� < εn, i = 1, 2,

for arbitrarily large integer n. It follows that χ(t; t0, 0) ≡ 0 is the unique
solution of (1.2.7) on T0 for all t0 ∈ Ti, which proves that x = 0 is an
equilibrium state of (1.2.7) over Ti.

Let g : Rn → Rn define an autonomous system

(1.2.10)
dx

dt
= g(x).

Every stability property of x = 0 of (1.2.10) is uniform in t0 ∈ R. Besides,
Proposition 1.2.8 yield the following.

Corollary 1.2.1. If x = 0 of the system (1.2.10) is its equilibrium
state over some nonempty interval Ti ⊂ R then it is an equillibrium state
of the system.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

30 

Preliminaries

16 1. PRELIMINARIES

1.3 Brief Outline of Trends in Liapunov’s Stability Theory

1.3.1 Of Liapunov’s original results

Liapunov ([101], p.25) defined two essentially different approaches to solving

stability problems as follows:

All ways, which we can present for solving the question we are
interested in, we can divide in two categories.

With one we associate all those, which lead to a direct inves-
tigation of a perturbed motion and in the basis of which there
is a determination of general and particular solutions of the dif-
ferential equation (1.2.1).

In general the solutions should be searched in the form of
infinite series, the simplest type of which can be considered from
those in the preceding paragraph. They are series ordered in
terms of integer powers of fixed variables. However we shall
meet series of another character in the sequel.

The collection of all ways for the stability investigation, which
are in this category, we call the first method.

With another one we associate all those, which are based on
principles independent of a determination of any solution of the
differential equations of a perturbed motion.

One such example is the well-known way for an investigation
of equilibrium stability in the case that there is a force function.

All these ways can be reduced to a determination and an in-
vestigation of integrals of the equations (1.2.1), and in general
in the basis of all of them, which we shall meet in the sequel,
there will be always a determination of functions of variables
x1, x2, . . . , xn, t according to given conditions, which should
be satisfied by their total derivatives in t, taken under an as-
sumption that x1, x2, . . . , xn are functions of t satisfying the
equations (1.2.1).

The collection of all ways of such a category we shall call the
second method.

In order to effectively develop the second method Liapunov introduced

the concept of semi-definite and definite functions and the notion of de-
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creasing functions as follows (Liapunov [101], p.59):

We shall consider herein real-valued functions of real variables

(39) x1, x2, . . . , xn, t,

obeying conditions of the norm

(40) t ≥ T, |xs| ≤ H (s = 1, 2, . . . , n),

where T and H are constants, the former of which can be arbi-
trarily large and the latter may be arbitrarily small (but different
than zero).

Then we shall consider only functions which are continuous
and one-to-one under the conditions (40) and vanish at

x1 = x2 = · · · = xn = 0.

Such properties will possess all functions considered by us
(even if it were not mentioned). But, besides that, they can
possess special features; for definitions we shall introduce several
terms.

Consider a function V such that under the conditions T suf-
ficiently large and H sufficiently small, it can take, apart from
those equal to zero, only values of one arbitrary sign.

Such a function we shall call signconstant. When we wish
to underline its sign, then we shall say that it is a positive or
negative function.

In addition to that, if the function V does not depend on
t, and the constant H can be chosen sufficiently small so that,
under the conditions (40) the equation V = 0 can hold only for
one set of values of the variables

x1 = x2 = · · · = xn = 0,

then we shall call the function V signdefinite one, and wishing
to underline its sign – positive-definite or negative-definite.

We shall use the last notions also with respect to functions
depending on t. However, in such a case the function V will be
called signdefinite only under the condition, if for it is possible
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to find such a t-independent positive-definite function W , for
which one of two expressions

V − W − V − W

would represent a positive function.
Hence, each of functions

x2
1 + x2

2 − 2x1x2 cos t, t(x2
1 + x2

2) − 2x1x2 cos t

is signconstant. However, the former is only signconstant, and
the latter, if n = 2, is simultaneously signdefinite.

Every function V , for which the constant H can be chosen
so small that for numerical values of that function under the
conditions (40) there is an upper bound, will be called bounded.

In view of the properties which, under our assumption, pos-
sess all functions considered by us, will be such, for example,
every function independent of t.

A bounded function can be such that for every positive ε,
regardless how small, there is such nonzero number h, for which
for all values of variables, satisfying conditions

t ≥ T, |xs| ≤ h (s = 1, 2, . . . , n),

will hold the following:
|V | ≤ ε.

This condition will satisfy, for example, every function indepen-
dent of t. However functions depending on t, even bounded, can
violate it. Such a case represents, for example, a function

sin [(x1 + x2 + · · · + xn)t].

When the function V fulfills the preceding requirement, then
we shall say that it admits infinitely small upper bound.

Such an example is the function

(x1 + x2 + · · · + xn) sin t.

Let V be a function admitting infinitely small upper bound.
Then, if we know that the variables satisfy a condition
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t ≥ T, |V | ≥ ℓ,

where ℓ is a positive number, hence we conclude that there is an-
other positive number λ, less than which cannot be the greatest
quantity among |x1|, |x2|, . . . , |xn|.

In order to examine behavior of the values of a definite function V along

system motions without using the motions themselves Liapunov ([101],

p.61) proposed the following:

Simultaneously with the function V we shall often consider an ex-

pression

V ′ =
∂V

∂x1
X1 +

∂V

∂x2
X2 + · · · +

∂V

∂xn

Xn +
∂V

∂t
,

representing its total time derivative, taken under the assumption

that x1, x2, . . . , xn are functions of t, which satisfy differential

equations of a perturbed motion.

In such cases we shall always assume that the function V is such

that V ′ as a function of the variables (39) would be continuous and

one-to-one under the conditions (40).

Speaking further about the derivative of the function V , we shall

mean that it is the total derivative.

These concepts have been the keystone of the second Liapunov method

and for a solution of (uniform) stability of x = 0 (Liapunov [101], p.61):

Theorem 1. If the differential equations of a perturbed motion
are such that it is possible to find a signdefinite function V , the
derivative V ′ of which in view of these equations would be either
a signconstant function with the opposite sign to that of V , or
identically equal to zero, then the unperturbed motion is stable.

In addition to this result Liapunov [101] made the “Remark 2” that

has become the foundation of the asymptotic stability concept and for a

solution of (uniform) asymptotic stability of x = 0.

In order to illustrate deepness, generality and importance of Liapunov’s

results once again, let following his results be cited (Liapunov [101],
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p.79–80):

Theorem 1. When the roots k1, k2, . . . , kn of the character-
istic equation are such that for a given natural number m it is
impossible to have any relationship of the form

m1k1 + m2k2 + · · · + mnkn = 0,

in which all ms are nonnegative integers, giving their sum equal
to m, then it is always possible to find just one whole homoge-
nous function V of the power m of the quantities ks satisfying
the equation

(9)

n
�

s=1

(ps1x1 + ps2x2 + · · · + psnxn)
∂V

∂xs

= U

for arbitrarily given whole homogenous function U of the quan-
tities xs of the same power m.

Theorem 2. When the real parts of all roots ks are negative
and when in the equation (9) there is the function U being sign-
definite form of any even power m, then the form V of the power
m satisfying that equation is also sign definite with the opposite
sign to that of U .

Gantmakher [38] recognized the fundamental potential of these results
and deduced the Liapunov matrix theorem (see Barnett and Storey [14]).
This theorem is a fundamental theorem for stability theory. For its presen-
tation the following is needed.

Definition 1.3.1. A matrix H = (hij) ∈ Rn×n is:

(i) positive (negative) semi-definite iff its quadratic form V (x)=xTHx

is positive (negative) semi-definite, respectively;
(ii) positive (negative) definite iff its quadratic form V (x) = xTHx is

positive (negative) definite, respectively.

Let a k-th order principal minor of the matrix H be denoted by

H

�

i1 i2 . . . ik
i1 i2 . . . ik

�

=







hi1i1 hi1i2 . . . hi1ik

hi2i1 hi2i2 . . . hi2ik

. . . . . . . . . . . . . . . . . . . . . .

hiki1 hiki2 . . . hikik






,
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p.79–80):
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in which all ms are nonnegative integers, giving their sum equal
to m, then it is always possible to find just one whole homoge-
nous function V of the power m of the quantities ks satisfying
the equation

(9)

n
�

s=1

(ps1x1 + ps2x2 + · · · + psnxn)
∂V

∂xs

= U

for arbitrarily given whole homogenous function U of the quan-
tities xs of the same power m.

Theorem 2. When the real parts of all roots ks are negative
and when in the equation (9) there is the function U being sign-
definite form of any even power m, then the form V of the power
m satisfying that equation is also sign definite with the opposite
sign to that of U .

Gantmakher [38] recognized the fundamental potential of these results
and deduced the Liapunov matrix theorem (see Barnett and Storey [14]).
This theorem is a fundamental theorem for stability theory. For its presen-
tation the following is needed.

Definition 1.3.1. A matrix H = (hij) ∈ Rn×n is:

(i) positive (negative) semi-definite iff its quadratic form V (x)=xTHx

is positive (negative) semi-definite, respectively;
(ii) positive (negative) definite iff its quadratic form V (x) = xTHx is

positive (negative) definite, respectively.

Let a k-th order principal minor of the matrix H be denoted by

H

�

i1 i2 . . . ik
i1 i2 . . . ik

�

=







hi1i1 hi1i2 . . . hi1ik

hi2i1 hi2i2 . . . hi2ik

. . . . . . . . . . . . . . . . . . . . . .

hiki1 hiki2 . . . hikik






,
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where

ij ∈ {1, 2, . . . , n}, ij < ij+1, j = 1, 2, . . . , k, k = 1, 2, . . . , n.

The leading principal minor of the k-th order of H is

H

�

1 2 . . . k

1 2 . . . k

�

=







h11 h12 . . . h1k

h21 h22 . . . h2k

. . . . . . . . . . . . . . . . . . .

hk1 hk2 . . . hkk,






, k = 1, 2, . . . , n.

The following criteria are well known (see Gantmacher [38]).

Theorem 1.3.1. Necessary and sufficient for a symmetric n×n matrix
H to be:

(1) positive semi-definite is that all its principal minors are non-negative

H

�

i1 i2 . . . ik
i1 i2 . . . ik

�

≥ 0, 1 ≤ i1 < i2 < · · · < ik ≤ n, k = 1, 2, . . . , n;

(2) negative semi-definite is that both all its even order principal minors
are non-negative and all its odd order principal minors are non-
positive

H

�

i1 i2 . . . ik
i1 i2 . . . ik

� �

≥ 0, k = 2, 4, . . .

≤ 0, k = 1, 3, . . .
;

(3) positive definite is that all its leading principal minors are positive

H

�

1 2 . . . k

1 2 . . . k

�

> 0, k = 1, 2, . . . , n;

(4) negative definite is that both its first order leading principal minor
is negative and all its leading principal minors are alternatively neg-
ative and positive

(−1)kH

�

1 2 . . . k

1 2 . . . k

�

> 0, k = 1, 2, . . . , n.

Notice that a square matrix A with all real valued elements is (semi-)
definite iff its symmetric part As = 1

2 (A + AT) is (semi-) definite, and a
square matrix A with complex valued elements is (semi-) definite iff its Her-
mitian part AH = 1

2 (A+A∗) is (semi-) definite, where A∗ is the transpose
conjugate matrix of the matrix A.

Now, the fundamental theorem of the stability theorem – the Liapunov
matrix theorem – can be stated as a corollary to the preceding Theorems
1 and 2 by Liapunov.
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Theorem 1.3.2. In order that real parts of all eigenvalues of a matrix
A, A ∈ Rn×n, be negative it is necessary and sufficient that for any positive
definite symmetric matrix G, G ∈ Rn×n, there exists the unique solution
H, H ∈ Rn×n, of the (Liapunov) matrix equation

ATH + HA = −G,

which is also positive definite symmetric matrix.

For solving the Liapunov matrix equation, see for example Barnett and
Storey [14], and Barbashin [10].

1.3.2 Classical and novel developments of the scalar Liapunov

functions method

Following Liapunov [101], the classical development of his second method
consists of a number of stability theorems providing stability conditions are
imposed on appropriate scalar function V and its total time derivative along
system motions over a time-invariant neighborhood of x = 0. Adequate
expositions of the classic development of the Liapunov second method can
be found in the books by Yoshizawa [174, 175] and Rouche, Habets and
Laloy [159].

1.3.2.1 Comparison functions. Comparison functions are used as upper
or lower estimates of the function V and its total time derivative. They
are usually denoted by ϕ, ϕ : R+ → R+. The main contributor to the
investigation of properties of and use of the comparison functions is Hahn
[66]. What follows is mainly based on his definitions and results.

Definition 1.3.2. A function ϕ, ϕ : R+ → R+, belongs to

(i) the class K[0,α), 0 < α ≤ +∞, iff both it is defined, continuous
and strictly increasing on [0, α) and ϕ(0) = 0;

(ii) the class K iff (i) holds for α = +∞, K = K[0,+∞);
(iii) the class KR iff both it belongs to the class K and ϕ(ζ) → +∞ as

ζ → +∞;
(iv) the class L[0,α) iff both it is defined, continuous and strictly de-

creasing on [0, α) and lim [ϕ(ζ) : ζ → +∞] = 0;
(v) the class L iff (iv) holds for α = +∞, L = L[0,+∞).

Let ϕI denote the inverse function of ϕ, ϕI [ϕ(ζ)] ≡ ζ.

The next result was established by Hahn [66].
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Proposition 1.3.1.

(1) If ϕ ∈ K and ψ ∈ K then ϕ(ψ) ∈ K;
(2) If ϕ ∈ K and σ ∈ L then ϕ(σ) ∈ L;
(3) If ϕ ∈ K[0,α) and ϕ(α) = ξ then ϕI ∈ K[0,ξ);

(4) If ϕ ∈ K and lim [ϕ(ζ) : ζ → +∞] = ξ then ϕI is not defined on
(ξ, +∞];

(5) If ϕ ∈ K[0,α), ψ ∈ K[0,α) and ϕ(ζ) > ψ(ζ) on [0, α) then ϕI(ζ) <

ψI(ζ) on [0, β] , where β = ψ(α).

Definition 1.3.3. A function ϕ, ϕ : R+ × R+ → R+, belongs to:

(i) the class KK[0;α,β) iff both ϕ(0, ζ) ∈ K[0,α) for every ζ ∈ [0, β)
and ϕ(ζ, 0) ∈ K[0,β) for every ζ ∈ [0, α);

(ii) the class KK iff (i) holds for α = β = +∞;
(iii) the class KL[0;α,β) iff both ϕ(0, ζ) ∈ K[0,α) for every ζ ∈ [0, β)

and ϕ(ζ, 0) ∈ L[0,β) for every ζ ∈ [0, α);
(iv) the class KL iff (iii) holds for α = β = +∞.

Definition 1.3.4. Two functions ϕ1, ϕ2 ∈ K or ϕ1, ϕ2 ∈ KR are
said to be of the same order of magnitude if there exist positive constants
αi, βi, i = 1, 2, such that

αiϕi(ζ) ≤ ϕj(ζ) ≤ βiϕi(ζ), i �= j; i, j ∈ [1, 2].

1.3.2.2 Some generalizations of the theory by Liapunov. We shall set out
some generalizations of Liapunov theorems with regard to the results ob-
tained by Zubov [178, 179].

Definition 1.3.5. A function v : R × Rn → R is positive definite on
Tτ , τ ∈ R, if and only if there is a time-invariant connected neighborhood
N of x = 0, N ⊆ Rn and a ∈ K[0,α), where α = sup {�x� : x ∈ N} such
that v(t, 0) = 0, ∀ t ∈ Tτ , and a(�x�) ≤ v(t, x) ∀ (t, x) ∈ Tτ ×N .

Theorem 1.3.3. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) a positive definite function v on G (on Tτ ×N ) such that:

(a) v(t, 0) = 0 and for a fixed t ∈ R (t ∈ Tτ ) the function v(t, x)
is continuous at the point x = 0;

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

40 

Preliminaries

24 1. PRELIMINARIES

(b) v(t, x) is definite on any integral curve x = x(t; t0, x0) of
the system (1.2.7) unless the curve leaves the definition do-
main of function v(t, x) and on every such curve the function

v(t) = v (t, x(t; t0, x0))

does not increase when t ∈ R (for all t ∈ Tτ ), then and only
then the state x = 0 of the system (1.2.7) is stable (on Tτ ).

The proof of sufficiency of the theorem conditions is a routine of the
Liapunov functions method (see e.g. Liapunov [101], Demidovich [23], etc.).

In the proof of necessity of the Theorem 1.3.3 conditions one employes
the function

v(t0, x0) =







sup
t≥t0

�x(t; t0, x0)�, if sup
t≥t0

�x(t; t0, x0)� ≤ 1,

1, if sup
t≥t0

�x(t; t0, x0)� > 1.

It is easy to verify that these functions satisfy all conditions of the Theorem
1.3.3.

Definition 1.3.6. A function v : R×Rn → R is decreasing on Tτ , τ ∈
R, if and only if there is a time-invariant neighborhood N of x = 0 and a
function b ∈ K[0,α), such that

v(t, x) ≤ b(�x�) ∀ t ∈ Tτ ×N .

Theorem 1.3.4. In order that the solution x = 0 of the system (1.2.7)
is t0-uniformly stable (on Tτ ), it is necessary and sufficient that the function
v(t, x) mentioned in Theorem 1.3.3 be decreasing on G (on Tτ ×G) and all
conditions of Theorem 1.3.1 be satisfied.

Theorem 1.3.5. For the solution x = 0 of the system (1.2.7) to be
asymptotically stable (on Tτ ), it is necessary and sufficient that the condi-
tions of Theorem 1.3.3 be satisfied and along any integral curve x(t; t0, x0)
the function v(t, x) tend to zero as t → +∞, i.e.

v(t) = v (t, x(t; t0, x0)) → 0 for t → +∞,

�x0� < γ(t0), t > t0, t0 ∈ Ti.

Theorems 1.3.3 – 1.3.5 have the condition associated with the function
v(t, x) nonincreasing or decreasing along the integral curves of the system
(1.2.7). As the explicit representation of the integral curves x(t; t0, x0) of
the system (1.2.7) is not known, it is impossible to test this condition.
Therefore, when these theorems actually are employed, various sufficient
conditions of function v(t, x) nonincreasing (decreasing) that are easier to
check become of great importance.
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Liapunov functions method (see e.g. Liapunov [101], Demidovich [23], etc.).

In the proof of necessity of the Theorem 1.3.3 conditions one employes
the function

v(t0, x0) =







sup
t≥t0

�x(t; t0, x0)�, if sup
t≥t0

�x(t; t0, x0)� ≤ 1,

1, if sup
t≥t0

�x(t; t0, x0)� > 1.

It is easy to verify that these functions satisfy all conditions of the Theorem
1.3.3.

Definition 1.3.6. A function v : R×Rn → R is decreasing on Tτ , τ ∈
R, if and only if there is a time-invariant neighborhood N of x = 0 and a
function b ∈ K[0,α), such that

v(t, x) ≤ b(�x�) ∀ t ∈ Tτ ×N .

Theorem 1.3.4. In order that the solution x = 0 of the system (1.2.7)
is t0-uniformly stable (on Tτ ), it is necessary and sufficient that the function
v(t, x) mentioned in Theorem 1.3.3 be decreasing on G (on Tτ ×G) and all
conditions of Theorem 1.3.1 be satisfied.

Theorem 1.3.5. For the solution x = 0 of the system (1.2.7) to be
asymptotically stable (on Tτ ), it is necessary and sufficient that the condi-
tions of Theorem 1.3.3 be satisfied and along any integral curve x(t; t0, x0)
the function v(t, x) tend to zero as t → +∞, i.e.

v(t) = v (t, x(t; t0, x0)) → 0 for t → +∞,

�x0� < γ(t0), t > t0, t0 ∈ Ti.

Theorems 1.3.3 – 1.3.5 have the condition associated with the function
v(t, x) nonincreasing or decreasing along the integral curves of the system
(1.2.7). As the explicit representation of the integral curves x(t; t0, x0) of
the system (1.2.7) is not known, it is impossible to test this condition.
Therefore, when these theorems actually are employed, various sufficient
conditions of function v(t, x) nonincreasing (decreasing) that are easier to
check become of great importance.
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Theorem 1.3.6. Let a vector function f in (1.2.7) be continuous on
R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) the function v(t, x) satisfying condition (2)(a) of the Theorem 1.3.3;
(3) the nonpositive function w(t, x) that is a total derivative of the func-

tion v(t, x) along the solutions of the system (1.2.7) such that

w(t, x) ≤ ϕα(t) ≤ 0 for �x� ≥ α2

and
(4)

∫

I

ϕ(s) ds = −∞,

where I is any infinite system of closed nonintersecting segments
on the interval [t0,∞), t0 ∈ Ti, such that the lengh of each one is
not less than a fixed positive constant, then the state x = 0 of the
system (1.2.7) is asymptotically stable (on Tτ ).

Theorem 1.3.7. For the solution x = 0 of the system (1.2.7) to be t0-
uniformly asymptotically stable (on Tτ ), it is necessary and sufficient that
the function v(t, x) satisfy all conditions of Theorem 1.3.5 and be decreasing
on G (on Tτ × G).

This theorem is an immediate corollary of Theorems 1.3.4 and 1.3.5.

Theorem 1.3.8. Let a vector function f in system (1.2.7) be continuous
on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) the function v(t, x) being positive definite on G (on Tτ × G) and

decreasing on G (on Tτ × G);
(3) the function w(t, x) that is negative definite on G (on Tτ × G) and

decreasing on G (on Tτ × G);
(4) the correlation

Dv(t, x) = w(t, x) for (t, x) ∈ R × G (∀ (t, x) ∈ Tτ × G),

then and only then the state x = 0 of the system (1.2.7) is uniformly
asymptotically stable (on Tτ ) and uniformly attractive (on Tτ ).
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Corollary 1.3.1. If the state x = 0 of the system (1.2.7) is asymptot-
ically stable (on Tτ ), then an independent variable t can be transformed so
that the zero solution of the newly obtained system is uniformly attractive
(on Tτ ).

Theorem 1.3.9. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) the function v(t, x) decreasing on G and taking negative values in
the arbitrarily small semiaxis neighborhood (for any fixed t > T ),
x1 = x2 = · · · = xn = 0, t ≥ 0;

(2) an integrable function ϕα(t) such that

Dv(t, x) = w(t, x)

and for �x�2 ≥ α2, w(t, x) ≤ ϕα(t),

t
∫

0

ϕα(t) dt → −∞ for t → +∞,

then the equilibrium state x = 0 of the system (1.2.7) is unstable.

Corollary 1.3.2. If the function v(t, x) satisfies conditions (1) – (2)
of Theorem 1.3.9, and the function w(t, x) is negative definite, then the
equlibrium state x = 0 of the system (1.2.7) is unstable.

This corollary is the first Liapunov theorem on instability (see Liapunov
[101], p.65).

Following Krasovskii [89] it is easy to prove.

Theorem 1.3.10. If χ is continuous on T0 ×R×N (on T0 ×Tτ ×N )
then existence of a time-invariant neighborhood S of x = 0, a function
v, positive real numbers η1, η2 and η3 and a positive integer p such that
v(t, x) ∈ C(T0 ×N ) and both, respectively,

(1) η1�x�
p ≤ v(t, x) ≤ η2�x�

p, ∀ (t, x) ∈ R × S (∀ (t, x) ∈ Tτ × S),

and

(2) D∗v(t, x) ≤ −η3�x�
p, ∀ (t, x) ∈ R × S (∀ (t, x) ∈ Tτ × S),

is necessary and sufficient for exponential stability (on Tτ ) of x = 0 of the
system (2.1.7).
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Theorem 1.3.11. If χ is continuous on T0×R×Rn (on T0×Tτ ×Rn)
then existence of a function v, positive real numbers η1, η2 and η3 and a
positive integer p such that v(t, x) ∈ C(T0 × Rn) and both, respectively,

(1) η1�x�
p ≤ v(t, x) ≤ η2�x�

p, ∀ (t, x) ∈ R × Rn (∀ (t, x) ∈ Tτ × Rn),

and

(2) D∗v(t, x) ≤ −η3�x�
p, ∀ (t, x) ∈ R × Rn (∀ (t, x) ∈ Tτ × Rn),

is necessary and sufficient for exponential stability in the whole (on Tτ ) of
x = 0 of the system (2.1.7).

1.3.2.3 Partial stability. We return back to the system (1.2.7) and represent
the vector x of the system state as

xT =
(

xT
1 , xT

2

)T
,

where x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n. Then we assume on system of
the equations (1.2.7) that:

(H1). In domain t ∈ R, Tτ × Ω(H) × D the right-hand parts of the
system (1.2.7) are continuous and locally Lipschitzian in x, i.e.
f ∈ C(R × Ω(H) × D, Rn), where Ω(H) = {x1 ∈ Rn1 : �x1� <

H, H = const > 0}, D = {x2 ∈ Rn2 : 0 < �x2� < +∞}.
(H2). The solution of the system (1.2.7) are x2-continuable, i.e. any solu-

tion x(t; t0, x0) of the system (1.2.7) is definite for all t ≥ 0 (t ∈ Tτ )
such that �x1(t)� ≤ H .

It was noted by Liapunov [102] that a more general problem on motion
stability with respect to a part of variables may be studied.

The theory of motion stability with respect to a part of variables is
exposed by Rumyantzev and Oziraner [161]. In this presentation we restrict
ourselves to a few results obtained in this direction.

Definition 1.3.7. The state x = 0 of the system (1.2.7) is x1-stable
with respect to Tτ , iff for every t0 ∈ Ti and every ε > 0 there exists a
δ(t0, ε) > 0 such that �x0� < δ(t0, ε) implies �x1(t; t0, x0)� < ε ∀ t ∈ T0.

The other types of x1-stability are defined in the same way as Definition
1.3.7 taking into account Definitions 1.2.1 – 1.2.3.

Following the results by Rumyantzev [160] we shall set out the following
result.
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Theorem 1.3.11. If χ is continuous on T0×R×Rn (on T0×Tτ ×Rn)
then existence of a function v, positive real numbers η1, η2 and η3 and a
positive integer p such that v(t, x) ∈ C(T0 × Rn) and both, respectively,

(1) η1�x�
p ≤ v(t, x) ≤ η2�x�

p, ∀ (t, x) ∈ R × Rn (∀ (t, x) ∈ Tτ × Rn),

and

(2) D∗v(t, x) ≤ −η3�x�
p, ∀ (t, x) ∈ R × Rn (∀ (t, x) ∈ Tτ × Rn),

is necessary and sufficient for exponential stability in the whole (on Tτ ) of
x = 0 of the system (2.1.7).

1.3.2.3 Partial stability. We return back to the system (1.2.7) and represent
the vector x of the system state as

xT =
(

xT
1 , xT

2

)T
,

where x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n. Then we assume on system of
the equations (1.2.7) that:

(H1). In domain t ∈ R, Tτ × Ω(H) × D the right-hand parts of the
system (1.2.7) are continuous and locally Lipschitzian in x, i.e.
f ∈ C(R × Ω(H) × D, Rn), where Ω(H) = {x1 ∈ Rn1 : �x1� <

H, H = const > 0}, D = {x2 ∈ Rn2 : 0 < �x2� < +∞}.
(H2). The solution of the system (1.2.7) are x2-continuable, i.e. any solu-

tion x(t; t0, x0) of the system (1.2.7) is definite for all t ≥ 0 (t ∈ Tτ )
such that �x1(t)� ≤ H .

It was noted by Liapunov [102] that a more general problem on motion
stability with respect to a part of variables may be studied.

The theory of motion stability with respect to a part of variables is
exposed by Rumyantzev and Oziraner [161]. In this presentation we restrict
ourselves to a few results obtained in this direction.

Definition 1.3.7. The state x = 0 of the system (1.2.7) is x1-stable
with respect to Tτ , iff for every t0 ∈ Ti and every ε > 0 there exists a
δ(t0, ε) > 0 such that �x0� < δ(t0, ε) implies �x1(t; t0, x0)� < ε ∀ t ∈ T0.

The other types of x1-stability are defined in the same way as Definition
1.3.7 taking into account Definitions 1.2.1 – 1.2.3.

Following the results by Rumyantzev [160] we shall set out the following
result.
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Theorem 1.3.12. Let the vector function f in system (1.2.7) satisfy
conditions H1 and H2. If there exist the function v(t, x) and comparison
functions a, b and c of class K such that

(1) a(�x1�) ≤ v(t, x) ≤ b(�x1�) ∀ (t, x) ∈ R × Ω(H) × D (∀ (t, x) ∈
Tτ × Ω(H) × D));

(2) D+v(t, x) ≤ −c(�x1�) ∀ (t, x) ∈ R × Ω(H) × D (∀ (t, x) ∈ Tτ ×
Ω(H) × D)).

Then

(a) any α > 0 and any (t0, x0) ∈ R × (Bα ∩ Ω(H)) × D ((t0, x0) ∈
Tτ × (Bα ∩ Ω(H)) × D), the solution x1(t; t0, x0) → 0 uniformly
relatively (t0, x0) as t → +∞;

(b) the state x = 0 of the system (1.2.7) is uniformly asymptotically
x1-stable (on Tτ ).

1.3.2.4 The development of Marachkov’s idea. One of the trends in gen-
eralization of Liapunov’s theorems is the establishment of conditions that
could replace the condition of function v decreasing in the theorems on as-
ymptotic stabiliy. The Marachkov’s theorem [108] is the first result in this
direction.

Theorem 1.3.13. Let the vector function f in the system (1.2.7) be
bounded on R ×N (on Tτ ×N ). If there exist

(1) a positive definite function v ∈ C1(R × N , R+) (v ∈ C1(Tτ ×
N , R+)), v(t, 0) = 0, ∀ t ∈ R (∀ t ∈ Tτ );

(2) a function c of class K such that

Dv(t, x) ≤ −c(�x�)

∀ (t, x) ∈ R × N (∀ (t, x) ∈ Tτ × N),

then the equilibrium state x = 0 of the system (1.2.7) is asympto-
tically stable (on Tτ ).

The Marachkov’s theorem was generalized by Salvadori [162] via the
application of two auxiliary functions. We shall formulate this result in the
following way.

Theorem 1.3.14. Let the vector function f in the system (1.2.7) be
continuous on R ×N (on Tτ ×N ). If there exist

(1) a positive definite function v ∈ C1(R × N , R+) (v ∈ C1(Tτ ×
N , R+)), v(t, 0) = 0, ∀ t ∈ R (∀ t ∈ Tτ );
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(2) the function w ∈ C1(R×N , R+) (w ∈ C1(Tτ ×N , R+)), w(t, x) is
positive definite and Dw(t, x)|(1.2.7) is bounded from above or below

on R ×N (on Tτ ×N );
(3) a function c of class K such that

Dv(t, x) ≤ −c(w(t, x)) on R ×N (on Tτ ×N ).

Then the equilibrium state x = 0 of the system (1.2.7) is asympto-
tically stable (on Tτ ).

Below we shall cite a result showing that the positive definiteness condi-
tion in Theorem 1.3.13 may be replaced by the condition of positive semidef-
initeness.

Theorem 1.3.15. Let in condition (1) of Theorem 1.3.13 the function
v ∈ C1(R×N ), v ∈ C1(Tτ ×N ), v(t, x) ≥ 0 and v(t, 0) = 0 ∀ t ∈ R

(∀ t ∈ Tτ ) and condition (2) be satisfied.

Then the equilibrium state x = 0 of the system (1.2.7) is asymptotically
stable (on Tτ ).

1.3.2.5 Generalized comparison principle. Further alongside the system
(1.2.7) the equation

(1.3.1)
du

dt
= g(t, u, x)

is considered, where u ∈ R+, g ∈ C(Tτ × R+ × Rn, R), g(t, 0, 0) = 0 for
all t ∈ Tτ .

We recall that equation (1.3.1) emerges as a result of estimation of the
total derivative D+v(t, x) along a solution of the system (1.2.7) in terms of
the inequality

(1.3.2)
D+v(t, x) ≤ g(t, v(t, x), x)

(t, x) ∈ R ×N (∀ (t, x) ∈ Tτ ×N ).

Sometimes an obvious dependence of function g on vector x widens the pos-
sibility to apply the principle of comparison with scalar Liapunov function
(cf. Corduneanu [20]).
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Theorem 1.3.16. Let the vector function f in the system (1.2.7) be
continuous on R × N (on Tτ × N ). If there exist scalar function v(t, x)
and g(t, u, x) and comparison functions a and b of class K such that

(1) a(�x�) ≤ v(t, x) ≤ b(�x�) ∀ (t, x) ∈ R ×N (∀ (t, x) ∈ Tτ ×N );
(2) D+v(t, x) ≤ g(t, v(t, x), x) ∀ (t, x) ∈ R ×N (∀ (t, x) ∈ Tτ ×N ),

then the property of u-stability of the extended system

dx

dt
= f(t, x), x(t0) = x0;

du

dt
= g(t, u, x), u(t0) = u0 ≥ 0,

implies the corresponding property of stability of solution x = 0 to the
system (1.2.7).

For the proof of this theorem when Tτ = R see Hatvani [71] and for its
generalization see Martynyuk [110].

We note that for the case when estimate (1.3.2) holds with an inverse
inequality and the function g(t, u, x) = g(t, u) the theorems on instability
of solution x = 0 to system (1.2.7) are known (see Rouche, Habets, Laloy
[159]) that are based on the principle of comparison with scalar Liapunov
function.

1.3.3 A survey of development of the method of vector

Liapunov functions

With the purpose to weaken the requirements to the Liapunov functions
used in the theory of motion stability it was proposed by Duhem [33] in
1902 to apply several Liapunov functions instead of one.

In modern terms he discovered a multicomponent Liapunov function.
After 60 years this idea of multicomponent function was developed by Bell-
man [16], Matrosov [132] and Melnikov [139]. The papers by Corduneanu
[20, 21] where the scalar Liapunov function were aplied together with dif-
ferential inequalities and the works by Kamke [81] and Ważewski [171] have
become a background for a series of important results in motion stability
theory obtained via the principle of comparison with vector Liapunov func-
tion. This section reviews basic ideas and results developed lately while
working out the method of vector Liapunov functions.
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Theorem 1.3.16. Let the vector function f in the system (1.2.7) be
continuous on R × N (on Tτ × N ). If there exist scalar function v(t, x)
and g(t, u, x) and comparison functions a and b of class K such that

(1) a(�x�) ≤ v(t, x) ≤ b(�x�) ∀ (t, x) ∈ R ×N (∀ (t, x) ∈ Tτ ×N );
(2) D+v(t, x) ≤ g(t, v(t, x), x) ∀ (t, x) ∈ R ×N (∀ (t, x) ∈ Tτ ×N ),

then the property of u-stability of the extended system

dx

dt
= f(t, x), x(t0) = x0;

du

dt
= g(t, u, x), u(t0) = u0 ≥ 0,

implies the corresponding property of stability of solution x = 0 to the
system (1.2.7).

For the proof of this theorem when Tτ = R see Hatvani [71] and for its
generalization see Martynyuk [110].

We note that for the case when estimate (1.3.2) holds with an inverse
inequality and the function g(t, u, x) = g(t, u) the theorems on instability
of solution x = 0 to system (1.2.7) are known (see Rouche, Habets, Laloy
[159]) that are based on the principle of comparison with scalar Liapunov
function.

1.3.3 A survey of development of the method of vector

Liapunov functions

With the purpose to weaken the requirements to the Liapunov functions
used in the theory of motion stability it was proposed by Duhem [33] in
1902 to apply several Liapunov functions instead of one.

In modern terms he discovered a multicomponent Liapunov function.
After 60 years this idea of multicomponent function was developed by Bell-
man [16], Matrosov [132] and Melnikov [139]. The papers by Corduneanu
[20, 21] where the scalar Liapunov function were aplied together with dif-
ferential inequalities and the works by Kamke [81] and Ważewski [171] have
become a background for a series of important results in motion stability
theory obtained via the principle of comparison with vector Liapunov func-
tion. This section reviews basic ideas and results developed lately while
working out the method of vector Liapunov functions.
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1.3.3.1 Scalar approach. We return back to the system (1.2.7) and consider
also a vector function

(1.3.3) V (t, x) = (v1(t, x), v2(t, x), . . . , vm(t, x))
T
,

where vs ∈ C(T0 × Rn, R+), s = 1, 2, . . . , m and its total derivative along
solutions of the system (1.2.7)

(1.3.4) D+V (t, x) = lim sup {[V (t+θ, x+θf(t, x))− V (t, x)] θ−1 : θ→θ+}

for (t, x) ∈ T0 × Rn.
The notion of the property of having a fixed sign of function (1.3.3) is

introduced as follows. By means of a real vector α ∈ Rm one constructs a
scalar function

(1.3.5) v(t, x, α) = αTV (t, x) (t, x) ∈ T0 × Rn.

Definition 1.3.8. A vector function V : T0 × Rn → Rm is

(i) positive semi-definite on Tτ = [τ, +∞), τ ∈ R iff there exist a
connected time-invariant neighborhood N of point x = 0, N ⊆ Rn

and a real vector α ∈ Rn such that
(a) v(t, x, α) is continuous in (t, x) ∈ Tτ ×N ;
(b) v(t, x, α) is nonnegative on N ; v(t, x, α)≥0 ∀ (t, x, α �= 0) ∈

Tτ ×N × Rm;
(c) v(t, x, α) vanishes whenever x = 0 for any (t, α �= 0) ∈

Tτ × Rm.

Remark 1.3.1. Taking Definition 1.3.8 for the sample the other defini-
tions for function (1.3.3) are introduced in a similar way.

The state vector x of system (1.2.7) is divided into m subvectors, i.e.

x =
(

xT
1 , . . . , xT

m

)T
, where xs ∈ Rns and n1 + n2 + · · · + nm = n.

Assume that

(1.3.6) ai1ψ
1

2

i1(�xi�) ≤ vi(t, x) ≤ ai2ψ
1

2

i2(�xi�), i = 1, 2, . . . , m,

where ai1 and ai2 are some positive constants and ψi1 and ψi2 are of class
K (KR).

Actually the condition (1.3.6) means that the components vi(t, x) of the
vector function (1.3.3) are positive definite and decreasing with respect to
a part of variables.

Let us introduce designations

(1.3.7)
A1 = diag [a11, a12, . . . , a1m],

A2 = diag [a21, a22, . . . , a2m].
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Proposition 1.3.2. For the vector function (1.3.3) to be positive defi-
nite and decreasing, it is necessary and sufficient that the bilateral inequal-
ities

(1.3.8) uT
1A1u1 ≤ v(t, x, α) ≤ uT

2A2u2

be satisfied, where

u1 =
(

ψ
1

2

11(�x1�), . . . , ψ
1

2

1m(�xm�)
)T

,

u2 =
(

ψ
1

2

21(�x1�), . . . , ψ
1

2

1m(�xm�)
)T

.

Remark 1.3.2. If ψi1 = ψi2 = �xi�, then the estimates (1.3.8) are
known (see Krasovskii [89]) as the estimates characteristics of the quadratic
forms.

Taking into account (1.3.4) we get for the function (1.3.5)

(1.3.9) D+V (t, x, α) = αTD+V (t, x).

Let for (t, x) ∈ T0 × Rn there exist an m × m matrix S(t, x), for which

(1.3.10) D+V (t, x, α) ≤ ψT
3 S(t, x)ψ3,

where ψ3 =
(

ψ
1

2

13(�x1�), ψ
1

2

23(�x2�), . . . , ψ
1

2

m3(�xm�)
)T

.

Estimates (1.3.8) – (1.3.10) allows us to establish stability conditions for
the state x = 0 of system (1.2.7) as follows.

Theorem 1.3.17. Let the vector function f in system (1.2.7) be con-
tinuous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) the decreasing positive definite vector function V on G (on Tτ ×G);
(3) the m × m-matrix S(t, x) on G (on Tτ × G) such that inequality

(1.3.10) is satisfied.

Then

(a) the state x = 0 of the system (1.2.7) is uniformly stable if the
matrix S(t, x) is negative semidefinite on G (on Tτ × G);

(b) the state x = 0 of the system (1.2.7) is uniformly asymptotically
stable (on Tτ ) providing the matrix S(t, x) is negative definite on G
(on Tτ × G).
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Proof. Formula (1.3.5) and estimates (1.3.8) and (1.3.10) allow us to
repeat all points of the proof of Theorems 8.1 and 8.3 by Yoshizawa [174]
on uniform (asymptotic) stability. The theorem is proved.

Remark 1.3.3. New points of the theorem resulting from the applica-
tion of vector function (1.3.3) are

(a) a possibility to apply the components vi(t, x), i = 1, 2, . . . , m being
of a fixed sign with respect to a part of variables;

(b) a possibility to check the property of having a fixed sign of the
matrix S(t, x) via the algebraic method.

A specific way of constructing m×m-matrix S(t, x) enables us to derive
from Theorem 1.3.17 the assertions found in the monographs by Michel
and Miller [143], Šiljak [167] and Grujić, Martynyuk, Ribbens-Pavella [57].
Thus, Theorem 1.3.17 proves to be quite universal in the framework of the
scalar approach of the vector Liapunov function application.

Also, within the scalar approach the application of the vector Liapunov
function together with the comparison principle is developed.

Theorem 1.3.18. Let the vector function f in system (1.2.7) be con-
tinuous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) the vector function V (t, x) and a vector α ∈ Rm for which inequal-

ities (1.3.8) are satisfied;
(3) the function w ∈ C(Tτ × R+, R), w(t, 0) = 0 such that

D+v(t, x, α) ≤ w (t, v(t, x, α)) ∀ (t, x) ∈ Tτ ×N ;

(4) the solution r∗ = 0 of the comparison equation

(1.3.11)
dr

dt
= w(t, r), r(t0) = r0 ≥ 0

existing for t ≥ t0.

Then

(a) the stability of state r = 0 of the equation (1.3.11) implies the
stability of state x = 0 of the system (1.2.7);

(b) the asymptotic stability of state r = 0 of (1.3.11) implies the as-
ymptotic stability of state x = 0 of the system (1.2.7);

(c) if, moreover, v(t, x, α) → 0 as �x� → 0 uniformly on Tτ , then the
uniform stability or uniform asymptotic stability of state r = 0 of
system (1.3.11) implies the corresponding stability of state x = 0
of system (1.2.7).
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Proof. Formula (1.3.5) and estimates (1.3.8) and (1.3.10) allow us to
repeat all points of the proof of Theorems 8.1 and 8.3 by Yoshizawa [174]
on uniform (asymptotic) stability. The theorem is proved.

Remark 1.3.3. New points of the theorem resulting from the applica-
tion of vector function (1.3.3) are

(a) a possibility to apply the components vi(t, x), i = 1, 2, . . . , m being
of a fixed sign with respect to a part of variables;

(b) a possibility to check the property of having a fixed sign of the
matrix S(t, x) via the algebraic method.

A specific way of constructing m×m-matrix S(t, x) enables us to derive
from Theorem 1.3.17 the assertions found in the monographs by Michel
and Miller [143], Šiljak [167] and Grujić, Martynyuk, Ribbens-Pavella [57].
Thus, Theorem 1.3.17 proves to be quite universal in the framework of the
scalar approach of the vector Liapunov function application.

Also, within the scalar approach the application of the vector Liapunov
function together with the comparison principle is developed.

Theorem 1.3.18. Let the vector function f in system (1.2.7) be con-
tinuous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) the vector function V (t, x) and a vector α ∈ Rm for which inequal-

ities (1.3.8) are satisfied;
(3) the function w ∈ C(Tτ × R+, R), w(t, 0) = 0 such that

D+v(t, x, α) ≤ w (t, v(t, x, α)) ∀ (t, x) ∈ Tτ ×N ;

(4) the solution r∗ = 0 of the comparison equation

(1.3.11)
dr

dt
= w(t, r), r(t0) = r0 ≥ 0

existing for t ≥ t0.

Then

(a) the stability of state r = 0 of the equation (1.3.11) implies the
stability of state x = 0 of the system (1.2.7);

(b) the asymptotic stability of state r = 0 of (1.3.11) implies the as-
ymptotic stability of state x = 0 of the system (1.2.7);

(c) if, moreover, v(t, x, α) → 0 as �x� → 0 uniformly on Tτ , then the
uniform stability or uniform asymptotic stability of state r = 0 of
system (1.3.11) implies the corresponding stability of state x = 0
of system (1.2.7).
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For the analysis of various partial cases of inequality (1.3.11) or the same
inequality in the integral form see Grujić, Martynyuk and Ribbens-Pavella
[57].

One of the Theorem 1.3.18 generalizations is based on the application of
a majorizing function w ∈ C(Tτ ×Rn ×R+, R), w(t, r, x) = 0 when r = 0
and x = 0.

Besides an extended system

(1.3.12)

dx

dt
= f(t, x), x(t0) = x0,

dr

dt
= w(t, r, x), r(t0) = r0 ≥ 0

is treated for which certain type of r-stability of the zero solution
(

xT, r
)T

=
0 yields an appropriate type of stability of the state x = 0 of (1.2.7).

The theorem has been developed and applied for the cases when the
function w(t, r) = w(r), i.e. it is independent of t ∈ Tτ . These and other
results obtained in this direction are set out by Grujić, Martynyuk and
Ribbens-Pavella [57].

1.3.3.2 Vector approach. The combination of vector function (1.3.3) with
the comparison system

(1.3.13)
du

dt
= Ω(t, u), u(t0) = u0 ≥ 0,

where u ∈ Rm
+ , Ω ∈ C(Tτ × Rm

+ , Rm), Ω(t, 0) = 0 for all t ∈ Tτ , leads to
the following general result of the method of vector Liapunov functions.

Theorem 1.3.19. Let the vector function f in system (1.2.7) be con-
tinuous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G of point x = 0;
(2) the vector function V ∈ C(Tτ ×N , Rm

+ ), V (t, x) is locally Lipschit-
zian in x and a real vector α ∈ Rm such that function (1.3.5)
satisfies bilateral inequality (1.3.8);

(3) the function Ω ∈ C(Tτ × Rm
+ , Rm), Ω(t, 0) = 0 and Ω(t, u) is

quasimonotone nondecreasing in u when all t ∈ Tτ , so that

D+V (t, x) ≤ Ω (t, V (t, x)) , (t, x) ∈ Tτ ×N .
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Then certain stability properties of the state u = 0 of the system (1.3.13)
imply appropriate stability properties of the state x = 0 of the system
(1.2.7).

Proof. We shall cite first an assertion that establishes a relationship
between the vector function variation and maximal solution to comparison
system (1.3.13).

Proposition 1.3.3. Let V ∈ C(Tτ × N , Rm
+ , ) and V (t, x) be locally

Lipschitzian in x. Let the vector function D+V (t, x) specified by (1.3.4)
satisfy the inequality

D+V (t, x) ≤ Ω (t, V (t, x)) , ∀ (t, x) ∈ Tτ ×N ,

where Ω ∈ C(Tτ × Rm
+ , Rm

+ ) and the function Ω(t, u) be quasimonotone
increasing in u.

Assume that the maximal solution uM (t; t0, r0) of the comparison system

du

dt
= Ω(t, u)

exists on the interval Tτ and passes through the point (t0, r0) ∈ Tτ ×Rm
+ . If

x(t; t0, x0) is any solution to system (1.2.7) defined on [t0, t0 + δ), t0 ∈ Tτ

and passing through the point (t0, x0) ∈ Tτ ×N , then the condition

(1.3.14) V (t0, x0) ≤ r0

yields the estimate

(1.3.15) V (t, x(t; t0, x0)) ≤ uM (t; t0, r0) ∀ t ∈ [t0, t0 + δ).

Further the fact that function (1.3.5) satisfies bilateral inequality (1.3.8)
implies that the vector function V (t, x) is positive definite and decreasing.

Estimate (1.3.15) and the fact that the solution u = 0 of the system
(1.3.15) possesses a certain type of stability allow the conclusion that the
solution x = 0 of the system (1.2.8) has a corresponding type of stability
(for further details see Lakshmikantham, Leela and Martynyuk [94], etc.).

In the case when system (1.3.15) is autonomous

(1.3.16)
du

dt
= Ω(u), u ∈ Rm

+ ,

where Ω ∈ C(Rm
+ , Rm), Ω(u) satisfies the quasimonotonicity condition and

the solution of the system (1.3.16) is locally unique for any u0 ∈ Rm
+ we

establish a criterion of asymptotic stability of the state u = 0 of the system
(1.3.16) as follows.
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Theorem 1.3.20. Let for the system (1.3.16) there exist a neighborhood
U of state u = 0 such that for all u ∈ U , u �= 0, Ω(u) �= 0 and Ω(u) = 0
when u = 0.

The isolated equlibrium state u = 0 of the system (1.3.16) is asymptot-
ically stable iff there exists a positive vector u0 = K0 ∩ U such that the
system of inequalities

Ωs(u
0
1, . . . , u

0
m) < 0 ∀ s ∈ [1, m]

is joint.

Besides, K0 = intK and K = {u ∈ Rm : us ≥, s = 1, 2, ..., m}.

Under some additional conditions the theorem is proved as well for the
case when the comparison system (1.3.16) has a nonisolated singular point
(see Martynyuk and Obolenskii [129]).

Further we assume that the vector function Ω(t, u) has bounded partial
derivatives in u.

Designate

∂Ω

∂u

∣

∣

∣

∣

u=0

= P (t), Φ(t, u) = Ω(t, u) − P (t)u.

Consider a system comparison equations

(1.3.17)
du

dt
= P (t)u + Φ(t, u), u(t0) = u0 ≥ 0,

and its linear approximation

(1.3.18)
dξ

dt
= P (t)ξ, ξ(t0) = ξ0 ≥ 0.

Definition 1.3.9. (Šiljak [167]). Matrix P (t) is called a nonautono-
mous M -matrix iff

pij(t)

{

< 0 for all t ∈ T0, i = j;

≥ 0 for all t ∈ T0, i �= j, i, j = 1, 2, . . . , m.
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Definition 1.3.10. Nonautonomous linear system (1.3.18) is called a
reducible comparison system, provided that there exists a Liapunov trans-
formation ξ = Q(t)y by means of which it can be reduced to the system

dy

dt
= By,

with a constant M -matrix B. Moreover

B = Q−1

(

PQ −
dQ

dt

)

.

Recall that for the Liapunov transformation

(1.3.19) ξ = Q(t)y

there exists Q−1(t) and Q ∈ C1(T0, Rm×m).
Besides, the values

k = sup
t≥0

�Q(t)� and l = sup
t≥0

�Q−1(t)�

are finite.

Theorem 1.3.21. Let for the system (1.2.7) the following conditions
hold true

(1) there exists a positive definite decreascent vector function V (t, x)
such that

(1.3.20) D+V (t, x) ≤ P (t)V (t, x) + Φ (t, V (t, x)) ,

where P (t) is a nonautonomous M -matrix and Φ(t, u) is quasi-
monotone in u and

lim
�u�→0

�Φ(t, u)�

�u�
= 0 uniformly in t ≥ t0;

(2) a matrix P (t) reducible in the sense of Liapunov.

Then the following assertions are valid

(a) if the matrix B in the system

(1.3.21)
dy

dt
= By + Q−1Φ(t, Qy)
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has all eigenvalues with negative real parts, then the zero solution
of comparison system (1.3.17) is uniformly asymptotically stable;

(b) if the matrix B in the system (1.3.21) has all eigenvalues with nega-
tive real parts and in addition V (t, x, α) ≥ ∆ �x�2 for some ∆ > 0,

then the zero solution of comparison equation (1.3.17) is exponen-
tially stable;

(c) if the inequality (1.3.20) holds with a reversed sign and the ma-
trix B in system (1.3.21) has at least one eigenvalues with positive
real parts, then the zero solution of comparison system (1.3.17) is
unstable.

Proof. We apply to system (1.3.17) the Liapunov transformation u =
Q(t)y and get system (1.3.21). By condition (1) of the Theorem 1.3.21

�Φ(t, Qy)� ≤ ε�Qy�

for some ε > 0 and hence, the fact that �y� ≤
η

k
yields

�Q−1Φ(t, Qy)� ≤ εlk�y�.

So, it is clear that if all eigenvalues of the matrix B in the system (1.3.21)
have negative real parts, then the solutions of the system

dy

dt
= By

vanish and furthermore the solutions of the systems (1.3.21) and (1.3.17)
respectively possess the same property.

Assertions (b) and (c) are proved in the same manner.

If in Theorem 1.3.21 inequality (1.3.20) is satisfied with a constant matrix
P being an M -matrix, then all assertions of the Theorem 1.3.21 remain valid
without the transformation of the system (1.3.17) to (1.3.21).

1.4 Notes

1.2. The work by Liapunov [101] was published more than 100 years ago;
nevertheless its ideas still inspire many investigations today. Therefore in
Sections 1.2 and 1.3 are included not to repeat the contents of this paper
but to cite the basic statements of the second Liapunov method according
to the original (see Liapunov [101]).

Comments 1.2.1 – 1.2.7, Theorem 1.2.1 and Definitions 1.2.1 – 1.2.3 are
set out according to Grujić, Martynyuk and Ribbens-Pavella [57], where a
huge bibliography on stability theory is available as well.
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has all eigenvalues with negative real parts, then the zero solution
of comparison system (1.3.17) is uniformly asymptotically stable;

(b) if the matrix B in the system (1.3.21) has all eigenvalues with nega-
tive real parts and in addition V (t, x, α) ≥ ∆ �x�2 for some ∆ > 0,

then the zero solution of comparison equation (1.3.17) is exponen-
tially stable;

(c) if the inequality (1.3.20) holds with a reversed sign and the ma-
trix B in system (1.3.21) has at least one eigenvalues with positive
real parts, then the zero solution of comparison system (1.3.17) is
unstable.

Proof. We apply to system (1.3.17) the Liapunov transformation u =
Q(t)y and get system (1.3.21). By condition (1) of the Theorem 1.3.21

�Φ(t, Qy)� ≤ ε�Qy�

for some ε > 0 and hence, the fact that �y� ≤
η

k
yields

�Q−1Φ(t, Qy)� ≤ εlk�y�.

So, it is clear that if all eigenvalues of the matrix B in the system (1.3.21)
have negative real parts, then the solutions of the system

dy

dt
= By

vanish and furthermore the solutions of the systems (1.3.21) and (1.3.17)
respectively possess the same property.

Assertions (b) and (c) are proved in the same manner.

If in Theorem 1.3.21 inequality (1.3.20) is satisfied with a constant matrix
P being an M -matrix, then all assertions of the Theorem 1.3.21 remain valid
without the transformation of the system (1.3.17) to (1.3.21).

1.4 Notes

1.2. The work by Liapunov [101] was published more than 100 years ago;
nevertheless its ideas still inspire many investigations today. Therefore in
Sections 1.2 and 1.3 are included not to repeat the contents of this paper
but to cite the basic statements of the second Liapunov method according
to the original (see Liapunov [101]).

Comments 1.2.1 – 1.2.7, Theorem 1.2.1 and Definitions 1.2.1 – 1.2.3 are
set out according to Grujić, Martynyuk and Ribbens-Pavella [57], where a
huge bibliography on stability theory is available as well.
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1.3. A short survey of main directions of the method of Liapunov func-
tions begins with a review of its original results (see Liapunov [101]). The
survey of classical and new trends of the method of scalar Liapunov func-
tions is based on the results by Zubov [178, 179] (Theorems 1.3.3 – 1.3.9),
Hahn [66] and Krasovskii [89] (Theorems 1.3.10 and 1.3.11). Theorem
1.3.12 is due to Rumyantzev [160] and Theorem 1.3.13 is due to Marachkov
[108]. Theorem 1.3.14 is based on the results by Salvadori [162], while The-
orem 1.3.16 is due to Hatvani [71]. For recent development in the method
of scalar Liapunov functions see Lakshmikantham and Martynyuk [92].

The survey of the development of the method of the vector Liapunov
function takes into account the results by Bellman [16], Matrosov [132],
Melnikov [139], Corduneanu [20, 21], Kamke [81], etc. Theorem 1.3.17
is due to Michel and Miller [143]. Theorem 1.3.18 is a generalization of
results by Corduneanu [20, 21] and is related to the results by Gruijć,
Martynyuk and Ribbens-Pavella [57]. Theorem 1.3.19 is a development
of Theorem 1.6.1 by Matrosov, Lakshmikantham and Sivasundaram [96].
Theorem 1.3.20 is due to Martynyuk and Obolenskii [129]. Theorem 1.3.21
is new.
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2

MATRIX LIAPUNOV FUNCTION

METHOD IN GENERAL

2.1 Introduction

The short survey of the direct Liapunov method development cited in Chap-
ter 1 shows that the generalizations of this method in terms of multicom-
ponent functions make this method more versatile in applications. On the
other hand unsolved still is the problem of construction of appropriate func-
tions or systems of functions in terms of which the further development of
this fruitful technique is possible. In this regard a two indices system of
functions (a matrix-valued function) is proposed in this chapter as a basis
for construction of both scalar or vector Liapunov functions.

This chapter gives an account of the foundations of the method of matrix
Liapunov functions that is a new method of qualitative analysis of nonlinear
systems.

The Chapter is organized as follows.

In Section 2.2 all necessary notions of the direct Liapunov method based
on matrix-valued function are introduced.

In Section 2.3 the theorems of direct Liapunov method on motion sta-
bility are set out where a scalar function constructed on the set of the
two-indices system of functions is applied.

In Section 2.4 a scalar function constructed in terms of a matrix-valued
function is incorporated together with the principle of comparison.

The basic theorems of the method of matrix Liapunov functions are
presented in Section 2.5. Also the aggregation forms are developed for
autonomous large scale systems in terms of matrix-valued functions and
the estimates of asymptotic stability domains are discussed.

Section 2.6 deals with a new direction in stability theory refered to as a
“multistability of motion”. For the analysis of multistability of large scale
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ter 1 shows that the generalizations of this method in terms of multicom-
ponent functions make this method more versatile in applications. On the
other hand unsolved still is the problem of construction of appropriate func-
tions or systems of functions in terms of which the further development of
this fruitful technique is possible. In this regard a two indices system of
functions (a matrix-valued function) is proposed in this chapter as a basis
for construction of both scalar or vector Liapunov functions.

This chapter gives an account of the foundations of the method of matrix
Liapunov functions that is a new method of qualitative analysis of nonlinear
systems.

The Chapter is organized as follows.

In Section 2.2 all necessary notions of the direct Liapunov method based
on matrix-valued function are introduced.

In Section 2.3 the theorems of direct Liapunov method on motion sta-
bility are set out where a scalar function constructed on the set of the
two-indices system of functions is applied.

