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PREFACE

It has been five years since the first edition was published. Some developments have
taken place in the power industry. The renewable energy and smart grid include
many fresh and vital technologies that are needed to make enormous progress in
power grid development. With the development of information technology and
computer-based remote control and automation, the systems and technologies for the
smart grid are made possible by two-way communication technology and computer
processing. This modernized electricity network, which sends electricity from power
suppliers to consumers using digital technology to save energy, reduce cost, and
increase reliability and transparency, is being promoted by many governments as a
way of addressing energy independence, global warming, environment protection,
and emergency resilience issues.

In this new edition, Optimization of Power System Operation, continues to pro-
vide engineers and academics with a complete picture of the optimization techniques
used in modern power system operation. It offers a practical, hands-on guide to the-
oretical developments and to the application of advanced optimization methods to
realistic electric power engineering problems. Although the topic areas and depth of
coverage remain about the same, the book has been updated to reflect the changes that
have taken place in the electric power industry since the First Edition was published
five years ago. The research and application of renewable energy and smart grid have
being widely addressed in recent years, which have brought a host of new opportu-
nities and challenges to modern power system operation. Thus, in this edition two
new Chapters have been added—Chapter 10 on “Application of renewable energy”
and Chapter 14 on “Operation of smart grid.” The original Chapter 10 on “Reactive
power optimization” in the first edition is removed because of limitation of the space.
But some contents related to reactive power optimization can still be found in Chapter
8 on “Optimal power flow” and Chapter 13 on “Uncertainty analysis in power sys-
tems”. In the new Chapter 10, in addition to the introduction of renewable energy
resources and the corresponding mathematical models, the optimization operation of
renewable energy in power systems, such as maximum power point tracking, voltage
calculation for the grid-connected PV system, and voltage analysis in power system
with wind energy, is focused. In the new Chapter 14, applications of optimization
techniques to smart grid are addressed and the following topics are included: smart
grid economic dispatch, two-stage-approach for optimal operation of a smart grid,
optimal operation of virtual power plant, smart distribution operation, microgrid oper-
ation with wind and PV resources, optimal power flow for smart microgrid, renewable
energy and distributed generation technologies, and a new phase angle measurement
algorithm.

xvii



xviii PREFACE

The author appreciated the suggestions and feedback offered by professors and
engineers who have used the first edition. Some professors commented that this book
comprehensively applies all kinds of optimization methods to solve power system
operation problems, but it needs to provide some problems or exercises at the end
of each chapter so that it can be used as a textbook. Some students remarked that
they like the examples in the book, and they even have tried to use different methods
or written some programs to resolve them. Some readers did an excellent job to find
some errors and typos. I have gone through the book and made necessary corrections.
Over ten exercises and problems at the end of each chapter have been included in the
second edition.

I wish to express my gratitude to IEEE book series editor, Wiley Acquisitions
Editor, Project Editor, and the reviewers of the book for their valuable comments and
suggestions.

Jizhong Zhu



PREFACE TO THE FIRST
EDITION

I have been undertaking the research and practical applications of power system opti-
mization since the early 1980s. In the early stage of my career, I worked in universities
such as Chongqing University (China), Brunel University (UK), National University
of Singapore, and Howard University (USA). Since 2000 I have been working for
ALSTOM Grid Inc. (USA). When I was a full-time professor at Chongqing Uni-
versity, I wrote a tutorial on power system optimal operation, which I used to teach
my senior undergraduate students and postgraduate students in power engineering
until 1996. The topics of the tutorial included advanced mathematical and operations
research methods and their practical applications in power engineering problems.
Some of these were refined to become part of this book.

This book comprehensively applies all kinds of optimization methods to solve
power system operation problems. Some contents are analyzed and discussed for
the first time in detail in one book, although they have appeared in international
journals and conferences. These can be found in Chapter 9 “Steady-State Security
Regions”, Chapter 11 “Optimal Load Shedding”, Chapter 12 “Optimal Reconfigu-
ration of Electric Distribution Network”, and Chapter 13 “Uncertainty Analysis in
Power Systems.”

This book covers not only traditional methods and implementation in power
system operation such as Lagrange multipliers, equal incremental principle, linear
programming, network flow programming, quadratic programming, nonlinear pro-
gramming, and dynamic programming to solve the economic dispatch, unit commit-
ment, reactive power optimization, load shedding, steady-state security region, and
optimal power flow problems, but also new technologies and their implementation in
power system operation in the last decade. The new technologies include improved
interior point method, analytic hierarchical process, neural network, fuzzy set the-
ory, genetic algorithm, evolutionary programming, and particle swarm optimization.
Some new topics (wheeling model, multiarea wheeling, the total transfer capability
computation in multiareas, reactive power pricing calculation, congestion manage-
ment) addressed in recent years in power system operation are also dealt with and
put in appropriate chapters.

In addition to the rich analysis and implementation of all kinds of approaches,
this book contains considerable hands-on experience for solving power system oper-
ation problems. I personally wrote my own code and tested the presented algorithms
and power system applications. Many materials presented in the book are derived
from my research accomplishments and publications when I worked at Chongqing

xix



xx PREFACE TO THE FIRST EDITION

University, Brunel University, National University of Singapore, and Howard Uni-
versity, as well as currently with ALSTOM Grid Inc. I appreciate these organizations
for providing me such good working environments. Some IEEE papers have been
used as primary sources and are cited wherever appropriate. The related publications
for each topic are also listed as references, so that those interested may easily obtain
overall information.

I wish to express my gratitude to IEEE book series editor Professor
Mohammed El-Hawary of Dalhousie University, Canada, Acquisitions Editor Steve
Welch, Project Editor Jeanne Audino, and the reviewers of the book for their keen
interest in the development of this book, especially Professor Kit Po Wong of the
Hong Kong Polytechnic University, Professor Loi Lei Lai of City University, United
Kingdom, Professor Ruben Romero of Universidad Estadual Paulista, Brazil, and Dr.
Ali Chowdhury of California Independent System Operator, who offered valuable
comments and suggestions for the book during the preparation stage.

Finally, I wish to thank Professor Guoyu Xu, who was my PhD advisor twenty
years ago at Chongqing University, for his high standards and strict requirements for
me ever since I was his graduate student. Thanks to everyone, including my family,
who has shown support during the time–consuming process of writing this book.

Jizhong Zhu
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C H A P T E R 1
INTRODUCTION

The electric power industry is being relentlessly pressured by governments, politi-
cians, large industries, and investors to privatize, restructure, and deregulate. Before
deregulation, most elements of the power industry, such as power generation, bulk
power sales, capital expenditures, and investment decision, were heavily regulated.
Some of these regulations were at the state level, and some at the national level. Thus
new deregulation in the power industry meant new challenges and huge changes.
However, despite changes in different structures, market rules, and uncertainties, the
underlying requirements for power system operations to be secure, economical, and
reliable remain the same.

This book attempts to cover all areas in power system operations. It also intro-
duces some new topics and new applications of the latest new technologies that have
appeared in recent years. This includes the analysis and discussion of new techniques
for solving old problems as well as the new ones arising as a result of deregulation.

According to the different characteristics and types of the problems as well as
their complexity, power system operation is divided into the following aspects that
are addressed in this new edition of the book:

• Power flow analysis (Chapter 2)

• Sensitivity calculation (Chapter 3)

• Classical economic dispatch (Chapter 4)

• Security-constrained economic dispatch (Chapter 5)

• Multiarea systems economic dispatch (Chapter 6)

• Unit commitment (Chapter 7)

• Optimal power flow (Chapter 8)

• Steady-state security regions (Chapter 9)

• Application of renewable energy (Chapter 10)

• Optimal load shedding (Chapter 11)

• Optimal reconfiguration of electric distribution networks (Chapter 12)

• Uncertainty analysis in power systems (Chapter 13)

• Operation of smart grids (Chapter 14)
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2 CHAPTER 1 INTRODUCTION

From the viewpoint of optimization, various techniques including traditional
and modern optimization methods, which have been developed to solve these power
system operation problems, are classified into three groups [1–13]:

(1) Conventional optimization methods including

∘ Unconstrained optimization approaches

∘ Nonlinear programming (NLP)

∘ Linear programming (LP)

∘ Quadratic programming (QP)

∘ Generalized reduced gradient method

∘ Newton method

∘ Network flow programming (NFP)

∘ Mixed integer programming (MIP)

∘ Interior point (IP) methods.

(2) Intelligence search methods such as

∘ Neural network (NN)

∘ Evolutionary algorithms (EAs)

∘ Tabu search (TS)

∘ Particle swarm optimization (PSO).

(3) Nonquantitative approaches to address uncertainties in objectives and
constraints including

∘ Probabilistic optimization

∘ Fuzzy set applications

∘ Analytic hierarchical processes (AHPs).

Power systems basics are introduced first in the following sections, followed by brief
descriptions of various optimization techniques that are used to solve power system
operation problems.

1.1 POWER SYSTEM BASICS

1.1.1 Physical Components

A power system can be broadly divided into the generation system that supplies the
power, the transmission network that carries the power from the generating centers to
the load centers, and the distribution system that feeds the power to nearby homes and
industries. Figure 1.1 is a simple power system that shows some basic components.

Generating Unit All power systems have one or more generating units, which
are sources of power. Direct current (DC) power can be supplied by batteries, fuel
cells, or photovoltaic cells. Alternating current (AC) power is typically supplied by
a rotor that spins in a magnetic field in a device known as a turbo generator in a
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Figure 1.1 A simple power system.

power station. There have been a wide range of techniques used to spin a turbine’s
rotor, from superheated steam heated using fossil fuel (including coal, gas, and oil)
to water itself (hydroelectric power), and wind (wind power). Even nuclear power
typically depends on water heated to steam using a nuclear reaction.

The speed at which the rotor spins in combination with the number of generator
poles determines the frequency of the AC produced by the generator. All generators
on a single system rotate synchronously (i.e., at an identical speed) and will target a set
frequency—in China and European countries, this is 50 Hz, and in the United States,
60 Hz. If the load on the system increases, the generators will require more torque
to spin at that speed and, in a typical power station, more steam must be supplied
to the turbines driving them. Thus the steam used and the fuel expended are directly
dependent on the quantity of electrical energy supplied.

Transformer A transformer is a pair of mutually inductive coils used to convey
AC power from one coil to the other. It is a static device that transfers electrical
energy from one circuit to another through inductively coupled conductors—the
transformer’s coils. A varying current in the first or primary winding creates a vary-
ing magnetic flux in the transformer’s core and thus a varying magnetic field through
the secondary winding. This varying magnetic field induces a varying electromo-
tive force (EMF) or “voltage” in the secondary winding. This effect is called mutual
induction.

Transformers provide an efficient means of changing voltage and current lev-
els, and make the bulk power transmission system practical. The transformer primary
is the winding that accepts power, and the transformer secondary is the winding that
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delivers power. In an ideal transformer, the induced voltage in the secondary wind-
ing (Vs) is proportional to the primary voltage (Vp), and is given by the ratio of the
number of turns in the secondary (Ns) to the number of turns in the primary (Np) as
follows:

Vs

Vp
=

Ns

Np
(1.1)

Transmission Line or Conductor Transmission lines are used to transfer
power/energy from sources to loads such as an overhead power line, which is an
electric power transmission line suspended by towers or utility poles. Since most of
the insulation is provided by air, overhead power lines are generally the lowest-cost
method of transmission of large quantities of electrical energy. Towers for support
of the lines are made of wood (as-grown or laminated), steel (either lattice structures
or tubular poles), concrete, aluminum, and, occasionally, reinforced plastics. The
bare wire conductors on the line are generally made of aluminum (either plain or
reinforced with steel or sometimes composite materials), although some copper
wires are used in medium-voltage distribution and low-voltage connections to
customer premises.

An object of uniform cross section has a resistance proportional to its resis-
tivity and length and inversely proportional to its cross-sectional area. All materials
show some resistance, except for superconductors, which have a resistance of zero.
The resistance of an object is defined as the ratio of voltage across it to current
through it:

R = V
I

(1.2)

For a wide variety of materials and conditions, the electrical resistance R is con-
stant for a given temperature; it does not depend on the amount of current through or
the potential difference (voltage) across the object. Such materials are called ohmic
materials. For objects made of ohmic materials, the definition of the resistance, with
R being a constant for that resistor, is known as Ohm’s law.

Load Loads are also called energy consumptions, which use the electrical energy
to perform a function. These loads range from household appliances to industrial
machinery. Loads are supplied by the energy sources such as generating units through
the transmission system (or the grid). The change in the power system load over
time—that is, the change in the power consumed or the current in the network as
a function of time—is called the load curve. Loads determined by the rated power
of the users are random quantities that may assume various values with a certain
probability.

The real power P of an individual load, a load group, or the entire system is
defined as

P = S cos𝜙 (1.3)

where S = VI is the apparent power (V is the voltage, and I is the current), cos 𝜙 is
the power factor, and 𝜙 = arc tan(Q∕P), where Q is the reactive power of the load.



1.1 POWER SYSTEM BASICS 5

Capacitor A capacitor (formerly known as condenser) is a device for storing elec-
trical charge. The forms of practical capacitors vary widely, but all of them contain
at least two conductors separated by a non-conductor. Capacitors used as parts of
electrical systems, for example, consist of metal foils separated by a layer of insulat-
ing film.

The current associated with capacitors leads the voltage because of the time it
takes for the dielectric material to charge up to full voltage from the charging cur-
rent. Therefore, it is said that the current in a capacitor leads the voltage. The units
(measurement) of capacitance are called farads.

Fundamental Properties of Circuits Electric power is a measurable quantity that
is the time rate of increase or decrease in energy. Power is also the mathematical
product of two quantities: current and voltage. These two quantities can vary with
respect to time (alternating current, AC power) or can be kept at constant levels (direct
current, DC power).

An instantaneous power supplied, or consumed by a component of a circuit can
be expressed as follows.

P = dE
dt

= dE
dQ

= dQ
dt

= VI (1.4)

It means that the power supplied at any instant by a source, or consumed by a load,
is given by the current through the component times the voltage across the compo-
nent. When current is given in amperes, and voltage in volts, the units of power are
watts (W).

There are two fundamental properties of circuits, one is about the current, which
is Kirchhoff’s first law, and another is about voltage, which is Kirchhoff’s second law.
The former is also called as Kirchhoff’s current law (abbreviated KCL). The latter is
also called as Kirchhoff’s voltage law (abbreviated KVL). KCL states that, at every
instant of time, the sum of the currents flowing into any node of a circuit must equal
the sum of the currents leaving the node, where a node is any spot where two or more
conductors/wires are joined. KCL can be written as below.

∑

b→n

Ib = 0 (1.5)

where n is a node of a circuit and b is a collection of conductor branches. The symbol
“b → n” means the branch b connects to the node n. The direction of the current is
defined as positive if the current flows into the node; it is negative if the current leaves
the node.

The second of Kirchhoff’s fundamental laws, that is KVL, states that the sum
of the voltages around any loop of a circuit at any instant is zero.

KVL can be written as below.

∑

k∈l

Vk = 0 (1.6)
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where l is a closed circuit (or loop), and k is one of branches in the loop l. The symbol
“k ∈ l” means the branch k belongs to loop l.

1.1.2 Renewable Energy Resources

Traditionally, power plants in the power system produce electricity by use of conven-
tional energy sources, which consist primarily of coal, natural gas, and oil. Once a
deposit of these fuels is depleted, it cannot be replenished. Thus, renewable energy is
now receiving considerable attention. Renewable energy is energy that comes from
natural resources such as sunlight, wind, rain, tides, and geothermal heat, which
are renewable. Renewable energy sources differ from conventional sources in that,
generally, they cannot be scheduled, and they are often connected to the electricity
distribution system rather than the transmission system.

Most renewable energy sources originate either directly or indirectly from the
sun. They are continually replenished, literally, as long as the sun continues to shine.
The following five renewable sources are used most often:

• Solar

• Wind

• Water (hydropower)

• Biomass—including wood and wood waste, municipal solid waste, landfill gas,
and biogas, ethanol, and biodiesel

• Geothermal.

1.1.3 Smart Grid

A smart grid, also called smart electrical/power grid, intelligent grid, future grid,
inter-grid, or intra-grid, is an enhancement of the twentieth century power grid.
Traditional power grids are generally used to carry power from a few central
generators to a large number of users or customers. In contrast, the smart grid
is a modernized electrical grid that uses information and two-way, cyber-secure
communications technology to gather and act on information, such as information
about the behaviors of suppliers and consumers, in an automated fashion to improve
the efficiency, reliability, economics, and sustainability of the production and
distribution of electricity. As a globally emerging industry, smart grids include
many fresh and vital technologies that are needed to make enormous progress in
power grid development. With the development of information technology and
computer-based remote control and automation, the systems and technologies for the
smart grid are made possible by two-way communication technology and computer
processing that has been used for decades in other industries. They are beginning to
be used on electricity networks, from the power plants and wind farms all the way
to the consumers of electricity in homes and businesses. They offer many benefits
to utilities and consumers—mostly seen in big improvements in energy efficiency
on the electricity grid and in the energy users’ homes and offices. This modernized
electricity network, which sends electricity from power suppliers to consumers
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using digital technology to save energy, reduce cost, and increase reliability and
transparency is being promoted by many governments as a way of addressing energy
independence, global warming, and emergency resilience issues.

1.2 CONVENTIONAL METHODS

1.2.1 Unconstrained Optimization Approaches

Unconstrained optimization approaches are the basis of the constrained optimization
algorithms. In particular, most of the constrained optimization problems in power
system operation can be converted into unconstrained optimization problems. The
major unconstrained optimization approaches that are used in power system operation
are the gradient method, line search, Lagrange multiplier method, Newton-Raphson
optimization, trust-region optimization, quasi-Newton method, double dogleg opti-
mization, conjugate gradient optimization, and so on. Some of these approaches are
used in Chapters 2–4, 7, 9, and 14.

1.2.2 Linear Programming

Linear programming (LP)-based techniques are used to linearize nonlinear power
system optimization problems so that objective functions and constraints of power
system optimization problems have linear forms. The simplex method is known to
be quite effective for solving LP problems. The LP approach has several advan-
tages. Firstly, it is reliable, especially in regard to the convergence properties. Sec-
ondly, it can quickly identify infeasibility. Thirdly, it accommodates a large variety of
power system operating limits, including the very important contingency constraints.
The disadvantages of LP-based techniques are inaccurate evaluation of system losses
and insufficient ability to find an exact solution compared with an accurate nonlin-
ear power system model. However, a large number of practical applications have
shown that LP-based solutions generally meet the requirements of engineering pre-
cision. Thus LP is widely used to solve power system operation problems such as
security-constrained economic dispatch, optimal power flow, steady-state security
regions, and so on.

1.2.3 Nonlinear Programming

Power system operation problems are nonlinear. Thus nonlinear programming
(NLP)-based techniques can easily handle power system operation problems such
as the optimal power flow (OPF) problem with nonlinear objective and constraint
functions. To solve a NLP problem, the first step in this method is to choose a
search direction in the iterative procedure, which is determined by the first partial
derivatives of the equations (the reduced gradient). Therefore, these methods
are referred to as first-order methods, an example being the generalized reduced
gradient (GRG) method. NLP-based methods have higher accuracy than LP-based
approaches, and also have global convergence, which means convergence can be
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guaranteed independent of the starting point, but a slow convergent rate may occur
because of zigzagging in the search direction. NLP methods are used in this book in
Chapters 5–10, as well as in Chapter 14.

1.2.4 Quadratic Programming

Quadratic programming (QP) is a special form of NLP. The objective function of
the QP optimization model is quadratic, and the constraints are in linear form. QP
has higher accuracy than LP-based approaches. The most-used objective function
in power system optimization is the generator cost function, which generally is a
quadratic. Thus there is no simplification for such an objective function for power
system optimization problem solved by QP. QP is used in Chapters 5 and 8.

1.2.5 Newton’s Method

Newton’s method requires the computation of the second-order partial derivatives of
the power-flow equations and other constraints (the Hessian) and is therefore called
a second-order method. The necessary conditions of optimality commonly are the
Kuhn-Tucker conditions. Newton’s method, which is used in Chapters 2, 4, and 8, is
favored for its quadratic convergence properties.

1.2.6 Interior Point Methods

The interior point (IP) method was originally used to solve LP problems. It is faster
and is perhaps better than the conventional simplex algorithm in LP. IP methods were
first applied in 1990s to solve OPF problems, and the method has been extended and
improved recently to solve OPF problems in QP and NLP forms. The analysis and
implementation of IP methods are discussed in Chapter 8.

1.2.7 Mixed-Integer Programming

The power system problem can also be formulated as a mixed-integer programming
(MIP) optimization problem with integer variables such as transformer tap ratio,
phase shifter angle, and unit on or off status. MIP is extremely demanding of com-
puter resources and the number of discrete variables is an important indicator of
how difficult an MIP will be to solve. MIP methods that are used to solve OPF
problems are the recursive MIP technique using an approximation method and the
branch-and-bound (B&B) method, which is a typical method for integer program-
ming. A decomposition technique is generally adopted to decompose the MIP prob-
lem into a continuous problem and an integer problem. Decomposition methods such
as Benders decomposition method (BDM) can greatly improve the efficiency in solv-
ing a large-scale network by reducing the dimensions of the individual subproblems.
The results show a significant reduction in the number of iterations, required compu-
tation time, and memory space. In addition, decomposition allows the application of a
separate method for the solution of each subproblem, which makes the approach very
attractive. MIP can be used to solve the unit commitment, OPF, as well as optimal
reconfiguration of the electric distribution network.
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1.2.8 Network Flow Programming

Network flow programming (NFP) is a special form of LP. NFP was first applied to
solve optimization problems in power systems in the 1980s. The early applications of
NFP were mainly on a linear model. Recently, nonlinear convex NFP has been used
in power system optimization problems. NFP-based algorithms have the features of
fast speed and simple calculation. These methods are efficient for solving simplified
OPF problems such as security-constrained economic dispatch, multiarea systems
economic dispatch, and optimal reconfiguration of an electric distribution network.

1.3 INTELLIGENT SEARCH METHODS

1.3.1 Optimization Neural Network

The optimization neural network (ONN) was first used to solve LP problems in 1986.
Recently, ONN was extended to solve NLP problems. ONN is completely differ-
ent from traditional optimization methods. It changes the solution of an optimiza-
tion problem into an equilibrium point (or equilibrium state) of a nonlinear dynamic
system, and changes the optimal criterion into energy functions for dynamic sys-
tems. Because of its parallel computational structure and the evolution of dynamics,
the ONN approach appears superior to traditional optimization methods. The ONN
approach is applied to solve the classical economic dispatch and multiarea systems
economic dispatch in this book.

1.3.2 Evolutionary Algorithms

Natural evolution is a population-based optimization process. The evolutionary algo-
rithms (EAs) are different from the conventional optimization methods, and they
do not need to differentiate cost function and constraints. Theoretically, similarly to
simulated annealing, EAs converge to the global optimum solution. EAs, including
evolutionary programming (EP), evolutionary strategy (ES), and GA, are artificial
intelligence methods for optimization based on the mechanics of natural selection,
such as mutation, recombination, reproduction, crossover, selection, and so on. Since
EAs require all information to be included in the fitness function, it is very difficult
to consider all OPF constraints. Thus EAs are generally used to solve a simplified
OPF problem such as the classic economic dispatch, security-constrained economic
power dispatch, or reactive optimization problem, as well as optimal reconfiguration
of an electric distribution network.

1.3.3 Tabu Search

The Tabu search (TS) algorithm is mainly used for solving combinatorial optimiza-
tion problems. It is an iterative search algorithm, characterized by the use of a flexible
memory. It is able to eliminate local minima and to search areas beyond a local min-
imum. The TS method is also mainly used to solve simplified OPF problems such as
the unit commitment and reactive optimization problems.
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1.3.4 Particle Swarm Optimization

Particle swarm optimization (PSO) is a swarm intelligence algorithm, inspired by the
social dynamics and an emergent behavior that arises in socially organized colonies.
The PSO algorithm exploits a population of individuals to probe promising regions
of the search space. In this context, the population is called a swarm and the individ-
uals are called particles or agents. In recent years, various PSO algorithms have been
successfully applied in many power-engineering problems including OPF. These are
analyzed in Chapter 8.

1.4 APPLICATION OF THE FUZZY SET THEORY

The data and parameters used in power system operation are usually derived from
many sources, with a wide variance in their accuracy. For example, although the
average load is typically applied in power system operation problems, the actual load
should follow some uncertain variations. In addition, generator fuel cost, volt-ampere
reactive (VAR) compensators, and peak power savings may be subject to uncertainty
to some degree. Therefore, uncertainties as a result of insufficient information may
generate an uncertain region of decisions. Consequently, the validity of the results
from average values cannot represent the uncertainty level. To account for the uncer-
tainties in information and goals related to multiple and usually conflicting objectives
in power system optimization, the use of probability theory, fuzzy set theory, and
analytic hierarchical process (AHP) may play a significant role in decision making.

The probabilistic methods and their application in power systems operation
with uncertainty are discussed in Chapter 13. Fuzzy sets may be assigned not only to
objective functions but also to constraints, especially the nonprobabilistic uncertainty
associated with the reactive power demand in constraints. Generally speaking, the sat-
isfaction parameters (fuzzy sets) for objectives and constraints represent the degree of
closeness to the optimum and the degree of enforcement of constraints, respectively.
With the maximization of these satisfaction parameters, the goal of optimization is
achieved and simultaneously the uncertainties are considered. The application of
fuzzy sets to OPF problems is also presented in Chapter 13. The AHP is a simple
and convenient method to analyze a complicated problem (or complex problem). It
is especially suitable for problems that are very difficult to analyze wholly quantita-
tively, such as OPF with competitive objectives or uncertain factors. The details of
the AHP algorithm are given in Chapter 7. AHP is employed to solve unit commit-
ment, multiarea economic dispatch, OPF, VAR optimization, optimal load shedding,
and uncertainty analysis in power systems.
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C H A P T E R 2
POWER FLOW ANALYSIS

This chapter deals with the power flow problem. The power flow algorithms include
the Newton–Raphson method in both polar and rectangular forms, the Gauss–Seidel
method, the DC power flow method, and all kinds of decoupled power flow meth-
ods such as fast decoupled power flow, simplified BX and XB methods, as well as
decoupled power flow without major approximation.

2.1 MATHEMATICAL MODEL OF POWER FLOW

Power flow is well known as “load flow.” This is the name given to a network solu-
tion that shows currents, voltages, and real and reactive power flows at every bus in
the system. Since the parameters of the elements such as lines and transformers are
constant, the power system network is a linear network. However, in the power flow
problem, the relationship between voltage and current at each bus is nonlinear, and the
same holds for the relationship between the real and reactive power consumption at a
bus or the generated real power and scheduled voltage magnitude at a generator bus.
Thus power flow calculation involves the solution of nonlinear equations. It gives us
the electrical response of the transmission system to a particular set of loads and gen-
erator power outputs. Power flows are an important part of power system operation
and planning.

Generally, for a network with n independent buses, we can write the following
n equations.

Y11V̇1 + Y12V̇2 + · · · + Y1nV̇n = İ1

Y21V̇1 + Y22V̇2 + · · · + Y2nV̇n = İ2

…
Yn1V̇1 + Yn2V̇2 + · · · + YnnV̇n = İn

⎫
⎪
⎪
⎬
⎪
⎪⎭

(2.1)

The matrix form is
⎡
⎢
⎢
⎢
⎢
⎢⎣

Y11 Y12 … Y1n

Y21 Y22 … Y2n

⋮ ⋮ ⋮

Yn1 Yn2 … Ynn

⎤
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢⎣

V̇1

V̇2

⋮

V̇n

⎤
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢⎣

İ1

İ2

⋮

İn

⎤
⎥
⎥
⎥
⎥
⎥⎦

(2.2)
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or
[Y][V] = I (2.3)

where I is the bus current injection vector, V is the bus voltage vector, Y is called the
bus admittance matrix. Its diagonal element Yii is called the self admittance of bus i,
which equals the sum of all branch admittances connecting to bus i. The off-diagonal
element of the bus admittance matrix Yij is the negative of branch admittance between
buses i and j. If there is no line between buses i and j, this term is zero. Obviously,
the bus admittance matrix is a sparse matrix.

In addition, the bus current can be represented by bus voltage and power, that
is,

İi =
Ŝi

V̂i

=
ŜGi − ŜDi

V̂i

=
(PGi − PDi) − j(QGi − QDi)

V̂i

(2.4)

where
S: the complex power injection vector

PGi: the real power output of the generator connecting to bus i
QGi: the reactive power output of the generator connecting to bus i
PDi: the real power load connecting to bus i
QDi: the reactive power load connecting to bus i.

Substituting equation (2.4) into equation (2.1), we have

(PGi − PDi) − j(QGi − QDi)

V̂i

= Yi1V̇1 + Yi2V̇2 + · · · + YinV̇n, i = 1, 2, … , n (2.5)

In the power flow problem, the load demands are known variables. We define the
following bus power injections as

Pi = PGi − PDi (2.6)

Qi = QGi − QDi (2.7)

Substituting the above two equations into equation (2.5), we can get the general form
of power flow equation as

Pi − jQi

V̂i

=
n∑

j=1

YijV̇j, i = 1, 2, … , n (2.8)

or

Pi + jQi = V̇i

n∑

j=1

ŶijV̂j, i = 1, 2, … , n (2.9)

If we divide equation (2.9) into real and imaginary parts, we can get two equations for
each bus with four variables, that is, bus real power P, reactive power Q, voltage V ,
and angle 𝜃. To solve the power flow equations, two of these should be known for
each bus. According to the practical conditions of the power system operation, as
well as known variables of the bus, we can have three bus types as follows:
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(1) PV bus: For this type of bus, the bus real power P and the magnitude of volt-
age V are known, and the bus reactive power Q and the angle of voltage 𝜃 are
unknown. Generally, the bus connected to the generator is a PV bus.

(2) PQ bus: For this type of bus, the bus real power P and reactive power Q are
known, and the magnitude and the angle of voltage (V , 𝜃) are unknown. Gen-
erally, the bus connected to load is a PQ bus. However, the power output of
some generators is constant or cannot be adjusted under the particular operation
conditions. The corresponding bus will also be a PQ bus.

(3) Slack bus: The slack bus is also called the swing bus, or the reference bus.
Since power loss of the network is unknown during power flow calculation,
at least one bus power cannot be given, which will balance the system power.
In addition, it is necessary to have a bus with a zero voltage angle as refer-
ence for the calculation of the other voltage angles. Generally, the slack bus
is a generator-related bus, whose magnitude and angle of voltage (V , 𝜃) are
known. The bus real power P and reactive power Q are unknown variables.
Traditionally, there is only one slack bus in the power flow calculation. In prac-
tical applications, distributed slack buses are used, so all buses that connect
the adjustable generators can be selected as slack buses and used to balance
the power mismatch through some rules. One of these rules is that the system
power mismatch is balanced by all slacks on the basis of the unit participation
factors.

Since the voltage of the slack bus is given, only n − 1 bus voltages need to be
calculated. Thus, the number of power flow equations is 2(n − 1).

2.2 NEWTON-RAPHSON METHOD

2.2.1 Principle of Newton-Raphson Method

A nonlinear equation in a single variable can be expressed as

f (x) = 0 (2.10)

For solving this equation, select an initial value x0. The difference between the initial
value and the final solution will beΔx0. Then x = x0 + Δx0 is the solution of nonlinear
equation (2.10), that is,

f (x0 + Δx0) = 0 (2.11)

Expanding the above equation with the Taylor series, we get

f (x0 + Δx0) = f (x0) + f ′(x0)Δx0 + f ′′(x0) (Δx0)2

2!
+ · · ·

+ f (n)(x0) (Δx0)n

n!
+ · · · = 0 (2.12)

where f ′(x0), … , f (n)(x0) are the derivatives of the function f (x).
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If the difference Δx0 is very small (meaning that the initial value x0 is close to
the solution of the function), the terms of the second and higher derivatives can be
neglected. Thus equation (2.12) becomes a linear equation as below:

f (x0 + Δx0) = f (x0) + f ′(x0)Δx0 = 0 (2.13)

Then we get

Δx0 = −
f (x0)
f ′(x0)

(2.14)

The new solution will be

x1 = x0 + Δx0 = x0 −
f (x0)
f ′(x0)

(2.15)

Since equation (2.13) is an approximate equation, the value of Δx0 is also an approx-
imation. Thus the solution x is not a real solution. Further iterations are needed. The
iteration equation is

xk+1 = xk + Δxk = xk −
f (xk)
f ′(xk)

(2.16)

The iteration can be stopped if one of the following conditions is met:

|Δxk| < 𝜀1

or |f (xk)| < 𝜀2 (2.17)

where 𝜀1, 𝜀2, which are the permitted convergence precisions, are small positive num-
bers.

The Newton method can also be expanded to a nonlinear equation with n vari-
ables.

f1

(
x1, x2, … , xn

)
= 0

f2(x1, x2, … , xn) = 0

· · ·

fn(x1, x2, … , xn) = 0

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

(2.18)

For a given set of initial values x0
1, x

0
2, … , x0

n, we have the corrected values
Δx0

1,Δx0
2, … ,Δx0

n. Then equation (2.18) becomes

f1
(
x0

1 + Δx0
1, x

0
2 + Δx0

2, … , x0
n + Δx0

n

)
= 0

f2(x0
1 + Δx0

1, x
0
2 + Δx0

2, … , x0
n + Δx0

n) = 0

· · ·

fn(x0
1 + Δx0

1, x
0
2 + Δx0

2, … , x0
n + Δx0

n) = 0

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

(2.19)
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Similarly, expanding equation (2.19) and neglecting the terms of second and higher
derivatives, we get

f1
(
x0

1, x
0
2, … , x0

n

)
+
𝜕f1
𝜕x1

||||x0
1

Δx0
1 +

𝜕f1
𝜕x2

||||x0
2

Δx0
2 + · · · +

𝜕f1
𝜕xn

||||x0
n

Δx0
n = 0

f2(x0
1, x

0
2, … , x0

n) +
𝜕f2
𝜕x1

||||x0
1

Δx0
1 +

𝜕f2
𝜕x2

||||x0
2

Δx0
2 + · · · +

𝜕f2
𝜕xn

||||x0
n

Δx0
n = 0

· · ·

fn(x0
1, x

0
2, … , x0

n) +
𝜕fn
𝜕x1

||||x0
1

Δx0
1 +

𝜕fn
𝜕x2

||||x0
2

Δx0
2 + · · · +

𝜕fn
𝜕xn

||||x0
n

Δx0
n = 0

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪⎭

(2.20)

Equation (2.20) can also be written as matrix form as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

f1
(
x0

1, x
0
2, … , x0

n

)

f2(x0
1, x

0
2, … , x0

n)

…

fn(x0
1, x

0
2, … , x0

n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕f1
𝜕x1

||||x0
1

𝜕f1
𝜕x2

||||x0
2

· · ·
𝜕f1
𝜕xn

||||x0
n

𝜕f2
𝜕x1

||||x0
1

𝜕f2
𝜕x2

||||x0
2

· · ·
𝜕f2
𝜕xn

||||x0
n

⋮ ⋮ ⋮
𝜕fn
𝜕x1

||||x0
1

𝜕fn
𝜕x2

||||x0
2

· · ·
𝜕fn
𝜕xn

||||x0
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δx0
1

Δx0
2

⋮

Δx0
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.21)

From equation (2.21), we can get Δx0
1,Δx0

2, … ,Δx0
n. Then the new solution can be

obtained. The iteration equation can be written as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

f1
(
xk

1, x
k
2, … , xk

n

)

f2(xk
1, x

k
2, … , xk

n)

· · ·

fn(xk
1, x

k
2, … , xk

n)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕f1
𝜕x1

||||xk
1

𝜕f1
𝜕x2

||||xk
2

· · ·
𝜕f1
𝜕xn

||||xk
n

𝜕f2
𝜕x1

||||xk
1

𝜕f2
𝜕x2

||||xk
2

· · ·
𝜕f2
𝜕xn

||||xk
n

⋮ ⋮ ⋮
𝜕fn
𝜕x1

||||xk
1

𝜕fn
𝜕x2

||||xk
2

· · ·
𝜕fn
𝜕xn

||||xk
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δxk
1

Δxk
2

⋮

Δxk
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.22)

xk+1
i = xk

i + Δxk
i i = 1, 2, … , n (2.23)

Equations (2.22) and (2.23) can be expressed as

F(Xk) = −JkΔXk (2.24)

Xk+1 = Xk + ΔXk (2.25)

where J is an n × n matrix called a Jacobian matrix.
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2.2.2 Power Flow Solution with Polar Coordinate System

If the bus voltage in equation (2.9) is expressed using the polar coordinate system,
the complex voltage and real and reactive powers can be written as

V̇i = Vi(cos 𝜃i + j sin 𝜃i) (2.26)

Pi = Vi

n∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) (2.27)

Qi = Vi

n∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) (2.28)

where 𝜃ij = 𝜃i − 𝜃j, which is the angle difference between buses i and j.
Assuming that buses 1∼m are PQ buses, buses (m + 1)∼(n—1) are PV buses,

and nth bus is the slack bus. Vn, 𝜃n are given, and the magnitudes of the PV buses
Vm+1 ∼ Vn−1 are also given. Then, n − 1 bus voltage angles are unknown, and m mag-
nitudes of voltage are unknown. For each PV or PQ bus, we have the following real
power mismatch equation:

ΔPi = Pis − Pi = Pis − Vi

n∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) = 0 (2.29)

For each PQ bus, we also have the following reactive power equation:

ΔQis = Qis − Qi = Qis − Vi

n∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) = 0 (2.30)

where Pis, Qis are the calculated bus real and reactive power injections, respectively.
According to the Newton method, the power flow equations (2.29) and (2.30)

can be expanded into Taylor series and the following first-order approximation can
be obtained: [

ΔP
ΔQ

]
= −J

[
Δ𝜃

ΔV∕V

]

or

[
ΔP
ΔQ

]
= −

[
H N
K L

] [
Δ𝜃

V−1
D ΔV

]
(2.31)

where

ΔP =
⎡
⎢
⎢
⎢⎣

ΔP1
ΔP2
⋮

ΔPn−1

⎤
⎥
⎥
⎥⎦

(2.32)

ΔQ =
⎡
⎢
⎢
⎢⎣

ΔQ1
ΔQ2
⋮

ΔQm

⎤
⎥
⎥
⎥⎦

(2.33)
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Δ𝜃 =
⎡
⎢
⎢
⎢⎣

Δ𝜃1
Δ𝜃2
⋮

Δ𝜃n−1

⎤
⎥
⎥
⎥⎦

(2.34)

ΔV =
⎡
⎢
⎢
⎢⎣

ΔV1
ΔV2
⋮

ΔVm

⎤
⎥
⎥
⎥⎦

(2.35)

VD =
⎡
⎢
⎢
⎢⎣

V1
V2

⋱
Vm

⎤
⎥
⎥
⎥⎦

(2.36)

H is an (n− 1)× (n− 1) matrix, and its element is Hij =
𝜕ΔPi

𝜕𝜃j
.

N is an (n − 1) × m matrix, and its element is Nij = Vj
𝜕ΔPi

𝜕Vj
.

K is an m × (n − 1) matrix, and its element is Kij =
𝜕ΔQi

𝜕𝜃j
.

L is an m × m matrix, and its element is Lij = Vj
𝜕ΔQi

𝜕Vj
.

If i ≠ j, the expressions for the elements in Jacobian matrix are as follows:

Hij = −ViVj(Gij sin 𝜃ij − Bij cos 𝜃ij) (2.37)

Nij = −ViVj(Gij cos 𝜃ij − Bij sin 𝜃ij) (2.38)

Kij = ViVj(Gij cos 𝜃ij − Bij sin 𝜃ij) (2.39)

Lij = −ViVj(Gij sin 𝜃ij − Bij cos 𝜃ij) (2.40)

If i = j, the expressions for the elements in the Jacobian matrix are as follows:

Hii = V2
i Bii + Qi (2.41)

Nii = −V2
i Gii − Pi (2.42)

Kii = V2
i Gii − Pi (2.43)

Lii = V2
i Bii − Qi (2.44)

The steps for calculation of the Newton power flow solution are as follows [1,2]:

Step (1): Given input data.

Step (2): Form bus admittance matrix.
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Step (3): Assume the initial values of bus voltage.

Step (4): Compute the power mismatch according to equations (2.29) and (2.30).
Check whether the convergence conditions are satisfied.

max|ΔPk
i | < 𝜀1 (2.45)

max|ΔQk
i | < 𝜀2 (2.46)

If equations (2.45) and (2.46) are met, stop the iteration, and calculate
the line flows and real and reactive powers of the slack bus. If not, go to
next step.

Step (5): Compute the elements in the Jacobian matrix (2.37)–(2.44).

Step (6): Compute the corrected values of the bus voltage using equation (2.31).
Then compute the bus voltage.

Vk+1
i = Vk

i + ΔVk
i (2.47)

𝜃k+1
i = 𝜃k

i + Δ𝜃k
i (2.48)

Step (7): Return to Step (4) with new values of the bus voltage.

Example 2.1: The test example for power flow calculation, which is shown in
Figure 2.1, is taken from [2].

The parameters of the branches are as follows:

z12 = 0.10 + j0.40

y120 = y210 = j0.01528

1 : k

~

~

1

2

3

4

Figure 2.1 Four buses power
system.
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z13 = j0.30, k = 1.1

z14 = 0.12 + j0.50

y140 = y410 = j0.01920

z24 = 0.08 + j0.40

y240 = y420 = j0.01413

Buses 1 and 2 are PQ buses, bus 3 is a PV bus, and bus 4 is a slack bus. The given
data are

P1 + jQ1 = −0.30 − j0.18

P2 + jQ2 = −0.55 − j0.13

P3 = 0.5; V3 = 1.1;

V4 = 1.05; 𝜃4 = 0

First, we form the bus admittance matrix as follows:

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

1.0421 − j8.2429 −0.5882 + j2.3529 j3.6666 −0.4539 + j1.8911

−0.5882 + j2.3529 1.0690 − j4.7274 0 −0.4808 + j2.4038

j3.6666 0 −j3.3333 0

−0.4539 + j1.8911 −0.4808 + j2.4038 0 0.9346 − j4.2616

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

Given the initial bus voltage,

V̇0
1 = V̇0

2 = 1.0∠00, V̇0
3 = 1.1∠00

Computing the bus power mismatch using equations (2.29) and (2.30),
we get

ΔP0
1 = P1s − P0

1 = −0.30 − (−0.02269) = −0.27731

ΔP0
2 = P2s − P0

2 = −0.55 − (−0.02404) = −0.52596

ΔP0
3 = P3s − P0

3 = 0.5

ΔQ0
1 = Q1s − Q0

1 = −0.18 − (−0.12903) = −0.05097

ΔQ0
2 = Q2s − Q0

2 = −0.13 − (−0.14960) = 0.0196

Then computing the bus voltage correction using equation (2.31),

Δ𝜃0
1 = −0.50590, Δ𝜃0

2 = −6.17760, Δ𝜃0
3 = 6.59700

ΔV0
1 = −0.0065, ΔV0

2 = −0.0237
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The new bus voltage will be

𝜃1
1 = 𝜃0

1 + Δ𝜃0
1 = −0.50590

𝜃1
2 = 𝜃0

2 + Δ𝜃0
2 = −6.17760

𝜃1
3 = 𝜃0

3 + Δ𝜃0
3 = 6.59700

V1
1 = V0

1 + ΔV0
1 = 0.9935

V1
2 = V0

2 + ΔV0
2 = 0.9763

Conduct the second iteration using the new voltage values. If the convergence toler-
ance is 𝜀 = 10−5, the power flow will be converged after three iterations; these are
shown in Tables 2.1 and 2.2.

In the final step, we compute the power of the slack bus and the power flows
for all branches:

For the slack bus,

P4 + jQ4 = 0.36788 + j0.26470

For the branches,

P12 + jQ12 = 0.24624 − j0.01465

P13 + jQ13 = − 0.50000 − j0.02926

TABLE 2.1 Bus Power Mismatch Change

Iteration k ΔP1 ΔP2 ΔP3 ΔQ1 ΔQ2

0 −0.27731 −0.52596 0.5 −0.05097 0.01960

1 −4.0 × 10−3 −2.047 × 10−2 4.51 × 10−3 −4.380 × 10−2 −2.454 × 10−2

2 1.0 × 10−4 −4.2 × 10−4 8.0 × 10−5 −4.5 × 10−4 −3.2 × 10−4

3 <10−5 <10−5 <10−5 <10−5 <10−5

TABLE 2.2 Bus Voltage Change

Iteration k 𝜃1 𝜃2 𝜃3 V1 V2

1 −0.50590 −6.17760 6.59700 0.9935 0.9763

2 −0.50080 −6.44520 6.73000 0.9848 0.9650

3 −0.50020 −6.45040 6.73230 0.9847 0.9648
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P14 + jQ14 = − 0.04624 − j0.13609

P21 + jQ21 = − 0.23999 + j0.01063

P24 + jQ24 = − 0.31001 − j0.14063

P31 + jQ31 = 0.50000 + j0.09341

P41 + jQ41 = 0.04822 + j0.10452

P42 + jQ42 = 0.31967 + j0.16018

2.2.3 Power Flow Solution with Rectangular Coordinate
System

Newton Method If the bus voltage in equation (2.9) is expressed using a rectan-
gular coordinate system, the complex voltage and real and reactive powers can be
written as

V̇i = ei + jfi (2.49)

Pi = ei

n∑

j=1

(Gijej − Bijfj) + fi

n∑

j=1

(Gijfj + Bijej) (2.50)

Qi = fi

n∑

j=1

(Gijej − Bijfj) − ei

n∑

j=1

(Gijfj + Bijej) (2.51)

For each PQ bus, we have the following power mismatch equations:

ΔPi = Pis − Pi = Pis − ei

n∑

j=1

(Gijej − Bijfj) − fi

n∑

j=1

(Gijfj + Bijej) = 0 (2.52)

ΔQi = Qsi − Qi = Qsi − fi

n∑

j=1

(Gijej − Bijfj) + ei

n∑

j=1

(Gijfj + Bijej) = 0 (2.53)

For each PV bus, we have the following equations:

ΔPi = Pis − Pi = Pis − ei

n∑

j=1

(Gijej − Bijfj) − fi

n∑

j=1

(Gijfj + Bijej) = 0 (2.54)

ΔV2
i = V2

is − V2
i = V2

is − (e2
i + f 2

i ) = 0 (2.55)

There are 2(n − 1) equations in equations (2.52)–(2.55). According to the Newton
method, we have the following correction equation:

ΔF = −JΔV (2.56)
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where

ΔF =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔP1
ΔQ1
⋮

ΔPm
ΔQm
ΔPm+1
ΔV2

m+1
⋮

ΔPn−1
ΔV2

n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.57)

ΔV =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δe1
Δf1
⋮

Δem
Δfm

Δem+1
Δfm+1
⋮

Δen−1
Δfn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.58)

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕ΔP1

𝜕e1

𝜕ΔP1

𝜕f1
· · ·

𝜕ΔP1

𝜕em

𝜕ΔP1

𝜕fm

𝜕ΔP1

𝜕em+1

𝜕ΔP1

𝜕fm+1
· · ·

𝜕ΔP1

𝜕en−1

𝜕ΔP1

𝜕fn−1

𝜕ΔQ1

𝜕e1

𝜕ΔQ1

𝜕f1
· · ·

𝜕ΔQ1

𝜕em

𝜕ΔQ1

𝜕fm

𝜕ΔQ1

𝜕em+1

𝜕ΔQ1

𝜕fm+1
· · ·

𝜕ΔQ1

𝜕en−1

𝜕ΔQ1

𝜕fn−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜕ΔPm

𝜕e1

𝜕ΔPm

𝜕f1
· · ·

𝜕ΔPm

𝜕em

𝜕ΔPm

𝜕fm

𝜕ΔPm

𝜕em+1

𝜕ΔPm

𝜕fm+1
· · ·

𝜕ΔPm

𝜕en−1

𝜕ΔPm

𝜕fn−1

𝜕ΔQm

𝜕e1

𝜕ΔQm

𝜕f1
· · ·

𝜕ΔQm

𝜕em

𝜕ΔQm

𝜕fm

𝜕ΔQm

𝜕em+1

𝜕ΔQm

𝜕fm+1
· · ·

𝜕ΔQm

𝜕en−1

𝜕ΔQm

𝜕fn−1

𝜕ΔPm+1

𝜕e1

𝜕ΔPm+1

𝜕f1
· · ·

𝜕ΔPm+1

𝜕em

𝜕ΔPm+1

𝜕fm

𝜕ΔPm+1

𝜕em+1

𝜕ΔPm+1

𝜕fm+1
· · ·

𝜕ΔPm+1

𝜕en−1

𝜕ΔPm+1

𝜕fn−1
𝜕ΔV2

m+1

𝜕e1

𝜕ΔV2
m+1

𝜕f1
· · ·

𝜕ΔV2
m+1

𝜕em

𝜕ΔV2
m+1

𝜕fm

𝜕ΔV2
m+1

𝜕em+1

𝜕ΔV2
m+1

𝜕fm+1
· · ·

𝜕ΔV2
m+1

𝜕en−1

𝜕ΔV2
m+1

𝜕fn−1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝜕ΔPn−1

𝜕e1

𝜕ΔPn−1

𝜕f1
· · ·

𝜕ΔPn−1

𝜕em

𝜕ΔPn−1

𝜕fm

𝜕ΔPn−1

𝜕em+1

𝜕ΔPn−1

𝜕fm+1
· · ·

𝜕ΔPn−1

𝜕en−1

𝜕ΔPn−1

𝜕fn−1
𝜕ΔV2

n−1

𝜕e1

𝜕ΔV2
n−1

𝜕f1
…

𝜕ΔV2
n−1

𝜕em

𝜕ΔV2
n−1

𝜕fm

𝜕ΔV2
n−1

𝜕em+1

𝜕ΔV2
n−1

𝜕fm+1
· · ·

𝜕ΔV2
n−1

𝜕en−1

𝜕ΔV2
n−1

𝜕fn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.59)
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If i ≠ j, the expressions for the elements in the Jacobian matrix are as follows:

𝜕ΔPi

𝜕ei
= −

𝜕ΔQi

𝜕fi
= −(Gijei + Bijfi) (2.60)

𝜕ΔPi

𝜕fi
= −

𝜕ΔQi

𝜕ei
= −(Gijfi − Bijei) (2.61)

𝜕ΔV2
i

𝜕ei
= −

𝜕ΔV2
i

𝜕fi
= 0 (2.62)

If i = j, the expressions for the elements in the Jacobian matrix are as follows:

𝜕ΔPi

𝜕ei
= −

n∑

j=1

(Gijej − Bijfj) − Giiei − Biifi (2.63)

𝜕ΔPi

𝜕fi
= −

n∑

j=1

(Gijfj + Bijej) − Giifi + Biiei (2.64)

𝜕ΔQi

𝜕ei
=

n∑

j=1

(Gijfj + Bijej) − Giifi + Biiei (2.65)

𝜕ΔQi

𝜕fi
= −

n∑

j=1

(Gijej − Bijfj) + Giiei + Biifi (2.66)

𝜕ΔV2
i

𝜕ei
= −2ei (2.67)

𝜕ΔV2
i

𝜕fi
= −2fi (2.68)

Equation (2.56) can be written as matrix form as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔF1

ΔF2

· · ·

ΔFn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

J11 J12 · · · J1,n−1

J21 J22 · · · J2,n−1

⋮ ⋮ ⋮

Jn−1,1 Jn−1,2 · · · Jn−1,n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔV1

ΔV2

⋮

ΔVn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.69)

where ΔFi andΔVi are two-dimensional vectors. Jij is a 2× 2 matrix.
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ΔVi =
[
Δei
Δfi

]
(2.70)

For the PQ bus, we have

ΔFi =
[
ΔPi
ΔQi

]
(2.71)

Jij =

⎡
⎢
⎢
⎢
⎢
⎢⎣

𝜕ΔPi

𝜕ej

𝜕ΔPi

𝜕fj

𝜕ΔQi

𝜕ej

𝜕ΔQi

𝜕fj

⎤
⎥
⎥
⎥
⎥
⎥⎦

(2.72)

For the PV bus, we have

ΔFi =
[
ΔPi
ΔV2

i

]
(2.73)

Jij =

⎡
⎢
⎢
⎢
⎢
⎢⎣

𝜕ΔPi

𝜕ej

𝜕ΔPi

𝜕fj
𝜕ΔV2

i

𝜕ej

𝜕ΔV2
i

𝜕fj

⎤
⎥
⎥
⎥
⎥
⎥⎦

(2.74)

It can be observed from equations (2.60)–(2.68) that the elements of the Jacobian
matrix are functions of the bus voltage, which are updated through iterations. The
element of the submatrix Jij of the Jacobian matrix in equation (2.69) is related to
the corresponding element in the bus admittance matrix Yij. If Yij = 0, then Jij = 0.
Therefore, the Jacobian matrix in equation (2.69) is also a sparse matrix that is the
same as the bus admittance matrix.

The steps of the rectangular coordinate system-based Newton power flow solu-
tion are similar to those in the polar coordinate system-based algorithm, which was
described in Section 2.2.2.

Example 2.2: For the same system in Example 2.1, the Newton method with the
rectangular coordinate system is used to solve power flow.

The bus admittance matrix is the same as in Example 2.1. Given the initial
values of the bus voltages,

e0
1 = e0

2 = e0
3 = 1.0,

f 0
1 = f 0

2 = f 0
3 = 0.0,

e0
4 = 1.05, f 0

4 = 0.0
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Computing the bus power mismatch and ΔV2
i with equations (2.52) and (2.55), we

get

ΔP0
1 = P1s − P0

1 = −0.30 − (−0.02269) = −0.2773

ΔP0
2 = P2s − P0

2 = −0.55 − (−0.02404) = −0.5260

ΔP0
3 = P3s − P0

3 = 0.500

ΔQ0
1 = Q1s − Q0

1 = −0.18 − 0.23767 = −0.4176

ΔQ0
2 = Q2s − Q0

2 = −0.13 − (−0.14960) = 0.0196

ΔV2(0)
3 = |V3s|2 − |V0

3 |
2 = 0.210

Computing the elements of the Jacobian matrix with equations (2.60) and (2.68), we
get the following correction equation:

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

−1.01936 −8.00523 0.58823 2.35294 0.00000 3.66666

−8.48049 1.06478 2.35294 −0.58823 3.66666 0.00000

0.58823 2.35294 −1.04496 −4.87698 0.00000 0.00000

2.35294 −0.58823 −4.57777 1.09304 0.00000 0.00000

0.00000 3.66666 0.00000 0.00000 0.00000 −3.66666

0.00000 0.00000 0.00000 0.00000 −2.00000 0.00000

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δe0
1

Δf 0
1

Δe0
2

Δf 0
2

Δe0
3

Δf 0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔP0
1

ΔQ0
1

ΔP0
2

ΔQ0
2

ΔP0
3

ΔQ0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

It can be observed from the above equation that most of the elements in the
Jacobian matrix that have the maximal absolute values are not on the diagonals, which
easily cause a calculation error. To avoid this, we switch rows 1 and 2, rows 3 and 4,
rows 5 and 6, when we get,

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

−8.48049 1.06478 2.35294 −0.58823 3.66666 0.00000

−1.01936 −8.00523 0.58823 2.35294 0.00000 3.66666

2.35294 −0.58823 −4.57777 1.09304 0.00000 0.00000

0.58823 2.35294 −1.04496 −4.87698 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 −2.00000 0.00000

0.00000 3.66666 0.00000 0.00000 0.00000 −3.66666

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δe0
1

Δf 0
1

Δe0
2

Δf 0
2

Δe0
3

Δf 0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔQ0
1

ΔP0
1

ΔQ0
2

ΔP0
2

ΔQ0
3

ΔP0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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Solving the above correction equation, we get

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δe0
1

Δf 0
1

Δe0
2

Δf 0
2

Δe0
3

Δf 0
3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

−0.0037

−0.0094

−0.0222

−0.1081

0.1050

0.1269

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

The new bus voltage will be

e1
1 = e0

1 + Δe0
1 = 0.9963

f 1
1 = f 0

1 + Δf 0
1 = −0.0094

e1
2 = e0

2 + Δe0
2 = 0.9778

f 1
2 = f 0

2 + Δf 0
2 = −0.1081

e1
3 = e0

3 + Δe0
3 = 1.1050

f 1
3 = f 0

3 + Δf 0
3 = 0.1269

We then conduct the second iteration, using the new voltage values. If the convergence
tolerance is 𝜀 = 10−5, the power flow will be converged after three iterations, which
are shown in Tables 2.3 and 2.4.

The final bus voltages are expressed in the polar coordinate system as

V̇1 = 0.9847∠ − 0.5000

V̇2 = 0.9648∠ − 6.4500

V̇3 = 1.1∠6.7320

Finally, we compute the power of the slack bus as

P4 + jQ4 = 0.36788 + j0.26469

TABLE 2.3 The Change in Bus Mismatches

Iteration

k

ΔP1 ΔQ1 ΔP2 ΔQ2 ΔP3 ΔV2
3

0 −0.2773 −0.4176 −0.5260 0.0196 0.500 0.210

1 2.90 × 10−3 −4.18 × 10−3 −1.28 × 10−2 −5.50 × 10−2 −1.91 × 10−3 −2.71 × 10−2

2 −1.29 × 10−5 −6.74 × 10−5 −2.86 × 10−4 −1.07 × 10−3 4.58 × 10−5 −1.60 × 10−4

3 <10−5 <10−5 <10−5 <10−5 <10−5 <10−5
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TABLE 2.4 The Change in Bus Voltages

Iteration k e1 + jf1 e2 + jf2 e3 + jf3

1 0.9963 − j0.0094 0.9778 − j0.1081 1.1050 + j0.1269

2 0.9848 − j0.0086 0.9590 − j0.1084 1.0925 + j0.1289

3 0.9846 − j0.0086 0.9587 − j0.1084 1.0924 + j0.1290

Compared with Example 2.1, the same power flow solution is obtained.

Second-Order Power Flow Method It is noted that equations (2.50) and (2.51)
are a second-order equations on voltage. They can be expanded into Taylor series
without approximation [3], that is,

PiSP = Pis +
𝜕Pi

𝜕eT
Δe +

𝜕Pi

𝜕f T
Δf

+ 1
2

[
ΔeT 𝜕2Pi

𝜕e𝜕eT
Δe + ΔeT 𝜕2Pi

𝜕e𝜕f T
Δf + Δf T 𝜕2Pi

𝜕f 𝜕eT
Δe + Δf T 𝜕2Pi

𝜕f 𝜕f T
Δf

]

(2.75)

QiSP = Qis +
𝜕Qi

𝜕eT
Δe +

𝜕Qi

𝜕f T
Δf

+ 1
2

[
ΔeT 𝜕2Qi

𝜕e𝜕eT
Δe + ΔeT 𝜕2Qi

𝜕e𝜕f T
Δf + Δf T 𝜕2Qi

𝜕f 𝜕eT
Δe + Δf T 𝜕

2Qi

𝜕f 𝜕f T
Δf

]

(2.76)

The matrix form is [
ΔP
ΔQ

]
= J

[
Δe
Δf

]
+
[

SP
SQ

]
(2.77)

where J is the Jacobian matrix

J =

⎡
⎢
⎢
⎢
⎢
⎢⎣

𝜕Pi

𝜕eT

𝜕Pi

𝜕f T

𝜕Qi

𝜕eT

𝜕Qi

𝜕f T

⎤
⎥
⎥
⎥
⎥
⎥⎦

(2.78)

SP and SQ are the second-order term vectors and can be simplified as [3]

SP = Pis(Δe, Δf ) (2.79)

SQ = Qis(Δe, Δf ) (2.80)

There are no third- or higher-order terms in equation (2.77). If we ignore the
second-order term, it will be similar to the Newton algorithm we just discussed in
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this section. Here, we keep the second-order term, and estimate the values based on
the previous iteration values of voltage components. Thus equation (2.77) can be
written as [

ΔP − SP
ΔQ − SQ

]
= J

[
Δe
Δf

]
(2.81)

From the above, we obtain the increment voltage components:

[
Δe
Δf

]
= J−1

[
ΔP − SP
ΔQ − SQ

]
(2.82)

For a PV bus, the voltage magnitude is fixed, thus the increment voltage components
must satisfy the following equation:

eiΔei + fiΔfi = ViΔVi (2.83)

Therefore, the reactive power equation in (2.77) for a PV bus will be replaced by the
above equation.

The second-order power flow algorithm is summarized below.

(1) Given the input data, initialize all the arrays.

(2) Set SP and SQ vectors equal to zero.

(3) Compute the Pis,Qis vectors.

(4) Compute the power mismatches ΔPandΔQ. Check whether the convergence
conditions are satisfied.

max|ΔPk
i | < 𝜀1 (2.84)

max|ΔQk
i | < 𝜀2 (2.85)

If equations (2.84) and (2.85) are met, stop the iteration, and calculate the line
flows and real and reactive powers of the slack bus. If not, go to the next step.

(5) Compute the Jacobian matrix.

(6) Compute the Δe,Δf using equation (2.82).

(7) Update the voltages

ek+1 = ek + Δe (2.86)

f k+1 = f k + Δf (2.87)

(8) Compute the second-order terms SP and SQ using Δe,Δf . Then go back to
step (3).
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2.3 GAUSS-SEIDEL METHOD

For a nonlinear equation with n variables (2.18), we can obtain the solutions as

x1 = g1

(
x1, x2, … , xn

)

x2 = g2(x1, x2, … , xn)
· · ·
xn = gn(x1, x2, … , xn)

⎫
⎪
⎪
⎬
⎪
⎪⎭

(2.88)

If the values of the variables at the kth iteration are obtained, substituting them into
the right side of the above equation, we can get the new values of these variables as
follows:

xk+1
1 = g1

(
xk

1, x
k
2, … , xk

n

)

xk+1
2 = g2(xk

1, x
k
2, … , xk

n)

· · ·

xk+1
n = gn(xk

1, x
k
2, … , xk

n)

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪⎭

(2.89)

or
xk+1

i = gi(xk
1, xk

2, … , xk
n), i = 1, 2, … , n (2.90)

The iteration will be stopped if the following convergence conditions are satisfied for
all variables:

|xk+1
i − xk

i | < 𝜀 (2.91)

The Newton method that is described in Section 2.2 is based on this iteration calcula-
tion. To speed up the convergence, the formula of the iteration calculation is modified
as follows:

xk+1
1 = g1

(
xk

1, xk
2, … , xk

n

)

xk+1
2 = g2(xk+1

1 , xk
2, … , xk

n)

· · ·

xk+1
n = gn(xk+1

1 , xk+1
2 , … , xk+1

n−1, xk
n)

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪⎭

(2.92)

or
xk+1

i = gi

(
xk+1

1 , xk+1
2 , … , xk+1

n−1, xk
n

)
, i = 1, 2, … , n (2.93)

The main idea of the approach is to substitute the new values of variables in the cal-
culation of the next variable immediately, rather than waiting until the next iteration.
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This iteration method is called the Gauss-Seidel method. It can be also used to solve
the power flow equations.

Assuming the system consists of n buses. Buses 1-m are PQ buses, buses
(m + 1)-(n − 1) are PV buses, and nth bus is the slack bus. The iteration calculation
does not include the slack bus.

From equation (2.8), we get

V̇i =
1

Yii

⎡
⎢
⎢
⎢
⎢
⎢⎣

Pi − jQi

V̂i

−
n∑

j = 1
j ≠ i

YijV̇j

⎤
⎥
⎥
⎥
⎥
⎥⎦

(2.94)

According to the Gauss-Seidel method, the iteration formula of equation (2.94) can
be written as

V̇k+1
i = 1

Yii

[
Pi − jQi

V̂k
i

−
i−1∑

j=1

YijV̇
k+1
j −

n∑

j=i+1

YijV̇
k
j

]
(2.95)

For the PQ bus, the real and reactive powers are known. Thus, if the initial bus
voltage V̇0

i is given, we can use equation (2.95) to perform the iteration calculation.
For the PV bus, the bus real power and the magnitude of the voltage are known.

It is necessary to give the initial value for bus reactive power. The bus reactive power
will then be computed by iterative calculation. That is

Qk
i = Im

[
V̇k

i Îk
i

]
= Im

[
V̇k

i

(
i−1∑

j=1

ŶijV̂
k+1
j +

n∑

j=i

ŶijV̂
k
j

)]
(2.96)

After the iteration is over, all bus real and reactive powers, as well as the voltages,
are obtained. The power of the slack bus can be obtained by solving the following
equation:

Pn + jQn = V̇n

n∑

j=1

ŶnjV̂j (2.97)

The line power flow can also be obtained as follows:

Sij = Pij + jQij = V̇iÎij = V̇2
i yi0 + V̇i(V̂i − V̂j)̂yij (2.98)

where yij is the admittance of the branch ij and yi0 is the admittance of the ground
branch at the end i.
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2.4 P-Q DECOUPLING METHOD

2.4.1 Fast Decoupled Power Flow

According to Section 2.2.2, the updated equation in the Newton power flow method
is as follows: [

ΔP
ΔQ

]
= −

[
H N
K L

] [
Δ𝜃

V−1
D ΔV

]
(2.99)

The Newton power flow is a robust power flow algorithm. It is also called full
AC power flow as there is no simplification in the calculation. However, the disad-
vantage of the Newton power flow is that the terms in the Jacobian matrix must be
recalculated in each iteration. Actually, the reactance of the branch is generally far
greater than the resistance of the branch in a practical power system. Thus there exists
a strong relationship between the real power and voltage angle, but weak coupling
between the real power and the magnitude of voltage. This means the real power is
hardly influenced by changes in voltage magnitude, that is,

𝜕ΔPi

𝜕Vj
≈ 0 (2.100)

While there is a strong coupling relationship between the reactive power and
magnitude of voltage, coupling between the reactive power and voltage angle is weak.
This means that the reactive power is hardly influenced by changes in voltage angle,
that is,

𝜕ΔQi

𝜕𝜃j
≈ 0 (2.101)

Therefore, the values of the elements in the submatrices N and K in equation (2.99)
are very small, that is

Nij = Vj
𝜕ΔPi

𝜕Vj
≈ 0 (2.102)

Kij =
𝜕ΔQi

𝜕𝜃j
≈ 0 (2.103)

Equation (2.99) becomes

[
ΔP
ΔQ

]
= −

[
H 0
0 L

] [
Δ𝜃

V−1
D ΔV

]
(2.104)

or

ΔP = − HΔ𝜃 (2.105)

ΔQ = − LV−1
D ΔV = −L(ΔV∕VD) (2.106)



34 CHAPTER 2 POWER FLOW ANALYSIS

The simplified equations (2.105) and (2.106) make power flow iteration very easy.
The bus real power mismatch is only used to revise the voltage angle, and the bus
reactive power mismatch is only used to revise the voltage magnitude. These two
equations are iteratively calculated, respectively, until the convergence conditions are
satisfied. This method is called the real and reactive power decoupling method.

Actually, equations (2.105) and (2.106) can be further simplified. Since the
difference of the voltage angles of two ends in the line ij is small (generally less than
100 − 200), sin(𝜃i − 𝜃j) is also small. Thus we have

cos 𝜃ij = cos(𝜃i − 𝜃j) ≅ 1
Gij sin 𝜃ij ≪ Bij

Assume that
Qi ≪ V2

i Bii

Then the elements of the matrix H and L can be expressed as

Hij =ViVjBij i, j = 1, 2, … , n − 1 (2.107)

Lij =ViVjBij i, j = 1, 2, … ,m (2.108)

or we have the following derivatives

𝜕Pi

𝜕𝜃j
= − ViVjBij i, j = 1, 2, … , n − 1 (2.109)

𝜕Qi(
𝜕Vj

Vj

) = − ViVjBij i, j = 1, 2, … ,m (2.110)

Therefore, the matrices H and L can be written as

H =

⎡
⎢
⎢
⎢
⎢
⎢⎣

V1B11V1 V1B12V2 · · · V1B1,n−1Vn−1

V2B21V1 V2B22V2 · · · V2B2,n−1Vn−1

⋮ ⋮ ⋮

Vn−1Bn−1,1V1 Vn−1Bn−1,2V2 · · · Vn−1Bn−1,n−1Vn−1

⎤
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢⎣

V1

V2

⋱

Vn−1

⎤
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢⎣

B11 B12 … B1,n−1

B21 B22 … B2,n−1

⋮ ⋮ ⋮

Bn−1,1 Bn−1,2 … Bn−1,n−1

⎤
⎥
⎥
⎥
⎥
⎥⎦

×
⎡
⎢
⎢
⎢⎣

V1
V2

⋱
Vn−1

⎤
⎥
⎥
⎥⎦
= VD1B′VD1 (2.111)
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L =

⎡
⎢
⎢
⎢
⎢
⎢⎣

V1B11V1 V1B12V2 … V1B1mVm

V2B21V1 V2B22V2 … V2B2mVm

⋮ ⋮ ⋮

VmBm1V1 VmBm2V2 … VmBmmVm

⎤
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢⎣

V1

V2

⋱

Vm

⎤
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

B11 B12 … B1m
B21 B22 … B2m
⋮ ⋮ ⋮

Bm1 Bm2 … Bmm

⎤
⎥
⎥
⎥⎦

×

⎡
⎢
⎢
⎢
⎢⎣

V1

V2

⋱
Vm

⎤
⎥
⎥
⎥
⎥⎦

= VD2B′′VD2 (2.112)

Substitute equations (2.111) and (2.112) into equations (2.105) and (2.106), we have

ΔP =VD1B′VD1Δ𝜃 (2.113)

ΔQ =VD2B′′ΔV (2.114)

Rewrite equations (2.113) and (2.114) as follows

ΔP
VD1

=B′VD1Δ𝜃 (2.115)

ΔQ
VD2

=B′′ΔV (2.116)

where

B′ = −
⎡
⎢
⎢
⎢⎣

B11 B12 … B1,n−1
B21 B22 … B2,n−1
⋮ ⋮ ⋮

Bn−1,1 Bn−1,2 … Bn−1,n−1

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

−B11 −B12 … −B1,n−1
−B21 −B22 … −B2,n−1
⋮ ⋮ ⋮

−Bn−1,1 −Bn−1,2 … −Bn−1,n−1

⎤
⎥
⎥
⎥⎦

B′′ = −
⎡
⎢
⎢
⎢⎣

B11 B12 … B1m
B21 B22 … B2m
⋮ ⋮ ⋮

Bm1 Bm2 … Bmm

⎤
⎥
⎥
⎥⎦
=

⎡
⎢
⎢
⎢
⎢
⎢⎣

−B11 −B12 … −B1m

−B21 −B22 … −B2m

⋮ ⋮ ⋮

−Bm1 −Bm2 … −Bmm

⎤
⎥
⎥
⎥
⎥
⎥⎦

Equations (2.113) and (2.114) are the simplified power flow adjustment equations,
which can be written in matrix form.
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⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔP1

V1

ΔP2

V2

⋮

ΔPn−1

Vn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

−B11 −B12 … −B1,n−1

−B21 −B22 … −B2,n−1

⋮ ⋮ ⋮

−Bn−1,1 −Bn−1,2 … −Bn−1,n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

V1Δ𝜃1

V2Δ𝜃2

⋮

Vn−1Δ𝜃n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.117)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔQ1

V1

ΔQ2

V2

⋮

ΔQm

Vm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

−B11 −B12 … −B1m

−B21 −B22 … −B2m

⋮ ⋮ ⋮

−Bm1 −Bm2 … −Bmm

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔV1

ΔV2

⋮

ΔVm

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.118)

In equations (2.117) and (2.118), matrices B′ and B′′ only contain the imaginary
part of the bus admittance matrix. Thus they are constant symmetrical matrices
and need to be triangularized once only at the beginning of the analysis. Therefore,
equations (2.117) and (2.118) are termed the fast decoupled power flow model [4–6].

In practical application, the voltage magnitudes of the right side in
equations (2.115) and (2.117) are assumed to be 1.0. In this way, the real
power adjustment equation in the fast decoupled power flow model can be further
simplified as

ΔP
V

=B′Δ𝜃 (2.119)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔP1

V1
ΔP2

V2

⋮

ΔPn−1

Vn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

−B11 −B12 … −B1,n−1

−B21 −B22 … −B2,n−1

⋮ ⋮ ⋮

−Bn−1,1 −Bn−1,2 … −Bn−1,n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

Δ𝜃1

Δ𝜃2

⋮

Δ𝜃n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.120)

In addition, there are two fast decoupled power flow versions according to a different
handling of the constant matrices B′,B′′. These are the BX and XB versions.
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For the XB version, the resistance is ignored during the calculation of B′.
The elements of B′,B′′ are computed as

B′
ij =Bij (2.121)

B′
ii = −

∑

j≠i

B′
ij (2.122)

B′
ij =

B2
ij + G2

ij

Bij
(2.123)

B′′
ii = − 2Bi0 −

∑

j≠i

B′′
ij (2.124)

where Bi0 is the shunt reactance to ground.
In the practical calculation, the following assumptions are also adopted in the

XB version of the fast decoupled power flow model:

• Assume rij ≪ xij, which leads to Bij = − 1
xij

.

• Eliminate all shunt reactance to ground.

• Omit all effects from phase shift transformers.

The XB version of the fast decoupled power flow model can then be expressed
as

B′
ij = − 1

xij
(2.125)

B′
ii =

∑

j≠i

1
xij

(2.126)

B′′
ij = −

xij

r2
ij + x2

ij

(2.127)

B′′
ii = −

∑

j≠i

B′′
ij (2.128)

where rij, xij are the resistance and reactance of the branch ij, respectively.
For the BX version, the resistance is ignored during the calculation of B′′. The

elements of B′,B′′ are computed as

B′
ij =

B2
ij + G2

ij

Bij
(2.129)

B′
ii = −

∑

j≠i

B′
ij (2.130)

B′′
ij =Bij (2.131)
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B′′
ii = − 2Bi0 −

∑

j≠i

B′′
ij (2.132)

Similarly, the BX version of the fast decoupled power flow model can also be sim-
plified as

B′
ij = −

xij

r2
ij + x2

ij

(2.133)

B′
ii =

∑

j≠i

xij

r2
ij + x2

ij

(2.134)

B′′
ij = − 1

xij
(2.135)

B′′
ii = −

∑

j≠i

B′′
ij (2.136)

It is noted that the fast decoupled power flow algorithm may fail to converge when
some of the major assumptions such as rij ≪ xij do not hold. In such cases, the Newton
power flow or decoupled power flow without major approximation is recommended.

Example 2.3: In this example, we solve the system in Example 2.1 using the
decoupled PQ method.

First form the B′,B′′ matrices as follows:

B′ =
⎡
⎢
⎢⎣

−8.2429 2.3529 3.6666
2.3529 −4.7274 0.0000
3.6666 0.0000 −3.3333

⎤
⎥
⎥⎦

B′′ =
[
−8.2429 2.3529

2.3539 −4.7274

]

On conducting the triangular decomposition of B and B′, we obtain Tables 2.5
and 2.6.

Given that the initial bus voltage is

V̇0
1 = V̇0

2 = 1.0∠00, V̇0
3 = 1.1∠00, V̇0

4 = 1.05∠00

we compute the bus real power mismatch with equation (2.29), to get

ΔP0
1 = P1s − P0

1 = −0.30 − (−0.02269) = −0.27731

TABLE 2.5 Result of Triangular
Decomposition of B′

−0.121317 −0.285452 −0.444829

−0.246565 −0.258069

−0.698234
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TABLE 2.6 Result of Triangular
Decomposition of B′′

−0.121317 −0.285452

−0.246565

ΔP0
2 = P2s − P0

2 = −0.55 − (−0.02404) = −0.52596

ΔP0
3 = P3s − P0

3 = 0.5

ΔP0
1

V0
1

= −0.27731

ΔP0
2

V0
2

= −0.52596

ΔP0
3

V0
3

= 0.45455

Computing the voltage angle by solving the correction equation (2.117), we have

Δ𝜃0
1 = −0.7370, Δ𝜃0

2 = −6.7420, Δ𝜃0
3 = 6.3660

𝜃1
1 = 𝜃0

1 + Δ𝜃0
1 = −0.7370

𝜃1
2 = 𝜃0

2 + Δ𝜃0
2 = −6.7420

𝜃1
3 = 𝜃0

3 + Δ𝜃0
3 = 6.3660

Then we perform the reactive power iteration. Computing the bus real power mis-
match with equation (2.30), we get

ΔQ0
1 = Q1s − Q0

1 = −0.18 − (−0.14041) = −3.95903 × 10−2

ΔQ0
2 = Q2s − Q0

2 = −0.13 − (−0.00155) = −0.13155

ΔQ0
1

V0
1

= − 0.03959

ΔQ0
2

V0
2

= − 0.13155

Computing voltage magnitude by solving correction equation (2.118),

ΔV0
1 = − 0.0149, ΔV0

2 = −0.0352

V1
1 = V0

1 + ΔV0
1 = 0.9851

V1
2 = V0

2 + ΔV0
2 = 0.9648
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TABLE 2.7 Bus Power Mismatch Change

Iteration

k

ΔP1 ΔP2 ΔP3 ΔQ1 ΔQ2

0 −0.27731 −0.52596 0.5 −3.95903 × 10−2 −0.13155

1 4.051 × 10−3 1.444 × 10−2 8.691 × 10−3 −2.037 × 10−3 1.568 × 10−3

2 −6.603 × 10−3 −3.488 × 10−3 6.826 × 10−4 −1.537 × 10−3 −1.123 × 10−3

3 −1.227 × 10−3 2.148 × 10−3 −4.967 × 10−5 −2.694 × 10−4 7.3477 × 10−4

4 9.798 × 10−5 −1.552 × 10−4 −1.140 × 10−5 2.513 × 10−5 −3.277 × 10−5

5 <10−5 <10−5 <10−5 <10−5 <10−5

TABLE 2.8 Bus Voltage Change

Iteration k 𝜃1 𝜃2 𝜃3 V1 V2

1 −0.7370 −6.7420 6.3660 0.9851 0.9648

2 −0.3490 −6.3560 6.8710 0.9850 0.9650

3 −0.4970 −6.4750 6.7370 0.9847 0.9646

4 −0.5000 −6.4480 6.7320 0.9847 0.9648

5 −0.5000 −6.4500 6.7320 0.9847 0.9648

We now conduct the second iteration, using new voltage values. If the convergence
tolerance is 𝜀 = 10−5, the power flow will be converged after five iterations, which
are shown in Tables 2.7 and 2.8.

Compared with the Newton method, the decoupled PQ method gave almost the
same results.

2.4.2 Decoupled Power Flow without Major Approximation

Assuming the voltage magnitude in the Newton power flow model (2.99) to be 1.0,
we have [

ΔP
ΔQ

]
= −

[
H N
K L

] [
Δ𝜃
ΔV

]
(2.137)

Premultiplying the ΔP equations by KH−1 and adding the resulting equations to the
ΔQ equations leads to the system of equations

[
ΔP

ΔQ − KH−1ΔP

]
= −

[
H N
0 L − KH−1N

] [
Δ𝜃
ΔV

]
(2.138)

Premultiplying the ΔQ equations by NL−1 and adding the resulting equations to the
ΔP equations leads to the system of equations

[
ΔP − NL−1ΔQ

ΔQ

]
= −

[
H − NL−1K 0

K L

] [
Δ𝜃
ΔV

]
(2.139)
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By combining the operations performed to obtain equations (2.138) and (2.139),
we get

[
ΔP − NL−1ΔQ
ΔQ − KH−1ΔP

]
= −

[
H − NL−1K 0

0 L − KH−1N

] [
Δ𝜃
ΔV

]
(2.140)

or [
ΔP − NL−1ΔQ
ΔQ − KH−1ΔP

]
= −

[
Heq 0
0 Leq

] [
Δ𝜃
ΔV

]
(2.141)

where the equivalent matrices Heq and Leq are defined as

Heq =H − NL−1K (2.142)

Leq =L − KH−1N (2.143)

It can be observed that equation (2.140) or (2.141) is equivalent to the orig-
inal system (2.137) but has the decoupled solution structure in which Δ𝜃 and ΔV
are calculated separately. This decoupled procedure is not an approximation method
that ignores the off-diagonal submatrices N and K, which was adopted in the fast
decoupled power flow method in Section 2.4.1. Thus the solution will be close to
the Newton power flow solution. However, the solution procedures are different from
those in the Newton method, where the differences Δ𝜃 and ΔV are not computed
simultaneously but separately.

The following decoupled algorithm can be used to solve equation (2.138) for
Δ𝜃 and ΔV [6]:

Step (1): Compute the temporary angle corrections:

Δ𝜃H = −H−1ΔP(V , 𝜃) (2.144)

Step (2): Compute the voltage corrections:

ΔV = −L−1
eq ΔQ(V , 𝜃 + Δ𝜃H) (2.145)

Step (3): Compute the additional angle corrections:

Δ𝜃N = −H−1NΔV (2.146)

It can be verified that ΔV and Δ𝜃 = Δ𝜃H + Δ𝜃N are the solution vectors of
equation (2.138). This algorithm considers the coupling effect represented by K.

For equation (2.139), we have the dual algorithm:

Step (1): Compute the temporary voltage corrections:

ΔVL = −L−1ΔQ(V , 𝜃) (2.147)
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Step (2): Compute the angle corrections:

Δ𝜃 = −H−1
eq ΔP(V + ΔVL, 𝜃) (2.148)

Step (3): Compute the additional voltage corrections:

ΔVK = −L−1KΔ𝜃 (2.149)

where ΔV = ΔVL + ΔVK

Although the above iteration algorithms (2.144)–(2.146) and (2.147)–(2.149)
yield the correct solutions for the power flow model (2.137), they are not suited for
practical implementation [6], for the following reasons:

• In the first algorithm, the angle corrections Δ𝜃 are computed in two steps (Δ𝜃H
and Δ𝜃N), while in the second algorithm, the voltage magnitude corrections
ΔV are computed in two steps (ΔVL and ΔVK).

• The matrices Heq and Leq may be full.

The following iteration algorithm is suggested because of the above two diffi-
culties. For solving equations (2.144)–(2.146), the iteration steps for the suggested
algorithm are described in the following.

Δ𝜃k
H = − H−1ΔP

(
Vk, 𝜃k

)
(2.150)

Δ𝜃k+1
temp =

(
𝜃k + Δ𝜃k

H

)
(2.151)

ΔVk = − L−1
eq ΔQ

(
Vk, 𝜃k+1

temp

)
(2.152)

ΔVk+1 = Vk + ΔVk (2.153)

Δ𝜃k
N = − H−1NΔVk (2.154)

𝜃k+1 =
(
Δ𝜃k+1

temp + Δ𝜃k
N

)
(2.155)

Then compute the temporary angle vector of the next iteration:

Δ𝜃k+1
H = − H−1ΔP

(
Vk+1, 𝜃k+1) (2.156)

Δ𝜃k+2
temp =

(
𝜃k+1 + Δ𝜃k+1

H

)
(2.157)

By adding the two successive angle corrections, we get

Δ𝜃k
N + Δ𝜃k+1

H = − H−1 [ΔP
(
Vk+1, 𝜃k+1) − NΔVk

]

≈ − H−1
[
ΔP

(
Vk+1, 𝜃k+1

temp

)
− HΔ𝜃k

N − NΔVk
]

(2.158)

≈ − H−1ΔP
(

Vk+1, 𝜃k+1
temp

)
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The above combined angle correction can be obtained by a single forward/backward
solution using the active mismatches computed at Vk+1 and𝜃k+1

temp. Similar iteration
steps can be obtained for the algorithm (2.147)–(2.149).

2.5 DC POWER FLOW

AC power flow algorithms have high calculation precision, but do not have high
speed. In real power dispatch or power market analysis, the requirement for calcula-
tion precision is not very high, but the requirement for calculation speed is of most
concern, especially for a large-scale power system. A larger number of simplification
power flow algorithms than fast decoupled power flow algorithms are used. One algo-
rithm is called “MW Only.” In this method, the Q − V equation in the fast decoupled
power flow model is completed dropped. Only the following P − 𝜃 equation is used
to correct the angle according to the real power mismatch.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

ΔP1

V1

ΔP2

V2

⋮

ΔPn−1

Vn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢⎣

−B11 −B12 … −B1,n−1

−B21 −B22 … −B2,n−1

⋮ ⋮ ⋮

−Bn−1,1 −Bn−1,2 … −Bn−1,n−1

⎤
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢⎣

Δ𝜃1

Δ𝜃2

⋮

Δ𝜃n−1

⎤
⎥
⎥
⎥
⎥
⎥⎦

(2.159)

In the MW-only power flow calculation, the voltage magnitude can be handled either
as constant or 1.0 during each P − 𝜃 iteration. For the convergence, only real power
mismatch is checked no matter what the reactive power mismatch is.

Another most simplified power flow algorithm is the DC power flow algorithm.
It is also an MW only method but makes the following assumptions:

(1) All the voltage magnitudes are equal to 1.0.

(2) The resistance of the branch is ignored, that is, the susceptance of the branch
is

Bij = − 1
xij

(2.160)

(3) The angle difference on the two ends of the branch is very small, so that

sin 𝜃ij = 𝜃i − 𝜃j (2.161)

cos 𝜃ij = 1 (2.162)

(4) All ground branches are ignored, that is,

Bi0 = Bj0 = 0 (2.163)
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Therefore, the DC power flow model will be

⎡
⎢
⎢
⎢⎣

ΔP1
ΔP2
⋮

ΔPn−1

⎤
⎥
⎥
⎥⎦
= [B′]

⎡
⎢
⎢
⎢⎣

Δ𝜃1
Δ𝜃2
⋮

Δ𝜃n−1

⎤
⎥
⎥
⎥⎦

(2.164)

or
[ΔP] = [B′][Δ𝜃] (2.165)

where the elements of the matrix B′ are the same as those in the XB version of fast
decoupled power flow but we ignore the matrix B′′, that is,

B′
ij = − 1

xij
(2.166)

B′
ii = −

∑

j≠i

B′
ij (2.167)

The DC power flow is a purely linear equation, so only one iteration calculation is
needed to obtain the power flow solution. However, it is only good for calculating real
power flows through transmission lines and transformers. The power flowing through
each line using the DC power flow is then

Pij = −Bij(𝜃i − 𝜃j) =
𝜃i − 𝜃j

xij
(2.168)

2.6 STATE ESTIMATION

Power system state estimation derives a real-time model through the received data
from a redundant measurement set. Different kinds of methods about state estimation
are introduced in [7]. Among them, the weighted least squares (WLS) state estima-
tion methods are widely used. WLS state estimation minimizes the weighted sum of
squares of the residuals, which will be introduced in this section.

2.6.1 State Estimation Model

Consider an N bus power network for which m measurements are taken. Assum-
ing a nonlinear model for the electrical network, the relationships between measured
quantities and state variables can be expressed as

z =
⎡
⎢
⎢
⎢⎣

z1
z2
⋮
zm

⎤
⎥
⎥
⎥⎦
=

⎡
⎢
⎢
⎢
⎢⎣

h1

(
x1, x2, … , xn

)

h2

(
x1, x2, … , xn

)

⋮
hm

(
x1, x2, … , xn

)

⎤
⎥
⎥
⎥
⎥⎦

+
⎡
⎢
⎢
⎢⎣

e1
e2
⋮

em

⎤
⎥
⎥
⎥⎦
= h(x) = e (2.169)
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where

z: the measurement vector
x: the system state vector
e: the vector of measurement errors
h: the nonlinear function relating measurement i to the state vector x.

There are three most commonly used measurement types in power system
state estimation. They are the bus power injections, the line power flows, and the
bus voltage magnitudes. These measurement equations can be expressed using the
state variables, which are given below from the power flow equations mentioned in
Section 2.2:

1. Real and reactive power injection at bus i:

Pi =Vi

n∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) (2.170)

Qi =Vi

n∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) (2.171)

2. Real and reactive power flow from bus i to bus j:

Pij =V2
i (Gsi + Gij) − ViVj(Gij cos 𝜃ij + Bij sin 𝜃ij) (2.172)

Qij = − V2
i (Bsi + Bij) − ViVj(Gij sin 𝜃ij − Bij cos 𝜃ij) (2.173)

where

Vi: the voltage magnitude at bus i
𝜃i: the voltage angle at bus i
Pi: the real power injection at bus i
Qi: the reactive power injection at bus i
𝜃ij: the voltage angle different between bus i and j
Pij: the real power flow from bus i to bus j
Qij: the reactive power flow from bus i to bus j
Gij: the conductance of branch ij
Bij: the susceptance of branch ij.

Consider a system having N buses; the state vector will have (2N − 1) elements,
N bus voltage magnitudes, and (N − 1) phase angles. The state vector x will have the
following form assuming bus 1 is selected as the reference:

xT = [𝜃2𝜃3 … 𝜃NV2V3 … VN]
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Let E(e) denote the expected value of e, with the following assumptions:

E(ei) = 0, i = 1, … ,m (2.174)

E(eiej) = 0 (2.175)

The measurement errors are assumed to be independent and their covariance matrix
is given by a diagonal matrix R:

Cov(e) = E[e ⋅ eT] = R = diag{𝜎2
1 , 𝜎

2
2 , … , 𝜎2

m} (2.176)

The standard deviation 𝜎i of each measurement i is computed to reflect the expected
accuracy of the corresponding meter used.

2.6.2 WLS Algorithm for State Estimation

Power system state estimation is formulated by use of the WLS criterion, which is a
function of the estimation residuals. The WLS estimator will minimize the following
objective function [7,8]:

J(x) =
m∑

i=1

(zi − hi(x))2

Rii
= [z − h(x)]TR−1[z − h(x)] (2.177)

At the minimum value of the objective function, the first-order optimality conditions
have to be satisfied. These can be expressed in compact form as follows:

g(x) = 𝜕J(x)
𝜕x

= −HT (x)R−1[z − h(x)] = 0 (2.178)

where

H(x) =
[
𝜕h (x)
𝜕x

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕Pi

𝜕𝜃

𝜕Pi

𝜕V

𝜕Pij

𝜕𝜃

𝜕Pij

𝜕V

𝜕Qi

𝜕𝜃

𝜕Qi

𝜕V

𝜕Qij

𝜕𝜃

𝜕Qij

𝜕V

𝜕Iij

𝜕𝜃

𝜕Iij

𝜕V

0
𝜕Vij

𝜕V

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(2.179)
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is the measurement Jacobian matrix. The expressions of each partition can be com-
puted using equations (2.170)–(2.173).

The nonlinear function g(x) can be expanded into its Taylor series around the
state vector xk, that is,

g(x) = g(xk) + G(xk)(x − xk) + · · · = 0 (2.180)

Neglecting the higher-order terms in the above expression, an iterative solution
scheme known as the Gauss-Newton method is used to solve the following equation:

xk+1 = xk − [G(xk)]−1 ⋅ g(xk) (2.181)

where

k: the teration index
xk: the solution vector at iteration k

G(x): the gain matrix, which is expressed as follows.

G(xk) =
𝜕g(xk)
𝜕x

= HT (xk)R−1H(xk) (2.182)

g(xk) = − HT (xk)R−1(z − h(xk)) (2.183)

Generally, the gain matrix G(x) is sparse, positive definite, and symmetric, provided
that the system is fully observable. It can be decomposed into its triangular factors.
At each iteration k, the following sparse linear set of equations are solved using WLS
algorithm.

[
G
(
xk
)]

Δxk+1 = HT (xk)R−1 [z − h
(
xk
)]

Δxk = xk+1 − xk (2.184)

Equation (2.184) is called a normal equation. WLS state estimation uses the
iterative solution of the normal equation. Iterations start at an initial guess x0 which
is typically chosen as the flat start, that is, all bus voltages are assumed to be 1.0
per unit and in phase with each other. The iterative solution algorithm for WLS state
estimation can be summarized as follows:

(1) Initially set the iteration counter k = 0, and set the maximum iteration number
kmax.

(2) If k > kmax, then terminate the iterations.

(3) Calculate the measurement function h(xk), the measurement Jacobian H(xk),
and the gain matrix G(xk).

(4) Solve equation (2.181) to get Δxk.

(5) Check for convergence, that is, max|Δxk| ≤ 𝜀. If yes, stop. Otherwise, go to the
next step.

(6) Update xk+1 = xk + Δxk, k ⇐ k + 1, and go to step 2.
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PROBLEMS AND EXERCISES

1. What is the PV bus?

2. What is the PQ bus?

3. What is the slack bus?

4. Can a PV bus become a PQ bus? Why?

5. State the principle of the Newton-Raphson method.

6. What are the differences between the XB and BX versions in the fast decoupled power
flow method?

7. Describe the advantages and disadvantages of the major power flow calculation methods
(Newton-Raphson method, PQ decoupled method, and DC power flow method)

8. What is the Jacobian matrix?

9. What is the “MW Only” power flow method?

10. State “True” or “False”

10.1 The slack bus is also called reference bus.

10.2 Generally, a bus connected to a load is a PQ bus.

10.3 A bus connected to a generator must be a PV bus.

10.4 In the PQ decoupled power flow, real power and voltage have a strong coupling
relationship.

10.5 In the PQ decoupled power flow, reactive power and voltage angle have a weak
coupling relationship.

10.6 There is no iteration in DC power flow calculation.

10.7 The DC power flow method has higher precision than the “MW Only” power flow
method.

10.8 The fast decoupled power flow method is faster than the DC power flow
method.

10.9 A flat voltage of 1.0 per unit is used in the DC power flow method.

10.10 Only the single slack bus can be used in power flow calculation.

11. A power system is shown in Figure 2.1. The parameters of the branches are as
follows:

z12 = 0.10 + j0.30

y120 = y210 = j0.015

z13 = j0.30, k = 1.1

z14 = 0.10 + j0.50

y140 = y410 = j0.019
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z24 = 0.12 + j0.50

y240 = y420 = j0.014

Buses 1 and 2 are PQ buses, bus 3 is a PV bus, and bus 4 is a slack bus. The given data
are

P1 + jQ1 = − 0.3 − j0.15

P2 + jQ2 = − 0.6 − j0.10

P3 = 0.5; V3 = 1.1;

V4 = 1.05; 𝜃4 = 0

(1) Use the Newton-Raphson method with the polar coordinate system to solve the
power flow.

(2) Use Newton-Raphson method with rectangular coordinate system to solve the power
flow.

(3) Use the PQ decoupled method to solve the power flow.

REFERENCES

1. Zhu JZ. Power System Optimal Operation. Tutorial of Chongqing University; 1990.
2. He Y, Wen ZY, Wang FY, Zhou QH. Power Systems Analysis. Huazhong Polytechnic University Press;

1985.
3. Keyhani A, Abur A, Hao S. Evaluation of power flow techniques for personal computers. IEEE Trans.

on Power Syst. 1989;4(2):817–826.
4. Alsac O, Sttot B. Fast decoupled power flow. IEEE Trans. on Power Syst. 1974;93:859–869.
5. Van Amerongen RAM, “A general purpose version of the fast decoupled power flow,” IEEE Summer

Meeting, 1988.
6. Monticelli A, Garcia A, Saavedra OR. Decoupled power flow: hypothesis, derivations, and testing.

IEEE Trans. on Power Syst. 1990;5(4):1425–1431.
7. Abur A, Expósito AG. Power System State Estimation Theory and Implementation. New York:

Wiley-IEEE Press; 2004.
8. Zhu JZ. Power system state estimation. In: Robinson OE, editor. Electric Power Systems in Transition.

New York: Nova Science Publishers, Inc.; 2010.





C H A P T E R 3
SENSITIVITY CALCULATION

Currently, sensitivity analysis is becoming more and more important in practical
power system operations and also in power market operations. This chapter analyzes
and discusses all kinds of sensitivity factors such as the loss sensitivity factor, genera-
tor shift factor, pricing node shift factor, constraint shift factor, line outage distribution
factor (LODF), outage transfer distribution factor (OTDF), response factor for the
transfer path, and voltage sensitivity factor. It also addresses the practical application
of these sensitivity factors, including a practical method to convert the sensitivities
with different references.

3.1 INTRODUCTION

This chapter focuses on the analysis and implementation details of the calculations of
several sensitivities such as loss sensitivity, voltage sensitivity, generator constraint
shift factor, and area-based constraint shift factor in the practical transmission net-
work and energy markets. The power operator uses these to study and monitor market
and system behavior and detect possible problems in the operation. These sensitivi-
ties’ calculations are also used to determine whether the on-line capacity as indicated
in the resource plan is located in the right place in the network to serve the forecast
demand. If there is congestion or violation, the generation scheduling based on the
sensitivities’ calculations can determine whether a different allocation of the available
resources could resolve the congestion or violation problem.

In the early energy market, transmission losses were neglected for reasons
of computational simplicity, but they are addressed in the standard market design
(SMD) [1–4]. Loss calculation is considered for the dispatch functions of SMD such
as location-based marginal prices (LMPs). Loss allocation does not affect genera-
tion levels or power flows; however, it does modify the value of LMP [5]. The early
and classic loss calculation approach is the loss formula—B coefficient method [6],
which has been replaced by the more accurate inverse Jacobian transpose method [7].
Numerous loss calculation methods have been proposed in the literature and these can
be categorized as pro rata [8], incremental [9], proportional sharing [10], and Z-bus
loss allocation [11].

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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Calculation of loss sensitivity is based on the distributed slack buses in the
energy control center [6,11–13]. In real-time energy markets, LMP or economic dis-
patch is implemented on the basis of market-based reference, which is an arbitrary
slack bus, instead of the distributed slack buses in the traditional energy management
system. Meanwhile, the existing loss calculation methods in traditional EMS systems
are generally based on the generator slacks or references. Since the units with auto-
matic generation control (AGC) are selected as the distributed slacks, and the patterns
or status of AGC units are variable for different time periods in the real-time energy
market, the sensitivity values will keep changing, which complicates the issue. This
chapter presents a fast and useful formula to calculate loss sensitivity for any slack
bus [14,15].

The simultaneous feasibility test (SFT) performs the network sensitivity analy-
sis in the base case and in contingency cases in the power system. The base case and
postcontingency MW flows are compared against their respective limits to generate
the set of critical constraints. For each critical constraint, SFT calculates constraint
coefficients (shift factors) that represent linearized sensitivity factors between the
constrained quantity (e.g., MW branch flow) and MW injections at network buses.
The B-matrix used to calculate the shift factors is constructed to reflect proper net-
work topology [16–18].

The objective of SFT is to identify whether network operation is feasible for
a real power injection scenario. If operational limits are violated, generic constraints
are generated that can be used to prevent the violation if presented with the same
network conditions [16].

In the energy market systems, the trade is often considered between the source
and the sink (i.e., the point of delivery, POD, and point of receipt, POR). The source
and the sink may be an area or any bus group. Therefore, area-based sensitivities are
needed, which can be computed through the constraint shift factors within the area.

Another type of sensitivity that is frequently used is related to voltage stability,
especially static voltage stability, which investigates the stability of an operating point
and applies a linearized model. Static voltage instability is mainly associated with
reactive power imbalance. This imbalance mainly occurs on a local network or a
specified bus in a system, which is called the weak bus. Therefore, the reactive power
supports have to be locally adequate.

Voltage sensitivity analysis can detect the weak buses/nodes in the power sys-
tem where the voltage is low. It can be used to select the optimal locations of VAR
support service [19–25]. According to the sensitivity values, the voltage benefit fac-
tor (VBF) and loss benefit factor (LBF), a ranking of VAR support sites can also be
obtained.

3.2 LOSS SENSITIVITY CALCULATION

This section presents a fast and useful formula to calculate the loss sensitivity for
any slack bus. The formula is based on the loss sensitivity results from distributed
slacks without computing a new set of sensitivity factors through traditional power
flow calculation. In particular, loads are selected as distributed slacks rather than the
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usual generator slacks. The loss sensitivity values will be unchanged for the same
network topology no matter how the status of the AGC units changes.

In the energy market, the formulation of the optimum economic dispatch can
be represented as follows:

min F =
∑

j

CjPGj, j ∈ NG (3.1)

such that ∑
PD + PL =

∑

j

PGj, j ∈ NG (3.2)

∑

j

SijPGj ≤ Pimax j ∈ NG, i ∈ Kmax (3.3)

PGjmin ≤ PGj ≤ PGjmax, j ∈ NG (3.4)

where

PD: the real power load;
Pimax: the maximum requirement of power supply at the active constraint i;

PGj: the real power output at generator bus j;
PGjmin: the minimal real power output at generator j;
PGjmax: the maximal real power output at generator j;

PL: the network losses;
Sij: the sensitivity (shift factor) for resource or unit j and active constraint i with

respect to the market-based reference;
Cj: the real-time price for the resource (or unit) j;

Kmax: the maximum number of active constraints;
NG: the number of units.

The Lagrangian function is obtained from equations (3.1) and (3.2).

FL =
∑

i

fi(Pi) + 𝜆

(
∑

i

PDi + PL −
∑

j

PGj

)
(3.5)

Traditionally, generation reference (single or distributed slack) is used in the calcu-
lation of loss allocation. This works, but may be inconvenient or confusing for users
who frequently use loss factors. The reason is that the AGC status or patterns of units
are variable in real-time EMS or energy markets. Loss sensitivity values based on
distributed unit references will keep changing because of the change in unit AGC
status. Thus the distributed load slack or reference is used here.

The optimality criteria of the Lagrange function (3.5) are written as follows:

𝜕FL

𝜕PDi
=

dfi
dPDi

+ 𝜆
(

1 +
𝜕PL

𝜕PDi

)
= 0 i ∈ ND (3.6)
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𝜕FL

𝜕PGj
=

dfi
dPGj

+ 𝜆
(
𝜕PL

𝜕PGj
− 1

)
= 0 j ∈ NG (3.7)

dfi
dPDi

LDi = 𝜆 i ∈ ND (3.8)

LDi = − 1

1 + 𝜕PL
𝜕PDi

i ∈ ND (3.9)

dfi
dPGj

LGj = 𝜆 j ∈ NG (3.10)

LGj =
1

1 − 𝜕PL
𝜕PGj

j ∈ NG (3.11)

where

𝜆: the Lagrangian multiplier;
𝜕PL

𝜕PDi
: the loss sensitivity with respect to load at bus i;.

𝜕PL

𝜕PGj
: the loss sensitivity with respect to unit at bus j.

We use 𝜕PL
𝜕Pi

, which is the loss sensitivity with respect to an injection at bus i,

to stand for both 𝜕PL

𝜕PDi
and 𝜕PL

𝜕PGj
. Since distributed slack buses are used here, all loss

sensitivity factors are nonzero.
If an arbitrary slack bus, k, is selected, then Pk is the function of the other

injections, that is,
Pk = f (Pi) i ∈ n, i ≠ k (3.12)

where n is the total number of buses in the system and Pi is the power injection
at bus i, which includes the load PDi and generation PGj. Actually, the load can be
treated as a negative generation. Then equations (3.9) and (3.11) can be changed to
equation (3.13), and equations (3.8) and (3.10) can be changed to equation (3.14).

Li =
1

1 − 𝜕PL

𝜕Pi

i ∈ n (3.13)

dfi
dPi

Li = 𝜆 i ∈ n (3.14)

Equation (3.2) will be rewritten as

PL = Pk +
∑

i≠k

Pi i ∈ n (3.15)
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The new Lagrangian function can be obtained from equations (3.1) and (3.15).

F∗
L =

∑

i

fi(Pi) + 𝜆

(
PL − Pk −

∑

i≠n

Pi

)
(3.16)

The optimality criteria can be obtained from the Lagrangian function (3.16).

𝜕F∗
L

𝜕Pi
=

dfi
dPi

+
dfk
dPk

𝜕Pk

𝜕Pi
+ 𝜆

(
𝜕PL

𝜕Pi
−
𝜕Pk

𝜕Pi
− 1

)
= 0 i ∈ n, i ≠ k (3.17)

From equation (3.15), we get

𝜕PL

𝜕Pi
= 1 +

𝜕Pk

𝜕Pi
(3.18)

From equations (3.17) and (3.18), we get

dfi
dPi

L∗
i =

dfk
dPk

(3.19)

L∗
i = 1

1 − 𝜕PL

𝜕Pi

i ∈ n, i ≠ k (3.20)

It is noted that Li and L∗
i are similar, but they have different meanings [14]. The former

is based on the distributed slack buses, and the latter is based on an arbitrary slack bus

k. Similarly, the loss sensitivity in Li is based on the distributed slack, that is, 𝜕PL

𝜕Pi

||||DS
(the subscript DS means distributed slack); the loss sensitivity in L∗

i is based on an

arbitrary single slack bus k, that is, 𝜕PL

𝜕Pi

||||k
. Note that the kth loss sensitivity, with bus

k as the slack bus, is zero.
From equations (3.14) and (3.19), we have the following equation:

L∗
i =

Li

Lk
, L∗

k = 1 (3.21)

From equations (3.13), (3.20), and (3.21), we get

1

1 − 𝜕PL
𝜕Pi

||||k

=
1 − 𝜕PL

𝜕Pk

||||DS

1 − 𝜕PL
𝜕Pi

||||DS

(3.22)

1 −
𝜕PL

𝜕Pi

||||k
=

1 − 𝜕PL

𝜕Pi

||||DS

1 − 𝜕PL

𝜕Pk

||||DS

(3.23)
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Hence, with one set of incremental transmission loss coefficients for the distributed
slack buses, the loss sensitivity for an arbitrary slack bus can be calculated from the
following formula:

𝜕PL

𝜕Pi

||||k
=

𝜕PL

𝜕Pi

||||DS
− 𝜕PL

𝜕Pk

||||DS

1 − 𝜕PL

𝜕Pk

||||DS

(3.24)

The formula for loss sensitivity calculation is very simple, but it is accurate and effi-
cient for real-time energy markets. It will avoid computing a new set of the loss
sensitivity factors whenever the slack bus k changes. Consequently, it means huge
time savings. In addition, the loss factors based on the distributed load reference will
not be changed no matter how the AGC statuses of units vary, as long as the network
topology is the same as before.

3.3 CALCULATION OF CONSTRAINED SHIFT
SENSITIVITY FACTORS

3.3.1 Definition of Constraint Shift Factors

The objective of SFT is to identify whether or not network operation is feasible for
a real power injection scenario. If operational limits are violated, generic constraints
and corresponding sensitivities (the shift factors) are generated, which can be used to
prevent violation if presented with the same network conditions. Meanwhile, the shift
factors can also be used in generation scheduling or economic dispatch to alleviate
the overload of transmission lines.

The SFT calculations include contingency analysis (CA), in which decoupled
power flow (DPF) or DC power flow is used. The set of component changes that can
be analyzed include transmission line, transformer, circuit breaker, load demand,
and generator outages. SFT informs the users about the contingencies that could
cause conditions violating operating limits. These limits include branch overloads,
abnormal voltages, and voltage angle differences across specified parts of the
network. SFT reports the sensitivity (shift factor) of the constraint with respect to
the controls. These controls include unit MW control, phase shifter, and load MW
control.

Unit MW Control The unit MW control is the most efficient and least expensive
among the available controls. The formulation of sensitivity for a unit can be written
as follows:

Skj =
𝜕Pk

𝜕PGj
k = 1, … ,Kmax, j = 1, … PGmax (3.25)
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where

Skj: the sensitivity of the power change on constraint k with respect to power
change on the unit MW control j;

Pk: the MW power on the constraint k;
PGj: the MW power on generating unit control j;

Kmax: the maximum number of constraints;
PGmax: The maximum number of generator unit MW controls.

According to KCL , it is impossible that power change on the branch constraint
will be greater than 1 MW if the generator control has only 1 MW power change. Thus
the maximum value of the sensitivity of the branch constraint with respect to the unit
MW control is 1.0 (generally, less than 1.0).

Phase Shifter Control The phase shifter is another efficient control among the
available controls. There are some assumptions for the phase shifter in the SFT
design. The phase shifter control variable is a tap number (e.g., phase shifter angle).
Normally a tap number is an integer, but it can be handled as a real number in
practical SFT calculation. In addition, all opened phase shifters will be skipped
over, that is, the sensitivity for the phase shifter that is open at any end will not be
calculated.

The step on the tap type is the sensitivity of angle with respect to the tap number.
Thus the sensitivity of the constraint to the phase shifter relates to the power change
on the constraint to the angle change of the phase shifter. The angle unit may be
in degrees or radians. Since the value of sensitivity may be very small if the angle
unit is in degrees, the radian is adopted in practical calculations. The formulation of
sensitivity for phase shifter can be written as follows:

Sk jp =
𝜕Pk

𝜕𝜙
ps
jp

k = 1, … ,Kmax, jp = 1, … PSmax (3.26)

where

Sk jp: the sensitivity of the constraint k to the phase shifter control jp;

𝜙
ps
jp : the phase shifter angle of the phase shifter control jp;

Kmax: the maximum number of constraints;
PSmax: the maximum number of phase shifter controls.

It is noted that there is a special “branch in constraint” logic that must be imple-
mented when the phase shifter branch itself is in the constraint. Basically, the artificial
flow through the transformer branch must be subtracted from the constraint flow.

In addition, the sensitivity of the constraint to the phase shifter control is differ-
ent from the sensitivity of the constraint to the generator control or other bus injection
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type controls. The value of latter cannot be greater than 1.0, but the former does not
have this constraint.

Load MW Control The load MW control should be the last control when other
controls are not available. The formulation of sensitivity for load MW control can be
written as follows:

Sk jd = −
𝜕Pk

𝜕Pjd
k = 1, … ,Kmax, jd = 1, … LDmax (3.27)

where
Sk jd: the sensitivity of the constraint k to the load MW control jd;
Pjd: the MW power on load control jd;

Kmax: the maximum number of constraints;
LDmax: the maximum number of load MW controls in whole system.

It is noted that the sensitivity sign for load MW control is negative. The reason is
that increasing load will cause more serious constraint violation rather than reduce the
constraint violation. According to the sensitivity relationship between the constraint
and the load MW control, it is needed to reduce/shed load for alleviating or deleting
the constraint violation.

In the market application, the sensitivity of the pricing node is of interest. The
pricing node does not have the generator or load connected to it. Thus the above
sensitivity calculation of unit/load control can be expanded to any bus injection, that
is,

Sk bs = −
𝜕Pk

𝜕Pbs
k = 1, … ,Kmax, bs = 1, … NBmax

Sk bs: the sensitivity of the constraint k to the bus injection on bus bs;
Pbs: the MW power injection on bus bs;

NBmax: the maximum number of buses in the whole system.

Constraint Value For each constraint, the constraint value (DC value) is computed
from the control values multiplied by sensitivities. The formulation can be written as
follows:

DCVALk =
Umax∑

j=1

VAL_U∗
j Skj (3.28)

where

DCVALk: the constraint value for the constraint k;
VAL_Uj: the value of control j; here, the controls include unit MW control, phase

shifter, and load MW control;
Skj: the sensitivity or shift factor of the constraint k to the control j;

Umax: the maximum number of controls.
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3.3.2 Computation of Constraint Shift Factors

Constraint Shift Factors without Line Outage Constraint shift factors without
line outage are also called generation shift factors.

From the DC power flow algorithm, we have the following equation:

⎡
⎢
⎢
⎢⎣

ΔP1
ΔP2
⋮

ΔPn

⎤
⎥
⎥
⎥⎦
= [B′]

⎡
⎢
⎢
⎢⎣

Δ𝜃1
Δ𝜃2
⋮

Δ𝜃n

⎤
⎥
⎥
⎥⎦

(3.29)

Then the standard matrix calculation of the DC power flow can be written as follows;

𝛉 = [X]P (3.30)

Since the DC power flow model is a linear model, we may calculate the perturbations
about a given set of system conditions by using the same model. Thus, we can com-
pute the changes in bus phase angles Δ𝛉 for a given set of changes in the bus power
injections ΔP:

Δ𝛉 = [X]ΔP (3.31)

where the net perturbation of the reference bus equals the sum of the perturbations of
all the other buses.

Now we compute the generation shift factors for the generator on bus i. To do
this, we will set the perturbation on bus i to +1 pu and the perturbation on all the
other buses to zero. Then we can solve for the change in bus phase angles using the
following matrix calculation:

Δ𝛉 = [X]
[
+1
−1

]
←
←

row i
ref row

(3.32)

The vector of bus power injection perturbations in equation 3.32 represents the sit-
uation when a 1-pu power increase is made at bus i and is compensated by a 1-pu
decrease in power at the reference bus. The Δ𝛉 values in equation are thus equal to
the derivative of the bus angles with respect to a change in power injection at bus i.

Thus the constraint shift factors Ski without considering the line outage can be
derived as follows.

Let p and q be the two ends of the constraint k; the power flowing on the con-
straint line k using DC power flow is

Pk =
1
xk
(𝜃p − 𝜃q) (3.33)

The generation shift factors are defined as

Ski =
dPk

dPi
= d

dPi

[
1
xk

(
𝜃p − 𝜃q

)]
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= 1
xk

(d𝜃p

dPi
−

d𝜃q

dPi

)
= 1

xk
(Xpi − Xqi) (3.34)

In practical applications, the generation shift factors of the network can be directly
obtained from [B′] through forward and back calculation.

Assume a branch k that is from p to q with the reactance xk.
From [B′][𝜃] = [P], we get

[B′][𝜃] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0
⋮
0

+ 1
xk

0
⋮
0

− 1
xk

0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

←

←

row p

row q

(3.35)

Through implying forward and back calculation to the above equation, the solution
will be the generation shift factors for all buses with respect to the constraint line k.

If a constraint consists of multiple lines (branches), the superposition theory
can be applied. For example, a constraint contains two lines k (from p to q) and t
(from i to j) with reactance xk and xt, respectively. We get following relationship:

[B′][𝜃] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0
⋮
0

+ 1
xk

0
⋮
0

− 1
xk

0
⋮
0
+ 1

xt

0
⋮
0
− 1

xt

0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

← row p

← row q

← row i

← row j
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Through implying forward and back calculation to the above equation, the solution
will be the generation shift factors for all buses with respect to lines k and t.

Line Outage Distribution Factors (LODF) [17] The simulation of line outage is
shown in Figure 3.1. Figure 3.1(a) is a network without line outage.

Suppose line l from bus m to bus n were opened by circuit breakers as shown
in Figure 3.1(b). A line outage may be modeled by adding two power injections to a
system, one at each end of the line to be dropped, which is shown in Figure 3.1(c).
The line is actually left in the system and the effects of its being dropped are mod-
eled by injections. Note that when the circuit breakers are opened, no current flows
through them and the line is completely isolated from the remainder of the network. In
Figure 3.1, the breakers are still closed but injections ΔPm and ΔPn have been added
to bus m and bus n, respectively. If ΔPm = Pmn, and ΔPn = −Pmn where Pmn is equal
to the power flowing over the line, we will still have no current flowing through the
circuit breakers even though they are closed. As far as the remainder of the network
is concerned, the line is disconnected.

Pmn

(a)

Bus m Bus nConnect to other 
part of the network

line l

(b)

Bus m Bus nConnect to other 
part of the network

line l

ΔPm ΔPn
(c)

Bus nBus m Connect to other 
part of the network

line l

Pmn′

Figure 3.1 Network for
simulating line outage (a) network
before line l outage; (b) network
after line l outage; and
(c) modeling line l outage using
injections.
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Using equation relating to Δ𝛉 and ΔP, we have

Δ𝛉 = [X]ΔP (3.36)

Since only power injections at buses m and n have been changed after line outage by
adding two power injections to a system,

ΔP =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

0
⋮
0

ΔPm
0
⋮
0

ΔPn
0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(3.37)

Thus we can get the incremental changes of the phase angle at buses m and n of the
line l from the outage

Δ𝜃m = XmnΔPn + XmmΔPm (3.38)

Δ𝜃n = XnnΔPn + XnmΔPm (3.39)

where

𝜃m: the phase angle at bus m of the line l before the outage;
𝜃n: the phase angle at bus n of the line l before the outage;

Pmn: the power flow on line l from bus m to bus n before the outage;
Δ𝜃m: the incremental changes of the phase angle at bus m of the line l from the

outage;
Δ𝜃n: the incremental changes of the phase angle at bus n of the line l from the

outage;
ΔPmn: the incremental changes of the power flow in line l after the outage;

P′
mn: the power flow on line l from bus m to bus n after the outage.

The outage modeling criteria requires that the incremental injections ΔPn and
ΔPm equal the power flowing over the outaged line after the injections are imposed.
Then, if we let the line reactance be xl,

P′
mn = ΔPm = −ΔPn (3.40)

ΔPmn = 1
xl
(Δ𝜃m − Δ𝜃n) (3.41)
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Since ΔPn = −ΔPm, equations (3.38) and (3.39) can be written as

Δ𝜃m = XmnΔPn + XmmΔPm = Xmn(−ΔPm) + XmmΔPm

= (Xmm − Xmn)ΔPm (3.42)

Δ𝜃n = XnnΔPn + XnmΔPm = Xnn(−ΔPm) + XnmΔPm

= (Xnm − Xnn)ΔPm (3.43)

where

Xmn = Xnm (3.44)

Thus,

ΔPmn = 1
xl
(Δ𝜃m − Δ𝜃n)

= 1
xl
[(Xmm − Xmn)ΔPm − (Xnm − Xnn)ΔPm]

= 1
xl
(Xmm + Xnn − 2Xmn)ΔPm (3.45)

The power flow on line l from bus m to bus n after the outage P′
mn is computed as

follows:

P′
mn = Pmn + ΔPmn

= Pmn +
1
xl
(Xmm + Xnn − 2Xmn)ΔPm (3.46)

From equations (3.40) and (3.46), we get

ΔPm = Pmn +
1
xl
(Xmm + Xnn − 2Xmn)ΔPm (3.47)

that is,

ΔPm =
Pmn

1 − 1
xl
(Xmm + Xnn − 2Xmn)

(3.48)

Since there are only two nonzero elements at buses m and n in the power injec-
tion vector, the incremental change of phase angle at any bus i can be computed as
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follows:

Δ𝜃i = XinΔPn + XimΔPm

= (Xim − Xin)ΔPm

= (Xim − Xin) ×
Pmn

1 − 1
xl
(Xmm + Xnn − 2Xmn)

=
xl(Xim − Xin)Pmn

xl − (Xmm + Xnn − 2Xmn)
= Si,lPmn (3.49)

where

Si,l =
Δ𝜃i

ΔPl
=

xl(Xim − Xin)
xl − (Xmm + Xnn − 2Xmn)

(3.50)

which is the sensitivity factor of the change in the phase angle of bus i with respect
to power flow in line l before the outage.

For computing the effect of line l outage on the other line k, the LODF is defined
as follows:

LODFk,l =
ΔPk

ΔPl
=

1
xk
(Δ𝜃p − Δ𝜃q)

ΔPl

= 1
xk

(Δ𝜃p

ΔPl
−

Δ𝜃q

ΔPl

)

= 1
xk
(Sp,l − Sq,l) (3.51)

From equation (3.50), Sp,l, Sq,l can be written as

Sp,l =
Δ𝜃p

ΔPl
=

xl(Xpm − Xpn)
xl − (Xmm + Xnn − 2Xmn)

(3.52)

Sq,l =
Δ𝜃q

ΔPl
=

xl(Xqm − Xqn)
xl − (Xmm + Xnn − 2Xmn)

(3.53)

Thus,

LODFk,l =
1
xk
(Sp,l − Sq,l)

= 1
xk

(
xl

(
Xpm − Xpn

)

xl − (Xmm + Xnn − 2Xmn)
−

xl(Xqm − Xqn)
xl − (Xmm + Xnn − 2Xmn)

)

= 1
xk

(
xl

(
Xpm − Xpn

)
− xl(Xqm − Xqn)

xl − (Xmm + Xnn − 2Xmn)

)
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= 1
xk

(
xl

(
Xpm − Xqm − Xpn + Xqn

)

xl − (Xmm + Xnn − 2Xmn)

)

=
xl

xk
(Xpm − Xqm − Xpn + Xqn)

xl − (Xmm + Xnn − 2Xmn)
(3.54)

Outage Transfer Distribution Factors (OTDF) Because we know that the gener-
ation shift factors and LODFs are linear models, we can use superposition to extend
them to compute the network constraint sensitivity factors after a branch has been
lost. They are also called the OTDFs. Let us compute the sensitivity factor OTDF
between line k and generator bus j when line l is opened. This is calculated by first
assuming that the change in generation on bus j, ΔPj, has a direct effect on line k and
an indirect effect through its influence on the power flowing in line l, which, in turn,
influences line k when line l is in outage. Then

ΔPk = SkjΔPj + LODFk,lΔPl

= SkjΔPj + LODFk,l(SljΔPj)

= (Skj + LODFk,lSlj)ΔPj (3.55)

Therefore, the sensitivity OTDF after line l outage can be defined as

OTDFk,j =
ΔPk

ΔPj
= (Skj + LODFk,lSlj) (3.56)

where

OTDFk,j: the sensitivity factor between line k and generator bus j when line l was
opened.