In Section 2.4 a scalar function constructed in terms of a matrix-valued
function is incorporated together with the principle of comparison.

The basic theorems of the method of matrix Liapunov functions are
presented in Section 2.5. Also the aggregation forms are developed for
autonomous large scale systems in terms of matrix-valued functions and
the estimates of asymptotic stability domains are discussed.

Section 2.6 deals with a new direction in stability theory refered to as a
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systems consisting of two, three or four subsustems the method of matrix-
valued Liapunov functions is employed in combination with the method of
comparison with scalar and vector Liapunov functions.

Section 2.7 presents applications of some general results in the problems
of mechanics, automatics regulation and mathematical biology.

2.2 Definition of Matrix-Valued Liapunov Functions

2.2.1 The property of having a fixed sign of the matrix-valued

function

Together with the system (1.2.10) we shall consider a two-indices system
of functions

(2.2.1) U(x) = [vij(x)] , i, j = 1, 2, . . . , m,

where vii ∈ C(Rn, R+) and vij ∈ C(Rn, R) for all i �= j. Moreover it is
assumed that

(i) vij(x) are locally Lipschitzian in x;
(ii) vij(0) = 0 for all i, j = 1, 2, . . . , m;
(iii) vij(x) = vji(x) in any open connected neighborhood of point x = 0.

Remark 2.2.1. If vij ≡ 0 for all i �= j = 1, 2, . . . , m then U(x) =
diag [v11(x), . . . , vmm(x)] and

(2.2.2) V (x) = U(x)e, e ∈ Rm

is a vector function.

Remark 2.2.2. If vij ≡ 0 for all i �= j = 1, 2, . . . , m and there exists
at least one value of k ∈ [1, m] such that vii ≡ 0 for all i = 1, 2, . . . , k −
1, k + 1, . . . , m and vkk(x) > 0 satisfies the conditions (i) – (ii), then

(2.2.3) U(x) = vkk(x) for all x ∈ N, N ⊆ Rn,

is a positive definite scalar function.
Thus the two-indices system of functions (2.2.1) is a basis for construc-

tion of both scalar and vector Liapunov functions.
However, for the matrix-valued function (2.2.1) to solve the stability

problem for the equilibrium state x = 0 of the system (1.2.10) it should
possess the property of having a fixed sign in the sense of Liapunov.
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It runs as follows:

(i) the concept of positive definiteness of a matrix-valued function
(2.2.1) should be compatible with the well-known concept of posi-
tive definiteness of a matrix;

(ii) the concept of positive definiteness of a matrix function (2.2.1)
should be compatible with Liapunov’s original concept of positive
definiteness of scalar functions;

(iii) the concept of positive definiteness of a matrix function (2.2.1)
should be directly applicable to stability analysis and adequate to
Liaponuv’s (second) method.

For the sake of preciseness the following definition will be used throught
the book, which is based on the corresponding definition by Liapunov [101]
and Hahn [66], Grujić [47] and Martynyuk [116].

Definition 2.2.1. The matrix-valued function U : Rn → Rm×m is:

(i) positive semi-definite iff there is a time-invariant neighborhood N
of x = 0, N ⊆ Rn, such that

(a) U is continuous on N : U(x) ∈ C(N ),
(b) U vanishes at the origin: U(0) = 0,
(c) v(x, y) = yTU(x)y ≥ 0 ∀ (x �= 0, y �= 0) ∈ N × Rm;

(ii) positive semi-definite on a neighborhood S of x = 0 iff (i) holds for
N = S;

(iii) positive semi-definite in the whole iff (i) holds for N = Rn;
(iv) negative semi-definite (on a neighborhood S of x = 0 in the whole)

iff (−U) is positive semi-definite (on the neighborhood S or in the
whole, respectively).

Remark 2.2.3. Stability analysis shows sufficiency of using a fixed vec-
tor η ∈ Rm insted of any y in (c), that is v = Rn → R is defined by

v(x) = ηTU(x)y, η = (η1, . . . , ηm)
T
, ηi �= 0, i = 1, 2, . . . , m.

Iff all ηi = 1 in η, then η = I = (1, 1, . . . , 1)T∈ Rs and

U(x) =

m
∑

i,j=1

uij(x), uij(x) = uji(x).

Remark 2.2.4. In case m = 1, then Definition 2.2.1 reduces to Lia-
punov’s original definition of positive definiteness concept (cf. Liapunov
[101]).
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Remark 2.2.5. It is to be noted that matrix-valued function U defined

by U(x) = 0 for all x ∈ Rn is both positive and negative semi-definite.

This ambiguity can be avoided by introducing the notion of strictly positive

(negative) semi-definite and there is x̃ ∈ N such that U(x̃) > 0 (U(x̃) <

0), respectively.

Definition 2.2.2. The matrix-valued function U : Rn → Rm×m is:

(i) positive definite iff there is a time-invariant neighborhood N , N ⊆
Rn, of x = 0, such that it is both positive semi-definite on N and

v(x, y) = yTU(x)y > 0 ∀ (x �= 0, y �= 0) ∈ N × Rm;

(ii) positive definite on a neighborhood S of x = 0, iff (i) holds for

N = S;

(iii) positive definite in the whole, iff (i) holds for N = Rn;

(iv) negative definite (on a neighborhood S of x = 0 in the whole) iff

(−U) is positive definite (on the neighborhood S or in the whole,

respectively).

Together with the system (1.2.7) we shall consider a two-indices system

of functions

(2.2.4) U(t, x) = [vij(t, x)] , i, j = 1, 2, . . . , m,

where vii ∈ C(Tτ ×Rn, R+), vij ∈ C(Tτ ×Rn, R) for all i �= j. Moreover

the next conditions are making

(i) vij(t, x) are locally Lipschitzian in x;

(ii) vij(t, 0) = 0 for all t ∈ R (t ∈ Tτ ) i, j = 1, 2, . . . , m;

(iii) vij(t, x) = vji(t, x) in any open connected neighborhood N of point

x = 0 for all t ∈ R (t ∈ Tτ ).

Proposition 2.2.1. The matrix-valued function U : R× Rn → Rm×m

is positive definite on Tτ , τ ∈ R iff it can be written as

yTU(t, x)y = yTU+(t, x)y + a(�x�),

where U+(t, x) is a positive semi-definite matrix-valued function and

a ∈ K.
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Remark 2.2.5. It is to be noted that matrix-valued function U defined

by U(x) = 0 for all x ∈ Rn is both positive and negative semi-definite.

This ambiguity can be avoided by introducing the notion of strictly positive

(negative) semi-definite and there is x̃ ∈ N such that U(x̃) > 0 (U(x̃) <

0), respectively.

Definition 2.2.2. The matrix-valued function U : Rn → Rm×m is:

(i) positive definite iff there is a time-invariant neighborhood N , N ⊆
Rn, of x = 0, such that it is both positive semi-definite on N and

v(x, y) = yTU(x)y > 0 ∀ (x �= 0, y �= 0) ∈ N × Rm;

(ii) positive definite on a neighborhood S of x = 0, iff (i) holds for

N = S;

(iii) positive definite in the whole, iff (i) holds for N = Rn;

(iv) negative definite (on a neighborhood S of x = 0 in the whole) iff

(−U) is positive definite (on the neighborhood S or in the whole,

respectively).

Together with the system (1.2.7) we shall consider a two-indices system

of functions

(2.2.4) U(t, x) = [vij(t, x)] , i, j = 1, 2, . . . , m,

where vii ∈ C(Tτ ×Rn, R+), vij ∈ C(Tτ ×Rn, R) for all i �= j. Moreover

the next conditions are making

(i) vij(t, x) are locally Lipschitzian in x;

(ii) vij(t, 0) = 0 for all t ∈ R (t ∈ Tτ ) i, j = 1, 2, . . . , m;

(iii) vij(t, x) = vji(t, x) in any open connected neighborhood N of point

x = 0 for all t ∈ R (t ∈ Tτ ).

Proposition 2.2.1. The matrix-valued function U : R× Rn → Rm×m

is positive definite on Tτ , τ ∈ R iff it can be written as

yTU(t, x)y = yTU+(t, x)y + a(�x�),

where U+(t, x) is a positive semi-definite matrix-valued function and

a ∈ K.
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Definition 2.2.3. Set vζ(t) is the largest connected neighborhood of
x = 0 at t ∈ R which can be associated with a function U : R × Rn →
Rm×m so that x ∈ vζ(t) implies v(t, x, y) < ζ, y ∈ Rm.

Remark 2.2.6. In order to understand and appreciate deepness and
importance of Liapunov’s concept of definite functions let scalar functions
v and w be considered, v, w : R × Rn × Rm → R. Let them obey the
following on Tτ ×N , where N is a connected neighborhood of x = 0:

(i) v is positive definite on Tτ ×N ;
(ii) w is positive semi-definite on Tτ ×N and w(t, x, y) > 0 ∀ (t, x �=

0) ∈ Tτ ×N , but it is not positive on Tτ ×N .

Let vζ(t) and wζ(t) be associated with v and w in sence of Definition
2.2.3. Then, the following is true:

(a) there is ξ ∈ (0, +∞) such that vζ(t) ⊆ N , ∀ t ∈ Tτ , ∀ ζ ∈ (0, ξ);
(b) for any ξ ∈ (0, +∞) for which wζ(τ) ⊆ N there is t ∈ Tτ , t > τ ,

such that wζ(t) \ N �= ∅.

Definition 2.2.4. The matrix-valued function U : R × Rn → Rs×s is:

(i) decreasing on Tτ , τ ∈ R, iff there is a time-invariant neighborhood
N of x = 0 and a positive definite function w on N , w : Rn → R,

such that yTU(t, x)y ≤ w(x), ∀ (t, x) ∈ Tτ ×N ;
(ii) decreasing on Tτ × S iff (i) holds for N = S;
(iii) decreasing in the whole on Tτ iff (i) holds for N = Rn.

The expression “on Tτ” is omitted iff all corresponding conditions still
hold for every τ ∈ R.

Proposition 2.2.2. The matrix-valued function U : R× Rn → Rm×m

is decreasing on Tτ , τ ∈ R, iff it can be written as

yTU(t, x)y = yTU−(t, x)y + b(�x�), (y �= 0) ∈ Rm,

where U−(t, x) is a negative semi-definite matrix-valued function and
b ∈ K.

Barbashin and Krasovskii [12, 13] discovered the concept of radially un-
bounded functions. They showed necessity of it for asymptotic stability in
the whole.

Definition 2.2.5. The matrix-valued function U : R × Rn → Rm×m

is:

(i) radially unbounded on Tτ , τ ∈ R, iff �x�→∞ implies yTU(t, x)y →
+∞, ∀ t ∈ Tτ , y ∈ Rm;
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(ii) radially unbounded iff �x� → ∞ implies yTU(t, x)y → +∞, ∀ t ∈
Tτ , ∀ τ ∈ R, y ∈ Rm.

Proposition 2.2.3. The matrix-valued function U : R× Rn → Rm×m

is radially unbounded in the whole (on Tτ ) iff it can be written as

yTU(t, x)y = yTU+(t, x)y + a(�x�) ∀x ∈ Rn,

where U+(t, x) is a positive semi-definite matrix-valued function in the
whole (on Tτ ) and a ∈ KR.

2.2.2 Dini derivative and Eulerian derivative

In this section the notations of upper and lower limit of a function ψ : R →
R are needed (see McSchane [138]). In brief (see Demidovich [24]) they
can be explained as follows.

Let tk be a member of a sequence S−

τ (S+
τ ) obeying

(i) tk ∈ R for every integer k, tk < τ (tk > τ)

and

(ii) tk → τ− (tk → τ+) as k → +∞.

Definition 2.2.6.

(i) Number α ∈ R is the partial limit of the function ψ over the se-
quence S−

τ (S+
τ ) iff for every ε > 0 there is an integer N such that

k > N implies |ψ(tk) − α| < ε;
(ii) the symbol α = +∞ (α = −∞) is the partial limit of the function

ψ over the sequence S−

τ (S+
τ ) iff for every ε ∈ (0,∞) there is an

integer N such that, respectively, k > N implies ψ(tk) > 1/ε

(ψ(tk) < −1/ε);
(iii) the greatest (smallest) partial limit of the function ψ over the se-

quence S−

τ is its left upper (lower) limit at t = τ, respectively,
which is denoted by lim sup [ψ(t) : t→τ−], (lim inf [ψ(t) : t→τ−]);

(iv) right upper (lower) limit of ψ at t = τ is analogously defined when
everywhere in (iii) τ− and S−

τ are respectively replaced by τ+

and S+
τ .
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(ii) radially unbounded iff �x� → ∞ implies yTU(t, x)y → +∞, ∀ t ∈
Tτ , ∀ τ ∈ R, y ∈ Rm.

Proposition 2.2.3. The matrix-valued function U : R× Rn → Rm×m

is radially unbounded in the whole (on Tτ ) iff it can be written as

yTU(t, x)y = yTU+(t, x)y + a(�x�) ∀x ∈ Rn,

where U+(t, x) is a positive semi-definite matrix-valued function in the
whole (on Tτ ) and a ∈ KR.

2.2.2 Dini derivative and Eulerian derivative

In this section the notations of upper and lower limit of a function ψ : R →
R are needed (see McSchane [138]). In brief (see Demidovich [24]) they
can be explained as follows.

Let tk be a member of a sequence S−

τ (S+
τ ) obeying

(i) tk ∈ R for every integer k, tk < τ (tk > τ)

and

(ii) tk → τ− (tk → τ+) as k → +∞.

Definition 2.2.6.

(i) Number α ∈ R is the partial limit of the function ψ over the se-
quence S−

τ (S+
τ ) iff for every ε > 0 there is an integer N such that

k > N implies |ψ(tk) − α| < ε;
(ii) the symbol α = +∞ (α = −∞) is the partial limit of the function

ψ over the sequence S−

τ (S+
τ ) iff for every ε ∈ (0,∞) there is an

integer N such that, respectively, k > N implies ψ(tk) > 1/ε

(ψ(tk) < −1/ε);
(iii) the greatest (smallest) partial limit of the function ψ over the se-

quence S−

τ is its left upper (lower) limit at t = τ, respectively,
which is denoted by lim sup [ψ(t) : t→τ−], (lim inf [ψ(t) : t→τ−]);

(iv) right upper (lower) limit of ψ at t = τ is analogously defined when
everywhere in (iii) τ− and S−

τ are respectively replaced by τ+

and S+
τ .
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Definition 2.2.7. Let U be a continuous function U : Tτ × Rn →
Rm×m, U ∈ C(Tτ × N ) and let solutions χ of the system (1.2.7) exist
and be defined on Tτ ×N . Then, for (t, x) ∈ Tτ ×N

(i)

D+U(t, x) = lim sup

{

U [t + θ, χ(t + θ(t, x)] − U(t, x)

θ
: θ → 0+

}

is the upper right Dini derivative of U along the motion χ at (t, x);
(ii)

D+U(t, x) = lim inf

{

U [t + θ, χ(t + θ(t, x)] − U(t, x)

θ
: θ → 0+

}

is the lower right Dini derivative of U along the motion χ at (t, x);
(iii)

D−U(t, x) = lim sup

{

U [t + θ, χ(t + θ(t, x)] − U(t, x)

θ
: θ → 0−

}

is the upper left Dini derivative of U along the motion χ at (t, x);
(iv)

D−U(t, x) = lim inf

{

U [t + θ, χ(t + θ(t, x)] − U(t, x)

θ
: θ → 0−

}

is the lower left Dini derivative of U along the motion χ at (t, x).

(v) The function U has Eulerian derivative U̇ , U̇(t, x) = d
dt

U(t, x) at
(t, x) along the motion χ iff

D+U(t, x) = D+U(t, x) = D−U(t, x) = D−U(t, x) = DU(t, x)

and then
U̇(t, x) = DU(t, x).

If uij is differentiable at (t, x) then (see Liapunov [101])

u̇ij(t, x) =
∂uij

∂t
+ (graduij)

Tf(t, x)

and

graduij =

(

∂uij

∂x1
,

∂uij

∂x2
, . . . ,

∂uij

∂xn

)

, i, j = 1, 2, . . . , s.

Effective application of D+U in the framework of the second Liapunov
method is based on the result by Yoshizawa [174], which enables calculation
of D+U without utilizing system motions themselves.
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Theorem 2.2.1. Let the matrix-valued function U be continuous and
locally Lipschitzian in x over Tτ × S and S be an open set. Then,

D+U(t, x) = lim sup
{

[U (t + θ, x + θf(t, x)) − U(t, x)] θ−1 : θ → 0+
}

holds along solutions χ of the system (1.2.7) at (t, x) ∈ Tτ × G.

D∗U will mean that both D+U and D+U can be used.

2.3 Direct Liapunov’s Method in Terms of Matrix-Function

The following results are useful in the subsequent sections.

Proposition 2.3.1. Suppose m(t) is continuous on (a, b). Then m(t)
is nondecreasing (nonincreasing) on (a, b) iff

D+m(t) ≥ 0 (≤ 0) for every t ∈ (a, b),

where

D+m(t) = lim sup {[m(t + θ) − m(t)] θ−1 : θ → 0+}.

Following Liapunov [101], Persidskii [152], Yoshizawa [174] and Grujić,
Martynyuk and Ribbens-Pavella [54], the next result is obtained.

Theorem 2.3.1. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ). If there exist

(1) an open connected time-invariant neighborhood S ⊆ N of point
x = 0 ;

(2) a positive definite on G (on Tτ ×G) matrix-valued function U(t, x)
and vector y ∈ Rm such that function v(t, x, y) = yTU(t, x)y is
locally Lipschitzian in x and D+v(t, x, y) ≤ 0.

Then

(a) the state x = 0 of system (1.2.7) is stable (on Tτ ), provided U(t, x)
is weakly decreasing on G (on Tτ × G);

(b) the state x = 0 of system (1.2.7) is uniformly stable (on Tτ ), pro-
vided U(t, x) is decrescent on G (on Tτ × G).

Proof. We shall prove first assertion (a) of Theorem 2.3.1. The fact
that function U(t, x) is weakly decreasing on G (on Tτ ×G) implies that for

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

EXPERIENCE THE POWER OF 
FULL ENGAGEMENT…

     RUN FASTER.
          RUN LONGER..
                RUN EASIER…

READ MORE & PRE-ORDER TODAY 
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd   1 22-08-2014   12:56:57

http://s.bookboon.com/Gaiteye


Stability Analysis via Matrix Functions Method

72 

Matrix Liapunov Function Method in General

48 2. MATRIX LIAPUNOV FUNCTION METHOD IN GENERAL

Theorem 2.2.1. Let the matrix-valued function U be continuous and
locally Lipschitzian in x over Tτ × S and S be an open set. Then,

D+U(t, x) = lim sup
{

[U (t + θ, x + θf(t, x)) − U(t, x)] θ−1 : θ → 0+
}

holds along solutions χ of the system (1.2.7) at (t, x) ∈ Tτ × G.

D∗U will mean that both D+U and D+U can be used.

2.3 Direct Liapunov’s Method in Terms of Matrix-Function

The following results are useful in the subsequent sections.

Proposition 2.3.1. Suppose m(t) is continuous on (a, b). Then m(t)
is nondecreasing (nonincreasing) on (a, b) iff

D+m(t) ≥ 0 (≤ 0) for every t ∈ (a, b),

where

D+m(t) = lim sup {[m(t + θ) − m(t)] θ−1 : θ → 0+}.

Following Liapunov [101], Persidskii [152], Yoshizawa [174] and Grujić,
Martynyuk and Ribbens-Pavella [54], the next result is obtained.

Theorem 2.3.1. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ). If there exist

(1) an open connected time-invariant neighborhood S ⊆ N of point
x = 0 ;

(2) a positive definite on G (on Tτ ×G) matrix-valued function U(t, x)
and vector y ∈ Rm such that function v(t, x, y) = yTU(t, x)y is
locally Lipschitzian in x and D+v(t, x, y) ≤ 0.

Then

(a) the state x = 0 of system (1.2.7) is stable (on Tτ ), provided U(t, x)
is weakly decreasing on G (on Tτ × G);

(b) the state x = 0 of system (1.2.7) is uniformly stable (on Tτ ), pro-
vided U(t, x) is decrescent on G (on Tτ × G).

Proof. We shall prove first assertion (a) of Theorem 2.3.1. The fact
that function U(t, x) is weakly decreasing on G (on Tτ ×G) implies that for
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any t0 ∈ R (t0 ∈ Tτ ) and x0 ∈ G there exists a constant δ0 = δ(t0) > 0,

a vector y ∈ Rm and a function b ∈ CK such that

(2.3.1) yTU(t0, x0)y ≤ b(t0, �x0�), �x0� < δ0.

Further, since U(t, x) is positive definite on G (on Tτ × G) then

(2.3.2) a(�x�) ≤ yTU(t, x)y ∀ (t, x) ∈ R × G (∀ (t, x) ∈ Tτ × G) .

Let ε > 0 and t0 ∈ R (t0 ∈ Tτ ) are arbitrary. The properties of functions
a ∈ K and b ∈ CK yield the existence of a δ1 = δ1(t0, ε) > 0 continuously
dependent on t0 and such that

(2.3.3) b(t0, δ1) < a(ε).

We define δ(t0) = min{δ0, δ1}. It is clear that inequalities (2.3.1) – (2.3.3)
are satisfied for �x0� < δ. Therefore,

(2.3.4) a(�x0�) < yTU(t0, x0)y ≤ b(t �x0�) < a(ε)

which yield �x0� < ε.
Now we claim that for any solution χ(t; t0, x0) of system (1.2.7) with the

initial conditions x0 : �x0� < δ the inequality �χ(t; t0, x0)� < ε ∀ t ∈ T0

holds. If not, there exists a t1 > t0 such that

(2.3.5) �χ(t1; t0, x0)� = ε and �χ(t; t0, x0)� < ε ∀ t ∈ [t0, t1)

for some solution χ(t; t0, x0) of system (1.2.7). Let

m(t) = yTU(t, χ(t; t0, x0))y when t ∈ [t0, t1].

Since v(t, x, y) is locally Lipschitzian in x, then we get by condition (2)
D+v(t, x, y) = D+m(t) ≤ 0.

Hence, we find in view of Proposition 2.3.1 that m(t) is a nonincreasing
function on [t0, t1]. Thus, we have

a(ε) = a (�χ(t1; t0, x0)�) ≤ yTU (t1, χ(t1; t0, x0)) y

≤ yTU(t0, x0)y ≤ a(ε).

The contradiction obtained shows that the state x = 0 of system (1.2.7) is
stable (on Tτ ).

To prove assertion (b) of Theorem 2.3.1 it is sufficient to note that by
condition (b) of Theorem 2.3.1 function U(t, x) is decreasing and function
b in inequality (2.3.1) can be taken independent of t0 ∈ R. This proves the
theorem.
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Theorem 2.3.2. Let the vector function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) radially unbounded positive definite in the whole matrix-valued
function U ∈ C (R × Rn, Rm×m) (or U ∈ C (Tτ × Rn, Rm×m)
(on Tτ ) and vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x and

D+v(t, x, y) ≤ 0 ∀ (t, x) ∈ R × Rn (∀ (t, x) ∈ Tτ × Rn) .

Then

(a) the state x = 0 of system (1.2.7) is stable in the whole (on Tτ ),
provided U(t, x) is weakly decreasing in the whole (on Tτ );

(b) the state x = 0 of system (1.2.7) is uniformly stable in the whole
(on Tτ ), provided U(t, x) is decreasing in the whole (on Tτ ).

Remark 2.3.1. If f is locally Lipschitzian on R×N (on Tτ ) then U in
the preceding theorems is also locally Lipschitzian on R×N (on Tτ ) which
enables effective calculation of D+U via Theorem 2.2.1.

Remark 2.3.2. The proceding theorems hold also when D+U is re-
placed by D+U (McShane [138] and LaSalle [97]).

Following Liapunov [101], Massera [130, 131], Yoshizawa [174], Halanay
[67], Hahn [66], Grujić, Martynyuk and Ribbens-Pavella [57] the next result
is obtained.

Theorem 2.3.3. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) open connected time-invariant neighborhood G ⊆ N of the point
x = 0 ;

(2) positive definite on G (on Tτ × G) matrix-valued function U(t, x),
a vector y ∈ Rm and positive definite on G function ψ such that
the function v(t, x, y) = yTU(t, x)y is locally Lipschitzian in x and

D+v(t, x, y) ≤ −ψ(x) ∀ (t, x, y) ∈ R × G × Rm (Tτ × G × Rm) .

Then

(a) iff U(t, x) is weakly decreasing on G (on Tτ × G), the state x = 0
of system (1.2.7) is asymptotically stable (on Tτ );

(b) iff U(t, x) is decreasing on G (on Tτ ×G), the state x = 0 of system
(1.2.7) is uniformly asymptotically stable (on Tτ ).
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Theorem 2.3.2. Let the vector function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) radially unbounded positive definite in the whole matrix-valued
function U ∈ C (R × Rn, Rm×m) (or U ∈ C (Tτ × Rn, Rm×m)
(on Tτ ) and vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x and

D+v(t, x, y) ≤ 0 ∀ (t, x) ∈ R × Rn (∀ (t, x) ∈ Tτ × Rn) .

Then

(a) the state x = 0 of system (1.2.7) is stable in the whole (on Tτ ),
provided U(t, x) is weakly decreasing in the whole (on Tτ );

(b) the state x = 0 of system (1.2.7) is uniformly stable in the whole
(on Tτ ), provided U(t, x) is decreasing in the whole (on Tτ ).

Remark 2.3.1. If f is locally Lipschitzian on R×N (on Tτ ) then U in
the preceding theorems is also locally Lipschitzian on R×N (on Tτ ) which
enables effective calculation of D+U via Theorem 2.2.1.

Remark 2.3.2. The proceding theorems hold also when D+U is re-
placed by D+U (McShane [138] and LaSalle [97]).

Following Liapunov [101], Massera [130, 131], Yoshizawa [174], Halanay
[67], Hahn [66], Grujić, Martynyuk and Ribbens-Pavella [57] the next result
is obtained.

Theorem 2.3.3. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) open connected time-invariant neighborhood G ⊆ N of the point
x = 0 ;

(2) positive definite on G (on Tτ × G) matrix-valued function U(t, x),
a vector y ∈ Rm and positive definite on G function ψ such that
the function v(t, x, y) = yTU(t, x)y is locally Lipschitzian in x and

D+v(t, x, y) ≤ −ψ(x) ∀ (t, x, y) ∈ R × G × Rm (Tτ × G × Rm) .

Then

(a) iff U(t, x) is weakly decreasing on G (on Tτ × G), the state x = 0
of system (1.2.7) is asymptotically stable (on Tτ );

(b) iff U(t, x) is decreasing on G (on Tτ ×G), the state x = 0 of system
(1.2.7) is uniformly asymptotically stable (on Tτ ).

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

76 

Matrix Liapunov Function Method in General

2.3 DIRECT LIAPUNOV’S METHOD IN TERMS OF MATRIX-FUNCTION 51

Proof. Necessity. Consider assertion (b) of Theorem 2.3.3. Let x = 0
of (1.2.7) be uniformly asymptotically stable (on Tτ ). Let ε > 0 be
arbitrarily chosen, ζ be such that Bζ ⊆ N , ∆ ∈ (0, +∞) and ξ =
min{δM (ε), ∆, ζ}. Let G = Bξ, ϕ ∈ K[0,ε), α ∈ (1, +∞), y = (1, 1,

. . . , 1)T∈ Rm and

yTU(t, x)y = v(t, x) = sup{ϕ [�χ(t + σ; t, x)�] (1 + ασ)(1 + σ)−1 :

σ ∈ [0, +∞)}, ∀ t ∈ R.

The function v is decreasing and positive definite on N (on Tτ ×G) because
χ is continuous in all its arguments, ϕ ∈ K[0,ε), (1 + ασ)(1 + σ)−1 is also
continuous, χ(t; t0, 0) ≡ 0, ϕ(0) = 0, and ϕ(�x�) ≤ v(t, x) ≤ ϕ[Π(x)]
∀ t ∈ T0, ∀ t0 ∈ R (∀ t0 ∈ Tτ ), ∀x ∈ G, where Π ∈ K[o,ε).

Let x∗ = χ(t + θ; t, x), x = χ(t; t0, x0), θ > 0, so that

v(t + θ, x∗)

= sup{ϕ [�χ(t + θ + σ; t + θ, x∗)�] (1 + ασ)(1 + σ)−1 : σ ∈ [0, +∞)}

= sup{ϕ [�χ(t + θ + σ; t, x)�] (1 + ασ)(1 + σ)−1 : σ ∈ [0, +∞)}

= ϕ [�χ(t + θ + σ∗; t, x)�] (1 + ασ∗)(1 + σ∗)−1, ∀ t ∈ R.

Let ∆ = min

{

1,
∆

α

}

. The existence of σ∗ ∈ [0, τu(∆, ν)] obeying the

last equation is guaranteed by continuity of χ, ϕ ∈ K[0,ε) continuity of

(1 + ασ)(1 + σ)−1 and uniform attraction of x = 0 .
Let σ = θ + σ∗. Then (see Halanay [67]),

1 + ασ∗

1 + σ∗
=

1 + ασ

1 + σ

[

1 −
(α − 1)θ

(1 + ασ∗)(1 + σ)

]

> 0

so that

v(t + θ, x∗) = ϕ [�χ(t + θ; t, x)�]
1 + ασ

1 + σ

[

1 −
(α − 1)θ

(1 + ασ∗)(1 + σ)

]

≤ v(t, x)

[

1 −
(α − 1)θ

(1 + ασ∗)(1 + σ)

]

,

∀ t0 ∈ R (∀ t0 ∈ Tτ ) ∀ t ∈ T0,

or ∀ t ∈ T0

v(t + θ, x∗) − v(t, x)

θ
≤ −

(α − 1)v(t, x)

(1 + σ∗)(1 + ασ∗ + αθ)
∀ t0 ∈ R (∀ t0 ∈ Tτ ).
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This inequality in limit as θ → 0+ takes the form

D∗v(t, x) ≤ −ψ(x) ∀ (t, x) ∈ R × G (∀ (t, x) ∈ Tτ × G),

where

ψ(x) =
(α − 1)ϕ(�x�)

[1 + T (∆)][1 + αT (∆)]
,

is the continuous function, T (∆) ∈ [τu(∆, ν), +∞), because x = 0 is
uniformly attractive (see Halanay [67]).

Hence, ψ is positive definite on G (on Tτ × G).
Sufficiency. Under the conditions of Theorem 2.3.3 all conditions of

Theorem 2.3.1 are fulfilled. Hence, x = 0 of (1.2.7) is uniformly stable (on
Tτ ). Its uniform attraction (on Tτ ) is proved as follows.

Let ζ be such that Bζ ⊆ G. Let ϕ1 and ϕ2 ∈ K[0,ζ] obey

(2.3.6)
ϕ1(�x�) ≤ v(t, x) ≤ ϕ2(�x�)

∀ (t, x) ∈ R × Bζ (∀ (t, x) ∈ Tτ × Bζ).

Let

(2.3.7) ∆ = ϕI
2[ϕ1(ζ)].

As shown in the proof of the sufficiency part of Theorem 2.3.1, the condi-
tions (2.3.3) and (2.3.4) guarantee that �x0� < ∆ implies

v(t, χ(t; t0, x0)) ≤ v(t0, x0) ∀ t ∈ T0, ∀ t0 ∈ R (∀ t0 ∈ Tτ )

and that v is decreasing in t along motions χ of (1.2.7).
Let

(2.3.8)
inf {v(t, χ(t; t0, x0)) : t ∈ T0} = ν,

∀ t0 ∈ R (∀ t0 ∈ Tτ ), �x0� < ∆.

Obviously ν ≥ 0. If ν > 0 then

D∗v(t, χ(t; t0, x0)) ≤ −γ,

where

γ = inf {w(x) : x ∈ ∂Bρ, ρ = ϕI
2(ν)}.
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This inequality in limit as θ → 0+ takes the form

D∗v(t, x) ≤ −ψ(x) ∀ (t, x) ∈ R × G (∀ (t, x) ∈ Tτ × G),

where

ψ(x) =
(α − 1)ϕ(�x�)

[1 + T (∆)][1 + αT (∆)]
,

is the continuous function, T (∆) ∈ [τu(∆, ν), +∞), because x = 0 is
uniformly attractive (see Halanay [67]).

Hence, ψ is positive definite on G (on Tτ × G).
Sufficiency. Under the conditions of Theorem 2.3.3 all conditions of

Theorem 2.3.1 are fulfilled. Hence, x = 0 of (1.2.7) is uniformly stable (on
Tτ ). Its uniform attraction (on Tτ ) is proved as follows.

Let ζ be such that Bζ ⊆ G. Let ϕ1 and ϕ2 ∈ K[0,ζ] obey

(2.3.6)
ϕ1(�x�) ≤ v(t, x) ≤ ϕ2(�x�)

∀ (t, x) ∈ R × Bζ (∀ (t, x) ∈ Tτ × Bζ).

Let

(2.3.7) ∆ = ϕI
2[ϕ1(ζ)].

As shown in the proof of the sufficiency part of Theorem 2.3.1, the condi-
tions (2.3.3) and (2.3.4) guarantee that �x0� < ∆ implies

v(t, χ(t; t0, x0)) ≤ v(t0, x0) ∀ t ∈ T0, ∀ t0 ∈ R (∀ t0 ∈ Tτ )

and that v is decreasing in t along motions χ of (1.2.7).
Let

(2.3.8)
inf {v(t, χ(t; t0, x0)) : t ∈ T0} = ν,

∀ t0 ∈ R (∀ t0 ∈ Tτ ), �x0� < ∆.

Obviously ν ≥ 0. If ν > 0 then

D∗v(t, χ(t; t0, x0)) ≤ −γ,

where

γ = inf {w(x) : x ∈ ∂Bρ, ρ = ϕI
2(ν)}.
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Therefore,
v(t, χ(t; t0, x0)) ≤ v(t0, x0) − γ(t − t0),

so that

v(t, χ(t; t0, x0)) < ν for t ∈

(

v(t0, x0) − ν

γ
+ t0, ∞

)

,

which contradicts (2.3.8). Hence, γ = 0 which together with (2.3.5), (2.3.8)
and positive definiteness of v on G (on Tτ×G) prove that �x0� < ∆ implies

lim [�χ(t; t0, x0)� : t → +∞] = 0, ∀ t ∈ R (∀ t0 ∈ Tτ ),

i.e. that x = 0 is attractive. Let now ρ > 0 be arbitrarily chosen,

γ = lim {w(x) : x ∈ B∆ \ Bρ}, γ = γ(ρ),

and

τu(∆, ρ) = min

{

0,
ϕ2(∆) − ϕ1(ρ)

γ(ρ)

}

.

Then
D∗v(t, x) ≤ −γ,

∀ (t, x) ∈ R × (B∆ \ Bρ) (∀ (t, x) ∈ Tτ × (B∆ \ Bρ))

and for t = τu(∆, ρ) + t0, τu(∆, ρ) > 0, τu(∆, ρ) = 0 implies

�χ(t; t0, x0)� < ρ ∀ t ∈ T0,

v(t, χ(t; t0, x0)) ≤ v(t0, x0) − γ(t − t0) ≤ ϕ2(∆) − ϕ2(∆) + ϕ1(ρ) = ϕ1(ρ)

so that

ϕ1(�χ(t; t0, x0)�) ≤ ϕ1(ρ), ∀ t0 ∈ R (∀ t0 ∈ Tτ )

yields

�χ(t; t0, x0)� ≤ ρ at t = τu(∆, ρ) + t0, ∀ x0 ∈ B∆.

For t ∈ (τu(∆, ρ), +∞)

v(t, χ(t; t0, x0)) < v(t0 + τu(∆, ρ);

χ(t0 + τu(∆, ρ), t0, x0)) ≤ ϕ1(ρ)

so that

�χ(t; t0, x0)� < ρ,

∀ t ∈ (t0 + τu(∆, ρ), +∞), ∀ t0 ∈ R (t0 ∈ Tτ ), ∀x0 ∈ B∆

which proves that attraction of x = 0 is uniform (on Tτ ).

Following Barbashin and Krasovskii [12, 13] and Martynyuk [116], and
the proceding proof in which we choose ϕ ∈ KR it is easy to prove.
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Theorem 2.3.4. Let the vector function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) radially unbounded positive definite in the whole matrix-valued func-
tion U(t, x) ∈ C (R × Rn, Rm×m) (or U(t, x) ∈ C (Tτ × Rn,

Rm×m) (on Tτ ), a vector y ∈ Rm and a positive definite in the
whole function θ, such that the function

v(t, x, y) = yTU(t, x)y

is locally Lipschitzian in x and

D+v(t, x, y) ≤ −θ(x) ∀ (t, x, y) ∈ R × Rn × Rm

∀ (t, x, y) ∈ Tτ × Rn × Rm.

Then

(a) iff U(t, x) is weakly decreasing in the whole (on Tτ ), the state x = 0
of system (1.2.7) is asymptotically stable in the whole (on Tτ );

(b) iff U(t, x) is decreasing in the whole (on Tτ ), the state x = 0 of
system (1.2.7) is uniformly asymptotically stable in the whole (on
Tτ ).

Following Krasovskii [89], Grujić, Martynyuk and Ribbens-Pavella [57]
and He and Wang [72] and utilizing ϕ(ζ) = ζp in the proof of Theorem
2.3.3, it is easy to prove the following result.

Theorem 2.3.5. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊆ N of the point
x = 0 ;

(2) a matrix-valued function U(t, x) and a vector y ∈ Rm such that the
function v(t, x, y) = yTU(t, x)y is locally Lipschitzian in x;

(3) functions ϕ1, ϕ2 ∈ K and a positive real number η1 and positive
integer p such that

η1�x�
p ≤ v(t, x, y) ≤ ϕ1(�x�) ∀ (t, x, η �= 0) ∈ R × G × Rm

and

D+v(t, x, y) ≤ −ϕ2(�x�) ∀ (t, x, η �= 0) ∈ R × G × Rm

(∀ (t, x, η �= 0) ∈ Tτ × G × Rm) .
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Theorem 2.3.4. Let the vector function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) radially unbounded positive definite in the whole matrix-valued func-
tion U(t, x) ∈ C (R × Rn, Rm×m) (or U(t, x) ∈ C (Tτ × Rn,

Rm×m) (on Tτ ), a vector y ∈ Rm and a positive definite in the
whole function θ, such that the function

v(t, x, y) = yTU(t, x)y

is locally Lipschitzian in x and

D+v(t, x, y) ≤ −θ(x) ∀ (t, x, y) ∈ R × Rn × Rm

∀ (t, x, y) ∈ Tτ × Rn × Rm.

Then

(a) iff U(t, x) is weakly decreasing in the whole (on Tτ ), the state x = 0
of system (1.2.7) is asymptotically stable in the whole (on Tτ );

(b) iff U(t, x) is decreasing in the whole (on Tτ ), the state x = 0 of
system (1.2.7) is uniformly asymptotically stable in the whole (on
Tτ ).

Following Krasovskii [89], Grujić, Martynyuk and Ribbens-Pavella [57]
and He and Wang [72] and utilizing ϕ(ζ) = ζp in the proof of Theorem
2.3.3, it is easy to prove the following result.

Theorem 2.3.5. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊆ N of the point
x = 0 ;

(2) a matrix-valued function U(t, x) and a vector y ∈ Rm such that the
function v(t, x, y) = yTU(t, x)y is locally Lipschitzian in x;

(3) functions ϕ1, ϕ2 ∈ K and a positive real number η1 and positive
integer p such that

η1�x�
p ≤ v(t, x, y) ≤ ϕ1(�x�) ∀ (t, x, η �= 0) ∈ R × G × Rm

and

D+v(t, x, y) ≤ −ϕ2(�x�) ∀ (t, x, η �= 0) ∈ R × G × Rm

(∀ (t, x, η �= 0) ∈ Tτ × G × Rm) .
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Then, iff the comparison functions ϕ1 and ϕ2 are of the same magnitude,
the state x = 0 of system (1.2.7) is exponentially stable (on Tτ ).

Remark 2.3.2. The statement of Theorem 2.3.6 remains valid, if
ϕ1(�x�) = η2�x�p and ϕ2(�x�) = η3�x�p, η2, η3 = const > 0.

Theorem 2.3.6. Let the vector function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) radially unbounded positive definite in the whole matrix-valued func-
tion U(t, x) ∈ C (R × Rn, Rm×m) (or U(t, x) ∈ C (Tτ × Rn,

Rm×m)) (on Tτ ) and vector y ∈ Rm such that the function

v(t, x, η) = yTU(t, x)y

is locally Lipschitzian in x;
(2) functions ψ1, ψ2 ∈ KR a positive real number η1 and positive

integer q such that

η2�x�
q ≤ v(t, x, y) ≤ ψ1(�x�) ∀ (t, x, y �= 0) ∈ R × Rn × Rm

∀ (t, x, y �= 0) ∈ Tτ × Rn × Rm

and

D+v(t, x, y) ≤ −ψ2(�x�) ∀ (t, x, y �= 0) ∈ R × Rn × Rm

∀ (t, x, y �= 0) ∈ Tτ × Rn × Rm.

Then, if the comparison functions ψ1, ψ2 , are of the same magnitude, the
state x = 0 of system (1.2.7) is exponentially stable in the whole (on Tτ ).

Proof. The proof is similar to that of Theorem 2.3.5.

Remark 2.3.3. The assertion of Theorem 2.3.6 remains valid, if
ϕ1(�x�) = η2�x�

q and ϕ2(�x�) = η3�x�
q.

Proposition 2.3.2. In order that the state x = 0 of system (1.2.7) be
exponentially stable (on Tτ ) in the whole, it is necessary and sufficient for
it to be exponentially stable (on Tτ ) and uniformly asymptotically stable in
the whole (on Tτ ).

Following Zubov [178] and taking into account the results by Martynyuk
[116] we shall formulate and prove a result on instability.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

83 

Matrix Liapunov Function Method in General

56 2. MATRIX LIAPUNOV FUNCTION METHOD IN GENERAL

Theorem 2.3.7. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊆ N of the point
x = 0 ;

(2) a matrix-valued function U(t, x) ∈ C1,1(R × G, Rm×m) or U(t, x)∈
C1,1 (Tτ × G, Rm×m) and a vector y ∈ Rm such that the function
v(t, x, y) = yTU(t, x)y is strictly positive semi-definite (on Tτ ) and
satisfies the relation

dv

dt
= λv + �θ(x), λ = λ(t, x),

where �θ(x) is a positive semi-definite function on G;
(3) a number ε > 0 such that when δ > 0 (δ < ε) for continuous

on T0 × R × G (on T0 × Tτ × G) solution χ(t; t0, x0) of system
(1.2.7) which satisfies the condition �x0� < δ, v(t0, x0) > 0 implies
�χ(t; t0, x0)� < ε ∀ t ∈ R (∀ t0 ∈ Tτ ) the inequality

|v(t, χ(t; t0, x0), y)| ≥ v(t0, x0, y) exp





t
�

t0

λ(s) ds





does not hold for all t ≥ t0, t0 ∈ R (t0 ∈ Tτ ), t ∈ T0.

Then and only then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Proof. Necessity. Let the state x = 0 of system (1.2.7) be unstable

(on Tτ ). We construct two functions v and �θ satisfying the conditions of
Theorem 2.3.7. The instability (on Tτ ) of state x = 0 of system (1.2.7)
yields the existence of an ε∗ > 0 such that for any δ > 0 a x0 and a
t0, t0 ∈ R (t0 ∈ Tτ ) can be taken so that the inequality

(2.3.9) �χ(t; t0, x0)� < ε∗

does not hold for all t ≥ 0 in spite of the fact that �x0� < δ, t0 ≥ 0.
Let t = t(t0, x0) be the next time after t0 when inequality (2.3.9) is

violated. The set of points Π = {(t0, x0) : �x0� < δ, t0 ≥ 0} is divided
conventionally into sets Π1 and Π2 such that

(A) for (t0, x0) ∈ Π1 the solutions χ(t; t0, x0) of system (1.2.7) satisfy
condition (2.3.9) provided all t ≥ t0.

(B) for (t0, x0) ∈ Π2 the solutions χ(t; t0, x0) of system (1.2.7) intersect
the surface �x� = ε∗ when the time increases.
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Theorem 2.3.7. Let the vector function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊆ N of the point
x = 0 ;

(2) a matrix-valued function U(t, x) ∈ C1,1(R × G, Rm×m) or U(t, x)∈
C1,1 (Tτ × G, Rm×m) and a vector y ∈ Rm such that the function
v(t, x, y) = yTU(t, x)y is strictly positive semi-definite (on Tτ ) and
satisfies the relation

dv

dt
= λv + �θ(x), λ = λ(t, x),

where �θ(x) is a positive semi-definite function on G;
(3) a number ε > 0 such that when δ > 0 (δ < ε) for continuous

on T0 × R × G (on T0 × Tτ × G) solution χ(t; t0, x0) of system
(1.2.7) which satisfies the condition �x0� < δ, v(t0, x0) > 0 implies
�χ(t; t0, x0)� < ε ∀ t ∈ R (∀ t0 ∈ Tτ ) the inequality

|v(t, χ(t; t0, x0), y)| ≥ v(t0, x0, y) exp





t
�

t0

λ(s) ds





does not hold for all t ≥ t0, t0 ∈ R (t0 ∈ Tτ ), t ∈ T0.

Then and only then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Proof. Necessity. Let the state x = 0 of system (1.2.7) be unstable

(on Tτ ). We construct two functions v and �θ satisfying the conditions of
Theorem 2.3.7. The instability (on Tτ ) of state x = 0 of system (1.2.7)
yields the existence of an ε∗ > 0 such that for any δ > 0 a x0 and a
t0, t0 ∈ R (t0 ∈ Tτ ) can be taken so that the inequality

(2.3.9) �χ(t; t0, x0)� < ε∗

does not hold for all t ≥ 0 in spite of the fact that �x0� < δ, t0 ≥ 0.
Let t = t(t0, x0) be the next time after t0 when inequality (2.3.9) is

violated. The set of points Π = {(t0, x0) : �x0� < δ, t0 ≥ 0} is divided
conventionally into sets Π1 and Π2 such that

(A) for (t0, x0) ∈ Π1 the solutions χ(t; t0, x0) of system (1.2.7) satisfy
condition (2.3.9) provided all t ≥ t0.

(B) for (t0, x0) ∈ Π2 the solutions χ(t; t0, x0) of system (1.2.7) intersect
the surface �x� = ε∗ when the time increases.
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We set in case (A) y = (1, 1, . . . , 1) ∈ Rm and

(2.3.10) yTU(t, x)y = v(t, x) ≡ 0 ∀ t ∈ T0.

For the case (B) we set y = (1, 1, . . . , 1) ∈ Rm and

(2.3.11) yTU(t0, x0)y = v(t0, x0) = exp (t0 − t(t0, x0)) .

It is clear that v(t, x0) ≡ 0 for function (2.3.10) when t ≥ t0, and

v(t, x0) = exp (t0 − t(t0, x0))

for function (2.3.11).
Hence, we get dv/dt = v. Comparing this result with condition (2) of

Theorem 2.3.7 we obtain λ = 1 and �θ = 0.
Function v is strictly positive semi-definite (on Tτ ) and bounded,

t
�

t0

λ(s) ds diverges as t− t0 → ∞, since λ ≡ 1. Therefore, condition (3) of

the Theorem 2.3.7 is also satisfied.
Sufficiency. Let all hypotheses of Theorem 2.3.7 be satisfied.
We are going to show that the state x = 0 of system (1.2.7) is unstable

(on Tτ ). If not, then using ε > 0 a δ > 0 can be taken so that

(2.3.12) �χ(t; t0, x0)� < ε ∀ t ∈ T0, ∀ t ∈ R (∀ t0 ∈ Tτ ) ,

when �x0� < δ.
According to condition (2) of Theorem 2.3.7 we take t0 and x0 so that

v(t0, x0, y) > 0 and consider along the solution χ(t; t0, x0) of system (1.2.7)
the correlation

(2.3.13)
dQ

dt
= λQ(t) + P (t) ∀ t ∈ R (∀ t ∈ Tτ ) ,

where Q(t) = v (t, χ(t; t0, x0)) and P (t) = �θ (χ(t; t0, x0)).
In view of P (t) ≥ 0 for all t ∈ R we find from correlation (2.3.13)

Q(t) ≥ Q(t0) exp





t
�

t0

λ(s) ds



 ∀ t ∈ R (∀ t ∈ Tτ ) .
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This inequality contradicts condition (3) of Theorem 2.3.7 and, therefore,
inequality (2.3.9) can be satisfied for all t ∈ T0, i.e. the state x = 0 of
system (1.2.7) is unstable (on Tτ ).

Corollary 2.3.1. If conditions (1) and (2) of Theorem 2.3.7 are sat-
isfied and

(1) the function v(t, x, y) = yTU(t, x)y is bounded (on Tτ );

(2)
t
∫

t0

λ(s) ds → +∞ as t → +∞.

Then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Corollary 2.3.2. If conditions (1) and (2) of Theorem 2.3.7 are sat-
isfied and

(1) the function v(t, x, y) = yTU(t, x)y is bounded (on Tτ );
(2) the function λ is a positive constant.

Then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Remark 2.3.4. Corollary 2.3.2 is a new version of Liapunov’s theorem
on instability (cf. Liapunov [101], Theorem III, pp. 68).

Corollary 2.3.3. If conditions (1) and (2) of Theorem 2.3.7 are sat-
isfied and

(1)
dv

dt
= ˜θ(x) ∀ t ∈ T0 (∀ t ∈ Tτ ) ∀x ∈ G;

(2) using number ε > 0 and δ > 0 can be taken so that ˜θ(x) > 0 for
v(t, x, y) > ε.

Then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Remark 2.3.5. Corollary 2.3.3 is a new version of Chetaev’s theorem
on instability (cf. Chetaev [19], pp. 33).

2.4 On Comparison Method

The concept of the matrix Liapunov function together with the theory of
differential inequalities provides a very general comparison principle under
much less restrictive assumptions. In this set up, the matrix Liapunov func-
tion may be viewed as a transformation that reduces the study of a given
complicated differential system to the study of relatively simpler scalar dif-
ferential equations.
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This inequality contradicts condition (3) of Theorem 2.3.7 and, therefore,
inequality (2.3.9) can be satisfied for all t ∈ T0, i.e. the state x = 0 of
system (1.2.7) is unstable (on Tτ ).

Corollary 2.3.1. If conditions (1) and (2) of Theorem 2.3.7 are sat-
isfied and

(1) the function v(t, x, y) = yTU(t, x)y is bounded (on Tτ );

(2)
t
∫

t0

λ(s) ds → +∞ as t → +∞.

Then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Corollary 2.3.2. If conditions (1) and (2) of Theorem 2.3.7 are sat-
isfied and

(1) the function v(t, x, y) = yTU(t, x)y is bounded (on Tτ );
(2) the function λ is a positive constant.

Then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Remark 2.3.4. Corollary 2.3.2 is a new version of Liapunov’s theorem
on instability (cf. Liapunov [101], Theorem III, pp. 68).

Corollary 2.3.3. If conditions (1) and (2) of Theorem 2.3.7 are sat-
isfied and

(1)
dv

dt
= ˜θ(x) ∀ t ∈ T0 (∀ t ∈ Tτ ) ∀x ∈ G;

(2) using number ε > 0 and δ > 0 can be taken so that ˜θ(x) > 0 for
v(t, x, y) > ε.

Then the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Remark 2.3.5. Corollary 2.3.3 is a new version of Chetaev’s theorem
on instability (cf. Chetaev [19], pp. 33).

2.4 On Comparison Method

The concept of the matrix Liapunov function together with the theory of
differential inequalities provides a very general comparison principle under
much less restrictive assumptions. In this set up, the matrix Liapunov func-
tion may be viewed as a transformation that reduces the study of a given
complicated differential system to the study of relatively simpler scalar dif-
ferential equations.
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2.4.1 Differential inequalities

Let us consider the following scalar differential equation

(2.4.1)
du

dt
= g(t, u), u(t0) = u0 ≥ 0, t0 ∈ R (t0 ∈ Tτ ),

where g ∈ C(R × R, R) (or g ∈ C(Tτ × R, R)) and g(t, 0) = 0 ∀ t ∈ T0).

Definition 2.4.1. Let γ(t) be a solution of (2.4.1) existing on some
interval J = [t0, t0 +α), 0 < α ≤ +∞, t0 ∈ R (t0 ∈ Tτ ). Then γ(t) is said
to be the maximal solution of (2.4.1) if for every solution u(t) = u(t; t0, x0)
of (2.4.1) existing on J , the following inequalities hold

(2.4.2) u(t) ≤ γ(t), t ∈ G, t0 ∈ R (t0 ∈ Tτ ).

A minimal solution is defined similarly by reversing the inequality (2.4.2).
We need the following known results for our discussion the proof of which

may be found in (see e.g. Olech and Opial [150], Yoshizawa [174], and
Lakshmikantham, Leela and Martynyuk [94]).

Proposition 2.4.1. Let g ∈ C(R × R, R) (or g ∈ C(Tτ × R, R)) and
γ(t) = γ(t; t0, x0) be the maximal solution of (2.4.1) existing on J . Suppose
that m ∈ C(R, R+) (m ∈ C(Tτ , R+)) and

(2.4.3) D∗m(t) ≤ g (t, m(t)) , t ∈ J,

where D∗ is any fixed Dini derivative.
Then m(t0) ≤ u0 implies

(2.4.4) m(t) ≤ γ(t), ∀ t ∈ J.

Proposition 2.4.2. Let g ∈ C(R × R, R) (or g ∈ C(Tτ × R, R)) and
ρ(t) = ρ(t; t0, x0) be the minimal solution of (2.4.1) existing on J . Suppose
that m ∈ C(R, R+) (m ∈ C(Tτ , R+)) and

(2.4.5) D∗m(t) ≥ g (t, m(t)) , t ∈ J.

Then m(t0) ≥ u0 implies

(2.4.6) m(t) ≥ ρ(t), ∀ t ∈ J.
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Proposition 2.4.3. Let for system (1.2.7) there exist

(1) a matrix-valued function U ∈ C(R×Rn, Rm×m) (U ∈ C(Tτ ×Rn,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for every t ∈ R (t ∈ Tτ ):

(2) a majorizing function g ∈ C(R × R+, R) g ∈ C(Tτ × R+, R),
g(t, 0) = 0 ∀ t ∈ T0 (∀ t ∈ Tτ ) such that

D+v(t, x, y) ≤ g (t, v(t, x, y))

∀ (t, x, y) ∈ R × Rn × Rm (Tτ × Rn × Rm) ;

(3) a maximal solution γ(t)=γ(t; t0, u0) of comparison equation (2.4.1)
on J .

Then along any solution χ(t; t0, x0) of system (1.2.7) existing on J1 ⊆ J

the estimate

(2.4.7) v(t0, x0, u0) ≤ u0, t0 ∈ R (t0 ∈ Tτ )

implies the inequality

(2.4.8) v (t, χ(t; t0, x0), y) ≤ γ(t) ∀ t ∈ J1 ∩ J.

Proof. Let m(t) = v (t, χ(t; t0, x0), y) and χ(t; t0, x0) being a solution
of (1.2.7) such that (2.4.7). Since v(t, x, y) is locally Lipschitzian in x, we
get, by (1.2.7) and (2.4.1), the differential inequality

D+m(t) ≤ g (t, m(t)) , m(t0) ≤ u0, t0 ∈ R (t0 ∈ Tτ ), t ∈ J,

and Proposition 2.4.1 gives the desired result (2.4.8).

A comparison result analogous to Proposition 2.4.3 which yields lower
bounds is the following.

Proposition 2.4.4. If in Proposition 2.4.3, assumption (2) is reversed
to

D+v(t, x, y) ≥ g (t, v(t, x, y))

∀ (t, x, y) ∈ R × Rn × Rm (Tτ × Rn × Rm)

and ρ(t) = ρ(t; t0, u0) is the minimal solution of (2.4.1) existing for t ≥ t0,

then
v (t, χ(t; t0, x0), y) ≥ ρ(t) ∀ t ∈ J, t0 ∈ R (t0 ∈ Tτ )

whenever v(t0, x0, y) ≥ u0.

Proof is similar to proof of Proposition 2.4.3.

In some situations, estimating D+v(t, x, y) as a function of t, x and
v(t, x, y) is more natural (see e.g. Matrosov [134], Hatvani [71], and Grujić,
Martynyuk and Ribbens-Pavella [57]).
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Proposition 2.4.3. Let for system (1.2.7) there exist

(1) a matrix-valued function U ∈ C(R×Rn, Rm×m) (U ∈ C(Tτ ×Rn,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for every t ∈ R (t ∈ Tτ ):

(2) a majorizing function g ∈ C(R × R+, R) g ∈ C(Tτ × R+, R),
g(t, 0) = 0 ∀ t ∈ T0 (∀ t ∈ Tτ ) such that

D+v(t, x, y) ≤ g (t, v(t, x, y))

∀ (t, x, y) ∈ R × Rn × Rm (Tτ × Rn × Rm) ;

(3) a maximal solution γ(t)=γ(t; t0, u0) of comparison equation (2.4.1)
on J .

Then along any solution χ(t; t0, x0) of system (1.2.7) existing on J1 ⊆ J

the estimate

(2.4.7) v(t0, x0, u0) ≤ u0, t0 ∈ R (t0 ∈ Tτ )

implies the inequality

(2.4.8) v (t, χ(t; t0, x0), y) ≤ γ(t) ∀ t ∈ J1 ∩ J.

Proof. Let m(t) = v (t, χ(t; t0, x0), y) and χ(t; t0, x0) being a solution
of (1.2.7) such that (2.4.7). Since v(t, x, y) is locally Lipschitzian in x, we
get, by (1.2.7) and (2.4.1), the differential inequality

D+m(t) ≤ g (t, m(t)) , m(t0) ≤ u0, t0 ∈ R (t0 ∈ Tτ ), t ∈ J,

and Proposition 2.4.1 gives the desired result (2.4.8).

A comparison result analogous to Proposition 2.4.3 which yields lower
bounds is the following.

Proposition 2.4.4. If in Proposition 2.4.3, assumption (2) is reversed
to

D+v(t, x, y) ≥ g (t, v(t, x, y))

∀ (t, x, y) ∈ R × Rn × Rm (Tτ × Rn × Rm)

and ρ(t) = ρ(t; t0, u0) is the minimal solution of (2.4.1) existing for t ≥ t0,

then
v (t, χ(t; t0, x0), y) ≥ ρ(t) ∀ t ∈ J, t0 ∈ R (t0 ∈ Tτ )

whenever v(t0, x0, y) ≥ u0.

Proof is similar to proof of Proposition 2.4.3.

In some situations, estimating D+v(t, x, y) as a function of t, x and
v(t, x, y) is more natural (see e.g. Matrosov [134], Hatvani [71], and Grujić,
Martynyuk and Ribbens-Pavella [57]).
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Proposition 2.4.5. Let for system (1.2.7) there exist

(1) a matrix-valued function U ∈ C(R×Rn, Rm×m) (U ∈ C(Tτ × Rn,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for every t ∈ R (t ∈ Tτ ):

(2) a majorizing function g ∈ C(R × Rn × R+, R) g ∈ C(Tτ × Rn ×
R+, R), g(t, x, u) nondecreasing in u, g(t, 0, 0) = 0 ∀ t ∈ T0 such
that

D+v(t, x, y) ≤ g (t, x, v(t, x, y)) ∀ (t, x, y) ∈ R × Rn × Rm

(∀ (t, x, y) ∈ Tτ × Rn × Rm) ;

(3) a maximal solution r(t) = r(t; t0, u0, x0) of comparison equation

du

dt
= g(t, x(t), u), u(t0) = u0 ≥ 0

exist for all t ≥ t0, t0 ∈ R (t0 ∈ Tτ ).

Then v(t0, x0, y) ≤ u0 implies

v (t, χ(t; t0, x0), y) ≤ r(t; t0, u0, x0) t ∈ J.

Proof is similar to proof of Proposition 2.4.3.

Corollary 2.4.1. If in conditions of Proposition 2.4.3

(i) g(t, u) ≡ 0 ∀ t ∈ R (∀ t ∈ Tτ )
then

v (t, χ(t; t0, x0), y) ≤ v(t0, x0, y) ∀ t ∈ R (∀ t ∈ Tτ );

(ii) g(t, u) = λ(t)u
then

v (t, χ(t; t0, x0), y) ≤ u0 exp





t
�

t0

λ(s) ds



 ,

t ≥ t0, t0 ∈ R (t0 ∈ Tτ );

(iii) g(t, u) = a exp [−ku] + ϕ(t) − a, where ϕ : R → R; a, k = const,
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then

v (t, χ(t; t0, x0), y) ≤ ψ(t) + k−1 ln
{

exp (ku0)

+ak

t
∫

0

exp (−kψ(s)) ds
}

, t ≥ t0;

(iv) g(t, u) = −c(u), c ∈ K

then

v (t, χ(t; t0, x0), y) ≤ G−1 [G(u0) − (t − t0)] , t ≥ t0

where G(u) =
u
∫

0

ds

c(s)
if

u
∫

0

ds

c(s)
< +∞ and

G(u) =
u
∫

δ

ds

c(s)
if

u
∫

0

ds

c(s)
= ∞; δ = const > 0,

G−1 is a function converse to the function G.

2.4.2 Theorems on stability via matrix Liapunov functions and

scalar comparison equations

The estimates of function v(t, x, y) found in Propositions 2.4.3 – 2.4.4 allow
the reduction of the problem on stability of state x = 0 of system (1.2.7)
to the stability investigation of solution u = 0 of equation (2.4.1). Let us
formulate first stability definitions for solution u = 0 of equation (2.4.1).

Definition 2.4.2. The state u = 0 of the equation (2.4.1) is:

(i) stable with respect to Ti iff for any t0 ∈ Ti and any ε ∈ (0,∞)
there exists δ(t0, ε) such that for any u0, 0 ≤ u0 < δ an estimation
γ(t; t0u0) < ε is fulfilled for all t ∈ T0;

(ii) uniformly stable with respect to Ti iff conditions of the definition
2.4.2 (i) are fulfilled and for every ε ∈ (0,∞) the corresponding
maximal δ denoted by δM (t, ε) obeys:

inf (δM (t, ε) : t ∈ Ti) > 0;

(iii) stable in the whole with respect to Ti iff conditions of the definition
2.4.2 (i) are fulfilled and δM (t, ε) → +∞, ∀ ε → +∞, ∀ t ∈ Ti;

(iv) uniformly stable in the whole with respect to Ti iff conditions of the
definition 2.4.2 (ii), (iii) are fulfilled.
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then

v (t, χ(t; t0, x0), y) ≤ ψ(t) + k−1 ln
{

exp (ku0)

+ak

t
∫

0

exp (−kψ(s)) ds
}

, t ≥ t0;

(iv) g(t, u) = −c(u), c ∈ K

then

v (t, χ(t; t0, x0), y) ≤ G−1 [G(u0) − (t − t0)] , t ≥ t0

where G(u) =
u
∫

0

ds

c(s)
if

u
∫

0

ds

c(s)
< +∞ and

G(u) =
u
∫

δ

ds

c(s)
if

u
∫

0

ds

c(s)
= ∞; δ = const > 0,

G−1 is a function converse to the function G.

2.4.2 Theorems on stability via matrix Liapunov functions and

scalar comparison equations

The estimates of function v(t, x, y) found in Propositions 2.4.3 – 2.4.4 allow
the reduction of the problem on stability of state x = 0 of system (1.2.7)
to the stability investigation of solution u = 0 of equation (2.4.1). Let us
formulate first stability definitions for solution u = 0 of equation (2.4.1).

Definition 2.4.2. The state u = 0 of the equation (2.4.1) is:

(i) stable with respect to Ti iff for any t0 ∈ Ti and any ε ∈ (0,∞)
there exists δ(t0, ε) such that for any u0, 0 ≤ u0 < δ an estimation
γ(t; t0u0) < ε is fulfilled for all t ∈ T0;

(ii) uniformly stable with respect to Ti iff conditions of the definition
2.4.2 (i) are fulfilled and for every ε ∈ (0,∞) the corresponding
maximal δ denoted by δM (t, ε) obeys:

inf (δM (t, ε) : t ∈ Ti) > 0;

(iii) stable in the whole with respect to Ti iff conditions of the definition
2.4.2 (i) are fulfilled and δM (t, ε) → +∞, ∀ ε → +∞, ∀ t ∈ Ti;

(iv) uniformly stable in the whole with respect to Ti iff conditions of the
definition 2.4.2 (ii), (iii) are fulfilled.
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Definition 2.4.3. The state u = 0 for the equation (2.4.1) is:

(i) attractive with respect to Ti iff for any t0 ∈ Ti there exists ∆(t0) > 0
and for any ζ > 0 and u0, : 0 ≤ u0 ≤ ∆(t0) there is τ(t0, x0, ζ) ∈
[0,∞) such that an estimation γ(t; t0, u0) < ζ is fulfilled for all
t ∈ (t0 + τ(t0, x0, ζ) + ∞);

(ii) u0 – attractive with respect to Ti iff conditions under (i) are fulfilled
and for any t0 ∈ Ti and any η ∈ (0, +∞) there exists ∆(t0) > 0
and τu(t0, ∆(t0), η) ∈ [0, +∞) such that

sup (τm(t, u0, η) : 0 ≤ u0 ≤ ∆(t0)) = τu(t0, ∆(t0), η);

(iii) t0 – uniformly attractive with respect to Ti iff conditions of (i) are ful-
filled and for any η ∈ (0, +∞) there exists ∆ > 0 and τu(u0, η) ∈
[0, +∞) such that

sup (τm(t0, u0, η) : (t0, u0 ∈ Ti) = τu(u0, η);

(iv) uniformly attractive with respect to Ti iff conditions of the definitions
2.4.3 (i) – (iii) are fulfilled and for any η ∈ (0, +∞) there exists
∆ > 0 and τu(∆, η) ∈ [0, +∞) such that

sup (τm(t0, u0, η) : (t0, u0) ∈ Ti × [0 ≤ u0 ≤ ∆]) = τu(∆, η).

Definition 2.4.4. The state u = 0 of the equation (2.4.1) is:

(i) asymptotically stable with respect to Ti iff it is stable with respect
to Ti and attractive with respect to Ti;

(ii) equi-asymptotically stable with respect to Ti iff it is stable with re-
spect to Ti and u0 - uniformly attractive with respect to Ti;

(iii) quasi-asymptotically stable with respect to Ti iff it is uniformly stable
with respect to Ti and t0 - uniformly attractive with respect to Ti;

(iv) exponentially stable with respect to Ti iff there exists ∆ > 0 and
real values α ≥ 1 such that for 0 ≤ u0 ≤ ∆ the inequality

u(t; t0, u0) ≤ αu0 exp (−β(t − t0)) , ∀ t ∈ T0, ∀ t0 ∈ Ti

is valid.

Definitions 2.4.4 (i) – (iv) become the corresponding definitions of as-
ymptotic stability in the whole provided both the corresponding type of
stability in the whole and attraction in the whole.

In Definitions 2.4.2 – 2.4.4, the expression “with respect to Ti” can be
omitted iff Ti = R.
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Theorem 2.4.1. Let vector-function f in system (1.2.7) be continuous
on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of point
x = 0 ;

(2) a matrix-valued function U ∈ C (R × G, Rm×m) (U ∈ C(Tτ × G,

Rm×m)) and vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for every t ∈ R (t ∈ Tτ );

(3) a majorizing function g ∈ C (R × R+, R) (g ∈ C(Tτ × R+, R))
g(t, 0) = 0 ∀ t ∈ T0 (∀ t ∈ Tτ ) such that

D+v(t, x, y) ≤ g (t, v(t, x, y)) ∀ (t, x, y) ∈ R × G × Rm

(∀ (t, x, y) ∈ Tτ × G × Rm) .

Then properties of the function

(2.4.9) yTU(t, x)y = v(t, x, y)

and properties of the zero solution of the equation (2.4.1)

du

dt
= g(t, u), u(t0) = u0 ≥ 0

provide the corresponding properties of the state x = 0 of system (1.2.7).

Remark 2.4.1. In condition (2) of Theorem 2.4.1 alongside the function
defined by (2.4.9) another suitable function, such as

v(t, x) = max {uij(t, x) : (i, j) ∈ [1, m]},

v(t, x, η) = ηTU(t, x)η, η ∈ Rm
+ , η > 0,

or v(t, x) = Q (U(t, x))

can be utilized, where Q ∈ C (Rm×m, R+), Q(u) is nondecreasing in u and
Q(0) = 0.

We shall state some properties of the zero solution of equation (2.4.1)
and function (2.4.9) and prove Theorem 2.4.1.

Proof. Case A. Let g(t, u) = 0, solution u = 0 of equation (2.4.1)
be stable with respect to Ti and function (2.4.9) be positive definite on G
(Tτ × G). Then, by Theorem 2.3.1 the state x = 0 of system (1.2.7) is
stable (on Tτ ).
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Theorem 2.4.1. Let vector-function f in system (1.2.7) be continuous
on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of point
x = 0 ;

(2) a matrix-valued function U ∈ C (R × G, Rm×m) (U ∈ C(Tτ × G,

Rm×m)) and vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for every t ∈ R (t ∈ Tτ );

(3) a majorizing function g ∈ C (R × R+, R) (g ∈ C(Tτ × R+, R))
g(t, 0) = 0 ∀ t ∈ T0 (∀ t ∈ Tτ ) such that

D+v(t, x, y) ≤ g (t, v(t, x, y)) ∀ (t, x, y) ∈ R × G × Rm

(∀ (t, x, y) ∈ Tτ × G × Rm) .

Then properties of the function

(2.4.9) yTU(t, x)y = v(t, x, y)

and properties of the zero solution of the equation (2.4.1)

du

dt
= g(t, u), u(t0) = u0 ≥ 0

provide the corresponding properties of the state x = 0 of system (1.2.7).

Remark 2.4.1. In condition (2) of Theorem 2.4.1 alongside the function
defined by (2.4.9) another suitable function, such as

v(t, x) = max {uij(t, x) : (i, j) ∈ [1, m]},

v(t, x, η) = ηTU(t, x)η, η ∈ Rm
+ , η > 0,

or v(t, x) = Q (U(t, x))

can be utilized, where Q ∈ C (Rm×m, R+), Q(u) is nondecreasing in u and
Q(0) = 0.

We shall state some properties of the zero solution of equation (2.4.1)
and function (2.4.9) and prove Theorem 2.4.1.

Proof. Case A. Let g(t, u) = 0, solution u = 0 of equation (2.4.1)
be stable with respect to Ti and function (2.4.9) be positive definite on G
(Tτ × G). Then, by Theorem 2.3.1 the state x = 0 of system (1.2.7) is
stable (on Tτ ).
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Case B. Let solution u = 0 of equation (2.4.1 be stable with respect
to Ti, u0 – uniformly attractive on Ti and function (2.4.9) is decreasing
on G (Tτ × G). We are going to show that in this case the state x = 0
of system (1.2.7) is equi-asymptotically stable (on Tτ ). In fact, for the
function v(t, x, y) mentioned above there exist functions a, b ∈ K such
that

(2.4.10)
a(�x�) ≤ v(t, x, y) ≤ b(�x�) ∀ (t, x, y) ∈ R × G × Rm

∀ (t, x, y) ∈ Tτ × G × Rm.

Let ε ∈ (0, H) and t0 ∈ R (t0 ∈ Tτ ) be prespecified. The fact that
u = 0 is stable with respect to Ti implies that for a(ε) > 0 and t0 ∈ R

(t0 ∈ Tτ ) there exists a δ1 = δ1(t0, ε) > 0 such that it follows from
u0 < δ1 that u(t; t0, u0) < a(ε) for all t ≥ t0. We take u0 = v(t0, x0, y)
and δ = δ(t0, ε) > 0 so that

(2.4.11) b(δ) < δ1.

Let the solution χ(t; t0, x0) of system (1.2.7) start in domain: t0 ∈ R

(t0 ∈ Tτ ) and �x0� < δ. We claim that �χ(t; t0, x0)� < ε for all t0 ∈ T0.

If not, there exists other solution χ(t) with the initial conditions in the
same domain and value t1 > t0 such that

(2.4.12) �χ(t1; t0, x0)� = ε and �χ(t; t0, x0)� ≤ ε ∀ t ∈ [t0, t1].

By Proposition 2.4.3 we have the estimate

(2.4.13) v(t, χ(t; t0, x0), y) ≤ γ(t) ∀ t ∈ [t0, t1],

where γ(t) is the maximal solution of equation (2.4.1).
Seeing that

(2.4.14) v(t0, x0, y) ≤ b(�x0�) ≤ b(δ) < δ1

and in view of inequalities (2.4.11) – (2.4.13) we get

a(ε) ≤ v(t1, χ(t1; t0, x0), y) ≤ γ(t1) < a(ε).

This proves stability with respect to Ti of the state x = 0 of system (1.2.7).
Further it follows from the property of u0 – uniform attraction of the

solution u = 0 of equation (2.4.1) that, given a(η) > 0 and t0 ∈ R

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

98 

Matrix Liapunov Function Method in General

66 2. MATRIX LIAPUNOV FUNCTION METHOD IN GENERAL

(t0 ∈ Tτ ), 0 < η < H there exists a δ∗1 = δ∗1(t0) > 0 and τ = τ(t0, η) > 0
such that u0 < δ∗1 implies u(t; t0, u0) < a(η) for all t ≥ t0 + τ. We take
u0 = v(t0, x0, y) the same as before and find δ∗0 = δ∗0(t0) > 0 such that

(2.4.15) b(δ∗0) < δ∗1 .

Let δ0 = min(δ∗1 , δ∗0) and �x0� < δ0. Proceeding as in the proof of sta-
bility (on Tτ ) of the state x = 0 of system (1.2.7) we conclude that
�χ(t; t0, x0)� < H for t ≥ t0. Assume that there exists a sequence {tk},
tk ≥ t0+τ , tk → +∞ as k → +∞ and η ≤ |χ(t; t0, x0)|, where χ(t; t0, x0)
is a solution of system (1.2.7) with the initial conditions �x0� < δ0 and
t0 ∈ R (t0 ∈ Tτ ). Taking into account estimates (2.4.8) and (2.4.15) we get

a(η) ≤ v(tk, χ(tk; t0, x0), y) ≤ γ(tk) < a(η).

This proves that the state x = 0 of system (1.2.7) is attractive (on Tτ ). By
Definition 2.4.4 (ii) the state x = 0 of system (1.2.7) is equi-asymptotically
stable (on Tτ ).

Theorem 2.4.2. Let vector-function f in system (1.2.7) be continuous
on R ×N (on Tτ ×N ). If

(1) conditions (1) – (2) of Theorem 2.4.1 are satisfied and
(2) there exists a majorizing function G such that G ∈ C (R × R+, R)

(G ∈ C(Tτ × R+, R)) G(t, 0) = 0 ∀ t ∈ T0 (∀ t ∈ Tτ ) such that

D+v(t, x, y) ≥ G (t, v(t, x, y)) ∀ (t, x, y) ∈ R × G × Rm

(∀ (t, x, y) ∈ Tτ × G × Rm) .

Then properties of the function

(2.4.16) yTU(t, x)y = v(t, x, y)

and instability properties of the zero solution of the equation

(2.4.17)
du

dt
= G(t, u), u(t0) = u0 ≥ 0

imply instability (on Tτ ) of the state x = 0 of the system (1.2.7).

Proof. In order to prove Theorem 2.4.2 we shall state some properties
of the function (2.4.16). Namely, assume positive definite on G (on Tτ ×G)
function, and for any δ > 0 and t0 ∈ R (t0 ∈ Tτ ) an x0 is found, �x0� < δ,
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(t0 ∈ Tτ ), 0 < η < H there exists a δ∗1 = δ∗1(t0) > 0 and τ = τ(t0, η) > 0
such that u0 < δ∗1 implies u(t; t0, u0) < a(η) for all t ≥ t0 + τ. We take
u0 = v(t0, x0, y) the same as before and find δ∗0 = δ∗0(t0) > 0 such that

(2.4.15) b(δ∗0) < δ∗1 .

Let δ0 = min(δ∗1 , δ∗0) and �x0� < δ0. Proceeding as in the proof of sta-
bility (on Tτ ) of the state x = 0 of system (1.2.7) we conclude that
�χ(t; t0, x0)� < H for t ≥ t0. Assume that there exists a sequence {tk},
tk ≥ t0+τ , tk → +∞ as k → +∞ and η ≤ |χ(t; t0, x0)|, where χ(t; t0, x0)
is a solution of system (1.2.7) with the initial conditions �x0� < δ0 and
t0 ∈ R (t0 ∈ Tτ ). Taking into account estimates (2.4.8) and (2.4.15) we get

a(η) ≤ v(tk, χ(tk; t0, x0), y) ≤ γ(tk) < a(η).

This proves that the state x = 0 of system (1.2.7) is attractive (on Tτ ). By
Definition 2.4.4 (ii) the state x = 0 of system (1.2.7) is equi-asymptotically
stable (on Tτ ).

Theorem 2.4.2. Let vector-function f in system (1.2.7) be continuous
on R ×N (on Tτ ×N ). If

(1) conditions (1) – (2) of Theorem 2.4.1 are satisfied and
(2) there exists a majorizing function G such that G ∈ C (R × R+, R)

(G ∈ C(Tτ × R+, R)) G(t, 0) = 0 ∀ t ∈ T0 (∀ t ∈ Tτ ) such that

D+v(t, x, y) ≥ G (t, v(t, x, y)) ∀ (t, x, y) ∈ R × G × Rm

(∀ (t, x, y) ∈ Tτ × G × Rm) .

Then properties of the function

(2.4.16) yTU(t, x)y = v(t, x, y)

and instability properties of the zero solution of the equation

(2.4.17)
du

dt
= G(t, u), u(t0) = u0 ≥ 0

imply instability (on Tτ ) of the state x = 0 of the system (1.2.7).

Proof. In order to prove Theorem 2.4.2 we shall state some properties
of the function (2.4.16). Namely, assume positive definite on G (on Tτ ×G)
function, and for any δ > 0 and t0 ∈ R (t0 ∈ Tτ ) an x0 is found, �x0� < δ,
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such that v(t0, x0, y) > 0 ∀ y ∈ Rm. Instability of the zero solution of
equation (2.4.17) ensures that given ε∗ > 0 and t0 ∈ R (t0 ∈ Tτ ), for any
δ∗ > 0 a u0 : 0 ≤ u0 < δ∗ can be found so that ρ(t; t0, u0) ≥ ε∗. Since
function (2.4.16) is positive definite on G (on Tτ × G), a function a ∈ K

can be taken so that

a(�x�) ≤ v(t, x, y) ∀ (t, x, y) ∈ R × G × Rm

∀ (t, x, y) ∈ Tτ × G × Rm.

We take ε > 0 so that

(2.4.18) a(ε) < ε∗.

This is possible due to assumptions on function v(t, x, y).
Now we determine u0 ≤ δ∗ and t ≥ t0 so that ρ(t; t0, u0) ≥ ε∗. If x0

is taken in accordance with (2.4.18) and t /∈ T0 (t /∈ Tτ ) then the theorem
is proved, since the solution χ(t; t0, x0) cannot cease its existence without
leaving the domain �x� < ε. Let t0 ∈ T0 (t0 ∈ Tτ ). Then we get according
to Proposition 2.4.4

a (�χ(t; t0, x0)�) ≥ v(t, χ(t), y) ≥ ρ(t) ≥ ε∗ > a(ε).

Consequently, �χ(t; t0, x0)� > ε and the state x = 0 of system (1.2.7) is
unstable (on Tτ ).

2.5 Method of Matrix Liapunov Functions

As already mentioned in the introduction the application of matrix Lia-
punov functions make it possible to establish easily verified stability condi-
tions for the state x = 0 of system (1.2.7) in terms of the property having a
fixed sign of special matrices. The results presented in this section demon-
strate the opportunities of the matrix Liapunov functions technique.

2.5.1 Nonautonomous systems

General Theorems 2.3.1 – 2.3.7 allows sufficient stability conditions for the
state x = 0 of system (1.2.7) to be constructed as follows.
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Theorem 2.5.1. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;

(2) a matrix-valued function U ∈ C (R ×N , Rm×m) and a vector y ∈
Rm such that the function v(t, x, y) = yTU(t, x)y is locally Lip-
schitzian in x for all t ∈ R (t ∈ Tτ );

(3) functions ψi1, ψi2, ψi3 ∈ K, ˜ψi2 ∈ CK, i = 1, 2, . . . , m;

(4) symmetric m × m matrices Aj(y), j = 1, 2, 3, ˜A2(y) such that

(a)
ψT

1 (�x�)A1(y)ψ1(�x�) ≤ v(t, x, y) ≤ ˜ψT
2 (t, �x�) ˜A2(y) ˜ψ2(t, �x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(b)
ψT

1 (�x�)A1(y)ψ1(�x�) ≤ v(t, x, y) ≤ ψT
2 (�x�)A2(y)ψ2(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(c)
D+v(t, x, y) ≤ ψT

3 (�x�)A3(y)ψ3(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) .

Then, if the matrices A1(y), A2(y), ˜A2(y), (y �= 0) ∈ Rm are positive
definite and A3(y) is negative semi-definite, then

(a) the state x = 0 of system (1.2.7) is stable (on Tτ ), provided condi-
tion (4)(a) is satisfied;

(b) the state x = 0 of system (1.2.7) is uniformly stable (on Tτ ), pro-
vided condition (4)(b) is satisfied.

Proof. We shall prove assertion (a). Since matrices A1(y) and ˜A2(y)

∀ (y �= 0) ∈ Rm are positive definite, then λm(A1) > 0 and λM ( ˜A2) > 0,

where λm(·) and λM (·) are minimal and maximal eigenvalues of matrices

A1(y) and ˜A2(y) respectively.
Condition (3) of Theorem 2.5.1 provides the existence of functions π ∈

K and ρ ∈ CK such that

π(�x�) ≤ ψT
1 (�x�)ψ1(�x�)

and

ρ(t, �x�) ≥ ˜ψT
2 (t, �x�) ˜ψ2(t, �x�).
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Theorem 2.5.1. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;

(2) a matrix-valued function U ∈ C (R ×N , Rm×m) and a vector y ∈
Rm such that the function v(t, x, y) = yTU(t, x)y is locally Lip-
schitzian in x for all t ∈ R (t ∈ Tτ );

(3) functions ψi1, ψi2, ψi3 ∈ K, ˜ψi2 ∈ CK, i = 1, 2, . . . , m;

(4) symmetric m × m matrices Aj(y), j = 1, 2, 3, ˜A2(y) such that

(a)
ψT

1 (�x�)A1(y)ψ1(�x�) ≤ v(t, x, y) ≤ ˜ψT
2 (t, �x�) ˜A2(y) ˜ψ2(t, �x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(b)
ψT

1 (�x�)A1(y)ψ1(�x�) ≤ v(t, x, y) ≤ ψT
2 (�x�)A2(y)ψ2(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(c)
D+v(t, x, y) ≤ ψT

3 (�x�)A3(y)ψ3(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) .

Then, if the matrices A1(y), A2(y), ˜A2(y), (y �= 0) ∈ Rm are positive
definite and A3(y) is negative semi-definite, then

(a) the state x = 0 of system (1.2.7) is stable (on Tτ ), provided condi-
tion (4)(a) is satisfied;

(b) the state x = 0 of system (1.2.7) is uniformly stable (on Tτ ), pro-
vided condition (4)(b) is satisfied.

Proof. We shall prove assertion (a). Since matrices A1(y) and ˜A2(y)

∀ (y �= 0) ∈ Rm are positive definite, then λm(A1) > 0 and λM ( ˜A2) > 0,

where λm(·) and λM (·) are minimal and maximal eigenvalues of matrices

A1(y) and ˜A2(y) respectively.
Condition (3) of Theorem 2.5.1 provides the existence of functions π ∈

K and ρ ∈ CK such that

π(�x�) ≤ ψT
1 (�x�)ψ1(�x�)

and

ρ(t, �x�) ≥ ˜ψT
2 (t, �x�) ˜ψ2(t, �x�).
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Consequently,

(2.5.1)
λm(A1)π(�x�) ≤ v(t, x, y) ∀ (t, x, y) ∈ R × G × Rm

(∀ (t, x, y) ∈ Tτ × G × Rm)

and

(2.5.2)
v(t, x, y) ≤ λM ( ˜A2)ρ(t, �x�) ∀ (t, x, y) ∈ R × G × Rm

(∀ (t, x, y) ∈ Tτ × G × Rm) .

Since matrix A3(y) is negative semi-definite, then

(2.5.3)
D+v(t, x, y) ≤ 0 ∀ (t, x, y �= 0) ∈ R × G × Rm

(∀ (t, x, y �= 0) ∈ Tτ × G × Rm) .

Taking into account (2.5.1) – (2.5.3) one can easily see that all conditions of
Theorem 2.3.1 are satisfied and the state x = 0 of system (1.2.7) is stable
(on Tτ ).

The proof of assertion (b) of the Theorem 2.5.1 is the same, seeing that
ψi2 ∈ K.

Theorem 2.5.2. Let the vector-function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) a matrix-valued function U ∈ C (R × Rn, Rm×m) (U ∈ C(Tτ ×Rn,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for all t ∈ R (t ∈ Tτ );

(2) functions ϕ1i, ϕ2i, ϕ3i ∈ KR, ϕ̃2i ∈ CKR, i = 1, 2, . . . , m;

(3) symmetric m × m matrices Bj(y), j = 1, 2, 3, ˜B2(y) such that

(a)
ϕT

1(�x�)B1(y)ϕ1(�x�) ≤ v(t, x, y) ≤ ϕ̃T
2(t, �x�) ˜B2(y)ϕ̃2(t, �x�)

∀ (t, x, y) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) ;

(b)
ϕT

1(�x�)B1(y)ϕ1(�x�) ≤ v(t, x, y) ≤ ϕT
2(�x�)B2(y)ϕ2(�x�)

∀ (t, x, y) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) ;

(c)
D+v(t, x, y) ≤ ϕT

3(�x�)B3(y)ϕ3(�x�)

∀ (t, x, y) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) .
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Then, provided that matrices B1(y), B2(y) and ˜B2(y), ∀ (y �= 0) ∈ Rm

are positive definite and matrix B3(y) is negative definite,

(a) under condition (3)(a) the state x = 0 of system (1.2.7) is stable
in the whole (on Tτ );

(b) under condition (3)(b) the state x = 0 of system (1.2.7) is uni-
formly stable in the whole (on Tτ ).

Proof. Under conditions (1) – (3)(a) of Theorem 2.5.2 the function
v(t, x, y) is radially unbounded positive definite in the whole (on Tτ ) and
weakly decreasing in the whole (on Tτ ). Since the matix B3(y), ∀ (y �=
0) ∈ Rm is negaitive semi-definite, then we have in consequence of condi-
tion (3)(c) of Theorem 2.5.2

D+v(t, x, y) ≤ 0 ∀ (t, x, y �= 0) ∈ R × Rn × Rm

(∀ (t, x, y �= 0) ∈ Tτ × Rn × Rm) .

According to Theorem 2.3.2 the state x = 0 of system (1.2.7) is stable in
the same manner taking into account conditions (1) – (3)(b) and (3)(c).

Theorem 2.5.3. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;

(2) a matrix-valued function U ∈ C (R ×N , Rm×m) (U ∈ C(Tτ ×N ,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for all t ∈ R (t ∈ Tτ );

(3) functions η1i, η2i, η3i ∈ K, η̃2i ∈ CK, i = 1, 2, . . . , m;

(4) symmetric m × m matrices Cj(y), j = 1, 2, 3, ˜C2(y) such that

(a)
ηT
1 (�x�)C1(y)η1(�x�) ≤ v(t, x, y) ≤ η̃T

2 (t, �x�) ˜C2(y)η̃2(t, �x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(b)
ηT
1 (�x�)C1(y)η1(�x�) ≤ v(t, x, y) ≤ ηT

2 (�x�)C2(y)η2(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(c)
D∗v(t, x, y) ≤ ηT

3 (�x�)C3(y)η3(�x�) + m (t, η3(�x�))

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ,
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Then, provided that matrices B1(y), B2(y) and ˜B2(y), ∀ (y �= 0) ∈ Rm

are positive definite and matrix B3(y) is negative definite,

(a) under condition (3)(a) the state x = 0 of system (1.2.7) is stable
in the whole (on Tτ );

(b) under condition (3)(b) the state x = 0 of system (1.2.7) is uni-
formly stable in the whole (on Tτ ).

Proof. Under conditions (1) – (3)(a) of Theorem 2.5.2 the function
v(t, x, y) is radially unbounded positive definite in the whole (on Tτ ) and
weakly decreasing in the whole (on Tτ ). Since the matix B3(y), ∀ (y �=
0) ∈ Rm is negaitive semi-definite, then we have in consequence of condi-
tion (3)(c) of Theorem 2.5.2

D+v(t, x, y) ≤ 0 ∀ (t, x, y �= 0) ∈ R × Rn × Rm

(∀ (t, x, y �= 0) ∈ Tτ × Rn × Rm) .

According to Theorem 2.3.2 the state x = 0 of system (1.2.7) is stable in
the same manner taking into account conditions (1) – (3)(b) and (3)(c).

Theorem 2.5.3. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;

(2) a matrix-valued function U ∈ C (R ×N , Rm×m) (U ∈ C(Tτ ×N ,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for all t ∈ R (t ∈ Tτ );

(3) functions η1i, η2i, η3i ∈ K, η̃2i ∈ CK, i = 1, 2, . . . , m;

(4) symmetric m × m matrices Cj(y), j = 1, 2, 3, ˜C2(y) such that

(a)
ηT
1 (�x�)C1(y)η1(�x�) ≤ v(t, x, y) ≤ η̃T

2 (t, �x�) ˜C2(y)η̃2(t, �x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(b)
ηT
1 (�x�)C1(y)η1(�x�) ≤ v(t, x, y) ≤ ηT

2 (�x�)C2(y)η2(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(c)
D∗v(t, x, y) ≤ ηT

3 (�x�)C3(y)η3(�x�) + m (t, η3(�x�))

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ,
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where function m(t, ·) satisfies the condition

lim
|m (t, η3(�x�)) |

�η3�
= 0 as �η3� → 0

uniformly in t ∈ R (t ∈ Tτ ).

Then, provided the matrices C1(y), C2(y), ˜C2(y) are positive definite
and matrix C3(y) (y �= 0) ∈ Rm is negative definite, then

(a) under condition (4)(a) the state x = 0 of the system (1.2.7) is
asymptotically stable (on Tτ );

(b) under condition (4)(b) the state x = 0 of the system (1.2.7) is
uniformly asymptotically stable (on Tτ ).

Proof. Following the arguments from the proof of Theorem 2.5.1 under
conditions (1) – (4)(a) the function v(t, x, y) is positive definite on G (on
Tτ ×G) and weakly decreasing on G (on Tτ ×G). Consider condition (4)(c).
Since η3i ∈ K, i = 1, 2, . . . , m there exists a function ω ∈ K such that

(2.5.4) ω(�x�) ≥ ηT
3 (�x�)η3(�x�).

Due to matrix C3(y) (y �= 0) ∈ Rm being negative definite all its eigenval-
ues are negative so that λM (C3) < 0. Therefore, we get in view of (2.5.4)

(2.5.5)
D∗v(t, x, y) ≤ λM (C3)ω(�x�) + m (t, η3(�x�))

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) .

Under condition (4)(c) for the given neighborhood G ⊂ N of point x = 0
a 0 < µ < 1 can be taken so that

(2.5.6)
|m(t, η(�x�)| < −µλM (C3)η

T
3 (�x�)η3(�x�)

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) .

Together with inequalities (2.5.5) condition (2.5.6) yields the estimate

D∗v(t, x, y) ≤ (1 − µ)λM (C3)ω(�x�), λM (C3) < 0.

Thus, function D∗v(t, x, y) is negative definite on G (on Tτ ×G). Therefore,
all conditions of Theorem 2.3.3 are satisfied and the state x = 0 of the
system (1.2.7) is asymptotically stable (on Tτ ).

Assertion (b) of Theorem 2.5.3 is proved in the same manner taking into
account that condition (4)(b) ensures function v(t, x, y) decreasing on G
(on Tτ × G).
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Theorem 2.5.4. Let the vector-function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn) and conditions (1) – (3) of Theorem 2.5.2
are satisfied.

Then, provided that matrices B1(y), B2(y) and ˜B2(y) are positive def-
inite and matrix B3(y) ∀ (y �= 0) ∈ Rm is negative definite,

(a) under condition (3)(a) of Theorem 2.5.2 the state x = 0 of system
(1.2.7) is asymptotically stable in the whole (on Tτ );

(b) under condition (3)(b) of Theorem 2.5.2 the state x = 0 of system
(1.2.7) is uniformly asymptotically stable in the whole (on Tτ ).

Proof. Under conditions (1) – (3)(a) of Theorem 2.5.2 the function
v(t, x, y) is radially unbounded positive definite in the whole (on Tτ ).

Because matrix B3(y) ∀ (y �= 0) ∈ Rm is negative definite, proceeding
as in the proof of Theorem 2.5.2 we arrive at the estimate

D∗v(t, x, y) ≤ λM (B3)ϕ
T
3(�x�)ϕ3(�x�)

∀ (t, x, y) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) .

Since ϕ3i ∈ CK, i = 1, 2, . . . , m, there exist a function θ(�x�) ∈ KR

such that

θ(�x�) ≥ ϕT
3(�x�)ϕ3(�x�).

Therefore,

D∗v(t, x, y) ≤ λM (B3)θ(�x�), λM (B3) < 0

∀ (t, x, y �= 0) ∈ R × Rn × Rm (∀ (t, x, y �= 0) ∈ Tτ × Rn × Rm) .

Thus, function D∗v(t, x, y) is negative definite in the whole (on Tτ ).
According to Theorem 2.3.4 the state x = 0 of system (1.2.7) is asympto-

tically stable in the whole (on Tτ ).
The proof of assertion (b) of Theorem 2.5.4 is similar to the above and

takes into account the fact that by conditions (2) and (3) of Theorem 2.5.2
the function v(t, x, y) is radially unbounded positive definite and decreasing
in the whole (on Tτ ).

Theorem 2.5.5. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;
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Theorem 2.5.4. Let the vector-function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn) and conditions (1) – (3) of Theorem 2.5.2
are satisfied.

Then, provided that matrices B1(y), B2(y) and ˜B2(y) are positive def-
inite and matrix B3(y) ∀ (y �= 0) ∈ Rm is negative definite,

(a) under condition (3)(a) of Theorem 2.5.2 the state x = 0 of system
(1.2.7) is asymptotically stable in the whole (on Tτ );

(b) under condition (3)(b) of Theorem 2.5.2 the state x = 0 of system
(1.2.7) is uniformly asymptotically stable in the whole (on Tτ ).

Proof. Under conditions (1) – (3)(a) of Theorem 2.5.2 the function
v(t, x, y) is radially unbounded positive definite in the whole (on Tτ ).

Because matrix B3(y) ∀ (y �= 0) ∈ Rm is negative definite, proceeding
as in the proof of Theorem 2.5.2 we arrive at the estimate

D∗v(t, x, y) ≤ λM (B3)ϕ
T
3(�x�)ϕ3(�x�)

∀ (t, x, y) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) .

Since ϕ3i ∈ CK, i = 1, 2, . . . , m, there exist a function θ(�x�) ∈ KR

such that

θ(�x�) ≥ ϕT
3(�x�)ϕ3(�x�).

Therefore,

D∗v(t, x, y) ≤ λM (B3)θ(�x�), λM (B3) < 0

∀ (t, x, y �= 0) ∈ R × Rn × Rm (∀ (t, x, y �= 0) ∈ Tτ × Rn × Rm) .

Thus, function D∗v(t, x, y) is negative definite in the whole (on Tτ ).
According to Theorem 2.3.4 the state x = 0 of system (1.2.7) is asympto-

tically stable in the whole (on Tτ ).
The proof of assertion (b) of Theorem 2.5.4 is similar to the above and

takes into account the fact that by conditions (2) and (3) of Theorem 2.5.2
the function v(t, x, y) is radially unbounded positive definite and decreasing
in the whole (on Tτ ).

Theorem 2.5.5. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;
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(2) a matrix-valued function U ∈ C (R ×N , Rm×m) and a vector y ∈
Rm such that the function v(t, x, y) = yTU(t, x)y is locally Lip-
schitzian in x for all t ∈ R (t ∈ Tτ );

(3) functions σ2i, σ3i ∈ K, i = 1, 2, . . . , m, a positive real number ∆1

and positive integer p, symmetric m × m matrices F2(y), F3(y)
such that

(a)
∆1�x�

p ≤ v(t, x, y) ≤ σT
2 (�x�)F2(y)σ2(�x�)

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) ;

(b)
D∗v(t, x, y) ≤ σT

3 (�x�)F3(y)σ3(�x�)

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) .

Then, provided that the matrices F2(y) (y �= 0) ∈ Rm are positive definite,
the matrix F3(y) (y �= 0) ∈ Rm is negative definite and functions σ2i,
σ3i are the same magnitude, then the state x = 0 of system (1.2.7) is
exponentially stable (on Tτ ).

Proof. Under conditions (1) – (4)(a) function v(t, x, y) is positive defi-
nite and decreasing (on Tτ ). In fact, we have the estimate

v(t, x, y) ≤ λM (F2)σ
T
2 (�x�)σ2(�x�), λ(F2) > 0

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) .

Since the functions σ3i ∈ K, i = 1, 2, . . . , m, there exists a function
κ ∈ K such that

κ(�x�) ≥ σT
2 (�x�)σ2(�x�).

Therefore

(2.5.7)
∆1�x�

p ≤ v(t, x, y) ≤ λM (F2)κ(�x�), λM (F2) > 0

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) .

We reduce condition (4)(b) of Theorem 2.5.5 to the form

(2.5.8)
D∗v(t, x, y) ≤ λM (F3)π(�x�), λM (F3) < 0

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ,

where π ∈ K is such that

π(�x�) ≥ σT
3 (�x�)σ3(�x�).
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Since functions κ and π are of the same magnitude, there exist constants
k1 > 0 and k2 > 0 such that

k1κ(�x�) ≤ π(�x�) ≤ k2κ(�x�).

We get from inequalities (2.5.7) and (2.5.8)

(2.5.9)
D∗v(t, x, y) ≤ λv(t, x, y)

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) ,

where λ = λM (F3)λ
−1
M (F2), λ < 0.

In view of the estimate from the left in (2.5.7) we obtain from (2.5.9)

v(t, x, y) ≤ v(t0, x0, y) exp (λ(t − t0))

and

(2.5.10) �χ(t; t0x0)� ≤ ∆
−

1

p

1 λ
1

p

M (F2)κ
1

p (�x0�) exp

(

λ

p
(t − t0)

)

.

We designate according to Definition 1.2.3 (vi)

α = ∆
−

1

p

1 λ
1

p

M (F2), β =
λ

p
, β < 0.

From (2.5.10) we obtain

�χ(t; t0x0)� ≤ ακ
1

p (�x0�) exp (β(t − t0)) ∀ t ∈ T0, ∀ t0 ∈ Ti.

This proves Theorem 2.5.5.

Theorem 2.5.6. Let the vector-function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) a matrix-valued function U ∈ C (R × Rn, Rm×m) (U ∈ C(Tτ ×Rn,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for all t ∈ R (∀ t ∈ Tτ );

(2) functions ν2i, ν3i ∈ KR, i = 1, 2, . . . , m, a positive real number
∆2 > 0 and a positive integer q;

(3) symmetric m × m matrices H2, H3 such that

(a)
∆2�x�

q ≤ v(t, x, y) ≤ νT
2 (�x�)H2(y)ν2(�x�)

∀ (t, x, y �= 0) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) ;

(b)
D∗v(t, x, y) ≤ νT

3 (�x�)H3(y)ν3(�x�)

∀ (t, x, y �= 0) ∈ R×Rn×Rm (∀ (t, x, y �= 0) ∈ Tτ ×Rn×Rm) .
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Since functions κ and π are of the same magnitude, there exist constants
k1 > 0 and k2 > 0 such that

k1κ(�x�) ≤ π(�x�) ≤ k2κ(�x�).

We get from inequalities (2.5.7) and (2.5.8)

(2.5.9)
D∗v(t, x, y) ≤ λv(t, x, y)

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y �= 0) ∈ Tτ × G × Rm) ,

where λ = λM (F3)λ
−1
M (F2), λ < 0.

In view of the estimate from the left in (2.5.7) we obtain from (2.5.9)

v(t, x, y) ≤ v(t0, x0, y) exp (λ(t − t0))

and

(2.5.10) �χ(t; t0x0)� ≤ ∆
−

1

p

1 λ
1

p

M (F2)κ
1

p (�x0�) exp

(

λ

p
(t − t0)

)

.

We designate according to Definition 1.2.3 (vi)

α = ∆
−

1

p

1 λ
1

p

M (F2), β =
λ

p
, β < 0.

From (2.5.10) we obtain

�χ(t; t0x0)� ≤ ακ
1

p (�x0�) exp (β(t − t0)) ∀ t ∈ T0, ∀ t0 ∈ Ti.

This proves Theorem 2.5.5.

Theorem 2.5.6. Let the vector-function f in system (1.2.7) be contin-
uous on R × Rn (on Tτ × Rn). If there exist

(1) a matrix-valued function U ∈ C (R × Rn, Rm×m) (U ∈ C(Tτ ×Rn,

Rm×m)) and a vector y ∈ Rm such that the function v(t, x, y) =
yTU(t, x)y is locally Lipschitzian in x for all t ∈ R (∀ t ∈ Tτ );

(2) functions ν2i, ν3i ∈ KR, i = 1, 2, . . . , m, a positive real number
∆2 > 0 and a positive integer q;

(3) symmetric m × m matrices H2, H3 such that

(a)
∆2�x�

q ≤ v(t, x, y) ≤ νT
2 (�x�)H2(y)ν2(�x�)

∀ (t, x, y �= 0) ∈ R × Rn × Rm (∀ (t, x, y) ∈ Tτ × Rn × Rm) ;

(b)
D∗v(t, x, y) ≤ νT

3 (�x�)H3(y)ν3(�x�)

∀ (t, x, y �= 0) ∈ R×Rn×Rm (∀ (t, x, y �= 0) ∈ Tτ ×Rn×Rm) .
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Then, if the matrix H2(y) ∀ (y �= 0) ∈ Rm is positive definite, the matrix
H3(y) ∀ (y �= 0) ∈ Rm is negative definite and functions ν2i, ν3i are of the
same magnitude, the state x = 0 of system (1.2.7) is exponentially stable
in the whole (on Tτ ).

Proof of this Theorem is similar to that of Theorem 2.5.5 taking into ac-
count the fact that under conditions of Theorem 2.5.6 the function v(t, x, y)
is radially unbounded (on Tτ ). Inequality (2.5.10) is replaced by

�χ(t; t0x0)� ≤ ∆
−

1

q

2 λ
1

q

M (H2)g
1

q (�x0�) exp

(

λ1

q
(t − t0)

)

where g(�x�) ∈ KR and g(�x�) ≥ νT
2 (�x�)ν2(�x�),

λ1 = λM (H3)k1λ
−1
M (H2), k1 > 0, λ1 < 0.

We designate β = λ1q
−1 and define function Φ(∆) = ∆

−
1

q

1 λ
1

q

M (H2)g
1

q (∆)
whenever �x0� < ∆, ∆ = +∞. Then

�χ(t; t0x0)� ≤ Φ(∆) exp (β(t − t0)) , β < 0 ∀ t ∈ T0, ∀ t0 ∈ Ti.

This proves Theorem 2.5.6.

Theorem 2.5.7. Let the vector-function f in system (1.2.7) be contin-
uous on R ×N (on Tτ ×N ). If there exist

(1) an open connected time-invariant neighborhood G ⊂ N of the point
x = 0 ;

(2) a matrix-valued function U ∈ C1 (R ×N , Rm×m) (U ∈ C1(Tτ ×N ,

Rm×m)) and a vector y ∈ Rm;
(3) functions ψ1i, ψ2i, ψ3i ∈ K, i = 1, 2, . . . , m, symmetric m × m

matrices A1(y), A2(y), G(y) and a constant ∆ > 0 such that

(a)
ψT

1 (�x�)A1(y)ψ1(�x�) ≤ v(t, x, y) ≤ ψT
2 (�x�)A2(y)ψ2(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(b)
Dv(t, x, y) ≥ ψT

3 (�x�)G(y)ψ3(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) ;

(4) point x = 0 belong to ∂G;
(5) v(t, x, y) = 0 on T0 × (∂G ∩ B∆), where B∆ = {x : �x� < ∆}.
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Then, if matrices A1(y), A2(y) and G(y) ∀ (y �= 0) ∈ Rm are positive
definite, the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Proof. Under conditions (1) – (3)(a) of Theorem 2.5.7 it is easy to ob-
tain for function v(t, x, y) the estimate

(2.5.11)
λm(A1)γ(�x�) ≤ v(t, x, y) ≤ λM (A2)ζ(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) .

Here γ ∈ K and γ(�x�) ≤ ψT
1 (�x�)ψ1(�x�), ζ ∈ K and ζ(�x�) ≥

ψT
2 (�x�)ψ2(�x�).
Since λM (A1) > 0, λM (A2) > 0, then by estimate (2.5.11) function

v(t, x, y) is positive and bounded (on Tτ ). Hence, for every ∆ > 0 an
x0 ∈ G ∩ B∆ and a a > 0 can be found such that a ≥ v(t0, x0, y) > 0
∀ (y �= 0) ∈ Rm.

Condition (3)(b) of Theorem 2.5.7 is reduced to the form

(2.5.12)
Dv(t, x, y) ≥ λm(G)ξ(�x�), λm(G) > 0,

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) .

Here ξ ∈ K and ξ ≤ ψT
3 (�x�)ψ3(�x�).

In view of (2.5.11) and (2.5.12) we have for χ(t; t0, x0 ∈ G

a ≥ v(t, χ(t; t0, x), y) = v(t0, x0, y) +

t
∫

t0

Dv(τ, χ(τ ; t0, x0)y) dτ

≥ v(t0, x0, y) + λm(G)ξ(�x0�)(t − t0) ∀ t ∈ T0 (∀ t ∈ Tτ ).

Hence, it follows that the solution χ(t; t0, x0) must leave neighborhood G
some time later. But because of condition (5) it cannot leave G through
∂G ∈ B∆. Consequently, χ(t; t0, x0) leaves the domain B∆ and the state
x = 0 of system (1.2.7) is unstable (on Tτ ).

2.5.2 Autonomous systems

2.5.2.1 Definitions of stability domains and their estimates. For a while our
attention will be focused on the difference between the notions “domain”
and “region”.
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Then, if matrices A1(y), A2(y) and G(y) ∀ (y �= 0) ∈ Rm are positive
definite, the state x = 0 of system (1.2.7) is unstable (on Tτ ).

Proof. Under conditions (1) – (3)(a) of Theorem 2.5.7 it is easy to ob-
tain for function v(t, x, y) the estimate

(2.5.11)
λm(A1)γ(�x�) ≤ v(t, x, y) ≤ λM (A2)ζ(�x�)

∀ (t, x, y) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) .

Here γ ∈ K and γ(�x�) ≤ ψT
1 (�x�)ψ1(�x�), ζ ∈ K and ζ(�x�) ≥

ψT
2 (�x�)ψ2(�x�).
Since λM (A1) > 0, λM (A2) > 0, then by estimate (2.5.11) function

v(t, x, y) is positive and bounded (on Tτ ). Hence, for every ∆ > 0 an
x0 ∈ G ∩ B∆ and a a > 0 can be found such that a ≥ v(t0, x0, y) > 0
∀ (y �= 0) ∈ Rm.

Condition (3)(b) of Theorem 2.5.7 is reduced to the form

(2.5.12)
Dv(t, x, y) ≥ λm(G)ξ(�x�), λm(G) > 0,

∀ (t, x, y �= 0) ∈ R × G × Rm (∀ (t, x, y) ∈ Tτ × G × Rm) .

Here ξ ∈ K and ξ ≤ ψT
3 (�x�)ψ3(�x�).

In view of (2.5.11) and (2.5.12) we have for χ(t; t0, x0 ∈ G

a ≥ v(t, χ(t; t0, x), y) = v(t0, x0, y) +

t
∫

t0

Dv(τ, χ(τ ; t0, x0)y) dτ

≥ v(t0, x0, y) + λm(G)ξ(�x0�)(t − t0) ∀ t ∈ T0 (∀ t ∈ Tτ ).

Hence, it follows that the solution χ(t; t0, x0) must leave neighborhood G
some time later. But because of condition (5) it cannot leave G through
∂G ∈ B∆. Consequently, χ(t; t0, x0) leaves the domain B∆ and the state
x = 0 of system (1.2.7) is unstable (on Tτ ).

2.5.2 Autonomous systems

2.5.2.1 Definitions of stability domains and their estimates. For a while our
attention will be focused on the difference between the notions “domain”
and “region”.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

115 

Matrix Liapunov Function Method in General

2.5 METHOD OF MATRIX LIAPUNOV FUNCTIONS 77

Referring to LaSalle and Lefschetz [98] a “region” is an open connected
set. However, Santalo [163] defined “domain” as an open and connected set,
and “region” as the union of a domain with some, none, or all its boundary
points.

We want to emphasize that, for stability analysis of nonlinear systems,
only a neighborhood (either open or closed or neither open nor closed) of
the origin is of interest herein. Hahn [66] used “domain” in this sense. The
reason for using a neighborhood that can be closed is that the domain of
asymptotic stability of an equilibrium of a nonlinear system can be closed.

We accept:

Definition 2.5.1. A set Ds, Ds ⊆ Rm, is the domain of the equilibrium
state x = 0 defined by

Ds =
⋃

[

Ds(ε) : ε ∈
◦

R+

]

,

where Ds(ε) is such a neighborhood of x = 0 that �χ(t; 0, x0)� < ε

∀ t ∈ R+, holds provided only that x0 ∈ Ds(ε) for every ε ∈
◦

R+.

The next definition has been commonly used (see Krasovskii [89], Hahn
[66], LaSalle and Lefschetz [98]).

Definition 2.5.2. A set Da, Da ⊆ Rm, is the domain of attraction of
the equilibrium state x = 0 of the system (1.2.10) if and only if it is such
a neighborhood of x = 0 that

lim [ �χ(t; 0, x0)� : t → +∞] = 0

holds provided only that x0 ∈ Da.

It is now natural to accept the definition of the domain of asymptotic
stability of x = 0 in the form.

Definition 2.5.3. A set D, D ⊆ Rm, is the domain of asymptotic
stability of x = 0 of the system (1.2.10) if and only if it is both a neighbor-
hood of x = 0 and the intersection of its domain of stability and domain
of attraction, that is, that D = Ds ∩ Da is a neighborhood of x = 0.

The exact determination of the domain of asymptotic stability has great
engineering and theoretical importance. Unfortinately, we can realize it
only in special cases. For these reasons we investigate its estimate E defined
as follows.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

116 

Matrix Liapunov Function Method in General

78 2. MATRIX LIAPUNOV FUNCTION METHOD IN GENERAL

Definition 2.5.4. A set E, E ⊆ Rm, is an estimate set (in brief,
estimate) of the asymptotic stability domain D of x = 0 of the system
(1.2.10) if and only if

(i) E is a neighborhood of x = 0,
(ii) E ⊆ D

and

(iii) E is positively invariant set of the system (1.2.10), that is, that
x0 ∈ E implies χ(t; 0, x0) ∈ E for every t ∈ R+.

2.5.2.2 System description and decomposition. Suppose autonomous sys-
tem (1.2.10) to be decomposed into m interconnected subsystems

(2.5.13)
dxi

dt
= gi(xi) + hi(x)

with individual subsystems

(2.5.14)
dxi

dt
= gi(xi), xi(0) = xi0, i = 1, 2, . . . , m,

where xi ∈ Rni , g = (gT
1 , gT

2 , . . . , gT
m)T, x = (xT

1 , . . . , xT
m)T. Besides gi ∈

C(Rni , Rni), hi ∈ C(Rn, Rni) and gi(0) = 0, hi(0) = 0 ∀i = 1, 2, . . . , m.

Assumption 2.5.1. There are connected neighborhoods Ni of xi = 0
∀ i = 1, 2, . . . , m such that both

(i) motions xi(t, xi0) of (2.5.14) are continuous in (t, xi0) ∈ R+ × Ni,
where xi(0, xi0) ≡ 0 ∀ i = 1, 2, . . . , m;

and

(ii) motions x(t, x0) of (1.2.10) (or (2.5.13)) are continuous in (t, x0) ∈
R+ × N , where N = N1 × N2 × · · · × Nm and x(0, x0) ≡ 0.

Let U : Rn → Rm×m be the matrix-valued function with elements uij ∈
C(Rn, R) for i �= j and uij ∈ C(Rn, R+) for i = j.

Let us construct the function

v(x, y) = yTU(x)y

by means vector y ∈ Rm which was used above. We shall use expressions
of one of Dini derivatives of function U

D+U(x) = lim sup {[U(x(t + θ), x) − U(x)] θ−1 : θ → 0+},

D+U(x) = lim inf {[U(x(t + θ), x) − U(x)] θ−1 : θ → 0+}

with the function U(x). We shall denote by symbol D∗U(x) the possibility
of utilizing any of functions D+U(x) or D+U(x).
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Definition 2.5.4. A set E, E ⊆ Rm, is an estimate set (in brief,
estimate) of the asymptotic stability domain D of x = 0 of the system
(1.2.10) if and only if

(i) E is a neighborhood of x = 0,
(ii) E ⊆ D

and

(iii) E is positively invariant set of the system (1.2.10), that is, that
x0 ∈ E implies χ(t; 0, x0) ∈ E for every t ∈ R+.

2.5.2.2 System description and decomposition. Suppose autonomous sys-
tem (1.2.10) to be decomposed into m interconnected subsystems

(2.5.13)
dxi

dt
= gi(xi) + hi(x)

with individual subsystems

(2.5.14)
dxi

dt
= gi(xi), xi(0) = xi0, i = 1, 2, . . . , m,

where xi ∈ Rni , g = (gT
1 , gT

2 , . . . , gT
m)T, x = (xT

1 , . . . , xT
m)T. Besides gi ∈

C(Rni , Rni), hi ∈ C(Rn, Rni) and gi(0) = 0, hi(0) = 0 ∀i = 1, 2, . . . , m.

Assumption 2.5.1. There are connected neighborhoods Ni of xi = 0
∀ i = 1, 2, . . . , m such that both

(i) motions xi(t, xi0) of (2.5.14) are continuous in (t, xi0) ∈ R+ × Ni,
where xi(0, xi0) ≡ 0 ∀ i = 1, 2, . . . , m;

and

(ii) motions x(t, x0) of (1.2.10) (or (2.5.13)) are continuous in (t, x0) ∈
R+ × N , where N = N1 × N2 × · · · × Nm and x(0, x0) ≡ 0.

Let U : Rn → Rm×m be the matrix-valued function with elements uij ∈
C(Rn, R) for i �= j and uij ∈ C(Rn, R+) for i = j.

Let us construct the function

v(x, y) = yTU(x)y

by means vector y ∈ Rm which was used above. We shall use expressions
of one of Dini derivatives of function U

D+U(x) = lim sup {[U(x(t + θ), x) − U(x)] θ−1 : θ → 0+},

D+U(x) = lim inf {[U(x(t + θ), x) − U(x)] θ−1 : θ → 0+}

with the function U(x). We shall denote by symbol D∗U(x) the possibility
of utilizing any of functions D+U(x) or D+U(x).
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Assumption 2.5.2. Matrix-valued function U is radially increasing on
N , that is, the following inequality holds elementwise

U(λ1x) < U(λ2x) ∀ (x �= 0) ∈ N, λi ∈ (0, +∞), i = 1, 2, λ1 < λ2.

Let K be the elementwise greatest m×m matrix, K = (kij) satisfying

(2.5.15) UK(x) ⊆ int N

for the set UK(x) defined by

(2.5.16) UK(x) = {x : U(x) < K},

where int N is the interior of N . In case N is unbounded then kij = +∞
is possible for some (i, j) ∈ [1, m].

Let

(2.5.17)
E =

�

{Eij : (i, j) ∈ [1, m]}, Eij = {x : uij(x) < kij},

kij < +∞, ∂Eij = {x : uij(x) = kij}.

2.5.2.3 A metric aggregation form. Metric on Rn will be introduced by the
Euclidean norm � · �. A metric aggregation form is determined by

Assumption 2.5.3. There are U ∈ C(Rn, Rm×m), w ∈ C(Rn, Rm)
and real number αij such that

(i) w(x) = 0 for x ∈ N iff x = 0;

(ii) U(x) ∈ C(N, Rm×m);

(iii) D∗U(x) ≤





α11�w(x)�2 . . . α1m�w(x)�2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αm1�w(x)�2 . . . αmm�w(x)�2



 ∀x ∈ N.