3.3.3 Constraint Shift Factors with Different References

The shift factors computed in SFT is based on the reference bus in energy manage-
ment system (EMS) topology, but it can be easily converted to any market-based
reference.

Let y be the market-based reference unit, and the shift factor of the constraint
k with respect to any unit j that is obtained on the basis of the EMS reference bus be
Skj. For unit y, the shift factor of the constraint k is Sky. Then, the shift factors after
converting to the market-based reference unit y can be computed as follows.

S′
ky = 0 k = 1, … ,Kmax (3.57)

S′kj = Skj − Sky k = 1, … ,Kmax, j ≠ y (3.58)
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where

Skj: the shift factor of the constraint k with respect to unit j that is based on the EMS
reference;

Sky: the shift factor of the constraint k with respect to unit y that is based on the EMS
reference;

S′kj: the shift factor of the constraint k with respect to unit j that is based on the
market-based reference y;

S′ky: the shift factor of the constraint k with respect to unit y that is based on the
market-based reference y.

We know that the shift factor of the constraint is related to the selected refer-
ence, that is, the value of the shift factor will be different if the reference is different
even though the system topology and conditions are the same. Sometimes the sys-
tem operators would like to have stable shift factor values without concern about the
selection of the reference bus/unit. Thus the distributed load reference will be used
to get the unique constraint shift factors if the system topology and conditions are
unchanged.

Let Sk ldref be the sensitivity of load distribution reference for the constraint k,
and the shift factor of the constraint k with respect to any control j that is obtained
on the basis of EMS reference bus be Skj. Then the shift factors based on the load
distribution reference LDREF can be computed as follows.

S′kj = Skj − Sk ldref k = 1, … ,Kmax (3.59)

where

Sk ldref : the sensitivity of load distribution reference for the constraint k,
that is,

Sk ldref =

LDmax∑

jd=1

(Sk jd ∗ LDjd)

LDmax∑

jd=1

LDjd

k = 1, … ,Kmax (3.60)

where

Sk jd: the sensitivity of load jd with respect to the constraint k;
LDjd: the load demand at load bus jd.

In practical energy markets such as the independent system operator (ISO), the
system consists of many areas, but there is one major area in the ISO system that
is called the internal area, while the others are called external areas. If the internal
area is of major concern during the price calculation in this market system, the load
distribution reference can be selected on the basis of the internal area alone. Similarly,
Let LDAmax be the total number of load controls in the internal area of ISO system,
which is less than the total number of load controls in whole ISO system, LDmax. The
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shift factors based on the area load distribution reference LDAREF can be computed
as follows:

S′kj = Skj − Sk ldaref k = 1, … ,Kmax (3.61)

where

Sk ldaref : the sensitivity of load distribution reference in area A for the constraint k,
that is,

Sk ldaref =

LDAmax∑

jd=1

(Sk jd ∗ LDjd)

LDAmax∑

jd=1

LDjd

k = 1, … ,Kmax (3.62)

LDAmax ∈ LDmax

where

LDAmax: the maximum number of load MW controls in area A.

3.3.4 Sensitivities for the Transfer Path

A transfer path is an energy transfer channel between a point of delivery (POD) and
point of receipt (POR). The POD is the point of interconnection on the transmission
provider’s transmission system where capacity and/or energy transmitted by the trans-
mission provider will be made available to the receiving party. The POR is the point
of interconnection on the transmission provider’s transmission system where capac-
ity and/or energy transmitted will be made available to the transmission provider by
the delivering party.

This pair POD and POR defines a path and the direction of flow in that path.
For internal paths, this would be a specific location in the area. For an external path,
this may be an area-to-area interface. Similar to the concept of POD/POR, a transfer
path can also be defined as one from the source to sink.

If POD/POR (or source/sink) is a single unit or single injection node, the sensi-
tivity of POR or POD is the same as the constrained shift factor, which is mentioned
in Sections 3.2 and 3.3. If POD/POR (or source/sink) is an area, the sensitivity of
POR or POD can be computed as follows.

Let PFj be the participation factor of unit j, and the shift factor of the constraint
k with respect to any unit j be Skj. The area-based shift factor of the constraint k is
SkA, which can be computed as follows:

SkA =

∑

j∈A

(PFj × Skj)

∑

j∈A

PFj

k = 1, … ,Kmax, j ∈ A (3.63)
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where

SkA: the area based shift factor of the constraint k;
PFj: the participation factor of the unit j.

Similarly, if we consider the effect of the outage, the area-based shift factor of
constraint k can be computed as follows:

SkA =

∑

j∈A

(PFj × OTDFkj)

∑

j∈A

PFj

k = 1, … ,Kmax, j ∈ A (3.64)

If a transfer path is from area A to area B, the sensitivity of the transfer path will be
computed as

STP(A → B) = SkA − SkB (3.65)

If a transfer path is from an injection node i to another injection node j, the sensitivity
of the transfer path will be computed as

STP(I → J) = OTDFki − OTDFkj (3.66)

If a transfer path is from an injection node i to area A, or from an area A to an injection
node i, the corresponding sensitivities of the transfer path will be computed as

STP(I → A) = OTDFki − SkA (3.67)

STP(A → I) = SkA − OTDFki (3.68)

3.4 PERTURBATION METHOD FOR SENSITIVITY
ANALYSIS

So far, the sensitivity analysis methods described in this chapter have been based on
the matrix (either B′ matrix or the Jacobian matrix). The sensitivity values that are
computed on the basis of partial differential terms will be stable, or will not change
as long as the system topology remains the same.

Sometimes, the perturbation method is also used in sensitivity calculation.

3.4.1 Loss Sensitivity

The perturbation method for loss sensitivity calculation is described in the following.

1. Perform power flow calculation, and obtain the initial system power loss PL0.

2. Simulate the calculation of the loss sensitivity with respect to the generator i.
Increase the power output of generator i for ΔPGi (if computing the loss sen-
sitivity of load k, reduce the power demand of load k for ΔPDk), and the slack
unit will absorb the same amount of ΔPGi.
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3. Run the power flow again, and get the new system power loss PL.

4. Compute the loss sensitivity as below.

(i) For unit loss sensitivity:

LSGi =
PL − PL0

ΔPGi
i ∈ NG (3.69)

(ii) For load loss sensitivity:

LSDk =
PL − PL0

ΔPDk
i ∈ ND (3.70)

where LSGi, and LSDk are the loss sensitivity values with respect to the unit
i and load k, respectively.

3.4.2 Generator Shift Factor Sensitivity

The perturbation method for generator shift factor sensitivity calculation is .

1. Chose a unit i and a branch constraint j.

2. Perform power flow calculation, and obtain the initial power flow Pj0 for
branch j.

3. Simulate the calculation of the generator shift factor sensitivity of the branch
j with respect to the generator i. Increase the power output of generator i for
ΔPGi; the slack unit will absorb the same amount of ΔPGi.

4. Run power flow again, and get the new power flow Pj for the branch j.

5. Compute the generator shift factor sensitivity as follows:

GSFj,i =
Pj − Pj0

ΔPGi
i ∈ NG (3.71)

where GSFj,i is the generator shift factor sensitivity of the branch j with respect
to the unit i.

The calculation of the load shift factor sensitivity is similar to the generator
shift factor sensitivity, considering the load as the negative generation.

3.4.3 Shift Factor Sensitivity for the Phase Shifter

The perturbation method for the phase shifter shift factor sensitivity calculation is
shown as follows.

1. Choose a phase shifter t and a branch constraint j.

2. Perform power flow calculation and obtain the initial power flow Pj0 for the
branch j.
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3. Simulate the calculation of the shift factor sensitivity of the branch j with
respect to the phase shifter t. Increase the taps of the phase shifter i for ΔTt (or
angle change Δ𝜃t), which can be simulated by changing the suceptance of the
phase shifter.

4. Run power flow again and get the new power flow Pj for branch j.

5. Compute the phase shifter shift factor sensitivity as follows.

SFj,t =
Pj − Pj0

ΔTt

or SFj,t =
Pj − Pj0

Δ𝜃t
(3.72)

where SFj,t is the shift factor sensitivity of the branch j with respect to the phase
shifter t.

3.4.4 Line Outage Distribution Factor (LODF)

The perturbation method for the LODF calculation is described in the following.

1. Choose a branch l that will be simulated as outage and a branch constraint j.

2. Perform power flow calculation before the branch l is open, and obtain the initial
power flow Pj0 for the branch j, and Pl0 for the branch l.

3. Simulate the calculation of LODF. Open the branch l while the unit power and
load power remain unchanged.

4. Run power flow again, and get the new power flow Pj for branch j. The power
flow Pl for the branch l will be zero because branch l is in outage.

5. Compute the LODF of branch j as the branch l is in outage as follows:

LODFj,l =
Pj − Pj0

Pl0
(3.73)

where LODFj,l is the LODF of branch j with respect to outage branch l.

3.4.5 Outage Transfer Distribution Factor (OTDF)

The perturbation method for the OTDF calculation is described in the following.

1. Choose a unit i, a branch l that will be simulated as outage, and a branch con-
straint j.

2. Perform power flow calculation before the branch l is open and obtain the initial
power flow Pj0 for the branch j and Pl0 for the branch l.

3. First of all, simulate the calculation of the generator shift factor sensitivity of
the branches j and l with respect to the generator i. Increase the power output of
generator i for ΔPGi; the slack generator will absorb the same amount of ΔPGi.
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4. Conduct a power flow calculation, and get the new power flows Pj for the branch
j and Pl for the branch l.

5. Compute the generator shift factor sensitivity for the branches j and l, respec-
tively.

GSFj,i =
Pj − Pj0

ΔPGi
i ∈ NG (3.74)

GSFl,i =
Pl − Pl0

ΔPGi
i ∈ NG (3.75)

6. Then simulate the calculation of LODF for branch j with respective to the
outage branch l. Open branch l while the unit power and load power remain
unchanged.

7. Once again run power flow, and get the new power flow P′
j for branch j. The

power flow P′
l for branch l will be zero because branch l is in outage.

8. Compute the LODF of branch j as branch l is in outage as follows:

LODFj,l =
P′

j − Pj

Pl
(3.76)

Finally, the sensitivity OTDF of branch j after line l outage can be obtained as
follows:

OTDFj,i = GSFj,i + LODFj,lGSFl,i (3.77)

where OTDFj,i is the sensitivity factor between line j and generator bus i when line l
is opened.

It is noted that the perturbation method for sensitivity calculation is very
straightforward, but there is a disadvantage, namely, the values of sensitivity depend
highly on the solution in addition to the topology. Even if the system topology is
not changed, the values of the sensitivity may be a little different for different initial
points. Thus, to obtain the accurate sensitivity results, the approach based on a matrix
is recommended. If the perturbation method is used, the amount of the perturbation
should be small so that the solution is close to the initial operation points.

3.5 VOLTAGE SENSITIVITY ANALYSIS

Before we do voltage sensitivity analysis, we need to understand the concept and
importance of voltage stability. Voltage stability is the ability of a power system
to maintain adequate voltage magnitude so that when the system nominal load is
increased, the actual power transferred to that load will increase. The main cause of
voltage instability is the inability of the power system to meet the demand for reac-
tive power. The voltage stability problem consists of two aspects: a large disturbance
aspect and a small disturbance one. The former is called dynamic stability, and the lat-
ter is called static stability. The large disturbance involves short circuit and addresses
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Figure 3.2 A plot of power versus
voltage.

postcontingency system response. The small disturbance investigates the stability of
an operating point and applies a linearized model. The voltage sensitivity analysis
herein is used for static voltage stability.

Static voltage instability is mainly associated with reactive power imbalance.
This imbalance mainly occurs in a local network or a specified bus in a system. There-
fore, the reactive power supports have to be locally adequate. With static voltage
stability, slowly developing changes in the power system occur that eventually lead
to a shortage of reactive power and declining voltage. This phenomenon can be seen
in Figure 3.2, a plot of power transferred versus voltage at the receiving end.

These kinds of plots are generally called P − V curves or “nose” curves. As
power transfer increases, the voltage at the receiving end decreases. Eventually, a
critical (nose) point, the point at which the system reactive power is out of usage,
is reached where any further increase in active power transfer will lead to very rapid
decrease in voltage magnitude. Before reaching the critical point, a large voltage drop
due to heavy reactive power losses is observed. The only way to save the system from
voltage collapse is to reduce the reactive power load or add additional reactive power
before reaching the point of voltage collapse.

The purpose of the voltage sensitivity analysis is to improve the voltage profile
and to minimize system real power losses through optimal reactive power controls
(i.e., by adding VAR supports). These goals are achieved by proper adjustments of
VAR variables in power networks through seeking the weak buses in the system.
Therefore, if the voltage magnitude at generator buses, VAR compensation (VAR
support), and transformer tap position are chosen as the control variables, the optimal
VAR control model can be represented as

min PL(QS,VG,T) (3.78)

such that

Q(QS,VG,T ,VD) = 0 (3.79)

QGmin ≤ QG(QS,VG,T) ≤ QGmax (3.80)
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VDmin ≤ VD(QS,VG,T) ≤ VDmax (3.81)

QSmin ≤ QS ≤ QSmax (3.82)

VGmin ≤ VG ≤ VGmax (3.83)

Tmin ≤ T ≤ Tmax (3.84)

where

PL: the system real power loss;
VG: the voltage magnitude at generator buses;
QS: the VAR support in the system;
QG: the VAR generation in the system;

T: the tap position of the transformer;
VD: the voltage magnitude at load buses.

The subscripts “min” and “max” represent the lower and upper limits of the
constraint, respectively.

Two kinds of sensitivity-related factors can be computed through equations
(3.78)–(3.84). Here they are called voltage benefit factors (VBFs) and loss benefit
factors (LBFs), which are expressed as follows.

LBFi =

∑

i

(PL0 − PL(Qsi))

Qsi
× 100% i ∈ ND (3.85)

VBFi =

∑

i

(Vi(Qsi) − Vi0)

Qsi
× 100% i ∈ ND (3.86)

where

Qsi: the amount of VAR support at the load bus i;
LBFi: the loss benefit factors from the VAR compensation Qsi;
VBFi: the voltage benefit factors from the VAR compensation Qsi;

PL0: power transmission losses in the system without VAR compensation;
PL(Qsi): the power transmission losses in the system with VAR compensation Qsi;

Vi0: the voltage magnitude at load bus i without VAR compensation.
Vi(Qsi): the voltage magnitude at load bus i with VAR compensation Qsi;

ND: the number of load buses.

3.6 REAL-TIME APPLICATION OF THE SENSITIVITY
FACTORS

In the EMS system and energy markets, the loss sensitivity factors and constraint
shift factors are applied for LMP and/or alleviating overload (AOL) calculation. The
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above-mentioned loss sensitivities, constraint shift factors, and the corresponding
constraint elements (transmission lines or transformers) will be passed to the con-
straint logger and then passed to the LMP calculator. The practical constraints can be
divided into the following types:

(1) Automatic constraints
All branches (lines, transformers, and interfaces) with violations from EMS
real-time contingency analysis (RTCA) calculation.

(2) Watch list constraints
The branches without violation in EMS RTCA calculation but with the branch
flows that are close to their limits.

(3) Active constraints
The constraints from the LMP calculator that are needed to recompute the con-
straint shift factors.

(4) Flowgate constraints
The constraints from the marketing system that are needed to compute the shift
factors with respect to the flowgate constraint. The term “flowgate” refers to a
single-grid facility or a set of facilities.

(5) Quick selection constraints
Any branches (lines, transformers and interfaces) for which the operators want
to know the shift factors and monitor the branch flows.

Sensitivity analysis and LMP calculation process is shown in Figure 3.3. The
market will require that the LMP be determined on a periodic basis. To support this
calculation, the network topology and data including loss sensitivities, network con-
straints, and their shift factors gathered in real time can be transferred to the LMP
automatically through SE (state estimator), RTCA and SFT applications. If the results
of the LMP calculator meet the constraints described in equations (3.3) and (3.4), the
LMP calculation is deemed successful and the LMP results may be recorded and rec-
ommended. If the LMP calculation results in any constraint violation, the violated
constraint will be sent back to AOL, and the LMP recalculation will be performed
until all constraints are met.

3.7 SIMULATION RESULTS

The calculation results of the several sensitivities are illustrated with the IEEE 14-bus
system and ALSTOM Grid 60-bus system. The one-line diagram of the ALSTOM
Grid 60-bus system is shown in Figure 3.4. The 60-bus system, which has three areas,
consists of 24 generation units (15 units are available in the tests), 32 loads, 43 trans-
mission lines, and 54 transformers.
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3.7.1 Sample Computation for Loss Sensitivity Factors

The following test cases are used to analyze the loss sensitivity in this chapter:

Case 1 Calculate loss sensitivities using the distributed generation slack and load
slack, respectively. All units are AGC units (i.e., the status of unit AGC is
ON).

Case 2 Calculate loss sensitivities using the distributed generation slack and load
slack, respectively. All units are AGC units except the units under station
Douglas in Area 1.

Case 3 Calculate loss sensitivities using the distributed generation slack and load
slack, respectively. All units are AGC units except the units under station
HEARN in Area 1.
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Figure 3.4 One-line diagram of ALSTOM Grid 60 bus system (Area 1-EAST, Area
2-WEST, Area 3-ECAR).
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Case 4 Calculate loss sensitivities using the distributed generation slack and load
slack, respectively. All units are AGC units except the units in Area 2.

Case 5 Calculate loss sensitivities using the distributed generation slack and load
slack, respectively. All units are AGC units except the units under station
HOLDEN in Area 3.

Case 6 Calculate loss sensitivities for the selected single slack based on the loss
factors under the distributed slack.

The simulation results are shown in Tables 3.1–3.6. All loss sensitivity factors
for units and loads are computed. For the purpose of the simplification, only loss
sensitivities of generators are listed in Tables 3.1–3.6, in which column 1 is the name
of station and units. Column 2 is the area number that the unit belongs to. Column 3
is the AGC status of the unit.

Tables 3.1–3.5 are the test results and comparison of loss sensitivity calcu-
lation based on the distributed generation reference and distributed load reference,
respectively. The loss factors computed from the distributed unit reference are listed
in column 4 of Tables 3.1–3.5. The loss factors computed from the distributed load
reference are listed in column 5 of Tables 3.1–3.5.

Generally, the values of loss sensitivities based on the generation reference
are different from those based on the load reference, because the distribution of the
units is not exactly the same as the distribution of loads in the power system. The
loss factors will be close or equal if the units are close to the load locations. This

TABLE 3.1 Test Results and Comparison of Loss Sensitivity Calculation (Case 1: All Units
on AGC)

Station, Generator Area No. AGC Unit Loss Sensitivity

Distributed

Generation Slack

Loss Sensitivity

Distributed

Load Slack

DOUGLAS, G2 1 YES 0.0151 0.0170

DOUGLAS, G1 1 YES 0.0121 0.0140

DOUGLAS, CT1 1 YES 0.0099 0.0118

DOUGLAS, CT2 1 YES 0.0099 0.0118

DOUGLAS, ST 1 YES 0.0097 0.0116

HEARN, G1 1 YES −0.0165 −0.0146

HEARN, G2 1 YES −0.0165 −0.0146

LAKEVIEW, G1 1 YES −0.0188 −0.0170

BVILLE, 1 2 YES −0.0010 −0.0042

WVILLE, 1 2 YES 0.0007 −0.0025

CHENAUX, 1 3 YES −0.0089 −0.0089

CHEALLS, 1 3 YES 0.0212 0.0212

CHEALLS, 2 3 YES 0.0212 0.0212

HOLDEN, 1 3 YES 0.0010 0.0010

NANTCOKE, 1 3 YES −0.0122 −0.0122
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TABLE 3.2 Test Results and Comparison of Loss Sensitivity Calculation (Case 2: All Units
on AGC Except the Units Under Station Douglas in Area 1)

Station, Generator Area No. AGC Unit Loss Sensitivity

Distributed

Generation Slack

Loss Sensitivity

Distributed

Load Slack

DOUGLAS, G2 1 NO 0.0328 0.0170

DOUGLAS, G1 1 NO 0.0299 0.0140

DOUGLAS, CT1 1 NO 0.0278 0.0118

DOUGLAS, CT2 1 NO 0.0278 0.0118

DOUGLAS, ST 1 NO 0.0276 0.0116

HEARN, G1 1 YES 0.0015 −0.0146

HEARN, G2 1 YES 0.0015 −0.0146

LAKEVIEW, G1 1 YES −0.0008 −0.0170

BVILLE, 1 2 YES −0.0010 −0.0042

WVILLE, 1 2 YES 0.0007 −0.0025

CHENAUX, 1 3 YES −0.0089 −0.0089

CHEALLS, 1 3 YES 0.0212 0.0212

CHEALLS, 2 3 YES 0.0212 0.0212

HOLDEN, 1 3 YES 0.0010 0.0010

NANTCOKE, 1 3 YES −0.0122 −0.0122

can be observed from Table 3.1, where all units are on AGC status. For the 60-bus
system, each load in area 3 has at least one unit connected, so the loss factors in
area 3 are the same for both the distributed generation slack and distributed load
slack.

It is noted that from Tables 3.1–3.5 that the loss sensitivity factors based on the
distributed load slack are the same whether the status of the units is changed or not.
But the loss factors based on the distributed generation references are changed as the
AGC status of the units are different.

Generally, the change of AGC status of the units only affects the loss sensitiv-
ities in the same area that these units belong to.

It can be seen from Tables 3.2 and 3.3 that, when AGC status of the units in
area 1 changes, only the loss factors in area 1 is affected. The loss factors in the other
areas are unchanged. For Table 3.5, when AGC status of the units in area 3 changes,
only the loss factors in area 3 are affected. The loss factors in the other areas are
unchanged. But for Table 3.4, there is no AGC unit in area 2; it means that there is
no unit reference in area 2. Then the AGC units in the other areas will pick up the
power mismatch (i.e. area 1 in this case). Thus, the loss factors in areas 1 and 2 are
changed. The loss factors in the other areas are unchanged.

Through the above comparisons, it can be observed that the method of the dis-
tributed load references for loss sensitivity calculation is superior to the method of the
distributed generation references in the real-time energy markets, as the AGC status
of the units are changeable in the real-time system.
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TABLE 3.3 Test Results and Comparison of Loss Sensitivity Calculation (Case 3: Only Units
Under HEARN in Area 1 Not on AGC)

Station, Generator Area No. AGC Unit Loss Sensitivity

Distributed

Generation Slack

Loss Sensitivity

Distributed

Load Slack

DOUGLAS, G2 1 YES 0.0126 0.0170

DOUGLAS, G1 1 YES 0.0096 0.0140

DOUGLAS, CT1 1 YES 0.0074 0.0118

DOUGLAS, CT2 1 YES 0.0074 0.0118

DOUGLAS, ST 1 YES 0.0072 0.0116

HEARN, G1 1 NO −0.0190 −0.0146

HEARN, G2 1 NO −0.0190 −0.0146

LAKEVIEW, G1 1 YES −0.0213 −0.0170

BVILLE, 1 2 YES −0.0010 −0.0042

WVILLE, 1 2 YES 0.0007 −0.0025

CHENAUX, 1 3 YES −0.0089 −0.0089

CHEALLS, 1 3 YES 0.0212 0.0212

CHEALLS, 2 3 YES 0.0212 0.0212

HOLDEN, 1 3 YES 0.0010 0.0010

NANTCOKE, 1 3 YES −0.0122 −0.0122

The results of loss sensitivity calculation for a single slack, which are computed
from the proposed formula (3.24), are shown in Table 3.6. Column 3 in Table 3.6 is
the set of the loss sensitivity coefficients for the distributed slack buses. Column 4 in
Table 3.6 is the set of loss sensitivity factors with a single slack bus at the location of
HOLDEN 1. Column 5 in Table 3.6 is the set of loss sensitivity factors with a single
slack bus at the location of Douglas.

It is noted that all the loss sensitivities are nonzero if distributed slacks are
selected. If a single slack is selected, the loss sensitivity of the slack equals zero.

Since the loss sensitivity values based on the distributed slacks from EMS
are unchanged as long as the system topology is the same, the loss sensitivities for
any market-based single slack can be easily and quickly acquired by use of the
loss sensitivity formula (3.24). Therefore, a large amount of the computations are
avoided whenever the loss sensitivities for a market-based reference are needed in
the real-time energy markets.

Since the loss sensitivity values based on the distributed load slacks are
unchanged as long as the system topology is the same, we can easily and quickly get
the loss factors for any single slack by use of the proposed loss sensitivity formula.
Therefore, a large amount of the computations are avoided whenever the loss
factors are needed for a single slack in the real-time energy markets. For example, a
practical system with 25,000 buses, the CPU time of computing loss factors using
the traditional power flow calculation is about 60 seconds, but less than 0.1 second
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TABLE 3.4 Test Results and Comparison of Loss Sensitivity Calculation (Case 4: All Units
on AGC Except the Units in Area 2)

Station, Generator Area No. AGC Unit Loss Sensitivity

Distributed

Generation Slack

Loss Sensitivity

Distributed

Load Slack

DOUGLAS, G2 1 YES 0.0152 0.0170

DOUGLAS, G1 1 YES 0.0122 0.0140

DOUGLAS, CT1 1 YES 0.0100 0.0118

DOUGLAS, CT2 1 YES 0.0100 0.0118

DOUGLAS, ST 1 YES 0.0099 0.0116

HEARN, G1 1 YES −0.0167 −0.0146

HEARN, G2 1 YES −0.0167 −0.0146

LAKEVIEW, G1 1 YES −0.0191 −0.0170

BVILLE, 1 2 NO −0.0210 −0.0042

WVILLE, 1 2 NO −0.0193 −0.0025

CHENAUX, 1 3 YES −0.0089 −0.0089

CHEALLS, 1 3 YES 0.0212 0.0212

CHEALLS, 2 3 YES 0.0212 0.0212

HOLDEN, 1 3 YES 0.0010 0.0010

NANTCOKE, 1 3 YES −0.0122 −0.0122

if the proposed method is used. This is a huge time saving in the real-time energy
markets.

In order to verify the correctness of the loss sensitivity equation (3.24), the loss
factors are computed and compared using the traditional power flow calculation. The
results and comparison are shown in Figures 3.5 and 3.6 as well as Tables 3.7 and 3.8,
in which column 3 is the set of results from the power flow calculation, and column
4 is the set of results from equation (3.24). Table 3.7 shows the comparison of loss
factor results for single slack bus at HOLDEN-1. Table 3.8 shows the comparison of
loss factor results for single slack bus at DOUGLAS-ST.

The difference or error of the results between the proposed method and power
flow method is obtained from the following equation.

|Error%| =
||||
LFPM (i) − LFPF(i)

LFPF(i)
× 100%

||||
i ∈ n (3.87)

where

Error %: the percentage of the computation error for the proposed formula.
LFPM: the loss factor computed from the proposed method.
LFPF: the loss factor obtained using the traditional power flow calculation.

It can be seen from Tables 3.7 and 3.8 that the loss sensitivity results from the
two methods are very close. The maximum error is less than 0.6%.
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TABLE 3.5 Test Results and Comparison of Loss Sensitivity Calculation (Case 5: All Units
on AGC Except Unit 3 Under Station HOLDEN in Area 3)

Station, Generator Area No. AGC Unit Loss Sensitivity

Distributed

Generation Slack

Loss Sensitivity

Distributed

Load Slack

DOUGLAS, G2 1 YES 0.0151 0.0170

DOUGLAS, G1 1 YES 0.0121 0.0140

DOUGLAS, CT1 1 YES 0.0099 0.0118

DOUGLAS, CT2 1 YES 0.0099 0.0118

DOUGLAS, ST 1 YES 0.0097 0.0116

HEARN, G1 1 YES −0.0165 −0.0146

HEARN, G2 1 YES −0.0165 −0.0146

LAKEVIEW, G1 1 YES −0.0188 −0.0170

BVILLE, 1 2 YES −0.0010 −0.0042

WVILLE, 1 2 YES 0.0007 −0.0025

CHENAUX, 1 3 YES −0.0085 −0.0089

CHEALLS, 1 3 YES 0.0216 0.0212

CHEALLS, 2 3 YES 0.0216 0.0212

HOLDEN, 1 3 NO 0.0014 0.0010

NANTCOKE, 1 3 YES −0.0118 −0.0122
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Figure 3.5 Comparison of
loss factor results for single
slack bus at HOLDEN-1.

3.7.2 Sample Computation for Constrained Shift Factors

Tables 3.9–3.12 are the results of the detected constraint and the corresponding shift
factors. The results for the constraint branch T525 at Station CHENAUX are listed
in Table 3.9.

In Table 3.10, column 1 is the name of station and units. Column 2 is the area
number that the unit belongs to. Column 3 is the AGC status of the unit. Column 4 is
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TABLE 3.6 Test Results of Loss Sensitivity Calculation (Distributed Slack Vs Single Slack)

Station, Generator AGC Unit Loss Sensitivity

Distributed

Slack

Loss Sensitivity

Single Slack,

HOLDEN 1

Loss Sensitivity

Single Slack,

Douglas ST

DOUGLAS, G2 YES 0.017000 0.016016 0.005463

DOUGLAS, G1 YES 0.014000 0.013013 0.002428

DOUGLAS, CT1 YES 0.011800 0.010811 0.000202

DOUGLAS, CT2 YES 0.011800 0.010811 0.000202

DOUGLAS, ST YES 0.011600 0.010611 0.000000

HEARN, G1 YES −0.014600 −0.015616 −0.026507

HEARN, G2 YES −0.014600 −0.015616 −0.026507

LAKEVIEW, G1 YES −0.017000 −0.018018 −0.028936

BVILLE, 1 YES −0.004200 −0.005205 −0.015985

WVILLE, 1 YES −0.002500 −0.003504 −0.014265

CHENAUX, 1 YES −0.008900 −0.009910 −0.020741

CHEALLS, 1 YES 0.021200 0.020220 0.009713

CHEALLS, 2 YES 0.021200 0.020220 0.009713

HOLDEN, 1 YES 0.001000 0.000000 −0.010724

NANTCOKE, 1 YES −0.012200 −0.013213 −0.024079
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Figure 3.6 Comparison of
loss factor results for single
slack bus at DOUGLAS-ST.

the unit participation factors. Column 5 is the set of the shift factors of the constraint
T525 with respect to the units for the EMS-based reference at station DOUGLAS.

It is noted that all the shift factors are zero for the units in area 1 for the
EMS-based reference as the reference is located in area 1 and all units in area 1 are
close to the reference unit. If the market-based slack is selected, the shift factors for
the market-based reference can be easily obtained from equations (3.57) and (3.58).
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TABLE 3.7 Comparison of Loss Sensitivity Calculation Results for Single Slack Bus at
HOLDEN-1 (The Proposed Method Vs Power Flow Method)

Station, Generator AGC Unit Loss Sensitivity,

HOLDEN 1-PF

Method

Loss Sensitivity,

HOLDEN

1-Equation (3.24)

|Error %|

DOUGLAS, G2 YES 0.016029 0.016016 0.08110

DOUGLAS, G1 YES 0.013053 0.013013 0.30644

DOUGLAS, CT1 YES 0.010817 0.010811 0.05547

DOUGLAS, CT2 YES 0.010817 0.010811 0.05547

DOUGLAS, ST YES 0.010621 0.010611 0.09415

HEARN, G1 YES −0.015630 −0.015616 0.08957

HEARN, G2 YES −0.015630 −0.015616 0.08957

LAKEVIEW, G1 YES −0.018110 −0.018018 0.50801

BVILLE, 1 YES −0.005220 −0.005205 0.23002

WVILLE, 1 YES −0.003500 −0.003504 0.02855

CHENAUX, 1 YES −0.009920 −0.009910 0.11088

CHEALLS, 1 YES 0.020247 0.020220 0.13335

CHEALLS, 2 YES 0.020247 0.020220 0.13335

HOLDEN, 1 YES 0.000000 0.000000 0.00000

NANTCOKE, 1 YES −0.013240 −0.013213 0.20393
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Figure 3.7 The shift
factors with different
references.

Table 3.11 shows the shift factors of the constraint T525 with respect to the units
for the market-based reference at the location of HOLDEN 1 and BVILLE, respec-
tively. The relationships of the shift factors to different references are also shown in
Figure 3.7.
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TABLE 3.8 Comparison of Loss Sensitivity Calculation Results for Single Slack Bus at
Douglas-ST (The Proposed Method Vs Power Flow Method)

Station, Generator AGC Unit Loss Sensitivity,

Douglas

ST-PF Method

Loss Sensitivity,

Douglas

ST-Equation (3.24)

|Error %|

DOUGLAS, G2 YES 0.005467 0.005463 0.07317

DOUGLAS, G1 YES 0.002421 0.002428 0.28914

DOUGLAS, CT1 YES 0.000202 0.000202 0.14829

DOUGLAS, CT2 YES 0.000202 0.000202 0.14829

DOUGLAS, ST YES 0.000000 0.000000 0.00000

HEARN, G1 YES −0.026530 −0.026507 0.08669

HEARN, G2 YES −0.026530 −0.026507 0.08669

LAKEVIEW, G1 YES −0.028950 −0.028936 0.04836

BVILLE, 1 YES −0.016000 −0.015985 0.09999

WVILLE, 1 YES −0.014280 −0.014265 0.10504

CHENAUX, 1 YES −0.020770 −0.020741 0.13962

CHEALLS, 1 YES 0.009714 0.009713 0.01029

CHEALLS, 2 YES 0.009714 0.009713 0.01029

HOLDEN, 1 YES −0.010730 −0.010724 0.07454

NANTCOKE, 1 YES −0.024090 −0.024079 0.02491

TABLE 3.9 Example of the Active Constraint (Branch T525 at Station CHENAUX)

Constraint Name Rating (MVA) Actual Flow

(MVA)

Constraint

Deviation

Percent of

Violation

Branch T525 1171.4 1542.7 371.3 131.7

Table 3.12 shows the area-based shift sensitivity factors of the constraint T525,
which are computed on the basis of unit shift factors and participation factors within
the area. If the unit participation factors change, the value of the area based sensitivity
change.

Table 3.13 shows the sensitivity factors of the transfer path with respect to the
constraint T525. There are four types transfer paths:

(1) Transfer type 1—Area-Area: Both POR and POD (or SOURCE and SINK) are
areas.

(2) Transfer type 2—Single point: Both POR and POD (or SOURCE and SINK)
are single injection nodes.

(3) Transfer type 3—Point-Area: The POR (SOURCE) is a single injection node
and POD (SINK) is an area.
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TABLE 3.10 Test Results of Shift Factors for the Active Constraint T525 at EMS Reference
(Station Douglas)

Station, Generator Area No. Unit in

Serve

Unit Participation

Factor

Shift Factors

on EMS Reference

at Station DOUGLAS

DOUGLAS, G2 1 YES 1.5 0.000000

DOUGLAS, G1 1 YES 1.8 0.000000

DOUGLAS, CT1 1 YES 1.2 0.000000

DOUGLAS, CT2 1 YES 1.6 0.000000

DOUGLAS, ST 1 YES 0.9 0.000000

HEARN, G1 1 YES 0.5 0.000000

HEARN, G2 1 YES 0.8 0.000000

LAKEVIEW, G1 1 YES 1.1 0.000000

BVILLE, 1 2 YES 1.2 −0.013650

WVILLE, 1 2 YES 1.3 −0.024336

CHENAUX, 1 3 YES 1.7 0.617887

CHEALLS, 1 3 YES 0.6 0.521795

CHEALLS, 2 3 YES 1.9 0.521795

HOLDEN, 1 3 YES 2.2 0.304269

NANTCOKE, 1 3 YES 0.7 0.291815
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Figure 3.8 Voltage
sensitivity analysis of
14-bus system.

(4) Transfer type 4—Area-Point: The POR (SOURCE) is an area and POD (SINK)
is a single injection node.

It is noted from Table 3.13 that the sensitivity of the transfer path will be the
same no matter which reference is used.

3.7.3 Sample Computation for Voltage Sensitivity Analysis

Table 3.14 and Figure 3.8 show the major VAR support sites as well as the correspond-
ing benefit factors LBF and VBF for the IEEE 14-bus system. It can be observed from
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TABLE 3.11 Test Results of Shift Factors for the Active Constraint T525 at Different Market
References

Station, Generator Area No. Unit in

Serve

Shift Factors on

Market Reference

at Station HOLDEN

Shift Factors

on Market Reference

at Station BVILLE

DOUGLAS, G2 1 YES −0.304269 0.013650

DOUGLAS, G1 1 YES −0.304269 0.013650

DOUGLAS, CT1 1 YES −0.304269 0.013650

DOUGLAS, CT2 1 YES −0.304269 0.013650

DOUGLAS, ST 1 YES −0.304269 0.013650

HEARN, G1 1 YES −0.304269 0.013650

HEARN, G2 1 YES −0.304269 0.013650

LAKEVIEW, G1 1 YES −0.304269 0.013650

BVILLE, 1 2 YES −0.317919 0.000000

WVILLE, 1 2 YES −0.328605 0.010686

CHENAUX, 1 3 YES 0.313618 0.631537

CHEALLS, 1 3 YES 0.217526 0.535445

CHEALLS, 2 3 YES 0.217526 0.535445

HOLDEN, 1 3 YES 0.000000 0.317946

NANTCOKE, 1 3 YES −0.012454 0.305465

Figure 3.8 that buses 9, 11, 12, and 13 have relatively big sensitivity values. The VAR
supports at these locations will have bigger benefits than other locations in the IEEE
14-bus system.

3.8 CONCLUSION

This chapter introduces several approaches to compute the sensitivities in the practical
transmission network and energy markets. The analysis and implementation details
of load sensitivity, voltage sensitivity, generator constraint shift factor, and area-based
constraint shift factor are presented. The chapter also comprehensively discusses how
to compute the sensitivities under the different references, as well as how to convert
the sensitivities based on the EMS system reference into the ones based on the market
system reference. These sensitivities’ calculations can be used to determine whether
the on-line capacity as indicated in the resource plan is located in the right place on
the network to serve the forecast demand. This chapter will be especially useful for
power engineers because sensitivity analysis has already become daily routine in the
power industry. The researchers, students and power engineers will also have the big
picture on power system sensitivity analysis.



3.8 CONCLUSION 87

TABLE 3.12 Test Results of Area Based Sensitivity for the Active Constraint T525 at Different
References

Area

Name

Area No. Sensitivities on

EMS Reference

at Station

DOUGLAS

Sensitivities on

Market Reference

at Station

HOLDEN

Sensitivities on

Market Reference

at Station

BVILLE

EAST 1 0.000000 −0.304269 0.013650

WEST 2 −0.019207 −0.323499 −0.005557

ECAR 3 0.454726 0.150458 0.468385

TABLE 3.13 Test Results of Sensitivity for Transfer Path for the Active Constraint T525 at
Different References

Transfer Path Path Type Sensitivities

on EMS

Reference at

Station

DOUGLAS

Sensitivities

on Market

Reference at

Station

HOLDEN

Sensitivities

on Market

Reference at

Station

BVILLE

ECAR-WEST Area-area 0.473933 0.473950 0.473940

WEST-EAST Area-area −0.019207 −0.019230 −0.019207

ECAR-EAST Area-area 0.454726 0.454727 0.454735

BV1-DOUGG1 Single point −0.013650 −0.013650 −0.013650

WV1-DOUGG1 Single point −0.024336 −0.024336 −0.024336

CX1-DOUGG1 Single point 0.617887 0.617887 0.617887

CS1-DOUGG1 Single point 0.521795 0.521795 0.521795

CS2-DOUGG1 Single point 0.521795 0.521795 0.521795

HD1-DOUGG1 Single point 0.304269 0.304269 0.304269

NK1-DOUGG1 Single point 0.291815 0.291815 0.291815

BV1-WV1 Single point 0.010686 0.010686 0.010686

CX1-CS1 Single point 0.096092 0.096092 0.096092

HD1-NK1 Single point 0.012454 0.012454 0.012454

HD1-BV1 Single point 0.317919 0.317919 0.317919

HD1-WV1 Single point 0.328605 0.328605 0.328605

BV1-EAST Point-area −0.013650 −0.013650 −0.013650

HD1-EAST Point-area 0.304269 0.304269 0.304269

HD1-WEST Point-area 0.323476 0.323476 0.323476

WV1-ECAR Point-area −0.479062 −0.479062 −0.479062

EAST-WV1 Area-point 0.024336 0.024336 0.024336

ECAR-BV1 Area-point 0.468376 0.468376 0.468376

WEST-DOUGG1 Area-point −0.019207 −0.019207 −0.019207
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TABLE 3.14 Voltage Sensitivity Analysis Results for IEEE 14 Bus Systems

VAR Support Site LBFi VBFi

Bus 4 0.000376 0.000855

Bus 5 0.000337 0.000884

Bus 8 0.002309 0.001775

Bus 9 0.007674 0.001989

Bus 10 0.002618 0.002097

Bus 11 0.007407 0.002175

Bus 12 0.006757 0.002268

Bus 13 0.008840 0.002122

PROBLEMS AND EXERCISES

1. What is the LODF?

2. What is the OTDF?

3. What does loss sensitivity mean?

4. What is the constraint shift factor?

5. What is the load distribution reference?

6. In practical application, why is load distribution reference generally used, rather than
generation distribution reference?

7. What are VBF and LBF?

8. How are the sensitivities for a given transfer path computed?

9. State the role of SFT in the energy market.

10. State “True” or “False”

10.1 The change of a unit power output will change the value of the sensitivities.

10.2 The matrix B′ is used to compute constraint shift factor sensitivities.

10.3 The matrix B′′ is used to compute loss sensitivities.

10.4 The values of the sensitivities will be the same for different references if the net-
work topology is unchanged.

10.5 The constraint shift factor of the slack bus is zero if a single slack bus is selected.

10.6 All sensitivities with respect to bus injections are not greater than 1.0

10.7 A source/sink may be a single unit, single load, an area, or group of nodes.
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C H A P T E R 4
CLASSIC ECONOMIC DISPATCH

This chapter first introduces the input–output characteristic of a power-generating
unit as well as the corresponding practical calculation method, and then presents
several well-known optimization methods to solve the classic economic dispatch
problem. Finally, the applications of the latest methods such as neural network and
genetic algorithm to classic economic dispatch (ED) are analyzed.

4.1 INTRODUCTION

The aim of real power economic dispatch (ED) is to make the generator’s fuel con-
sumption or the operating cost of the whole system minimal by determining the
power output of each generating unit under the constraint condition of the system
load demands. This is also called the classic economic dispatch, in which line secu-
rity constraints are neglected [1]. The fundamental of the ED problem is the set of
input–output characteristics of a power generating unit.

4.2 INPUT–OUTPUT CHARACTERISTICS OF
GENERATOR UNITS

4.2.1 Input–Output Characteristic of Thermal Units

For thermal units, we call the input–output characteristic the generating unit fuel
consumption function, or operating cost function. The unit of the generator fuel con-
sumption function is Btu per hour heat input to the unit (or MBtu/h). The fuel cost
rate times Btu/h is the $ per hour ($/h) input to the unit for fuel. The output of the
generating unit will be denoted by PG, the megawatt net power output of the unit.

In addition to fuel consumption cost, the operating cost of a unit includes labor
cost, maintenance cost, and fuel transportation cost. It is difficult to express these
costs directly as a function of the output of the unit, so these costs are included as a
fixed portion of the operating cost.

The thermal unit system generally consists of the boiler, the steam turbine, and
the generator. The input of the boiler is fuel and the output is the volume of steam.
The relationship between the input and output can be expressed as a convex curve.

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
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Figure 4.1 Input-output
characteristic of the generating unit.

The input of the turbine-generator unit is the volume of steam and the output is the
electrical power. A typical boiler–turbine-generator unit consists of a single boiler
that generates steam to drive a single turbine-generator set. The input–output char-
acteristic of the whole generating unit system can be obtained by combining directly
the input–output characteristic of the boiler and the input–output characteristic of
the turbine-generator unit. It is a convex curve, which is shown in Figure 4.1.

It can be observed from the input–output characteristic of the generating unit
that the power output is limited by the minimal and maximal capacities of the gener-
ating unit, that is,

PGmin ≤ PG ≤ PGmax (4.1)

The minimal power output is determined by the technical condition or other fac-
tors of the boiler or turbine. Generally, the minimum load at which a unit can operate is
influenced more by the steam generator and the regenerative cycle than by the turbine.
The only critical parameters for the turbine are the shell and rotor metal differential
temperatures, exhaust hood temperature, and rotor and shell expansion. Minimum
load limitations of the boiler are generally caused by fuel combustion stability, and
the values, which will differ with different types of boiler and fuel, are about 25–50%
of the design capacity. Minimum load limitations of the turbine–generator unit are
caused by inherent steam generator design constraints, which are generally about
10–15%. The maximal power output of the generating unit is determined by the
design capacity or rate capacity of the boiler, turbine, or generator.

Generally, the input–output characteristic of the generating unit is nonlinear.
The widely used input–output characteristic of the generating unit is a quadratic func-
tion, that is,

F = aPG
2 + bPG + c (4.2)

where a, b, and c are the coefficients of the input–output characteristic. The constant
c is equivalent to the fuel consumption of the generating unit operation without power
output, which is shown in Figure 4.1.
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4.2.2 Calculation of Input–Output Characteristic Parameters

The parameters of the input–output characteristic of the generating unit may be deter-
mined by the following approaches [2]:

1. based on the experiments of the generating unit efficiency;

2. based on the historic records of the generating unit operation;

3. based on the design data of the generating unit provided by manufacturer.

In the practical power systems, we can easily obtain the fuel statistical data and
power output statistic data. Through analyzing and computing some data set (Fk,Pk),
we can determine the shape of the input–output characteristic and the corresponding
parameters. For example, if the quadratic curve is the best match according to the
statistical data, we can use the least square method to compute the parameters. The
calculation procedures are as follows.

Let (Fk,Pk) be obtained from the statistical data, where k = 1, 2, … … n, and
the fuel curve is a quadratic function. To determine the coefficients a, b, and c, com-
pute the following error for each data pair (Fk,Pk):

ΔFk = (aPk
2 + bPk + c) − Fk (4.3)

According to the principle of least squares, we form the following objective
function and make it minimal, that is,

J = (ΔFk)2 =
n∑

k=1

(aPk
2 + bPk + c − Fk)2 (4.4)

We will get the necessary conditions for an extreme value of the objective func-
tion when we take the first derivative of the above function J with respect to each of
the independent variables a, b, and c, and set the derivatives equal to zero:

𝜕J
𝜕a

=
n∑

k=1

2P2
k(aPk

2 + bPk + c − Fk) = 0 (4.5)

𝜕J
𝜕b

=
n∑

k=1

2Pk(aPk
2 + bPk + c − Fk) = 0 (4.6)

𝜕J
𝜕c

=
n∑

k=1

2(aPk
2 + bPk + c − Fk) = 0 (4.7)

From equations (4.5)–(4.7), we get

(
n∑

k=1

P2
k

)
a +

(
n∑

k=1

Pk

)
b + nc =

n∑

k=1

Fk (4.8)
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(
n∑

k=1

P3
k

)
a +

(
n∑

k=1

Pk
2

)
b +

(
n∑

k=1

Pk

)
c =

n∑

k=1

(FkPk) (4.9)

(
n∑

k=1

Pk
4

)
a +

(
n∑

k=1

Pk
3

)
b +

(
n∑

k=1

Pk
2

)
c =

n∑

k=1

(FkPk
2) (4.10)

The coefficients a, b, and c can be obtained by solving the equations (4.8)–(4.10).

Example 4.1: We collected some statistical data for a generating unit in one power
plant. The capacity limits of the generator were

150 ≤ PG ≤ 200

Four sample data of unit consume fuel were selected, namely, 0.405, 0.379, 0.368,
and 0.399 Btu/MW⋅h, which correspond to power output 150, 170, 185, and 200 MW,
respectively (Figure 4.2). The corresponding fuel consumptions are computed and
listed in Table 4.1.

From Table 4.1, we get

n∑

k=1

Pk = 150 + 170 + 185 + 200 = 705

n∑

k=1

Pk
2 = 1502 + 1702 + 1852 + 2002 = 1.256 × 105

Power
50
55
60
65
70
75
80
85
90
95

100

100 150 200 250

Fuel

Figure 4.2 Four statistic data
points.

TABLE 4.1 Four Sample Data for a Generating Unit

Sample Data K = 1 K = 2 K = 3 K = 4

Unit consume fuel (Btu/MW⋅h) 0.405 0.379 0.368 0.399

Power output (MW) 150.0 170.0 185.0 200.0

Consume fuel (Btu/h) 60.75 64.43 68.08 79.80



4.2 INPUT–OUTPUT CHARACTERISTICS OF GENERATOR UNITS 95

n∑

k=1

Pk
3 = 1503 + 1703 + 1853 + 2003 = 2.2619 × 107

n∑

k=1

Pk
4 = 1504 + 1704 + 1854 + 2004 = 4.112 × 109

n∑

k=1

Fk = 60.75 + 64.43 + 68.08 + 79.80 = 273.06

n∑

k=1

FkPk = 60.75 × 150 + 64.43 × 170 + 68.08 × 185 + 79.80 × 200

= 4.86 × 104

n∑

k=1

FkPk
2 = 60.75 × 1502 + 64.43 × 1702 + 68.08 × 1852 + 79.80 × 2002

= 8.75 × 106

From equations (4.8)–(4.10), we get

1.256 × 105a + 705b + 4c = 273.06

2.2619 × 107a + 1.26 × 105b + 705c = 4.86 × 104

4.112 × 109a + 2.26 × 107b + 1.26 × 105c = 8.75 × 106

Solving these equations, we get the coefficients of the fuel consumption func-
tion of the generating unit:

a = 0.0009, b = 0.0457, c = 31.9

The obtained quadratic function for fuel consumption is as follows:

F = 0.0009PG
2 + 0.0457PG + 31.9

The simulated input–output curve is shown in Figure 4.3. It is noted that the
accuracy of calculation will be increased if more data samples are used.

4.2.3 Input–Output Characteristic of Hydroelectric Units

The input–output characteristic of the hydroelectric unit is similar to that of the ther-
mal unit, but the input, which is in terms of volume of water per unit time, is different.
The unit of water volume is in m3∕h. The output is the same, that is, electric power.
Figure 4.4 shows a typical input–output curve of a hydroelectric unit where the net
hydraulic head is constant. This characteristic shows an almost linear curve of input
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Figure 4.5 Hydroelectric unit
input-output curve with variable
water head.

water volume requirements per unit time as a function of power output as the power
output increases from minimum to rated load. Above this point corresponding to
the rated load, the water volume requirements increase as the efficiency of the unit
falls off.

Figure 4.5 shows the input–output curve of a hydroelectric plant with variable
head. This type of characteristic occurs whenever the variation in the storage pond
and/or afterbay elevations is a fairly large percentage of the overall net hydraulic head.
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4.3 THERMAL SYSTEM ECONOMIC DISPATCH
NEGLECTING NETWORK LOSSES

4.3.1 Principle of Equal Incremental Rate

Given a system that consists of two generators connected to a single bus serving a
received electrical load PD, the input–output characteristic of the two generating units
are F1(PG1) and F2(PG2), respectively. The total fuel consumption of the system F is
the sum of the fuel consumptions of the two generating units. Assuming there is no
power output limitation for both generators, the essential constraint on the operation
of this system is that the sum of the output powers must equal the load demand. The
economic power dispatch problem of the system, which is to minimize F under the
above-mentioned constraint, can be expressed as

minF = F1(PG1) + F2(PG2) (4.11)

s.t.

PG1 + PG2 = PD (4.12)

According to the principle of equal incremental rate [1], the total fuel consump-
tion F will be minimal if the incremental fuel rates of two generators are equal, that
is,

dF1

dPG1
=

dF2

dPG2
= 𝜆 (4.13)

where dFi

dPGi
is the incremental fuel rate of generating unit i, which corresponds to the

slope of the input–output curve of the generating unit.
If the two generators operate under different incremental fuel rates, and

dF1

dPG1
>

dF2

dPG2
(4.13)

the total output power remains the same. If generator 1 reduces output power by ΔP,
generator 2 will increase output power by ΔP. Then generator 1 will reduce fuel
consumption by dF1

dPG1
ΔP, and generator 2 will increase fuel consumption by dF2

dPG2
ΔP.

The total savings in fuel consumption will be

ΔF =
dF1

dPG1
ΔP −

dF2

dPG2
ΔP =

(
dF1

dPG1
−

dF2

dPG2

)
ΔP > 0 (4.14)

It can be observed from equation (4.14) that ΔF will be zero when dF1
dPG1

= dF2
dPG2

, that

is, the incremental fuel rates of the two generators are equal.
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Example 4.2: The input–output characteristics of two generating units are as
follows:

F1 = 0.0008PG1
2 + 0.2PG1 + 5 Btu∕h

F2 = 0.0005PG2
2 + 0.3PG2 + 4 Btu∕h

We wish to determine the economic operation point for these two units when deliv-
ering a total of 500 MW power demand.

First of all, we can obtain the incremental fuel rate of the two generating units
as follows:

𝜆1 =
dF1

dPG1
= 0.0016PG1 + 0.2

𝜆1 =
dF2

dPG2
= 0.001PG2 + 0.3

According to the principle of equal incremental rate (4.13), we have

𝜆1 = 𝜆2

that is,
0.0016PG1 + 0.2 = 0.001PG2 + 0.3

or
1.6PG1 − PG2 = 100

Given the system load is 500 MW, then

PG1 + PG2 = 500

Solving the above two equations for PG1,PG2, we get

PG1 = 230.77 MW

PG2 = 269.23 MW

Example 4.3: Suppose the input–output characteristics of the two generating units
are slightly different from that in Example 4.2, given by the following:

F1 = 0.0008PG1
2 + 0.02PG1 + 5 Btu∕h

F2 = 0.0005PG2
2 + 0.03PG2 + 4 Btu∕h

We still wish to determine the economic operation point for these two units when
delivering a total of 500 MW power demand.
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First of all, we can obtain the incremental fuel rate of the two generating units
as follows:

𝜆1 =
dF1

dPG1
= 0.0016PG1 + 0.02

𝜆2 =
dF2

dPG2
= 0.001PG2 + 0.03

According to the principle of equal incremental rate (4.13), we have

𝜆1 = 𝜆2

that is,
0.0016PG1 + 0.02 = 0.001PG2 + 0.03

or
1.6PG1 − PG2 = 10

Given the system load is 500 MW, then

PG1 + PG2 = 500

Solving the above two equations for PG1,PG2, we get

PG1 = 196.15 MW

PG2 = 303.85 MW

4.3.2 Economic Dispatch without Network Losses

Neglecting the Constraints of Power Output The equal incremental principle
can be used for a system with N thermal-generating units. Given that the input–output
characteristic of N generating units are F1(PG1),F2(PG2), … ,Fn(PGn), respectively,
and the total system load is PD. The problem is to minimize total fuel consumption F
subject to the constraint that the sum of the power generated must equal the received
load, that is,

minF = F1(PG1) + F2(PG2) + … + Fn(PGn) =
N∑

i=1

Fi(PGi) (4.15)

such that
N∑

i=1

PGi = PD (4.16)

This is a constrained optimization problem, and it can be solved by the
Lagrange multiplier method. First of all, the Lagrange function should be formed by
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adding the constraint function to the objective function after the constraint function
has been multiplied by an undetermined multiplier.

L = F + 𝜆

(
PD −

N∑

i=1

PGi

)
(4.17)

where λ is the Lagrange multiplier.
The necessary conditions for the extreme value of the Lagrange function are to

set the first derivative of the Lagrange function with respect to each of the independent
variables equal to zero.

𝜕L
𝜕PGi

= 𝜕F
𝜕PGi

− 𝜆 = 0, i = 1, 2, … N (4.18)

or
𝜕F
𝜕PGi

= 𝜆, i = 1, 2, … ,N (4.19)

Since the fuel consumption function of each generating unit is only related to
its own power output, equation (4.19) can be written as

dFi

dPGi
= 𝜆, i = 1, 2, … ,N (4.20)

or
dF1

dPG1
=

dF2

dPG2
= …

dFN

dPGN
= 𝜆 (4.21)

Equation (4.20) is the principle of equal incremental rate of economic power opera-
tion for multiple generating units.

Example 4.4: Suppose the input–output characteristics of three generating units
are as follows:

F1 = 0.0006PG1
2 + 0.5PG1 + 6 Btu∕h

F2 = 0.0005PG2
2 + 0.6PG2 + 5 Btu∕h

F3 = 0.0007PG3
2 + 0.4PG3 + 3 Btu∕h

We wish to determine the economic operation point for these three units when deliv-
ering a total of 500 MW and 800 MW power demand, respectively.

(A) Total load PD = 500 MW
The incremental fuel rates of the three generating units are calculated as
follows.

𝜆1 =
dF1

dPG1
= 0.0012PG1 + 0.5
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𝜆2 =
dF2

dPG2
= 0.001PG2 + 0.6

𝜆3 =
dF3

dPG3
= 0.0014PG3 + 0.4

According to the principle of equal incremental rate, we have

𝜆1 = 𝜆2 = 𝜆3

that is,

0.0012PG1 + 0.5 = 0.001PG2 + 0.6 = 0.0014PG3 + 0.4

From the above equation, we get

1.2PG1 − PG2 = 100

1.2PG1 − 1.4PG3 = −100

Given a system load is 500 MW, then

PG1 + PG2 + PG3 = 500

Solving the above three equations for PG1,PG2,PG3, we get

PG1 = 172.897 MW

PG2 = 107.477 MW

PG3 = 219.626 MW

The corresponding system incremental fuel rate under this load level is

𝜆 = 0.70748

(B) Total load PD = 800 MW
Similar to (A), we can get the following equations.

1.2PG1 − PG2 = 100

1.2PG1 − 1.4PG3 = −100

PG1 + PG2 + PG3 = 800
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Solving the above three equations for PG1,PG2,PG3, we get

PG1 = 271.028 MW

PG2 = 225.234 MW

PG3 = 303.738 MW

The corresponding system incremental fuel rate under this load level is

𝜆 = 0.82523

Considering the Constraints of Power Output We have discussed the equal
incremental principle of economic operation. Thus, we know that the necessary con-
dition for economic operation of a thermal power system is that the incremental fuel
rates (or incremental cost rates) of all the units are equal. However, we have not con-
sidered the two inequalities, that is, the power output of each unit must be greater
than or equal to the minimum power permitted and must also be less than or equal to
the maximum power permitted on that particular unit.

Considering the inequality constraints, the problem of ED can be written as
follows;

minF = F1(PG1) + F2(PG2) + … + Fn(PGn) =
N∑

i=1

Fi(PGi) (4.22)

s.t.
N∑

i=1

PGi = PD (4.23)

PGimin ≤ PGi ≤ PGimax (4.24)

The equal incremental principle can be still applied to equations (4.22)–(4.24).
The calculation process is as follows:

(1) Neglect the inequality equation (4.24). Distribute the power among the units
according to the equal incremental principle.

(2) Check the power output limits for each unit according to equation (4.24). If the
power output is outside the limits, set the power output equal to the correspond-
ing limit, that is,

If PGk ≥ PGkmax,PGk = PGkmax (4.25)

If PGk ≤ PGkmin,PGk = PGkmin (4.26)

(3) Handle the violated unit as a negative load, that is,

P′
Dk = −PGk for violated units k(k = 1, … nk)
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(4) Recompute the power balance equation as follows;

N∑

i = 1
i ∉ nk

PGi = PD +
nk∑

k=1

P′
Dk (4.27)

or
N∑

i = 1
i ∉ nk

PGi = PD −
nk∑

k=1

PGk (4.28)

(5) Go back to step (1) until the inequalities of all the units are met.

Example 4.5: Example 4.3 is used here but considering the inequality constraints
of two units, which are given as follows:

100 ≤ PG1 ≤ 250 MW

150 ≤ PG2 ≤ 300 MW

From Example 4.3, we know the economic operation point for these two units without
inequalities when delivering a total of 500 MW power demand, that is,

PG1 = 196.15 MW

PG2 = 303.85 MW

By checking the inequality constraints of the units, we can see that the power output
of unit 2 violated its upper limit. Thus, set the power output of unit 2 to its upper
limit.

PG2 = 303.85 ≥ 300(PG2max),PG2 = 300 MW

So the power dispatch becomes

PG1 = 200 MW

PG2 = 300 MW

Example 4.6: Example 4.4 is used here but considering the inequality constraints
of the three units, which are given as follows:

100 ≤ PG1 ≤ 250 MW

100 ≤ PG2 ≤ 250 MW

150 ≤ PG3 ≤ 350 MW



104 CHAPTER 4 CLASSIC ECONOMIC DISPATCH

(A) Total load PD = 500 MW
When delivering a total of 500 MW power demand, the dispatch from Example
4.4 is

PG1 = 172.897 MW

PG2 = 107.477 MW

PG3 = 219.626 MW

By checking the inequality constraints of the units, we know that all their power
outputs are within the limits. Thus, they are the optimum results and there is no
violation of the inequality constraints.

(B) Total load PD = 800 MW
When delivering a total of 800 MW power demand, the dispatch from Example
4.4 is

PG1 = 271.028 MW

PG2 = 225.234 MW

PG3 = 303.738 MW

By checking the inequality constraints of units, we see that the power output of
unit 1 violated its upper limit. According to equation (4.25), we get

PG1 = 250 MW

According to equation (4.27), we have

P′
D1 = −250 MW

From equation (4.28), we get the new power balance equation

PG2 + PG3 = 800 − 250 = 550

Applying the principle of equal incremental rate for units 2 and 3, we have

𝜆2 =
dF2

dPG2
= 0.001PG2 + 0.6

𝜆3 =
dF3

dPG3
= 0.0014PG3 + 0.4

𝜆2 = 𝜆3

that is,
0.001PG2 + 0.6 = 0.0014PG3 + 0.4
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Then we can get the following two equations

PG2 − 1.4PG3 = −200

PG2 + PG3 = 550

Solving the above three equations, the power dispatch becomes

PG1 = 250.0 MW

PG2 = 237.5 MW

PG3 = 312.5 MW

4.4 CALCULATION OF INCREMENTAL POWER LOSSES

Network losses were neglected in the previous sections on ED. It is much more dif-
ficult to solve the ED problem with network losses than the previous cases with no
losses. There have been two general approaches to compute network losses and the
corresponding incremental power losses. The first is the development of a mathemati-
cal expression for the losses in the network solely as a function of the power output of
each of the units. This is called the B-coefficient method. The other method is based
on power flow equations. The details on how to compute incremental power losses
are discussed in Chapter 3. Here, we just describe the simple B-coefficient method.

Let SL be the plural power losses of the network; the corresponding real and
reactive power losses being PL and QL. The plural power losses equal the sum of the
plural power injections of nodes, which can be expressed as

SL = PL + jQL = V̇T
∗
I (4.29)

V̇ = Zİ (4.30)

Z = R + jX (4.31)

İ = IP + jIQ (4.32)

where

V: the node voltage
I: the node current

IP: the node current component corresponding to real power
IQ: the node current component corresponding to reactive power
Z: the node impedance matrix.

Substituting equations (4.30)–(4.32) into equation (4.29), and we get the real power
losses as follows:

PL = IT
P RIP + IT

QRIQ (4.33)



106 CHAPTER 4 CLASSIC ECONOMIC DISPATCH

The node current can also be expressed as

İi =
Pi + jQi

V̇i

=
Pi + jQi

Vie
−j𝜃i

=
(Pi + jQi)ej𝜃i

Vi
(4.34)

Since
ej𝜃i = cos 𝜃i + j sin 𝜃i (4.35)

thus,

İi =
(Pi + jQi)(cos 𝜃i + j sin 𝜃i)

Vi
(4.36)

From equation (4.36), we get

IPi =
(Pi cos 𝜃i + Qi sin 𝜃i)

Vi
(4.37)

Iqi =
(Pi sin 𝜃i − Qi cos 𝜃i)

Vi
(4.38)

Substituting equations (4.37), (4.38) into equation (4.33), we get

PL = [PT QT ]
[

A −B
B A

] [
P
Q

]
(4.39)

Where the elements of A and B are

Aij =
Rij cos(𝜃i − 𝜃j)

ViVj
(4.40)

Bij =
Rij sin(𝜃i − 𝜃j)

ViVj
(4.41)

Suppose each node power consists of power generation and power demand. Then the
node power and matrices A and B can be divided into two parts, namely,

PT = [PT
G PT

D] (4.42)

QT = [QT
G QT

D] (4.43)

A =
[

AGG AGD
ADG ADD

]
(4.44)

B =
[

BGG BGD
BDG BDD

]
(4.45)



4.5 THERMAL SYSTEM ECONOMIC DISPATCH WITH NETWORK LOSSES 107

Substituting equations (4.42)–(4.45) into equation (4.39), we get

PL =
[
PT

G QT
G

] [AGG −BGG
BGG AGG

] [
PG
QG

]
+
[
CT

GD CT
DG

] [PG
QG

]
+ C (4.46)

where

C = [PT
D QT

D]
[

ADD −BDD
BDD ADD

] [
PD
QD

]
(4.47)

CGD = 2(BGDQD − AGDPD) (4.48)

CDG = 2(BT
DGPD − AT

DGQD) (4.49)

Assuming the relationship between real and reactive power output of the generator is
linear, that is,

QGi = QG0i − DiPGi (4.50)

equation (4.46) can be written as

PL = PT
GBLPG + BT

L0PG + B0 (4.51)

where

BL = FAGGF + AGG + 2FBGG (4.52)

BT
L0 = 2QT

G0(AGGF + BGG) + CT
DGF + CT

GD (4.53)

B0 = QT
G0AGGQG0 + CT

DGQG0 + C (4.54)

Equation (4.51) is the B-coefficient formula for network losses. The incremental
power losses can be obtained from equation (4.51):

𝜕PL

𝜕PG
= 2BLPG + BT

L0 (4.55)

4.5 THERMAL SYSTEM ECONOMIC DISPATCH WITH
NETWORK LOSSES

Considering the network power losses, the problem of thermal system ED can be
written as follows:

minF = F1(PG1) + F2(PG2) + · · · + Fn(PGn) =
N∑

i=1

Fi(PGi) (4.56)
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such that
N∑

i=1

PGi = PD + PL (4.57)

PGimin ≤ PGi ≤ PGimax (4.58)

The Lagrange function is written as

L = F + 𝜆

(
PD + PL −

N∑

i=1

PGi

)
(4.59)

The necessary conditions for the extreme value of the Lagrange function are to
set the first derivative of the Lagrange function with respect to each of the independent
variables equal to zero.

𝜕L
𝜕PGi

=
dFi

dPGi
− 𝜆

(
1 −

𝜕PL

𝜕PGi

)
= 0, i = 1, 2, … ,N (4.60)

or
𝜕Fi

𝜕PGi
× 1(

1 − 𝜕PL
𝜕PGi

) =
dFi

dPGi
ai = 𝜆, i = 1, 2, … ,N (4.61)

where
ai =

1(
1 − 𝜕PL

𝜕PGi

) (4.62)

is the correction coefficient for network losses.
Considering the network losses, the equal incremental principle of classic ED

can be written as
𝜕Fi

𝜕PGi
ai = 𝜆, i = 1, 2, … ,N (4.63)

or
dF1

dPG1
a1 =

dF2

dPG2
a2 = …

dFN

dPGN
aN = 𝜆 (4.64)

Equation (4.64) is also called the coordination equation of economic power operation.
The solution procedure of thermal system economic power dispatch is as

follows:

(1) Pick a set of staring values PG0i that sum to the load.

(2) Calculate the incremental fuel dFi

dPGi
.

(3) Calculate the incremental losses 𝜕PL

𝜕PGi
as well as the total losses.

(4) Calculate the value of λ and PGi according to the coordination equation (4.64)
and power balance equation.
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(5) Compare the PGi from step (4) with the starting points PGi0. If there is no sig-
nificant change in any one of the values, go to step (6), otherwise go back to
step (2).

(6) Done.

4.6 HYDROTHERMAL SYSTEM ECONOMIC DISPATCH

4.6.1 Neglecting Network Losses

The hydrothermal system ED is usually more complex than the economic operation
of an all-thermal generation system. All hydro-systems are different. The reasons
for the differences are the natural differences in the watersheds, the differences in
the man-made storage and release elements used to control the water flows, and the
very many different types of natural and manmade constraints imposed on the oper-
ation of hydroelectric systems. The coordination of the operation of hydroelectric
plants involves the scheduling of water release. According to the scheduling period,
the hydro-system operation can be divided into long-range hydro-scheduling and
short-range hydro-scheduling problems.

The long-range hydro-scheduling problem involves the long-range forecasting
of water availability and the scheduling of reservoir water release for an interval
of time that depends on the reservoir capacities. Typical long-range scheduling
is for anywhere from 1 week to 1 year or several years. For hydro schemes with
a capacity of impounding water over several seasons, the long-range problem
involves meteorological and statistics analyses. Herein we focus on the short-range
hydro-scheduling problem.

Short-range hydro-scheduling refers to a time period from 1 day to 1 week.
It involves hour-by-hour scheduling of all generation on a hydrothermal system to
achieve minimum production cost (or minimum fuel consumption) for the given time
period.

Let PT , F(PT ) be the power output and the input–output characteristic of ther-
mal plant, and let PH , W(PH) be the power output and input–output characteristic of
the hydroelectric plant. The hydrothermal system ED problem can be expressed as

minF∑ =
∫

T

0
F[PT (t)]dt (4.65)

such that

PH(t) + PT(t) − PD(t) = 0 (4.66)

∫

T

0
W[PH(t)]dt − W∑ = 0 (4.67)

We divide the operation period T into s time stages

T =
s∑

k=1

Δtk (4.68)
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For any time stage, suppose the power output of the hydro plant and thermal plant as
well as load demand are constant. Then, equations (4.66) and (4.67) are changed as

PHk + PTk − PDk = 0, k = 1, 2, … , s (4.69)

s∑

k=1

W(PHk)Δtk − W∑ =
s∑

k=1

WkΔtk − W∑ = 0 (4.70)

The objective function (4.65) is also changed as

F∑ =
s∑

k=1

F(PTk)Δtk =
s∑

k=1

FkΔtk (4.71)

The Lagrange function is written as

L =
s∑

k=1

FkΔtk −
s∑

k=1

𝜆k(PHk + PTk − PDk)Δtk + 𝛾

(
s∑

k=1

WkΔtk − W∑

)
(4.72)

The necessary conditions for the extreme value of the Lagrange function are

𝜕L
𝜕PHk

= 𝛾
dWk

dPHk
Δtk − 𝜆kΔtk = 0 k = 1, 2, … , s (4.73)

𝜕L
𝜕PTk

=
dFk

dPTk
Δtk − 𝜆kΔtk = 0 k = 1, 2, … , s (4.74)

𝜕L
𝜕𝜆k

= −(PHk + PTk − PDk)Δtk = 0 k = 1, 2, … , s (4.75)

𝜕L
𝜕𝛾

=
s∑

k=1

WkΔtk − W∑ = 0 (4.76)

From equations (4.73) and (4.74), we get

dFk

dPTk
= 𝛾

dWk

dPHk
= 𝜆k k = 1, 2, … , s (4.77)

If the time stage is very short, equation (4.77) can be expressed as

dF
dPT

= 𝛾
dW
dPH

= 𝜆 (4.78)

Equation (4.78) is the equal incremental principle of the hydrothermal system ED.
It means that when the thermal unit increases power output ΔP, the incremental fuel
consumption will be

ΔF = dF
dPT

ΔP (4.79)
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When the hydro unit increases power output ΔP, the incremental water consumption
will be

ΔW = dW
dPH

ΔP (4.80)

From equations (4.78)–(4.80), we obtain

𝛾 = ΔF
ΔW

(4.81)

where 𝛾 is the coefficient that converts water consumption to fuel. In other words, the
water consumption of a hydro unit multiplied by 𝛾 is equivalent to the fuel consump-
tion of a thermal unit. Thus, the hydro unit is equivalent to a thermal unit.

Generally, the value of 𝛾 is related to given water consumption of the hydro unit
during a time period (e.g., 1 day). If the given water consumption is very high, the
hydro unit can produce a larger power output to meet the load demand. In this case,
a smaller value of 𝛾 will be selected. Otherwise, a bigger value of 𝛾 will be selected.
The calculation procedures of hydrothermal system ED are as follows:

(1) Given an initial value 𝛾(0). Set the iteration number k = 0

(2) Compute power distribution for hydrothermal system for all time stages accord-
ing to equation (4.77).

(3) Check if the total water consumption W(k) equals the given water consumption,
that is,

|||W (k) − W∑||| < 𝜀 (4.82)

If this condition is met, stop calculation, otherwise, go to the next step.

(4) If W(k) > W∑ it means that the selected 𝛾 is too small. Make 𝛾(k + 1) > 𝛾(k).
If W(k) < W∑ it means that the selected 𝛾 is too big. Make 𝛾(k + 1) < 𝛾(k). Go
back to step (2).

Example 4.7: A system has one thermal plant and one hydro plant. The
input–output characteristic of the thermal plant is

F = 0.00035P2
T + 0.4PT + 3 Btu∕h

The input–output characteristic of the hydro plant is

W = 0.0015PH
2 + 0.8PH + 2 m3∕s

The daily water consumption of hydro plant is

W∑ = 1.5 × 107 m3

The daily load demands of the system are as follows (Figure 4.6):
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Figure 4.6 Daily load demands for Example 4.7.

The power output limits of the thermal plant is

50 ≤ PT ≤ 600 MW

The power output limits of the hydro plant is

50 ≤ PH ≤ 450 MW

The problem is to determine the ED for this hydrothermal system.
According to the input–output characteristics of the thermal plant and hydro

plant and equation (4.78), we can write the coordination equation as follows:

0.0007 PT + 0.4 = 𝛾(0.003PH + 0.8)

From the load curve, we can know that there are three time stages. The loads are the
same within each time stage. Thus, for each time stage, we get the corresponding
power balance equation.

PHk + PTk = PDk k = 1, 2, 3

From the above two equations, we get

PHk =
0.4 − 0.8𝛾 + 0.0007PDk

0.003𝛾 + 0.0007
k = 1, 2, 3

PTk =
−0.4 + 0.8𝛾 + 0.003𝛾PDk

0.003𝛾 + 0.0007
k = 1, 2, 3

Select the initial value of 𝛾 to be 0.5. For the first time stage, the load level is 350 MW
and we get

PH1 = 0.4 − 0.8 × 0.5 + 0.0007 × 350
0.003 × 0.5 + 0.0007

= 111.36 MW

PT1 = −0.4 + 0.8 × 0.5 + 0.003 × 0.5 × 350
0.003 × 0.5 + 0.0007

= 238.64 MW



4.6 HYDROTHERMAL SYSTEM ECONOMIC DISPATCH 113

For the second time stage, the load level is 700 MW and we get

PH2 = 0.4 − 0.8 × 0.5 + 0.0007 × 700
0.003 × 0.5 + 0.0007

= 222.72MW

PT2 = −0.4 + 0.8 × 0.5 + 0.003 × 0.5 × 700
0.003 × 0.5 + 0.0007

= 477.28MW

For the third time stage, the load level is 500 MW and we get

PH3 = 0.4 − 0.8 × 0.5 + 0.0007 × 500
0.003 × 0.5 + 0.0007

= 159.09MW

PT3 = −0.4 + 0.8 × 0.5 + 0.003 × 0.5 × 500
0.003 × 0.5 + 0.0007

= 340.91MW

According to the power output of the hydro plant and input–output characteristic of
the hydro plant, we can compute the daily water consumption.

W∑ = (0.0015 × 111.362 + 0.8 × 111.36 + 2) × 8 × 3600 +

(0.0015 × 222.722 + 0.8 × 222.72 + 2) × 10 × 3600 +

(0.0015 × 159.092 + 0.8 × 159.09 + 2) × 6 × 3600 = 1.5937 × 107m3

The water consumption is greater than the daily given amount. So increase the value
of 𝛾 , say 𝛾 = 0.52, recompute the power output. For the first time stage, the load level
is 350 MW and we get

PH1 = 0.4 − 0.8 × 0.52 + 0.0007 × 350
0.003 × 0.5 + 0.0007

= 101.33MW

PT1 = −0.4 + 0.8 × 0.52 + 0.003 × 0.52 × 350
0.003 × 0.52 + 0.0007

= 248.67MW

For the second time stage, the load level is 700 MW and we get

PH2 = 0.4 − 0.8 × 0.52 + 0.0007 × 700
0.003 × 0.52 + 0.0007

= 209.73MW

PT2 = −0.4 + 0.8 × 0.52 + 0.003 × 0.52 × 700
0.003 × 0.52 + 0.0007

= 490.27MW

For the third time stage, the load level is 500 MW and we get

PH3 = 0.4 − 0.8 × 0.52 + 0.0007 × 500
0.003 × 0.52 + 0.0007

= 147.79MW

PT3 = −0.4 + 0.8 × 0.52 + 0.003 × 0.52 × 500
0.003 × 0.52 + 0.0007

= 352.21MW
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TABLE 4.2 Iteration Process of Example 4.7

Iteration 𝛾 PH1(MW) PH1(MW) PH1(MW) W∑(107 m3)

1 0.5000 111.360 222.720 159.090 1.5937

2 0.5200 101.330 209.730 147.790 1.4628

3 0.5140 104.280 213.560 151.110 1.5010

4 0.5145 104.207 213.463 151.031 1.5000

Then the daily water consumption can be computed as

W∑ = (0.0015 × 101.332 + 0.8 × 101.33 + 2) × 8 × 3600 +

(0.0015 × 209.732 + 0.8 × 209.73 + 2) × 10 × 3600 +

(0.0015 × 147.792 + 0.8 × 147.79 + 2) × 6 × 3600 = 1.4628 × 107m3

The water consumption is less than the daily given amount. So reduce the value of
γ, recompute the power output until the water consumption equals the daily given
amount, or equation (4.82) is satisfied. The iteration process is listed in Table 4.2.

After fourth iteration, the water consumption almost equals the daily given
amount. Stop the calculation.

4.6.2 Considering Network Losses

Suppose there are m hydro plants and n thermal plants. The system load is given in the
time period. The given water consumption of hydro plant j is W∑

j. The hydrothermal
system ED with network loss can be expressed as follows:

minF∑ =
n∑

i=1
∫

T

0
Fi[PTi(t)]dt (4.83)

such that
m∑

j=1

PHj(t) +
n∑

i=1

PTi(t) − PL(t) − PD(t) = 0 (4.84)

∫

T

0
Wj[PHj(t)]dt − W∑

j = 0 (4.85)

Similarly to Section 4.6.1, we divide the operation period T into s time stages

T =
s∑

k=1

Δtk (4.86)

We get

F∑ =
n∑

i=1

s∑

k=1

Fik(PTik)Δtk (4.87)
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m∑

j=1

PHjk +
n∑

i=1

PTik − PLk − PDk = 0 k = 1, 2, … , s (4.88)

s∑

k=1

Wjk(PHjk)Δtk − W∑
j = 0, j = 1, 2, … ,m (4.89)

The Lagrange function will be

L =
n∑

i=1

s∑

k=1

Fik(PTik)Δtk −
s∑

k=1

𝜆k

(
m∑

i=1

PHik +
n∑

i=1

PTik − PLk − PDk

)
Δtk

+
m∑

j=1

𝛾j

(
s∑

k=1

Wjk

(
PHjk

)
Δtk − W∑

j

)
(4.90)

The necessary conditions for the extreme value of the Lagrange function are

𝜕L
𝜕PHjk

= 𝛾j

dWjk

dPHjk
Δtk − 𝜆k

(
1 −

𝜕PLk

𝜕PHjk

)
Δtk = 0

j = 1, 2, … ,m; k = 1, 2, … , s (4.91)

𝜕L
𝜕PTik

=
dFik

dPTik
Δtk − 𝜆k

(
1 −

𝜕PLk

𝜕PTik

)
Δtk = 0

i = 1, 2, … , n; k = 1, 2, … , s (4.92)

𝜕L
𝜕𝜆k

= −

(
m∑

j=1

PHjk +
n∑

i=1

PTik − PLk − PDk

)
Δtk = 0

k = 1, 2, … , s (4.93)

𝜕L
𝜕𝛾j

=
s∑

k=1

WjkΔtk − Wj
∑ = 0 j = 1, 2, … m (4.94)

From equations (4.91) and (4.92), we get

dFik

dPTik
× 1

1 − 𝜕PLk

𝜕PTik

= 𝛾j

dWjk

dPHjk
× 1

1 − 𝜕PLk

𝜕PHjk

= 𝜆k

k = 1, 2, … , s (4.95)
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Equation (4.95) is true for any time stage, that is,

dFi

dPTi
× 1

1 − 𝜕PL
𝜕PTi

= 𝛾j

dWj

dPHj
× 1

1 − 𝜕PL
𝜕PHj

= 𝜆 (4.96)

Equation (4.96) is the coordination equation of hydrothermal system ED, considering
network losses.

4.7 ECONOMIC DISPATCH BY GRADIENT METHOD

4.7.1 Introduction

We discussed the equal incremental principle for classical ED in the previous sections.
Generally, the equal incremental principle is good only if the input–output charac-
teristic of the generation unit is a quadratic function, or the incremental input–output
characteristic is a piecewise linear function [2]. But the input–output characteristic
of the generating unit may be a cubic function, or more complex. For example,

FGi = A + BPGi + CPGi
2 + DPGi

3 + ……

Thus, other methods are needed to get the optimum solution for the above function.
We discuss the gradient method in this section.

4.7.2 Gradient Search in Economic Dispatch

The principle of the gradient method is that the minimum of a function, f (x), can be
found by a series of steps that always go in the downward direction. The gradient of
the function f (x) can be expressed as follows:

∇f =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕f

𝜕x1

𝜕f

𝜕x2

⋮

𝜕f

𝜕xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4.97)

The gradient ∇f always points to the direction of maximum ascent. If we want
to move in the direction of maximum descent, we negate the gradient. Thus the direc-
tion of steepest descent for minimizing a function can be found by use of the direction
of the negative gradient. Given any starting point x0, the new point x1 should be
obtained as follows:

x1 = x0 − 𝜀∇f (4.98)

where 𝜀 is a scale that is used to process the convergence of the gradient method.
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Applying the gradient method to ED, the objective function will be

min F =
N∑

i=1

fi(PGi) (4.99)

The constraint is the real power balance equation, that is,

N∑

i=1

PGi = PD (4.100)

As mentioned before, to solve this classic ED problem, the Lagrange function should
be constructed first, that is,

L = F + 𝜆

(
PD −

N∑

i=1

PGi

)
=

N∑

i=1

fi(PGi) + 𝜆

(
PD −

N∑

i=1

PGi

)
(4.101)

The gradient of the Lagrange function is

∇L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕L
𝜕PG1

𝜕L
𝜕PG2

⋮

𝜕L
𝜕PGN

𝜕L
𝜕𝜆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

df1
(
PG1

)

dPG1
− 𝜆

df2(PG2)
dPG2

− 𝜆

⋮

dfN(PGN)
dPGN

− 𝜆

PD −
N∑

i=1

PGi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4.102)

To use the gradient ∇L to solve the ED problem, the starting values
P0

G1,P
0
G2, … ,P0

GN , and 𝜆0 should be given. Then the new values will be computed
by the following equation.

x1 = x0 − 𝜀∇L (4.103)

where the vectors x1, x0 are

x0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

P0
G1

P0
G2

⋮

P0
GN

𝜆0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4.104)
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x1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

P1
G1

P1
G2

⋮

P1
GN

𝜆1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4.105)

The more general expression of the gradient search is as follows:

xn = xn−1 − 𝜀∇L (4.106)

where n is the iteration number.
The calculation steps for applying the gradient method to classic ED are sum-

marized in the following.

Step 1: Select the starting values P0
G1,P

0
G2, … ,P0

GN , where

P0
G1,P

0
G2 + · · · + P0

GN = PD

Step 2: Compute the initial 𝜆0
i for each generator.

𝜆0
i =

dfi
(
PGi

)

𝜕PGi

|||||P0
Gi

, i = 1, …… ,N

Step 3: Compute the initial average incremental cost 𝜆0

𝜆0 = 1
N

N∑

i=1

𝜆0
i

Step 4: Compute the gradient as follows:

∇L1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

df1
(
P0

G1

)

dPG1
− 𝜆0

df2(P0
G2)

dPG2
− 𝜆0

⋮

dfN(P0
GN)

dPGN
− 𝜆0

PD −
N∑

i=1

P0
Gi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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Step 5: If ∇L = 0, the solution converges. Stop the iteration. Otherwise, go to the
next step.

Step 6: Select a scale 𝜀 for handling the convergence.

Step 7: Compute the new values P1
G1,P

1
G2, … ,P1

GN , 𝜆
1 according to

equation (4.106).

Step 8: Substitute the new values into equation (4.102) in step (4), and recompute
the gradient.

Example 4.8: For the same data in Example 4.4, solve for the ED with a total load
of 500 MW. The solution is as follows:

Select the starting values P0
G1 = 300, P0

G2 = 150, P0
G3 = 250, and

P0
G1 + P0

G2 + P0
G3 = 500

Compute the initial 𝜆0
i for each generator.

𝜆0
1 =

df1(P0
G1)

dPG1
= 0.0012 × 150 + 0.5 = 0.68

𝜆0
2 =

df2(P0
G2)

dPG2
= 0.001 × 100 + 0.6 = 0.70

𝜆0
3 =

df3(P0
G3)

dPG3
= 0.0014 × 250 + 0.4 = 0.75

Compute the initial average incremental cost 𝜆0

𝜆0 = 1
3

3∑

i=1

𝜆0
i = 1

3
(0.68 + 0.7 + 0.75) = 0.71

Compute the gradient as follows:

∇L1 =
⎡
⎢
⎢
⎢⎣

0.68 − 0.71
0.70 − 0.71
0.75 − 0.71

500 − (150 + 100 + 250)

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

−0.03
−0.01
0.04
0.00

⎤
⎥
⎥
⎥⎦

Select a scale 𝜀 = 300 for handling the convergence, and compute the new val-
ues P1

G1,P
1
G2, … , P1

GN , 𝜆
1 according to equation (4.106).

⎡
⎢
⎢
⎢
⎢⎣

P1
G1

P1
G2

P1
G3

𝜆1

⎤
⎥
⎥
⎥
⎥⎦

=
⎡
⎢
⎢
⎢⎣

150
100
250
0.71

⎤
⎥
⎥
⎥⎦
− 300

⎡
⎢
⎢
⎢⎣

−0.03
−0.01
0.04
0.0

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

159
103
238
0.71

⎤
⎥
⎥
⎥⎦
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Then compute the new gradient as follows:

∇L2 =
⎡
⎢
⎢
⎢⎣

(0.0012 × 159 + 0.5) − 0.71
(0.0010 × 103 + 0.6) − 0.71
(0.0014 × 238 + 0.4) − 0.71

500 − (159 + 103 + 238)

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

−0.0192
−0.0070
0.0232
0.0000

⎤
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

P2
G1

P2
G2

P2
G3
𝜆2

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

159
103
238
0.71

⎤
⎥
⎥
⎥⎦
− 300

⎡
⎢
⎢
⎢⎣

−0.0192
−0.0070
0.0232

0.0

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

164.76
105.10
231.04

0.71

⎤
⎥
⎥
⎥⎦

Once again compute the new gradient.

∇L3 =
⎡
⎢
⎢
⎢⎣

(0.0012 × 164.76 + 0.5) − 0.71
(0.0010 × 105.10 + 0.6) − 0.71
(0.0014 × 231.04 + 0.4) − 0.71

500 − (164.76 + 105.1 + .231.04)

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

−0.0123
−0.0049
0.0135
0.9000

⎤
⎥
⎥
⎥⎦

The gradient ∇L3 ≠ 0, so compute a new solution.

The iterations have led to no solution because the element 𝜆 in the gradient had
a huge jump and could not be converged. To solve this problem, we present three
methods in the following.

Gradient Method 1 In the calculation of the gradient, the element λ will be
removed, that is,

∇L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕L
𝜕PG1

𝜕L
𝜕PG2

⋮

𝜕L
𝜕PGN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

df1
(
PG1

)

dPG1
− 𝜆

df2(PG2)
dPG2

− 𝜆

⋮

dfN(PGN)
dPGN

− 𝜆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4.107)

We always set the value of 𝜆 equal to the average of the incremental cost of the
generators at the iterated generation values, that is,

𝜆k = 1
N

N∑

i=1

[
dfi

(
Pk

Gi

)

dPGi

]
(4.108)

Example 4.9: Reworking example 4.8 using gradient method 1, the results are
shown in Table 4.3
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TABLE 4.3 Gradient Method 1 Results (𝜀 = 300)

Iteration PG1 PG2 PG3 𝜆

0 150 100 250 0.71

1 159 103 238 0.709

2 164.46 104.8 230.74 0.7084

3 169.7388 105.5388 226.348 0.7086

4 171.21 106.4688 223.888 0.7085

5 172.11 107.0688 222.418 0.7083

6 172.65 107.4288 221.518 0.7082

This solution is much more stable and converges to the optimum solution. How-
ever, gradient method 1 cannot guarantee that the total outputs of the generators meet
the total load demand.

Gradient Method 2 This method is modified from method 1, but we need to check
the power balance equation each time when we finish the iteration of gradient calcu-
lation. The method is described in the following.

If
∑N

i=1(Pk
Gi) > PD, select the unit with the maximal incremental generation

cost to pick up the power difference.

Pk
GS′ |𝜆max

= Pk
GS −

(
N∑

i=1

(
Pk

Gi

)
− PD

)
(4.109)

If
∑N

i=1(Pk
Gi) < PD, select the unit with the minimal incremental generation cost to

pick up the power difference.

Pk
GS′ |𝜆max

= Pk
GS +

(
PD −

N∑

i=1

(
Pk

Gi

)
)

(4.110)

Then, recompute the average incremental generation cost, and conduct a new
iteration.

Example 4.10: Reworking Example 4.9 using gradient method 2, the results are
shown in Table 4.4.

This solution is much more stable and converges to the optimum solution. Obvi-
ously, gradient method 2 can guarantee that the total outputs of generators meet the
total load.
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TABLE 4.4 Gradient Method 2 Results (𝜀 = 300)

Iteration PG1 PG2 PG3 Ptotal 𝜆

0 150 100 250 500 0.71

1 159 103 238 500 0.709

2 164.46 104.8 230.74 500 0.7084

3 169.7388 105.5388 224.7224∗ 500 0.7079

4 171.0108∗ 106.2678 222.7214 500 0.7078

∗The corresponding unit is selected to balance the total generation and total load.

Gradient Method 3 This method is similar to method 2 but with some simplifica-
tion. One fixed unit is selected as the slack machine. For example, selecting the last
unit as the slack generator, we get

PGN = PD −
N−1∑

i=1

(PGi) (4.111)

The objective function becomes

F = f1(PG1) + f2(PG2)+, … , fN(PGN)

= f1(PG1) + f2(PG2)+, … , fN

(
PD −

N−1∑

i=1

(
PGi

)
)

(4.112)

The gradient will become

∇F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

dF
dPG1

dF
dPG2

⋮

dF
dPG(N−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

df1
(
PG1

)

dPG1
−

dfN(PGN)
dPGN

df2(PG2)
dPG2

−
dfN(PGN)

dPGN

⋮

df(N−1)(PG(N−1))
dPG(N−1)

−
dfN(PGN)

dPGN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(4.113)

The gradient iteration will be the same as before.

xn = xn−1 − 𝜀∇F (4.114)

and

x =
⎡
⎢
⎢
⎢⎣

PG1
PG2
⋮

PG(N−1)

⎤
⎥
⎥
⎥⎦

(4.115)
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TABLE 4.5 Gradient Method 3 Results (𝜀 = 300)

Iteration PG1 PG2 PG3 Ptotal

0 150 100 250 500

1 171 115 214 500

2 169.32 110.38 220.3 500

3 170.8908 109.792 219.317 500

4 171.4728 108.937 219.590 500

Example 4.11: Reworking Example 4.8 using gradient method 3, the results are
shown in Table 4.5.

This solution is also stable and converges to the optimum solution, which is
similar to method 2. Obviously, gradient method 3 can also guarantee that the total
outputs of generators meet the total load.

4.8 CLASSIC ECONOMIC DISPATCH BY GENETIC
ALGORITHM

4.8.1 Introduction

Another type of method that is used to solve classic ED problem is the genetic algo-
rithm (GA) [3–5]. The theoretical foundation for GA was first described by Holland
[18] and was extended by Goldberg [19]. GA provides a solution to a problem by
working with a population of individuals each representing a possible solution. Each
possible solution is termed a “chromosome.” New points of the search space are
generated through GA operations, known as reproduction, crossover, and mutation.
These operations consistently produce fitter offspring through successive generations,
which rapidly lead the search toward global optima. The features of GA are different
from other search techniques in the following aspects:

(1) The algorithm is a multipath that searches many peaks in parallel, hence reduc-
ing the possibility of local minimum trapping.

(2) GA works with a bit string encoding instead of the real parameters. The coding
of parameters will help the genetic operator to evolve the current state into the
next state with minimum number of computations.

(3) Instead of the optimization function, GA evaluates the fitness of each string to
guide its search. The genetic algorithm only needs to evaluate objective func-
tion (fitness) to guide its search. There is no requirement for the operation of
derivatives.

(4) GA explores the search space where the probability of finding improved per-
formance is high.
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The main operators of GA used are the following:

• The crossover operator is applied with a certain probability. The parent gener-
ations are combined (exchange bits) to form two new generations that inherit
solution characteristics from both parents. Crossover, although being the pri-
mary search operator, cannot produce information that does not already exist
within the population.

• The mutation operator is also applied with a small probability. Randomly cho-
sen bits of the offspring genotype flip from 0 to 1 and vice versa to give char-
acteristics that do not exist in the parent population. Generally, mutation is
considered as a secondary but not useless operator that gives a nonzero proba-
bility to every solution to be considered and evaluated.

• Elitism is implemented so that the best solution of every generation is copied
to the next so that the possibility of its destruction through a genetic operator
is eliminated.

• Fitness Scaling refers to a nonlinear transformation of genotype fitness in order
to emphasize small differences between near-optimal qualities in a converged
population.

The GA-type algorithms are actually of unconstrained optimization; all infor-
mation must be expressed in a fitness function. As mentioned at the beginning of
this chapter, the classic ED problem neglectsnetwork losses and network constraints.
Thus the fitness function for classic ED can be easily formed.

4.8.2 GA-Based ED Solution

According to Section 4.3, the classic ED problem can be stated as follows:

minF =
N∑

i=1

Fi(PGi) (4.116)

such that
N∑

i=1

PGi = PD (4.117)

In the application of GA to ED, the outputs of the N − 1 “free generators”
can be chosen arbitrarily within limits while the output of the “reference genera-
tor” (or slack bus generator) is constrained by the power balance. It is assumed that
the Nth generator is the reference generator. GAs do not work on the real generator
outputs themselves, but on bit string encoding of these outputs. The output of the free
generators is encoded in strings. For example, an 8-bit string (an unsigned 8-bit inte-
ger) that gives a resolution of 28 discrete power values in the range (PGmin,PGmax).
These (N − 1) strings are concatenated to form a consolidated solution bit string of
8∗(N − 1) bits called a genotype. A population of m genotypes must be initially gen-
erated at random. Each genotype is decoded to a power output vector. The output of
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the reference unit is

PGN = PD −
N−1∑

i=1

PGi (4.118)

Adding penalty factors h1, h2 to the violation of power output of the slack bus unit,
we can combine equations (4.117) and (4.118) as follows:

FA =
N∑

i=1

Fi(PGi) + h1(PGN − PGNmax)2 + h2(PGNmin − PGN)2 (4.119)

where, PGNmin,PGNmax are respectively the lower and upper limits of the power output
of the slack bus unit. The value of the penalty factors should be large so that there is
no violation for unit output at the final solution.Since GA is designed for the solution
of the maximization problem, the GA fitness function is defined as the inverse of
equation (4.119).

Ffitness =
1

FA
(4.120a)

In the ED problem, the problem variables correspond to the power generation of
the units. Each string represents a possible solution and is made of substrings, each
corresponding to a generating unit. The length of each substring is decided on the
basis of the maximum/minimum limits on the power generation of the correspond-
ing unit and the solution accuracy desired. The string length, which depends upon
the length of each substring, is chosen on the basis of a trade-off between solution
accuracy and solution time. Longer strings may provide better accuracy, but result in
more solution time. Thus, the step size of a unit can be computed as follows:

𝜀i =
PGimax − PGimin

2n − 1
(4.120b)

where n is the length of substring in binary codes corresponding to a unit.
For example, there are six units in a system, and the sixth unit is selected as the

slack bus unit. The power output limits of the five free units are

20 ≤ PG1 ≤ 100(MW)

10 ≤ PG2 ≤ 100(MW)

50 ≤ PG3 ≤ 200(MW)

20 ≤ PG4 ≤ 120(MW)

50 ≤ PG5 ≤ 250(MW)
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If the length of substring in binary codes is selected as 4, the step size of each
unit will be

𝜀1 =
PG1max − PG1min

24 − 1
= 100 − 20

15
= 5.33 MW

𝜀2 =
PG2max − PG2min

24 − 1
= 100 − 10

15
= 6.00 MW

𝜀3 =
PG3max − PG3min

24 − 1
= 200 − 50

15
= 10.00 MW

𝜀4 =
PG4max − PG4min

24 − 1
= 120 − 20

15
= 6.67 MW

𝜀5 =
PG5max − PG5min

24 − 1
= 250 − 50

15
= 13.33 MW

If the length of substring in binary codes is selected as 5, the step size of each
unit will be

𝜀1 =
PG1max − PG1min

25 − 1
= 100 − 20

31
= 2.58 MW

𝜀2 =
PG2max − PG2min

25 − 1
= 100 − 10

31
= 2.90 MW

𝜀3 =
PG3max − PG3min

25 − 1
= 200 − 50

31
= 4.84 MW

𝜀4 =
PG4max − PG4min

25 − 1
= 120 − 20

31
= 3.23 MW

𝜀5 =
PG5max − PG5min

25 − 1
= 250 − 50

31
= 6.45 MW

It can be observed that the long string has smaller step size, which verifies that
the length of the substring in binary codes affects the solution accuracy and solution
speed.

In standard GAs, all the strings in the population are reformed during a gen-
eration. Parents are crossed on the basis of their performance in comparison to the
average fitness of the population and mutation is allowed to occur on the offspring.
Selective pressure is provided by the fitness measure; the differential need not be
great to achieve good results. Both selective pressure and initial population sizes
may be tuned to match the problem space. The type of crossover and rate of muta-
tion needs to be selected on the basis of the problem type. For a large scale of power
system, there are many generators. If the standard GA is used in ED, it appears to
increase performance. A little improvement on the GA operator is needed, that is, we
do not replace the entire population with each generation. Instead GA operator prob-
abilistically chooses two parents to reform into two offspring. Recombination and



4.8 CLASSIC ECONOMIC DISPATCH BY GENETIC ALGORITHM 127

mutation occur, and then one of the offspring is discarded randomly. The remaining
offspring is placed in the population according to its fitness in relation to the rest
of the strings. The lowest-valued string is discarded. This keeps high-valued strings
within the population, directly accumulating high-performance hyperplanes. It also
bases the reproductive opportunity upon rank with the population, not upon a string’s
fitness value in comparison with the average of the population, reducing the impact
of selective pressure fluctuation. It also reduces the importance of choosing a proper
evaluation function for fitness in that the difference in the fitness function between
two adjacent strings is irrelevant.

To use GA programming to solve classic ED, the following parameters are
needed for data input.

• Number of chromosomes (that consist a generation)

• Bit resolution per generator

• Number of cross-points

• Number of generations

• Initial crossover probability (%)

• Initial mutation probability (%)

• Minimal power output of each unit

• Maximal power output of each unit

• Status of the unit

• The coefficient of unit cost function

• Total load demand.

Example 4.12: For Example 4.6, using genetic algorithm to distribute the 500 MW
load to three units. The GA parameters are selected as follows:

• Number of chromosomes= 100

• Bit resolution per generator= 8

• Number of cross-points= 2

• Number of generations= 9000

• Initial crossover probability= 92%

• Initial mutation probability= 0.1%

For the total load of 500 MW, the output results are as follows:

PG1 = 172.897 MW

PG2 = 107.477 MW

PG3 = 219.626 MW
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4.9 CLASSIC ECONOMIC DISPATCH BY HOPFIELD
NEURAL NETWORK

Since Hopfield introduced neural networks in the early 1980s [6], the Hopfield neu-
ral networks (HNNs) have been used in many different applications. This section
presents the application of the HNN to the classic ED problem [7–10].

4.9.1 Hopfield Neural Network Model

Let ui be ith neuron input, and Vi be its output. Suppose there are N neurons that are
connected together, the nonlinear differential equations of the HNN are described as
follows:

⎧
⎪
⎨
⎪⎩

Ci
dui

dt
=

N∑

j=1

TijVj +
ui

Ri
+ Ii

Vi = g
(
ui

)
i = 1, 2, … ,N

(4.121)

where

1
Ri

= 𝜃i +
N∑

j=1

Tij

Vi = g(ui) (4.122)

are the nonlinear characteristics of the neuron.
For a very high gain parameter 𝜆 of the neuron, the output equation can be

defined as

Vi = g(𝜆ui) = g

(
ui

u0

)
= 1

1 + exp
(
− ui+𝜃i

u0

) (4.123)

where 𝜃i is the threshold bias.
The energy function of the system (4.121) is defined as

E = −1
2

N∑

i=1

N∑

j=1

TijViVj −
N∑

i=1

ViIi +
N∑

i=1

1
Ri∫

Vi

0
g−1(V)dV (4.124)

From equation (4.124), we get

dE
dt

=
∑

i

𝜕E
𝜕Vi

dVi

dt
(4.125)

where

𝜕E
𝜕Vi

= −1
2

∑

j

TijVj −
1
2

∑

j

TjiVj +
ui

Ri
− Ii
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= −1
2

∑

j

(Tji − Tij)Vj −

(
∑

j

TijVj −
ui

Ri
+ Ii

)

= −1
2

∑

j

(Tji − Tij)Vj − Ci
dui

dt

= −1
2

∑

j

(Tji − Tij)Vj − Ci[g−1(Vi)]′
dVi

dt
(4.126)

Substituting equation (4.126) in equation (4.125), we get

dE
dt

== −1
2

∑

j

(Tji − Tij)Vj
dVi

dt
− Ci[g−1(Vi)]′

(
dVi

dt

)2

(4.127)

Since the weight parameter matrix T in equation (4.121) is symmetric, we have

Tji = Tij (4.128)

Substituting equation (4.128) into equation (4.127), we get

dE
dt

== −Ci[g−1(Vi)]′
(

dVi

dt

)2

(4.129)

Since g−1 is a monotone increasing function, and Ci > 0,

dE
dt

== −Ci[g−1(Vi)]′
(

dVi

dt

)2

≤ 0 (4.130)

This shows that the time evolution of the system is a motion in state space that seeks
out minima in E and comes to a stop at such points.

4.9.2 Mapping of Economic Dispatch to HNN

As discussed above, the classic ED problem without line security can be written as

minF = F1(PG1) + F2(PG2) + · · · + Fn(PGn) =
N∑

i=1

Fi(PGi) (4.131)

such that
N∑

i=1

PGi = PD + PL (4.132)

PGimin ≤ PGi ≤ PGimax (4.133)
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Assuming that the generator cost function is a quadratic function, that is,

Fi(PGi) = aiP
2
Gi + biPGi + ci (4.134)

and the network loss can be represented by the B-coefficient,

PL =
N∑

i=1

N∑

j=1

PGiBijPGj (4.135)

To apply HNN to solve the above classic ED problem, the following energy function
is defined by augmenting the objective function (4.131) with the constraint (4.132):

E = 1
2

A

(
PD + PL −

∑

i

PGi

)2

+ 1
2

B
∑

i

(aiP
2
Gi + biPGi + ci) (4.136)

By comparing equation (4.136) with equation (4.224), whose threshold is assumed
to be zero, the weight parameters and external input of neuron i in the network [7]
are given by

Tii = −A − Bci (4.137)

Tij = −A (4.138)

Ii = A(PD + PL) −
Bbi

2
(4.139)

where the diagonal weights are nonzero.
The sigmoid function (4.223) can be modified to meet the power limit constraint

as follows [7].

Vi(k + 1) = (Pimax − Pimin)
1

1 + exp
(
− ui(k)+𝜃i

u0

) + Pimin (4.140)

In order to speed up convergence of the ED problem solved by HNN, two adjustment
methods can be used [9].

Slope Adjustment Method Since energy is to be minimized and its convergence
depends on the gain parameter u0, the gradient descent method can be applied to
adjust the gain parameters.

u0(k + 1) = u0(k) − 𝜂s
𝜕E
𝜕u0

(4.141)

Where 𝜂s is a learning rate.
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From equations (4.136) and (4.140), the gradient of energy with respect to the
gain parameter can be computed as

𝜕E
𝜕u0

=
∑

i

𝜕E
𝜕Pi

𝜕Pi

𝜕u0
(4.142)

The update rule of equation (4.141) needs a suitable choice of the learning
rate 𝜂s. For a small value of 𝜂s, convergence is guaranteed but speed is too slow. On
the other hand, if the learning rate is too high, the algorithm becomes unstable. The
suggested learning rate will be

0 < 𝜂s <
2

g2
s,max

(4.143)

where

gs,max = max‖gs(k)‖

gs(k) =
𝜕E(k)
𝜕u0

(4.144)

Moreover, the optimal convergence corresponds to

𝜂∗s = 1

g2
s,max

(4.145)

Bias Adjustment Method There is a limitation in the slope adjustment method, in
which the slopes are small near the saturation region of the sigmoid function. If every
input can use the same maximum possible slope, convergence will be much faster.
This can be achieved by changing the bias to shift the input close to the center of the
sigmoid function, that is

𝜃i(k + 1) = 𝜃i(k) − 𝜂b
𝜕E
𝜕𝜃i

(4.146)

Where 𝜂b is a learning rate.
The bias can be applied to every neuron as in equation (4.223). Thus, from

equations (4.136) and (4.140), the derivate of energy with respect to a bias can be
computed as

𝜕E
𝜕𝜃i

= 𝜕E
𝜕Pi

𝜕Pi

𝜕𝜃i
(4.147)

The suggested learning rate will be

0 < 𝜂b < − 2
gb(k)

(4.148)
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where

gb(k) =
∑

i

∑

j

Tij
𝜕Vi

𝜕𝜃

𝜕Vj

𝜕𝜃
(4.149)

Moreover, the optimal convergence corresponds to

𝜂b = − 1
gb(k)

(4.150)

4.9.3 Simulation Results

The test example and results of applying HNN to ED are taken from reference [9].
The system data are shown in Table 4.6. Each generator has three types of fuels. There
are four values of load demand, that is, 2400, 2500, 2600 and 2700 MW.

The ED results based on the slope adjustment method are shown in Table 4.7.
Compared with the conventional Hopfield network, the number of iterations is
reduced to about one half, and oscillation is drastically reduced from about 40,000
to less than 100 iterations. In addition, the degree of freedom of the system increases
from 1, which is u0, to 2. It can be observed that the final results of the adaptive
learning rate are close to those of the fixed learning rate.

The ED results based on the bias adjustment method are shown in Table 4.8,
which are similar to those based on the slope adjustment method. For the adaptive
learning rate, the number of iterations is reduced and the final results of the adaptive
learning rate are better than those of the fixed learning rate.

APPENDIX A: OPTIMIZATION METHODS USED IN
ECONOMIC OPERATION

Herein, we introduce several methods [10–17] that are used for economic power
operation of power systems.

Although a wide spectrum of methods exists for optimization, methods can
be broadly categorized in terms of the derivative information that is, or is not, used.
Search methods that use only function evaluations are most suitable for problems
that are very nonlinear or have a number of discontinuities. Gradient methods are
generally more efficient when the function to be minimized is continuous in its first
derivative. Higher-order methods, such as Newton’s method, are only really suitable
when the second-order information is readily and easily calculated, because calcula-
tion of second-order information using numerical differentiation is computationally
expensive.

A.1 Gradient Method

Gradient methods use information about the slope of the function to dictate a direction
of search where the minimum is thought to lie. The simplest of these is the method
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TABLE 4.6 Cost Coefficients for Piecewise Quadratic Cost Function

Unit Generation

min P1 ⋅ P2 max
F1 ⋅ F2 ⋅ F3

F C B a

1 100 196 250 250 1 2 2 1 0.2697e2 −0.3975e0 0.2176e−2

2 0.2113e2 −0.3059e0 0.1861e−2

2 0.2113e2 −0.3059e0 0.1861e−2

2 50 114 157 230 2 3 1 1 0.1184e3 −0.1269e1 0.4194e−2

2 0.1865e1 −0.3988e − 1 0.1138e−2

3 0.1365e2 −0.1980e − 1 0.1620e−2

3 200 332 388 500 1 2 3 1 0.3979e2 −0.3116e0 0.1457e−2

2 −0.5914e2 0.4864e0 0.1176e−4

3 −0.2876e1 0.3389e1 0.8035e−3

4 99 138 200 265 1 2 3 1 0.1983e1 −0.3114e − 1 0.1049e−2

2 0.5285e2 −0.6348e0 0.2758e−2

3 0.2668e3 −0.2338e1 0.5935e−2

5 190 338 407 490 1 2 3 1 0.1392e2 −0.8733e − 1 0.1066e−2

2 0.9976e2 −0.5206e0 0.1597e−2

3 0.5399e2 0.4462e0 0.1498e−3

6 85 138 200 265 2 1 3 1 0.5285e2 −0.6348e0 0.2758e−2

2 0.1983e1 −0.3114e − 1 0.1049e−2

3 0.2668e3 −0.2338e1 0.5935e−2

7 200 331 391 500 1 2 3 1 0.1893e2 −0.1325e0 0.1107e−2

2 0.4377e2 −0.2267e0 0.1165e−2

3 −0.4335e2 0.3559e0 0.2454e−3

8 99 138 200 265 1 2 3 1 0.1983e1 −0.3114e − 1 0.1049e−2

2 0.5285e2 −0.6348e0 0.2758e−2

3 0.2668e3 −0.2338e1 0.5935e−2

9 130 213 370 440 3 1 2 1 0.8853e2 −0.5675e0 0.1554e−2

2 0.1530e2 −0.4514e − 1 0.7033e−2

3 0.1423e2 −0.1817e − 1 0.6121e−3

10 200 362 407 490 1 3 2 1 0.1397e2 −0.9938e − 1 0.1102e−2

2 −0.6113e2 0.5084e0 0.4164e−4

3 0.4671e2 −0.2024e0 0.1137e−2

of steepest descent in which a search is performed in a particular direction.

Sk = −∇f (xk) (4A.1)

where ∇f (xk) is the gradient of the objective function.
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TABLE 4.7 Results for the Slope Adjustment Method with Fixed Learning Rate, 1.0 (A) and
Adaptive Learning Rate (B)

Unit 2400 MW 2500 MW 2600 MW 2700 MW

A B A B A B A B

1 196.8 189.9 205.6 205.1 215.7 214.5 223.2 224.6

2 202.7 202.9 206.7 206.5 211.1 211.4 216.1 215.7

3 251.2 252.1 265.3 266.4 278.9 278.8 292.5 291.9

4 232.5 232.9 236.0 235.8 239.2 239.3 242.6 242.6

5 240.4 241.7 257.9 256.8 276.1 276.1 294.1 293.6

6 232.5 232.9 236.0 235.9 239.2 239.1 242.4 242.5

7 252.5 253.4 269.5 269.3 286.0 286.7 303.5 303.0

8 232.5 232.9 236.0 235.8 239.2 239.3 242.7 242.6

9 320.2 321.0 331.8 334.0 343.4 343.6 355.8 355.7

10 238.9 240.4 255.5 254.4 271.2 271.2 287.3 287.8

Total P 2400.0 2400.0 2500.0 2500.0 2600.0 2600.0 2700.0 2700.0

Cost 481.83 481.71 526.23 526.23 574.36 574.37 626.27 626.24

Iters 99,992 84,791 80,156 86,081 72,993 79,495 99,948 99,811

u0 95.0 110.0 120.0 100.0 130.0 120.0 160.0 120.0

n 1.5 1.0E−04 1.0 1.0E−04 1.0 1.0E− 04 1.0 1.0E−04

TABLE 4.8 Results for the Bias Adjustment Method with Fixed Learning Rate, 1.0 (A) and
Adaptive Learning Rate (B)

Unit 2400 MW 2500 MW 2600 MW 2700 MW

A B A B A B A B

1 197.6 189.4 208.3 206.7 212.4 217.9 221.4 228.8

2 201.6 201.8 206.2 205.8 209.6 210.5 213.8 214.1

3 252.3 253.5 265.2 265.6 280.0 278.8 293.3 292.0

4 232.7 232.9 235.9 235.8 238.8 239.0 242.1 242.2

5 239.9 242.1 257.1 258.2 277.9 275.8 295.4 293.6

6 232.7 232.9 235.9 235.8 238.6 239.0 242.0 242.1

7 251.5 253.8 268.3 269.4 288.1 285.5 305.3 302.6

8 232.7 232.9 235.8 235.8 238.8 239.0 242.1 242.1

9 318.8 319.3 330.9 330.1 341.9 342.1 345.2 352.3

10 240.3 241.6 256.4 256.9 274.0 272.3 290.4 290.1

Total P 2400.0 2400.0 2500.0 2500.0 2600.0 2600.0 2700.0 2700.0

Cost 481.83 481.72 526.24 526.23 574.43 574.37 626.32 626.27

Iters 99,960 99,904 99,987 88,776 99,981 99,337 99,972 73,250

u0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

theta 0.0 50.0 0.0 50.0 0.0 50.0 0.0 100.0

n 1.0 1.0 1.0 5.0 1.0 5.0 1.0 5.0
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The optimum search step can be computed as follows.

𝜀∗k =
[∇f (xk)]T∇f (xk)

[∇f (xk)]T H(xk)∇f (xk)
(4A.2)

where H(xk) is the Hessian matrix of the objective function.
The gradient method based on equation (4A.2) is also called the optimum gra-

dient method. However, this method is very inefficient when the function to be min-
imized has long narrow valleys.

A.2 Line Search

Line search is a search method that is used as part of a larger optimization algorithm.
At each step of the main algorithm, the line-search method searches along the line
containing the current point, xk, parallel to the search direction, which is a vector
determined by the main algorithm, that is, the iteration form of the method can be
expressed as

xk+1 = xk + 𝜀dk (4A.3)

where xk denotes the current iterate, dk is the search direction, and 𝜀 is a scalar step
length parameter.

The line-search method attempts to decrease the objective function along the
line xk + 𝜀 dk by repeatedly minimizing polynomial interpolation models of the
objective function. The line-search procedure has two main steps:

• The bracketing phase determines the range of points on the line xk+1 = xk +
𝜀 dk to be searched. The bracket corresponds to an interval specifying the range
of values of 𝜀.

• The sectioning step divides the bracket into subintervals, on which the mini-
mum of the objective function is approximated by polynomial interpolation.

The resulting step length 𝜀 satisfies the Wolfe conditions:

f (xk + 𝜀 dk) ≤ f (xk) + 𝛼1𝜀(∇f k)T dk (4A.4)

∇f (xk + 𝜀 dk)T dk ≥ 𝛼2𝜀(∇f k)T dk (4A.5)

where 𝛼1 and 𝛼2 are constants with 0 < 𝛼1 < 𝛼2 < 1.
The first condition (4A.4) requires that 𝜀 sufficiently decreases the objective

function. The second condition (4A.5) ensures that the step length is not too small.
Points that satisfy both conditions (4A.4) and (4A.5) are called acceptable points.

A.3 Newton-Raphson Optimization

The Newton–Raphson optimization is also called the Newton method or Hessian
matrix method.
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The objective function can be approximately expressed by use of the
second-order Taylor series expansion at the point xk, that is,

f (x) ≈ f (xk) + [∇f (xk)]TΔx + 1
2
ΔxT H(xk)Δx (4A.6)

The necessary condition that a quadratic function achieves the minimum value
is its gradient equals zero.

∇f (x) = ∇f (xk) + H(xk)Δx = 0 (4A.7)

Thus, the general iteration expression is as follows:

xk+1 = xk − [H(xk)]−1∇f (xk) (4A.8)

It is noted that the Hessian matrix H(x) will be constant if the original nonlinear
objective function is a quadratic function. In this case, the minimum value of the
function will be obtained through one iteration only. Otherwise, the Hessian matrix
H(x) will not be constant, and multiple iterations are needed to obtain the minimum
of the function. The formula for the search direction is

Sk = −[H(xk)]−1∇f (xk) (4A.9)

The advantage of the Hessian matrix method is fast convergence. The disadvantage is
that it needs to compute the inverse of the Hessian matrix, which leads to expensive
memory and calculation burden.

A.4 Trust-Region Optimization

The convergence of the Newton optimization method can be made more robust by
using trust regions (TR) [11]. TR-based methods generate steps based on a quadratic
model of the objective function. A region around the current solution is defined,
within which the model is supposed to be an adequate representation of the objec-
tive function. Then a step is selected to minimize this approximate model in the trust
region. Both the direction and the length of the step are chosen simultaneously. If a
step is not acceptable, the size of the region is reduced and a new solution is found. In
general, the step direction changes whenever the size of the trust region is altered [11].

Since the trust-region method uses the gradient g(xk) and Hessian matrix H(xk),
it requires that the objective function f (x) have continuous first- and second-order
derivatives inside the feasible region. The general trust-region problem is expressed
as

min f = gT (xk)Δx + 1
2
ΔxT H(xk)Δx (4A.10)

such that
‖Δx‖ ≤ 𝛿 (4A.11)

Where 𝛿 is the trust region radius.
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The general idea of the trust region is to solve the subproblem represented by
equations (4A.10), (4A.11) to obtain a point yk. Then the value of the true objective
function is calculated at yk and compared to the value predicted by the quadratic
model, to verify if the point located in the trust region represents an effective progress
toward the optimal solution. For this purpose, the size of the trust region is critical to
the effectiveness of each step.

In practice, the size of the region is determined according to the evolution of
the iterative process. If the model is sufficiently accurate, the size of the trust region is
steadily increased to allow bigger steps. Otherwise, the quadratic model is inadequate,
so the size of the trust region must be reduced. In order to establish an algorithm to
control the trust region radius, define the reduction ratio evaluated at the kth iteration

𝜌k = J(xk) − J(xk+1)
Q(xk) − Q(xk+1)

(4A.12)

Where J(xk) and Q(xk) are the values of the summation of the weighted squared resid-
uals for the actual objective function and the corresponding approximated quadratic
model, respectively, evaluated at the kth iteration.

A.5 Newton–Raphson Optimization with Line Search

This technique uses the gradient g(xk) and Hessian matrix H(xk) and thus requires
that the objective function have continuous first- and second-order derivatives inside
the feasible region. If second-order derivatives are computed efficiently and precisely,
the method may perform well for medium-sized to large problems, and it does not
need many functions, gradients, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite
and when the Newton step reduces the value of the objective function successfully.
Otherwise, a combination of ridging and line search is done to compute successful
steps. If the Hessian is not positive definite, a multiple of the identity matrix is added
to the Hessian matrix to make it positive definite. In each iteration, a line search
is done along the search direction to find an approximate optimum of the objec-
tive function. The default line-search method uses quadratic interpolation and cubic
extrapolation.

A.6 Quasi-Newton Optimization

The (dual) quasi-Newton method uses the gradient g(xk) and does not need to compute
second-order derivatives because they are approximated. It works well for medium to
moderately large optimization problems where the objective function and the gradient
are much faster to compute than the Hessian.

The method builds up curvature information at each iteration to formulate a
quadratic model problem of the form

min f (x) = b + cTx + 1
2

xT Hx (4A.13)
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where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant
vector, and b is a constant. The optimal solution for this problem occurs when the
partial derivatives of x go to zero, that is,

∇f (x∗) = Hx∗ + c = 0 (4A.14)

The optimal solution point, x∗, can be written as

x∗ = −H−1c (4A.15)

Newton-type methods (as opposed to quasi-Newton methods) calculate H
directly and proceed in a direction of descent to locate the minimum after a number
of iterations. Calculating H numerically involves a large amount of computation.
Quasi-Newton methods avoid this by using the observed behavior of f (x) and
∇f (x) to build up curvature information to make an approximation to H using an
appropriate updating technique.

A large number of Hessian updating methods have been developed. However,
the formula of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) is thought to be the
most effective for use in a general purpose method [12–17].

The formula given by BFGS is

Hk+1 = Hk +
qk(qk)T

(qk)T Sk
− (Hk)T (Sk)T SkHk

(Sk)T HkSk
(4A.16)

where

Sk = xk+1 − xk (4A.17)

qk = ∇f (xk+1) − ∇(xk) (4A.18)

As a starting point, H0 can be set to any symmetric positive definite matrix,
for example, the identity matrix I. To avoid the inversion of the Hessian H, we can
derive an updating method that avoids the direct inversion of H by using a formula that
makes an approximation of the inverse Hessian H−1 at each update. A well-known
procedure is the DFP formula of Davidon, Fletcher, and Powell. This uses the same
formula as the BFGS method (4A.16) except that qk is substituted for Sk.

The gradient information is either supplied through analytically calculated gra-
dients or derived by partial derivatives using a numerical differentiation method via
finite differences. This involves perturbing each of the design variables, x, in turn and
calculating the rate of change in the objective function.

At each major iteration, k, a line search is performed in the direction

d = −(Hk)−1∇f (xk) (4A.19)
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A.7 Double Dogleg Optimization

The double dogleg optimization method combines the ideas of quasi-Newton and
trust region methods. The double dogleg algorithm computes in each iteration the
step Sk as the linear combination of the steepest descent or ascent search direction
S1

k and a quasi-Newton search direction S2
k,

Sk = 𝛼1Sk
1 + 𝛼2Sk

2 (4A.20)

The step is requested to remain within a prespecified trust region radius. The dou-
ble dogleg optimization technique works well for medium to moderately large opti-
mization problems where the objective function and the gradient are much faster to
compute than the Hessian.

A.8 Conjugate Gradient Optimization

Second-order derivatives are not used by conjugate gradient optimization. As
already discussed, t the method of steepest descent (or gradient method) converges
slowly. The method of conjugate gradients is an attempt to mend this problem.
“Conjugacy” means that two unequal vectors, Si and Sj, are orthogonal with respect
to any symmetric positive definite matrix, for example Q, that is,

ST
i QSj = 0 (4A.21)

This can be looked upon as a generalization of orthogonality, for which Q is
the unity matrix. The idea is to let each search direction Si be dependent on all the
other directions searched to locate the minimum of f (x) through equation (4A.21).
A set of such search directions is referred to as a Q-orthogonal set, or conjugate set,
and it will take a positive definite n-dimensional quadratic function to its minimum
point in, at most, n exact linear searches. This method is often referred to as conjugate
directions, and a short description follows.

The conjugate gradients method is a special case of the method of conjugate
directions, where the conjugate set is generated by the gradient vectors. This seems
to be a sensible choice as the gradient vectors have proved their applicability in the
steepest descent method, and they are orthogonal to the previous search direction.

Subsequently, mutually conjugate directions are chosen so that

Sk+1 = −∇f (xk+1) + 𝛽kSk (4A.22)

where the coefficient 𝛽k is given by, for example, the so called Fletcher–Reeves
formula:

𝛽k =
[∇f (xk+1)]T∇f (xk+1)
[∇f (xk)]T∇f (xk)

(4A.23)

The optimum search step can be computed as follows.

𝜀∗k = −
[∇f (xk)]T Sk

(Sk)T H(xk)Sk
(4A.24)
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During n successive iterations, uninterrupted by restarts or changes in the work-
ing set, the conjugate gradient algorithm computes a cycle of n conjugate search
directions. In each iteration, a line search is done along the search direction to find an
approximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation to obtain a step size 𝜀 satisfying the
Goldstein conditions. One of the Goldstein conditions can be violated if the feasible
region defines an upper limit for the step size.

A.9 Lagrange Multipliers Method

Suppose there are M constraints to be met, then optimization problem can be written
as below.

min f (xi), i = 1, 2, … ,N (4A.25)

such that

h1(xi) = 0, i = 1, 2, … ,N (4A.26)

h2(xi) = 0, i = 1, 2, … ,N (4A.27)

hM(xi) = 0, i = 1, 2, … ,N (4A.28)

The optimum point would possess the property that the gradient of f (x) and the gra-
dient of h1, h2, and hM are linear dependent, that is,

∇f + 𝜆1∇h1 + 𝜆2∇h2 · · · + 𝜆M∇hM = 0 (4A.29)

The scaling variable 𝜆 is called a Lagrange multiplier.
In addition, we can write the Lagrange equation according to equations

(4A.25)–(4A.28).

L(xi,𝜆M) = f (xi) + 𝜆1h1(xi) + 𝜆2h2(xi) · · · + 𝜆MhM(xi) i = 1, 2, … ,N (4A.30)

To meet the conditions stated in equation (4A.29), we simply require that the partial
derivative of the Lagrange function with respect to each of the unknown variables,
x1, x2, … , xN and 𝜆1, 𝜆2, … , 𝜆M , be equal to zero. That is,

𝜕L
𝜕x1

= 0

𝜕L
𝜕x2

= 0

⋮

𝜕L
𝜕xN

= 0
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𝜕L
𝜕𝜆1

= 0

𝜕L
𝜕𝜆2

= 0

⋮

𝜕L
𝜕𝜆M

= 0 (4A.31)

A.10 Kuhn–Tucker Conditions

If inequality constraints are involved in the optimization problem, the optimum is
reached if the Kuhn–Tucker conditions are met. These can be stated as below.

min f (xi), i = 1, 2, … ,N (4A.32)

such that

hj(xi) = 0, j = 1, 2, … ,Mh (4A.33)

gj(xi) ≤ 0, j = 1, 2, … ,Mg (4A.34)

The Lagrange function can be formed on the basis of equations (4A.32)–(4A.34).

L(x, 𝜆, 𝜇) = f (x) +
Mh∑

j=1

𝜆jhj(x) +
Mg∑

j=1

𝜇jgj(x) (4A.35)

The Kuhn–Tucker conditions for the optimum for the points x∗, 𝜆∗, 𝜇∗ are

1.
𝜕L
𝜕xi

(x∗, 𝜆∗, 𝜇∗) = 0, i = 1, 2, … ,N

2. hj(x∗) = 0, j = 1, 2, … ,Mh

3. gj(x∗) ≤ 0, j = 1, 2, … ,Mg

4. 𝜇∗j gj(x∗) = 0, 𝜇∗j ≥ 0, j = 1, 2, … ,Mg

The first condition is the set of partial derivatives of the Lagrange function that
must equal zero at the optimum. The second and third expressions are a restatement of
the constraint conditions on the problem. The fourth is the complementary slackness
condition. Since the product 𝜇∗j gj(x∗) equals zero, either 𝜇∗j equals to zero or gj(x∗)
equals zero, or both equal zero. If 𝜇∗j equals zero, gj(x∗) is free to be nonbinding; if
𝜇∗j is positive, gj(x∗) must be zero. Thus we can know if the inequality constraint is
binding or not by looking at the value of 𝜇∗j .
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PROBLEMS AND EXERCISES

1. What is the principle of equal incremental rate?

2. What is the B-coefficient formula?

3. What is the correction coefficient of network losses?

4. What is the coordination equation of hydrothermal system economic dispatch?

5. State the advantages and limitations of GA-based economic dispatch.

6. The input–output characteristics of two generating units are as follows:

F1 = 0.0012PG1
2 + 0.3PG1 + 2 Btu∕h

F2 = 0.0009PG2
2 + 0.5PG2 + 1 Btu∕h

Determine the economic operation point for these two units when delivering a total of
600 MW power demand.

7. Suppose the input–output characteristics of three generating units are as follows:

F1 = 0.0005PG1
2 + 0.8PG1 + 9 Btu∕h

F2 = 0.0009PG2
2 + 0.5PG2 + 6 Btu∕h

F3 = 0.0006PG3
2 + 0.7PG3 + 8 Btu∕h

Determine the economic operation point for these three units when delivering a total of
600 MW and 800 MW power demand, respectively.

8. The input–output characteristics of two generating units are as follows:

F1 = 0.001PG1
2 + 0.5PG1 + 3 Btu∕h

F2 = 0.002PG2
2 + 0.3PG2 + 5 Btu∕h

The power output limits of the two units are

100 ≤ PG1 ≤ 280 MW

150 ≤ PG2 ≤ 300 MW

Determine the economic operation point for these two units when delivering a total of
500 MW power demand.

9. Suppose the input–output characteristics of three generating units are as follows:

F1 = 0.0005PG1
2 + 0.6PG1 + 9 Btu∕h

F2 = 0.0013PG2
2 + 0.5PG2 + 6 Btu∕h

F3 = 0.0008PG3
2 + 0.7PG3 + 5 Btu∕h
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The power output limits of the three units are

100 ≤ PG1 ≤ 200 MW

150 ≤ PG2 ≤ 300 MW

150 ≤ PG3 ≤ 300 MW

Determine the economic operation point for these three units when delivering a total of
400 MW and 700 MW power demand, respectively.

10. The input–output characteristics of three generating units are as follows.

F1 = 0.0005PG1
2 + 0.8PG1 + 9 Btu∕h

F2 = 0.0009PG2
2 + 0.5PG2 + 6 Btu∕h

F3 = 0.0006PG3
2 + 0.7PG3 + 8 Btu∕h

(1) Use the gradient method to solve the economic dispatch with a total load of 600 MW.

(2) Use gradient method 1 to solve the economic dispatch with a total load of 600 MW.

(3) Use gradient method 2 to solve the economic dispatch with a total load of 600 MW.

(4) Use gradient method 3 to solve the economic dispatch with a total load of 600 MW.
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C H A P T E R 5
SECURITY-CONSTRAINED
ECONOMIC DISPATCH

Security-constrained economic dispatch (SCED) is a simplified optimal power flow
(OPF) problem. It is widely used in the power industry. This chapter first introduces
several major approaches to solve the SCED problem, such as linear programming
(LP), network flow programming (NFP), and quadratic programming (QP). Then,
nonlinear convex network flow programming (NLCNFP) and the genetic algorithm
(GA) are added to tackle the SCED problem. Implementation details of these methods
and a number of numerical examples are provided in this chapter.

5.1 INTRODUCTION

Chapter 4 analyzes the model and algorithm of the classic economic dispatch (ED),
where network security constraints are neglected. In practical power systems, it is
very important to solve ED with network security constraints. Mathematical opti-
mization methods such as LP, QP, and NFP as well as GSs are applied to solve this
problem [1–19].

5.2 LINEAR PROGRAMMING METHOD

5.2.1 Mathematical Model of Economic Dispatch
with Security

The mathematical model of real power ED with security constraints can be written
as follows (model M-1):

min F =
∑

i∈NG

fi(PGi) (5.1)

such that
s.t.

∑

i∈NG

PGi =
∑

k∈ND

PDk + PL (5.2)

|Pij| ≤ Pijmax ij ∈ NT (5.3)

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
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PGimin ≤ PGi ≤ PGimax i ∈ NG (5.4)

where

PD: the real power load
Pij: the power flow of transmission line ij

Pijmax: the power limits of transmission line ij
PGi: the real power output at generator bus i

PGimin: the minimal real power output at generator i
PGimax: the maximal real power output at generator i

PL: the network losses
fi: the cost function of the generator i

NT: the number of transmission lines
NG: the number of generators.

Since the input–output characteristic of generator units and system power
losses are nonlinear functions, the real power ED model is a nonlinear model. An
LP method to solve SCED needs to linearize the objective function and constraints
in the model.

5.2.2 Linearization of ED Model

Linearization of Objective Function Let the initial operation point of generator
i be P0

Gi. The nonlinear objective function can be expressed by using Taylor series
expansion, with only first two terms being considered, that is,

fi(PGi) ≈ fi(P0
Gi) +

dfi
(
PGi

)

dPGi

|||||P0
Gi

ΔPGi = bΔPGi + c

or (5.5)

fi(ΔPGi) = bΔPGi

where

b =
dfi

(
PGi

)

dPGi

|||||P0
Gi

(5.6)

c = fi(P0
Gi) (5.7)

are constant, and
ΔPGi = PGi − P0

Gi (5.8)

Linearization of Power Balance Equation Since loads are constant for a given
time, we can get the following expression through linearizing the real power balance
equation
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∑

i∈NG

(
1 −

𝜕PL

𝜕PGi

)|||||P0
Gi

ΔPGi = 0 (5.9)

Linearization of Branch Flow Constraints The real power flow equation of a
branch can be written as follows.

Pij = V2
i gij − ViVj(gij cos 𝜃ij + bij sin 𝜃ij) (5.10)

where

Pij: the sending end real power on transmission branch ij
Vi: the node voltage magnitude of node i
𝜃ij: the difference of node voltage angles between the sending end and receiving

end of the line; ij
bij: the susceptance of transmission branch ij
gij: the conductance of transmission branch ij.

Through linearizing equation (5.10), we get the incremental branch power
expression as follows;

ΔPij = −V0
i V0

j (−gij sin 𝜃0
ijΔ𝜃ij + bij cos 𝜃0

ijΔ𝜃ij) (5.11)

In a high-voltage power network, the value of 𝜃ij is very small, and the following
approximate equations are easily obtained:

sin 𝜃ij ≅ 0 (5.12)

cos 𝜃ij ≅ 1 (5.13)

In addition, assume that the magnitudes of all bus voltages are the same and
equal to 1.0 p.u. Furthermore, suppose the reactance of the branch is much bigger
than the resistance of the branch, so that we can neglect the resistance of the branch.
Thus,

gij =
Rij

R2
ij + X2

ij

≈ 0 (5.14)

bij = −
Xij

R2
ij + X2

ij

≈ −
Xij

X2
ij

≈ − 1
Xij

(5.15)

Substituting equations (5.12)–(5.15) into equation (5.11), we get

ΔPij = −bijΔ𝜃ij = −bij(Δ𝜃i − Δ𝜃j) =
Δ𝜃i − Δ𝜃j

Xij
(5.16)
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The above equation can also be written as matrix form, that is,

ΔPb = B′Δ𝜃 (5.17)

where the elements of the susceptance matrix B′ are

B′
ij =bij = − 1

Xij
(5.18)

B′
ii = −

n∑

j = 1
j ≠ i

bij (5.19)

From Chapter 2, the bus power injection equation can be written as

PGi − PDi = Vi

n∑

j=1

Vj(gij cos 𝜃ij + bij sin 𝜃ij) (5.20)

Since the load demand is constant, the linearization expression of
equation (5.20) can be written as follows:

ΔPGi =V0
i

n∑

j=1

V0
j (−gij sin 𝜃0

ijΔ𝜃ij + bij cos 𝜃0
ijΔ𝜃ij)

=V0
i

n∑

j=1

V0
j (−gij sin 𝜃0

ij + bij cos 𝜃0
ij)Δ𝜃ij (5.21)

This equation can also be written in the following matrix form:

ΔPG = HΔ𝜃 (5.22)

Equation (5.22) stands for the relationship between the incremental gen-
erator output power (except for the generator that is taken as the slack unit)
and the incremental bus voltage angle. Matrix H can also be simplified using
equations (5.12)–(5.15).

According to equations (5.17) and (5.22), we can get the direct linear relation-
ship between the incremental branch power flow and incremental generator output
power, that is,

ΔPb = B′Δ𝜃 = B′H−1ΔPG = DΔPG (5.23)

where
D = B′H−1 (5.24)

which is also called the linear sensitivity of the branch power flow with respect to the
generator power output.
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Thus, the linear expression of the branch power flow constraints can be written
as

|DΔPG| ≤ ΔPbmax (5.25)

The element of the matrix ΔPbmax is the incremental power flow limit ΔPijmax of the
branch ij, that is,

ΔPijmax = Pijmax − P0
ij (5.26)

If the branch outage is considered in the real power ED, the outage transfer
distribution factors (OTDFs) in Chapter 3 will be used. So the sensitivity factor OTDF
between branch ij and generator bus i when line l is opened is written as

OTDFij,i =
ΔPij

ΔPGi
= (Sij,i + LODFij,iSl,i) (5.27)

In this case, the branch power flow can be written as

ΔPij = (Sij,i + LODFij,iSl,i)ΔPGi (5.28)

The matrix form of the equation (5.28) is

ΔPb = D′ΔPG (5.29)

The corresponding branch power flow constraints are written as

||D′ΔPG
|| ≤ ΔP′

bmax (5.30)

Comparing with D,ΔPbmax in equation (5.25), D′,ΔP′
bmax in equation (5.30) consider

the effect of the branch outage. In this case, the real power ED is called the N − 1
security economic dispatch.

Generator Output Power Constraint The incremental form of the generator
output power constraint is

PGimin − P0
Gi ≤ ΔPGi ≤ PGimax − P0

Gi i ∈ NG (5.31)

5.2.3 Linear Programming Model

The linearized ED model can be written as the standard LP form.

minZ = c1x1 + c2x2 + · · · + cNxN
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such that

a11x1 + a12x2 + … + a1NxN ≥ b1

a21x1 + a22x2 + … + a2NxN ≥ b2

⋮

aN1x1 + aN2x2 + … + aNNxN ≥ bN

ximin ≤ xi ≤ ximax

The basic algorithm for LP can be found in the Appendix in Chapter 9.

5.2.4 Implementation

Solution Steps of ED by LP The above-mentioned method for solving ED by
LP uses an iterative technique to obtain the optimal solution, so it is also called a
successive linear programming (SLP) method. The solution procedures of SLP for
ED are summarized in the following steps.

Step 1. Select the set of initial control variables.

Step 2. Solve the power flow problem to obtain a feasible solution that satisfies the
power balance equality constraint.

Step 3. Linearize the objective function and inequality constraints around the power
flow solution and formulate the LP problem.

Step 4. Solve the LP problem and obtain optimal incremental control variables
ΔPGi.

Step 5. Update the control variables: P(k+1)
Gi = P(k)

Gi + ΔPGi.

Step 6. Obtain the power flow solution with updated control variables.

Step 7. Check the convergence. If ΔPGi in step 4 are below the user-defined toler-
ance, the solution converges. Otherwise, go to step 3.

Test Results The LP-based ED method is tested on IEEE 5-bus and 30-bus sys-
tems. The network topologies of the IEEE test systems are shown in Figure 5.1. The
corresponding system data and parameters are listed in Tables 5.1–5.3. The data and
parameters of the 30-bus system are listed in Tables 5.4–5.6.

The calculation results of ED with N security for the IEEE 5-bus system are
shown in Table 5.7. The calculation results of ED with N security for the IEEE
30-bus system are show in Table 5.8, and N − 1 security ED results are listed in
Table 5.9.
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Figure 5.1 IEEE test systems (a) IEEE 5-bus system; (b) one-line diagram of IEEE 30-bus
system.
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TABLE 5.1 Generator Data of 5-Bus
System

Generators #1 #2

PGimax(p.u.) 1.00 1.00

PGimin(p.u.) 0.20 0.20

QGimax(p.u.) 0.80 0.80

QGimin(p.u.) −0.20 −0.20

Quadratic cost function

ai 50.00 50.00

bi 351.00 389.00

ci 44.40 40.60

TABLE 5.2 Load Data of 5-Bus System

Load Bus #3 #4 #5

MW load PD(p.u.) 0.60 0.40 0.60

MVAR load QD(p.u.) 0.30 0.10 0.20

TABLE 5.3 Line Data of 5-Bus System

Line No. From–to Bus Resistance Reactance Line Charge

1 1–3 0.10 0.40 0.00

2 4–1 0.15 0.60 0.00

3 5–1 0.05 0.20 0.00

4 3–2 0.05 0.20 0.00

5 2–5 0.05 0.20 0.00

6 3–4 0.10 0.40 0.00

TABLE 5.4 Generator Data of 30-Bus System

Generators #1 #2 #5 #8 #11 #13

PGimax(p.u.) 2.00 0.80 0.50 0.35 0.30 0.40

PGimin(p.u.) 0.50 0.20 0.15 0.10 0.10 0.12

QGimax(p.u.) 2.50 1.00 0.80 0.60 0.50 0.60

QGimin(p.u.) −0.20 −0.20 −0.15 −0.15 −0.10 −0.15

Quadratic cost function

ai 0.00375 0.0175 0.0625 0.0083 0.0250 0.0250

bi 2.00000 1.7500 1.0000 3.2500 3.0000 3.0000

ci 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE 5.5 Load Data of 30-Bus System

Bus No. PD(p.u.) QD(p.u.) Bus No. PD(p.u.) QD(p.u.)

1 0.000 0.000 16 0.035 0.016

2 0.217 0.127 17 0.090 0.058

3 0.024 0.012 18 0.032 0.009

4 0.076 0.016 19 0.095 0.034

5 0.942 0.190 20 0.022 0.007

6 0.000 0.000 21 0.175 0.112

7 0.228 0.109 22 0.000 0.000

8 0.300 0.300 23 0.032 0.016

9 0.000 0.000 24 0.087 0.067

10 0.058 0.020 25 0.000 0.000

11 0.000 0.000 26 0.035 0.023

12 0.112 0.075 27 0.000 0.000

13 0.000 0.000 28 0.000 0.000

14 0.062 0.016 29 0.024 0.009

15 0.082 0.025 30 0.106 0.019

TABLE 5.6 Line Data of 30-Bus System

Line No. From–to
Bus

Resistance

(p.u.)

Reactance

(p.u.)

Line Limit

(p.u.)

1 1–2 0.0192 0.0575 1.30

2 1–3 0.0452 0.1852 1.30

3 2–4 0.0570 0.1737 0.65

4 3–4 0.0132 0.0379 1.30

5 2–5 0.0472 0.1983 1.30

6 2–6 0.0581 0.1763 0.65

7 4–6 0.0119 0.0414 0.90

8 5–7 0.0460 0.1160 0.70

9 6–7 0.0267 0.0820 1.30

10 6–8 0.0120 0.0420 0.32

11 6–9 0.0000 0.2080 0.65

12 6–10 0.0000 0.5560 0.32

13 9–10 0.0000 0.2080 0.65

(continued)
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TABLE 5.6 (Continued)

Line No. From–to
Bus

Resistance

(p.u.)

Reactance

(p.u.)

Line Limit

(p.u.)

14 9–11 0.0000 0.1100 0.65

15 4–12 0.0000 0.2560 0.65

16 12–13 0.0000 0.1400 0.65

17 12–14 0.1231 0.2559 0.32

18 12–15 0.0662 0.1304 0.32

19 12–16 0.0945 0.1987 0.32

20 14–15 0.2210 0.1997 0.16

21 16–17 0.0824 0.1932 0.16

22 15–18 0.1070 0.2185 0.16

23 18–19 0.0639 0.1292 0.16

24 19–20 0.0340 0.0680 0.32

25 10–20 0.0936 0.2090 0.32

26 10–17 0.0324 0.0845 0.32

27 10–21 0.0348 0.0749 0.32

28 10–22 0.0727 0.1499 0.32

29 21–22 0.0116 0.0236 0.32

30 15–23 0.1000 0.2020 0.16

31 22–24 0.1150 0.1790 0.16

32 23–24 0.1320 0.2700 0.16

33 24–25 0.1885 0.3292 0.16

34 25–26 0.2544 0.3800 0.16

35 25–27 0.1093 0.2087 0.16

36 28–27 0.0000 0.3960 0.65

37 27–29 0.2198 0.4153 0.16

38 27–30 0.3202 0.6027 0.16

39 29–30 0.2399 0.4533 0.16

40 8–28 0.0636 0.2000 0.32

41 6–28 0.0169 0.0599 0.32

42 10–10 0.0000 −5.2600

43 24–24 0.0000 −25.0000
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TABLE 5.7 Economic Dispatch Results for 5-Bus
System

Method LP Pimin Pimax

PG1(p.u.) 0.9786 0.2 1.0

PG2(p.u.) 0.6662 0.2 1.0

Total cost ($/hr) 757.74 – –

Total loss (p.u.) 0.0449 – –

TABLE 5.8 N Security Economic Dispatch Results by LP for IEEE 30-Bus
System

Generation No. Economic Dispatch PGimin PGimax

PG1 1.7626 0.50 2.00

PG2 0.4884 0.20 0.80

PG5 0.2151 0.15 0.50

PG8 0.2215 0.10 0.35

PG11 0.1214 0.10 0.30

PG13 0.1200 0.12 0.40

Total generation 2.9290 – –

Total real power losses 0.0948 – –

Total generation cost ($) 802.4000 – –

TABLE 5.9 N − 1 Security Economic Dispatch Results by LP for IEEE
30-Bus System

Generator No. Economic Dispatch PGimin PGimax

PG1(p.u.) 1.3854 0.50 2.00

PG2(p.u.) 0.5756 0.20 0.80

PG5(p.u.) 0.2456 0.15 0.50

PG8(p.u.) 0.3500 0.10 0.35

PG11(p.u.) 0.1793 0.10 0.30

PG13(p.u.) 0.1691 0.12 0.40

Total generation (p.u.) 2.9050 – –

Total Cost ($/hr) 813.74 – –

Total loss (p.u.) 0.0711 – –
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5.2.5 Piecewise Linear Approach

Assume the objective function is a quadratic characteristic, which can also be lin-
earized by a piecewise linear approach.

If the objective function is divided into N linear segments, the real power vari-
able of each generator will also be divided into N variables. Figure 5.2 is an objective
function with three linear segments. The corresponding slopes are b1, b2, and b3,
respectively.

From Figure 5.2, the generator power output variables for each segment can be
presented as follows:

PGimin ≤PGi1 ≤ PG1max (5.32)

PG1max ≤PGi2 ≤ PG2max (5.33)

PG2max ≤PGi3 ≤ PGimax (5.34)

If PGimin is selected as the initial generator output power, the incremental gen-
erator power outputs for each segment can be expressed as

ΔPGi1 =PGi1 − PGimin (5.35)

ΔPGi2 =PGi2 − PGi1max (5.36)

ΔPGi3 =PGi3 − PGi2max (5.37)

Thus, the constraint equations (5.32)–(5.34) become

0 ≤ΔPGi1 ≤ PGi1max − PGimin (5.38)

0 ≤ΔPGi 2 ≤ PGi 2max − PGi1max (5.39)

0 ≤ΔPGi3 ≤ PGimax − PGi2max (5.40)

PGmin PG1max PG2max PGmax PG

f(PG)

Figure 5.2 Piecewise linear objective function.
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The piecewise linear objective function becomes

F =
NG∑

i=1

fi(PGi) =
3∑

k=1

NG∑

i=1

bkΔPGik (5.41)

Replacing the incremental generator power output ΔPGi in the constraints (5.9)
and (5.30) in Section 5.2.2 by

∑3
k=1 ΔPGik, we can also obtain the LP model for the

ED problem.

5.3 QUADRATIC PROGRAMMING METHOD

A QP model contains a quadratic objective function and linear constraints. As men-
tioned early in this chapter, the ED problem is a nonlinear mathematical model. We
discuss the successive LP method for solving the ED problem in Section 5.2. The
successive LP method can also be used in the QP model of ED.

5.3.1 QP Model of Economic Dispatch

Let the initial operation point of generator i be P0
Gi. The nonlinear objective func-

tion can be expressed by useing Taylor series expansion, only first three terms being
considered, that is,

fi(PGi) ≈ fi(P0
Gi) +

dfi
(
PGi

)

dPGi

|||||P0
Gi

ΔPGi +
1
2

dfi
2 (PGi

)

dP2
Gi

|||||P0
Gi

ΔP2
Gi

= aΔP2
Gi + bΔPGi + c (5.42)

or
fi(ΔPGi) = aΔP2

Gi + bΔPGi (5.43)

where

a = 1
2

df ′i
(
PGi

)

dPGi

|||||P0
Gi

(5.44)

b = f ′i
(
PGi

)
=

dfi(PGi)
dPGi

||||P0
Gi

(5.45)

c = fi(P0
Gi) (5.46)

are constant, and
ΔPGi = PGi − P0

Gi (5.47)
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Linearizing the constraints using the same approach used in Section 5.2, the
QP model of real power ED can be written as follows:

min fi(ΔPGi) =
N∑

i=1

(aΔP2
Gi + bΔPGi) (5.48)

s.t.
∑

i∈NG

(
1 −

𝜕PL

𝜕PGi

)|||||P0
Gi

ΔPGi = 0 (5.49)

PGimin − P0
Gi ≤ ΔPGi ≤ PGimax − P0

Gi i ∈ NG (5.50)

|D′ΔPG| ≤ ΔP′
bmax (5.51)

5.3.2 QP Algorithm

The ED model in equations (5.48)–(5.51) can be written as a standard QP model.

min f (X) = CX + XT QX (5.52)

such that

AX ≤B (5.53)

X ≥0 (5.54)

where C is an n-dimensional row vector describing the coefficients of the linear terms
in the objective function, and Q is an (n × n) symmetric matrix describing the coeffi-
cients of the quadratic terms.

As in LP, the decision variables are denoted by the n-dimensional column vec-
tor X, and the constraints are defined by an (m × n) A matrix and an m-dimensional
column vector B of right-hand-side coefficients. For the real power ED problem, we
know that a feasible solution exists and that the constraint region is bounded.

When the objective function f (X) is strictly convex for all feasible points, the
problem has a unique local minimum which is also the global minimum. A suffi-
cient condition to guarantee strictly convexity is for Q to be positive definite. This is
generally true for most ED problems.

Equation (5.53) can be expressed as

g(X) = (AX − B) ≤ 0 (5.55)

Form the Lagrange function for equations (5.52) and (5.55), that is,

L(X, 𝜇) = CX + XT QX + 𝜇g(X) (5.56)

where 𝜇 is an m-dimensional row vector.
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According to the optimization theory, the Kuhn–Tucker (KT) conditions for a
local minimum are given as follows.

⎧
⎪
⎨
⎪⎩

𝜕L
𝜕Xj

≥ 0, j = 1, … , n

C + 2XT Q + 𝜇A ≥ 0

(5.57)

⎧
⎪
⎨
⎪⎩

𝜕L
𝜕𝜇i

≤ 0, i = 1, … ,m

AX − B ≤ 0

(5.58)

⎧
⎪
⎨
⎪⎩

Xj
𝜕L
𝜕Xj

= 0, j = 1, … , n

XT
(
CT + 2QX + AT𝜇

)
= 0

(5.59)

{
𝜇igi (X) = 0, i = 1, … ,m

𝜇(AX − B) = 0
(5.60)

{
X ≥ 0

𝜇 ≥ 0
(5.61)

If we introduce nonnegative surplus variables y to the inequalities
in equation (5.57) and nonnegative slack variables v to the inequalities in
equation (5.58), we get the following equivalent form.

CT + 2QX + AT𝜇T − y = 0 (5.62)

AX − B + v = 0 (5.63)

Then, the KT conditions can be written as follows:

2QX + AT𝜇T − y = − CT (5.64)

AX + v =B (5.65)

X ≥ 0, 𝜇 ≥ 0, y ≥ 0, v ≥ 0 (5.66)

yT X = 0, 𝜇v = 0 (5.67)
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The first two expressions are linear equalities, the third restricts all the variables to
be nonnegative, and the fourth is the complementary slackness condition.

Obviously, the KT conditions in equations (5.64)–(5.67) have a linear form
with the variables X, 𝜇, y, and v. An approach similar to the modified simplex can be
used to solve equations (5.64)–(5.67). The steps of the algorithm are as follows:

(1) Let the structural constraints be equations (5.64) and (5.65) defined by the KT
conditions.

(2) If any of the right-hand-side values are negative, multiply the corresponding
equation by −1.

(3) Add an artificial variable to each equation.

(4) Let the objective function be the sum of the artificial variables.

(5) Put the resultant problem into simplex form.

The goal is to find the solution to the LP problem that minimizes the sum of the
artificial variables with the additional requirement that the complementary slackness
conditions be satisfied at each iteration. If the sum is zero, the solution will satisfy
equations (5.64)–(5.67). To accommodate equation (5.67), the rule for selecting the
entering variable must be modified with the following relationships.

Xj and yj arecomplementary for j = 1, … , n

𝜇i and vi arecomplementary for i = 1, … ,m

The entering variable will be that whose reduced cost is most negative provided
that its complementary variable is not in the basis or would leave the basis on the same
iteration. At the conclusion of the algorithm, the vector x defines the optimal solution
and the vector 𝝁 defines the optimal dual variables.

This approach has been shown to work well when the objective function is
positive definite, and requires computational effort comparable to an LP problem
with m + n constraints, where m is the number of constraints and n is the number of
variables in the QP. Fortunately, the objective function in economic power dispatch
is positive definite. Thus, this approach is very good for solving the QP model of ED.

5.3.3 Implementation

The first example is to solve the following QP problem using the algorithm mentioned
in Section 5.3.2.

min f (x) = x2
1+4x2

2−8x1 − 16x2

subject to
x1 + x2 ≤5

x1 ≤3

x1 ≥0, x2 ≥ 0
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Solution: Convert the problem into the following QP model.

min f (X) = CX + XT QX

such that
AX ≤B

X ≥0

where

CT =
[
−8
−16

]

Q =
[

1 0
0 4

]

A =
[

1 1
1 0

]

B =
[

5
3

]

X =
[

x1
x2

]

As can be seen, the Q matrix is positive definite so the KT conditions are nec-
essary and sufficient for a global optimum.

Let

y =
[

y1
y2

]

v =
[

v1
v2

]

𝜇 =
[
𝜇1
𝜇2

]

According to equations (5.64) and (5.65), we get

2x1 + 𝜇1 + 𝜇2 − y1 =8

8x2 + 𝜇1 − y2 =16

x1 + x2 + v1 =5

x1 + v2 =3

To create the appropriate LP problem, we add artificial variables to each con-
straint and minimize their sum.
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minZ = w1 + w2 + w3 + w4

such that
2x1 + 𝜇1 + 𝜇2 − y1 + w1 = 8

8x2 + 𝜇1 − y2 + w2 = 16

x1 + x2 + v1 + w3 = 5

x1 + v2 + w4 = 3

x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0, v1 ≥ 0, v2 ≥0, 𝜇1 ≥ 0, 𝜇2 ≥ 0,

Applying the presented algorithm to this example, the optimal solution to the
original problem is (x∗1, x

∗
2) = (3, 2). Table 5.10 shows the iterations of the solution.

The second example is to apply the presented QP algorithm to solve the real
power ED problem. The testing system is the IEEE 30-bus system, the data of which
are given in Section 5.2. The following testing cases are conducted.

Case 1: IEEE 30-bus system with the original data.

Case 2: IEEE 30-bus system with the original data, but the limit of the line 1 is
reduced to 1.0 p.u.

The security ED results for the two cases are shown in Table 5.11. The results
of Case 1 are also compared with those obtained by using LP, which are shown in
Table 5.12. It can be observed that the ED results obtained by QP are a little better
than those obtained by LP.

5.4 NETWORK FLOW PROGRAMMING METHOD

5.4.1 Introduction

NFP is a specialized LP. It is characterized by simple manipulation and rapid conver-
gence. NFP models of N security ED have been proposed in recent years.

TABLE 5.10 Iterations for QP Example

Iterations Basic
Variables

Solution Objective
Values

Entering
Variable

Leaving
Variable

1 (w1,w2,w3,w4) (8,16,5,3) 32 x2 w2

2 (w1, x2,w3,w4) (8,2,3,3) 14 x1 w3

3 (w1, x2, x1,w4) (2,2,3,0) 2 𝜇1 w4

4 (w1, x2, x3, 𝜇1) (2,2,3,0) 2 𝜇1 w1

5 (𝜇1, x2, x3, 𝜇1) (2,2,3,0) 0 / /
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TABLE 5.11 Economic Dispatch Results by QP for IEEE
30-Bus System

Generation No. Case 1 Case 2

PG1 1.7586 1.5174

PG2 0.4883 0.5670

PG5 0.2151 0.2326

PG8 0.2233 0.3045

PG11 0.1231 0.1517

PG13 0.1200 0.1400

Total generation 2.9285 2.9132

Total real power losses 0.0945 0.0792

Total generation cost ($) 802.3900 807.2400

TABLE 5.12 ED Results and Comparison Between QP and
LP for IEEE 30-Bus System

Generation No. QP Method LP Method

PG1 1.7586 1.7626

PG2 0.4883 0.4884

PG5 0.2151 0.2151

PG8 0.2233 0.2215

PG11 0.1231 0.1214

PG13 0.1200 0.1200

Total generation 2.9285 2.9290

Total real power losses 0.0945 0.0948

Total generation cost ($) 802.3900 802.4000

This section first presents a network flow model and uses the out-of-kilter algo-
rithm (OKA) for solving the on-line economic power dispatch with N and N − 1
security. A fast N − 1 security analysis method solved by OKA is applied to seek
out all the over-constrained cases for all possible single-line outages, and then an
“(N − 1)- constrained zone” is formed that is coordinated with the network flow
model. On the basis of the normal operating state, a corrective incremental network
flow model for ED is established for the over-constrained cases. Consequently, the
calculation burden is reduced significantly and the shortcoming of the NFP impreci-
sion, is mitigated to some extent.
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5.4.2 Out-of-kilter Algorithm

OKA Model According to graph theory, a network with n nodes and m arcs
(branches) can be shown as in Figure 5.3(a). The corresponding minimum cost flow
problem can be expressed as follows.

minC =
∑

ij

Cijfij ij ∈ m (5.68)

such that ∑

j∈n

(fij − fji) = ri i ∈ n (5.69)

Lij ≤ fij ≤ Uij ij ∈ m (5.70)

where,

Cij: the arc cost per unit flow
fij: the flow on the arc ij in the network

Lij: the lower bound of the flow on the arc ij in the network
Uij: the upper bound of flow on the arc ij in the network

n: the total number of the nodes in the network
m: the total number of the arcs in the network.

According to the “out-of-kilter” algorithm (OKA) of NFP, we can transform
the original network into an OKA network by introducing a “return arc” from sink
node t to source node s, while the internal flows remain unchanged. The return arc
flow fts equals the original network flow r. The OKA network model is shown in
Figure 5.3(b).

Similarly, if the original network has multiple sources and multiple sinks, which
is shown in Figure 5.4(a), the corresponding OKA model can be formed as shown in

(a)

(b)

Original 
network

(n nodes and m
arcs)

s t

Original 
network

(n nodes and m 
arcs)

s t

fts = r
Figure 5.3 (a and b) OKA network model with
one source s and one sink t.
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(a)

Original network
(n nodes and m 

arcs)

s1 t1

s2

ss
tt

...

...
(b)

Original network
(n nodes and m 

arcs)

s1
t1

s2

ss
tt

...

...

fts = r

s t

Figure 5.4 (a and b) OKA network
model with multiple source ss and
multiple sinks tt.

Figure 5.4(b), where each source corresponds to a source arc connecting to a total
source node s and each sink forms a sink arc connecting to the total sink node t.

The corresponding mathematical model for OKA as follows:

minC =
∑

ij

Cijfij ij ∈ (m + ss + tt + 1) (5.71)

such that ∑

j∈n

(fij − fji) = 0 i ∈ n (5.72)

Lij ≤ fij ≤ Uij ij ∈ (m + ss + tt + 1) (5.73)

where m is the total number of arcs other than the return arc.

Complementary Slackness Conditions for Optimality of OKA The model
consisting of equations (5.71)–(5.73) is a specialized LP model. According to the
dual theory, the corresponding primary problem and dual problem can be expressed
as follows.

Primary Problem
maxF′ = −

∑

ij

Cijfij (5.74)

such that ∑

j∈n

(fij − fji) = 0 (5.75)

Lij ≤ fij ≤ Uij i ∈ n, j ∈ n, ij ∈ (m + ss + tt + 1) (5.76)
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Dual Problem
minG =

∑

ij

Uij𝛼ij −
∑

ij

Lij𝛽ij (5.77)

such that
Cij + 𝜋i − 𝜋j + 𝛼ij − 𝛽ij ≥ 0 (5.78)

𝛼ij ≥ 0, 𝛽ij ≥ 0 (5.79)

i ∈ n, j ∈ n, ij ∈ (m + ss + tt + 1)

where 𝜋 is the dual variable of the variable f of the primary problem. 𝛼 and 𝛽 corre-
spond to the dual variables of the upper and lower limits of the primary problem.

When all the variables f , 𝜋, 𝛼, and 𝛽 meet the requirements of the constraints,
the following relationship exists between the objective functions of the primary and
dual problems.

G − F′ =
∑

ij

Uij𝛼ij −
∑

ij

Lij𝛽ij +
∑

ij

Cij fij

=0 ⋅ (𝜋s − 𝜋t) +
∑

ij

Uij𝛼ij −
∑

ij

Lij𝛽ij +
∑

ij

Cij fij

=
∑

j

∑

i

𝜋i(fij − fji) +
∑

ij

Uij𝛼ij −
∑

ij

Lij𝛽ij +
∑

ij

Cij fij (5.80)

=
∑

ij

[𝜋i−𝜋j + 𝛼ij − 𝛽ij + Cij] fij+
∑

ij

(Uij − fij)𝛼ij

+
∑

ij

(fij − Lij)𝛽ij ≥ 0

It will be true that G − F′ = 0 if the solution is optimal. Thus, from
equation (5.80) we get

(Uij − fij)𝛼ij =0 (5.81)

(fij − Lij)𝛽ij =0 (5.82)

(Cij + 𝜋i − 𝜋j + 𝛼ij − 𝛽ij) fij =0 (5.83)

that is,
(Cij + 𝛼ij − 𝛽ij)fij = 0 (5.84)

From equations (5.81)–(5.84), we get
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Case 1: Cij > 0

If 𝛽ij = Cij + 𝛼ij, fij ≠ 0
Furthermore, if 𝛼ij ≥ 0, 𝛽ij ≠ 0, then, from equation (5.82), we can get

fij = Lij

Case 2: Cij < 0

If 𝛽ij = Cij + 𝛼ij, then fij ≠ 0, and 𝛼ij > 𝛽ij
Furthermore, if 𝛽ij ≥ 0, 𝛼ij ≠ 0, then, from equation (5.81), we can get

fij = Uij

Case 3: Cij = 0
From (5.84), we get (𝛼ij − 𝛽ij)fij = 0, which can be analyzed as follows.

(3a): If fij = 0, then (𝛼ij − 𝛽ij) ≠ 0
When 𝛼ij > 𝛽ij, then 𝛼ij > 0, we get the following expression from
equation (5.81)

fij = Uij ≠ 0

When 𝛽ij > 𝛼ij, then 𝛽ij > 0, we get the following expression from
equation (5.82)

fij = Lij ≠ 0

Both situations are in conflicted with the assumption fij = 0. So we
can be sure fij ≠ 0 for this case.

(3b): Assuming 𝛼ij = 0, then 𝛽ijfij = 0
Since fij ≠ 0 from (3a), we have 𝛽ij = 0
Therefore, from equation (5.81) we get

fij ≤ Uij

From equation (5.82) we get

fij ≥ Lij

that is, if Cij = 0, then Lij ≤ fij ≤ Uij

According to the three cases described above, the complementary slackness
conditions for optimality of OKA are summarized as follows:

fij = Lij for Cij > 0 (5.85)

Lij ≤ fij ≤ Uij for Cij = 0 (5.86)

fij = Uij for Cij < 0 (5.87)
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where the relative cost is
Cij = Cij + 𝜋i − 𝜋j (5.88)

According to equations (5.85)–(5.87) and the labeling technique, the arcs have
nine kinds of states, which are shown in Table 5.13.

The complementary slackness conditions for optimality of OKA shown in
equations (5.85)–(5.87) correspond to the three “in- kilter” states of the arcs. In addi-
tion, there are six “out-of-kilter” states that do not satisfy conditions (5.85)–(5.87).
If all the arcs are in kilter, then the optimal solution is obtained. Otherwise, we must
vary the relevant arc flows or node potentials (parameter 𝜋) by the labeling technique
so that the out-of-kilter states of the arcs come into kilter.

The states of arcs and labeling rules can be explained using Figure 5.5.

TABLE 5.13 States of OKA Arcs

Symbol Cij fij State of Arcs

I1 Cij > 0 fij = Lij In kilter

I2 Cij = 0 Lij < fij < Uij In kilter

fij = Uij, fij = Lij In kilter

I3 Cij < 0 fij = Uij In kilter

II1 Cij > 0 fij < Lij Out of kilter

II2 Cij = 0 fij < Lij Out of kilter

II3 Cij < 0 fij < Uij Out of kilter

III1 Cij > 0 fij > Lij Out of kilter

III2 Cij = 0 fij > Uij Out of kilter

III3 Cij < 0 fij > Uij Out of kilter

Cij < 0

Cij = 0

Cij > 0

Cij

I1II1

II2 I2

II3 I3

III1

III2

III3

fij

Figure 5.5 States of OKA arcs.
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In Figure 5.5, if the arc is in-kilter state, the point (fij,Cij) will be located on one
of three dark lines I1, I2, or I3, where the dark line I1 corresponds to the lower bound
Lij of flow fij; the dark line I3 corresponds to the upper bound Uij of flow fij; and the
dark line I2 corresponds to the flow fij that is within Lij < fij < Uij.

If the flow of the arc is violated at the upper or lower limits, the point (fij,Cij)
will be located outside the three dark lines, corresponding to the six “out-of-kilter”
states in Figure 5.5. In these situations, the value of the flow of the arc will be either
less than its lower limit or higher than its upper limit, that is, fij > Uij or fij < Lij.

Labeling Rules and Algorithm of OKA According to the labeling technique, the
labeling rules of OKA for the forward arc and backward arc under nine OKA states
in Table 5.13 are listed in Table 5.14, where the symbol “↑” stands for increase; “↓”
stands for decrease; “→” stands for change; “fk” indicates that the flow is outside the
feasible region.

According to the labeling rules mentioned above, the OKA is implemented as
follows.

With Incremental Flow Loop When an incremental flow loop exists, correct
the values of flow for all arcs in the loop. The process is as follows:

(1) For forward arcs

(a) If Cij ≥ 0, fij < Lij, the node j can be labeled. The incremental flow to the
node j will be computed as

qj = min[qi,Lij − fij] (5.89)

TABLE 5.14 Labeling Rules for OKA Algorithm

Symbol fij Forward Arc f + Backward Arc f −

Labeling? Why? Labeling? Why?

I1 fij = Lij No, f+ ↑→ f +k No, f − ↓→ f −k
I2 Lij < fij < Uij Yes, f + ↑→ U Yes, f− ↓→ L

fij = Uij

fij = Lij

No, f+ ↑→ f +k No, f − ↓→ f −k

I3 fij = Uij No, f+ ↑→ f +k No, f − ↓→ f −k
II1 fij < Lij Yes, f + ↑→ U No, f− ↓→ f −k
II2 fij < Lij Yes, f + ↑→ U No, f− ↓→ f −k
II3 fij < Uij Yes, f + ↑→ U No, f− ↓→ f −k
III1 fij > Lij No, f+ ↑→ f +k Yes, f − ↓→ L

III2 fij > Uij No, f+ ↑→ f +k Yes, f − ↓→ L

III3 fij > Uij No, f+ ↑→ f +k Yes, f− ↓→ U
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(b) If Cij ≤ 0, fij < Uij, the node j can be labeled. The incremental flow to the
node j will be computed as

qj = min[qi,Uij − fij] (5.90)

(2) For backward arcs

(a) If Cji ≥ 0, fji > Lji, the node j is can be labeled. The incremental flow to the
node j will be computed as

qj = min[qi, fji − Lji] (5.91)

(b) If Cji ≤ 0, fji > Uji, the node j can be labeled. The incremental flow to the
node j will be computed as

qj = min[qi, fji − Uji] (5.92)

Without Incremental Flow Loop When there an incremental flow loop does
not exist, correct the values of the relative cost Cij, or Cji by increasing the cost of

the vertex 𝜋. This is because the change in Cij, or Cji causes the change of the path
of minimum cost flow. Consequently, a new incremental flow loop will be produced.
The process of computing the incremental vertex cost is as follows:

Let B and B stand for the set of labeled and unlabeled vertices, respectively.
Obviously, the super source s ∈ B and super sink t ∈ B. In addition, define two sets
of arcs A1 and A2

A1 = {ij, i ∈ B, j ∈ B, Cij > 0, fij ≤ Uij} (5.93)

A2 = {ji, i ∈ B, j ∈ B, Cji < 0, fji ≥ Lij} (5.94)

The incremental vertex cost is determined as follows:

𝛿 = min{𝛿1, 𝛿2} (5.95)

where

𝛿1 =min{|Cij|} > 0 (5.96)

𝛿2 =min{|Cji|} > 0 (5.97)

If A1 is an empty set, make 𝛿1 = ∞; If A2 is an empty set, make 𝛿2 = ∞. When
𝛿 = ∞, it means there is no feasible flow, that is, there is no solution for the given
NFP problem. When 𝛿 < ∞, update the vertex costs for all unlabeled vertexes, that
is,

𝛿′ = 𝜋j + 𝛿 j ∈ B (5.98)
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In this way, the out-of-kilter arc will be changed into an in-kilter arc. When all
arcs are in in kilter, the optimum solution is obtained.

The steps of the OKA algorithm are as follows:

Step 1. Set the initial values of the arc flows. The initial flows are required to satisfy
constraint (5.72) only, but not necessarily the constraint (5.73).

Step 2. Check the state of the arcs. If all arcs are in kilter, then the optimal solution
has been found. Terminate the iteration. Otherwise, go to step 3.

Step 3. Revise the state of the arcs. Arbitrarily choose an arc to be revised
from the set of out-of-kilter arcs. Using the labeling technique, when a
flow-augmenting loop exists, vary the values of flow fij for all arcs in
this loop. If no flow-augmenting loop is found, adjust the values of 𝜋 at
unlabeled nodes, and hence change the relative cost Cij, or Cji. Some
cross iterations between flow and the relative cost may be needed for the
out-of-kilter arc to become in kilter. Once the arc state has been revised, go
back to step 2.

It should be noted that the revision process converges after a finite number of
iterations.

In comparison with the general algorithm of the minimum cost flow, the fol-
lowing are the main features of the OKA:

(1) The nonzero lower bound of flow is allowable.

(2) The initial flow does not have to be feasible or zero flow.

(3) Nonnegative constraints, fij ≥ 0, are released.

(4) It is easy to imitate a change in network topology by changing the specified
bound values of the flows as the branch outage occurs.

5.4.3 N Security Economic Dispatch Model

In the normal operating case, the NFP model of real power ED with N security can
be written as follows.

minF0 =
∑

i∈NG

(aiP
0 2
Gi + biP

0
Gi + ci) + h

∑

j∈NT

RjP
0 2
Tj (5.99)

such that

∑

i(𝜔)
P0

Gi+
∑

j(𝜔)
P0

Tj +
∑

k(𝜔)
P̂0

Dk = 0 𝜔 ∈ n (5.100)

PGi ≤P0
Gi ≤ PGi (5.101)

PTj ≤P0
Tj ≤ PTj (5.102)

i ∈ NG, j ∈ NT , k ∈ ND
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where

ai, bi andci: the cost coefficients of the ith generator
P0

Gi: the real power flow of the generation arc i in the normal operating case
P0

Tj: the real power flow of the transmission arc j in the normal operating
case

P0
Dk: the real power flow of the load arc k in the normal operating case

NG: the total number of generation arcs
NT: the total number of transmission arcs
ND: the total number of load arcs

N: the total number of nodes
Rj: the resistance of the transmission arc (line) j
P: the lower bound of the real power flow through the arc

P: the upper bound of the real power flow through the arc.

The positive direction of flow is specified as the flow enters the node and the
negative as it leaves the node. The symbol i(w) means that arc i is adjacent to node
w; so also j(w) and k(w).

The following points should be noted.

(1) The second term of the objective,

h
∑

j∈NT

RjP
0 2
Tj (5.103)

is the penalty on transmission losses with the system marginal cost h (in $ per
MWh). The total transmission loss is represented approximately, but validly,
as the sum of the products of the line resistance and the square of the trans-
mitted power on the line. This is obtained from the following real power loss
expression of the transmission line:

PLj =
P2

Tj + Q2
Tj

V2
Tj

× Rj (5.104)

under the assumptions of 1.0 p.u. flat voltage across the line and local supply
of the reactive power.

(2) The power loss of an individual line is assumed to be distributed equally to
its ends. Thus, the real load P0

Dk in equation (5.100) would involve half the
transmission losses on all the lines connected to node k, which are estimated
preliminarily from the power flow calculation of the normal operation and kept
constant, or modified if necessary, that is,

P̂0
Dk = P0

Dk +
1
2

∑

j→k

RjP
0 2
Tj (5.105)

The other half of the loss on the line that is not related to load will be added on
to the flow of the return arc of the OKA network model.
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(3) The transmitted real power acts as the independent variable and the line security
constraints are introduced into the model straight away. The secure line limit
is based on its surge impedance loading (SIL) and its length, and not on the
thermal limit.

(4) The topology of the power system is preserved as the penalty factors are not
calculated in the usual sense. Therefore, the model can be solved easily by NFP
as well as the OKA.

Although this model is different from the traditional ED model, it has been
verified that they are equivalent [4,10].

The objective function of economic power dispatch in equation (5.99) is a
quadratic function. It can be linearized by use of the average cost. From the previous
section, we know that the OKA network model of economic power dispatch consists
of three types of arcs. They are the generation arc, the transmission arc, and the load
arc. Obviously, each generation arc corresponds to a generator, each transmission arc
corresponds to a line or transformer, and each load arc corresponds to a real power
demand. In addition, there is a return arc. The total arcs in a power network will be
m + 1, where m = NG + NT + ND.

Comparing the ED model shown in equations (5.99)–(5.102) with the OKA
model shown in equations (5.71)–(5.73), the average cost and flow limits of each
type of arc are

(1) The generation arc

Cij =aiPGi + bi (5.106)

Lij =PGi (5.107)

Uij =PGi (5.108)

(2) The transmission arc

Cij =hRjPTj (5.109)

Lij =PTj (5.110)

Uij =PTj (5.111)

(3) The load arc

Cij = 0 (5.112)

Lij = P̂0
Dk (5.113)

Uij = P̂0
Dk (5.114)
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(4) The return arc

Cij =0 (5.115)

Lij =
∑

k∈ND

P̂0
Dk +

1
2

∑

j∈NT

RjP
0 2
Tj (5.116)

Uij =
∑

k∈ND

P̂0
Dk +

1
2

∑

j∈NT

RjP
0 2
Tj (5.117)

If the network loss is neglected in the ED OKA model, the cost of the trans-
mission arc will be zero; the load P̂Dk will be replaced by PDk. Meanwhile, the part
of power loss in the return arc will be zero too.

It is noted that the flow Pts on the return arc contains the total loads and network
losses, that is,

Pts =
∑

k∈ND

P̂0
Dk +

1
2

∑

j∈NT

RjP
0 2
Tj (5.118)

Substituting equation (5.105) in equation (5.118), we get

Pts =
∑

k∈ND

(
P0

Dk +
1
2

∑

j→k

RjP
0 2
Tj

)
+ 1

2

∑

j∈NT

RjP
0 2
Tj

=
∑

k∈ND

(P0
Dk) +

1
2

∑

j∈NT

RjP
0 2
Tj + 1

2

∑

j∈NT

RjP
0 2
Tj (5.119)

=
∑

k∈ND

(P0
Dk) +

∑

j∈NT

RjP
0 2
Tj

= PD + PL

Obviously, the KCL law at the super source node that connects to the return arc
will be

NG∑

i=1

PGi = PD + PL (5.120)

This is exactly the real power balance equation in the traditional real power ED
model. Thus, it is very easy to compute network losses in the ED OKA model, which
involves adjusting the flow in the flow-augmenting loop that contains the return arc.

5.4.4 Calculation of N − 1 Security Constraints

In the theoretical sense, the total number of N − 1 security constraints is very large
and equals n(n − 1) for the system with n transmission and transformer branches.
In the practical sense, power transmission systems are usually designed well within
the capacity of the system load and generation. Only a small proportion of lines
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may be overloaded, even if a single branch outage occurs. Therefore, it is neither
necessary nor reasonable to incorporate all the N − 1 security constraints into the cal-
culation model directly. To detect all the possible overconstrained cases, which must
be considered, a fast contingency analysis for a single line outage must be performed
[20,21].

On the basis of the normal generation schedule obtained from model M-1, the
NFP model M-2 of N − 1 security analysis is presented as

minFl =
∑

j∈NT

RjPTj
2(l) (5.121)

such that

∑

i(𝜔)
P0

Gi+
∑

j(𝜔)
PTj(l) +

∑

k(𝜔)
P0

Dk = 0 𝜔 ∈ n (5.122)

|PTj(l)| ≤ 𝛾PTj l ∈ NL (5.123)

PTl =0 (5.124)

where

PTl(l): the real power transmitted in line j while line l is in outage
NL: the set of the outage lines
𝛾: a constant greater than unity (say 1 < 𝛾 < 1.3).

The following are the differences between the models M-1 and M-2:

(1) The generation costs in the objective equation (5.99) and the inequality
constraint equation (5.100) vanish as all the generations and loads remain
unchanged.

(2) Only the transmitted real power PTl(l) acts as a variable to adjust the power
flows. The inequality constraint equation (5.123) has replaced equation (5.102).
The constant 𝛾 is introduced to find the overloaded line when line l appears as
an outage.

Once the overconstrained cases have been detected, the maximum value of the
violation in line j can be determined by the following equations:

ΔPTj = max
l∈NL

{PTj(l) − PTj} j ∈ NT1 (5.125)

ΔPTj = min
l∈NL

{PTj(l) − PTj} j ∈ NT2 (5.126)

where NT1 and NT2 represent the number of lines that violate their upper and lower
bounds, respectively, as line l appears as an outage.
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5.4.5 N − 1 Security Economic Dispatch

There is no guarantee that the economic schedules with N security in normal
operation will not violate the line limits if a single contingency occurs (or multiple
contingencies occur). If such a situation does arise, it is necessary to reallocate
the generations so that the line constraints are satisfied. An efficient approach to
incorporating N − 1 security constraints as a part of ED is therefore desirable. On the
basis of the normal case with consideration of N security and the fast contingency
analysis, the network flow model M-3 of N − 1 security economic power dispatch is
presented as follows:

minΔF =
∑

i∈NG

(
𝜕fi
𝜕PGi

||||P0
Gi

ΔPGi

)
+ h

∑

j∈NT

⎛
⎜
⎜⎝

𝜕PLj

𝜕PTj

|||||P0
Tj

ΔPTj

⎞
⎟
⎟⎠

(5.127)

such that

∑

i(𝜔)
ΔPGi+

∑

j(𝜔)
ΔPTj = 0 𝜔 ∈ (NG + NT) (5.128)

PGi − P0
Gi ≤ΔPGi ≤ PGi − P0

Gi i ∈ NG (5.129)

|ΔPGi| ≤ΔPGrci i ∈ NG (5.130)

ΔPTj = − ΔPTj j ∈ NT1 (5.131)

ΔPTj = − ΔPTj j ∈ NT2 (5.132)

PTj − P0
Tj ≤ΔPTj ≤ PTj − P0

Tj j ∈ (NT − NT1 − NT2) (5.133)

whereΔPGi andΔPTj are the incremental generations and transmissions, respectively.
The incremental generation and transmission costs are

𝜕fi
𝜕PGi

||||P0
Gi

= 2aiP
0
Gi + bi (5.134)

𝜕PLj

𝜕PTj

|||||P0
Tj

= 2RjP
0
Tj (5.135)

ΔF is the objective, that, is the total incremental product cost.
Obviously, M-3 is an incremental optimization model. The following issues

should be noted.

(1) The objective equation (5.127) and the equality constraint equation (5.128)
are obtained under the assumption that the loads are held constant, that is,
ΔPDk = 0. Exceptionally, if there is no feasible solution for problem M-3 in
the preventive control, some loads would be curtailed partially or completely,
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so that the problem becomes solvable. In this case, the incremental loads may
act as the variable introduced into M-3 without the cost. The contents of load
shedding can be found in Chapter 11.

(2) To realize the transition from the N to N − 1 security schedule successfully, the
limits of the real power generation regulations (regulating speeds), ΔPGrci must
be considered. These are determined from the product of the relevant regulating
speed and regulating time specified. Thus, the regulating value of the generation
is restricted by the two inequalities (5.129) and (5.130), which can be combined
into one expression:

max{−ΔPGrci,PGi − P0
Gi} ≤ ΔPGi ≤ min{ΔPGrci,PGi − P0

Gi} i ∈ NG
(5.136)

(3) If any critical single line outage occurs, then the line security zone will be con-
tracted to some extent. Equations (5.131)–(5.133) reflect the changing number
of line security constraints. Recalling equations (5.125) and (5.126), an “N − 1
constrained zone”, which is in fact formed by the intersection of the secure
zones for all single contingencies, can be determined from these equations. This
means that an N − 1 security problem with the same number of constraints as
in the N security problem can be introduced into the network flow model.

Substituting equations (5.125), (5.126), and (5.134)–(5.136) into model M-3,
the incremental network flow model of ED with N − 1 security, model M-4, becomes

minΔF =
∑

i∈NG

(2aiP
0
Gi + bi)ΔPGi + h

∑

j∈NT

(
2RjP

0
Tj

)
ΔPTj (5.137)

such that
∑

i(𝜔)
ΔPGi+

∑

j(𝜔)
ΔPTj = 0 𝜔 ∈ (NG + NT) (5.138)

max{−ΔPGrci, PGi − P0
Gi} ≤ ΔPGi ≤ min{ΔPGrci, PGi − P0

Gi}
i∈NG

(5.139)

ΔPTj = −max
l∈NL

{PTj(l) − PTj} j ∈ NT1 (5.140)

ΔPTj = −min
l∈NL

{PTj(l) − PTj} j ∈ NT2 (5.141)

PTj − P0
Tj ≤ΔPTj ≤ PTj − P0

Tj j ∈ (NT − NT1 − NT2) (5.142)

The linear model M-4 corresponds to the OKA model and it can be solved
easily by the OKA.

It is noted that model M-4 can provide the bi-generation schedule, that is,
the normal generation schedule from model M-1 is used in the normal operation
state, while the post-fault generation schedule from model M-4 is only used in the
post-contingency case. Furthermore, it can also be used as a single generation sched-
ule, which is applied both in the normal case and in post-contingency, that is, the
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unique generation schedule not only guarantees secure operation in the normal case
but it also avoids the occurrence of an overload in a possible single contingency. This
scheme is easy to implement because no rescheduling is needed. However, because
all the N − 1 line security constraints have to be satisfied, the constraint region is very
narrow, and hence the operating cost increases.

5.4.6 Implementation

Major Procedures of the OKA The essence of the OKA is to revise the out-of-
kilter states of arcs to in-kilter states according to complementary slackness condi-
tions for optimality equations (5.85)–(5.87). It should be noted that the correction
process converges after a finite number of iterations. The following is a numerical
example, which is taken from reference [2], to illustrate the solution procedure:

The problem is to solve a secure ED of a simple power system shown in
Figure 5.6. There are two generators (PG1 and PG2) and three transmission lines to
supply a load PD. The system parameters are as follows.

F1(PG1) =C1PG1 = 2PG1

F2(PG2) =C2PG2 = 5PG2

0 ≤PG1 ≤ 2

0 ≤PG2 ≤ 2

PD =3

0 ≤Pl1 ≤ 1

0 ≤Pl2 ≤ 4

1 ≤Pl3 ≤ 2

where, l1 is the line between the two generators PG1 and PG2; l2 is the line from the
generator PG1 to load PD; l3 is the line from the generator PG2 to the load PD.

(2 ; 2 / 0)

∼
(3 ; 4 / 0)

(0 ; 3 / 3)

PD

(6 ; 2 / 1)

(1
 ; 

1 
/ 0

)

(5 ; 2 / 0)

PG1

PG2

Figure 5.6 A simple power system (Cij;
Uij∕Lij).
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For simplification, the network loss is neglected. Then the ED model for this
example can be written as follows.

minF = 2PG1+5PG2

such that
PG1+PG2 = 3

0 ≤PG1 ≤ 2

0 ≤PG2 ≤ 2

0 ≤Pl1 ≤ 1

0 ≤Pl2 ≤ 4

1 ≤Pl3 ≤ 2

This ED problem can be expressed as the OKA network flow model as already
mentioned.

The corresponding network flow model for the OKA is depicted in Figure 5.7.
The solution process of the OKA is demonstrated in the following.

(1) Assign the initial values: f13 = f32 = f24 = f41 = 2, f12 = f34 = 0, and
𝜋1 = 𝜋2 = 𝜋3 = 𝜋4 = 0. These values and the relevant parameters are given in
Figure 5.8(a). Then calculate the relative cost Cij.

(2) Check the state of the arcs. From Figure 5.8(a) we know that all the arcs are
out of kilter except arc 1-2 marked with a star.

(3) Choose an out-of-kilter arc, say arc 4-1. By the labeling technique, no
flow-augmenting loop exists because only node 1 can be labeled, but nodes 2-4
cannot. Then change the value of 𝜋 at nodes 2–4 as shown in Figure 5.8(b). In
this case, arc 4-1 is still out of kilter, but all the nodes can be labeled. Then, a
flow-augmenting loop 1-2-3-4-1 is found and the augmenting value is equal
to unity. After the flows in this loop are adjusted, the resultant is shown in
Figure 5.8(c). Now, arc 4-1 comes into kilter and so does arc 3-4 at the same
time.

1

2

3

4

(2 ; 2 / 0) (3 ; 4 / 0)

(0 ; 3 / 3)

(5 ; 2 / 0) (6 ; 2 / 1)

(1 ; 1 / 0)

Figure 5.7 Network flow model for the OKA
corresponding to Figure 5.6.
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(a)

1

2

3

4

(2; 0) * (3; 2)

(0 ; 2 )

(6; 0) *(5; 2 )

(1; 2)ˆ [0]

[0]

[0]

[0]

(b)

1

2

3

4

(0; 0) * (3; 2)

(2 ; 2 )

(6; 0) * (3; 2)

(1; 2̂)
[2]

[2]

[0]

[2]

(d)

(e)

(c)

1

2

3

4

(0; 1) *
(3; 2)

(2 ; 3) *

(6; 1) *(3; 2 )

(1; 1)
[2]

[2]

[0]

[2]

1

2

3

4

(0; 2) *
(3; 2)

(2 ; 3) *

(6; 1) * (3; 1)

(1; 0) *
[2]

[2]

[0]

[2]

1

2

3

4

(0; 2) *
(3; 2)

(5; 3) *

(6; 1) 
*

(0; 1) *

(1; 0) 
*

[5]

[5]

[0]

[5]

(f)

1

2

3

4

(0; 2) * (0; 2) *

(5; 3) *

(6; 1) 
*

(1; 0) *

(4; 0) 
*

[8]

[5]

[3]

[8]

Figure 5.8 (a–f) The solution process of the OKA.

(4) Again check the state of the arcs. We can observe that arcs 1-3, 3-2, and 2-4 are
out of kilter.

(5) Choose arc 1-3 to be revised. The flow-augmenting loop 1-2-3-1 is obtained
because nodes 1, 2, and 3 can be labeled. Then modify the relevant flows; the
results are given in Figure 5.8(d). In this case, arc 1-3 is still out of kilter and
the nodes cannot be labeled, except node 1. Through changing the values of 𝜋
and Cij, arc 1-3 comes into kilter, as shown in Figure 5.8(e).

(6) Check the state of the arcs once more. Only arc 2-4 is in out of kilter state.
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(7) Revise the state of arc 2-4. No flow-augmenting loop exists because only node
2 can be labeled. After the values of 𝜋 and Cij at nodes 1, 3, and 4 have been
changed, arc 2-4 comes into kilter, as shown in Figure 5.8(f).

(8) By checking the state of the arcs, we see that all the arcs are in kilter and all
conditions for optimality have been satisfied. This shows that the optimal (min-
imum cost) power flow of the system is obtained. Stop the iteration.

The optimal results are

(1) The relevant cost

C12 = 0,C13 = 0,C23 = 4,C24 = 0,C34 = 6,C41 = 5

(2) The vertex cost
𝜋1 = 3, 𝜋2 = 5, 𝜋3 = 8, 𝜋4 = 8,

(3) Flow on the arcs

f12 = 2, f13 = 1, f23 = 0, f24 = 2, f34 = 1, f41 = 3

Numerical Example of Economic Dispatch with N Security The proposed
model and algorithm have also been tested on the IEEE 5-bus and 30-bus systems.
Table 5.15 has the ED results of the 5-bus system obtained by the OKA algorithm,
where the total generation costs are 757.50 $/h, and the total system losses are 0.043
p.u. The results are almost the same as those obtained by LP.

The following simulation cases were conducted for the 30-bus system:

Case 1: the original data including the power limit of the line;

Case 2: the original data but with the power limit of the lines 2 and 6 reduced to
0.45 and 0.35 p.u., respectively;

Case 3: the original data but with the power limit of the line 1 reduced to 0.65 p.u;

TABLE 5.15 Economic Dispatch by OKA (5-Bus System)

Generators

or Lines

Real Power

(p.u.)

Lower Limit

(p.u.)

Upper Limit

(p.u.)

PG1 0.9270 0.3000 1.2000

PG2 0.7160 0.3000 1.2000

P13 0.2160 0.0000 1.0000

P41 −0.4110 0.0000 0.5000

P51 −0.3000 0.0000 0.3000

P32 −0.4000 0.0000 0.4000

P25 0.3160 0.0000 1.0000

P34 0.0000 0.0000 0.5000
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TABLE 5.16 Economic Dispatch by OKA (30-Bus System)

Case Case 1 Case 2 Case 3 Case 4

PG1(p.u.) 1.7588 1.75000 1.34665 1.69665

PG2(p.u.) 0.4881 0.26236 0.64571 0.33295

PG5(p.u.) 0.2151 0.15000 0.15000 0.15000

PG8(p.u.) 0.2236 0.31270 0.31270 0.31270

PG11(p.u.) 0.1230 0.30000 0.30000 0.30000

PG13(p.u.) 0.12000 0.12000 0.12000 0.12000

Total cost ($/hr) 802.51 813.75 814.24 809.68

Total loss (p.u.) 0.0950 0.0782 0.0793 0.0783

TABLE 5.17 Economic Dispatch with Different h by OKA (30-Bus
System)

H >1600 200–1600 29–200 20–25

PG1(p.u.) 0.56236 0.84236 1.34665 1.34665

PG2(p.u.) 0.80000 0.80000 0.29571 0.64571

PG5(p.u.) 0.50000 0.50000 0.15000 0.15000

PG8(p.u.) 0.31270 0.31270 0.31270 0.31270

PG11(p.u.)) 0.30000 0.30000 0.30000 0.30000

PG13(p.u.) 0.40000 0.12000 0.12000 0.12000

Total cost ($/hr) 964.86 915.21 872.52 814.24

Total loss (p.u.) 0.0594 0.0620 0.0691 0.0793

Iteration no. 1 1 2 3

Case 4: the original data but with the power limit of the line 1 reduced to 1.00 p.u.

The corresponding ED results are shown in Table 5.16.
To analyze the impact of the weighting h on the calculation result, the data

of case 3 are used and different values of h are selected. The results are listed in
Table 5.17, which show that the optimal results are reached when the weighting h
equals 20–25.

Numerical Example of Economic Dispatch with N − 1 Security The same
data of the IEEE 30-bus system are used to compute the ED with N − 1 security. The
results are listed in Tables 5.18, and 5.19.

From Table 5.18, through N − 1 security analysis and calculation, the N − 1
security cannot be satisfied as four single-line outages (line number 1, 2, 4, and 5)
appear. Thus, these violated constraints need to be introduced in the N − 1 security
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TABLE 5.18 N − 1 Security Analysis and Calculation Results (IEEE 30-Bus
System)

Outage Line Number Overloaded Lines Caused by Outage

1 L1(1.75662), L4(1.73162), L7(−1.08480)
2 L1(1.75662), L10(0.56510), L12(−0.39087)
4 L1(1.73162), L10(0.56510), L12(0.39087)
5 L1(1.73162), L6(1.30000), L8(−0.72573), L10(0.56508)

TABLE 5.19 Results and Comparison of Economic
Dispatch with N − 1 Security (IEEE 30-Bus System)

Generator No. OKA LP

PG1(p.u.) 1.40625 1.38540

PG2(p.u.) 0.60638 0.57560

PG5(p.u.) 0.25513 0.24560

PG8(p.u.) 0.30771 0.35000

PG11(p.u.) 0.17340 0.17930

PG13(p.u.) 0.16154 0.16910

Total generation (p.u.) 2.91041 2.90500

Total cost ($/hr) 813.44 813.74

Total loss (p.u.) 0.07641 0.0711

ED model to readjust the generators’ output until no any violation appears. The final
results are shown in Table 5.19.

Through comparison with the conventional LP method that is used to solve
ED, the OKA NFP can achieve almost the same results as LP, although sometimes
the precision of OKA may be a little lower than that of the LP method; this can be
neglected from the viewpoint of the engineering.

It should be noted that the amount of calculation of N − 1 security
EDD is greatly reduced with the presented method because of the use of the
“N − 1-constrained zone,” which is formed by the fast N − 1 security analysis.

5.5 NONLINEAR CONVEX NETWORK FLOW
PROGRAMMING METHOD

5.5.1 Introduction

This section presents a new NLCNFP model of economic dispatch control (EDC),
which is solved by a combination approach of QP and NFP. First of all, a new NLC-
NFP model of economic power dispatch with security is deduced, based on the load
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flow equations. Then, a new incremental NLCNFP model of secure and ED can be
set up. The new EDC model can be transformed into a QP model, in which the search
direction in the space of the flow variables is found. The concept of a maximum
basis in the network flow graph is introduced, allowing the constrained QP model
to be changed into an unconstrained QP model that is then solved using the reduced
gradient method.

5.5.2 NLCNFP Model of EDC

Mathematical Model It is well known that the active power flow equations of a
transmission line can be written as follows.

Pij =V2
i gij − ViVjgij cos 𝜃ij − ViVjbij sin 𝜃ij (5.143)

Pji =V2
j gij − ViVj(−gij cos 𝜃ij + bij sin 𝜃ij) (5.144)

where

Pij: the sending end active power on transmission line ij
Pji: the receiving end active power on transmission line ij
Vi: the node voltage magnitude of node i
𝜃ij: the difference of node voltage angles between the sending and receiving

ends of the line ij
bij: the susceptance of transmission line ij
gij: the conductance of transmission line ij.

In a high voltage power network, the value of 𝜃ij is very small and the following
approximate equations are easily obtained.

V ≅1.0 p.u. (5.145)

sin 𝜃ij ≅ 𝜃ij (5.146)

cos 𝜃ij ≅1 − 𝜃2
ij∕2 (5.147)

Substituting equations (5.145)–(5.147) in equations (5.143) and (5.144), the
active power load flow equations of a line can be simplified and deduced as follows.

Pij = PijC + 1
2

(
−

PijC

bij

)2

gij (5.148)

Pji = − PijC + 1
2

(
−

PijC

bij

)2

gij (5.149)

where
PijC = −bij𝜃ij (5.150)

is called an equivalent power flow on transmission line ij.
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The active power loss on transmission line ij can be obtained according to
equations (5.148) and (5.149), that is,

PLij =Pij + Pji =
(
−

PijC

bij

)2

gij

=PijC
2

(
Rij

2 + Xij
2)

Xij
2

Rij (5.151)

where

Rij: the resistance of transmission line ij
Xij: the reactance of transmission line ij.

Let

ZijC =
(
Rij

2 + Xij
2
)

Xij
2

Rij (5.152)

The active power loss on the transmission line ij can be expressed as follows.

PLij = P2
ijCZijC (5.153)

The traditional NFP model for the ED problem can be written as follows, that
is, model M-5.

minF =
∑

i∈NG

(
aiP

2
Gi + biPGi + ci

)
+ h

∑

ij∈NT

PLij (5.154)

such that

PGi = PDi +
∑

j→i

Pij (5.155)

PGim ≤ PGi ≤ PGiM i ∈ NG (5.156)

−PijM ≤ Pij ≤ PijM j ∈ NT (5.157)

where,

PGi: the active power of the generator i
PDi: the active power demand at load bus i
Pij: the flow in the line connected to node i, which would have a negative value

for a line in which the flow is toward node i
ai, bi, ci: the cost coefficients of the i-th generator

NG: the number of generators in the power network
NT: the number of transmission lines in the power network

PijM: the active power flow constraint on transmission line ij
PLij: the active power loss on transmission line ij
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h: the weighting coefficient of the transmission losses
j → i: represents node j connected to node i through transmission line ij

Subscripts m and M represent the lower and upper bounds of the constraint.
The second term of the objective function (equation 5.154) is a penalty on trans-

mission losses based on the system marginal cost h (in $ per MWh). Equation (5.157)
is the line security constraint. Equation (5.156) defines the generator power upper
and lower limits. Equation (5.155) is Kirchhoff’s first law (i.e, the node current law,
KCL).

Substituting equation (5.151) or (5.153) in equation (5.154), and substituting
equation (5.148) in equation (5.155), the new NLCNFP model M-6 can be written as
follows.

minF =
∑

i∈NG

(
aiPGi

2 + biPGi + ci

)
+ h

∑

ij∈NT

P2
ijCZijC (5.158)

such that

PGi = PDi +
∑

j→i

[
PijC +

PijC
2

2bij
2

gij

]
(5.159)

PGim ≤ PGi ≤ PGiM i ∈ NG (5.156)

−PijCM ≤ PijC ≤ PijCM j ∈ NT (5.160)

where, ZijC is called an equivalent impedance of transmission line ij, as shown in
equation (5.152).

Obviously, equation (5.159) is equivalent to the general system active balance
equation in the traditional EDC model, that is,

∑

i∈NG

PGi =
∑

k∈ND

PDk + PL (5.161)

where

ND: the number of load nodes
PL: the total system active power losses, which is obtained through the computation

of the following equation (5.162), rather than usual power flow calculations.

PL =
∑

ij∈NT

PLij =
∑

ij∈NT

PijC
2ZijC (5.162)

The limiting value of the equivalent line power flow PijCM in equation (5.160) can be
obtained from equation (5.148), that is,

PijM = PijCM + 1
2

(
−

PijCM

bij

)2

gij (5.163)
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According to equation (5.163), we can get the positive limiting value of the
equivalent line power flow PijCM (the negative root of PijCM is neglected), that is,

PijCM =

[√
1 +

(
2gijPijM∕bij

2
)
− 1

]

gij
(5.164)

Consideration of Kirchhoff’s voltage law It is well know that Kirchhoff’s sec-
ond law (i.e., the loop voltage law, KVL) has not been considered in the study of
secure economic power dispatch using general NFP. This is why there always exists
some modeling error when secure economic power dispatch is solved using tradi-
tional linear NFP. KVL is considered in this section.

The voltage drop on the transmission line ij can be approximately expressed as

Vij = PijCZijC (5.165)

In this way, the voltage equation of the lth loop can be obtained, that is,

∑

ij

(PijCZijC)𝜇ij,l = 0 l = 1, 2, … ,NM (5.166)

where NM is the number of loops in the network and 𝜇ij,l is the element in the related
loop matrix, which takes the value 0 or 1.

Introducing the KVL equation into model M-6, we get the following model
M-7, in which the augmented objective function is obtained from the KVL
equation (5.166) and objective function (5.158) in the model M-6.

minFL =
∑

i∈NG

(aiP
2
Gi + biPGi + ci) + h

∑

ij∈NT

P2
ijCZijC

− 𝜆l

∑

ij

(PijCZijC)𝜇ij,l l = 1, 2, … ,NM (5.167)

subject to constraints in equations (5.156), (5.159), (5.160) where 𝜆l is the Lagrange
multiplier, which can be obtained through minimizing equation (5.167) with respect
to variable the PijC, that is,

2hPijCZijC − 𝜆l

∑

ij

ZijC𝜇ij,l = 0 l = 1, 2, … ,NM (5.168)

𝜆l = 2hPijC∕
∑

ij

𝜇ij,l l = 1, 2, … ,NM (5.169)

By solving optimization NLCNFP model M-7, the generator power output PGi
and the equivalent line power flow PijC can be obtained. Therefore, the line power
Pij, angle 𝜃ij, which is the difference of node voltage angles between the sending and
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receiving ends of the line, and system active power losses PL can be computed from
equations (5.148), (5.150), and (5.162), respectively, rather than from the usual power
flow calculations.

Similarly, the method of handling N − 1 security constraints in Section 5.4
is adopted here. Thus, the incremental NLCNFP model of ED with N − 1 security,
model M-8, becomes

minΔF =
∑

i∈NG

(
2aiP

0
Gi + bi

)
ΔPGi + h

∑

ij∈NT

(
2ZijCP0

ijC

)
ΔPijC + 𝜆l

∑

ij

ZijC𝜇ij,l

(5.170)
such that

ΔPGi =
∑

j→i

(
1 +

PijC

bij
2

gij

)
ΔPijC (5.171)

max{−ΔPGRCiM,PGim − P0
Gi} ≤ ΔPGi ≤ min{ΔPGRCiM,PGiM − P0

Gi}, i ∈ NG
(5.172)

ΔPijC = − max
l∈NL

{PijC(l) − PijCM} j ∈ NT1 (5.173)

ΔPijC = − min
l∈NL

{PijC(l) + PijCM} j ∈ NT2 (5.174)

−PijCM − P0
ijC ≤ ΔPijC ≤ PijCM − P0

ijC j ∈ (NT − NT1 − NT2)
(5.175)

It is noted that the N − 1 security region may be very narrow because all con-
straints that are produced by all kinds of single outages are introduced in N − 1
security ED. In other words, the feasible range of the generators power output become
very small. Consequently, N − 1 security is met, but the system economy may not be
satisfied. Thus, the idea of multigeneration plans is used. The method is to solve the
ED model by considering one single outage only each time. This means that each
effective single outage corresponds to one generation plan. Generally, there are not
too many effective single outages in a system. Therefore, it will not have many gener-
ation plans. The incremental NLCNFP model of multigeneration plans can be written
as follows.

minΔF =
∑

i∈NG

(
2aiP

0
Gi + bi

)
ΔPGi(l) + h

∑

ij∈NT

(
2ZijCP0

ijC

)
ΔPijC(l) + 𝜆l

∑

ij

ZijC𝜇ij,l

(5.176)
such that

ΔPGi(l) =
∑

j→i

(
1 +

P0
ijC

b2
ij

gij

)
ΔPijC(l) (5.177)

max{−ΔPGRCiM,PGim − P0
Gi} ≤ ΔPGi(l) ≤ min{ΔPGRCiM,PGiM − P0

Gi}, i ∈ NG
(5.178)
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ΔPijC(l) = − (PijC(l) − PijCM) j ∈ NT1, l ∈ NL (5.179)

ΔPijC(l) = − (PijC(l) + PijCM) j ∈ NT2, l ∈ NL (5.180)

−PijCM − P0
ijC ≤ ΔPijC ≤ PijCM − P0

ijC j ∈ (NT − NT1 − NT2)
(5.181)

5.5.3 Solution Method

Because of the special form of model M-7 or M-8, we introduce the following algo-
rithm for solving it.

Model M-7 or M-8 is easily changed into a standard model of NLCNFP, that
is, model M-9:

minC =
∑

ij

c(fij) (5.182)

such that

∑

j∈n

(fij − fji) = ri i ∈ n (5.183)

Lij ≤ fij ≤ Uij ij ∈ m (5.184)

Equation (5.183) can be written as

Af = r (5.185)

where A is an n × (n + m) matrix in which every column corresponds to an arc in the
network and every row corresponds to a node in the network.

Matrix A can be divided into a basic submatrix and nonbasic submatrix, which
is similar to the convex simplex method. that is,

A = [B, S, N] (5.186)

where the columns of B form a basis; both S and N correspond to the nonbasic arcs.
S corresponds to the nonbasic arcs in which the flows are within the corresponding
constraints. N corresponds to the nonbasic arcs in which the flows reach the corre-
sponding bounds.

A similar division can be made for the other variables, that is,

f = [fB, fS, fN] (5.187)

g(f ) = [gB, gS, gN] (5.188)

G(f ) = diag[GB,GS,GN] (5.189)

D = [DB,DS,DN] (5.190)
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where

g(f ): the first order gradient of the objective function
G(f ): the Hessian matrix of the objective function

D: the search direction in the space of the flow variables.

To solve model M-9, Newton’s method can first be used to calculate the search
direction in the space of the flow variables. The idea behind Newton’s method is that
the function being minimized is approximated locally by a quadratic function, and
this approximate function is minimized exactly.

Suppose that f is a feasible solution and the search step along the search direc-
tion in the space of flow variables 𝛽 = 1. Then the new feasible solution can be
obtained.

f ′ = f + D (5.191)

Substituting equation (5.191) into the equations in the model M-9, the NLCNFP
model M-9 can be changed into the following QP model M-10, in which the search
direction in the space of the flow variables is to be solved.

minC(D) = 1
2

DT G(f )D + g(f )T D (5.192)

such that

AD = 0 (5.193)

Dij ≥ 0, when fij = Lij (5.194)

Dij ≤ 0, when fij = Uij (5.195)

Model M-10 is a special QP model which has the form of NFP. In order to enhance the
calculation speed, we present a new approach, in place of the general QP algorithm,
to solve the model M-10. The main calculation steps are described in the following.

Neglecting Temporarily Equations (5.194) and (5.195) This means that Lij <

fij < Uij in this case. Thus DN = 0 according to the definition of the corresponding
nonbasic arc.

From equation (5.193), we know that

AD = [B, S,N]
⎡
⎢
⎢⎣

DB
DS
0

⎤
⎥
⎥⎦
= 0 (5.196)

From equation (5.196), we can obtain

DB = − B−1SDS (5.197)

D =
⎡
⎢
⎢⎣

−B−1S
I
0

⎤
⎥
⎥⎦

DS = ZDS (5.198)
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Substituting equation (5.198) in equation (5.192), we get

minC(D) = 1
2

DTG(f )D + g(f )TD (5.199)

Through minimizing equation (5.199) to variable DS, the model M-10 can be changed
into an unconstrained problem, the optimization solution of which can be solved from
the following equations.

DN = 0 (5.200)

BDB = − SDB (5.201)

(ZTGZ)DS = − ZT g (5.202)

Introduction of Equations (5.194) and (5.195) According to equations (5.200)–
(5.202), DS can be solved from equation (5.202) and then DB can be solved from
equation (5.201). If DB violates the constraint equations (5.194) and (5.195), a
new basis must be sought to calculate the new search direction in the space of
flow variables. This step will not be terminated until DB satisfies the constraint
equations (5.194) and (5.195).

Introduction of Maximum Basis in Network Obviously, the general repeated
calculation of DB and DS, which is similar to that of pivoting in LP, is not only
time-consuming but also does not improve the value of the objective function. To
speed up the calculation, we adopt a new method to form a basis in advance so that
DB and DS can satisfy the constraints (5.194) and (5.195). Therefore, the maximum
basis in network, which consists of as many free basic arcs as possible, is introduced
in this chapter.

The maximum basis in a network can be obtained by solving the following
model M-11.

max
B

∑

ij

dijAij (5.203)

where

dij =

{
1, when arc ij is a free one, that is, the flow in arc ij is within its bounds.

0, when arc ij is not a free one, that is, the flow in arc ij reaches its bounds.

Aij =

{
1, when arc ij is in the basis B.

0, when arc ij is not in Basis B.

Suppose basis B is the maximum basis from equation (5.203), only the flows
on the free arcs in basis B need to be adjusted in order to satisfy equation (5.203), if
the flow on a free nonbasic arc needs to be adjusted [22].

The introduction of the maximum base indicates adjusting the direction of
flow, that is, the change of flow is carried out according to the maximum basis.
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Through selecting the maximum basis, equations (5.194) and (5.195) in model M-10
can always be satisfied in the calculation of the search direction in the space of
the flow variables. Therefore, the QP model M-10 is equivalent to unconstrained
problem equations (5.200)–(5.202). To enhance the calculation speed further,
equations (5.200)–(5.202) can be solved by the reduced gradient method.

Reduced Gradient Algorithm with Weight Factor Equations (5.200)–(5.202)
can be written as compact format as follows:

(ZT GZ)D = −ZT g (5.204)

If we use the unit matrix to replace the Hessen matrix (ZTGZ), we get

V = − ZT g (5.205)

D = ZV (5.206)

where

V: the negative reduced gradient
D: the direction of the reduced gradient.

The main advantages of the reduced gradient method are (1) the calculation is
simple and (2) the required storage space is relatively small. The disadvantage is that
it is an approximation. Thus, the reduced gradient algorithm has a linear convergence
speed.

To improve the convergence speed of the reduced gradient method, select a
positive matrix that is not a unit matrix but can be easily inversed, and use it to replace
the Hessian matrix (ZT GZ). In this way, we get a new reduced gradient with weight,
that is,

MV = −ZT g (5.207)

where

M: the weight of the reduced gradient.

Select the initial value of Z as

Z =
⎡
⎢
⎢⎣

−B−1S
I
0

⎤
⎥
⎥⎦

(5.208)

Substituting equation (5.208) in equation (5.207), we get

MV = −ZTg = −[−ST (BT)−1, I, 0]
⎡
⎢
⎢⎣

gB
gS
gN

⎤
⎥
⎥⎦
= ST (BT )−1gB − gS (5.209)
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According to equations (5.182) and (5.185), the following Lagrange function
can be obtained.

L = C(f ) − 𝜆(Af − r) (5.210)

where

𝜆: the Lagrange multiplier.

According to the condition of optimization, we have

𝜕L
𝜕f

= 0 (5.211)

𝜕C(f )
𝜕f

− AT𝜆 = 0 (5.212)

that is,
g(f ) = AT𝜆 (5.213)

Expanding the above equation, we get

⎡
⎢
⎢⎣

BT𝜆

ST𝜆

NT𝜆

⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

gB
gS
gN

⎤
⎥
⎥⎦

(5.214)

BT𝜆 = gB (5.215)

Substituting equation (5.215) in equation (5.209), we get

MV = ST (BT )−1BT𝜆 − gS = ST𝜆 − gS (5.216)

In summary, the calculation steps of a NLCNFP model, which is solved by
reduced gradient algorithm with weight, are as follows:

(1) Compute 𝜆 from equation (5.215).

(2) Compute V from equation (5.216).

(3) Compute DS from the following expression.

DS =
⎧
⎪
⎨
⎪⎩

0, when
(
fS
)

ij
= Lij, and Vij < 0.

0, when (fS)ij = Uij, and Vij > 0.

Vij, Otherwise.

(5.217)

(4) Compute DB from equation (5.201).

(5) Compute the new value of flow f ′ = f + DB

In the practical calculation, several parameters related to the algorithm must be
addressed.
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(1) The convergence criteria
The convergence criteria are as follows.

max |||
(
ST𝜆 − gS

)
j
||| ≤ 𝜎 (5.218)

where, 𝜎 is determined according to the required calculation precision.

(2) The selection of the weighting matrix M
We can select the diagonal matrix of the Hessen matrix ZTGZ as the weighting
matrix M, that is,

M = diag(ZT GZ) (5.219)

(3) The selection of the search step
We assume that the search step is along the search direction in the space of
flow variables 𝛽 = 1. To speed up the convergence, we can use the following
approach to compute the optimum search step along the search direction in the
space of flow variables. First of all, compute the initial step as follows.

𝛽0 = −
gT D

DT GD
(5.220)

Then compute the optimum step according to the following equation.

g(f + 𝛽∗D)T D

|g(f )TD|
≤ 𝜔, 0 < 𝜔 < 1 (5.221)

Meanwhile, the 𝛽∗ must meet the following equation:

C(f + 𝛽∗D) − C(f ) ≤ 𝜂, 0 < 𝜂 < 1 (5.222)

If the above equation is not satisfied, use half of 𝛽∗ to recompute the flow until
the equation is met.

5.5.4 Implementation

For examining the NLCNFP model and algorithm, the numerical simulations have
been carried out on the IEEE 5-bus and 30-bus systems. The results and comparison
of secure EDC are listed on Tables 5.20–5.22. To further raise the precision of EDC
and check the operation states of the system, the fast decoupled power flow is also
used in the calculation, but only in the first and final stages.

Table 5.20 shows the ED results of the 5-bus system by use of the NLCNFP.
The ED results with use of OKA are also listed in Table 5.20 (column 3).

The simulation results of the 30-bus system by NLCNFP are also compared
with those obtained by OKA in Section 5.4. The following two cases are used to
make the comparison:
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TABLE 5.20 Economic Dispatch Results
Comparison (5-Bus System)

Method OKA NLCNFP

PG1(p.u.) 0.92700 0.97800

PG2(p.u.) 0.71600 0.66670

Total cost ($/hr) 757.500 757.673

Total loss (p.u.) 0.04300 0.04470

TABLE 5.21 ED Results and Comparison Between NLCNFP and OKA for IEEE
30-Bus System

Scenario Scenario 1 Scenario 1 Scenario 2 Scenario 2

Method NLCNFP OKA NLCNFP OKA

PG1(p.u.) 1.7595 1.7588 1.5018 1.69665

PG2(p.u.) 0.4884 0.4881 0.5645 0.33295

PG5(p.u.) 0.2152 0.2151 0.2321 0.15000

PG8(p.u.) 0.2229 0.2236 0.3207 0.31270

PG11(p.u.) 0.1227 0.1230 0.1518 0.30000

PG13(p.u.) 0.1200 0.12000 0.1413 0.12000

Total generation 2.9286 2.9290 2.9121 2.9151

Total real power losses 0.0946 0.0950 0.0781 0.0783

Total generation cost ($) 802.3986 802.51 807.80 809.68

TABLE 5.22 ED Results and Comparison Among NLCNFP, QP and LP for IEEE
30-Bus System

Generation No. NLCNFP Method QP Method LP Method

PG1 1.7595 1.7586 1.7626

PG2 0.4884 0.4883 0.4884

PG5 0.2152 0.2151 0.2151

PG8 0.2229 0.2233 0.2215

PG11 0.1227 0.1231 0.1214

PG13 0.1200 0.1200 0.1200

Total generation 2.9286 2.9285 2.9290

Total real power losses 0.0946 0.0945 0.0948

Total generation cost ($) 802.3986 802.3900 802.4000
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Scenario 1: the original data;

Scenario 2: the original data, but the power limit value of the line 1 is reduced to
1.00 p.u.

The corresponding calculation results and comparison based on two different
network flow techniques (NLCNFP and OKA) for these two scenarios are listed in
Table 5.21. Obviously, the ED solved by NLCNFP has higher precision than the ED
solved by OKA.

Table 5.22 lists the ED results comparison among the NLCNFP method and
the conventional LP and QP methods. The agreement between the conventional ED
method through power flow calculations and the NLCNFP method can be observed.

According to the N − 1 security analysis in Section 5.4, there are four single
outages that cause the line violation for the 30-bus system. They are outage lines 1,
2, 4, and 5. Applying the idea of multigeneration plans to the 30-bus system, there
will be five generation plans: one for normal operation state and four for the effec-
tive single outages, respectively. The detailed results of the multigeneration plans are
shown in Table 5.23.

TABLE 5.23 Multigeneration Plans for IEEE 30-Bus System

Generation
No.

Normal
State

Line 1
Outage

Line 2
Outage

Line 4
Outage

Line 5
Outage

PG1 1.7595 1.42884 1.40919 1.41584 1.57840

PG2 0.4884 0.55222 0.57188 0.56521 0.38880

PG5 0.2152 0.24135 0.24135 0.24135 0.25512

PG8 0.2229 0.35000 0.35000 0.35000 0.35000

PG11 0.1227 0.17340 0.17340 0.17340 0.17340

PG13 0.1200 0.16154 0.16154 0.16154 0.16154

Total generation 2.9286 2.90735 2.90736 2.90734 2.90726

Total real power
losses

0.0946 0.07335 0.07336 0.07334 0.07326

Total generation
cost ($)

802.3986 811.36192 812.64862 812.18859 808.30441

N security Satisfied – – – –

N − 1 security Not satisfied satisfied satisfied satisfied satisfied

when one

of lines

#1,2,3,5

is in outage
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5.6 TWO-STAGE ECONOMIC DISPATCH APPROACH

5.6.1 Introduction

This section presents a two-stage ED approach according to the practical operation
situation of power systems. The first stage involves the classic economic power dis-
patch without considering network loss. The initial generation plans of the generator
units are determined according to the rank of fuel consumption characteristic of the
units or the principle of equal incremental rate. The second stage involves ED con-
sidering system power loss and network security constraints. Three objectives can be
used for the second stage: (i) minimize the fuel consumption, (ii) minimize system
loss, and (iii) minimize the movement of generator output from the initial generation
plans.

5.6.2 Economic Power Dispatch—Stage One

The equal incremental principle, introduced in Chapter 4, can be used for the first
stage of economic power dispatch. Given the input–output characteristic of NG gen-
erating units are F1(PG1), F2(PG2), … ,Fn(PGn), respectively, the total system load
is PD. The problem is to minimize the total fuel consumption F of the generators,
subject to the constraint that the sum of the power generated must equal the received
load, that is,

minF = F1(PG1) + F2(PG2) + … + Fn(PGn) =
NG∑

i=1

Fi(PGi) (5.223)

such that
NG∑

i=1

PGi = PD (5.224)

This is a constrained optimization problem, and it can be solved by the
Lagrange multiplier method. According to Chapter 4, the principle of equal
incremental rate of economic power operation for multiple generating units can be
obtained as

dFi

dPGi
= 𝜆 i = 1, 2, … ,N (5.225)

or
dF1

dPG1
=

dF2

dPG2
= · · ·

dFN

dPGN
= 𝜆 (5.226)

The economic operation points P0
Gi of the first stage can be obtained from

equations (5.225) or (5.226).
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5.6.3 Economic Power Dispatch—Stage Two

The second stage of the economic power dispatch includes loss correction and net-
work security constraints. On one hand, the system loss minimization or the fuel
consumption minimization can be selected as the objective function. On the other
hand, the operators expect the optimal dispatch points close to the economic opera-
tion points P0

Gi obtained from the first stage. Thus, the following three objectives may
be adopted in the second stage of ED:

(1) Minimize the fuel consumption

minF1 =
NG∑

i=1

Fi(PGi) (5.227)

(2) Minimize the system loss
minF2 = PL (5.228)

(3) Minimize the adjustment of generator output

minF3 =
NG∑

i=1

(PGi − P0
Gi)

2 (5.229)

The constraints include real power balance, generator power output limits, and
branch power flow constraints, that is,

∑

i∈NG

PGi =
∑

k∈ND

PDk + PL (5.230)

PGimin ≤ PGi ≤ PGimax i ∈ NG (5.231)

|Pij| ≤ Pijmax ij ∈ NT (5.232)

where

PD: the real power load
Pij: the power flow of transmission line ij

Pijmax: the power limits of transmission line ij
PGi: the real power output at generator bus i

PGimin: the minimal real power output at generator i
PGimax: the maximal real power output at generator i

PL: the network losses
Fi: the fuel consumption function of the generator unit i

NT: the number of transmission lines
NG: the number of generators.
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It is noted that the two-stage approach for ED can be used for dynamic ED or
daily dispatch in the practical operation of the power systems. To actualize the tran-
sition from the time point t to t + 1 schedule successfully, the real power generation
regulations constraint, ΔPGRCimax must be considered, that is,

|PGi − P0
Gi| ≤ ΔPGRCimax i ∈ NG (5.233)

or

−ΔPGRCimax + P0
Gi ≤ PGi ≤ ΔPGRCimax + P0

Gi i ∈ NG (5.234)

Thus, the regulating value of the generation is restricted by the two inequality
equations (5.231) and (5.234), which can be combined into one expression:

max{−ΔPGRCimax + P0
Gi,PGimin} ≤ PGi ≤ min{ΔPGRCimax + P0

Gi,PGimax} i ∈ NG
(5.235)

The ED model for the second stage can be written as

minF = h1F1 + h2F2 + h3F3 (5.236)

such that ∑

i∈NG

PGi =
∑

k∈ND

PDk + PL (5.237)

max{−ΔPGRCimax + P0
Gi,PGimin} ≤ PGi ≤ min{ΔPGRCimax + P0

Gi,PGimax} i ∈ NG
(5.238)

|Pij| ≤ Pijmax ij ∈ NT (5.239)

where

h1 + h2 + h3 = 1 (5.240)

h1: the weighting factor of the fuel consumption objective function
h2: the weighting factor of the loss minimization objective function
h3: the weighting factor of the generator output adjustment objective function.

The weighting factors can be determined according to the practical situation of
the specific system. For example, if the network loss is the only concern in a system,
we can select h2 = 1 and h1 = h3 = 0. If the network loss is not a concern, and the
economy is the primary concern in a system, we can select h1 = 1 and h2 = h3 = 0.

The ED model for the second stage can be solved by any algorithm mentioned
in the previous sections.



200 CHAPTER 5 SECURITY-CONSTRAINED ECONOMIC DISPATCH

5.6.4 Evaluation of System Total Fuel Consumption

In the practical system operation, the system total fuel consumption is the main con-
cern. Generally, the system total fuel consumption includes two parts:

(1) the total fuel consumption of the generators;

(2) the equivalent fuel consumption of the system power losses.

Generally, the system total fuel consumption before optimization is taken as the
reference point. It is expected that the system total fuel consumption obtained after
the second stage is less than that in the reference point.

For the reference point, the initial system power losses P0
L are obtained from

a power flow solution. In addition, as the line constraints are not considered before
optimization, there may be a branch flow violation. Thus a penalty term for the power
violation should be introduced in the calculation of the system total fuel consumption
in the reference point. The system total power violation can be computed as follows.

ΔPViol =
Nl∑

ij=1

(P0
ij − Pijmax) (5.241)

where Nl is the set of violated branches.
The equivalent fuel consumption for the power violation is computed as

Fviol = 𝛾ΔPViol (5.242)

Obviously, equivalent fuel consumption for the power violation Fviol will be zero if
there is no branch violation (i.e., Nl is empty set).

Thus the system total fuel consumption before optimization will be

F1
T =

NG∑

i=1

Fi(P0
Gi) + 𝛾P0

L + 𝛾ΔPViol (5.243)

After stage two, the system power losses PL and the economic operation points
are computed by solving the model (5.236)–(5.239) and power flow, that is,

F2
T =

NG∑

i=1

Fi(PGi) + 𝛾PL (5.244)

where

𝛾: the coefficient for converting the system power loss or branch power violation to
the fuel consumption.

The requirement of the two-stage ED will be

F2
T ≤ F1

T (5.245)
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where

F1
T : the initial system total fuel consumption.

F2
T : the final system total fuel consumption.

5.7 SECURITY CONSTRAINED ECONOMIC DISPATCH
BY GENETIC ALGORITHMS

GAs are adaptive search techniques that derive their models from the genetic pro-
cesses of biological organisms based on evolution theory. In Chapter 4, GAs are
applied to solve the classic ED problem, where the network losses and security con-
straints are neglected.

Considering the network losses PL and selecting unit N as slack bus unit, the
real power balance equation can be written as

PGN = PD + PL −
N−1∑

i=1

PGi (5.246)

The network security constraints can be written as

|Pij| ≤ Pijmax ij = 1, 2, … ,NL (5.247)

Adding penalty factors h1, h2 to the violation of power output of the slack bus unit
and h3 to the violation of line power, we can get augmented cost.

FA =
N∑

i=1

Fi(PGi) + h1(PGN − PGNmax)2 + h2(PGNmin − PGN)2

+ h3

NL∑

ij=1

(|Pij| − Pijmax)
2 (5.248)

GA is designed for the solution of the maximization problem, so the fitness
function for solving security ED problem is defined as the inverse of equation (5.248).

Ffitness =
1

FA
(5.249)

The GA operations are stated in Chapter 4. The calculation steps for solving
GA-based ED with line flow constraints are as follows.

(1) Select the parameters related to GA such as the population size, number of
generations, substring length, and the number of trials.

(2) Generate initially random-coded strings as population members in the first
generation.
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(3) Decode the population to get power generations of the units in the strings.

(4) Perform power flow analysis considering the unit generations in step (3), so
that GA is able to evaluate the system transmission loss, slack bus generation,
line flows, and hence any violation of the slack bus generation and violation of
the line flow limits.

(5) Check whether the number of trials reaches the maximal.
If the number of trials reaches the maximal, and there is no generator power
violation and line flow violation, then stop, and output the results.
If the number of trials reaches the maximal, but there exists a generator power
violation or line flow violation, then this means that the given trial number is
too small. Increase the trial numbers and recompute.
If the number of trials does not reach the maximal, go to the next step.

(6) Evaluate the fitness of the population members (i.e. strings).

(7) Execute a selection of strings based on reproduction, considering the roulette
wheel procedure with embedded elitism followed by crossover with embed-
ded mutation to create the new population for the next generation. Go to
step (2).

Example 5.1: The method of GAs for solving the security ED problem is tested on
the IEEE 30-bus system. The test case is the normal operation state. The parameters
related to the GAs are selected as follows.

• Number of chromosomes= 100

• Bit resolution per generator= 8

• Number of cross-points= 2

• Number of generations= 18000

TABLE 5.24 ED Results by Genetic Algorithm and Comparison
For IEEE 30-Bus System

Generation No. GA Method QP Method LP Method

PG1 1.7612 1.7586 1.7626

PG2 0.4884 0.4883 0.4884

PG5 0.2152 0.2151 0.2151

PG8 0.2223 0.2233 0.2215

PG11 0.1221 0.1231 0.1214

PG13 0.1200 0.1200 0.1200

Total generation 2.9292 2.9285 2.9290

Total real power losses 0.0952 0.0945 0.0948

Total generation cost ($) 802.4634 802.3900 802.4000
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• Initial crossover probability= 92%

• Initial mutation probability= 0.1%

The total load is 283.4 MW and the output results are listed in Table 5.24. The
GA-based ED results are also compared with those obtained by the traditional opti-
mization methods (QP and LP). The same results are obtained.

APPENDIX A: NETWORK FLOW PROGRAMMING

Network flow programming (NFP) is a special form of linear programming (LP). The
algorithms for LP including the simplex method can also be used for the NFP prob-
lem. However, as the specialization of NFP, especially when applied to ED problem
of power system, some simplified algorithms are more efficient in solving NFP prob-
lem. Herein, we only introduce several very important applications of network flow
problems that are used in power systems optimal operation [22–27].

A.1 The Transportation Problem

The transportation problem is to find number of goods to ship from the supply site to
the demand site in order to minimize the total transportation cost. As we described in
Section 5.4, in the ED of a power system, the supply sites correspond to the generator
sources, the demand sites correspond to load demands, and the transportation paths
correspond to transmission lines.

In the transportation problem, the supply node is called the source and the
demand node is called the sink. The mathematical representation of the transportation
problem is as follows.

minC =
S∑

i=1

D∑

j=1

cijxij (5A.1)

such that ∑

j∈D

xij ≤ si i ∈ S (5A.2)

∑

i∈S

xij ≥ rj j ∈ D (5A.3)

xij ≥ 0 i ∈ S, j ∈ D (5A.4)

where

cij: the cost of supply from source i to sink j
xij: the supply from source i to sink j. It must be nonnegative
si: the supply from the source
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rj: the supply received at the sink
S: the total number of source nodes in the network
D: the total number of the sink nodes in the network.

Obviously, the transportation problem is not feasible unless the supply is at
least as great as the demand.

∑

i∈S

si ≥
∑

j∈D

rj (5A.5)

If this inequality is satisfied, then the transportation problem is feasible. This
is generally true for the ED problem of power systems, in which the total generation
equals the total load demand plus the system power loss.

For simplificity, in the transportation problem, it can be assumed that the total
demand is equal to the total supply, that is,

∑

i∈S

si =
∑

j∈D

rj (5A.6)

Under this assumption, the inequalities in constraints (5A.2) and (5A.3) must be sat-
isfied by equalities, that is, ∑

j∈D

xij = si i ∈ S (5A.7)

∑

i∈S

xij = rj j ∈ D (5A.8)

This corresponds to the ED problem neglecting network loss. We also can use
this assumption even for ED with transmission loss as we analyzed in Section 5.4.

This problem can, of course, be solved by the simplex method described in the
Appendix of Chapter 9. However, the simplex tableau for this problem involves an
IJ x (I + J) constraint matrix. Instead, we use a more efficient algorithm to solve it.
The algorithm consists of four steps.

1. Form a transportation array or table as shown (Table A.1).

2. Find a basic feasible shipping schedule, xij.

TABLE A.1 Transportation Array
D1 D2 DD

c11

x11

c12

x12

… c1D

x1D

c21

x21

c22

x22

… c2D

x2D

cS1
xS1

cS2
xS2

… cSD
xSD

r1 r2 rD

P1

P2

PS

s1

s2

sS
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(a) Choose any available square from the table, say (i0, j0), specify xi0j0 as large
as possible subject to the constraints, and circle this variable.

(b) Delete from consideration whichever row or column has its constraint sat-
isfied, but not both. If there is a choice, do not delete a row (column) if it
is the last row (respectively, column) undeleted.

(c) Repeat steps (a) and (b) until the last available square is filled with a circled
variable, and then delete from consideration both row and column.

3. Test for optimality.
Given a feasible shipping schedule, xij, we can use the equilibrium theorem
to check for optimality. This entails finding feasible ui and vj that satisfy the
equilibrium conditions

vj − ui = cij, for xij > 0 (5A.9)

where, ui and vj are nonnegative dual variables of the primal problem, and sat-
isfy the following constraint.

vj − ui ≤ cij, for all i and j. (5A.10)

Then, the method for checking the optimality as follows:

(a) Set one of the ui and vj, and use equation (5A.9) for squares containing
circled variables to find all the ui and vj.

(b) Check the feasibility, vj − ui ≤ cij, for the remaining squares. If feasible,
the solution is optimal for the problem and its dual problem.

4. If the test fails, find an improved basic feasible shipping schedule, and repeat
step 3.

(a) Choose any square (i, j) with vj − ui > cij, set xij = 𝜃, but keep the con-
straints satisfied by subtracting and adding 𝜃 to appropriate circled vari-
ables.

(b) Choose 𝜃 to be the minimum of the variables in the squares in which 𝜃 is
subtracted.

(c) Determine the new variable and remove from the circled variables, one of
the variables from which 𝜃 was subtracted that is now zero.

Example A.1: There is a simplified power system that consists of three generators
(G1 = 6 p.u., G2 = 7 p.u., and G3 = 9 p.u.) and four load demands (D1 = 3 p.u.,
D2 = 9 p.u., D3 = 4 p.u., D4 = 6 p.u.). Each generator connects to all loads, respec-
tively. Assume network loss is neglected. To compute the minimal transmission cost
flow Pij for this network we can follow the steps described:

1. We can form the transportation table, Table A.2, where the number in the table
is the transmission cost for transferring power from the generator to the load.

2. Find an initial power flow Pij.
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TABLE A.2 Transportation Array for Example A.1
D1 D2 D3 D4

4 10 12 3 

8 5 6 4

1 3 4 7

3 9 4 6

PG1

PG2

PG3

6

7

9

Choose any square, say the upper left corner, (1, 1), and make P11 as large as
possible subject to the constraints. In this case, P11 is chosen equal to 3 (we
delete the unit for simplification). It means that the supply load D1 from PG1.
Thus, we get P21 = P31 = 0.

We choose another square, say (1, 2), and make P12 as large as possible
subject to the constraints. Then P12 = 3, as there are only three units left at
PG1. Hence, P13 = P14 = 0. Next, choose square (2, 2), say, and put P22 = 6,
so that load D2 receives all of its demands, 3 units from PG1 and 6 units from
PG2. Hence, P32 = 0. One continues in this way until all the variables Pij are
determined. The results are shown in the Table A.3.

TABLE A.3 Feasible Flow for Example A.1

4
3

10
3

12 3 

8 5 
6

6
1

4

1 3 4
3

7
6

3 9 4 6

6

7

9

D1 D2 D3 D4

PG1

PG2

PG3

It is noted that this method of finding the initial feasible solution is simple,
but may not be efficient. Here we introduce another approach called the least
cost method.

We choose a different order for selecting the squares in the example above.
We try to find a good initial solution by choosing the squares with the smallest
transmission costs first.

It can be observed from the above table that the smallest transmission cost
is in the lower left square, which is c31 = 1. Thus it will be most economical to
supply power from generator 3 to load 1. Since the maximal load is 3 for D1,
the maximal power flow P31 = 3 is determined and D1 is satisfied, which can
be deleted for the other computation. Of the remaining squares, 3 is the lowest
transmission cost (there are two). We might choose the upper right corner next.
Thus, P14 = 6 is determined and we may delete either PG1 or D4, but not both,
according to rule (2b). Say we delete PG1. Next P32 = 6 is determined and PG3
is deleted. Of the generators, only PG2 remains, so we can determine P22 = 3,
P23 = 4 and P24 = 0. The results are show in Table A.4.
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3. Check optimality of the results.
We check the feasible power flow in Table A.4 for optimality. First solve

for the ui and vj. We put u2 = 0 because that allows us to solve quickly for
v2 = 5, v3 = 6 , and v4 = 4. (Generally, it is a good idea to start with a ui = 0
(or vj = 0 ) for which there are many determined variables in the corresponding
row (column).) Knowing v4 = 4 allows us to solve for u1 = 1. Knowing v2 = 5
allows us to solve for u3 = 2, which allows us to solve for v1 = 3. We write
the vj variables across the top of the array and ui along the left, as shown in
Table A.5.

TABLE A.4 Feasible Flow Using Least Cost Rule for
Example A.1

4 10 12 3 
6

8 5 
3

6
4

4
0

1
3

3 
6

4 7

3

6

7

9
9 4 6

D1 D2 D3 D4

PG1

PG2

PG3

TABLE A.5 Optimality Check for Example A.1
3 5 6            4

4 8 12 3 
6

8 5 
3

6
4

4
0

1
3

3 
6

4 7

3

1

0

2

6

7

9
9 4 6

Then, check feasibility of the remaining six squares. The upper left square
satisfies the constraint vj − ui ≤ cij, as 3 − 1 = 2 ≤ 4. Similarly, all the squares
may be seen to satisfy the constraints, and hence the above gives the solution to
both the primal and dual problems. The optimal shipping schedule is as noted,
and the value is

∑∑
cijxij = 3 · · · 1 + 6 · · · 3 + 3 · · · 5 + 4 · · · 6 + 0 · · · 4 + 6 · · · 3 = 78.

We can check if the solution is optimum by computing
∑

vjrj −
∑

uisi, which
is the objective function of the dual problem. According to Corollary 2 of the
duality theorem described in Appendix A, we have

∑∑
cijxij = Σvjrj − Σuisi (5A.11)
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If both primal and dual problems have the optimal solution,

Σvjrj − Σuisi = 78

Thus, the above solution is optimal.

Example A.2: For example A.1 with the following transmission cost (Table A.6).

TABLE A.6 Transportation Array for Example A.2

4 8 13 3 

2 5 6 5

1 3 4 15

3

6

7

9
9 4 6

D1 D2 D3 D4

PG1

PG2

PG3

According to least cost rule, we get the feasible flow table (Table A.7).

TABLE A.7 Least Cost Flow for Example A.2

4 8 13 3 
6

2 5
3

6
4

5

1
3

3
6

4 15

3

6

7

9
9 4 6

D1 D2 D3 D4

PG1

PG2

PG3

According to the equilibrium condition, we can compute the ui and vj. The
corresponding results are shown in Table A.8.

TABLE A.8 Optimality Check for Example A.2
3     5 6 5
4 8 13 3 

6
2 5

3
6

4
5

1
3

3
6

4 15

3

2

0

2

6

7

9
9 4 6

Through checking the optimality in Table A.8, we found the block (2, 1) in
Table A.8 cannot satisfy the constraint vj − ui ≤ cij, as v1 − u2 = 3 − 0 = 3 ≥ c12 =
2. Thus, the solution in Table A.8 is not optimal. We need to find an improved basic
feasible shipping schedule and recheck the optimality.
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Choose any square (i, j) with vj − ui > cij, set xij = 𝜃, but keep the constraints
satisfied by subtracting and adding 𝜃 to appropriate selected variables. So we would
like to add to block (2, 1). This requires subtracting 𝜃 from squares (3, 1) and (2, 2) ,
and adding 𝜃 to square (3, 2), as shown in Table A.9.

TABLE A.9 Optimality Check for Example A.2
3     5 6
4 8 13 3 

6
2

+ θ
5
− θ 3

6
4

5

5

1
− θ 3

3
+ θ 6

4 15

3 6

2

0

2

6

7

9
9 4

We choose 𝜃 to be the minimum of the xij in the squares in which we are sub-
tracting 𝜃. In the example, 𝜃 = 3. Determine the new variable and remove from the
selected variables, one of the variables from which 𝜃 was subtracted and is now zero.
Then we get Table A.10. We can check that all the constraints are met, and the optimal
solution is 75.

TABLE A.10 Optimality Check for Example A.2
2     5 6 5
4 8 13 3 

6
2

3
5

0
6

4
5

1
0

3
9

4 15

3 9 4 6

2

0

2

6

7

9

A.2 Dijkstra Label-Setting Algorithm

Dijkstra’s algorithm is a widely used label method for solving network flow prob-
lems such as the shortest-path problem. The data structures that are carried from one
iteration to the next are a set F of finished nodes and two arrays indexed by the nodes
of the graph. The first array, vj, j ∈ N, is just the array of labels. The second array, hi,
i ∈ N, indicates the next node to visit from node i in the shortest path. As the algo-
rithm proceeds, the set F contains those nodes for which the shortest path has already
been found. This set starts out empty. Each iteration of the algorithm adds one node
to it.

The algorithm is called a label-setting algorithm because each iteration sets
one label to its optimal value. For finished nodes, the labels are fixed at their optimal
values. For each unfinished node, the label has a temporary value, which represents
the length of the shortest path from that node to the root, subject to the condition
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that all intermediate nodes on the path must be finished nodes. At those nodes for
which no such path exists, the temporary label is set to infinity (or, in practice, a large
positive number).

The algorithm is initialized by setting all the labels to infinity except for the
root node (or source node), whose label is set to 0. Also, the set of finished nodes
is initialized to the empty set. Then, as long as there remain unfinished nodes, the
algorithm selects an unfinished node j having the smallest temporary label, adds it to
the set of finished nodes, and then updates each unfinished “upstream” neighbor i by
setting its label to cij + vj if this value is smaller than the current value vi. For each
neighbor i whose label gets changed, hi is set to j.

PROBLEMS AND EXERCISES

1. What is SCED?

2. What does the economic dispatch with N − 1 security mean?

3. Compare LP, QP, and NFP that are used for solving SCED.

4. State the features of OKA algorithm when it is applied to SCED

5. What are the differences between NFP and NLCNFP?

6. What is the “N − 1 constrained zone”?

7. State “True” or “False”

7.1 SCED considers not only the generator power output limits but also the capacity
limits of the transmission lines and transformers.

7.2 SCED must be linear model

7.3 SCED does not involve reactive power dispatch.

7.4 SCED must satisfy the bus voltage constraint.

7.5 KCL used in NFP is equivalent to the real power balance.

7.6 NFP is a special LP method.

7.7 QP has a quadratic objective function as well as quadratic constraints.

7.8 SCED neglects network losses.

7.9 Network losses cannot be considered in NFP economic dispatch.

7.10 NLCNFP can solve the nonlinear SCED problem.

8. Solve the following QP problem

min f (x) = 1
2
(x1 − 1)2 + 1

2
(x2 − 5)2
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subject to

−2x1 + x2 ≤ 2

−x1 + x2 ≤ 3

x1 ≤ 3

x1 ≥ 0, x2 ≥ 0

9. A power network, which has two generators (PG1 and PG2) and three transmission
lines to supply a load PD, is shown in Figure 5.6. The system parameters are as
follows.

F1(PG1) = C1PG1 = 3PG1

F2(PG2) = C2PG2 = 5PG2

0 ≤ PG1 ≤ 4

0 ≤ PG2 ≤ 3

PD = 4

0 ≤ Pl1 ≤ 1

0 ≤ Pl2 ≤ 4

1 ≤ Pl3 ≤ 3

(1) Use the OKA algorithm to solve this economic dispatch problem.

(2) Use the LP method to solve this economic dispatch problem.