Theorem 2.5.8. Let Assumptions 2.5.1 – 2.5.3 hold. In order for the set
E (2.5.17) to be an estimate of D it is sufficient that U is positive definite
on N , αij < 0 and uij(x) is radially unbounded in case N is unbounded,
∀ i, j = 1, 2, . . . , m.

Proof. Positive definiteness of U(x) on N implies positive definiteness
of uij(x) on N ∀(i, j) ∈ [1, m]. The conditions (iii) of Assumption 2.5.3
proves

(2.5.18) D∗uij(x) ≤ αij�w(x)�2 ∀x ∈ N ∀ (i, j) ∈ [1, m].
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Since αij < 0 and w(x) = 0 iff x = 0 due to (i) of Assumption 2.5.3 then
Assumption 2.5.1, (2.5.18) and Assumption 2.5.2 prove that Eij (2.5.17) is
an estimate of D ∀(i, j) ∈ [1, m]. Hence E (2.5.17) is also an estimate of D.

Let vi : Rn → Rm be defined by

(2.5.19) vi = (ui1, ui2, . . . , uim)T, ∀ i = 1, 2, . . . , m.

Assumption 2.5.4. Vector b ∈ Rm is elementwise positive, bTvi is
positive definite on N and radially unbounded in case N is unbounded,
and ki ∈ (0, +∞) is such that a set
(2.5.20)

Vi = {x : bTvi(x) < ki}, ki < +∞ → ∂Vi = {x : bTvi(x) = ki},

∀ i ∈ [1, m]

is the largest connected neighborhood of x = 0 in N determined by bTvi(x).

Theorem 2.5.9. Let Assumptions 2.5.1, 2.5.3 and 2.5.4 hold. In order
for the set E (2.5.21)

(2.5.21) E =
⋃

{Vi : i ∈ [1, m]}

to be estimate of D it is sufficient that the matrix A = (αij) and the vector
b obey elementwise Ab < 0.

Proof. From (iii) Assumption 2.5.3 and b > 0 (Assumption 2.5.4) it
results

(2.5.22) D∗U(x)b ≤ Ab�w(x)�2 ∀x ∈ N.

The condition Ab < 0, (i) of Assumption 2.5.3 and (2.5.22) prove
D∗U(x)b < 0 elementwise on N , x �= 0. This result, Assumption 2.5.4,
and (2.5.19) prove that both bTvi is positive definite and D∗U(x)b element-

wise negative (x �= 0) on the closure Ei (2.5.21), ∀i ∈ [1, m]. These facts
and Assumption 2.5.1 prove that Ei = Vi is an estimate of D. Since this
holds for every i ∈ [1, m], then E (2.5.20), (2.5.21) is an estimate of D.

Let k be the greatest number or the symbol +∞ such that the set Vk

(2.5.23) Vk = {x : bTU(x)b < k}, k < +∞ → ∂Vk = {x : bTU(x)b = k}

is the largest connected neighborhood of x = 0 in N determined by b

and V .
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Since αij < 0 and w(x) = 0 iff x = 0 due to (i) of Assumption 2.5.3 then
Assumption 2.5.1, (2.5.18) and Assumption 2.5.2 prove that Eij (2.5.17) is
an estimate of D ∀(i, j) ∈ [1, m]. Hence E (2.5.17) is also an estimate of D.

Let vi : Rn → Rm be defined by

(2.5.19) vi = (ui1, ui2, . . . , uim)T, ∀ i = 1, 2, . . . , m.

Assumption 2.5.4. Vector b ∈ Rm is elementwise positive, bTvi is
positive definite on N and radially unbounded in case N is unbounded,
and ki ∈ (0, +∞) is such that a set
(2.5.20)

Vi = {x : bTvi(x) < ki}, ki < +∞ → ∂Vi = {x : bTvi(x) = ki},

∀ i ∈ [1, m]

is the largest connected neighborhood of x = 0 in N determined by bTvi(x).

Theorem 2.5.9. Let Assumptions 2.5.1, 2.5.3 and 2.5.4 hold. In order
for the set E (2.5.21)

(2.5.21) E =
⋃

{Vi : i ∈ [1, m]}

to be estimate of D it is sufficient that the matrix A = (αij) and the vector
b obey elementwise Ab < 0.

Proof. From (iii) Assumption 2.5.3 and b > 0 (Assumption 2.5.4) it
results

(2.5.22) D∗U(x)b ≤ Ab�w(x)�2 ∀x ∈ N.

The condition Ab < 0, (i) of Assumption 2.5.3 and (2.5.22) prove
D∗U(x)b < 0 elementwise on N , x �= 0. This result, Assumption 2.5.4,
and (2.5.19) prove that both bTvi is positive definite and D∗U(x)b element-

wise negative (x �= 0) on the closure Ei (2.5.21), ∀i ∈ [1, m]. These facts
and Assumption 2.5.1 prove that Ei = Vi is an estimate of D. Since this
holds for every i ∈ [1, m], then E (2.5.20), (2.5.21) is an estimate of D.

Let k be the greatest number or the symbol +∞ such that the set Vk

(2.5.23) Vk = {x : bTU(x)b < k}, k < +∞ → ∂Vk = {x : bTU(x)b = k}

is the largest connected neighborhood of x = 0 in N determined by b

and V .
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Theorem 2.5.10. Let Assumptions 2.5.1 and 2.5.3 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D of x = 0 of (1.2.10) it
is sufficient that U is positive definite on N , v(x) = bTU(x)b is radially
unbounded in case N is unbounded, the vector b is elementwise positive and
the scalar bTAb is negative for A = (αij).

Proof. Positive definiteness of U on N means that v(x) = bTU(x)b
is positive definite on N . Condition (iii) of Assumption 2.5.3 and b > 0
imply

D∗v(x) = bTD∗U(x)b ≤ (bTAb)�w(x)� ∀x ∈ N.

These results, bTAb < 0, the condition (i) of Assumption 2.5.3 and As-
sumption 2.5.1 prove that E = Vk (2.5.21) is an estimate of D.

2.5.2.4 A quadratic aggregation form. A generalized quadratic aggregation
form is this setting introduced by

Assumption 2.5.5. There are U ∈ C(Rn, Rm×m), w ∈ C(Rn, Rm)
and matrices Aij ∈ Rm×m such that

(i) w(x) = 0 for x ∈ N iff x = 0;

(ii) U(x) = 0 for x ∈ N iff x = 0;

(iii) D∗U(x) ≤





wT(x)A11w(x) . . . wT(x)A1mw(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wT(x)Am1w(x) . . . wT(x)Ammw(x)



 ∀x ∈ N .

Theorem 2.5.11. Let Assumptions 2.5.1, 2.5.2 and 2.5.5 hold. In order
for the set E (2.5.17) to be an estimate of D it is sufficient that U is positive
definite on N , uij(x) is radially unbounded in case N is unbounded ∀ (i, j) ∈
[1, m], and the matrix (Aij + AT

ij) is negative definite ∀ (i, j) ∈ [1, m].

Proof. Let λM (Aij + AT
ij) be the maximal eigenvalue of (Aij + AT

ij)
and

(2.5.24) αij =
1

2
λm(Aij + AT

ij).

Negative definiteness of (Aij + AT
ij) implies αij < 0 ∀ (i, j) ∈ [1, m]. This

resullt and the conditions of Theorem 2.5.11 satisfy all the requirements of
Theorem 2.5.8, which proves the statement of Theorem 2.5.11.
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Theorem 2.5.12. Let Assumptions 2.5.1, 2.5.4 and 2.5.5 hold. In order
for the set E (2.5.21), (2.5.22) to be an estimate of D it is sufficient that

the matrix
m
�

j=1

[bj(Aij + AT
ij)] is negative definite for all i ∈ [1, m].

Proof. Using b > 0 elementwise (Assumption 2.5.4) we derive

(2.5.25) D+U(x)b ≤











wT(x)
� m

�

j=1

bjA1j

�

w(x)

. . . . . . . . . . . . . . . . . . . . . . .

wT(x)
� m

�

j=1

bjAmj

�

w(x)











∀x ∈ N

from (2.5.24). Negative definiteness of
m
�

j=1

[bj(Aij + AT
ij)], and the condi-

tions (i) and (iii) of Assumption 2.5.5 prove negativeness of bTD∗vi(x) for
every (x �= 0) ∈ N ∀ i ∈ [1, m], due to (2.5.25). This result, and Assump-
tion 2.5.1, positive definiteness of bTvi on N ∀ i ∈ [1, m] prove that E

(2.5.21), (2.5.22) is an estimate of D.

Theorem 2.5.13. Let Assumptions 2.5.1 and 2.5.5 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U is pos-
itive definite on N , v(x) = bTU(x)b is radially unbounded in case N is un-

bounded, the vector b is elementwise positive and the matrix
m
�

i,j=1

[bibj(Aij +

AT
ij)] is negative definite.

Proof. Function v(x), v(x) = bTU(x)b, is positive definite on N due
to positive definiteness of U(x) on N . Its derivative D∗v(x) is negative for
every (x �= 0) ∈ N in view of (i) and (iii) of Assumption 2.5.5,

D∗v(x) ≤
1

2
wT(x)





m
�

i,j=1

�

bibj(Aij + AT
ij)

�



w(x)

and negative definiteness of
m
�

i,j=1

[bibj(Aij + AT
ij)]. These results and As-

sumption 2.5.1 prove that E = Vk (2.5.23) is an estimate of D.

2.5.2.5 Generalized Michel’s aggregation form. The aggregation form will
be generalized by referring to Grujić, Martynyuk and Ribbens-Pavella [57]
and Michel [141] as follows:
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Theorem 2.5.12. Let Assumptions 2.5.1, 2.5.4 and 2.5.5 hold. In order
for the set E (2.5.21), (2.5.22) to be an estimate of D it is sufficient that

the matrix
m
�

j=1

[bj(Aij + AT
ij)] is negative definite for all i ∈ [1, m].

Proof. Using b > 0 elementwise (Assumption 2.5.4) we derive

(2.5.25) D+U(x)b ≤











wT(x)
� m

�

j=1

bjA1j

�

w(x)

. . . . . . . . . . . . . . . . . . . . . . .

wT(x)
� m

�

j=1

bjAmj

�

w(x)











∀x ∈ N

from (2.5.24). Negative definiteness of
m
�

j=1

[bj(Aij + AT
ij)], and the condi-

tions (i) and (iii) of Assumption 2.5.5 prove negativeness of bTD∗vi(x) for
every (x �= 0) ∈ N ∀ i ∈ [1, m], due to (2.5.25). This result, and Assump-
tion 2.5.1, positive definiteness of bTvi on N ∀ i ∈ [1, m] prove that E

(2.5.21), (2.5.22) is an estimate of D.

Theorem 2.5.13. Let Assumptions 2.5.1 and 2.5.5 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U is pos-
itive definite on N , v(x) = bTU(x)b is radially unbounded in case N is un-

bounded, the vector b is elementwise positive and the matrix
m
�

i,j=1

[bibj(Aij +

AT
ij)] is negative definite.

Proof. Function v(x), v(x) = bTU(x)b, is positive definite on N due
to positive definiteness of U(x) on N . Its derivative D∗v(x) is negative for
every (x �= 0) ∈ N in view of (i) and (iii) of Assumption 2.5.5,

D∗v(x) ≤
1

2
wT(x)





m
�

i,j=1

�

bibj(Aij + AT
ij)

�



w(x)

and negative definiteness of
m
�

i,j=1

[bibj(Aij + AT
ij)]. These results and As-

sumption 2.5.1 prove that E = Vk (2.5.23) is an estimate of D.

2.5.2.5 Generalized Michel’s aggregation form. The aggregation form will
be generalized by referring to Grujić, Martynyuk and Ribbens-Pavella [57]
and Michel [141] as follows:
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Assumption 2.5.6. There are U ∈ C(Rn, Rm×m), w ∈ C(Rn, Rm),
w(x) = [w1(x), . . . , wm(x)]T, and vector aij ∈ Rs such that

(i) wij(x) = 0 for x ∈ N iff x = 0:
(ii) the matrix-valued function U(x) is continuous on N , U ∈ C(N,

Rm×m);
(iii) the matrix-valued function U(x), the vector function w and the

vector aij obey (2.5.26)

(2.5.26) D∗U(x) ≤







w1(x)aT
11w(x) . . . w1(x)aT

1sw(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ws(x)aT
s1w(x) . . . ws(x)aT

ssw(x)






∀x ∈ N.

Let

Aj = (a1j , a2j , . . . , amj)
T, V j = (u1j, u2j , . . . , usj)

T,

Kj = (k1j , k2j , . . . , kmj)
T.

Let
Ej = (ej

ki) ∈ Rm×m, e
j
ki = [r1

kiδki + r2
ki(1 − δki)]a

j
ki,

where δki = 1 for k = i, δki = 0 for k �= i and

r1
ki = inf [wi(x) : x ∈ ∂Eki], r2

ki = sup [wi(x) : x ∈ Eki].

Theorem 2.5.14. Let Assumptions 2.5.1, 2.5.2 and 2.5.6 hold. In order
for the set E (2.5.17) and its closure E to be estimates of D it is sufficient
that U(x) is positive definite on N , uij(x) is radially unbounded in case N

is unbounded ∀ k = 1, 2, . . . , m, of Aj is non-negative and the vector Ej
1

is negative elementwise ∀ j ∈ [1, m].

Proof. Since U(x) = [v1(x), v2(x), . . . , vm(x)] then (2.5.26) can be
rewritten as

(2.5.27)
D∗U(x) ≤ W (x) [A1w(x), A2w(x), . . . , Amw(x)],

W (x) = diag {w1(x), w2(x), . . . , wm(x)}.

Let j ∈ [1, m] be arbitrarily chosen. Positive definiteness of U(x) on N

implies positive definiteness of uij(x) on N ∀ (i, j) ∈ [1, m]. From Ej
1 <

0, the definitions of Ej and V j , (2.5.27) and Assumption 2.5.6 it follows that
D∗uij(x) < 0 ∀x ∈ ∂Eij ∀ i ∈ [1, m]. This result, Assumption 2.5.1 and
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Assumption 2.5.3 prove positive invariance of Eij with respect to motions

of (1.2.10). The definitions of Aj and Ej imply Aj ≤ Ej elementwise.
Hence Ej

1 < 0 implies Aj
1 < 0.

Since a
j
ki ≥ 0, k �= j, then there is positive diagonal Dj = diag{d1j , d2j ,

. . . , dmj} such that [(Aj)TDj+DjAj ] is negative definite. Hence a function

vj , vj(x) = (dj)Tvj(x) for dj = (d1j , d2j , . . . , dmj)
T, is positive definite and

D∗vj(x) ≤
1

2
wT(x) [(Aj)TDj + DjAj ] w(x) < 0

∀ (x �= 0) ∈ N due to negative definiteness of the matrix [(Aj)TDj +DjAj ]
and (i) of Assumption 2.5.6. These results, Assumption 2.5.3 together with

positive invariance of all Eij prove that Eij and Eij are estimates of D.

Since this holds for every (i, j) ∈ [1, m], then E and E are estimates of D

of x = 0 of (1.2.10).

Let

Aj = (aj1, aj2, . . . , ajm)T, b = diag(b1, b2, . . . , bm),

A(b) = (AT
1b, AT

2b, . . . , A
T
mb)T.

Theorem 2.5.15. Let Assumptions 2.5.1, 2.5.4 and 2.5.6 hold. In order
for the set E (2.5.20), (2.5.21) to be an estimate of D it is sufficient that
the vector AT

i b is negative elementwise ∀ i ∈ [1, m].

Proof. Since b > 0 (Assumption 2.5.4) then (2.5.19) and (2.5.27) yield
(2.5.28) due to (iii) of Assumption 2.5.6,

(2.5.28)

D∗U(x)b =





bTD∗v1(x)
. . . . . . . . . .

bTD∗vm(x)



 ≤





w1(x) bTA1w(x)
. . . . . . . . . . . . . . . .

wm(x) bTAmw(x)



 ∀x ∈ N.

Elementwise negativeness of AT
i bi ∀ i ∈ [1, m], (i) of Assumption 2.5.6 and

(2.5.28) imply bTD∗vi(x) < 0 ∀ (x �= 0) ∈ N . Hence, Assumption 2.5.1
and Assumption 2.5.4 prove that E (2.5.20), (2.5.21) is an estimate of D.

Theorem 2.5.16. Let Assumptions 2.5.1 and 2.5.6 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U(x)
is positive definite on N , v(x) = bTU(x)b is radially unbounded in case N

is unbounded and the matrix [AT(b)B + BA(b)] is negative definite for the
elementwise positive vector b.
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Assumption 2.5.3 prove positive invariance of Eij with respect to motions

of (1.2.10). The definitions of Aj and Ej imply Aj ≤ Ej elementwise.
Hence Ej

1 < 0 implies Aj
1 < 0.

Since a
j
ki ≥ 0, k �= j, then there is positive diagonal Dj = diag{d1j , d2j ,

. . . , dmj} such that [(Aj)TDj+DjAj ] is negative definite. Hence a function

vj , vj(x) = (dj)Tvj(x) for dj = (d1j , d2j , . . . , dmj)
T, is positive definite and

D∗vj(x) ≤
1

2
wT(x) [(Aj)TDj + DjAj ] w(x) < 0

∀ (x �= 0) ∈ N due to negative definiteness of the matrix [(Aj)TDj +DjAj ]
and (i) of Assumption 2.5.6. These results, Assumption 2.5.3 together with

positive invariance of all Eij prove that Eij and Eij are estimates of D.

Since this holds for every (i, j) ∈ [1, m], then E and E are estimates of D

of x = 0 of (1.2.10).

Let

Aj = (aj1, aj2, . . . , ajm)T, b = diag(b1, b2, . . . , bm),

A(b) = (AT
1b, AT

2b, . . . , A
T
mb)T.

Theorem 2.5.15. Let Assumptions 2.5.1, 2.5.4 and 2.5.6 hold. In order
for the set E (2.5.20), (2.5.21) to be an estimate of D it is sufficient that
the vector AT

i b is negative elementwise ∀ i ∈ [1, m].

Proof. Since b > 0 (Assumption 2.5.4) then (2.5.19) and (2.5.27) yield
(2.5.28) due to (iii) of Assumption 2.5.6,

(2.5.28)

D∗U(x)b =





bTD∗v1(x)
. . . . . . . . . .

bTD∗vm(x)



 ≤





w1(x) bTA1w(x)
. . . . . . . . . . . . . . . .

wm(x) bTAmw(x)



 ∀x ∈ N.

Elementwise negativeness of AT
i bi ∀ i ∈ [1, m], (i) of Assumption 2.5.6 and

(2.5.28) imply bTD∗vi(x) < 0 ∀ (x �= 0) ∈ N . Hence, Assumption 2.5.1
and Assumption 2.5.4 prove that E (2.5.20), (2.5.21) is an estimate of D.

Theorem 2.5.16. Let Assumptions 2.5.1 and 2.5.6 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U(x)
is positive definite on N , v(x) = bTU(x)b is radially unbounded in case N

is unbounded and the matrix [AT(b)B + BA(b)] is negative definite for the
elementwise positive vector b.
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Proof. Theorem 2.5.16 is proved in the same way as Theorem 2.5.13.

In order to achive this the matrix
m
�

i,j=1

[bibj(Aij + AT
ij)] should be replaced

by the matrix [AT(b)B + BA(b)] in the proof of Theorem 2.5.13.

2.5.2.6 Grujić–Šiljak’s aggregation form. The aggregation form can be ap-
plied to matrix-valued function aggregation of (1.2.10) as follows:

Assumption 2.5.7. There are U ∈ C(Rn, Rm×m), w ∈ C(Rn, Rm),
and vectors aij ∈ Rm such that

(i) w(x) = 0 for x ∈ N iff x = 0;

(ii) U(x) ∈ C(Rn, Rm×m):

(iii) D∗U(x) ≤





aT
11w(x) . . . aT

1mw(x)
. . . . . . . . . . . . . . . . . . . . . . . .

aT
m1w(x) . . . aT

mmw(x)



 ∀x ∈ N.

Theorem 2.5.17. Let Assumptions 2.5.1, 2.5.3 and 2.5.7 hold. In or-
der for the set E (2.5.17) and its closure E to be estimates of D it is
sufficient that U(x) is positive definite on N , uij(x) is radially unbounded

in case N is unbounded ∀ (i, j) ∈ [1, m], off-diagonal element a
j
ki (k �= i,

k, i = 1, 2, . . . , m) of Aj is nonnegative and the vector Ej
1 is negative

elementwise ∀ j ∈ [1, m].

Proof. The condition (iii) of Assumption 2.5.7 can be set in the form

(2.5.29) D∗U(x) ≤ [A1w(x), A2w(x), . . . , Amw(x)] ∀x ∈ N.

We consider now vj(x) = 1
Tvj(x). Positive definiteness of U(x) on N

implies positive definiteness of all uij(x), hence of all uj(x), on N . Radial

unboundedness of all uij(x) implies radial unboundedness of all vj(x) in case

N is unbounded. Assumption 2.5.2 implies radial increasing of all vj(x).
From (2.5.29) and (i) of Assumption 2.5.7 it follows that D∗vj(x) < 0
∀ (x �= 0) ∈ N , ∀ j ∈ [1, m]. The definition of Ej and Ej

1 < 0 prove
positive invariance of Eij ∀ (i, j) ∈ [1, m]. These results and Assumption

2.5.1 prove that both E (2.5.17) and E are estimates of D.

Theorem 2.5.18. Let Assumptions 2.5.1, 2.5.4 and 2.5.6 hold. In order
for the set E (2.5.20), (2.5.21) to be an estimate of D it is sufficient that
the vector AT

i b is negative elementwise ∀ i ∈ [1, m].
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Proof. Since b > 0 (Assumption 2.5.4) then (2.5.19) and (2.5.29) in
view of (iii) of Assumption 2.5.7 yield

(2.5.30) D∗U(x) b =





bTD∗v1(x)
. . . . . . . . . .

bTD∗vm(x)



 ≤





bTA1w(x)
. . . . . . . . .

bTAmw(x)



 ∀x ∈ N.

Now, AT
i b < 0 elementwise, (i) of Assumption 2.5.7 and (2.5.30) imply

D∗vi(x) < 0 ∀ (x �= 0) ∈ N for vi(x) = bTVi(x) ∀ i ∈ [1, m]. This result,
Assumption 2.5.1 and Assumption 2.5.4 prove that E (2.5.20), (2.5.21) is
an estimate of D.

Theorem 2.5.19. Let Assumptions 2.5.1 and 2.5.7 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U(x) is
positive definite on N , v(x) = bTU(x)b is radially unbounded in case N is
unbounded and the vector AT(b)b is negative elementwise for the element-
wise positive vector b.

Proof. Since U(x) is positive definite on N for y = b ∈ Rm, then
v, v = bTU(x)b, is also positive definite on N . From b > 0 and (iii) of
Assumption 2.5.7 we derive

D∗v(x) ≤ bTA(b)w(x) ∀x ∈ N

so that
D∗v(x) < 0 ∀ (x �= 0) ∈ N

due to (i) of Assumption 2.5.7 and AT(b)b < 0. These results and Assump-
tion 2.5.1 prove that E = Vk (2.5.23) is an estimate of D.

2.5.2.7 L-aggregation form. L-aggregation form is being introduced in this
framework by

Assumption 2.5.8. There are U ∈ C(Rn, Rm×m), w ∈ C(Rn, Rm),
b ∈ Rs, b = (b1, b2, . . . , bm)T and A ∈ Rm×m such that

(i) �w(x)� = 0 for x ∈ N iff x = 0;

(ii) U(x) ∈ C(Rn, Rm×m);

(iii) v(x) = bTU(x)b obeys

D∗v(x) ≤ wT(x)(ATB + BA)w(x) ∀x ∈ N

for B = diag (b1, b2, . . . , bm).
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Proof. Since b > 0 (Assumption 2.5.4) then (2.5.19) and (2.5.29) in
view of (iii) of Assumption 2.5.7 yield

(2.5.30) D∗U(x) b =





bTD∗v1(x)
. . . . . . . . . .

bTD∗vm(x)



 ≤





bTA1w(x)
. . . . . . . . .

bTAmw(x)



 ∀x ∈ N.

Now, AT
i b < 0 elementwise, (i) of Assumption 2.5.7 and (2.5.30) imply

D∗vi(x) < 0 ∀ (x �= 0) ∈ N for vi(x) = bTVi(x) ∀ i ∈ [1, m]. This result,
Assumption 2.5.1 and Assumption 2.5.4 prove that E (2.5.20), (2.5.21) is
an estimate of D.

Theorem 2.5.19. Let Assumptions 2.5.1 and 2.5.7 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U(x) is
positive definite on N , v(x) = bTU(x)b is radially unbounded in case N is
unbounded and the vector AT(b)b is negative elementwise for the element-
wise positive vector b.

Proof. Since U(x) is positive definite on N for y = b ∈ Rm, then
v, v = bTU(x)b, is also positive definite on N . From b > 0 and (iii) of
Assumption 2.5.7 we derive

D∗v(x) ≤ bTA(b)w(x) ∀x ∈ N

so that
D∗v(x) < 0 ∀ (x �= 0) ∈ N

due to (i) of Assumption 2.5.7 and AT(b)b < 0. These results and Assump-
tion 2.5.1 prove that E = Vk (2.5.23) is an estimate of D.

2.5.2.7 L-aggregation form. L-aggregation form is being introduced in this
framework by

Assumption 2.5.8. There are U ∈ C(Rn, Rm×m), w ∈ C(Rn, Rm),
b ∈ Rs, b = (b1, b2, . . . , bm)T and A ∈ Rm×m such that

(i) �w(x)� = 0 for x ∈ N iff x = 0;

(ii) U(x) ∈ C(Rn, Rm×m);

(iii) v(x) = bTU(x)b obeys

D∗v(x) ≤ wT(x)(ATB + BA)w(x) ∀x ∈ N

for B = diag (b1, b2, . . . , bm).
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Theorem 2.5.20. Let Assumptions 2.5.1 and 2.5.8 hold. In order for
the set E = Vk (2.5.23) to be an estimate of D it is sufficient that U(x) is
positive definite on N , v(x) is radially unbounded in case N is unbounded
and the matrix (ATB + BA) is negative definite.

Proof. The function U(x) is positive definite on N due to positive
definiteness of V (x) on N . Negative definiteness of (ATB + BA) and
conditions (i) and (iii) of Assumption 2.5.8 imply D∗v(x) < 0 ∀ (x �= 0) ∈
N . These results and Assumption 2.5.1 prove that E = Vk (2.5.23) is an
estimate of D.

2.6 On Multistability of Motion

As is well known, stability analysis of nonlinear systems is made under the
assumption of the “equality” of all solutions coordinates with respect to
dynamical properties as it is accepted in classical papers by Liapunov [101]
and his adherents. The exeption is made for stability with respect to a
part of variables. In the problem, phase vector of variables is divided into
two subvectors, the norm of one of which is said to be “nonincreasing” to
infinity for the finite time.

2.6.1 General problem on multistability

A large-scale system of dimension n is governed by

(2.6.1)
dxi

dt
= fi(t, x1, . . . , xs), xi(t0) = xi0,

where xi ∈ Rni , t ∈ Tτ , Tτ = [τ, +∞), τ ∈ R, t0 ∈ Ti, Ti ⊂ R, fi : Tτ ×
Rn1 × · · · ×Rns → Rni and it is assumed that fi(t, x1, . . . , xs) = 0 for all
t ∈ Tτ iff x1 = x2 = · · · = xs = 0. Together with (2.6.1) we shall show in
vector notion the system (1.2.7)

(2.6.2)
dx

dt
= f(t, x), x(t0) = x0,

where x ∈ Rn, n =
s

∑

i=1

ni; f : Tτ × Rn → Rn , x0 =
(

xT
10, . . . , x

T
s0

)T
. It is

clear that f(t, x) = 0 for all t ∈ Tτ iff x = 0 .

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

131 

Matrix Liapunov Function Method in General

88 2. MATRIX LIAPUNOV FUNCTION METHOD IN GENERAL

Definition 2.6.1. System (2.6.1) is called multistability (on Tτ ) iff its

zero solution
(

xT
1 , . . . , xT

s

)T
= 0 is stable in some type (on Tτ ) and attractive

(on Tτ ) with respect to groups of variables {xT
i }, i = 1, 2, . . . , s (with

respect to totality of groups of variables {xT
1 , . . . , xT

l }, l < s).

Remark 2.6.1. When multistability of solution x = 0 of (2.6.1) is
discussed with respect to all groups of variables {xT

1 , . . . , x
T
s} system (2.6.2)

is defined in domain B(ρ) =
{

xi :
∑

i

�xi� < ρ
}

or in Rn as usual.

Remark 2.6.2. If multistability of solution x = 0 of (2.6.1) is discussed
with respect to a group of variables {xT

1 , . . . , x
T
l }, l < s then it is sufficient

to define system (2.6.1) in the domain

B(·)(ρ) = {xT
i : �

(

xT
1 , . . . , xT

l

)T
� < ρ}, ρ = const,

D(·)(ρ) = {xT
i : 0 < �

(

xT
l+1, . . . , x

T
s

)T
� < +∞},

here solution x(t, ·) =
(

xT
1(t, ·), . . . , x

T
l (t, ·)

)T
of the system (2.6.1) is as-

sumed to be continuable along
(

xT
l+1, . . . , x

T
s

)T
, i.e. solution

(

xT
1 , . . . , xT

s

)T

is definite for all t ∈ Tτ for which �
(

xT
1(t), . . . , xT

l (t)
)T

� ≤ ρ.
The construction of sufficient (and necessary) conditions ensuring mul-

tistability of zero solutions of (2.6.1) in terms of Definition 2.6.1 makes the
general problem on multistability of motion.

2.6.2 On the relationship of the definition of multistability with

the other notions of stability of motion

We shall recall the well known definition with reference to system (2.6.1).

Definition 2.6.2. The zero solution x1 = x2 = · · · = xs = 0 of system
(2.6.1) is

(i) stable relatively Ti if for any ε > 0 and t0 ∈ Ti there exist δ(t0, ε) >

0 such that
s

∑

i

�xi(t; t0, x0)� < ε for all
s

∑

i

�xi0� < δ and all t ≥ t0;

(ii) asymptotically stable relatively Ti if the conditions of Definition 2.6.2

(i) are satisfied and
s

∑

i=1

�xi(t; t0, x0)� → 0 as t → +∞.

Having compared Definition 2.6.1 with Definition 2.6.2, we see that if
all subvectors xi in system (2.6.1) are homogeneous with respect to the
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Definition 2.6.1. System (2.6.1) is called multistability (on Tτ ) iff its

zero solution
(

xT
1 , . . . , xT

s

)T
= 0 is stable in some type (on Tτ ) and attractive

(on Tτ ) with respect to groups of variables {xT
i }, i = 1, 2, . . . , s (with

respect to totality of groups of variables {xT
1 , . . . , xT

l }, l < s).

Remark 2.6.1. When multistability of solution x = 0 of (2.6.1) is
discussed with respect to all groups of variables {xT

1 , . . . , x
T
s} system (2.6.2)

is defined in domain B(ρ) =
{

xi :
∑

i

�xi� < ρ
}

or in Rn as usual.

Remark 2.6.2. If multistability of solution x = 0 of (2.6.1) is discussed
with respect to a group of variables {xT

1 , . . . , x
T
l }, l < s then it is sufficient

to define system (2.6.1) in the domain

B(·)(ρ) = {xT
i : �

(

xT
1 , . . . , xT

l

)T
� < ρ}, ρ = const,

D(·)(ρ) = {xT
i : 0 < �

(

xT
l+1, . . . , x

T
s

)T
� < +∞},

here solution x(t, ·) =
(

xT
1(t, ·), . . . , x

T
l (t, ·)

)T
of the system (2.6.1) is as-

sumed to be continuable along
(

xT
l+1, . . . , x

T
s

)T
, i.e. solution

(

xT
1 , . . . , xT

s

)T

is definite for all t ∈ Tτ for which �
(

xT
1(t), . . . , xT

l (t)
)T

� ≤ ρ.
The construction of sufficient (and necessary) conditions ensuring mul-

tistability of zero solutions of (2.6.1) in terms of Definition 2.6.1 makes the
general problem on multistability of motion.

2.6.2 On the relationship of the definition of multistability with

the other notions of stability of motion

We shall recall the well known definition with reference to system (2.6.1).

Definition 2.6.2. The zero solution x1 = x2 = · · · = xs = 0 of system
(2.6.1) is

(i) stable relatively Ti if for any ε > 0 and t0 ∈ Ti there exist δ(t0, ε) >

0 such that
s

∑

i

�xi(t; t0, x0)� < ε for all
s

∑

i

�xi0� < δ and all t ≥ t0;

(ii) asymptotically stable relatively Ti if the conditions of Definition 2.6.2

(i) are satisfied and
s

∑

i=1

�xi(t; t0, x0)� → 0 as t → +∞.

Having compared Definition 2.6.1 with Definition 2.6.2, we see that if
all subvectors xi in system (2.6.1) are homogeneous with respect to the
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dynamical properties and in Definition 2.6.1 of stability one Euclidean norm

�x� =
s

∑

i=1

�xi� is used, Definition 2.6.1 of multistability degenerates into

Definition 2.6.2 of stability in the sense of Liapunov of the zero solution of
the system (2.6.1) iff Ti = R.

Definition 2.6.3. The zero solution of the system (2.6.1) is

(i) stable relatively the subvectors x1, . . . , xk (k < s) and respect to
Ti, if for every ε > 0 and t0 ∈ Ti there exist δ1(t0, ε) > 0 and

δ2(t0, ε) > 0 such that
k
∑

i=1

�xi(t; t0, xi0)� < ε for
k
∑

i=1

�xi0� < δ1

and
s

∑

i=k+1

�xi0� < δ2 for all t ≥ t0;

(ii) asymptotically stable with respect to the subvectors x1, . . . , xk (k <

s) relatively Ti if under conditions (i) of Definition 2.6.3 the relation
k
∑

i=1

�xi(t; t0, xi0)� → 0 holds for all t → +∞.

The comparison of Definition 2.6.1 and 2.6.3 shows that if the subvectors
xi, i < k are homogeneous relatively the dynamical properties and the
solution of the system (2.6.1) is continuable relatively xk+1, . . . , xs, the
Definition of multistability with respect to a part of the variables implies
Definition 2.6.1.

According as Movchan [147], Lakshmikantham and Salvadori [93], Lak-
shmikantham, Leela and Martynyuk [94] we consider the classes of functions

M = {ρ ∈ C(R+ × Rn, R+) : inf
(t,x)

ρ(t, x) = 0},

M0 = {ρ ∈ M : inf
x

ρ(t, x) = 0 for all t ∈ R+}.

Definition 2.6.4. System (2.6.1) is

(i) (ρ0, ρ)-stable with respect to Ti, if for any ε > 0 and t0 ∈ Ti there
exists a positive function δ(t0, ε), being continuous in t0 ∈ Ti for
every ε > 0 and such that ρ0(t0, x0) < δ implies ρ(t, x(t)) < ε for
all t ≤ t0;

(ii) asymptotically (ρ0, ρ)-stable with respect to Ti if under the conditions
of Definition 2.6.4 (i) ρ(t, x(t)) → 0 as t → +∞.

The comparison of Definitions 2.6.1 and 2.6.4 yields that the Definition
2.6.4 provides the general characteristics of the dynamical properties of the
subvectors xi, i = 1, 2, . . . , s, without distinguishing between them.
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Let us consider the system (2.6.1) and introduce the measures

ρ0 = ρ0(t, x1, . . . , xs) ∈ M0;

ρ1 = ρ1(t, x1, . . . , xs−1) ∈ M ;

. . .

ρs−1 = ρs−1(t, x1) ∈ M.

Definition 2.6.5. System (2.6.1) is multistable with respect to the mea-
sures (ρ0, . . . , ρs−1) relatively Ti, iff it is (ρ0, . . . , ρk)-stable in some type
(on Tτ ), k < s − 1.

Thus, the examination of Definitions 2.6.2 – 2.6.5 indicates that only Def-
inition 2.6.5 is a generalization of Definition 2.6.1, while the rest of the
definitions follow from it.

2.6.3 Multistability investigation

In order to apply the method of matrix Liapunov function to the problem
in question, we introduce classes of matrix-valued function with particular
properties.

Together with (2.6.1) we consider a two-indexed system of functions

(2.6.3) U(t, x) = [vij(t, x)] , i, j ∈ [1, s]

with vii ∈ C(Tτ × Rn, R+) and vij ∈ C(Tτ × Rn, R) for i �= j ∈ [1, s].
The notion of the definiteness of an auxiliary function (that is used in

the direct Liapunov’s method) is a main one, since this behaves as a scalar
function having all norm properties.

Definition 2.6.6. The matrix-valued function U: Tτ×B(1,l)×D(l+1,s)→

Rs×s is:

(i) positive definite on Tτ , τ ∈ R, with respect to variables (xT
1 , . . . , xT

l )
iff there exist time-invariant connected neighborhoods N ∗, N ∗ ⊂
Rl of x = 0 , a vector ϕ ∈ Rs

+, ϕ > 0 and a scalar positive definite
in the sence of Liapunov function w : N ∗ → R+ such that

(a) U(t, x) ∈ C
(

Tτ ×N ∗ × D(l+1,s), Rs×s
)

;

(b) U(t, x) = 0 for all t ∈ Tτ and (xT
1 , . . . , xT

l ) = 0;

(c) ϕTU(t, x)ϕ ≥ w(xT
1,l) for all (t, x �= 0, ϕ �= 0) ∈ Tτ×

N ∗ × D(l+1,s) × Rs
+, xT

1,l = (xT
1 , . . . , xT

l );
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Let us consider the system (2.6.1) and introduce the measures

ρ0 = ρ0(t, x1, . . . , xs) ∈ M0;

ρ1 = ρ1(t, x1, . . . , xs−1) ∈ M ;

. . .

ρs−1 = ρs−1(t, x1) ∈ M.

Definition 2.6.5. System (2.6.1) is multistable with respect to the mea-
sures (ρ0, . . . , ρs−1) relatively Ti, iff it is (ρ0, . . . , ρk)-stable in some type
(on Tτ ), k < s − 1.

Thus, the examination of Definitions 2.6.2 – 2.6.5 indicates that only Def-
inition 2.6.5 is a generalization of Definition 2.6.1, while the rest of the
definitions follow from it.

2.6.3 Multistability investigation

In order to apply the method of matrix Liapunov function to the problem
in question, we introduce classes of matrix-valued function with particular
properties.

Together with (2.6.1) we consider a two-indexed system of functions

(2.6.3) U(t, x) = [vij(t, x)] , i, j ∈ [1, s]

with vii ∈ C(Tτ × Rn, R+) and vij ∈ C(Tτ × Rn, R) for i �= j ∈ [1, s].
The notion of the definiteness of an auxiliary function (that is used in

the direct Liapunov’s method) is a main one, since this behaves as a scalar
function having all norm properties.

Definition 2.6.6. The matrix-valued function U: Tτ×B(1,l)×D(l+1,s)→

Rs×s is:

(i) positive definite on Tτ , τ ∈ R, with respect to variables (xT
1 , . . . , xT

l )
iff there exist time-invariant connected neighborhoods N ∗, N ∗ ⊂
Rl of x = 0 , a vector ϕ ∈ Rs

+, ϕ > 0 and a scalar positive definite
in the sence of Liapunov function w : N ∗ → R+ such that

(a) U(t, x) ∈ C
(

Tτ ×N ∗ × D(l+1,s), Rs×s
)

;

(b) U(t, x) = 0 for all t ∈ Tτ and (xT
1 , . . . , xT

l ) = 0;

(c) ϕTU(t, x)ϕ ≥ w(xT
1,l) for all (t, x �= 0, ϕ �= 0) ∈ Tτ×

N ∗ × D(l+1,s) × Rs
+, xT

1,l = (xT
1 , . . . , xT

l );
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(ii) positive definite on Tτ × G∗ with respect to variables (xT
1 , . . . , xT

l )
if conditions of Definition 2.6.6 (i) hold for B(1,l) = G∗;

(iii) positive definite in the whole (on Tτ ) with respect to variables (xT
1,l)

if condition of Definition 2.6.6 (i) hold for B(1,l) = Rl;
(iv) negative definite (in the whole) on Tτ × B(1,l) (on Tτ ) with respect

to variables (xT
1,l), iff (−U) is positive definite (in the whole) on

Tτ × B(1,l) (on Tτ ) with respect to variables (xT
1,l).

Proposition 2.6.1. The matrix-valued function U : Tτ×Rn → Rs×s is
positive definite on Tτ with respect to (xT

1 , . . . , xT
l ), iff it can be represented

in the form

(2.6.4) ϕTU(t, x)ϕ = ϕTU+(t, x)ϕ + w(xT
1 , . . . , xT

l ),

where U+(t, x) is positive semi-definite with respect to all variables (xT
1 , . . . ,

xT
s) and w is a function explicitly independent of t ∈ Tτ and positive definite

with respect to variables (xT
1 , . . . , xT

l ), l < s.

Proof. Necessity. Let the matrix-valued function U(t, x) be (xT
1 , . . . ,

xT
l ) positive definite on Tτ . Then, by Definition 2.6.6 there exists a positive

definite in the sense of Liapunov function w(xT
1 , . . . , xT

l ) such that on the
domain Tτ × B(1,l) × D(l+1,s) × Rs

+ condition (i) of Definition 2.6.6 is
satisfied. We introduce the function

ϕTU+(t, x)ϕ = ϕTU(t, x)ϕ − w(xT
1,l)

which, is non-negative by condition 2.6.6 (c). Hence the function ϕTU(t, x)ϕ
can be presented in the form (2.6.4).

Sufficiency. Let equality (2.6.4) be satisfied, where ϕTU+(t, x)ϕ ≥ 0
and w(xT

1,l) is a positive definite function with respect to the variables

(xT
1 , . . . , xT

l ). Then equality (2.6.4) implies

ϕTU(t, x)ϕ − w(xT
1,l) = ϕTU+(t, x)ϕ ≥ 0.

Hence condition 2.6.6 (c) for the function ϕTU(t, x)ϕ holds. This proves
the Proposition 2.6.1.

Proposition 2.6.2. The matrix-valued function U : Tτ×Rn → Rs×s is
positive definite on Tτ with respect to variables (xT

1 , . . . , xT
l ) (in the whole)

iff there exist function a ∈ K(KR) such that

(2.6.5) ϕTU(t, x)ϕ ≥ a
(

�(xT
1,l)

T�
)

in the domain Tτ ×N ∗ × D(l+1,s) × Rs
+.
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Definition 2.6.7. The matrix-valued function U : Tτ × Rn → Rs×s is
called

(i) decreasing on Tτ with respect to variables (xT
1 , . . . , xT

l ) iff there ex-

ists time-invariant connected neighborhood N ∗ ⊆ Rl of x = 0 ,
a positive definite function w2 : N ∗ → R+ and a vector ϕ ∈ Rs

+,

ϕ > 0 such that

(a) conditions (a), (b) of Definition 2.6.6 hold and

(b) ϕTU(t, x)ϕ ≥ w2(x
T
1,l) for all (t, x �= 0, ϕ �= 0) ∈ Tτ×

N ∗ × D(l+1,s) × Rs
+.

Proposition 2.6.3. The matrix-valued function U : Tτ×Rn → Rs×s is
decreasing on Tτ with respect to variables (xT

1 , . . . , xT
l ), iff it can be presented

in the form

(2.6.6) ϕTU(t, x)ϕ = ϕTU−(t, x)ϕ + w2(x
T
1 , . . . , xT

l ),

where U−(t, x) is negative semi-definite with respect to all of variables
(xT

1 , . . . , xT
s), and w2 is independent of t ∈ Tτ positive definite function

of variables (xT
1 , . . . , xT

l ), l < s.

Proof. Repeating the same argument as in Proposition 2.6.1, one can
show there is a matrix-valued function U(t, x) for which the condition
(2.6.6) holds.

Proposition 2.6.4. The matrix-valued function U : Tτ × Rn → Rs×s

is decreasing on Tτ × N ∗ with respect to variables (xT
1 , . . . , xT

l ) iff there

exist a function b ∈ K[0,α], where α = sup{xT
1,l ∈ N ∗} and estimate

(2.6.7) ϕTU(t, x)ϕ ≤ b
(

�(xT
1,l)

T�
)

holds for all (t, x) ∈ Tτ ×N ∗ × D(l+1,s) × Rs
+.

Let U ∈ C(Tτ × Rn, Rs×s). The right-hand upper Dini derivative of
functions U(t, x) along solutions of the system (2.6.1) are defined by

(2.6.8) D+U(t, x) =
[

D+vij(t, x)
]

∀ i, j ∈ [1, s],

where

D+vij(t, x) = lim sup
{

[vij(t + θ, x + θf(t, x)) − vij(t, x)] θ−1 : θ → 0+
}

.
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Definition 2.6.7. The matrix-valued function U : Tτ × Rn → Rs×s is
called

(i) decreasing on Tτ with respect to variables (xT
1 , . . . , xT

l ) iff there ex-

ists time-invariant connected neighborhood N ∗ ⊆ Rl of x = 0 ,
a positive definite function w2 : N ∗ → R+ and a vector ϕ ∈ Rs

+,

ϕ > 0 such that

(a) conditions (a), (b) of Definition 2.6.6 hold and

(b) ϕTU(t, x)ϕ ≥ w2(x
T
1,l) for all (t, x �= 0, ϕ �= 0) ∈ Tτ×

N ∗ × D(l+1,s) × Rs
+.

Proposition 2.6.3. The matrix-valued function U : Tτ×Rn → Rs×s is
decreasing on Tτ with respect to variables (xT

1 , . . . , xT
l ), iff it can be presented

in the form

(2.6.6) ϕTU(t, x)ϕ = ϕTU−(t, x)ϕ + w2(x
T
1 , . . . , xT

l ),

where U−(t, x) is negative semi-definite with respect to all of variables
(xT

1 , . . . , xT
s), and w2 is independent of t ∈ Tτ positive definite function

of variables (xT
1 , . . . , xT

l ), l < s.

Proof. Repeating the same argument as in Proposition 2.6.1, one can
show there is a matrix-valued function U(t, x) for which the condition
(2.6.6) holds.

Proposition 2.6.4. The matrix-valued function U : Tτ × Rn → Rs×s

is decreasing on Tτ × N ∗ with respect to variables (xT
1 , . . . , xT

l ) iff there

exist a function b ∈ K[0,α], where α = sup{xT
1,l ∈ N ∗} and estimate

(2.6.7) ϕTU(t, x)ϕ ≤ b
(

�(xT
1,l)

T�
)

holds for all (t, x) ∈ Tτ ×N ∗ × D(l+1,s) × Rs
+.

Let U ∈ C(Tτ × Rn, Rs×s). The right-hand upper Dini derivative of
functions U(t, x) along solutions of the system (2.6.1) are defined by

(2.6.8) D+U(t, x) =
[

D+vij(t, x)
]

∀ i, j ∈ [1, s],

where

D+vij(t, x) = lim sup
{

[vij(t + θ, x + θf(t, x)) − vij(t, x)] θ−1 : θ → 0+
}

.
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2.6.4 Principle of comparison and multistability

The investigation of multistability of the solution of systems of differential
equations (2.6.1) via the comparison technique assumes the presence of the
corresponding comparison theorems.

2.6.4.1 The functions of SL-class. All scalar functions of the type

(2.6.9) v(t, x, a) = aTU(t, x)a,

where U ∈ C(Tτ × Rn, Rs×s) are attributed to the class SL.
The vector a can be defined as

(i) a = y ∈ Rs, y �= 0;

(ii) a = ψ ∈ C(Rn, Rs
+), ψ(0) = 0;

(iii) a = θ ∈ C(Tτ × Rn, Rs) θ(t, 0) = 0, ∀ (t, x) ∈ Tτ ×N ;

(iv) a = ϕ ∈ Rs
+, ϕ > 0.

Applying function (2.6.9) and quasimonotone nondecreasing in u for each
t function g : g ∈ C(R2

+, R), g(t, 0) = 0 we shall formulate the following
comparison result.

Proposition 2.6.5. Let the function U : Tτ × Rn → Rs×s be locally
Lipschitzian in x. Suppose that the function

(2.6.10) ϕTD+U(t, x)ϕ � D+v(t, x, ϕ)

and the function g ∈ C(R+ × Rn × R+, R) such that

D+v(t, x, ϕ) ≤ g(t, x, v(t, x, ϕ))

holds for (t, x, ϕ) ∈ R+ ×Rn ×Rs
+. Let x(t) = x(t; t0, x0) be a solution of

(2.6.1) existing on [t0,∞) and r(t; t0, x0, u0) be the maximal solution of

(2.6.11)
du

dt
= g(t, x(t), u), u(t0) = u0 ≥ 0

existing for t ≥ t0. Then v(t0, x0, ϕ) ≤ u0 implies

(2.6.12) v(t, x(t), ϕ) ≤ r(t; t0, x0, u0), t ≥ t0.
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Proof is similar to the proof of Proposition 2.4.3.

Corollary 2.6.1. If all conditions of Proposition 2.6.5 are satisfied
and function g(t, x, v) satisfies either of the conditions

C1. g(t, x, v) = 0 for all t ≥ t0;
C2. g(t, x, v) = ψTAψ, where ψ ∈ C(Rn, Rs

+), ψ(0) = 0, A is a con-
stant matrix s × s;

C3. g(t, x, v) = wTBw + r(t, w, ϕ), where w ∈ C(Rn, Rs
+), B is a

constant matrix s × s, r ∈ C(R+ × Rs
+ × Rs

+, R) is a polynomial
in power higher than two;

C4. g(t, x, v) = W (t, w, ϕ) + r∗(t, w, ϕ), where W ∈ C(R+ × Rs
+ ×

Rs
+, R) is atleast a second-power polynomial, and r∗ is the same

polynomial as in case C3;
C5. g(t, x, v) = wT(x)

[

ATB + BA
]

w(x), where w ∈ C(Rn, Rs), A ∈

Rs×s, b ∈ Rs, B = diag (b1, . . . , bs), then estimate (2.6.12) is sat-
isfied, and the investigation of comparison equation (2.6.11) is sim-
plified.

2.6.4.2 The functions of VL-class. All vector functions of the type

(2.6.13) L(t, x, b) = AU(t, x)b,

where U ∈ C(Tτ × Rn, Rs×s), A is a constant matrix s × s, and vector b

is defined according to (i) – (iv) similarly to the definition of the vector a.

For any function U(t, x), which is associated with system (2.6.1) we shall
define the function

(2.6.14) D+L(t, x, ϕ) = AD+U(t, x)ϕ

for all (t, x, ϕ) ∈ Tτ × Rn × Rs
+.

Proposition 2.6.6. Let there exist

(1) a matrix-valued function U ∈ C(Tτ × Rn, Rs×s) such that U(t, x)
is locally Lipschitzian in x;

(2) a constant s × s matrix A, a vector ϕ ∈ Rs
+ and vector y ∈ Rn

such that

yTL(t, x, ϕ) ≥ a(�x�),

where a ∈ K;
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Proof is similar to the proof of Proposition 2.4.3.

Corollary 2.6.1. If all conditions of Proposition 2.6.5 are satisfied
and function g(t, x, v) satisfies either of the conditions

C1. g(t, x, v) = 0 for all t ≥ t0;
C2. g(t, x, v) = ψTAψ, where ψ ∈ C(Rn, Rs

+), ψ(0) = 0, A is a con-
stant matrix s × s;

C3. g(t, x, v) = wTBw + r(t, w, ϕ), where w ∈ C(Rn, Rs
+), B is a

constant matrix s × s, r ∈ C(R+ × Rs
+ × Rs

+, R) is a polynomial
in power higher than two;

C4. g(t, x, v) = W (t, w, ϕ) + r∗(t, w, ϕ), where W ∈ C(R+ × Rs
+ ×

Rs
+, R) is atleast a second-power polynomial, and r∗ is the same

polynomial as in case C3;
C5. g(t, x, v) = wT(x)

[

ATB + BA
]

w(x), where w ∈ C(Rn, Rs), A ∈

Rs×s, b ∈ Rs, B = diag (b1, . . . , bs), then estimate (2.6.12) is sat-
isfied, and the investigation of comparison equation (2.6.11) is sim-
plified.

2.6.4.2 The functions of VL-class. All vector functions of the type

(2.6.13) L(t, x, b) = AU(t, x)b,

where U ∈ C(Tτ × Rn, Rs×s), A is a constant matrix s × s, and vector b

is defined according to (i) – (iv) similarly to the definition of the vector a.

For any function U(t, x), which is associated with system (2.6.1) we shall
define the function

(2.6.14) D+L(t, x, ϕ) = AD+U(t, x)ϕ

for all (t, x, ϕ) ∈ Tτ × Rn × Rs
+.

Proposition 2.6.6. Let there exist

(1) a matrix-valued function U ∈ C(Tτ × Rn, Rs×s) such that U(t, x)
is locally Lipschitzian in x;

(2) a constant s × s matrix A, a vector ϕ ∈ Rs
+ and vector y ∈ Rn

such that

yTL(t, x, ϕ) ≥ a(�x�),

where a ∈ K;
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(3) a vector function G ∈ C(Tτ ×Rn ×Rs
+, Rs) such that G(t, x, u) is

quasimonotone nondecreasing in u for every t ∈ R+ such that the
estimate

(2.6.15) D+L(t, x, ϕ) ≤ G (t, x, L(t, x, ϕ))

holds;
(4) let x(t; t0, x0) be any solution of (2.6.1) existing on [t0,∞) and

w(t; t0, w0, x0) be the maximal solution of

(2.6.16)
du

dt
= G(t, x, u), u(t0) = w0 ≥ 0

existing for t ≥ t0. Then L(t0, x0, ϕ) ≤ w0 implies

(2.6.17) L(t, x(t), ϕ) ≤ w(t; t0, w0, x0) t ≥ t0.

Proof. It is proved in a standard way by the comparison method (see
e.g. Lakshmikantham, Leela and Martynyuk [94]).

Corollary 2.6.2. Let conditions (1) and (2) of Proposition 2.6.6 be
satisfied and in conditions (3) and (4) the function G ∈ C(Tτ × Rn, Rs).
Then, estimate (2.6.17) is satisfied for the maximal solution w∗(t; t0, w0) of
the comparison system

(2.6.18)
du

dt
= G(t, u), u(t0) = u0 ≥ 0.

Corollary 2.6.3. Let conditions (1) and (2) Proposition 2.6.6 be sat-
isfied and the function G(t, x, L) have the form

G(t, x, L(t, x, ϕ)) = PL(t, x, ϕ) + m(t, L(t, x, ϕ)),

where P = [pij ] is a s × s matrix with elements pij ≥ 0 (i �= j) and
m ∈ C(Tτ × Rs, Rs) is quasimonotone in L and

lim
�L�→0

�m(t, L)�

�L�
= 0

uniformly in t ≥ t0.
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Then, estimate (2.6.18) is true for the maximal solution w(t; t0, w0) of
the comparison system

du

dt
= Pu + m(t, u), u(t0) = w0 ≥ 0.

2.6.4.3 The functions of ML-class. In order to formulate the theorem of
comparison with matrix-valued Liapunov function relatively to arbitrary
cone K in space Rn we shall need some auxiliary information. Following
Lakshmikantham, Leela and Martynyuk [94] a proper subset K ⊂ Rn is
called a cone if the following properties hold:

(2.6.19)
λK ⊂ K, λ ≥ 0, K + K ⊂ K, K = K

K ∩ {−K} = {0} and int K �= ∅

where K denotes the closure of K, int K is the interior of K. We shall
denote by ∂K the boundary of K. The cone K induces the order relations
on Rn defined by

(2.6.20)
x

K

≤ y iff y − x ∈ K and

x
K
< y iff y − x ∈ int K.

The set K∗ defined by K∗ = {ϕ ∈ Rn : ϕ(x) ≥ 0 for all x ∈ K}, where
ϕ(x) denotes the scalar product �ϕ, x�, is called the adjoint cone and satis-
fies the properties (2.6.19).

We note that K = (K∗)
∗

, x ∈ int K iff ϕ(x) > 0 for all ϕ ∈ K∗

0 and
x ∈ ∂K iff ϕ(x) = 0 for some ϕ ∈ K∗

0 , where K0 = K − {0}.
We can now define as quasimonotone property a function relative to the

cone K.
A function f ∈ C(Rn, Rn) is said to be quasimonotone nondecreasing

relative to K if x
K

≤ y and ϕ(x − y) = 0 for some ϕ ∈ K∗

0 implies
ϕ (f(x) − f(y)) ≤ 0.

If f is linear, that is, f(x) = Ax where A is an n by n matrix, the
quasimonotone property of f means the following: x ≥ 0 and ϕ(x) = 0
for some ϕ ∈ K∗

0 imply ϕ(Ax) ≥ 0.
If K = Rn

+, the function f is said to be quasimonotone nondecreasing if
x < y and xi = yi for some i, 1 ≤ i ≤ n, implies fi(x) ≤ fi(y).
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Then, estimate (2.6.18) is true for the maximal solution w(t; t0, w0) of
the comparison system

du

dt
= Pu + m(t, u), u(t0) = w0 ≥ 0.

2.6.4.3 The functions of ML-class. In order to formulate the theorem of
comparison with matrix-valued Liapunov function relatively to arbitrary
cone K in space Rn we shall need some auxiliary information. Following
Lakshmikantham, Leela and Martynyuk [94] a proper subset K ⊂ Rn is
called a cone if the following properties hold:

(2.6.19)
λK ⊂ K, λ ≥ 0, K + K ⊂ K, K = K

K ∩ {−K} = {0} and int K �= ∅

where K denotes the closure of K, int K is the interior of K. We shall
denote by ∂K the boundary of K. The cone K induces the order relations
on Rn defined by

(2.6.20)
x

K

≤ y iff y − x ∈ K and

x
K
< y iff y − x ∈ int K.

The set K∗ defined by K∗ = {ϕ ∈ Rn : ϕ(x) ≥ 0 for all x ∈ K}, where
ϕ(x) denotes the scalar product �ϕ, x�, is called the adjoint cone and satis-
fies the properties (2.6.19).

We note that K = (K∗)
∗

, x ∈ int K iff ϕ(x) > 0 for all ϕ ∈ K∗

0 and
x ∈ ∂K iff ϕ(x) = 0 for some ϕ ∈ K∗

0 , where K0 = K − {0}.
We can now define as quasimonotone property a function relative to the

cone K.
A function f ∈ C(Rn, Rn) is said to be quasimonotone nondecreasing

relative to K if x
K

≤ y and ϕ(x − y) = 0 for some ϕ ∈ K∗

0 implies
ϕ (f(x) − f(y)) ≤ 0.