10. For the same power system and parameters as exercise 8 except for the two generators
cost functions, which are quadratic, that is,

F1(PG1) = a1P2
G1 + b1PG1 = P2

G1 + 4PG1

F2(PG2) = a2P2
G2 + b2PG2 = 3P2

G2 + 2PG2

Use the quadratic programming method to solve this economic dispatch problem.
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C H A P T E R 6
MULTIAREAS SYSTEM
ECONOMIC DISPATCH

This chapter focuses on the operation of the multiarea system. In addition to the
introduction of the wheeling model, multiarea wheeling, the total transfer capability
computation in multiareas, this chapter introduces the multiarea economic dispatch
(MAED) algorithms based on nonlinear convex network flow programming (NLC-
NFP), as well as the nonlinear optimization neural network approach.

6.1 INTRODUCTION

Many countries have more than one major generation-transmission utility with local
distribution utilities. Because of the recent deregulation of the power industry, the
industry structure is important in discussing the interchange of power and energy
as the purchase and sale of power and energy is a commercial business in which
the parties to any transaction expect to enhance their own economic positions under
nonemergency situations. The multiarea system economic dispatch or interconnect
systems economic dispatch is for this purpose.

At present, many approaches have been considered for MAED [1–5], which is
an extension of economic dispatch. All kinds of optimization algorithms and heuris-
tic approaches have been used in economic dispatch [6–18], which are described in
Chapter 5.

6.2 ECONOMY OF MULTIAREAS INTERCONNECTION

Electric power systems are interconnected or multiple areas are interconnected to
one big system because the interconnected system is more reliable. Here we use the
term multiarea system to stand for the interconnected system. In a multiarea system,
generations and loads are coordinated with each other through the tie lines among
the areas. A load change in any one of areas is taken care of by all generators in
all areas. Similarly, if a generator is lost in one control area, governing action from
generators in all connected areas will increase generation outputs to make up the
mismatch. Another advantage of a multiarea system is that it may be operated at
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less cost than if left as separate parts. As described in Chapter 4, it will improve
the operating economics if two generators that have different incremental costs are
operating together. This concept is also suited for the interconnected multiarea system
because the generators’ cost functions are different for different areas.

For example, companies that are members of the broker system send hourly
buy-and-sell offers for energy to the broker, who matches them according to certain
market rules. Hourly, each member transmits an incremental cost and the number
of MWh it is willing to sell or its decremental cost and the number of MWh it will
buy. The broker sets up the transactions by matching the lowest-cost seller with the
highest-cost purchaser, proceeding in this manner until all offers are processed. A
common arrangement set up by the broker for the buyers and sellers is to compen-
sate the seller for the incremental generation costs and split the savings of the buyer
equally with the seller. The pricing formula for this arrangement is similar to the
operation of two generators with different incremental cost rate in a system. But we
handle the two generators like two utilities with one selling, the other buying. Then,
the transaction’s cost rate is computed as below [19].

𝜆c = 𝜆s +
1
2
(𝜆b − 𝜆s)

= 1
2
(𝜆b + 𝜆s) (6.1)

where

𝜆s: the incremental cost of the selling utility ($/MWh)
𝜆b: the decremental cost of the buying utility ($/MWh)
𝜆c: the cost rate of the transaction ($/MWh).

Example 6.1: There are four utilities with two selling, and two buying. The
related data are listed in Tables 6.1 and 6.2. The maximum pool savings possible is
computed as follows.

TABLE 6.1 Data of Utilities A and B

Utilities Incremental MWh for Sale Seller’s Total

Selling Energy Cost ($/MWh) Increase in Cost($)

A 20 120 2400

B 28 80 2240

TABLE 6.2 Data of Utilities C and D

Utilities Decremental MWh for Purchase Buyer’s Total

Buying Energy Cost ($/MWh) Decrease in Cost($)

C 32 60 1920

D 46 140 6440
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Net pool savings = (1920 + 6440) − (2440 + 2240) = 3720($)
The broker sets up transactions as shown in the following.

1. Transaction: A sells 120 MWh to D
The transaction saving ΔFA−D = 120 × (46 − 20) = 3120($)

2. Transaction: B sells 20 MWh to D
The transaction saving ΔFB−D = 20 × (46 − 28) = 360($)

3. Transaction: B sells 60 MWh to C
The transaction saving ΔFB−C = 60 × (32 − 28) = 240($)

The total transaction savings are

ΔFT = 60 × (32 − 28) = 3120 + 360 + 240 = 3720($)

Then the rate and payment of each transaction are computed as follows.

1. Transaction: A sells 120 MWh to D
The rate 𝜆A−D = (46 + 20)∕2 = 33($∕MWh)
The payment: FA−D = 33 × 120 = 3960($)

2. Transaction: B sells 20 MWh to D
The rate 𝜆A−D = (46 + 28)∕2 = 37 ($∕MWh)
The payment: FA−D = 37 × 20 = 740($)

3. Transaction: B sells 60 MWh to C
The rate 𝜆A−D = (32 + 28)∕2 = 30 ($∕MWh)
The payment: FA−D = 30 × 60 = 1800($)

This means that utility A receives payment $3960 from utility D, and utility B receives
the payment $2540 from C and D. Then each participant obtains benefit.

ΔFA = 3960 − 2400 = 1560($)

ΔFB = 2540 − 2240 = 300($)

ΔFC = 1920 − 1800 = 120($)

ΔFD = 6440 − 3960 − 740 = 1740($)

Obviously, ΔFA + ΔFB + ΔFC + ΔFD = ΔFT .

Therefore, there exist transactions among areas if the areas belong to different
companies. One area may have a surplus of power and energy and may wish to sell it
to other areas with different companies on a long-term firm supply basis. In excess of
this agreed amount, it will be on a “when and if available” basis with different price.
Meanwhile, some area may wish to buy energy from the other areas in the connected
system. It is possible that the interconnected system will have interchange power
being bought and sold simultaneously within several areas. Thus the price for the
interchange must be set while taking account of the other transactions. For example,
if one area were to sell interchange power to two different areas in sequence, it would
probably quote a higher price for the second sale as the first sale would have raised
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its incremental cost. On the other hand, if the selling utility was a member of a power
pool, the sale price might be set by the power and energy pricing portions of the pool
agreement to be at a level such that the seller receives the cost of the generation for
the sale plus one-half the total savings of all the purchasers. In this case, it is assumed
that a pool control center exists, the sale price would be computed by this center, and
this would differ from the prices under multiple interchange contracts. In the United
States, the independent system operator (ISO) plays this kind of role.

The power pool or ISO is administered from a central location that has respon-
sibility for setting up interchange between members, as well as other administrative
tasks. The pool members relinquish certain responsibilities to the pool operating
office in return for greater economy in operation. The agreement that the pool mem-
bers sign is usually very complex. The complexity arises because the members of the
pool are attempting to gain greater benefits from the pool operation and to allocate
these benefits equitably among the members. In addition to maximizing the economic
benefits of interchange between the members, the pool helps member companies by
coordinating unit commitment and maintenance scheduling, providing a centralized
assessment of system security and reliability, as well as marketing rules, and so on.
The increased reliability provided by the pool allows the members to draw energy
from the pool transmission network during emergencies as well as covering each
others’ reserves when generating units are down for maintenance or in outage.

The agreements among the pool members are very important for the operation
of a pool system. Obviously, the agreements will become more complicated if the
members try to push for maximum economic operation. Nevertheless, the savings
obtainable are quite significant and have led many interconnected utility systems (i.e.,
multiarea systems) throughout the world to form centrally dispatched power pools
when feasible. At present, there are several organizations similar to the power pool
in the United States. They are MISO, ISONE, CAISO, PJM, NYISO, ERCOT, SPP,
Entergy, and so on. These ISOs have SCADA and EMS systems, as well as a market
system. They use the real-time data telemetered to central computers that calculate
the best economic dispatch for the whole organization (within footprint) and provide
signals to the member companies.

Example 6.2: For Example 6.1, assume that four utilities were scheduled to trans-
act energy by a central dispatching scheme, and 12% of the gross system savings was
to be set aside to compensate those systems that provided transmission facilities to
the pool. The maximum pool savings possible is computed as follows.

The net pool savings without transmission compensation is 3720 ($). Thus the
transmission compensation FT comp = 3720 × 12% = 446.4($)

The weighted average incremental cost for selling can be computed as follows.

𝜆s =

NS∑

i=1

𝜆siPsi

NS∑

i=1

Psi

(6.2)
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where

𝜆s: the weighted average incremental cost for selling utilities ($/MWh);
𝜆si: the incremental cost for selling utility i ($);
Psi: the selling power for the selling utility i (MWh);
NS: the number of selling utilities.

The weighted average decremental cost for buying can be computed as follows.

𝜆b =

NB∑

j=1

𝜆bjPbj

NB∑

j=1

Pbj

(6.3)

where

𝜆b: the weighted average incremental cost for buying utilities ($/MWh);
𝜆bj: the decremental cost for buying utility j ($);
Pbj: the selling power for the buying utility j (MWh);
NB: the number of buying utilities.

For this example, the seller’s weighted average incremental cost is

𝜆s =
20 × 120 + 28 × 80

120 + 80
= 23.2($∕MWh)

The buyer’s weighted average decremental cost is

𝜆b = 32 × 60 + 46 × 140
60 + 140

= 41.8($∕MWh)

Considering the transmission compensation, the transaction savings for seller and
buyer can be computed as below.

ΔFsi = (1 − 𝜂%)
𝜆b − 𝜆si

2
Psi (6.4)

ΔFbi = (1 − 𝜂%)
𝜆bi − 𝜆s

2
Pbi (6.5)

where

𝜂%: the transmission compensation rate.

For utility A that sells 120 MWh to the pool, the transaction savings are

ΔFsA= (1 − 12%)41.8 − 20
2

× 120 = 1151.04($)
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For utility B that sells 80 MWh to the pool, the transaction savings are

ΔFsB= (1 − 12%)41.8 − 28
2

× 80 = 485.76($)

For utility C that buys 60 MWh from the pool, the transaction savings are

ΔFbC= (1 − 12%)32 − 23.2
2

× 60 = 232.32($)

For utility D that buys 140 MWh from the pool, the transaction savings are

ΔFbD= (1 − 12%)46 − 23.2
2

× 140 = 1404.48($)

The total savings are

ΔFT = ΔFsA+ΔFsB+ΔFbC+ΔFbD

= 1151.04 + 485.76 + 232.32 + 1404.48 = 3273.6

The practical costs in the transactions for this hour are

A sells 120 MWh and obtains

FA = 120 × 23.2 + 1151.04 = 3935.04($)

B sells 80 MWh and obtains

FB = 80 × 23.2 + 485.76 = 2341.76($)

C buys 60 MWh with payment

FC = 60 × 41.8 − 232.32 = 2275.68($)

D buys 140 MWh with payment

FD = 140 × 41.8 − 1404.48 = 4447.52($)

The total payment for this transaction is FC + FD = 2275.68 + 4447.52 =
6723.2.

The total cost that the sellers obtain is FA + FB = 3935.04 + 2341.76 = 6276.8
The difference between the total payments and the costs that sellers obtained is

446.4, which equal the transmission charge or compensation.

6.3 WHEELING

6.3.1 Concept of Wheeling

Wheeling is the heart of the operational and economic issues of an open access trans-
mission. Let use the following example to explain what “wheeling” is. Assume utility
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(a)

(b)

Area A 
owned 
line 1

Area BLine 1 (ATC = 200 MW)

200 MW

Sell 200 MW to B
Buy 200 MW from A

Area A 
own line 1

Area B

Third party own 
transmission 
lines 2 and 3

Line 1 (ATC = 100 MW)

Line 2

Line 3

Sell 200 MW to B Buy 200 MW from A

100 MW

100 MW
100 MW

Figure 6.1 (a and b) Explanation of wheeling.

A (e.g., in area A) needs to sell 200 MW to another utility B (e.g., in area B) through
its own transmission (line 1) shown in Figure 6.1(a). For simplification of explana-
tion, the network power loss is neglected. If the available transfer capacity (ATC)
of line 1 is greater than 200 MW, the transaction is simple and there is no “wheel-
ing.” But if the ATC of line 1 is only 100 MW and the same amount of transaction is
required, utility A cannot complete the transaction through its own transmission lines
in this case. Utility A has to “borrow” the path from the third part that owns transmis-
sion lines 2 and 3, which connect to utilities A and B (unless utility A constructs a
new transmission line that is an expensive investment). Thus the transaction between
utility A and B is completed through the third part, which is shown in Figure 6.1(b).
This case involves “wheeling.” The corresponding cost or pricing for this transaction
is more complicated than that for the case shown in Figure 6.1(a).

Thus we can simply say that “wheeling” is the use of some party’s (or parties’)
transmission system for the benefit of other parties. Each wheeling utility is termed
as a wheel. Wheeling occurs on the interconnected areas or systems that contain more
than two utilities (or parties) whenever a transaction takes place. When the contracted
energy flow enters and leaves the wheeling utility, the flows throughout the wheel-
ing utility’s network will change. The transmission losses incurred in the wheeling
utility will change. Wheeling rates are the prices it charges for use of its network,
which determine payments by the buyers or sellers, or both, to the wheeling utility to
compensate it for the generation and network costs incurred.

There are four major types of wheeling depending on the relationships between
the wheeling utility and the buyer–seller parties [20].
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• Utility to utility: this is usually the case of area-to-area wheeling.

• Utility to private user or requirements customer: The former is usually the
case of area-to-bus wheeling, while the latter is usually the case of area-to-area
wheeling, unless the requirements customer is small enough to be fed only at
one bus, and thus it becomes area-to-bus wheeling.

• Private generator to utility: bus-to-area wheeling.

• Private generator to private generator: bus-to-bus wheeling.

Wheeling power may either increase or decrease transmission losses depending
on whether the power wheeled flows in the same direction as, or counter to, the native
load on the wheeler’s lines. Wheeling power on a heavily loaded line causes more
energy loss.

The cost of wheeling is a current high-priority problem throughout the power
industry for utilities, independent power producers, as well as regulators. The
following four factors have led to the importance of the cost of wheeling problem in
the United States:

(1) enormous growth in transmission facilities at 230 KV and above since the
1960s;

(2) cost differentials for electric energy between different but interconnected elec-
tric utilities;

(3) high cost of new plant construction versus long term, off-system capacity
purchase;

(4) Dramatic growth in nonutility generation (NUG) capacity, which includes inde-
pendent power producers (IPPs) and cogenerators, due to the passage of the
Public Utility Regulatory Act in 1978 and the subsequent introduction of com-
petitive bidding for generation capacity and energy.

Wheeling is a necessary and important for any NUG, unless the customer of an
NUG is the utility itself to which it is directly connected.

It is noted that not all of the transaction flows over the direct interconnections
between the two systems. The other systems are all wheeling some amount of the
transaction. These are called “parallel path or loop flows” in the United States, where
various arrangements have been worked out between the utilities in different regions
to facilitate inter-utility transactions that involve wheeling. These past agreements
would generally ignore flows over parallel paths where the two systems are contigu-
ous and own sufficient transmission capacity to permit the transfer [19]. In this case,
wheeling was not taking place, by mutual agreement. The extension of this agreement
to noncontiguous utilities led to the artifice known as the “contract path.” To make
arrangements for wheeling, the two utilities would rent the capability needed to any
path that would interconnect these two utilities.

6.3.2 Cost Models of Wheeling

We considered energy transaction prices based on the split-savings concept earlier
in this chapter. Both the sellers and wheeling systems would want to recover their
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cost and would wish to receive a profit by splitting the savings of the purchaser. The
transmission services may be offered on the basis of a “cost plus” price. Other pric-
ing schemes have also been used. Most are based upon simplified models that allow
such fictions as the “contract path.” Some are based on an attempt to mimic a power
flow, in that they would base prices on incremental power flows determined in some
cases by using DC power flow models. The simplest rate is a charge per MWh trans-
ferred, and ignores any path considerations. More complex schemes are based on the
marginal cost of transmission that is based on the use of bus incremental costs [19].
The numerical evaluation of bus incremental costs is straightforward for a system in
economic dispatch. In that case, the bus penalty factor times the incremental cost of
power at the bus is equal to the system cost 𝜆, except for the generator buses that are
at upper or lower limits. This concept is not only for generator buses, but also for load
buses, even for any bus that does not have any generator or load connected to it. In
the practical marketing system, this kind of bus or node is called the pricing bus or
pricing node. It is noted that this method is only good for a small increment of power
at a bus, rather than a large increment. If the increment of power is large, the opti-
mal power dispatch must be recalculated and the cost is not equal to the incremental
cost. We treat this case in the following sections as well as in Chapter 8 on optimal
power flow.

In this section, several cost models of wheeling are discussed.

Short-Run Marginal Cost Model The short-run marginal costs (SRMC) of
wheeling are the costs of the last MWh of energy wheeled, which can be computed
from the difference in the marginal costs of electricity at the entry and exit buses,
that is, the difference in the spot prices of these buses.

Figure 6.2 gives a wheeling example with system A selling ΔPW MW to system
C and system B wheeling that amount. As we mentioned above, if the operators were
to purchase the block of wheeled power at bus i at the incremental cost and sell it to
system C at the incremental cost of power at bus j, the wheeling costs, using marginal
cost pricing and related computations can be obtained as follows [21].

𝜆W =
𝜕Fi

𝜕PGi
−
𝜕Fj

𝜕PGj
(6.6)

where

𝜆W : short-run marginal costs of wheeling.

System A
System CSingle 

wheeling 
system B

Bus i Bus j

PW PW

Figure 6.2 Wheeling example.
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Equation (6.6) is simply the equation of the spot prices. The total wheeling
costs with wheeling power ΔPW MW will be

ΔFW = 𝜆WΔPW =
[
𝜕Fi

𝜕PGi
−
𝜕Fj

𝜕PGj

]
ΔPW (6.7)

Embedded Cost Model The embedded cost of wheeling methods, used through-
out the utility industry, allocates the embedded capital costs and the average annual
operation (not production) maintenance costs of existing facilities to a particular
wheel; these facilities include transmission, subtransmission, and substation facili-
ties. Happ has given a detailed treatment on all the methods as well as their algorithms.
There are four types of embedded methods [22,23]:

(1) Rolled-in-embedded method
This method assumes that the entire transmission system is used in wheeling,
regardless of the actual transmission facilities that carry the wheel. The cost
of wheeling as determined by this method is independent of the distance of
the wheel, which is the reason that the method is also known as the postage
stamp method. The embedded capital costs correspondingly reflect the entire
transmission system.

(2) Contract path method
This method is based upon the assumption that the wheel is confined to flow
along a specified electrically continuous path through the wheeling company’s
transmission system. Changes in flows in facilities that are not along the iden-
tified path are ignored. Thus this method is limited to those facilities that lie
along the assumed path.

(3) Boundary flow method
This method incorporates changes in MW boundary flows of the wheeling com-
pany due to a wheel, either on a line basis or on a net interchange basis, into the
cost of wheeling. Two power flows, executed successively for every year with
and without each wheel, yield the changes in either individual boundary line or
net interchange MW flows. The load level represented in the power flows can
be at peak load or any other appropriate load.

(4) Line-by-line method
This method considers changes in MW flows due to the wheel in all transmis-
sion lines of the wheeling company and the line lengths in miles. Two power
flows executed with and without the wheel yield the changes in MW flows in
all transmission lines

There are two limitations common to all four embedded cost methods:

(1) The methods consider only the costs of existing transmission facilities.

(2) The methods do not consider changes in production costs as a result of required
changes in dispatch and or unit commitment due to the presence of the wheel.

Other cost factors may exist that contribute to the cost of wheeling. In particular,
the ATC of the transmission network is not considered.
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For example, the economic purchases or sales of power have to be curtailed to
accommodate the wheel because of the transmission limits.

Long-Run Incremental Cost Model Long-run incremental transmission costs
for wheeling account for

(1) the investment costs for reinforcement to accommodate the wheel or credit for
delaying or avoiding reinforcements and

(2) the charge in operating costs and incremental operation and maintenance costs
incurred because of the wheel.

There are currently two models for the long-run incremental cost (LRIC)
methodologies: standard long-run incremental cost (SLRIC) methodology and
long-run fully incremental cost (LRFIC) methodology.

The SLRIC method uses traditional system planning approaches to determine
reinforcements that are required, and corresponding investment schedules with and
without each wheel, throughout the study period. If more than one wheel is present
in the study period, the cost of reinforcement and the change in operating costs have
to be accurately allocated to each wheel.

The LRIC method does not allow excess transmission capacity to be used by
a wheel but forces reinforcement along the path of the wheel to accommodate it; if
more than one wheel is present in the study period, reinforcement is required for each
separate wheel [23].

6.4 MULTIAREA WHEELING

Multiarea wheeling is a real-world practical concern, because wheeling from a seller
to a buyer involves power flow through several intermediate networks. How much
power should be wheeled through each path, what wheeling should be applied to
each such transaction, and how can these decisions be made optimal?

Consider an interconnected system with multiple intermediate wheeling util-
ities and multiple seller–buyer couples. An OKA network flow model, which is
described in Chapter 5, can be used to represent this energy transaction system [24],
where one seller can be treated as one source, and one buyer can be treated as a sink.
OKA is able to introduce a super source (seller) and a supper sink (buyer) and make
multiple seller–buyer pairs become one simple seller–buyer pair.

Figure 6.3 is a simple system with four intermediate wheeling utilities W1, W2,
W3, and W4, and one buyer and seller pair (S-B). There are 10 inter-utility wheeling
paths, given by the directed path b1 through b10.

Suppose that the energy to be transported through each path is arbitrary, then the
computation of wheeling rates for each path can be obtained from the solution of an
economic dispatch problem using OKA network flow programming [24]. To decide
the optimal power flow on each path, the power flows can be set as variables and
the wheeling rates can be used to improve the initial set values. The total operating
costs have to be minimized considering the topological structure of multiwheeling
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S B 

w1

w2

w3

w4

b1

b2

b3

b4

b5

b6 b7

b8

b9

b10

Figure 6.3 Multiarea wheeling topology.

areas and the feasible region of wheeling power flow. The topological relation can be
reflected in the following matrix equation.

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 −1
0 1 0 0 −1 0 0 0 −1 0
0 0 1 0 0 1 0 −1 0 0
0 0 0 1 0 −1 −1 0 0 0
0 0 0 0 0 0 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

b1
b2
b3
b4
b5
b6
b7
b8
b9
b10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
0
0
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

The following assumptions are made for the relation [25]:

(1) Power inflow is given a positive sign and power outflow is given a negative
sign.

(2) We are only concerned with the sale of unit power from S to B.

Each row–column multiplication represents one power balance equation for a
particular utility (there are a total of six utilities in this example).

6.5 MAED SOLVED BY NONLINEAR CONVEX
NETWORK FLOW PROGRAMMING

6.5.1 Introduction

This section proposes a new NLCNFP to solve the problem of security-constrained
interconnected MAED. The proposed MAED model considers tie-line security and
transfer constraints in each area. In addition, a simple analysis of buying and sell-
ing contract in an MAED is also made. The NLCNFP model of security-constrained
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MAED is set up and solved by using a combined method of quadratic programming
(QP) and network flow programming (NFP). For examining the proposed approach,
a network model of four interconnected areas is constructed. Computation results are
given in the chapter.

6.5.2 NLCNFP Model of MAED

The aim of MAED is to minimize the total production cost of supplying loads to all
areas within security constraints. Initially, a basic formulation M-1 is formulated

min F =
n∑

k=1

NG(k)∑

i=1

fik(PGik) + h
n∑

k=1

∑

ij∈NT

PLijk (6.8)

such that
n∑

k=1

NG(k)∑

i=1

PGik −
n∑

k=1

ND(k)∑

i=1

PDik − PL = 0 (6.9)

PGikmin ≤ PGik ≤ PGikmax (6.10)

|ΔPGik| ≤ ΔPGik GRC k = 1, … , n; i = 1, … ,NG(k) (6.11)

|Pijk| ≤ Pijkmax k = 1, … , n; j = 1, … ,NL(k) (6.12)

|PT | ≤ PT max T = 1, … ,NT (6.13)

where

fik: the generation cost function of ith generator in area k;
PGik: the active power output of ith generator in area k;
PDik: the active load at node i in area k;
Pijk: the active power on the branch j in area k;
PT : the active power on the tie –line;
PL: the active power loss of the system;

PLijk: the active power loss of the branch j in the area k;
ΔPGik GRC: the limit of the generation rate constraint (GRC);

NT: the number of tie lines;
n: the number of areas;

NG (k): the number of generators in area k;
ND (k): the number of loads in area k;
NL (k): the number of transmission lines in area k.

Subscripts “min” and “max” stand for the lower and upper bounds of a con-
straint.

According to Chapter 5, we have the following approximate equations.

V ≅ 1.0 p.u. (6.14)
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sin 𝜃ij ≅ 𝜃ij (6.15)

cos 𝜃ij ≅ 1 − 𝜃2
ij∕2 (6.16)

Then, the active power loss on the branch ij can be expressed as follows.

PLijk = P2
ijkZijk (6.17a)

where

Zijk =
(R2

ijk + X2
ijk)

Xijk
2

Rijk (6.18a)

Pijk = −bijk 𝜃ijk (6.19a)

Rij: the resistance of branch j in area k;
Xij: the reactance of branch j in area k;
𝜃ijk: the difference of node voltage angles between the sending end and receiving

end of the branch j in area k;
bijk: the susceptance of branch j in area k.

The active power loss on tie-lie T can also be expressed as follows.

PLT = PT
2ZT (6.17b)

where

ZT =
(RT

2 + XT
2)

XT
2

RT (6.18b)

PT = − bT 𝜃T (6.19b)

RT : the resistance of tie-line branch T;
XT : the reactance of tie-line branch T;
𝜃T : the difference in node voltage angles between the sending end and receiving

end of tie-line branch T;
bT : the susceptance of tie-line branch T .

Thus the total system power loss can be written as follows.

PL =
n∑

k=1

Nl(k)∑

ij=1

PLijk +
NT∑

T=1

PLT

=
n∑

k=1

Nl(k)∑

ij=1

P2
ijkZijk +

NT∑

T=1

P2
T ZT (6.20)
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Similar to Chapter 5, we can get the power flow limit for each branch in area
k, as well as each tie line.

Pijkmax =

[√
1 +

(
2gijkPijk∕bijk

2) − 1

]

gijk
(6.21)

PT max =

[√
1 +

(
2gT PT∕bT

2) − 1

]

gT
(6.22)

where gij and gT are the conductance of branch j in area k and tie line, respectively.
If the KVL is considered in an NFP model of MAED, the voltage equation of

the lth loop can be written as

∑

ij

(PijkZijk)𝜇ij,l = 0 l = 1, 2, … … ,NM (6.23)

where

NM: the number of loops in the network;
𝜇ij,l: the element in the related loop matrix, which takes the value 0 or 1.

Furthermore, assume that the input–output characteristics of the generators in
all areas are quadratic functions.

fik(PGik) = aikPGik
2 + bikPGik + cik (6.24)

Therefore, we can obtain the following NLCNFP model for the MAED problem
(M-2).

min F =
n∑

k=1

NG(k)∑

i=1

(aikP2
Gik + bikPGik + cik) + h

n∑

k=1

∑

ij

P2
ijkZijk

−𝜆l

∑

ij

(PijkZijk)𝜇ij,l (6.25)

n∑

k=1

NG(k)∑

i=1

PGik −
n∑

k=1

ND(k)∑

i=1

PDik −

(
n∑

k=1

Nl(k)∑

ij=1

P2
ijkZijk +

NT∑

T=1

P2
T ZT

)
= 0 (6.26)

PGikmin ≤ PGik ≤ PGikmax (6.27)

|ΔPGik| ≤ ΔPGik GRC k = 1, … , n; i = 1, … ,NG(k) (6.28)

|Pijk| ≤

[√
1 +

(
2gijkPijk∕b2

ijk

)
− 1

]

gijk
k = 1, … , n; j = 1, … ,NL(k)

(6.29)
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|PT | ≤

[√
1 +

(
2gT PT∕b2

T

)
− 1

]

gT
T = 1, … ,NT (6.30)

In the MAED model, equation (6.26) defines the total power balance of multiarea
systems. Equation (6.29) is the line security constraint in area k. Equation (6.30) is
the tie line capacity constraint. Equation (6.27) defines the generator power upper and
lower limits. Equation (6.28) is the generation rate constraint and can be written as

P0
Gik − ΔPGik GRC ≤ PGik ≤ P0

Gik + ΔPGik GRC (6.31)

where P0
Gik is the initial power of ith generator in area k.

Thus the generation is regulated between two inequality equations (6.27) and
(6.31), which can be combined into one expression:

max{P0
Gik − ΔPGik GRC,PGikmin} ≤ PGik ≤ min{P0

Gik + ΔPGik GRC,PGikmax} (6.32)

There can be contracts of buying and selling among areas. Suppose area A sells elec-
tricity to area B, and PAB sell represents the amount of power sold or PBA buy represents
the amount of power purchase. The following constraints are introduced into the
MAED model. ∑

T

PTAB = +PAB sell (6.33)

∑

T

PTBA = −PBA buy (6.34)

or

(1 − 𝜂)%PAB sell ≤
∑

T

PTAB ≤ (1 + 𝜂)%PAB sell (6.35)

(1 − 𝜂)%PBA buy ≤

|||||

∑

T

PTBA

|||||
≤ (1 + 𝜂)%PBA buy (6.36)

where

PTAB: the tie-line transfer between areas A and B, power transfer from the area
being considered to be positive if it is an export;

PAB sell: the amount of power sold from area A to area B;
PBA buy: the amount of power purchased;

𝜂: the trading error that is permitted in interconnected power system
operation.

In this way, the MAED model M-2 can be written into the following model M-3
that contains the contract constraints of buying and selling electricity among areas.



6.5 MAED SOLVED BY NONLINEAR CONVEX NETWORK FLOW PROGRAMMING 231

min F =
n∑

k=1

NG(k)∑

i=1

(aikP2
Gik + bikPGik + cik) + h

n∑

k=1

∑

ij

P2
ijkZijk

−𝜆l

∑

ij

(PijkZijk)𝜇ij,l

+𝛽

(
∑

T

PTAB − PAB sell

)2

+ 𝛾

(|||||

∑

T

PTBA

|||||
− PBA buy

)2

(6.37)

Subject to

n∑

k=1

NG(k)∑

i=1

PGik −
n∑

k=1

ND(k)∑

i=1

PDik −

(
n∑

k=1

Nl(k)∑

ij=1

P2
ijkZijk +

NT∑

T=1

P2
T ZT

)
= 0 (6.26)

max{P0
Gik − ΔPGik GRC,PGikmin} ≤ PGik ≤ min{P0

Gik + ΔPGik GRC,PGikmax}

k = 1, … , n; i = 1, … ,NG(k) (6.32)

|Pijk| ≤

[√
1 +

(
2gijkPijk∕b2

ijk

)
− 1

]

gijk
k = 1, … , n; j = 1, … ,NL(k)

(6.29)

|PT | ≤

[√
1 +

(
2gT PT∕b2

T

)
− 1

]

gT
T = 1, … ,NT (6.30)

(1 − 𝜂)%PAB sell ≤
∑

T

PTAB ≤ (1 + 𝜂)%PAB sell (6.35)

(1 − 𝜂)%PBA buy ≤

|||||

∑

T

PTBA

|||||
≤ (1 + 𝜂)%PBA buy (6.36)

where 𝛽 and 𝛾 are the penalty factors, which are large positive constants.

6.5.3 Solution Method

MAED model M-3 is easily changed into a standard model of NLCNFP, that is, model
M-4

minC =
∑

ij

c(fij) (6.38)

such that ∑

j∈n

(fij − fji) = ri i ∈ n (6.39)

Lij ≤ fij ≤ Uij ij ∈ m (6.40)
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where

fij: the flow on the arc ij in the network;
Lij: the lower bound of the flow on the arc ij in the network;
Uij: the upper bound of flow on the arc ij in the network;

n: the total number of the nodes in the network;
m: the total number of the arcs in the network.

According to Chapter 5 (Section 5.5), the NLCNFP model M-4 can be changed
into the following QP model M-5, in which the search direction in the space of the
flow variables is to be solved.

minC(D) = 1
2

DT G(f )D + g(f )T D (6.41)

such that
AD = 0 (6.42)

Dij ≥ 0, when fij = Lij (6.43)

Dij ≤ 0, when fij = Uij (6.44)

Model M-5 is a special QP model, which has the form of network flow. In order to
enhance the calculation speed, we present a new approach, in place of the general QP
algorithm, to solve the model M-5. The details of the calculation steps are described
in Chapter 5.

6.5.4 Test Results

For examining the proposed approach, a network of four interconnected areas is
constructed as shown in Figure 6.4. Area A1 is an IEEE 30-bus system. It has
six generators, 21 loads and 41 transformation branches, in which 1, 2, 5, 8, 11,
and 13 are generators. The generators data of IEEE 30-bus system are listed in
Table 6.3. The network parameters including network constraints of a 30-bus system
are shown in Chapter 5. Parameters of areas A2, A3, A4, and tie lines are given as
follows.

IEEE 
30-bus
system

Area 3 Area 4

Area 1

19
17

10
7

20

Area 2

Figure 6.4 The network model of four
interconnected power systems.
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TABLE 6.3 Data of Generator Nodes for IEEE 30-Bus System (p.u.)

Node ai bi ci PGimin PGimax ΔPGiGRC

1 37.5 200 0.0 0.50 2.00 0.50

2 175 175 0.0 0.20 0.80 0.30

5 625 100 0.0 0.15 0.50 0.15

8 83.4 325 0.0 0.10 0.35 0.15

11 250 300 0.0 0.10 0.30 0.15

13 250 300 0.0 0.12 0.40 0.15

Note: The generation cost function is: fi = ai PGi
2 + bi PGi + ci

Fuel cost function and power upper and lower limits are

FA2 = 80P2
A2 + 175PA2 0.2 ≤ PA2 ≤ 1.0

FA3 = 90P2
A3 + 150PA3 0.2 ≤ PA3 ≤ 1.0

FA4 = 600P2
A4 + 300PA4 0.2 ≤ PA4 ≤ 1.0

Loads of areas A2, A3, and A4 are PDA2 + jQDA2 = 0.44 + j0.21; PDA3 + jQDA3 =
0.312 + j0.14; and PDA4 + jQDA4 = 0.396 + j0.18, respectively. Parameters and
capacity constraints of the tie line are

RA2−20 = 0.0340; XA2−20 = 0.0680; PA2−20Tmax = 0.7

RA3−17 = 0.0192; XA3−17 = 0.0575; PA3−17Tmax = 0.7

RA3−19 = 0.0192; XA3−19 = 0.0575; PA3−19Tmax = 0.7

RA4−10 = 0.0267; XA4−10 = 0.8200; PA4−10Tmax = 0.6

RA4−7 = 0.0267; XA4−7 = 0.8200; PA4−7Tmax = 0.6

The following test cases for MAED are performed in the study, in which the
symbol “+” represents the selling contract and “−” represents the purchase contract.

Case 1: neglecting the buying and selling contract among areas;

Case 2: considering the buying and selling contract among areas;

PA3−A1 sell = +0.5; PA4−A1 buy = −0.0

Case 3: considering the buying and selling among areas;

PA3−A1 sell = +0.55; PA4−A1 buy = −0.10
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To evaluate the calculation accuracy, the following performance index (PI) on
trading error is proposed, that is,

PIEAB% =
|PTAB − PAB sell|

PAB sell
× % (6.45)

or

PIEAB% =
|PTAB − PAB buy|

PAB buy
× % (6.46)

The calculation results of security-constrained MAED for the above three test
cases are listed in Table 6.4. From Table 6.4 we can get

Case 2:

PTA3−A1 = PA3−17 + PA3−19 = 0.4086 + 0.0914 = 0.5

PIEA3−A1% = 0.0

PTA4−A1 = PA4−7 + PA4−10 = 0.2088 − 0.2083 = 0.0005

PIEA4−A1% = 0.05%

TABLE 6.4 Test Results of Security-Constrained MAED for Four Interconnected Systems

Test Cases Case 1 (p.u) Case 2 (p.u.) Case 3 (p.u.)

Area A1 PG1 1.1523 1.0718 1.1146

PG2 0.3569 0.3471 0.3539

PG5 0.1792 0.1839 0.1833

PG8 0.1053 0.1163 0.1124

PG11 0.1248 0.1358 0.1319

PG13 0.1253 0.1363 0.1324

Area A2 PGA2 0.8832 0.8504 0.8684

Area A3 PGA3 0.9297 0.8120 0.8620

Area A4 PGA4 0.2053 0.3965 0.2964

Total gen. 04.06176 04.04987 04.05534

Power losses 00.07975 00.06787 00.07333

Total gen. cost ($) 1041.987 1109.621 1068.4117

Tie-line power PA2−20 0.4432 0.4104 0.4284

PA3−17 0.4988 0.4086 0.4487

PA3−19 0.1189 0.0914 0.1013

PA4−7 0.1364 0.2088 0.1684

PA4−10 −0.3272 −0.2083 −0.2680

Line-security Satisfied Satisfied Satisfied
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Case 3:

PTA3−A1 = PA3−17 + PA3−19 = 0.4487 + 0.1013 = 0.55

PIEA3−A1% = 0.0

PTA4−A1 = PA4−7 + PA4−10 = 0.1684 − 0.2680 = −0.0996

PIEA4−A1% = 0.04%

The maximum trading error is only 0.05%. Therefore, the proposed MAED
approach not only satisfies all security constraints, but also has high accuracy.

6.6 NONLINEAR OPTIMIZATION NEURAL NETWORK
APPROACH

6.6.1 Introduction

This section presents a new nonlinear optimization neural network approach to solve
the problem of security-constrained interconnected MAED. The optimization neu-
ral network (ONN) can be used to solve mathematical programming problems. It
has attracted much attention in recent years. In 1986, Tank and Hopfield first pro-
posed an optimization neural network—TH model, which was used to solve linear
programming problems. ONN is totally different from traditional optimization meth-
ods. It changes the solution of the optimization problem into an equilibrium point
(or equilibrium state) of a nonlinear dynamic system and changes optimal criterion
into energy functions for a dynamic system. Because of its parallel computational
structure and the evolution of dynamics, the ONN approach is superior to traditional
optimization methods.

6.6.2 The Problem of MAED

According to the previous section, a basic formulation of MAED is formulated
as

min F =
n∑

k=1

NG(k)∑

i=1

fik (PGik) (6.47)

such that
n∑

k=1

NG(k)∑

i=1

PGik −
n∑

k=1

ND(k)∑

i=1

PDik − PL = 0 (6.48)

PGikmin ≤ PGik ≤ PGikmax (6.49)

|ΔPGik| ≤ ΔPGik GRC k = 1, … , n; i = 1, … ,NG(k) (6.50)
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|Pijk| ≤ Pijkmax k = 1, … , n; ij = 1, … ,NL(k) (6.51)

|PT | ≤ PTmax T = 1, … ,NT (6.52)

The generation is regulated between two inequality equations (6.49) and (6.50),
which can be combined into one expression:

max{P0
Gik − ΔPGik GRC,PGikmin} ≤ PGik ≤ min{P0

Gik + ΔPGik GRC,PGikmax} (6.53)

There can be contracts of buying and selling among areas. Suppose area A sells elec-
tricity to area B, and PAB sell represents the amount of power sold or PBA buy represents
the amount of power purchase. The following constraints are introduced into the
MAED model, which are the same as in Section 6.5.

∑

T

PTAB = +PAB sell (6.54)

∑

T

PTBA = −PBA buy (6.55)

or

(1 − 𝜂)%PAB sell ≤
∑

T

PTAB ≤ (1 + 𝜂)%PAB sell (6.56)

(1 − 𝜂)%PBA buy ≤

|||||

∑

T

PTBA

|||||
≤ (1 + 𝜂)%PBA buy (6.57)

The above MAED model can be written into the following model M-6, which
contains the contract constraints of buying and selling electricity among areas.

min F =
n∑

k=1

NG(k)∑

i=1

fik (PGik) + 𝛽

(
∑

T

PTAB − PAB sell

)2

+𝛾

(|||||

∑

T

PTBA

|||||
− PBA buy

)2

(6.58)

such that
n∑

k=1

NG(k)∑

i=1

PGik −
n∑

k=1

ND(k)∑

i=1

PDik − PL = 0 (6.59)

max{P0
Gik − ΔPGik GRC,PGikmin} ≤ PGik ≤ min{P0

Gik − ΔPGik GRC,PGikmin}

k = 1, … , n; i = 1, … ,NG(k) (6.60)

|Pbjk| ≤ Pbjkmax k = 1, … , n; j = 1, … ,NL (k) (6.61)
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|PT | ≤ PTmax T = 1, … ,NT (6.62)

(1 − 𝜂)%PAB sell ≤
∑

T

PTAB ≤ (1 + 𝜂)%PAB sell (6.63)

(1 − 𝜂)%PBA buy ≤

|||||

∑

T

PTBA

|||||
≤ (1 + 𝜂)%PBA buy (6.64)

where 𝛽 and 𝛾 are the penalty factors.
It is noted that there are some different between the above MAED model M-6

and the model M-3 described in the Section 6.5, where some approximations are
applied in order to use the NLCNFP algorithm.

6.6.3 Nonlinear Optimization Neural Network Algorithm

Nonlinear Optimization Neural Network Model of MAED The above MAED
model M-6 can be solved by a new approach of nonlinear optimization neural network
(NLONN). The neural network approach is a penalty-minimizing neural network
approach with weights based on optimization theory and neural optimization method.
It can be used to solve the nonlinear problem with equality and inequality constraints.

The MAED model M-6 can be rewritten into a general form of constrained
optimization, that is, model M-7.

min f (x) (6.65)

such that
hj(x) = 0 j = 1, … ,m (6.66)

gi(x) ≥ 0 i = 1, … , k (6.67)

To change inequality constraints of equation (6.67) into equality constraints, new vari-
ables y1, … … , ym (i.e., relaxation variables) are introduced into equation (6.67), In
this way, model M-7 can be written as model M-8, that is,

min f (x) (6.65)

such that
hj(x) = 0 j = 1, … ,m (6.66)

gi(x) − yi
2 = 0 i = 1, … , k (6.68)

The optimization neural network is applied to the solution of M-8. The
approach is totally different from traditional optimization methods. It changes the
solution of optimization problems into an equilibrium point of a nonlinear dynamic
system, and changes the optimal criterion into energy functions for a dynamic
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system. Therefore, the energy function of NLONN needs to be formed at the
beginning.

According to optimization theory as described in Reference [26], we can con-
struct the following energy function of neural network for model M-8.

E (x, y, 𝜆, 𝜇, S) = f (x) − 𝜇T h(x) − 𝜆T [g(x) − y2]

+(S∕2)‖h(x)‖2 + (S∕2)‖g(x) − y2‖2 (6.69)

where, 𝜆, 𝜇 are Lagrange multipliers.
It is possible to construct a different energy function from the above, for

example, in an energy function as used in reference [27]. It is noted that a different
energy function will produce a different neural network and distinct characteristics.
There are two advantages for the proposed NLONN approach. One is that the first
three terms in the energy function of equation (6.69) is just an expanded Lagrange
function as in conventional nonlinear programming. Methods to guarantee optimal
solution of such a function are well understood. Another advantage is due to the
quadratic penalties, which are formulated to become part of the energy function
(6.69) and equality constraints (6.66)–(6.68). These penalties behave very effectively
against any violation of constraint.

Dynamic equations of the neural network can be obtained according to
equation (6.69).

dx∕dt = −{∇xf (x) + (S h (x) − 𝜇)T∇xh(x) + [S(g(x) − y2) − 𝜆]T∇x(g(x) − y2)}
(6.70)

dy∕dt = −{∇yf (x) + (S h (x) − 𝜇)T∇yh(x) + [S(g(x) − y2) − 𝜆]T∇y(g(x) − y2)}
(6.71)

𝜕𝜇∕𝜕t = S h(x) (6.72)

𝜕𝜆∕𝜕t = S (g(x) − y2) (6.73)

From equation (6.69), we know that the variables x, y are separable. So we can get

min
x,y

E(x, y, 𝜆, 𝜇, S) = min
x

min
y

E(x, y, 𝜆, 𝜇, S)

= min
x

E(x, y∗(x, 𝜆, 𝜇, S), 𝜆, 𝜇, S) (6.74)

where, y∗(x, 𝜆, 𝜇, S) satisfies the following equation:

min
y

E(x, y, 𝜆, 𝜇, S) = E(x, y∗(x, 𝜆, 𝜇, S), 𝜆, 𝜇, S) (6.75)

In order to obtain y∗(x, 𝜆, 𝜇, S), we set dE∕dy = 0. Then, from equation (6.69) we
get

2yT[𝜆 + S y2 − S g(x)] = 0 (6.76)
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Obviously, from equation (6.76) we know if 𝜆 − S g (x) ≥ 0, then y = 0; if
𝜆 − S g (x) < 0, then y = 0, or y2 = (S g(x) − 𝜆)∕S, that is,

y2 =

{
0, if 𝜆 − S g (x) ≥ 0

[S g(x) − 𝜆]∕S, if 𝜆 − S g(x) < 0
(6.77)

or

y2 − g(x) =

{
−g (x) , if − g(x) ≥ −𝜆∕S

−𝜆∕S, if − g(x) < −𝜆∕S
(6.78)

From equation (6.78), we can get the following expressions.

y2 − g(x) = max(−g(x), −𝜆∕S) (6.79)

y2 − g(x) = −min(g(x), 𝜆∕S) (6.80)

g(x) − y2 = min(g(x), 𝜆∕S) (6.81)

Substituting equation (6.79) into equation (6.69), we get

E(x, 𝜆, 𝜇, S) = f (x) − 𝜇T h(x) + (S∕2)‖h(x)‖2 − 𝜆T [−max(−g(x),−𝜆∕S)]

+(S∕2)‖max(−g(x),−𝜆∕S)‖2

= f (x) − 𝜇T h(x) + (S∕2)‖h(x)‖2 − (1∕2S)[2𝜆Tmax(−S g (x),−𝜆)]

+(1∕2S)‖max(−S g (x),−𝜆)‖2

= f (x) − 𝜇T h(x) + (S∕2)‖h(x)‖2 + (1∕2S){−‖𝜆‖2 + ‖𝜆‖2

+2𝜆T max[−S g (x),−𝜆] + ‖max[−S g (x),−𝜆]‖2}

= f (x) − 𝜇T h(x) + (S∕2)‖h(x)‖2

+(1∕2S){‖𝜆 + max[−S g (x),−𝜆]‖2 − ‖𝜆‖2}

= f (x) − 𝜇T h(x) + (S∕2)‖h(x)‖2

+(1∕2S){‖max[0, 𝜆 − S g (x)]‖2 − ‖𝜆‖2} (6.82)

Substituting equation (6.79) into equation (6.80), we get

dx∕dt = −{∇xf (x) + [S h(x) − 𝜇]T∇xh(x)

+[S (−max(−g(x), −𝜆∕S) − 𝜆]T∇xg(x)}

= −{∇xf (x) + [S h(x) − 𝜇]T∇xh(x)

+[−max(−S g (x),−𝜆) − 𝜆]T∇xg(x)}
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= −{∇xf (x) + [S h(x) − 𝜇]T∇xh(x)

−[max(−g(x),−𝜆) + 𝜆]T∇xg(x)}

= −{∇xf (x) + [S h(x) − 𝜇]T∇xh(x)

−max[0, 𝜆 − S g (x)]T∇xg(x)} (6.83)

Substituting equation (6.81) into equation (6.73), we get

d𝜆∕dt = S min(g(x), 𝜆∕S) = min[Sg(x), 𝜆] (6.84)

According to equations (6.82), (6.83), (6.72), and (6.84), we have deduced a
new nonlinear optimization neural network model M-9, which can be used to solve the
optimization problem with equality and inequality constraints. The NLONN model
M-9 can be written as

E (x, 𝜆, 𝜇, S) = f (x) − 𝜇Th(x) + (S∕2)‖h(x)‖2

+(1∕2S){‖max[0, 𝜆 − Sg(x)]‖2 − ‖𝜆‖2} (6.85)

dx∕dt = −{∇xf (x) + [S h (x) − 𝜇]T∇xh(x)

−∇xg(x)max[0, 𝜆 − Sg(x)]T} (6.86)

d𝜇∕dt = S h (x) (6.87)

d𝜆∕dt =min[Sg(x), 𝜆] (6.88)

Appendix 6.1 shows that the energy function equation (6.85) in NLONN model
M-9 is a Lyapunov function, and the equilibrium point of the neural network corre-
sponds to the optimal solution of the constrained optimization problem M-7.

Numerical Simulation of NLONN Network The first-order Euler method can
be used in the numerical analysis of the NLONN network, that is,

dZ∕dt = [Z (t + Δt) − Z (t)]∕Δt (6.89)

Z (t + Δt) = Z (t) + (dZ∕dt)Δt (6.90)

So dynamic equations (6.86)–(6.88) of the NLONN network can be made equivalent
to the following equations:

x (t + Δt) = x (t) − Δt{∇x f (x (t)) + [S h (x (t)) − 𝜇]T∇xh(x(t))

−∇xg(x(t))max[0, 𝜆 − Sg(x(t))]T} (6.91)

𝜇 (t + Δt) = 𝜇 (t) + Δt S h(x (t)) (6.92)

𝜆(t + Δt) = 𝜆 (t) + Δt min[Sg(x(t)), 𝜆(t)] (6.93)
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The calculation steps of the NLONN method are given below.

Step 1: Select a set of initial values x(0), and parameters 𝜆 (0), 𝜇 (0), as well as a set
of positive ordinal numbers {S (k)} S (k + 1) = 𝜌S (k).

Step 2: Calculate gradients

Φ(x) = ∇xE[x(k), 𝜆(k), 𝜇(k), S(k)]

= ∇xf (x(k)) + [S(k)h(x(k)) − 𝜇(k)]T∇xh(x(k))]

−[max[0, 𝜆(k) − S (k)g(x (k))]T∇xg(x (k)) (6.94)

Step 3: Compute new state

x (k + 1) = x (k) − Δt 𝜙x (k) (6.95)

Step 4: Perform multiplier iteration

𝜇 (k + 1) = 𝜇 (k) + Δt S (k) h(x (k + 1)) (6.96)

𝜆 (k + 1) = 𝜆 (k) + Δt min[S (k) g(x (k + 1)), 𝜆 (k)] (6.97)

S (k + 1) = 𝜌 S (k) (6.98)

Step 5: Perform a convergence check, using the criterion

‖x (k + 1) − x (k)‖ ≤ 𝜀1 (6.99)

‖𝜇 (k + 1) − 𝜇 (k)‖ ≤ 𝜀2 (6.100)

‖𝜆 (k + 1) − 𝜆 (k)‖ ≤ 𝜀3 (6.101)

Stop if equations (6.99)–(6.101) are satisfied. Otherwise let k = k + 1, go back
to step 2.

6.6.4 Test Results

For examining the presented approach, a network of three interconnected areas is
constructed as shown in Figure 6.5. Area A1 is an IEEE 30-bus system. The generators
and loads data of the IEEE 30-bus system are listed in Tables 6.5 and 6.6. The other
data and parameters of IEEE 30-bus system are listed in Chapter 5. Parameters of
areas A2, A3, and tie lines are given as follows.

Fuel cost function and power upper and lower limits are

F31 = 650 P2
31 + 325 P31 0.1 ≤ P31 ≤ 0.9

F32 = 30 P2
32 + 100 P32 0.1 ≤ P32 ≤ 0.9
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IEEE 30-
bus
system

A3 A2

A127
221

8

32 31
Figure 6.5 The network model of three
interconnected power systems.

TABLE 6.5 Data of Generator Nodes for IEEE 30-Bus System (p.u.)

Node ai bi ci PGimin PGimax ΔPGiGRC

1 37.5 200 0.0 0.50 2.00 0.50

2 175 175 0.0 0.20 0.80 0.30

5 625 100 0.0 0.15 0.50 0.15

8 83.4 325 0.0 0.10 0.35 0.15

11 250 300 0.0 0.10 0.30 0.15

13 250 300 0.0 0.12 0.40 0.15

Note: The generation cost function is: fi = aiPGi
2 + biPGi + ci

TABLE 6.6 Data of Load Nodes for IEEE 30-Bus System (p.u.)

Node No. Real Power Reactive Power Node No. Real Power Reactive Power

1 0.000 0.000 16 0.035 0.018

2 0.217 0.127 17 0.090 0.058

3 0.024 0.012 18 0.032 0.009

4 0.076 0.016 19 0.095 0.034

5 0.942 0.190 20 0.022 0.007

6 0.000 0.000 21 0.175 0.112

7 0.228 0.109 22 0.000 0.000

8 0.300 0.300 23 0.032 0.016

9 0.000 0.000 24 0.087 0.067

10 0.058 0.020 25 0.000 0.000

11 0.000 0.000 26 0.035 0.023

12 0.112 0.075 27 0.000 0.000

13 0.000 0.000 28 0.000 0.000

14 0.062 0.016 29 0.024 0.009

15 0.082 0.025 30 0.106 0.019
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Loads of areas A2 and A3 are PDA2 + jQDA2 = 0.5 + j0.26 and PDA3 + jQDA3 = 0.4 +
j0.21, respectively. Parameters and capacity constraints of tie line are

R2−31 = 0.0192; X2−31 = 0.0575; P2−31Tmax = 0.6

R8−32 = 0.0192; X8−32 = 0.0575; P8−32Tmax = 0.5

R31−27 = 0.057; X31−27 = 0.1737; P31−27Tmax = 0.6

R32−21 = 0.057; X32−21 = 0.1737; P32−21Tmax = 0.5

R31−32 = 0.0192; X31−32 = 0.0575; P31−32Tmax = 0.5

The following test cases of security-constrained MAED are performed in the
study.

Case 1: neglecting the buying and selling among areas;

Case 2: considering the buying and selling among areas. PA3−A1 sell = 0.4;
PA1−A2 sell = 0.3;

PA3−A2 sell = 0.0

Case 3: considering the buying and selling among areas. PA3−A1 sell = 0.32;
PA1−A2 sell = 0.32;

PA3−A2 sell = 0.0

To evaluate the calculation precision, the following performance index (PI) on
trading error is used, that is,

PIEAB% =
|PTAB − PAB sell|

PAB sell
× % (6.102)

The calculation results of security-constrained MAED for the above three test cases
are listed in Table 6.7. From Table 6.7 we can get

Case 2:

PTA3−A1 = P32−8 + P32−21 = 0.172 + 0.228 = 0.4

PIEA3−A1% = 0

PTA1−A2 = P2−31 + P27−31 = 0.4584 − 0.1585 = 0.2999

PIEA1−A2% = 0.0333%

PTA3−A2 = P32−31 = 0.0

PIEA3−A2% = 0

Case 3:

PTA3−A1 = P32−8 + P32−21 = 0.1123 + 0.2077 = 0.32
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TABLE 6.7 Test Results of Security-Constrained MAED for Three Interconnected
Systems

Test Cases Case 1 (p.u) Case 2 (p.u.) Case 3 (p.u.)

Area A1 PG1 1.5971 1.6588 1.5951

PG2 0.4377 0.4636 0.4304

PG5 0.2096 0.2122 0.2133

PG8 0.2903 0.2252 0.3324

PG11 0.1459 0.1322 0.1748

PG13 0.1366 0.1287 0.1699

Area A2 PG31 0.1000 0.2001 0.1801

Area A3 PG32 0.9000 0.8000 0.7200

Total Gen. 3.81722 3.82081 3.81602

Power losses 0.08322 0.08681 0.08202

Total gen. cost ($) 923.0356 957.5161 974.6212

Tie-line power P32−8 0.1827 0.1720 0.1123

P32−21 0.2364 0.2280 0.2077

P2−31 0.4687 0.4584 0.4624

P27−31 −0.1422 −0.1585 −0.1425

P32−31 0.0808 0.0000 0.0000

Line security Satisfied Satisfied Satisfied

PIEA3−A1% = 0

PTA1−A2 = P2−31 + P27−31 = 0.4624 − 0.1425 = 0.3199

PIEA1−A2% = 0.03125%

PTA3−A2 = P32−31 = 0.0

PIEA3−A2% = 0

The maximum trading error is only 0.0333%. Therefore, the proposed MAED
approach not only satisfies all security constraints but also has high precision.

6.7 TOTAL TRANSFER CAPABILITY COMPUTATION
IN MULTIAREAS

As we analyzed in previous sections, the transfer capability limits affect the wheeling.
It is useful to compute the total transfer capability (TTC) of the multiareas.



6.7 TOTAL TRANSFER CAPABILITY COMPUTATION IN MULTIAREAS 245

6.7.1 Continuation Power Flow Method

The general method to compute the TTC is the continuation power flow (CPF), or
repeated power flow (RPF) method [28–31]. It is sometimes called the perturbation
method.

The net active and reactive power injections at the sink and source buses are
functions of 𝜆.

Pi = Pi0 + 𝜆LPi (6.103)

Qi = Qi0 + 𝜆LQi (6.104)

where

𝜆: the parameter controlling the amount of injection;
Pi0: the base case real power injections at the bus;
Qi0: the base case reactive power injections at the bus;
LPi: the real power load participation factors;
LQi: the reactive power load participation factors.

The traditional power flow equations augmented by an extra equation for 𝜆 are
expressed as

f (𝜃,V , 𝜆) = 0 (6.105)

where

V: the vector of bus voltage magnitudes;
𝜃: the vector of bus voltage angles.

Once a base case (for 𝜆 = 0) solution is found, the next solution can be predicted
by taking an appropriately sized step in a direction tangent to the solution path. The
tangent vector is obtained as below.

d[f (𝜃,V , 𝜆)] = f𝜃d𝜃 + fVdV + f𝜆d𝜆 (6.106)

Since equation (6.106) is rank deficient, an arbitrary value such as 1 can
be assigned as one of the elements of the tangent vector t = [d𝜃, dV , d𝜆]T =
±1, that is tk = ±1. Thus,

[
f𝜃 fV f𝜆

ek

]
[t] =

[
0
±1

]
(6.107)

where ek is a row vector with all elements zero, except for the kth entry, which is
equal to 1.
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The new solution after perturbation will then be computed as

⎡
⎢
⎢⎣

𝜃∗

V∗

𝜆∗

⎤
⎥
⎥⎦
=
⎡
⎢
⎢⎣

𝜃

V
𝜆

⎤
⎥
⎥⎦
+ 𝜀

⎡
⎢
⎢⎣

d𝜃
dV
d𝜆

⎤
⎥
⎥⎦

(6.108)

Where 𝜀 is a scalar used to adjust the step size.
The new solution obtained in equation (6.108) may violate the limits. Thus it

is necessary to correct the continuation parameter. The corrector is a slightly modi-
fied Newton power flow algorithm in which the Jacobian matrix is augmented by an
equation to account for the continuation parameter.

Let x = [𝜃,V , 𝜆)]T , xk = 𝜂, then the new set of equations will take the form
[

f (x)
ek − 𝜂

]
= [0] (6.109)

Therefore, for a specific source/sink transfer case, the steps for computing the
TTC are summarized as follows [28]:

(1) Input power system data.

(2) Select the contingency from the contingency list.

(3) Initialize as follows:

(a) Run power flows to ensure that the initial point does not violate any limits.

(b) Set the tolerance for the change of transfer power.

(4) Predict the step size of CPF:

(a) Calculate the tangent vector t = [d𝜃, dV , d𝜆)]T

(b) Choose the scalar 𝜀 to design the prediction step size.

(c) Make a step of increase of the transfer power to predict the next solution
using equation (6.108).

(5) Correct the step size of CPF with generator Q limits. Solve equation (6.109).

(6) Check for limit violations: Check the solution of the step (5) for violations of
operational or physical limits—line flow limit, voltage magnitude limit, and
voltage stability limit. If there are violations, reduce the transfer power incre-
ment by 𝜀 = 0.5𝜀; then, go back to step (5) until the change of the transfer power
is smaller than the tolerance. The maximum transfer power for the selected
contingency is reached. Otherwise, go to the prediction step (4).

(7) Check if all contingencies are processed. If they are, compare the maximum
transfer powers for all the contingencies and choose the smallest one as the
TTC for this specific source/sink transfer case and terminate the procedure.
Otherwise, go to step (2).

6.7.2 Multiarea TTC Computation

In a multiarea system, it is assumed that each area operates autonomously with its own
independent operator. Each area carries out its own CPF calculation and maintains
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its own detailed system model. Furthermore, each area uses network equivalents to
represent the buses in other areas, except for the boundary. One of the equivalent
methods is the REI equivalent. The basic idea of the REI equivalent is to aggre-
gate the injections of a group of buses into a single bus. The aggregated injection
is distributed to these buses via a radial network called the REI network. After the
aggregation, all buses with zero injections are eliminated, yielding the equivalent
[32,33]. For example, all PV and PQ buses except for the seller and buyer buses of
outer external area are grouped into two different REI equivalent networks, which
are assigned the corresponding bus types (PQ or PV) accordingly [28]. In this way,
a systemwide TTC can be computed without exchanging the information between
each other. However, the admittances of the REI network are functions of the operat-
ing point for which the equivalent is constructed. Doing so will also introduce errors
in the multiarea TTC result. In light of this, the equivalent has to be properly updated
during the TTC computation.

In the case of the multiarea CPF implementation, each area carries out its own
CPF, and the continuation parameter for each area may be different at each step.
Therefore, a strategy for choosing and updating the continuation parameter that
ensures synchronized CPF calculation in different areas is introduced.

Another issue related to updating the equivalents is the generator Q limits. As
the power transfer increases at a chosen PQ bus, generator buses will continue to hit
their Q limits in succession. As each limit is reached, the generated reactive power
will be held at the Q limit, bus type will be switched to PQ, and the bus voltage will
become an unknown increasing the dimension of the Jacobian by one. While updating
the equivalents, these generator buses that are now of type PQ are grouped with other
PQ buses in each area. This will continue until other limits are reached.

A self-adaptive step size control is implemented for the sink area. 𝜆 is chosen
as the continuation parameter when starting from the base case. Then, the contin-
uation parameter is chosen from the voltage increment vector [dV]T . A constant
voltage magnitude decrease is used to predict the next solution. Usually, the scalar
𝜀 in equation (6.108) is set as 0.02 [28]. Therefore, a constant decrease in voltage
magnitude will result in a large increase in load at the beginning and a small increase
in load as the nose point is approached.

After each correction step, the load change at the sink area will be broadcast to
all other areas. The continuation parameter remains to be 𝜆 in all other areas, and the
scalar 𝜀 is set as the load change of the sink area at each step. Hence, different areas
will have the same load increase at each discrete step of CPF calculation.

If contingencies are considered in the calculation of multiarea TTC, contin-
gencies associated with the tie lines must be co-monitored by all areas. However,
contingencies caused by topology changes within individual areas do not have to
be modeled directly by others. Instead, when a contingency occurs within one area,
only the network model of this area will be changed. As a result, the tie-line power
flows and buyer bus voltages calculated from different areas will have very large
mismatches during the synchronized computation. After updating the equivalents for
the area experiencing the contingency, the updated equivalent buses will reflect the
effects of the contingency. This way, other areas can account for the effects of the
contingency indirectly.
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APPENDIX A: COMPARISON OF TWO OPTIMIZATION
NEURAL NETWORK MODELS

Reference [27] also presented an optimization neural network model, which can be
written as M-10.

L (S, x) = f (x) + 𝜆T g(x)

+ 𝜇T h(x)(S∕2)‖g+(x)‖2 + ‖h(x)‖2 (6A.1)

dx∕dt = −∇f (x) − ∇h(x)[S h(x) + 𝜇]

− ∇g(x)T (S g+(x) + 𝜆) (6A.2)

d𝜇∕dt = 𝜀 (S h(x)) (6A.3)

d𝜆∕dt = 𝜀(S g+ (x)) (6A.4)

where, 𝜀 is a very small positive number and

g+(x) = max[0, g(x)] (6A.5)

It is noted that the proposed NLONN model M-9 is different from the traditional
optimization neural network model M-10. This can be seen by analyzing the stability
and optimization of two neural networks.

A.1. For Proposed Neural Network M-9

The derivative of the energy function in M-9 with respect to time t can be obtained
from the following calculation, that is,

dE
dt

= 𝜕E
𝜕x

dx
dt

+ 𝜕E
𝜕𝜇

d𝜇
dt

+ 𝜕E
𝜕𝜆

𝜕𝜆

𝜕t

= −
‖‖‖‖

dx
dt

‖‖‖‖

2

− S‖h(x)‖2 + 1
S
{max[0, 𝜆 − S g(x)] − 𝜆}Tmin[S g(x), 𝜆]

= −
‖‖‖‖

dx
dt

‖‖‖‖

2

− S‖h(x)‖2 + 1
S
{max[−𝜆, S g (x)]}T [−max(−S g(x),−𝜆)]

= −
‖‖‖‖

dx
dt

‖‖‖‖

2

− S‖h(x)‖2 + 1
S
‖max[−Sg(x),−𝜆]‖2 (6A.6)

Obviously, from equation (6A.6) we can know that dE∕dt ≤ 0. When and only when

h(x) = 0; max[−𝜆,−S g(x)] = 0; dx∕dt = 0 (6A.7)

then
dE∕dt = 0 (6A.8)
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The meaning of max[−𝜆,−S g (x)] = 0 is that

S g (x) ≥ 0 when 𝜆 = 0 (6A.9)

𝜆 ≥ 0 when S g (x) = 0 (6A.10)

Equations (6A.9) and (6A.10) are just the Kuhn–Tucker conditions in optimization
theory. Thus, max[−𝜆,−S g(x)] = 0 is tenable.

Certainly, any feasible solutions including the optimal solution satisfy the
equation h(x) = 0. So from equation (6.86) of M-9 we can get the following
expression.

dx∕dt = −{∇x f (x) − 𝜇∇xh(x) − max[0, 𝜆 − S g(x)]∇xg(x)} (6A.11)

According to equations (6A.9) and (6A.10), we can get

max[0, 𝜆 − S g(x)]∇xg(x) = 𝜆∇xg(x) (6A.12)

According to equations (6A.11) and (6A.12), we can get

dx∕dt = −{∇xf (x) − 𝜇∇xh(x) − 𝜆∇xg(x)} (6A.13)

If dx∕dt = 0, when and only when

∇xf (x) − 𝜇∇xh(x) − 𝜆∇xg(x) = 0 (6A.14)

Equation (6A.14) is just the optimality conditions for the optimization problem
M-7. So this condition is tenable. It means that dx∕dt = 0 is also tenable. Now we
have demonstrated that all conditions in equation (6A.7) are satisfied. Therefore,
equation (6A.8) is also satisfied. This has proved that the energy function of the
proposed NLONN neural network is Lyapunov function. The corresponding neural
network is certainly stable and the equilibrium point of neural network corresponds
to the optimal solution of the constrained optimization problem M-7.

A.2. For Neural Network M-10 in Reference [27]

According to equations (6A.1)–(6A.5), the derivative of energy function in M-10
with respect to time t can be obtained from the following calculation, that is,

dL
dt

= 𝜕L
𝜕x

dx
dt

+ 𝜕L
𝜕𝜇

d𝜇
dt

+ 𝜕L
𝜕𝜆

𝜕𝜆

𝜕t

= −
‖‖‖‖

dx
dt

‖‖‖‖

2

+ 𝜀 ⋅ S ⋅ ‖h(x)‖2 + 𝜀 ⋅ S ⋅ gT (x) ⋅ g+(x) (6A.15)

as 𝜀 is a very small positive number and g+(x) = max[0, g(x)]. The last two terms in
the right side of equation (6A.15) are not negative. It means that dL∕dt ≤ 0 is unten-
able all along. Therefore, the stability problem exists in the neural network M-10.
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PROBLEMS AND EXERCISES

1. What is “Wheeling”?

2. What is MAED?

3. State the differences between the optimization neural network and the traditional opti-
mization methods.

4. What is ATC?

5. How is the short-run marginal cost model used to compute the wheeling cost?

6. What is TTC? Is it the same as ATC?

7. There are four utilities with two selling, and two buying. The related data are listed in
Tables 6.8 and 6.9.

TABLE 6.8 Data of Utilities A and B for Exercise 7

Utilities Incremental MWh for Sale Seller’s Total

Selling Cost ($/MWh) Increase in

Energy Cost($)

A 20 130 2600

B 26 90 2340

TABLE 6.9 Data of Utilities C and D for Exercise 7

Utilities Decremental MWh for Purchase Buyer’s Total

Buying Cost ($/MWh) Decrease in

Energy Cost($)

C 32 65 2080

D 45 155 6975

Compute the maximum pool savings.

8. For exercise 7, assume that four utilities were scheduled to transact energy by a cen-
tral dispatching scheme, and 10% of the gross system savings was to be set aside to
compensate those systems that provided transmission facilities to the pool. Calculate the
maximum pool savings.

9. For exercise 7, assume that four utilities were scheduled to transact energy by a cen-
tral dispatching scheme, and 15% of the gross system savings was to be set aside to
compensate those systems that provided transmission facilities to the pool. Calculate the
maximum pool savings.

10. Compare the results of exercises 8 and 9, and analyze the impact of the amount of the
gross system savings to the maximum pool savings.
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C H A P T E R 7
UNIT COMMITMENT

This chapter first introduces several major techniques for solving the unit commit-
ment (UC) problem, such as the priority method, dynamic programming, and the
Lagrange relaxation method. Several new algorithms are then added to tackle UC
problems. These are the evolutionary programming-based tabu search method, par-
ticle swarm optimization, and the analytic hierarchy process (AHP). A number of
numerical examples and analyses are provided in the chapter.

7.1 INTRODUCTION

Since generators cannot instantly turn on and produce power, UC must be planned
in advance so that enough generation is always available to handle system demand
with an adequate reserve margin in the event that generators or transmission lines go
out or load demand increases. UC handles the unit generation schedule in a power
system for minimizing operating cost and satisfying prevailing constraints such as
load demand and system reserve requirements over a set of time periods [1–20]. The
classical UC problem is aimed at determining the start-up and shutdown schedules of
thermal units to meet the forecast demand over certain time periods (24 h to 1 week)
and belongs to a class of combinatorial optimization problems. The methods that
have been studied so far fall into roughly three types: heuristic search, mathematical
programming, and hybrid methods. Optimization techniques such as the priority list,
augmented Lagrangian relaxation, dynamic programming, and the branch-and-bound
algorithm have been used to solve the classic UC problem. Genetic algorithms (GAs),
simulated annealing (SA), AHP, and particle swarm optimization (PSO) have also
been used for the UC problem since the beginning of the last decade.

7.2 PRIORITY METHOD

The classic UC problem is to minimize total operational cost and is subject to
minimum up- and downtime constraints, crew constraints, unit capability limits,
generation constraints, and reserve constraints. Thus the objective function of UC
consists of the generation cost function and start-up cost function of the generators.

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
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The former is described in Chapter 4. The latter involves the cost of the energy that
brings the unit online.

There are two types of start-up cost models: one brings the unit on-line from
a cold start, and the other brings it from bank status, in which the unit is turned off
but still close to operating temperature. The start-up cost model when cooling can be
expressed as the following exponential function:

FSc(t) = (1 − e−t∕𝛼) × F + Cf (7.1)

where

FSc: the cold start cost for the cooling model;
Cf : the fixed cost of generator operation including crew expense and maintenance

expense;
F: the fuel cost;
t: time that the unit was cooled;
α: thermal time constant for the unit.

The start-up cost model when banking can be expressed as the following linear
function:

FSb(t) = F0 × t + Cf (7.2)

where

FSb: the start-up cost for the banking model;
F0: the cost of maintaining the unit at operating temperature.

The simplest UC solution is to list all combinations of units on and off, as
well as the corresponding total cost to create a rank list, and then make the decision
according to the rank table. This method is called the priority list. The rank is based
on the minimum average production cost of the unit. The average production cost of
the unit is defined as

𝜇 =
F(PG)

PG
(7.3)

where

𝜇: the average production cost of the unit;
F(PG): the generation cost function of the unit;

PG: the generator real power output.

From Chapter 4, the incremental rate of the unit is defined as

𝜆 =
dF(PG)

dPG
(7.4)

When the average production cost of the unit equals the incremental rate of
the unit, the corresponding average production cost is called the minimum average
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production cost 𝜇min. Generally, the power output is close to the rated power when
the unit is at the minimum average production cost.

Example 7.1: There are 5 generator units, and the minimum average production
cost 𝜇min is computed as shown in Table 7.1.

The priority order for these units based on the minimum average production
cost is shown in Table 7.2.

The steps for using the priority list method are summarized as follows:

Step (1): Compute the minimum average production cost of all units, and order the
units from the smallest value of 𝜇min. Form the priority list.

Step (2): If the load is increasing during that hour, determine how many units can
be started up according to the minimum downtime of the unit. Then, select
the top units for turning on from the priority list according to the increase
in the load.

Step (3): If the load is dropping during that hour, determine how many units can
be stopped according to the minimum uptime of the unit. Then, select the
last units for stopping from the priority list according to the drop in the
load.

Step (4): Repeat the process for the next hour.

There are other priority list methods such as ranking units on the basis of the
full-load average production cost of each unit [21] as well as methods based on the
incremental cost rate of each unit [22].

TABLE 7.1 The Minimum Average Production Cost

Unit Minimum Average

Production Cost 𝜇min

Min (MW) Max (MW)

G1 10.56 100 400

G2 9.76 120 500

G3 11.95 100 300

G4 8.90 50 600

G5 12.32 150 250

TABLE 7.2 The Priority Order for 5 Units

Priority

Order

Unit 𝜇min Min (MW) Max (MW)

1 G4 8.90 50 600

2 G2 9.76 120 500

3 G1 10.56 100 400

4 G3 11.95 100 300

5 G5 12.32 150 250
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7.3 DYNAMIC PROGRAMMING METHOD

Suppose a system has n units. If the enumeration approach is used, there would be
2n − 1 combinations. The dynamic programming (DP) method consists in implicitly
enumerating feasible schedule alternatives and comparing them in terms of operating
costs. Thus DP has many advantages over the enumeration method such as reduction
in the dimensionality of the problem.

There are two DP algorithms. They are forward dynamic programming and
backward dynamic programming. The forward approach, which runs forward in time
from the initial hour to the final hour, is often adopted in UC. The advantages of the
forward approach are as follows:

• Generally, the initial state and conditions are known.

• The start-up cost of a unit is a function of the time. Thus the forward approach
is more suitable because the previous history of the unit can be computed at
each stage.

The recursive algorithm is used to compute the minimum cost in hour t with
feasible state I, that is,

Ftc(t, I) = min
{L}

[F(t, I) + Sc(t − 1,L ⇒ t, I) + Ftc(t − 1, I)] (7.5)

where

Ftc(t, I): the total cost from the initial state to hour t state I;
Sc(t − 1,L ⇒ t, I): the transition cost from state (t − 1, L) to state (t, I);

{L}: the set of feasible states at hour t − 1;
F(t, I): the production cost for state (t, I).

The following constraints should be satisfied for the UC problem solved by
dynamic programming.

n∑

i=1

Pt
Gi = Pt

D (7.6)

xt
iP

t
Gimin ≤ Pt

Gi ≤ xt
iP

t
Gimax (7.7)

where

Pt
D: the system load at hour t;

Pt
Gimin: the lower limit of the unit power output;

Pt
Gimax: the upper limit of the unit power output:

xt
i: the 0 − 1 variable.

As we mentioned before, there are 2n − 1 combinations or states for n units.
The amount of computation is large. We can combine the DP algorithm and priority
list method to discard some infeasible states as well as high cost states. In addition,
add the unit minimum up- and minimum downtime constraints, which can also reduce
the states. For example, before we perform UC using the forward DP algorithm, we
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first order the units according to the priority list and the unit minimum up/downtime.
The first part of the units order is the must-up units, the last part is the must-down
units, and middle part is the units ranking based on the minimum average produc-
tion cost of the rest of units. In this way, the computation amount of DP will be
reduced.

Example 7.2: We use the priority list and dynamic programming to solve the UC
for a simple four-unit system [21]. The data of the units and the load pattern are listed
in Tables 7.3 and 7.4, respectively.

In Table 7.3, the symbol “+” in the initial state means the unit is online, and
“−” means the unit is off-line. For example, “8” means the unit has been online for 8
hours, and “−6” means the unit has been off-line for 6 hours.

The number of combinations of the four units is 2n − 1 = 24 − 1 = 15. If we
order the unit combinations or states by the maximum net capacity of each combina-
tion, we get Table 7.5.

In the combination of Table 7.5, “1” means committed (unit operating), and
“0” means uncommitted (unit shutdown). For example, “0001” for state 1 means the
unit 4 is committed, and units 1, 2, 3 are uncommitted. “1001” for state 3 means the
units 1 and 4 committed, and units 2 and 3 are uncommitted.

Case 1 Neglecting the constraints of unit minimum up/downtime. Solve the UC
problem using the priority list order.

TABLE 7.3 The Data of Units

Unit Max Min Cost Ave. Start-up Initial Min Min
(MW) (MW) ($/h) Cost Cost State Uptimes (h) Downtimes (h)

1 80 25 213.00 23.54 350 −5 4 2

2 250 60 585.62 20.34 400 8 5 3

3 300 75 684.74 19.74 1100 8 5 4

4 60 20 252.00 28.00 0 −6 1 1

TABLE 7.4 The Load Pattern

Hour Load (MW)

1 450

2 530

3 600

4 540

5 400

6 280

7 290

8 500
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TABLE 7.5 The Ordering of the Unit Combinations

State Unit Combination Max Net Capacity (MW)

15 1 1 1 1 690

14 1 1 1 0 630

13 0 1 1 1 610

12 0 1 1 0 550

11 1 0 1 1 440

10 1 1 0 1 390

9 1 0 1 0 380

8 0 0 1 1 360

7 1 1 0 0 330

6 0 1 0 1 310

5 0 0 1 0 300

4 0 1 0 0 250

3 1 0 0 1 140

2 1 0 0 0 80

1 0 0 0 1 60

0 0 0 0 0 0

(Unit) 1 2 3 4

In Case 1, units are committed in order until the load is satisfied. The total cost
for the interval is the sum of the eight dispatch costs plus the transitional costs for
starting any units. It can be known from the average production cost in Table 7.3
that the priority order for the four units are unit 3, unit 2, unit 1, unit 4. All possible
commitments start from state 12 as the load at first hour is 450 MW, and maximum
net capacity from state 1 to state 11 is only 440 MW. In addition, state 13 is discarded
as it does not satisfy the order of priority list. The UC results for the priority ordered
method are listed in Table 7.6.

Case 2 Neglecting the constraints of unit minimum up/downtime, Solve the UC
problem using dynamic programming.

Case 2, first select the feasible states using the priority list order. For first 4 h, the
feasible states have only 12, 14, and 15 in Table 7.5. For the last 4 hours, the feasible
states have 5, 12, 14, and 15. Thus, the total feasible states are: {5, 12, 14, 15}, and
the initial state is 12. According to the recursive algorithm of dynamic programming,
we can compute the minimum total cost.

Ftc(t, I) = min
{L}

[F(t, I) + Sc(t − 1,L ⇒ t, I) + Ftc(t − 1, I)]

For t = 1 ∶ {L} = {12} and {I} = {12, 14, 15}

Ftc(1, 12) = F(1, 12) + Sc(0, 12 ⇒ 1, 12) + Ftc(0, 12)
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TABLE 7.6 UC Results by Priority List

Hour Load (MW) Units On-Line Generation Cost

1 450 Units 3 and 2 9208

2 530 Units 3 and 2 10648.36

3 600 Units 3, 2, and 1 12265.36

4 540 Units 3 and 2 10828.36

5 400 Units 3 and 2 8308.36

6 280 Unit 3 5573.54

7 290 Unit 3 5748.14

8 500 Units 3 and 2 10108.36

= F(1, 12) + Sc(0, 12 ⇒ 1, 12) + 0 = 9208 + 0 = 9208

Ftc(1, 14) = F(1, 14) + Sc(0, 14 ⇒ 1, 14) + Ftc(0, 14) = 9493 + 350 = 9843

Ftc(1, 15) = F(1, 15) + Sc(0, 15 ⇒ 1, 15) + Ftc(0, 15) = 9861 + 350 = 10211

For t = 2 ∶ {L} = {12, 14} and {I} = {12, 14, 15}

Ftc(2, 15) = min
{12,14}

[F(2, 15) + Sc(1,L ⇒ 2, 15) + Ftc(1,L)]

= 11301 + min
[
(350 + 9208)
(0 + 9843)

]
= 20859

and so on.
The UC results are the same as those in case 1.

7.4 LAGRANGE RELAXATION METHOD

Since the enumeration approach is involved in UC solved by the dynamic program-
ming method, the computation burden is huge for large power systems with many
generators. The priority list is very simple and has fast calculation speed, but it may
discard the optimum scheme. The Lagrange relaxation method can overcome the
aforementioned disadvantages.

The mathematical problem of the UC can be expressed as follows.

1. Objective function

min
T∑

t=1

n∑

i=1

[Fi(Pt
Gi)x

t
i + Fsi(t)xt

i] = F(Pt
Gi, x

t
i) (7.8)
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2. Constraints

(a) Load balance equation
n∑

i=1

Pt
Gix

t
i = Pt

D, t = 1, 2,… ,T (7.9)

(b) Generator power output limits

xt
iP

t
Gimin ≤ Pt

Gi ≤ xt
iP

t
Gimax, t = 1, 2,… ,T (7.10)

(c) Power reserve constraint
n∑

i=1

PGimaxxt
i ≥ Pt

D + Pt
R, t = 1, 2,… ,T (7.11)

(d) Minimum up/downtime

(Uup
t−1,i − Tup

i )(xt−1
i − xt

i) ≥ 0, t = 1, 2,… ,T , i = 1, 2,… , n (7.12)

(Udown
t−1,i − Tdown

i )(xt
i − xt−1

i ) ≥ 0, t = 1, 2,… ,T , i = 1, 2,… , n (7.13)

where
FSi: the start-up cost of unit i at time period t;
Pt

R: the power reserve at time period t;
Tup

i : the minimum up time for unit i in hours;
Tdown

i : the minimum downtime for unit i in hours;
Uup

t−1,i: the number of consecutive uptime periods until time period t, measured in
hours;

Udown
t−1,i : the number of consecutive downtime periods until time period t, measured

in hours.

The UCP has two kinds of constraints: separable and coupling constraints. Sep-
arable constraints such as capacity and minimum up- and downtime constraints are
related with one single unit. On the other hand, coupling constraints involve all units.
A change in one unit affects the other units. The power balance and power reserve
constraints are examples of coupling constraints. The Lagrange relaxation framework
relaxes the coupling constraints and incorporates them into the objective function
by a dual optimization procedure. Thus the objective function can be separated into
independent functions for each unit, subject to unit capacity and minimum up- and
downtime constraints. The resulting Lagrange function of the UCP is as follows:

L(P, x, 𝜆, 𝛽) = F(Pt
Gi, x

t
i) +

T∑

t=1

𝜆t

(
Pt

D −
n∑

i=1

Pt
Gix

t
i

)

+
T∑

t=1

𝛽t

(
Pt

D + Pt
R −

n∑

i=1

PGimaxxt
i

)
(7.14)
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The UC problem becomes the minimization of the Lagrange function (7.14), subject
to constraints (7.10), (7.12), and (7.13). For the sake of simplicity, we have used
the symbol P, without the subscripts Gi and t, to denote any appropriate vector of
elements Pt

Gi. The symbols x, λ, and β are handled in the same way. The LR approach
requires minimizing the Lagrange function given as

q(𝜆, 𝛽) = min
P,x

L(P, x, 𝜆, 𝛽) (7.15)

Since q(λ, β) provides a lower bound for the objective function of the original prob-
lem, the LR method requires to maximize the objective function over the Lagrange
multipliers:

q∗(𝜆, 𝛽) = max
𝜆,𝛽

q(𝜆, 𝛽) (7.16)

After eliminating constant terms such as 𝜆tP
t
D and 𝛽t(Pt

D + Pt
R) in equation (7.14),

equation (7.15) can be written as

q(𝜆, 𝛽) = min
P,x

n∑

i=1

T∑

t=1

{[Fi(Pt
Gi) + FSi(t)]xt

i − 𝜆tP
t
Gix

t
i − 𝛽tPGimaxxt

i} (7.17)

subject to
xt

iP
t
Gimin ≤ Pt

Gi ≤ xt
iP

t
Gimax, t = 1, 2,… ,T

(Uup
t−1,i − Tup

i )(xt−1
i − xt

i) ≥ 0, t = 1, 2,… ,T , i = 1, 2,… , n

(Udown
t−1,i − Tdown

i )(xt
i − xt−1

i ) ≥ 0, t = 1, 2,… ,T , i = 1, 2,… , n

There are two basic steps for the Lagrange procedure to solve the UC problem.
They are

1. Initializing the Lagrange multipliers with values that try to make q(λ, β) larger.

2. Assuming the values of the Lagrange multipliers in step (1) are fixed and the
Lagrange function (L) is minimized by adjusting Pt

Gi and xt
i.

This minimization is done separately for each unit, and different techniques
such as LP and dynamic programming can be used. The solutions for the N inde-
pendent subproblems are used in the master problem to find a new set of Lagrange
multipliers. This involves dual optimization. As we know, for dual optimization, if
the function to be optimized is convex, and the variables are continuous, then the
maximization of the dual function gives a result that is identical to the one obtained
by minimizing the primal function. However, for the UC problem, the variables 0 − 1
that indicate the status of the units are integer variables, which are neither continu-
ous nor non-convex. Thus the dual theory is not exactly satisfied in the UC problem.
The application of the dual optimization method to the UC problem has been given
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the name Lagrange relaxation. A gap exists between the results of the maximiza-
tion of the dual function and minimization of the primal function. The aim of the
Lagrange relaxation method is to reduce the duality gap by iterations. If a criterion is
prespecified, this iterative procedure continues until the duality gap criterion is met.
The duality gap is also used as a measure of convergence. If the relative duality gap
between the primal and the dual solutions is less than a specific tolerance, it is consid-
ered that the optimum has been reached. The process then ends with finding a feasible
UC schedule.

Actually, the multipliers can be updated by using a subgradient method with a
scaling factor and tuning constants which are determined heuristically. This method
is as follows:

A vector g is called a subgradient of L(⋅) at λ∗ if

L (λ) ≤ L (λ∗) + (λ − λ∗)T g (7.18)

If the subgradient is unique at a point λ, then it is the gradient at that point. The set of
all subgradients at λ is called the subdifferential, 𝜕L(λ), and is a closed convex set. A
necessary and sufficient condition for optimality in subgradient optimization is 0 ∈
𝜕L(λ). The value of λ can be adjusted by the subgradient optimization algorithm as
follows.

𝜆k+1
t = 𝜆k

t + 𝛼gk (7.19)

where, gk is any subgradient of L(⋅) at 𝜆k
t . The step size, α, has to be chosen carefully

to achieve good performance by the algorithm. Here gk is calculated as follows

gk =
𝜕L(𝜆k

t )
𝜕L𝜆k

t

= Pt
D −

n∑

i=1

xk
i Pt

Gi (7.20)

Example 7.3: The data of the three units, four hours, UC problem are as follows;
the problem is solved using the Lagrange relaxation technique [21].

1. Units data

F1(PG1) = 0.002PG1
2 + 10PG1 + 500

F2(PG2) = 0.0025PG2
2 + 8PG2 + 300

F3(PG3) = 0.005PG3
2 + 6PG3 + 100

100 ≤ PG1 ≤ 600

100 ≤ PG2 ≤ 400

50 ≤ PG3 ≤ 200

2. Hourly load data are shown in Table 7.7
For simplification, there are no start-up costs and minimum up- or downtime
constraints. The results of several iterations are shown in Tables 7.8–7.13,
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TABLE 7.7 Hourly Load Data

Hour (t) Load Pt
D (MW)

1 170

2 520

3 1100

4 330

starting from an initial condition where all 𝜆t values are set to zero. An eco-
nomic dispatch is performed for each hour, provided there is sufficient gener-
ation committed that hour. The primal value J∗ represents the total generation
cost summed over all hours as calculated by economic dispatch. q(𝜆) stands for
the dual value. The duality gap will be J∗ − q∗, or the relative duality gap will
be J∗−q∗

q∗
.

For iteration 1, q(𝜆) = 0, j∗ = 40, 000, and J∗−q∗

q∗
= undefined. In the next iter-

ation, the 𝜆t values have been increased as 1.7, 5.2, 11.0, and 3.3. The results
as well as the relative duality gap for the several iterations are shown in the
Tables 7.9–7.13.
For iteration 2 (Table 7.9), q(𝜆) = 14, 982, j∗ = 40, 000, and J∗−q∗

q∗
= 1.67.

For iteration 3 (Table 7.10), q(𝜆) = 18, 344, j∗ = 36, 024, and J∗−q∗

q∗
= 0.965.

For iteration 4 (Table 7.11), q(𝜆) = 19, 214, j∗ = 28, 906, and J∗−q∗

q∗
= 0.502.

For iteration 5 (Table 7.12), q(𝜆) = 19, 532, j∗ = 36, 024, and J∗−q∗

q∗
= 0.844.

For iteration 6 (Table 7.13), q(𝜆) = 19, 442, j∗ = 20, 170, and J∗−q∗

q∗
= 0.037.

After 10 iterations, q(𝜆) = 19, 485, j∗ = 20, 017, and J∗−q∗

q∗
= 0.027. The rel-

ative duality gap is still not zero. The solution will not converge to a final value.
Therefore, a tolerance for the relative duality gap should be introduced if the Lagrange
relaxation algorithm is used. It means that when J∗−q∗

q∗
≤ 𝜖 the Lagrange relaxation

algorithm will be stopped.

7.5 EVOLUTIONARY PROGRAMMING-BASED
TABU SEARCH METHOD

7.5.1 Introduction

Tabu search (TS) is a powerful optimization procedure that has been successfully
applied to a number of combinatorial optimization problems. It has the ability to avoid
entrapment in local minima. The TS method uses a flexible memory system (in con-
trast to “memoryless” systems, such as simulated annealing and genetic algorithm,
and rigid memory system such as in branch-and-bound). Specific attention is given
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TABLE 7.8 Iteration 1

Hour 𝜆 u1 u2 u3 PG1 PG2 PG3 ΔP Ped
G1 Ped

G2 Ped
G3

1 0 0 0 0 0 0 0 170 0 0 0

2 0 0 0 0 0 0 0 520 0 0 0

3 0 0 0 0 0 0 0 1100 0 0 0

4 0 0 0 0 0 0 0 330 0 0 0

Where, ΔP = Pt
D −

n∑

i=1

Pt
Gix

t
i

TABLE 7.9 Iteration 2

Hour 𝜆 u1 u2 u3 PG1 PG2 PG3 ΔP Ped
G1 Ped

G2 Ped
G3

1 1.7 0 0 0 0 0 0 170 0 0 0

2 5.2 0 0 0 0 0 0 520 0 0 0

3 11.0 0 1 1 0 400 200 500 0 0 0

4 3.3 0 0 0 0 0 0 330 0 0 0

TABLE 7.10 Iteration 3

Hour 𝜆 u1 u2 u3 PG1 PG2 PG3 ΔP Ped
G1 Ped

G2 Ped
G3

1 3.4 0 0 0 0 0 0 170 0 0 0

2 10.4 0 1 1 0 400 200 −80 0 320 200

3 16.0 1 1 1 600 400 200 −100 500 400 200

4 6.6 0 0 0 0 0 0 330 0 0 0

TABLE 7.11 Iteration 4

Hour 𝜆 u1 u2 u3 PG1 PG2 PG3 ΔP Ped
G1 Ped

G2 Ped
G3

1 5.1 0 0 0 0 0 0 170 0 0 0

2 10.24 0 1 1 0 400 200 −80 0 320 200

3 15.8 1 1 1 600 400 200 −100 500 400 200

4 9.9 0 1 1 0 380 200 −250 0 130 200

TABLE 7.12 Iteration 5

Hour 𝜆 u1 u2 u3 PG1 PG2 PG3 ΔP Ped
G1 Ped

G2 Ped
G3

1 6.8 0 0 0 0 0 0 170 0 0 0

2 10.08 0 1 1 0 400 200 −80 0 320 200

3 15.6 1 1 1 600 400 200 −100 500 400 200

4 9.4 0 0 1 0 0 200 130 0 0 200
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TABLE 7.13 Iteration 6

Hour 𝜆 u1 u2 u3 PG1 PG2 PG3 ΔP Ped
G1 Ped

G2 Ped
G3

1 8.5 0 0 1 0 0 200 −30 0 0 170

2 9.92 0 1 1 0 384 200 −64 0 320 200

3 15.4 1 1 1 600 400 200 −100 500 400 200

4 10.7 0 1 1 0 400 200 −270 0 130 200

to the short-term memory component of TS, which has provided solutions superior
to the best obtained with other methods for a variety of problems.

Research endeavors, therefore, have been focused on efficient, near-optimal UC
algorithms, which can be applied to large-scale power systems and have reasonable
storage and computation time requirements. The major limitations of the numerical
techniques are the problem dimensions, large computational time, and complexity in
programming.

The LR approach introduced in the previous section to solve the short-term
UC problems was found to provide a faster solution but will fail to obtain solution
feasibility and solution quality problems and becomes complex if the number of units
increases.

Evolutionary programming (EP) is capable of determining the global or
near-global solution. EP is based on the basic genetic operation of human chro-
mosomes. It operates with stochastic mechanics, which combine offspring creation
based on the performance of current trial solutions and competition and selec-
tion based on the successive generations, from a considerably robust scheme for
large-scale real-valued combinational optimization. This section will introduce the
EP-based TS method to solve the UC problem.

7.5.2 Tabu Search Method

The same mathematical model of the UC problem in Section 7.4 is adopted.
The UC problem is a combinatorial problem with integer and continuous vari-

ables. It can then be decomposed into two subproblems: a combinatorial problem in
integer variables and a nonlinear optimization problem in output power variables. The
tabu search (TS) method is used to solve the combinatorial optimization, whereas the
nonlinear optimization is solved via a quadratic programming method [14]. The steps
of the TS are as follows.

Step 1: Assume that the fuel costs are fixed for each hour and all the generators
share the loads equally.

Step 2: By optimum allocation, find the initial feasible solution on unit status.

Step 3: Take the demand as the control parameter.

Step 4: Generate the trial solution.
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Step 5: Calculate the total operating cost as the sum of the running cost and
start-up–shutdown cost.

Step 6: Tabulate the fuel cost for each unit for every hour.

Neighbors should be randomly generated about the trial solution. Because of
the constraints in the UCP, this is not a simple matter. The most difficult constraints to
satisfy are the minimum up/downtimes. The TS algorithm requires a starting feasible
schedule, which satisfies all constraints of the system and the units. This schedule is
randomly generated.

Once a trial solution is obtained, the corresponding total operating cost is deter-
mined. Since the production cost is a quadratic function, a quadratic programming
method can be used to solve the subproblem. The start-up cost is then calculated for
the given schedule. The calculation is stopped if the following conditions are satisfied.

• The load balance constraints are satisfied.

• The spinning reserve constraints are satisfied.

The tabu list (TL) is controlled by the trial solutions in the order in which they
are made. Each time a new element is added to the “bottom” of a list, the oldest
element on the list is dropped from the “top.” Empirically, TL sizes, which provide
good results, often grow with the size of the problem and stronger restrictions are
generally coupled with smaller sizes [14]. Best sizes of TL lie in an intermediate
range between these extremes. In some applications, a simple choice of TL size in a
range centered on 7 seems to be quite effective.

Another important criterion of TS arises when the move under consideration
has been found to be tabu. Associated with each entry in the TL, there is a certain
value for the evaluation function called the “aspiration level.” Normally, the
aspiration level criteria are designed to override tabu status if a move is “good
enough” [14].

7.5.3 Evolutionary Programming

Evolutionary programming (EP) is a mutation-based evolutionary algorithm applied
to discrete search spaces. Real-parameter EP is similar in principle to evolution
strategy (ES), in which normally distributed mutations are performed in both
algorithms. Both algorithms encode mutation strength (or variance of the normal
distribution) for each decision variable and a self-adapting rule is used to update the
mutation strengths. For the case of evolutionary strategies, Fogel remarks “evolution
can be categorized by several levels of hierarchy: the gene, the chromosome, the
individual, the species, and the ecosystem” [24–26]. Thus, while genetic algorithms
stress models of genetic operators, ES emphasizes mutational transformation that
maintains behavioral linkage between each parent and its offspring at the level of the
individual.

The general EP algorithm is shown below [15,24–26].

1. The initial population is determined by setting

si = Si ∼ U(ak, bk)k, i = 1,… ,m (7.21)
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where

Si: a random vector;
si: the outcome of the random vector;

U(ak, bk)k: a uniform distribution ranging over [ak, bk] in each of k dimensions;
m: the number of parents.

2. Each si is assigned a fitness score

𝜑(si) = G(F(si), vi), i = 1,… ,m (7.22)

where F maps si → R and denotes the true fitness of si. vi represents random
alteration in the instantiation of si. G(F(si), vi) describes the fitness score to
be assigned. In general, the functions F and G can be as complex as required.
For example, F may be a function not only of a particular si but also of other
members of the population, conditioned on a particular si.

3. Each si is altered and assigned to si+m such that

si+m = si,j + N(0, 𝛽j𝜑(si) + zj), j = 1,… , k (7.23)

where N(0, 𝛽j𝜑(si) + zj) represents a Gaussian random variable, 𝛽j is a con-
stant of proportionality of scale 𝜑(si), and zj represents an offset to guarantee a
minimum amount of variance.

4. Each si+m is assigned a fitness score

𝜑(si+m) = G(F(si+m), vi+m), i = 1,… ,m (7.24)

5. For each si, i = 1,… , 2m, a value wi is assigned according to

wi =
c∑

t=1

w∗
t (7.25)

w∗
t =

{
1, if 𝜑

(
s∗i
)
≤ 𝜑(si)

0, otherwise
(7.26)

where c is the number of competitions.

6. The solutions si, i = 1,… , 2m are ranked in descending order of their corre-
sponding values wi. The first m solutions are transcribed along with their cor-
responding values 𝜑(si) to be the basis of the next generation.

7. The process proceeds to step (3) unless the available execution time is
exhausted or an acceptable solution has been discovered.

Applying the aforementioned evolutionary programming to UC problem, the
calculation steps are shown below.
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1. Initialize the parent vector p = [p1, p2,… , pn], i = 1, 2,… ,Np such that
each element in the vector is determined by pj ∼ random(pjmin, pjmax), j =
1, 2,… ,N with one generator as dependent generator.

2. Calculate the overall objective function of the UC problem using the trail vector
pi and find the minimum of the objective function FTi.

3. Create the offspring trail solution p′i as follows.

(a) Compute the standard deviation

𝜎j = 𝛽

(
FTij

min
(
FTi

)
)
(Pjmax − Pjmin) (7.27)

(b) Add a Gaussian random variable N(0, 𝜎2
j ) to all of the state variables of pi,

to get p′i .

4. Select the first Np individuals from the total 2Np individuals of both pi
and p′i through evaluating each trail vector by Wpi = sum(Wx), where
x = 1, 2,… ,Np, i = 1, 2,… , 2Np such that

Wx =

{
1, if

FTij

FTij+FTir
< random (0, 1)

0, otherwise
(7.28)

5. Sort the Wpi in descending order and the first Np individuals will survive and be
transcribed along with their elements to form the basis of the next generation.

6. Go back to step 2 until a maximum number of generations Nm is reached.

7.5.4 Evolutionary Programming-Based
Tabu-Search for Unit Commitment

In the TS technique for solving the UC problem, the initial operating schedule status
in terms of maximum real power generation of each unit is given as input. As we
know that TS is used to improve any given status by avoiding entrapment in local
minima, the offspring obtained from the EP algorithm is given as input to TS, and
the refined status is obtained. Considering the features of EP and TS algorithms, the
EP-based TS method is used for solving UC problems.

1. Get the demand for 24 hours and number of iterations to be carried out.

2. Generate a population of parents (N) by adjusting the existing solution to the
given demand to the form of state variables.

3. Unit downtime makes a random recommitment.

4. Check for constraint in the new schedule by TS. If the constraints are not met,
then repair the schedule. A repair mechanism to restore the feasibility of the
constraints is applied; this is described as follows.

∘ Pick at random one of the OFF units at one of the violated hours.
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∘ Apply the rules in Section 7.5.2 to switch the selected unit from OFF to ON
keeping the feasibility of the downtime constraints.

∘ Check for the reserve constraints at this hour. Otherwise, repeat the process
at the same hour for another unit.

5. Solve the master problem of UC and calculate the total production cost for each
parent.

6. Add the Gaussian random variable to each state variable and, hence, create an
offspring. This will further undergo some repair operations. After these, the
new schedules are checked in order to verify that all constraints are met.

7. Improve the status of the evolved offspring, and verify the constraints by TS.

8. Formulate the rank for the entire population.

9. Select the best N number of population for the next iteration.

10. Has the iteration count been reached? If yes, go to step 11, otherwise, go to
step 2.

11. Select the best population (s) by evolutionary strategy.

12. Print the optimum schedule.

7.6 PARTICLE SWARM OPTIMIZATION
FOR UNIT COMMITMENT

7.6.1 Algorithm

Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart in 1995
[23] as an alternative to GAs. The PSO technique has since then turned out to be a
competitor in the field of numerical optimization. Similar to GA, a PSO consists of a
population refining its knowledge of the given search space. PSO is inspired by parti-
cles moving around in the search space. The individuals in a PSO thus have their own
positions and velocities. These individuals are denoted as particles. Traditionally,
PSO has no crossover between individuals, has no mutation, and particles are never
substituted by other individuals during the run. Instead, the PSO refines its search by
attracting the particles to positions with good solutions. Each particle remembers its
own best position found so far in the exploration. This position is called the personal
best and is denoted by Pt

bi in equation (7.29). Additionally, among these Pt
bi, there

is only one particle that has the best fitness, called the global best and is denoted
by Pt

gbi in equation (7.29). The velocity and position update equations of PSO are
given by

Vt
i = wVt−1

i + C1 × r1 × (Pt−1
bi − Xt−1

i ) + C2 × r2 × (Pt−1
gbi − Xt−1

i ) (7.29)

Xt
i = Xt−1

i + Vt
i i = 1,… ,ND (7.30)

where
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w: the inertia weight;
C1, C2: the acceleration coefficients;

ND: the dimension of the optimization problem (number of decision variables);
r1, r2: two separately generated uniformly distributed random numbers between

0 and 1;
X: the position of the particle;
Vi: the velocity of the ith dimension.

PSO has the following key features compared with the conventional optimiza-
tion algorithms.

• It only requires a fitness function to measure the “quality” of a solution instead
of complex mathematical operations, such as the gradient, Hessian, or matrix
inversion. This reduces the computational complexity and relieves some of the
restrictions that are usually imposed on the objective function, such as differ-
entiability, continuity, or convexity.

• It is less sensitive to a good initial solution because it is a population-based
method.

• It can be easily incorporated with other optimization tools to form hybrid ones.

• It has the ability to escape local minima because it follows probabilistic transi-
tion rules.

More interesting PSO advantages can be emphasized when compared to other
members of evolutionary algorithms, such as the following.

• It can be easily programmed and modified with basic mathematical and logic
operations.

• It is inexpensive in terms of computation time and memory.

• It requires less parameter tuning.

• It works with direct real-valued numbers, which eliminates the need to do
binary conversion of a classical canonical genetic algorithm.

The simplest version of PSO lets every individual move from a given point
to a new one that is a weighted combination of the individual’s best position ever
found and of the individual’s best position Pt

bi. The choice of the PSO algorithm’s
parameters (such as the inertia weight) seems to be of utmost importance for the
speed and efficiency of the algorithm.

If economic power dispatch (EPD) is also considered in the UC, a hybrid
PSO (HPSO) can be used [20]. The blending real-valued PSO (solving EPD) with
binary-valued PSO (solving UC) are operated independently and simultaneously.
The binary PSO (BPSO) is made possible with a simple modification to the particle
swarm algorithm. This BPSO solves binary problems in a manner similar to the
traditional method. In the binary particle swarm, Xi and Pt

bi can take on values of
0 or 1 only. The velocity Vi will determine a probability threshold. If Vi is higher,
the individual is more likely to choose 1, and lower values favor 0. Such a threshold
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needs to stay in the range [0.0, 1.0]. One straightforward function for accomplishing
this is common in neural networks. The function is called the sigmoid function and
is defined as follows:

s(Vi) =
1

1 + exp(−Vi)
(7.31)

The function squashes its input into the requisite range and has properties that
make it agreeable to be used as a probability threshold. A random number (drawn
from a uniform distribution between 0.0 and 1.0) is then generated, whereby Xi is set
to 1 if the random number is less than the value from the sigmoid function, that is

Xi =

{
1, if r < s

(
Vi

)

0, otherwise
(7.32)

In the UC problem, Xi represents the on or off state of generator i. To ensure that there
is always some chance of a bit flipping (on and off of generators), a constant Vmax
is selected the start of a trial to limit the range of Vi. A large Vmax results in a low
frequency of the changing state of the generator, whereas a small value increases the
frequency of on/off of a generator.

7.6.2 Implementation

The mathematical model of the UC problem, which is described in Section 7.4, can
be expressed as the general form.

min f (x) (7.33)

such that

hj(x) = 0 j = 1,… ,m (7.34)

gi(x) ≥ 0 i = 1,… , k (7.35)

To handle the infeasible solutions, the cost function is used to evaluate a feasible
solution, that is,

Φf (x) = f (x) (7.36)

The constraint violation measure Φu(x) for the r + m constraints are usually
defined as

Φu(x) =
r∑

i=1

g+i (x) +
m∑

j=1

|h+j (x)| (7.37)

or

Φu(x) =
1
2

[
r∑

i=1

(
g+i (x)

)2 +
m∑

j=1

(h+j (x))
2

]
(7.38)
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where

g+i (x): the magnitude of the violation of the ith inequality constraint;
h+j (x): the magnitude of the violation of the jth equality constraint;

r: the number of inequality constraints;
m: the number of equality constraints.

Then the total evaluation of an individual x, which can be interpreted as the
error (for a minimization problem) of an individual x, is obtained as

Φ(x) = Φf (x) + 𝛾 Φu(x) (7.39)

where 𝛾 is a penalty parameter of a positive (or negative) constant for the mini-
mization (or maximization) problem, respectively. By associating a penalty with all
constraint violations, a constrained problem is transformed to an unconstrained prob-
lem such that we can deal with candidates that violate the constraints to generate
potential solutions without considering the constraints.

According to equation (7.39), we formulate the objective of the UC problem as
a combination of total production cost as the main objective with power balance and
spinning reserve as inequality constraints, then we get

Φ(x) = F
(
Pt

Gi, x
t
i

)
+ 𝛾

2

T∑

t=1

⎡
⎢
⎢⎣
C1

(
Pt

D−
n∑

i=1

Pt
Gix

t
i

)2

+C2

(
Pt

D + Pt
R −

n∑

i=1

Pt
Gimaxxt

i

)2⎤
⎥
⎥⎦

(7.40)
The penalty factor 𝛾 is computed at the kth generation defined by

𝛾 = 𝛾0 + log(k + 1) (7.41)

The choice of 𝛾 determines the accuracy and speed of convergence. From the
experiment, a greater value of 𝛾 increases its speed and convergence rate. For this
reason, a value of 100 is selected for 𝛾0. The pressure on the infeasible solution can
be increased with the number of generations, as discussed in the Kuhn–Tucker opti-
mality theorem, and the penalty function theorem provides guidelines to choose the
penalty term. In equation (7.40), C1 is set to 1 if a violation to constraint (7.9) occurs
and C1 = 0 whenever equation (7.9) is not violated. Similarly, C2 is also set to 1
whenever a violation of equation (7.11) is detected, and it remains 0 otherwise.

Substituting equation (7.8) in equation (7.40), we get

Φ(x) =
T∑

t=1

n∑

i=1

[
Fi

(
Pt

Gi

)
xt

i + Fsi(t)xt
i

]

+ 𝛾

2

T∑

t=1

⎡
⎢
⎢⎣
C1

(
Pt

D −
n∑

i=1

Pt
Gix

t
i

)2

+ C2

(
Pt

D + Pt
R −

n∑

i=1

Pt
Gimaxxt

i

)2⎤
⎥
⎥⎦
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=
T∑

t=1

⎧
⎪
⎪
⎨
⎪
⎪⎩

n∑

i=1

[
Fi

(
Pt

Gi

)
+ Fsi(t)

]
xt

i

+ 𝛾

2

⎡
⎢
⎢⎣
C1

(
Pt

D −
n∑

i=1

Pt
Gix

t
i

)2

+ C2

(
Pt

D + Pt
R −

n∑

i=1

Pt
Gimaxxt

i

)2⎤
⎥
⎥⎦

⎫
⎪
⎪
⎬
⎪
⎪⎭

(7.42)

Equation (7.42) is the fitness function for evaluating every particle in the pop-
ulation of PSO for time period T. The initial values of power are generated randomly
within power limits of a generator. As particles explore the searching space, starting
from initial values which are generated randomly within the power limit as shown
in equation (7.10), they do encounter cases whereby the power generated exceeds
the boundary (minimum or maximum capacity) and therefore violate the constraint
in equation (7.10). To avoid the boundary violation, we reinitialize the value when-
ever it is greater than the maximum capacity or smaller than the minimum capac-
ity of a generator. Again, the re-initialization is done within the power limits of a
generator.

The minimum up- and downtimes can be easily handled. As the solution is
based upon the best particle (Pt

gbi) in the history of the entire population, constraints
are taken care of by forcing the binary value in Pt

gbi to change its state whenever either
the minimum up or minimum down constraint is violated. However, this may change
the current fitness, which is evaluated using equation (7.42). It implies that the current
Pt

gbi might no longer be the best among all the other particles. To avoid this situation,
Pt

gbi will be revaluated using the same equation. Ramping can be incorporated by
adding the ramping cost into the total production cost in equation (7.8).

7.7 ANALYTIC HIERARCHY PROCESS

The classical UC problem is aimed at determining the start-up and shutdown sched-
ules of thermal units to meet the forecast demand over certain time periods (24 h to 1
week) and belongs to a class of combinatorial optimization problems. The previous
sections introduced several methods.

Although these techniques are effective for the problem posed, they do not han-
dle network constraints and bidding issues. The section addresses future UC require-
ments in a deregulated environment where network constraints, reliability, value of
generation, and variational changes in demands and other costs may be factors.

The classical UC Lagrange method cannot solve the problem because of combi-
natorial explosion. Accordingly, as an initial approach to solve this complex problem,
we attempt to find a method for solving UC considering network limitation and gen-
eration bids as a daily operational planning problem. This approach supports the
decision making effectively of ranking units in terms of their values by using the
AHP and the analytic network process (ANP) techniques. The scheduled generation
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over time is studied as input into the optimal power flow (OPF) problem for opti-
mal dispatch within the network and generation constraint. The OPF problem will be
discussed in depth in Chapter 8.

7.7.1 Explanation of Proposed Scheme

The basic concept of the proposed optimal generation scheduling is as follows:
First, it is assumed that the ranking of generating units, and their priority as well

as demand are known. As a result, the preferred generators for competitive scheduling
and pricing will be known. Therefore, the number of generators whose fuel consump-
tion constraints must be considered can be reduced considerably. This reduces the
difficulties of UC and optimal power flow. The proposed scheme addresses adequate
ranking and prioritizing of units before optimizing the pricing of generation units
to meet a given demand. By incorporating the interaction of factors, such as load
demand, generating cost curve, bid/sale price, unit up/down cost, and the relative
importance of different generation units, the scheme can be implemented to address
the technical and nontechnical constraints in the UC problem. This information is
easily augmented with the optimization scheme for effective optimal decisions. The
scheme consists of the three following stages:

• ranking of units in terms of their values by AHP/ANP;

• checking the constraints by the rule–based method;

• solving the optimization problem by interior point optimal power flow.

Next, for all generators committed, the network availability for power transfer,
the constraints on start-up and shutdown, and generated output and reserve are
determined for daily operational planning. In the daily UC calculation, a Lagrange
method is used without network constraints. Since the majority of connected
generators include network constraints and other equipment limitation to ensure
feasibility, an OPF technique based on the modified quadratic interior point (MQIP)
method [27] is adopted for solving the resulting optimal generation scheduling
problem. This gives the proposed scheme a significant advantage over classical
heuristic or Lagrange methods. Further work to evaluate this technique is ongoing
for multi-utility areas where reliability and stability constraints on the networks are
requirements.

According to the above discussion, the scheme for optimal generation schedul-
ing can be represented as illustrated Figure 7.1.

7.7.2 Formulation of Optimal Generation Scheduling

Objective Functions In general, in UC problems, the objective function to be
minimized is the sum of the operation and start-up costs. First, the fuel cost of the
generation is a function of its output Pi.

For simplicity, we assume the generation production cost is a quadratic func-
tion. Thus the total generation cost can be expressed as
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Use AHP/ANP to 
rank generator units

Use AHP/ANP to 
rank generator units

Get ranked 
results

Input data 
from files

Solve the resulting problem 
with the MQIP algorithm

Schedule units 
for time t ∈T

Figure 7.1 Scheme for optimal generation scheduling.

Fg(Pgi(t)) =
NG∑

i=1

(aiPgi(t)2 + biPgi(t) + ci) (7.43)

where Pgi(t) is the real power output of the ith generator in period t.
Pgi(t) is assumed to be within the maintenance schedule, that is, considered to

be at an acceptable efficiency to meet the prescribed load. It should be noted that
machines being committed are not operating at 100% efficiency owing to imperfect
operating conditions and aging.

The start-up cost, on the other hand, increases with shutdown time of genera-
tor. We assume that the boiler and turbine cool down after shutdown and the cost of
preheating increases with shutdown time and is embedded in FSi(t) (start-up cost of
generator i at time t).

Therefore, if the number of generators is NG, and the duration of the period
under consideration is T, then the objective function is

minF =
NG∑

i=1

T∑

t=1

[(
aiPgi(t)2 + biPgi(t) + ci

)
+ FSi(t)

]
xi(t) (7.44)

Constraints The constraints can be classified as coupling constraints and local
constraints. The coupling constraints are related to all generators (in service) under
consideration, regardless of age or efficiency, and the following are considered.

Demand–Supply Balance Constraint The sum of the generator outputs
must be equal to the demand PD(t)

NG∑

i=1

(xi(t)Pgi(t)) = PD(t) (7.45)
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Again xi(t) is a 0 − 1 variable expressing the state, that is, 0: shutdown and 1: start-up
of the ith generator in period t.

Reserve Power Constraint In order to deal with unpredictable disturbances
(interruption of generation and transmission lines or unexpected increase in demand),
the output of generators in operation must increase, and hence, the instantaneous
reserve power shown in the equation below must be required

NG∑

i=1

(Xsi(t)rsi(t)) ≥ RS(t) (7.46)

where rsi(t) is the contribution of unit i to spinning reserve at hour t, and RS(t) is the
operational reserve requirement at period t.

Generator Output Constraint When the generator is in the midst of start-up,
its output must be between the upper limit Pgimax and lower limit Pgimin.

xi(t)Pgimin ≤ Pgi(t) ≤ xi(t)Pgimax (7.47)

For unit ramp rate conditions,

Pgi(t) − Pgi(t − 1) ≤ UPgi; for unit ramp up of unit i (7.48)

Pgi(t − 1) − Pgi(t) ≤ DRgi; for unit ramp down of unit i (7.49)

For each selected generator for the bid, the constraint on bid price for unit i at period
t is

Bgi(t) > BPgimin(t); i ∈ NG (7.50)

where Bgi(t) is bid price of unit i at time t.

Network Limitation To account for network limitation during UC dispatch, the
network and operation constraints are specified as additional constraints:

Power Flow Equation: The power flow equation at bus i with losses are given
as

Pgi(t) − Pdi(t) = Fpi(V , 𝜃, t) (7.51)

Qgi(t) − Qdi(t) = Fqi(V , 𝜃, t) (7.52)

where

Fpi(t) = Vi(t)
NG∑

j=1

(Vj(t)Yij cos(𝜃i − 𝜃j − 𝛿ij)) (7.53)
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Fqi(t) = Vi(t)
NG∑

j=1

(Vj(t)Yij sin(𝜃i − 𝜃j − 𝛿ij)) (7.54)

The transformer taps in the circuit should be within limits to minimum loss or
voltage deviation

Timin ≤ Ti(t) ≤ Timax (7.55)

where

Timin: the minimum tap ratio of the transformer;
Timax: the maximum tap ratio of the transformer.

The minimum operation time and minimum shutdown due to fatigue limit of
the generator are

tupmin ≤ ti ≤ tupmax (7.56)

tdownmin ≤ ti ≤ tdownmax (7.57)

The limits on flow are defined as

V2
i + V2

j − 2ViVj cos(𝜃i − 𝜃j)

Z2
L

≤ I2
Lmax (7.58)

where

ZL: the impedance of transmission line;
ILmax: the maximum current limit of the transmission line.

In addition, each generator is also required to maintain one of the following
generator limits for reactive power constraints:

xi(t)Qgimin ≤ Qgi(t) ≤ xi(t)Qgimax (7.59)

Vgimin(t) ≤ Vgi(t) ≤ Vgimax(t) (7.60)

Further, for load buses, we have the following constraint:

Vdimin(t) ≤ Vdi(t) ≤ Vdimax(t) (7.61)

The problem posed can be solved by many optimization methods such as
Lagrange relaxation methods, heuristic rules, and optimal power flow with decom-
position techniques. The Lagrange method utilizes the following primal problem:
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Given

minF(xi(t),Pgi(t),Fsi(t)) (7.62)

such that

1. local coupling constraints (7.45) to (7.49);

2. power flow constraints (7.51) and (7.54), given as

gi(xi(t),Pgi(t)) ≤ 0, i = 1,… ,NG

The function F expresses the sum of fuel consumption and start-up cost. Using
the Lagrange multiplier, we determine 𝜆 and 𝜇, which are introduced in the Lagrange
function as follows:

L[xi(t),Pgi(t), 𝜆(t), 𝜇(t)] = F[xi(t),Pgi(t),FSi(t)]

− 𝜆(t)
NG∑

i=1

(xi(t)Pgi(t) − PD(t))

+ 𝜇(t)
NG∑

i=1

(xi(t)Pgimax(t) − Rs(t)) (7.63)

This is usually converted to a dual problem where

max{minL[xi(t),Pgi(t), 𝜆(t), 𝜇(t)]} (7.64)

such that.

gi(xi(t),Pgi(t)) ≤ 0 (7.65)

To include the network constraints and bidding of generators, a new UC–based
OPF/AHP is proposed [7], namely, we solve for the UC problem over time using OPF
to account for the network voltage, transformer, and flow constraints. Application of
the MQIP optimization method solves for the optimal operating point at each time
period. The second phase of the algorithm uses AHP/ANP to determine the value and
merit of each generation bid to be submitted for commitment.

7.7.3 Application of AHP to Unit Commitment

AHP Algorithm The AHP is a decision-making approach [28–30]. It presents
alternatives and criteria, evaluates trade-off, and performs a synthesis to arrive at a
final decision. AHP is especially appropriate for cases that involve both qualitative
and quantitative analyses. The ANP is an extension of AHP. It makes decisions when
alternatives depend on criteria with multiple interactions.
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The steps of the AHP algorithm may be written as follows:

Step 1: Set up a hierarchy model.

Step 2: Form a judgment matrix.
The value of elements in the judgment matrix reflects the user’s knowledge
about the relative importance between every pair of factors.

Step 3: Calculate the maximal eigenvalue and the corresponding eigenvector of the
judgment matrix.

Step 4: Hierarchy ranking and consistency check of results.

We can perform the hierarchy ranking according to the value of elements in
the eigenvector, which represents the relative importance of the corresponding factor.
The consistency index of a hierarchy ranking CI is defined as

CI =
𝜆max − n

n − 1
(7.66)

where 𝜆max is the maximal eigenvalue of the judgment matrix, n is the dimension of
the judgment matrix.

The stochastic consistency ratio is defined as

CR = CI
RI

(7.67)

where RI is a set of given average stochastic consistency indices and CR is the stochas-
tic consistency ratio.

For matrices with dimensions ranging from one to nine, respectively, the values
of RI will be as follows:

n ∶ 1 2 3 4 5 6 7 8 9
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

It is obvious that for a matrix with dimension of one or two, it is not necessary
to check the stochastic consistency ratio. Generally, the judgment matrix is satisfied
if the stochastic consistency ratio, CR < 0.10.

It is possible to precisely calculate the eigenvalue and the corresponding eigen-
vector of a matrix. But this would be time consuming. Moreover, it is not necessary
to precisely compute the eigenvalue and the corresponding eigenvector of the judg-
ment matrix. The reason is that the judgment matrix itself, which is formed by the
subjective judgment of the user, has some range of error. Therefore, the following
two approximate approaches are adopted to compute the maximal eigenvalue and the
corresponding eigenvector.

(A) Root Method

(1) Multiply all elements of each row in the judgment matrix

Mi = ΠiXij, i = 1,… , n; j = 1,… , n (7.68)
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where

n: the dimension of the judgment matrix A;
Xij: an element in the judgment matrix A.

(2) Calculate the nth root of Mi

W∗
i = n

√
Mi, i = 1,… , n (7.69)

We can obtain the vector

W∗ = [W∗
1 ,W

∗
2 ,… ,W∗

n ]T (7.70)

(3) Normalize the vector W∗

Wi =
W∗

i
n∑

j=1

W∗
j

i = 1,… , n (7.71)

In this way, we obtain the eigenvector of the judgment matrix A, that is,

W = [W1,W2,… ,Wn]T (7.72)

(4) Calculate the maximal eigenvalue 𝜆max of the judgment matrix

𝜆max =
n∑

i=1

(AW)j
nWi

j = 1,… , n (7.73)

where (AW)i represents the ith element in vector AW.

Example 7.4: Compute the maximal eigenvalue 𝜆max and the corresponding eigen-
vector for the following judgment matrix.

A =
⎡
⎢
⎢⎣

1 1∕5 1∕3
5 1 3
3 1∕3 1

⎤
⎥
⎥⎦

The calculation steps of the root method are as follows.

1. Multiply all elements of each row in the judgment matrix

M1 = 1 × 1
5
× 1

3
= 1

15
= 0.067

M2 = 5 × 1 × 3 = 15

M3 = 3 × 1
3
× 1 = 1
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2. Calculate the nth root of Mi

W∗
1 = 3

√
M1 = 3

√
0.067 = 0.405

W∗
2 = 3

√
M2 = 3

√
15 = 2.466

W∗
3 = 3

√
M3 = 3

√
1 = 1

We can obtain the vector

W∗ = [W∗
1 ,W

∗
2 ,W

∗
3 ]

T = [0.405, 2.466, 1]T

3. Normalize the vector W∗

3∑

j=1

W∗
j = 0.405 + 2.466 + 1 = 3.871

W1 =
W∗

1

3∑

j=1

W∗
j

= 0.405
3.871

= 0.105

W2 =
W∗

2

3∑

j=1

W∗
j

= 2.466
3.871

= 0.637

W3 =
W∗

3

3∑

j=1

W∗
j

= 1
3.871

= 0.258

The eigenvector of the judgment matrix A is obtained, that is

W = [W1,W2,W3]T = [0.105, 0.637, 0.258]T
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4. Calculate the maximal eigenvalue 𝜆max of the judgment matrix

AW =
⎡
⎢
⎢⎣

1 1∕5 1∕3
5 1 3
3 1∕3 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

0.105
0.637
0.258

⎤
⎥
⎥⎦

AW1 = 1 × 0.105 + 1
5
× 0.637 + 1

3
× 0.258 = 0.318

AW2 = 5 × 0.105 + 1 × 0.637 + 3 × 0.258 = 1.936

AW3 = 3 × 0.105 + 1
3
× 0.637 + 1 × 0.258 = 0.785

𝜆max =
n∑

i=1

(AW)j
nWi

=
(AW)1
3W1

+
(AW)2
3W2

+
(AW)3
3W3

= 0.318
3 × 0.105

+ 1.936
3 × 0.637

+ 0.785
3 × 0.258

= 3.037

(B) Sum Method

(1) Normalize every column in the judgment matrix

X∗
ij =

Xij

n∑

k=1

Xkj

i, j = 1,… , n (7.74)

Now the judgment matrix A is changed into a new matrix A∗, in which each
column has been normalized.

(2) Add the all elements of each row in matrix A∗

W∗
i =

n∑

j=1

Xij, i = 1,… , n (7.75)

(3) Normalizing the vector W∗, we have

Wi =
W∗

i
n∑

j=1

W∗
j

i = 1,… , n (7.76)

Hence, we obtain the eigenvector of the judgment matrix A,

W = [W1,W2,… ,Wn]T (7.77)
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(4) Calculate the maximal eigenvalue 𝜆max of the judgment matrix

𝜆max =
n∑

i=1

(AW)j
nWi

j = 1,… , n (7.78)

where (AW)i represents the ith element in vector AW.

Example 7.5: The judgment matrix A is the same as in Example 7.4. Compute the
maximal eigenvalue 𝜆max and the corresponding eigenvector using the sum method.
The calculation steps are as follows.

1. Normalize every column in the judgment matrix

3∑

k=1

Xk1 = 1 + 5 + 3 = 9

X∗
11 =

X11

3∑

k=1

Xk1

= 1
9
= 0.111

X∗
21 =

X21

3∑

k=1

Xk1

= 5
9
= 0.556

X∗
31 =

X31

3∑

k=1

Xk1

= 3
9
= 0.333

3∑

k=1

Xk2 = 1
5
+ 1 + 1

3
= 1.533

X∗
12 =

X12

3∑

k=1

Xk2

= 0.2
1.533

= 0.130

X∗
22 =

X22

3∑

k=1

Xk2

= 0.2
1.533

= 0.652

X∗
32 =

X32

3∑

k=1

Xk2

= 0.333
1.533

= 0.217
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3∑

k=1

Xk3 = 1
3
+ 3 + 1 = 4.333

X∗
13 =

X13

3∑

k=1

Xk3

= 0.333
4.333

= 0.077

X∗
23 =

X23

3∑

k=1

Xk3

= 3
4.333

= 0.692

X∗
33 =

X33

3∑

k=1

Xk3

= 1
4.333

= 0.231

Now the judgment matrix A is changed into a new matrix A∗, in which each
column has been normalized.

A∗ =
⎡
⎢
⎢⎣

0.111 0.130 0.077
0.556 0.652 0.692
0.333 0.217 0.231

⎤
⎥
⎥⎦

2. Add the all elements of each row in matrix A∗

W∗
1 =

3∑

j=1

X∗
1J = 0.111 + 0.130 + 0.077 = 0.317

W∗
2 =

3∑

j=1

X∗
2j = 0.556 + 0.652 + 0.692 = 1.900

W∗
3 =

3∑

j=1

X∗
3j = 0.333 + 0.217 + 0.231 = 0.781

3. Normalizing the vector W∗, we have

3∑

j=1

W∗
j = 0.317 + 1.900 + 0.781 = 2.998

W1 =
W∗

1

3∑

j=1

W∗
j

= 0.317
2.998

= 0.106
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W2 =
W∗

2

3∑

j=1

W∗
j

= 1.900
2.998

= 0.634

W3 =
W∗

3

3∑

j=1

W∗
j

= 0.781
2.998

= 0.261

The eigenvector of the judgment matrix A is obtained as follows:

W = [W1,W2,W3]T = [0.106, 0.634, 0.261]T

4. Calculate the maximal eigenvalue 𝜆max of the judgment matrix

AW =
⎡
⎢
⎢⎣

1 1∕5 1∕3
5 1 3
3 1∕3 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

0.106
0.634
0.261

⎤
⎥
⎥⎦

AW1 = 1 × 0.106 + 1
5
× 0.634 + 1

3
× 0.261 = 0.320

AW2 = 5 × 0.106 + 1 × 0.634 + 3 × 0.261 = 1.941

AW3 = 3 × 0.106 + 1
3
× 0.634 + 1 × 0.261 = 0.785

𝜆max =
n∑

i=1

(AW)j
nWi

=
(AW)1
3W1

+
(AW)2
3W2

+
(AW)3
3W3

= 0.320
3 × 0.106

+ 1.941
3 × 0.634

+ 0.785
3 × 0.261

= 3.036

It is noted from examples 7.4 and 7.5 that both the root method and the sum
method can achieve similar results.

AHP-Based Unit Commitment According to the theory of AHP/ANP, the fol-
lowing AHP/ANP model in Figure 7.2 is devised to handle ranking of the generator
units.

The hierarchical network model of ranking of units consists of three sections:

1. the unified ranking of units;

2. the ranking criteria or performance indices, in which the PIC reflects the relative
importance of units;

3. the generating units G1,… ,Gm.
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Unified rank

PIG PIC
PIS PIb

Unit G1 Unit G2 Unit Gm…

Figure 7.2 Hierarchical
network model of units
rank.

The performance indices PIG,PIS, and PIb are defined as

PIG = 1
Fgi(Pgi(t))

(7.79)

PIS = 1
FSi(t)

(7.80)

PIb = 1
BPgi(t)

(7.81)

The four ranking criteria PIG, PIS, PIb, and PIC are interacted. The basic principle
of AHP/ANP is to calculate the eigenvector of the alternatives for each criterion. For
qualitative factors such as the relative importance of units and criteria, the correspond-
ing eigenvectors can be obtained by computing the judgment matrix. The judgment
matrix can be formed on the basis of some scaling method such as the 9-scaling
method. For two performance indices A and B, their relationship can be expressed as
follows if the 9-scaling method is used.

If both performance indices A and B are equally important, then the scaling
factor will be “1.”

If performance index A is slightly more important compared with performance
index B, then the scaling factor of A to B will be “3.”

If performance index A is more important than performance index B, then the
scaling factor of A to B will be “5.”

If performance index A is far more important than performance index B, then
the scaling factor of A to B will be “7”.

If performance index A is extremely important compared with performance
index B, then the scaling factor of A to B will be “9”.

Naturally, “2,” “4,” “6,” “8” are the medians of two neighboring judgments,
respectively.
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Using the above 9-scaling, the judgment matrix for representing the relative
importance of the four criteria is given in Table 7.14.

The ranking results of units for each time stage will be obtained from AHP/ANP
calculation. The list of unit ranking shows the priority of units to be committed at
each time stage. However, it has not considered constraints such as system real power
balance and system spinning reserve requirement. This chapter adopts the rule-based
method to solve this problem.

AHP/ANP is used to decide total ranking of all units for each time stage, and
the rule-based system decides the commitment state of units according to the system
power balance and system spinning reserve requirement. So the final UC results are
obtained through the communication between AHP/ANP ranking and the rule-based
constraint checking.

As mentioned above, the priority ranking of all units for each time stage can
be obtained by AHP/ANP. This priority rank considers the nontechnical constraints
and nonquantitative factors, but it does not involve the constraints of power bal-
ance and reserve requirements in the UC. Therefore, the rule-based method is used
to coordinate this problem. The implementation steps of the rule-based UC are as
follows.

Step (1) Select the number 1 unit from the priority rank of units at hour t.

Step (2) Check the constraints of the ramp up/down of the unit.
If the constraints are satisfied, go to step 4.

Step (3) If the constraints of the ramp up/down of the unit are not satisfied,
discard this unit at hour t. Select the next unit from the priority rank of units,
and go to step 2.

Step (4) Check the power balance. If system power can be balanced, go to step
(5). Otherwise, add one more unit according to the priority of units, and go
to step (2).

Step (5) Check the spinning reserve at hour t. If the system has enough spinning
reserve, go to the next step. Otherwise, add one more unit according to the
priority rank of units, and go to step 2.

Step (6) Stop. All units that were not selected as well as those that have been
discarded in the selection will not be committed at hour t. The other units
will be committed at hour t.

TABLE 7.14 Judgment Matrix A–PI

A PIG PIS PIb PIC

PIG 1 3 1 3

PIS 1/3 1 1∕2 1/2

PIb 1 1∕2 1 2

PIC 1/3 2 1∕2 1
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Mathematical Demonstration of AHP It is noted that the AHP method highly
relies on the judgment matrix, which is formed according to the experiences of the
users using some scaling method. It is possible that consistency is not obtained. The
higher the order of the judgment matrix, the more serious this problem becomes. In
this case, a series of problems that must be addressed:

1. Does a single maximal eigenvalue of the judgment exist?

2. Are all the components of the eigenvector of the judgment matrix correspond-
ing to the maximal eigenvalue positive?

3. Is it necessary to check the consistency of the judgment matrix?

Maximal Eigenvalue and Corresponding Eigenvector of Judgment Matrix
To answer these questions, let us calculate the maximal eigenvalue and corresponding
eigenvector of the judgment matrix.

Generally, the judgment matrix A has the following characteristics:

aij > 0

aji =
1
aij
, i ≠ j

aii = 1

i, j = 1, 2,… , n (7.82)

where

aij: the element of the judgment matrix A.
n: the dimension of the judgment matrix.

Obviously, the judgment matrix A is positive. Naturally, it is also a nonnegative
and irreducible matrix [31,32].

According to Reference [33], we can prove that the judgment matrix is prim-
itive [31]. Therefore, the judgment matrix A has a largest positive eigenvalue 𝜆max,
which is unique and the eigenvector W of matrix A corresponding to the maximal
eigenvalue 𝜆max has positive components and is essentially unique by the theorem of
Perron–Frobenius and the properties of the judgment matrix [31].

Consistency of judgment matrix We first give the definition of the consis-
tency matrix.

Definition We say matrix A = [aij] is consistent if there exist aij =
aik

ajk
, for all i, j, and k.

If a positive matrix A is consistent, it has the following properties:
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(a)

aij =
1
aji

aii = 1

i, j = 1, 2,… , n (7.83)

(b) The transposition of A is also consistent.

(c) Each row in A can be obtained by multiplying any row by a positive number.

(d) The maximal eigenvalue of A is 𝜆max = n. The other eigenvalues of A are all
zero.

(e) If the eigenvector of A corresponding to the largest eigenvalue 𝜆max is X =
[X1,X2,… ,Xn]T ,

aij =
Xi

Xj
; i, j = 1, 2,… , n (7.84)

Now, we discuss the case that the elements of the positive consistent matrix are
perturbed but still satisfy the property (a). Obviously, the judgment matrix, which we
presented in this section, is such a case.

Suppose the eigenvector of the judgment matrix A corresponding to the maxi-
mal eigenvalue 𝜆max is W = [W1,W2,… ,Wn]T . Let

aij =
(

Wi

Wj

)
× 𝜖ij; i, j = 1, 2,… , n (7.85)

where
𝜖ii = 1,

𝜖ij =
1
𝜖ji

(7.86)

When 𝜖ij = 1 for all i and j, equation (7.85) is converted into equation (7.84).
In this case, the judgment matrix is consistent. When 𝜖ij ≠ 1 (i ≠ j, i, j = 1, 2,… , n),
the judgment matrix A is regarded as a perturbed matrix based on the consistency.

According to the property (d) of the consistent positive matrix and n eigenvalues
of the judgment matrix, 𝜆1(= 𝜆max), 𝜆2,… , 𝜆n, we can obtain

∑

i

𝜆i = n, i = 1, 2,… , n (7.87)

We define the following equation as a matrix which reflects that the judgment matrix
deviations from the consistent matrix:
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𝜇 = −
( 1

n − 1

)∑

i

𝜆i, i = 1, 2,… , n (7.88)

From equation (7.87), we get

𝜇 =
𝜆max − n

n − 1
(7.89)

In fact, we can obtain the following theorem.

Theorem 1 If the positive eigenvector of the judgment matrix A corresponding to the

largest eigenvalue W = [W1,W2,… ,Wn]T , aij =
(

Wi

Wj

)
× 𝜖ij, 𝜖ij > 0, we have

𝜇 = −1 +
(

1
n (n − 1)

) ∑

1≤i≤j≤n

[
𝜖ij +

1
𝜖ij

]
(7.90)

Proof. According to Perron–Frobenius’ theorem, we obtain

𝜆max =
∑

j

aij

(Wj

Wi

)
, i, j = 1, 2,… , n (7.91)

𝜆max − 1 =
∑

j≠i

aij

(Wj

Wi

)
, i, j = 1, 2,… , n (7.92)

then

n𝜆max − n =
∑

1≤i≤j≤n

[
aij

(Wj

Wi

)
+ aji

(
Wi

Wj

)]
(7.93)

Consequently, we get

𝜇 =
𝜆max − n

n − 1
= −1 + 1

n(n − 1)
∑

1≤i≤j≤n

[
aij

(Wj

Wi

)
+ aji

(
Wi

Wj

)]
(7.94)

Substitute aij =
(

Wi

Wj

)
× 𝜖ij into equation (7.94), completing the proof of Theorem 1.

We know from Theorem 1 that the smallest extremum of 𝜇 is zero under the
condition of 𝜖ij = 1 for all i and j.
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Theorem 2 Let 𝜆max be the maximal eigenvalue of the judgment matrix A. Then

𝜆max ≥ n (7.95)

Let

𝜖ij = 1 + 𝛿ij

𝛿ij > −1 (7.96)

Then

aij =
Wj

Wi
+
(

Wi

Wj

)
𝛿ij (7.97)

𝛿ij can thus be regarded as the relative change in the disturbed consistency matrix.
From equation (7.94), we have

𝜇 =
(

1
n (n − 1)

) ∑

1≤i≤j≤n

[
𝛿2

ij

1 + 𝛿ij

]
(7.98)

According to equations (7.89) and (7.98), we can obtain Theorem 2.
When 𝛿 = max

ij
𝛿ij,

𝜆max − n <
1
n

∑

1≤i≤j≤n

𝛿2
ij ≤

(n − 1)𝛿2

2
(7.99)

From equations (7.95) and (7.99), we have

n ≤ 𝜆max ≤ n + (n − 1)𝛿2

2
(7.100)

Therefore, in order to make the judgment matrix nearly consistent, we always hope
that 𝜇 is close to zero, or 𝜆max is close to n. Generally, the smaller 𝛿ij is, the closer
𝜆max is to n. This is why we check the consistency of the judgment matrix when we
apply the AHP to power system problems.

Example 7.6: The proposed approach is examined with the IEEE 39-bus test
system, which is taken from Reference [7]. The test system has 10 generators, that is,
G30, G31, G32, G33, G34, G35, G36, G37, G38, and G39. The daily load demands
are given as in Table 7.15. The generating unit data are given as in Table 7.16.
Table 7.17 shows the bid price of generation power over a set of time periods.

The calculation results of UC are listed in Tables 7.18 and 7.19. Table 7.18 is the
UC schedule obtained from AHP/ANP and rule-based method. It has not considered
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TABLE 7.15 Daily Load Demands in MW

Hour PD RS Hour PD RS Hour PD RS

1 4878 244 9 6341 317 17 6524 326

2 5061 253 10 6585 329 18 6585 329

3 5183 259 11 6707 335 19 6402 320

4 5486 274 12 6768 338 20 6219 311

5 5610 281 13 6707 335 21 5792 290

6 5792 290 14 6646 332 22 5486 274

7 5853 293 15 6585 329 23 5183 259

8 6079 503 16 6463 323 24 4939 247

TABLE 7.16 Generating Unit Data

Unit no. ai bi ci Pimax Pimin FSi(t)

30 0.834 2.50 0.00 500.0 0.00 800

31 0.650 0.00 0.00 999.0 0.00 900

32 0.834 0.00 0.00 700.0 0.00 850

33 0.824 0.00 0.00 700.0 0.00 850

34 0.814 0.00 0.00 700.0 0.00 850

35 0.804 0.00 0.00 700.0 0.00 850

36 0.830 0.00 0.00 700.0 0.00 850

37 0.800 0.00 0.00 700.0 0.00 850

38 0.650 0.00 0.00 900.0 0.00 870

39 0.600 0.00 0.00 1200.0 0.00 920

TABLE 7.17 Bid Price of Power Generation Over a Set of Time Period in Dollars Per MW Per
Hour

Unit 0–3 4–6 7–9 10–12 13–15 16–18 19–21 22–24

30 40 42 38 45 42 36 38 44

31 26 29 32 28 26 30 32 28

32 30 32 33 30 34 36 33 36

33 32 34 32 36 34 32 36 38

34 42 38 37 34 36 38 40 45

35 31 33 35 32 34 36 35 37

36 29 31 34 37 35 39 41 43

37 35 37 39 35 37 40 37 39

38 33 35 37 39 41 37 42 45

39 24 26 28 28 30 32 30 28
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TABLE 7.18 Unit Commitment Without Transmission Security
and Voltage Constraints

Unit no. Hour (0–24)

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

34 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

37 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE 7.19 Unit Commitment with Transmission Security and
Voltage Constraints

Unit no. Hour (0–24)

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

34 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0

37 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

the voltage security and transmission security constraints. The corresponding power
flow solution also violates voltage limits and transmission security limits.

From Table 7.18, we find that power flows at hours 1, 2, 4, 5, 8, 22, and 24 are
infeasible. Table 7.19 is the final UC schedule with OPF corrections. It satisfies the
voltage security and transmission security constraints. The total generation cost for
UC schedule in Table 19 is $11 391.00. If the commitment states of units are taken
as the input of OPF, the total optimal generation cost will be reduced to $11 159.60.

PROBLEMS AND EXERCISES

1. What is UC?

2. What is the different between UC and ED?
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3. What is the minimum average production cost of a unit?

4. How is the priority list method used to solve the UC problem?

5. State the features of dynamic programming–based UC.

6. What are the key features of PSO compared with the conventional optimization
algorithms?

7. What is the duality gap in the Lagrange relaxation method?

8. Suppose the production cost functions of five generating units are as follows

F1 = 0.0005P2
G1 + 0.6PG1 + 9 Btu∕h

F2 = 0.0013P2
G2 + 0.5PG2 + 6 Btu∕h

F3 = 0.0008P2
G3 + 0.7PG3 + 5Btu∕h

F4 = 0.0010P2
G4 + 0.6PG4 + 7 Btu∕h

F5 = 0.0007P2
G5 + 0.8PG5 + 4Btu∕h

The power output limits of the five units are

100 ≤ PG1 ≤ 500 MW

150 ≤ PG2 ≤ 300MW

150 ≤ PG3 ≤ 400 MW

100 ≤ PG4 ≤ 350 MW

100 ≤ PG5 ≤ 450 MW

Compute the average production cost for each unit.
Write the priority order list for the five units.

9. For a simple four-unit system, the data of the units and the load pattern are listed in
Tables 7.20 and 7.21, respectively. Solve the unit commitment problem.

TABLE 7.20 The Data of Units for Exercise 9

Unit Max

(MW)

Min

(MW)

Cost

($/h)

Ave.

Cost

Start-up

Cost

Initial

State

Min

Uptimes (h)

Min

Downtimes (h)

1 100 30 213.00 23.54 350 −5 4 2

2 200 50 585.62 20.34 400 8 5 3

3 250 70 684.74 19.74 1100 8 5 4

4 50 20 252.00 28.00 0 −6 1 1
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TABLE 7.21 The Load Pattern for
Exercise 9

Hour Load (MW)

1 450

2 500

3 650

4 550

5 400

6 260

10. Compute the maximal eigenvalue 𝜆max and the corresponding eigenvector for the follow-
ing judgment matrix.

A =
⎡
⎢
⎢⎣

1 1∕7 1∕4
7 1 3
4 1∕3 1

⎤
⎥
⎥⎦
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C H A P T E R 8
OPTIMAL POWER FLOW

This chapter selects several classic optimal power flow (OPF) algorithms and
describes their implementation details. These algorithms include traditional methods
such as Newton method, gradient method, linear programming, as well as the latest
methods such as modified interior point (IP) method, analytic hierarchy process
(AHP), and particle swarm optimization (PSO) method.

8.1 INTRODUCTION

The OPF was first introduced by Carpentier in 1962 [1]. The goal of OPF is to find the
optimal settings of a given power system network that optimizes the system objective
functions such as total generation cost, system loss, bus voltage deviation, emission
of generating units, number of control actions, and load shedding while satisfying
its power flow equations, system security, and equipment operating limits. Different
control variables, some of which are the generators’ real power outputs and voltages,
transformer tap changing settings, phase shifters, switched capacitors, and reactors,
are manipulated to achieve an optimal network setting based on the problem formu-
lation.

According to the selected objective functions, and constraints, there are differ-
ent mathematical formulations for the OPF problem. They can be broadly classified
as follows [1–65].

1. Linear problem in which objectives and constraints are given in linear forms
with continuous control variables.

2. Nonlinear problem where either objectives or constraints or both combined are
nonlinear with continuous control variables.

3. Mixed-integer linear problems with both discrete and continuous control
variables.

Various techniques were developed to solve the OPF problem. The algorithms
may be classified into three groups: (1) conventional optimization methods, (2) intel-
ligence search methods, and (3) nonquantitative approach to address uncertainties in
objectives and constraints.

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.
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8.2 NEWTON METHOD

8.2.1 Neglecting Line Security Constraints

If the line security constraints are neglected, the OPF problem with real and reactive
power variables can be represented as follows:

min F =
NG∑

i=1

fi(PGi) (8.1)

such that

Pi(V , 𝜃) = PGi − PDi (8.2)

Qi(V , 𝜃) = QGi − QDi (8.3)

PGimin ≤ PGi(V , 𝜃) ≤ PGimax (8.4)

QGimin ≤ QGi(V , 𝜃) ≤ QGimax (8.5)

Vimin ≤ Vi ≤ Vimax (8.6)

where

PGi: the real power output of the generator connecting to bus i
QGi: the reactive power output of the generator connecting to bus i
PDi: the real power load connecting to bus i
QDi: the reactive power load connecting to bus i

Pi: the real power injection at bus i
Qi: the reactive power injection at bus i
Vi: the voltage magnitude at bus i
fi: the generator fuel cost function.

The subscripts “min” and “max” in the equations represent the lower and upper
limits of the constraint, respectively.

Equations (8.2) and (8.3) are power flow equations, and can be written as fol-
lows.

Pi(V , 𝜃) = Vi

N∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) (8.7)

Qi(V , 𝜃) = Vi

N∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) (8.8)
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Substituting equations (8.7) and (8.8) in equations (8.2)–(8.6), we get

min F(V , 𝜃) (8.9)

s.t.

WPi = Vi

N∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) − PGi + PDi = 0 (8.10)

WQi = Vi

N∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) − QGi + QDi = 0 (8.11)

WPMi = Vi

N∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) − PGimax ≤ 0 (8.12)

WPNi = Vi

N∑

j=1

Vj(Gij cos 𝜃ij + Bij sin 𝜃ij) − PGimin ≥ 0 (8.13)

WQMi = Vi

N∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) − QGimax ≤ 0 (8.14)

WQNi = Vi

N∑

j=1

Vj(Gij sin 𝜃ij − Bij cos 𝜃ij) − QGimin ≥ 0 (8.15)

WVMi = Vi − Vimax ≤ 0 (8.16)

WVNi = Vi − Vimin ≥ 0 (8.17)

We construct the new augmented objective function by introducing the constraints
(8.10)–(8.17) into the original objective function (8.9) with penalty factors.

L(X) = F(X) +
N∑

i=1

rPiW
2
Pi(X) +

N∑

i=1

rQiW
2
Qi(X) +

N∑

i=1

rViW
2
Vi(X) (8.18)

where

X: the vector that consists of V and 𝜃
WPi: includes all constraints related to real power variables such as equations (8.10),

(8.12) and (8.13)
WQi: includes all constraints related to reactive power variables such as

equations (8.11), (8.14) and (8.15)
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WVi: includes all constraints related to voltage variables such as equations (8.16) and
(8.17)

rPi: the penalty factor for violated constraints related to real power variable; for no
constraint violation, rPi = 0

rQi: the penalty factor for violated constraints related to reactive power variable;for
no constraint violation, rQi = 0

rVi: the penalty factor for violated constraints related to voltage variable; for no con-
straint violation, rVi = 0

N: the total number of buses.

In this way, the OPF problem represented in equations (8.1)–(8.6) becomes an
unconstrained optimization problem (8.18). It is noted that only violated constraints
are introduced in equation (8.18) as the penalty factor will be zero if the constraint is
not violated. The unconstrained optimization problem can be solved by the Newton
method or the Hessian matrix method (see Appendix in Chapter 4).

Calculation of Hessian Matrix and Gradient From equation (8.18) as well as
equations (8.10)–(8.17), we can get the gradient and Hessian matrix of the augmented
objective function as follows.

Gradient

𝜕L
𝜕Vj

= 𝜕F
𝜕Vj

+ 2

[
N∑

i=1

rPiWPi
𝜕Pi

𝜕Vj
+

N∑

i=1

rQiWQi
𝜕Qi

𝜕Vj
+ rVjWVj

]
(8.19)

𝜕L
𝜕𝜃j

= 𝜕F
𝜕𝜃j

+ 2

[
N∑

i=1

rPiWPi
𝜕Pi

𝜕𝜃j
+

N∑

i=1

rQiWQi
𝜕Qi

𝜕𝜃j

]
(8.20)

Hessian Matrix

𝜕2L

𝜕V2
i

= 𝜕2F

𝜕V2
i

+ 2
N∑

i=1

rPi

[
WPi

𝜕2Pi

𝜕V2
i

+
(
𝜕Pi

𝜕Vj

)2
]

+ 2
N∑

i=1

rQi

[
WQi

𝜕2Qi

𝜕V2
i

+
(
𝜕Qi

𝜕Vj

)2
]
+ 2rVj (8.21)

𝜕2L
𝜕Vj𝜕Vk

= 𝜕2F
𝜕Vj𝜕Vk

+ 2
N∑

i=1

rPi

[
WPi

𝜕2Pi

𝜕Vj𝜕Vk
+
𝜕Pi

𝜕Vj

𝜕Pi

𝜕Vk

]

+ 2
N∑

i=1

rQi

[
WQi

𝜕2Qi

𝜕Vj𝜕Vk
+
𝜕Qi

𝜕Vj

𝜕Qi

𝜕Vk

]
j ≠ k (8.22)
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𝜕2L
𝜕Vj𝜕𝜃k

= 𝜕2F
𝜕Vj𝜕𝜃k

+ 2
N∑

i=1

rPi

[
WPi

𝜕2Pi

𝜕Vj𝜕𝜃k
+
𝜕Pi

𝜕Vj

𝜕Pi

𝜕𝜃k

]

+ 2
N∑

i=1

rQi

[
WQi

𝜕2Qi

𝜕Vj𝜕𝜃k
+
𝜕Qi

𝜕Vj

𝜕Qi

𝜕𝜃k

]
j ≠ k (8.23)

𝜕2L
𝜕Vj𝜕𝜃j

= 𝜕2F
𝜕Vj𝜕𝜃j

+ 2
N∑

i=1

rPi

[
WPi

𝜕2Pi

𝜕Vj𝜕𝜃j
+
𝜕Pi

𝜕Vj

𝜕Pi

𝜕𝜃j

]

+ 2
N∑

i=1

rQi

[
WQi

𝜕2Qi

𝜕Vj𝜕𝜃j
+
𝜕Qi

𝜕Vj

𝜕Qi

𝜕𝜃j

]
(8.24)

𝜕2L

𝜕𝜃2
i

= 𝜕2F

𝜕𝜃2
i

+ 2
N∑

i=1

rPi

[
WPi

𝜕2Pi

𝜕𝜃2
i

+
(
𝜕Pi

𝜕𝜃i

)2
]

+ 2
N∑

i=1

rQi

[
WQi

𝜕2Qi

𝜕𝜃2
i

+
(
𝜕Qi

𝜕𝜃i

)2
]

(8.25)

𝜕2L
𝜕𝜃j𝜕𝜃k

= 𝜕2F
𝜕𝜃j𝜕𝜃k

+ 2
N∑

i=1

rPi

[
WPi

𝜕2Pi

𝜕𝜃j𝜕𝜃k
+
𝜕Pi

𝜕𝜃j

𝜕Pi

𝜕𝜃k

]

+ 2
N∑

i=1

rQi

[
WQi

𝜕2Qi

𝜕𝜃j𝜕𝜃k
+
𝜕Qi

𝜕𝜃j

𝜕Qi

𝜕𝜃k

]
(8.26)

where the derivatives of the bus power injection with respect to variables V and 𝜃 can
be obtained from the power flow equations, that is,

Vj
𝜕Pi

𝜕Vj
=

{
ViVj

(
Gij cos 𝜃ij + Bij sin 𝜃ij

)
i ≠ j

V2
i Gii + Pi i = j

(8.27)

𝜕Pi

𝜕𝜃j
=

{
ViVj

(
Gij sin 𝜃ij − Bij cos 𝜃ij

)
i ≠ j

−V2
i Bii − Qi i = j

(8.28)

Vj
𝜕Qi

𝜕Vj
=

{
ViVj

(
Gij sin 𝜃ij − Bij cos 𝜃ij

)
i ≠ j

−V2
i Bii − Qi i = j

(8.29)

𝜕Qi

𝜕𝜃j
=

{
−ViVj

(
Gij cos 𝜃ij + Bij sin 𝜃ij

)
i ≠ j

−V2
i Gii + Pi i = j

(8.30)

𝜕2Pi

𝜕V2
i

=

{
0 i ≠ j

2Gii i = j
(8.31)
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𝜕2Pi

𝜕Vj𝜕Vk
j≠k

=
⎧
⎪
⎨
⎪⎩

0 i ≠ j, i ≠ k

Gij cos 𝜃ij + Bij sin 𝜃ij i = k

Gik cos 𝜃ik + Bik sin 𝜃ik i = j

(8.32)

Vj
𝜕2Pi

𝜕Vj𝜕𝜃j
=

{
ViVj

(
Gij sin 𝜃ij − Bij cos 𝜃ij

)
i ≠ j

−V2
i Bii − Qi i = j

(8.33)

𝜕2Pi

𝜕Vj𝜕𝜃k
j≠k

=
⎧
⎪
⎨
⎪⎩

0 i ≠ j, i ≠ k

Vi

(
−Gij sin 𝜃ij + Bij cos 𝜃ij

)
i = k

Vk(Gik sin 𝜃ik − Bik cos 𝜃ik) i = j

(8.34)

𝜕2Pi

𝜕𝜃2
i

=

{
ViVj

(
−Gij cos 𝜃ij − Bij sin 𝜃ij

)
i ≠ j

V2
i Gii − Pi i = j

(8.35)

𝜕2Pi

𝜕𝜃j𝜕𝜃k
j≠k

=
⎧
⎪
⎨
⎪⎩

0 i ≠ j, i ≠ k

ViVj

(
Gij cos 𝜃ij + Bij sin 𝜃ij

)
i = k

ViVk(Gik cos 𝜃ik + Bik sin 𝜃ik) i = j

(8.36)

𝜕2Qi

𝜕V2
i

=

{
0 i ≠ j

−2Bii i = j
(8.37)

𝜕2Qi

𝜕Vj𝜕Vk
j≠k

=
⎧
⎪
⎨
⎪⎩

0 i ≠ j, i ≠ k

Gij sin 𝜃ij − Bij cos 𝜃ij i = k

Gik sin 𝜃ik − Bik cos 𝜃ik i = j

(8.38)

Vj
𝜕2Qi

𝜕Vj𝜕𝜃j
=

{
ViVj

(
−Gij cos 𝜃ij − Bij sin 𝜃ij

)
i ≠ j

−V2
i Gii + Pi i = j

(8.39)

𝜕2Qi

𝜕Vj𝜕𝜃k
j≠k

=
⎧
⎪
⎨
⎪⎩

0 i ≠ j, i ≠ k

Vi

(
Gij cos 𝜃ij + Bij sin 𝜃ij

)
i = k

−Vk(Gik cos 𝜃ik + Bik sin 𝜃ik) i = j

(8.40)

𝜕2Qi

𝜕𝜃2
i

=

{
−ViVj

(
Gij sin 𝜃ij − Bij cos 𝜃ij

)
i ≠ j

−V2
i Bii − Qi i = j

(8.41)

𝜕2Qi

𝜕𝜃j𝜕𝜃k
j≠k

=
⎧
⎪
⎨
⎪⎩

0 i ≠ j, i ≠ k

ViVj

(
Gij sin 𝜃ij − Bij cos 𝜃ij

)
i = k

ViVk(Gik sin 𝜃ik − Bik cos 𝜃ik) i = j

(8.42)



8.2 NEWTON METHOD 303

Computation of Search Direction The formula for the search direction in the
Newton method or the Hessian matrix method is

Sk = −[H(Xk)]−1g(Xk) (8.43)

where

g: the gradient of the augmented function
H: the Hessian matrix of the augmented function
S: the search direction.

The advantage of the Hessian matrix method is fast convergence. The disadvan-
tage is that it is required to compute the inverse of the Hessian matrix, which leads
to an expensive memory and calculation burden. Thus we rewrite equation (8.43) as
follows.

H(Xk)Sk = −g(Xk) (8.44)

For a given gradient and Hessian matrix of the objective function at Xk, the
search direction Sk can be obtained by solving equation (8.44) by the Gauss elimina-
tion method. Since the Hessian matrix of the augmented function is a sparse matrix
in the OPF problem, the sparsity programming technique can be used.

The iteration calculation based on the search direction is as follows.

Xk+1 = Xk + 𝛽kSk (8.45)

where 𝛽 is a scalar step length.
The iteration calculation will be stopped if the following convergence condition

is satisfied.
‖Xk+1 − Xk‖ ≤ 𝜀1 (8.46)

or
|L(Xk+1) − L(Xk)|

|L(Xk)|
≤ 𝜀2 (8.47)

where 𝜀1, 𝜀2 are the permitted tolerances.

Steps of the Newton Method The calculation steps of the Newton method are
summarized as follows.

(1) The initial values for the penalty factors are given.

(2) The permitted calculation tolerances are given.

(3) Solve: the initial power flow to get the values of the state variables X0 and set
the iteration number k = 0.

(4) Compute: the augmented objective function L(Xk), its gradient gk, and Hessian
matrix Hk.

(5) Compute the search direction Sk according to equation (8.43).
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(6) Compute the step length 𝛽 using quadratic interpolation.

(7) Compute the new state variable Xk+1 according to equation (8.45).

(8) Compute the augmented objective function L(Xk+1), its gradient gk+1,
and Hessian matrix Hk+1, and check the convergence conditions. If either
equation (8.46) or (8.47) is met, go to next step. Otherwise, set k = k + 1 and
go back to step 5).

(9) Check whether all constraints are met. If yes, stop the calculation. Otherwise,
double the penalty factor for the violated constraint, and reset k = 0. Go back
to step 4).

8.2.2 Consider Line Security Constraints

The line power constraints can be expressed as

Plmin ≤ Pl ≤ Plmax (8.48)

where Pl is the power flow at the line l from bus j to bus k.
Similarly, the above constraint can be written as

WPMl = Pl − Plmax ≤ 0 (8.49)

WPNl = Pl − Plmin ≥ 0 (8.50)

We use WPl to express the above line power constraints and introduce it into the
augmented objective function (8.18). The new objective function will be

L∗(X) = L(X) +
Nl∑

l=1

rPlW
2
Pl(X) (8.51)

where
rPl: the penalty factor for violated line security constraints. If there is no line power

flow constraint violation, rPl = 0.
Nl: the total number of lines.

Since the augmented objective function includes a new penalty term on line
power flow violation, the gradient and Hessian matrix equations (8.19)–(8.26) will
be updated to add the corresponding term, that is,

𝜕L∗

𝜕Vj
= 𝜕L
𝜕Vj

+ 2
Nl∑

l=1

rPlWPl
𝜕Pl

𝜕Vj
(8.52)

𝜕L∗

𝜕𝜃j
= 𝜕L
𝜕𝜃j

+ 2
Nl∑

l=1

rPlWPl
𝜕Pl

𝜕𝜃j
(8.53)
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𝜕2L∗

𝜕V2
i

= 𝜕2L

𝜕V2
i

+ 2
Nl∑

l=1

rPl

[
WPl

𝜕2Pl

𝜕V2
i

+
(
𝜕Pl

𝜕Vj

)2
]

(8.54)

𝜕2L∗

𝜕Vj𝜕Vk
= 𝜕2L
𝜕Vj𝜕Vk

+ 2
Nl∑

l=1

rPl

[
WPl

𝜕2Pl

𝜕Vj𝜕Vk
+
𝜕Pl

𝜕Vj

𝜕Pl

𝜕Vk

]
j ≠ k (8.55)

𝜕2L∗

𝜕Vj𝜕𝜃k
= 𝜕2L
𝜕Vj𝜕𝜃k

+ 2
Nl∑

l=1

rPl

[
WPl

𝜕2Pl

𝜕Vj𝜕𝜃k
+
𝜕Pl

𝜕Vj

𝜕Pl

𝜕𝜃k

]
j ≠ k (8.56)

𝜕2L∗

𝜕Vj𝜕𝜃j
= 𝜕2L
𝜕Vj𝜕𝜃j

+ 2
Nl∑

l=1

rPl

[
WPl

𝜕2Pl

𝜕Vj𝜕𝜃j
+
𝜕Pl

𝜕Vj

𝜕Pl

𝜕𝜃j

]
(8.57)

𝜕2L∗

𝜕𝜃2
i

= 𝜕2L

𝜕𝜃2
i

+ 2
Nl∑

l=1

rPl

[
WPl

𝜕2Pl

𝜕𝜃2
i

+
(
𝜕Pl

𝜕𝜃i

)2
]

(8.58)

𝜕2L∗

𝜕𝜃j𝜕𝜃k
= 𝜕2L
𝜕𝜃j𝜕𝜃k

+ 2
Nl∑

l=1

rPl

[
WPl

𝜕2Pl

𝜕𝜃j𝜕𝜃k
+
𝜕Pl

𝜕𝜃j

𝜕Pl

𝜕𝜃k

]
j ≠ k (8.59)

Let the branch admittance of the line l be gjk + jbjk; neglecting the line charging, the
line power flow can be expressed as

Pl = Pjk = V2
j gjk − VjVk(gjk cos 𝜃jk + bjk sin 𝜃jk) (8.60)

The derivatives of the line power with respect to variables V and 𝜃 in equations
(8.52)–(8.59) can be obtained from equation (8.60).

𝜕Pl

𝜕Vj
= gjk(2Vj − Vk cos 𝜃jk) − bjkVk sin 𝜃jk (8.61)

𝜕Pl

𝜕Vk
= −gjkVj cos 𝜃jk − bjkVj sin 𝜃jk (8.62)

𝜕Pl

𝜕𝜃j
= gjkVjVk sin 𝜃jk − bjkVjVk cos 𝜃jk (8.63)

𝜕Pl

𝜕𝜃k
= −gjkVjVk sin 𝜃jk + bjkVjVk cos 𝜃jk (8.64)

𝜕2Pl

𝜕V2
j

= 2gjk (8.65)

𝜕2Pl

𝜕V2
k

= 0 (8.66)
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𝜕2Pl

𝜕Vj𝜕Vk
= −gjk cos 𝜃jk − bjk sin 𝜃jk (8.67)

𝜕2Pl

𝜕Vj𝜕𝜃j
= gjkVk sin 𝜃jk − bjkVk cos 𝜃jk (8.68)

𝜕2Pl

𝜕Vk𝜕𝜃j
= gjkVj sin 𝜃jk − bjkVj cos 𝜃jk (8.69)

𝜕2Pl

𝜕Vj𝜕𝜃k
= −gjkVk sin 𝜃jk − bjkVk cos 𝜃jk (8.70)

𝜕2Pl

𝜕Vk𝜕𝜃k
= −gjkVj sin 𝜃jk + bjkVj cos 𝜃jk (8.71)

𝜕2Pl

𝜕𝜃2
j

=
𝜕2Pl

𝜕𝜃2
k

= gjkVjVk cos 𝜃jk + bjkVjVk sin 𝜃jk (8.72)

𝜕2Pl

𝜕𝜃j𝜕𝜃k
= −gjkVjVk cos 𝜃jk − bjkVjVk sin 𝜃jk (8.73)

The same calculation steps given in the precious section can be used when line power
flow constraints are considered.

Example 8.1: The test example is a 5-bus system, which is taken from reference
[17]. The data of generators are shown in Table 8.1. The generator fuel cost is a
quadratic function, that is, fi = aiP

2
Gi + biPGi + ci. The other data and parameters are

shown in Figure 8.1, where the p.u. is used. Table 8.2 is the initial power flow results
with the initial system cost of $4518.04. The OPF results solved by Newton method
are shown in Table 8.3. The system minimum cost is $4236.5.

TABLE 8.1 Data of Generators for 5-Bus System

Unit No. ai bi ci PGimin PGimax QGimax QGimax

1 44.4 351 50 2.0 3.5 1.5 2.5

2 40.0 389 50 4.0 5.5 1.0 2.0

TABLE 8.2 Initial Power Flow Results for 5-Bus System

Bus No. Pi Qi Vi 𝜃i

1 2.5794 2.2993 1.05 0

2 5.0 1.8130 1.05 21.84

3 −1.6 −0.8 0.8621 −4.38

4 −2.0 −1.0 1.0779 17.85

5 −3.7 −1.3 1.0364 −4.28
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SD4=2.0+ j1.0 SD5=3.7+ j1.3

0.08+j0.3 542 1:1.05j0.015 1.05:1  j0.03 1

−j2.0 −j4.0  

3

−j4.0
SD3=1.6+ j0.8

0.1+ j0.350.04+ j0.25

Figure 8.1 A 5-bus system.

TABLE 8.3 OPF Results by Newton Method for 5-Bus System

Bus No. Pi Qi Vi 𝜃i Vimax Vimin

1 3.4351 2.0707 1.0999 0 1.1 0.9

2 3.9997 1.2000 1.0634 8.67 1.1 0.9

3 −1.6 −0.8 0.9324 −10.96 1.1 0.9

4 −2.0 −1.0 1.1003 5.59 1.1 0.9

5 −3.7 −1.3 1.1000 −5.13 1.1 0.9

8.3 GRADIENT METHOD

8.3.1 OPF Problem without Inequality Constraints

The OPF problem without inequality constraints can be represented as follows.

min F =
NG∑

i=1

fi(PGi)

such that

Pi(V , 𝜃) = PGi − PDi

Qi(V , 𝜃) = QGi − QDi
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Before we solve the above OPF problem, we first define the state variables X as

X =
⎡
⎢
⎢
⎢⎣

𝜃

V

}
on each PQ bus

𝜃 on each PV bus

⎤
⎥
⎥
⎥⎦

(8.74)

And all specified variables Y as

Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜃ref
Vref

}
on reference bus

PD
QD

}
on each PQ bus

PG
VG

}
on each PV bus

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(8.75)

Some of the parameters of the Y vector are adjustable, such as generator power output
and generator bus voltage, and some of them are fixed, such as P and Q at each load
bus. Thus, vector Y can be partitioned into a vector U of control parameters and a
vector W of fixed parameters,

Y =
[

U
W

]
(8.76)

Then the power flow equations can be expressed as

g(X,Y) =

⎡
⎢
⎢
⎢
⎢⎣

Pi (V , 𝜃) − (PGi − PDi)
Qi(V , 𝜃) − (QGi − QDi)

}
on each bus

Pk(V , 𝜃) − (PGk − PDk)
on each PV bus k, not
including the reference bus

⎤
⎥
⎥
⎥
⎥⎦

(8.77)

Thus the OPF problem without inequality constraints can be expressed as

min f (X,U) (8.78)

such that

g(X,U,W) = 0 (8.79)

The unconstrained Lagrange function for the OPF problem is obtained.

L(X,U,W) = f (X,U) + 𝜆T g(X,U,W) (8.80)
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or

L(X,U,W) =
NG∑

i=1
i≠ref

fi(PGi) + fref[Pref(V , 𝜃)] + [𝜆1, 𝜆1, … , 𝜆m]
⎡
⎢
⎢
⎢⎣

Pi (V , 𝜃) − Pinet
Qi(V , 𝜃) − Qinet
Pk(V , 𝜃) − Pknet

⋮

⎤
⎥
⎥
⎥⎦

(8.81)

where

Pinet = PGi − PDi

Qinet = QGi − QDi

The number of Lagrange multipliers is m as there are m power flow equations.
According to the necessary conditions for a minimum, we get

∇LX = 𝜕L
𝜕X

=
𝜕f

𝜕X
+
[
𝜕g

𝜕X

]T

𝜆 = 0 (8.82)

∇LU = 𝜕L
𝜕U

=
𝜕f

𝜕U
+
[
𝜕g

𝜕U

]T

𝜆 = 0 (8.83)

∇L𝜆 =
𝜕L
𝜕𝜆

= g(X,U,W) = 0 (8.84)

Since the objective function itself is not a function of the state variable except for
the reference bus, the derivatives of the objective function with respect to the state
variables become

𝜕f

𝜕X
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕fref

(
Pref

)

𝜕Pref

𝜕Pref

𝜕𝜃1

𝜕fref(Pref)
𝜕Pref

𝜕Pref

𝜕V1

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(8.85)

The 𝜕g
𝜕X

in equation (8.82) is the Jacobian matrix for the Newton power flow, which
was discussed in Chapter 2, that is,

𝜕g

𝜕X
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

𝜕P1

𝜕𝜃1

𝜕P1

𝜕V1

𝜕P1

𝜕𝜃2

𝜕P1

𝜕V2
· · ·

𝜕Q1

𝜕𝜃1

𝜕Q1

𝜕V1

𝜕Q1

𝜕𝜃2

𝜕Q1

𝜕V2
· · ·

𝜕P2

𝜕𝜃1

𝜕P2

𝜕V1
· · ·

𝜕Q2

𝜕𝜃1

𝜕Q2

𝜕V1
· · ·

⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(8.86)
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Equation (8.83) is the gradient of the Lagrange function with respect to the control
variables, in which the vector 𝜕f

𝜕U
is a vector of derivatives of the objective function

with respect to the control variables.

𝜕f

𝜕U
=

⎡
⎢
⎢
⎢
⎢
⎢⎣

𝜕f1
(
P1

)

𝜕P1

𝜕f2(P2)
𝜕P2
⋮

⎤
⎥
⎥
⎥
⎥
⎥⎦

(8.87)

The other term in equation (8.83), 𝜕g
𝜕U

, consists of a matrix of all zeros with some −1
terms on the diagonals, which correspond to equations in g(X,U,W) where a control
variable is present.

The solution steps of the gradient method of OPF are as follows [2,13]:

1. A set of fixed parameters W is given. Assume a starting set of control vari-
ables U.

2. Solve a power flow. This makes sure that equation (8.84) is satisfied.

3. Solve equation (8.82) for lambda:

𝜆 = −

[(
𝜕g

𝜕X

)T
]−1

𝜕f

𝜕X
(8.88)

4. Substitute 𝜆 in equation (8.83) and compute the gradient of the Lagrange func-
tion with respect to the control variables.

∇LU =
𝜕f

𝜕U
+
[
𝜕g

𝜕U

]T

𝜆 =
𝜕f

𝜕U
+
[
𝜕g

𝜕U

]T
⎧
⎪
⎨
⎪⎩

−

[(
𝜕g

𝜕X

)T
]−1

𝜕f

𝜕X

⎫
⎪
⎬
⎪⎭

=
𝜕f

𝜕U
−
[
𝜕g

𝜕U

]T
[(

𝜕g

𝜕X

)T
]−1

𝜕f

𝜕X
(8.89)

The gradient will give the direction of maximum increase in the cost function as
a function of the adjustments in each of the control variables. Since the objective
is minimization of the cost function, it needs to move in the negative direction
of the gradient.

5. If |∇LU| is sufficiently small, the minimum has been reached. Otherwise, go to
the next step.
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6. Find a new set of control parameters from

Uk+1 = Uk + ΔU = Uk − 𝛽|∇LU| (8.89)

where 𝛽 is the step length. Go back to step 2 and use the new values of the
control variables.

8.3.2 Consider Inequality Constraints

Inequality Constraints on Control Parameters The inequality constraints on
control parameters such as generator bus voltage limits can be expressed as follows.

Umin ≤ U ≤ Umax (8.90)

These constraints can be easily handled during the calculation of the new control
parameters in equation (8.89). If the control variable i exceeds one of its limits, it
will be set to the corresponding limit, that is,

Uk+1
i =

⎧
⎪
⎨
⎪⎩

Uimax, if Uk
i + ΔUi > Uimax

Uimin, if Uk
i + ΔUi < Uimin

Uk
i + ΔUi, otherwise

(8.91)

At the minimum the components 𝜕f
𝜕U

of ∇LU will be

𝜕f

𝜕Ui
= 0, if Uimin < Ui < Uimax

𝜕f

𝜕Ui
≤ 0, if Ui ≥ Uimax (8.92)

𝜕f

𝜕Ui
≥ 0, if Ui ≤ Uimin

The Kuhn–Tucker theorem proves that the conditions of equation (8.92) are neces-
sary for a minimum, provided the functions involved are convex.

Functional Inequality Constraints The upper and lower limits on the state vari-
ables such as bus voltages on PQ buses can also be functional inequality constraints,
which can be expressed as

h(X,U) ≤ 0 (8.93)

Compared with the inequality constraints on control variables, the functional inequal-
ity constraints are difficult to handle and the method can become very time consuming
or practically impossible in some situations. Basically, a new direction that is different
from the negative gradient must be found when confronting a functional inequality
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TABLE 8.4 OPF Results by Gradient Method for 5-Bus System

Bus No. Pi Qi Vi 𝜃i Vimax Vimin

1 3.4351 2.0359 1.0938 0 1.1 0.9

2 3.9987 1.2487 1.0650 8.53 1.1 0.9

3 −1.6 −0.8 0.9300 −11.10 1.1 0.9

4 −2.0 −1.0 1.1014 5.45 1.1 0.9

5 −3.7 −1.3 1.0944 −5.18 1.1 0.9

constraint. The often used method is the penalty method, in which the objective func-
tion is augmented by penalties for functional constraint violations. This forces the
solution back sufficiently close to the constraint. The reasons for the penalty method
being selected are as follows.

1. Generally, functional constraints are seldom rigid limits in the strict mathemat-
ical sense but are, rather, soft limits. For example, V ≤ 1.0 on a PQ bus means
V should not exceed 1.0 by too much, and V = 1.01 may still be permissible.
The penalty method produces just such soft limits.

2. The penalty method adds very little to the algorithm, as it simply amounts to
adding terms to 𝜕f

𝜕X
, and also to 𝜕f

𝜕U
if the functional constraint is also a function

of U.

3. It produces feasible power flow solutions, with the penalties signaling the trou-
ble spots, where poorly chosen rigid limits would exclude solutions.

Example 8.2: The test example is a 5-bus system, which was shown in Figure 8.1
in Example 8.1. The data and parameters of the system are the same as in Example
8.1. The OPF results solved by the gradient method are shown in Table 8.4. The
system minimum cost is $4235.7

8.4 LINEAR PROGRAMMING OPF

The early LP-based OPF method was limited to network-constrained economic power
dispatch, which we introduced in Chapter 5. The earliest versions used the fixed con-
straint approximations, based on the purely DC power flow. Later on, incremental
formulations were introduced, whereby constraint linearization is iterated with AC
power flow, to model and enforce the constraints exactly [18]. The advantages of the
LP-based OPF are

1. reliability of the optimization;

2. ability to recognize problem infeasibility quickly, so that appropriate strategies
can be put into effect;

3. the range of operating limits can be easily accommodated and handled, includ-
ing contingency constraints;
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4. convergence to engineering accuracy is rapid, and also accepted when the
changes in the controls have become very small.

Large-scale application of LP-based methods has traditionally been limited to
network-constrained real and reactive dispatch calculations whose objectives are sep-
arable, comprising the sum of convex cost curves. The accuracy of calculation may be
lost if the oversimplified approximation is adopted in LP-based OPF. The piecewise
linear segmentation of the generator fuel cost curve should be good for avoiding this
problem. The piecewise approach can fit an arbitrary curve convexly to any desired
accuracy with a sufficient number of segments. Originally, a separable LP variable
had to be used for each segment, and the resulting large problems with multisegments
cost curve modeling were prohibitively time and storage consuming. The difficulty
was alleviated considerably by a separable programming procedure that uses a single
variable per cost curve, regardless of the number of the segments. However, the num-
ber of segments still affects the solution speed and precision. If the segment sizes are
large, the following issues may be appeared.

1. Even a very small change in an OPF problem can cause some optimized con-
trols to jump to adjacent segment breakpoints.

2. Discrete jumps between segment breakpoints occasionally produce solution
oscillations when iterating with AC power flow.

The technique of successive segment refinement can be used to overcome the above
problems. The idea is that the nonlinear cost curves are approximated with relatively
large segments at the beginning. Then, in each subsequent iteration, each cost curve
is modeled with a smaller segment size, until the final degree of refinement has been
reached.

For LP-based OPF, in addition to the linearization of the objective function, the
constraints also need to be linearized. Generally, the linearized power flow equations
are used in LP-based OPF, either based on a linear sensitivity matrix or on the fast
decoupled power flow model. The latter can be written as

[B′]Δ𝜃 = ΔP (8.94)

[B′′]ΔV = ΔQ (8.95)

These provide accurate enforcement of the network constraints in the real or reactive
subproblems through the iterative process. The real power subproblem in OPF based
on equation (8.94) is restricted to the “real power” constraints that are strong functions
of angle “𝜃,” and the reactive power subproblem in OPF based on equation (8.95) is
restricted to the “reactive power” constraints that are strong functions of the magni-
tude of voltage V . Tests on a large power system have demonstrated that successive
constrained P- and Q-subproblems for OPF are effective in achieving practical overall
optimization. If only a real power subproblem is considered in OPF, it becomes the
security-constrained economic power dispatch, which was introduced in Chapter 5.

For inequality constraints in LP-based OPF, the sensitivity approach is used to
express each selected constraint in terms of the control variables. Let U, X, and P be
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the control, state variables, and bus power injections, respectively. Y is the constraint
whose sensitivities are to be computed. The incremental relationships between these
variables are

ΔY = CΔX + DΔU (8.96)

ΔP = [B]ΔU (8.97)

ΔX = [A]−1ΔP (8.98)

From the above equations, we get the following sensitivity vector.

ΔY
ΔU

= C[A]−1[B]ΔU + D (8.99)

The row vectors C and D are usually extremely sparse, and are specific to the
particular constraint Y . The power flow Jacobian matrix [A] and matrix [B] are
constant throughout the OPF iteration. The main work in calculating the sensitivity
vector from equation (8.99) is the repeat solution C[A]−1 using fast-forward
substitution.

After the above handlings on OPF objective function and constraints, the lin-
ear OPF model can be constructed and, consequently, solved by linear programming
algorithm.

8.5 MODIFIED INTERIOR POINT OPF

8.5.1 Introduction

OPF calculations determine optimal control variables and system quantities for effi-
cient power system planning and operation. OPF has now become a useful tool in
power system operation as well as in planning. Over the years, different objective
functions have emerged, and the constraints and size of systems to be solved have
increased. An efficient OPF tool is required to solve both the operations problem
and the planning problem. The operational OPF problem, considering t time duration
from one-half hour to a day, consists of many objective functions such as economic
dispatch and loss minimization. For volt-ampere reactive (VAR) planning, the time
duration can be up to 5 years. VAR planning can also consider the operational cost
of losses, thus forming a hybrid planning/operation problem.

An OPF package must handle large, interconnected power systems. In some
instances, the area to be optimized needs to be identified and the type of optimization
needs to be established before optimization. Generally, the available OPF packages
do not determine the type of problem, nor do they recommend the type of objective
or identify the area to be optimized. Also, in most OPF packages, the model is prede-
termined and cannot be modified by the user without access to the source code [27].
An OPF package that allows the user to pick certain constraints from a specified list
is useful for adapting the package to the user’s needs.
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To implement the above requirements, a more versatile OPF package is nec-
essary. Obviously, the conventional OPF algorithms are limited and too slow for
this purpose. The increasing burden being imposed on optimization is handled by
rapidly advancing computer technology as well as through development of more
efficient algorithms exploiting the sparse nature of the power system structure. The
IP method is one of the most efficient algorithms as evident from the list of refer-
ences [27–45]. The IP method classification is a relatively new optimization approach
that was applied to solve power system optimization problems in the late 1980s
and early 1990s. This method is essentially a linear programming method; and as
expected, linear programming problems dominate IP classification. When compared
with other well-known linear programming techniques, IP methods maintain their
accuracy while achieving great advantages in speed of convergence of as much as
12 : l in some cases. However, IP methods, in general, suffer from bad initial, termi-
nation, and optimality criteria and, in most cases, are unable to solve nonlinear and
quadratic objective functions. The extended quadratic interior point (EQIP) method
described here can handle quadratic objective functions subject to linear and nonlin-
ear constraints.

The optimization technique used in this section is an improved quadratic inte-
rior point (IQIP) method. The IQIP method features a general starting point (rather
than a good point as in the former EQIP as well as general IP methods) that is even
faster than the EQIP optimization scheme. Consequently, the OPF approach described
in this section offers great improvements in speed, accuracy, and convergence in solv-
ing multi-objective and multi-constraint optimization problems. It is also capable of
solving the global optimization of an interconnected system and a partitioned system
for local optimization. The scheduled generation, transformer taps, bus voltages, and
reactors are used to achieve a feasible and optimized power flow solution.

8.5.2 OPF Formulation

Objective Functions Three objective functions are considered. They are fuel cost
minimization, VAR planning, and loss minimization.

(1) Fuel cost minimization

min Fg =
NG∑

i=1

(aiP
2
gi + biPgi + ci) (8.100)

(2) VAR planning

min Fq =
Nc∑

i=1

Sci(qtot
ci − qexist

ci ) −
Nr∑

i=1

Sri(qtot
ri − qexist

ri ) + S𝜔PL (8.101)

(3) Loss minimization
minPL = F(Pg slack) (8.102)
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where

Pgi: the real power generation at generator i
PL: system real power loss

Pg slack: the real power of slack generator
Sc: the cost of unit capacitive VAR
Sr: the cost of unit inductive VAR
qc: the capacitive VAR support
qr: the inductive VAR support

l: the contingency case, l = 0, means the intact case or base case
Sw: the coupling coefficient between the VAR and loss portions in the VAR

planning objective function.

Constraints The linear and nonlinear constraints that include voltage, flows, real
generation, reactive sources, and transformer taps are considered as follows.

Pmin
gi,l ≤ Pgi,l ≤ Pmax

gi,l , i ∈ NG (8.103)

NG∑

i=1

Pg i =
ND∑

k=1

Pd k + PL (8.104)

Pgi − Pdi − Fi(V , 𝜃,T) = 0

i = 1, 2, … ,Nbus, i ≠ Slack (8.105)

Qgi − Qdi − Gi(V , 𝜃,T) = 0

i = 1, 2, … ,Nbus, i ≠ Slack (8.106)

V2
i + V2

j − 2ViVj cos(𝜃i − 𝜃j)

ZL(l)2
− ILmax

2(l) ≤ 0 (8.107)

l = 0, 1, 2, … ,Nl

Qgimin ≤ Qgi ≤ Qgimax, i ∈ NG (8.108)

0 ≤ qexist
ci ≤ qexist

cimax, i ∈ VAR sites (8.109)

0 ≤ qexist
ri ≤ qexist

rimax, i ∈ VAR sites (8.110)

qtot
ci − qexist

ci ≥ 0, i ∈ VAR sites (8.111)

qtot
ri − qexist

ri ≥ 0, i ∈ VAR sites (8.112)

Vgimin ≤ Vgi ≤ Vgimax, i ∈ NG (8.113)

Vdi min ≤ Vdi ≤ Vdimax, i ∈ ND (8.114)
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Timin ≤ Ti ≤ Timax, i ∈ NT (8.115)

Pslack = Fslack(V , 𝜃,T) (8.116)

where

Pdk: real power load at load bus k
Qdi: reactive power load at load bus i
Vgi: the voltage magnitude at generator bus i
Vdi: voltage magnitude at load bus i
Qgi: VAR generation of generator i
ZL: the impedance of transmission line L

ILmax: the maximal current limit through transmission line L
T: the transformer tap position
𝜃: the bus voltage angle

PL: the system real power loss
NG: number of generation buses
NT: number of transformer branches
ND: number of load buses

Nbus: number of total network buses
𝜙i: the angle of phase shifter transformer i

NM𝜙: adjustment numbers of phase shifter
Nl: the set of the outage line (l = 0 means no line outage).

The subscripts “min” and “max” stand for the lower and upper bounds of a
constraint, respectively.

We can pick certain constraints from equations (8.103)–(8.116) accord-
ing to the particular needs of the practical system. Generally, the constraints
in equations (8.103)–(8.108) and (8.113)–(8.115) are considered for economic
dispatch. The constraints in equations (8.104)–(8.116) are considered for VAR
planning. For loss minimization, the constraints in equations (8.104)–(8.108) and
(8.113)–(8.116) are considered.

8.5.3 IP OPF Algorithms

General Interior Point Algorithm The OPF problem can be expressed in general
form as follows:

min f (x) (8.117)

such that

d(x) ≥ 0

x ≥ 0 (8.118)
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There are several primal–dual IP methods. Here we introduce the logarithmic barrier
function-based IP method. For the above problem, the logarithmic barrier function is
given by

b(x, 𝜇) = f (x, 𝜇) − 𝜇
m∑

j=1

ln dj(x) − 𝜇
n∑

i=1

ln xi (8.119)

where

𝜇: a positive parameter
m: the number of constraints
n: the number of variables.

The barrier gradient and Hessian are

∇b(x, 𝜇) = g − 𝜇BTD−1I − (𝜇X−1I) (8.120)

∇2b(x, 𝜇) = ∇2f −
m∑

j=1

𝜇

dj
∇2dj + 𝜇BT D−2B + 𝜇X−2 (8.121)

where

I: a column vector of ones
D: diagonal matrix diag{d(x)}
X: diagonal matrix diag{x}.

The solution to the above problem can be obtained via a sequence of solutions
to the unconstrained subproblem.

Minimize b(x, 𝜇) (8.122)

According to Kuhn–Tucker conditions, we have

∇b(x, 𝜇) = 0 (8.123)

∇2b(x, 𝜇) = 0 is positive definite (8.124)

lim
𝜇→0

(x𝜇) = x∗

lim
𝜇→0

𝜇

xj𝜇
= s∗j (8.125)

lim
𝜇→0

𝜇

dj(x𝜇)
= z∗j

where s∗j and z∗j are the Lagrange multipliers. The points (x𝜇) define a barrier trajec-
tory, or a local central path for equation (8.125). If we introduce the slack variable

v𝜇 = d(x𝜇), v𝜇 ≥ 0 (8.126)
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and define

z𝜇 = 𝜇D(x𝜇)−1I, z𝜇 ≥ 0 (8.127)

s𝜇 = 𝜇X−1
𝜇 I, s𝜇 ≥ 0 (8.128)

then the central path is equivalent to

g𝜇 − BT
𝜇z𝜇 − s𝜇 = 0 (8.129)

d𝜇 − v𝜇 = 0 (8.130)

∇2f𝜇 −
m∑

j=1

zj𝜇∇2dj𝜇 + BT
𝜇V−1

𝜇 Z𝜇B𝜇 + X−1
𝜇 S𝜇 = 0 (8.131)

V𝜇z𝜇 = 𝜇I, v𝜇, z𝜇 ≥ 0 (8.132)

X𝜇s𝜇 = 𝜇I, x𝜇, s𝜇 ≥ 0 (8.133)

The above nonlinear equations can be expressed as follows, which hold at (x𝜇, v𝜇,
z𝜇, s𝜇)

⎡
⎢
⎢
⎢
⎢⎣

−g + BT z − s

d − v

Vz − 𝜇I

Sx − 𝜇I

⎤
⎥
⎥
⎥
⎥⎦

= 0 (8.134)

Applying Newton’s method to the above, we obtain

[
−W BT

B 0

] [
Δx
Δz

]
+
[
Δs
−Δv

]
=
[

g − BT z − s
v − d

]
(8.135)

and

VΔz + ZΔv = 𝜇I − Zv (8.136)

SΔx + XΔs = 𝜇I − Xs (8.137)

The solution of the above linear systems can be obtained as follows.
First, compute the Δs and Δv.

Δv = −v − Z−1VΔz + 𝜇Z−1I (8.138)

Δs = −s − X−1SΔx + 𝜇X−1I (8.139)

Then substitute the above two equations in equation (8.135) to get the augmented
system [

−Dx BT

B Z−1V

] [
Δx
Δz

]
=
[

g − BT z − 𝜇X−1I
𝜇Z−1I − d

]
(8.140)
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where
Dx = W + X−1S (8.141)

Solving the above equation, we get Δz as bellow.

Δz = −V−1ZBΔx + V−1(𝜇I − Zd) (8.142)

The solution Δx can be obtained by solving the following normal system.

−KΔx = h (8.143)

where

K = Dx + BTV−1ZB (8.144)

h = g − BT z + BT V−1(Zd − 𝜇I) − 𝜇X−1I (8.145)

Calculation of the Step Length It should be noticed that if started far from
a solution (or the start point is not good), the primal–dual IP methods may fail to
converge to a solution [31–39]. For this reason, primal–dual methods usually use a
merit function in order to induce convergence. There are, however, problems asso-
ciated with the merit function, particularly with the choice of the penalty parameter
[66]. The filter technique [42] may be used to handle the convergence issue.

There are two competing aims in the primal–dual solution of equation (8.117).
The first aim is to minimize the objective, and the second is the satisfaction of the
constraints. These two conflicting aims can be written as

min f (x) (8.146)

s.t.
min 𝛿 = (d − v)2 (8.147)

A merit function usually combines equations (8.146) and (8.147) into a single objec-
tive. Instead, we see equations (8.146) and (8.147) as two separate objectives, sim-
ilar to multi-objective optimization. However, the situation here is different as it is
essential to find a point where d = v if possible. In this sense, the second objec-
tive has priority. Nevertheless, we will make use of the principle of domination from
multi-objective programming in order to introduce the concept of the filter.

Definition 1 [66] A pair (f k, 𝛿k) is said to dominate another pair (f j, 𝛿j) if and only if
f k ≤ f j, and 𝛿k ≤ 𝛿j

In the context of the primal–dual method, this implies that the kth iterate is at
least as good as the jth iterate with respect to equations (8.146) and (8.147). Next, we
define the filter which will be used in the line search to accept or reject a step.
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Definition 2 [66] A filter is a list of pairs (f j, 𝛿j) such that no pair dominates any other.
A point (f k, 𝛿k) is said to be accepted for inclusion in the filter if it is not dominated
by any point in the filter.

The filter therefore accepts any point that either improves optimality or infea-
sibility.

In most primal–dual methods, separate step lengths are used for the primal and
dual variables [67]. A standard ratio test is used to ensure that nonnegative variables
remain nonnegative

𝛼P = min{𝛼x, 𝛼v} (8.148)

𝛼D = min{𝛼z, 𝛼s} (8.149)

where

𝛼j = min
{

1, 0.9995 × min
{

𝜔j

−Δ𝜔j
, if Δ𝜔j < 0

}}

𝜔 = x, v, z, s (8.150)

The step lengths in the above are successively halved until the following itera-
tion becomes acceptable to the filter.

x′ = x + 𝛼PΔx (8.151)

v′ = v + 𝛼PΔv (8.152)

z′ = z + 𝛼DΔz (8.153)

s′ = s + 𝛼DΔs (8.154)

Selection of the Barrier Parameter Another important issue in the
primal–dual method is the choice of the barrier parameter. Many methods are
based on approximate complementarity where the centering parameter is fixed a
priori [68]. Mehrotra [69] suggested a scheme for linear programming in which the
barrier parameter is estimated dynamically during iteration. The heuristic originally
proposed in [69] may be used. First, the Newton equations system is solved with the
barrier 𝜇 set to zero. The direction obtained in this case, (Δx𝛼,Δv𝛼,Δz𝛼,Δs𝛼), is
called the affine-scaling direction. The barrier parameter is estimated dynamically
from the estimated reduction in the complementarity gap along the affine-scaling
direction.

𝜇 =
(

g𝛼

zTv + sTx

)2(
zTv + sT x

m + n

)
(8.155)

where

g𝛼 = (z + 𝛼𝛼DΔz𝛼)T(v + 𝛼𝛼PΔv𝛼) + (s + 𝛼𝛼DΔs𝛼)T (x + 𝛼𝛼PΔx𝛼) (8.156)
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The step lengths in the affine-scaling direction are obtained using
equations (8.155) and (8.156). To avoid numerical instability, the above equation is
used to compute 𝜇 when the absolute complementarity gap zT v + sT x ≥ 1. But if
zTv + sTx ≤ 1, we use following equation to compute 𝜇, that is,

𝜇 =
( 1

m + n

)2
(

zT v + sTx
m + n

)
(8.157)

The Improved Quadratic Interior Point Method The OPF model discussed in
this section is a nonlinear mathematical programming problem. It can be reduced by
an elimination procedure. The reduction of the OPF model is based on the linearized
load flow around the base load flow solution for a small perturbation. The reduced
OPF model can be expressed as

minF = 1
2

XT QX + GT X + C (8.158)

such that

AX = B

X ≥ 0 (8.159)

Equation (8.158) is a scalar objective function which corresponds to the objective
functions of OPF. Equation (8.159) corresponds to constraints (8.103)–(8.116)
with linearization handling. X in (8.158) and (8.159) is a vector of control-
lable variables, which is defined as X = [VT

g ,T
T ,PT

g ]T in economic dispatch,
X = [VT

g ,T
T , qT

c , q
T
r ,P

T
L ]

T in VAR planning, or X = [VT
g ,T

T ,PT
L]

T in loss
minimization.

The model (8.158)–(8.159) has a quadratic objective function subject to the
linear constraints that satisfy the basic requirements of the quadratic interior point
(QIP) scheme. The barrierlike IP methods discussed in previous section and the
enhanced projection method used in QIP have the enough speed and accuracy to solve
OPF problems such as economic dispatch, loss minimization and VAR optimization.
However, the effectiveness of these IP methods depends on a good starting point
[27]. The IQIP) is presented in this section. It features a general starting point (rather
than a good point) and faster convergence. The calculation steps of IQIP are as
follows.

S1: Given a starting point X1

S2: X1: = AX1

S3: Δ: = B − AX1

S4: Δmax: = max |Δi|
S5: If Δmax < 𝜀0, go to S10. Otherwise, go to the next step.
S6: U: = [A1(A1A1

T )−1]Δ
S7: R: = min {Ui}
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S8: If R + 1 ≥ 0, X1: = X1 × (1 + U), go to S3. Otherwise, go to the next step.
S9: QB: = −1∕R, X1: = X∗

1 (1 + QB∗U), go to S3.
S10: Dk: = diag[x1, x2, … , xn]
S11: Bk: = ADk

S12: dpk: = [BT
k (BkBT

k )
−1Bk − 1]Dk[QXk + G]

S13: 𝛽1: = − 1
𝛾
, 𝛾 < 0; 𝛽1: = 106, 𝛾 ≥ 0 where 𝛾 = min[dpk

j ]

S14:
𝛽2: = (dpk)T (dpk)

W
, if W > 0; 𝛽2: = 106, if W ≤ 0

where W = (Dkdpk)TQ(Dkdpk)

S15:
Xk+1: = Xk + 𝛼(𝛽Dkdpk),

where 𝛽 = min[𝛽1, 𝛽2]; 𝛼(< 0) is a variable step.

Set k: = k + 1, and go to S11. End when dpk < m, where k is the iteration
counter.

The partitioning scheme and optimization modules are adopted here. The par-
titioning scheme provides the objective function and the optimizable area. The opti-
mization module selects the default constraints for the selected objective unless other
specified. The user can add or remove constraints from the default constraint set
(equations (8.103)–(8.116)). The optimization is carried out using the IQIP method
described earlier. The nonlinear constraints are handled via successive linearization
in conjunction with an area power flow.

IQIP handles the initial value of the state variables before optimization so that
it can solve the bad initial conditions encountered in other IP methods. Consequently,
IQIP has a faster convergence speed than other IP methods. IQIP achieves an optimum
in the linearized space, while the power flow adjusts for the approximation caused
by the linearization. The check of the power flow mismatch should be performed in
the optimization area first. In this way, the optimization calculation accuracy will be
increased. It ensures local optimization with all violations removed. Then the check
of the power flow mismatch will be performed in the whole system including the
external areas, which adjusts the changes in the boundary injections caused by the
local optimization. The overall scheme ensures a local optimum, with no violation in
the optimized area, while satisfying a global power flow. The local optimum will be
the global optimum if there is only one area in the system.

If the region formed by the constraints is very narrow, the solution may be
declared infeasible. Three options are available for infeasibility handling. They are

(1) The bounds option, which allows the program to widen the bounds on violat-
ing soft constraints. The new limits or a percentage increase/decrease from the
current limits can be prespecified by the user for all objective functions.

(2) The VAR option I, which allows the program to add new VAR sites at buses
with big contributions to improving system performance (only for VAR opti-
mization).

(3) The VAR option II, which allows the program to add new VAR sites at buses
with severe voltage violations (only for VAR optimization).



324 CHAPTER 8 OPTIMAL POWER FLOW

For economic dispatch or loss minimization, if infeasibility is detected, the
bounds option is selected. The bounds on violating constraints are widened accord-
ingly. For VAR optimization, or planning, if infeasibility is detected, the VAR option
I is first selected, and the new VAR sites are added at buses with big contributions to
improve system performance such as reducing system loss or voltage violations. If
further infeasibilities occur, the VAR option II is selected, and other new VAR sites
are added at buses with severe voltage violations.

Simulation Calculations The simulation examples are taken from reference [27].
The two IP–based OPF methods are tested on an IEEE 14-bus system, and a modified
IEEE 30-bus systems. One is the EQIP and the other, the IQIP. For comparison, the
solution method of MINOS is also used to solve the OPF problem with the same data
and same conditions. MINOS is a Fortran-based optimization package developed by
Stanford University, which is designed to solve large-scale optimization problems.
The solution method in the MINOS program is a reduced gradient algorithm or a
projected augmented Lagrange algorithm.

The data and parameters of the 14-bus system were shown in Chapter 3. The
optimization data used for simulating the IEEE 14-bus system using the three objec-
tive functions are given in Tables 8.5–8.7.

TABLE 8.5 Generator Data for 14-Bus System (p.u.)

Unit No. a b c Pgimin Pgimax

1 0.0784 0.1350 0.0000 0.0000 3.0000

2 0.0834 0.2250 0.0000 0.0000 1.3000

6 0.0875 0.1850 0.0000 0.2000 2.0000

TABLE 8.6 Capacitive VAR Data for 14-Bus System (p.u.)

VAR Site

Bus

Fixed Unit

Cost

Variable Unit

Cost

Max. Capacitive

VAR

Max. Inductive

VAR

5 2.3500 0.1500 0.8000 0.0000

9 3.4500 0.2000 0.8000 0.0000

13 3.4500 0.2000 0.8000 0.0000

TABLE 8.7 Inductive VAR Data for 14-Bus System (p.u.)

VAR Site

Bus

Fixed Unit

Cost

Variable Unit

Cost

Max. Capacitive

Var

Max. Inductive

VAR

5 6.0000 0.2500 0.4000 0.0000

9 6.0000 0.2500 0.4000 0.0000

13 6.0000 0.2500 0.4000 0.0000
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Table 8.5 represents the generator data used for the IEEE 14-bus system.
Tables 8.6 and 8.7 represent the capacitor and inductor VAR allocation data of the
IEEE 14-bus system, respectively.

In the following calculations, optimization iteration will be stopped when the
difference in the objective value ΔF is less than 𝜀 (𝜀 = 10−6).

Sample Set of Results Using IQIP/EQIP/MINOS Options (Minimization
of the Total Generation Cost as Objective Function) Three test cases are given
here for the 14-bus system for OPF with minimization of generation cost as the objec-
tive function (i.e., objective 1 in the OPF model in Section 8.5.2). The initial values
of real power for three cases are different as shown in Table 8.8. The comparisons
of results for the three test cases using IQIP/EQIP/MINOS methods are listed in
Tables 8.9–8.11.

TABLE 8.8 Three Test Cases for OPF Objective 1

Initial Value Case 1 Case 2 Case 3

PG1 0.0000 0.0000 0.0000

PG2 0.4000 0.3500 0.0000

PG6 0.7000 0.7000 0.7000

VG1 1.0500 1.0500 1.0500

VG2 1.0450 1.0450 1.0450

VG6 1.0500 1.0500 1.0500

TABLE 8.9 Optimization Results and Comparison for Case 1 (p.u.)

Control Option IQIP EQIP MINOS

PG1 1.53414 2.18319 –

PG2 0.93357 0.34326 –

PG6 0.38141 0.35392 –

VG1 1.05000 1.05000 –

VG2 1.04997 1.04683 –

VG6 1.05000 1.05000 –

T4−7 0.98454 0.97513 –

T4−9 1.01278 0.98307 –

T5−6 0.98454 0.94992 –

Total PG 2.84912 2.88037 –

Power loss 0.10912 0.14037 –

Total PG cost 0.757856 0.827207 –

Objective value 0.757856 0.827207 –

PF mismatch 0.1402E-6 0.4370E-4 –

Iteration no. 12 26 –

CPU time (s) 30.0 252.9 No convergence
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TABLE 8.10 Optimization Results and Comparison for Case 2 (p.u.)

Control Option IQIP EQIP MINOS

PG1 1.65313 2.21476 –

PG2 0.84114 0.31538 –

PG6 0.35920 0.35192 –

VG1 1.05000 1.05000 –

VG2 1.04997 1.04588 –

VG6 1.04996 1.05000 –

T4−7 0.98208 0.97525 –

T4−9 1.01269 0.98293 –

T5−6 0.98853 0.94962 –

Total PG 2.85347 2.88206 –

Power loss 0.11347 0.14206 –

Total PG cost 0.7632329 0.8340057 –

Objective value 0.7632329 0.8340057 –

PF mismatch 0.1866E-4 0.4357E-4 –

Iteration no. 12 26 –

CPU time (s) 30.2 253.8 No convergence

TABLE 8.11 Optimization Results and Comparison for Case 3 (p.u.)

Control Option IQIP EQIP MINOS

PG1 1.55607 1.58973 –

PG2 0.93372 0.88235 –

PG6 0.36034 0.37895 –

VG1 1.05000 1.05000 –

VG2 1.04993 1.05000 –

VG6 1.04956 1.04987 –

T4−7 1.00047 0.99398 –

T4−9 1.00715 1.01298 –

T5−6 0.99392 0.97887 –

Total PG 2.85319 2.85100 –

Power loss 0.11319 0.11100 –

Total PG cost 0.760950 0.758355 –

Objective value 0.760950 0.758355 –

PF mismatch 0.9630E-6 0.1622E-4 –

Iteration no. 3 11 –

CPU time (s) 21.3 35.9 No convergence
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It can be observed from Tables 8.9–8.11 that the MINOS method cannot
converge for these test cases, while the other two methods evaluated the optimization
solutions. The improved IQIP method has high accuracy, fewer iteration numbers, and
fast calculation speed compared with OPF based on the EQIP method. The maximum
speed ratio between IQIP and EQIP can reach 1:8 (See Table 8.9 and Table 8.10). If
the initial starting point is good (as in case 3), the OPF based on the EQIP method
has the fastest convergence speed but the convergence speed is still slower than
that of IQIP-based OPF. Meanwhile, for the same iteration number, the objective
value obtained by IQIP is less than that by EQIP. Therefore, the improved IQIP
method is superior to the EQIP method. It features a general starting point and fast
convergence.

Since the MINOS program cannot converge under specific operating conditions
and constraints, the other test case, the 30-bus system, is used to further demon-
strate the effectiveness of the IQIP method. The data and parameters of the 30-bus
system are taken from reference [3]. The optimization results and comparison for
IQIP/EQIP/MINOS methods are listed in Table 8.12. It can be observed that the

TABLE 8.12 Optimization Results and Comparison for IEEE 30-Bus
System (p.u.)

Control Option IQIP EQIP MINOS

PG1 0.73357 0.73921 0.75985

PG2 0.59838 0.59999 0.38772

PG5 0.61117 0.61412 0.66590

PG11 0.58787 0.57562 0.60000

PG13 0.34092 0.34321 0.40355

VG1 1.05000 1.05000 1.05000

VG2 1.04999 1.05000 1.03984

VG5 1.04998 1.05000 1.01709

VG11 1.04867 1.04915 1.05000

VG13 1.05000 1.05000 1.05000

T6−9 1.05160 1.08149 1.05461

T6−10 1.07615 1.01465 0.92151

T4−12 1.06768 1.09528 1.03377

T28−27 0.97443 0.94345 0.97217

Total PG 2.87190 2.87215 2.87120

Power loss 0.03790 0.03815 0.03720

Total PG cost 0.657582 0.658195 0.657258

Objective value 0.657582 0.658195 0.657258

PF mismatch 0.9447E-6 0.3988E-4 0.5734E-7

Iteration no. 7 12 9

CPU time (s) 147.0 267.4 567.9
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TABLE 8.13 Initial Voltages on Load Bus for 14-Bus System (p.u.)

Bus No. Initial V Vmin Vmax

3 0.94410 0.95000 1.05000

5 0.99220 0.95000 1.05000

7 0.94250 0.95000 1.05000

8 0.93270 0.95000 1.05000

9 0.93330 0.95000 1.05000

10 0.93910 0.95000 1.05000

13 0.98720 0.95000 1.05000

14 0.93530 0.95000 1.05000

proposed IQIP method has the fastest convergence speed, followed by the EQIP
method. The MINOS method has the slowest convergence speed.

Sample Set of Results Using IQIP/EQIP/MINOS Options (VAR Optimal
Placement as Objective Function) The test case given here is for the 14-bus system
for OPF with VAR optimal placement as the objective function (i.e., objective 2 in
the OPF model in Section 8.5.2). The initial voltages on load buses are shown in
Table 8.13. The optimization results and comparisons for the IQIP/EQIP/MINOS
methods are listed in Table 8.14.

It is observed from Table 8.14 that both IQIP and EQIP have almost the same
optimization results, which are better than those obtained from the MINOS method.
The comparison of the results shows that the three methods alleviate the voltage vio-
lations satisfactorily. The convergence speed of the IQIP method ranks first, followed
by EQIP method. The MINOS method ranks last.

Sample Set of Results Using IQIP/EQIP/MINOS Options (Loss Minimiza-
tion as Objective Function) The test case given here is for the 14-bus system for
OPF with loss minimization as the objective function (i.e., objective 3 in the OPF
model in Section 8.5.2). The optimization results and comparison for loss minimiza-
tion using IQIP/EQIP/MINOS methods are listed in Table 8.15.

From Table 8.15, it can be seen that IQIP and EQIP have almost the same opti-
mization results for the loss minimization objective. In view of loss reduction, load
voltage modification, and convergence speed, both IQIP and EQIP methods appear
superior to the MINOS method. Similarly, the IQIP method has the fastest conver-
gence speed for loss minimization.

8.6 OPF WITH PHASE SHIFTER

The problem of power system security has received considerable attention in the
deregulated power industry. To meet the load demand in a power system and satisfy
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TABLE 8.14 Optimization Results and Comparison for Objective
2 (p.u.)

Control

Option

IQIP EQIP MINOS

VG1 1.05000 1.05000 1.05000

VG2 1.05000 1.05000 1.04248

VG6 1.05000 1.05000 1.04430

T4−7 0.97001 0.97000 0.97000

T4−9 0.96001 0.96001 0.96000

T5−6 1.03000 1.03000 0.93000

VD3 0.98340 0.98340 0.97610

VD5 1.02600 1.02600 1.02030

VD7 1.00200 1.00200 0.99530

VD8 0.99270 0.99280 0.98600

VD9 0.98970 0.98970 0.98300

VD10 0.99130 0.99130 0.98470

VD13 1.02180 1.02180 1.01580

VD14 0.98320 0.98320 0.97670

Power loss 0.110866 0.110868 0.110459

Objective value 0.110866 0.110868 0.110459

PF mismatch 0.1596E-6 0.4634E-8 0.4225E-6

Iteration no. 4 4 8

CPU time (s) 115.9 150.4 184.4

the stability and reliability criteria, either the existing transmission lines must be uti-
lized more efficiently, or new line(s) should be added to the system. The latter is often
impractical. The reason is that building a new power transmission line is in many
countries a very time-consuming process and sometimes an impossible task, because
of environmental problems. Therefore, the first alternative provides an economically
and technically attractive solution to the power system security problem by use of
some efficient controls, such as controllable series capacitors, phase shifters, load
shedding, and so on. This chapter introduces power system security enhancement
through OPF with a phase shifter. The objective functions of OPF include minimum
line overloads and minimum adjustment of the number of phase shifters. It is noted
that general OPF calculations are hourly based and the control variables of OPF are
continuous. However, the calculations of phase shifters are daily based. The control
variables associated with phase shifter transformers are discrete. To solve this prob-
lem, a rule-based OPF with a phase shifter scheme can be adopted for practical system
operations [25].
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TABLE 8.15 Optimization Results and Comparison for Loss
Minimization (p.u.)

Control

Option

IQIP EQIP MINOS

VG1 1.05000 1.05000 1.05000

VG2 1.05000 1.05000 1.02837

VG6 1.05000 1.05000 1.03330

T4−7 0.97001 0.97001 0.97000

T4−9 0.96001 0.96001 0.96000

T5−6 1.03000 1.02999 1.03000

VD5 1.02600 1.02600 1.00930

VD9 0.98970 0.98970 0.97040

VD13 1.02180 1.02180 1.00430

Initial loss 0.1164598 0.1164598 0.1164598

Final loss 0.1108663 0.1108664 0.1118670

Objective value 0.1108663 0.1108664 0.1118670

PF mismatch 0.4132E−6 0.4634E−8 0.4339E−6

Iteration no. 3 3 8

CPU time (s) 22.2 27.0 70.7

8.6.1 Phase Shifter Model

A phase shifter model can be represented by an equivalent circuit, which is shown in
Figure 8.2(a). It consists of an admittance in series with an ideal transformer having
a complex turn ratio k∠𝜙.

(a)

(b)

i j

k∠ϕ Y′ij

Vi Vj

Ii Ij

i j

ΔPi+ jΔQi

Y′ij

ΔPj+ jΔQj

Pi+ jQi Pj+ jQj

Figure 8.2 Phase shifter model.
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The mathematical model of the phase shifter can be derived from Figure 8.2(a),
that is,

[
Ĩi

Ĩj

]
=

[
Y ′

ij + Yi −Y ′
ij

−Y ′
ij Y ′

ij + Yj

][
Ṽi

Ṽj

]
(8.160)

where

Yi = Y ′
ij

[
1
k2

− 1 +
(

1 − 1
k∠ (−𝜙)

) Vj

Vi

]
(8.161)

Yj = Y ′
ij

[(
1 − 1

k∠𝜙

)
Vi

Vj

]
(8.162)

It is seen from equation (8.160) that the mathematical model of the phase shifter
makes the Y bus unsymmetrical. To make the Y bus symmetrical, the phase shifter can
be simulated by installing additional injections at the buses. The additional injections
can be simplified as follows.

ΔPi = |Vi||Vj|B′
ij cos(𝜃i − 𝜃j) sin𝜙ij

ΔPj = −|Vi||Vj|B′
ij cos (𝜃i − 𝜃j) sin𝜙ij

ΔQi = |Vi||Vj|Bij sin(𝜃i − 𝜃j) sin𝜙ij

ΔQj = |Vi||Vj|B′
ij sin(𝜃i − 𝜃j) sin𝜙ij

where

Ii,Pi: current and real power flow at bus i
Ij,Pj: current and real power flow at bus j

Qi: reactive power at bus i
Qj: reactive power at bus j

Vi∠𝜃i: complex voltage at bus i
Vj∠𝜃j: complex voltage at bus j
k∠𝜙: complex turn ratio of the phase shifter

Y ′
ij = G′

ij + jB′
ij: series admittance of the line ij.

Therefore, the phase shifter model can be simulated by increasing the injections
at the terminal buses as shown in Figure 8.2(b).
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8.6.2 Rule-Based OPF with Phase Shifter Scheme

OPF Formulation with Phase Shifter
Objective Functions As a result of installation of the phase shifter, the system

will have lots of benefits such as overload release, system loss reduction, generation
cost reduction, generation adjustment reduction, and so on. All these benefits may be
selected as objective functions for OPF with a phase shifter. However, the primary
purpose of installing a phase shifter is to remove the line overload. Thus the min-
imal line overload is selected as the primary objective function. In addition, as the
adjustment numbers of phase shifters are limited in practical systems, the minimal
adjustment number of phase shifters is also selected as the objective function. Two
objective functions are given as follows.

(1) Minimal line overloads

min Fo =
NB∑

ij=1

(Pij(t) − Pijmax)2 (8.163)

where

Fo: the overload objective function
Pij(t): the overload flow on transmission line ij at time stage t;

Pijmax: transmission limit of line ij;
NB: set of overload lines.

(2) Minimal adjustment number of phase shifters

min F𝜙 =
NS∑

i=1

Wi𝜙i (8.164)

where

F𝜙: phase shifter adjustment objective function
𝜙i: the angle of the phase shifter transformer
Wi: priority coefficient of the phase shifter transformers
NS: set of phase shifter transformers.
NG: set of generators.

Constraints In addition to the general linear/nonlinear constraints, the con-
straints relating to phase shifter variables such as phase shifter angle and maximal
adjustment numbers should be included in the OPF formulation with phase shifter.
The candidate constraints are as follows:

Constraint 1: Real power flow equation

Constraint 2: Reactive power flow equation
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Constraint 3: Upper and lower limits of real power output of the generators

Constraint 4: Upper and lower limits of reactive power output of the generators

Constraint 5: Upper and lower limits of node voltages

Constraint 6: Available transfer capacity of the transmission lines

Constraint 7: Upper and lower limits of transformer taps

Constraint 8: Upper and lower limits of phase shifter taps

Constraint 9: Maximal adjustment times of phase shifters per day.

It is noted that constraints 8 and 9 are the phase shifter constraints that were used in
the rule-based search technique, and the limits of all control and state variables are
determined for the specific system under study.

The above-mentioned OPF model with phase shifter is a nonlinear mathemati-
cal programming problem. It can be reduced by an elimination procedure and solved
by the IQIP method, which was introduced in the previous section.

Rule-Based Scheme To determine the best location for installing the phase shifter,
sensitivity analysis is adopted. The formulation of sensitivity analysis of the objective
function with respect to the phase shifter variable can be expressed as follows.

SF−𝜙 =
𝜕Fo

𝜕𝜙i
=

Fo(0) − Fo(𝜙i)
|Δ𝜙i|

(8.165)

where

Fo(0): the total line overload before phase shifter i is installed
Fo(𝜙i): the total line overload after phase shifter i is installed.

In equation (8.165), the value of sensitivity SF−𝜙 will be greater than zero if
power violation is reduced by use of the phase shifter, that is, Fo(𝜙i) < Fo(0). Obvi-
ously, if phase shifter i is not helpful in alleviating line overload, Fo(𝜙i) ≥ Fo(0). In
this case, we define the value of the sensitivity SF−𝜙 = 0.

In the rule-based system, the following rules are defined.

Rule 1: If the system operates in the normal state without load change, then none of
the existing phase shifters will change tap.

Rule 2: If the system load increases or the system operates in contingency state, then
judge:
If no line overload appeared, then none of the existing phase shifters will
change tap.
If line overload occurred in system, then go to rule 3 to adjust the tap of
some phase shifters.

Rule 3: If the phase shifter leads to maximal overload reduce at time stage t, then
this phase shifter will be recommended at this time.
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Rule 4: If phase shifters i and j lead to same overload reduce at time stage t, then
check the other benefits:
If phase shifter i make less generation cost benefit than phase shifter j, then
phase shifter j will be recommended at this time.
If phase shifter i make less system loss benefit than phase shifter j, then
phase shifter j will be recommended at this time.

Rule 5: Phase shifter i is recommended and the line overloads are still exist, then the
next priority phase shifter in the rank will be joined to remove the violations
until no phase shifters are available.

Rule 6: If OPF suggests a solution, and RBS confirms that phase shifter constraints
are met, then the problem is solved at this time stage.

Rule 7: If RBS checks the OPF solution and the OPF solution violates the
phase shifter constraints, then freeze the corresponding tap of the phase
shifter.

Rule 8: If RBS checks the state of the phase shifters and phase shifter k has a
frozen tap, then phase shifter k will be out of service in the subsequent time
stages.

A phase shifter tap will be frozen when the tap number of the phase shifter at
time reaches its maximum. The IQIP algorithm then uses the fixed or scheduled tap
value for the phase shifter that is determined by the rule based engine. The solution
steps of the integrated algorithm for OPF with phase shifter are as follows.

Step 1: Assume several contingencies.

Step 2: OPF calculation without phase shifter for each given contingency from time
stage t (t = 1, first time stage).

Step 3: Judge whether the OPF is solvable. If the answer is “Yes,” there is no need
to use a phase shifter. If “No,” go to step 4.

Step 4: Contingency analysis through power flow calculation. Check the overload
state of lines.

Step 5: Conduct a sensitivity analysis for obtaining a list of phase shifter ranking
according to the amount of releasing the line overload for each phase shifter.
Then decide the corresponding weighting factor.

Step 6: OPF calculation with the available phase shifter.

Step 7: Use the rule based method to check the operation limitation of the phase
shifter. Calculate the operation times, NM𝜙i = NM𝜙i + 1, if the phase
shifter i is operated in this time stage.

Step 8: If NM𝛼i(t) = NM𝜙imax, freeze the corresponding taps of the phase shifter.
That is, this phase shifter will be out of service in subsequent time.

Step 9: Check the time stages. If t = tmax (e.g., 24 h), stop. Otherwise, t = t + 1 and
go to step 2.



8.6 OPF WITH PHASE SHIFTER 335

Finally, in the search technique, the phase shifters are adjusted sequentially and
their direction of adjustments are governed by the impact on the primary objective
function of minimal line overload. The engineering rules are such that the least num-
ber of phase shifters are adjusted at a time, provided that they have the greatest impact
in reducing the line flow overloads. The phase shifter constraints, which are handled
by the rule-based search technique, are adjusted to produce discrete settings and in
turn pass on to the IQIP module of the algorithm.

Example 8.3: The integrated scheme of OPF with phase shifter is tested on the
IEEE 30-bus system. The data and parameters of the 30-bus system are the same
as in the previous section, and the limits of the installed phase shifters were taken
as 10∘ [25].

The total system load of the IEEE 30-bus system is 283.4 MW. The correspond-
ing load-scaling factor (LSF) is 1.0. The daily load demands of the IEEE 30-bus
system are shown in Table 8.16. To determine the degree of line violations at the line
Li−j, the following performance index is defined [25].

PIij =
Pij − Pijmax

Pijmax
, ij ∈ NOL (8.166)

where

PIij: the performance index of line overloads
Pij: the overload flow on transmission line

NOL: the set of overloaded lines.

Through power flow analysis for each time stage, line overloads only appeared
at hours 8, 15, 16, 17, 18, and 19, which are peak load periods. The violation amounts
of line flow for each time stage are summarized in Table 8.17.

The line overloads will become more serious if system contingency scenarios
are considered. Therefore, OPF with phase shifter adjustment should be employed
for enhancing power system security.

TABLE 8.16 Daily Load Curve for IEEE 30-Bus System

Time (h) Load (LSF) Time Stage Load (LSF) Time Stage Load (LSF)

1 0.90 9 1.30 17 1.50

2 0.96 10 1.15 18 1.55

3 1.00 11 1.10 19 1.40

4 1.05 12 1.05 20 1.20

5 1.10 13 1.16 21 1.12

6 1.15 14 1.30 22 1.03

7 1.30 15 1.40 23 0.96

8 1.40 16 1.45 24 0.90
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TABLE 8.17 Total Power Flow Violation Without Contingency

Time

(h)

Overload

(MW)

Time

(h)

Overload

(MW)

Time

(h)

Overload

(MW)

1–7 0.00 15 5.12 18 13.08

8 5.12 16 6.78 19 5.12

9–14 0.00 17 9.62 20–24 0.00

TABLE 8.18 Summary of Contingency Analysis

Outage line L12−14 L10−21 L22−25 L24−27 L29−30

Overloaded lines L1−2

L6−8

L9−10

L9−11

L1−2

L6−8

L9−11

L10−20

L1−2

L6−8

L9−11

L10−20

L1−2

L6−8

L9−10

L9−11

L10−21

L1−2

L6−8

L9−10

L9−11

L27−30

Overloaded time
stage

T8 T7–9 T8 T8 T8

T15–T19 T14–T20 T15–T19 T15–T19 T15–T19

Total line MW
violation

50.68 102.76 52.73 57.18 50.53

For the purpose of simulation, the following line contingency scenarios are
given, that is, L12−14, L10−21, L22−25, L24−27, and L29−30.

Table 8.18 provides the summary of contingency analysis and shows the total
power violations for all time stages. It can be observed from Table 8.18 that the line
L10−21 outage is the most serious contingency case, where the total line violation is
107.26 MW.

Table 8.19 gives the details of contingency calculation under the peak load
(at hour 18). The calculation results show that although the contingency ranks for
different time stages are not totally the same, the selected worst contingency case is
the same, that is, the line L10−21 outage. The worst scenario for this example is that
the line L10−21 outage happens under peak load (at hour 18).

To determine the priority of the phase shifters, the sensitivity analysis of the
phase shifters is conducted under the peak load and the worst contingency cases. Sim-
ulation results show that system security will be greatly enhanced if the phase shifters
are installed at locations L1−3, L2−4, L2−6, L6−8, L10−22, L15−18, L24−25, respectively.

For the specified worst contingency, it can be seen from Table 8.20 that the best
three locations for installing phase shifters are L10−22, L15−18, L24−25.

Table 8.21 lists the results of phase shifter adjustments during the operation
period (24 h) based on OPF. Simulation results show that all the line overloads are
removed because of the use of the phase shifters.
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TABLE 8.19 Contingency Analysis Results at Peak Load Time Stage 18

Outage

Line

Overload

Line (MW)

Line Flow

Limit (MW)

Overload

Index (PI)

Power

Violation

Contingency

Ranking

L12−14 L1−2 130 0.144 33.63 4

L6−8 55 0.167

L9−10 65 0.042

L9−11 65 0.046

L10−21 L1−2 130 0.144 43.38 1

L6−8 55 0.176

L9−11 65 0.034

L10−20 32 0.390

L22−25 L1−2 130 0.144 31.665 5

L6−8 55 0.187

L9−11 65 0.021

L10−20 16 0.096

L24−27 L1−2 130 0.139 38.53 2

L6−8 55 0.135

L9−10 65 0.045

L9−11 65 0.063

L10−21 32 0.188

L29−30 L1−2 130 0.144 33.86 3

L6−8 55 0.167

L9−10 65 0.037

L9−11 65 0.027

L27−30 19 0.108

8.7 MULTIPLE OBJECTIVES OPF

The OPF problem may have many objectives, creating complications in the imple-
mentation because these objectives do not have a consistent goal to pursue in order
to reach the optimum solution. This section introduces the OPF problem, which is a
fully coupled active and reactive dispatch or combined active and reactive dispatch
(CARD). The purpose of the OPF is to achieve the overall objective of minimum
generation cost and to improve the distribution of reactive power and voltage, subject
to constraints that ensure system security. Security is defined as the maintenance of
individual circuit flows, generator real and reactive power output, and system voltages
within limits under normal system conditions and contingency cases. Five different
objective functions are considered [11]. They are minimization of generator fuel cost,
maximization of reactive power reserve margins, voltage maximization, avoidance
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TABLE 8.20 Ranking of Phase Shifter Locations Based on Sensitivity Analysis (LSF = 1.55,
Outage line L10−21)

Phase

Shifter

Location

(Lij)

Phase

Shifter

Angle

(deg.)

Over-Loaded

Lines

(Lij)

Line

Flow

Limit

(MW)

Performance

Indices

(PIij)

Sensitivity

values

Sij (MW/degree)

Phase

Shifter

Ranking

(Rkij)

L1−3 +5 L6−8 55 0.172 1.87 7

L9−11 65 0.026

L10−22 32 0.382

L6−8 +1 L1−2 130 0.145 2.30 5

L9−11 65 0.033

L10−22 32 0.383

L15−18 −3 L6−8 55 0.147 4.45 3

L9−11 65 0.007

L10−22 32 0.257

L2−4 +1 L1−2 130 0.125 1.99 6

L6−8 55 0.178

L9−11 65 0.039

L10−22 32 0.393

L10−22 +1 L6−8 55 0.160 15.5 1

L9−11 65 0.009

L10−20 16 0.055

L10−21 32 0.094

L2−6 +3 L6−8 55 0.169 3.15 4

L9−11 65 0.019

L10−22 32 0.383

L24−25 +3 L9−11 65 0.003 7.87 2

L24−27 32 0.040

of voltage collapse, and improvement in the ability of the system to maintain higher
system load level. The analytic hierarchical process (AHP) is pursued to handle these
objectives during the implementation of CARD.

8.7.1 Formulation of Combined Active and Reactive
Dispatch

Objective Functions Five objective functions that are used in CARD are as
follows [11,12].
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TABLE 8.21 Results of Phase Shifter Adjustments

Time

(h)

Phase Shifter Site

(Located at Line Lij)

Phase Shifter Angle

(degree)

Overload

(MW)

1–6 None – –

7 L10−22 +1 0.00

8 L10−22 +1 0.00

9 L10−22 +1 0.00

10–13 None – –

14 L10−22 +1 0.00

15 L10−22 +1 0.00

16 L10−22 +1 0.00

17 L24−25 +1 0.00

18 L10−22 +1 0.00

L24−25 +1 0.00

L15−18 –2 0.00

19 L10−22 +1 0.00

20 L10−22 +1 0.00

21–24 None None –

Minimization of Generation Fuel Costs Generally, the generation fuel cost
can be expressed as a quadratic function:

F1 =
∑

j∈NSTEP

∑

i∈NG

(aiP
2
ij + biPij + ci)𝜏j (8.167)

where

NG: the number of generators
NSTEP: the number of time steps

𝜏j: the approximate integration coefficients.

Linearizing equation (8.167), we get

ΔF1 =
∑

j∈NSTEP

∑

i∈NG

(2aiPij + bi)ΔPij𝜏j (8.168)

If the generation fuel costs are modeled by linear functions relating monetary units
to energy supplied, the following expression can be used.

ΔF1 =
∑

j∈NSTEP

∑

i∈NG

(ciΔPij) 𝜏j (8.169)



340 CHAPTER 8 OPTIMAL POWER FLOW

where

𝜏1 = 0.5T1

𝜏2 = 0.5 (T1 + T2)

…

𝜏NSTEP = 0.5 TNSTEP, and

Tj = duration of time stage j

The time factors 𝜏j correspond to the integration of fuel costs over the operation period
by means of the trapezoidal rule.

Maximization of Reactive Power Reserve Margins This objective aims
to maximize the reactive power reserve margins and seeks to distribute the reserve
among the generators and static VAR compensators (SVCs) in proportion to ratings.
It can be expressed as

F2 =
∑

j∈NSTEP

∑

i∈NG

(
Q2

ij

Qimax

)
(8.170)

Linearizing the above equation, we get

ΔF2 = 2
∑

j∈NSTEP

∑

i∈NG

(
Q0

ijΔQij

Qimax

)
(8.171)

Maximization of Load Voltage This objective aims to optimize the voltage
profile by maximizing the sum of the load voltage.

ΔF3 =
∑

j∈NSTEP

∑

i∈ND

ΔVij (8.172)

where ND is the number of loads.

Avoidance of Voltage Collapse This objective aims to optimize the voltage
profile by maximizing the voltage collapse proximity indicator for the whole system.
It can be expressed as

ΔF4 =
∑

j∈NSTEP

∑

k∈NCTG

Δ𝜆kj (8.173)

where 𝜆kj is a scalar (to be maximized) less than any bus voltage collapse proximity
indicator at time stage j, contingency k (k = 0, refer to the base case).
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Ability to Maintain Higher System Load Level This objective aims to allow
the generators to respond efficiently to system load changes by optimizing the ability
of the system to maintain higher system load level, meanwhile constraining genera-
tors within their reactive limits. It can be expressed as

ΔF5 =
∑

j∈NSTEP

∑

k∈NCTG

Δ𝛼kj (8.174)

where 𝛼kj is a system load increment (to be maximized) at time stage j, contingency
k.

The objective function of CARD can be written as

ΔF = w1ΔF1 + w2ΔF2 + w3ΔF3 + w4ΔF4 + w5ΔF5 (8.175)

where wi is the weighting coefficient of the ith objective function. The calculation of
wi will be discussed later.

Constraints At each time step, the following constraints are taken into account:

1. Active power constraints:

∘ The active power balance equation

∘ The generator active power upper and lower limits

∘ The generator active power reserve upper and lower limits group import and
export constraints

∘ The active power-reserve relationship constraints

∘ The system active power reserve constraint

∘ The upper and lower limits of line active power flow.

2. Reactive power constraints:

∘ The reactive power balance equation

∘ The generator reactive power upper and lower limits

∘ Network voltage limits

∘ The transformer tap changer ranges

∘ Q − VZ characteristics of SVCs

∘ The additional constraints aimed at avoiding voltage collapse

∘ The additional constraints aimed at improving the ability of the system to
maintain higher system load.

3. Constraints that are a combined function of active and reactive power:

∘ The generator capability chart limits (other than simple MW or MVAr limits)

∘ The branch current flow limits, modeled at the midpoint of the branch.

∘ The additional constraints aimed at improving the ability of the system to
maintain higher system load taking into account generator capability chart
limits.
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Some of the constraints are straightforward constraints (constraints regarding
system variables) and others are functional constraints that are stated as follows.

Group Limits Station limits and approximate network security limits may be
expressed by a number of group import and export constraints:

(
∑

i

Pij

)
− PDj local ≤ Pexp (8.176)

(
∑

i

Pij

)
− PDj local ≥ Pimp (8.177)

Writing the above equations as incremental form, we have

∑

i

ΔPij ≤ Pexp −
∑

i

Pij0 + PDj local (8.178)

∑

i

ΔPij ≥ Pimp −
∑

i

Pij0 + PDj local (8.179)

where PDj local is the local load demand within the group at time stage j.

Spinning Reserve Constraints The reserve available from a generator may
be modeled as a trapezoidal function of generation [11,12]. The allocation of the
corresponding independent variable ΔRij is then subject to

Rimin − Rij0 ≤ ΔRij ≤ Rimax − Rij0 (8.180)

ΔRij + ΔPij ≤ Pimax − Pij0 − Rij0 (8.181)
∑

gen

ΔRij ≥ Stotal −
∑

gen

Rij0 (8.182)

Operating Chart Limits for Generators The ability of generators to absorb
reactive power is generally limited by the machine minimum excitation limit. A fur-
ther limit is determined so as to provide an adequate margin of safety for the machine
thermal limit. A simplified generator capability chart can be defined in which the
leading and lagging limits of machine reactive output are expressed as a function of
the real power output. Using a trapezoidal approximation, this can be represented as

Pij +
(
𝛽i1

𝛼i1

)
Qij − 𝛽i1 ≤ 0 (8.183)

Pij +
(
𝛽i2

𝛼i2

)
Qij − 𝛽i2 ≤ 0 (8.184)
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Linearizing the above equations around the current operating point, we obtain

ΔPij +
(
𝛽i1

𝛼i1

)
ΔQij + Pij0 +

(
𝛽i1

𝛼i1

)
Qij0 − 𝛽i1 ≤ 0 (8.185a)

ΔPij +
(
𝛽i2

𝛼i2

)
ΔQij + Pij0 +

(
𝛽i2

𝛼i2

)
Qij0 − 𝛽i2 ≤ 0 (8.185b)

where 𝛼i1, 𝛼i2 are the intersections with the Q -axis, and 𝛽i1, 𝛽i2 are the intersection
with the P-axis.

Maintaining Higher System Load Constraints Every generator i should con-
tribute its share of reactive power output to meet a prospective increase in system
demand in such a way that the generator output does not exceed its reactive limits:

Qij +
(
𝛿Qij

𝛿𝛼j

)
𝛼j ≤ Qijmax (8.186)

When considering generators with active power control, the operating chart limits for
the generators are taken into account.

Linearizing equation (8.186) around the current operating point, we obtain

ΔQij +
(
𝛿Qij

𝛿𝛼j

)
Δ𝛼j ≤ Qijmax − Qij0 −

(
𝛿Qij

𝛿𝛼j

)
𝛼j0 (8.187)

where
𝛿Qij

𝛿𝛼j
represents the change in the reactive power output of generator i as a

fraction of the change in load demand at time stage j evaluated using a load flow
algorithm. 𝛼j represents the increase in system demand.

Avoidance of Voltage Collapse Constraints For a network with n buses,
Thevenin’s equivalent impedance looking into the port between bus i and ground
is Zii∠𝜃i, which equals the ith diagonal element of [Z] = [Y]−1. Therefore, for per-
missible power transfer to the load at bus i we must have Zi∕Zii > 1, where Zi∠𝛾i is
the impedance for load i (Zi = V2

i cos 𝛾i∕Pi).
The idea is to constrain the voltage collapse proximity indicators at the load

nodes in order to maintain an acceptable system voltage profile. This has been done
by finding a parameter greater than 1 at each time interval, such that the voltage col-
lapse proximity indicators at the load nodes specified by the user are greater than this
parameter. These parameters 𝜆j form part of the objective function. The correspond-
ing constraints can be written as

Zi∕Zii ≥ 𝜆2 (8.188)

Vi ≥ 𝜆
√

ZiiPi∕ cos 𝛾i (8.189)

Linearizing equation (8.189) around the current operating point, we obtain

ΔVij − Δ𝜆j

√
ZiiPi∕ cos 𝛾i ≥ −Vij0 + Δ𝜆j0

√
ZiiPi∕ cos 𝛾i (8.190)
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Static VAR Compensators SVCs are high-speed variable reactive power
sources and sinks connected to the system. Their electrical characteristic is such that
MVAR output (or absorption) is related to voltage in a linear manner; normally, for
a small change in voltage, the compensator will go from zero to full output. This is
known as the slope. Thus the constraint of SVCs can be modeled as

Vijmin ≤ Vij − aiQij ≤ Vijmax (8.191)

Qijmin ≤ Qij ≤ Qijmax (8.192)

The linearized incremental model is

Vijmin − Vij0 + aiQij0 ≤ ΔVij − aiΔQij ≤ Vijmax − Vij0 + aiQij0 (8.193)

where ai is the slope.

Dynamic Constraints In the dynamic dispatch case, additional generation
rate limit constraints can be considered:

−PrdiTj ≤ Pij − Pi(j−1) ≤ PruiTj (8.194)

The linearized incremental form of the above equation is

−PrdiTj ≤ Pij0 + ΔPij − Pi(j−1)0 + ΔPi(j−1) ≤ PruiTj (8.195)

where, Prdi, Prui are the vector limits for decreasing and increasing output, respec-
tively, and Tj is the length of the time step.

For every contingency at every time step, the constraints regarding the slack
bus will be included in addition to the constraints for the normal case.

8.7.2 Solution Algorithm

AHP Model of CARD Obviously, the mathematical model of CARD mentioned in
Section 8.7.1 is a linear model based on a multi-objective function. It is not appropri-
ate to use an equal weighting coefficient for the various kinds of objectives in (8.175)
because the importance of these objectives is different in a practical power system.
Therefore, the weighting coefficients of the various objective functions in the CARD
model must be determined before CARD can be executed. However, it is very dif-
ficult to decide precisely the weighting coefficient of each objective in the CARD
model unless only one or two objectives are considered. There are two reasons for
this: one is that the objectives are interrelated and interact with each other. Another
reason is that the relative importance of these objectives is not the same, not only for
different power systems but also within the same power system in different circum-
stances. An analytic hierarchical process was recommended to solve this challenging
problem [11].

The principle and method of the AHP were introduced in Chapter 7. AHP trans-
forms the complex problem into rank calculation within the hierarchy structure. In the
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ranking computation, the ranking in each hierarchy can also be converted into the
judgment and comparison of a series of pairs of factors. The judgment matrix can
be formed according to the quantified judgment of pairs of factors using some ratio
scale method. Consequently, the value of the weighting coefficients of all factors can
be obtained through calculating the maximal eigenvalue and the corresponding eigen-
vector of the judgment matrix. The judgment matrix A of the CARD hierarchy model
can be written as follows:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1
W1

W2

W1

W3

W1

W4

W1

W5

W2

W1
1

W2

W3

W2

W4

W2

W5

W3

W1

W3

W2
1

W3

W4

W3

W5

W4

W1

W4

W2

W4

W3
1

W4

W5

W5

W1

W5

W2

W5

W3

W5

W4
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(8.196)

where Wi is the weighting coefficient of the ith sub-objective in the hierarchy model
of CARD.

The AHP algorithm and the selection of the judgment matrix can be found in
Chapter 7.

Solution Algorithm The solution algorithm adopted for the AHP-based CARD
may be described as follows:

1. Either, perform a merit order dispatch, or use an existing active power gener-
ation pattern provided by the user to satisfy active power demand. The same
active generation pattern applies for contingency cases.

2. Perform a Newton–Raphson power flow for normal and defined contingency
cases at every time step. If power flow analysis only is required, then stop;
otherwise proceed to step (3).

3. For every contingency case, at every time step, include a new set of variables
and constraints relating that case to the variables and constraints of the intact
case.

4. Set up a hierarchy model for CARD.

5. Form a judgment matrix according to the experiences and needs of the user.

6. Perform the AHP calculation to obtain the optimum weighting coefficients of
the various objective functions.

7. Linearize the objective function and constraints around the operating point.
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8. Execute the LP algorithm (sparse dual revised simplex method with relaxation)
to obtain the optimum state of the linearized system.

9. Apply constraint limit squeezing automatically, or as necessary, depending on
the option to be selected.

10. Iterate between LP and power flow until the system converges.

The AHP-based CARD algorithm is designed to satisfy the following conver-
gence criteria simultaneously:

• The consistency of the weighting coefficients is satisfactory.

• No violation of constraint limit occurs.

• Changes in control variables over two consecutive iterations are within speci-
fied tolerances.

• Changes in objective function value over two consecutive iterations are within
specified tolerance.

8.8 PARTICLE SWARM OPTIMIZATION FOR OPF

As already discussed, various traditional optimization techniques were developed
to solve the OPF problem. Some of these techniques have excellent convergence
characteristics and some are widely used in the industry. It is noted that each tech-
nique may be tailored to suit a specific OPF optimization problem on the basis of
the mathematical nature of the objectives and/or constraints. In addition, some of
these techniques might converge to local solutions instead of global ones if the ini-
tial guess happens to be in the neighborhood of a local solution. This occurs as a
result of using Kuhn–Tucker conditions as termination criteria to detect stationary
points. This practice is commonly used in most commercial nonlinear optimization
programs [70].

In recent years, a new optimization method—PSO is applied to solve OPF
problem [59–64]. This section introduces several major PSO methods that are used
in OPF.

8.8.1 Mathematical Model

Generally, the following OPF model is used in various PSO approaches. The objective
function may be one of following.

(1) Fuel cost minimization

min Fg =
NG∑

i=1

(aiP
2
gi + biPgi + ci) (8.197)

(2) Fuel emission minimization

min Eg =
NG∑

i=1

(𝛼iP
2
gi + 𝛽iPgi + 𝛾i) (8.198)
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(3) Loss minimization

min PL =
NL∑

l=1

Pl (8.199)

(4) Voltage deviation minimization at load buses

min VD =
ND∑

i=1

(Vi − Vsp
i )2 (8.200)

where

Vsp
i : the prespecified reference value at load bus i

Pgi: the real power generation at generator i
PL: the system real power loss
Pl: the real power loss on line l

Pg slack: the real power of the slack generator
ai, bi, ci: the coefficients of generator fuel cost
𝛼i, 𝛽i , 𝛾i: the coefficients of generator emission function

VD: the total voltage deviation at load buses
NG: the number of generating units
ND: the number of load buses
NL: the number of lines

The constraints are as follows.

Pgi −Pdi − fPi(V , 𝜃,T) = 0 (8.201)

Qgi −Qdi − fQi(V , 𝜃,T) = 0 (8.202)

Pgimin ≤ Pgi ≤ Pgimax, i ∈ NG (8.203)

Qgimin ≤ Qgi ≤ Qgimax, i ∈ NG (8.204)

Qcimin ≤ Qci ≤ Qcimax, i ∈ NC (8.205)

Vgimin ≤ Vgi ≤ Vgimax, i ∈ NG (8.206)

Vdimin ≤ Vdi ≤ Vdimax, i ∈ ND (8.207)

Timin ≤ Ti ≤ Timax, i ∈ NT (8.208)

SLj ≤ SLjmax, j ∈ NL (8.209)



348 CHAPTER 8 OPTIMAL POWER FLOW

where

SLj: the transmission line loadings
Sljmax: the limit of transmission line loadings

Qdi: Switchable VAR compensations at bus i
NC: the number of switchable VAR sources
Vgi: the voltage magnitude at generator bus i.