If f is linear, that is, f(x) = Ax where A is an n by n matrix, the
quasimonotone property of f means the following: x ≥ 0 and ϕ(x) = 0
for some ϕ ∈ K∗

0 imply ϕ(Ax) ≥ 0.
If K = Rn

+, the function f is said to be quasimonotone nondecreasing if
x < y and xi = yi for some i, 1 ≤ i ≤ n, implies fi(x) ≤ fi(y).
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We consider the system

(2.6.21)
dz

dt
= g(t, z), g(t, 0) = 0,

where g ∈ C(R+ × Rn, Rn), g(t, z) is a locally Lipschitzian in z. Let
z1(t; t0, z10), z2(t; t0, z20) be solutions of the system (2.6.21) with the initial
conditions (t0, z10) and (t0, z20) respectively.

Definition 2.6.8. We shall say that system (2.6.21) has monotone
(strictly) solutions, if

z20 − z10 ∈ K, z20 �= z10

imply the inclusions

z2(t) − z1(t) ∈ K (z2(t) − z1(t) ∈ int K)

for all t ≥ t0 respectively.

Definition 2.6.9. System (2.6.21) is said to belong the class W0(K)
(Ws(K)) if (z − y) ∈ ∂K, z �= y implies the inequalities

g(t, z) − g(t, y) ≥ 0 (g(t, z) − g(t, y) > 0)

respectively.

Definition 2.6.10. The operator p(t, z) is positive on J1×D if z ∈ D

implies p(t, z) ≥ 0 for all t ∈ J1, with respect to the cone K.

We shall formulate now a basic Proposition of the principle of comparison
in the space, ordered by an arbitrary cone.

Proposition 2.6.7. Let

(1) there exists a function g(t, z) ∈ W0(K) continuous in open (t, z)
set J1 × D and satisfying the uniqueness conditions of solutions
z(t; t0, z0) of system

(2.6.22)
dz

dt
= g(t, z), z(t0) = z0;

(2) there exists a function h(t, y) continuous on open (t, y) set J2×D ⊂
J1 × D, J2 ⊆ J1 such that g(t, y) − h(t, y) = p(t, y), where p(t, y)
is a positive operator on set J0 × D, where J0 = J1 ∩ J2.
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Then satisfy the relation
z(t) − y(t) ∈ K

whenever z0 − y0 ∈ K, where y(t) is an arbitrary solution of the system

(2.6.23)
dy

dt
= h(t, y), y(t0) = y0.

Proof. Together with system (2.6.21) consider a weakly perturbed sys-
tem

(2.6.24)
dz

dt
= g(t, z) + ε(z, u∗)u,

where u ∈ K, u∗ ∈ K∗ and ε ∈ (0, ε∗), the solution z(t, ε) = z(t; t0, z0, ε)
of which exists on [t0, τ ], where τ ∈ J0 and lim

ε→0
z(t, ε) = z(t) uniform on

[t0, τ), where z(t) is a solution of system (2.6.22). Let z(t, ε) − y(t) /∈ K

for all t ∈ [t0, τ). Then there exists a t∗ ∈ [t0, τ ] such that

z(t, ε) − y(t) ∈ K for all t ∈ [t0, t
∗)

and z(t, ε) − y(t) /∈ K for the values t > t∗ arbitrarily close to t∗. For
t = t∗ the inclusion

(2.6.25) z(t∗, ε) − y(t∗) ∈ ∂K

and the condition

(2.6.26) z(t∗, ε) �= y(t∗)

are satisfied. For the function m(t, ε) = z(t, ε) − y(t) we make the differ-
ential equation, in view of the system of equations (2.6.22) and (2.6.23).
Namely

dm

dt
= g(t, z) + ε(z, u∗)u − h(t, y)

= g(t, z) − g(t, y) + g(t, y) − h(t, y) + ε(z, u∗)u.

By condition (2) of Proposition 2.6.7

(2.6.27)
dm

dt
= g(t, z) − g(t, y) + p(t, y) + ε(z, u∗)u,
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Then satisfy the relation
z(t) − y(t) ∈ K

whenever z0 − y0 ∈ K, where y(t) is an arbitrary solution of the system

(2.6.23)
dy

dt
= h(t, y), y(t0) = y0.

Proof. Together with system (2.6.21) consider a weakly perturbed sys-
tem

(2.6.24)
dz

dt
= g(t, z) + ε(z, u∗)u,

where u ∈ K, u∗ ∈ K∗ and ε ∈ (0, ε∗), the solution z(t, ε) = z(t; t0, z0, ε)
of which exists on [t0, τ ], where τ ∈ J0 and lim

ε→0
z(t, ε) = z(t) uniform on

[t0, τ), where z(t) is a solution of system (2.6.22). Let z(t, ε) − y(t) /∈ K

for all t ∈ [t0, τ). Then there exists a t∗ ∈ [t0, τ ] such that

z(t, ε) − y(t) ∈ K for all t ∈ [t0, t
∗)

and z(t, ε) − y(t) /∈ K for the values t > t∗ arbitrarily close to t∗. For
t = t∗ the inclusion

(2.6.25) z(t∗, ε) − y(t∗) ∈ ∂K

and the condition

(2.6.26) z(t∗, ε) �= y(t∗)

are satisfied. For the function m(t, ε) = z(t, ε) − y(t) we make the differ-
ential equation, in view of the system of equations (2.6.22) and (2.6.23).
Namely

dm

dt
= g(t, z) + ε(z, u∗)u − h(t, y)

= g(t, z) − g(t, y) + g(t, y) − h(t, y) + ε(z, u∗)u.

By condition (2) of Proposition 2.6.7

(2.6.27)
dm

dt
= g(t, z) − g(t, y) + p(t, y) + ε(z, u∗)u,
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where p(t, y) is a positive operator. By conditions (1) and (2) of Proposition
2.6.7 p(t∗, y) ≥ 0 and g(t∗, z)− g(t∗, y) ≥ 0 whenever (z − y) ∈ ∂K. The
last condition is satisfied due to (2.6.25) and (2.6.26). The item ε(z, u∗)u
is also non-negative, since u ∈ K and u∗ ∈ K∗.

We confront with the set of point m from the boundary of cone K the
indicatory function δ(· | K), setting

δ(m | K) =

{

0, if m ∈ K;

+∞, if m /∈ K.

For the indicatory function δ(m | K) we compute the subgradient γ(m)
and scalar multiply the right and left side of the equation by γ(m). We get

(

γ,
dm

dt

)

< −α, α = const > 0

at point t = t∗. Therefore, m(t, ε) will not leave the cone K for all t > t∗

as ε → 0. The proof is complete.

2.6.5 The system (2.6.1) analysis for s = 2

For the system (2.6.1) we construct a matrix-valued function

(2.6.28) U(t, x) = [vij(t, x)] , i, j = 1, 2,

where x ∈ RN0 , N0 = n1 + n2 and vij is locally Lipschitzian in x. With
the aid of vector y ∈ R2, y �= 0 we construct a scalar function

(2.6.29) v(t, x, y) = yTU(t, x)y.

Function (2.6.29) allows us to investigate multistability of the system under
definite conditions.

2.6.5.1 Direct application of matrix-valued function. Suppose that system
(2.6.1) is defined in domain

(2.6.30) Tτ × B1(ρ) × B2(ρ), ρ = const > 0

and the following stability definition holds true for it.
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Definition 2.6.11. System (2.6.1) is called multistable (on Tτ ) if its

zero solution
(

xT
1 , xT

2

)T
= 0 is

(i) uniformly
(

xT
1 , xT

2

)

-stable with respect to Ti;

(ii) uniformly asymptotically xT
2-stable with respect to Ti.

Theorem 2.6.1. Let vector-function f =
(

fT
1 , fT

2

)T
in (2.6.1) continu-

ous on R × B1(ρ) × B2(ρ) on (Tτ × B1(ρ) × B2(ρ)). If there exists

(1) open connected time-invariant neighborhood G of x = 0 ;
(2) matrix-valued function U(t, x) is

(a) positive definite on G (on Tτ × G);

(b) decreasing on G (on Tτ × G);

(3) matrix-valued function D+U(t, x) is
(a) negative semi-definite on R × G (on Tτ × G);

(b) xT
2-negative definite on R × G (on Tτ × G).

Then system (2.6.1) is multistability (on Tτ ) in the sense of Definition
2.6.11.

Proof. If conditions (1), (2), (3)(a) of the Theorem 2.6.1 hold for sys-
tem (2.6.1) with function (2.6.29), then all hypotheses of Theorem 2.5.1 are
fulfilled and state (x = 0) ∈ RN0 is uniformly stable (on Tτ ).

If conditions (1), (2), (3)(b) of Theorem 2.6.1 hold for system (2.6.1)
with function (2.6.29), then all hypotheses of Theorem 2.5.3 are fulfilled
and state (x = 0) ∈ RN0 is uniformly asymptotically xT

2-stable (on Tτ ).
The Theorem 2.6.1 is proved.

Further we suppose that multistability of (2.6.1) for s = 2 is investigated
in the domain

(2.6.31) Tτ × B1(ρ) × D2, D2 = {x2 : 0 < �x2� < +∞}.

The next result can be easily verified (see e.g. Martynyuk [122]).

Theorem 2.6.2. Let vector function f =
(

fT
1 , fT

2

)T
in (2.6.1) be con-

tinuous on R × B1(ρ) × D2 (on Tτ × B1(ρ) × D2). If there exists

(1) an open connected time-invariant neighborhood G of (x = 0) ∈ Rn1 ;
(ii) matrix-valued function U(t, x) is

(a) xT
1-positive definite on G (on Tτ × G);

(b) decreasing on G (on Tτ × G);

(c) xT
1-decreasing on G (on Tτ × G);
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Definition 2.6.11. System (2.6.1) is called multistable (on Tτ ) if its

zero solution
(

xT
1 , xT

2

)T
= 0 is

(i) uniformly
(

xT
1 , xT

2

)

-stable with respect to Ti;

(ii) uniformly asymptotically xT
2-stable with respect to Ti.

Theorem 2.6.1. Let vector-function f =
(

fT
1 , fT

2

)T
in (2.6.1) continu-

ous on R × B1(ρ) × B2(ρ) on (Tτ × B1(ρ) × B2(ρ)). If there exists

(1) open connected time-invariant neighborhood G of x = 0 ;
(2) matrix-valued function U(t, x) is

(a) positive definite on G (on Tτ × G);

(b) decreasing on G (on Tτ × G);

(3) matrix-valued function D+U(t, x) is
(a) negative semi-definite on R × G (on Tτ × G);

(b) xT
2-negative definite on R × G (on Tτ × G).

Then system (2.6.1) is multistability (on Tτ ) in the sense of Definition
2.6.11.

Proof. If conditions (1), (2), (3)(a) of the Theorem 2.6.1 hold for sys-
tem (2.6.1) with function (2.6.29), then all hypotheses of Theorem 2.5.1 are
fulfilled and state (x = 0) ∈ RN0 is uniformly stable (on Tτ ).

If conditions (1), (2), (3)(b) of Theorem 2.6.1 hold for system (2.6.1)
with function (2.6.29), then all hypotheses of Theorem 2.5.3 are fulfilled
and state (x = 0) ∈ RN0 is uniformly asymptotically xT

2-stable (on Tτ ).
The Theorem 2.6.1 is proved.

Further we suppose that multistability of (2.6.1) for s = 2 is investigated
in the domain

(2.6.31) Tτ × B1(ρ) × D2, D2 = {x2 : 0 < �x2� < +∞}.

The next result can be easily verified (see e.g. Martynyuk [122]).

Theorem 2.6.2. Let vector function f =
(

fT
1 , fT

2

)T
in (2.6.1) be con-

tinuous on R × B1(ρ) × D2 (on Tτ × B1(ρ) × D2). If there exists

(1) an open connected time-invariant neighborhood G of (x = 0) ∈ Rn1 ;
(ii) matrix-valued function U(t, x) is

(a) xT
1-positive definite on G (on Tτ × G);

(b) decreasing on G (on Tτ × G);

(c) xT
1-decreasing on G (on Tτ × G);
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(3) matrix-valued function D+U(t, x) is
(a) negative semi-definite on R × G (on Tτ × G);

(b) xT
1-negative definite on R × G (on Tτ × G);

(c) negative definite on R × G (on Tτ × G).

Then, respectively

(a) the conditions (1), (2)(a) and (3)(a) are sufficient for stability of
state (x = 0) ∈ RN0 of (2.6.1) (on Tτ );

(b) the conditions (1), (2)(a), (2)(b) and (3)(a) are sufficient for uni-

form xT
1-stability of state (x = 0) ∈ RN0 of (2.6.1) (on Tτ );

(c) the conditions (1), (2)(a) and (3)(c) are sufficient for asymptotic

xT
1-stability of state (x = 0) ∈ RN0 of (2.6.1) (on Tτ );

2.6.5.2 The application of matrix-valued Liapunov function via transition
to vector function. Basing on matrix-valued function U(t, x) and vector
y ∈ Rs, y �= 0, s = 2 we construct a vector function

(2.6.32) L(t, x, y) = AU(t, x)y

where A is a constant 2 by 2 matrix. Consider a system of comparison

(2.6.33)
du

dt
= G(t, u), u(t0) = u0 ≥ 0

where u ∈ R2
+, G(t, u) = (g1(t, u1), g2(t, u1, u2))

T
, g1 ∈ C(Tτ × R+, R),

g2 ∈ C(Tτ × R+ × R+, R)

g1(t, 0) = g2(t, 0, 0) = 0 for all t ∈ Tτ .

Definition 2.6.12. A comparison system (2.6.33) is called multistable
(on Tτ ), if its zero solution is

(i) u1-stable with respect to Tτ ;

(ii) uniformly u2-stable with respect to Tτ .
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Theorem 2.6.3. Let vector function f =
(

fT
1 , fT

2

)T
in (2.6.1) be con-

tinuous on R × B1(ρ) × D2 (on Tτ × B1(ρ) × D2). If there exists

(1) a matrix-valued function U : Tτ × B1(ρ) × D2 → R2×2, vector
y ∈ R2, y �= 0 and a constant matrix A 2 by 2 such that com-
ponents Li(t, x, y), i = 1, 2 of vector function (2.6.32) are locally
Lipschitzian in x and satisfy the conditions

(a) L1(t, 0, y) = 0 ∀ t ∈ R (t ∈ Tτ );

(b) a(�x1�) ≤ L2(t, x, y) ≤ b(�x1�) + b1 (L1(t, x, y))
for all (t, x) ∈ Tτ × B1(ρ) × D2 ∩ Bc

1(η) when each
0 < η < ρ;

(2) a vector function g ∈ C(Tτ × R2
+, R2), G(t, u) is quasimonotone

nondecreasing with respect to u for the components of which

(a) D+L1(t, x, y) ≤ g1 (t, L1(t, x, y), 0)
hold for all (t, x) ∈ Tτ × B1(ρ) × D2 , and

(b) D+L2(t, x, y) ≤ g2 (t, L1(t, x, y), L2(t, x, y))
hold for all (t, x) ∈ Tτ ×B1(ρ)×D2 ∩Bc

1(η) for o < η < ρ;

(3) zero solution of system (2.6.33) is multistable (on Tτ )in the sense
of Definition 2.6.12.

Then the system (2.6.1) is xT
1-stable (on Tτ ).

Proof. Let (t0, ε) : t0 ∈ Ti and 0 < ε, ρ be given. It follows from
condition (3) of the theorem that for given ε1, ε2 > 0 and t0 ∈ Ti there
exist δ10 = δ10(t0, ε1) > 0 and δ20 = δ20(ε2) > 0 such that

(a) ηTu0 < δ10 implies that u1(t; t0, u0) < ε1 ∀ t ≥ t0 and
(b) ηTu0 < δ20 implies that u2(t; t0, u0) < ε2 ∀ t ≥ t0.

Let ε2 = a(ε) and ε1 = b−1
1

(

1

2
δ20

)

. It follows from the continuity of the

function L1(t; x, y) and condition (1)(a) that there exists δ1 = δ1(t0, ε) > 0
such that

L1(t0, x0, y) < δ10 and �x0� < δ1.

Let δ = min (δ1, δ2). It is clear that δ depends on t0 ∈ Ti and on 0 < ε < ρ.
For δ defined in this way, we can assert that the zero solution of (2.6.1) is
xT

1-stable (on Tτ )with respect to Ti.

Assume the countary, i.e., that the zero solution of (2.6.1) is not xT
1-

stable (on Tτ )when all the conditions of Theorem 2.6.3 are fulfilled. Then
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Theorem 2.6.3. Let vector function f =
(

fT
1 , fT

2

)T
in (2.6.1) be con-

tinuous on R × B1(ρ) × D2 (on Tτ × B1(ρ) × D2). If there exists

(1) a matrix-valued function U : Tτ × B1(ρ) × D2 → R2×2, vector
y ∈ R2, y �= 0 and a constant matrix A 2 by 2 such that com-
ponents Li(t, x, y), i = 1, 2 of vector function (2.6.32) are locally
Lipschitzian in x and satisfy the conditions

(a) L1(t, 0, y) = 0 ∀ t ∈ R (t ∈ Tτ );

(b) a(�x1�) ≤ L2(t, x, y) ≤ b(�x1�) + b1 (L1(t, x, y))
for all (t, x) ∈ Tτ × B1(ρ) × D2 ∩ Bc

1(η) when each
0 < η < ρ;

(2) a vector function g ∈ C(Tτ × R2
+, R2), G(t, u) is quasimonotone

nondecreasing with respect to u for the components of which

(a) D+L1(t, x, y) ≤ g1 (t, L1(t, x, y), 0)
hold for all (t, x) ∈ Tτ × B1(ρ) × D2 , and

(b) D+L2(t, x, y) ≤ g2 (t, L1(t, x, y), L2(t, x, y))
hold for all (t, x) ∈ Tτ ×B1(ρ)×D2 ∩Bc

1(η) for o < η < ρ;

(3) zero solution of system (2.6.33) is multistable (on Tτ )in the sense
of Definition 2.6.12.

Then the system (2.6.1) is xT
1-stable (on Tτ ).

Proof. Let (t0, ε) : t0 ∈ Ti and 0 < ε, ρ be given. It follows from
condition (3) of the theorem that for given ε1, ε2 > 0 and t0 ∈ Ti there
exist δ10 = δ10(t0, ε1) > 0 and δ20 = δ20(ε2) > 0 such that

(a) ηTu0 < δ10 implies that u1(t; t0, u0) < ε1 ∀ t ≥ t0 and
(b) ηTu0 < δ20 implies that u2(t; t0, u0) < ε2 ∀ t ≥ t0.

Let ε2 = a(ε) and ε1 = b−1
1

(

1

2
δ20

)

. It follows from the continuity of the

function L1(t; x, y) and condition (1)(a) that there exists δ1 = δ1(t0, ε) > 0
such that

L1(t0, x0, y) < δ10 and �x0� < δ1.

Let δ = min (δ1, δ2). It is clear that δ depends on t0 ∈ Ti and on 0 < ε < ρ.
For δ defined in this way, we can assert that the zero solution of (2.6.1) is
xT

1-stable (on Tτ )with respect to Ti.

Assume the countary, i.e., that the zero solution of (2.6.1) is not xT
1-

stable (on Tτ )when all the conditions of Theorem 2.6.3 are fulfilled. Then
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for the solution x(t; t0, x0) of (2.6.1) with initial conditions t0 ∈ Ti and
�x0� < δ there exists a time t2 > t1 > t0 such that

(2.6.34)
�x1(t2)� = ε < ρ, �x1(t1)� = δ2(ε)

x2(t) ∈ N(1,2)(ρ) ∩N c
(1,2)(η), η = δ2(ε) > 0

at the same time that �x2(t)� < +∞.
Let m(t) = L (t, x(t), y); in view of condition (2) of the theorem we

obtain

D+m1(t) ≤ g1 (t, m1(t), 0) , t0 ≤ t ≤ t2;(2.6.35)

D+m2(t) ≤ g2 (t, m(t)) , t1 ≤ t ≤ t2.(2.6.36)

Let u∗(t) = u (t; t1, m(t1)) ≥ 0 be the extension of u(t) to the left from t1
to t0, and let u∗(t0) = u∗

0. We assume that L1(t0, x0, y) = u1(t0) and that
u∗(t0) = u0.

From the differential inequality

D+m1(t) ≤ g1 (t, m1(t), u
∗

2(t)) , m1(t0) = u1(t0)

and the comparison theorem we have

(2.6.37) m1(t) ≤ u1(t; t0, u0), t0 ≤ t ≤ t1, u0 = (u1(t0), u2(t0))
T
.

From this it is clear that u(t) = (u1(t; t0, u0), u∗

2 (t; t1, m(t1)))
T

is a solution
of (2.6.33) on [t0, t1]. From condition (1) of Theorem 2.6.3 and inequalities
(2.6.34), (2.6.35) and (2.6.37) we obtain

(2.6.38) a(ε) = a (�x1(t2)�) < L2 (t2, x(t2), y) ≤ u2 (t2; t1, m(t1)) .

From the fact that

L1 (t1, x(t1), y) ≤ u1(t1; t0, u0) < b−1
1

(

1

2
δ20

)

as soon as ηTu0 < δ10 and also from conditions (2.6.34), we have, by
condition (1)(a)

(2.6.39)

L2 (t1, x(t1), y) ≤ b (�x1(t)�) + b1 (L1 (t1, x(t1), y))

≤ b (δ2(ε)) + b1

(

b−1
1

(

1

2
δ20

))

<
1

2
δ20 +

1

2
δ20 = δ20.
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It follows from the uniform u2-stability of the zero solution of (2.6.33) with
respect to Ti that

(2.6.40) u2 (t2; t1, m(t1)) < a(ε).

Inequality (2.6.40) contradicts condition (2.6.37). This completes the proof
of the theorem.

2.6.6 The system (2.6.1) analysis for s = 3

Suppose that for s = 3 the right-hand side of (2.6.1) are defined in the
region

(2.6.41) Tτ × B1(ρ) × B2(ρ) × D3, D3 = {x3 : 0 < �x3� < +∞}.

Consider a matrix-valued function

(2.6.42) U(t, x) = [vij(t, x)] , i, j = 1, 2, 3,

where vij ∈ C(Tτ × RN1 , R), vij(t, x) are locally Lipschitzian in x, N1 =
n1 + n2 + n3. With the aid of vector ϕ ∈ R3

+, ϕ > 0 and matrix-valued
function (2.6.42) we construct the function

(2.6.43) v(t, x, ϕ) = ϕTU(t, x)ϕ,

where v ∈ C(Tτ × RN1 × R3
+, R).

Function (2.6.42) is applied in two approaches as in Section 2.6.5.

2.6.6.1 Direct application of matrix-valued function.

Definition 2.6.13. System (2.6.1) is multistable (on Tτ ) if its zero so-
lution is

(i) t0-uniformly
(

xT
1 , xT

2

)

-stable in the whole (on Tτ );

(ii) asymptotically xT
2-stable in the whole (on Tτ ).

Theorem 2.6.4. Let vector function f =
(

fT
1 , fT

2 , fT
3

)T
in (2.6.1) be

continuous on R × B1(ρ) × B2(ρ) × D3 (on Tτ × B1(ρ) × B2(ρ) × D3). If
there exists

(1) an open connected time-invariant neighborhood G∗ of point (x =
0) ∈ RN0 , N0 = n1 + n2;
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It follows from the uniform u2-stability of the zero solution of (2.6.33) with
respect to Ti that

(2.6.40) u2 (t2; t1, m(t1)) < a(ε).

Inequality (2.6.40) contradicts condition (2.6.37). This completes the proof
of the theorem.

2.6.6 The system (2.6.1) analysis for s = 3

Suppose that for s = 3 the right-hand side of (2.6.1) are defined in the
region

(2.6.41) Tτ × B1(ρ) × B2(ρ) × D3, D3 = {x3 : 0 < �x3� < +∞}.

Consider a matrix-valued function

(2.6.42) U(t, x) = [vij(t, x)] , i, j = 1, 2, 3,

where vij ∈ C(Tτ × RN1 , R), vij(t, x) are locally Lipschitzian in x, N1 =
n1 + n2 + n3. With the aid of vector ϕ ∈ R3

+, ϕ > 0 and matrix-valued
function (2.6.42) we construct the function

(2.6.43) v(t, x, ϕ) = ϕTU(t, x)ϕ,

where v ∈ C(Tτ × RN1 × R3
+, R).

Function (2.6.42) is applied in two approaches as in Section 2.6.5.

2.6.6.1 Direct application of matrix-valued function.

Definition 2.6.13. System (2.6.1) is multistable (on Tτ ) if its zero so-
lution is

(i) t0-uniformly
(

xT
1 , xT

2

)

-stable in the whole (on Tτ );

(ii) asymptotically xT
2-stable in the whole (on Tτ ).

Theorem 2.6.4. Let vector function f =
(

fT
1 , fT

2 , fT
3

)T
in (2.6.1) be

continuous on R × B1(ρ) × B2(ρ) × D3 (on Tτ × B1(ρ) × B2(ρ) × D3). If
there exists

(1) an open connected time-invariant neighborhood G∗ of point (x =
0) ∈ RN0 , N0 = n1 + n2;
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(2) a matrix-valued function U(t, x)
(a)

(

xT
1 , xT

2

)

-positive definite on G∗ (on Tτ × G∗ × D3);

(b) decreasing on G∗ × D3 (on Tτ × G∗ × D3);

(3) a matrix-valued function D+U(t, x) is
(a) negative semi-definite on R × G∗ × D3 (on Tτ × G∗ × D3);

(a) xT
2-negative semi-definite on R × G (on Tτ × G∗ × D3);

(4) a constant m > 0 for which

�f2(t, x1, x2, x3)� ≤ m ∀ (t, x) ∈ Tτ × B1(ρ) × B2(ρ) × D3

Then, respectively

(a) hypotheses (1), (2)(a) and (3)(a) are sufficient for
(

xT
1 , xT

2

)

-stability

of (x = 0) ∈ RN1 , N1 = n1 + n2 + n3 of the system (2.6.1) (on
Tτ );

(b) hypotheses (1), (2)(a), (2)(b) and (3)(a) are sufficient for uniform
(

xT
1 , xT

2

)

-stability of (x = 0) ∈ RN1 of the system (2.6.1) (on Tτ );

(c) hypotheses (1), (2) and (3)(b) are sufficient for asymptotical xT
2-

stability in the whole of state (x = 0) ∈ RN1 of (2.6.1) (on Tτ ).

Proof. We show that if all hypotheses of Theorem 2.6.4 are satisfied,
then for �x0� < ∆, ∆ < +∞ the correlation

(2.6.44) lim
t→+∞

�x2(t; t0, x0)� = 0

is valid. Suppose on the contrary. That there exists a number δ∗ > 0, a
point x∗

0 : �x∗

0� < ∆ and a sequence tk → ∞ such that inequality

(2.6.45) �x2(tk; t0, x
∗

0)� ≥ δ∗, k = 1, 2, . . .

holds true.
Let tk − tk−1 ≥ α > 0, k = 1, 2, . . . . We present x2-component of solu-

tion x(t) =
(

xT
1(t), xT

2(t), xT
3(t)

)T
of the system (2.6.1) in the neighborhood

of t = tk in the form

(2.6.46) x2(t; t0, x
∗

0) = x2(tk; t0, x
∗

0) +

t
∫

tk

f2 (s, x(s; t0, x
∗

0)) ds.

In view of (2.6.45) and (2.6.46) we have

�x2(t; t0, x
∗

0)� ≥ δ∗ − m(t − tk), k = 1, 2, . . . .
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Hence, there exists a β, 0 < β <
1

2
α such that

(2.6.47)
1

2
δ∗ ≤ �x2(t; t0, x

∗

0)� ≤ ρ ∀ t ∈ [tk − β, tk + β]

for k = 1, 2, . . . . By force of Proposition 2.6.3 and hypotheses (3)(b) of the
theorem we have

(2.6.48) D+v(t, x, ϕ) ≤ −c(�x2�)

where c ∈ KR.
From the Liapunov correlation for function v(t, x, y) we have

0 ≤ v (tk + β, x(tk + β; t0, x
∗

0), ϕ) ≤ v(t0, x
∗

0, ϕ)

−
k

∑

i=1

ti+β
∫

ti−β

c (�x2(s; t0, x
∗

0)�) ds ≤ v(t0, x
∗

0, ϕ) − 2kβ c

(

δ∗

2

)

.

This shows that the condition v (tk + β, x(tk + β; t0, x
∗

0), ϕ) ≥ 0 is violated
for k being large enogh. Therefore, (2.6.44) is proved.

2.6.6.2 The application of matrix-valued function via transition to vector-
function. Suppose U : Tτ ×Rn → R3×3, Q is a 3 by 3 constant matrix and
y ∈ R3. Construct a vector function

(2.6.49) L(t, x, ϕ) = QU(t, x)y

where L ∈ C(Tτ × Rn × R3, R3).
Let a, b be functions from classes K1 and K2, where K1 = {a ∈

C (0, ρ), R+) increases with u and a(u) → 0 as u → 0}, and K2 = {b ∈
C (0, 3ρ), R+) increases with u and b(u) → 0 as u → 0}.

Suppose that the components L1(t, x, y), . . . , L3(t, x, y) of the function
(2.6.49) satisfy the following conditions:

(A) L1(t, 0, y) = 0 for all t ∈ R or t ∈ Tτ , and

L1(t, x, y) ∈ C
(

Tτ × B1(ρ) × B2(ρ) × D3 × R3, R+

)

.

(B) There is a constant 0 < η1 < ρ such that

L2(t, x, y) ∈ C
(

Tτ × B1(ρ) × B2(ρ) × D3 × R3 ∩ Bc
2(η1), R+

)
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Hence, there exists a β, 0 < β <
1

2
α such that

(2.6.47)
1

2
δ∗ ≤ �x2(t; t0, x

∗

0)� ≤ ρ ∀ t ∈ [tk − β, tk + β]

for k = 1, 2, . . . . By force of Proposition 2.6.3 and hypotheses (3)(b) of the
theorem we have

(2.6.48) D+v(t, x, ϕ) ≤ −c(�x2�)

where c ∈ KR.
From the Liapunov correlation for function v(t, x, y) we have

0 ≤ v (tk + β, x(tk + β; t0, x
∗

0), ϕ) ≤ v(t0, x
∗

0, ϕ)

−
k

∑

i=1

ti+β
∫

ti−β

c (�x2(s; t0, x
∗

0)�) ds ≤ v(t0, x
∗

0, ϕ) − 2kβ c

(

δ∗

2

)

.

This shows that the condition v (tk + β, x(tk + β; t0, x
∗

0), ϕ) ≥ 0 is violated
for k being large enogh. Therefore, (2.6.44) is proved.

2.6.6.2 The application of matrix-valued function via transition to vector-
function. Suppose U : Tτ ×Rn → R3×3, Q is a 3 by 3 constant matrix and
y ∈ R3. Construct a vector function

(2.6.49) L(t, x, ϕ) = QU(t, x)y

where L ∈ C(Tτ × Rn × R3, R3).
Let a, b be functions from classes K1 and K2, where K1 = {a ∈

C (0, ρ), R+) increases with u and a(u) → 0 as u → 0}, and K2 = {b ∈
C (0, 3ρ), R+) increases with u and b(u) → 0 as u → 0}.

Suppose that the components L1(t, x, y), . . . , L3(t, x, y) of the function
(2.6.49) satisfy the following conditions:

(A) L1(t, 0, y) = 0 for all t ∈ R or t ∈ Tτ , and

L1(t, x, y) ∈ C
(

Tτ × B1(ρ) × B2(ρ) × D3 × R3, R+

)

.

(B) There is a constant 0 < η1 < ρ such that

L2(t, x, y) ∈ C
(

Tτ × B1(ρ) × B2(ρ) × D3 × R3 ∩ Bc
2(η1), R+

)
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and

a2(�x2�) ≤ L2(t, x, y) ≤ b2(�x1� + �x2� + �x3�)

∀ (t, x, y) ∈ Tτ × B1(ρ) × B2(ρ) × D3 × R3 ∩ Bc
2(η1),

where a2 ∈ K1 and b2 ∈ K2.
(C) For any 0 < η1 < ρ there exist an η2 < ρ such that

L2(t, x, y) ∈ C
(

Tτ × B1(ρ) × B2(ρ) × D3 × R3 ∩ Bc
1(η2), R+

)

;

a3(�x1�) ≤ L3(t, x, y) ≤ b3(�x1� + �x2� + �x3�)

∀ (t, x, y) ∈ Tτ × B1(ρ) × B2(ρ) × D3 × R3 ∩ Bc
1(η2),

where a3 ∈ K1 and b3 ∈ K2.

Definition 2.6.14. The comparison system

(2.6.50)
dz

dt
= G(t, z), z(t0) = z0 ≥ 0,

where z = (u, v, w)T, G = (g1(t, u), g2(t, v), g3(t, w))
T

is multistable (on
Tτ ) if its zero solution is

(i) u-equistable (on Tτ ), and
(ii) (v, w)-uniformly stable (on Tτ ).

Following Lakshmikantham, Leela and Martynyuk [94], Martynyuk [118]
and Koksal [88] the next result is obtained.

Theorem 2.6.5. Let vector function f =
(

fT
1 , fT

2 , fT
3

)T
in (2.6.1) be

continuous on R × B1(ρ) × B2(ρ) × D3 (on Tτ × B1(ρ) × B2(ρ) × D3). If
there exists

(1) matrix-valued function U(t, x), a vector y ∈ R3 and a constant 3
by 3 matrix Q for which components L1, L2, L3 of (2.6.49) the
conditions (A) – (C) are satisfied;

(2) functions gk ∈ C(Tτ × R+, R), gk(t, 0) = 0 ∀ t ∈ Tτ such that

(a) the inequality

D+L1(t, x, y) ≤ g1 (t, L1(t, x, y))

holds in the domain Tτ × B1(ρ) × B2(ρ) × D3 × R3,

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

161 

Matrix Liapunov Function Method in General

108 2. MATRIX LIAPUNOV FUNCTION METHOD IN GENERAL

(b) the inequality

D+L1(t, x, y) + D+L2(t, x, y) ≤ g2 (t, L1(t, x, y), L2(t, x, y))

holds in the domain Tτ ×B1(ρ)×B2(ρ)×D3×R3∩Bc
2(η1),

(c) the inequality

D+L1(t, x, y) + D+L3(t, x, y) ≤ g3 (t, L1(t, x, y), L3(t, x, y))

holds in the domain Tτ ×B1(ρ)×B2(ρ)×D3 ×R3∩Bc
1(η2);

(3) the zero solution of system (2.6.50) is multistable (on Tτ ) in the
sense of Definition 2.6.14.

Then the zero solution of system (2.6.1) is
(

xT
1 , xT

2

)

-stable (on Tτ ).

2.6.7 The system (2.6.1) analysis for s = 4

For s = 4 the system (2.6.1) is considered in region

Tτ × B1(ρ) × B2(ρ) × B3(ρ) × D4, D4 = {x4 : 0 < �x4� < +∞}.

Let N1 = n1 + · · · + n4.

Definition 2.6.15. System (2.6.1) is multistable (on Tτ ) if its zero so-
lution

(

(xT
1 , . . . , xT

4) = 0
)

∈ RN2 is

(i) t0-uniformly
(

xT
1 , xT

2 , x
T
3

)

-stable (on Tτ );

(ii) asymptotically
(

xT
2 , xT

3

)

-stable (on Tτ );

(iii) practically xT
3-stable (on Tτ ), i.e. if given (λ, A) with 0 < λ < A,

the inequality �x0� < λ implies �x3(t)� < A for all t ∈ Tτ .

Theorem 2.6.6. Let vector function f =
(

fT
1 , . . . , fT

4

)T
in (2.6.1) be

continuous on R×B1(ρ)×B2(ρ)×B3(ρ)×D4 (on Tτ ×B1(ρ)×B2(ρ)×
B3(ρ) × D4). If there exists

(1) a matrix-valued function U(t, x) which is

(a)
(

xT
1 , xT

2 , xT
3

)

-positive definite (on Tτ );

(b)
(

xT
1 , xT

2 , x
T
3

)

-decreasing (on Tτ );

(2) the matrix-valued function D+U(t, x) which is
(

xT
2 , xT

3

)

-negative
definite (on Tτ );
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(b) the inequality

D+L1(t, x, y) + D+L2(t, x, y) ≤ g2 (t, L1(t, x, y), L2(t, x, y))

holds in the domain Tτ ×B1(ρ)×B2(ρ)×D3×R3∩Bc
2(η1),

(c) the inequality

D+L1(t, x, y) + D+L3(t, x, y) ≤ g3 (t, L1(t, x, y), L3(t, x, y))

holds in the domain Tτ ×B1(ρ)×B2(ρ)×D3 ×R3∩Bc
1(η2);

(3) the zero solution of system (2.6.50) is multistable (on Tτ ) in the
sense of Definition 2.6.14.

Then the zero solution of system (2.6.1) is
(

xT
1 , xT

2

)

-stable (on Tτ ).

2.6.7 The system (2.6.1) analysis for s = 4

For s = 4 the system (2.6.1) is considered in region

Tτ × B1(ρ) × B2(ρ) × B3(ρ) × D4, D4 = {x4 : 0 < �x4� < +∞}.

Let N1 = n1 + · · · + n4.

Definition 2.6.15. System (2.6.1) is multistable (on Tτ ) if its zero so-
lution

(

(xT
1 , . . . , xT

4) = 0
)

∈ RN2 is

(i) t0-uniformly
(

xT
1 , xT

2 , x
T
3

)

-stable (on Tτ );

(ii) asymptotically
(

xT
2 , xT

3

)

-stable (on Tτ );

(iii) practically xT
3-stable (on Tτ ), i.e. if given (λ, A) with 0 < λ < A,

the inequality �x0� < λ implies �x3(t)� < A for all t ∈ Tτ .

Theorem 2.6.6. Let vector function f =
(

fT
1 , . . . , fT

4

)T
in (2.6.1) be

continuous on R×B1(ρ)×B2(ρ)×B3(ρ)×D4 (on Tτ ×B1(ρ)×B2(ρ)×
B3(ρ) × D4). If there exists

(1) a matrix-valued function U(t, x) which is

(a)
(

xT
1 , xT

2 , xT
3

)

-positive definite (on Tτ );

(b)
(

xT
1 , xT

2 , x
T
3

)

-decreasing (on Tτ );

(2) the matrix-valued function D+U(t, x) which is
(

xT
2 , xT

3

)

-negative
definite (on Tτ );
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(3) a constant m1 ∈ R+, m1 > 0 for which

�
(

fT
2 (t, x), fT

3 (t, x)
)T

� ≤ m1

in the domain Tτ × B1(ρ) × B2(ρ) × B3(ρ) × D4;
(4) a vector ϕ ∈ R4

+, ϕ > 0 such that for all t ∈ Tτ , given (λ, A)
inequality

sup
(

ϕTU(t, x)ϕ for �x� < λ
)

< inf
(

ϕTU(t, x)ϕ for �x3� = A
)

holds true.

Then system (2.6.1) is multistable in the sense of Definition 2.6.15.

Proof. Properties (i) and (ii) of the zero solution of the system (2.6.1)
are implied by hypotheses (1) and (2) of the Theorem 2.6.6, when function
v(t, x, ϕ) = ϕTU(t, x)ϕ and its derivative D+v(t, x, ϕ) are considered along
with solution of the system (2.6.1). To prove practical stability (on Tτ ) of
state (x = 0) ∈ RN2 with respect to variables of vectors xT

3 it is sufficient
to make sure that when hypotheses of Theorem 2.6.6 hold, the value of
norm �x3(t; t0, x0)� does not reach the value of A for all t ∈ Tτ provided
�x0� < λ for any t0 ∈ Ti ⊆ R. By hypotheses (2) of the Theorem 2.6.6 we
have

D+v(t, x, ϕ) ≤ 0

in the domain Tτ × B1(ρ) × B2(ρ) × B3(ρ) × D4. Hence

(2.6.51)
v(t, x, ϕ) ≤ v(t0, x0, ϕ)

≤ sup
(

ϕTU(t, x)ϕ) for �x� < λ
)

.

Let hypotheses (3) of Theorem 2.6.6 be satisfied and inequality �x3(t)� < A

be false for some t ∈ Tτ . If the violation of the inequality takes place at
t∗ ∈ Tτ , then

(2.6.52) v(t∗, x, ϕ) ≥ inf
(

ϕTU(t, x)ϕ) for �x3� = A
)

.

From (2.6.51) and (2.6.52) we get

(2.6.53)
sup

(

ϕTU(t∗, x)ϕ for �x� < λ
)

≥ v(t∗, x, ϕ)

≥ inf
(

ϕTU(t, x)ϕ for �x3� = A
)

.

The inequality (2.6.53) contradicts hypothesis (4) of the Theorem 2.6.6 and
proves that (x = 0) ∈ RN2 is practically stable (on Tτ ) with respect to
variable xT

3 .
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2.7 Applications

In this section we present some applications of general theorems of matrix-
valued Liapunov functions method to system of equations that model real
engineering problems.

2.7.1 The problem of Lefschetz

We consider a problem on stability in a product space for a system of
differential equations of the perturbed motion

(2.7.1)

dy

dt
= g(y) + G(y, z),

dz

dt
= h(z) + H(y, z).

Here y ∈ Rp, z ∈ Rq, g : Rp → Rp, G : Rp × Rq → Rp, h : Rq → Rq,
H : Rp× Rq → Rq. In addition, function g, G; h, H are continuous on Rp,
Rq, Rp× Rq and they vanish for y = z = 0.

The problem itself is to point out the connection between the stability
properties of equilibrium state y = z = 0 with respect to system (2.7.1) on
Rp× Rq and its nonlinear approximation

(2.7.2)

dy

dt
= g(y),

dz

dt
= h(z).

Assumption 2.7.1. Let there exist the time-invariant neighborhood
Ny ⊆ Rp and Nz ⊆ Rq of the equilibrium state y = 0 and z = 0, re-
spectively and let there exist a matrix-valued function

(2.7.3) U(y, z) =

(

v11(y) v12(y, z)
v21(y, z) v22(z)

)

the element vij of which satisfy the estimations characteristic to the qua-
dratic forms

(2.7.4)

v11(y) ≥ c11�y�
2 ∀ (y �= 0) ∈ Ny;

v22(z) ≥ c22�z�
2 ∀ (z �= 0) ∈ Nz ;

v12(y, z) = v21(y, z) ≥ c12�y��z� ∀ (y �= 0, z �= 0) ∈ Ny ×Nz .
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Assumption 2.7.2. Let there exist constants αij , i = 1, 2; j = 1, 2,

. . . , 8 such that

(2.7.5)

(

∂v11

∂y
, g

)

≤ α11�y�
2;

(

∂v11

∂y
, G

)

≤ α12�y�
2 + α13�y��z�;

(

∂v22

∂z
, h

)

≤ α21�z�
2;

(

∂v22

∂z
, H

)

≤ α22�z�
2 + α23�y��z�;

(

∂v12

∂y
, g

)

≤ α14�y�
2 + α15�y��z�;

(

∂v12

∂y
, G

)

≤ α16�y�
2 + α17�y��z�+ α18�z�

2;

(

∂v12

∂z
, h

)

≤ α24�z�
2 + α25�y��z�;

(

∂v12

∂z
, H

)

≤ α26�y�
2 + α27�y��z�+ α28�z�

2.

Theorem 2.7.1. Suppose that

(1) all conditions of Assumptions 2.7.1, 2.7.2 are fulfilled;
(2) the matrix

C =

(

c11 c12

c21 c22

)

, c12 = c21

be positive definite;
and

(3) the matrix

S =

(

σ11 σ12

σ21 σ22

)

, σ12 = σ21

be negative definite, where

σ11 = η2
1(α11 + α12) + 2η1η2(α14 + α16 + α26);

σ22 = η2
2(α21 + α22) + 2η1η2(α18 + α24 + α28);

σ12 =
1

2

(

η2
1α13 + α23η

2
2

)

+ η1η2(α15 + α25 + α17 + α27),

η1, η2 being positive numbers.
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Then the state of equilibrium y = z = 0 of the system (2.7.1) is uni-
formly asymptotically stable.

If conditions of Assumptions 2.7.1, 2.7.2 are fulfilled for Ny = Rp, Ny =
Rq and conditions (2), (3) of the theorem hold, then the equlibrium state
y = z = 0 of the system (2.7.1) is uniformly asymptotically stable in the
whole.

Proof. On the basis of estimations (2.7.4), it is not difficult to show
that the function v = ηTU(y, z)η satisfies the estimate

(2.7.6) v ≥ uTΦTCΦu,

where uT = (�y�, �z�), Φ = diag [η1, η2].
Also, in view of Assumption 2.7.1 and the estimates (2.7.5), the deriva-

tive Dv(y, z) defined by Dv(y, z) = ηTDU(y, z)η satisfies

(2.7.7) Dv(y, z) ≤ uTSu.

By virtue of (2) and (3) and the inequalities (2.7.6), (2.7.7), we see that
all conditions of Theorem 2.5.3 are verified for the function v(y, z) and its
derivative. Hence the proof is complete.

If in estimate (2.7.5) we change the sign of inequality for the opposite
one, then by means of the method similar to the given one we can obtain
an estimate

Dv(y, z) ≥ uT
˜Su

which allows us to formulate instability conditions for the equilibrium state
y = z = 0 of system (2.7.1) on the basis of Theorem 2.5.7.

The statement of Theorem 2.7.1 shows that asymptotic stability of the
equilibrium state y = z = 0 of system (2.7.1) can hold even if the equi-
librium state y = z = 0 of system (2.7.2) has no properties of asymptotic
quasi-stability (cf. Lefschetz [100]).

2.7.2 Autonomous large scale systems

We consider a large scale systems be decomposed into three subsystems

(2.7.8)

dx

dt
= Ax + f(x, y, z),

dy

dt
= By + g(x, y, z),

dz

dt
= Cz + h(x, y, z),
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Then the state of equilibrium y = z = 0 of the system (2.7.1) is uni-
formly asymptotically stable.

If conditions of Assumptions 2.7.1, 2.7.2 are fulfilled for Ny = Rp, Ny =
Rq and conditions (2), (3) of the theorem hold, then the equlibrium state
y = z = 0 of the system (2.7.1) is uniformly asymptotically stable in the
whole.

Proof. On the basis of estimations (2.7.4), it is not difficult to show
that the function v = ηTU(y, z)η satisfies the estimate

(2.7.6) v ≥ uTΦTCΦu,

where uT = (�y�, �z�), Φ = diag [η1, η2].
Also, in view of Assumption 2.7.1 and the estimates (2.7.5), the deriva-

tive Dv(y, z) defined by Dv(y, z) = ηTDU(y, z)η satisfies

(2.7.7) Dv(y, z) ≤ uTSu.

By virtue of (2) and (3) and the inequalities (2.7.6), (2.7.7), we see that
all conditions of Theorem 2.5.3 are verified for the function v(y, z) and its
derivative. Hence the proof is complete.

If in estimate (2.7.5) we change the sign of inequality for the opposite
one, then by means of the method similar to the given one we can obtain
an estimate

Dv(y, z) ≥ uT
˜Su

which allows us to formulate instability conditions for the equilibrium state
y = z = 0 of system (2.7.1) on the basis of Theorem 2.5.7.

The statement of Theorem 2.7.1 shows that asymptotic stability of the
equilibrium state y = z = 0 of system (2.7.1) can hold even if the equi-
librium state y = z = 0 of system (2.7.2) has no properties of asymptotic
quasi-stability (cf. Lefschetz [100]).

2.7.2 Autonomous large scale systems

We consider a large scale systems be decomposed into three subsystems

(2.7.8)

dx

dt
= Ax + f(x, y, z),

dy

dt
= By + g(x, y, z),

dz

dt
= Cz + h(x, y, z),
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where x ∈ Rn1 , y ∈ Rn2 , z ∈ Rn3 , n1 + n2 + n3 = n; A, B and C are
constant matrices of the corresponding dimensions

f ∈ C (Rn1 × Rn2 × Rn3 , Rn1) ;

g ∈ C (Rn1 × Rn2 × Rn3 , Rn2) ;

h ∈ C (Rn1 × Rn2 × Rn3 , Rn3) .

Moreover, the vector-functions f , g and h vanish for x = y = z = 0 and
contain variables x, y and z in first power, i.e. the subsystems

dx

dt
= Ax;(2.7.9)

dy

dt
= By;(2.7.10)

dz

dt
= Cz;(2.7.11)

are not complete linear approximation of the system (2.7.8). Physically
speaking this corresponds to the situation when the connections between
subsystems (2.7.9) – (2.7.11) are carried out by time-invariant linear blocks.
For different dynamical properties of subsystems (2.7.9) – (2.7.11) sufficient
total stability conditions will be established for the state x = y = z = 0 of
the system (2.7.8).

The solution algorithm for this problem is based on actual construction
of the matrix-valued function

(2.7.12) U(x, y, z) = [vij(·)], vij = vji ∀ (i �= j)

with the elements

(2.7.13)

v11(x) = xTP11x,

v22(y) = yTP22y,

v33(z) = zTP33z;

v12(x, y) = xTP12y,

v13(x, z) = xTP13z,

v23(y, z) = yTP23z,

where Pii, i = 1, 2, 3, are symmetrical and positive definite matrices, P12,
P13 and P23 are constant matrices. It can be easily verified that for the
functions (2.7.13) there exist estimates
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(2.7.14)

v11(x) ≥ λm(P11)�x�
2 ∀ (x �= 0) ∈ Nx;

v22(y) ≥ λm(P22)�y�
2 ∀ (y �= 0) ∈ Ny;

v33(z) ≥ λm(P33)�z�
2 ∀ (z �= 0) ∈ Nz;

v12(x, y) ≥ −λ
1/2
M

�

P12P
T
12

�

�x��y� ∀ (x �= 0, y �= 0) ∈ Nx ×Ny;

v13(x, z) ≥ −λ
1/2
M

�

P13P
T
13

�

�x��z� ∀ (x �= 0, z �= 0) ∈ Nx ×Nz;

v23(y, z) ≥ −λ
1/2
M

�

P23P
T
23

�

�y��z� ∀ (y �= 0, z �= 0) ∈ Ny ×Nz,

where λm(Pii) are minimal eigenvalues of matrices Pii, i = 1, 2, 3,

λ
1/2
M

�

P12P
T
12

�

, λ
1/2
M

�

P13P
T
13

�

, λ
1/2
M

�

P23P
T
23

�

are norms of matrices P12,
P13 and P23 respectively.

By means of the function

U(x, y, z) =







v11(x) v12(x, y) v13(x, z)

v12(x, y) v22(y) v23(y, z)

v13(x, z) v23(y, z) v33(z)







and the vector η ∈ R3
+, ηi > 0, i = 1, 2, 3 we introduce the function

(2.7.15) v(x, y, z, η) = ηTU(x, y, z)η.

Proposition 2.7.1. Let for system (2.7.8) there exists matrix-valued
function (2.7.12) with elements (2.7.13) and estimates (2.7.14). Then for
function (2.7.15) the estimate

(2.7.16)
v(x, y, z, η) ≥ uTHTPHu

∀ (x �= 0, y �= 0, z �= 0) ∈ Nx ×Ny ×Nz

is satisfied, where uT = (�x�, �y�, �z�); H = diag [η1, η2, η3],

(2.7.17) P =









λm(P11) −λ
1/2
M

�

P12P
T
12

�

−λ
1/2
M

�

P13P
T
13

�

−λ
1/2
M

�

P12P
T
12

�

λm(P22) −λ
1/2
M

�

P23P
T
23

�

−λ
1/2
M

�

P13P
T
13

�

−λ
1/2
M

�

P23P
T
23

�

λm(P33)









.

Together with function (2.7.15) we shall consider its total derivative

(2.7.18) Dv(x, y, z, η) = ηT DU(x, y, z)η

by virtue of system (2.7.8).
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(2.7.14)

v11(x) ≥ λm(P11)�x�
2 ∀ (x �= 0) ∈ Nx;

v22(y) ≥ λm(P22)�y�
2 ∀ (y �= 0) ∈ Ny;

v33(z) ≥ λm(P33)�z�
2 ∀ (z �= 0) ∈ Nz;

v12(x, y) ≥ −λ
1/2
M

�

P12P
T
12

�

�x��y� ∀ (x �= 0, y �= 0) ∈ Nx ×Ny;

v13(x, z) ≥ −λ
1/2
M

�

P13P
T
13

�

�x��z� ∀ (x �= 0, z �= 0) ∈ Nx ×Nz;

v23(y, z) ≥ −λ
1/2
M

�

P23P
T
23

�

�y��z� ∀ (y �= 0, z �= 0) ∈ Ny ×Nz,

where λm(Pii) are minimal eigenvalues of matrices Pii, i = 1, 2, 3,

λ
1/2
M

�

P12P
T
12

�

, λ
1/2
M

�

P13P
T
13

�

, λ
1/2
M

�

P23P
T
23

�

are norms of matrices P12,
P13 and P23 respectively.

By means of the function

U(x, y, z) =







v11(x) v12(x, y) v13(x, z)

v12(x, y) v22(y) v23(y, z)

v13(x, z) v23(y, z) v33(z)







and the vector η ∈ R3
+, ηi > 0, i = 1, 2, 3 we introduce the function

(2.7.15) v(x, y, z, η) = ηTU(x, y, z)η.

Proposition 2.7.1. Let for system (2.7.8) there exists matrix-valued
function (2.7.12) with elements (2.7.13) and estimates (2.7.14). Then for
function (2.7.15) the estimate

(2.7.16)
v(x, y, z, η) ≥ uTHTPHu

∀ (x �= 0, y �= 0, z �= 0) ∈ Nx ×Ny ×Nz

is satisfied, where uT = (�x�, �y�, �z�); H = diag [η1, η2, η3],

(2.7.17) P =









λm(P11) −λ
1/2
M

�

P12P
T
12

�

−λ
1/2
M

�

P13P
T
13

�

−λ
1/2
M

�

P12P
T
12

�

λm(P22) −λ
1/2
M

�

P23P
T
23

�

−λ
1/2
M

�

P13P
T
13

�

−λ
1/2
M

�

P23P
T
23

�

λm(P33)









.

Together with function (2.7.15) we shall consider its total derivative

(2.7.18) Dv(x, y, z, η) = ηT DU(x, y, z)η

by virtue of system (2.7.8).
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Proposition 2.7.2. Let for system (2.7.8) there exist matrix-valued
function (2.7.12) with elements (2.7.13). For total derivatives of functions
(2.7.13) by virtue of subsystems (2.7.9) – (2.7.11) the following estimates
are satisfied

(1) (∇xv11)
T
Ax ≤ ρ11�x�2 ∀x ∈ Nx;

(2) (∇xv12)
T
Ax ≤ ρ12�x��y� ∀ (x, y) ∈ Nx ×Ny;

(3) (∇xv13)
T
Ax ≤ ρ13�x��z� ∀ (x, z) ∈ Nx ×Nz;

(4) (∇yv22)
T
By ≤ ρ21�y�2 ∀ y ∈ Ny;

(5) (∇yv21)
T
By ≤ ρ22�x��y� ∀ (x, y) ∈ Nx ×Ny;

(6) (∇yv23)
T
By ≤ ρ23�y��z� ∀ (y, z) ∈ Ny ×Nz;

(7) (∇zv33)
T
Cz ≤ ρ31�z�2 ∀ z ∈ Nz;

(8) (∇zv31)
T
Cz ≤ ρ32�x��z� ∀ (x, z) ∈ Nx ×Nz;

(9) (∇zv32)
T
Cz ≤ ρ33�y��z� ∀ (y, z) ∈ Ny ×Nz,

where ∇u = ∂/∂u and

ρ11 = λmax

[

P11A + ATP11

]

,

ρ21 = λmax

[

P22B + BTP22

]

,

ρ31 = λmax

[

P33C + CTP33

]

,

ρ12 = �ATP12�,

ρ13 = �ATP13�,

ρ22 = �P12B�,

ρ23 = �BTP23�,

ρ32 = �P13C�,

ρ33 = �P23C�

respectively, ρ12, ρ13, ρ22, ρ23, ρ32, ρ33 are norms of matrices ATP12,
ATP13, P12B, BTP23, P13C, P23C.

Assumption 2.7.3. There exist constants ρij , i = 1, 2, 3, j = 4, 5,

. . . , 12, such that in open connected neighborhoods Nx ⊆ Rn1 , Ny ⊆ Rn2 ,
Nz ⊆ Rn3 or in its product there exist the estimates

(1′) (∇xv11)
T
f ≤ ρ14�x�2 + ρ15�x��y�+ ρ16�x��z�;

(2′) (∇xv12)
T
f ≤ ρ17�y�2 + ρ18�x��y� + ρ19�y��z�;
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(3′) (∇xv13)
T
f ≤ ρ1.10�z�2 + ρ1.11�x��z�+ ρ1.12�y��z�;

(4′) (∇yv22)
T
g ≤ ρ24�y�2 + ρ25�x��y� + ρ26�y��z�;

(5′) (∇yv21)
T
g ≤ ρ27�x�

2 + ρ28�x��y� + ρ29�x��z�;

(6′) (∇yv23)
T
g ≤ ρ2.10�z�2 + ρ2.11�x��z� + ρ2.12�y��z�;

(7′) (∇zv33)
T
h ≤ ρ34�z�2 + ρ35�x��z� + ρ36�y��z�;

(8′) (∇zv13)
T
h ≤ ρ37�x�2 + ρ38�x��y�+ ρ39�x��z�;

(9′) (∇zv23)
T
h ≤ ρ3.10�y�2 + ρ3.11�x��y� + ρ3.12�y��z�.

Proposition 2.7.3. If estimates (1) - (9) and (1′) - (9′) are satisfied,
then for all total derivatives of function (2.7.15) by virtue of system (2.7.8)
the inequality

(2.7.19) Dv(x, y, z, η) ≤ uTSu ∀ (x, y, z) ∈ Nx ×Ny ×Nz

takes place, where

(2.7.20)

S = [σij ], σij = σji ∀ (i, j) ∈ [1, 3];

σ11 = η2
1(ρ11 + ρ14) + 2η1(η2ρ27 + η3ρ37);

σ22 = η2
2(ρ21 + ρ24) + 2η2(η1ρ17 + η3ρ3.10);

σ33 = η2
3(ρ31 + ρ34) + 2η3(η1ρ1.10 + η2ρ2.10);

σ12 =
1

2
η2
1ρ15 +

1

2
η2
2ρ25 + η1η2(ρ12 + ρ22 + ρ18 + ρ28)

+ η3(η1ρ38 + η2ρ3.11);

σ13 =
1

2
η2
1ρ16 +

1

2
η2
3ρ35 + η1η3(ρ13 + ρ32 + ρ1.11 + ρ39)

+ η2(η1ρ29 + η3ρ2.11);

σ23 =
1

2
η2
2ρ26 +

1

2
η2
3ρ36 + η2η3(ρ23 + ρ33 + ρ2.12 + ρ3.12)

+ η1(η2ρ19 + η3ρ1.12).

Remark 2.7.1. The dynamical properties of subsystems (2.7.9)-(2.7.11)
influence only the sign of coefficients ρ11, ρ21 and ρ31. The constants ρ12,
ρ13, ρ22, ρ23, ρ32, ρ33 can always be taken positive and the rest of the
constants are independent of matrices A, B and C.
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(3′) (∇xv13)
T
f ≤ ρ1.10�z�2 + ρ1.11�x��z�+ ρ1.12�y��z�;

(4′) (∇yv22)
T
g ≤ ρ24�y�2 + ρ25�x��y� + ρ26�y��z�;

(5′) (∇yv21)
T
g ≤ ρ27�x�

2 + ρ28�x��y� + ρ29�x��z�;

(6′) (∇yv23)
T
g ≤ ρ2.10�z�2 + ρ2.11�x��z� + ρ2.12�y��z�;

(7′) (∇zv33)
T
h ≤ ρ34�z�2 + ρ35�x��z� + ρ36�y��z�;

(8′) (∇zv13)
T
h ≤ ρ37�x�2 + ρ38�x��y�+ ρ39�x��z�;

(9′) (∇zv23)
T
h ≤ ρ3.10�y�2 + ρ3.11�x��y� + ρ3.12�y��z�.

Proposition 2.7.3. If estimates (1) - (9) and (1′) - (9′) are satisfied,
then for all total derivatives of function (2.7.15) by virtue of system (2.7.8)
the inequality

(2.7.19) Dv(x, y, z, η) ≤ uTSu ∀ (x, y, z) ∈ Nx ×Ny ×Nz

takes place, where

(2.7.20)

S = [σij ], σij = σji ∀ (i, j) ∈ [1, 3];

σ11 = η2
1(ρ11 + ρ14) + 2η1(η2ρ27 + η3ρ37);

σ22 = η2
2(ρ21 + ρ24) + 2η2(η1ρ17 + η3ρ3.10);

σ33 = η2
3(ρ31 + ρ34) + 2η3(η1ρ1.10 + η2ρ2.10);

σ12 =
1

2
η2
1ρ15 +

1

2
η2
2ρ25 + η1η2(ρ12 + ρ22 + ρ18 + ρ28)

+ η3(η1ρ38 + η2ρ3.11);

σ13 =
1

2
η2
1ρ16 +

1

2
η2
3ρ35 + η1η3(ρ13 + ρ32 + ρ1.11 + ρ39)

+ η2(η1ρ29 + η3ρ2.11);

σ23 =
1

2
η2
2ρ26 +

1

2
η2
3ρ36 + η2η3(ρ23 + ρ33 + ρ2.12 + ρ3.12)

+ η1(η2ρ19 + η3ρ1.12).

Remark 2.7.1. The dynamical properties of subsystems (2.7.9)-(2.7.11)
influence only the sign of coefficients ρ11, ρ21 and ρ31. The constants ρ12,
ρ13, ρ22, ρ23, ρ32, ρ33 can always be taken positive and the rest of the
constants are independent of matrices A, B and C.
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In view of the above remark we introduce the following designations

c11 = η2
1ρ14 + 2η1(η2ρ27 + η3ρ37);

c22 = η2
2ρ24 + 2η2(η1ρ17 + η3ρ3.10);

c33 = η2
3ρ34 + 2η3(η1ρ1.10 + η2ρ2.10).

Hence we have

σ11 = η2
1ρ11 + c11; σ22 = η2

2ρ21 + c22; σ33 = η2
3ρ31 + c33.

Proposition 2.7.4. The matrix S is negative definite if and only if

(1) η2
1ρ11 + c11 < 0;

(2) η2
1η

2
2ρ11ρ21 + η2

1ρ11c22 + η2
2ρ21c11 + c11c22 − σ2

12 > 0;

(3) η2
1ρ11

(

η2
2η2

3ρ21ρ31 + η2
2ρ21c33 + η2

3ρ31c22 + c22c33 − σ2
23

)

+ η2
2ρ21×

(

η2
3ρ31c11 + c11c33 − σ2

13

)

+η2
3ρ31

(

c11c22 − σ2
12

)

+c11c22c33 +2σ12×

σ13ρ23 − c11σ
2
23 − c22σ

2
13 − c33σ

2
12 < 0.

Remark 2.7.2. If subsystems (2.7.9) – (2.7.11) are nonasymptotically
stable, i.e. ρ11 = ρ21 = ρ31 = 0, the conditions of Proposition 2.7.4
become

(1′) c11 < 0;
(2′) c11c22 − σ2

12 > 0;
(3′) c11c22c33 + 2σ12σ13σ23 − c11σ

2
23 − c22σ

2
13 − c33σ

2
12 < 0.

Remark 2.7.3. If subsystem (2.7.9) is nonasymptotically stable, sub-
system (2.7.10) is asymptotically stable and (1.7.11) is unstable, i.e.
ρ11 = 0, ρ21 < 0, ρ31 > 0, the conditions of Proposition 2.7.4 become

(1′′) c11 < 0;

(2′′) η2
2ρ21c11 + c11c22 − σ2

12 > 0;

(3′′) η2
2ρ21

(

η2
3ρ31c11 + c11c33 − σ2

13

)

+ η2
3ρ31

(

c11c22 − σ2
12

)

+ c11c22c33

+2σ12σ13σ23 − c11σ
2
23 − c22σ

2
13 − c33σ

2
12 < 0.

Proposition 2.7.5. Matrix S is negative semi-definite iff the inequality
signs < and > in Proposition 2.7.4 are replaced by � and � correspon-
dingly.

Function (2.7.15) and its total derivative (2.7.18) together with estimates
(2.7.16) and (2.7.19) allows us to establish sufficient conditions of stability
(in the whole) and asymptotic stability (in the whole) for system (2.7.8).
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Theorem 2.7.2. Suppose that the system (2.7.8) be such that

(1) in product N = Nx ×Ny ×Nz there is the matrix-valued function
U : N → R3×3;

(2) there exist the vector η ∈ R3
+, ηi > 0, i ∈ [1, 3];

(3) the matrix P is positive definite;
(4) the matrix S is negative semi-definite or equals to zero.

Then the state x = y = z = 0 of the system (2.7.8) is uniformly stable.

If all estimates mentioned in conditions of Theorem 2.7.2 are satisfied
for Nx = Rn1 , Ny = Rn2 , Nz = Rn3 and function (2.7.15) is radially
unbounded, the state x = y = z = 0 of the system (2.7.8) is uniformly
stable in the whole.

Proof. Under all conditions of Theorem 2.7.2 the conditions of well-
known Barbashin-Krasovskii’s theorem are satisfied, and hence, the corre-
sponding type of stability of state x = y = z = 0 of the system (2.7.8)
takes place (see Theorem 2.5.2).

Let there exists the domain Ω = {(x, y, z) ∈ N , 0 ≤ v(x, y, z, η) < a,

a ∈
◦

R+} ⊂ Rn where Dv(x, y, z, η) ≤ 0.
We designate by M the largest invariant set in Ω where

Dv(x, y, z, η) = 0.

Theorem 2.7.3. Suppose that the system (2.7.8) be such that

(1) the conditions (1) - (3) of Theorem 2.7.2 be satisfied;
(2) on the set Ω Dv(x, y, z, η) ≤ 0 i.e. the matrix S is negative semi-

definite.

Then the set M is attractive relative to the domain Ω, i.e. all motions of
system (2.7.8) starting on set Ω tend to the set M as t → +∞.

Proof of this Theorem is similar to that of Theorem 26.1 by Hahn [66].

Theorem 2.7.4. Suppose that the system (2.7.8) is such that

(1) the conditions (1) - (3) of Theorem 2.7.2 are satisfied;
(2) the matrix S is negative semi-definite.

Then the equilibrium state x = y = z = 0 of the system (2.7.8) is uniformly
asymptotically stable.

If all estimates mentioned in conditions of Theorem 2.7.4 are satisfied
for Nx = Rn1 , Ny = Rn2 , Nz = Rn3 and function (2.7.15) is radially
unbounded, the state x = y = z = 0 of the system (2.7.8) is uniformly
asymptotically stable in the whole.

The proof is similar to that of Theorem 25.2 by Hahn [66].
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Theorem 2.7.2. Suppose that the system (2.7.8) be such that

(1) in product N = Nx ×Ny ×Nz there is the matrix-valued function
U : N → R3×3;

(2) there exist the vector η ∈ R3
+, ηi > 0, i ∈ [1, 3];

(3) the matrix P is positive definite;
(4) the matrix S is negative semi-definite or equals to zero.

Then the state x = y = z = 0 of the system (2.7.8) is uniformly stable.

If all estimates mentioned in conditions of Theorem 2.7.2 are satisfied
for Nx = Rn1 , Ny = Rn2 , Nz = Rn3 and function (2.7.15) is radially
unbounded, the state x = y = z = 0 of the system (2.7.8) is uniformly
stable in the whole.

Proof. Under all conditions of Theorem 2.7.2 the conditions of well-
known Barbashin-Krasovskii’s theorem are satisfied, and hence, the corre-
sponding type of stability of state x = y = z = 0 of the system (2.7.8)
takes place (see Theorem 2.5.2).

Let there exists the domain Ω = {(x, y, z) ∈ N , 0 ≤ v(x, y, z, η) < a,

a ∈
◦

R+} ⊂ Rn where Dv(x, y, z, η) ≤ 0.
We designate by M the largest invariant set in Ω where

Dv(x, y, z, η) = 0.

Theorem 2.7.3. Suppose that the system (2.7.8) be such that

(1) the conditions (1) - (3) of Theorem 2.7.2 be satisfied;
(2) on the set Ω Dv(x, y, z, η) ≤ 0 i.e. the matrix S is negative semi-

definite.

Then the set M is attractive relative to the domain Ω, i.e. all motions of
system (2.7.8) starting on set Ω tend to the set M as t → +∞.

Proof of this Theorem is similar to that of Theorem 26.1 by Hahn [66].

Theorem 2.7.4. Suppose that the system (2.7.8) is such that

(1) the conditions (1) - (3) of Theorem 2.7.2 are satisfied;
(2) the matrix S is negative semi-definite.

Then the equilibrium state x = y = z = 0 of the system (2.7.8) is uniformly
asymptotically stable.

If all estimates mentioned in conditions of Theorem 2.7.4 are satisfied
for Nx = Rn1 , Ny = Rn2 , Nz = Rn3 and function (2.7.15) is radially
unbounded, the state x = y = z = 0 of the system (2.7.8) is uniformly
asymptotically stable in the whole.

The proof is similar to that of Theorem 25.2 by Hahn [66].
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2.7.3 Large scale Lur’e-Postnikov system

We consider the system of equations

(2.7.21)

dx

dt
= A11x + A12y + A13z + q1f1(σ1) � f∗

1 ;

dy

dt
= A21x + A22y + A23z + q2f2(σ2) � f∗

2 ;

dz

dt
= A31x + A32y + A33z + q3f3(σ3) � f∗

3 ,

where

σi = cT
i1x + cT

i2y + cT
i3z,

fi(σi)/σi ∈ [0, ki], i = 1, 2, 3, σi ∈ (−∞, +∞).

Assume that for system (2.7.8) matrix-valued function (2.7.12) is con-

structed with elements (2.7.13) for which estimates (2.7.14) are satisfied,

and matrix (2.7.17) is positive definite. It is easy to verify that for the to-

tal derivative of function (2.7.15) by virtue of system (2.7.21) the following

estimate

(2.7.22) Dv(x, y, z, η) ≤ uT
˜Su

is satisfied, where ˜S = [σ̃ij ], σ̃ij = σ̃ji ∀ (i, j) ∈ [1, 3] and

σ11 = λmax

[

η2
1

(

AT
11P11 + P11A11 + P11(q1k

∗

1cT
11) + (q1k

∗

1cT
11)

TP11

)

+ 2η1η2

(

P12A21 + P12(q2k
∗

2cT
21)

)

+ 2η1η3

(

P13A31 + P13(q3k
∗

3cT
31)

) ]

,

σ22 = λmax

[

η2
2

(

AT
22P22 + P22A22 + P22(q2k

∗

2cT
22) + (q2k

∗

2cT
22)

TP22

)

+ 2η1η2

(

AT
12P12+(q1k

∗

1cT
12)

TP12

)

+ 2η1η3

(

P23A32+P23(q3k
∗

3cT
22)

) ]

,

σ33 = λmax

[

η2
3

(

AT
33P33 + P33A33 + P33(q3k

∗

3cT
33) + (q3k

∗

3cT
33)

TP33

)

+ 2η1η3

(

AT
13P13+(q1k

∗

1cT
13)

TP13

)

+ 2η2η3

(

AT
23P23+(q2k

∗

2cT
23)

TP23

) ]

,
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σij , i �= j, i, j ∈ [1, 3] are norms of matrices:

σ12 =
�

�η2
1

�

P11A12 + P11(q1k
∗

1cT
12)

�

+ η2
2

�

P22A21 + P22(q2k
∗

2cT
21)

�

+ η1η2

�

AT
11P12 + P12A22 + (q1k

∗

1cT
11)

TP12 + P12(q2k
∗

2cT
22)

�

+ η1η3

�

P13A32 + P13(q3k
∗

3cT
32)

�

+ η2η3

�

P23A31 + P23(q3k
∗

3cT
31)

� �

�,

σ13 =
�

�η2
1

�

P11A13 + P11(q1k
∗

1cT
13)

�

+ η2
3

�

P33A31 + P33(q3k
∗

3cT
31)

�

+ η1η2

�

P12A23 + P12(q2k
∗

2cT
23)

�

+ η1η3

�

P13A33 + AT
11P13

+ P13(q3k
∗

3cT
33)+(q1k

∗

1cT
11)

TP13

�

+ η2η3

�

AT
21P23+(q2k

∗

2cT
21)

TP23

� �

�,

σ23 =
�

�η2
2

�

P22A23 + P22(q2k
∗

2cT
23)

�

+ η2
3

�

P33A32 + P33(q3k
∗

3cT
32)

�

+ η1η2

�

AT
13P12 + (q1k

∗

1cT
13)

TP12

�

+ η1η3

�

AT
12P13 + (q1k

∗

1cT
12)P13

�

+ η2η3

�

AT
22P23 + P23A22 + (q2k

∗

2cT
22)

TP23 + P23(q3k
∗

3cT
33)

� �

�,

k∗

i =











ki for σiq
T
i Pijx > 0 (or σiq

T
i Pijy > 0

or σiq
T
i Pijz > 0);

0 in other cases.

Estimate (2.7.22) of total derivative Dv(x, y, z, η) along solutions of system
(2.7.21) makes possible the application of Theorems 2.7.2 – 2.7.4.

Example 2.7.1. Let in system (2.7.21) matrices and vectors be defined
as

A11 =

�

−3 0
0 −3

�

; A12 =

�

−5 0
−1 −5

�

; A13 =

�

1 0
0 1

�

;

A21 =

�

5 0
1 5

�

; A22 =

�

0.1 0
0 0.1

�

; A23 =

�

−2 0
0 −2

�

;

A31 =

�

−1 0
0 −1

�

; A32 =

�

2.3 0
0 2.3

�

; A33 =

�

0 1
−1 0

�

;

q1 =

�

0.1

0

�

; q2 =

�

−0.1

0

�

; q3 =

�

0

0.1

�

;

c11 =

�

−0.1

0

�

; c12 =

�

−0.01

0

�

; c13 =

�

−0.1

0.1

�

;
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σij , i �= j, i, j ∈ [1, 3] are norms of matrices:

σ12 =
�

�η2
1

�

P11A12 + P11(q1k
∗

1cT
12)

�

+ η2
2

�

P22A21 + P22(q2k
∗

2cT
21)

�

+ η1η2

�

AT
11P12 + P12A22 + (q1k

∗

1cT
11)

TP12 + P12(q2k
∗

2cT
22)

�

+ η1η3

�

P13A32 + P13(q3k
∗

3cT
32)

�

+ η2η3

�

P23A31 + P23(q3k
∗

3cT
31)

� �

�,

σ13 =
�

�η2
1

�

P11A13 + P11(q1k
∗

1cT
13)

�

+ η2
3

�

P33A31 + P33(q3k
∗

3cT
31)

�

+ η1η2

�

P12A23 + P12(q2k
∗

2cT
23)

�

+ η1η3

�

P13A33 + AT
11P13

+ P13(q3k
∗

3cT
33)+(q1k

∗

1cT
11)

TP13

�

+ η2η3

�

AT
21P23+(q2k

∗

2cT
21)

TP23

� �

�,

σ23 =
�

�η2
2

�

P22A23 + P22(q2k
∗

2cT
23)

�

+ η2
3

�

P33A32 + P33(q3k
∗

3cT
32)

�

+ η1η2

�

AT
13P12 + (q1k

∗

1cT
13)

TP12

�

+ η1η3

�

AT
12P13 + (q1k

∗

1cT
12)P13

�

+ η2η3

�

AT
22P23 + P23A22 + (q2k

∗

2cT
22)

TP23 + P23(q3k
∗

3cT
33)

� �

�,

k∗

i =











ki for σiq
T
i Pijx > 0 (or σiq

T
i Pijy > 0

or σiq
T
i Pijz > 0);

0 in other cases.

Estimate (2.7.22) of total derivative Dv(x, y, z, η) along solutions of system
(2.7.21) makes possible the application of Theorems 2.7.2 – 2.7.4.

Example 2.7.1. Let in system (2.7.21) matrices and vectors be defined
as

A11 =

�

−3 0
0 −3

�

; A12 =

�

−5 0
−1 −5

�

; A13 =

�

1 0
0 1

�

;

A21 =

�

5 0
1 5

�

; A22 =

�

0.1 0
0 0.1

�

; A23 =

�

−2 0
0 −2

�

;

A31 =

�

−1 0
0 −1

�

; A32 =

�

2.3 0
0 2.3

�

; A33 =

�

0 1
−1 0

�

;

q1 =

�

0.1

0

�

; q2 =

�

−0.1

0

�

; q3 =

�

0

0.1

�

;

c11 =

�

−0.1

0

�

; c12 =

�

−0.01

0

�

; c13 =

�

−0.1

0.1

�

;
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c21 =

�

0.1

0

�

; c22 =

�

0.01

0

�

; c23 =

�

0.1

0.1

�

;

c31 =

�

−0.1

−0.1

�

; c32 =

�

0

−0.01

�

; c33 =

�

0

−0.1

�

;

ki = 1, i = 1, 2, 3.

We take matrix-valued function U(x) elements in the form

v11(x) = xTdiag (1, 1)x; v22(y) = yTdiag (1, 1)y;

v33(z) = zTdiag (1, 1)z; v12(x, y) = xTdiag (0.1, 0.1)y;

v13(x, z) = xTdiag (0.1, 0.1)z; v23(y, z) = yTdiag (0.1, 0.1)z.

For elements vij(·) estimates

v11(x) ≥ �x�2, v22(y) ≥ �y�2, v33(z) ≥ �z�2,

v12(x, y) ≥ −0.1�x��y�; v13(x, z) ≥ −0.1�x��z�;

v23(y, z) ≥ −0.1�y��z�

are satisfied, and matrix �P corresponding to matrix P in estimate (2.7.16)

�P =





1 −0.1 −0.1
−0.1 1 −0.1
−0.1 −0.1 1





is positive definite.
If η = (1, 1, 1)T then, given choice of elements vij(·), i, j ∈ [1, 3] matrix-

valued function U(x, y, z), the matrix �S takes the values

�S =













































−5.2 0.16 0.2

0.16 −0.34 0.15

0.2 0.15 −0.2






for k∗

i = 0;







−5.202 0.18 0.03

0.18 −0.34 0.012

0.03 0.012 −0.202






for k∗

i = ki = 1.
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It easy to verify that in both cases matrix ˜S is negative definite.
By Theorem 2.7.4 we find that the state x = y = z = 0 of system

(2.7.21) with vectors and matrices defined in Example 2.7.1 is asymptoti-
cally stable in the whole (i.e., system (2.7.21) is absolutely stable).

2.7.4 A generalized Lotka-Volterra system

We consider a generalized Lotka-Volterra system of the form

(2.7.23)

dx1

dt
= x1 (b1 + a11(x)x1 + a12(x)x2) ,

dx2

dt
= x2 (b2 + a21(x)x1 + a22(x)x2) ,

where x1, x2 ∈ R+, aij ∈ C
(

R2
+, R

)

, b1, b2 are constants, x ∈ R2
+.

The generalized Lotka-Volterra system (2.7.23) can have several equilib-
rium states xe determined as solutions of

(2.7.24) xe = 0 or A(x)xe = −b

when b �= 0 and det A(x) = 0 ∀x ∈ S(ρ), S(ρ) ⊆ R2
+ or b = 0,

detA(x) �= 0 ∀x ∈ S(ρ), in which case xe = 0 is the unique equilibrium
state of (2.7.23) which is a singular case.

Otherwise, the system (2.7.23) can have finitely many (detA(x) �= 0
∀x ∈ S(ρ), b �= 0) or infinitely many (det A(x) = 0 ∀x ∈ S(ρ), b = 0)
equilibrium states. If we are interested in properties of x �= 0, then we use
the Liapunov transformation of the state variables,

(2.7.25) y1 = x1 − xe1, y2 = x2 − xe2

and transform (2.7.23) into

(2.7.26)

dy1

dt
= (a11(x)y1 + a12(x)y2)xe1 + (a11(x)y1 + a12(x)y2) y1,

dy2

dt
= (a21(x)y1 + a22(x)y2)xe2 + (a21(x)y1 + a22(x)y2) y2.

Together with equations (2.7.26) for i = 1, 2, we consider the real functions
vij(y1, y2) and matrix-valued function

(2.7.27) U(y1, y2) =

(

v11(y1) v12(y1, y2)
v12(y1, y2) v22(y2)

)
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It easy to verify that in both cases matrix ˜S is negative definite.
By Theorem 2.7.4 we find that the state x = y = z = 0 of system

(2.7.21) with vectors and matrices defined in Example 2.7.1 is asymptoti-
cally stable in the whole (i.e., system (2.7.21) is absolutely stable).

2.7.4 A generalized Lotka-Volterra system

We consider a generalized Lotka-Volterra system of the form

(2.7.23)

dx1

dt
= x1 (b1 + a11(x)x1 + a12(x)x2) ,

dx2

dt
= x2 (b2 + a21(x)x1 + a22(x)x2) ,

where x1, x2 ∈ R+, aij ∈ C
(

R2
+, R

)

, b1, b2 are constants, x ∈ R2
+.

The generalized Lotka-Volterra system (2.7.23) can have several equilib-
rium states xe determined as solutions of

(2.7.24) xe = 0 or A(x)xe = −b

when b �= 0 and det A(x) = 0 ∀x ∈ S(ρ), S(ρ) ⊆ R2
+ or b = 0,

detA(x) �= 0 ∀x ∈ S(ρ), in which case xe = 0 is the unique equilibrium
state of (2.7.23) which is a singular case.

Otherwise, the system (2.7.23) can have finitely many (detA(x) �= 0
∀x ∈ S(ρ), b �= 0) or infinitely many (det A(x) = 0 ∀x ∈ S(ρ), b = 0)
equilibrium states. If we are interested in properties of x �= 0, then we use
the Liapunov transformation of the state variables,

(2.7.25) y1 = x1 − xe1, y2 = x2 − xe2

and transform (2.7.23) into

(2.7.26)

dy1

dt
= (a11(x)y1 + a12(x)y2)xe1 + (a11(x)y1 + a12(x)y2) y1,

dy2

dt
= (a21(x)y1 + a22(x)y2)xe2 + (a21(x)y1 + a22(x)y2) y2.

Together with equations (2.7.26) for i = 1, 2, we consider the real functions
vij(y1, y2) and matrix-valued function

(2.7.27) U(y1, y2) =

(

v11(y1) v12(y1, y2)
v12(y1, y2) v22(y2)

)
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with elements

(2.7.28)
v11(y1) = αy2

1 , v22(y2) = βy2
2 ,

v12(y1, y2) = v21(y1, y2) = −γy1y2

α, β > 0 and γ a constant.
By means of the vector ηT = (η1, η2) ∈ R2

+, ηi > 0 we shall construct a
scalar function

(2.7.29) v(y) = ηTU(y)η

for the generalized Lotka-Volterra system (2.7.23).
For all y ∈ S(ρ) the inequality

(2.7.30) v(y) ≥ uTHTPHu

holds, where uT = (|y1|, |y2|), H = diag (η1, η2),

(2.7.31) P =

(

α −γ

−γ β

)

.

The total derivatives of the matrix-valued function (2.7.27) along solutions
of (2.7.23) are given by

dv11

dt
≤ 2α|a11|xe1|y1|

2 + 2α|a12|xe1|y1||y2| + 2α|a11||y1|
3

+ 2α|a12|xe1|y1|
2|y2|;

dv22

dt
≤ 2β|a22|xe2|y2|

2 + 2β|a21|xe2|y1||y2| + 2β|a22||y2|
3

+ 2β|a21|xe2|y1||y2|
2;

dv12

dt
≤ γ|a21|xe2y

2
1 + γ|a12|xe1y

2
2 + |γ(a22xe2 + a11xe1)||y1||y2|

+ |γ(a21 + a11)||y1|
2|y2| + |γ(a22 + a12)||y1||y2|

2,

and

(2.7.32)
dv

dt
≤ uT(C + G(y1, y2))u,

where uT = (|y1|, |y2|),

C =

(

c11 c12

c12 c22

)

, G(y1, y2) =

(

σ11(y1) σ12(y1, y2)
σ21(y1, y2) σ22(y2)

)

.
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Here we have

c11 = 2η1(αη1a11xe1 + η2γa21xe2);

c22 = 2η2(βη2a22xe2 + η1γa12xe1);

c12 = αη2
1 |a12|xe1 + βη2

2 |a21|xe2 + η1η2|γ(a11xe1 + a21xe2|

and

σ11(y1) = 2αη2
1 |a11||y1|,

σ22(y2) = 2βη2
2 |a22||y2|,

σ12(y1, y2) =
(

αη2
1 |a12| + η1η2|γ(a21 + a11)|

)

y1

+
(

βη2
2 |a21| + η1η2|γ(a22 + a12)|

)

y2.

Inequalities (2.7.30) and (2.7.32) imply the following theorem, which is the
main result of this section.

Theorem 2.7.5. The equilibrium xe of the generalized Lotka-Volterra
system (2.7.23) is asymptotically stable if

(1) the matrix P is positive definite;

(2) there exists a constant matrix G such that

G(y1, y2) ≤ G ∀ (y1, y2) ∈ S(ρ);

(3) there exists a constant matrix C such that

C(x1, x2) ≤ C ∀ (x1, x2) ∈ S(ρ);

(4) the matrix C + G is negative definite.

We believe that this result is the first of its kind for such generalized
Lotka-Volterra systems.

2.8 Notes

2.1. The following is a summary of the formulation of the matrix Liapunov
function method:

* discovery of double-index system of functions, as a structure suitable
for constructing Liapunov functions (see Martynyuk and Gutowski
[123]);
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Here we have

c11 = 2η1(αη1a11xe1 + η2γa21xe2);

c22 = 2η2(βη2a22xe2 + η1γa12xe1);

c12 = αη2
1 |a12|xe1 + βη2

2 |a21|xe2 + η1η2|γ(a11xe1 + a21xe2|

and

σ11(y1) = 2αη2
1 |a11||y1|,

σ22(y2) = 2βη2
2 |a22||y2|,

σ12(y1, y2) =
(

αη2
1 |a12| + η1η2|γ(a21 + a11)|

)

y1

+
(

βη2
2 |a21| + η1η2|γ(a22 + a12)|

)

y2.

Inequalities (2.7.30) and (2.7.32) imply the following theorem, which is the
main result of this section.

Theorem 2.7.5. The equilibrium xe of the generalized Lotka-Volterra
system (2.7.23) is asymptotically stable if

(1) the matrix P is positive definite;

(2) there exists a constant matrix G such that

G(y1, y2) ≤ G ∀ (y1, y2) ∈ S(ρ);

(3) there exists a constant matrix C such that

C(x1, x2) ≤ C ∀ (x1, x2) ∈ S(ρ);

(4) the matrix C + G is negative definite.

We believe that this result is the first of its kind for such generalized
Lotka-Volterra systems.

2.8 Notes

2.1. The following is a summary of the formulation of the matrix Liapunov
function method:

* discovery of double-index system of functions, as a structure suitable
for constructing Liapunov functions (see Martynyuk and Gutowski
[123]);
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* formulation of the basic concepts of the MLMF on the basis of
double-index system function (see Djordjević [27, 29], Grujić [47],
Martynyuk [109, 112, 116].);

* formulation of the principle of invariance and investigation of au-
tonomous systems (see Djordjević [28]; Grujić [47]; Grujić, Mar-
tynyuk and Ribbens-Pavella [57]; Martynyuk [116], etc.);

* development of methods for constructing matrix Liapunov functions
(see Djordjević [30], Martynyuk and Krapivny [124], Grujić and
Shaaban [61], etc.);

* construction of sufficient condition of stability for

(a) systems with lumped parameters (see Djordjević [27 – 30], Grujić
[47], Martynyuk [126], Martynyuk and Miladzhanov [125], etc.);

(b) systems with a small parameter multiplying a derivative (see
Martynyuk [114], Martynyuk and Miladzhanov [128], etc.);

(c) systems with random parameters (see Azimov [7], Azimov and
Martynyuk [8], Martynyuk [115], etc.);

2.2. The results in this section are due to Grujić [47], Martynyuk
[116, 121]. Propositions 2.2.1 – 2.2.3 are new.

2.3. Theorems 2.3.1 – 2.3.4 uses the results of Liapunov [101], Persidskii
[152], Yoshizawa [174], Zubov [178] and Grujić, Martynyuk and Ribbens-
Pavella [57].

2.4. Theorems 2.4.1 – 2.4.2 are new. They generalize well-known the-
orems of comparison method in motion stability theory (see e.g. Laksh-
mikantham, Leela and Martynyuk [94]).

2.5. Theorems 2.5.1 – 2.5.7 of this section are new. The results of the
investigation of autonomous system (Theorems 2.5.8 – 2.5.20) are presented
based on those by Grujić [47] and Grujić, Martynyuk and Ribbens-Pavella
[57].

2.6. The notion of multistability of motion is formulated in terms of re-
fusal from “homogeneous” behavior of components of solutions for nonlinear
system. This notion can be viewed as well as generalization of stability with
respect to a part of variables (see e.g. Rumiantzev [160] and Aminov and
Sirazetdinov [2]). The results of sections 2.6.1 – 2.6.4 are new. Theorem
2.6.3 is taken from Martynyuk [118]. Theorems 2.6.4 and 2.6.5 were pub-
lished by Martynyuk [117] and Theorem 2.6.6 the same author [119]. In the
investigation of nonlinear systems by vector Liapunov functions the notion
of multistability of comparison system was used by Lakshmikantham, Leela
and Rao [95].
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2.7. In subsection 2.7.1 the solution of the Lefschetz [100] problem is
presented according to Martynyuk [111]. Moreover, the results by Djor-
djević [29] are used. The results of subsections 2.7.2 – 2.7.3 are taken from
Martynyuk and Miladzhanov [125]. The results of subsection 2.7.4 are taken
from Freedman and Martynyuk [37].
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3
STABILITY OF SINGULARLY-PERTURBED SYSTEMS

3.1 Introduction

The physical system can consist of subsystems that react differently to the
external impacts. Moreover, each of the subsystems has its own scale of
natural time. In the case when the subsystems are not interconnected,
the dynamical properties of each subsystem are examined in terms of the
corresponding time scale. It turned out that it is reasonable to use such in-
formation when the additional conditions on the subsystems are formulated
in the investigation of large scale systems. The existence of various time
scales related to the separated subsystems is mathematically expressed by
arbitrarily small positive parameters µi present at the part of the higher
derivatives in differential equation. If the parameters µi vanish, the number
of differential equations of the large scale system is diminished and, hence
the appearance of algebraic equations.

This is just the singular case allowing the consideration of various pecu-
liarities of the system with different time scales.

The chapter is arranged as follows.

Section 3.2 provides mathematical description of the system with quick
and slow variables and states the problem of investigation.

Section 3.3 deals with asymptotic stability conditions for singularly per-
turbed system in terms of scalar Liapunov function.

Section 3.4 deals with Lur’e-Postnikov systems in terms of scalar Lia-
punov function.

In Section 3.5 the notion of the property of having a fixed sign is formu-
lated for matrix-valued function for singularly perturbed system.

In Section 3.6 the matrix-valued Liapunov function is introduced and
the structure of estimation of this function total derivative along solution
of the system under consideration is determined.

Typeset by AMS-TEX
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In the Section 3.7 and 3.8 general results of the direct Liapunov method
are stated for singularly perturbed system via matrix-valued function.

In Section 3.9 the method of constructing elements of the matrix-valued
function is concretized and linear singularly perturbed systems are investi-
gated using this method.

Section 3.10 contains some applications of general results to systems
modeling mechanics problems such as oscillating system of solid bodies
and Lur’e-Postnikov system.

The final Section 3.11 is supplied with detailed bibliography comments
to the sections of the chapter.

3.2 Description of Systems

The singularly perturbed system S being considered below, is described by
two systems of nonlinear differential equations

dx

dt
= f(t, x, y, µ),(3.2.1)

µ
dy

dt
= g(t, x, y, µ),(3.2.2)

where (xT, yT)T is a vector of state of the whole system, x ∈ Rn, y ∈ Rm,
f ∈ C(R × Rn × Rm × M, Rn), g ∈ C(R × Rn × Rm × M, Rm). The
parameter µ is positive and is supposed to be arbitrarily small. We set
µ ∈ (0, 1] = M.

The states x = 0 and y = 0 have open connected neighborhoods Nx ⊆
Rn and Ny ⊆ Rm respectively. The vector-function f and g are such that

for (xT, yT)T = 0 system (3.2.1), (3.2.2) has the only equilibrium state in
the Cartesian product Nx ×Ny of the sets Nx and Ny for any µ ∈ (0, 1].
If µ takes zero value, system (3.2.1), (3.2.2) degenerates into system S0,
which is described by the differential and algebraic equation

dx

dt
= f(t, x, y, 0),(3.2.3)

0 = g(t, x, y, 0).(3.2.4)

It is supposed that g(t, x, y, 0) vanishes for any t ∈ R and x ∈ Nx, iff y = 0.
This requirement is motivated by an effective application of the Liapunov‘s
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coordinates transformation by Hoppensteadt [74] in the investigation of
singularly-perturbed systems. The system of lower order

(3.2.5)
dx

dt
= f(t, x, 0, 0)

obtained in result, is of importance in the stability investigation of sys-
tem (3.2.1), (3.2.2). If µ > 0 is a sufficiently small value of the parameter,
then system (3.2.1), (3.2.2) consists of the parts which accomplish slow and
quick motions. The quick system Sτ (or the boundary layer) is obtained
from system (3.2.1), (3.2.2) after the change of the time scale by introducing
the variable

τ = (t − t0)µ
−1.

Then, the quick system corresponding to system (3.2.2) becomes

(3.2.6)
dy

dτ
= g(α, b, y, 0).

In this system α and b, b = (β1, . . . , βn), are scalar and vector parame-
ters, introduced instead of t ∈ R and x ∈ Nx respectively. We suppose as
earlier, that g vanishes for any t ∈ R, x ∈ Nx, µ ∈ (0, 1] iff y = 0. The sep-
aration of the time-scales in the investigation of stability of system (3.2.1),
(3.2.2) is essential due to the fact that the analysis of the degenerate sys-
tem S0 (3.2.5) and the quick system Sτ (3.2.6) is a more simple problem in
comparison with the general problem of stability of system (3.2.1), (3.2.2).
The next problem to be considered is to establish conditions for the vector-
function f and g under which the property of uniform asymptotic stability
in the product Nx ×Ny of system (3.2.1), (3.2.2) can be obtained from the
same property of solutions of system (3.2.5) and (3.2.6).

3.3 Asymptotic Stability Conditions

Let
Nx0 = {x: x ∈ Nx, x �= 0}, Ny0 = {y: y ∈ Ny, y �= 0}.

The function V (α, b, y) ∈ C(1,1,1)(R × Rn × Rm, R) and

Vα =
∂V

∂α
, Vb =

(

∂V

∂β1
,

∂V

∂β2
, . . . ,

∂V

∂βn

)T

.

We introduce two assumptions on systems (3.2.5) and (3.2.6) connected
with positive definite functions θ and V .
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Assumption 3.3.1. There exist

(1) a decreasing positive definite on Nx and radially unbounded for

Nx = Rn function θ ∈ C(1,1)(R ×Nxo, R+) ;
(2) positive definite function ϕ ∈ C(Rn, R+) and ψ ∈ C(Rm, R+) on

Nx and Ny, respectively;
(3) non-negative numbers ζ1 and ζ2, ζ1 < 1, and the conditions are

satisfied:
(a) θt(t, x) + θT

x (t, x)f(t, x, 0) ≤ −ϕ(x) ∀(t, x) ∈ R ×Nx0;
(b) θT

x (t, x)[f(t, x, y, µ) − f(t, x, y, 0)] ≤ ζ1ϕ(x) + ζ2ψ(y),
∀(t, x, y, µ) ∈ R ×Nxo ×Nyo ×M.

Conditions (1)–(3)(a) of Assumption 3.2.1 ensure uniform asymptotic
stability of x = 0 of system (3.2.5) in the whole, when Nx = Rn. Con-
dition (3)(b) is a requirement to the qualitative properties of the vector-
function f on Nx ×Ny.

Assumption 3.3.2. There exist

(1) a decreasing positive definite on Nx×Ny and radially unbounded in
y uniformly relatively x ∈ Nx for Ny = Rm function V (t, x, y) ∈

C(1,1,1)(R × Nx × Ny, R+) (or V (t, y) ∈ C(1,1)(R × Nyo, R+) de-
creasing and positive definite on Ny and radially unbounded for
Ny = Rm);

(2) non-negative numbers ξ1, ξ2, ξ3, ξ4 (ξ1 < 1, ξ2 < 1) and an integer
π > 1;

(3) positive definite functions ϕ ∈ C(Rn, R+), ψ ∈ C(Rm, R+) on Nx

and Ny respectively and the following conditions are satisfied

(a) V T
y g(α, b, y, 0) ≤ −ψ(y) ∀(α, b, y) ∈ R ×Nx ×Ny or (∀(α, b,

y) ∈ R ×Nx ×Nyo) respectively;

(b) V T
y [g(α, b, y, µ) − g(α, b, y, 0)] ≤ ξ1µ

πϕ(b) + ξ2ψ(y) ∀(α, b,

y, µ) ∈ R×Nx×Ny×M or (∀(α, b, y, µ) ∈ R×Nx×Nyo×M)
respectively;

(c) Vα +V T
b f(α, b, y, µ) ≤ ξ3ϕ(b)+ξ4ψ(y) ∀(α, b, y, µ) ∈ R×Nx×

Ny ×M or (∀(α, b, y, µ) ∈ R ×Nx ×Nyo ×M) respectively.

The constants ζ1, ζ2, ξ1, ξ2 and ξ3, ξ4 mentioned in Assumption 3.3.1,
3.3.2 must be taken as small as possible. If the function V does not depend
on x, then it is to be positive definite on Ny only. If, in addition Ny is
time-invariant, then condition (c) in Assumption 3.3.2 is omitted.

Let

µ̃ =
1 − ξ2

ζ2 + ξ4
.
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This value is a lower estimate of the upper boundary of the admissible
change of µ.

Theorem 3.3.1. In order that the equilibrium state (xT, yT)T = 0 of
system (3.2.1), (3.2.2) to be uniformly asymptotically stable, it is sufficient
that conditions of Assumptions 3.3.1 and 3.3.2 be satisfied for every µ ∈
(0, µ̃) and for µ → 0 as soon as the inequality

1 > ζ1 + ξ1µ̃
π−1 + ξ3

holds.
If moreover Ny × Ny = Rm+n, then the equilibrium state is uniformly

asymptotically stable in the whole for every µ ∈ (0, µ̃) and for µ → 0.

Proof. Let the function ν be defined by the formula ν = θ + V .
Then ν(t, x, y) ∈ C(1,1,1)(R × Nxo × Nyo) and, since the conditions of
Assumptions 3.3.1 and 3.3.2 are satisfied, it is decreasing and positive on

Nx ×Ny. The Euler derivative
dν(t, x(t), y(t), µ)

dt
of it along the motion of

system (3.2.1), (3.2.2) z(t) = (xT(t), yT(t))T �= 0 (z(t) = 0, t ∈ [t0, +∞[ )
means that the equilibrium state is reachable and therefore is not consid-
ered, due to system (3.2.1), (3.2.2) is

dν

dt
= θt + θT

x f + Vt + V T
x f +

1

µ
V T

y g.

The right-side part of this expression is transformed to the form

dν

dt
= θt + θT

x f(t, x, 0, 0) + θT
x [f(t, x, y, µ) − f(t, x, 0, 0)] + V T

x f(t, x, y, 0)

+
1

µ
V T

y g(t, x, y, 0) +
1

µ
V T

y [g(t, x, y, µ) − g(t, x, y, 0)].

Conditions (3)(a) and (3)(b) of Assumption 3.3.1 and (3)(a)–(3)(c) of As-
sumption 3.3.2 lead to the estimate

(3.3.1)

dν

dt
≤ −(1 − ζ1 − ξ1µ

π−1 − ξ3)ϕ(x) −
1

µ
[1 − ξ2 − µ(ζ2 + ξ4)]ψ(y),

∀µ ∈ (0, µ̃) µ → 0 ∀ (t, x, y) ∈ R ×Nx0 ×Ny0.

Let

N0x = {z : x = 0, y ∈ Ny0}, N0y = {z : x ∈ Nx0, y = 0},

N0 = N0x ×N0y.
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This value is a lower estimate of the upper boundary of the admissible
change of µ.

Theorem 3.3.1. In order that the equilibrium state (xT, yT)T = 0 of
system (3.2.1), (3.2.2) to be uniformly asymptotically stable, it is sufficient
that conditions of Assumptions 3.3.1 and 3.3.2 be satisfied for every µ ∈
(0, µ̃) and for µ → 0 as soon as the inequality

1 > ζ1 + ξ1µ̃
π−1 + ξ3

holds.
If moreover Ny × Ny = Rm+n, then the equilibrium state is uniformly

asymptotically stable in the whole for every µ ∈ (0, µ̃) and for µ → 0.

Proof. Let the function ν be defined by the formula ν = θ + V .
Then ν(t, x, y) ∈ C(1,1,1)(R × Nxo × Nyo) and, since the conditions of
Assumptions 3.3.1 and 3.3.2 are satisfied, it is decreasing and positive on

Nx ×Ny. The Euler derivative
dν(t, x(t), y(t), µ)

dt
of it along the motion of

system (3.2.1), (3.2.2) z(t) = (xT(t), yT(t))T �= 0 (z(t) = 0, t ∈ [t0, +∞[ )
means that the equilibrium state is reachable and therefore is not consid-
ered, due to system (3.2.1), (3.2.2) is

dν

dt
= θt + θT

x f + Vt + V T
x f +

1

µ
V T

y g.

The right-side part of this expression is transformed to the form

dν

dt
= θt + θT

x f(t, x, 0, 0) + θT
x [f(t, x, y, µ) − f(t, x, 0, 0)] + V T

x f(t, x, y, 0)

+
1

µ
V T

y g(t, x, y, 0) +
1

µ
V T

y [g(t, x, y, µ) − g(t, x, y, 0)].

Conditions (3)(a) and (3)(b) of Assumption 3.3.1 and (3)(a)–(3)(c) of As-
sumption 3.3.2 lead to the estimate

(3.3.1)

dν

dt
≤ −(1 − ζ1 − ξ1µ

π−1 − ξ3)ϕ(x) −
1

µ
[1 − ξ2 − µ(ζ2 + ξ4)]ψ(y),

∀µ ∈ (0, µ̃) µ → 0 ∀ (t, x, y) ∈ R ×Nx0 ×Ny0.

Let

N0x = {z : x = 0, y ∈ Ny0}, N0y = {z : x ∈ Nx0, y = 0},

N0 = N0x ×N0y.
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It is clear that

Nx ×Ny = Nx0 ×Ny0 ×N0 × {z : z = 0}.

Let νM be a maximal positive number, for which the largest connected
neighborhood UνM

(t) of point z = 0 is such, that

ν(t, x, y) ∈ [0, νM ), ∀ (x, y) ∈ UνM
(t) ∀ t ∈ R,

is a subset of the product N = Nx ×Ny for every t ∈ R. The existence of
the value νM > 0 is implied by the positive definiteness of function ν on
N and the time-invariance of the neighborhood of point z = 0.

Let τi, τ∗

i , t0 ≤ τi < τ∗

i ≤ +∞ denote the times when z(t) ∈ UνM
(t) \

N0 ∀ t ∈ (τi, τ
∗

i ), τi > t0 and z(t) ∈ N0 ∀ t ∈ [τ∗

i−1, τi]. If z(t0) ∈
UνM

(t0) \ N0 then i = 0, τ0 = t0, [τ0, τ
∗) = [t0, τ

∗) is the first interval to
be considered and the next is [τ∗

0 , τ1]. If z(t0) ∈ N0, then i = 1, τ∗

0 = t0
and [τ∗

0 , τ1] is the first interval to be considered, and the next is (τ1, τ
∗

1 ).
In what follows, i ≥ 0 is an integer.

Let
ζ(t; t0, z0, µ) = (χT(t; t0, z0, µ), ηT(t; t0, z0, µ))T,

ζ(t0; t0, z0, µ) ≡ z0,

is a motion of system (3.2.1), (3.2.2) for the initial values z0 and t = t0
when µ > 0.

Proposition 3.3.1. The function ν is strictly decreasing in t ∈ [τ∗

i−1, τi]
along motions ζ(t; t0, z0, µ) of system (3.2.1), (3.2.2) for every µ ∈ (0, µ̃)
and for µ → 0.

Proof.

Part 1. Let there exist a time t̂ ∈ [τ∗

i−1, τi[ when ν(t, x(t), y(t)) ≤

ν(t̂, x(t̂), y(t̂)) for some t ∈
(

τi−1, τ
∗

i−1

)

. If t̂ = τ∗

i−1, then there exist τ1,

τ2 ∈
(

τi−1, τ
∗

i−1

)

, τ1 < τ2 such that ν(τ1, x(τ1), y(τ1)) ≤ ν(τ2, x(τ2), y(τ2))
due to the continuity of function V and ζ at t ∈ T0, ∀ t ∈ R which ensures
the continuity of functions f and g. Therefore, there exists a τ3 ∈ [τ1, τ2],
when

dν

dt

∣

∣

∣

∣

t=τ3

≥ 0.

However, this contradicts estimate (3.3.1) because of the positive definite-
ness of functions ϕ and ψ and the fact that

(

1 − ζ1 − ξ1µ
π−1 − ξ3

)

> 0,
1

µ
[1 − ξ2 − µ(ζ2 + ξ4)] > 0 ∀µ ∈ (0, µ̃) .
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Hence, the equality t̂ = τ∗

i−1 is impossible and a value t̂ ∈
(

τ∗

i−1, τi

]

is
to be considered. Let T1 ⊆ [τ∗

i−1, τi) be a set of all times t such that
x(t) = 0, T2 ⊆ [τ∗

i−1, τi) be a set of all times t, such that y(t) = 0. Since
z(t) = 0 is excluded ∀ t ∈ [t0, +∞[, then, by virtue of the continuity of
the system motion it should be T1 = [τ∗

i−1, τi) or T2 = [τ∗

i−1, τi). To be
specific, we suppose that T1 = [τ∗

i−1, τi). Then θ(t, x(t)) = θ(t, 0) ∀ t ∈ T1

and ν(t, x(t), y(t)) = ν(t, 0, y(t)). Moreover,

(3.3.2)

d

dt
ν(t, 0, y(t)) =

d

dt
V (t, 0, y(t)) ≤ −

1

µ
(1 − ξ2 − ξ4)ψ(y(t))

∀t ∈ T1, ∀µ ∈ (0, µ̃) , µ → 0.

This contradicts the assumption that t̂ ∈ T1. Now let T2 = [τ∗

i−1, τi). Then
y(t) = 0 ∀ t ∈ T2. Therefore

ν(t, x(t), y(t)) = ν(t, x(t), 0) ∀ t ∈ T2,

d

dt
ν(t, x(t), 0) ≤ −(1 − ζ1 − ζ3)ϕ(x(t)) ∀ t ∈ T2,

that contradicts the assumption that t̂ ∈ T2. In general, there exists no
value t̂ ∈ [τ∗

i−1, τi[ mentioned above.

Part 2. Inequalities (3.3.1), (3.3.2), estimates of µ̃ and conditions 1 >

ζ1 + ξ1µ̃
π−1 + ξ3, ζ2 > 0, ξ3 > 0 together with the positive definiteness of

functions ϕ and ψ prove that the function ν strictly decreases on interval
[τ∗

i−1, τi), τ∗

i−1 ≥ t0, ∀ i ≥ 1.

Part 3. Let there exist t̂ ∈ [τ∗

i−1, τi] such that ν(t, x(t), y(t)) ≥

ν(t̂, x(t̂), y(t̂)) for some t ∈ (τi, τ
∗

i ). Hence, there exist τ1, τ2 ∈ (τi, τ
∗

i ),
τ1 < τ2 such that ν(τ1, x(τ 1), y(τ1)) ≤ ν(τ 2, x(τ2), y(τ2)) due to the con-
tinuity of ν(t, x(t), y(t)) and ζ in t and because of description of Section 3.2.

Therefore, ∃ τ3 ∈ [τ1, τ2] is such that
d

dt
ν(t, x(t), y(t))|t=τ 3

≥ 0 and

this contradicts condition (3.3.1).
The combination of assertions of Parts 1–3 proves Proposition 3.3.1.
In view of the positive definiteness of ν we establish according to the

results Part 1 the uniform stability of state z = 0 of system (3.2.1), (3.2.2)
for ∀µ ∈ (0, µ̃) and for µ → 0. Further on, because of the positive definite-
ness of functions ϕ and ψ and the fact that (1− ζ1 − ξ1µ

π−1 − ξ3) > 0 and
(1− ζ1 − ξ1µ

π−1) > 0 ∀µ ∈ (]0, µ̃) as µ → 0 and due to the estimate of µ̃,
d
dt

ν is proved to be smaller than a negative definite function on Nxo ×Nyo,
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Hence, the equality t̂ = τ∗

i−1 is impossible and a value t̂ ∈
(

τ∗

i−1, τi

]

is
to be considered. Let T1 ⊆ [τ∗

i−1, τi) be a set of all times t such that
x(t) = 0, T2 ⊆ [τ∗

i−1, τi) be a set of all times t, such that y(t) = 0. Since
z(t) = 0 is excluded ∀ t ∈ [t0, +∞[, then, by virtue of the continuity of
the system motion it should be T1 = [τ∗

i−1, τi) or T2 = [τ∗

i−1, τi). To be
specific, we suppose that T1 = [τ∗

i−1, τi). Then θ(t, x(t)) = θ(t, 0) ∀ t ∈ T1

and ν(t, x(t), y(t)) = ν(t, 0, y(t)). Moreover,

(3.3.2)

d

dt
ν(t, 0, y(t)) =

d

dt
V (t, 0, y(t)) ≤ −

1

µ
(1 − ξ2 − ξ4)ψ(y(t))

∀t ∈ T1, ∀µ ∈ (0, µ̃) , µ → 0.

This contradicts the assumption that t̂ ∈ T1. Now let T2 = [τ∗

i−1, τi). Then
y(t) = 0 ∀ t ∈ T2. Therefore

ν(t, x(t), y(t)) = ν(t, x(t), 0) ∀ t ∈ T2,

d

dt
ν(t, x(t), 0) ≤ −(1 − ζ1 − ζ3)ϕ(x(t)) ∀ t ∈ T2,

that contradicts the assumption that t̂ ∈ T2. In general, there exists no
value t̂ ∈ [τ∗

i−1, τi[ mentioned above.

Part 2. Inequalities (3.3.1), (3.3.2), estimates of µ̃ and conditions 1 >

ζ1 + ξ1µ̃
π−1 + ξ3, ζ2 > 0, ξ3 > 0 together with the positive definiteness of

functions ϕ and ψ prove that the function ν strictly decreases on interval
[τ∗

i−1, τi), τ∗

i−1 ≥ t0, ∀ i ≥ 1.

Part 3. Let there exist t̂ ∈ [τ∗

i−1, τi] such that ν(t, x(t), y(t)) ≥

ν(t̂, x(t̂), y(t̂)) for some t ∈ (τi, τ
∗

i ). Hence, there exist τ1, τ2 ∈ (τi, τ
∗

i ),
τ1 < τ2 such that ν(τ1, x(τ 1), y(τ1)) ≤ ν(τ 2, x(τ2), y(τ2)) due to the con-
tinuity of ν(t, x(t), y(t)) and ζ in t and because of description of Section 3.2.

Therefore, ∃ τ3 ∈ [τ1, τ2] is such that
d

dt
ν(t, x(t), y(t))|t=τ 3

≥ 0 and

this contradicts condition (3.3.1).
The combination of assertions of Parts 1–3 proves Proposition 3.3.1.
In view of the positive definiteness of ν we establish according to the

results Part 1 the uniform stability of state z = 0 of system (3.2.1), (3.2.2)
for ∀µ ∈ (0, µ̃) and for µ → 0. Further on, because of the positive definite-
ness of functions ϕ and ψ and the fact that (1− ζ1 − ξ1µ

π−1 − ξ3) > 0 and
(1− ζ1 − ξ1µ

π−1) > 0 ∀µ ∈ (]0, µ̃) as µ → 0 and due to the estimate of µ̃,
d
dt

ν is proved to be smaller than a negative definite function on Nxo ×Nyo,
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on Nox and on Noy. This result together with the conditions of positive def-
initeness and decrease of function ν proves uniform attraction in the whole
of the state z = 0 of system (3.2.1), (3.2.2) and completes the prove of
the first assertion of the theorem. In the case when Nx ×Ny = Rn+m, the
function ν will be radially unbounded and this together with the other con-
ditions proves the second assertion of the theorem. This theorem is applied
in the absolute stability analysis of singularly perturbed Lur’e-Postnikov
systems.

3.4 Singularly Perturbed Lur’e-Postnikov Systems

Let system (3.2.1), (3.2.2) be the Lur’e-Postnikov type system (see Grujić
[54])

dx

dt
= A11x + A12y + q1Φ1(σ1),

σ1 = cT
11x + cT

12y;

(3.4.1)

µ
dy

dt
= µA21x + A22y + q2Φ2(σ),

σ2 = µcT
21x + cT

22y.

(3.4.2)

The matrices A(·) and vectors c(·) and q(·) are of the appropriate dimensions.
The nonlinearities Φi, i = 1, 2 are continuous, Φi(0) = 0, and in Lur’e
sectors [0, ki], ki ∈ (0, +∞) satisfy the conditions

Φi(σi)

σi

∈ [0, ki], i = 1, 2; ∀σi ∈ (−∞, +∞) .

The nonlinearities Φi are considered incidentally, for which the state x = 0,
y = 0 is the only equilibrium state of the degenerate system

(3.4.3)
dx

dt
= A11x + q1ϕ1(σ

0
1), σ0

1 = cT
11x

and the system, describing the boundary layer respectively

(3.4.4)
dy

dt
= A22y + q2Φ2(σ

0
2), σ0

2 = cT
22y.
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This assumption is valid if

cT
iiA

−1
ii qi > 0, i = 1, 2.

We suppose the matrix A11 is stable, the pair (A11, q1) is controlled and
there exist numbers ψ1 ∈ [0, +∞[ and ε1 ∈ (0, +∞) such that

k−1
1 + Re(1 + jψ1ω)cT

11(A11 − jωI1)
−1q1

− ε1q
T
1 (AT

11 + jωIn)−1(A11 − jωIn)−1q1 ≥ 0 ∀ω ∈ [0, +∞].

Then

Θ(x) =






xTH1x + ψ1

σ0

1
�

0

Φ1(σ
0
1) dσ0

1







1/2

is the Liapunov function for degenerate system (3.4.3) for any Φi taking
the values in [0, K1], where H1 is a solution of the equations

(3.4.5) AT
11H1 + H1A11 + q1q

T
1 = −ε1I1, h1 + H1q1 = −

√
γ q1

for

(3.4.6) γ = k−1
1 − ζ1c

T
11q1, h1 =

1

2
(ψ1A

T
11c11 + c11).

Now we shall verify the conditions of Assumptions 3.3.1 and 3.3.2.
The verification of conditions of Assumption 3.3.1: Let H1 and θ(x) be

defined as above. Hence, the function θ(x) is decreasing positive definite
on Rn and radially unbounded. We shall check up the condition (3)(a) first

(a) in this case θt = 0 and

ΘT
x (x)f(x, 0, 0) ≤ −

1

2
ε1η

−1
2 �x� ∀ (x �= 0) ∈ Rn,

where η2 = Λ1/2(H1 + 1
2ψ1k1c11c

T
11) and Λ(·) is a maximal eigen-

value of matrix (·). Hence

ϕ(x) = η3�x�, η3 =
1

2
ε1η

−1
2

and

θt + θT
x f(x, 0, 0) ≤ −ϕ(x) ∀ (x �= 0) ∈ Rn
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This assumption is valid if

cT
iiA

−1
ii qi > 0, i = 1, 2.

We suppose the matrix A11 is stable, the pair (A11, q1) is controlled and
there exist numbers ψ1 ∈ [0, +∞[ and ε1 ∈ (0, +∞) such that

k−1
1 + Re(1 + jψ1ω)cT

11(A11 − jωI1)
−1q1

− ε1q
T
1 (AT

11 + jωIn)−1(A11 − jωIn)−1q1 ≥ 0 ∀ω ∈ [0, +∞].

Then

Θ(x) =






xTH1x + ψ1

σ0

1
�

0

Φ1(σ
0
1) dσ0

1







1/2

is the Liapunov function for degenerate system (3.4.3) for any Φi taking
the values in [0, K1], where H1 is a solution of the equations

(3.4.5) AT
11H1 + H1A11 + q1q

T
1 = −ε1I1, h1 + H1q1 = −

√
γ q1

for

(3.4.6) γ = k−1
1 − ζ1c

T
11q1, h1 =

1

2
(ψ1A

T
11c11 + c11).