The subscripts “min” and “max” stand for the lower and upper bounds of a
constraint, respectively.

Several PSO methods can be used to solve the above mentioned OPF problem,
which are introduced in the next section.

8.8.2 PSO Methods [59,71–75]

The PSO introduced in Chapter 7 has been used to solve the unit commitment. Here,
we focus on applying PSO methods to solve the OPF problem.

Conventional Particle Swarm Optimization In PSO algorithms, each particle
moves with an adaptable velocity within the regions of decision space and retains
a memory of the best position it ever encountered. The best position ever attained
by each particle of the swarm is communicated to all other particles. The conven-
tional PSO assumes an n-dimensional search space S ⊂ Rn, where n is the number of
decision variables in the optimization problem, and a swarm consisting of N particles.

In PSO, a number of particles form a swarm that evolve or fly throughout the
problem hyperspace to search for optimal or near optimal solution. The coordinates
of each particle represent a possible solution with two vectors associated with it,
the position X and velocity V vectors. During their search, particles interact with
each other in a certain way to optimize their search experience. There are different
variants of the particle swarm paradigms but the most general one is the Pgb model
where the whole population is considered as a single neighborhood throughout the
optimization process. In each iteration, the particle with the best solution shares its
position coordinates (Pgb) information with the rest of the swarm.

Thus, the variables are defined as follows.
The position of the ith particle at time t is an n-dimensional vector denoted by

Xi(t) = (xi,1, xi,2, … , xi,n) ∈ S (8.210)

The velocity of this particle at time t is also an n-dimensional vector denoted
by

Vi(t) = (vi,1, vi,2, … , vi,n) ∈ S (8.211)
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The best previous position of the ith particle at time t is a point in S, which is
denoted by

Pi = (pi,1, pi,2, … , pi,n) ∈ S (8.212)

The global best position ever attained among all particles is a point in S, which
is denoted by

Pgb = (pgb,1, pgb,2, … , pgb,n) ∈ S (8.213)

Then, each particle updates its coordinates on the basis of its own best search
experience (Pi) and Pgb according to the following velocity and position update
equations.

Vt+1
i = wVt

i + C1 × r1 × (Pi − Xt
i ) + C2 × r2 × (Pgb − Xt

i ) (8.214)

Xt+1
i = Xt

i + Vt+1
i (8.215)

where

w: inertia weight
C1,C2: acceleration coefficients

r1, r2: two separately generated uniformly distributed random numbers in the range
[0,1] added in the model to introduce stochastic nature.

The inertia weighting factor for the velocity of a particle is defined by the iner-
tial weight approach

wt = wmax −
wmax − wmin

tmax
× t (8.216)

where, tmax the maximum number of iterations, and t is the current number of iter-
ations. wmax and wmin are the upper and lower limits of the inertia weighting factor,
respectively.

Moreover, in order to guarantee the convergence of the PSO algorithm, the
constriction factor k is defined as

k = 2

|2 − 𝜑 −
√
𝜑2 − 4𝜑|

(8.217)

where 𝜑 = C1 + C2, 𝜑 ≥ 4.
In this constriction factor approach (CFA), the basic system equations of the

PSO (8.214), (8.215) can be considered as difference equations. Therefore, the system
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dynamics, namely, the search procedure, can be analyzed by the eigenvalue analysis
and can be controlled so that the system behavior has the following features:

(1) The system converges.

(2) The system can search different regions efficiently.

In the CFA, 𝜑 must be greater than 4.0 to guarantee stability. However, as
𝜑 increases, the factor k decreases and diversification is reduced, yielding slower
response. Therefore, we choose 4.1 as the smallest 𝜑 that guarantees stability but
yields the fastest response. It has been observed that 4.1 ≤ 𝜑 ≤ 4.2 leads to good
solutions [59].

Passive Congregation–Based PSO According to the local-neighborhood vari-
ant of the PSO algorithm (L-PSO) [75], each particle moves toward its best pre-
vious position and toward the best particle in its restricted neighborhood. As the
local-neighborhood leader of a particle, its nearest particle (in terms of distance in
the decision space) with the better evaluation is considered. Since the CFA gener-
ates higher-quality solutions in the basic PSO, some enhancements are presented.
Specifically, Parrish and Hammer [76] have proposed mathematical models to show
how these forces organize the swarms. These can be classified in two categories: the
aggregation and the congregation forces.

Aggregation refers to the swarming of particles by nonsocial, external physical
forces. There are two types of aggregation: passive aggregation and active aggrega-
tion. Passive aggregation is a swarming by physical forces, such as the water currents
in the open sea group, the plankton [76].

Congregation, on the other hand, is a swarming by social forces, which is the
source of attraction of a particle to others and is classified in two types: social and
passive. Social congregation usually happens when the swarm’s fidelity is high, such
as genetic relation. Social congregation necessitates active information transfer, for
example, ants that have high genetic relation use antennal contacts to transfer infor-
mation about location of resources.

According to references [59,75,76], passive congregation is an attraction of a
particle to other swarm members, where there is no display of social behavior because
particles need to monitor both environment and their immediate surroundings such as
the position and the speed of neighbors. Such information transfer can be employed
in the passive congregation. A hybrid L-PSO with a passive congregation operator
(PAC) is called an LPAC PSO [59]. Moreover, the global variant–based passive con-
gregation PSO (GPAC) can also be enhanced with the CFA.

The swarms of the enhanced GPAC and LPAC are manipulated by the following
velocity update.

Vt+1
i = k [wtVt

i + C1 × r1 × (Pi − Xt
i ) + C2 × r2 × (Pk − Xt

i ) + C3 × r3 × (Pr − Xt
i )]

i = 1, 2, … ,N (8.218)
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where

C1,C2,C3: the cognitive, social, and passive congregation parameters, respectively
Pi: the best previous position of the ith particle
Pk: either the global best position ever attained among all particles in the

case of enhanced GPAC or the local best position of particle i, namely,
the position of its nearest particle k with better evaluation in the case of
LPAC

Pi: the position of passive congregator (position of a randomly chosen
particle r).

The positions are updated using the same equation (8.215). The positions of
the ith particle in the n-dimensional decision space are limited by the minimum and
maximum positions expressed by vectors

Ximin ≤ Xi ≤ Ximax (8.219)

The velocities of the ith particle in the n-dimensional decision space are limited
by

Vimax ≤ Vi ≤ Vimax (8.220)

where the maximum velocity in the mth dimension of the search space is computed
as

Vm
imax =

sm
imax − sm

imin
Nr

, m = 1, 2, … , n (8.221)

Where, sm
imax, and sm

imin are the limits in the m-dimension of the search space. The
maximum velocities are constricted in small intervals in the search space for better
balance between exploration and exploitation. Nr is a chosen number of search inter-
vals for the particles. It is an important parameter in the enhanced GPAC and LPAC
PSO algorithms. A small Nr facilitates global exploration (searching new areas),
while a large one tends to facilitate local exploration. A suitable value for the Nr
usually provides balance between global and local exploration abilities and conse-
quently results in a reduction of the number of iterations required to locate the opti-
mum solution. The basic steps of the enhanced GPAC and LPAC are listed in the
following [59].

Step (1) Generate a swarm of N particles with uniform probability distribution, ini-
tial positions Xi(0), and velocities Vi(0), (i = 1, 2, … , N), and initialize
the random parameters. Evaluate each particle i using objective function f
(e.g., to be minimized).

Step (2) For each particle i, calculate the distance dij between its position and the
positions of all other particles:

dij = ‖Xi − Xj‖(i = 1, 2, … ,N, i ≠ j)

where Xi and Xj are the position vectors of particle i and particle j, respec-
tively.
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Step (3) For each particle i, determine the nearest particle, particle k, with better
evaluation than its own, that is, dik = minj(dij), fk ≤ fj and set it as the leader
of particle i.
In the case of enhanced GPAC, particle k is considered as the global best.

Step (4) For each particle i, randomly select a particle r and set it as passive con-
gregator of particle i.

Step (5) Update the velocities and positions of particles using (8.218) and (8.215),
respectively.

Step (6) Check if the limits of positions in equation (8.219) and velocities in
equations (8.220) and (8.221) are enforced. If the limits are violated, then
they are replaced by the respective limits.

Step (7) Evaluate each particle using the objective function f . The objective func-
tion f is calculated by running a power flow. In the case where for a particle
no power flow solution exists, an error is returned and the particle retains
its previous achievement.

Step (8) If the stopping criteria are not satisfied, go to Step (2).

The enhanced GPAC and LPAC PSO algorithms will be terminated if one of the
following criteria is satisfied: (i) no improvement of the global best in the last 30 gen-
erations is observed, or (ii) the maximum number of allowed iterations is achieved.

Finally, we can indicate that the last term of equation (8.218), added in the con-
ventional PSO velocity update equation (8.214), displays the information transferred
via passive congregation of particle with a randomly selected particle r. This pas-
sive congregation operator can be regarded as a stochastic variable that introduces
perturbations to the search process. For each particle i, the perturbation is propor-
tional to the distance between itself and a randomly selected particle r rather than an
external random number, namely, the turbulence factor introduced in [77]. The CFA
helps the convergence of algorithm more than the turbulence factor because (i) in the
early stages of the process, where distance between particles is large, the turbulence
factor should be large, avoiding premature convergence; and (ii) in the last stages of
the process, as the distance between particles becomes smaller, the turbulence factor
should be smaller too, enabling the swarm to converge in the global optimum [77]
Therefore, LPAC is more capable of probing the decision space, avoiding subopti-
mums and improving information propagation in the swarm than other conventional
PSO algorithms.

Coordinated Aggregation Based PSO The coordinated aggregation is a com-
pletely new operator introduced in the swarm, where each particle moves considering
only the positions of particles with better achievements than its own, with the excep-
tion of the best particle, which moves randomly. The coordinated aggregation can be
considered as a type of active aggregation where particles are attracted only by places
with the most food.

Let Xi(t) and Xj(t) be the positions of particle i and particle j at iterative cycle
t, respectively. The differences between the positions of particles i and j, Xi(t) − Xj(t)
are defined as coordinators of particle velocity. The ratios of differences between the
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achievement of particle i, A(Xi) and the better achievements by particles j, A(Xj) to
the sum of all these differences are called the achievement’s weighting factors 𝜔t

ij

𝜔ij =
A(Xj) − A(Xi)∑
lA(Xl) − A(Xi)

, j, l ∈ Ωi (8.222)

where Ωi represents the set of particles j with better achievement than particle i.
The velocity of particle is adapted by means of coordinators multiplied by

weighting factors.
The steps of the coordinated aggregation–based PSO (CAPSO) algorithm are

listed below [59].

Step (1) Initialization: Generate N particles. For each particle i, choose the initial
position Xi(0) randomly. Calculate its initial achievement A(Xi(0)) using
the objective function f and find the maximum Ag(0) = maxi A(Xi(0))
called the global best achievement. Then, particles update their positions
in accordance with the following steps.

Step (2) Swarm’s manipulation: The particles, except the best of them, regulate
their velocities in accordance with the equation

Vt+1
i = wtVt

i +
∑

j

rj𝜔
t
ij(X

t
j − Xt

i ) j ∈ Ωi, i = 1, 2, … ,N (8.223)

Where,𝜔t
ij are the achievement’s weighting factors; and the inertia weight-

ing factor wt is defined by equation (8.216). The role of the inertia weight-
ing factor is considered critical for the CAPSO convergence behavior. It
is employed to control the influence of the previous history of the veloci-
ties on the current one. Accordingly, the inertia weighting function regu-
lates the trade-off between the global and local exploration abilities of the
swarms.

Step (3) Best particle’s manipulation (craziness): The best particle in the swarm
updates its velocity using a random coordinator calculated between its
position and the position of a randomly chosen particle in the swarm. The
manipulation of the best particle seems like the crazy agents or the turbu-
lence factor introduced in [77] and helps the swarm escape from the local
minima.

Step (4) Check if the limits of velocities in equations (8.220) and (8.221) are
enforced. If the limits are violated, then they are replaced by the respective
limits.

Step (5) Position update: The positions of particles are updated using equation
(8.215). Check if the limits of positions in equation (8.219) are
enforced.

Step (6) Evaluation: Calculate the achievement A(Xi(t)) of each particle using the
objective function f . The achievement is calculated by running a power
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flow. In the case where, for a particle, no power flow solution exists, an
error is returned and the particle retains its previous achievement.

Step (7) If the stopping criteria are not satisfied, go to Step (2). The CAPSO
algorithm will be terminated if no more improvement of the global best
achievement in the last 30 generations is observed or the maximum
number of allowed iterations is achieved.

Step (8) Global optimal solution: Choose the optimal solution as the global best
achievement.

8.8.3 OPF Considering Valve Loading Effects

Generally, the generator fuel cost function in the OPF model ignores the valve point
loading that introduces rippling effects to the actual input–output curve. The overall
fuel cost function for a number of thermal generating units are modeled by a quadratic
function, which is shown in equation (8.197). The valve effects can be expressed as
a sine function [49] and added to equation (8.197), that is,

min Fg =
NG∑

i=1

[aiP
2
gi + biPgi + ci + |ei sin(fi(Pgimin − Pgi))|] (8.224)

This more accurate modeling adds more challenges to most derivative-based opti-
mization algorithms in finding the global solution because the objective is no longer
convex nor differentiable everywhere.

A hybrid particle swarm optimization (HPSO) approach can be used to
solve this problem [64]. This approach combines the PSO technique with the
Newton–Raphson based power flow program in which the former technique is
used as a global optimizer to find the best combinations of the mixed-type control
variables, while the latter serves as a minimizer to reduce the nonlinear power flow
equations mismatch. The Newton–Raphson method used in this implementation is
the one with the full Jacobian evaluated and updated at each iteration. The HPSO
utilizes a population of particles or possible solutions to explore the feasible solution
hyperspace in its search for an optimal solution. Each particle’s position is used as
a feasible initial guess for the power flow subroutine. This mechanism of multiple
initial solutions can provide better probability of detecting an optimal solution to
the power flow equations that would globally minimize a given objective function.
The importance of such hybridization is signified by realizing the fact that in a
transmission system, the solution to the power flow equation is not unique, that is,
multiple solutions within the stability margins may exist and only one can globally
optimize a certain objective.

The same OPF constraints as in equations (8.201)–(8.209) are used here.
Within the context of PSO applications to the OPF, inequality constraints that
represent the permissible operating range of each optimization variable are typically
handled in the following two ways [59–64]:

(1) Set to limit approach (SLA): If any optimization variable exceeds its upper or
lower bound, the value of the variable is set to the violated limit. This resembles
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the idea found in operating all generating units at equal incremental principle
to reach economic dispatch, which was described in Chapter 4. It is impor-
tant to note that PSO has some randomness in the update equation that might
cause several variables to exceed their limits during the optimization process.
Thus, this approach may fix multiple optimization variables to their operat-
ing limits for which a global solution may not be reached. Also this approach
fails to utilize the memory element that each particle has once it exceeds its
boundaries.

(2) Penalty factor: The other approach is to use penalty factors to incorporate the
inequality constraints with the objective, which we used in Section 8.2 in this
chapter. The main problem with this approach is introducing new parameters
that need to be properly selected in order to reach acceptable PSO perfor-
mance. Values of the penalty factors are problem dependent; thus, this approach
requires proper adjustments of the penalty factors in addition to tuning the PSO
parameters.

Another approach is combining these two methods to handle the inequality
constraints [64]. It combines the ideas of preserving feasible solution and infeasible
solution rejection methods to retain only feasible solutions throughout the optimiza-
tion process without the need to introduce penalty factors in the objective function.
In most of the evolutionary computation optimization methods that employ the infea-
sible solution rejection method to handle constraints, any solution candidate among
the population is randomly re-initialized once it crosses the boundaries of the feasi-
ble region. The majority of methods do not have memory elements associated with
each candidate in the population. However, in the case of HPSO, each particle has
a memory element (Pi) that recalls the best-visited location through its own flying
experience to search for the optimal solution and may use this information once it
violates the problem boundaries. Thus, this hybridization makes use of the memory
element that each particle has to maintain its feasibility status. This restoration oper-
ation keeps the infeasible particle alive as a possible candidate that could locate the
optimal solution instead of a complete rejection that eliminates its potential in the
swarm.

For the control variables in equations (8.201)–(8.209), there are two types:
continuous and discrete. The continuous variables are initialized with uniformly dis-
tributed pseudorandom numbers that take the range of these variables, for example,
Pgi = random[Pgimin, Pgimax] and Vi = random[Vimin, Vimax].

However, in the case of the discrete variables, an additional operator is needed
to account for the distinct nature of these variables. A rounding operator is included
to ensure that each discrete variable is rounded to its nearest decimal integer value
that represents the physical operating constraint of a given variable. Each transformer
tap setting is rounded to its nearest decimal integer value of 0.01 by utilizing the
rounding operator as: round (random [Timin,Timax], 0.01). The same principle applies
to the discrete reactive injection as a result of capacitor banks with the difference
being the step size, that is, round (random [Qcimin,Qcimax], 1). This ensures that the
fitness of each solution is measured only when all elements of the solution vector
are properly represented to reflect the real world nature of each variable. Since the
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TABLE 8.22 Data of the Generator for IEEE 30-Bus System

Unit 1 2 3 4 5 6

Bus no. 1 2 22 27 23 13

A 0.02 0.0175 0.0625 0.00834 0.025 0.025

B 2 1.75 1 3.25 3 3

C 0 0 0 0 0 0

E 300 200 150 100 200 200

F 0.2 0.22 0.42 0.3 0.35 0.35

Pmin (MW) 0 0 0 0 0 0

Pmax (MW) 80 80 50 55 30 40

Qmin (Mvar) −20 −20 −15 −15 −10 −15

Qmax (Mvar) 150 60 62.5 48.7 40 44.7

particle update equations have some uniformly distributed random operators built
into them and because of the addition of two different types of vectors, the rounding
operator is called again after each update to act only on the discrete variables as
round (Ti, 0.01) and round (Qci, 1). Once the rounding process is over, all solution
elements go through a feasibility check. This simple rounding method guarantees
that power flow calculations and fitness measurements are obtained only when all
problem variables are properly addressed and their nature types are accounted for.

Example 8.4: The example is extracted from [64]. The test system is the IEEE
30-bus system with modified unit data and bus data, which are shown in Tables 8.22
and 8.23. The line data are the same as in Table 5.6 in Chapter 5. There are two capaci-
tors banks installed at bus 5 and bus 24 with ratings of 19 and 4 MVAR, respectively.
A series of experiments were conducted to properly tune the HPSO parameters to
suit the targeted OPF problem. The most noticeable observation from this ground-
work is that the optimal settings for C1 and C2 are found to be 1.0. These values are
relatively small as most of the values reported in the previously related work are in
the range 1.4–2 [59–63]. The best settings for the number of particles and particle’s
maximum velocity (Vmax) are 20 and 0.1 respectively. The inertia weight is kept fixed
throughout the simulation process between the upper and lower bounds of 0.9 and 0.4,
respectively.

The following three cases are considered.

Case 1: Considering only the continuous control variables. The objective is to min-
imize the generator fuel costs, which are the quadratic fuel cost functions.
The OPF results solved by HPSO are listed in Table 8.24. For compar-
ison, the OPF results solved by sequential quadratic programming (SQP)
are also listed in Table 8.24. The comparison of the results shows that HPSO
achieved better solution when only continuous optimization variables are
used.
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TABLE 8.23 Bus Data for IEEE 30-Bus System (p.u.)

Bus No. PD QD Vmin Vmax Bus no. PD QD Vmin Vmax

1 0.000 0.000 0.95 1.1 16 0.035 0.016 0.90 1.05

2 0.217 0.127 0.95 1.1 17 0.090 0.058 0.90 1.05

3 0.024 0.012 0.90 1.05 18 0.032 0.009 0.90 1.05

4 0.076 0.016 0.90 1.05 19 0.095 0.034 0.90 1.05

5 0.942 0.190 0.90 1.05 20 0.022 0.007 0.90 1.05

6 0.000 0.000 0.90 1.05 21 0.175 0.112 0.90 1.05

7 0.228 0.109 0.90 1.05 22 0.000 0.000 0.95 1.1

8 0.300 0.300 0.90 1.05 23 0.032 0.016 0.95 1.1

9 0.000 0.000 0.90 1.05 24 0.087 0.067 0.90 1.05

10 0.058 0.020 0.90 1.05 25 0.000 0.000 0.90 1.05

11 0.000 0.000 0.90 1.05 26 0.035 0.023 0.90 1.05

12 0.112 0.075 0.90 1.05 27 0.000 0.000 0.95 1.1

13 0.000 0.000 0.95 1.1 28 0.000 0.000 0.90 1.05

14 0.062 0.016 0.90 1.05 29 0.024 0.009 0.90 1.05

15 0.082 0.025 0.90 1.05 30 0.106 0.019 0.90 1.05

TABLE 8.24 OPF Results of IEEE 30-Bus System for Case 1 and 2

Case Case 1 Case 1 Case 2

Method SQP PSO PSO

Pg1 41.51 43.611 42.180

Pg2 55.4 58.060 57.013

Pg13 16.2 17.555 17.305

Pg22 22.74 22.998 22.025

Pg23 16.27 17.056 17.872

Pg27 39.91 32.567 35.060

Vg1 0.982 1.000 1.000

Vg2 0.979 1.000 0.999

Vg13 1.064 1.059 1.061

Vg22 1.016 1.012 1.071

Vg23 1.026 1.021 1.076

Vg27 1.069 1.037 1.10

Qc5 – – 4.000

Qc24 – – 8.000

T6−9 – – 0.900

T6−10 – – 0.950

T4−12 – – 0.930

T27−28 – – 0.950

Total cost ($/h) 576.892 575.411 574.143

Total losses (MW) 2.860 2.647 2.255
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Case 2: Considering both the continuous and discrete control variables. The test
system is modified by introducing four tap-changing transformers between
buses 6–9, 6–10, 4–12, and 27–28. The operating range of all transform-
ers is set between 0.9–1.05 with a discrete step size of 0.01. The capacitor
banks at buses 5 and 24 are also considered as new discrete control variables
with a range of 0–40 MVAR and a step size of 1. With this modification,
the problem now has both continuous and discrete control variables that can
be troublesome to most conventional optimization methods. The results are
shown in the last column in Table 8.24.

Case 3: Considering the valve loading effects. The fuel cost function is aug-
mented with an additional sine term as in equation (8.224). HPSO is
applied to solve this kind of optimization problems. Table 8.25 lists the
results obtained using different swarm sizes. Increasing the swarm’s size
improved the HPSO performance in achieving better results at the expense
of computational time.

TABLE 8.25 OPF Results of IEEE 30-Bus System for Case 3

Swarm Size 20 30 100

Method PSO PSO PSO

Pg1 47.068 47.059 47.126

Pg2 42.911 42.359 71.366

Pg13 8.790 35.902 8.972

Pg22 44.728 37.359 37.391

Pg23 8.983 8.826 8.993

Pg27 42.044 20.959 20.777

Vg1 1.000 1.000 1.000

Vg2 1.099 1.009 1.097

Vg13 1.091 1.017 1.037

Vg22 1.087 1.082 0.982

Vg23 1.048 1.057 1.048

Vg27 1.029 1.080 1.088

Qc5 33.000 16.000 29.000

Qc24 35.000 15.000 12.000

T6−9 1.040 1.010 1.020

T6−10 1.010 1.000 0.950

T4−12 1.040 0.990 1.020

T27−28 0.990 1.030 1.040

Total cost ($/h) 658.416 645.333 615.250
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PROBLEMS AND EXERCISES

1. What is OPF?

2. State several major constraints used in OPF calculation.

3. What is CARD?

4. What is the difference between OPF and SCED?

5. Compare QIP-based OPF with general IP-based OPF

6. What is the role of the phase shifter in OPF calculation?

7. State the differences of several OPF methods: Newton method, gradient method, linear
programming, IP, and PSO.

8. State “True” or “False”

8.1 OPF generally includes both real power optimization and reactive power optimiza-
tion.

8.2 OPF is nonlinear model, and it cannot be solved by LP method.

8.3 OPF is an economic dispatch method.

8.4 Reactive power optimization is a simplified OPF.

8.5 Both OPF and ED must consider reactive power and voltage constraints.

8.6 All IP methods can only solve linearized OPF.

9. A 5-bus system is shown in Figure 8.1. The data of generators are shown in Table 8.26.
The generator fuel cost is a quadratic function, that is, fi = aiP

2
Gi + biPGi + ci.

TABLE 8.26 Data of Generators

Unit No. ai bi ci PGimin PGimax QGimax QGimax

1 46.2 360 60 2.0 3.5 1.5 2.5

2 39.0 380 60 4.0 6.0 1.0 2.0

The other data and parameters are shown in Figure 8.1, except for the load data, which
are

SD3 = 3.5 + j1.1, SD4 = 2.1 + j1.0, SD5 = 1.5 + j0.6

Use the Newton method to solve the OPF.

10. The system and the corresponding data are the same as above. Use the gradient method
to solve the OPF.
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C H A P T E R 9
STEADY-STATE SECURITY
REGIONS

Steady-state security region analysis is important in power system operation. This
chapter presents the concept and definition of the security region, and introduces sev-
eral major methods used in steady-state security region analysis: the security corridor,
the traditional expansion method, the enhanced expansion method, linear program-
ming, and the fuzzy set theory.

9.1 INTRODUCTION

In the steady state, a power system is designed by the so-called power flow equations
or the steady-state network relationships. Given a set of power injections (generators,
loads), the power flow equations may be solved to obtain the operation point (volt-
ages, angles). Therefore, a lot of power flow calculations are needed in the traditional
steady-state security analysis, and the corresponding amount of computations is very
huge. A method of steady-state security analysis—“steady-state security regions”
has been attracting a lot of attention over the last decades [1–14]. The main idea of
security regions is to obtain a set of security injections explicitly so that for secu-
rity assessment one need only check whether a given injection vector lies within the
security region. By doing so, the solution of power flow equations can be avoided.

The approach for steady-state security regions of power systems was first
proposed by Hnyilicza et al. in 1975 [1]. Fischl et al. developed methods to identify
steady-state security regions [2,3]. The idea of steady-state security regions was
expanded by Banakar and Galiana, who suggest a method to construct the so-called
“security corridors” for security assessment [5]. The previous security region,
which was formed by using the active constraints, was implicit and there was
difficulty in using it in power system security analysis and security operation. Wu
and Kumagai deduced a hyperbox to approximately express the steady-state security
regions, so that the disadvantages of the former methods for security regions can be
overcome [6]. However, such steady-state security regions were very conservative.
To avoid being conservative, Liu proposed an expanding method to obtain the
hyperbox, which tended to achieve maximal security regions [7]. The expanding
speed, however, was very slow because of the adoption of fixed expanding steps.
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Moreover, the fuzzy branch power constraints and N − 1 security constraints had not
been considered in these investigations of steady-state security regions.

Zhu proposed a new expanding method of the steady-state security regions of
power systems based on the fast decoupled load flow model [8,9]. For the first time,
the fuzzy branch power constraints and the N − 1 security constraints are introduced
into the study of the steady-state security regions [10–12]. Recently, Zhu also applied
the optimization method to compute the steady-state security regions [13,14].

9.2 SECURITY CORRIDORS

9.2.1 Concept of Security Corridor [4,5]

In terms of x, the rectangular coordinate components of the complex bus voltages,
the load flow equations can be expressed by

z = [L(x)] x (9.1)

where L(x) is a real matrix equal to half the Jacobian of the load flow equations and z
is the vector of specified nodal injections. Without loss of generality, one can assume
that there is no mixed (hybrid) bus in the system, which implies that

z =
[

u
−d

]
(9.2)

where u is the vector of control variables (voltage levels at the generation buses and
real power generations at the PV buses), d is the demand vector (real and reactive
loads at PQ buses).

In terms of x, a load flow–dependent variable can be expressed in the general
form

y = xT[Y]x (9.3)

where Y represents the functional dependence of y on the network parameters, which
is the sparse, constant, symmetric matrix. In the conventional load flow formulation,
the line power flows, reactive power generations, the square of voltage levels at the
load buses, and the real power injection at the slack bus are among the dependent
variables.

Considering the network constraints, equation (9.3) will be restricted as
follows:

yjmin ≤ yj ≤ yjmax, j = 1, … ,Ndp (9.4)

where yjmin, yjmax are the lower and upper bounds of the constraint, respectively. Ndp
is the total number of such dependent variables in the system.

Since each point in the x-space can be mapped into the z-space through
equation (9.1), one can define the set of all injections z, which satisfy a specific
operating constraint. For instance, the set zj defined by

zj = {z|z = [L(x)]x; x ∈ xj} (9.5)
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represents the map of the following set:

xj = {x|yjmin ≤ xT [yj]x ≤ yjmax} (9.6)

This is into the z-space. Let Sz be the set of all the injections satisfying the various
operating constraints on the intact system. It can be defined as follows:

Sz = Hz ∩
⎛
⎜
⎜⎝

2Ndp⋂

j=1

zj
⎞
⎟
⎟⎠

(9.7)

The hyperbox H is defined by the known limitations on the control variables and
conservative bounds on the load variables, namely,

Hz = {z|zmin ≤ z ≤ zmax} (9.8)

If we select an expansion point, the constraints (9.4) can be explicitly expressed
through a Taylor series expansion of y.

A more demanding security set is the invulnerability set. This set contains all
the injection vectors that do not violate any of the system’s operating limits, while it
is intact or subjected to a list of probable outages.

Since the variations of the loads d(t) can be predicted using a bus-load forecast,
and a control vector u(t) can be computed which satisfies the security requirements,
a predicted trajectory of the injection vector z(t) can be established. Therefore, one
can introduce the concept of a security corridor. Such a corridor can be thought of as
a “tube of varying width” in z-space surrounding the predicted trajectory and lying
entirely within the security region Sz. The security corridor Ec

S has two important
properties:

(1) It is characterized by a very small number of inequalities compared to Sz.

(2) Since the security corridor Ec
S is a subset of Sz with some “width” in al1 direc-

tions, the actual trajectory can deviate from the predicted one while still remain-
ing inside Ec

S and hence in Sz.

The security corridor then permits the monitoring of security by the very simple
task of verifying that the actual injection vector z belongs to Ec

S. If z is inside the cor-
ridor, it becomes unnecessary to test all other security inequalities or to run repeated
load flows. In the infrequent cases when the actual trajectory deviates beyond the
limits of the corridor, a conventional security analysis based on load flow computa-
tions would have to be carried out. The advantage gained is that most of the time
quite wide excursions in the trajectory are needed to go outside the security corridor.
The typical periodic and stochastic load behavior will normally not violate the secu-
rity corridor limits. Finally, the security corridor greatly facilitates the computation
as well as verification of the effectiveness of control actions such as emergency or
preventive rescheduling.
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d

u Trajectory
Sz

Figure 9.1 A pictorial
representation of a nominal
daily trajectory and its
associated security corridor
(shaded) inside the security
set.

The corridor can be characterized via a small number of overlapping ellipsoids
whose centers lie on the predicted trajectory [5]. A pictorial illustration of such an
arrangement is given in Figure 9.1.

Since the ellipsoids are expressible by simple, explicit functions and they can be
oriented to lie along the trajectory, they seem to be the logical choice for this purpose.
The N ellipsoids forming the corridor are defined by

Ei = {z|(z − zi)T[Ai](z − zi) ≤ ci} i = 1, … ,N (9.9)

where A is a constant, symmetric, positive definite matrix representing the orientation
of Ei. The vector zi represents the center of Ei, while the constant ci controls its size.
The union of the ellipsoids, denoted by Ec, forms the corridor, that is,

Ec =
N⋃

i=1

Ei (9.10)

The secure part of Ec is then referred to as the “security corridor,” and is defined by

Ec
s = Sz ∩ Ec =

N⋃

i=1

Ei
s (9.11)

where Ei
s is the secure part of Ei.

9.2.2 Construction of Security Corridor [5]

It can be seen from equations (9.9) and (9.10) that the key to constructing a security
corridor is to select zi and A. In order to have the predicted trajectory surrounded by
the corridor, the centers of the ellipsoids zi, i = 1, … , N, must be on the trajectory.
These points should be selected inside Sz so that E is not empty.

The number of ellipsoids N needed to cover a trajectory is small when the ellip-
soids are oriented properly along the trajectory. Let the unit tangent to the trajectory
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at zi be represented by ai. The ellipsoid Ei is laid along the trajectory by making sure
that its major axis lies along ai. This can be accomplished by defining Ai as follows.

[Ai] = 𝜆imax[I] − (𝜆imax − 𝜆imin)[aia
T
i ], 𝜆imax > 𝜆imin > 0 (9.12)

One can easily show that the eigenvalues of Ai are all 𝜆imax except one which is 𝜆imin,
and that the engenvector corresponding to 𝜆imin is ai. In addition, the storage require-
ments of Ai being very low, its inverse can be analytically obtained as follows:

[Ai]−1 =
[I] +

(
𝜆imax
𝜆imin

− 1
)
[aia

T
i ]

𝜆imax
(9.13)

According to the expression of the security corridor in equation (9.11) and the expres-
sion of the security sets in equation (9.7), we get

Ei
s = Sz ∩ Ei = Hz ∩

⎛
⎜
⎜⎝

2Ndp⋂

j=1

zj
⎞
⎟
⎟⎠
∩ Ei (9.14)

or

Ei
s = Hz ∩

⎧
⎪
⎨
⎪⎩

2Ndp⋂

j=1

zj ∩ Ei

⎫
⎪
⎬
⎪⎭

(9.15)

For a relatively small Ei, (i.e., small ci) the majority of the sets zj contain the entire
set Ei. For such sets one can write

zj ⊃ Ei ⇒ zj
⋂

Ei = Ei (9.16)

Those few that intersect Ei must be identified and characterized explicitly. This can
be accomplished by solving the following optimization problem:

mincij = (z − zi)T [Ai](z − zi), z ∈ Ext(zj) for j = 1, … , 2 Ndp (9.17)

Since zi ∈ Sz, the intersection zj ∩ Ei is always nonempty. In terms of x, the
above problem can be written as

mincij = {[L(x)]x − zi}T[Ai]{[L(x)]x − zi} (9.18)

such that
yjmin ≤ xT [yj]x ≤ yjmax (9.19)

To simplify the above optimization problem, zj can be approximated as follows.

ẑ j = {z|DT
j (xj)z ≤ yj limit} (9.20)

The solution to equation (9.17) with z ∈ Ext(̂z j) is simply

ĉ∗ij = [yj limit − DT
j (xj)zi]2∕𝛿ij (9.21)
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where xi is the load flow solution to zi and

𝛿ij = DT
j (xi)[Ai]−1Dj(xi) (9.22)

Thus the corresponding approximated security corridor Ei
s is expressed explicitly as

follows.
Êi

s = Hz

⋂
Ej

⋂
{z|DT

j (xi)z ≤ yj limit, ∀j ∈ Ii} (9.23)

where Ii is an integer set, and its elements are defined as follows.

j ∈ Ii if ĉ∗ij < ci

It is noted that this approximation requires that the solution point is relatively close
to zi.

A relatively simple but sufficiently indicative measure of the size of Ei is
ΔPdmax%, the maximum percentage change that the total real demand Pd can have
inside Ei with respect to Pdi, the total demand at zi. To compute this quantity, we
need to solve the following problem.

maxPd = −𝛼T z (9.24)

such that
(z − zi)T [Ai](z − zi) = ci (9.25)

The entries of the vector 𝛼 are either zero or 1, with ones appearing at locations which
correspond to real power demands z.

In summary, the steps of constructing a security corridor are as follows.

1. Choose zi from the trajectory and run a load flow to make sure that zi ∈ Sz.

2. Compute ai and define the matrix Ai.

3. Compute values of ĉ∗ij, j = 1, 2, … ,Ndp using equation (9.21) and tabulate
them in ascending order.

4. Decide on Nimax, the maximum number of elements that Ii can have.

5. Assign to ci the first Nimax + 1 values of ĉ∗ij in the list, one at a time. For each
value, compute and tabulate ΔPdmax%, as well as the times when the trajectory
enters and leaves the resulting Ei.

6. Compare the results to establish what value of ci chosen from those examined,
could offer a reasonable ΔPdmax% and sufficient overlapping with Ei−1, while
the number of elements in Ii is small (≤ Nimax). If such a ci cannot be found,
then either change the eigenvalues of Ai or choose zi closer to zi−1 and repeat
the relevant steps.

Note that in the last step, it is assumed that the value of ci−1 is already fixed, and
the time when the trajectory enters and leaves Ei−1 as well as its associated ΔPdmax%
are known. Sufficient overlapping is achieved between Ei and Ei−1 when a significant
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portion (normally 25%) of the time spent by the trajectory inside Ei−1 is also part of
the time that it spends inside Ei. Since the trajectory is usually available in a piecewise
linear form, the computation of the trajectory’s “arrival” and “departure” times for a
given ellipsoid is quite simple to calculate.

The number of elements in Ii is limited here by Nimax mainly because of the
non-sparsity of the vectors Dj(xi), j ∈ Ii f ∶ ..; (∼ i), i = 1, … , N, which have to
be computed and stored. The vectors Dj(xi) can be obtained by performing a single
constant Jacobian Newton power flow iteration, that is,

[L(x0)]TDj(x0) = [Yj]x0 (9.26)

9.3 TRADITIONAL EXPANSION METHOD

9.3.1 Power Flow Model

Given a power system, suppose the total number of branches is m; the total number
of buses is n. Bus n is the slack bus, buses 1 to nd are load buses and buses nd + 1
to n − 1 are PV buses (the number of PV buses is NG). According to fast decoupled
power flow, the active power flow equations can be written as follows.

[P] = [B′][𝜃] (9.27)

[𝜃L] = [A]T [𝜃] (9.28)

where P is the vector of active power injections, 𝜃 is the vector of node voltage angle,
𝜃L is the vector of node voltage angle differences across lines, and A is the relation
matrix between the nodes and branches.

From equations (9.27) and (9.28) we can obtain

[𝜃L] = [A]T [B′]−1[P] (9.29)

where

Bij
′ = −1∕Xij (9.30)

B′
ii =

n∑

j=1
j≠i

(
1

Xij

)
(9.31)

Xij and Bij are the reactance and susceptance of branch ij, respectively.
If we use reactive injection current to replace the reactive injection power, the

reactive power flow equations can be written as follows.

[I] = [B′′][V] (9.32)

[V] = [B′′]−1[I] (9.33)
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where

Ii ≈
Qi

Vi
(9.34)

B′′
ij = −

Xij

R2
ij + X2

ij

(9.35)

B′′
ii =

n∑

j=1
j≠i

(−Bij) (9.36)

9.3.2 Security Constraints

The following security constraints will be considered in the study of steady-state
security regions:

(1) Generator power output constraints

PGimin ≤ PGi ≤ PGimax (9.37)

QGimin
Vi

≤ IGi ≤
QGimax

Vi
(9.38)

For the slack bus unit, the power output constraints are

PGnmin ≤ −
n−1∑

i=1

Pi ≤ PGnmax (9.39)

QGnmin
Vn

≤ −
n−1∑

i=1

Ii ≤
QGnmax

Vn
(9.40)

where subscripts “min” and “max” represent the lower and upper bounds of the
constraints, respectively.

(2) Branch power flow constraints

−𝜃ijmax ≤ 𝜃ij ≤ 𝜃ijmax (9.41)

In the normal operation status of power systems, the branch reactive power
constraints can be neglected.

9.3.3 Definition of Steady-State Security Regions

The aim of steady-state security analysis is to analyze and check whether all ele-
ments in the system would operate within constraints as defined by a given set of
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input data and information. Therefore, the steady-state security regions can be rep-
resented by a set of power injections which satisfy the power flow equations and
security constraints.

RP = {P∕∃𝜃 ∈ R, and (fP(𝜃) = P) ∈ R} (9.42)

RQ = {I∕∃V ∈ R, and (fQ(V) = I) ∈ R} (9.43)

where RP and RQ are the active and reactive power steady-state security regions, R is
the set of security constraints, and f is the set of load flows.

On one hand, the calculation methods for active and reactive power steady-state
security regions are the same. On the other hand, the active power security is relatively
more important because the reactive power problem is generally a local issue. Thus
we focus on active security regions in this chapter.

In practical terms, it is desired to obtain each security region to cover as many
operating points as possible. Hence, the idea of maximal security region was pro-
posed. ΩP

∗ ∈ RP is said to be a maximal security region if there exists no hyperbox
ΩP in RP, such that ΩP strictly contains ΩP

∗, that is, ΩP
∗ ⊄ ΩP. In other words, a

hyperbox ΩP
∗ is maximal if it is impossible to extend it in any dimension with RP.

9.3.4 Illustration of the Calculation of Steady-State Security
Region

Generally, the expanding method is used to compute the maximal security region.
The idea is to select the initial operation point first, and then expand the initial point
by adding the fixed step until we reach the limit of any of the constraints.

For example, there is a simple system with two generators. The feasible region
can be shown in Figure 9.2. The steady-state security region obtained by the expand-
ing method is shown in Figure 9.3.

PG1min PG1max PG1

PG2

PG2max

PG2min

Branch 
constraints

Figure 9.2 Feasible region of illustrating system.
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PG1min P1min P2max PG1max PG1

PG2

PG2max

PG2min

Branch 
constraints

P2max

P2min

Figure 9.3 Security region obtained by the expanding method.

TABLE 9.1 The Security Region Results for IEEE 6-Bus System (p.u.)

Regions PG4 PG5 PG6

Pimax 3.7500 2.6490 2.5510

Pimin 2.4490 1.4000 0.0000

TABLE 9.2 The Security Region Results for IEEE 30-Bus System (p.u.)

Regions PG2 PG5 PG8 PG11 PG13

Pimax 0.7120 0.4020 0.3500 0.3000 0.4000

Pimin 0.4280 0.1500 0.1480 0.1000 0.1770

9.3.5 Numerical Examples

The expanding method for computing power steady-state security region is further
illustrated by IEEE 6-bus and 30-bus systems. The parameters of systems are taken
from the references [6,8,11]. The obtained security regions for two systems are shown
in Tables 9.1 and 9.2, respectively.

9.4 ENHANCED EXPANSION METHOD

9.4.1 Introduction

Since computing speed is very slow in the previous expanding methods, a new
expanding method is presented in this section. In this expanding method, security
constraints are divided into two groups and the expanding calculations are first car-
ried out in the first group of constraints with small constraint margins. In additional,
the failure probability of branch temporary overload and the capability of tapping
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the potentialities for branch power capacity are considered on the basis of fuzzy sets.
Furthermore, an idea of “N − 1 constraint zone” is also adopted to calculate the all
N − 1 security constraints so as to reduce the computation burden.

9.4.2 Extended Steady-State Security Region

Security Constraints The same power flow model as in Section 9.3 is used here.
The following security constraints will be taken in the study of steady-state security
regions:

(1) Generator active power output constraints

PGimin ≤ PGi ≤ PGimax (9.44)

PGnmin ≤ −
n−1∑

i=1

Pi ≤ PGnmax (9.45)

(2) Fuzzy branch load flow constraints

−𝜃ijmax ≤ 𝜃ij ≤ 𝜃ijmax (9.46)

or
−Pijmax∕bij ≤ 𝜃ij ≤ Pijmax∕bij (9.47)

When the limits of branch power flow are not determined beforehand,
equations (9.46) and (9.47) cannot be directly adopted. During the stage of planning
and system design, values of branch power flow limits are given to allow for some
margin of security and reliability. In fact, it is possible to tap extra potentialities
of branch power flow capacity in some cases, so as to allow some margins to be
expanded. However, over-tapping of potentialities for branch power flow capacity
will lead to some problems such as high power losses and unreliability. Hence, it
is conceptually sound to replace equation (9.46) or (9.47) by fuzzy constraints. By
changing each bilateral inequality constraint into two single inequality constraints,
the branch active power constraints can be expressed as follows.

𝜇𝜃ij
(𝜃ij) =

⎧
⎪
⎨
⎪⎩

1, if 𝜃ij ≤ 𝜃ijmax

L
(
𝜃ijmax, 𝜃

′
ijmax; 𝜃ij

)
,

0, if 𝜃ij ≥ 𝜃′ijmax

if 𝜃ijmax ≤ 𝜃ij ≤ 𝜃′ijmax (9.48)

where L is a droop function in which 𝜃ijmax, 𝜃′ijmax are its parameters, and L = 1 when
𝜃ij = 𝜃ijmax, L = 0 when 𝜃ij = 𝜃′ijmax. The fuzzy branch power constraint is as shown in
Figure 9.4, in which 𝜃′ijmax represents the tapping limit of potentialities for the branch
power capacity.
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μij

θijmax θijmax’ θij

1

0
Figure 9.4 Fuzzy branch power flow constraint.

Substituting equation (9.29) in equations (9.46) and (9.47), and similarly
changing each bilateral inequality constraint into two single inequality constraints,
the fuzzy branch active power constraints can be expressed as follows.

[A1][P] ≤ [𝜃] (9.49)

where
[A1] = [A]T [B′]−1 (9.50)

Dividing the matrix A1 into the generator node submatrix and the load node
submatrix, that is, AG and Ad, equation (9.49) can be written as follows.

[AG][PG] ≤ [𝜃G] (9.51)

where
[𝜃G] = [𝜃] − [Ad][Pd] (9.52)

According to Figure 9.4, equation (9.52) can be implemented with fuzzy oper-
ation under the 𝜆-cut of fuzzy set (see the following).

Definition of Steady-State Security Regions As defined in Section 9.3, the
active power steady-state security regions can be represented by a set of active power
injections, which satisfy the load flow equations and security constraints.

RP = {P∕∃𝜃 ∈ R, and (fP(𝜃) = P) ∈ R} (9.53)

where R includes the set of fuzzy security constraints.
In addition, from the economic point of view, the operating regions expressed

in terms of power injections may still be conservative. This is because load variations
are allowed in constructing the regions, which can be known from the definition of
power injection Pi = PGi − PDi. The bigger the range of the load positive variations
(i.e., increase), the smaller the obtained region is (i.e., more conservative). If the load
demands are fixed at, say, the base values, a security region in terms of the generators,
which is equivalent to the region of power injections under the load determination,
can be considered.
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9.4.3 Steady-State Security Regions with N−1 Security

N − 1 security means that the line flows will not exceed the settings of protective
devices for the intact lines when any branch has an outage. Many works have been
done pertaining to N − 1 security in the study of power system economic dispatch
[15–19], but less in the study of steady-state security regions.

The N − 1 steady-state security region is defined as a set of node power injec-
tions that satisfies not only the load flow equations and N security constraints but also
N − 1 security constraints.

RPN = {P∕∃𝜃 ∈ RN , and (fP(𝜃) = P) ∈ RN} (9.54)

where RPN is the active power steady-state security region with N − 1 security. RN is
the set of N and N − 1 security constraints.

Obviously, the crux of the N − 1 steady-state security regions is to perform
the N − 1 security analysis (i.e., the calculation of N − 1 security constraints). The
“N − 1 constrained zone,” which is discussed in Chapter 5, will be coordinated with
the steady-state security regions.

9.4.4 Consideration of the Failure Probability of Branch
Temporary Overload

In Section 9.4.2, we discussed the problem of tapping the potentialities of branch
power flow capacity. In fact, it corresponds to the problem of whether the branch
may temporary overload in a practical power system under some case. Therefore,
the value of 𝜃′ijmax, which is the limit of the capability of tapping the potentialities
for branch power capacity, will be determined according to the particular case of a
practical power system.

Suppose the average overloading time of a branch is AOT. The average over-
loading ratio of the branch can be written as follows.

𝜂ij =
1

(AOT)ij
ij ∈ NL (9.55)

It is assumed that the failure probability of branch temporary overloading is Poisson
distributed. It can be expressed as

pij = 1 − e−𝜂ijT (9.56)

where, pij is the failure probability of branch ij overload; T is system operation time.
Obviously, the average overloading time AOT of the branch is random and

uncertain. It is dealt with a fuzzy number in this case. If AOT is a trapezoidal fuzzy
number, as shown in Figure 9.5, the fuzzy number 𝜂ij from equation (9.55) is also
trapezoidal. Moreover, the fuzzy failure probability of branch temporary overload pij
computed from equation (9.56) is also dealt with a trapezoidal fuzzy number.

The all branches’ failure probability pij (ij = 1, 2, … … NL) under any 𝜆-cut
of fuzzy set 𝜇 can be obtained from equation (9.56). A ranking list, which reflects the
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a m1 m2 b

1

0
Figure 9.5 Trapezoidal fuzzy number.

relative capability of tapping potentialities for different branches, is acquired accord-
ing to the value of pij. So the limit of the capability of tapping the potentialities for
branch power capacity 𝜃′ijmax can be determined easily according to the ranking list.

To acquire higher security and reliability when fuzzy steady-state security
regions are used in the practical operation of power systems, the branches with big
failure probability will not be allowed to be temporarily overloaded. It means that
the branch power capacity of these branches cannot be tapped by the potentialities,
that is, 𝜃′ijmax = 𝜃ijmax in this case. Therefore, we define a performance index PI. If
the failure probability of branch overload under the 𝜆-cut of fuzzy set 𝜇 is bigger
than PI, that is,

𝜇pij > PI (9.57)

then the corresponding branches will not be allowed to be temporarily overloaded.

9.4.5 Implementation

In the enhanced expanding method, security constraints are divided into two groups
and the expanding calculations are first carried out in the first group of constraints with
small constraint margins. If the maximal region is not obtained after the calculation is
finished in the first group, the expanding computation will be continued in the second
group until the security regions cannot be further expanded.

Method of Step-Size Calculation Assume that there are m inequalities in
equation (9.47), in which the ith inequality constraint (under 𝜆-cut of the fuzzy set)
is as follows. ∑

j

aGijPGi < 𝜇𝜃ij(𝜃ij) i = 1, .....,NG (9.58)

Suppose Ω is a hyperbox, in which the generator power outputs are control
variables. If not all summits of Ω have reached the boundary of R, Ω can still be
expanded by solving the following m equations.

∑

i

aGijP
∗
Gi = 𝜇𝜃ij(𝜃ij) j = 1, … … ,m (9.59)

where

P∗
Gi =

⎧
⎪
⎨
⎪⎩

Pimax + 𝜀, if aGij > 0

Pimin − 𝜀, if aGij < 0

0, if aGij = 0

(9.60)
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P∗
Gi and 𝜀 can be obtained from equation (9.60). Let 𝜀min = min{𝜀j, j =

1, 2, … … ,m}, which is taken as the calculation step, the new expanding
security region can be obtained as follows.

Ω = {PG∕P∗
imin ≤ PGi ≤ P∗

imax} i = 1, 2, … NG (9.61)

P∗
imin = Pimin − 𝜀min (9.62)

P∗
imax = Pimax + 𝜀min (9.63)

Steps of New Expanding Method The calculation steps of the new expanding
method are given as follows [8].

Step 1: Select the generators’ operating point PGi
0 as the initial expanding point.

Then the initial security regions can be expressed as

Ω0 = {PG∕P0
imin ≤ PGi ≤ P0

imax, i = 1, … , NG} (9.64)

P0
imin = P0

imax = PGi
0 (9.65)

Let iteration number K = 0, and mark the variables (or indices)
Vi

M = Vi
m = 1, i = 1, … , NG.

Step 2: Obtain 𝜀j (j = 1, … … ,m) according to the method of step calculation
from equation (9.60). Then 𝜀min can be found. A threshold value is defined
as follows.

𝜀h =
𝜀min
𝛽

(9.66)

where 𝛽 is a constant.
Then, the m constraints will be divided into two groups based on the thresh-
old value 𝜀h. Suppose there are m1 constraints with 𝜀 ≤ 𝜀h (called group
one), and there are m2 constraints with 𝜀 > 𝜀h (called group two).

Step 3: Calculate 𝜀min in the m1 constraints of group one, that is,

P∗
Gi =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

Pimax + 𝜀, if aGij > 0, and VM
i ≠ 0

Pimax if aGij > 0, and VM
i = 0

Pimin − 𝜀, if aGij < 0, and Vm
i ≠ 0

Pimin, if aGij < 0, and Vm
i = 0

0, if aGij = 0

(9.67)

then 𝜀min = min{𝜀j} (j = 1, 2, … , m1),
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Step 4: Let K = k, then the security regions can be obtained, that is,

Ωk = {PG∕Pimin
k ≤ PGi ≤ Pimax

k, i = 1, …… , NG} (9.68)

Pimax
k = Pimax

k−1 + 𝜀min Vi
M (9.69)

Pimin
k = Pimin

k−1 − 𝜀min Vi
m (9.70)

Step 5: Find the inequality constraint with 𝜀j = 𝜀min and let the corresponding
Vi

M = Vi
m = 0.

Step 6: Stop if Vi
M = Vi

m = 0 for all i = 1, 2, … … ,NG. Otherwise, let k = k +
1, go back to step 3.

Step 7: If k = m1 but some Vi
M and Vi

m are still not zero, step 3–6 will be
repeated in the second group, which contains m2constraints, that is, until
Vi

M = Vi
m = 0 for all i = 1, …… ,NG.

In this way, the maximal security regions are obtained as follows.

Ω = {PG∕Pimin ≤ PGi ≤ PiMax, i = 1, …… , NG} (9.71)

9.4.6 Test Results and Analysis

The enhanced steady-state security region technique including the model and its
algorithm are tested with the IEEE 6-bus and 30-bus systems. Suppose the system
operation time is 150 h. The performance index of branch failure probability PI is
0.085.

To enhance the calculation speed, the following two measures are adopted in
the new expanding method. The first is the adoption of calculation step (not fixed
step), and the second is that the constraints are divided into two groups based on
the threshold value shown in the equation (9.54). Obviously, the value of 𝛽 will pro-
duce some effect in expanding speed. We found from a great number of numerical
examples and calculations that satisfactory results can be obtained when 𝛽 is selected
as a gold separation constant, that is, 𝛽 = 0.618.

The IEEE 6-bus system contains eight branches. The average overloading time
ACTs of the branches are assumed as in Table 9.3. The failure probability of branch
temporary overloading for the IEEE 6-bus system can be computed and shown in
Table 9.4. It can be known from Table 9.4 that the values of failure probability for
all branches are less than PI. It means that the power capacity for all branches in
the IEEE 6-bus system can be tapped by the potentialities. The fuzzy line power
capacities are given as: Pijmax = 1.0, 3.0, 3.0, 1.6, 1.6, 0.95, 3.0, 0.25, respectively;
and P′

ijmax = 1.08, 3.5, 3.3, 2.0, 1.8, 1.3, 3.5, 0.28, respectively.
The IEEE 30-bus system contains 41 branches. The corresponding average

overloading times AOTs of the branches are assumed as in Table 9.5. The failure prob-
ability of branch temporary overloading for the IEEE 30-bus system can be computed
and are shown in Table 9.6.
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TABLE 9.3 The Average Overloading Time for IEEE 6-Bus System

Branch No. AOT (h)

a m1 m2 b

1 1834 1868 1898 1922

2 1888 1922 1959 2027

3 1845 1882 1907 1949

4 2081 2127 2150 2190

5 1992 2048 2081 2123

6 2108 2152 2196 2240

7 1888 1922 1959 2027

8 1854 1896 1919 1961

TABLE 9.4 The Branch Failure Probability for IEEE 6-Bus System

Branch No. pij

a m1 m2 b

1 0.075 0.076 0.077 0.079

2 0.071 0.074 0.075 0.076

3 0.074 0.076 0.077 0.078

4 0.066 0.067 0.067 0.070

5 0.068 0.070 0.070 0.072

6 0.065 0.066 0.067 0.069

7 0.071 0.074 0.075 0.076

8 0.074 0.075 0.076 0.078

TABLE 9.5 The Average Overloading Time for IEEE 30-Bus System

Branch No. AOT (h)

a m1 m2 b

1 1600 1640 1685 1725

2 1622 1655 1690 1750

3 1992 2048 2081 2123

4 1606 1640 1685 1725

5 1655 1690 1730 1780

6 1888 1922 1959 2027

7 1725 1750 1790 1834

8 2300 2365 2410 2470

9 1750 1800 1855 1888

Others 2300 2365 2410 2470
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TABLE 9.6 The Branch Failure Probability for IEEE 30-Bus System

Branch No. pij

a m1 m2 b

1 0.0833 0.0852 0.0874 0.0895

2 0.0821 0.0849 0.0866 0.0883

3 0.0680 0.0700 0.0700 0.0720

4 0.0833 0.0852 0.0874 0.0892

5 0.0808 0.0831 0.0849 0.0866

6 0.0710 0.0740 0.0750 0.0760

7 0.0790 0.0804 0.0821 0.0833

8 0.0589 0.0603 0.0615 0.0631

9 0.0760 0.0777 0.0800 0.0821

Others 0.0589 0.0603 0.0615 0.0631

TABLE 9.7 The Fuzzy Line Power Capacities for IEEE 30-Bus System

Branch No. Pijmax (p.u.) Pijmax
′ (p.u.)

1 1.30 1.30

2 1.30 1.30

3 0.65 0.80

4 1.30 1.30

5 1.30 1.30

6 0.60 0.80

7 0.90 1.20

8 0.70 1.00

9 1.30 1.50

Others∗ 0.65 0.80

Others† 0.32 0.50

Others‡ 0.16 0.25

∗The power capacities of these lines are 0.65.
†The power capacities of these lines are 0.32.
‡The power capacities of these lines are 0.16.

It can be observed from Table 9.6 that the values of failure probability for
branches 1, 2, 4, and 5 are higher than the PI. This means that the power capac-
ity for these branches cannot be tapped by the potentialities. The fuzzy line power
capacities of the 30-bus test system are listed in Table 9.7.

The calculating results are shown in Tables 9.8–9.13. Tables 9.8 and 9.11 pro-
vide the calculation results of security regions for the IEEE 6-bus and 30-bus systems
when the 𝜆-cuts of the fuzzy branch power capacity set 𝜇(𝜃ij) equal 0.0, 0.5, 0.6, and
1, respectively.
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TABLE 9.8 The Results for Security Regions on IEEE 6-Bus System (p.u.)

𝜆-cut Regions PG4 PG5 PG6

1 Pimax 3.9760 2.4240 3.8990

Pimin 2.0250 0.4740 0.0000

0.6 Pimax 3.9755 2.4245 4.5480

Pimin 1.7010 0.1500 0.0000

0.5 Pimax 3.9755 2.4245 4.7100

Pimin 1.6200 0.0693 0.0000

0 Pimax 3.9755 2.4245 5.1849

Pimin 1.2151 0.000 0.0000

TABLE 9.9 The Comparison of Security Region Results for IEEE 6-Bus System (p.u.)

Method Regions PG4 PG5 PG6

Method 1 Pimax 3.9760 2.4240 3.8990

Pimin 2.0250 0.4740 0.0000

Method 2 Pimax 3.7500 2.6490 2.5510

Pimin 2.4490 1.4000 0.0000

Method 1: enhanced expanding method.

Method 2: traditional expanding method.

TABLE 9.10 The Results for N − 1 Security Regions on IEEE 6-Bus System

Gen. Node Base Value P0 Security Pimin Regions Pimax

PG4 2.514 2.378 3.301

PG5 1.523 1.369 1.654

PG6 2.363 1.400 2.645

TABLE 9.11 The Results for Security Regions on IEEE 30-Bus System (p.u.)

𝜆-cut 1 0.6 0.5 0.0

PG2 Pimax 0.7350 0.7550 0.7600 0.7710

Pimin 0.3712 0.3700 0.3656 0.3513

PG5 Pimax 0.4622 0.4733 0.4744 0.4895

Pimin 0.1500 0.1500 0.1500 0.1500

PG8 Pimax 0.3500 0.3500 0.3500 0.3500

Pimin 0.1110 0.1080 0.1000 0.1000

PG11 Pimax 0.3000 0.3000 0.3000 0.3000

Pimin 0.1000 0.1000 0.1000 0.1000

PG13 Pimax 0.4000 0.4000 0.4000 0.4000

Pimin 0.1200 0.1200 0.1200 0.1200
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TABLE 9.12 The Comparison of Security Region Results for IEEE 30-Bus System (p.u.)

Method Method 1 Method 2

Regions Pmax Pmin Pmax Pmin

PG2 0.7350 0.3712 0.7120 0.4280

PG5 0.4622 0.1500 0.4020 0.1500

PG8 0.3500 0.1110 0.3500 0.1480

PG11 0.3000 0.1000 0.3000 0.1000

PG13 0.4000 0.1200 0.4000 0.1770

Method 1: enhanced expanding method.

Method 2: traditional expanding method.

TABLE 9.13 The Results for N − 1 Security Regions on IEEE 30-Bus System (p.u.)

Gen. Node

Base Value

P0
Gi

Lower Bound of

Regions Pimin

Upper Bound of

Regions Pimax

PG2 0.566 0.2000 0.7350

PG5 0.293 0.1500 0.3500

PG8 0.306 0.1000 0.3500

PG11 0.154 0.1540 0.1600

PG13 0.295 0.2950 0.3000

It can be found from Tables 9.8 and 9.11 that the bigger the value of 𝜆-cut of the
fuzzy set 𝜇(𝜃ij), the higher will be the system reliability requirements and the smaller
will be the acquired security regions. On the contrary, the smaller the value of 𝜆-cut
of the fuzzy set 𝜇(𝜃ij), the lower will be the system reliability requirements and the
larger will be the acquired security regions. Therefore, it is very convenient to select
the corresponding security regions to judge whether the power system operation is
secure according to the given reliability requirements.

Tables 9.9 and 9.12 are the comparisons of results for the IEEE 6-bus and
30-bus systems with previous work. It can be observed from Tables 9.9 and 9.12
that steady-state security regions without the fuzzy line power flow capacity con-
straints (i.e., the value of 𝜆-cut of the fuzzy set 𝜇(𝜃ij) = 1) computed by enhanced
method are bigger than those computed by the general expanding method. There-
fore, power security regions in this section are relatively less conservative than those
of the previous work.

Tables 9.10 and 9.13 provide the calculation results of N − 1 security regions
for the IEEE 6-bus and 30-bus systems when the 𝜆-cut of the fuzzy branch power
capacity set 𝜇(𝜃ij) equals 1. It can be observed that the N − 1 security regions for
both 6-bus and 30-bus systems are far smaller than N security regions. Especially for
the IEEE 30-bus system, the range of expansion for generators 11 and 13 is almost
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zero in the calculation of N − 1 security regions. The reason is that the feasible region
becomes narrow because of the introduction of N − 1 security constraints.

The results show that it is very important to calculate security regions with
fuzzy line power flow constraints. It can provide more information for real-time secu-
rity analysis and security operation in power systems compared with the previous
methods. This is because different reliability requirements correspond to different
security regions with fuzzy constraints, while only one reliability requirement corre-
sponds to one security region in the previous method. Because of the adoption of the
new expansion method, the computing time is also shorter than that of the traditional
expansion method.

9.5 FUZZY SET AND LINEAR PROGRAMMING

9.5.1 Introduction

This section presents a new approach to construct the steady-state security regions
of power systems, that is, the maximal security regions are directly computed using
the optimization method [13,14]. First of all, the security regions model is converted
into a linear programming (LP) optimization model, in which the upper and lower
limits of each component forming a hyperbox are taken as unknown variables, and
the objective is to maximize the sum of the generators’ power adjustment ranges. The
fuzzy branch power constraints and the N − 1 security constraints are also introduced
into the optimization model of the steady-state security regions. The IEEE 6-bus and
30-bus systems are used as test examples.

9.5.2 Steady-State Security Regions Solved by Linear
Programming

Objective Function In the practical operation of power systems, it is desired to
obtain each security region to cover as many points of operation as possible. This
means that it is desired to make the volume of hyperbox as big as possible. However,
it will become very complicated if the volume of hyperbox is directly taken as the
objective function. In fact, there exists some approximately corresponding relation
between the size of the hyperbox’s volume and the sum of all sides of the hyper-
box. Especially, for the practical operation of power systems, operators are mainly
concerned about the secure and adjustable range of generator power output, rather
than the volume of of ΩP

′. Therefore, in the optimization model for ΩP, we do not
directly select the volume of ΩP as the objective function. The objective for opti-
mization calculation ΩP is to maximize the sum of the generators’ power adjustment
ranges, that is,

maxZ =
n−1∑

i=nd+1

Wi(PM
Gi − Pm

Gi) (9.72)

where Wi is the weighting coefficient of ith generator.
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(PM
Gi − Pm

Gi) is the secure and adjustable range of the ith generator power out-
put. It is also the length of ith side of hyperbox. Obviously, it must satisfy the rated
adjustable range of the ith generator power output (PGimax − PGimin), that is,

(PM
Gi − Pm

Gi) ≤ (PGimax − PGimin) (9.73)

Security Constraints In the optimization calculation of hyperbox ΩP, the
unknown variables are the upper and lower limits of each component in the hyper-
box. This is different from the ordinary expanding method. Therefore, the constraints
for constructing ΩP need to be changed in the optimization method.

(1) Generation constraints
According to the definition of security regions, we get

PGi ≥ Pm
Gi ≥ PGimin i = nd + 1, …… , n − 1 (9.74)

PGi ≤ PM
Gi ≤ PGimax i = nd + 1, …… , n − 1 (9.75)

For the slack generator, we have the following equations

nd∑

i=1

Pi −
n−1∑

i=nd+1

PM
Gi = PGnm (9.76)

nd∑

i=1

Pi −
n−1∑

i=nd+1

Pm
Gi = PGnM (9.77)

where PGnm and PGnM are the lower and upper limits of the slack generator,
respectively.

(2) Branch constraints
According to equation (9.39), the security constraints of branch ij can be writ-
ten as

𝜃ijmin ≤

n−1∑

k=nd+1

(Aik − Ajk)PGk ≤ 𝜃ijmax (9.78)

For equation (9.78), the power injection of the kth generator PGk can be replaced
by Pm

Gk and PM
Gk under the following conditions.

PGk =

{
Pm

Gk, when Aik − Ajk ≥ 0

PM
Gk, when Aik − Ajk ≤ 0

(9.79)

In this way, the unknown variables in security constraints are all changed into
Pm

Gk and PM
Gk(k = nd + 1, …… , n − 1).
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Linear Programming Model and Implementation
Linear Programming Model for Computing 𝛀P According to equations

(9.72)–(9.79), the optimization model for computing ΩP is set up, that is, model
M − 1.

maxZ =
n−1∑

k=nd+1

Wk(PM
Gk − Pm

Gk) (9.80)

subject to the constraints in equations (9.73)–(9.79)
Obviously, M − 1 is a linear programming model. It can be expressed by the

standard form of linear programming, that is, model M − 2

max Z = CX (9.81)

such that

AX ≤ B (9.82)

X ≥ 0 (9.83)

The model M − 2 can be solved by the simplex method. The details of the LP algo-
rithm are shown in the Appendix to this chapter.

Calculation of Security Regions without Basic Operation Point The
steady-state security regions can be directly obtained through solving model M − 1
without a basic operation point. With this method, it is very convenient to judge
whether there exists a security region under the given operation state. Meanwhile, it is
easy to find the “security center point” of power system operation when the security
region ΩP is obtained. Therefore, this method can provide useful information for
system operation.

Calculation of Security Regions Considering Basic Operation Point As
described in the previous paragraph, the biggest hyperbox ΩP can be acquired when
the basic operation point has not been considered in the calculation of security
regions. However, in some cases, it is possible that the obtained hyperbox ΩP has
not covered the basic operation point. Thus this ΩP is not practical. For this reason,
we introduce the following constraints into model M − 1, that is,

[PM
G ] ≥ [PG0] (9.84)

[Pm
G] ≤ [PG0] (9.85)

where [PG0] is the basic operation point.
Then we can obtain optimization model M − 3, which considers the basic oper-

ation point [PG0], that is,

maxZ =
n−1∑

k=nd+1

Wk(PM
Gk − Pm

Gk) (9.86)

subject to the constraints in equations (9.73)–(9.79), and (9.84), (9.85)
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In this way, the hyperbox ΩP obtained from model M − 3 certainly covers
[PG0]. If a solution does not exist in M − 3, then we can judge that the given operation
point [PG0] is not secure.

It is noted that the optimal solution of the LP is certainly located at the summit
on the feasible region. So, in some cases, it is possible that [PG0] will be located on
some boundary of the hyperbox ΩP, although ΩP contains [PG0]. This means that
the security-adjustable amount of the generator along some direction in ΩP is zero in
this situation. In other cases, although [PG0] is in ΩP and is also not on the boundary
of ΩP, it is possible that the security-adjustable amount of the generator along some
direction in ΩP is very small. Under the aforementioned cases, it is very difficult to
judge whether the operation point is still secure when some perturbation occurs in
the power system operation. For this reason, we adopt the following constraints to
remedy this disadvantage.

[PM
G ] ≥ [PG0] + [ΔPG0] (9.87)

[Pm
G] ≤ [PG0] + [ΔPG0] (9.88)

where [ΔPG0] is the vector of generation power deviation from the basic operation
point [PG0]. This is an estimated value and can be determined according to the require-
ment of system operation and experience of the operators.

Introducing constraints (9.87) and (9.88) into M − 1, the new optimization
model M − 4 for computing ΩP can be expressed as follows.

maxZ =
n−1∑

k=nd+1

Wk(PM
Gk − Pm

Gk) (9.89)

such that

(PM
Gi − Pm

Gi) ≤ (PGimax − PGimin) (9.90)

PGi ≥ Pm
Gi ≥ PGimin i = nd + 1, …… , n − 1 (9.91)

PGi ≤ PM
Gi ≤ PGimax i = nd + 1, …… , n − 1 (9.92)

nd∑

i=1

Pi −
n−1∑

i=nd+1

PM
Gi = PGnm (9.93)

nd∑

i=1

Pi −
n−1∑

i=nd+1

Pm
Gi = PGnM (9.94)

𝜃ijmin ≤

n−1∑

k=nd+1

(Aik − Ajk)PGk ≤ 𝜃ijmax (9.95)

PGk =

{
Pm

Gk, when Aik − Ajk ≥ 0

PM
Gk, when Aik − Ajk ≤ 0

(9.96)
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[PM
G ] ≥ [PG0] + [ΔPG0] (9.97)

[Pm
G] ≤ [PG0] + [ΔPG0] (9.98)

The above model is a linear model, which can be solved by an LP algorithm.

9.5.3 Numerical Examples

Comparison of Linear Programming and Expanding Method for 𝛀P The
calculation of the maximal security region hyperbox ΩP by the optimization method
is examined with the IEEE 6-bus and 30-bus systems.

To assess or compare the size of ΩP for different means, the following perfor-
mance index is introduced:

PI =

n−1∑

i=nd+1

(PM
Gi − Pm

Gi)

n−1∑

i=nd+1

(PGimax − PGimin)

(9.99)

or

PIi =
PM

Gi − Pm
Gi

PGimax − PGimin
i = nd + 1, …… , n − 1 (9.100)

The calculation results for a steady-state security region are given in Tables 9.14
and 9.15, where the optimization approach for constructing the maximal security
region is identified as method 1 and the expanding method is identified as method 2.
Table 9.14 represents the results for security regions on the IEEE 6-bus system.
Table 9.15 represents the results for security regions on the IEEE 30-bus system.
For comparison, we also use the traditional expanding method to calculate the max-
imal security region for the IEEE 30-bus system under the same system parameters
and conditions. The results are listed in Table 9.15.

TABLE 9.14 The Comparison of Security Region Results for IEEE 6-Bus System

Methods Security Regions Gen. PG4 Gen. PG5 Total PI%

Method 1 PM
Gi 4.200 2.200 71%

Pm
Gi 0.184 1.378

PIi% 96% 31%

Method 2 PM
Gi 3.750 2.649 37%

Pm
Gi 2.449 1.400

PIi% 31% 47%

Method 1: optimization method.

Method 2: the expanding method.
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TABLE 9.15 The Comparison of Security Region Results for IEEE 30-Bus System

Methods Security

regions

Gen.

PG2

Gen.

PG5

Gen.

PG8

Gen.

PG11

Gen.

PG13

Total

PI%

Method 1 PM
Gi 0.800 0.500 0.350 0.300 0.384 85%

Pm
Gi 0.439 0.150 0.100 0.100 0.120

PIi% 80% 100% 100% 100% 94%

Method 2 PM
Gi 0.712 0.402 0.350 0.300 0.400 70%

Pm
Gi 0.428 0.150 0.148 0.100 0.177

PIi% 47% 72% 81% 100% 80%

Method 1 is optimization method.

Method 2 is the expanding method.

From Tables 9.14 and 9.15, we know that the security region ΩP obtained by
the optimization method in this section is far bigger than that obtained by the tradi-
tional expanding method described in Section 9.3. Therefore, the conservation of the
maximal security regions computed on the basis of the optimization approach is rel-
atively small. The computation time needed in this approach is also very short (only
1.1 s for the IEEE 6-bus system, and 4.37 s for the IEEE 30-bus system).

The calculation results and comparison show that the LP method is superior to
the expanding method for computing security regions.

Applying Linear Programming for 𝛀P Considering Fuzzy Constraints The
optimization computation of the steady-state security region with fuzzy constraints
is examined with the IEEE 6-bus system. The parameters of the system including the
fuzzy branch power capacities, the branch average contingency time ACTs, proba-
bility of branch temporary overload are the same as those in Section 9.3. Suppose the
system operation time is 150 h. The performance index of branch failure probability
PI is 0.085.

Table 9.16 provides the calculation results of security regions for the IEEE
6-bus system when the 𝜆-cut of the fuzzy branch power capacity set 𝜇(𝜃ij) equals 0.0,
0.5, 0.6 and 1, respectively.

It can be observed from Table 9.16 that the bigger the value of the 𝜆-cut of the
fuzzy set 𝜇(𝜃ij), the higher will be the system reliability requirements and the smaller
will be the acquired security regions. On the contrary, the smaller the value of the
𝜆-cut of the fuzzy set 𝜇(𝜃ij), the lower will be the system reliability requirements and
the larger will be the acquired security regions. Therefore, it is very convenient to
select the corresponding security regions to judge whether the power system opera-
tion is secure according to the given reliability requirements.

Calculation of security regions with fuzzy line power flow constraints can pro-
vide more information for real-time security analysis and security operation in power
system compared with the existing methods. Because of the adoption of the optimiza-
tion method, the computing time of security regions is also shorter than that of the
expanding methods.
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TABLE 9.16 The Results for Security Regions on IEEE 6-Bus System (p.u.)

𝜆-cut Regions PG4 PG5 PG6

1 PM
Gi 4.2000 2.2240 3.8990

Pm
Gi 0.1840 1.3700 0.0000

0.6 PM
Gi 4.0050 2.2245 4.5480

Pm
Gi 0.1701 1.1500 0.0000

0.5 PM
Gi 4.0050 2.2245 4.7100

Pm
Gi 0.1620 1.0693 0.0000

0 PM
Gi 3.9755 2.4245 5.1849

Pm
Gi 0.1215 1.000 0.0000

APPENDIX A: LINEAR PROGRAMMING

Linear programming (LP) is widely used in power system problems. Hence, we
briefly describe the basic algorithm of LP [22–28].

A.1 Standard Form of LP

Not all linear programming problems are easily solved. There may be many vari-
ables and many constraints. Some variables may be constrained to be nonnegative
and others unconstrained. Some of the main constraints may be equalities and oth-
ers, inequalities. However, two classes of problems, called here the standard max-
imum problem and the standard minimum problem, play a special role. In these
problems, all variables are constrained to be nonnegative, and all main constraints are
inequalities.

Given an m-vector, b = (b1, ......, bm)T , an n-vector, c = (c1, ......, cn)T , and an
m × n matrix,

A =
⎛
⎜
⎜
⎜⎝

a11 a12 … a1n
a21 a22 … a2n
⋮ ⋮ ⋱ ⋮

am1 am1 … amn

⎞
⎟
⎟
⎟⎠

The standard maximum problem of LP can be formulated as follows:

maximize c1x1 + c2x2 + · · · + cnxn

subject to a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

…

am1x1 + am2x2 + · · · + amnxn ≤ bm

x1, x2, … xn ≥ 0
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or

max cTx

s.t. Ax ≤ b

x ≥ 0

We shall always use m to denote the number of constraints, and n to denote the number
of decision variables.

The standard minimum problem of the LP can be formulated as follows:

Minimize y1b1 + y2b2 + · · · + ymbm

subject to y1a11 + y2a12 + · · · + ymam1 ≥ c1

y1a12 + y2a22 + · · · + ymam2 ≥ c2

…

y1a1n + y2a2n + · · · + ymamn ≥ cn

y1, y2, … ym ≥ 0

or

min yT b

s.t. yT A ≥ c

y ≥ 0

The following terminologies are used in LP.

• The function to be maximized or minimized is called the objective function.

• A vector, x for the standard maximum problem or y for the standard minimum
problem, is said to be feasible if it satisfies the corresponding constraints.

• The set of feasible vectors is called the constraint set.

• An LP problem is said to be feasible if the constraint set is nonempty; otherwise
it is said to be infeasible.

• A feasible maximum (minimum) problem is said to be unbounded if the objec-
tive function can assume arbitrarily large positive (negative) values at feasible
vectors; otherwise, it is said to be bounded. Thus there are three possibili-
ties for a linear programming problem. It may be bounded feasible, it may be
unbounded feasible, and it may be infeasible.

• The value of a bounded feasible maximum (minimum) problem is the maxi-
mum (minimum) value of the objective function as the variables range over the
constraint set.
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• A feasible vector at which the objective function achieves the value is said to
be optimal.

Example A.1: Consider the following LP problem:

Maximize 7x1 + 5x2

subject to x1 + x2 ≤ 1

−3x1 − 3x2 ≤ −15

x1, x2 ≥ 0

Indeed, the second constraint implies that x1 + x2 ≥ 5.0, which contradicts the first
constraint. If a problem has no feasible solution, then the problem itself is called
infeasible.

At the other extreme from infeasible problems, one finds unbounded problems.
A problem is unbounded if it has feasible solutions with arbitrarily large objective
values. For example, consider

Maximize 3x1 − 4x2

subject to − 2x1 + 3x2 ≤ −1

−x1 − 2x2 ≤ −5

x1, x2 ≥ 0

Here, we could set x2 to zero and let x1 be arbitrarily large. As long as x1 is greater than
5 the solution will be feasible, and as it gets large the objective function does so too.
Hence, the problem is unbounded. In addition to finding optimal solutions to linear
programming problems, we shall also be interested in detecting when a problem is
infeasible or unbounded.

An LP problem was defined as maximizing or minimizing a linear function
subject to linear constraints. All such problems can be converted into the form of a
standard maximum problem by the following techniques.

A minimum problem can be changed to a maximum problem by multiplying
the objective function by −1. Similarly, constraints of the form

∑n
j=1 aijxj ≥bi can be

changed into the form
∑n

j=1(−aij)xj ≤ −bi. Two other problems arise.

(1) Some constraints may be equalities. An equality constraint
∑n

j=1 aijxj =bi may
be removed, by solving this constraint for some xj for which aij ≠ 0 and sub-
stituting this solution in the other constraints and in the objective function
wherever xj appears. This removes one constraint and one variable from the
problem.

(2) Some variables may not be restricted to be nonnegative. An unrestricted vari-
able, xj, may be replaced by the difference of two nonnegative variables, xj =
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uj − vj, where uj ≥ 0 and vj ≥ 0. This adds one variable and two nonnegativity
constraints to the problem.

Any theory derived for problems in standard form is therefore applicable to
general problems. However, from a computational point of view, the enlargement of
the number of variables and constraints in (2) is undesirable and, as will be seen later,
can be avoided.

A.2 Duality

To every linear program there is a dual linear program with which it is intimately
connected. We first state this duality for the standard programs.

Definition: The dual of the standard maximum problem

maximize cT x

subject to the constraints Ax ≥ b

and x ≥ 0 (9A.1)

is defined to be the standard minimum problem

minimize yT b

subject to the constraints yTA ≤ cT

and y ≥ 0 (9A.2)

Example A.2: Find x1 and x2 to maximize 2x1 + x2 subject to the constraints x1 ≥

0, x2 ≥ 0, and

3x1 + 2x2 ≤ 9

4x1 + 3x2 ≤ 18

− x1 + x2 ≤ 2

The dual of this standard maximum problem is therefore the standard minimum
problem: Find y1, y2, and y3 to minimize 9y1 + 18y2 + 2y3 subject to the constraints
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, and

3y1 + 4y2 − y3 ≥ 2

2y1 + 3y2 + y3 ≥ 1

If the standard minimum problem (A2) is transformed into a standard maximum prob-
lem (by multiplying A, b, and c by −1), its dual by the definition above is a standard
minimum problem which, when transformed to a standard maximum problem (again
by changing the signs of all coefficients) becomes exactly (A1). Therefore, the dual
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of the standard minimum problem (A2) is the standard maximum problem (A1). The
problems (A1) and (A2) are said to be duals.

The general standard maximum problem and the dual standard minimum prob-
lem may be simultaneously exhibited in the display:
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(9A.3)

The relation between a standard problem and its dual is seen in the following
theorem and its corollaries.

Theorem 1 If x is feasible for the standard maximum problem (A1) and if y is fea-
sible for its dual (A2), then

cTx ≤ yTb (9A.4)

Proof.
cTx ≤ yTAx ≤ yTb

The first inequality follows from x ≥ 0 and cT ≤ yT A. The second inequality follows
from y ≥ 0 and Ax ≤ b.

Corollary 1 If a standard problem and its dual are both feasible, then both are
bounded feasible.

Proof. If y is feasible for the minimum problem, then (A4) shows that yT b is an
upper bound for the values of cT x for x feasible for the maximum problem. Similarly
for the converse.

Corollary 2 If there exists feasible x∗ and y∗ for a standard maximum problem (A1)
and its dual (A2) such that cT x∗ = y∗T b, then both are optimal for their respective
problems.

Proof. If x is any feasible vector for (A1), then cT x ≤ y∗T b = cT x∗, which shows
that x∗ is optimal. A symmetric argument works for y∗.



396 CHAPTER 9 STEADY-STATE SECURITY REGIONS

The following fundamental theorem completes the relationship between a stan-
dard problem and its dual. It states that the hypotheses of Corollary 2 are always
satisfied if one of the problems is bounded feasible.

The Duality Theorem

If a standard linear programming problem is bounded feasible, then so is its dual,
their values are equal, and there exist optimal vectors for both problems.

As a corollary of the duality theorem we have the equilibrium theorem. Let x∗

and y∗ be feasible vectors for a standard maximum problem (A1) and its dual (A2)
respectively. Then x∗ and y∗ are optimal if, and only if,

y∗i = 0 for all i for which
n∑

j=1

aijx
∗
j <bi (9A.5)

and

x∗j = 0 for all j for which
m∑

i=1

y∗i aij >cj (9A.6)

Proof: For first part, “If”
If equation (9A.5) implies that y∗i = 0 unless there is equality in

∑n
j=1 aijx

∗
j ≤bi,

thus
m∑

i=1

y∗i bi =
m∑

i=1

y∗i

n∑

j=1

aijx
∗
j =

m∑

i=1

n∑

j=1

y∗i aijx
∗
j (9A.7)

Similarly, from equation (9A.6), we have

m∑

i=1

n∑

j=1

y∗i aijx
∗
j =

n∑

j=1

cjx
∗
j (9A.8)

According to Corollary 2, the x∗ and y∗ are optimal.
For the second part, “Only If”
As in the first line of the proof of Theorem 9.1,

n∑

j=1

cjx
∗
j ≤

m∑

i=1

n∑

j=1

y∗i aijx
∗
j ≤

m∑

i=1

y∗i bi (9A.9)

By the duality theorem, if x∗ and y∗ are optimal, the left side is equal to the
right side so we get equality throughout. The equality of the first and second terms
may be written as

n∑

j=1

(
cj −

m∑

i=1

y∗i aij

)
x∗j = 0 (9A.10)
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Since x∗ and y∗ are feasible, each term in this sum is nonnegative. The sum can be
zero only if each term is zero. Thus, if

∑m
i=1 y∗i aij > cj, then x∗j = 0. A symmetric

argument shows that if
∑n

j=1 aijx
∗
j <bi, then y∗i = 0.

Equations (9A.5) and (9A.6) are sometimes called the complementary slack-
ness conditions. They require that a strict inequality (a slackness) in a constraint in a
standard problem implies that the complementary constraint in the dual be satisfied
with equality.

A.3 The Simplex Method

Before we present the simplex method for solving linear programming problems,
look at the following example first to illustrate how the simplex method works.

Example A.3:

Maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0

We start by adding so-called slack variables. For each of the less-than inequalities in
the above problem we introduce a new variable that represents the difference between
the right-hand side and the left-hand side. For example, for the first inequality,

2x1 + 3x2 + x3 ≤ 5

we introduce the slack variable w1 defined by

w1 = 5 − 2x1 − 3x2 − x3

so that the inequality becomes equality, that is

2x1 + 3x2 + x3 + w1 = 5

It is clear then that this definition of w1, together with the stipulation that w1be non-
negative, is equivalent to the original constraint. We carry out this procedure for each
of the less-than constraints to get an equivalent representation of the problem:

Maximize y = 5x1 + 4x2 + 3x3

subject to w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3
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w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2, x3,w1,w2,w3 ≥ 0 (9A.11)

Note that we have included a notation, y, for the value of the objective function,
5x1 + 4x2 + 3x3.

The simplex method is an iterative process in which we start with a solution
x1, x2, x3,w1,w2,w3 that satisfies the equations and nonnegativities in the above
equivalent problem and then look for a new solution x′1, x′2, x′3, w′

1, w′
2, w′

3, which
is better in the sense that it has a larger objective function value

5x′1 + 4x′2 + 3x′3>5x1 + 4x2 + 3x3

We continue this process until we arrive at a solution that cannot be improved. This
final solution is then an optimal solution.

To start the iterative process, we need an initial feasible solution x1, x2, x3,

w1, w2, w3. For our example, this is easy. We simply set all the original variables
to zero and use the defining equations to determine the slack variables

x1 = 0, x2 = 0, x3 = 0, w1 = 5, w2 = 11, w3 = 8

The objective function value associated with this solution is y = 0.
We now ask whether this solution can be improved. Since the coefficient of

x1 is positive, if we increase the value of x1 from zero to some positive value, we
will increase y. But as we change its value, the values of the slack variables will also
change. We must make sure that we do not let any of them become negative. Since
x2 = x3 = 0, we see that w1 = 5 − 2x1, and so keeping w1 nonnegative imposes the
restriction that x1 must not exceed 5/2. Similarly, the nonnegativity of w2 imposes the
bound that x1 ≤ 11∕4, and the nonnegativity of w3introduces the bound that x1 ≤ 8∕3.
Since all of these conditions must be met, we see that x1 cannot be made larger than
the smallest of these bounds: x1 ≤ 5∕2. Our new, improved solution then is

x1 = 5∕2, x2 = 0, x3 = 0, w1 = 0, w2 = 1, w3 = 1∕2

This first step was straightforward. It is less obvious how to proceed. What
made the first step easy was the fact that we had one group of variables that were
initially zero and we had the rest explicitly expressed in terms of these. This prop-
erty can be arranged even for our new solution. Indeed, we simply must rewrite the
equations in (9A.11) in such a way that x1, w2, w3, and y are expressed as functions
of w1, x2, and x3, that is, the roles of x1 and w1 must be swapped. To this end, we use
the equation for w1 in (9A.11) to solve for x1:

x1 = 5
2
− 1

2
w1 −

3
2

x2 −
1
2

x3

The equations for w2, w3, and y must also be doctored so that x1 does not appear on
the right. The easiest way to accomplish this is to do so-called row operations on the
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equations in the equivalent problem. For example, if we take the equation for w2and
subtract two times the equation for w1and then bring the w1 term to the right-hand
side, we get

w2 = 1 + 2w1 + 5x2

Performing analogous row operations for w3 and 𝜁 , we can rewrite the equations in
(9A.11) as

y = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3 (9A.12)

Note that we can recover our current solution by setting the “independent” variables
to zero and using the equations to read off the values for the “dependent” variables.

Now we see that increasing w1 or x2 will bring about a decrease in the objective
function value, so of x3, being the only variable with a positive coefficient, is the only
independent variable that we can increase to obtain a further increase in the objec-
tive function. Again, we need to determine how much this variable can be increased
without violating the requirement that all the dependent variables remain nonnega-
tive. This time we see that the equation for w2 is not affected by changes in x3, but the
equations for x1 and w3 do impose bounds, namely, x3 ≤ 5 and x3 ≤ 1, respectively.
The latter is the tighter bound, and so the new solution is

x1 = 2, x2 = 0, x3 = 1, w1 = 0, w2 = 1, w3 = 0

The corresponding objective function value is y = 13.
Once again, we must determine whether it is possible to increase the objec-

tive function further and, if so, how. Therefore, we need to write our equations with
y, x1, w2, and x3 written as functions of w1, x2, and w3. Solving the last equation
in (9A.12) for x3, we get

x3 = 1 + 3w1 + x2 − 2w3

Also, performing the appropriate row operations, we can eliminate x3 from the other
equations. The result of these operations is

𝜁 = 13 − w1 − 3x2 − w3

x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3 (9A.13)
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We are now ready to begin the third iteration. The first step is to identify an inde-
pendent variable for which an increase in its value would produce a corresponding
increase in y. But this time there is no such variable, as all the variables have negative
coefficients in the expression for 𝜁 . This fact not only brings the simplex method to
a standstill but also proves that the current solution is optimal. The reason is quite
simple. Since the equations in (9A.13) are completely equivalent to those in (9A.11)
and, as all the variables must be nonnegative, it follows that y ≤ 13 for every feasible
solution. Since our current solution attains the value of 13, we see that it is indeed
optimal.

Now for the standard maximum problem, the simplex method is presented as
below.

First of all, we add the slack variables w = b − Ax. The problem becomes: Find
x and w to maximize cT x subject to x ≥ 0, u ≥ 0, and u = b − Ax.

We may use the following table to solve this problem if we write the constraint,
w = b − Ax as −w = Ax − b.
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(9A.14)

We note as before that if −c ≥ 0 and b ≥ 0, then the solution is obvious: x =
0, w = b, and value equal to zero (as the problem is equivalent to minimizing −cT x).

Suppose we want to pivot to interchange w1 and x1 and suppose a11 = 0. The
equations

−w1 = a11x1 + a12x2 + · · · + a1nxn − b1

−w2 = a21x1 + a22x2 + · · · + a2nxn − b2

…

−wm = am1x1 + am2x2 + · · · + amn xn − bm

become

−x1 = 1
a11

w1 +
a12

a11
x2 +

a1n

a11
xn −

b1

a11

−w2 = −
a21

a11
w1 +

(
a22 −

a21a12

a11

)
x2 + … etc.
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In other words, for the same pivot rule, we apply

(
p r

c q

)
⇒

(
1∕p r∕p
−c∕p q − (rc∕p)

)

If we pivot until the last row and column (exclusive of the corner) are non-
negative, we can find the solution to the dual problem and the primal problem at the
same time.

Let xn+i = wi, then we have n + m variables x. Initially, we have n nonbasic vari-
ables N = {1, 2, … , n} (i.e., x1, … , xn) and m basic variables B = {n + 1, n +
2, … , n + m} (i.e., xn=1, … , xn+m).

Within each iteration of the simplex method, exactly one variable goes from
nonbasic to basic and exactly one variable goes from basic to nonbasic. The variable
that goes from nonbasic to basic is called the entering variable. It is chosen with the
aim of increasing y; that is, one whose coefficient is positive: pick k from {j ∈ N ∶
c′j > 0}, where N is the set of nonbasic variables. Note that if this set is empty, then
the current solution is optimal. If the set consists of more than one element (as is
normally the case), then we have a choice of which element to pick. There are several
possible selection criteria. Generally, we pick an index k having the largest coefficient
(which again could leave us with a choice).

The variable that goes from basic to nonbasic is called the leaving variable.
It is chosen to preserve nonnegativity of the current basic variables. Once we have
decided that xk will be the entering variable, its value will be increased from zero to
a positive value. This increase will change the values of the basic variables.

xi = b′i − a′ikxk, i ∈ B

We must ensure that each of these variables remains nonnegative. Hence, we require
that

b′i − a′ikxk ≥ 0, i ∈ B

Of these expressions, the only ones that can go negative as xk increases are those for
which a′ik is positive; the rest remain fixed or increase. Hence, we can restrict our
attention to those i’s for which a′ik is positive. And for such an i, the value of xk at
which the expression becomes zero is

xk =
b′i
a′ik

Since we do not want any of these to become negative, we must raise xk only
to the smallest of all of these values

xk = min
i

(
b′i
a′ik

)
, i ∈ B, a′ik > 0
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Therefore, with a certain amount of latitude remaining, the rule for selecting the leav-
ing variable is pick l from {i ∈ B ∶ a′ik > 0 and b′i∕a′ik is minimal}.

The rule just given for selecting a leaving variable describes exactly the process
by which we use the rule in practice, that is, we look only at those variables for which
a′ik is positive and among those we select one with the smallest value of the ratio
b′i∕a′ik.

This same “method” may be used to solve the dual problem—the standard
minimum problem: Find y to minimize yT b subject to y ≥ 0 and yT A ≥ cT .

Similarly, we convert the inequalities into equalities by adding slack variables
sT = yTA − cT ≥ 0. The problem can be restated: Find y and s to minimize yT b subject
to y ≥ 0, s ≥ 0 and sT = yTA − cT .

We write this problem in a table to represent the linear equations sT = yTA − cT .
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The last column represents the vector whose inner product with y we are trying to
minimize.

If −c ≥ 0 and b ≥ 0, there is an obvious solution to the problem; namely, the
minimum occurs at y = 0 and s = −c, and the minimum value is yT b = 0. This is
feasible because y ≥ 0, s ≥ 0, and sT = yT A − c, and yet Σyibi cannot be made any
smaller than 0, as y ≥ 0, and b ≥ 0.

Suppose then we cannot solve this problem so easily because there is at least
one negative entry in the last column or last row. (exclusive of the corner). Let us
pivot about a11 (suppose a11 ≠ 0), including the last column and last row in our pivot
operations, we get
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Let r = (r1, … , rn) = (y1, s2, … , sn) denote the variables on top, and let
t = (s1, y1, … , ym) denote the variables on the left. The set of equations are



APPENDIX A: LINEAR PROGRAMMING 403

represented by the new table. Moreover, the objective function yT b may be written
(replacing y1 by its value in terms of s1)

m∑

i=1

yibi =
b1

a11
s1 +

(
b2 −

a21b1

a11

)
y2 + … +

(
bm −

am1b1

a11

)
y2 +

c1b1

a11

= tTb′ + v′ (9A.17)

This is represented by the last column in the new table. We have transformed our prob-
lem into the following: Find vectors y and s, to minimize tT b′ subject to y ≥ 0, s ≥ 0
and r = tTA′ − c′ (where tT represents the vector s1, y2, … , ym and rT represents the
vector y1, s2, … , sn).

Again, if −c′ ≥ 0 and b′ ≥ 0, we have the obvious solution: t = 0 and r = −c′

with value v′.
Similar to the standard maximum problem solved by simplex method, this pro-

cess will be continued until the optimal solution is obtained.

PROBLEMS AND EXERCISES

1. What is the steady-state security region?

2. Explain the “Security Corridor”

3. What is the maximal security region?

4. State the differences of the traditional expanding method and new expanding method.

5. Do we need the stating points for LP-based security regions calculation? Why?

6. What does the hyperbox of the security region look like for a system with two generators?
How about a system with three generators?

7. Can we find a hyperbox of the security region if a system has an infeasible constraints
set? Why?

8. For a maximum problem as below, please write the dual LP problem.

Maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5

4x1 + x2 + 2x3 ≤ 11

3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0

9. For a minimum problem as below, please write the dual LP problem.

Minimize 8x1 + 6x2 + 2x3

subject to x1 + x2 + x3 ≥ 6
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2x1 + 3x2 + x3 ≥ 10

x1 + 4x2 + x3 ≥ 15

x1, x2, x3 ≥ 0

10. A power system has two generators. The power output limits of two units and security
constraint are

10 ≤ PG1 ≤ 50 MW

15 ≤ PG2 ≤ 60 MW

3PG1 + PG2 ≤ 180 MW

(1) If the initial operation point is PG1 = 30,PG2 = 40, use expanding method to com-
pute the hyperbox of the steady-state security region.

(2) If the initial operation point is PG1 = 25,PG2 = 30, use expanding method to com-
pute the hyperbox of the steady-state security region.

(3) Compare the sizes of the hyperboxes for the above cases.

11. A power system has two generators. The power output limits of two units and security
constraint are

0 ≤ PG1 ≤ 55 MW

10 ≤ PG2 ≤ 80 MW

3PG1 + PG2 ≤ 180 MW

3PG1 − 2PG2 ≤ 90 MW

−4PG1 + PG2 ≥ 20 MW

2PG1 + PG2 ≥ 40 MW

(1) Draw the feasible constraints region.

(2) If the initial operation point is PG1 = 30,PG2 = 40, illustrate the hyperbox of the
steady-state security region.

(3) If the initial operation point is PG1 = 25,PG2 = 30, illustrate the hyperbox of the
steady-state security region.

(4) If the initial operation point is PG1 = 10,PG2 = 10, illustrate the hyperbox of the
steady-state security region.

(5) If the initial operation point is PG1 = 40,PG2 = 50, illustrate the hyperbox of the
steady-state security region.

(6) Are all initial points in the above cases in feasible regions?

12. A power system has three generators. The power output limits of three units and security
constraints are

0 ≤ PG1 ≤ 55 MW

10 ≤ PG2 ≤ 80 MW
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5 ≤ PG3 ≤ 100 MW

PG1 + PG2 + PG3 ≤ 200 MW

PG1 + PG2 + PG3 ≥ 30 MW

PG1 + PG2 ≥ 15 MW

(1) If the initial operation point is PG1 = 30,PG2 = 40,PG3 = 40, use expanding method
to compute the hyperbox of the steady-state security region.

(2) If the initial operation point is PG1 = 30,PG2 = 45,PG3 = 50, use expanding method
to compute the hyperbox of the steady-state security region.

(3) If the initial operation point is PG1 = 20,PG2 = 35,PG3 = 50, use expanding method
to compute the hyperbox of the steady-state security region.

(4) Compare the sizes of the hyperboxes for the above cases.
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C H A P T E R 10
APPLICATION OF RENEWABLE
ENERGY

10.1 INTRODUCTION

Renewable energy is energy that comes from natural resources such as sunlight, wind,
rain, tides, and geothermal heat, which are renewable. Renewable energy sources
differ from conventional sources in that, generally they cannot be scheduled, and they
are often connected to the electricity distribution system rather than the transmission
system.

The production and use of renewable fuels has grown more quickly in recent
years as a result of higher prices for oil and natural gas, and faster development
of all kinds of new technologies such as the distributed generation (DG) for use of
renewable energy resources, as well as the development of the smart grid. Since the
renewable energy resources are typically sited close to customer loads, they can help
reduce the number of transmission and distribution lines that need to be upgraded or
built. Obviously, they reduce transmission and distribution losses. However, owing to
the introduction of renewable energy resources, the distribution network has multiple
sources and it is possible to have power flow in the reverse direction, from renewable
energy resources to the substations. Reverse power flow is the main problem in the
integration of DG units in the smart grid. The smart grid including DG will be dis-
cussed in Chapter 14. This chapter focuses on the application of renewable energy in
power systems [1–24].

10.2 RENEWABLE ENERGY RESOURCES

10.2.1 Solar Energy

Energy produced by sun is called solar energy. The light energy which we receive
from the sun can be absorbed, stored, converted, and used for domestic purposes.

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
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Most renewable energy comes either directly or indirectly from the sun. Sunlight, or
solar energy, can be used directly for heating and lighting homes and other buildings,
for generating electricity, and for hot water heating, solar cooling, and a variety of
commercial and industrial uses. One of most the commonly used solar technologies
for electricity is the solar photovoltaic cell.

Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight
directly into electricity. PV gets its name from the process of converting light (pho-
tons) to electricity (voltage), which is called the PV effect.

Solar panels used to power homes and businesses are typically made from solar
cells combined into modules that hold about 40 cells. A typical home will use about
10–20 solar panels to power the home. The panels are mounted at a fixed angle facing
south, or they can be mounted on a tracking device that follows the sun, allowing them
to capture the maximum amount of sunlight. Many solar panels combined together
to create one system is called a solar array. For a large electric utility or for industrial
applications, hundreds of solar arrays are interconnected to form a large utility-scale
PV system.

10.2.2 Wind Energy

Wind is a form of solar energy. It is a natural power source that can be econom-
ically used to generate electricity. The terms “wind energy” or “wind power”
describe the process by which wind is used to generate mechanical power or
electricity.

Wind turbines, such as aircraft propeller blades, turn in the moving air and
power an electric generator that supplies an electric current. There are two different
types of wind turbines that are currently in use. The first type originates from the
vertical-axis design. The second type of wind turbine is based on the horizontal-axis
design. These wind turbines are very much like the windmills found on farms used for
daily chores like pumping water. Modern wind turbines, large in size, are created from
the original horizontal-axis design. Wind turbines are often grouped together into a
single wind power plant, also known as a wind farm, to generate bulk electrical power.
Electricity from these turbines is fed into a utility grid and distributed to customers,
just as with conventional power plants.

10.2.3 Hydropower

Flowing water creates energy that can be captured and turned into electricity. This is
called hydroelectric power or hydropower.

There are several types of hydroelectric facilities; they are all powered by the
kinetic energy of flowing water as it moves downstream. Turbines and generators
convert the energy into electricity, which is then fed into the electrical grid to be used
in homes, businesses, and by industry. Hydropower is currently the best known and
most widely used source of renewable energy production, accounting for about 20%
of present global energy production. The operation of hydropower was discussed in
Chapter 4.
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10.2.4 Biomass Energy

Biomass refers to relatively recently living organic material such as wood, leaves,
paper, food waste, manure, and other items usually considered garbage. Biomass can
be used to produce electricity, transportation fuels, or chemicals. The use of biomass
for any of these purposes is called biomass energy or biomass power.

Bioenergy system technologies include direct-firing, co-firing, gasification,
pyrolysis, and anaerobic digestion.

Most biopower plants use direct-fired systems. They burn bioenergy feedstocks
directly to produce steam. This steam drives a turbine, which turns a generator
that converts the power into electricity. In some biomass industries, the spent
steam from the power plant is also used for manufacturing processes or to heat
buildings. Such combined heat and power systems greatly increase overall energy
efficiency.

Co-firing refers to mixing biomass with fossil fuels in conventional power
plants. Coal-fired power plants can use co-firing systems to significantly reduce
emissions, especially sulfur dioxide emissions. Gasification systems use high
temperatures and an oxygen-starved environment to convert biomass into synthesis
gas, a mixture of hydrogen and carbon monoxide. Gasification, anaerobic digestion,
and other biomass power technologies can be used in small, modular systems
with internal combustion or other generators. These could be helpful for providing
electrical power to villages remote from the electrical grid.

10.2.5 Geothermal Energy

Geothermal energy is harnessed from the earth. Geothermal power plants harness
the heat from the earth to produce electricity. There are three different ways that
power plants process geothermal energy. They are the dry-steam, flash-steam and
binary-cycle methods. All three methods use steam to power a turbine which drives
a generator that produces electricity.

Dry-steam geothermal power plants use steam that is brought from below the
earth’s surface through pipes, directly to the power plant turbines.

Flash-steam geothermal power plants use hot water that is brought from below
the earth’s surface. The hot water is sprayed into a tank and creates steam.

Binary-cycle geothermal plants use moderate temperature water from a
geothermal source and combine it with another chemical to create steam.
The steam powers the turbine that drives the generator to create electricity.

10.3 OPERATION OF GRID-CONNECTED PV SYSTEM

10.3.1 Introduction

PV systems can be grouped into stand-alone systems (such as rural electrification,
pumping water equipment, and industrial applications) and grid-connected systems
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(such as domestic systems and power plants). PV power supplied to the utility grid
is gaining more and more visibility, because of the need for meeting the worldwide
increase in the demand for electric power. The PV array normally uses a maximum
power point tracking (MPPT) technique to continuously deliver the highest power to
the load when there are variations in irradiation and temperature. The disadvantage
of PV energy is that the PV output power depends on weather conditions and cell
temperature, making it an uncontrollable source.

It is also not available during the night. In order to overcome these inherent
drawbacks, grid-connected PV systems are widely adopted. The system includes
PV panels (string and parallel connected to form PV arrays), on-grid inverters,
and electricity-distributing devices. The following are the advantages of operating
grid-connected PV systems:

• Reduction in the costs of the PV panels

• Reduction in transmission power losses

• No noise or pollution

• Less maintenance, simple structure

• Supply of power from the PV system to the grid, relieving the grid demand.

All PV systems interface the utility grid through a voltage source inverter and
a boost converter. The introduction of a grid-connected PV system increases the volt-
age in its point of common coupling (PCC). The voltage level depends on the network
configurations and the load conditions. It is proportional to the instantaneously pro-
duced power of the PV system. In this case, the structure of the distribution network
changes from the single- to multipower sources, and the size and direction of the
power flow in the feeder may change, leading to a change of the voltage profile in
distribution feeders. Thus, the connection of a large PV system to utility grids may
cause some operational problems for distribution networks. The severity of these
problems directly depends on the percentage of PV penetration and the geography
of the installation. Hence, knowing the possible impact of the grid-connected PV
system on the distribution network can provide feasible solutions before real-time
and practical implementation. The following sections introduce possible effects that
PV system may impose on a distribution network.

10.3.2 Model of PV Array

Since the capacity of the PV cell is relatively small, output voltage being is less than
1 V and the peak output power being only around 1 W, a single PV cell cannot meet the
load requirement; it is also inconvenient for installation and application. Therefore, a
few dozens or even hundreds of PV cells are connected in parallel or series, according
to the load requirement, to form a combined device and then they are encapsulated in
a box made of transparent sheet with anode and cathode down-leads outside the box.
Before and after the encapsulation, the combined device is called a PV module and
PV panel, respectively. A few PV panels are connected in parallel or series to form a
larger power supply, namely, a PV array.
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A controlled current source is generally used for modeling a PV array. For a
PV array with NS PV cells in series and NP PV cells in parallel, the terminal current
IA can be expressed as follows [1]:

IA = NP ⋅ IL − NP ⋅ I0 ⋅

[
exp

(
q ⋅

(
VA + IA ⋅ Rsa

)

NS ⋅ n ⋅ m ⋅ k ⋅ T

)
− 1

]
(10.1)

where VA and IA are terminal voltage and current in the PV array, respectively, Rsa is
the equivalent series resistance of the PV array.

10.3.3 Control of Three-Phase PV Inverter

The PV inverter is an important component of the PV system and is used to convert
DC power from the PV array to AC power on the grid. Its performance determines
the quality of PV system output power. With an increase in the types of inverters and
the continuous development of control techniques, the PV system has been applied
to all fields. For a high-performance PV inverter, the choice of circuit topology is
very important, because the circuit topology concerns efficiency, cost, security, and
reliability.

One of the control schemes of the grid-connected is the current-mode control
scheme, which takes the output current as the controlled variables. The output current
should be real-time controlled so that the output current of the inverter has the same
phase and frequency as the grid voltage. The PV inverter will ensure that the output
alternating current is the high-quality sine wave with the synchronized frequency.
The goals of grid-connected control are to decouple control of the output power of
PV array and to realize MPPT. The following is the analysis of the power-decoupling
control of a three-phase PV inverter. The MPPT control will be introduced in the next
section.
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(10.2)

where 𝜃 is the phase that d-axis current lags behind a-axis current.
In the static a − b − c coordinates, the speed of current regulation mode is rapid,

but the frequency of inverter switching is not fixed, and the harmonic component of
the output current is high. Therefore, the rotational d − q − 0 coordinates are gener-
ally applied to regulate the q- and d-axes currents. In this case, the output harmonics
of voltage source inverter would be reduced. If the q-axis in rotational d − q − 0 coor-
dinates lagged behind the d-axis by 90∘, the three-phase current ia, ib, ic in the static
a − b − c can be transformed into d-, q- and 0-axes currents id, iq and i0 through the
Park transformation.

In a balanced three-phase system, the instantaneous active and reactive power
could be described by d-, q-axes voltages Vd, Vq and currents Id, Iq.
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P = 3
2
⋅ (Vd ⋅ Id + Vq ⋅ Iq) (10.3)

Q = 3
2
⋅ (Vd ⋅ Iq − Vq ⋅ Id) (10.4)

Here, Vq is identical to the magnitude of the instantaneous voltage at the PV array
terminal and Vd is zero in the rotating d − q − 0 coordinates, so equations (10.3) and
(10.4) may be contracted into the simpler equations (10.5) and (10.6).

P = 3
2
⋅ |Vo| ⋅ Iq (10.5)

Q = −3
2
⋅ |Vo| ⋅ Id (10.6)

where |Vo| is the voltage magnitude of the instantaneous PV array. Since the voltage
magnitude remains almost constant, the real and reactive power can be controlled by
regulating the q- and d-axes currents (Iq and Id), respectively.

10.3.4 Maximum Power Point Tracking

In the actual PV power system, the changes in solar irradiance intensity and temper-
ature are not controllable. To ensure that the PV arrays always work at maximum
power operation point under certain light intensity and temperature, the MPPT con-
troller must maintain the DC voltage of the PV array at the appropriate value all the
time. The MPPT strategy requires real-time detection of the PV array output power,
and applies some control algorithm to predict the possible maximum output power
of the PV array under the current operating condition. Then it changes the current
impedance to meet the requirements of maximum power output. Even if the rise of
PV cells temperature causes a reduction in output power, the PV power generation
system could still run in the optimum state under the current condition.

Figure 10.1 shows the P–V characteristic of a PV array. A different operating
point of the PV array determines a different output power. The principle of MPPT is
to seek the corresponding voltage of maximum power point under the specified sun-
shine and temperature conditions through detecting the output power at the different
operating points. The MPPT algorithms mainly include the constant voltage tracking
(CVT) method, current sweep method, perturbation and observation method, frac-
tional open-circuit voltage method, and incremental conductance method [1].

10.3.5 Distribution Network with PV Plant

Figure 10.2 is a distribution feeder structure without PV plants, where the source is
selected as the reference node with voltage U̇0 = U0ej0. Figure 10.3 is a distribution
feeder structure with a PV plant. If the PV power plant of node k is in operation, the
voltage drop of each node will be changed.

According to the model in Figure 10.2, the feeders have n loads which are
evenly distributed, and each load is assumed to have the same value Pd + jQd. Let m
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Figure 10.1 The maximum power curve of a PV array.
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Figure 10.2 Distribution feeders without PV power plants.
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PV

Figure 10.3 Distribution feeders with PV a power plant.

be any point on the feeder branch, then the active and reactive loads of point m can
be written as

Pm−n + jQm−n = (n − m + 1)Pd + j(n − m + 1)Qd (10.7)

To simplify the calculation, the principle of superposition is applied to the volt-
age calculation of the feeders. This will consider the impact of both the main source
and PV power plant on the distribution feeder. In this situation, the source of the dis-
tribution feeder is equivalent to a voltage source that is in short-circuit status, while
the PV power plant is equivalent to a current source that is in open status.
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10.4 VOLTAGE CALCULATION OF DISTRIBUTION
NETWORK

Since the output power of the PV plant is affected by sunshine, temperature, and other
weather factors, the PV output power has characteristics of fluctuations and intermit-
tence that is prone to cause voltage fluctuations at the common connection point. The
impact of PV power on the power system must be assessed in order to ensure that
the increasing application of PV power does not bring negative consequences to the
users. This section discusses the steady-state voltage distribution and dynamics of
voltage fluctuation after PV power plants access the distribution network [8].

10.4.1 Voltage Calculation without PV Plant

Let us first analyze the voltage calculation of the traditional distribution system. From
Figure 10.2, the voltage drop at any point m on distribution line is

ΔUsm = ΔUsmf + ΔUsml (10.8)

where ΔUmsf is the voltage loss caused by the equivalent load after point m. ΔUmsl
is the voltage loss caused by the load before point m. Assume that the line between
two nodes has the same length, the voltage loss from point m to the end of the feeder
can be written as follows.

ΔUsml = m(n − m + 1)
PdR1 + QdX1

UN
(10.9)

where R1 and X1 are the resistance and reactance of the line between two nodes,
respectively. UN is the rated voltage.

Assuming that each load is evenly distributed at the midpoint of each line
section, the voltage loss from the source to the point m can be written as follows.

ΔUsml =
m
2
(m − 1)

PdR1 + QdX1

UN
(10.10)

The total voltage loss at node m is

ΔUsm = m
2
(2n − m + 1)

PdR1 + QdX1

UN
k ∈ [1, n] (10.11)

Thus, the node voltage at any point m on the distribution feeders without PV power
plant can be calculated as follows.

Um = U0 −
m
2
(2n − m + 1)

PdR1 + QdX1

UN
m ∈ [1, n] (10.12)
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10.4.2 Voltage Calculation with PV Plant Only

Now we discuss the voltage calculation of the distribution system with a PV plant.
From Figure 10.3, if the feeder side of the main power source is a short circuit,
the impedance of the circuit is small comparing to the loads on distribution feed-
ers. Thus, the PV power plant has no direct impact on node voltage loss after node
k (between point k and load n), but has an indirect impact because the voltage of
node k is improved as a result of the access of PV plant. At this point, where the
grid-connected PV power plant provides sole injection power and the loss of line
voltage is negative, the voltage loss of node m can be expressed as follows:

ΔUpv = −m
PpvR1 + QpvX1

UN
m ∈ [1, k] (10.13)

ΔUpv = −k
PpvR1 + QpvX1

UN
m ∈ [k + 1, n] (10.14)

10.4.3 Voltage Calculation of Distribution Feeders
with PV Plant

By using the superposition theorem, the voltage loss of the distribution feeders with
a PV power plants can be obtained by

ΔUm = m
2
(2n − m + 1)

PdR1 + QdX1

UN
− m

PpvR1 + QpvX1

UN
m ∈ [1, k] (10.15)

ΔUm = m
2
(2n − m + 1)

PdR1 + QdX1

UN
− k

PpvR1 + QpvX1

UN
m ∈ [k + 1, n] (10.16)

Therefore, the node voltage at any point m on the distribution feeders with the PV
power plant can be calculated as follows.

Um = U0 −
m
2
(2n − m + 1)

PdR1 + QdX1

UN
+ m

PpvR1 + QpvX1

UN
m ∈ [1, k] (10.17)

Um = U0 −
m
2
(2n − m + 1)

PdR1 + QdX1

UN
+ k

PpvR1 + QpvX1

UN
m ∈ [k + 1, n]

(10.18)

It can be observed from the above equations that the node voltages of the distribution
network have been enhanced with the PV power plants in the network.

10.4.4 Voltage Impact of PV Plant in Distribution Network

It can be known from the above analysis that the reason for voltage fluctuation when
PV plants connect to the network is the output power fluctuations of the plants.

Figure 10.4 is the equivalent circuit when a PV plant is connected to a grid.
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Figure 10.4 Equivalent circuit of PV power plant accessing the grid.

The node voltage of the PCC can be obtained from the voltage balance equation:

U̇pv = Ė − (Rz + jXz)İpv = Ė − (Rz + jXz)(Ipv_ p + jIpv_q) (10.19)

where

U̇pv: the output voltage phasor of the PV plant
Ė: the grid voltage phasor

R1: the line resistance
X1: the line reactance
Rs: the equivalent resistance
Xs: the equivalent reactance
İpv: the current phasor from the PV plant to the grid

İpv_ p: the active components of the injection current from the PV plant into the
system

İpv_q: the reactive components of the injection current from the PV plant into the
system

In addition, Rz = R1 + Rs, and Xz = X1 + Xs are the total impedance of the lines
and the system, respectively.

When the injection power flows from the PV plant to the grid changes, the line
current in the grid will change by Δİpv. Assuming the voltage of power grid Ė is a
constant, the voltage change of PCC can be calculated as follows.

ΔUPCC = (Rz + jXz) ⋅ (ΔIpv_ p + jΔIpv_q)

= |Zz|(cos𝜙 + j sin𝜙)|ΔI|(cos 𝜃 + j sin 𝜃)

= U2

SK

ΔSpv

U
[(cos𝜙 cos 𝜃 − sin𝜙 sin 𝜃) + j(sin𝜙 cos 𝜃 + cos𝜙 sin 𝜃)]

(10.20)

Zz = (R1 + Rs) + j(X1 + Xs) (10.21)

𝜃 = arctan
ΔIpv_q

ΔIpv_ P
(10.22)
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where

ΔSpv: the power variation for the PV power plant injecting into the system
ΔI: the current variation for the PV power plant injecting into the system
Sk: the short-circuit capacity of accessing point for the photovoltaic power

station
𝜙: the short-circuit impedance angle of PV plant accessing to the grid
U: the voltage of the public access point
Zz: the equivalent impedance for the line and system
𝜃: the power factor angle of the injected PV power change

According to previous analysis, the vertical component of voltage variation can
be neglected. The horizontal component of voltage drop ΔUPCC can be simplified as
follows.

ΔUPCC = U2

SK

ΔSpv

U
(cos𝜙 cos 𝜃 − sin𝜙 sin 𝜃)

= U
ΔSpv

SK
cos(𝜙 + 𝜃) (10.23)

From the above equation, there are three factors that affect the voltage of PCC. They
are the variation of the injection power, the short-circuit capacity of the system, and
the power factor of the PV plant. Since the PV plant is often operated in the control
mode of the unit power factor, the change in output power of the plant is equivalent
to the total change in active output power.

ΔUPCC = U
ΔPpv

SK
cos(𝜙) (10.24)

It can be observed from the above equation that the fluctuation in the output
power of PV systems is one of the main factors that may cause severe operational
problems for the utility network. Power fluctuation occurs because of variations in
(1) solar irradiance caused by the movement of clouds, which may continue for min-
utes or hours, and (2) the PV system topology. Power fluctuation may cause power
swings in lines, over- and underloadings, unacceptable voltage fluctuations, and volt-
age flickers.

10.5 FREQUENCY IMPACT OF PV PLANT IN
DISTRIBUTION NETWORK

Frequency is one of the more important factors in power quality. Any imbalance
between the produced and the consumed power may lead to frequency change. When
the generated power is less than the load power due to an accidental event, the electri-
cal torque of generator is greater than the mechanical input torque. The speed of the
generator will slow down, decreasing the frequency. Otherwise, when the generated
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power is greater than the load power, the speed of the generator will accelerate,
increasing the frequency.

The small size of PV systems causes frequency fluctuation to be negligible com-
pared with other renewable energy–based resources. However, this issue may become
more severe with an increase in the penetration levels of the PV systems. Frequency
fluctuation may change the winding speed in electro motors and may damage gen-
erators. Thus, it is necessary to analyze the frequency impact of grid-connected PV
systems.

System frequency characteristic is the combined effect of load frequency char-
acteristic, generator frequency characteristic, and voltage. Generally, the frequency
characteristic can be classified as static and dynamic types. Static frequency charac-
teristic is the relationship between power and frequency in the stable state (generation
and consumption is balanced), which is beyond our scope. Dynamic frequency char-
acteristics of power system refer to the time course when the frequency goes through
transition from normal state to another stable state when the system’s active power
balance is destroyed. The process is complicated, and involves several factors. In
order to analyze and calculate the dynamic characteristic, we do not consider the
load changes with time and the role of the generator governor. At this point, the load
can be expressed as a function of frequency,

PL = PL0

(
1 −

KLΔf

f

)
(10.25)

The gain motion equation of generator rotor is as follows.

J
d𝜔
dt

= Tm − Te =
Pm0

𝜔
−

PL0

𝜔

(
1 − KL

Δ𝜔
𝜔0

)
(10.26)

where

Pm0: the total active power output of the generator
J: the total moment of inertia constant of the generator

Tm: the total input mechanical torque of the generator
Te: the total electrical torque of the load
𝜔: the generator speed (𝜔 = 2𝜋f )

During the relatively short period after a disturbance occurs, let 𝜔 = 𝜔0 + Δ𝜔,
Tm = Tm0 + ΔTm, Te = Te0 + ΔTe, and considering TJ = J𝜔, we get

TJ
d
dt

Δ𝜔
𝜔0

+
KL

𝜔0

Δ𝜔
𝜔0

=
Pm0

𝜔0
−

PL0

𝜔0
= Ta (10.27)

where Ta is the acceleration torque and Δf∕f0 = Δ𝜔∕𝜔0.
Let DT = KL∕𝜔0 be the total damping coefficient. The above equation can be

written as

TJ
d
dt

Δf

f0
+ DT

Δf

f0
= Ta (10.28)



10.5 FREQUENCY IMPACT OF PV PLANT IN DISTRIBUTION NETWORK 419

Let Ta and DT remain unchanged within Δt. From equation (10.28), we get

Δf (t)
f0

=
Ta

DT

(
1 − e

−DT
TJ

Δt
)

(10.29)

Δt = −
TJ

DT
ln

(
1 −

DT

TJ

Δf

f0

)
(10.30)

In terms of the above two equations, Δf (t) and Δt can be estimated. It is
required that the frequency deviation in the normal state should be less than
0.1–0.2 Hz.