Now we shall verify the conditions of Assumptions 3.3.1 and 3.3.2.
The verification of conditions of Assumption 3.3.1: Let H1 and θ(x) be

defined as above. Hence, the function θ(x) is decreasing positive definite
on Rn and radially unbounded. We shall check up the condition (3)(a) first

(a) in this case θt = 0 and

ΘT
x (x)f(x, 0, 0) ≤ −

1

2
ε1η

−1
2 �x� ∀ (x �= 0) ∈ Rn,

where η2 = Λ1/2(H1 + 1
2ψ1k1c11c

T
11) and Λ(·) is a maximal eigen-

value of matrix (·). Hence

ϕ(x) = η3�x�, η3 =
1

2
ε1η

−1
2

and

θt + θT
x f(x, 0, 0) ≤ −ϕ(x) ∀ (x �= 0) ∈ Rn
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and, besides, Nx = Rn, Nx0 = {x : x �= 0, x ∈ Rn};
(b) for the function θ(x) we have

θT
x [f(x, y, µ) − f(x, 0, 0)] =

1

2
θ(x)xT

(

2H1 + ζ
Φ1(σ

0
1)

σ0
1

c11c
T
11

)

×{A12y + q1[Φ1(σ) − Φ1(σ
0
1)] } ≤ ζ1ϕ(x) + ζ2ψ(y),

∀x ∈ Nx0, ∀ y ∈ Rm ∀µ ∈ (0, 1] .

Incidentally

ψ(y) = ρ3�y�, ζ1 = k1(η1η3)
−1η2�q1� �c11�

and

ζ2 = (η1ρ3)
−1η2(k1 �c12� �q1� + �A12� ), η1 = λ1/2(H1),

where λ(·) is a minimal eigenvalue of matrix (·). The value ρ3 > 0
will be defined below. The numbers ζ1 and ζ2 and the functions θ,
ϕ and ψ satisfy the conditions of Assumption 3.3.1.

The verification of the conditions of Assumption 3.3.2: We take the
function V (y) = �y� as the auxiliary function. This choice shows the
alternative to the choice of the Liapunov functions. The function V is
decreasing positive definite in Rn and radially unbounded. In order to
verify condition (3)(a) of Assumption 3.3.2, we present the system of the
boundary layer in the form suggested by Rosenbrok

dy

dτ
= D22(α2)y,

where

D22(α2) = A22 + α2(σ
0
2)q2c

T
22, α2(σ

0
2) =

Φ2(σ
0
2)

σ0
2

.

The matrix D̂2(α2) = DT
22(α2) + D22(α2) is negative definite for each

(σ, ϕ2) ∈ R×N0([0, K2]) iff D22(0) and D22(K) are negative definite. In
the case under consideration this assumption is fulfilled. At last ψ(y) =
ρ3(y) and V T

y g(α, b, y, 0) ≤ −ψ(y) ∀ (y �= 0) ∈ Rm ensure the satisfaction

of condition (3)(a).
For condition (3)(a) we have

V T
y [g(α, b, y, µ) − g(α, b, y, 0)] =

1

V
yT{µA21b + q2[Φ2(σ2) − Φ2(σ

0
2)] }

∀ (y �= 0) ∈ Rm.
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Let

ξ1 = 2ε1η2 sup
α∈[0,k2]

�A21 + αq2c
T
21�,

ξ2 = k2�q2c
T
21�ρ

−1
3 .

We assume that ξ2 < 1, then

V T
y [g(α, b, y, µ) − g(α, b, 0, 0)] ≤ ξ1µϕ(b) + ξ2ψ(y)

∀ (α, b, y, µ) ∈ R × Rn × Rm × (0,∞) .

This corresponds to condition (3) in Assumption 3.3.2 for π = 1. Checking
up condition (3)(c) we take into account that Vα ≡ 0 and Vb ≡ 0 and,
therefore, ξ3 = 0 and ξ4 = 0. The lower estimate of the upper bound of
the parameter µ changes and has the form

µ̃ =
1 − ξ2

ζ2
.

Now the inequality 1 > ζ1 + ξ1 ensures absolute stability of the state
z = (xT, yT)T = 0 of system (3.4.1), (3.4.2).

Example 3.4.1. Let

A11 =

(

0 1
−1 −2

)

, q1 =

(

0
10−1

)

, c11 =

(

−10−2

0

)

,

A12 = I, c12 =

(

1
1

)

, k1 = 2

and

A21 = 10−3I2, c21 =

(

10−3

0

)

, k2 = 1,

A22 =

(

−4 1
1 −4

)

, q2 =

(

1
1

)

, c22 =

(

1
0

)

.

In this example we take ψ1 = 1, ε1 = 10−1 so that

1

k1
+ Re(1 + jψ1ω)cT

11(A11 − jωI2)
−1q1

− ε1q
T
1 (AT

11 + jωI2)
−1(A11 − jωI2)

−1q1 ≡
1

k1
> 2.
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Let

ξ1 = 2ε1η2 sup
α∈[0,k2]

�A21 + αq2c
T
21�,

ξ2 = k2�q2c
T
21�ρ

−1
3 .

We assume that ξ2 < 1, then

V T
y [g(α, b, y, µ) − g(α, b, 0, 0)] ≤ ξ1µϕ(b) + ξ2ψ(y)

∀ (α, b, y, µ) ∈ R × Rn × Rm × (0,∞) .

This corresponds to condition (3) in Assumption 3.3.2 for π = 1. Checking
up condition (3)(c) we take into account that Vα ≡ 0 and Vb ≡ 0 and,
therefore, ξ3 = 0 and ξ4 = 0. The lower estimate of the upper bound of
the parameter µ changes and has the form

µ̃ =
1 − ξ2

ζ2
.

Now the inequality 1 > ζ1 + ξ1 ensures absolute stability of the state
z = (xT, yT)T = 0 of system (3.4.1), (3.4.2).

Example 3.4.1. Let

A11 =

(

0 1
−1 −2

)

, q1 =

(

0
10−1

)

, c11 =

(

−10−2

0

)

,

A12 = I, c12 =

(

1
1

)

, k1 = 2

and

A21 = 10−3I2, c21 =

(

10−3

0

)

, k2 = 1,

A22 =

(

−4 1
1 −4

)

, q2 =

(

1
1

)

, c22 =

(

1
0

)

.

In this example we take ψ1 = 1, ε1 = 10−1 so that

1

k1
+ Re(1 + jψ1ω)cT

11(A11 − jωI2)
−1q1

− ε1q
T
1 (AT

11 + jωI2)
−1(A11 − jωI2)

−1q1 ≡
1

k1
> 2.
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Further

g1 =

(

0
0

)

, H1 =

(

h11 h12

h21 h22

)

is defined from the equation

(

0 −1
−1 2

) (

h11 h12

h21 h22

)

+

(

h11 h21

h12 h22

) (

0 1
−1 −2

)

= −
1

10

(

1 0
0 1

)

in the form

H1 =
1

20

(

3 1
1 1

)

.

Hence η1 = 0.16 and η2 = 0.45. The matrix D̂22(α2) reads

D̂22(α2) =

(

−8 + 2α22 2 + α22

2 + α22 −8

)

.

The matrices D̂22 and D̂22(1) are negative definite. Finally, ζ1 = 0.05,
ζ2 = 1.88, ξ1 = 0.02 and ξ2 = 0.002. Therefore µ̃ = 0.52. Since ζ1 +
ξ1 = 0.53 is smaller then 1, the state z = (xT, yT)T = 0 of the system
defined in this example is absolutely stable for each µ ∈ (0; µ̃), i.e. µ ∈
(0; 0.52) on N0(L), L = [0, K], K = diag(2, 1). The advantage of the
separation of the time-scales in this example is that the order of the system
in question is diminished. Namely, instead of the system of the fourth order
one investigates two systems of the second order and verifies the inequality
1 > ζ1 + ξ1. Moreover, the lowering of the order of the systems simplifies
the construction of the Liapunov functions.

However, the dimensions m and n of the reduced systems (3.2.5) and
(3.4.3) and the systems of the boundary layer (3.2.6) and (3.4.4) are high
enough so that one faces the problem of the lowering their order again.

3.5 The Property of Having a Fixed

Sign of Matrix-Valued Function

Alongside the system (3.2.1)–(3.2.2) we shall consider first a more simple
case.
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3.5.1 Case A.

Let perturbed motion equations be given in the form

dx

dt
= f(t, x, y),(3.5.1)

µ
dy

dt
= g(t, x, y),(3.5.2)

where x ∈ Rn, y ∈ Rm, f ∈ C(R × Rn × Rm, Rn) and g ∈ C(R × Rn ×
Rm, Rm), µ ∈ M. For µ = 0 we obtain from (3.5.1) and (3.5.2)

dx

dt
= f(t, x, y),(3.5.3)

0 = g(t, x, y),(3.5.4)

Assume that g(t, x, y) vanishes if and only if y = 0. Then we get from
system (3.5.3)–(3.5.4) the system

(3.5.5)
dx

dt
= f(t, x, 0),

which describes slow motions in system (3.5.1)–(3.5.2). The quick system
(boundary layer) corresponding to system (3.5.2) has the form

(3.5.6)
dy

dt
= g(α, b, y),

where τ = (t − t0)µ
−1, α and b are the same as in system (3.2.6).

We define the functions

f∗(t, x, y) = f(t, x, y) − f(t, x, 0);

g∗(t, x, y) = g(t, x, y) − g(α, b, y).

and represent system (3.5.1)–(3.5.2) as

(3.5.7)

dx

dt
= f(t, x, 0) + f∗(t, x, y),

µ
dy

dt
= g(α, b, y) + g∗(t, x, y).
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3.5.1 Case A.

Let perturbed motion equations be given in the form

dx

dt
= f(t, x, y),(3.5.1)

µ
dy

dt
= g(t, x, y),(3.5.2)

where x ∈ Rn, y ∈ Rm, f ∈ C(R × Rn × Rm, Rn) and g ∈ C(R × Rn ×
Rm, Rm), µ ∈ M. For µ = 0 we obtain from (3.5.1) and (3.5.2)

dx

dt
= f(t, x, y),(3.5.3)

0 = g(t, x, y),(3.5.4)

Assume that g(t, x, y) vanishes if and only if y = 0. Then we get from
system (3.5.3)–(3.5.4) the system

(3.5.5)
dx

dt
= f(t, x, 0),

which describes slow motions in system (3.5.1)–(3.5.2). The quick system
(boundary layer) corresponding to system (3.5.2) has the form

(3.5.6)
dy

dt
= g(α, b, y),

where τ = (t − t0)µ
−1, α and b are the same as in system (3.2.6).

We define the functions

f∗(t, x, y) = f(t, x, y) − f(t, x, 0);

g∗(t, x, y) = g(t, x, y) − g(α, b, y).

and represent system (3.5.1)–(3.5.2) as

(3.5.7)

dx

dt
= f(t, x, 0) + f∗(t, x, y),

µ
dy

dt
= g(α, b, y) + g∗(t, x, y).

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

206 

Stability of Singularly-Perturbed Systems

140 3. STABILITY OF SINGULARLY-PERTURBED SYSTEMS

In order to investigate systems (3.5.1) and (3.5.2) with subsystems (3.5.5)
and (3.5.6) we shall consider the matrix-valued function

(3.5.8) U(t, x, y, µ) =

(

v11(t, x) v12(t, x, y, µ)
v21(t, x, y, µ) v22(t, y, µ)

)

.

The elements v11 and v22 of matrix U corresponds to the subsystems (3.5.5)
and (3.5.6) and functions v12 = v21 are responsible for the interconnections
of the subsystems. Using the matrix-valued function U(t, x, y, µ) we intro-
duce the scalar function

(3.5.9) V (t, x, y, µ) = wTU(t, x, y, µ)w,

where w ∈ R2.

Definition 3.5.1. The matrix-valued function U : R+ × Rm × Rn ×
M → R2×2 is referred to as

(i) positive definite, iff there exist connected neighborhoods Nx and Ny

of points x = 0 and y = 0 Nx ⊆ Rm, Ny ⊆ Rn such that

(a) U ∈ C(R+ ×Nx ×Ny ×M, R2×2)

(b) U(t, 0, 0, µ) = 0 ∀ t ∈ R+, ∀µ ∈ M;

(c) wTU(t, x, y, µ)w > u(x, y) ∀ (t, x �= 0, y �= 0, w �= 0) ∈ R+ ×
Nx ×Ny ×M× R2;

(ii) positive definite on S iff the conditions of Definition 3.5.1, (i) are
satisfied on Nx ×Ny = S;

(iii) positive definite in the whole, iff all conditions of Definition 3.5.1,
(i) are satisfied for Nx ×Ny = Rm × Rn.

Remark 3.5.1. It can be easily seen that this definition of the property
of having a fixed sign of matrix-valued function U agrees with the well-
known notions such as

(i) positive definiteness of the numerical matrix;
(ii) positive definiteness of the scalar Liapunov function;
(iii) conceptual applicability of function (3.5.9) in the construction of

the direct Liapunov’s method of motion stability investigation.

In many problems of stability it is sufficient to use a fixed vector η ∈ R2

(or η ∈ R2
+) instead of the vector in formula (3.5.9).

Let η = (η1, η2)
T, ηi > 0, i = 1, 2 then

(3.5.10) V (t, x, y, µ) = ηTU(t, x, y, µ)η.
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Definition 3.5.2. The matrix-valued function U ∈ C(R+×Rm×Rn×
M, R2×2) is called

(i) η-positive definite, iff there exist connected neighborhoods Nx and
Ny of points x = 0 and y = 0, Nx ⊆ Rm, Ny ⊆ Rn such that

(a) U ∈ C(R+ ×Nx ×Ny ×M, R2×2);

(b) U(t, 0, 0, µ) = 0 ∀ t ∈ R+, ∀µ ∈ M;

(c) ηTU(t, x, y, µ)η > u(x, y) ∀ (x �= 0, y �= 0) ∈ Nx × Ny,
∀ (t, µ) ∈ R+ ×M;

(ii) η-positive definite on S, iff all conditions of Definition 3.5.2 (i) are
satisfied for Nx ×Ny = S;

(iii) η-positive definite in the whole, iff all conditions of Definition 3.5.2
(i) are satisfied for Nx ×Ny = Rm × Rn.

Definition 3.5.2 agrees with points (i)–(iii) of Remark 3.5.1. In particular,
the vector η can be unique, i.e. ηi = 1 and i = 1, 2.

Remark 3.5.2. The definitions of positive semi-definiteness and η-posi-
tive semi-definiteness of matrix-valued function U are introduced on the
basis of Definitions 3.5.1 and 3.5.2, in conditions (c) of which the u(x, y)
should be replaced by ≥ 0.

Remark 3.5.3. Functions (3.5.9) and (3.5.10) can be also constructed
in the form

V (t, x, y, µ, w) = wTUTUw, w ∈ R2

or
V (t, x, y, µ) = ηTUTUη, η ∈ R2

+.

In addition, the requirements to the elements of matrix-valued function U

satisfying the conditions of Definitions 3.5.1 and 3.5.2 can be weakened.
The algebraic conditions of the property of having a fixed sign of func-

tion (3.5.10) are formulated in terms of the assumptions on elements vij(t, ·)
of the matrix-valued function U .

Assumption 3.5.1. There exist functions v11(t, x), v22(t, y, µ), v12(t, x,

y, µ), functions ϕi and ψi of class K(KR), i = 1, 2 and constants αii > 0,
αii > 0, i = 1, 2 and α12, α12 such that

(1) α11ϕ
2
1(�x�) ≤ v11(t, x) ≤ α11ϕ

2
2(�x�)

∀(t, x) ∈ R+ ×Nx (∀(t, x) ∈ R+ × Rm);

(2) µα22ψ
2
1(�y�) ≤ v22(t, y, µ) ≤ µα22ψ

2
2(�y�)

∀(t, y, µ) ∈ R+ ×Ny ×M (R+ × Rn ×M);
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Definition 3.5.2. The matrix-valued function U ∈ C(R+×Rm×Rn×
M, R2×2) is called

(i) η-positive definite, iff there exist connected neighborhoods Nx and
Ny of points x = 0 and y = 0, Nx ⊆ Rm, Ny ⊆ Rn such that

(a) U ∈ C(R+ ×Nx ×Ny ×M, R2×2);

(b) U(t, 0, 0, µ) = 0 ∀ t ∈ R+, ∀µ ∈ M;

(c) ηTU(t, x, y, µ)η > u(x, y) ∀ (x �= 0, y �= 0) ∈ Nx × Ny,
∀ (t, µ) ∈ R+ ×M;

(ii) η-positive definite on S, iff all conditions of Definition 3.5.2 (i) are
satisfied for Nx ×Ny = S;

(iii) η-positive definite in the whole, iff all conditions of Definition 3.5.2
(i) are satisfied for Nx ×Ny = Rm × Rn.

Definition 3.5.2 agrees with points (i)–(iii) of Remark 3.5.1. In particular,
the vector η can be unique, i.e. ηi = 1 and i = 1, 2.

Remark 3.5.2. The definitions of positive semi-definiteness and η-posi-
tive semi-definiteness of matrix-valued function U are introduced on the
basis of Definitions 3.5.1 and 3.5.2, in conditions (c) of which the u(x, y)
should be replaced by ≥ 0.

Remark 3.5.3. Functions (3.5.9) and (3.5.10) can be also constructed
in the form

V (t, x, y, µ, w) = wTUTUw, w ∈ R2

or
V (t, x, y, µ) = ηTUTUη, η ∈ R2

+.

In addition, the requirements to the elements of matrix-valued function U

satisfying the conditions of Definitions 3.5.1 and 3.5.2 can be weakened.
The algebraic conditions of the property of having a fixed sign of func-

tion (3.5.10) are formulated in terms of the assumptions on elements vij(t, ·)
of the matrix-valued function U .

Assumption 3.5.1. There exist functions v11(t, x), v22(t, y, µ), v12(t, x,

y, µ), functions ϕi and ψi of class K(KR), i = 1, 2 and constants αii > 0,
αii > 0, i = 1, 2 and α12, α12 such that

(1) α11ϕ
2
1(�x�) ≤ v11(t, x) ≤ α11ϕ

2
2(�x�)

∀(t, x) ∈ R+ ×Nx (∀(t, x) ∈ R+ × Rm);

(2) µα22ψ
2
1(�y�) ≤ v22(t, y, µ) ≤ µα22ψ

2
2(�y�)

∀(t, y, µ) ∈ R+ ×Ny ×M (R+ × Rn ×M);
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(3) µα12ϕ1(�x�)ψ1(�y�) ≤ v12(t, x, y, µ) ≤ µα12ϕ2(�x�)ψ2(�y�)

∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M (R+ × Rm × Rn ×M);

(4) v12(t, x, y, µ) = v21(t, x, y, µ)

∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M (R+ × Rm × Rn ×M).

The following assertion is valid.

Proposition 3.5.1. If for the elements vij(t, ·), i, j = 1, 2, of matrix-
valued function (3.5.8) the conditions of Assumption 3.5.1 are satisfied,
then function (3.5.10) satisfies the bilateral estimate

(3.5.11)
uT

1 A(µ)u1 ≤ V (t, x, y, µ) ≤ uT
2 B(µ)u2

∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M(R+ × Rm × Rn ×M),

where uT
1 = (ϕ1, ψ1), uT

2 = (ϕ2, ψ2),

A(µ) = HTA1(µ)H, B(µ) = HTA2(µ)H, H = diag(η1, η2); η1, η2 > 0,

A1(µ) =

(

α11 µα12

µα21 µα22

)

, A2(µ) =

(

α11 µα12

µα21 µα22

)

,

α12 = α21; α12 = α21.

Proof. We get the estimate from above in inequality (3.5.11). In view
of expression (3.5.10) and inequalities (1)–(4) of Assumption 3.5.1 we have

V (t, x, y, µ) ≤

(

η1 ϕ2

η2 ψ2

)T (

α11 µα12

µα21 µα22

) (

η1 ϕ2

η2 ψ2

)

or

V (t, x, y, µ) ≤

(

ϕ2

ψ2

)T(

η1 0
0 η2

)T(

α11 µα12

µα21 µα22

)(

η1 0
0 η2

)(

ϕ2

ψ2

)

.

Hence, in view of the designations adopted in Proposition 3.5.1 we get the
estimate from above in inequality (3.5.11). The estimate from below is
obtained in the same way.
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3.6 Matrix-Valued Liapunov Function

The conception of the property of having a fixed sign of matrix-valued
function admitted in Definitions 3.5.1 and 3.5.2 allows us to introduce the
matrix-valued Liapunov function in the following way. We introduce the
designations

D∗V (t, x, y, µ, w) = wTD∗U(t, x, y, µ)w,

D∗U(t, x, y, µ) = [D∗vij(t, ·)]; i, j = 1, 2.

The sign D∗U shows that both derivatives D+U and D+U can be used,
where

D+U(t, x, y, µ) = lim sup{[U(t + θ, x(t + θ, ·), y(t + θ, ·), µ)

− U(t, x, y, µ)]θ−1: θ → 0+};

D+U(t, x, y, µ) = lim inf{[U(t + θ, x(t + θ, ·), y(t + θ, ·), µ)

− U(t, x, y, µ)]θ−1: θ → 0+}.

In this notation D+U (D+U) is the upper (lover) right-side Dini derivative
of matrix-valued function U relatively (t, x, y).

Definition 3.6.1. Matrix-valued function U : R+ ×Nx ×Ny ×M →
R2×2 is referred to as

(i) matrix-valued Liapunov function of the S(w) type, if
(a) the matrix-valued function U(t, x, y, µ) is positive definite and

decreasing on R+ ×Nx ×Ny ×M → R2×2;
(b) the matrix-valued function D∗U(t, x, y, µ) is nonpositive on

R+ × Nx × Ny for µ ∈ (0, µ0) and as µ → 0 and
D∗U(t, 0, 0, µ) = 0 for all t ∈ R+;

(ii) matrix-valued Liapunov function of AS(w) type, if
(a) the matrix-valued function U(t, x, y, µ) is positive definite and

decreasing on R+ ×Nx ×Ny ×M;
(b) the matrix-valued function D∗U(t, x, y, µ) is strictly negative

on R+ × Nx0 × Ny0 for µ ∈ (0, µ0) and for µ → 0 and
D∗(t, 0, 0, µ) = 0 for t ∈ R+, Nx0 = {(x �= 0) ∈ Nx}, Ny0 =
{(y �= 0) ∈ Ny}.

(iii) matrix-valued Liapunov-Chetayev function of NS(w) type, if there

exist a t0 ∈ (τ,∞), τ ∈ R, some value ε > 0 (Bε ⊂ Nx × Ny)
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3.6 Matrix-Valued Liapunov Function

The conception of the property of having a fixed sign of matrix-valued
function admitted in Definitions 3.5.1 and 3.5.2 allows us to introduce the
matrix-valued Liapunov function in the following way. We introduce the
designations

D∗V (t, x, y, µ, w) = wTD∗U(t, x, y, µ)w,

D∗U(t, x, y, µ) = [D∗vij(t, ·)]; i, j = 1, 2.

The sign D∗U shows that both derivatives D+U and D+U can be used,
where

D+U(t, x, y, µ) = lim sup{[U(t + θ, x(t + θ, ·), y(t + θ, ·), µ)

− U(t, x, y, µ)]θ−1: θ → 0+};

D+U(t, x, y, µ) = lim inf{[U(t + θ, x(t + θ, ·), y(t + θ, ·), µ)

− U(t, x, y, µ)]θ−1: θ → 0+}.

In this notation D+U (D+U) is the upper (lover) right-side Dini derivative
of matrix-valued function U relatively (t, x, y).

Definition 3.6.1. Matrix-valued function U : R+ ×Nx ×Ny ×M →
R2×2 is referred to as

(i) matrix-valued Liapunov function of the S(w) type, if
(a) the matrix-valued function U(t, x, y, µ) is positive definite and

decreasing on R+ ×Nx ×Ny ×M → R2×2;
(b) the matrix-valued function D∗U(t, x, y, µ) is nonpositive on

R+ × Nx × Ny for µ ∈ (0, µ0) and as µ → 0 and
D∗U(t, 0, 0, µ) = 0 for all t ∈ R+;

(ii) matrix-valued Liapunov function of AS(w) type, if
(a) the matrix-valued function U(t, x, y, µ) is positive definite and

decreasing on R+ ×Nx ×Ny ×M;
(b) the matrix-valued function D∗U(t, x, y, µ) is strictly negative

on R+ × Nx0 × Ny0 for µ ∈ (0, µ0) and for µ → 0 and
D∗(t, 0, 0, µ) = 0 for t ∈ R+, Nx0 = {(x �= 0) ∈ Nx}, Ny0 =
{(y �= 0) ∈ Ny}.

(iii) matrix-valued Liapunov-Chetayev function of NS(w) type, if there

exist a t0 ∈ (τ,∞), τ ∈ R, some value ε > 0 (Bε ⊂ Nx × Ny)
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and an open set D ∈ Bε such that on [t0,∞) × D the following
conditions are satisfied
(a) 0 < U(t, x, y, µ) ≤ Q < ∞ component wise, there Q is a 2×2

matrix;
(b) wTD+U(t, x, y, µ)w ≥ a(V (t, x, y, µ, w)) for µ ∈ (0, µ0) and

for µ → 0, where a is of class K, and moreover
(c) (x = 0, y = 0) ∈ ∂D;
(d) U(t, x, y, µ) = 0 on [t0,∞[×(∂D ∩ Bε).

The definitions of η – matrix-valued function are formulated in a similar
manner, using the definitions of η-positive definiteness of matrix-valued
function U(t, x, y, µ).

Assumption 3.6.1. There exist

(1) functions ϕi, ψi, i = 1, 2 and vsk; s, k = 1, 2 mentioned in Assump-
tion 3.5.1 and, moreover
(a) function v11(t, x) ∈ C(R+ ×Nx0, R+);
(b) function v22(t, y, µ) ∈ C(R+ ×Ny0 ×M, R+);
(c) function v12(t, x, y, µ) ∈ C(R+ ×Nx0 ×Ny0 ×M, R),

(2) constants ρij (i = 1, 2; j = 1, . . . , 8) and the following conditions
are satisfied

(a) D+
t v11 + (D+

x v11)
Tf(t, x, 0) ≤ ρ11ϕ

2
2(�x�)

∀ (t, x) ∈ R+ ×Nx;

(b) D+
t v22 + (D+

y v22)
Tg(α, b, y, 0) ≤ µρ21ψ

2
2(�y�)

∀(α, b, y, µ) ∈ R+ ×Nx ×Ny ×M;

(c) (D+
x v11)

T[f(t, x, y) − f(t, x, 0)] ≤ ρ12ϕ
2
2(�x�)

+ρ13ϕ2(�x�)ψ2(�y�) ∀(t, x, y) ∈ R+ ×Nx ×Ny;

(d) (D+
y v22)

T[g(α, b, y, µ) − g(α, b, y, 0)] ≤ ρ22ψ
2
2(�y�)

+µρ23ϕ2(�x�)ψ2(�y�) ∀(t, b, y, µ) ∈ R+ ×Nx ×Ny ×M;

(e) D+
t v12 + (D+

x v12)
Tf(t, x, 0) ≤ µρ14ϕ

2
2(�x�)

+µρ15ϕ2(�x�)ψ2(�y�) ∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M;

(f) (D+
x v12)

T[f(t, x, y) − f(t, x, 0)] ≤ µρ16ϕ
2
2(�x�)

+µρ17ϕ2(�x�)ψ2(�y�) + µρ18ψ
2
2(�y�)

∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M;

(g) (D+
y v12)

Tg(α, b, y, 0) ≤ µρ24ψ
2
2(�y�) + µρ25ϕ2(�x�)ψ2(�y�)

∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M;
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(h) (D+
y v12)

T[g(α, b, y, µ) − g(α, b, y, 0)] ≤ µρ26ϕ
2
2(�x�)

+µρ27ϕ2(�x�)ψ2(�y�) + µρ28ψ
2
2(�y�)

∀(t, b, y, µ) ∈ R+ ×Nx ×Ny ×M.

Proposition 3.6.1. If all conditions of Assumption 3.6.1 are satisfied,
then for the upper right Dini derivative of function (3.5.10) the upper esti-
mate

(3.6.1) D+V (t, x, y, µ) ≤ uT
2 C(µ)u2 ∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M

is satisfied, where

C(µ) = [cij(µ)], c12(µ) = c21(µ); i, j = 1, 2,

and

c11(µ) = η2
1(ρ11 + ρ12) + 2η1η2(µρ14 + µρ16 + ρ26);

c22(µ) = η2
2(ρ22 + ρ21) + 2η1η2(µρ18 + µρ24 + ρ28);

c12(µ) =
1

2
(η2

1ρ13 + η2
2ρ23) + η1η2(µρ15 + ρ25 + µρ17 + ρ27).

Proof. In view of the fact that

D+V (t, ·) = ηTD+[vij(t, ·)]η, i, j = 1, 2

the estimates (a)–(h) for the elements of matrix U(t, x, , µ) lead to inequal-
ity (3.6.1).

We introduce the values µj , j = 1, . . . , 4, µ0, µ∗ by the formulas

µ1 = −
2η2ρ26 + η1(ρ11 + ρ12)

2η2(ρ14 + ρ16)
;

µ2 = −
η2(ρ21 + ρ22) + 2η1(ρ24 + ρ28)

2η1ρ18
;

µ3 =
−b +

√
b2 − 4ac

2a
, µ4 =

α11α22

α2
12

,

µ0 = min (µ1, µ2, µ3), µ∗ = min (µ0, µ4).
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(h) (D+
y v12)

T[g(α, b, y, µ) − g(α, b, y, 0)] ≤ µρ26ϕ
2
2(�x�)

+µρ27ϕ2(�x�)ψ2(�y�) + µρ28ψ
2
2(�y�)

∀(t, b, y, µ) ∈ R+ ×Nx ×Ny ×M.

Proposition 3.6.1. If all conditions of Assumption 3.6.1 are satisfied,
then for the upper right Dini derivative of function (3.5.10) the upper esti-
mate

(3.6.1) D+V (t, x, y, µ) ≤ uT
2 C(µ)u2 ∀(t, x, y, µ) ∈ R+ ×Nx ×Ny ×M

is satisfied, where

C(µ) = [cij(µ)], c12(µ) = c21(µ); i, j = 1, 2,

and

c11(µ) = η2
1(ρ11 + ρ12) + 2η1η2(µρ14 + µρ16 + ρ26);

c22(µ) = η2
2(ρ22 + ρ21) + 2η1η2(µρ18 + µρ24 + ρ28);

c12(µ) =
1

2
(η2

1ρ13 + η2
2ρ23) + η1η2(µρ15 + ρ25 + µρ17 + ρ27).

Proof. In view of the fact that

D+V (t, ·) = ηTD+[vij(t, ·)]η, i, j = 1, 2

the estimates (a)–(h) for the elements of matrix U(t, x, , µ) lead to inequal-
ity (3.6.1).

We introduce the values µj , j = 1, . . . , 4, µ0, µ∗ by the formulas

µ1 = −
2η2ρ26 + η1(ρ11 + ρ12)

2η2(ρ14 + ρ16)
;

µ2 = −
η2(ρ21 + ρ22) + 2η1(ρ24 + ρ28)

2η1ρ18
;

µ3 =
−b +

√
b2 − 4ac

2a
, µ4 =

α11α22

α2
12

,

µ0 = min (µ1, µ2, µ3), µ∗ = min (µ0, µ4).
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Besides,

a = 4η2
1η

2
2 [(ρ15 + ρ17)

2 − ρ18(ρ14 + ρ16)];

b =

[

1

2
η2
1ρ13 +

1

2
η2
2ρ23 + η1η2(ρ25 + ρ27)

]

2η1η2(ρ15 + ρ17)

− 2η1η2ρ18[η
2
1(ρ11 + ρ12) + 2η1η2ρ26]

− 2η1η2(ρ14 + ρ16)[η
2
2(ρ21 + ρ22) + 2η1η2(ρ24 + ρ28)];

c =

[

1

2
η2
1ρ13 +

1

2
η2
2ρ23 + η1η2(ρ25 + ρ27)

]2

− [η2
1(ρ11 + ρ12) + 2η1η2ρ26][η

2
2(ρ21 + ρ22) + 2η1η2(ρ24 + ρ28)].

Should µ0 > 1, we shall consider µ ∈ (0, 1].

Proposition 3.6.2. The matrix C(µ) is negative definite for every µ ∈
(0, µ0) and for µ → 0, provided that

(a) ρ14 + ρ16 > 0;
(b) 2η2ρ26 + η1(ρ11 + ρ12) < 0;
(c) η2(ρ26 + ρ22) + 2η1(ρ24 + ρ28) < 0;
(d) ρ18 > 0;
(e) a > 0;
(f) c < 0.

Proof. Conditions (a) and (b) imply that c11 < 0 for every µ ∈ (0, µ1)
and µ → 0; conditions (c) and (d) imply that c22 < 0 for every µ ∈ (0, µ2)
and for µ → 0; and conditions (e) and (f) imply that c11c22 − c2

12 > 0 for
every µ ∈ (0, µ3) and for µ → 0.

All these conditions hold for every µ ∈ (0, µ0) and for µ → 0, where
µ0 = min (µ1, µ2, µ3). The conditions are sufficient for the matrix C(µ)
negative definite.

Remark 3.6.1. If for conditions (a)–(c), (e) and (f) Proposition 3.6.2
is satisfied and ρ18 ≤ 0, then its assertion is true for µ0 = min (µ1, µ3).

Remark 3.6.2. If for conditions (b)–(f) Proposition 3.6.2 is satisfied
and ρ14 + ρ16 ≤ 0, then its assertion is true for µ0 = min (µ2, µ3).

Remark 3.6.3. If for conditions (b), (c), (e) and (f) Proposition 3.6.2 is
satisfied and ρ18 ≤ 0, ρ14 + ρ16 ≤ 0, then its assertion is true for µ0 = µ3.

We note that the quadratic form uT
2 C(µ)u2 is given in the cone R2

+

formed by the functions (ϕ2, ψ2). Therefore the following result is valid.

Download free eBooks at bookboon.com



Stability Analysis via Matrix Functions Method

216 

Stability of Singularly-Perturbed Systems

3.7 GENERAL THEOREMS ON STABILITY AND INSTABILITY 147

Proposition 3.6.3. The matrix C(µ) is conditionally negative definite,
i.e. uT

2 C(µ)u2 < 0 for u2 ∈ R2
+ \ 0, for every µ ∈ (0, µ0) and for µ → 0,

if
max (det[−C(µ)], c12(µ)) > 0

for every µ ∈ (0, µ0) and for µ → 0.

Estimates (3.5.11) and (3.6.1) allow us to formulate the generalizations
of the classical results on stability and instability of unperturbed motion of
system (3.5.1), (3.5.2) as follows.

3.7 General Theorems on Stability and Instability in Case A

The equilibrium state (xT, yT)T = 0 of system (3.5.1), (3.5.2) is investi-
gated by means of function (3.5.10) being a special case of function (3.5.9).
Estimates (3.5.11) and (3.6.1) allows us to formulate algebraic condi
tions ensuring the presence of some properties of the equilibrium state
(xT, yT)T = 0.

Theorem 3.7.1. Let the motion (xT(t; t0, x0, µ), yT(t; t0, y0, µ))T of
system (3.5.1), (3.5.2) be continuous for (t0, x0, y0) ∈ R+ × Nx × Ny

and µ ∈ M0 ⊂ M. In order that the equilibrium state (xT, yT)T = 0 of
system (3.5.1), (3.5.2) be uniformly stable for every µ ∈ (0, µ0) and for
µ → 0 it is necessary that all conditions of Assumptions 3.5.1 and 3.6.1 be
satisfied and it is sufficient that

(1) the matrices A1(µ) + AT
1 (µ) and A2(µ) + AT

2 (µ) be conditionally
positive;

(2) the matrix C(µ) be non-positive for every µ ∈ (0, µ0) and for
µ → 0.

If in addition, Nx ×Ny = Rm+n, then the equilibrium state (xT, yT)T =
0 is uniformly stable in the whole for every µ ∈ (0, µ0) and for µ → 0.

Proof. Estimate (3.5.11) implies that if Assumption 3.5.1 and condi-
tion (1) of Theorem 3.7.1 hold, the function V (t, x, y, µ) is definite positive
and decreasing. The conditions of Assumption 3.6.1 and condition (2)
of Theorem 3.7.1 ensure nonpositiveness of function D+V (t, x, y, µ) on
R+ × Nx × Ny for every µ ∈ (0, µ0) and for µ → 0. The combination
of this conditions is equivalent to the conditions of Liapunov’s theorem on
stability of the equilibrium state (xT, yT)T = 0 (see Liapunov [101], and
Grujić, Martynyuk and Ribbens-Pavella [57]).
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Proposition 3.6.3. The matrix C(µ) is conditionally negative definite,
i.e. uT

2 C(µ)u2 < 0 for u2 ∈ R2
+ \ 0, for every µ ∈ (0, µ0) and for µ → 0,

if
max (det[−C(µ)], c12(µ)) > 0

for every µ ∈ (0, µ0) and for µ → 0.

Estimates (3.5.11) and (3.6.1) allow us to formulate the generalizations
of the classical results on stability and instability of unperturbed motion of
system (3.5.1), (3.5.2) as follows.

3.7 General Theorems on Stability and Instability in Case A

The equilibrium state (xT, yT)T = 0 of system (3.5.1), (3.5.2) is investi-
gated by means of function (3.5.10) being a special case of function (3.5.9).
Estimates (3.5.11) and (3.6.1) allows us to formulate algebraic condi
tions ensuring the presence of some properties of the equilibrium state
(xT, yT)T = 0.

Theorem 3.7.1. Let the motion (xT(t; t0, x0, µ), yT(t; t0, y0, µ))T of
system (3.5.1), (3.5.2) be continuous for (t0, x0, y0) ∈ R+ × Nx × Ny

and µ ∈ M0 ⊂ M. In order that the equilibrium state (xT, yT)T = 0 of
system (3.5.1), (3.5.2) be uniformly stable for every µ ∈ (0, µ0) and for
µ → 0 it is necessary that all conditions of Assumptions 3.5.1 and 3.6.1 be
satisfied and it is sufficient that

(1) the matrices A1(µ) + AT
1 (µ) and A2(µ) + AT

2 (µ) be conditionally
positive;

(2) the matrix C(µ) be non-positive for every µ ∈ (0, µ0) and for
µ → 0.

If in addition, Nx ×Ny = Rm+n, then the equilibrium state (xT, yT)T =
0 is uniformly stable in the whole for every µ ∈ (0, µ0) and for µ → 0.

Proof. Estimate (3.5.11) implies that if Assumption 3.5.1 and condi-
tion (1) of Theorem 3.7.1 hold, the function V (t, x, y, µ) is definite positive
and decreasing. The conditions of Assumption 3.6.1 and condition (2)
of Theorem 3.7.1 ensure nonpositiveness of function D+V (t, x, y, µ) on
R+ × Nx × Ny for every µ ∈ (0, µ0) and for µ → 0. The combination
of this conditions is equivalent to the conditions of Liapunov’s theorem on
stability of the equilibrium state (xT, yT)T = 0 (see Liapunov [101], and
Grujić, Martynyuk and Ribbens-Pavella [57]).
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If Nx × Ny = Rm+n, then functions (ϕi, ψi) belong to class KR and
estimates (3.5.11) and (3.6.1) are satisfied for all (x, y) ∈ Rm+n. Together
with conditions (1) and (2) of Theorem 3.7.1 this ensures stability in the
whole of the state (xT, yT)T = 0.

The theorem is proved.

Theorem 3.7.2. Let the motion (xT(t; t0, x0, µ), yT(t; t0, y0, µ))T of
system (3.5.1) and (3.5.2) be continuous for (t0, x0, y0) ∈ R+ × Nx ×Ny

and µ ∈ M0 ⊂ M. For the equilibrium state (xT, yT)T = 0 of sys-
tem (3.5.1), (3.5.2) be uniform asymptotically stable for every µ ∈ (0, µ0)
and for µ → 0 it is necessary that all conditions of Assumptions 3.3.1
and 3.3.2 be satisfied and it is sufficient that

(1) the matrices A1(µ) + AT
1 (µ) and A2(µ) + AT

2 (µ) be conditionally
positive;

(2) the matrix C(µ) be conditionally negative for every µ ∈ (0, µ0) and
for µ → 0.

If, in addition, Nx ×Ny = Rm+n, then the equilibrium state (xT, yT)T

is uniformly asymptotically stable in the whole for every µ ∈ (0, µ0) and
for µ → 0.

Proof. The proof of Theorem 3.7.2 is similar to that of Theorem 3.7.1,
taking into account that its conditions are equivalent to the conditions
of the theorem on uniform asymptotic stability (Grujić, Martynyuk and
Ribbens-Pavella [57] ).

The theorem is proved.

Proposition 3.7.1. Let in Assumption 3.6.1 in conditions (a)–(h) the
inequality sign “≤ ” be replaced by “≥ ”, the constants ρij (i = 1, 2;
j = 1, . . . , 8) be replaced by ρ̃ij (i = 1, 2; j = 1, . . . , 8) and the pair of
functions (ϕ2, ψ2) be replaced by the pair of function (ϕ1, ψ1).

Then for the upper right-side Dini derivative of function (3.5.10) the
estimate from below

(3.7.1) D+V (t, x, y, µ) ≥ uT
1

˜C(µ)u1 ∀ (t, x, y, µ) ∈ R+×Nx×Ny ×M

is satisfied, where the matrix ˜C(µ) has the same structure as the matrix
C(µ).

The proof of Proposition 3.7.1 is similar to that of Proposition 3.6.1.
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Theorem 3.7.3. Let the motion (xT(t; t0, x0, µ), yT(t; t0, y0, µ))T of
system (3.5.1) and (3.5.2) be continuous for (t0, x0, y0) ∈ R+ ×Nx ×Ny.

For the equilibrium state (xT, yT)T = 0 of system (3.5.1), (3.5.2) is unsta-
ble for every µ ∈ (0, µ0) and for µ → 0 it is necessary that the conditions
of Assumption 3.5.1 and Proposition 3.7.1 be satisfied, and it is sufficient
that

(1) the matrices A1(µ) + AT
1 (µ) and A2(µ) + AT

2 (µ) be conditionally
positive;

(2) the matrix ˜C(µ) be conditionally positive for every µ ∈ (0, µ0) and
for µ → 0.

Proof. Due to inequality (3.5.11) and condition (1) of Theorem 3.7.3
the function V (t, x, y, µ) is positive definite and bounded for every µ ∈
(0, µ0) and for µ → 0. Inequality (3.7.1) and condition (2) of Theorem 3.7.3
together with the above condition are equivalent to the conditions of the
second Liapunov’s theorem on instability (see Liapunov [101]).

This completes the proof.

3.8 General Theorems on Stability and Instability in Case B

We consider the general system (3.2.1)–(3.2.2) and matrix-valued function
(3.5.8). Systems of (3.2.1)–(3.2.2) type are attributed to Case B of inclusion
of a small parameter. Functions

f0(t, x, y, µ) = f(t, x, y, µ) − f(t, x, y, 0),

g0(t, x, y, µ) = g(t, x, y, µ) − g(α, b, y, 0).

are considered as perturbed systems describing slow motions and as a
boundary layer of systems (3.2.5) and (3.2.6) respectively.

Assumption 3.8.1. For the systems of equations (3.2.1) and (3.2.2)
all conditions of Assumption 3.5.1 are satisfied, and for function (3.5.8)
estimates (3.5.11) are valid.

Assumption 3.8.2. There exist

(1) the functions ϕi, ψi ∈ K, i = 1, 2, vsk, s, k = 1, 2 mentioned in
Assumption 3.6.1;

(2) a constants ρij (i = 1, 2, j = 1, 2, . . . , 8) such that
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Theorem 3.7.3. Let the motion (xT(t; t0, x0, µ), yT(t; t0, y0, µ))T of
system (3.5.1) and (3.5.2) be continuous for (t0, x0, y0) ∈ R+ ×Nx ×Ny.

For the equilibrium state (xT, yT)T = 0 of system (3.5.1), (3.5.2) is unsta-
ble for every µ ∈ (0, µ0) and for µ → 0 it is necessary that the conditions
of Assumption 3.5.1 and Proposition 3.7.1 be satisfied, and it is sufficient
that

(1) the matrices A1(µ) + AT
1 (µ) and A2(µ) + AT

2 (µ) be conditionally
positive;

(2) the matrix ˜C(µ) be conditionally positive for every µ ∈ (0, µ0) and
for µ → 0.

Proof. Due to inequality (3.5.11) and condition (1) of Theorem 3.7.3
the function V (t, x, y, µ) is positive definite and bounded for every µ ∈
(0, µ0) and for µ → 0. Inequality (3.7.1) and condition (2) of Theorem 3.7.3
together with the above condition are equivalent to the conditions of the
second Liapunov’s theorem on instability (see Liapunov [101]).

This completes the proof.

3.8 General Theorems on Stability and Instability in Case B

We consider the general system (3.2.1)–(3.2.2) and matrix-valued function
(3.5.8). Systems of (3.2.1)–(3.2.2) type are attributed to Case B of inclusion
of a small parameter. Functions

f0(t, x, y, µ) = f(t, x, y, µ) − f(t, x, y, 0),

g0(t, x, y, µ) = g(t, x, y, µ) − g(α, b, y, 0).

are considered as perturbed systems describing slow motions and as a
boundary layer of systems (3.2.5) and (3.2.6) respectively.

Assumption 3.8.1. For the systems of equations (3.2.1) and (3.2.2)
all conditions of Assumption 3.5.1 are satisfied, and for function (3.5.8)
estimates (3.5.11) are valid.

Assumption 3.8.2. There exist

(1) the functions ϕi, ψi ∈ K, i = 1, 2, vsk, s, k = 1, 2 mentioned in
Assumption 3.6.1;

(2) a constants ρij (i = 1, 2, j = 1, 2, . . . , 8) such that
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(a) D+
t v11 + (D+

x v11)
Tf(t, x, 0, 0) ≤ ρ11ϕ

2
2(�x�)

∀(t, x) ∈ R+ ×Nx;

(b) D+
t v22 + (D+

y v22)
Tg(α, b, y, 0) ≤ µρ21ψ

2
2(�y�)

∀(α, b, y, µ) ∈ R+ ×Nx ×Ny ×M;

(c) (D+
x v11)

T[f(t, x, y, 0) − f(t, x, 0, 0)] ≤ ρ12ϕ
2
2(�x�)

+ρ13ϕ2(�x�)ψ2(�y�) ∀ (t, x, y) ∈ R+ ×Nx ×Ny;

(d) (D+
y v22)

T[g(α, b, y, µ) − g(α, b, y, 0)] ≤ ρ22ψ
2
2(�y�)

+µρ23ϕ2(�x�)ψ2(�y�) ∀ (α, b, y, µ) ∈ R+ ×Nx ×Ny ×M;

(e) D+
t v12 + (D+

x v12)
Tf(t, x, 0, 0) ≤ µρ14ϕ

2
2(�x�)

+µρ15ϕ2(�x�)ψ2(�y�) ∀ (t, x, y, µ) ∈ R+ ×Nx ×Ny ×M;

(f) (D+
x v12)

T[f(t, x, y, 0) − f(t, x, 0, 0)] ≤ µρ16ϕ
2
2(�x�)

+µρ17ϕ2(�x�)ψ2(�y�) + µρ18ψ
2
2(�y�)

∀ (t, x, y, µ) ∈ R+ ×Nx ×Ny ×M;

(g) (D+
y v12)

Tg(α, b, y, 0) ≤ µρ24ψ
2
2(�y�) + µρ25ϕ2(�x�)ψ2(�y�)

∀ (α, b, y, µ) ∈ R+ ×Nx ×Ny ×M;

(h) (D+
y v12)

T[g(α, b, y, µ) − g(α, b, y, 0)] ≤ µρ26ϕ
2
2(�x�)

+µρ27ϕ2(�x�)ψ2(�y�) + µρ28ψ
2
2(�y�)

∀ (α, b, y, µ) ∈ R+ ×Nx ×Ny ×M.

Proposition 3.8.1. If all conditions of Assumption 3.8.2 are satisfied,
then for the upper right Dini derivative of function (3.5.8) along a solution
of (3.2.1)–(3.2.2) the upper estimate

D+V (t, x, y, µ) ≤ uT
2 C0(µ)u2 ∀ (t, x, y, µ) ∈ R+ ×Nx ×Ny ×M

is satisfied, where

C0(µ) = [sij(µ)], s12(µ) = s21(µ), i, j = 1, 2,

and

s11 = η2
1(ρ11 + ρ12) + 2η1η2µ(ρ14 + ρ16 + ρ26);

s22 = η2
2(ρ21 + ρ22) + 2η1η2(µρ18 + ρ24 + ρ28);

s12 = s21 =
1

2
η2
1ρ13 +

1

2
η2
2µρ23 + η1η2(µρ15 + µρ17 + ρ25 + ρ27).
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The proof is similar to the proof of Proposition 3.6.1.

We introduce the values µ̃i, µ̃0, µ̃∗, i = 1, 2, 3, 4 by the formulas

µ̃1 = −
η1(ρ11 + ρ12)

2η2(ρ14 + ρ16 + ρ26)
,

µ̃2 = −
η2(ρ21 + ρ22) + 2η1(ρ24 + ρ28)

2η1ρ18
,

µ̃3 =
−˜b +

√

˜b2 − 4ãc̃

2ã
,

µ̃4 = µ4, µ̃0 = min (µ̃1, µ̃2, µ̃3), µ̃∗ = min (µ̃0, µ̃4).

Moreover,

ã =

[

1

2
η2
2ρ23 + η1η2(ρ15 + ρ17)

]2

− 4η1η2ρ18(ρ14 + ρ16 + ρ26);

˜b =

[

1

2
η2
1ρ13 + η1η2(ρ25 + ρ27)

] [

1

2
η2
2ρ23 + η1η2(ρ15 + ρ17)

]

− 2η1η2ρ18(ρ11 + ρ12) − 2η1η2(ρ14 + ρ16 + ρ26)

× [η2
2(ρ21 + ρ22) + 2η1η2(ρ24 + ρ28)],

c̃ =

[

1

2
η2
1ρ13 + η1η2(ρ25 + ρ27)

]2

− η2
1(ρ11 + ρ12)[η

2
2(ρ21 + ρ22) + 2η1η2(ρ24 + ρ26)].

Proposition 3.8.2. The matrix C0(µ) is negative definite for every
µ ∈ (0, µ̃0) and for µ → 0, provided that

(a) ρ11 + ρ12 < 0;
(b) ρ14 + ρ16 + ρ26 > 0;
(c) η2(ρ21 + ρ22) + 2η1(ρ24 + ρ28) < 0;
(d) ρ18 > 0;
(e) ã > 0;
(f) c̃ < 0.

The proof is similar to that of Proposition 3.6.2.

Remark 3.8.1. If conditions (a), (b), (c), (e) and (f) of Proposition
3.8.2 are satisfied and ρ18 ≤ 0, then its assertion is true for µ̃0 =
min (µ̃1, µ̃3).
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The proof is similar to the proof of Proposition 3.6.1.

We introduce the values µ̃i, µ̃0, µ̃∗, i = 1, 2, 3, 4 by the formulas

µ̃1 = −
η1(ρ11 + ρ12)

2η2(ρ14 + ρ16 + ρ26)
,

µ̃2 = −
η2(ρ21 + ρ22) + 2η1(ρ24 + ρ28)

2η1ρ18
,

µ̃3 =
−˜b +

√

˜b2 − 4ãc̃

2ã
,

µ̃4 = µ4, µ̃0 = min (µ̃1, µ̃2, µ̃3), µ̃∗ = min (µ̃0, µ̃4).

Moreover,

ã =

[

1

2
η2
2ρ23 + η1η2(ρ15 + ρ17)

]2

− 4η1η2ρ18(ρ14 + ρ16 + ρ26);

˜b =

[

1

2
η2
1ρ13 + η1η2(ρ25 + ρ27)

] [

1

2
η2
2ρ23 + η1η2(ρ15 + ρ17)

]

− 2η1η2ρ18(ρ11 + ρ12) − 2η1η2(ρ14 + ρ16 + ρ26)

× [η2
2(ρ21 + ρ22) + 2η1η2(ρ24 + ρ28)],

c̃ =

[

1

2
η2
1ρ13 + η1η2(ρ25 + ρ27)

]2

− η2
1(ρ11 + ρ12)[η

2
2(ρ21 + ρ22) + 2η1η2(ρ24 + ρ26)].

Proposition 3.8.2. The matrix C0(µ) is negative definite for every
µ ∈ (0, µ̃0) and for µ → 0, provided that

(a) ρ11 + ρ12 < 0;
(b) ρ14 + ρ16 + ρ26 > 0;
(c) η2(ρ21 + ρ22) + 2η1(ρ24 + ρ28) < 0;
(d) ρ18 > 0;
(e) ã > 0;
(f) c̃ < 0.

The proof is similar to that of Proposition 3.6.2.

Remark 3.8.1. If conditions (a), (b), (c), (e) and (f) of Proposition
3.8.2 are satisfied and ρ18 ≤ 0, then its assertion is true for µ̃0 =
min (µ̃1, µ̃3).
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Remark 3.8.2. If conditions (a), (c), (e) and (f) of Proposition 3.8.2
are satisfied and ρ14 + ρ16 + ρ26 ≤ 0, then its assertion is true for µ̃0 =
min (µ̃2, µ̃3).

Remark 3.8.3. If conditions (a), (c), (e) and (f) of Proposition 3.8.2
are satisfied and ρ18 ≤ 0, ρ14 + ρ16 + ρ26 ≤ 0, then its assertion is true for
µ̃0 = µ̃3.

Theorem 3.8.1. Let motion (xT(t; t0, x0, µ); yT(t; t0, y0, µ))T of the
system (3.2.1)–(3.2.2) be continuous for (t0, x0, y0) ∈ R+ ×Nx ×Ny and

µ ∈ M0 ⊂ M . In order that the equilibrium state (xT, yT)T = 0 of sys-
tem (3.2.1)–(3.2.2) be uniformly asymptotically stable for every µ ∈ (0, µ̃0)
and for µ → 0 it is sufficient that

(1) conditions of Assumptions 3.8.1 and 3.8.2 be satisfied;
(1) matrices A1(µ) + AT

1 (µ) and A2(µ) + AT
2 (µ) be conditionally pos-

itive definite;
(2) matrix C0(µ) be negative definite for every µ ∈ (0, µ0) and for

µ → 0.

If, moreover, Nx × Ny = Rm+n, functions ϕ1, ψ1 ∈ KR, i = 1, 2,

then the equilibrium state (xT, yT)T = 0 of the system (3.2.1)–(3.2.2) is
uniformly asymptotically stable in the whole.

The proof is similar to that of Theorem 3.7.1.

Sufficient instability conditions for state (xT, yT)T = 0 of the system
(3.2.1)–(3.2.2) are established in the same way as in Theorem 3.7.2.

3.9 Asymptotic Stability of Linear Autonomous Systems

For the mentioned class of systems two cases of singular perturbation are
considered.

3.9.1 Case A

Consider the system

(3.9.1)

dx

dt
= A11x + A12y,

µ
dy

dt
= A21x + A22y,
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where x ∈ Rn, y ∈ Rm, A11, A12, A21, A22 are constant matrices with
corresponding dimensions, µ ∈ [0, 1] is a small parameter.

We construct the matrix-valued function (3.5.1) of elements vij (i, j) ∈
[1, 2]) in the form

(3.9.2)

v11(x) = xTB1x,

v22(y, µ) = µyTB2y;

v12(x, y, µ) = v21(x, y, µ) = µxTB3y.

Besides, matrices B1 and B2 are symmetric and positive definite, and B3

is a constant matrix.
Further we need the following estimate (see Djordjević [28])

Proposition 3.9.1. Let an A ∈ Rn×m and B ∈ Rm×r, x ∈ Rn,
y ∈ Rr. Then the bilinear form xTABy satisfies the bilateral estimate

−λ
1/2
M (AAT)λ

1/2
M (BTB)�x� �y�≤ xTABy≤ λ

1/2
M (AAT)λ

1/2
M (BTB)�x� �y�,

where λM (AAT) and λM (BTB) are maximal eigenvalues of the matrices
AAT and BTB respectively.

Proof. Let α ∈ R. We construct the vector

w = αATx + By,

and consider the inequality

(3.9.3) wTw ≥ 0

Since wT = αxTA + yTBT, then (3.9.3) is equal to

(3.9.4) α2xTAATx + 2αxTABy + yTBTBy ≥ 0.

In order that the polynomial (3.9.4) be non-negative it is sufficient that its
discriminant be non-positive. Hence, we get

(xTABy)2 ≤ (xTAATx)(yTBTBy)

and

(3.9.5) |xTABy| ≤ (xTAATx)1/2(yTBTBy)1/2.

Hence, it follows the estimate from Proposition 3.9.1.
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where x ∈ Rn, y ∈ Rm, A11, A12, A21, A22 are constant matrices with
corresponding dimensions, µ ∈ [0, 1] is a small parameter.

We construct the matrix-valued function (3.5.1) of elements vij (i, j) ∈
[1, 2]) in the form

(3.9.2)

v11(x) = xTB1x,

v22(y, µ) = µyTB2y;

v12(x, y, µ) = v21(x, y, µ) = µxTB3y.

Besides, matrices B1 and B2 are symmetric and positive definite, and B3

is a constant matrix.
Further we need the following estimate (see Djordjević [28])

Proposition 3.9.1. Let an A ∈ Rn×m and B ∈ Rm×r, x ∈ Rn,
y ∈ Rr. Then the bilinear form xTABy satisfies the bilateral estimate

−λ
1/2
M (AAT)λ

1/2
M (BTB)�x� �y�≤ xTABy≤ λ

1/2
M (AAT)λ

1/2
M (BTB)�x� �y�,

where λM (AAT) and λM (BTB) are maximal eigenvalues of the matrices
AAT and BTB respectively.

Proof. Let α ∈ R. We construct the vector

w = αATx + By,

and consider the inequality

(3.9.3) wTw ≥ 0

Since wT = αxTA + yTBT, then (3.9.3) is equal to

(3.9.4) α2xTAATx + 2αxTABy + yTBTBy ≥ 0.

In order that the polynomial (3.9.4) be non-negative it is sufficient that its
discriminant be non-positive. Hence, we get

(xTABy)2 ≤ (xTAATx)(yTBTBy)

and

(3.9.5) |xTABy| ≤ (xTAATx)1/2(yTBTBy)1/2.

Hence, it follows the estimate from Proposition 3.9.1.
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Corollary 3.9.1. If in Proposition 3.9.1 B = I (I is an identity ma-
trix) and r = n, then bilateral estimate becomes

(3.9.6) −λ
1/2
M (AAT)�x� �y� ≤ xTAy ≤ λ

1/2
M (AAT)�x� �y�

for all A ∈ Rn, x ∈ Rn, y ∈ Rn.

In view of estimates typical for the quadratic forms and with regard
to Corollary 3.9.1 it is easily seen that for functions (3.9.2) the following
inequalities are valid:
(3.9.7)

v11(x) ≥ λm(B1)�x�
2 ∀x ∈ Nx0;

v22(y, µ) ≥ µλm(B2)�y�
2 ∀ (y, µ) ∈ Ny0o ×M;

v12(x, y, µ) = v21(x, y, µ) ≥ −µλ
1/2
M (B3B

T
3 )�x� �y�

∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M.

For the function V (x, y, µ) = ηTU(x, y, µ)η, η ∈ R2
+, the matrix A1(µ)

from estimate (3.5.11) has the form

A1(µ) =





λm(B1) −µλ
1/2
M (B3B

T
3 )

−µλ
1/2
M (B3B

T
3 ) µλm(B2)



 .

Since by assumption on matrix B1 have λm(B1) > 0, and then for the
function V (x, y, µ) to be positive definite it is sufficient that

(3.9.8) λm(B1)λm(B2) > µλM (B3B
T
3 )

for every µ ∈ (0, µ∗

0) and for µ → 0.

The fact that
dV (x, y, µ)

dt
= ηT dU(x, y, µ)

dt
η

yields

(3.9.9)
1

2

dV (x, y, µ)

dt
= zT

�

c11 c12 + µσ12

c12 + µσ12 c22 + µσ22

�

z,
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where z = (xT, yT)T and

c11 =
1

2
η2
1(B1A11 + AT

11B1) +
1

2
η1η2(B2A21 + AT

21B
T
3 );

c22 =
1

2
η2
2(B2A22 + AT

22B2),

σ22 =
1

2
η1η2(B

T
3A12 + AT

12B3),

c12 =
1

2
η2
1B1A12 +

1

2
η1η2B3A22 +

1

2
η2
2A

T
21B2;

σ12 =
1

2
η1η2A

T
11B3, η1 > 0, η2 > 0.

Let d
dt

VM (x, y, µ) be an upper bound of the expression (3.9.6). It is easy
to verify that

(3.9.10)
d

dt
VM (x, y, µ) ≤ 2uTC(µ)u,

where u = (�x�, �y�)T and

C(µ) =

(

λM (c11) λ
1/2
M (c12c

T
12) + µλ

1/2
M (σ12σ

T
12)

λ
1/2
M (c12c

T
12) + µλ

1/2
M (σ12σ

T
12) λM (c22) + µλM (σ22)

)

.

Here λM (cii) and λM (σ22) are maximal eigenvalues of matrices cii,

i = 1, 2 and σ22 respectively; and λ
1/2
M (c12c

T
12) and λ

1/2
M (σ12σ

T
12) are norms

of matrices c12 and σ12 respectively.
In this case, the values µ2, µ3 and µ0 are expressed as follows

µ2 = −λM (c22)/λM (σ22), µ3 = (−b+
√

b2 − 4ac)/2a, µ0 = min (µ2, µ3),

where

a = λM (σ12σ
T
12),

b = λ
1/2
M (c12c

T
12)λ

1/2
M (σ12σ

T
12) − λM (c11)λM (σ22),

c = λM (c12c
T
12) − λM (c11)λM (c22).

Sufficient conditions for uniform asymptotic stability of the state
(xT, yT)T = 0 of (3.9.1) are established in terms of Theorem 3.7.1. Namely,
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the equilibrium state (xT, yT)T = 0 of system (3.9.1) is uniformly asymp-

totically stable in the whole if

(1) inequality (3.9.8) is satisfied;

(2) the following inequalities are satisfied

(a) λM (c11) < 0;

(b) λM (c22) < 0;

(c) λM (σ22) > 0;

(d) λM (c12c
T
12) − λM (c11)λM (c22) < 0.

This assertion follows from the fact that for functions (3.9.2) under con-

dition (3.9.8) the function V (x, y, µ) = ηTU(x, y)η is positive definite and

radially unbounded, and under condition (2) D+V (x, y, µ) along solutions

of system (3.9.1) is negative definite. Therefore, all conditions of Theo-

rem 3.7.1 are satisfied.

3.9.2 Case B

Consider the system

(3.9.11)

dx

dt
= A11x + A12y,

µ
dy

dt
= µA21x + A22y,

where, x ∈ Rn, y ∈ Rm, µ ∈ (0, 1] and matrices A11, . . . , A22 are the

same as in system (3.9.1).

In order to establish conditions for uniform asymptotic stability of equi-

librium state (xT, yT)T = 0 of system (3.9.11) we incorporate the Theo-

rem 3.7.3. To this end we take the elements of a matrix-valued function in

the form of (3.9.2) and assume that the estimate (3.5.11) is satisfied for the

function V (x, y, µ).

We have for the total derivative of function V (x, y, µ) along a solutions

of system (3.9.11)

(3.9.12)
1

2

d

dt
V (x, y, µ) = zT

(

c0
11 + µσ0

11 c0
12 + µσ0

12

c0
12 + µσ0

12 c0
22 + µσ0

22

)

z,
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where

c0
11 =

1

2
η2
1(B1A11 + AT

11B1);

σ0
11 =

1

2
η1η2(B3A21 + AT

21B
T
3 );

c0
22 =

1

2
η2
2(B2A22 + AT

22B2);

σ0
22 =

1

2
η1η2(B

T
3A12 + AT

12B3);

c0
12 =

1

2
η2
1B1A12 +

1

2
η1η2B3A22;

σ0
12 =

1

2
η2
2AT

21B2 +
1

2
η1η2A

T
11B3, η1 > 0, η2 > 0.

For the upper bound d
dt

VM (x, y, µ) of expression (3.9.12) we have the
estimate

(3.9.13)
d

dt
VM (x, y, µ) ≤ 2uTC0(µ)u,

where

C0(µ)=

(

λM (c0
11) + µλM (σ0

11) λ
1/2
M (c0

12c
0T
12 ) + µλ

1/2
M (σ0

12σ
0T
12 )

λ
1/2
M (c0

12c
0T
12 ) + µλ

1/2
M (σ0

12σ
0T
12 ) λM (c0

22) + µλM (σ0
22)

)

.

In this case, the values µ̃i, i = 1, 4, µ̃0 and µ̃∗ are defined as

µ̃1 = −
λM (c0

11)

λM (σ0
11)

µ̃2 = −
λM (c0

22)

λM (σ0
22)

,

µ̃3 =
−b1 +

√

b2
1 − 4a1c1

2a1
, µ̃4 = µ4,

µ̃0 = min (µ̃1, µ̃2, µ̃3), µ̃∗ = min (µ̃0, µ̃4);

where

a1 = λM (σ0
12σ

0T
12 ) − λM (σ0

11)λM (σ0
22);

b1 = λ
1/2
M (c0

12c
0T
12 )λ

1/2
M (σ0

12σ
0T
12 ) − λM (c0

11)λM (σ0
22) − λM (σ0

11)λM (σ0
22);

c1 = λM (c0
12c

0T
12 ) − λM (c0

11)λM (c0
22).
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According to estimates (3.5.11) and (3.9.13) for functions V (x, y, µ) and
DVM (x, y, µ) the sufficient conditions for uniform asymptotic stability in
the whole of state (xT, yT)T = 0 of the system (3.9.11) are

(a) λm(B1)λm(B2) > µλ
1/2
M (B3B

T
3 );

(b) λM (c0
11) < 0;

(c) λM (σ0
11) > 0;

(d) λM (c0
22) < 0;

(e) λM (σ0
22) > 0;

(f) λM (σ0
12σ

0T
12 ) − λM (σ0

11)λM (σ0
22) > 0;

(g) λM (c0
12c

0T
12 ) − λM (c0

11)λM (c0
22) < 0.

3.9.3 Example

Let the system (3.9.1) be

(3.9.14)

dx

dt
=

(

0.5 0.1
−0.5 0.6

)

x +

(

3.6 0.3
−0.2 5

)

y,

µ
dy

dt
=

(

−7 0.5
−1 −8

)

x +

(

−3 0.5
1 −8

)

y,

where x ∈ R2, µ ∈ (0, 1].
We take for the system (3.9.14) the matrix-valued function U(x, y, µ)

with the elements

(3.9.15)

v11(x) = xTdiag [2, 2]x;

v22(y, µ) = µyTdiag [1, 1]y;

v12(x, y, µ) = v21(x, y, µ) = µxTdiag [0.4; 0.4]y.

It is easy to see that vij(·), i, j = 1, 2 satisfy the estimates

(3.9.16)

v11(x) ≥ 2�x�2 ∀ (x) ∈ Nx0,

v22(y, µ) ≥ µ�y�2 ∀ (y, µ) ∈ Ny0 ×M,

v12(x, y, µ) ≥ −0.4µ�x� �y� ∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M.

Let η = (1, 1). Then matrix A1(µ) in estimate (3.5.11) for the function

V (x, y, µ) = ηTU(x, y, µ)η, η ∈ R2
+
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with elements (3.9.15) and the estimates (3.9.16) has the form

A1(µ) =

(

2 −0.4µ

−0.4µ µ

)

.

It can be easily verified that matrix A1(µ) is positive definite for every
µ ∈ (0, 1] and for µ → 0.

The elements of matrix C(µ) from the estimate

d

dt
VM (x, y, µ) ≤ 2uTC(µ)u,

where u = (�x�, �y�)T, have the values

(3.9.17)

λM (c11) = −1.291723;

λM (c22) = −2.89;

λM (σ22) = 2.000713;

λ
1/2
M (c12c

T
12) = 0.784953;

λ
1/2
M (σ12σ

T
12) = 0.165452;

The values of parameters µ2, µ3 and µ0 are

µ2 = 1.444485; µ3 = 1.779742;

µ0 = min (µ2, µ3) = 1.444485.

With regard to (3.9.17) we find that

(a) λM (c11) < 0;
(b) λM (c22) < 0;
(c) λM (σ22) > 0;
(d) λM (c12c

T
12) − λM (c11)λM (c22) = −3.117332 < 0,

and µ0 = 1.444485.

By Theorem 3.7.3 the equilibrium state (xT, yT)T = 0 of the system
(3.9.14) is uniformly asymptotically stable in the whole for every µ ∈ (0, 1]
and for µ → 0.
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with elements (3.9.15) and the estimates (3.9.16) has the form

A1(µ) =

(

2 −0.4µ

−0.4µ µ

)

.

It can be easily verified that matrix A1(µ) is positive definite for every
µ ∈ (0, 1] and for µ → 0.

The elements of matrix C(µ) from the estimate

d

dt
VM (x, y, µ) ≤ 2uTC(µ)u,

where u = (�x�, �y�)T, have the values

(3.9.17)

λM (c11) = −1.291723;

λM (c22) = −2.89;

λM (σ22) = 2.000713;

λ
1/2
M (c12c

T
12) = 0.784953;

λ
1/2
M (σ12σ

T
12) = 0.165452;

The values of parameters µ2, µ3 and µ0 are

µ2 = 1.444485; µ3 = 1.779742;

µ0 = min (µ2, µ3) = 1.444485.

With regard to (3.9.17) we find that

(a) λM (c11) < 0;
(b) λM (c22) < 0;
(c) λM (σ22) > 0;
(d) λM (c12c

T
12) − λM (c11)λM (c22) = −3.117332 < 0,

and µ0 = 1.444485.

By Theorem 3.7.3 the equilibrium state (xT, yT)T = 0 of the system
(3.9.14) is uniformly asymptotically stable in the whole for every µ ∈ (0, 1]
and for µ → 0.
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3.10 Applications

Consider some applications of general results to the problems of mechanics.

3.10.1 Plane two-component pendulum

Let two absolutely solid bodies form a pendulum as shown on Figure 3.10.1.
Body I is rotating around hinge O1 and contains a sphere cavity. A

round body II is placed into this cavity and is freely connected with body I
at point O2. For the sake of simplicity we assume that the center of mass
of body II coincides with point O2.

FIGURE 3.10.1 Plane two-component pendulum

The bodies forming such a pendulum are subjected to the weight force
and moments of elasticity force and friction with a large coefficient of
proportionality to relative rotation angulars and relative angular velocities
of the links. Body I moves in the medium with viscous friction. The motion
equations of this system in the form of moment of momentum equations for
the total system relative to point O1 and for body II relative to point O2

are

(3.10.1)

d

dτ
(I1Ω1 + I2Ω2) = −Pl sin Φ1 − N1Ω1,

d

dτ
I2Ω2 = −K2(Φ2 − Φ1) − N2(Ω2 − Ω1),

dΦ1

dτ
= Ω1,

dΦ2

dτ
= Ω2.
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Here we designate by Φ1 and Φ2 the rotation angulars of the system ele-
ments, by Ω1 and Ω2 its angular velocities, by I1 and I2 the moments of
inertia, by τ the natural time, by P the total weight of the system, by l

the distance from point O1 to the center of masses, by N1 the coefficient of
moment of friction of outer forces for the system, by K2 and N2 the coeffi-
cients of stiffness and friction of moments of interaction forces between the
bodies.

In system (3.10.1) we get over from variables Φ1, Φ2, Ω1, Ω2 to the set
ϕ1, Ω1, ∆, U containing the variables ∆ = Φ2 − Φ1, U = Ω2 − Ω1 with
respect to which tight co-actions take place. Then we obtain the following
equations

(3.10.2)

I1
d

dτ
= −Pl sin Φ1 − N1Ω1 + K2∆ + N2U,

I2
d

dτ
=

I2

I1
Pl sinΦ1 − (1 +

I2

I1
)(K2∆ + N2U),

dΦ1

dτ
= Ω1,

d∆

dτ
= U.

In the system (3.10.2) we get over to the pure normalized values

(3.10.3)

t =
τ

τ∗
, i1 =

I1

I∗
, i2 =

I2

I∗
, ϕ1 =

Φ1

Φ∗

,

δ =
∆

∆∗

, ω1 =
Ω1

Ω∗

, u =
U

U∗

,

Let us consider a class of motions for which

(a) the oscillations of body I are large (Φ∗ = I);
(b) the moments of inertia are of the same order (I∗ = I1);
(c) the stiffness of elastic forces is essentially larger than the coefficient

of regeneration K1 = Pl due to the condition K1 << K2.

We estimate partial time constants of the system. Time constants τi

of slow oscillations due to condition (c) are estimated by τ2
1 = I1/K1, the

time constant τ2 of quick oscillations of body II due to elasticity is estimated
by the correlation τ2 = I2/k2. For K2 ≥ K1 we have µ = τ2/τ1 << 1.
We estimate characteristic angular velocities of the system with respect to
variables Ω1, U by the correlations Ω∗ = Φ∗/τ1 and U∗ = ∆∗/τ2.

Assume that the oscillation moments and moments of forces of elastic
interaction are the values of the same order (K2∆∗ = K1). We take the

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca


Stability Analysis via Matrix Functions Method

236 

Stability of Singularly-Perturbed Systems

3.10 APPLICATIONS 161

Here we designate by Φ1 and Φ2 the rotation angulars of the system ele-
ments, by Ω1 and Ω2 its angular velocities, by I1 and I2 the moments of
inertia, by τ the natural time, by P the total weight of the system, by l

the distance from point O1 to the center of masses, by N1 the coefficient of
moment of friction of outer forces for the system, by K2 and N2 the coeffi-
cients of stiffness and friction of moments of interaction forces between the
bodies.

In system (3.10.1) we get over from variables Φ1, Φ2, Ω1, Ω2 to the set
ϕ1, Ω1, ∆, U containing the variables ∆ = Φ2 − Φ1, U = Ω2 − Ω1 with
respect to which tight co-actions take place. Then we obtain the following
equations

(3.10.2)

I1
d

dτ
= −Pl sin Φ1 − N1Ω1 + K2∆ + N2U,

I2
d

dτ
=

I2

I1
Pl sinΦ1 − (1 +

I2

I1
)(K2∆ + N2U),

dΦ1

dτ
= Ω1,

d∆

dτ
= U.

In the system (3.10.2) we get over to the pure normalized values

(3.10.3)

t =
τ

τ∗
, i1 =

I1

I∗
, i2 =

I2

I∗
, ϕ1 =

Φ1

Φ∗

,

δ =
∆

∆∗

, ω1 =
Ω1

Ω∗

, u =
U

U∗

,

Let us consider a class of motions for which

(a) the oscillations of body I are large (Φ∗ = I);
(b) the moments of inertia are of the same order (I∗ = I1);
(c) the stiffness of elastic forces is essentially larger than the coefficient

of regeneration K1 = Pl due to the condition K1 << K2.

We estimate partial time constants of the system. Time constants τi

of slow oscillations due to condition (c) are estimated by τ2
1 = I1/K1, the

time constant τ2 of quick oscillations of body II due to elasticity is estimated
by the correlation τ2 = I2/k2. For K2 ≥ K1 we have µ = τ2/τ1 << 1.
We estimate characteristic angular velocities of the system with respect to
variables Ω1, U by the correlations Ω∗ = Φ∗/τ1 and U∗ = ∆∗/τ2.

Assume that the oscillation moments and moments of forces of elastic
interaction are the values of the same order (K2∆∗ = K1). We take the
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value of the order of slow partial oscillations (τ∗ = τ1) as the characteristic
time. In result of the normalization of (3.10.3) equations (3.10.2) become

(3.10.4)

dω

dt
= − sinϕ1 − 2ξ1ω1 + δ + 2ξ2u,

dϕ1

dt
= ω1;

µ
du

dt
= i2 sin ϕ1 − (1 + i2)(δ + 2ξ2u),

µ
dδ

dt
= u.

Here all variables ϕ1, ω1, δ and u have the values of the order of one,
i2 = I2/I1 and ξ1, ξ2 are dimensionless coefficients of damping of the first
and second partial oscillating links. In system (3.10.4) we make the change
of variables

sin ϕ1 = x1, ω1 = x2, u = y1, (1 + i2)δ − i2 sin ϕ1 = y2

and linearize the system. In result we get

(3.10.5)

dx

dt
= A11x + A12y,

µ
dy

dt
= A21x + A22y,

where

A11 =

(

0 1
1

1 + i2
−2ξ1

)

, A12 =

(

0 0

2ξ2
1

1 + i2

)

,

A21 =

(

0 0

0 −i2

)

, A22 =

(

−2(1 + i2)ξ2 −1

1 + i2 0

)

,

x = (x1, x2)
T, y = (y1, y2)

T, µ is a small parameter.
For system (3.10.5) we construct matrix-valued function with elements

(3.10.6)

v11(x) = xT

(

2(ξ1γ1 + 1) γ1

γ1 2(1 + i2)

)

x;

v12(x, y, µ) = µxT

(

0 0

2 0.01

)

y,

v22(y, µ) = µyT

(

2(1 + i2) γ2

γ2 2(ξ2γ2 + 1)

)

y,
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where γ1 and γ2 are constants satisfying the conditions

(3.10.7) γ1 < 4ξ1(1 + i2), γ2 < 4ξ2(1 + i2)

Functions (3.10.6) satisfy the estimates

v11(x) ≥ k1�x�
2 ∀x ∈ R2

v12(x, y, µ) ≥ −2µ�x� �y� ∀ (x, y) ∈ R2 × R2

v22(y, µ) ≥ µk2�y�
2 ∀ y ∈ R2,

where

k1 = ξ1γ1
+ i2 + 2 −

√

(ξ1γ1
− i2)2 + γ2

1
;

k2 = ξ2γ2
+ i2 + 2 −

√

(ξ2γ2
− i2)2 + γ2

2
.

It can be easily verified that when inequalities (3.10.7) are satisfied, then
k1 > 0 and k2 > 0.

Matrix A1(µ) in estimate (3.5.11) for matrix-valued function with ele-
ments (3.10.6) has the form

(3.10.8) A1(µ) =

(

k1 −2µ

−2µ k2µ

)

and is positive definite for any µ ∈ (0, µ̃4), where

µ̃4 =
1

4
k1k2.

If ηT = (1, 1), then the elements of matrix C0(µ) are

λM (c0
11) = max

(

−
γ

1

1 + i2
;−4ξ1(1 + i2) + γ

1

)

;

λM (σ0
11) = 0;

λM (c0
22) = max

(

−4(1 + i2)
2ξ2 + (1 + i2)γ2

;−γ
2

)

;

λM (σ0
22) = 2ξ2 +

1

400(1 + i2)

+

[

(

2ξ2 +
1

400(1 + i2)

)2

+

(

ξ2

100(1 + i2)

)2

+

(

1

1 + i2

)2
]1/2

.
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where γ1 and γ2 are constants satisfying the conditions

(3.10.7) γ1 < 4ξ1(1 + i2), γ2 < 4ξ2(1 + i2)

Functions (3.10.6) satisfy the estimates

v11(x) ≥ k1�x�
2 ∀x ∈ R2

v12(x, y, µ) ≥ −2µ�x� �y� ∀ (x, y) ∈ R2 × R2

v22(y, µ) ≥ µk2�y�
2 ∀ y ∈ R2,

where

k1 = ξ1γ1
+ i2 + 2 −

√

(ξ1γ1
− i2)2 + γ2

1
;

k2 = ξ2γ2
+ i2 + 2 −

√

(ξ2γ2
− i2)2 + γ2

2
.

It can be easily verified that when inequalities (3.10.7) are satisfied, then
k1 > 0 and k2 > 0.

Matrix A1(µ) in estimate (3.5.11) for matrix-valued function with ele-
ments (3.10.6) has the form

(3.10.8) A1(µ) =

(

k1 −2µ

−2µ k2µ

)

and is positive definite for any µ ∈ (0, µ̃4), where

µ̃4 =
1

4
k1k2.

If ηT = (1, 1), then the elements of matrix C0(µ) are

λM (c0
11) = max

(

−
γ

1

1 + i2
;−4ξ1(1 + i2) + γ

1

)

;

λM (σ0
11) = 0;

λM (c0
22) = max

(

−4(1 + i2)
2ξ2 + (1 + i2)γ2

;−γ
2

)

;

λM (σ0
22) = 2ξ2 +

1

400(1 + i2)

+

[

(

2ξ2 +
1

400(1 + i2)

)2

+

(

ξ2

100(1 + i2)

)2

+

(

1

1 + i2

)2
]1/2

.
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λ
1/2
M (c0

12c
0T
12 ) =

�

1

2
P1 +

�

1

4
P 2

1 −
� γ

1

200

�2
�1/2

�1/2

;

P1 = (ξ1γ1
)2 +

�

γ
1

2(1 + i2)

�2

+

�

1 + i2

100

�2

;

λ
1/2
M (σ0

12σ
0T
12 ) =





1

2
P2 +

�

1

4
P 2

2 −

�

i2(ξ2γ2
+ 1) −

i2γ2

100

�2
�1/2





1/2

;

P2 = 1 +

�

1

200

�2

+

�

2ξ1 +
i2γ2

2

�2

+

�

ξ1

100
+ i2(ξ2γ2

+ 1)

�2

.

Matrix C0(µ) is negative definite for every µ ∈ (0, �µ0) and µ → 0, where
�µ0 = min (�µ2, �µ3) and

�µ2 = −
λM (c0

22)

λM (σ0
22)

, �µ3 =
−b1 +

�

b2
1 − 4a1c1

2a1
,

where

a1 = λM (σ0
12σ

0T
12 ),

b1 = λ
1/2
M (c0

12c
0T
12 )λ

1/2
M (σ0

12σ
0T
12 ) − λM (c0

11)λM (σ0
22);

c1 = λM (c0
12c

0T
12 ) − λM (c0

11)λM (c0
22)

if one of the following conditions (i)–(iv) is satisfied

(i)
γ1γ2

1 + i2
> λM

�

c0
12c

0T
12

�

for γ1 <
4ξ1(1 + i2)

2

2 + i2
and γ2 <

4ξ2(1 + i2)
2

2 + i2
;

(ii) (4ξ2(1 + i2) − γ2)γ1 > λM

�

c0
12c

0T
12

�

for γ1 <
4ξ1(1 + i2)

2

2 + i2
and

4ξ2(1 + i2)
2

2 + i2
< γ2 < 4ξ2(1 + i2);

(iii) (4ξ1(1+ i2)−γ1)γ2 > λM

�

c0
12c

0T
12

�

for
4ξ1(1 + i2)

2

2 + i2
< γ1 < 4ξ1(1+

i2) and γ2 <
4ξ2(1 + i2)

2

2 + i2
;

(iv) (1 + i2)(4ξ1(1 + i2) − γ1)(4ξ2(1 + i2) − γ2) > λM

�

c0
12c

0T
12

�

for

4ξ1(1 + i2)
2

2 + i2
< γ1 < 4ξ1(1+i2) and

4ξ2(1 + i2)
2

2 + i2
< γ2 < 4ξ2(1+i2).
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By Theorem 3.7.1 the equilibrium state (xT, yT)T = 0 of system (3.10.5)
is uniformly asymptotically stable for every µ ∈ (0, µ̃∗) and for µ → 0,
where µ̃∗ = min (µ̃4, µ̃0).

3.10.2 Singularly perturbed Lur’e systems

In this section, the stability of a singularly perturbed system of the Lur’e
form is analyzed on the basis of the Liapunov matrix-valued function. We
obtain sufficient conditions for the absolute stability of a system of the Lur’e
form and we indicate the bounds of the variation of the small parameter.

3.10.2.1 Singularly Perturbed Lur’e System. Case A. We consider the au-
tonomous singularly perturbed system of Lur’e type

(3.10.9)

dx

dt
= A11x + A12y + q1f1(σ1), σ1 = cT

11 + cT
12y;

µ
dy

dt
= A21x + A22y + q2f2(σ2), σ2 = cT

21 + cT
22y,

where x ∈ Nx ⊆ Rn, y ∈ Ny ⊆ Rm, µ ∈ (0, 1] is a small parameter,
the matrices A(·) and the vectors c(·), q(·) having appropriate dimensions.
The nonlinearities fi, i = 1, 2, are continuous, fi(0) = 0 and in the
Lur’e sectors [0, ki], ki ∈ (0, +∞) satisfy the conditions fi(σi)/σi ∈ (0, ki],
i = 1, 2; ∀σi ∈ (−∞, +∞).

Moreover, we consider only those nonlinearities fi for which the state
(xT, yT)T = 0 is the unique equilibrium state of the degenerate system

(3.10.10)
dx

dt
= A11x + q1f1(σ

0
1); σ0

1 = cT
11x

and of the system, describing the boundary layer,

(3.10.11) µ
dy

dt
= A22y + q2f2(σ

0
2); σ0

2 = cT
22y

This assumption holds if
cT
iiA

−1
ii qi > 0.

We introduce the following notations:

f(x, 0) = A11x + q1f1(σ
0
1);

f∗(x, y) = A12y + q1[f1(σ1) − f1(σ
0
1)];

g(0, y) = A22y + q2f2(σ
0
2);

g∗(x, y) = A21x + q2[f2(σ2) − f2(σ
0
2)].
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By Theorem 3.7.1 the equilibrium state (xT, yT)T = 0 of system (3.10.5)
is uniformly asymptotically stable for every µ ∈ (0, µ̃∗) and for µ → 0,
where µ̃∗ = min (µ̃4, µ̃0).

3.10.2 Singularly perturbed Lur’e systems

In this section, the stability of a singularly perturbed system of the Lur’e
form is analyzed on the basis of the Liapunov matrix-valued function. We
obtain sufficient conditions for the absolute stability of a system of the Lur’e
form and we indicate the bounds of the variation of the small parameter.

3.10.2.1 Singularly Perturbed Lur’e System. Case A. We consider the au-
tonomous singularly perturbed system of Lur’e type

(3.10.9)

dx

dt
= A11x + A12y + q1f1(σ1), σ1 = cT

11 + cT
12y;

µ
dy

dt
= A21x + A22y + q2f2(σ2), σ2 = cT

21 + cT
22y,

where x ∈ Nx ⊆ Rn, y ∈ Ny ⊆ Rm, µ ∈ (0, 1] is a small parameter,
the matrices A(·) and the vectors c(·), q(·) having appropriate dimensions.
The nonlinearities fi, i = 1, 2, are continuous, fi(0) = 0 and in the
Lur’e sectors [0, ki], ki ∈ (0, +∞) satisfy the conditions fi(σi)/σi ∈ (0, ki],
i = 1, 2; ∀σi ∈ (−∞, +∞).

Moreover, we consider only those nonlinearities fi for which the state
(xT, yT)T = 0 is the unique equilibrium state of the degenerate system

(3.10.10)
dx

dt
= A11x + q1f1(σ

0
1); σ0

1 = cT
11x

and of the system, describing the boundary layer,

(3.10.11) µ
dy

dt
= A22y + q2f2(σ

0
2); σ0

2 = cT
22y

This assumption holds if
cT
iiA

−1
ii qi > 0.

We introduce the following notations:

f(x, 0) = A11x + q1f1(σ
0
1);

f∗(x, y) = A12y + q1[f1(σ1) − f1(σ
0
1)];

g(0, y) = A22y + q2f2(σ
0
2);

g∗(x, y) = A21x + q2[f2(σ2) − f2(σ
0
2)].
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Then the system (3.10.9) takes the form

dx

dt
= f(x, 0) + f∗(x, y);

µ
dy

dt
= g(0, y) + g∗(x, y).

Together with system (3.10.9) and subsystems (3.10.10), (3.10.11) we shall
consider the matrix-valued function

(3.10.12) U(x, y, µ) =

(

v11(x) v12(x, y, µ)
v21(x, y, µ) v22(y, µ)

)

; v12 = v21,

where
v11 = xTB1x; v12 = µyTB2y; v12 = µxTB3y;

where B1 and B2 are symmetric, positive-definite matrices; B3 is a constant
matrix. With the aid of the matrix-valued function (3.10.12) we introduce
the scalar function

(3.10.13) V (x, y, µ) = ηTU(x, y, µ)η,

where ηT = (η1, η2); η ∈ R2
+; ηi > 0, i = 1, 2.

We assume that the elements of the matrix-valued function (3.10.12)
satisfy the estimates

(3.10.14)

v11(x) ≥ λm(B1)�x�
2 ∀x ∈ Nx0 = {x : x ∈ Nx; x �= 0};

v22(y, µ) ≥ µλm(B2)�y�
2 ∀ (y, µ) ∈ Ny0 ×M;

v12(x, y, µ) ≥ −µλ
1/2
M (B3B

T
3 )�x� �y� ∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M,

where λm(Bi) are the minimal eigenvalues of the matrices Bi, i = 1, 2;

λ
1/2
M (B3B

T
3 ) is the norm of the matrix (B3B

T
3 ); λM (B3B

T
3 ) is the maximal

eigenvalue of the matrix B3B
T
3 ; Ny0 = {y : y ∈ Ny, y �= 0}; M = (0, 1].

Under the estimates (3.10.14), for the function (3.10.13) we have the
estimate

v(x, y, µ) ≥ uTHTAHu ∀ (x, y, µ) ∈ Nx ×Ny ×M,

where uT = (�x�, �y�), H = diag (η1, η2);
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A(µ) =

(

λm(B1) −µλ
1/2
M (B3B

T
3 )

−µλ
1/2
M (B3B

T
3 ) µλm(B2)

)

.

For the derivatives of the elements of the matrix-valued function (3.10.12)
along the solutions of the system (3.10.9) we have the following estimates;

(3.10.15)

(a) (∇xv11)
Tf(x, 0) ≤ ρ11�x�

2 ∀x ∈ Nx0;

(b) (∇xv11)
Tf∗(x, y) ≤ ρ12�x�

2 + 2ρ
1/2
13 �x� �y�

∀(x, y) ∈ Nx0 ×Ny0;

(c) (∇yv22)Tg(0, y) ≤ µρ21�y�
2 ∀(y, µ) ∈ Ny0 ×M;

(d) (∇yv22)Tg∗(x, y) ≤ µρ22�y�
2 + µρ

1/2
23 �x� �y�

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(e) (∇xv12)Tf(x, 0) ≤ µρ
1/2
15 �x� �y�

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(f) (∇xv12)Tf∗(x, y) ≤ µρ
1/2
17 �x� �y�+ µρ18�y�

2

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(g) (∇yv12)
Tg(0, y) ≤ µρ

1/2
25 �x� �y�

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(h) (∇yv12)
Tg∗(x, y) ≤ µρ26�x�

2 + µρ
1/2
27 �x� �y�

∀(x, y, µ) ∈ Nx ×Ny ×M,

where ρ11, ρ12, ρ21, ρ22, ρ18, ρ26 are the maximal eigenvalues of the
matrices

B1A11 + AT
11B1 + B1q1k

∗

1cT
11 + (q1k

∗

1cT
11)

TB1,

B1q1k
∗

1cT
11 + (q1k

∗

1cT
11)

TB1,

B2A22 + AT
22B2 + B2q2k

∗

2cT
22 + (q2k

∗

2cT
22)

TB2,

B2q2k
∗

2cT
22 + (q2k

∗

2cT
22)

TB2,

AT
12B3 + (q1k

∗

1cT
12)

TB3,

B3A21 + B3q2k
∗

2cT
21,
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A(µ) =

(

λm(B1) −µλ
1/2
M (B3B

T
3 )

−µλ
1/2
M (B3B

T
3 ) µλm(B2)

)

.

For the derivatives of the elements of the matrix-valued function (3.10.12)
along the solutions of the system (3.10.9) we have the following estimates;

(3.10.15)

(a) (∇xv11)
Tf(x, 0) ≤ ρ11�x�

2 ∀x ∈ Nx0;

(b) (∇xv11)
Tf∗(x, y) ≤ ρ12�x�

2 + 2ρ
1/2
13 �x� �y�

∀(x, y) ∈ Nx0 ×Ny0;

(c) (∇yv22)Tg(0, y) ≤ µρ21�y�
2 ∀(y, µ) ∈ Ny0 ×M;

(d) (∇yv22)Tg∗(x, y) ≤ µρ22�y�
2 + µρ

1/2
23 �x� �y�

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(e) (∇xv12)Tf(x, 0) ≤ µρ
1/2
15 �x� �y�

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(f) (∇xv12)Tf∗(x, y) ≤ µρ
1/2
17 �x� �y�+ µρ18�y�

2

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(g) (∇yv12)
Tg(0, y) ≤ µρ

1/2
25 �x� �y�

∀(x, y, µ) ∈ Nx0 ×Ny0 ×M;

(h) (∇yv12)
Tg∗(x, y) ≤ µρ26�x�

2 + µρ
1/2
27 �x� �y�

∀(x, y, µ) ∈ Nx ×Ny ×M,

where ρ11, ρ12, ρ21, ρ22, ρ18, ρ26 are the maximal eigenvalues of the
matrices

B1A11 + AT
11B1 + B1q1k

∗

1cT
11 + (q1k

∗

1cT
11)

TB1,

B1q1k
∗

1cT
11 + (q1k

∗

1cT
11)

TB1,

B2A22 + AT
22B2 + B2q2k

∗

2cT
22 + (q2k

∗

2cT
22)

TB2,

B2q2k
∗

2cT
22 + (q2k

∗

2cT
22)

TB2,

AT
12B3 + (q1k

∗

1cT
12)

TB3,

B3A21 + B3q2k
∗

2cT
21,
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respectively; ρ
1/2
13 , ρ

1/2
23 , ρ

1/2
15 , ρ

1/2
17 , ρ

1/2
25 , ρ

1/2
27 are the norms of the ma-

trices

B1A12 + B1q1k
∗

1cT
12,

B2A21 + B2q2k
∗

2cT
21,

AT
11B3 + (q1k

∗

1cT
11)

TB3,

(q1k
∗

1cT
11)

TB3,

B3A22 + B3q2k
∗

2cT
22,

B3q2k
∗

2cT
22,

respectively,

k∗

i =

{

ki for σiqiBjx > 0 (or σiqiBjy > 0);

0 for σiqiBjx ≤ 0 (or σiqiBjy ≤ 0);
(i = 1, 2; j = 1, 2, 3).

Denoting the upper bound of the derivative of the function (3.10.13) by
d

dt
VM (x, y, µ), we find the estimate

(3.10.16)
d

dt
VM (x, y, µ) ≤ uTC(µ)u,

where

C(µ) =

(

σ11 σ12

σ21 σ22

)

, σ12 = σ21;

σ11 = η2
1(ρ11 + ρ12) + 2η1η2ρ26;

σ22 = η2
2(ρ21 + ρ22) + 2µη1η2ρ18;

σ12 = η2
1ρ

1/2
13 + η2

2ρ
1/2
23 + η1η2(µρ

1/2
15 + µρ

1/2
17 + ρ

1/2
25 + ρ

1/2
27 ).

We introduce the quantities

µ1 = −
η2(ρ21 + ρ22)

2η1ρ18
; µ2 =

−b +
√

b2 − 4ac

2a
; µ0 = min (µ1, µ2),

where

a = η2
1η2

2(ρ
1/2
15 + ρ

1/2
17 )2;

b = η1η2(ρ
1/2
15 + ρ

1/2
17 )[η2

1ρ
1/2
13 + η2

2ρ
1/2
23 + η1η2(ρ

1/2
25 + ρ

1/2
27 )] − 2η1η2ρ18σ11;

c = [η2
1ρ

1/2
13 + η2

2ρ
1/2
23 + η1η2(ρ

1/2
25 + ρ

1/2
27 )]2 − η2

2(ρ21 + ρ22)σ11.

If it turns out that µ0 > 1, then we consider µ ∈ (0, 1].
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Proposition 3.10.1. The matrix C(µ) is negative-definite for every
µ ∈ (0, 1] and for µ → 0 if the following conditions hold:

(a) σ11 < 0,
(b) η1ρ18 > 0,
(c) η2(ρ21 + ρ22) < 0,
(d) c < 0.

Remark 3.10.1. If η1ρ18 ≤ 0 and the conditions (a), (b), (d) of Propo-
sition 3.10.1 are satisfied, then its assertion remains valid for µ0 = µ2.

Theorem 3.10.1. Assume that the singularly perturbed Lur’e system
(3.10.9) is such that the matrix-valued function (3.10.12) has been con-
structed for it, the elements of which satisfy the estimates (3.10.14), and
for the upper bound of the derivative of the function (3.10.13) the esti-
mate (3.10.15) holds.

In this case, if

(a) the matrix A is positive-definite;
(b) the matrix C(µ) is negative-definite for every µ ∈ (0, µ0) and for

µ → 0,

then the equilibrium state (xT, yT) = 0 of the system (3.10.9) is uniformly
asymptotically stable for every µ ∈ (0, µ0) and for µ → 0.

If, furthermore, Nx × Ny = Rn+m then the equilibrium state of the
system (3.10.9) is uniformly asymptotically stable on the whole for every
µ ∈ (0, µ0) and for µ → 0.

Proof. On the basis of the matrix-valued function (3.10.12), with the
aid of the vector η ∈ R2

+, η > 0, we construct the scalar function (3.10.13).
Under the estimates (3.10.14) one can show that

v(x, y, µ) ≥ uTHTAHu, ∀ (x, y, µ) ∈ Nx ×Ny ×M.

Then from condition (a) of Theorem 3.10.1 there follows that the function
V (x, y, µ) is positive-definite.

For the derivative
d

dt
V (x, y, µ) the estimate (3.10.15) holds. From here

and from condition (b) of Theorem 3.10.1 there follows that the deriv-

ative
d

dt
V (x, y, µ) of the function (3.10.13) is negative-definite for every
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Proposition 3.10.1. The matrix C(µ) is negative-definite for every
µ ∈ (0, 1] and for µ → 0 if the following conditions hold:

(a) σ11 < 0,
(b) η1ρ18 > 0,
(c) η2(ρ21 + ρ22) < 0,
(d) c < 0.

Remark 3.10.1. If η1ρ18 ≤ 0 and the conditions (a), (b), (d) of Propo-
sition 3.10.1 are satisfied, then its assertion remains valid for µ0 = µ2.

Theorem 3.10.1. Assume that the singularly perturbed Lur’e system
(3.10.9) is such that the matrix-valued function (3.10.12) has been con-
structed for it, the elements of which satisfy the estimates (3.10.14), and
for the upper bound of the derivative of the function (3.10.13) the esti-
mate (3.10.15) holds.

In this case, if

(a) the matrix A is positive-definite;
(b) the matrix C(µ) is negative-definite for every µ ∈ (0, µ0) and for

µ → 0,

then the equilibrium state (xT, yT) = 0 of the system (3.10.9) is uniformly
asymptotically stable for every µ ∈ (0, µ0) and for µ → 0.

If, furthermore, Nx × Ny = Rn+m then the equilibrium state of the
system (3.10.9) is uniformly asymptotically stable on the whole for every
µ ∈ (0, µ0) and for µ → 0.

Proof. On the basis of the matrix-valued function (3.10.12), with the
aid of the vector η ∈ R2

+, η > 0, we construct the scalar function (3.10.13).
Under the estimates (3.10.14) one can show that

v(x, y, µ) ≥ uTHTAHu, ∀ (x, y, µ) ∈ Nx ×Ny ×M.

Then from condition (a) of Theorem 3.10.1 there follows that the function
V (x, y, µ) is positive-definite.

For the derivative
d

dt
V (x, y, µ) the estimate (3.10.15) holds. From here

and from condition (b) of Theorem 3.10.1 there follows that the deriv-

ative
d

dt
V (x, y, µ) of the function (3.10.13) is negative-definite for every
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µ ∈ (0, µ0) and for µ → 0. As is known (see Grujić, Martynyuk and
Ribbens-Pavella [1]), these conditions are sufficient for the uniform asymp-
totic stability of the equilibrium state of the system (3.10.9).

In the case Nx × Ny = Rn+m the function V (x, y, µ) is radially un-
bounded which, together with the other conditions, proves the second as-
sertion of this theorem. This is the absolute stability of the system (3.10.9),
µ0 being an estimate of the upper bound of the variation of the parameter µ.

3.10.2.2 Singularly Perturbed Lur’e System. Case B. Assume that the sin-
gularly perturbed system is the Lur’e-type system:

(3.10.17)

dx

dt
= A11x + A12y + q1f1(σ1), σ1 = cT

11x + cT
12y;

µ
dy

dt
= µA21x + A22y + q2f2(σ2), σ2 = cT

21x + cT
22y.

Here we preserve all the assumptions made regarding the system (3.10.9),
including the assumption on the equilibrium state, i.e., the conditions on
the system (3.10.10), (3.10.11).

We assume that for the system (3.10.17) we have constructed the matrix-
valued function (3.10.12) for the elements of which the estimated (3.10.14)
are satisfied. We introduce the following notations:

f(x, 0) = A11x + q1f1(σ
0
1);

f∗(x, y) = A12y + q1[f1(σ1) − f1(σ
0
1)];

g(0, y) = A22y + q2f2(σ
0
2);

g∗(x, y, µ) = µA21x + q2[f2(σ2) − f2(σ
0
2)].

The system (3.10.17) takes the form

dx

dt
= f(x, 0) + f∗(x, y);

µ
dy

dt
= g(0, y) + g∗(x, y, µ).

By virtue of the system (3.10.17), for the derivatives of the elements vij of
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the matrix-valued function (3.10.12) we have the estimates:

(3.10.18)

(a) (∇xv11)
Tf(x, 0) ≤ ρ11�x�

2 ∀x ∈ Nx0;

(b) (∇xv11)
Tf∗(x, y) ≤ ρ12�x�

2 + 2ρ
1/2
13 �x� �y�

∀ (x, y) ∈ Nx0 ×Ny0;

(c) (∇yv22)
Tg(0, y) ≤ µρ21�y�

2 ∀ (y, µ) ∈ Ny0 ×M;

(d) (∇yv22)
Tg∗(x, y, µ) ≤ µρ22�y�

2 + 2µ2ρ
1/2
23 �x� �y�

∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M;

(e) (∇xv12)
Tf(x, 0) ≤ µρ

1/2
15 �x� �y�

∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M;

(f) (∇xv12)
Tf∗(x, y) ≤ µρ

1/2
17 �x� �y� + µρ18�y�

2

∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M;

(g) (∇yv12)
Tg(0, y) ≤ µρ

1/2
25 �x� �y�

∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M;

(h) (∇yv12)
Tg∗(x, y, µ) ≤ µ2ρ26�x�

2 + µρ
1/2
27 �x� �y�

∀ (x, y, µ) ∈ Nx0 ×Ny0 ×M.

Here, ρ11, ρ12, ρ21, ρ22, ρ18, ρ26 and ρ
1/2
13 , ρ

1/2
23 , ρ

1/2
15 , ρ

1/2
17 , ρ

1/2
25 , ρ

1/2
27

are the same quantities as in the estimates (3.10.15). We note that the pres-
ence of the small parameter µ in the right-hand side of the system (3.10.18)
leads only to the modification of the estimates (3.10.15)(d) and (3.10.15)(h)
to the form (3.10.18)(d).

Denoting the upper bound of the derivative of the function (3.10.13)

along the solution of the system (3.10.17) by
d

dt
V (x, y, µ), we find the

estimate

(3.10.19)
d

dt
VM (x, y, µ) ≤ uT

˜C(µ)u,

where

˜C(µ) =

(

σ̃11 σ̃12

σ̃21 σ̃22

)

; σ̃12 = σ̃21;

σ̃11 = η2
1(ρ11 + ρ12) + 2µη1η2ρ26;

σ̃22 = η2
2(ρ21 + ρ22) + 2µη1η2ρ18;

σ̃12 = η2
1ρ

1/2
13 + µη2

2ρ
1/2
23 + η1η2(µρ

1/2
15 + µρ

1/2
17 + ρ

1/2
25 + ρ

1/2
27 ).
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We introduce the quantities

µ̃1 = −
η1(ρ11 + ρ12)

2η2ρ26
; µ̃2 = −

η2(ρ21 + ρ22)

2η1ρ18
; µ̃3 = −

˜b +
√

˜b2 − 4ãc̃

2ã
;

µ̃0 = min (µ̃1, µ̃2, µ̃3);

ã =[η2
2ρ

1/2
23 + η1η2(ρ

1/2
15 + ρ

1/2
17 )]2 − 4η2

1η
2
2ρ18ρ26;

˜b =[η2
1ρ

1/2
13 + η1η2(ρ

1/2
25 + ρ

1/2
27 )][η2

2ρ
1/2
23 + η1η2(ρ

1/2
15 + ρ

1/2
17 )]

− 2η1η2[η
2
1ρ18(ρ11 + ρ12) + η2

2ρ26(ρ21 + ρ22)];

c̃ =[η2
1ρ

1/2
13 + η1η2(ρ

1/2
25 + ρ

1/2
27 )]2 − η2

1η2
2(ρ11 + ρ12)(ρ21 + ρ22).

If it turns out that µ0 > 1, then we consider µ ∈ (0, 1).

Proposition 3.10.2. The matrix ˜C(µ) is negative-definite for every
µ ∈ (0, µ0) and for µ → 0 the following conditions hold:

(a) η1(ρ11 + ρ12) < 0;
(b) η2ρ26 > 0;
(c) η2(ρ21 + ρ22) < 0;
(d) η1ρ18 > 0;
(e) ã > 0;
(f) c̃ < 0.

Remark 3.10.2. If η2ρ26 ≤ 0 and conditions (a), (c)–(f) of Proposition
3.10.2 are satisfied, then its assertion remains valid for µ̃0 = min (µ̃2, µ̃3).

Remark 3.10.3. If η1ρ18 ≤ 0 and conditions (a)–(c), (e), (f) of Pro-
position 3.10.2 are satisfied, then its assertion remains valid for µ̃0 =
min (µ̃1, µ̃3).

Remark 3.10.4. If η2ρ26 ≤ 0, η1ρ18 ≤ 0 and conditions (a), (b), (e),
(f) of Proposition 3.10.2 are satisfied, then its assertion remains valid for
µ̃0 = µ̃3.

Theorem 3.10.2. Assume that the singularly perturbed Lur’e system
(3.10.17) is such that the matrix-valued function (3.10.12) has been con-
structed for it, the elements of which satisfy the estimates (3.10.14), and
for the upper bound of the derivative of the function (3.10.13) the esti-
mate (3.10.19) holds.

In this case, if

(a) the matrix A is positive-definite;
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We introduce the quantities

µ̃1 = −
η1(ρ11 + ρ12)

2η2ρ26
; µ̃2 = −

η2(ρ21 + ρ22)

2η1ρ18
; µ̃3 = −

˜b +
√

˜b2 − 4ãc̃

2ã
;

µ̃0 = min (µ̃1, µ̃2, µ̃3);

ã =[η2
2ρ

1/2
23 + η1η2(ρ

1/2
15 + ρ

1/2
17 )]2 − 4η2

1η
2
2ρ18ρ26;

˜b =[η2
1ρ

1/2
13 + η1η2(ρ

1/2
25 + ρ

1/2
27 )][η2

2ρ
1/2
23 + η1η2(ρ

1/2
15 + ρ

1/2
17 )]

− 2η1η2[η
2
1ρ18(ρ11 + ρ12) + η2

2ρ26(ρ21 + ρ22)];

c̃ =[η2
1ρ

1/2
13 + η1η2(ρ

1/2
25 + ρ

1/2
27 )]2 − η2

1η2
2(ρ11 + ρ12)(ρ21 + ρ22).

If it turns out that µ0 > 1, then we consider µ ∈ (0, 1).

Proposition 3.10.2. The matrix ˜C(µ) is negative-definite for every
µ ∈ (0, µ0) and for µ → 0 the following conditions hold:

(a) η1(ρ11 + ρ12) < 0;
(b) η2ρ26 > 0;
(c) η2(ρ21 + ρ22) < 0;
(d) η1ρ18 > 0;
(e) ã > 0;
(f) c̃ < 0.

Remark 3.10.2. If η2ρ26 ≤ 0 and conditions (a), (c)–(f) of Proposition
3.10.2 are satisfied, then its assertion remains valid for µ̃0 = min (µ̃2, µ̃3).

Remark 3.10.3. If η1ρ18 ≤ 0 and conditions (a)–(c), (e), (f) of Pro-
position 3.10.2 are satisfied, then its assertion remains valid for µ̃0 =
min (µ̃1, µ̃3).

Remark 3.10.4. If η2ρ26 ≤ 0, η1ρ18 ≤ 0 and conditions (a), (b), (e),
(f) of Proposition 3.10.2 are satisfied, then its assertion remains valid for
µ̃0 = µ̃3.

Theorem 3.10.2. Assume that the singularly perturbed Lur’e system
(3.10.17) is such that the matrix-valued function (3.10.12) has been con-
structed for it, the elements of which satisfy the estimates (3.10.14), and
for the upper bound of the derivative of the function (3.10.13) the esti-
mate (3.10.19) holds.

In this case, if

(a) the matrix A is positive-definite;
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(b) the matrix ˜C(µ) is negative-definite for every µ̃ ∈ (0, µ̃0) and for
µ → 0,

then the equilibrium state (xT, yT)T = 0 of the system (3.10.17) is uni-
formly asymptotically stable for every µ̃ ∈ (0, µ̃0) and for µ → 0.

If, furthermore, Nx × Ny = Rn+m then the equilibrium state of the
system (3.10.17) is uniformly asymptotically stable on the whole for every
µ̃ ∈ (0, µ̃0) and for µ → 0.

3.10.2.3 Example. We consider a system of the form (3.10.17) in which

A11 =

(

0 1
−1 −2

)

; q1 =

(

0
0.1

)

; c11 =

(

−0.01
0

)

;

A12 =

(

1 0
0 1

)

; c12 =

(

1
1

)

(k1 = 2);

A21 =

(

0.001 0
0 0.001

)

; c21 =

(

0.001
0

)

; q2 =

(

1
1

)

;

A22 =

(

−4 1
1 −4

)

; c22 =

(

1
0

)

(k2 = 1).

The matrix-valued function (3.10.12) has the elements

v11(x) = xT

(

0.3 0.1
0.1 0.3

)

x; v22(y, µ) = µyT

(

2 0
0 2

)

y;

v12(x, y, µ) = v21(x, y, µ) = µxT

(

0.01 0
0 0.01

)

y,

for which we have the estimates

v11(x) ≥ 0.2�x�2; v22(y, µ) ≥ 2µ�y�2;

v12(x, y, µ) ≥ −0.01µ�x� �y�.

If ηi = 1, i = 1, 2, then the matrix

A =

(

0.2 −0.01µ

−0.01µ 2µ

)

is positive-definite for every µ ∈ (0, 1).
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Moreover, for the elements of the matrix ˜C(µ) we have:

(1) for k∗

i = ki: ρ11 = −0.15290, ρ12 = 0.00043, ρ21 = −7.67545,

ρ22 = 4.82843, ρ18 = 0.012, ρ26 = 0.00002, ρ
1/2
23 = 0.00490,

ρ
1/2
13 = 0.46165, ρ

1/2
15 = 0.02415, ρ

1/2
17 = 0.00002, ρ

1/2
25 = 0.05117,

ρ
1/2
27 = 0.01414, and ã = 0.00084, ˜b = 0.01909, c̃ = −0.15638,

µ̃11 = 7623.205, µ̃12 = 118.6257, µ̃13 = 6.13236;
(2) for k∗

i = 0: ρ11 = −0.15279, ρ21 = −12, ρ18 = 0.01, ρ26 =

0.00001, ρ
1/2
13 = 0.4, ρ

1/2
23 = 0.002, ρ

1/2
15 = 0.02414, ρ

1/2
25 = 0.05,

ρ12 = ρ22 = ρ
1/2
17 = ρ

1/2
27 = 0, and ã = 0.00068, ˜b = 0.01506,

c̃ = −1.6398, µ̃21 = 7639.5, µ̃22 = 600, µ̃23 = 28.84152.

It is easy to verify that in both cases the conditions of Proposition 3.10.2
are satisfied.

The quantity µ̃0 = min (µij , i = 1, 2; j = 1, 2, 3) = 6.13236 > 1.
Thus, on the basis Proposition 3.10.2, in the given example the matrix

˜C(µ) is negative-definite for every µ ∈ (0, 1) and for µ → 0. On the basis
of Theorem 3.10.2, the state (xT, yT) = 0 of the system, determined in this
example, is absolutely stable for every µ ∈ (0, 1) and for µ → 0.

We note that this example has been investigated in (Grujić, Martynyuk
and Ribbens-Pavella [57]) by the vector function method. The obtained
estimate has been µ̃ = 0.52.

The use of the Liapunov matrix-valued function in the theory of absolute
stability of a singularly perturbed system may turn out to be preferable to
the method of the scalar or vector function because of two circumstances:
the Liapunov matrix-valued function broadens the possibilities for the dy-
namical properties of the degenerate system (3.10.10) and of the boundary-
layer system (3.10.11), and may give a more accurate estimate of the upper
value of the parameter µ.

3.11 Notes

3.1. Singularly-perturbed systems are known to be rather widely used in
the engineering and technology as models of real processes (see e.g. surveys
by Vasiljeva and Butuzov [170]; Kokotović, O’Malley, and Sannuti [86, 87];
Grujić [50, 51]; and some others). Stability properties of SPS were stud-
ied by Gradshtein [43]; Tikhonov [169]; Klimushev and Krasovskii [84, 85];

Hoppensteadt [73–77]; Wilde and Kokotović [172]; Šiljak [168]; Zien [176];
Porter [156–158]; Habets [64, 65]; E. Geraschenko and M. Geraschenko [41];
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Grujić [48, 52, 54]; Martynyuk and Gutowsky [123]; Martynyuk [114]; Mar-
tynyuk and Miladzhanov [126–128]. Monograph by Grujić, Martynyuk and
Ribbens-Pavella [57] contains rather full list of bibliography on the SPS
stability.

The present chapter describes a way of the Liapunov’s direct method ap-
plication basing on auxiliary matrix-valued function. This approach admits
a weakening of some requirements to dynamical properties of the subsys-
tems. In the chapter the investigation of the problem on absolute stability
of singularly-perturbed Lur’e-Postnikov system is made minutely.

3.2. The description of system (3.2.1), (3.2.2) follows Grujić [48] and
Grujić, Martynyuk and Ribbens-Pavella [57].

3.3–3.4. The contents of Section 3.3 and 3.4 may be found in Grujić,
Martynyuk and Ribbens-Pavella [57].

3.5–3.8. The presentation of these sections is based on results by Mar-
tynyuk [114] and Martynyuk and Miladzhanov [128].

3.9. The results of this section are due to Martynyuk and Miladzhanov
[126, 127].

3.10. The motion equations of the plane two-component pendulum are
due to Novozhilov [149]. The investigation of these equations made in this
section corresponds to Miladzhanov [145].

The problem of absolute stability plays a central role in stability theory
as a consequence of its theoretical and applied importance. In 1944, Lur’e
and Postnikov have shown that the mathematical model of hydraulic ser-
vosystems is described by a system of differential equations of a special form.
These systems have been called Lur’e–Postnikov systems or Lur’e systems.
The problem of absolute stability, closely related with these systems, has
become classical in control theory. Since 1944, various approaches to the
solution of the stability problem of Lur’e systems have been suggested. The
majority of them are directed at the determination of sufficient conditions
for absolute stability. The first results have been obtained by Lur’e. The
conditions obtained by him are purely algebraic and the stability prob-
lem reduces to the verification of the existence of solutions for nonlinear
algebraic equations. A sufficiently complete bibliography regarding this
problem can be found in Grujić, Martynyuk and Ribbens-Pavella [57] and
Gelig, Leonov and Yakubovich [39].

Popov’s elegant frequency criteria (see Popov [155]) have been widely
used and have stimulated further investigations in various directions of the
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theory of absolute stability. Grujić [53] has established necessary and suf-
ficient conditions (Liapunov-type conditions) for absolute stability, from
which follows that, in the family of functionals, one has to use more than
one function, the form of which need not be affected by the form of the
nonlinearities of the system. Likhtarnikov and Yakubovich [103] have pre-
sented a new approach for the analysis of the absolute stability of nonlinear
systems. The essence of this approach consists in the fact that to a linear
block in an automatic system one associates a linear manifold in some func-
tional space; the non-linear blocks are described in an analogous manner.
Moreover, the intersection of the sets of all possible processes on the input
σ(t) and the output ξ(t) characterizes a closed system (the class of the corre-
sponding systems). Then, on the basis of the theorem on the minimization
of quadratic functionals in linear spaces under quadratic constraints, one
constructs absolute stability criteria.

The investigation of the Lur’e-Postnikov system in subsection 3.10.2 is
presented in accordance with Martynyuk and Miladzhanov [126].
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