In order to adjust power imbalance of system, there are mainly two methods:
increasing the power input and load shedding. The level of primary spinning reserves
is generally not less than 2% of all loads. Once there is a power short, the system’s
spinning reserve capacity will be activated as soon as possible to prevent a system
crash.

Example 10.1: Figure 10.5 is a distribution network with a PV plant, which is
used to analyze the impact of the capacity of the PV plant on node voltage. Each load
is Pd + jQd = 0.42 + j 0.24.

The power factor of the output power of the PV inverter is selected as 0.9, and
the data of the PV power plant capacity are given in Table 10.1. If the access point
of the PV plant is located at node 4, the results of the voltage calculation for this
distribution network are shown in Figure 10.6. It can be observed from Figure 10.6
that the line voltage loss reduces and the feeder voltage is gradually increases with an
increase in the capacity of the PV power plant. The feeder voltage will be higher than

~

PV

110/10.5 kV
1 2 3 4 5 6 7 8 9 10 11 12 130

Figure 10.5 A substation with a PV plant.

TABLE 10.1 Capacity Changes of PV the Power Plant

Curve No. 1 2 3 4 5 6

PV power
(MVA)

1 + j0.48 3 + j1.45 5 + j2.42 7 + j3.39 10 + j4.84 15 + j7.26

Spv∕Sload 20% 60% 100% 140% 200% 300%
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Figure 10.6 Voltage
changes with different PV
power plant capacity at
node 4.

the standard deviation of the voltage if the capacity of the PV power plant exceeds a
certain level.

10.6 OPERATION OF WIND ENERGY [1,10–16]

10.6.1 Introduction

Energy from the wind has been harnessed for thousands of years, making wind power
one of the oldest forms of renewable energy. Compared with the other energy sources,
there are many advantages of using wind energy:

• Wind energy relies on the renewable power of the wind, which cannot be
used up.

• Wind energy is fueled by the wind, so it is a clean fuel source. It does not pollute
the airlike power plants that rely on combustion of fossil fuels, such as coal or
natural gas. Wind turbines do not produce atmospheric emissions that cause
acid rain or greenhouse gases.

• Wind energy is one of the lowest-priced renewable energy technologies avail-
able today.

• Wind turbines can be built on farms or ranches, thus benefiting the economy in
rural areas, where most of the best wind sites are found. Farmers and ranchers
can continue to work the land because the wind turbines use only a fraction of
the land.

At present, wind power generation has become a new energy source with great
market potential. According to the estimation of the International Energy Agency, by
2030, wind power generation would provide 9% of the world’s power demand. With



10.6 OPERATION OF WIND ENERGY 421

the increasing of capacity of wind fields, many important issues need to be studied
and resolved:

(1) Voltage fluctuation and flicker governance. Wind speed changes and the shadow
effect of wind turbines will cause fluctuation in their power and voltage flicker
problem of the power grid.

(2) Voltage stability. Voltage stability can be affected and widespread in local
areas. At present, to reduce costs and simplify operation and management,
the grid-connected wind generator often uses the squirrel-cage asynchronous
generator. When the capacity of wind field is enlarged, the reactive power
characteristics of the squirrel-cage asynchronous generator will affect the
voltage stability; this would need external reactive power compensation to
counteract the effect.

(3) Frequency stability. With large-capacity wind fields integrating into the grid,
dynamic response ability of power system should be capable of tracking
high-frequency fluctuation in wind power.

10.6.2 Operation Principles of Wind Energy

Wind energy is generated by converting kinetic energy through friction process into
useful forms such as electricity and mechanical energy. These two energy sources are
put to use by humans to achieve various purposes. Wind turbines use wind energy to
produce electricity. Wind turbines are machines that have a rotor with three propeller
blades. These blades are specifically arranged in a horizontal manner to propel wind
for generating electricity. Wind turbines are placed in areas that have high speeds of
wind, to spin the blades much faster for the rotor to transmit the electricity produced
to a generator. Thereafter, the electricity produced is supplied to different stations
through the grid. According to the rule, the higher you go, the cooler it becomes and
more air is circulated. This rule is applied by constructing turbines at high altitudes,
to use the increased air circulation at high altitudes to propel the turbines much faster.

A wind energy plant normally consists of many wind turbines each of length
30–50 m. The plant needs to maintain a certain distance during layout of the wind
power machines. If the space interval among the wind power machines is too large,
area covered by a single machine will be increased; this will reduce the number of
wind power machines within the same area of the wind field, or expand the area of the
wind field under the same installed capacity. Consequently, the transmission distance,
investment, and operating loss will increase. Usually, the space interval among wind
power machines in the dominant wind direction is about 8–12 times the diameter of
the wind wheel and about 2–4 times in the vertical direction of the dominant wind
direction.

10.6.3 Types and Operating Characteristics of the Wind
Turbine

A wind farm is a group of wind turbines in the same location used for production of
electric power. Individual turbines are interconnected with a medium voltage (usually
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34.5 kV) power collection system and communications network. A simple relation-
ship exists relating the power generated by a wind turbine and the wind parameters:

PW = 0.5𝜌AV3
WCP (10.31)

where

PW : the wind power
P: the air density
A: the fan blade sweep for the wind section

VW : the wind speed
CP: the wind energy utilization factor

It can be seen from (10.31) that as fan power and the output are proportional
to the cube of wind speed, the smaller changes in wind speed would cause a larger
change in wind power.

The angle between wind flows and the strings section of the fan blades is called
the pulp angle, recorded as 𝛽. At the same time, the ratio of cutting-edge rotation of
the fan blades to the wind velocity is defined as the tip-speed ratio (TSR), recorded as
𝜆. According to the dynamic characteristics of fan blades, fan conversion efficiency
is a function of the pulp angle and TSR, that is, CP = f (𝛽, 𝜆).

At a certain angle 𝛽, the characteristics of the wind turbine can be expressed
by the wind energy conversion efficiency curve (CP − 𝜆). The relationship between
conversion efficiency and the TSR 𝜆 is shown in Figure 10.7.

For a different pulp angle 𝛽, a group of curves CP − 𝜆 can be obtained as shown
in Figure 10.8. It can be seen from the figure that, for the same CP, the wind machine
has two operating points A and B, which correspond respectively to the high-speed

CP.max

CP

0 λλopt Figure 10.7 Relationship between CP and 𝜆.
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Figure 10.8 Typical curves of CP = f (𝛽, 𝜆).
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VWVin VR Vout
0 Figure 10.9 Characteristic curve figure of

ideal wind turbine power.

operation area of the wind machines and the low-speed running area. With the wind
speed changing, the wind turbine operation point also changes. The ideal power and
wind speed curve of a wind turbine, which is shown in Figure 10.9, is achieved
through controlling the blade angle 𝛽 and rotor speed.

In Figure 10.9, PW is the wind power (W), VW is the wind speed (m/s), Vin is
the starting wind speed of the fans (m/s), VR is the rated wind speed (m/s), and Vout
is cutout wind speed (m/s).

Owing to a larger moment of inertia of the blades and hub, the conversion from
wind energy to mechanical energy has a certain time lag. The one-order inertia link
can be used to simulate the process of analysis of the dynamic characteristics of wind
power systems; this is shown in Figure 10.10.

In the Figure 10.10, Pm is the wind turbine output mechanical power; TW is the
wind turbine inertia constant.

According to whether the pitch angle 𝛽 is adjustable, there are two types of wind
machines: (1) rated-blade pitch wind turbine (or pitch-rated wind turbine), with fixed
blade angle (𝛽 = const.); (2) variable-blade pitch wind turbine (or pitch-regulated
wind turbine), with adjustable blade angle.

For the rated blade pitch wind power, stall regulation can limit the energy cap-
ture at a specified value, which relies on the blade’s aerodynamic shape (the leaves
twist angle). Under the condition of rated wind speed, the air flows along (close to)
the surface of the stable leaf. The wind energy absorbed by the leaves is proportional
to the wind speed.

If the wind speed is over the rated value, the air flows at the back of leaves and
separates from the leaves, causing the efficiency of the plant to absorb the wind to
drop when the wind speed increases. In this case, the power absorbed by leaves is
slightly lower than the rated power. This kind of wind turbine has a simple structure,
but it bears the loss of torque, enabling the leaves to bear a larger force.

The variable-blade pitch wind turbine is able to maintain constant output power
through adjustment of the pitch angle 𝛽, which changes the blade angle between the
windward side and the longitudinal axis of rotation to affect the impact force, and thus

VW

Vin VR Vout

PW
Pm

1+TWS

1P

V
Figure 10.10 Mathematic
model of a wind turbine.
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to regulate the output power of the fans. If the wind speed is below the rated value,
the controller will set the power angle of the blade close to zero, which is equivalent
to pitch-rated regulation. If the wind speed is over the rated value, the variable-blade
pitch wind turbine adjusts the power angle blade and controls the output power around
the rated value.

Compared to the pitch-rated wind turbine, the variable-blade pitch wind turbine
has the following advantages:

(1) By adjusting the pitch angle, the pitch-regulated wind turbine has higher wind
energy conversion efficiency than pitch-rated wind turbine at a low wind speed.
Therefore, there is greater energy output, and the starting wind speed is also
higher, which is more suitable for the regions with low average wind speed
installation.

(2) The variable-blade pitch wind turbine is much less impacted by force than the
pitch-rated wind turbine. This can reduce material usage and lower the overall
weight of the turbine.

(3) When the wind speed exceeds a certain value, the pitch-rated wind turbine
must be shut down, while the blades of the pitch-regulated wind turbine can
be adjusted to the no-load position without shutting down the turbine, which is
the launch mode of the entire wing.

Because of the above advantages, variable-blade pitch wind turbines can
increase annual generating capacity of wind power rather than pitch-rated wind
turbines.

10.6.4 Generators Used in Wind Power

There are three types of generators used in wind power: (1) synchronous generator;
(2) squirrel-cage induction generator; (3) doubly fed generator.

The synchronous generator is an AC generator that was first used in wind
power. Owing to its excitation systems with complex structure, high cost, and the
high probability of failure, most of them have been replaced by squirrel-cage induc-
tion generators after 1990s.

The rotor of the squirrel-cage induction generator is a short-circuit winding. Its
equivalent circuit is shown in Figure 10.11.

In the Figure 10.11, Im is the generator exciting current; Ir is the rotor current;
R2 is the rotor resistance; Xm is the magnetizing reactance; X𝜎 is the leakage reactance.

R2/s

Xσ

Xm

I1

U1

Ir
⋅

⋅

⋅

Figure 10.11 Simplified equivalent circuit of an
induction generator.
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Since the rotor relies on the excitation of the stator, the squirrel-cage induction
generator outputs active power and absorbs reactive power. The power equation of
the squirrel-cage induction generator can be obtained from Figure 10.11.

Pe =
(sU)2

(sX𝜎)2 + R2
r

Rr

s
(10.32)

Q = Qm + Q𝜎 = U2

Xm
+ (sU)2

(sX𝜎)2 + R2
r

X𝜎 (10.33)

where

Pe: the output average power of the generator
Q: the reactive power absorption of the generator

Qm: the magnetizing reactive component
Q𝜎 : the reactive component due to the leakage reactance

s: the generator slip, which is defined as

s =
𝜔r − 𝜔0

𝜔0
(10.34)

where, 𝜔0 is the angular velocity of the stator flux; 𝜔r is the rotor angular velocity;
s > 0 is the condition for power generation.

It can be seen from equation (10.32) that the output active power of electro-
magnetic induction generator is a function of the slip s. Figure 10.12 shows the
characteristic curves Pe − s of the induction generator with two voltage levels, where
U1 < U2.

In Figure 10.12, Pe.max stands for the maximum active power, and sm is the
slip corresponding to Pe.max. These two factors can be calculated by the following
equation.

sm =
Rr

X𝜎

Pe.max =
U2

2X𝜎

⎫
⎪
⎪
⎬
⎪
⎪⎭

(10.35)

Pe1 (U = U1)

s

Pe

0

Pe2 (U = U2)

Pe2⋅max

Pe1⋅max

sm

Figure 10.12 Pe –s characteristics of an
asynchronous generator.
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Figure 10.13 Structure of a doubly fed generator.

The structure of the doubly fed generator is shown in Figure 10.13.
In Figure 10.13, box 1 contains stators and rotors, which are the generators of

three-phase AC windings. Box 2 is the AC–AC frequency converter.
Through the AC–AC frequency converter, the rotor will be excited by the

doubly fed generator. If the frequency of the excited current decreases to zero,
that is, the excited current is a DC current, the rotor at this moment will operate
at the synchronous speed, and its characteristics will be exactly same as the char-
acteristics of traditional synchronous generator. Meanwhile, the excited current of
the rotor will be completely determined by U2, which is the output voltage of the
AC–AC frequency converter. If the frequency of the excited current is not zero,
which means the excited current is an AC current, the rotor will not operate at the
synchronous speed. As a result, the excited current of the rotor will be determined
by both the voltage of the AC–AC frequency converter and the voltage excited by
rotor winds cutting the magnetic field of the stator. Therefore, it has the double
characteristics of a traditional synchronous machine and a squirrel-cage induction
generator.

10.7 VOLTAGE ANALYSIS IN POWER SYSTEM
WITH WIND ENERGY

10.7.1 Introduction

Voltage stability refers to the ability of a power system to maintain steady voltages at
all buses in the system after being subject to a disturbance from a given initial operat-
ing condition. It depends on the ability to maintain/restore equilibrium between load
demand and load supply from the power system. Instability that may result occurs in
the form of a progressive fall or rise of voltages of some buses. A possible outcome of
voltage instability is loss of load in an area or tripping of transmission lines and other
elements by their protective systems, leading to cascading outage [19]. Generally,
voltage stability can be classified into two subcategories: large-disturbance voltage
stability and small-disturbance voltage stability. The former refers to the system’s
ability to maintain steady voltages following large disturbances such as system fault,
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loss of generation, or circuit contingencies, and the latter refers to system’s ability to
maintain steady voltages when subjected to small perturbations such as incremental
changes in system load [19,20].

The impact of the wind power on voltage distribution levels has been addressed
in the literature. The majority of these works deals with the determination of the
maximum active and reactive power that is possible to be connected on a system load
bus, until the voltage at that bus reaches the voltage collapse point. It is done by the
traditional methods of PV curves reported in many references [21–24]. These studies
handle small-disturbance voltage stability.

Wind power generation can affect the large-disturbance voltage stability of
power systems because a fault in the network results in a reduction in the supply
voltage to a wind generator for a short period of time (voltage dip) and subsequently
to generator tripping due to minimum voltage protections.

10.7.2 Voltage Dip

The distribution network with installation of wind energy will experience voltage
dips due to faults at distribution voltage levels. An important characteristic of those
dips is that they are associated with a jump in characteristic phase angle, that is, the
characteristic voltage V becomes complex:

V∗ = Vej𝜑 (10.36)

where V now stands for the absolute value of the characteristic voltage (the
characteristic retained voltage) and j for its phase angle (the characteristic phase-angle
jump).

The relation between the retained voltage and the phase-angle jump can be
described on the basis of the following simple distribution network (Figure 10.14):

If a two or three-phase fault location is at the terminal of the distribution net-
work, the complex voltage at the PCC is found from

UPCC = U
Zf

Zf + Zs
(10.37)

where

U: the pre-fault voltage
Zf : the impedance between the PCC and the fault location
ZS: the source impedance at the PCC.

~

U PCC Load

Wind power

Zs

Zf Figure 10.14 A distribution
network with wind power.
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As both impedances are complex numbers, the resulting voltage UPCC will
show a magnitude drop and a change in phase angle compared to the pre-fault voltage
U. In transmission systems, both Zf and ZS are formed mainly by transmission lines
and so the phase angle jump will be small. In distribution systems, ZS is typically
formed by a transformer with a rather large X/R ratio, whereas Zf is formed by lines
or cables with a much smaller X/R ratio. This will lead to a significant change in
phase angle, especially for cable faults.

Equation (10.37) can be rewritten as follows:

UPCC

U
= 𝜆ej𝛼

1 + 𝜆ej𝛼
(10.38)

Zf

Zs
= 𝜆ej𝛼 (10.39)

The value of 𝜆 depends on the distance to the fault. 𝛼 is the angle between source
impedance and the feeder impedance, which is constant for any feeder/source com-
bination. This angle is referred to as the “impedance angle” in [18]. The phase-angle
jump is the argument (angle) of (10.39):

Δ𝜙 = arg

(
𝜆ej𝛼

1 + 𝜆ej𝛼

)
(10.40)

For any given impedance angle, there is a unique relation between voltage dip mag-
nitude and phase-angle jump.

The above expressions only hold for voltage dips due to two- and three-phase
faults, not for voltage dips due to single-phase faults. The effect of a single-phase
fault depends on the type of system earthing used. In a high-impedance earthed sys-
tem, single-phase faults do not cause any significant voltage dips at all. They do
cause a zero sequence voltage but this does not affect end-user equipment so there
is no need to consider them as voltage dips. In solidly earthed system single-phase
faults do lead to voltage dips but less severe ones than those due to the other types of
faults. Even retained voltage is not higher; in addition, the phase-angle jump is less
severe [17].

From the point of view of a sensitive wind power installation, what matters
is the expected number of severe dips (i.e., retained voltages below the critical volt-
ages) because all these dips will expose the installation to a potential disconnection or
mal-operation. A suitable way to present this information is the cumulative histogram
of retained voltages (dips).

10.7.3 Simulation Results

Figure 10.15 is a practical power system with wind power installation, which is used
to analyze the voltage impact of the system with wind power penetration. Bus 0
is the system slack bus that corresponds to the equivalent power network. Buses
1–6 stand for 330 kV substations. Buses 7–9 correspond to three wind power fields
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Figure 10.15 A practical network with three wind farms.

that have 100 MW, 50 MW, 50 MW capacities, respectively. The active power sup-
ply, load demand, and the capacity of shunt reactive power compensation of each
bus are summarized in Table 10.2. The reactance of each branch is summarized in
Table 10.3.

The equivalent impedances of asynchronous generator are rotor resistance Rr =
0.055 p.u., leakage reactance X𝜎 = 0.2875 p.u., and magnetizing reactance Xm =
3.3 p.u.

The following cases are simulated and analyzed for the aforementioned practi-
cal power system with wind power penetration.

Case 1 A three-phase fault occurs at the 10 kV incoming feeder in the substa-
tion of the wind power field (bus 7). The short-circuit period is 1.0 s.
Fault starting time is set to t = 10s, the fault-clearing time is set to t = 10.5s, and
the simulation duration is 30 s. The corresponding simulation results, which are the
maximum slips in the process of the fault for each wind power field, are shown in
Table 10.4.
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TABLE 10.2 Power Supply and Demand of Each Bus

Bus Capacity of Power Active Power Capacity of Shunt

Number Supply (MW) of Load (MW) Capacitor (Mvar)

1 0 252 200.4

2 100 640 196.86

3 0 100 64.6

4 600 372 111.72

5 300 406 111.72

6 0 40 54.5

7 100 0 75

8 50 0 37.5

9 50 0 37.5

TABLE 10.3 Parameter Value of Inductive Reactance

Inductive Reactance Per unit Inductive Reactance Per Unit

of Ranch Value of Ranch Value

X01 0.0250 X56 0.0850

X12 0.0125 X67 0.0554

X23 0.0139 X68 0.1282

X34 0.0104 X69 0.1235

X45 0.0290 — —

TABLE 10.4 Maximum Slip in the Process of the Fault for Case 1

Bus number 7 8 9

Voltage at t = 30s 1.0287 1.0275 1.0278

Slip at t = 30s −0.0554 −0.0555 −0.0555

Maximum slip 0.1866 0.1589 0.1585

The simulation results show that the rotor speed of each wind power generator
increases rapidly and the corresponding node voltages drop a lot in the process of the
fault. In addition, the bus voltage at bus 6 also drops rapidly. But after fault clearing,
the active power, the reactive power, the wind turbine power, and the voltage of each
node recover to normal states and thus, power system retains stability.

Case 2 A three-phase fault close to the 10 kV bus in the wind power field
(bus 8); the fault-clearing time is 1.0 s
The other conditions or simulation parameters are the same as in Case 1. The sim-
ulation results-the maximum slip in the process of fault and slip at t = 30s of each
wind power field-are summarized in Table 10.5.
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TABLE 10.5 Maximum Slip in the Process of the Fault for Case 2

Node number 6 7 8 9

Voltage at t = 30s – 1.028968 1.027434 1.028027

Slip at t = 30s – −0.056292 −0.056465 −0.056417

Maximum slip – −0.161821 −0.291627 −0.163487

Because the capacity of wind turbines at a fault point is small, the increment
of absorbing reactive power of asynchronous generators is small in the process of a
fault. The fault at wind power field bus 8 or bus 9 has small effect on the voltage at
bus 6, as well as the other two normal operation wind power fields.

Case 3 A three-phase fault occurs at the 110 kV outgoing line in a substation
at bus 6; the fault-clearing time is 0.25 s
With the same simulation parameters as Case 1, the maximum slip in the process of
fault and slip at t = 30s of the three wind power fields are summarized in Table 10.6.

From Table 10.6, when a three-phase fault occurs on the 110 kV outgoing line
in the substation (bus 6), the system can keep stable because of fast operating of
protection and short fault duration.

Case 4 A three-phase fault occurs on 110 kV outgoing line in substation (bus
6); fault-clearing time is 0.5 s
With the same simulation parameters as in Case 1, the voltage and slip of the three
wind power fields at t = 30s are summarized in Table 10.7.

It can be seen from Table 10.7 that the power system has lost stability. Com-
pared with the faults occurring in the wind power field, the fault close to the 110 kV
substation (bus 6) can cause the problem of voltage stability. The reason is that the
fault at bus 6 causes the speedup of generator groups in three wind power fields
and makes the 200 MW asynchronous generator absorb the huge reactive power. In

TABLE 10.6 Maximum Slip in the Process of the Fault for Case 3

Node number 6 7 8 9

Voltage at t = 30s 1.037247 1.028828 1.027509 1.027814

Slip at t = 30s – −0.056292 −0.056465 −0.056417

Maximum slip – −0.185367 −0.192433 −0.190475

TABLE 10.7 Voltage and Slip Value at t = 30s for Case 4

Node number 6 7 8 9

Voltage 0.737900 0.62869 0.614298 0.618134

Slip – −0.836934 −0.848868 −0.845768
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addition, three wind power fields are located at the terminal of the power network,
thus, the voltage is difficult to recover after fault clearing. Consequently, voltage sta-
bility is destroyed.

Through simulation calculations, we can conclude that the capacity of the wind
power unit, the fault location, and fault clearing time are very important factors of
voltage stability of a power system. If the fault point is close to a large-capacity wind
power field, it is easier for the system to lose stability. If the fault point is closer to
a public access point of wind power field, the system is also easier to lose stability.
If the fault duration is longer, the system is also easier to lose stabilility.

PROBLEMS AND EXERCISES

1. What is renewable energy?

2. What are the purposes for which we use renewable energy sources?

3. What is MPPT?

4. What is PCC?

5. What are the advantages of the grid-connected PV system?

6. What advantages does the variable blade pitch wind turbine have?

7. State “True” or “False”

7.1 Hydropower is a renewable energy resource.

7.2 Energy takes many forms.

7.3 Using biomass as an energy source does not pollute the environment.

7.4 Using hydropower does not impact the environment.

7.5 Electricity is a nonrenewable resource.

7.6 There is no voltage stability problem for a system with wind power penetration.

8. Which of the following is a renewable source of energy?

A. Coal

B. Hydropower

C. Natural gas

D. Petroleum

9. Of the following choices, which best describes or defines biomass?

A. Massive living things

B. Inorganic matter that can be converted to fuel

C. Organic matter that can be converted to fuel

D. Petroleum

10. Of the following choices, which best describes or defines geothermal energy?

A. Heat energy from volcanic eruptions

B. Heat energy from hot springs
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C. Heat energy from inside the earth

D. Heat energy from rocks on Earth’s surface

11. Which of the following is not a renewable source of energy?

A. Geothermal

B. Propane

C. Solar

D. Wind

12. Which of the following is not a fossil fuel?

A. Biomass

B. Coal

C. Natural gas

D. Petroleum

13. New renewable energy resources are

A. Solar, wind, geothermal

B. Wind, wood, alcohol

C. Hydro, biomass

D. Coal, natural gas

14. At present, the fastest growing source of electricity generation using a new renewable
source

A. Solar

B. Wind

C. Hydro

D. Natural gas

15. A major disadvantage of solar power is

A. its cost effectiveness compared to other types of power

B. its efficiency level compared to other types of power

C. the variation in sunshine around the world

D. the lack of knowledge on long-term economic impact

16. Windmill towers are generally more productive if they are

A. higher, to minimize turbulence and maximize wind speed

B. lower, to minimize turbulence and maximize wind speed

C. higher, to minimize the number of birds that interfere with blade turning

D. lower, to increase heat convection from the ground

17. A major disadvantage in using wind to produce electricity is

A. the emissions it produces once in place

B. its energy efficiency compared to that of conventional power sources

C. Wind Turbines Kill Birds

D. the initial startup cost
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18. The largest problem with adopting the new technology of renewable resources is

A. in evaluating the scientific and economic impact

B. the high start-up costs

C. higher long-term maintenance costs than those for fossil fuels

D. energy production facilities not being located near consumers
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C H A P T E R 11
OPTIMAL LOAD SHEDDING

When all available controls are unable to maintain the security of system operation
during a disturbance or contingency, optimal load shedding is used as the last resort
to make the loss of blackout minimum. This chapter first introduces the traditional
load-shedding methods such as under-frequency or under-voltage load shedding,
and then studies optimal power system load-shedding methods. These include
intelligent load shedding (ILS), distributed interruptible load shedding, Everett
optimization, analytic hierarchical process (AHP), and network flow programming
(NFP). The related topic on congestion management is also introduced in this
chapter.

11.1 INTRODUCTION

The security and stability of electrical power systems have always been among the
central and fundamental issues of concern in network planning and operation. Serv-
ing users of electricity is the duty of power systems that generate, transmit, and
distribute electrical energy. Therefore, system operation, network growth and expan-
sion are highly user dependent and the system should be able to satisfy their needs
and requirements. Central requirements include reliability, quality of energy, and
continued load capacity. Network designers and operation managers should continu-
ously pay attention to these requirements and take the necessary steps to fulfill these
requirements and maintain the desired qualities. Especially, in the United States, the
electricity market is in the midst of major changes designed to promote competi-
tion. Vertical integration with guaranteed customers and suppliers is no longer there.
Electricity generators and distributors have to compete to sell and buy electricity.
The stable utilities of the past find themselves in a highly competitive environment
[1–3]. In this new competitive power environment, buy/sell decision support systems
are to find economic ways to serve critical loads with limited sources under various
uncertainties. Decision making is significantly affected by limited energy sources,
generation cost, and network-available transfer capacity. Generally, system conges-
tion or system overloading can be reduced through some control strategy such as a
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© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.

437



438 CHAPTER 11 OPTIMAL LOAD SHEDDING

generation-rescheduling scheme, obtaining power support from a neighboring util-
ity as well as optimal load shedding [4–7]. In the particular case of power shortage,
load shedding cannot be avoided. This, in turn, requires that the load demand be as
determinate as possible so that each watt can be allocated.

In general, load shedding can be defined as the amount of load that must almost
instantly be removed from a power system to keep the remaining portion of the sys-
tem operational. This load reduction is in response to a system disturbance (and
consequent possible additional disturbances) that results in a generation-deficiency
condition or network-overloading situation. Common disturbances that can cause
these conditions to occur include transmission line or transformer faults, loss of gen-
eration, switching errors, lightning strikes, etc. When a power system is exposed to
a disturbance, its dynamics and transient responses are mainly controlled through
two major dynamic loops. One is the excitation (including AVR) loop that controls
the generator reactive power and system voltage. The other is the prime-mover loop,
which controls the generator active power and system frequency.

11.2 CONVENTIONAL LOAD SHEDDING

Load shedding by frequency relays is the most commonly used method for controlling
the frequency of power networks within set limits and maintaining network stability
under critical conditions. In conventional load-shedding methods, when frequency
drops below the operational plan’s set point, the frequency relays of the system issue
commands for a stepwise disconnection of parts of the electrical power load, thereby
preventing further frequency drop and its consequential effects [8].

Frequency is the main criteria of system quality and security because it is

• a global variable of interconnected networks that has the same value in all parts
of the network;

• an indicator of the balance between supply and demand;

• a critically important factor for smooth operation of all users, particularly man-
ufacturing and industries.

One of the main problems of all interconnected networks is a total blackout
because of frequency drop as a consequence of some power station failure or trans-
mission line breakage. At present, in power generation and transmission systems of
the world, the most appropriate way of preventing a total or partial blackout that is
triggered by frequency drop is quick and automatic load shedding.

To study situations of imbalance between power supply and demand, and the
resulting frequency variations under the circumstances of severe and major disorders,
a simplified model of the steady state for systems that consist mainly of thermal units
is used [8–10], which is shown in Figure 11.1.

The expression of the model is as follows.

Δ𝜔 =
Pa

D

(
1 − e−

D
2H

t
)

(11.1)
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Σ
Pa+

Pm
−

1

D + 2Hs

Δω

KM(1 + FHTRs)

R(1 + TRs) Figure 11.1 Steady-state
frequency-response model.

where

H: system’s inertial constant
D: load damping coefficient

Km: frequency control loop gain
FH: high pressure re-warmed turbines’ power portion
TR: re-warming time constant
Pm: mechanical power of the turbine (per unit)
Pa: accelerator’s power
Δ𝜔: speed change (per unit).

Equation (11.1) models the system under the initial conditions of major disorder
when the governor’s effect is lifted off because during the first seconds of the disorder,
due to the governor’s response delay and its operating time constant, it cannot play a
role in prevention of the frequency drop [9].

According to equation (11.1), the main factors and parameters that control the
behavior of frequency and overloading are the amount of overloading and the D and
H parameters. The effect of these two parameters should be definitely be considered
in any load-shedding scheme.

The load damping coefficient (D) is an effective parameter that represents the
relation between the load and the frequency. It cannot be ignored in planning for
load-shedding schemes. In planning for load shedding, the load damping coefficient
is normally expressed per unit as shown in the following formula:

D = F
P
ΔP
ΔF

(11.2)

The value of D varies from 0 to 7 and, for each system, it is to be determined
once and used in all cases of planning. The latest studies have shown D = 3.3 for the
sample network [8].

The effect of D on the frequency-drop gradient is quite visible as an increase
in D causes a decrease in the frequency-drop gradient. For any specified overloading,
systems with a higher value of D will have a higher stability and the final system
frequency will be stabilized at a higher level. Figure 11.2 clearly shows the effect of
D on the frequency-drop curve.

In commonly used stepwise methods, the load-shedding scheme has little
relation to the degree of overload. Any overload triggers the same strategy of load
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Figure 11.2 The effect of load damping coefficient on the frequency-drop curve (system
stability curves for various overloading).

shedding, as the degree of overload does not determine the number or quantity of
the load shedding.

This kind of scheme greatly simplifies the task of harmonizing the relays and
the steps of load shedding, as simple calculations and a process of trial-and-error
would suffice. It is one of the obvious advantages of this kind of scheme. Once the
steps of load shedding are specified, if at any step the frequency continues to drop
(with regard to the specified delay times), then the next step will be automatically acti-
vated until the frequency stops dropping. In such strategies, increasing the number of
steps can increase the costs and allow a more precise harmony and a minimized black-
out area. Nevertheless, in almost all countries, only three to five steps are planned,
with rare cases of more steps.

In such strategies or plans, the first step of load shedding is regulated in such a
way that with any frequency drop below the set point, this step is activated to operate
within its specific time delay. The time duration for frequency to drop from normal to
below the set point is not taken into consideration, despite the fact that we know that
the gradient of frequency drop is directly proportional to the amount of overload and
severity of the case; therefore, it can be a basis to decide on whether only one step is
adequate.

11.3 INTELLIGENT LOAD SHEDDING

11.3.1 Description of Intelligent Load Shedding

Conventional load-shedding systems that rely solely on frequency-measuring systems
cannot be programmed with the knowledge gained by the power system design-
ers. The system engineer must perform numerous system studies that include all
the conceivable system operating conditions and configurations to correctly design
the power system. Unfortunately, the engineer’s knowledge of the system, which is
gained through the studies, is not utilized fully. In addition, most data and study results
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are simply lost. This nonavailability of information for future changes and enhance-
ment of the system will significantly reduce the system protection performance.

The state-of-the-art load-shedding system uses real-time, systemwide data
acquisition that continually updates a computer-based real-time system model. This
system produces the optimum solution for system preservation by shedding only the
necessary amount of load and is called intelligent load shedding [11].

This system must have the following capabilities:

• to map a very complex and nonlinear power system with a limited number of
data collection points to a finite space;

• to automatically remember the system configuration and operation conditions
as load is added or removed, and the system response to disturbances with all
the system configurations;

• to recognize different system patterns in order to predict system response for
different disturbances;

• to utilize a built-in knowledge base trainable by user-defined cases;

• to make use of adaptive self-learning and automatic training of the system
knowledge base obtained as a result of system changes;

• to make fast, correct, and reliable decisions on load-shedding priority based on
the actual loading status of each breaker;

• to shed the minimum amount of load to maintain system stability and nominal
frequency;

• to shed the optimal combinations of load breakers with complete knowledge of
system dependencies.

In addition to having the above list of capabilities, the ILS system must have a
dynamic knowledge base. For the knowledge base to be effective, it must be able to
capture the key system parameters that have a direct impact on the system frequency
response following disturbances. These parameters include the following:

• power exchanged between the system and the grid both before and after distur-
bance;

• generation available before and after disturbances;

• on-site generator dynamics;

• updated status and actual loading of each sheddable load;

• the dynamic characteristics of the system loads which this include rotating
machines, constant impedance loads, constant current loads, constant power
loads, frequency-dependent loads, or other types of loads.

Some additional requirements must be met during the designing and tuning of
an ILS scheme:

• carefully selected and configured knowledge base cases;

• ability to prepare and generate sufficient training cases for the system knowl-
edge base to ensure accuracy and completeness;
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• ability to ensure that the system knowledge base is complete, correct, and
tested;

• ability to add user-defined logics;

• ability to add system dependencies;

• to have an online monitoring system that is able to coherently acquire real-time
system data;

• ability to run in a preventive and predictive mode so that it can generate a
dynamic load-shedding table that corresponds to the system configuration
changes and prespecified disturbances (triggering);

• a centralized distributed local control system for the power system that the ILS
system supervises.

11.3.2 Function Block Diagram of the ILS

In Figure 11.3, the system knowledge base is pretrained by using carefully selected
input and output databases from offline system studies and simulations. System
dynamic responses, including frequency variation, are among the outputs of the
knowledge base.

The trained knowledge base runs in the background of an advanced monitoring
system, which constantly monitors all the system operating conditions. The network
models and the knowledge base provide power system topology, connection infor-
mation, and electric properties of the system component for ILS. The disturbance list
is prepared for all prespecified system disturbances (triggers). On the basis of input
data and system updates, the knowledge base periodically sends requests to the ILS

Disturbance 
(triggering) list

Knowledge base
(or rules base)

Computation
engine

Network 
models

Advanced 
monitoring

Distributed 
controls

Distributed 
controls

Distributed 
controls

System 
disturbance
or outage

LS

LS

LS

Figure 11.3 Function block diagram of the ILS scheme.
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computation engine to update the load-shedding tables, thus ensuring that the opti-
mum load will be shed when a disturbance occurs. The load-shedding tables, in turn,
are downloaded to the distributed controls that are located close to each sheddable
load. When a disturbance occurs, fast load-shedding action can be taken.

11.4 FORMULATION OF OPTIMAL LOAD SHEDDING

In a competitive resource allocation environment, buy/sell decision support systems
are needed to find economic ways to serve critical loads with limited sources under
different uncertainties. Therefore, a value-driven load-shedding approach is proposed
for this purpose. The mathematical model of load shedding is expressed as follows.

11.4.1 Objective Function—Maximization
of Benefit Function

Max Hi =
ND(K)∑

j=1

wijvijxij

or
Min (−Hi) (11.3)

where

xij: decision variable (it equals 0 or 1) on load bus j at the ith time stage
ND(K): total number of load sites in load center K

wij: load priority to indicate the importance of the jth load site of the ith time
stage

vij: independent load values (or costs) in a specific load bus j at the ith time
stage ($/kW or $/MW)

H: benefit function

In the objective function (11.3), decision variable xij equals 1 if load demand
Pij is satisfied; otherwise it equals 0 if the load demand is not satisfied, that is, load
shedding appears on the jth load site at the ith time stage. There are several different
kinds of loads in a power system, such as critical load, important load, unimportant
load, etc., and wij can reflect the relative importance of the different kinds of loads.
The more important the load site is (e.g., first important load), the larger the wij of the
load site will be. In addition, each specific load has its independent load value (cost)
vij, which is the value/cost per kilowatt load at this location. Therefore, the unit of vij
is $/kW.

11.4.2 Constraints of Load Curtailment

The constraints of load curtailment reflect the system congestion case. These con-
straints include limited capacity in each load center and the whole system, as well as
available transfer capacity of the key line (e.g., the tie line connecting different load
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centers or the source), which can be expressed as follows:

∑

j∈K

Pijxij ≤ PiK (11.4)

ND∑

j=1

Pijxij ≤ PD (11.5)

∑

j∈K

Pijxij = PSK ≤ PSK ATC (11.6)

where

Pij: load demand of the jth load site of the ith time stage
PiK : total amount of load center K available at the ith time stage
PD: total amount of system load available at the ith time stage

PSK : transmission power on the line connecting the load center K
PSK ATC: available transfer capacity of the line connecting the load center K.

It is noted that the power flow equation or Kirchhoff’s current law must be
satisfied during the load shedding, that is,

∑

G→𝜔

PiG +
∑

T→𝜔

PiT +
∑

j→𝜔

xijPij = 0 𝜔 ∈ n (11.7)

−PiTmax ≤ PiT ≤ PiTmax (11.8)

where n is the total node number in the system; G → 𝜔 indicates that generator G is
adjacent to node 𝜔; T → 𝜔 indicates that transmission line T is adjacent to node 𝜔;
j → 𝜔 indicates that load j is adjacent to node 𝜔.

The direction of power flow is specified as positive when power enters the node,
while it is negative when it leaves from the node. Equation (11.8) gives the system
network security constraints.

11.5 OPTIMAL LOAD SHEDDING WITH NETWORK
CONSTRAINTS

11.5.1 Calculation of Weighting Factors by AHP

It is very difficult to compute exactly the weighting factor of each load in equation
(11.3). The reason is that the relative importance of these loads is not the same, which
is related to the power market operation condition. According to the principle of AHP
described in Chapter 7, the weighting factors of the loads can be determined through
the ranking computation of a judgment matrix, which reflects the judgment and com-
parison of a series of pairs of factors. The hierarchical model for computing the load
weighting factors is shown in Figure 11.4, in which PI is the performance index of
load center K.
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Unified rank for 
load factor wi

PI1 PI2 PIk

load node 1 load node 2 load node n

A

PI

LD.…..

……

Figure 11.4 Hierarchy model of load weighting factor rank.

The judgment matrix A − LD of the load-shedding problem can be written as
follows.

A − LD =

⎡
⎢
⎢
⎢
⎢⎣

wD1∕wD1 wD1∕wD2 · · · · · · wD1∕wDn

wD2∕wD1 wD2∕wD2 · · · · · · wD2∕wDn

⋮ ⋮

wDn∕wD1 wDn∕wD2 · · · · · · wDn∕wDn

⎤
⎥
⎥
⎥
⎥⎦

(11.9)

where wDi, which is just what we need, is unknown. wDi∕wDj, which is the element
of the judgment matrix A − LD, represents the relative importance of the ith load
compared with the jth load. The value of wDi∕wDj can be obtained according to the
experiences of electrical engineers or system operators using some ratio scale meth-
ods. For example, a “1–9” scale method from Chapter 7 can be used.

Similarly, the judgment matrix A − PI can be written as follows.

A − PI =

⎡
⎢
⎢
⎢
⎢⎣

wK1∕wK1 wK1∕wK2 · · · · · · wK1∕wKn

wK2∕wK1 wK2∕wK2 · · · · · · wK2∕wKn

⋮ ⋮

wKn∕wK1 wKn∕wK2 · · · · · · wKn∕wKn

⎤
⎥
⎥
⎥
⎥⎦

(11.10)

where wKi is unknown. wKi∕wKj, which is the element of judgment matrix A − PI,
represents the relative importance of the ith load center compared with the jth load
center. The value of wKi∕wKj can also be obtained according to the experiences of
electrical engineers or system operators using some ratio scale methods [12, 13].

Therefore, the unified weighting factor of the load wi can be obtained from the
following equation.

wi = wKj × wDi Di ∈ Kj (11.11)

where Di ∈ Kj means load Di is located in load center Kj.

11.5.2 Network Flow Model

After the weighting factors are computed by AHP, the above optimization model of
load shedding corresponds to a network flow problem and can be solved by NFP.
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According to Chapter 5, the general NFP model can be written as

Min F =
∑

Cijfij (11.12)

such that ∑
(fij − fji) = r (11.13)

0 ≤ fij ≤ Uij (11.14)

However, there exist three disadvantages in the general NFP algorithm [14],
that is,

(a) the initial arc flows must be feasible;

(b) the lower bound of flows should be 0;

(c) all flow variables must be nonnegative.

Because of these disadvantages, it is difficult to solve the optimal load-shedding
problem effectively by using the general NFP algorithm. A special NFP algorithm −
“out-of-kilter algorithm” (OKA), which is analyzed in Chapter 5, is adopted. The
mathematical representation of the OKA network can be written as follows.

Min F =
∑

Cijfij (11.15)

such that ∑
(fij − fji) = 0 (11.16)

Lij ≤ fij ≤ Uij (11.17)

Obviously, the optimal load-shedding model that is mentioned in Section 11.4
can be transformed into the OKA model shown in equations (11.15)–(11.17) and
solved by OKA. The details of the OKA model and algorithm can be found in
Chapter 5.

11.5.3 Implementation and Simulation

The simulation system for load shedding is the IEEE 30-bus system. The capacity of
the generator is given in Table 11.1. The daily load data including the independent
load value/cost at each load site are listed in Table 11.2, in which the loads are divided

TABLE 11.1 Capacity of Generators for IEEE 30-Bus System

Gen. PG1 PG2 PG5 PG8 PG11 PG13

PGmax (MW) 200.00 80.00 50.00 35.00 30.00 30.00

PGmin (MW) 50.00 12.00 10.00 10.00 10.00 10.00



TA
B

LE
11

.2
Lo

ad
D

at
a

fo
r

IE
EE

30
-B

u
s

Sy
st

em

L
oa

d
L

oa
d

v ij
L

oa
d

t1
L

oa
d

t2
L

oa
d

t3
L

oa
d

t4
L

oa
d

t5
L

oa
d

t6

C
en

te
r

N
od

e
($

/k
W

)
0.

00
–

4.
00

4.
01

–
8.

00
8.

01
–

12
.0

0
12

.0
1

–
16

.0
0

16
.0

1
–

20
.0

0
20

.0
1

–
24

.0
0

(M
W

)
(M

W
)

(M
W

)
(M

W
)

(M
W

)
(M

W
)

C
K

1
PD

2
30

0.
0

15
.1

5
19
.5

3
21
.7

19
.6

2
19
.5

3
17
.3

6

C
K

1
PD

3
30

0.
0

1.
89

2.
43

2.
7

2.
57

2.
43

2.
16

C
K

1
PD

4
30

0.
0

5.
46

6.
86

7.
8

7.
41

6.
86

6.
24

C
K

1
PD

6
28

0.
0

65
.9

4
84
.7

8
94
.2

85
.4

9
84
.7

8
75
.3

6

C
K

1
PD

7
28

0.
0

15
.9

6
20
.5

2
22
.8

21
.6

6
20
.5

2
18
.2

4

C
K

1
PD

8
30

0.
0

21
.0

0
27
.0

0
30
.0

27
.5

0
27
.0

0
24
.0

0

C
K

1
PD

10
30

0.
0

4.
06

5.
22

5.
8

5.
51

5.
22

4.
64

C
K

1
PD

12
28

0.
0

7.
84

10
.0

8
11
.2

10
.6

4
10
. 0

8
8.

96

C
K

1
PD

14
28

0.
0

4.
34

5.
58

6.
2

5.
89

5.
58

4.
96

C
K

2
PD

15
24

5.
0

5.
74

7.
38

8.
2

7.
79

7.
38

6.
56

C
K

2
PD

16
22

0.
0

2.
45

3.
15

3.
5

3.
33

3.
15

2.
80

C
K

2
PD

17
28

0.
0

6.
30

8.
10

9.
0

8.
55

8.
10

7.
20

C
K

2
PD

18
22

0.
0

2.
24

2.
82

3.
2

3.
04

2.
82

2.
56

C
K

2
PD

19
24

5.
0

6.
65

8.
65

9.
5

9.
03

8.
65

7.
60

C
K

3
PD

20
28

0.
0

1.
54

1.
98

2.
2

2.
09

1.
98

1.
76

C
K

3
PD

21
28

0.
0

12
.2

5
15
.7

5
17
.5

16
.6

3
15
.7

5
14
.0

0

C
K

3
PD

23
22

0.
0

2.
24

2.
82

3.
2

3.
04

2.
82

2.
56

C
K

3
PD

24
22

0.
0

6.
09

7.
83

8.
7

8.
27

7.
83

6.
96

C
K

3
PD

26
30

0.
0

2.
45

3.
15

3.
5

3.
33

3.
15

2.
80

C
K

3
PD

29
22

0.
0

1.
68

2.
16

2.
4

2.
28

2.
16

1.
92

C
K

3
PD

30
24

5.
0

7.
42

9.
54

10
.6

10
.0

7
9.

54
8.

48

447



448 CHAPTER 11 OPTIMAL LOAD SHEDDING

Power (MW)

Time (Hr)

t1 4 t2 8 t3 12 t4 16 t5 20 t6 24

200

250

300

System demands 

Maximal system 
generation 

Figure 11.5 Total system generation and load demands.

TABLE 11.3 Judgment Matrix A − PI

PI CK1 CK2 CK3

CK1 1 2 5

CK2 1/2 1 1/2

CK3 1/5 2 1

into three load centers. Suppose generator G1 is out of service. The total source power
is only 225.0 MW. This, in turn, leads to the power shortage for IEEE 30-bus system,
that is; the power supply is limited at some time stages. The total system generation
resources and load demands are shown in Figure 11.5.

The judgment matrix A − LD and A − PI are provided in Tables 11.3 and
11.4, respectively. The weighting factors that reflect the relative importance of each
load or each load center are computed by AHP. The results of the weighting factors
are listed in Table 11.5. The optimal load-shedding schemes are computed and
obtained by the proposed approach. The calculation results are shown in Tables 11.6
and 11.7.

In Table 11.6, the decision variable x = 1 means that this load is committed,
and x = 0 means that this load is curtailed. It can be known from Tables 11.6 and
11.7 that load curtailment appeared at time stage t2 ∼ t6. Load 15, 16, 18, 19, 29
and 30 are curtailed at time stage t2 ∼ t5. Load 24 is curtailed at time stage t2 ∼ t6.
Load 21 is curtailed at time stage t3 and t4, and Load 20 is curtailed at time stage
t3. The total load curtailments at each time stage are summarized in Table 11.7. It is
noted that network security constraints are satisfied at any time period by using the
proposed approach.
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TABLE 11.4 Judgment Matrix A − LD

(1)
LD 2 3 4 6 7 8 10 12 14 15

2 1 2 2 1/3 1/5 2 1∕2 2 2 3

3 1/2 1 1/2 1/4 2 1/2 1 2 2 3

4 1/2 2 1 1/2 2 1/3 2 2 3 2

6 3 4 2 1 4 2 3 3 3 3

7 5 1/2 1/2 1/4 1 1/2 2 2 2 3

8 1/2 2 3 1/2 2 1 3 2 2 4

10 2 1 1/2 1/3 1/2 1/3 1 2 3 3

12 1/2 1/2 1/2 1/3 1/2 1/2 1/2 1 1 2

14 1/2 1/2 1/3 1/3 1/2 1/2 1/3 1 1 2

15 1/3 1/3 1/2 1/3 1/3 1/4 1/3 1/2 1/2 1

16 1/3 1/2 1/3 1/4 1/3 1/4 1/3 1/2 1/3 1/2

17 1/2 2 1/2 1/2 1/3 1/2 2 1/2 1/2 3

18 1/3 1 1/2 1/3 1/3 1/3 1/2 1/2 1/3 1/2

19 1/3 1/2 1/2 1/3 1/3 1/3 1/3 1/2 1/3 1/2

20 1/3 1/2 1/3 1/3 1/3 1/3 1/2 1/3 1/2 5

21 1/3 1/3 1/2 1/3 1/4 1/4 1/3 1/3 1/2 5

23 2 3 1/2 1/2 1/2 1/2 1/2 1/2 1/3 3

24 1/3 1/3 1/2 1/3 1/3 1/2 1/3 1/3 1/3 1/3

26 1/3 1/3 1/2 1/3 1/2 1/3 1/3 1/2 1/2 3

29 1/3 1/3 1/3 1/3 1/3 1/2 1/3 1/3 1/3 1/2

30 1/3 1/3 1/2 1/3 1/3 1/3 1/2 1/3 1/3 2

(2)
LD 16 17 18 19 20 21 23 24 26 29 30

2 3 2 3 3 3 3 1/2 3 3 3 3

3 2 1/2 1 2 2 3 1/3 3 3 3 3

4 3 2 2 2 3 2 2 2 2 3 2

6 4 2 3 3 3 3 2 3 3 3 3

7 3 3 3 3 3 4 2 3 2 3 3

8 4 2 3 3 3 4 2 2 3 2 3

10 3 1/2 2 3 2 3 2 3 3 3 2

12 2 2 2 2 3 3 2 3 2 3 3

14 3 2 3 3 2 2 3 3 2 3 3

15 2 1/3 2 2 1/5 1/5 1/3 3 1/3 2 1/2

16 1 1/3 2 3 1/2 1/2 1/3 3 1/2 2 1/2

17 3 1 2 2 3 3 2 2 2 3 3

18 1/2 1/2 1 1/2 2 2 1/2 3 1/3 2 1/2

19 1/3 1/2 2 1 2 3 1/3 2 1/2 3 1/2

20 2 1/3 1/2 1/2 1 3 1/2 2 1/3 2 4

(continued)
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TABLE 11.4 (Continued).

21 2 1/3 1/2 1/3 1/3 1 1/3 2 1/2 3 4

23 3 1/2 2 3 2 3 1 3 2 3 3

24 1/3 1/2 1/3 1/2 1/2 1/2 1/3 1 1/2 1/2 1/3

26 2 1/2 3 2 3 2 1/2 2 1 4 3

29 1/2 1/3 1/2 1/3 1/2 1/3 1/3 2 1/4 1 1/2

30 2 1/3 2 2 1/4 1/4 1/3 3 1/3 2 1

TABLE 11.5 Weighting Factors Computed By AHP

Load Weighting Load vij Weighting Unified

Center Factor wKj Node ($/kW) Factor wDi Weighting

Factor wi

CK1 0.61185 PD2 300.0 0.07007 0.042872

CK1 0.61185 PD3 300.0 0.05425 0.033193

CK1 0.61185 PD4 300.0 0.06824 0.041753

CK1 0.61185 PD6 280.0 0.11115 0.068007

CK1 0.61185 PD7 280.0 0.08006 0.048985

CK1 0.61185 PD8 300.0 0.08616 0.052717

CK1 0.61185 PD10 300.0 0.06148 0.037617

CK1 0.61185 PD12 280.0 0.04999 0.030586

CK1 0.61185 PD14 280.0 0.05201 0.031822

CK2 0.17891 PD15 245.0 0.02356 0.004215

CK2 0.17891 PD16 220.0 0.02340 0.004186

CK2 0.17891 PD17 280.0 0.05430 0.009715

CK2 0.17891 PD18 220.0 0.02601 0.004653

CK2 0.17891 PD19 245.0 0.02701 0.004832

CK3 0.20925 PD20 280.0 0.03219 0.006736

CK3 0.20925 PD21 280.0 0.02843 0.005949

CK3 0.20925 PD23 220.0 0.05438 0.011379

CK3 0.20925 PD24 220.0 0.01677 0.003509

CK3 0.20925 PD26 300.0 0.03848 0.008052

CK3 0.20925 PD29 220.0 0.01686 0.003528

CK3 0.20925 PD30 245.0 0.02521 0.005275

To further verify the AHP-based NFP approach, linear programming (LP) is
used to solve the same load-shedding problem without load priority factors wij that
are determined by AHP. The corresponding results are compared with those obtained
by AHP-based NFP method and also listed in the Tables 11.6 and 11.7 (Figures 11.6
and 11.7). In the LP method, the loads with small MW demands and small costs
are first considered for curtailment. The LP method also cannot handle or consider
the relative importance of the load locations. The result comparison shows that the
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TABLE 11.6 Optimal Load-Shedding Schemes and Comparison for IEEE 30-Bus System

Methods AHP LP AHP LP AHP LP AHP LP AHP LP AHP LP

Time
stage

t1 t1 t2 t2 t3 t3 t4 t4 t5 t5 t6 t6

X2 1 1 1 1 1 1 1 1 1 1 1 1

X3 1 1 1 1 1 1 1 1 1 1 1 1

X4 1 1 1 1 1 1 1 1 1 1 1 1

X6 1 1 1 1 1 1 1 1 1 1 1 1

X7 1 1 1 1 1 1 1 1 1 1 1 1

X8 1 1 1 1 1 1 1 1 1 1 1 1

X10 1 1 1 1 1 1 1 1 1 1 1 1

X12 1 1 1 1 1 1 1 1 1 1 1 1

X14 1 1 1 1 1 0 1 1 1 1 1 1

X15 1 1 0 0 0 0 0 0 0 0 1 1

X16 1 1 0 0 0 0 0 0 0 0 1 1

X17 1 1 1 1 1 0 1 1 1 1 1 1

X18 1 1 0 0 0 0 0 0 0 0 1 0

X19 1 1 0 0 0 0 0 0 0 0 1 1

X20 1 1 1 1 0 0 1 0 1 1 1 1

X21 1 1 1 1 0 1 1 1 1 1 1 1

X23 1 1 1 0 1 0 1 0 1 0 1 0

X24 1 1 0 0 0 0 0 0 0 0 0 1

X26 1 1 1 1 1 1 1 1 1 1 1 1

X29 1 1 0 0 0 0 0 0 0 0 1 0

X30 1 1 0 0 0 0 0 0 0 0 1 1

AHP-based NFP approach is truly optimal. It not only has maximal load benefits but
also considers the relative importance of the load sites. For example, load site 23,
which is always curtailed in the LP method when system generation is limited, is
not curtailed in the AHP-based NFP method although it has the minimal load cost
(220$/kW) and small MW load demands.

11.6 OPTIMAL LOAD SHEDDING WITHOUT
NETWORK CONSTRAINTS

11.6.1 Everett Method

If the network constraints are neglected, the load-shedding problem in equations
(11.3)–(11.6) can be easily solved by the Everett optimization technique, a
generalized Lagrange multiplier [15–17]. The problem of load shedding can be
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Figure 11.6 Comparison of optimal load-shedding results.
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Figure 11.7 Comparison of the benefits from load shedding.

represented as follows:

Max Hi =
m∑

i=1

Hi(xi) xi ∈ s (11.18)

such that
m∑

i=1

Ck
i (xi) ≤ ck for all k (11.19)

where

xi: a 0-1 integer variable
S: set that is interpreted as the set of possible strategies or actions
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H(x): benefit that accrues from employing the strategies x ∈ S
Ck: resource function.

This load-shedding model is a 0-1 integer optimization problem. It is possible
to solve problem (11.18) and (11.19) with integer-based optimization techniques.
But this will be a variable dimension problem in the large-scale power systems.
Everett [14] showed that the Lagrange multiplier can be used to solve the max-
imization problem with many variables without any restrictions on continuity
or differentiability of the function being maximized. The aim of the general-
ized Lagrange multiplier is maximization rather than the location of stationary
points as with the traditional Lagrange multipliers. This technique is discussed as
follows.

The main theorem of the generalized Lagrange multiplier is as follows.

Theorem 1 [15] If (1) 𝜆k(k = 1, 2, … … n) are nonnegative real numbers,
(2) x∗ ∈ S maximizes the function

H(x) −
n∑

k=1

𝜆kCk(x) x ∈ S (11.20)

then (3) x∗ maximizes H(x) over all of those x ∈ S such that Ck≤Ck(x∗) for all k.

Proof. By assumptions 1 and 2 of Theorem 1, 𝜆k(k = 1, 2, … , n) are nonnegative
real numbers, and x∗ ∈ S maximizes

H(x) −
n∑

k=1

𝜆kCk(x) (11.21)

Over all x ∈ S. This means that, for all x ∈ S,

H(x∗) −
n∑

k=1

𝜆kCk(x∗) ≥ H(x) −
n∑

k=1

𝜆kCk(x) (11.22)

and hence that

H(x∗) ≥ H(x) +
n∑

k=1

𝜆k[Ck(x∗) − Ck(x)] (11.23)

for all x ∈ S. However, if the latter inequality is true for all x ∈ S, it is necessarily
true for any subset of S and hence true on that subset S∗ of S for which the resources
never exceed the resources Ck(x∗), that is, Ck≤Ck(x∗), x ∈ S∗ for all k. Thus on the
subset S∗ the term

n∑

k=1

𝜆k[Ck(x∗) − Ck(x)] (11.24)
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is nonnegative by definition of the subset and the nonnegativity of 𝜆k. Consequently,
the inequality equation (11.23) reduces to

H(x∗) ≥ H(x) (11.25)

For all x ∈ S∗, and the theorem is proved.

In accordance with Theorem 1, for any choice of nonnegative 𝜆k(k = 1,
2, … … n), if an unconstrained maximum of the new Lagrange function [eq.
(11.20)] can be found (where x∗, e.g., is a strategy that produces the maximization),
then this solution is a solution to that constrained maximization problem whose
constraints are, in fact, the amount of each resource expended in achieving the
unconstrained solution. Therefore, if x∗ produces the unconstrained maximum and
the required resources Ck(x∗), then x∗ itself produces the greatest benefit that can be
achieved without using additional resource allocation.

With the Everett method, the problem of load shedding is changed into an
unconstrained maximization. The key to solve this problem is choosing the Lagrange
multipliers that correspond to the trial prices in the new competitive power market. In
general, different choices of the trial prices 𝜆k lead to different schemes to resources
provided and demands of customers to achieve the maximal benefit.

11.6.2 Calculation of the Independent Load Values

Suppose vi is the independent load value in a specific load bus. It reflects the value of
supplement unit capacity generator for eliminating the load curtailment at node i (in
$/kW). However, load shedding is time dependent. Different time stages correspond
to different levels of load shedding. Thus a load-shedding study should be performed
on the basis of hourly load and the corresponding independent load values converted
into hourly values.

The annual equipment value method, which is a dynamic assessment method,
converts the cost of the operational lifetime to an annual cost. According to this
method,

The value vt
i per hour can be calculated as follows:

vt
i =

𝛽vi × 103

365 × 24
($∕MW∕hr) (11.26)

𝛽 = r(1 + r)n

(1 + r)n − 1
(11.27)

where

vi: the independent load value in a specific load bus ($/kW)
vt

i: the per hour independent load value in a specific load bus ($/MW/h)
r: the interest rate
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n: the capital recovery years
𝛽: the capital recovery factor (CRF), which is an important factor in economic

analysis. It is supposed that 1 year= 365 days in equation (11.26).

Example 11.1: The testing system is shown in Figure 11.8, which is taken from
reference [16], but with modified data. It consists of two generators, and five loads at
buses 3, 4, 5, 8, and 9, where loads 3, 4, and 5 are located in load center 1, and the
others are located in load center 2. The weight factors reflecting the relative values
of load centers are w1 = 0.58, and w2 = 0.42. The independent load values v in a
specific load bus, the absolute load priority 𝛼 to indicate the importance of each load
bus and the load demand for each load bus are given in Table 11.8. The capacities
of generator 1 and generator 2 are PG1 = 0.90 and PG2 = 0.6 p.u., respectively. The
available transfer capacities of the key lines are P1−6max = 0.60 p.u., P2−7max = 0.58
p.u., P1−7max = 0.5 p.u., respectively.

There are two test cases:

Case 1: two generators are in operating, tie line 1-7 is in outage.

Case 2: generator 2 is in outage. No line outage.

First of all, we assume that the capital recovery years of investing in the
generators n = 10 years, and that interest rate is 6%. According to equation
(11.27), we get the capital recovery factor (CRF) 𝛽 = 1.3587. Then according to

~

~

1

2

6

7

9

8

3

4

5

Figure 11.8 A simple network.

TABLE 11.8 The Values of Load Buses

Values Load 3 Load 4 Load 5 Load 8 Load 9

vi (S/kW) 150 200 180 190 220

𝛼i 1.14 1.25 1.30 1.10 1.22

Demand PD (p.u.) .270 .280 .260 .305 .310
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TABLE 11.9 The Hourly Independent Values of Load Buses

Values Load 3 Load 4 Load 5 Load 8 Load 9

vi (S/kW) 150 200 180 190 220

vi (S/MW/hr) 23.26 31.02 27.92 29.47 34.12

vi (S/p.u. MW/hr) 2326 3102 2792 2947 3412

equation (11.26), we get the hourly independent load values, which are shown in
Table 11.9.

For case 1, we can get the following objective function and constraints.

H =
∑

i

𝛼ivixi

and constraints

PD3x3 + PD4x4 + PD5x5 ≤ PG1

PD3x3 + PD4x4 + PD5x5 ≤ P1−6max

PD8x8 + PD9x9 ≤ PG2

PD8x8 + PD9x9 ≤ P2−7max

Since tie line 1–7 is in outage, the system becomes two subsystems, each of them
has one generator. Thus we can solve two subproblems separately.

For subproblem 1:
Objective

H1 =
∑

i

𝛼ivixi = 𝛼3v3x3 + 𝛼4v4x4 + 𝛼5v5x5

= 1.14 × 2326x3 + 1.25 × 3120x4 + 1.30 × 2792x5

= 2651.64x3 + 3900x4 + 3629.6x5

subject to
PD3x3 + PD4x4 + PD5x5 ≤ min{PG1,P1−6max}

that is,
0.27x3 + 0.28x4 + 0.26x5 ≤ min{0.90, 0.60} = 0.60

Compared with equations (11.18) and (11.19), the above load-shedding prob-
lem is a linear model, that is,

maxH(x) =
∑

i

Hixi (11.28)
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such that ∑

i

Pixi ≤ C (11.29)

According to the generalized Lagrange multiplier technique, the Everett model
for the load-shedding problem can be written as follows.

MaxL = H(x) −
n∑

k=1

𝜆kCk(x)

=
∑

i

{Hixi − 𝜆[Pixi − C]} =
∑

i

𝛿ixi + 𝜆C (11.30)

where
𝛿i = Hi − 𝜆Pi (11.31)

Thus, we have

L = 2651.64x3 + 3900x4 + 3629.6x5 − 𝜆(0.20x3 + 0.22x4 + 0.28x5 − 0.60)

= (2651.64 − 0.27𝜆)x3 + (3900 − 0.28𝜆)x4 + (3629.6 − 0.26𝜆)x5 + 0.60𝜆

If all xi = 1,
∑

iPixi = 0.81 > C, which equals 0.60. Thus some load should be cur-
tailed. It can be observed from the above Lagrange function that shedding load 3 will
have the maximum benefit no matter what the value of the trial price 𝜆 is.

For subproblem 2:
Objective

H2 =
∑

i

𝛼ivixi = 𝛼8v8x8 + 𝛼9v9x9

= 1.1 × 2947x8 + 1.22 × 3412x9

= 3241.7x8 + 4162.64x9

subject to
PD8x8 + PD9x9 ≤ min{PG2,P2−7max}

that is,
0.305x8 + 0.310x9 ≤ min{0.70, 0.58} = 0.58

Then, we have

L = 3241.7x8 + 4162.64x9 − 𝜆(0.305x8 + 0.310x9 − 0.58)

= (3241.7 − 0.305𝜆)x8 + (4162.64 − 0.310𝜆)x9 + 0.58𝜆
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If all xi = 1,
∑

iPixi = 0.61 > C, which equals 0.58. Thus, some load should be cur-
tailed. It can be observed from the above Lagrange function that shedding load 8 will
have the maximum benefit no matter what the value of the trial price 𝜆 is.

For case 2, one generator will supply two load centers because generator 2 is
in outage. We have the following objective function and constraints.

Objective

h = w1H1 + w2H2 = w1(𝛼3v3x3 + 𝛼4v4x4 + 𝛼5v5x5) + w2(𝛼8v8x8 + 𝛼9v9x9)

= 0.58(1.14 × 2326x3 + 1.25 × 3120x4 + 1.30 × 2792x5)

+ 0.42(1.1 × 2947x8 + 1.22 × 3412x9)

= 1537.95x3 + 2262x4 + 2105.17x5 + 1361.51x8 + 1748.31x9

subject to

(1) 0.27x3 + 0.28x4 + 0.26x5 ≤ P1−6max = 0.60

(2) 0.305x8 + 0.31x9 ≤ P1−7max = 0.50

(3) 0.27x3 + 0.28x4 + 0.26x5 + 0.305x8 + 0.31x9 ≤ PG1 = 0.90

Then we have the following Lagrange function for case 2.

L = 1537.95x3 + 2262x4 + 2105.17x5 + 1361.51x8 + 1748.31x9

− 𝜆1(0.27x3 + 0.28x4 + 0.26x5 − 0.60)

− 𝜆2(0.305x8 + 0.310x9 − 0.50)

− 𝜆3(0.27x3 + 0.28x4 + 0.26x5 + 0.305x8 + 0.310x9 − 0.90)

= (1537.95 − 0.27𝜆1 − 0.27𝜆3)x3 + (2262 − 0.28𝜆1 − 0.28𝜆3)x4

+ (2105.17 − 0.26𝜆1 − 0.26𝜆3)x5 + (1361.51 − 0.305𝜆2 − 0.305𝜆3)x8

+ (1748.31 − 0.31𝜆2 − 0.31𝜆3)x9 + 0.60𝜆1 + 0.50𝜆2 + 0.90𝜆3

If 𝜆1 = 𝜆2 = 𝜆3 = 2000 $/p.u. MW/h, and assume there is no load shedding,
we get the following results according to equations (11.28)–(11.31).

Load i 𝛿i xi Hixi Pixi 𝛿ixi Rank (xi)

Load 3 457.50 1 1537.95 0.27 457.50 4
Load 4 1142.00 1 2262.00 0.26 1142.00 1
Load 5 1065.70 1 2105.17 0.28 1065.70 2
Load 8 141.51 1 1361.51 0.305 141.51 5
Load 9 508.31 1 1748.31 0.31 508.31 3
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However, constraints (1)–(3) are not satisfied. According to the above table,
the optimal load-shedding scheme is that load 8 and load 3 are curtailed, and the
maximum benefit for this case is H = 6115.27.

If 𝜆1 = 𝜆2 = 𝜆3 = 2500 $/p.u. MW/h, we get the following results.

Load i 𝛿i xi Hixi Pixi 𝛿ixi Rank (xi)

Load 3 187.95 1 1537.95 0.27 187.95 4
Load 4 862.00 1 2262.00 0.26 862.00 1
Load 5 805.70 1 2105.17 0.28 805.70 2
Load 8 −138.49 1 1361.51 0.305 −138.49 5
Load 9 198.31 1 1748.31 0.31 198.31 3

According to the above table, the same optimal load-shedding scheme is
obtained, that is, load 8 and load 3 are curtailed, and the maximum benefit for this
case is H = 6115.27.

However, if 𝜆1 = 𝜆2 = 𝜆3 = 2700 $/p.u. MW/h, we get the following results.

Load i 𝛿i xi Hixi Pixi 𝛿ixi Rank (xi)

Load 3 79.95 1 1537.95 0.27 79.95 3
Load 4 750.00 1 2262.00 0.26 750.00 1
Load 5 701.17 1 2105.17 0.28 701.17 2
Load 8 −285.49 1 1361.51 0.305 −285.49 5
Load 9 74.31 1 1748.31 0.31 74.31 4

According to the above table, a different load-shedding scheme is obtained,
that is, load 8 and load 9 are curtailed, and the maximum benefit for this case is
H = 5905.12.

Obviously, the trial price 𝜆i affects the results of load shedding. Further cal-
culations show that the optimal load-shedding scheme will be that loads 8 and 3 are
curtailed if 𝜆1 = 𝜆2 = 𝜆3 ≤ 2629.52700 $/p.u. MW/h, and the optimal load-shedding
scheme will be that loads 8 and 9 are curtailed if 𝜆1 = 𝜆2 = 𝜆3 > 2629.52700 $/p.u.
MW/h.

11.7 DISTRIBUTED INTERRUPTIBLE LOAD SHEDDING
(DILS)

11.7.1 Introduction

Blackouts are becoming more frequent in industrial countries because of network
deficiencies and continuous load growing. One possible solution to prevent blackouts
is load curtailment. Both Demand side management (DSM) and load shedding (LS)
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have been used to provide reliable power system operation under normal and emer-
gency conditions. DSM is specifically devoted to peak demand shaving [18] and to
encourage efficient use of energy. LS is still a methodology used worldwide to prevent
power system degradation to blackouts [19–21] and it acts in a repressive way.

To perform the LS program, it could be necessary to increase the number of
interruptible customers and distribute them over the entire system. Considering such
small percentage values of load shedding, if the number of interruptible customers
increased, the impact on users would be negligible. Instead of detaching all the inter-
ruptible loads, only a part of the load could be disconnected from the network, in
particular the part that can be interrupted or controlled (such as the lighting system,
air conditioning, devices under UPS, pumps dedicated to tanks filling, etc.). This
method is called distributed interruptible load shedding (DILS) program [18].

Generally speaking, at least the following three levels of action should be
assumed so that a customer can participate in the DILS, allowing the network
manager to control the peak power withdrawal or to act during the periods of
network dysfunctions:

• the financing of technologies that enable the implementation of DILS (elec-
tronic power meters, domestic and similar appliances, etc.);

• incentives aimed at changing the behavior of some categories of end users;

• definition of ad hoc instruments for particular classes of consumers such as
Public Administration, Data Centers, etc.

In addition, the customers could find it convenient to participate in the
day-ahead market. Users with reducible power above a minimal threshold could
present offers in the previous day market that, if accepted because they are
competitive, could take part in the dispatch services market.

This way, the load curtailment would be paid according to the actual recorded
interruption. Moreover, there would be more market efficiency, created by the com-
petition between both the interruptible services themselves and between these and
the generation.

11.7.2 DILS Methods

To participate in the DILS program with interest, a user must have an economic profit
and/or be less sensitive to dysfunctions. There are two different DILS techniques that
can be adopted in automation sceneries only, for obtaining the desired load relief
during criticalities:

1. The first technique increases the cost of electric energy for all the users [8].
One can assume to know the response of the users statistically, in particular,
as to the way they change the subdivision between interruptible loads (which
would become disconnectable) and uninterruptible loads depending on the cost
of energy. In this case, the transmission of a price signal via the electronic power
meter could be sufficient to avoid the loss.

2. The second technique is based on the transmission of an interruptible load per-
centage reduction signal p to every customer participating in the DILS program.
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The duration of the reduction might be contractually determined. Because of
the uncertainty on how much power each single interruptible customer is actu-
ally drawing, the value of p will be larger than the fraction of the expected
interruptible load, giving the wanted load relief.

Since it is more easily adoptable in practice by the distributor and the end user,
the second DILS technique is analyzed here.

Analysis of Interruptible Load The interruptible load of a customer can be con-
sidered as an essentially continuous random variable. This ensures that every percent-
age p of load reduction is actually achievable (possibly with low probability for some
values of p). We denote by YI,k(t) the random value of the interruptible load power of
the single customer k of a given sector at time t and build its probability distribution
at a fixed time, so that we omit the time argument temporarily and write YI,k only.

The load YI,k is composed of various combinations of continuous adjustable
and step-adjustable interruptible loads, which we write as

YI,k = YCAI,k + YSAI,k (11.32)

where

YCAI,k: the interruptible continuous adjustable loads
YSAI,k: the interruptible step adjustable loads.

The combinations of step-adjustable loads give rise to, say, m possible
well-separated load levels of YSAI,k, denoted by l1, … , lm. Each level is taken with
a different probability, so we introduce the probabilities w(1), … … ,w(m), which
sum up to 1, giving the probability distribution w(⋅) of YSAI,k. On the other hand,
YCAI,k has an absolutely continuous probability distribution with density fCAI(•)
on the range (0,LCAI), where LCAI is the maximum power of the interruptible
continuous adjustable load.

Assuming YSAI,k and YCAI,k are independent, the distribution of YI,k is the mix-
ture density resulting from the convolution of w(⋅) and fCAI(•), that is,

fY(y) =
m∑

i=1

fCAI(y − li) • w(i) (11.33)

where

Y: a random variable
y: a particular value that Y can take with ranging in (0, lm + LCAI).

Since fCAI(⋅) is a density, the mixture density fY(•) is never 0 in (0, lm + LCAI)
provided LCAI is greater than the largest difference between consecutive
step-adjustable load levels. This makes every load level within this interval
actually achievable.
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The argument we are making here ensures a smooth transition to lower load
levels following reduction signals sent to customers. This is important if DILS is
applied to few customers, but it becomes less and less important as the number of
customers increases.

Suppose a load point has N users connected to it. We now analyze the effect of a
load-shedding signal p sent to a given number of customers at time t to be carried out
at time (t + u). Let n, the number of customers participating in the DILS program,
be less than N. If we know the probabilistic characterization of the load of a typi-
cal customer at any time t, and its subdivision into interruptible and uninterruptible,
which will be the tool to assess the probability of reaching the desired load relief.
For expository purposes, we take all the N users belonging to the same class (e.g., all
residential).

The total load of a single user can be written as

Yk(t) = YI,k(t) + YU,k(t) (11.34)

where YI,k(t) and YU,k(t) are the interruptible and the uninterruptible part of the load
respectively. Obviously YI,k(t) is 0 for uninterruptible customers. Let us consider
NA appliances (such as refrigerators, washing machines, dishwashers, etc.), and let
the percentages of customers who possess each appliance be given by p1, … , pNA.
Finally, the indicator function I (i has j), takes a value of 1 if customer has the appli-
ance j and 0 otherwise. Then we can write

Yk(t) =
NA∑

j=1

I(i has j) • wj(t) (11.35)

where wj(t) is the (random) power absorbed by the appliance j at time t. I(•) is the
indicator function of a statement.

Let

𝜇j(t) = E(wj(t)) (11.36)

𝜎2
j (t) = Var(wj(t)) (11.37)

We can derive the expected value and the variance of the load absorbed by a customer
picked at random, under the hypothesis that the appliances are used independently of
each other:

𝜇T (t) =
NA∑

j=1

pj𝜇j(t) (11.38)

𝜎2
T (t) =

NA∑

j=1

pj[𝜎2
j (t) + (1 − pj𝜇

2
j (t))] (11.39)
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If the appliances are not independent, equation (11.38) is unchanged, whereas
equation (11.39) is modified by adding twice the sum of all the covariances between
pairs of products of random variables I (i has j) wj(t) and I (i has j′) wj′ (t).

The mean and variance in equations (11.38) and (11.39), are sufficient to
approximate the probability distribution of the load with a Gaussian by the central
limit theorem, provided the total number N of customers connected to a given load
point is large enough, so that we can state that the total power S(t) absorbed at time t
has a Gaussian distribution, with mean N𝜇T (t) and variance N𝜎2

T (t), as follows:

S(t) = SI(t) + SU(t) =
N∑

k=1

YI,k(t) +
N∑

k=1

YU,k(t)

=
N∑

k=1

Yk(t) ∼ N(N𝜇T (t),N𝜎2
T (t)) (11.40)

By indexing from 1 to n those customers who take part in the DILS program,
we can write the share of the total load actually available for curtailment as

SI,n(t) =
n∑

k=1

YI,k(t) (11.41)

Suppose now that we possess a load-forecasting method, which is precise enough
to consider s(t + u) as known when data is available up to time t. Certainly,
SI,n(t) remains unobserved (we can only measure the total power taken by all
the N customers), but the precisely forecasted s(t + u) gives us some information
about SI,n(t + u). This information is summarized by the conditional distribution
P(SI,n(t + u)|S(t + u) = s(t + u)). Let 𝜇I(t) and 𝜎2

I (t) be the mean and variance of
the load drawn by the interruptible appliances of a customer picked at random. By
normal approximation, this conditional distribution is still Gaussian with mean

n

{
𝜇I (t + u) + 1

N

𝜎2
I (t + u)

𝜎2
T(t + u)

[s(t + u) − N𝜇T (t + u)]

}
= n𝜇 (11.42)

and variance

n

[
𝜎2

I (t + u)

(
1 − n

N

𝜎2
I (t + u)

𝜎2
T(t + u)

)]
= n𝜎2 (11.43)

This conditional Gaussian distribution will be the main ingredient for the deter-
mination of the optimal value of p.

If the customers connected to the same load point are not homogeneous, they
can be split into homogeneous groups. If these groups are large enough, then the
Gaussian approximation still applies for each group so that S(t) will be Gaussian
distributed and the conditional distribution of the interruptible load can be found in a
similar way as above.
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The effectiveness of the central limit theorem depends on both the shape of
the individual load probability distribution and the degree of statistical correlation
among customers’ loads. A recent study [22] on the probability distribution of the
aggregated residential load for extra-urban areas, based on a bottom-up approach,
shows that the Gamma distribution exhibits the best goodness of fit among a set of
candidate distributions, but that the Gaussian approximation still passes the test for a
reasonably large number of users. If strong stochastic dependence among customers
persists, for example, due to spatial autocorrelation (the means 𝜇T (t) depend on time
only), the Gaussian distribution could be inappropriate, and further study would be
necessary to model the specific situation correctly.

Load Shedding via the Probability of Failure A load-shedding request p, sent
to customer k, implies a load relief of pYI,k kW. The customer can attain the new load
level (1 − p)YI,k + YU,k. Overall, the load relief obtained when p is applied to the n
customers is

p
n∑

k=1

YI,k = pSI,n (11.44)

Then we must set up a decision criterion to set p in such a way that we are
confident that the requested load relief of r kW is achieved. We can formalize this by
stating that p must be such that

P(pSI,n < r) ≤ 𝛼 (11.45)

where 𝛼 is an acceptable probability that the desired load relief is not attained. In
principle 𝛼 can be zero, if the interruptible load is greater than (r∕p) with probability
1 for some p. In some situations, when the absorbed load is very high and a small
load relief is requested, this condition can be met.

Let F denote the cumulative conditional distribution function of SI,n. Then the
decision criterion for p is written as

F

(
r
p

)
≤ 𝛼 (11.46)

and is satisfied if
r
p
= F−1(𝛼) = q𝛼 ⇒ p = r

q𝛼
(11.47)

The condition r < q𝛼 is required for this to have an admissible solution.
In general, there will be no closed-form expression for F. But we may employ

the central limit theorem approximation introduced above with the appropriate con-
ditional mean and variance of the single customer’s load indicated by 𝜇 and 𝜎2. Then

F

(
r
p

)
≅ Φ

⎛
⎜
⎜⎝

r
np

− 𝜇
𝜎√

n

⎞
⎟
⎟⎠

(11.48)
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where Φ is the standard Gaussian cumulative density function, and the solution to
equation (11.46) is

p =
r
n

𝜇 + z𝛼
𝜎√

n

(11.49)

where z𝛼 is the α-level percentage of the standard Gaussian distribution.
The probability level 𝛼 can be chosen if a measure of the cost of not achieving

the desired load relief is available, say, c0. Then the expected cost of not attaining the
load relief is given by 𝛼 c0 and 𝛼 can be increased from 0 up to a value cA∕c0, where
cA is the maximum acceptable cost (which would be lower than c0).

Load Shedding via the General Cost Function A more sophisticated decision
criterion of load shedding can be based on a cost function which increases with the
actual load relief distance from the target, such as

c(p, SI,n) = c1pSI,nI(pSI,n > r) + c2SI,nI(pSI,n < r) (11.50)

As mentioned before, I(⋅) is the indicator function of a statement and s is the total load
at the time of the shedding. The two addenda account for the cost of an overshooting
and an undershooting, respectively. The cost constants c1 and c2 can include per-kWh
costs on the distributor’s (energy not sold) and on the customer’s side (energy not
available), because of a blackout or of an excessive curtailment (as we are talking
about energy and the cost function depends on power, we are implying a fixed duration
of the shedding intervention). One should note that for the network operator, which
manages the shedding action, it will be difficult to give a fair assessment of costs not
incurred by itself. Considering the costs of the energy not sold only, given c2, the
order of magnitude of c1 should be c2, one possible choice being c1 = c2.

The load-shedding problem becomes a search for the minimization of the
expected value of the following cost function.

c(p) = E(c(p, SI,n)) = c1p
∫

∞

r∕p
s′f (s′)ds′ + c2sF

(
r
p

)
(11.51)

where f is the density function associated with F.
By using the Gaussian approximation, we get

c(p) ≅ c1p

{
n𝜇

[
1 − Φ

( r
p
− n𝜇
√

n𝜎

)]
+
√

n𝜎𝜙

( r
p
− n𝜇
√

n𝜎

)}

+ c2sΦ

( r
p
− n𝜇
√

n𝜎

)
(11.52)

where 𝜑 is the standard Gaussian density function.
This decision criterion based on the conditional Gaussian is an instance of

Bayesian expected loss minimization [23]. The loss is represented by c(p, SI,n) and
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the expectation is taken with respect to the posterior distribution of an unobservable
quantity (SI,n) conditionally on another observed quantity (s), through which the prior
information on the former is updated.

11.8 UNDERVOLTAGE LOAD SHEDDING

11.8.1 Introduction

We discuss the load-shedding problem from the view of the voltage stability in this
section. Load shedding is the ultimate countermeasure to save a voltage unstable sys-
tem, when there is no other alternative to stop an approaching collapse [24–29].
This countermeasure is cost effective in the sense that it can stop voltage instabil-
ity triggered by large disturbances, against which preventive actions would not be
economically justified (if at all possible) in view of the low probability of occurrence
[26]. Load shedding is also needed when the system undergoes an initial voltage drop
that is too pronounced to be corrected by generators (because of their limited range of
allowed voltages) or load tap changers (because of their relatively slow movements
and also limited control range).

In the practical system, this kind of load shedding belongs to the family of sys-
tem protection schemes (also referred to as special protections scheme) (SPS) against
long-term voltage instability. An SPS is a protection designed to detect abnormal sys-
tem conditions and take predetermined corrective actions (other than the isolation of
the faulted elements) to preserve system integrity as far as possible and regain accept-
able performance [27].

The following SPS design has been chosen [29]:

• Response-based: load shedding will rely on voltage measurements which
reflect the initiating disturbance (without identifying it) and the actions taken
so far by the SPS and by other controllers. On the contrary, an event-based
SPS would react to the occurrence of specific events [28].

• Rule-based: load shedding will rely on a combination of rules of the type:

IfV < Vthreshold during t seconds, shedΔPMW (11.53)

where V is measured voltage, and Vthreshold is the corresponding threshold value.

• Closed-loop operation: an essential feature of the scheme considered here is
the ability to activate the rule equation (11.53) several times, based on the mea-
sured result of the previous activations. This closed-loop feature allows the
load-shedding controllers to adapt their actions to the severity of the distur-
bance. Furthermore, it increases the robustness with respect to operation fail-
ures as well as system behavior uncertainties [30]. This is particularly important
in voltage instability, where load plays a central role but its composition varies
with time and its behavior under large voltage drops may not be known accu-
rately;
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• A distributed scheme is proposed for its ability to adjust to the disturbance
location.
It is well-known that time, location, and amount are three important and closely
related aspects of load shedding against voltage instability [31]. The time avail-
able for shedding is limited by the necessity to avoid [25]

∘ reaching the collapse point corresponding to generator loss of synchronism
or motor stalling;

∘ further system degradation due to undervoltage tripping of field
current–limited generators, or line tripping by protections;

∘ the nuisance for customers of sustained low voltages. This requires fast
action even in the case of long-term voltage instability, if the disturbance
has a strong initial impact [30].

As far as long-term voltage instability is concerned, if none of the above fac-
tors is limiting, one can show that there is a maximum delay beyond which shed-
ding later requires shedding more [25]. On the other hand, it may be appropriate
to activate other emergency controls first so that the amount of load shedding is
reduced [30].

The shedding location matters a lot when dealing with voltage instability: Shed-
ding at a less appropriate place requires shedding more. In practice, the region prone
to voltage instability is well known beforehand. However, within this region, the best
location for load shedding may vary significantly with the disturbance and system
topology.

11.8.2 Undervoltage Load Shedding Using Distributed
Controllers

This undervoltage load-shedding scheme relies on a set of controllers distributed over
the region prone to voltage instability [30]. Each controller monitors the voltage V at
a transmission bus and acts on a set of loads located at distribution level and having
influence on V . Each controller operates as follows:

• It acts when its monitored voltage V falls below some threshold Vthreshold.

• It can act repeatedly, until V recovers above Vthreshold. This yields the already
mentioned closed-loop behavior.

• It waits in between two sheddings, in order to assess the effect of the actions
taken both by itself and by the other controllers.

• The delay between successive sheddings varies with the severity of the
situation;

• The same holds true for the amount shed.

Individual Controller Design As long as V remains above the specified thresh-
old, the controller is idle, while it is starts as soon as a (severe) disturbance causes
V to drop below Vthreshold. Let t0 be the time when this change takes place. The con-
troller remains started until either the voltage recovers, or a time 𝜏 is elapsed since
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t0. In the latter case, the controller sheds a power ΔPsh and returns to either idle (if V
recovers above Vthreshold) or started state (if V remains smaller than Vthreshold). In the
second case, the current time is taken as the new value of and the controller is ready
to act again (provided of course that there remains load to shed).

The delay 𝜏 depends on the time evolution of 𝜏 as follows. A block of load is
shed at a time such that

∫

t0+𝜏

t0

(Vthreshold − V(t))dt = C (11.54)

where C is a constant to be adjusted. This control law yields an inverse-time charac-
teristic: The deeper the voltage drops, the less time it takes to reach the value C and,
hence, the faster the shedding. The larger the value C is, the more time it takes for
the integral to reach this value and hence, the slower the action.

Furthermore, the delay 𝜏 is lower bounded:

𝜏min ≤ 𝜏 (11.55)

to prevent the controller from reacting on a nearby fault. Indeed, in normal situations,
time must be left for the protections to clear the fault and the voltage to recover to
normal values.

The amount of load shedding depends on the voltage drop at the time period,
that is

ΔPsh = KΔVd (11.56)

where K is another constant to be adjusted, and ΔVd is the average voltage drop over
the time period 𝜏, that is,

ΔVd = 1
𝜏 ∫

t0+𝜏

t0

(Vthreshold − V(t))dt (11.57)

The controller acts by opening distribution circuit breakers and may disconnect
interruptible loads only. Hence, the minimum load shedding corresponds to the small-
est load whose breaker can be opened, while the maximum shedding corresponds to
opening all the maneuverable breakers. Furthermore, to prevent unacceptable tran-
sients, it may be appropriate to limit the power disconnected in a single step to some
value ΔPsh

tr , which can be written as

min
k

Pk ≤ ΔPsh ≤ ΔPsh
max (11.58)

with

ΔPsh
max = min

(
∑

k

Pk,P
sh
tr

)
(11.59)
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where Pk denotes the individual load power behind the kth circuit breaker under con-
trol, and the minimum in equation (11.58) and the sum in equation (11.59) extend
over all maneuverable breakers.

The control logic focuses on active power but load reactive power is obviously
reduced together with active power. In the absence of more detailed information, we
assume that both powers vary in the same proportion.

Cooperation Between Controllers In this section, we discuss the interaction of
the various controllers used in load shedding.

Let us consider two close controllers: Ci monitoring bus i and Cj monitoring
bus j. Let us assume that both controllers are started by a disturbance. When Ci sheds
some load, it causes the voltages to increase not only at bus i but also at neighboring
buses including the monitoring bus j. Since Vi increases, the integral ∫ (Vthreshold −
Vj(t))dt decreases. It can be observed from equations (11.56) and (11.57) that the
ΔVd decreases; consequently, the amount of load shedding will be reduced for the
controller j. If Vi is increased and is larger than Vthreshold, the controller j will return
to idle. Thus, when one controller sheds load, it slows down or inhibits the other
controllers to restore voltages in the same area. This cooperation avoids excessive
load shedding.

Obviously, the whole system will tend to automatically trigger the controller to
shed the load first where voltages drop the most at the location of the controller.
It means that operating the controllers in a fully distributed way, each controller
using local information and taking local actions, as underfrequency load-shedding
controllers do, which we discussed in Section 11.2.

Another way to implement the load-shedding scheme in a centralized way
is by collecting all voltage measurements at a central point, running the computa-
tions involved in equations (11.54)–(11.59) in a single processor, and sending back
load-shedding orders (with some communication delays being taken into account).
In this case, additional information exchanges and interactions between controllers
may be envisaged without further penalizing the scheme. To protect the SPS against
erroneous measurements, it is desirable for each controller to rely on several volt-
age measurements, taken at closely located buses. Some filtering can remove outliers
from the measurements, and the average value of the valid ones can be used as V in
equations (11.54) and (11.57). If all data are dubious, the controller should not be
started; other controllers will take over.

Tuning the Parameters of the Controller Obviously, the parameters of the con-
troller affect the response of the controller as well as the scheme of load shedding.
The tuning of the controllers should rely on a set of scenarios combining different
operating conditions and disturbances, as typically considered when planning SPS
[30,31].

The following are the basic requirements:

(1) Protection security: The SPS does not act in a scenario with acceptable
post-disturbance system response. This is normally the case following any
contingency.
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(2) Protection dependability: All unacceptable post-disturbance system responses
are saved by the SPS, possibly in conjunction with other available
controls.

(3) Protection selectivity: In the latter case, the minimum load power possible is
interrupted.

The tuning mainly consists of choosing the best values for Vthreshold, C, K,ΔPsh
tr ,

and 𝜏min. It is noted that the voltage threshold should be set high enough to avoid
excessive shedding delays, which in turn would require to shed more and/or cause
low load voltages. On the other hand, it should be low enough to obey requirement
(1) above. It should thus be set a little below the lowest voltage value reached during
any of the acceptable post-disturbance evolutions.

As for C and K, they should be selected so that, for all scenarios,

• the protection sheds the minimum load possible and

• some security margin is left with respect to values causing protection failure.

Certainly, using the same C and K values for all controllers makes the design
definitely simpler.

11.8.3 Optimal Location for Installing Controller

We know that the location of the controller affects not only the improvement of the
voltage profile, but also the economy of the system operation. Thus the location of
installing the controller or SPS is very important. The following conditions should be
satisfied at the optimal location of the installing controller:

(1) There is considerable improvement in voltage at the location.

(2) The probability of the outage at the location is high.

(3) There is considerable reduction in system loss.

(4) The load at the location is of low importance.

(5) The load center that the load is located at is of low importance.

For item 1, the performance index to evaluate the voltage improvement by load
shedding can be computed as follows:

PIj
LSV =

Vj(ΔPsh
j ) − Vj(0)

ΔPsh
j

(11.60)

where

Vj(0): the voltage at bus j before the load shedding
Vj(ΔPsh

j ): the voltage at bus j after the load shedding

ΔPsh
j : the amount of the load shedding at bus j

PIj
LSV: the performance index to assess the voltage improvement at bus j.
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The probability of the outage for each location can be obtained according to
analysis of the historical outage or disturbance data in the system.

For item 3, the performance index to evaluate the loss reduction by load shed-
ding can be computed as follows:

PIj
LSPL =

PL(ΔPsh
j ) − PL(0)

ΔPsh
j

(11.61)

where

PL(0): the system loss before the load shedding at bus j
PL(ΔPsh

j ): the system loss after the load shedding at bus j

PIj
LSPL: the performance index to assess the loss reduction at bus j.

Actually, the performance index to evaluate the loss reduction by load shedding
can also be obtained using loss sensitivity of load that was discussed in Chapter 3.

For items 4 and 5, which are related to the less important of the loads, we can
use one performance PIj

LSKEY to express them. In Section 11.5, we computed the
unified weighting factors wi of loads on the basis of their importance. Obviously, the
less important performance index PIj

LSKEY will be

PIj
LSKEY = 1

wi
(11.62)

Therefore, the hierarchical model for computing the optimal location for
installing the controller can be constructed as in Figure 11.9.

For the lower layers in the hierarchy model (Figure 11.9), the performance
indices for evaluating the individual load location can be computed on the basis of
equations (11.60)–(11.62). But for the upper layer in the hierarchy model, the rela-
tionship among the all kinds of performance indices cannot be computed exactly.
It can be only obtained on the basis of system operation cases and the judgment of
the engineer or operators. According to AHP, the judgment matrix A − PI can be

Rank for installing 
LS controller Ri

PI jLSV

load bus 1 load bus 2 load bus n

A

PI

LD.…..

PI jLSP PI jLSPL PI jLSKEY

Figure 11.9 Hierarchy model of optimal location for installing LS controller.
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written as follows:

A − PI =

⎡
⎢
⎢
⎢
⎢
⎢⎣

wPI1∕wPI1 wPI1∕wPI2 · · · · · · wPI1∕wPIn

wPI2∕wPI1 wPI2∕wPI2 · · · · · · wPI2∕wPIn

⋮ ⋮

wPIn∕wPI1 wPIn∕wPI2 · · · · · · wPIn∕wPIn

⎤
⎥
⎥
⎥
⎥
⎥⎦

(11.63)

where, wPIi is unknown. wPIi∕wPIj, which is the element of judgment matrix A − PI,
represents the relative importance of the ith performance index compared with the jth
performance index. Here, there are only four performance indices for selecting the
location of the controller. Thus, n = 4 in equation (11.63).

According to the hierarchy model in Figure 11.9 and AHP approach, we can get
the unified rank for all the locations for installing the LS controller. The number one
in the rank list of locations will be first selected to install the LS controller. If there
are K controllers, they will be installed in the system where the locations are the top
K in the rank list.

11.9 CONGESTION MANAGEMENT

11.9.1 Introduction

Transmission congestion occurs when there is insufficient transmission capacity to
meet the demands of all customers.

Congestion can be reduced by the following methods [32]:

(1) Generation re-dispatch

(2) Load shedding

(3) Using VAR support

(4) Expansion of transmission lines.

Obviously, expansion of transmission lines involves a large number of factors
such as financial, time, environment, etc., and it is not realistic to solve the current
congestion problem. Several previous chapters have analyzed generation dispatch and
re-dispatch issues. The congestion may be reduced by modification of generating
schedules, but not for every situation. In heavily congested conditions, transmission
congestion can only be relieved by curtailing a portion of non-firm transactions. Thus
we focus on the load-shedding method for analyzing congestion management in this
section.

11.9.2 Congestion Management in US Power Industry

In the United States, the congestion management is implemented in the various ISOs
such as the Pennsylvania–New Jersey–Maryland Interconnection (PJM), Electric
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Reliability Council of Texas (ERCOT), and NewYork Independent System Operator
(NYISO).

PJM PJM Interconnection is a regional transmission organization that ensures the
reliability of the electric power supply system in 13 states. PJM operates the whole-
sale electricity market and manages regional electric transmission planning to main-
tain the reliability of the power system.

Different methods to mitigate transmission emergencies due to overloads and
excess transfers in transmission lines are adopted in PJM [33]. They are:

• Generator active power adjustment—raise/lower MW

• Phase angle regulator adjustment—increase/decrease phase angle

• Interchange schedule adjustment—import/export MW

• Transmission line switching—selected line switching

• Circuit breaker switching—change network topology

• Customer load shedding—internal procedure and NERC transmission loading
relief procedure.

Load shedding is the last option when the congestion cannot be alleviated
through the remaining transmission emergency methods. Flow limits are further
distinguished into normal limits, short-term emergency (STE) limits, and load dump
(115% of STE). Violations may occur under actual (precontingency) or contingency
(postcontingency) conditions.

PJM curtails loads that contribute to the overload before redispatching the gen-
erators if the transmission customers have indicated that they are not willing to pay
transmission congestion charges. If overload persists, even after redispatching the
system, PJM will implement the NERC transmission loading relief procedure (TLR)
[34]. The steps of TLR are:

1. Notification of reliability coordinator

2. Hold interchange transactions

3. Reallocate firm transmission service

4. Reallocate non-firm transmission service

5. Curtail non-firm load

6. Redispatch generation

7. Curtail firm load

8. Implement emergency procedures.

ERCOT ERCOT directs and ensures the reliable and cost-effective operation of its
electric grid and enables fair and efficient market-driven solutions to meet customer’s
electric needs [35]. The following issues are addressed:

(1) Ensures the grid can accommodate the scheduled energy transfers.
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(2) Ensures grid reliability.

(3) Oversees retail transactions.

ERCOT develops four types of action plans to respond to electric system con-
gestions.

• Precontingency action plan—used ahead of the contingency because it is not
feasible once the contingency occurs.

• Remedial action plan—used after contingency occurs.

• Mitigation plan—similar to remedial action plan but only used after all avail-
able generation redispatch is exhausted. After the precontingency and remedial
action plans are executed and if relief is still needed, this method is appropriate

• Special protection plan—automatic actions using special protection systems

The Emergency Electric Curtailment Plan (EECP) [36,37] was developed to
respond to short-supply situations and restore responsive reserve to required levels.
This procedure will direct the system operator to declare an emergency notice for
frequency restoration purposes.

NYISO The NYISO manages New York’s electricity transmission grid, a network
of high-voltage lines that carries electricity throughout the state, and oversees the
wholesale electricity market. NYISO addresses the following issues:

(1) Maintains and enhances regional reliability

(2) Promotes and operates a fair and competitive electric wholesale market

(3) Provides quality customer service

(4) Tries to achieve these objectives in a cost-effective manner.

Severe system disturbances generally result in critically loaded transmission
facilities, critical frequency deviations, high or low voltage conditions, or stability
problems. The following operating states are defined for the state of New York [38]:

(1) Warning

(2) Alert

(3) Major emergency

(4) Restoration

The NYISO schedule coordinator, or the NYISO shift supervisor forecasts the
likelihood of the occurrence of states other than the Normal State in advance. If it is
predicted that load relief either by voltage reduction or load shedding may be neces-
sary during a future period, then the NYISO shift supervisor notifies all transmission
owners and arranges corrective measures including

• Curtailment of interruptible load

• Manual voltage reduction

• Curtailment of nonessential market participant load
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• Voluntary curtailment of large load-serving entities (LSEs).

• Public appeals

NYISO reduces transmission flows that may cause thermal, voltage, and sta-
bility violations to properly allocate the reduction of transmission flows to relieve
violations. When there are security violations that require reductions in transmission
flow, NYISO takes action in the following sequence and to the extent possible, when
system conditions and time permit:

1. Implement all routine actions using phase angle regulator tap positions, where
possible.

2. Request all overgeneration suppliers that are contributing to the problem to
adjust their generation to match their schedules.

3. Request voluntary shifts on generation either below minimum dispatchable lev-
els or above normal maximum levels to help relieve the violation.

4. Request reduction or cancellation of all transactions that contribute to the viola-
tion. Applicable transactions shall be curtailed in accordance with curtailment
procedures described in the NYISO Transmission and Dispatching Operations
Manual [39].

11.9.3 Congestion Management Method

The previous sections presented several approaches for optimal load shedding, which
are can be used for congestion management. Here, we present simple-load shedding
or load-management methods for congestion management. They are

• TLR Sensitivities-Based Load Curtailment

• Economic Load Management for Congestion Relief

TLR Sensitivities-Based Load Curtailment We discussed power transfer distri-
bution factors (PTDFs) in Chapter 3. The transmission line relief (TLR) sensitivities
can be considered as the inverse of the PTDF. Both TLR and PTDF can measure the
sensitivity of the flow on a line-to-load curtailment. PTDFs determine the sensitiv-
ity of the flow on an element such as transmission line to a single power transfer.
TLR sensitivities determine the sensitivity of the flow on the single monitored ele-
ment such as a transmission line to many different transactions in the system. In other
words, TLR sensitivities gauge the sensitivity of a single monitored element to many
different power transfers.

The TLR sensitivity values at all the load buses for the most overloaded lines are
considered and used for calculating the necessary load curtailment for the alleviation
of the transmission congestion. The TLR sensitivity at a bus k for a congested line ij
is Sk

ij, and is calculated by [32]

Sk
ij =

ΔPij

ΔPK
(11.64)
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The excess power flow on transmission line ij is given by

ΔPij = Pij − Pijmax (11.65)

where

Pij: the actual power flow through transmission line ij
Pijmax: the flow limit of transmission line ij.

The new load Pnew
k at the bus k can be calculated by

Pnew
k = Pk −

Sk
ij

∑ND
l=1 Sl

ij

ΔPij (11.66)

where

Pnew
k : the load after curtailment at bus k
Pk: the load before curtailment at bus k
Sl

ij: the sensitivity of power flow on line ij due to load change at bus k

ND: the total number of load buses.

The higher the TLR sensitivity the more the effect of a single MW power trans-
fer at any bus. So, on the basis of the TLR sensitivity values, the loads are curtailed
in required amounts at the load buses in order to eliminate transmission congestion
on the congested line ij.

This method can be implemented for systems where load curtailment is a nec-
essary option for obtaining (N − 1) secure configurations.

It is noted that the sensitivity computed here is based on perturbation, which
is discussed in Chapter 3—Sensitivity Calculation. A limitation exists for this
approach, that is, the sensitivity results are not stable. They are affected by the power
flow solution, including the selection of initial operation points. The more precise
method for sensitivity calculation is based on matrix operation, which is purely
related to network topology, and will not be affected by the solution of power flow.
The details are described in Chapter 3.

Economic Load Management for Congestion Relief Another possible solu-
tion for congestion management is to find customers who will volunteer to lower their
consumption when transmission congestion occurs. By lowering the consumption,
the congestion will “disappear” resulting in a significant reduction in bus marginal
costs. A strategy to decide how much load should be curtailed for which customer is
discussed here.

The anticipated effect of this congestion relief solution is to encourage con-
sumers to be elastic against high prices of electricity. Hence, this congestion relief
procedure could eventually protect all customers from high electricity prices in a
deregulated environment [40].
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The following three factors can be considered for the analysis of load manage-
ment:

(1) Power flow effect through sensitivity index

(2) Economic factor for LMP index

(3) Load reduction preference for customer load curtailment index.

The possible methods for these load management are presented in the
following.

Sensitivity Index In Chapter 3, we discussed load-distributed sensitivity,
which can be used to rank load sensitivity. The sensitivity of the congested line ij
with respect to load bus k is Sk

ij. We can convert it to the new sensitivity with the load
distribution reference.

Sk new
ij = Sk

ij − Sk
ldref k = 1, …… ,ND (11.67)

where

Sk
ldref : the sensitivity of load distribution reference for the constraint ij, that is,

Sk
ldref =

∑ND
k=1(Sk

ij ∗ Pdk)
∑ND

k=1 Pdk

(11.68)

The load shedding can be performed on the basis of the ranking of the dis-
tributed load reference-based sensitivity Sk new

ij . The load with high Sk new
ij value will

be curtailed first as it is more efficient to relieve the congestion than in the load with
low Sk new

ij value.

LMP Index High electricity price or locational marginal price (LMP) is an
incentive to reduce load. The following index measures the level of customer incen-
tive to cut down on electricity consumption.

LMPk new = LMPk − LMPk
ldref k = 1, …… ,ND (11.69)

where

LMPk: the electricity price of the load bus k without considering the load factor.
LMPk new: the electricity price of the load bus k considering load factor.
LMPk

ldref : the electricity price of the load bus k based on load distribution ref-
erence, that is,

LMPk
ldref =

∑ND
k=1(LMPk ∗ Pdk)

∑ND
k=1 Pdk

(11.70)

The load shedding can be performed on the basis of the ranking of the dis-
tributed load reference-based electricity price LMPk new. The load with high LMPk new
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value will be curtailed first as it provides greater incentive for customer to cut down
on electricity consumption than the load with low LMPk new value. This is especially
for customers with high load amounts.

Customer Load Curtailment Index If the required reduction of the power
flow on the congested branch is given by ΔPijc, the required amount of adjustment
ΔPk at bus k will be given by

ΔPK =
ΔPijc

Sk
ij

(11.71)

Generally, the higher the sensitivity, the smaller the amount of curtailment needed.
The customer is supposed to express the acceptable range of curtailment by ΔPmax

and ΔPmin at bus k, and the curtailment acceptance level is measured by

𝜇LK =
ΔPmax − ΔPk

ΔPmax − ΔPmin (11.72)

If the index 𝜇Lk is between 0 and 1, then the required amount of load reduction
is in the acceptable range of the customer, and if 𝜇Lk is less than 0 or greater
than 1, then the required amount of load curtailment is more than the acceptable
range.

Comprehensive Index for Congestion Relief We can comprehensively con-
sider the three indices mentioned above. First of all, normalize each of them as fol-
lows:

CRk
SI =

Sk new
ij

∑ND
k=1 Sk new

ij

k = 1, …… ,ND (11.73)

CRk
LMP = LMPk new

∑ND
k=1 LMPk new

k = 1, …… ,ND (11.74)

CRk
LCI =

𝜇LK
∑ND

k=1 𝜇LK

k = 1, …… ,ND (11.75)

where

CRk
SI: the normalized sensitivity index

CRk
LMP: the normalized LMP index

CRk
LCI: the normalized customer load curtailment index.

Then we compute comprehensive index for congestion relieve (CICR) using
following expression.

CICRk = WSICRk
SI + WLMPCRk

LMP + WLCICRk
LCI, k = 1, …… ,ND (11.76)
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where

WSI: the weight for the normalized sensitivity index
WLMP: the weight for the normalized LMP index
WLCI: the weight for the normalized customer load curtailment index

CICRk: the comprehensive index for congestion relief.

The weight factors can be determined according to the practical system oper-
ation status. If they cannot be easily obtained, the AHP method can be used. Their
sum should be 1.0, that is,

WSI + WLMP + WLCI = 1 (11.77)

PROBLEMS AND EXERCISES

1. What is underfrequency load shedding?

2. What is ILS? State the capabilities of the ILS.

3. Describe the effect of the load damping coefficient on the frequency drop.

4. What is the DILS method?

5. What is undervoltage load shedding?

6. List several important methods to reduce network congestion.

7. What is SPS?

8. List several proper locations to install voltage controller or SPS.

9. State the function of TLR.

10. The system shown in Figure 11.8 consists of two generators and two load centers.
The weight factors reflecting the relative values of the load centers are w1 = 0.6, and
w2 = 0.4. The independent load values v in a specific load bus, the absolute load
priority 𝛼 to indicate the importance of each load bus, and the load demand for each
load bus are given in Table 11.10. The capacities of generator 1 and generator 2 are
PG1 = 0.95 and PG2 = 0.65 p.u., respectively. The available transfer capacity of key
lines is P1−6max = 0.65 p.u., P2−7max = 0.6 p.u., P1−7max = 0.55 p.u., respectively.

TABLE 11.10 The Values of Load Buses for Exercise 10

Values Load 3 Load 4 Load 5 Load 8 Load 9

vi (S/kW) 150 200 180 190 220

𝛼i 1.14 1.25 1.30 1.10 1.22

Demand PD (p.u.) .280 .290 .270 .31 .315

Compute load-shedding schemes for the following two test cases:

Case 1: two generators are in operation, tie line 1–7 is in outage.

Case 2: generator 2 is in outage, no line outage.
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C H A P T E R 12
OPTIMAL RECONFIGURATION
OF ELECTRICAL DISTRIBUTION
NETWORK

The reconfiguration of the distribution network is also part of power system operation.
This chapter sums up several major methods used to date in optimal reconfiguration
of electric distribution network. These are the simple branch exchange method, the
optimal flow pattern, the rule-based comprehensive approach, mixed-integer linear
programming, the genetic algorithm (GA) with matroid theory, and multiobjective
evolution programming (EP).

12.1 INTRODUCTION

Distribution networks are the most extensive part of the electrical power system.
They produce a large number of power losses because of the low voltage level of
the distribution system. The goal of reconfiguration of the distribution network is to
find a radial operating structure that minimizes the power losses of the distribution
system under the normal operation conditions. Generally, distribution networks are
built as interconnected networks, while in operation they are arranged into a radial
tree structure. This means that distribution systems are divided into subsystems of
radial feeders, which contain a number of normally closed switches and a number
of normally open switches. According to graph theory, a distribution network can
be represented with a graph G(N,B) that contains a set of nodes N and a set of
branches B. Every node represents either a source node (supply transformer) or a
sink node (customer load point), whereas a branch represents a feeder section that
can either be loaded (switch closed) or unloaded (switch open). The network is radial,
so that the feeder sections form a set of trees where each sink node is supplied from
exactly one source node. Therefore, the distribution network reconfiguration (DNRC)
problem is to find a radial operating structure that minimizes the system power loss
while satisfying operating constraints [1]. In fact, DNRC can be viewed as a prob-
lem of determining an optimal tree of a given graph. Many algorithms have been
used to solve the reconfiguration problem: heuristic methods [2–10], expert system,

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
© 2015 The Institute of Electrical and Electronics Engineers, Inc. Published 2015 by John Wiley & Sons, Inc.

483



484 CHAPTER 12 OPTIMAL RECONFIGURATION OF ELECTRICAL DISTRIBUTION NETWORK

combinatorial optimization with discrete branch and bound methods [11–17], and
EP or GA [1,18–21].

Merlin and Back first proposed the discrete branch and bound method to reduce
losses in a distribution network [3]. Because of the combinatorial nature of the prob-
lem, it requires checking a great number of configurations for a real-sized system.
Shirmohammadi and Hong [8] used the same heuristic procedure mentioned in [3].
Castro et al. [4] proposed heuristic search techniques to restore the service and load
balance of the feeders. Castro and Franca [6] proposed modified heuristic algorithms
to restore the service and load balance. The operation constraints are checked through
a load flow solved by means of modified fast decoupled Newton–Raphson method.
Baran and Wu [5] presented a heuristic reconfiguration methodology based on the
method of branch exchange to reduce losses and balance loads in the feeders. To
assist in the search, two approximated load flows for radial networks with different
degrees of accuracy are used. Also they propose an algebraic expression that allows
estimating the loss reduction for a given topological change. Liu et al [14] proposed
an expert system to solve the problem of restoration and loss reduction in distribu-
tion systems. The model for the reconfiguration problem is a combinatorial nonlinear
optimization problem. To find the optimal solution, it is necessary to consider all the
possible trees generated owing to the opening and closing of the switches existing in
the network.

Nahman et al presented another heuristic approach in [10]. The algorithm starts
from a completely empty network, with all switches open and all loads disconnected.
Load points are connected one by one by switching branches onto the current subtree.
The search technique also does not necessarily guarantee global optima.

Zhu et al [22] proposed a rule-based comprehensive approach to study DNRC.
The DNRC model with line power constraints is set up, in which the objective is
to minimize the system power loss. Unlike the traditional branch exchange–based
heuristic method, the switching branches are divided into three types. The rules
that are used to select the optimal reconfiguration of the distribution network are
formed on the basis of system operation experiences and the types of switching
branches [23].

Recently, new methods based on GA have been used in DNRC [1,18–20].
GA-based methods are better than traditional heuristic algorithms in the aspect of
obtaining the global optima.

12.2 MATHEMATICAL MODEL OF DNRC

The mathematical model of DNRC can be expressed by either branch current or
branch power.

(1) Use of Current Variable

min f =
NL∑

l=1

klRlI
2
l l ∈ NL (12.1)
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such that

kl∕Il∕ ≤ Ilmax l ∈ NL (12.2)

Vimin ≤ Vi ≤ Vimax i ∈ N (12.3)

gi(I, k) = 0 (12.4)

gi(V , k) = 0 (12.5)

𝜑(k) = 0 (12.6)

where

Il: the plural current in branch l
Rl: the resistance of branch l
Vi: the node voltage at node i
Kl: the topological status of the branches—kl = 1 if the branch l is

closed and kl = 0 if the branch l is open
N: the set of nodes

NL: the set of branches.

In the above model, equation (12.2) stands for the branch current constraints.
Equation (12.3) stands for the node voltage constraints. Equation (12.4) repre-
sents Kirchhoff’s first law (KCL) and equation (12.5) represents Kirchhoff’s
second law (KVL). Equation (12.6) stands for topological constraints that
ensure radial structure of each candidate topology. It consists of two structural
constraints:

(a) Feasibility: all nodes in the network must be connected by some branches,
that is, there is no isolated node.

(b) Radiality: the number of branches in the network must be smaller than the
number of nodes by one unit (k∗l NL = N − 1).

Therefore, the final network configuration must be radial and all loads must
remain connected.

(2) Use of Power Variable

min f =
NL∑

l=1

klRl

(
P2

l + Q2
l

V2
l

)
l ∈ NL (12.7)

such that

kl∕Pl∕ ≤ Plmax l ∈ NL (12.8)
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kl∕Ql∕ ≤ Qlmax l ∈ NL (12.9)

Vimin ≤ Vi ≤ Vimax i ∈ N (12.3)

gi(P, k) = 0 (12.10)

gi(Q, k) = 0 (12.11)

gi(V , k) = 0 (12.5)

𝜑(k) = 0 (12.6)

where,

Pl: the real power in branch l
Ql: the reactive power in branch l

The objective function in equation (12.7) is power losses. If voltage magnitudes
are assumed to be 1.0 p.u. and reactive power losses are ignored in the objective
function, equation (12.7) may be simplified as

min f =
NL∑

l=1

klRlP
2
l l ∈ NL (12.12)

In the above model, equations (12.8) and (12.9) stand for the branch real power
and reactive power constraints. Equations (12.10), (12.11) represent Kirch-
hoff’s first law.

Obviously, both DNRC models, whether with branch current expression or
power expression, have the same function.

12.3 HEURISTIC METHODS

12.3.1 Simple Branch Exchange Method

The basic idea of the heuristic branch exchange method is to compute the change of
power losses through operating a pair of switches (close one and open another one at
the same time). The goal is to reduce power losses. The advantage of this method is
simple and easily understood. The following are the disadvantages:

(1) The final configuration depends on the initial network configuration.

(2) The solution is a local optima, rather than global optima.

(3) Selecting and operating each pair of switches as well as computing the corre-
sponding radial network load flow is time consuming.
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12.3.2 Optimal Flow Pattern

If the impedances of all branches in the loop network are replaced by the correspond-
ing branch resistances, the load flow distribution that satisfies the KCL and KVL is
called an optimal flow pattern. When the load flow distribution in a loop is an optimal
flow, the corresponding network power losses will be minimal. Thus the basic idea
of the optimal flow pattern is to open the switch of the branch that has a minimal
current value in the loop [8]. The steps of the heuristic algorithm based on optimal
flow pattern are as follows:

(1) Compute load flow of initial radial network.

(2) Close all normal open switches to produce loop networks.

(3) Compute the equivalent injection current at all nodes in loops through the
injecting current method.

(4) Replace branch impedance by the corresponding branch resistance in the loop
and then compute the optimal flow.

(5) Open a switch of the branch that has a minimal current value in the loop.
Recompute the load flow for the remaining part of the network.

(6) Open the next branch switch, and repeat step (5) until the network becomes a
radial.

The advantages of this method are that (i) the final network configuration will
not depend on the initial network topology; (ii) the computing speed is much quicker
than that in the simple branch exchange method; (iii) the complicated combination
problem of switch operation becomes a heuristic problem by opening one switch
each time.

However, there are some disadvantages because all normally open switches are
closed in the initial network, that is,

(1) If there are many normal open switches in a network, it means the calculation of
optimal flow involves a number of loops. The final solution may not be optimal
because of the mutual effects among the loops.

(2) When load flow is solved by the equivalent injection current method, it needs to
compute the impedance matrix of the Thevenin equivalent network with mul-
tiports. This will increase the calculation burden.

(3) The loop network load flow needs to be computed twice for each switch oper-
ation (before and after one switch is opened).

12.3.3 Enhanced Optimal Flow Pattern

The enhanced optimal flow pattern combines the advantages of the two heuristic algo-
rithms mentioned in Sections 12.3.1 and 12.3.2, that is, the approach is based on
optimal flow pattern but does not close all normally open switches (it only closes
one switch and opens another switch each time). In addition, this method ignores the
accuracy of network losses. It only focuses on the change in losses that are caused
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by the operation of the switches. The calculation steps of the enhanced optimal flow
pattern are as follows.

(1) Open all normally open switches in the network so that the initial network is a
tree structure.

(2) Close any one switch. In this way, there is only one loop in the network.

(3) Compute the load flow for the single loop network and get the equivalent injec-
tion current for all nodes in the loop.

(4) Change the single loop network into a pure resistance network, and compute
the optimal flow to find the branch with the minimal current value. Open the
switch on this branch.

(5) Compute the load flow for this new radial network, and proceed with the cal-
culation of the next switch operation as in steps (2)–(4).

(6) The algorithm will be stopped after we go through all the open switches.

The enhanced optimal flow pattern has eliminated the effect among multiple
loops. Although the convergence process is related to the initial network, the final
solution is stable and not related to the order of operation of the switches [9]. The
disadvantages of this method are as follows:

(1) It needs twice load flow calculations for operation of each pair of switches.

(2) The convergence process and speed are affected by the order of the switches
operation.

12.4 RULE-BASED COMPREHENSIVE APPROACH

This section uses a rule-based comprehensive approach to study DNRC. The
algorithm consists of a modified heuristic solution methodology and the rules base.
It determines the switching actions on the basis of a search by branch exchange to
reduce the network’s losses as well as to balance the load of the system.

12.4.1 Radial Distribution Network Load Flow

In order to get a precise expression for system power loss, the branch power will
be computed through a radial distribution network load flow (RDNLF) method
in the study. It is well known that in the distribution network, the ratio of R∕X
(resistance/reactance) is relatively big, even bigger than 1.0 for some transmission
lines. In this case, P–Q decoupled load flow is invalid for distribution network
load-flow calculation. It will also be complicated and time consuming to use the
Newton–Raphson load flow because the distribution network is only a simple
radial tree structure. Therefore, the power summation–based radial distribution
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Figure 12.1 Example of optimal node order.

network load flow (PSRDNLF) method is presented in this section. The PSRDNLF
calculation consists of three parts:

(1) Conduct the optimal node order calculation for all redial network based on
graph theory. Consequently, the branches are divided into different layers
according to the distant between the ordered node and “root of a tree” node.
Figure 12.1 is an example on how to make optimal node order.
The rules of node order are as follows:

(a) Start from the root node.

(b) The nodes that connect to the root belong to first layer.

(c) The nodes that connect to the nodes in the first layer become second layer,
and so on.

(d) The node number in layer n must be greater than the node number in layer
(n − 1). The node numbers in the same layer may be arbitrary.

(e) For the branch number, for example, connecting to layer n and layer n − 1,
the start node of the branch is the node in layer n − 1, and the end node is
the node in layer n.

(2) Calculate the branch real power and reactive power from the “top of a tree”
node to the “root of a tree” node, that is, from the last layer to the first layer.

(3) Compute the node voltage from the “root of a tree” node to the “top of a tree
node,” that is, from the first layer to the last layer.

The initial conditions are the given voltage vectors at root nodes as well as real
and reactive power at load nodes. Finally, the deviation of injection power at all nodes
can be computed. The iteration calculation will cease if the deviation is less than the
given permissive error.
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If there are multiple generation sources in the distribution network, one source
will be selected as a reference/slack source and others can be handled as negative
loads.

12.4.2 Description of Rule-Based Comprehensive Method

Unlike the traditional branch exchange–based heuristic method, the rule-based com-
prehensive method combined the traditional branch exchange approach with the set of
rules. The rules that are used to select the optimal reconfiguration of the distribution
network are formed on the basis of the system operation experiences.

In the rule-based comprehensive method, the switching branches are divided
into three types:

(1) Type I: the switching branches that are planned for maintenance in a short
period according to the equipment maintenance schedule.

(2) Type II: the power flows of the switching branches that almost reach their max-
imal power limits (e.g., 90%).

(3) Type III: the other switching branches that have enough available transfer
capacity under the system operation conditions.

Thus the following rules will be used for the modified heuristic approach
according to the practical system operation experiences of the engineers.

(1) If the switching branches lead to an increase in system power losses, do not
switch them.

(2) If the switching branches lead to a reduction in system power losses but cause
system overload, do not switch them.

(3) If the switching branches belong to type I mentioned above and also can lead to
system power losses reduction, then select one that results in maximal reduction
in power losses, ΔPLI.

(4) If the switching branches belong to type II mentioned above, and also can lead
to a reduction insystem power losses, select one that results in maximal reduc-
tion in power losses, ΔPLII.

(5) If the switching branches belong to type III mentioned above, and also can
lead to reduction in system power losses, select one that makes maximal power
losses reduction, ΔPLIII.

(6) From (3)–(5), use the following formula to determine the branch that will be
switched.

PISWi =
WiΔPLi

WIΔPLI + WIIΔPLII + WIIIΔPLIII
i = I, II, III (12.13)

where

ΔPLi: the change of system power losses before and after the branch
switch
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W: the weighting coefficient of the different types of switching
branches. According to the experiences of the engineers, the weight-
ing factors of the three types of switches may be 1.0, 0.6, and 0.3,
respectively. They may also be adjusted according the practical sys-
tem operation situations.

PISWi: the performance index of the switching branch i. The largest PISWi
of each switching loop will be switched.

12.4.3 Numerical Examples

The rule-based comprehensive approach for DNRC is tested on 14-bus and 33-bus
distribution systems as shown in Figures 12.2 and 12.3, respectively. The system data
and parameters of the 14-bus system are listed in Tables 12.1 and 12.2.

The 14-bus test system contains two source transformers and 12 load nodes.
The three initially open switches are “4–9,” “14–11,” and “6–3.” The initial system
power loss is 0.0086463 MW.

The results of the optimal configuration for the 14-bus distribution network
are shown in Tables 12.3–12.5. Table 12.3 is the node voltage results comparison
between the initial network and final configuration. Table 12.4 is the load flow results
of the optimal configuration for the 14-bus system. Table 12.5 is the optimal open
switches of the final network and the corresponding system losses, from which we
can know that the system losses reduction is 0.0003765 MW, that is, 4.354%.

The system data and parameters of the 33-bus system are listed in Tables 12.6
and 12.7. The 33-bus test system consists of one source transformer and 32 load
nodes. The five initially open switches are “33,” “34,” “35,” “36,” and “37.” The
total system load is 3.715 MW, while the initial system power loss is 0.202674 MW.
The system base is V = 12.66 kV and S = 10 MVA.

The calculation results of the final configuration of the 33-bus system are
shown in Table 12.8. It can be observed that the same results are obtained as in
reference [8].
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Figure 12.2 A 14-bus
distribution system.
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Figure 12.3 A 33-bus
distribution system.

12.5 MIXED-INTEGER LINEAR-PROGRAMMING
APPROACH

Because of the magnitude of the DNRC problem and its nonlinear nature, the use
of a blend of optimization and heuristic techniques is one choice as in Section 12.4.
The linearization of DNRC is another choice. Through performing a linearization of
both the objective function and constraints, the DNRC is changed to a mixed-integer
linear optimization problem [17].
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TABLE 12.1 System Load Demand for 14-Bus System

Node Load

P (MW)

Load

Q (MVAR)

1 0.0000 0.0000

2 0.9000 0.7000

3 0.7000 0.5500

4 0.0000 0.0000

5 0.9000 0.7600

6 0.4000 0.3000

7 0.0000 0.0000

8 −2.2000 −1.0800

9 0.3000 0.2000

10 0.6000 0.4500

11 0.9000 0.7500

12 0.0000 0.0000

13 0.8000 0.6500

14 0.3000 0.2200

TABLE 12.2 System Branch Parameters for 14-Bus
Distribution Network

Line

No.

From

Node i

To

Node j

Resistance

R(Ω)
Reactance

X(Ω)

1 7 1 0.00575 0.00893

2 1 2 0.02076 0.03567

3 2 3 0.01284 0.01663

4 1 4 0.01023 0.01567

5 9 12 0.01023 0.01976

6 4 5 0.09385 0.11457

7 5 6 0.03220 0.04985

8 8 9 0.00575 0.00793

9 9 10 0.03076 0.04567

10 10 11 0.02284 0.03163

11 12 13 0.09385 0.11457

12 13 14 0.02810 0.04085

13 7 8 0.02420 0.42985

14 14 11 0.02500 0.04885

15 4 9 0.02300 0.04158

16 6 3 0.02105 0.04885
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TABLE 12.3 Initial and Final Node Voltages for 14-Bus
Distribution Network

Node Initial V (p.u.) Initial Θ Final V (p.u.) Final 𝜃

1 1.04964 −0.00656 1.04951 −0.00625

2 1.04890 −0.02275 1.04858 −0.02664

3 1.04873 −0.02514 1.04831 −0.03048

4 1.04936 −0.01157 1.04906 −0.00899

5 1.04704 −0.03738 1.04742 −0.02557

6 1.04678 −0.04275 1.04809 −0.03738

7 1.05000 0.00000 1.05000 0.00000

8 1.04927 −0.00317 1.04863 −0.00405

9 1.04894 −0.00834 1.04843 −0.00990

10 1.04798 −0.02480 1.04729 −0.02999

11 1.04756 −0.03072 1.04673 −0.03824

12 1.04867 −0.01503 1.04823 −0.01467

13 1.04674 −0.03819 1.04681 −0.03067

14 1.04657 −0.04136 1.04656 −0.04302

TABLE 12.4 Load Flow of Optimal Configuration for
14-Bus Distribution Network

Line

No.

From

Node i

To

Node j

Real power

P (MW)

Reactive power

Q (MVAR)

1 7 1 4.30930 1.92709

2 1 2 3.10318 1.40266

3 1 4 1.20496 0.52344

4 2 3 2.20100 1.00101

5 4 5 0.90083 0.40074

6 4 9 0.30398 0.12245

7 3 6 1.00032 0.30039

8 9 12 0.80069 0.30062

9 9 8 −3.19940 −1.07969

10 9 10 2.40266 0.80148

11 12 13 0.80062 0.30056

12 10 11 1.80087 0.60057

13 11 14 0.70013 0.20020

TABLE 12.5 Optimal Configuration Results for 14-Bus Distribution Network

Radial Network Initial Network Optimal Configuration

Open switches Switch 4–9 Switch 7–8

Switch 14–11 Switch 13–14

Switch 6–3 Switch 5–6

Power loss (MW) 0.008646 0.008270
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TABLE 12.6 System Data and Parameters for 33-Bus
Distribution Network

Line No. Node i Node J Resistance

R (Ω)
Reactance

X (Ω)

1 1 2 0.0922 0.0470

2 2 3 0.4930 0.2512

3 3 4 0.3661 0.1864

4 4 5 0.3811 0.1941

5 5 6 0.8190 0.7070

6 6 7 0.1872 0.6188

7 7 8 0.7115 0.2351

8 8 9 1.0299 0.7400

9 9 10 1.0440 0.7400

10 10 11 0.1967 0.0651

11 11 12 0.3744 0.1298

12 12 13 1.4680 1.1549

13 13 14 0.5416 0.7129

14 14 15 0.5909 0.5260

15 15 16 0.7462 0.5449

16 16 17 1.2889 1.7210

17 17 18 0.7320 0.5739

18 2 19 0.1640 0.1565

19 19 20 1.5042 1.3555

20 20 21 0.4095 0.4784

21 21 22 0.7089 0.9373

22 3 23 0.4512 0.3084

23 23 24 0.8980 0.7091

24 24 25 0.8959 0.7071

25 6 26 0.2031 0.1034

26 26 27 0.2842 0.1447

27 27 28 1.0589 0.9338

28 28 29 0.8043 0.7006

29 29 30 0.5074 0.2585

30 30 31 0.9745 0.9629

31 31 32 0.3105 0.3619

32 32 33 0.3411 0.5302

34 8 21 2.0000 2.0000

36 9 15 2.0000 2.0000

35 12 22 2.0000 2.0000

37 18 33 0.5000 0.5000

33 25 29 0.5000 0.5000
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TABLE 12.7 System Load Demand for 33-Bus Distribution
Network

Node No. Real Power

Load P (MW)

Reactive Power

Load Q (MVAr)

2 100.0 60.0

3 90.0 40.0

4 120.0 80.0

5 60.0 30.0

6 60.0 20.0

7 200.0 100.0

8 200.0 100.0

9 60.0 20.0

10 60.0 20.0

11 45.0 30.0

12 60.0 35.0

13 60.0 35.0

14 120.0 80.0

15 60.0 10.0

16 60.0 20.0

17 60.0 20.0

18 90.0 40.0

19 90.0 40.0

20 90.0 40.0

21 90.0 40.0

22 90.0 40.0

23 90.0 50.0

24 420.0 200.0

25 420.0 200.0

26 60.0 25.0

27 60.0 25.0

28 60.0 20.0

29 120.0 70.0

30 200.0 100.0

31 150.0 70.0

32 210.0 100.0

33 60.0 40.0

12.5.1 Selection of Candidate Subnetworks

The simplest way of modeling the topology of an electrical network is by means
of the branch-to-node incidence matrix A, in which as many rows as connected
components are omitted to assure linear independence of the remaining rows. Given
a single-component meshed network with N + 1 buses, a well-known theorem states
that a set of N branches is a spanning tree if, and only if, the respective columns
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TABLE 12.8 Optimal Configuration Results for 33-Bus
Distribution Network

Radial

Network

Initial

Network

Final

Configuration

Results in

Ref. [8]

Open switches Switch 33 Switch 7 Switch 7

Switch 34 Switch 10 Switch 10

Switch 35 Switch 14 Switch 14

Switch 36 Switch 33 Switch 33

Switch 37 Switch 37 Switch 37

Power loss (MW) 0.202674 0.141541 0.141541

of constitute a full rank submatrix [27]. Thus graph-based algorithms are usually
adopted to select the candidate subnetworks. Given the undirected graph of a
single-component network, determining whether a candidate set of N branches
constitutes a spanning tree reduces to checking whether they form a single con-
nected component. Alternatively, instead of checking for radiality, an a posteriori,
straightforward algorithm is available to generate radial subnetworks, either from
scratch or by performing branch exchanges on existing radial networks.

For a meshed network, there are, in general, several alternative paths connecting
a given bus to the substation, whereas in a radial network, each bus is connected to
the substation by a single unique path. Furthermore, the union of all node paths gives
rise to the entire system. The connectivity of a meshed network, as well as that of its
radial subnetworks, can then be represented by means of paths. Let 𝜋i

n be the set of
paths associated to bus i

Πi
n = {𝜋i

1, … , 𝜋i
p, … , 𝜋i

n} (12.14)

where each path is a set of branches connecting the bus to the substation. As noted
above, any radial network is characterized by only one of those paths being active for
each bus. Therefore, there is a need to represent the status of each path, for which the
following binary variable is defined:

Ki
p =

{
1, if 𝜋i

p is the active path for bus i

0, otherwise
(12.15)

A candidate subnetwork is both connected and radial if the following
constraints are satisfied:

(1) Every node has at most one active path, that is,

∑

p∈Πi
n

Ki
p = 1, ∀ node i. (12.16)
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(2) If 𝜋i
p is active, then any path contained in 𝜋i

p must be also active, which can be
written as follows:

Ki
p ≤ Kj

l , ∀𝜋j
l ⊂ 𝜋

i
p (12.17)

Figure 12.4 is a simple electrical network with one source node and three load
nodes. Table 12.9 presents all possible paths for this network [17].

It is worth noting that, for computational efficiency, not all of the possible paths
shown in Table 12.9 should be considered in practice. For example, assuming the
branch lengths represented in Figure 12.4 are proportional to their resistance, it is
clear that paths 𝜋A

3 and 𝜋B
3 can be discarded, as they involve much greater electri-

cal distance than that of alternative paths for nodes A and B, respectively. Hence,
for each node, only those paths whose total resistance does not exceed a previously
defined threshold times the lowest node path resistance are considered. This signifi-
cantly reduces the number of relevant candidate paths for realistic networks.

Source

1

2

3

4

5

B

C

A

Figure 12.4 Simple electrical network with
one source.

TABLE 12.9 Node Paths for the Example
of Figure 12. 4

Node Path Path

Branches

A 𝜋A
1 1

𝜋A
2 2, 3

𝜋A
3 2, 4, 5

B 𝜋B
1 2

𝜋B
2 1, 3

𝜋B
3 1, 4, 5

C 𝜋C
1 1, 4

𝜋C
2 2, 5

𝜋C
3 1, 3, 5

𝜋C
4 2, 3, 4
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The inequality constraint in equation (12.17) can be better understood with the
help of this example. We can easily check that the following inequalities hold (paths
𝜋A

3 , 𝜋B
3 are discarded).

WC
3 ≤ WB

2 ≤ WA
1

WC
1 ≤ WA

1

WC
4 ≤ WA

2 ≤ WB
1

WC
2 ≤ WB

1

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

Although the concepts and variables presented above suffice for modeling the
network radial structure, in order to handle other branch-related electrical constraints
a second set of paths is introduced:

Πj
b = {set of node paths sharing branch j}

Table 12.10 shows the set Πj
b for every branch in the sample system of

Figure 12.4. A graph-based effective procedure is as follows.
Before describe the graph-based procedure, we assume that the meshed

network connectivity is conveniently represented by a sparse structure allowing fast
access to the set of buses adjacent to a given bus. The main idea consists of building
an auxiliary tree, named a mother tree, by a breadth-first search, which contains all
the feasible paths for the network under study. The system shown in Figure 12.4,
whose mother tree is presented in Figure 12.5, will be used to illustrate this
concept.

Every node NL in the mother tree corresponds to a possible path for the related
bus L. In this case, according to Table 12.9, the four-bus system will be translated into
a mother tree with 8 nodes, assuming paths 𝜋A

3 and 𝜋B
3 are discarded. For example,

bus A is associated to nodes 1A and 5A in the mother tree, corresponding to paths 𝜋A
1

and 𝜋A
2 (see Table 12.9).

TABLE 12.10 Sets 5j
b

for the Example of Figure 12.4

Branch j Πj
b

1 Π1
b =

{
𝜋A

1 , 𝜋
B
2 , 𝜋

B
3 , 𝜋

C
1 , 𝜋

C
3

}

2 Π2
b =

{
𝜋A

2 , 𝜋
A
3 , 𝜋

B
1 , 𝜋

C
2 , 𝜋

C
4

}

3 Π3
b =

{
𝜋A

2 , 𝜋
B
2 , 𝜋

C
3 , 𝜋

C
4

}

4 Π4
b =

{
𝜋A

3 , 𝜋
B
3 , 𝜋

C
1 , 𝜋

C
4

}

5 Π5
b =

{
𝜋A

3 , 𝜋
B
3 , 𝜋

C
2 , 𝜋

C
3

}
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(4)
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(3)

(1)

πC
3

πC
2

πC
4

πC
1

πA
1

πA
3

πA
2

πB
1

πB
3

πB
2

Figure 12.5 Mother tree for the example of Figure 12.4.

When building the mother tree, the following rules are taken into account.

A. Before a new node NL is added to the mother tree, two conditions are
checked:

(1) A node NL, associated with the same bus L, is not located upstream in the
tree. Returning to the example, a new node, say 9A, is not appended to node
7C through branch (4) because bus A already appears upstream in the tree
(node 1A). These dead ends are shown in Figure 12.5 by dashed lines.

(2) The impedance of the total path from the substation to the new node NL does
not exceed a threshold times the impedance of the electrically shortest path
for bus L. In Figure 12.5, paths 𝜋A

3 and 𝜋B
3 of Table 12.9 are not consid-

ered for this reason. These cases are represented in Figure 12.5 by dashed
arrows.

B. The mother tree is only swept two times, first downstream and then upstream.
During the downstream sweep, both the mother tree and associated paths are
obtained simultaneously. When the two rules described above preclude the
addition of new nodes, the resulting mother tree is swept upstream in order
to define the inequality constraints among the paths represented by (2), as
well as the minimum and maximum power flows through every branch in the
system.
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For the radiality and electrical constraints to be easily expressed in the standard
matrix–vector form, sets Πi

n and Πj
b are stored as sparse linked lists.

12.5.2 Simplified Mathematical Model

The mathematical model of DNRC can be written as follows.

min f =
NL∑

l=1

Rl

(
P2

l + Q2
l

V2
l

)
l ∈ NL (12.18)

such that

∑

j→i

PGj +
∑

l→i

Pl +
∑

k→i

PDk = 0 (12.19)

∑

j→i

QGj +
∑

l→i

Ql +
∑

k→i

QDk = 0 (12.20)

P2
l + Q2

l ≤ S2
lmax (12.21)

ΔVl ≤ ΔVlmax (12.22)
∑

p∈Πi
n

Ki
p = 1, ∀ node i. (12.23)

Ki
p ≤ Kj

l , ∀𝜋j
l ⊂ 𝜋

i
p (12.24)

If voltage magnitudes are assumed to be 1.0 p.u. the objective function becomes

min f =
NL∑

l=1

Rl(P2
l + Q2

l ) l ∈ NL (12.25)

The power flow Pl and Ql comprise the total real and reactive load demanded
downstream from node j plus the real and reactive losses of the respective branches.
For simplification, the latter component of Pl and Ql are omitted as system losses are
much smaller than power loads. Therefore, the real and reactive power flows equal
the sum of real and reactive power loads located downstream from the node, that is,

Pl =
∑

p∈Πl
NL

Ki
pPDi (12.26)

Ql =
∑

p∈Πl
NL

Ki
pQDi (12.27)

These are equivalent to the node real and reactive balance equations without consid-
ering the branch loss.
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Substituting them into objective function, we get

min f =
NL∑

l=1

Rl

⎡
⎢
⎢
⎢⎣

⎛
⎜
⎜⎝

∑

p∈Πl
NL

Ki
pPDi

⎞
⎟
⎟⎠

2

+
⎛
⎜
⎜⎝

∑

p∈Πl
NL

Ki
pQDi

⎞
⎟
⎟⎠

2⎤
⎥
⎥
⎥⎦

l ∈ NL (12.28)

The network connectivity is incorporated through the binary variables Ki
p. When this

is simplified, the computed power losses will be smaller than the actual losses.
Substituting equations (12.26), (12.27) in equation (12.21), we get

⎛
⎜
⎜⎝

∑

p∈Πl
NL

Ki
pPDi

⎞
⎟
⎟⎠

2

+
⎛
⎜
⎜⎝

∑

p∈Πl
NL

Ki
pQDi

⎞
⎟
⎟⎠

2

≤ S2
lmax l ∈ NL (12.29)

According to [5,20], the voltage drop without considering power losses can be
expressed as

V2
i − V2

l ≈ 2(RlPl + XlQl) (12.30)

Then the total quadratic voltage drop through a path 𝜋i
p reaching bus i is approximated

by

V2
s − V2

i ≈ 2
∑

l∈ Πi
p

(RlPl + XlQl) (12.31)

The voltage constraint can be expressed as

2
∑

l∈Πi
p

⎡
⎢
⎢⎣
Rl

⎛
⎜
⎜⎝

∑

p∈Πl
NL

Ki
pPDi

⎞
⎟
⎟⎠
+ Xl

⎛
⎜
⎜⎝

∑

p∈Πl
NL

Ki
pQDi

⎞
⎟
⎟⎠

⎤
⎥
⎥⎦
≤ ΔVmax (12.32)

12.5.3 Mixed-Integer Linear Model

In Section 12.5.2, the DNRC model is simplified, in which the branch losses are
ignored and bus complex voltages are removed from the model. Thus load flow calcu-
lation is not required during the solution process. However, the resulting optimization
problem is still quadratic in the binary variables Ki

p (path statuses). A piecewise
linear function is used to replace approximately the quadratic branch power flows.
In this way, the DNRC model is converted into a standard mixed-integer linear
model:

min f =
NL∑

l=1

Rl

⎡
⎢
⎢⎣

⎛
⎜
⎜⎝

∑

t∈tp

Cp(t)
p

∑

p∈Πl
NL

Ki
pPDi

⎞
⎟
⎟⎠
+
⎛
⎜
⎜⎝

∑

t∈tq

Cq(t)
p

∑

p∈Πl
NL

Ki
pQDi

⎞
⎟
⎟⎠

⎤
⎥
⎥⎦

l ∈ NL (12.33)
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such that

P(t)
l =

∑

p∈Πl
NL

Ki
pPDi, t ∈ tp (12.34)

Q(t)
l =

∑

p∈Πl
NL

Ki
pQDi, t ∈ tq (12.35)

⎛
⎜
⎜⎝

∑

t∈tp

Cp(t)
p

∑

p∈Πl
NL

Ki
pPDi

⎞
⎟
⎟⎠
+
⎛
⎜
⎜⎝

∑

t∈tq

Cq(t)
p

∑

p∈Πl
NL

Ki
pQDi

⎞
⎟
⎟⎠
≤ S2

lmax (12.36)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

0 ≤ P(1)
l ≤ P

(1)
l

0 ≤ P(2)
l ≤ (P

(2)
l − P

(1)
l )

· · · · · · l ∈ NL

0 ≤ P(tp)
l ≤ (P

(tp)
l − P

(tp−1)
l )

(12.37)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

0 ≤ Q(1)
l ≤ Q

(1)
l

0 ≤ Q(2)
l ≤ (Q

(2)
l − Q

(1)
l )

· · · · · · l ∈ NL

0 ≤ Q(tq)
l ≤ (Q

(tq)
l − Q

(tq−1)
l )

(12.38)

To reduce the problem size and to speed up the calculation, some additional
features are considered.

• As noted earlier, those paths whose electrical length exceeds a certain threshold
times the shortest distance to the substation for that node are discarded.

• If the set of paths Πj
b associated with branch j comprises a single ele-

ment 𝜋i
l , then the respective flow Pj is constant and equal to PLi, provided

Wi
l = 1.

• If the set of paths Πj
n associated with bus i comprises a single element, 𝜋 i

l , then
Wi

l = 1.

After the final reconfiguration is obtained by solving the mixed-integer linear
model of DNRC, the exact losses as well as node voltage and branch flow may be
computed by solving the radial load flow.
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12.6 APPLICATION OF GA TO DNRC

12.6.1 Introduction

Chapter 4 discussed the application of GAs to the economic dispatch problem. GAs
are considered when conventional techniques have not achieved the desired speed,
accuracy, or efficiency [24–26].

The basic steps of general GA are as follows.

(1) Initialization
For the given control variables X, randomly select a variable population
{X1

0 ,X
2
0 , … ,Xp

0}, where each individual Xi
0 is represented by a binary code

string. Each string consists of some binary codes and each code is either 0
or 1. Then each individual corresponds to a fitness f (Xi

0), and the population
corresponds to a set of fitness {f (X1

0), f (X
2
0), … , f (Xp

0)}. Let generation be
zero (i.e. k = 0) go to the next step.

(2) Selection
Select a pair of individuals from the population as a parent. Generally, the indi-
vidual with higher fitness has higher probability of being selected.

(3) Crossover
The crossover is an important operation in the GA. The purpose of the crossover
is to exchange fully information among individuals. There are many crossover
methods such as one-point crossover and multipoint crossover.

(a) One-point crossover. Select randomly a truncation point in the parent
strings and divide them into two parts. Then exchange the tail parts of
the parent strings. The example of a one-point crossover is given in the
following.

01101

10000

111011

100110

10000

01101

111011

100110 One point crossover

Parent generation Child generation

(b) Multipoint crossover. Select randomly several truncation points in the par-
ent strings and divide them into several parts. Then exchange some parts
of the parent strings. The examples of two- and three-point crossovers are
given in the following.

000

101

11001111

01110100

000

101

01110111

11001100

Parent generation Child generation

Two points crossover
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101

000

10110111

01011100

00010

10101

011111

110100

Parent generation Child generation

Three points crossover

(4) Mutation
Mutation is another important operation in GA. A good mutation will be kept
and a bad mutation will be discarded. Generally, the individual with lower fit-
ness has a greater mutation probability. Similar to crossover, there are one-point
mutations and multipoint mutations.

(a) One-point mutation. Select randomly a binary code in the parent string and
reverse the value of the binary code. The example of one-point mutation is
below.

11010010011101000001

Parent generation Child generation

One point mutation

(b) Multi-point mutation. Select randomly several truncation points in the par-
ent strings and divide them into several parts. Then reverse the value of the
binary code in some parts. The examples of two- and three-point mutations
are given in the following.

0001000111100001110111

1111101011100011001111

Parent generation Child generation

Parent generation Child generation

Two points mutation

Two points mutation

(5) Through steps 2–4, a new generation population is produced. Replace the par-
ent generation with the new population and discard some bad individuals. In this
way, the new parent population is formed. The calculation will be stopped if
the convergence condition is satisfied. Otherwise, go back to step 2.
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12.6.2 Refined GA Approach to DNRC Problem

GA has shown to be an effective and useful approach for the DNRC problem [1,18].
Some refinements of the approach are described in this section.

Genetic String In the early application of GA to DNRC, the string structure is
expressed by “arc no. (i)” and “SW no. (i)” for each switch i. The “arc no. (i)” iden-
tifies the arc (branch) number which contains the ith open switch, and “SW. no. (i)”
identifies the switch which is normally open on arc no.(i). For large distribution net-
works, it is not efficient to represent every arc in the string, as its length will be very
long. In fact, the number of open switch positions is identical to keep the system
radial once the topology of the distribution networks is fixed, even if the open switch
positions are changed. Therefore, to memorize the radial configuration, it is enough
to number only the open switch positions. Figure 12.6 shows a simple distribution
network with five switches that are normally open.

In Figure 12.6 (a), positions of the five initially open switches 5, 8, 10, 13, and
14 determine a radial topology. In Figure 12.6 (b), positions of the five initially open
switches 1, 4, 7, 9, and 10 determine another radial topology. Therefore, to represent
a network topology, only positions of the open switches in the distribution network
need to be known. Suppose the number of normally open switches is No, the length
of a genetic string depends on the number of open switches No. Genetic strings for
Figure 12.6 (a) and (b) are represented as follows:

0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0

switch 5;   switch 8;   switch 10;  switch 13;  switch 14

 Genetic string for Figure 12.6 (a)

0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0

switch 1;   switch 4;   switch 7;    switch 9;  switch 10

Genetic string for Figure 12.6 (b)

(a) (b)

11
4

33 22

654 5 6

77 88
9 910 10

1111

1212 1313

1414 1515

Figure 12.6 A simple distribution network.
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Fitness Function GAs are essentially unconstrained search procedures within a
given represented space. Therefore, it is very important to construct an accurate fit-
ness function as its value is the only information available to guide the search. In
this section, the fitness function is formed by combining the object function and the
penalty function, that is,

max f = 1∕L (12.39)

where

L =
∑

i

|Ii|2kiRi + 𝛽1max{0, (|Ii| − Iimax)2}

+ 𝛽2max{0, (Vimin − Vi)2}

+ 𝛽3max{0, (Vi − Vimax)2} (12.40)

where 𝛽i (i = 1, 2, 3) is a large constant.
Suppose m is the population size, the values of the maximum fitness, the min-

imum fitness, sum of fitness, and average fitness of a generation are calculated as
follows.

fmax = {fi∕fi ≥ fj ∀fj, j = 1, … … ,m} (12.41)

fmin = {fi∕fi ≤ fj ∀fj, j = 1, … … ,m} (12.42)

f∑ =
∑

i

fi, i = 1, … … ,m (12.43)

fav = f∑∕m (12.44)

The strings are sorted according to their fitness and are then ranked accordingly.

Selection To obtain and maintain good performance of the fittest individuals, it
is important to keep the selection competitive enough. It is no doubt that the fittest
individuals have higher chances of being selected. In this chapter, the “roulette wheel
selection” scheme is used, in which each string occupies an area of the wheel that is
equal to the string’s share of the total fitness, that is, fi∕f∑ .

Crossover and Mutation Crossover takes random pairs from the mating pool and
produces two new strings, each being made of one part of the parent string. Mutation
provides a way to introduce new information into the knowledge base. With this oper-
ator, individual genetic representations are changed according to some probabilistic
rules. In general, the GA mutation probability is fixed throughout the whole search
process. However, in practical application of DNRC, a small fixed mutation proba-
bility can only result in a premature convergence. Here, an adaptive mutation process
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is used to change the mutation probability, that is,

p(k + 1) =
⎧
⎪
⎨
⎪⎩

p (k) , if fmin(k)unchanged

p(k) − pstep, if fmin(k)decreased

pfinal, if p(k) − pstep < pfinal

(12.45)

p(0) = pinit = 1.0 (12.46)

pstep = 0.001 (12.47)

pfinal = 0.05 (12.48)

where k is the generation number; and p is the mutation probability.
The mutation scale will decrease as the process continues. The minimum muta-

tion probability in this study is given as 0.05. This adaptive mutation not only prevents
premature convergence but also leads to a smooth convergence.

12.6.3 Numerical Examples

The modified GA approach for DNRC is tested on the 16-bus and 33-bus distribution
systems. System data and parameters of the 16-bus system are listed in Table 12.11.
The 16-bus test system, which is shown in Figure 12.7, contains three source trans-
formers and 13 load nodes. The three initially open switches are “4,” “11,” and “13.”
The total system load is 23.7 MW, while the initial system power loss is 0.5114 MW.
The 33-bus test system consists of one source transformer and 32 load points.

Source transformer busbars 

Closed switches                   

Open switches                     

Sink nodes (load nodes)

1

2

3

4

6

5 11 12

7

8

10

9

13

14

15

16

Figure 12.7 A 16-bus distribution system.
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TABLE 12.12 DNRC Results for 16-Bus Test System

Radial

Network

Initial

Network

Refined

GA Method

Open switches Switch 4 Switch 6

Switch 11 Switch 9

Switch 13 Switch 11

Power loss (MW) 0.5114 0.4661

TABLE 12.13 Comparison of DNRC Results for 33-Bus Test
System

Radial

Network

Initial

Network

Method

in Ref. [8]

Refined

GA Method

Open switches Switch 33 Switch 7 Switch 7

Switch 34 Switch 10 Switch 9

Switch 35 Switch 14 Switch 14

Switch 36 Switch 33 Switch 32

Switch 37 Switch 37 Switch 33

Power loss (MW) 0.202674 0.141541 0.139532

The five initially open switches are “33”, “34,” “35,” “36,” and “37.” The total system
load is 3.715 MW, while the initial system power loss is 0.202674 MW. The system
base is V = 12.66 kV and S = 10 MVA.

Results on the two systems are listed in Tables 12.12 and 12.13. By comparing
results with reference [8], it can be seen that global optima have been found by the
refined GA.

12.7 MULTIOBJECTIVE EVOLUTION PROGRAMMING
TO DNRC

Reducing the real power loss is the primary aim of network reconfiguration. Thus
power loss is generally selected as the objective function of DNRC. If we handle
some power and voltage constraints as objective functions, the DNRC will become a
constrained multiobjective optimization problem.

12.7.1 Multiobjective Optimization Model

Three objective functions are considered here; they are minimization of power losses,
minimizing the deviation of node voltage, and maximizing the branch capacity mar-
gin, which are expressed as follows.
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1. Minimization of power losses

min f1 =
NL∑

l=1

klRl

(
P2

l + Q2
l

V2
l

)
l ∈ NL (12.49)

2. Minimizing the deviation of node voltages

min f2 = min|Vi − Virate| i ∈ N (12.50)

where

Virate: the rated voltage at node i.
f2: the maximal deviation of node voltage in the network.

Obviously, lower f2 values indicate a higher quality voltage profile and better
security of the considered network configuration.

3. Branch capacity margin

min f3 = 1 − max
l

[
Slmax − Sl

Slmax

]
l ∈ NL (12.51)

where

Slmax: the megavolt amperes (MVA) capacity of the branch l
Sl: the actual megavolt amperes (MVA) loading of the branch l
f3: the relative value of the margin between the capacity and the

actual megavolt amperes (MVA) loading of the branch.

Obviously, a lower f3 indicates a greater MVA reserve in the branches, implying
that the considered network configuration is more secure.

Since the node voltages and branch flows are reflected in the objective func-
tions, the corresponding constraints are omitted. The remaining constraints will be
governed by KCL and KVL laws, as well as the network topological constraints in
equation (12.6).

12.7.2 EP-Based Multiobjective Optimization Approach

Multiobjective Optimization Algorithm [28,29] The aforementioned multiob-
jective DNRC problem can be expressed in the following form:

min fi(x), i ∈ No (12.52)
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subject to

g(x) = 0 (12.53)

h(x) ≤ 0 (12.54)

where No is number of objective functions, and x is the decision vector.
These three objective functions compete with each other, no point X simulta-

neously minimizes all of the objective functions. This multiobjective optimization
problem can be solved using the concept of noninferiority.

Definition The feasible region of the constraints, Ω, in the decision vector space X
is the set of all decision vectors x that satisfy the constraints, such that

Ω = {x|g(x) = 0, h ≤ (x) = 0} (12.55)

The feasible region of objective functions, 𝜓 , in the objective function space F
is the image of f of the feasible region Ω in the decision vector space

𝜓 = {f |f = f (x), x ∈ Ω} (12.56)

A point x̂ ∈ Ω is a local noninferior point if, and only if, for some neighborhood
of x̂, there does not exist a Δx such that

x̂ + Δx ∈ Ω (12.57)

and

fi(x + Δx) ≤ fi(̂x), i = 1, 2, … ,No (12.58)

fj(x + Δx) < fj(̂x), for some j ∈ No (12.59)

A point x̂ ∈ Ω is a global noninferior point if and only if no other point x ∈ Ω
exists there such that

fi(x) ≤ fi(̂x), i = 1, 2, … ,No (12.60)

fj(x) < fj(̂x), for some j ∈ No (12.61)

Thus a global noninferior solution of the multiobjective problem is one where
any improvement of one objective function can be achieved only at the expense of at
least one of the other objectives. Typically, an infinite number of noninferior points
exist in a given multiobjective problem. A noninferior point is the same as the intu-
itive notion of an optimum trade-off solution, as a design is noninferior if it improves
an objective that requires degradation in at least one of the other objectives. Clearly,
if a decision-maker were able, he or she would not want to choose an inferior design.
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fimin fimax

1

μfi(X)

fi(X) Figure 12.8 Fuzzy membership model.

Thus the decision-maker attempts to generate noninferior solutions to a multiobjec-
tive problem when trying to obtain a final design.

The decision-maker combines subjective judgment with the quantitative anal-
ysis, as the noninferior optimal solutions generally consist of an infinite number of
points. This section introduces the interactive fuzzy satisfying algorithm based on EP
to determine the optimal noninferior solution for the decision-maker.

EP Algorithm with Fuzzy Objective Functions
Fuzzy Objective Function A fuzzy set is typically represented by a mem-

bership function. A higher membership function implies greater satisfaction with
the solution. One of the typical membership functions is triangle, which is shown
in Figure 12.8.

Here, we use triangle model for representing fuzzy objective functions. The
triangle membership function consists of lower and upper boundaries, together with
a strictly monotonically decreasing membership function, which can be expressed as
follows.

𝜇fi(X)
=

⎧
⎪
⎪
⎨
⎪
⎪⎩

1, if fi ≤ fimin

fimax − fi
fimax − fimin

, if fimin ≤ fi ≤ fimax

0, if fi ≥ fimax

(12.62)

Evolution Programming [21] The state variable X represents a chromosome
of which each gene represents an open switch to the network reconfiguration problem.
The fitness function of X can be defined as

C(X) = 1

1 + F(X)
(12.63)

where

F(X) = min
X∈Ω

{
max

i=1,2,…No

[
𝜇fi

− 𝜇
fi
(

X
)
]}

(12.64)

𝜇fi
: the expected values of objective function

𝜇fi(X)
: the actual values of objective function

C(X): the fitness function.
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The function F(X) is to minimize the objective with a maximum distance away
from its expected value among the multiple objective functions. For a given 𝜇fi

, the
solution reaches the optimum as the fitness value increases.

The steps of EP are detailed as follows.

Step 1: Input parameters.
Input the parameters of EP, such as the length of the individual and the
population size NP.

Step 2: Initialization.
The initial population is determined by selecting Pj from the set of the orig-
inal switches and their derivatives according to the mutation rules. Pj is
an individual, j = 1, 2, … ,NP, with NS dimensions, where NS is the total
number of switches.

Step 3: Scoring.
Calculate the fitness value of an individual by equations (12.63) and (12.64).

Step 4: Mutation.
In the network reconfiguration problem, the radial structure must be retained
for each new structure and power must be supplied to each loading demand.
Consequently, each Pj is mutated and assigned to Pj+NP

. The number of
offspring nj for each individual Pj is given by

nj = G

(
NP ×

Cj
∑N

j=1 Cj

)
(12.65)

Where G(x) is a function that rounds the element of x to the nearest integer
number. More offspring are generated from the individual with a greater
fitness. A combined population is formed from the old generation and the
new generation is mutated from the old generation.

Step 5: Competition.
Each individual Pj in the combined population has to compete with some
other individuals to have the opportunity to be transcribed to the next gener-
ation. All individuals of the combined population are ranked in descending
order of their corresponding fitness values. Then, the first NP individuals
are transcribed to the next generation.

Step 6: Stop criterion.
Convergence is achieved when either the number of generations reaches the
maximum number of generations or the sampled mean fitness function val-
ues do not change noticeably throughout several consecutive generations.
The process will stop if one of these conditions is met, otherwise returns to
the mutation step.

Optimization Approach For using the fuzzy objective function, the values of
expected membership functions will be selected to generate a candidate solution of
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the multiobjective problem. The expected value is a real number in [0, 1], and rep-
resents the importance of each objective function. The afore mentioned min–max
problem is solved to generate the optimal solution. The optimization technique can
now be described as follows.

Step (1) Input the data and set the interactive pointer p = 0.

Step (2) Determine the upper and lower bounds for every objective function fimax
and fimin, as well as fuzzy membership 𝜇fi(X).

Step (3) Set the initial expected value of each objective function 𝜇fi(0) for
i = 1, 2, … ,No.

Step (4) Apply EP to solve the min–max problem (12.64).

Step (5) Calculate the values of X, fi(X), and 𝜇fi(X)
. Go to the next step if they are

satisfactory. Otherwise, set the interactive pointer p = p + 1 and choose a
new expected value 𝜇fi(p), i = 1, 2, … ,No, Then go to step 4.

Step (6) Output the most satisfactory feasible solution X∗, fi(X∗), and 𝜇fi(X∗).

12.8 GENETIC ALGORITHM BASED ON MATROID
THEORY

Section 12.5 analyzed the application of GAs to solve the DNRC problem in
equations (12.1)–(12.6). To accelerate the GA convergence, a GA based on network
matroid theory [30] is used to solve the same DNRC problem in this section.

12.8.1 Network Topology Coding Method

The distribution network topology coding method is fundamental for GA con-
vergence. On the one hand, a complex strategy could increase considerably the
convergence time. On the other hand, a simple strategy does not allow an effective
exploration of the research field. Various coding strategies are detailed in this section
and the GA operator’s mechanisms are explained. Finally, their advantages and
drawbacks are discussed.

Different Topology Coding Strategies The most simple topology represen-
tation for the GA is to consider a topology string formed by the binary status
(closed/open) of each network branch [31] or at least each network switch. In [18]
the arc (a branch or a series of branches) number and the switch position in each
branch are considered for the radial topology representation. In [1,32], only the
positions of open switches are stored in the topology string.

Reference [17] proposes an efficient modeling method for the distribution net-
works connectivity. The path (a set of branches to the source) is determined for each
node of the network. For a radial configuration, only a path to the source S is con-
sidered for each node. This method is discussed in Section 12.5. For example, in the
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Figure 12.9 A simple meshed topology.

simple topology in Figure 12.9, paths from each node to the source S are

a: 𝜋a
1 = [1, 10], 𝜋a

2 = [2, 3, 4, 10], 𝜋a
3 = [7, 8, 9]

𝜋a
4 = [2, 3, 5, 6, 8, 9], 𝜋a

5 = [2, 3, 5, 6, 7, 10], 𝜋a
6 = [2, 3, 4, 7, 8, 9]

b: 𝜋b
1 = [3, 4, 10], 𝜋b

2 = [2, 1, 10], 𝜋b
3 = [3, 4, 6, 8, 9]

𝜋b
4 = [3, 5, 6, 7, 10], 𝜋b

5 = [2, 1, 7, 8, 9], 𝜋b
6 = [3, 4, 7, 8, 9]

g: 𝜋
g
1 = [8, 7, 10], 𝜋g

2 = [9], 𝜋g
3 = [8, 6, 5, 4, 10], 𝜋g

4 = [8, 6, 5, 3, 2, 1, 10]

As mentioned in Section 12.5, 𝜋j
i is the path number i between node j and source S.

The general structure of the topology string for the simple topology Figure 12.9
can be handled as follows: for node a, only one of four paths is represented by the
bit 1, the rest are represented by the bit 0. The same procedure is used for the other
nodes.

The GA Operators As we discussed above, the GA operators are mutation, selec-
tion, and crossover. The crossover is the most important operator of the GA. The
traditional crossover process randomly selects two parents (chromosomes) for a gene
exchange with a given crossover rate. This operator aims at mixing up genetic infor-
mation coming from the two parents, to create new individuals.

The coding diagram is very important for the success of the crossover opera-
tion. A binary coding method cannot allow a high efficiency of the crossover process.
Furthermore, mesh checks have to be performed in order to validate each resulting
topology (to detect any loop in the network or any non-energized node).

The mutation operator can allow GA to avoid local optima. This operator ran-
domly changes one gene in the string, and is applied with a probability that has been
set in the initial phase. As in the crossover process, the topology coding strategy is
very important for a fast and effective mutation operation.



12.8 GENETIC ALGORITHM BASED ON MATROID THEORY 517

12.8.2 GA with Matroid Theory

The reconfiguration problem tries to find out the optimal spanning tree among all
the spanning trees of the DN graph for a given objective. In the first part of this
section, an interesting property of the graph-spanning trees is discussed. In the sec-
ond part, it is shown that this can be generalized using some properties proved for
the matroid theory. The GA operators are then explained on the basis of this new
theoretical approach.

The Kruskal Lemma for the Graph-Spanning Trees For the graphs, the span-
ning trees exchange property has been proved by Kruskal [33]:

Let U and T be two spanning trees of the graph G, let a ∈ U, a ∉ T, then there
exists b ∈ T , such that U − a + b is also a spanning tree in the graph G.

For the graph represented in the Figure 12.9, two spanning trees are drawn in
Figure 12.10. Consider the edge a = 6(a ∈ T) in the U spanning tree. One edge b that
replaces a = 6 in T in order to form another spanning tree can be found. Edge b can
be selected in the loop formed by T ∪ a(= 6). In Figure 12.10, this loop is formed by
branches 4, 5, 6, and 7 (dotted arrow). Only edges 5 and 7 can replace edge 6 in U.

Edge change between 2 spanning trees (5 replaces 6 in U)

The resulting spanning tree

S

9

c

2

Tree U

S c

2

Tree T

S c

2

Tree U

a b

1 1

1

3 3

3

4 4

4

5 5

5

6 6

6

7 7

7

8 8

8

9

9

10 10

10

g f e

d d

d

Figure 12.10 Branch exchange between 2 spanning trees.
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Finally, edge 5 is chosen to replace edge 6 in U and a new spanning tree is obtained
(see the resulting tree in Figure 12.10).

The matroid theory abstracts the important characteristics of matrix theory and
graph theory. A matroid is defined by axioms of independent sets [34].

A pair (S, T) is called a matroid if S is a finite set and T is a nonempty collection
of subsets of S:

if I ∈ T and J ⊆ I then J ∈ T ,

if I, J ∈ T and I ≤ J, then I + z ∈ T for some z ∈ J∖I.

The base concept has to be introduced. For U ⊆ S, a subset B of U is called
a base of U if B is an inclusionwise maximal independent subset of U [34], that is,
B ∈ T and there is no Z ∈ T with B ⊂ Z ⊆ U. A subset of S is called

spanning if it contains a base like a subset, so bases are just the inclusionwise
minimal and independent spanning sets.

One of the matroid classes is the graphic matroids. Let G = (V ,E) be a graph
(with V the vertices set and E the edges set). Let T be the collection of all subsets of E
that form a forest (a graph in which any two vertices are connected by only one path),
then M = (E,T) is a matroid. The matroid M is called the cycle matroid of graph G,
denoted M(G). The bases of M(G) are exactly the inclusionwise maximal forests of
G. So if the graph G is connected, the bases are spanning trees (the forest equivalent
for a connected graph or radial configurations for a DN).

In order to link these theoretical aspects with the problem of spanning trees
(radial topologies), the exchange property of bases, given in [34], is considered.

Let M = (S,T) be a matroid. Let B1 and B2 be bases and let x ∈ B1∖B2. Then
there exists an element y ∈ B2∖B1 such that both B1 − x + y and B2 − y + x are
bases.

Application to the DN Topology Modeling for GA According to graph theory,
the group (the set of graph edges, the collection of all spanning trees) is a matroid.
The spanning tree of a graph is a base. A branch exchange between two spanning
trees of the same graph is always possible. New spanning trees for the same graph
are obtained.

Furthermore, on the basis of the matroid theory approach, not just one spanning
tree is obtained (as shown in Figure 12.10), but two spanning trees are obtained.
Moreover, in order to find easily which edge in a spanning tree can replace another
in the other spanning tree, the loop formed by adding the edge to the other spanning
tree has to be determined.

From an electrical point of view, the branch exchange between two spanning
trees can be seen as a load transfer between two supply points or between two paths
to the same supply point.

The matroid approach allows the use of GA operators without checking the
DN graph planarity. Besides, on the basis of this approach, the GA operator success
is always guaranteed, without a supplementary mesh check and extra computation
time. An example is given in the next subsection.
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GA Operators Based on the Matroid Approach The examples for the mutation
and crossover operators and initial population are given using the matroid approach
[30] and applied to the graph illustrated in Figure 12.9.

Crossover The crossover operator represents a gene exchange between two
chromosomes. One or multiple crossover points can be randomly chosen. For the
reconfiguration problem, this operation means one or several edges are exchanged
between two spanning trees for a given DN graph.

In Figure 12.11, the first step for a crossover operation is shown between two
chromosomes. Each chromosome represents two spanning trees for the graph illus-
trated in Figure 12.9. Only the open branches are considered here. In the graph theory
this is called the co-tree concept (the branches missing from the tree). The theoret-
ical approach given in the previous paragraph can be reformulated for the co-trees:
a bidirectional branch exchange can be performed in order to obtain new co-trees.
A crossover point is randomly chosen between the first and the second gene of the
upper co-tree (see Figure 12.11). In the corresponding co-tree represented in [30], the
genes (branches) 7 and 5 have to be exchanged with branches in the second co-tree.

Firstly, branch 7 is replaced. In order to identify rapidly what are the branches
of the second co-tree that could replace the branch 7, the loop formed by closing
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Figure 12.11 Crossover process based on the matroid approach (step 1).
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Figure 12.12 Mutation process based on the matroid approach.

branch 7 in the upper tree is determined (see the dotted arrow in Figure 12.11). For
this purpose, a depth-first graph search algorithm was used [34]. This loop is formed
by branches 7, 8, 9, and 10. Only the branch 8 is in the lower co-tree and it can then
replace branch 7. The same procedure is employed in the second step.

Mutation The mutation process is shown in Figure 12.12. After random selec-
tion of one (or multiple) branches in the chosen co-tree to be mutated, the correspond-
ing loop is determined with a depth-first graph search algorithm (see the interrupted
arrow in Figure 12.12).

A new branch is randomly chosen in this loop, in order to replace the one first
selected. No other test is necessary in order to validate the new radial configuration.

Initial Population Generation Even if this step is performed once in the GA
process, the random creation of the initial population can be time consuming. The
initial population is generated using the mutation process shown in Figure 12.12. An
initial feasible chromosome (co-tree) is randomly generated. The mutation process

TABLE 12.14 The DNRC Results by GA Based on Matroid Theory and Comparison for
33-Bus Test System

Radial

Network

Initial

Network

Branch Exchange

Method

Refined

GA Method

GA Based on

Matroid Theory

Open switches Switch 33 Switch 7 Switch 7 Switch 7

Switch 34 Switch 10 Switch 9 Switch 9

Switch 35 Switch 14 Switch 14 Switch 14

Switch 36 Switch 33 Switch 32 Switch 32

Switch 37 Switch 37 Switch 33 Switch 37

Power loss (MW) 0.202674 0.141541 0.139532 0.136420
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is used to randomly change each initial co-tree branch. The new chromosome feasi-
bility is also implicitly guaranteed. The process is progressively repeated in order to
perform the initial population.

The same 33-bus system used in Section 12.4 is adopted for DNRC test. The
results and comparison are listed in Table 12.14, where the results based on refined
GA and matroid theory–based GA are better than those based on the branch exchange
method.

APPENDIX A: EVOLUTIONARY ALGORITHM OF
MULTIOBJECTIVE OPTIMIZATION

In power system optimization, some objective functions are noncommensurable and
often competing objectives. Multiobjective optimization with such objective func-
tions gives rise to a set of optimal solutions, instead of one optimal solution. The
reason for the optimality of many solutions is that no one can be considered to be
better than any other with respect to all objective functions. These optimal solutions
are known as Pareto-optimal solutions.

A general multiobjective optimization problem consists of a number of objec-
tives to be optimized simultaneously and is associated with a number of equality and
inequality constraints. It can be formulated as follows:

Minimize fi(x) i = 1, … ,Nobj (12A.1)

subject to

gj(x, u) = 0 j = 1, … ,M (12A.2)

hk(x, u) ≤ 0 k = 1, … ,K (12A.3)

where fi is the ith objective functions, x is a decision vector that represents a solution,
and Nobj is the number of objectives.

For a multiobjective optimization problem, any two solutions x1 and x2 can
have one of two possibilities: one covers or dominates the other or none dominates the
other. In a minimization problem, without loss of generality, a solution x1 dominates
x2 if the following two conditions are satisfied [35]:

1. ∀i ∈ {1, 2, … ,Nobj} ∶ fi(x1) ≤ fi(x2)

2. ∃j ∈ {1, 2, … ,Nobj} ∶ fj(x1) < fj(x2)

If any of the above conditions is violated, the solution x1 does not dominate
the solution x2. The solutions that are nondominated within the entire search space
are denoted as Pareto-optimal and constitute the Pareto-optimal set or Pareto-optimal
front.
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There are some difficulties for the classic methods to solve such multiobjective
optimization problems:

• An algorithm has to be applied many times to find multiple Pareto-optimal
solutions.

• Most algorithms demand some knowledge about the problem being solved.

• Some algorithms are sensitive to the shape of the Pareto-optimal front.

• The spread of Pareto-optimal solutions depends on efficiency of the single
objective optimizer.

As we analyzed in the book, AHP can be used to solve the mentioned multi-
objective optimization problem. Here, we use another method—the strength Pareto
evolutionary algorithm (SPEA) to solve it.

The SPEA-based approach has the following features [36]:

• It stores externally those individuals that represent a nondominated front among
all solutions considered so far.

• It uses the concept of Pareto dominance in order to assign scalar fitness values
to individuals.

• It performs clustering to reduce the number of individuals externally stored
without destroying the characteristics of the trade-off front.

Generally, the algorithm can be described in the following steps.

Step 1 (Initialization): Generate an initial population and create an empty external
Pareto-optimal set.

Step 2 (External set updating): The external Pareto-optimal set is updated as fol-
lows.

(a) Search the population for the nondominated individuals and copy them
to the external Pareto set.

(b) Search the external Pareto set for the nondominated individuals and
remove all dominated solutions from the set.

(c) If the number of the individuals externally stored in the Pareto set
exceeds the prespecified maximum size, reduce the set by clustering.

Step 3 (Fitness assignment): Calculate the fitness values of individuals in both
external Pareto set and the population as follows.

(a) Assign a real value r ∈ [0, 1) called strength for each individual in the
Pareto optimal set. The strength of an individual is proportional to the
number of individuals covered by it. The strength of a Pareto solution is
at the same time its fitness.

(b) The fitness of each individual in the population is the sum of the
strengths of all external Pareto solutions by which it is covered. In
order to guarantee that Pareto solutions are most likely to be produced,
a small positive number is added to the resulting value.
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Step 4 (Selection): Combine the population and the external set individuals. Select
two individuals at random and compare their fitness. Select the better one
and copy it to the mating pool.

Step 5 (Crossover and Mutation): Perform the crossover and mutation operations
according to their probabilities to generate the new population.

Step 6 (Termination): Check for stopping criteria. If any one is satisfied then stop
else copy new population to the old population and go to Step 2. In this study,
the search will be stopped if the generation counter exceeds its maximum
number.

In some problems, the Pareto optimal set can be extremely large. In this case,
reducing the set of nondominated solutions without destroying the characteristics of
the trade-off front is desirable from the decision-maker’s point of view. An average
linkage-based hierarchical clustering algorithm [37] is employed to reduce the
Pareto set to manageable size. It works iteratively by joining the adjacent clusters
until the required number of groups is obtained. It can be described as follows:
given a set P the size of which exceeds the maximum allowable size N, it is required
to form a subset P∗ with size N. The algorithm is illustrated in the following
steps.

Step 1: Initialize cluster set C; each individual i ∈ P constitutes a distinct
cluster.

Step 2: If the number of clusters ≤ N, then go to Step 5, else go to Step 3.

Step 3: Calculate the distances between all possible pairs of clusters.
The distance dc between two clusters c1 and c2 ∈ C is given as the aver-
age distance between pairs of individuals across the two clusters

dc =
1

n1n2

∑

i1∈c1,i2∈c2

d(i1, i2) (12A.4)

where n1 and n2 are the number of individuals in the clusters c1 and c2
respectively. The function d reflects the distance in the objective space
between individuals i1 and i2.

Step 4: Determine two clusters with minimal distance dc between them. Combine
them into a larger cluster. Go to Step 2.

Step 5: Find the centroid of each cluster. Select the nearest individual in this cluster
to the centroid as a representative individual and remove all other individu-
als from the cluster.

Step 6: Compute the reduced nondominated set P∗ by uniting the representatives
of the clusters.

Upon having the Pareto-optimal set of the nondominated solution, we can
obtain one solution to the decision-maker as the best compromise solution. Owing
to imprecise nature of the decision-maker’s judgment, the ith objective function Fi
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is represented by a membership function 𝜇i defined as

𝜇i =

⎧
⎪
⎪
⎨
⎪
⎪⎩

1 Fi ≤ Fmin
i

Fmax
i − Fi

Fmax
i − Fmin

i

Fmin
i < Fi < Fmax

i

0 Fi ≥ Fmax
i

(12A.5)

where Fmin
i and Fmax

i are the minimum and maximum values of the ith objective
function among all nondominated solutions.

For each nondominated solution k, the normalized membership function 𝜇k is
calculated as

𝜇k =
∑Nobj

i=1 𝜇
k
i

∑M
k=1

∑Nobj

i=1 𝜇
k
i

(12A.6)

where M is the number of nondominated solutions. The best compromise solution is
that having the maximum value of 𝜇k.

The following modifications have been incorporated in the basic SPEA algo-
rithm [35].

(1) A procedure is imposed to check the feasibility of the initial population of indi-
viduals and the generated children through GA operations. This ensures the
feasibility of Pareto-optimal nondominated solutions.

(2) In every generation, the nondominated solutions in the first front are combined
with the existing Pareto-optimal set. The augmented set is processed to extract
its nondominated solutions that represent the updated Pareto-optimal set.

(3) A fuzzy-based mechanism is employed to extract the best compromise solution
over the trade-off curve.

PROBLEMS AND EXERCISES

1. State the purpose of distribution network reconfiguration.

2. List several major methods that are used in DNRC.

3. Why do we not use the P–Q decouple power flow or Newton power flow methods to
compute the flow of the distribution network?

4. What is the topological constraint in traditional DNRC calculation?

5. Is optimal flow pattern a heuristic algorithm in DNRC? Why?

6. Describe the power summation–based radial distribution network load-flow (PSRDNLF)
method

7. Crossover is an important operation in GA. For the given parent strings,
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(a) Use the one-point crossover to get the child generation.

010010

110101

110011

101101

Parent generation Child generation

One point crossover

(b) Use the two-point crossover to get the child generation.

0010

0101

01101110

10111101

Parent generation Child generation

Two points crossover

(c) Use the three-point crossover to get the child generation.

001010

010111

011110

101101

Parent generation Child generation

Three points crossover

8. Mutation is another important operation in GA. For the given parent string,

(a) use the one-point mutation to get the child generation.

1101000101

Parent generation Child generation

One point mutation

(b) use the two-point mutation to get the child generation.

01001100111

Parent generation Child generation

Two points mutation

(c) use the three-point mutation to get the child generation.

Parent generation Child generation

Two points mutation
01010001111

9. A 16-bus distribution system is shown in Figure 12.7. Use a GA string to express the initial
open switches 4, 11, and 13.
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10. A simple distribution system is shown in Figure 12.1. The loads are PD2 = 0.6 + j0.3,
PD3 = 0.9 + j0.6, PD4 = 0.6 + j0.4, PD5 = 0.4 + j0.2, PD7 = 0.3 + j0.1, PD8 = 0.2 + j0.1;
the branch resistances are R1 = 0.006, R2 = 0.005, R3 = 0.055, R4 = 0.0045, R5 = 0.003,
R6 = 0.0036, R7 = 0.0038; the voltage at source 1 is 1.05 (all data are p.u.). Compute the
flow of this radial network.
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C H A P T E R 13
UNCERTAINTY ANALYSIS IN
POWER SYSTEMS

In most cases in the first 12 chapters, the variables and parameters have been
deterministic. Actual power systems exhibit numerous parameters and phenomena
that are either nondeterministic or so complex and dependent on so many diverse
processes that they may readily be regarded as nondeterministic or uncertain. This
chapter comprehensively deals with various uncertain problems in power system
operation such as uncertainty load analysis, probabilistic power flow, fuzzy power
flow, economic dispatch with uncertainties, fuzzy economic dispatch, hydrothermal
system operation with uncertainty, unit commitment with uncertainties, VAR
optimization with uncertain reactive load, and probabilistic optimal power flow
(P-OPF).

13.1 INTRODUCTION

The planning process of the regulated utilities does not capture the uncertainties in
the operation and planning of power systems. In particular, the factors of uncertain-
ties increase as the utility industry undergoes restructuring. Because of restructuring
under the pressure of various driving forces, we can foresee that those changes will
become even greater in the near future. This is mainly because of the impact on
this industry of the many uncertainty factors as also external factors related to the
environment. Modern power systems are thus facing many new challenges, owing
to environment and market pressures, as well as other uncertainties or/and inaccura-
cies [1–11]. Environment pressure implies more loaded networks, market pressure
increases competition, while uncertainty and inaccuracy increase the complexity of
operation and planning. Consequently, these new challenges have huge and direct
impact on the operation and planning of modern power systems. They also demand
some high requirements for modern power systems operation, such as,

(a) a stronger expectation from customers for higher reliability and quality of sup-
ply owing to the uncertainty factors as well as the increase of the share of
electrical power in their overall energy consumption;

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
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(b) more electricity exchanges across large geographical areas resulting from a
greater cooperation in the electricity market and greater competition in the
energy market, resulting in a number of uncertainties in both the electricity
market and the energy markets;

(c) the need for low production fuel cost and low price of electricity in order to
achieve competitive strength in the energy market.

Furthermore, we can state only one thing with absolute certainty with regard to
the electrical power industry today: we are living and working with many unknowns
[2]. Especially in modern power system operation, the several inaccuracies and uncer-
tainties will lead to deviation from operation and planning. These are on the one hand
the inaccuracies and uncertainties in the input information needed by the operation
and planning, and on the other hand, the modeling and solution inaccuracies. There-
fore, it is very important to analyze the uncertainty in operation of modern power
systems and to use the available controls to ensure their security and reliability.

13.2 DEFINITION OF UNCERTAINTY

Generally speaking, there are two kinds of uncertainties in power systems operation
and planning [4]:

(1) uncertainty in a mathematical sense, which means the difference between mea-
sured, estimated values and true values, including errors in observation or cal-
culation;

(2) sources of uncertainty, including transmission capacity, generation availability,
load requirements, unplanned outages, market rules, fuel price, energy price,
market forces, weather and other interruption, etc.

These uncertainties will affect power systems planning and operation in the
following aspects:

• Entry of new energy producing/trading participants

• Increases in regional and intraregional power transactions

• Increasingly sensitive loads

• New types and numbers of generation resources.

13.3 UNCERTAINTY LOAD ANALYSIS

Power loads especially residential loads are variable and their data are uncertain. For
example, the variability of the electricity consumption of a single residential customer
generally depends on the presence at home of the family members and on the time of
use of a few high-power appliances with relatively short duration of use during the
day, and is subject to very high uncertainty. Probabilistic analysis and fuzzy theory
can be used to analyze the uncertainty load.
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13.3.1 Probability Representation of Uncertainty Load

Different probability distribution functions may be selected for the different kinds
of uncertainty loads. The following probability distribution functions are often used
[12]:

Normal Distribution The general formula for the probability density function of
the normal distribution for uncertain load PD is

f (PD) =
e
− (PD−𝜇)2

2𝜎2

𝜎
√

2𝜋
(13.1)

−∞ ≤ PD ≤ ∞

𝜎 > 0 (13.2)

where

PD: the uncertain load.
𝜇: the mean value of the uncertain load. It is also called the location parameter.
𝜎: the standard deviation of the uncertain load. It is also called the scale parameter.

The shape of plot of the normal probability density function is shown in
Figure 13.1.

Lognormal Distribution Many probability distributions are not a single distribu-
tion, but are in fact a family of distributions. This is due to the distribution having one
or more shape parameters.
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Figure 13.1 The plot of the
normal probability density
function.



532 CHAPTER 13 UNCERTAINTY ANALYSIS IN POWER SYSTEMS

Shape parameters allow a distribution to take on a variety of shapes, depend-
ing on the value of the shape parameter. These distributions are particularly useful in
modeling applications because they are flexible enough to model a variety of uncer-
tainty load data sets. The following is the equation of the lognormal distribution for
uncertain load PD.

f (PD) =
e
−

(
ln

(
(PD−𝜇)

m

))2

2a2

𝜎(PD − 𝜇)
√

2𝜋
(13.3)

PD ≥ 𝜇

𝜎 > 0 (13.4)

where

m: the scale parameter.
ln: the natural logarithm.

Figure 13.2 is an example of the shape for the plot of the lognormal probability
density function for four values of 𝜎.
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Figure 13.2 The plot of the lognormal probability density function.
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Exponential Distribution The formula for the probability density function of the
exponential distribution for uncertain load PD is

f (PD) =
e−

PD−𝜇
b

b
(13.5)

PD ≥ 𝜇

b > 0 (13.6)

where

b: the scale parameter.

Figure 13.3 is an example of the shape for the plot of the exponential probability
density function.

Beta Distribution The general formula for the probability density function of the
beta distribution for uncertain load PD is

f (PD) =
(PD − d)a−1(c − PD)b−1

B(a, b)(c − d)a+b−1 (13.7)

=
Γ(a + b)(PD − d)a−1(c − PD)b−1

Γ(a)Γ(b)(c − d)a+b−1

d ≤ PD ≤ c

a > 0 (13.8)

b > 0
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Figure 13.3 The plot of the
exponential probability density
function.
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where

a, b: the shape parameters.
c: the upper bound.
d: the lower bound.

B(a, b): the beta function

Typically, we define the general form of a distribution in terms of location and
scale parameters. The beta distribution is different in that we define the general dis-
tribution in terms of the lower and upper bounds. However, the location and scale
parameters can be defined in terms of the lower and upper limits as follows:

location = d

scale = c − d

Figure 13.4 is an example of the shape for the plot of the beta probability density
function for four different values of the shape parameters.

Gamma Distribution The general formula for the probability density function of
the gamma distribution for uncertain load PD is

f (PD) =
(PD − 𝜇)a−1

baΓ(a)
e
−
(

PD−𝜇
b

)

(13.9)
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Figure 13.4 The plot of the beta probability density function.
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PD ≥ 𝜇

a > 0

b > 0 (13.10)

where a is the shape parameter, 𝜇 is the location parameter, b is the scale parameter,
and Γ is the gamma function, which has the formula

Γ(a) =
∫

∞

0
ta−1e−ldt (13.11)

Figure 13.5 is an example of the shape for the plot of the gamma probability density
function.

Gumbel Distribution The Gumbel distribution is also referred to as the
extreme-alue type I distribution. The extreme-value type I distribution has two
forms. One is based on the smallest extreme and the other is based on the largest
extreme. We call these the minimum and maximum cases, respectively. Formulas
and plots for both cases are given.
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Figure 13.5 The plot of the gamma probability density function.
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The general formula for the probability density function of the Gumbel (maxi-
mum) distribution for uncertain load PD is

f (PD) =
1
b

e

(
𝜇−PD

b

)

e−e

(
𝜇−PD

b

)

(13.12)

−∞ ≤ PD ≤ ∞

b > 0 (13.13)

where 𝜇 is the location parameter and b is the scale parameter.
Figure 13.6 is an example of the shape for the plot of the Gumbel probability

density function for the maximum case.

Chi-Square Distribution The chi-square distribution results when v independent
variables with standard normal distributions are squared and summed. The formula
for the probability density function of the chi-square distribution for uncertain load
PD is

f (PD) =
P

v
2
−1

D

2
v
2 Γ

(
v
2

)e
−
(

PD
2

)

(13.14)

PD ≥ 0 (13.15)

where v is the shape parameter and Γ is the gamma function.
Figure 13.7 is an example of the shape for the plot of the chi-square probability

density function for four different values of the shape parameter.
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Figure 13.7 The plot of the chi-square probability density function.

Weibull Distribution The formula for the probability density function of the
Weibull distribution for uncertain load PD is

f (PD) =
a(PD − 𝜇)a−1

ba
e
−
(

PD−𝜇
b

)a

(13.16)

PD ≥ 𝜇

a > 0

b > 0 (13.17)

where a is the shape parameter, 𝜇 is the location parameter, and b is the scale param-
eter.

Figure 13.8 is an example of the shape for the plot of the Weibull probability
density function.

13.3.2 Fuzzy Set Representation of Uncertainty Load

The uncertainty load PD can also be represented by fuzzy sets, which are defined in
the number set R and satisfy the normality and boundary conditions that are designed
by fuzzy numbers. The membership function of a fuzzy number for the uncertainty
load PD corresponds to:

𝜇PD(x) ∶ R ∈ [0, 1] (13.18)
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Figure 13.8 The plot of the Weibull probability density function.

The easiest way to express the fuzzy number is the LR fuzzy number. The
uncertainty load PD is said to be an LR-type fuzzy number if

𝜇PD(x) =
⎧
⎪
⎨
⎪⎩

L
(m − x

a

)
, x ≤ m, a > 0

R
(x − m

b

)
, x ≥ m, b > 0

(13.19)

where m is the mean value of load PD.
The left-right (LR) type fuzzy number of the uncertainty load PD can be written

as
PD = (m, a, b)LR (13.20)

One of the common LR fuzzy numbers is the triangular fuzzy number, which
is shown in Figure 13.9.

d–α d d+β

μPD(x)

PD(x)

1

Figure 13.9 Uncertainty load with triangular fuzzy
number.
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The membership function of the fuzzy load in Figure 13.9 can be expressed as

𝜇PD(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

x − (d − 𝛼)
𝛼

, if x ∈ [(d − 𝛼), d]

(d + 𝛽) − x
𝛽

, if x ∈ [d, (d + 𝛽)]

0, otherwise

(13.21)

where

d: the model value of uncertainty load.
𝛼: the inferior dispersion of uncertainty load.
𝛽: the superior dispersion of uncertainty load.

The principle of fuzzy numbers can be used to handle the uncertainty load. For
example, for getting the sum of two uncertainty loads with a positive triangular fuzzy
number, the following fuzzy operation is used.

Let uncertainty load 1

PD1 = (d1, 𝛼1, 𝛽1)LR (13.22)

and uncertainty load 2
PD2 = (d2, 𝛼2, 𝛽2)LR (13.23)

The sum of the two uncertainty loads will be

(d1, 𝛼1, 𝛽1)LR ⊕ (d2, 𝛼2, 𝛽2)LR = (d1 + d2, 𝛼1 + 𝛼2, 𝛽1 + 𝛽2)LR (13.24)

Sometimes, a simple way to represent the uncertainty load is using an interval
format of fuzzy number, which is based on 𝛾-cuts of the fuzzy number. The values of 𝛾
are between 0 and 1. Applying the 𝛾-cuts, the uncertainty load PD can be represented
as

P𝛾D = [𝛾𝛼 + (d − 𝛼) , (d + 𝛽) − 𝛾𝛽] (13.25)

or

P𝛾D =
[
P𝛾

Dmin,P
𝛾

Dmax
]

(13.26)

P𝛾
Dmin = 𝛾𝛼 + (d − 𝛼) (13.27)

P𝛾Dmax = (d + 𝛽) − 𝛾𝛽 (13.28)
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For two different 𝛾-cuts (𝛾1 < 𝛾2), the relationship between two interval values
of uncertainty load PD is

[
P𝛾2

Dmin,P
𝛾2
Dmax

]
⊂

[
P𝛾1

Dmin,P
𝛾1
Dmax

]
(13.29)

Let PD1 and PD2 be two uncertainty loads. Then

PD1 =
[
PD1min,PD1max

]
(13.30)

PD2 =
[
PD2min,PD2max

]
(13.31)

Addition, subtraction, multiplication, and division of the two uncertainty loads
are defined as

PD1 + PD2 =
[
PD1min,PD1max

]
+
[
PD2min,PD2max

]

=
[
PD1min + PD2min,PD1max + PD2max

]
(13.32)

PD1 − PD2 =
[
PD1min,PD1max

]
−
[
PD2min, PD2max

]

=
[
PD1min − PD2max,PD1max − PD2min

]
(13.33)

PD1×PD2 =
[
PD1min,PD1max

]
×
[
PD2min,PD2max

]

=
[
min

(
PD1min×PD2min,PD1min×PD2min,PD1max×PD2min,PD1max×PD2max

)
,

max
(
PD1min×PD2min,PD1min×PD2min,PD1max×PD2min,PD1max×PD2max

)]

(13.34)

PD1∕PD2 =
[
PD1min,PD1max

]
∕
[
PD2min,PD2max

]

=
[
PD1min,PD1max

] [
1∕PD2max, 1∕PD2min

]
if 0 ∉

[
PD2min,PD2max

]

(13.35)

Some of the algebraic laws valid for real numbers remain valid for intervals of
fuzzy numbers. Intervals addition and multiplication are associative and commuta-
tive:

(a) Commutative:

PD1 + PD2 = PD2 + PD1 (13.36)

PD1 × PD2 = PD2 × PD1 (13.37)
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(b) Associative:

(PD1 + PD2) ± PD3 = PD1 + (PD2 ± PD3) (13.38)

(PD1 × PD2)PD3 = PD1(PD2 × PD3) (13.39)

(c) Neutral element:

PD1 + 0 = 0 + PD1 = PD1 (13.40)

1 × PD1 = PD1 × 1 = PD1 (13.41)

Example 13.1: There are two uncertainty loads, PD1 = (20, 3, 5)LR and
PD2 = (23, 8, 5)LR, which are shown in Figure 13.10.

The corresponding fuzzy membership functions can be presented as below.

𝜇PD1(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

x − 17
3

, if x ∈ [17, 20]

25 − x
5

, if x ∈ [20, 25]

0, otherwise

𝜇PD2(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

x − 15
8

, if x ∈ [15, 23]

28 − x
5

, if x ∈ [23, 28]

0, otherwise

The sum of the two uncertainty loads will be

(20, 3, 5)LR ⊕ (23, 8, 5)LR = (43, 11, 10)LR

1
0.7

1

μPD(x)

17 20 25 PD(x)

(a)

μPD(x)

0.7

15 23 28 PD(x)

(b)

Figure 13.10 Two uncertainty loads with triangular fuzzy number.
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Let us represent two uncertainty load by using an interval format of fuzzy num-
ber, and 0.7-cut of the fuzzy number. The uncertainty loads PD1 and PD2 can be
represented as:

P0.7
D1 = [0.7 × 3 + (20 − 3), (20 + 5) − 0.7 × 5] = [19.1, 21.5]

P0.7
D2 = [0.7 × 8 + (23 − 8), (23 + 5) − 0.7 × 5] = [20.6, 24.5]

The sum of two uncertainty loads in interval format is computed as

P0.7
D1 + P0.7

D2 =
[
P0.7

D1min,P
0.7
D1max

]
+
[
P0.7

D2min,P
0.7
D2max

]

=
[
P0.7

D1min + P0.7
D2min,P

0.7
D1max + P0.7

D2max
]

= [19.1 + 20.6, 21.5 + 24.5]

= [39.7, 46]

The same result can be obtained by using the sum of two uncertainty loads
PD sum = (43, 11, 10)LR and a 0.7-cut of fuzzy number, that is,

P0.7
D sum = [0.7 × 11 + (43 − 11), (43 + 10) − 0.7 × 10] = [39.7, 46]

13.4 UNCERTAINTY POWER FLOW ANALYSIS

In general power flow analysis, the input variables to the power flow problem are
assumed to be deterministically known. The practical operation conditions with
uncertainty factors are not considered. Consequently, the power flow results may
not reflect the real status of system operation. This limitation will be overcome if a
probabilistic approach or a fuzzy approach is applied.

13.4.1 Probabilistic Power Flow

From Chapter 2, the standard form of the load flow equations is

Pi = PGi − PDi =
∑

j

YijViVj cos(𝜃i − 𝜃j − 𝛿ij) (13.42)

Qi = QGi − QDi =
∑

j

YijViVj sin(𝜃i − 𝜃j − 𝛿ij) (13.43)

where

i, j: the bus number.
Pi: the net real power injection.
Qi: the net reactive power injection.
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V: the magnitude of the bus voltage.
𝜃: the phase angle of the bus voltage.

Yij: the magnitude of the i-jth element of the admittance matrix.
𝛿ij: the angle of the i-jth element of the admittance matrix.

The power flow problem can be expressed as two sets of nonlinear equations
as follows:

Y = g(X) (13.44)

Z = h(X) (13.45)

where X is the vector of unknown state variables (voltage magnitudes and angles at
PQ buses; and voltage angles and reactive power outputs at PV buses); Y is the vec-
tor of predefined input variables (real and reactive power at PQ buses; and voltage
magnitudes and real power at PV buses); Z is the vector of unknown output vari-
ables (real and reactive flows in the network elements); g and h are the power flow
functions.

As mentioned in Section 13.3, the input variables such as power loads are uncer-
tain, and can be expressed with probabilistic distributions. Probabilistic power flow
models input data (generation and loads) in a probabilistic way and calculate the
probability distribution functions of line flows.

We assume the input data has the nature of a normal distribution, and the mean
values and variances of input variables Y are Y and 𝜎2

Y , respectively. With the mean

values Y, the mean values of the state variables and output variables can be computed
with the conventional power flow methods. Then the variances of state variables and
branch power flows can be computed with the following formulas:

𝜎2
X = diag(JtΛ−1J)−1 (13.46)

𝜎2
Z = diag(D(JtΛ−1J)−1Dt) (13.47)

where

𝜎2
X: the variances of state variables X.
𝜎2

Z : the variances of branch power flows Z.
J: the Jacobian matrix of the power flow equations.
Λ: the diagonal matrix of variances of the injected power 𝜎2

Y .
D: the first order matrix from the Taylor series expansion of g(x).

With mean values and variances of the state variables and output variables, the
probabilistic distribution of power flow is obtained.

The probabilistic power flow provides the complete spectrum of all proba-
ble values of output variables, such as bus voltages and flows, with their respective
probabilities, taking into account generation unit unavailability, load uncertainty, dis-
patching criteria effects, and topological variations.
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13.4.2 Fuzzy Power Flow

Fuzzy power flow analysis is needed if the input data such as load and generation
power are given as fuzzy numbers.

Section 13.3.2 analyzes uncertain load by using fuzzy numbers. Other input
data with uncertainty in power flow calculation can be handled as the same way. If
we use the interval format of fuzzy numbers to deal with the uncertain input data, the
fuzzy power flow can be computed using interval arithmetic method.

Power flow problems are nonlinear equations F(x). One of the iteration opera-
tors for the solution of interval nonlinear equations is the Newton operator [13–16]:

N(x, x̃) ∶= x̃ − F′(x)−1F(̃x) (13.48)

where

F′(x): the interval Jacobian matrix.
N(x, x̃): the Newton operator.

x̃: the midpoint of the interval [xmin,xmax], defined as:

x̃ ∶=
(xmin + xmax)

2
(13.49)

For each iteration, we need to solve the following interval linear equations
for Δx:

F′(x)Δx = F(̃x) (13.50)

Therefore, the solution of nonlinear equations reduces to the solutions of linear
equation, but using interval arithmetic. It is noted that the solution of interval linear
equations, which is at the heart of the nonlinear iterative solution, is a different propo-
sition from the solution of ordinary linear equations. The solution set of the interval
linear equations has a very complex nonconvex structure. The hull of the solution set
is used, which is defined as the smallest interval vector that contains the solution set.
Generally, the hull contains, in addition to the entire solution set, many nonsolutions.
Therefore, solving interval linear equations involves obtaining the hull of the solution
set. There are several methods to solve interval linear equations such as

(1) Krawczyk’s method [11]

(2) Interval Gauss–Seidel iteration [14]

(3) LDU Decomposition.

The most widely used method to solve interval linear equations is the
Gauss–Seidel iteration. The purpose of Gauss–Seidel iterations here is not to solve
the power flow problems, but to solve the linear equations that result from Newton’s
method.

In short, the fuzzy power flow problem can be solved by using interval arith-
metic through linearizing the problem. However, the resulting linear equations must
be solved by a Gauss–Seidel iterative process instead of by direct LDU factorization.
The solution obtained is conservative in that it contains all solution points, but may
also contain many nonsolutions.
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13.5 ECONOMIC DISPATCH WITH UNCERTAINTIES

13.5.1 Min–Max Optimal Method

Chapters 4 and 5 discussed the economic dispatch problem, where uncertain factors
are not included. However, the economy of short-term operation of thermal power
systems is influenced by approximations in the operation planning methods and by
the inaccuracies and uncertainties of input data. There are two major uncertain factors
in economic dispatch.

Uncertain loads The forecast loads are important input information, which are
characterized by uncertainty and inaccuracy because of the stochastic nature of the
loads, as discussed in Section 13.3.

Let the load duration curve PD(t) be given in the form of intervals

PDmin(t) ≤ PD(t) ≤ PDmax(t), 0 ≤ t ≤ T (13.51)

where T is the time period.

Inaccuracy Fuel Cost Function

• Inaccuracy in the process of measuring or forecasting of input data

• Change of unit performance during the period between measuring and
operation.

The inaccuracies in the cost functions for steady-state operation are caused
by the limited accuracy of the determination of the thermal dynamic performance,
changing cooling water temperatures, changing calorific values and contamination,
and erosion and attrition in the boiler and turbine. These deviations lead to inaccurate
values for heat inputs and fuel prices.

Similar to the uncertain load, the cost functions of generating units are also
expressed in the form of intervals.

Fmin(PGi) ≤ F(PGi) ≤ Fmax(PGi), i ∈ NG (13.52)

where
PGimin ≤ PGi ≤ PGimax, i ∈ NG (13.53)

The most well-founded criterion for optimal scheduling of real power in a
power system under uncertainty is the criterion of min–max risk [17,18] or possible
losses caused by uncertainty of information. The risk function can be written as

R(PGi(t), Ũ(t)) = F∑ − F∑
min (13.54)

where

F∑: the actual total fuel cost of the generators, which is expressed as
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F∑ =
NG∑

i=1

Fi(PGi(t), Ũ(t)) (13.55)

F∑
min: the minimal total fuel cost of the generators if we could obtain the determin-

istic information about the uncertainty factors, which is expressed as

F∑
min = min

NG∑

i=1

Fi(PGi(t), Ũ(t)) (13.56)

Ũ(t): The uncertain factors.

PGi(t): The planned or expected power duration curve of units for the time period T .

The operator min max R means the minimization of maximum risk caused by
uncertainty factors, that is,

min
PGi(t)

max
Ũ(t) ∫

T

0
R(PGi(t), Ũ(t))dt (13.57)

The optimality conditions of the min–max problem arise from the main
theorem of game theory and can be expressed as follows:

If P
0
Gi(t) is the optimal plan for min max R criterion, then

R(P
0
Gi(t),U−(t)) = R(P

0
Gi(t),U+(t)) (13.58)

Let E be the expected value of risk R, and Ω be a set of mixed strategy of
uncertain factors. The minimal-maximal problem can be expressed as follows:

min
PGi(t)

max
Ω ∫

T

0
E(R(PGi(t), Ũ(t)))dt (13.59)

It is possible to compose the deterministic equivalent of min-max problem on
the basis of the conditions given above. This requires finding the min–max load
demand curves and cost functions of generating units. If we replace the determin-
istic curves by the min–max curves, we can use the initial deterministic model for
calculating the min–max optimal results.

13.5.2 Stochastic Model Method

In this section, we present another approach to handle the uncertainty of fuel cost of
the generator units by use of the stochastic model.
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A method of obtaining a stochastic model is to take a deterministic model and
transform it into a stochastic model by (1) introducing random variables as inputs or
as coefficients or as both; and (2) introducing equation errors as disturbances. Since
this type of model is only an approximation, what is important in this approach is to
make the randomness reflect a real situation.

From Chapter 4, the economic dispatch model can be expressed as follows.

minF =
N∑

i=1

Fi(PGi) (13.60)

such that

N∑

i=1

PGi = PD + PL (13.61)

PGimin ≤ PGi ≤ PGimax (13.62)

Suppose the fuel cost is a quadratic function, that is,

Fi = aiP
2
Gi + biPGi + ci (13.63)

A stochastic model of the function F1 is formulated by taking the deterministic
fuel cost coefficients a2, b, c and the generator real power PGi as random variables.
Any possible deviation of the operating cost coefficients from their expected values is
manipulated through the randomness of generator power output PGi. The randomness
of PGi implies that the power balance equation (13.61) is not a rigid constraint to be
satisfied.

A simple way of converting a stochastic model to a deterministic one is to take
its expected value [19]; therefore, the expected value of the operating cost becomes

F = E

[
N∑

i=1

(
aiP

2
Gi + biPGi + ci

)
]

=
N∑

i=1

[
E
(
ai

)
E(P2

Gi) + E(bi)E(PGi) + E(ci)
]

=
N∑

i=1

[
ai

(
varPGi + P

2
Gi

)
+ biPGi + ci

]

=
N∑

i=1

[
ai𝜈P

2
Gi + aP

2
Gi + biPGi + ci

]

=
N∑

i=1

[
aiP

2
Gi (𝜈 + 1) + biPGi + ci

]
(13.64)
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where 𝜈 is the coefficient of variation of the random variable PGi. It is the ratio of
standard deviation to the mean and is a measure of relative dispersion or uncertainty
in the random variable. If 𝜈 = 0, it implies no randomness or, in other words, complete
certainty about the value of the random variable.

If we use the B coefficient to compute the system network losses, we get

PL =
∑

i

∑

j

PGiBijPGj (13.65)

Then the expected value of the network power losses is

PL = E

[
∑

i

∑

j

PGiBijPGj

]
=
∑

i

∑

j

PGiBijPGj +
∑

i

BiivarPGi

≈
∑

i

∑

j

PGiBijPGj (13.66)

where, the variance of network loss has been neglected as it is usually small.
In addition, the expected value of the load can be expressed as

PD = E[PD] (13.67)

The stochastic model of economic dispatch can be written as follows:

minF =
N∑

i=1

[aiP
2
Gi(𝜈 + 1) + biPGi + ci] (13.68)

such that

N∑

i=1

PGi = PD + PL (13.69)

PGimin ≤ PGi ≤ PGimax (13.70)

Since there is a stochastic error for the stochastic model, the expected value associated
with deficit or surplus of generation can be treated as the deviation proportional to
the expectation of the square of power mismatch.

𝛿 = E
⎡
⎢
⎢⎣

(
PD + PL −

N∑

i=1

PGi

)2⎤
⎥
⎥⎦
=

N∑

i=1

E[PGi − PGi]2 =
N∑

i=1

varPGi (13.71)

Using the Lagrange multiplier method to solve the above model, we get

L =
N∑

i=1

[aiP
2
Gi(𝜈 + 1) + biPGi + ci] + 𝜆

(
PD + PL −

N∑

i=1

PGi

)
+ 𝜇

N∑

i=1

varPGi

(13.72)
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According to optimality condition 𝜕L
𝜕PGi

= 0, we have

2aiPGi + bi + 𝜆

(
∑

j

2BijPGj

)
+ 2(ai + 𝜇)𝜈PGi = 0 (13.73)

Solving the above equation, the stochastic optimal results of the economic dis-
patch can be obtained.

13.5.3 Fuzzy ED Algorithm

Fuzzy ED Model Section 13.3 discusses the real load that can be modeled as fuzzy.
Assume the load is a trapezoidal possibility distribution as shown in Figure 13.11.
There are four break points: PD

(1), PD
(2), PD

(3) and PD
(4). The possibility distribution

of each load refers to the mapping of a fuzzy variable on the [0,1] interval, which is
expected to be between PD

(1) and PD
(4), however it is more likely to be between PD

(2)

and PD
(3).

Similarly, the corresponding real power generation can also be modeled as
fuzzy. Therefore, the economic dispatch with fuzzy loads can be expressed as fol-
lows.

minF =
NG∑

i=1

Fi(P̃Gi) (13.74)

such that
NG∑

i=1

P̃Gi =
ND∑

j=1

P̃Dj + P̃L (13.75)

PGimin ≤ P̃Gi ≤ PGimax (13.76)

where

P̃Gi: the fuzzy real power generation.
P̃Dj: the fuzzy real power load demand.
P̃L: the fuzzy real power losses.

1

0

γ(PD)

PD
(1) PD

(2) PD
(3) PD

(4) PD

Figure 13.11 Uncertainty load
with trapezoidal possibility
distribution.
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For simplifying the fuzzy economic dispatch problem, neglecting the network
losses, and assuming the fuel cost is a linear function, that is,

Fi = ciP̃Gi (13.77)

then the minimization of cost function is equivalent to the minimization of fuzzy
variable P̃Gi, which can be translated to the minimization of its distance from the
𝛾(PG) axis.

According to Figure 13.2, the distance of the fuzzy variable P̃Gi is given as
[20,21].

d =
A1 + (A1 + A2)

2
(13.78)

where, A1 and A2 are the areas shown in Figure 13.12. They can be computed as
follows.

A1 =
P(1)

Gi + P(2)
Gi

2
(13.79)

A2 =
(P(3)

Gi − P(2)
Gi ) + (P(4)

Gi − P(1)
Gi )

2
(13.80)

Substituting equations (13.79) and (13.80) in equation (13.78), we get

d =
P(1)

Gi + P(2)
Gi + P(3)

Gi + P(4)
Gi

4
=

4∑

k=1

P(k)
Gi

4
(13.81)

Thus the aforementioned fuzzy economic dispatch problem can be written as follows.

minF =
NG∑

i=1

4∑

k=1

ci

P(k)
Gi

4
(13.82)

such that

NG∑

i=1

P(k)
Gi =

ND∑

j=1

P(k)
Di , k = 1,… , 4 (13.83)

PGimin ≤ P(1)
Gi ≤ P(2)

Gi ≤ P(3)
Gi ≤ P(4)

Gi ≤ PGimax i = 1,… ,NG (13.84)

γ(PG)

1

0

A1 A2

PG
(1) PG

(2) PG
(3) PG

(4) PG

Figure 13.12 Uncertainty generation
with trapezoidal possibility
distribution.
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Fuzzy Line Constraint The above fuzzy representation of real loads will result in
fuzzy line flows with trapezoidal possibility distributions. Since DC flow is consid-
ered in fuzzy ED analysis, the fuzzy line flow can be expressed as follows.

P̃l =
NB∑

m=1

SlmP̃m, l = 1,… ,NL (13.85)

where

P̃m: the fuzzy bus real power injection.
P̃l: the fuzzy line real power flow.
S: the DC-based sensitivity matrix.

A contingency analysis is used to detect most severe outages, and contingency
constraints are augmented to the base case to assure a preventive control. Accord-
ing to Chapter 5, the contingency constraints are represented similarly to equation
(13.85) except that the sensitivity coefficients are adjusted for the contingency under
consideration, that is,

P̃′
l =

NB∑

m=1

S′lmP̃m, l = 1,… ,NL (13.86)

where

P̃′
l : the fuzzy line real power flow under the contingency situation.

S′: the DC-based sensitivity matrix under the contingency situation.

If the phase shifter is considered, we represent phase shifters in terms of equiv-
alent injected power. If a phase shifter is located on line t which connects buses i
and j, the equivalent injected power at buses i and j and phase shifter angle can be
simplified as

P𝜙i = bt𝜙t = −
𝜙t

xt
(13.87)

P𝜙j = − bt𝜙t =
𝜙t

xt
(13.88)

where

P𝜙i: the bus real power injection due to a phase shifter.
𝜙t: the phase shifter angle located on line t.
xt: the reactance of line t.
bt: the susceptance of line t.

Thus, the constraint related to the phase shifter angle in the fuzzy case can be
written as

𝜙imin ≤ xtP̃𝜙i ≤ 𝜙imax (13.89)
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The fuzzy line flow with phase shifter can be expressed as follows:

P̃l =
NB∑

m=1

Slm(P̃m + P̃𝜑m), l = 1,… ,NL (13.90)

P̃′
l =

NB∑

m=1

S′lm(P̃m + P̃𝜙m), l = 1,… ,NL (13.91)

Therefore, the fuzzy economic dispatch model with the line constraints is written
as

minF =
NG∑

i=1

4∑

k=1

ci

P(k)
Gi

4
(13.92)

s.t.

NG∑

i=1

P(k)
Gi =

ND∑

j=1

P(k)
Di , k = 1,… , 4 (13.93)

Plmin ≤

NB∑

m=1

Slm(P̃m + P̃𝜙m) ≤ Plmax, l = 1,… ,NL (13.94)

Plmin ≤

NB∑

m=1

S′lm(P̃m + P̃𝜙m) ≤ Plmax, l = 1,… ,NL (13.95)

PGimin ≤ P(1)
Gi ≤ P(2)

Gi ≤ P(3)
Gi ≤ P(4)

Gi ≤ PGimax i = 1,… ,NG (13.96)

𝜙imin
xt

≤ P(1)
𝜙i ≤ P(2)

𝜙i ≤ P(3)
𝜙i ≤ P(4)

𝜙i ≤
𝜙imax

xt
t = 1,… ,NP (13.97)

where,

NP: Number of phase shifters.
NB: Number of buses.
NL: Number of lines.

Since we use four sets of variables each describing one break point of the pos-
sibility distributions, Dantzig–Wolf decomposition (DWD) is applied to decompose
the problem into four subproblems coupled by the constraints in equations (13.96)
and (13.97). The dimension of the master problem is equal to the number of coupling
constraints plus the number of subproblems, while each subproblem has a dimension
equal to the number of constraints corresponding to each break point. The solution
of the master problem generates new simplex multipliers (dual solution) that will
adjust the cost function of the subproblems. The solution of the subproblems with
the adjusted objective function will provide the master problem with new columns to
enter the master basis matrix.
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TABLE 13.1 Possibility Distributions for Loads (p.u.)

Load Bus P(1)
D P(2)

D P(3)
D P(4)

D

3 0.000 0.020 0.030 0.050

4 0.020 0.040 0.070 0.100

7 0.100 0.150 0.220 0.270

10 0.020 0.030 0.060 0.080

12 0.050 0.080 0.110 0.150

14 0.030 0.050 0.080 0.100

15 0.040 0.070 0.100 0.130

16 0.010 0.030 0.050 0.060

17 0.030 0.070 0.100 0.140

18 0.000 0.020 0.040 0.070

19 0.040 0.060 0.090 0.130

20 0.000 0.010 0.020 0.040

21 0.100 0.150 0.200 0.230

23 0.000 0.020 0.030 0.050

24 0.050 0.070 0.100 0.120

26 0.010 0.030 0.050 0.060

29 0.000 0.010 0.020 0.030

30 0.060 0.090 0.110 0.140

Example 13.2: The simulation example used here is from reference [20]. Fuzzy
economic dispatch method is tested on the modified IEEE 30-bus system. The system
has six generators, 41 lines and three phase shifters. All phase shifters have turns
ratios equal to 1. Trapezoidal possibility distributions are used to represent the system
fuzzy real power loads. The break points of the load possibility distribution are given
in Table 13.1. The generators’ data are given in Table 13.2 in which each generator
cost function is approximated by piecewise linear approximation.

13.5.4 Test Case 1

In this case, no line flow constraints are introduced in the problem and the optimal
power generation that correspond to the system fuzzy load is found. The break point
of the generation possibility distributions are given in Table 13.3. For the sake of
comparison, in Table 13.3 we have included the power generation corresponding to
the fixed range of load values P(1)

D and P(4)
D . This extreme range of loads provides a

wider range of line flows than that of the proposed fuzzy model, indicating that the
fixed load interval leads to an overestimate of the system behavior in an uncertain
environment.
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TABLE 13.2 Generators Data (p.u.)

Gen. Bus Piecewise
Section

PGmin PGmax Cost Coefficient
($/MWh)

G1 1 0.30 0.90 25.0

2 0.00 0.35 37.5

3 0.00 0.75 42.0

G2 1 0.20 0.50 28.0

2 0.00 0.30 37.0

G5 1 0.15 0.25 30.0

2 0.00 0.25 36.5

G8 1 0.10 0.15 27.0

2 0.00 0.20 38.0

G11 1 0.10 0.20 27.5

2 0.00 0.10 37.0

G13 1 0.12 0.20 36.0

2 0.00 0.20 39.0

TABLE 13.3 The Results of Fuzzy Economic Dispatch

Gen. Bus P(1)
G P(2)

G P(3)
G P(4)

G Power Gen. Range for

Min Load Max Load

G1 0.900 0.900 0.968 1.217 0.900 1.250

G2 0.478 0.500 0.800 0.800 0.466 0.800

G5 0.150 0.488 0.500 0.500 0.150 0.500

G8 0.150 0.150 0.150 0.150 0.150 0.272

G11 0.200 0.200 0.300 0.300 0.200 0.300

G13 0.120 0.200 0.200 0.200 0.120 0.200

13.5.5 Test Case 2

The fuzzy power generations, given in Table 13.3, are used to compute the corre-
sponding line flow possibility distributions. The break points of line 2–6 are 0.2252,
0.2808, 0.4333, and 0.5238 p.u., compared to 0.2248 and 0.5430 p.u. for the fixed
load interval, which indicates once again the overestimated results by the fixed inter-
val. Line 2–6 has an overflow as its flow limit is 0.5 p.u. Therefore, the optimal
power generation is computed again by considering line 2–6 flow limit. In this case,
the phase shifter on line 4–6 alleviates the overflow without any adjustment to the
optimal power generation given in Table 13.2. The corresponding break points for the
phase shifter on line 4–6 are 0.0, 0.0, 0.0, 0.56∘, whereas the phase shifter range for
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the fixed load interval is between 0.00 and 1.02∘. Thus, a smaller range for the phase
shifter angle is obtained by utilizing a possibility distribution for the loads.

13.6 HYDROTHERMAL SYSTEM OPERATION WITH
UNCERTAINTY

There are several complex and interrelated problems associated with the optimization
of hydrothermal systems.

• long-term regulation problem (1 to 2 year optimization period);

• intermediate term hydrothermal control (1 month to 6 months planning period);

• short-term hydrothermal dispatch (optimization period is from 1 day to 1 week)

For the short-term optimization problem, the applications of deterministic
methods to hydrothermal system operation have been established, in which the
water inflows and loads were considered to be deterministic. For the long-term
regulation problem, it is necessary to use a stochastic representation for the load
and river inflow [22,23]. Since there are the uncertainty factors in the short-term
hydrothermal dispatch, the existing methods do not provide the system operators
with a convincing answer on how to use the water in each separate reservoir. The
following uncertainties should be taken into account in a large hydrothermal system
operation.

• Uncertainty of the load

• Uncertainty of the unit availability

• Uncertainty of the river inflow.

The uncertainty of the river inflows, loads, and unit availability can be dealt with
in a stochastic representation. The methods to solve ED with uncertainty in the pre-
vious section can also be used to solve the uncertainty problem for the hydrothermal
system operation.

13.7 UNIT COMMITMENT WITH UNCERTAINTIES

13.7.1 Introduction

The economy of unit commitment (UC) of power systems is influenced by approxi-
mations in the operation planning methods and by the inaccuracies and uncertainties
of input data. However, most of the early works on the unit commitment problem
(UCP), which are discussed in Chapter 7, use a deterministic formulation neglecting
the uncertainties.

As we analyzed before, the uncertain load can be expressed as a normal dis-
tribution with a specific correlation structure. Thus, we use a chance-constrained
optimization (CCO) formulation for the UCP assuming that the hourly loads fol-
low a multivariate normal distribution [24]. The CCO formulation falls into a class
of optimization procedures known as stochastic programming in which the solution
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methods take into consideration the randomness in input parameters. The advantages
of using stochastic programming over the corresponding expected value solution have
been demonstrated over a wide spectrum of applications. In the chance-constrained
programming, the constraints can be violated with a preassigned (usually very small)
level of probability. These probabilistic constraints can often be converted to certain
deterministic equivalents and the resulting program can be solved using the general
deterministic techniques.

In the stochastic model of UC, the equal constraint of real power balance is
expressed by a “chance constraint,” which requires that this condition be satisfied
at a predetermined level of probability. The reserve constraint is considered in the
UC because utilities are required to carry a reserve for many different contingencies
such as load peaks, generator failures, scheduled outages, regulation, and local area
protection. The reserve is usually referred to as operating reserve, which consists of
two parts: spinning reserve (SR) and non-spinning reserve. The additional electric-
ity available (synchronized) to serve load immediately is defined as the SR. In other
words, the difference between the total amount of electricity ready to serve the cus-
tomers and the current demand for electricity is the SR. Generally, the magnitude of
the required amount of SR is predetermined and used as an operating constraint in the
UC calculation. For example, it is taken to be 1.5–2 times the capacity of the largest
generator or a percentage of the peak load. Instead of using SR as a predetermined
constraint, the stochastic method yields as an output the sets of generating units that
need to be turned on such that the load is met with a high probability over the entire
time horizon. The level of SR can be determined by fuzzy methods, which are similar
to SR handling in CCO.

13.7.2 Chance-Constrained Optimization Model

Deterministic UC Model The mathematical model for the unit commitment is a
mixed integer nonlinear program. The basic deterministic formulation can be written
as follows.

minF =
N∑

i=1

T∑

t=1

[Fi,t(Pi,t, xi,t) + Si,t(Pi,t, xi,t)] (13.98)

s.t.

N∑

i=1

xi,tPi,t = PDt t = 1, 2,… ,T (13.99)

Pimin ≤ xi,tPi,t ≤ Pimax (13.100)

N∑

i=1

xi,tPimax ≥ (1 + 𝛼)PDt t = 1, 2,… ,T (13.101)

xi,t − xi,t−1 ≤ xi,𝛾 𝛾 = t + 1,… ,min{t + tup − 1,T},

i = 1, 2,… ,N, t = 1, 2,… ,T (13.102)
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xi,t−1 − xi,t ≤ 1 − xi,𝛽 𝛽 = t + 1,… ,min{t + tdown − 1,T},

i = 1, 2,… ,N, t = 1, 2,… ,T (13.103)

xi,t ∈ {0, 1} t = 1, 2,… ,T , i = 1, 2,… ,N (13.104)

where

Fi,t: the fuel cost of the generator unit i at time t.
Si,t: the cost of starting up unit i at time t.
PDt: the load demand at time t.
Pi,t: the power output of unit i at time t.

T: the time period.
xi,t: the 0-1 variable. 1 if the unit i on at time t, 0 otherwise.

1 − 𝛼: the prescribed probability level for meeting load over the entire time horizon.
tup: minimum number of hours required for a generator to stay up once it is on.

tdown: minimum number of hours required for a generator to stay down once it is
off.

The objective function consists of the total fuel cost and the starting up
cost of the generators. Constraints in equations (13.102) and (13.103) are the
uptime/downtime constraints that force the generators to stay up for at least a
specified amount of time, tup, once they are turned on and stay down for at least a
specified time period, tdown, once they are shut down. Constraint (13.100) ensures
that the power generated matches the minimum and maximum capacity requirements
of the corresponding generators for all time periods. The SR constraint (13.101)
attempts to ensure that there is enough power available to meet the demand in
the event of an unusual contingency. The power balance constraints (13.99) are
the linking constraints that link the decision variables of different generators and
time periods. These constraints ensure that the estimated load is satisfied in all
time periods. They cause difficulties in solving the problem because adding them
to the constraint set makes the problem inseparable, thus requiring sophisticated
techniques for finding a solution.

Stochastic Model Let PD, a random variable, denote the load at hour t. It can be
expressed as a multivariate normal distribution with a specific correlation structure:
PD ∼ N

(
𝜇,

∑)
with mean vector 𝜇 and covariance matrix Σ where 𝜇t and 𝜎t are

the corresponding mean and standard deviation for time period t. Changing the equal
constraint of the real power balance equation into an inequality constraint and replac-
ing it by the following probabilistic constraint for each hour gives a probability level
for satisfying the linking constraint over all time periods.

P

[
N∑

i=1

xi,tPi,t ≥ PD t = 1, 2,… ,T

]
≥ 1 − 𝛼 (13.105)

We replace the probability constraint (13.105) by a set of T separate probability con-
straints each of which could be inverted to obtain a set of T equivalent deterministic
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linear inequalities. Initially we choose the T constraints in a manner such that together
they are more stringent than constraint (13.105). The initial set of T individual lin-
ear constraints (13.110) replacing equation (13.105) are obtained using the following
argument.

First we denote the event
∑N

i=1 xi,tPi,t ≥ PD by At, and its complementary event∑N
i=1 xi,tPi,t < PD by Ac

t . From Boole’s inequality of probability theory, it is well
known that

P

[
T⋃

t=1

At

]
≤

T∑

t=1

P
[
At

]
(13.106)

If

P[Ac
t ] ≤

𝛼

T
, t = 1, 2,… ,T (13.107)

then

P

[
T⋂

t=1

At

]
= 1 − P

[
T⋃

t=1

Ac
t

]
≥ 1 −

T∑

t=1

P
[
Ac

t

]
≥ 1 − 𝛼 (13.108)

Because PD is normally distributed with mean 𝜇t and standard deviation 𝜎t, P[Ac
t ] ≤

𝛼

T
is equivalent to

P

[
N∑

i=1

xi,tPi,t < PD

]
≤
𝛼

T
(13.109)

which is equivalent to

N∑

i=1

xi,tPi,t ≥ 𝜇t + (z𝛼∕T)𝜎t t = 1, 2,… ,T (13.110)

where (z𝛼∕T) is the 100(1 − 𝛼∕T)th percentile of the standard normal distribution.
Setting the initial value of z to be z = z𝛼∕T , we get

N∑

i=1

xi,tPi,t ≥ 𝜇t + z𝜎t t = 1, 2,… ,T (13.111)

13.7.3 Chance-Constrained Optimization Algorithm

The deterministic form of the stochastic constraint is used in solving the UCP itera-
tively by using a different value at each iteration. The steps of the CCO algorithm are
as follows:

Step (1) Choose an initial value in equation (13.111).
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Step (2) Choose a starting set of 𝜆 multipliers.

Step (3) For each unit i, solve a dynamic program with 4T states and T stages;
obtain q∗(𝜆k), which is the objective function value of the optimal solution
to the Lagrange dual problem.

Step (4) Solve the economic dispatch problem for each hour using the scheduled
units and obtain J∗, which is the objective function value of the optimal
solution to the primal problem.

Step (5) Check the relative duality gap.

Step (6) Update 𝜆, using
𝜆k+1 = 𝜆k + skgk (13.112)

where

sk =
𝜂k(J∗ − q∗(𝜆k))

‖gk‖2
(13.113)

𝜂k = 1 + m
k + m

(13.114)

gk is the subgradient and m is a constant. If the gap is not small enough,
then go back to step 3. Otherwise continue.

Step (7) If the final solution is feasible, go to step 8. Otherwise, use the heuristic
algorithm to derive a feasible solution.

Step (8) Evaluate the multivariate normal probability using model (13.105); if it dif-
fers from the prescribed probability level by more than a preassigned small
quantity (see Table 13.4), then update z and go back to step 2, otherwise
STOP.

The algorithm starts by choosing a high value for the initial z value as in
equation (13.110), which makes the corresponding solution satisfy the load with
a probability level higher than ptarget = 1 − 𝛼. In step 2, all 𝜆 multipliers are set to
0.0. Then in step 3 the dual problem is solved using dynamic programming and
q∗(𝜆k), the objective function value for the solution to the Lagrange dual problem, is
obtained. In this step, the scheduling problem for each generator is solved separately
to decide which generators should be turned on at each time period.

In step 4, an economic dispatch problem is solved for each time period sepa-
rately. In solving the economic dispatch problem, the algorithm obtains the operating

TABLE 13.4 Values Used in Checking Convergence of
z-Update Algorithm

ptarget 0.8 0.9 0.95 0.99 0.999 0.9999

𝜀 0.005 0.005 0.005 0.005 0.0005 0.00005
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levels for all the scheduled generators determined in step 3. J∗, the objective function
value of the solution to the primal problem, is calculated using the operating levels
for the scheduled units in this step. In step 5, the duality gap is checked and if it is less
than 𝛿 then the algorithm proceeds to step 7, otherwise the 𝜆 multipliers are updated
using a subgradient method which determines the improving direction in step 6. 𝛿
may be selected as 0.05%. Before proceeding to evaluate the multivariate normal
probability, one needs to check whether the final UC schedule is feasible because
Lagrange relaxation techniques frequently provide infeasible solutions. If the result
is feasible, the algorithm continues to step 8; otherwise, a heuristic is used to derive a
feasible solution and the algorithm proceeds to step 8 after this. The heuristic applied
here is simply to turn on the cheapest generator available for the time periods that
have a shortage of power. After modifying the schedule, the heuristic checks whether
the duality gap is still less than 𝛿.

In step 8 of the CCO algorithm one, needs to calculate the multivariate nor-
mal probability. This is needed to ensure that the probabilistic constraint, equation
(13.105), is satisfied with the prescribed joint probability over the entire time hori-
zon. This calculation can become time consuming especially when the dimension of
the time horizon is large. A subregion-adaptive algorithm for carrying out multivari-
ate integration makes this calculation feasible. If the calculated probability level is in
the 𝜀 neighborhood of ptarget the algorithm terminates as the goal of finding a sched-
ule that satisfies the load with a probability of ptarget is accomplished, otherwise the
z-value is updated and the previous steps are repeated to obtain another schedule.

To update the z-value, the following algorithm is used. The goal is to find a
z-value in equation (13.111) that provides a schedule such that the load can be satisfied
with a probability of ptarget = 1 − 𝛼 over the entire time horizon. This z-value needs to
be obtained iteratively. The following iterative scheme may be used. First, start with
two values that are known to be the upper and lower bounds to the needed z-value.
Then, run steps 2–7 of the CCO algorithm and then find the actual probabilities of
meeting the load for these assumed z-values. They also indicate the direction and the
magnitude by which we should change these z-values so that the probability target
can be reached through successive iterations using interpolation. The correct z-value
could be obtained in a few iterations.

The algorithm proceeds as follows. First we choose z = z𝛼 in equation (13.111).
Obviously, it yields a lower bound for the correct z-value. We call it zlower. We now
run steps 2–7 of the CCO algorithm for this lower bound and obtain an estimate
of the probability with which the load is being met. We call this probability plower.
Next we choose an arbitrarily large value for z. We denote it by zupper. In the next
step, we obtain the upper percentiles of the standard normal distribution for these
probabilities pupper and plower and denote them by z1 and z2, respectively. We also
denote the corresponding percentile for the ptarget value by ztarget. On the basis of
these values the updated z-value is obtained using the following linear interpolation
formula.

znew = zlower +
ztarget − z1

z2 − z1
(zupper − zlower) (13.115)
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If the znew value is lower than z2 and higher than ztarget, then replace z2 by znew.
If it is lower than ztarget and higher than z1, replace z1 by znew. Repeat this process
using equation (13.115) until ptarget is reached.

13.8 VAR OPTIMIZATION WITH UNCERTAIN
REACTIVE LOAD

13.8.1 Linearized VAR Optimization Model

The VAR optimization problem is concerned with minimizing real power transmis-
sion losses and improving the system voltage profile by dispatching available reactive
power sources in the system. For the purpose of the simplification, the hypersurface
of the nonlinear power loss function is approximated by its tangent hyperplane at the
current operating point, and the linear programming (LP) is adopted for the VAR con-
trol problem. This linear approximation is found to be valid over a small region which
is formulated by imposing limits on the deviations of the control variables from their
current values. Assume that for each optimization iteration, the voltage phase angles
are fixed to disregard the coupling between phase angles and reactive variables. Real
power injections at various buses are fixed except at the slack bus, which compen-
sates for power losses. The deterministic operating points are found by executing an
AC power flow after each LP iteration, which results in revised system voltage mag-
nitudes and angles. The objective function and constraints are linearized around this
new operating point assuming fixed, active power-related variables.

The linearized objective function of VAR optimization can be written as
[25,26]

minΔPL =
[
𝜕PL

𝜕V1
,
𝜕PL

𝜕V2
,… ,

𝜕PL

𝜕Vn
,

] ⎡⎢
⎢
⎢⎣

ΔV1
ΔV2
⋮

ΔVn

⎤
⎥
⎥
⎥⎦

(13.116)

or
minΔPL = MΔV (13.117)

where, M is the row vector relating to the real power loss increments in the bus voltage
increments.

There are m + l + n constraints. The first m constraints are for reactive power
sources and tap-changing transformer terminals. We refer to the matrix of reactive
power injections at these buses as Ql. The l equality constraints are for loads and
junction buses that are not connected to transformer terminals, and we refer to
the matrix of reactive power injections at these buses as Q2. The last n constraints
are the limits on bus voltages. Therefore, the linearized form of the constraints is
given as

ΔQ1min ≤ ΔQ1 = J∗1ΔV ≤ ΔQ1max (13.118)

ΔQ2 = J∗2ΔV = 0 (13.119)
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ΔVmin ≤ ΔV ≤ ΔVmax (13.120)

where, J∗1 and J∗2 are submatrices of J∗, which is the modified Jacobian matrix.
Similarly to Section 13.5, the trapezoidal distribution is used to model the

uncertainty of reactive power load. The possibility distribution will have a value of 1
for load values that are highly possible, and will drop for low possible loads. A zero
possibility is assigned to load values that are rather impossible to occur.

As load changes, the magnitude of voltages at different buses will change
accordingly. If the injected power at load bus i is changed by ΔQci as a result of
capacitor switching or load change, the corresponding change in load bus voltages
is given as

ΔVDi = DΔQci (13.121)

where D is a nonnegative matrix, suggesting that if each ΔQci is positive because of
a load reduction, then ΔVLi will be positive. On the other hand, if the injected power
is decreased because of a load increase, then the load bus voltages will decrease.

For generator buses, it is obvious that an increase in the injected load power
will cause the generator voltages to decrease and vice versa.

13.8.2 Formulation of Fuzzy VAR Optimization Problem

The minimization in the VAR optimization problem is subject to inequality and
equality constraints, which are referred to as the operating constraints. The operating
constraints will be a set of linking constraints imposed on bus voltages, and four
independent sets of constraints corresponding to the breakpoints of the trapezoidal
possibility distribution. Using the same approach described in Section 13.5, the
formulation of fuzzy VAR optimization problem for determining the possibility
distribution of transmission losses for a given possibility distribution of loads can be
expressed as follows.

minΔPL =
n∑

i=1

4∑

k=1

M(k)
i ΔV(k)

i

4
(13.122)

such that

ΔQ1min ≤ ΔQ(k)
1 = J∗(k)1 ΔV(k) ≤ ΔQ1max (13.123)

ΔQ(k)
2 = J∗(k)2 ΔV(k) = 0 (13.124)

Vmin ≤ V (1) + ΔV(1) ≤ V (2) + ΔV (2) ≤ V (3) + ΔV(3) ≤ V (4) + ΔV (4) ≤ Vmax
(13.125)

where, k = 1, 2, 3, 4 and equation (13.122) represents the minimization of fuzzy
variables ΔPL. The J∗(k)1 and J∗(k)2 are submatrices of matrices of J∗(k) which is the
modified Jacobian matrix of the k th breakpoint of the possibility distribution. The
dimension of the problem is very large and it is reduced through the application of
the DWD [27].
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13.9 PROBABILISTIC OPTIMAL POWER FLOW

13.9.1 Introduction

We discussed the deterministic optimal power flow (OPF) problem in Chapter 8. If
the uncertain factors such as loads are considered as in the previous sections, we can
transform the OPF problem into the probabilistic optimal power flow (P-OPF) prob-
lem [28,29]. Probabilistic programming, or probabilistic optimization, is concerned
with the introduction of probabilistic randomness or uncertainty into conventional
linear and nonlinear programs. However, the randomness introduced tends to have
some structure to it, and this structure is generally represented by a probability den-
sity function (PDF). The goal of the P-OPF problem is to determine the PDFs for all
variables in the problem. These PDFs are the distributions of the optimal solutions.
This section introduces several P-OPF methods.

13.9.2 Two-Point Estimate Method for OPF

Generally, the OPF can be seen as a multivariate nonlinear function

Y = h(X) (13.126)

where X is the input vector and Y is the output vector.
It must be noted that an uncertain input vector renders all output variables

uncertain as well. To account for uncertainties in the P-OPF, a two-point estimate
method (TPEM) [30], which is basically a variation of the original point estimate
method (PEM), is used to decompose the problem (13.126) into several subproblems
by taking only two deterministic values of each uncertain variable placed on both
sides of the corresponding mean. The deterministic OPF is then run twice for each
uncertain variable, once for the value below the mean and once for the value above
the mean, with other variables kept at their means. This method is described in detail
in the following.

Suppose that Y = h(X) is a general nonlinear multivariate function. The goal
is to find the PDF fY (y) of Y when the PDF fX(x) is known, where x ∈ X and y ∈
Y . There are several approximate methods to address this problem. The PEM is a
simple-to-use numerical method for calculating the moments of the underlying non-
linear function. The method was developed by Rosenblueth in the 1970s [31] and is
used to calculate the moments of a random quantity that is a function of one or several
random variables. Although the moments of the output variables are calculated, one
has no information on the associated probability distribution (PD). Generally speak-
ing, this PD can be any PD with the same first three moments; however, when the
PD of the input variables is known, the output variables tend to have the same PD,
as showed in the OPF problem, where both input and output variables are normally
distributed. However, in some cases, the discrete behavior of the OPF results in PD
of the output variables that is no longer normal.

Let X denote a random variable with PDF fX(x); for Y = h(X), the PEM uses
two probability concentrations to replace h(X) by matching the first three moments
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of h(X). When Y is a function of n random variables, the PEM uses 2n probability
concentrations located at 2n points to replace the original joint PDF of the random
variables by matching up to the second- and third-order noncrossed moments. The
moment of Y , that is, E(yk), k = 1, 2, where E is the expectation, is then calculated
by weighting the values of Y to the power of k evaluated at each of the 2n points.
When n becomes large, the use of 2n probability concentrations is not economical.
Hence, a simplified method that makes use of only 2n estimates, which is referred to
as a TPEM, was used in OPF problem with uncertainty.

Function of One Variable First, a fictitious distribution of X is chosen in such a
way that the first three moments exactly match the first three moments of the given
PDF of X. In order to estimate the first three moments of Y , one can choose a distri-
bution of X having only two concentrations placed unsymmetrically around the X’s
expectation. If that is the case, one has enough parameters to take into account the first
three moments of and to obtain a third-order approximation to the first three moments
of Y . A particularly simple function satisfying these requirements consists in two
concentrations, P1 and P2, of the probability density function fX(x), respectively, at
X = x1 and x2

fX(x) = P1𝛿(x − x1) + P2𝛿(x − x2) (13.127)

where the lowercase letters denote specific values of a random variable, and 𝛿(•) is
Dirac’s delta function.

Choosing

𝜂i =
|xi − 𝜇X|
𝜎X

, i = 1, 2 (13.128)

where, 𝜇X and 𝜎X are the mean and the standard deviation of X, respectively, one can
calculate the first three moments of fX(x). Thus, the jth moment is defined as

Mj(X) = ∫

∞

−∞
xjfX(x)dx j = 1, 2, … (13.129)

The central moments are

M′
j (X) = ∫

∞

−∞
(x − 𝜇X)jfX(x)dx j = 1, 2, … (13.130)

The zeroth and the first moment always equal 1 and 0, respectively. The zeroth and
the first three central moments of equation (13.127) are then

M′
0 = 1 = P1 + P2 (13.131)

M′
1 = 0 = 𝜂1P1 − 𝜂2P2 (13.132)

M′
2 = 𝜎2

X = 𝜎2
X(𝜂

2
1P1 + 𝜂2

2P2) (13.133)
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M′
3 = 𝜈X𝜎

3
X = 𝜎3

X(𝜂
3
1P1 − 𝜂3

2P2) (13.134)

where 𝜈X is the skewness of X.
Using the Taylor series expansion of h(X) about 𝜇X yields

h(X) = h(𝜇X) +
∞∑

j=1

1
j!

g(j)(𝜇X)(x − 𝜇X)j (13.135)

where g(j), j = 1, 2,… , stands for the jth derivative of h with respect to x. The mean
value of Y can be calculated by taking the expectation of the above equation, resulting
in

𝜇Y = E(h(X)) =
∫

∞

−∞
h(x)fX(x)dx = h(𝜇X) +

∞∑

j=1

1
j!

g(j)(𝜇X)M′
j (X) (13.136)

Let
xi = 𝜇X + 𝜂i𝜎X , i = 1, 2 (13.137)

and Pi be the probability concentrations at location xi, i = 1, 2. Multiplying equation
(13.135) by Pi, and summing them up, we get

P1h(x1) + P2h(x2) = h(𝜇X)(P1 + P2) +
∞∑

j=1

1
j!

g(j)(𝜇X)(P1𝜂
j
1 + P2𝜂

j
2)𝜎

j
X (13.138)

From the first four terms of equations (13.136) and (13.138), we get

P1 + P2 = M′
0(X) = 1 (13.139)

𝜂1P1 + 𝜂2P2 = M′
1(X)∕𝜎X = 𝜆X,1 (13.140)

𝜂2
1P1 + 𝜂2

2P2 = M′
2(X)∕𝜎

2
X = 𝜆X,2 (13.141)

𝜂3
1P1 + 𝜂3

2P2 = M′
3(X)∕𝜎

3
X = 𝜆X,3 (13.142)

The above four equations have four unknowns, that is, P1, P2, 𝜂1 and 𝜂2. Their solu-
tions are

𝜂1 = 𝜆X,3∕2 +
√

1 + (𝜆X,3∕2)2 (13.143)

𝜂2 = 𝜆X,3∕2 −
√

1 + (𝜆X,3∕2)2 (13.144)

P1 = − 𝜂2∕𝜀 (13.145)

P2 = 𝜂1∕𝜀 (13.146)
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where
𝜀 = 𝜂1 − 𝜂2 = 2

√
1 + (𝜆X,3∕2)2 (13.147)

For a normal distribution, 𝜆X,3 = 0, then equations (13.143)–(13.146) can be simpli-
fied as

𝜂1 = 1 (13.148)

𝜂2 = − 1 (13.149)

P1 = P2 = 1∕2 (13.150)

From equations (13.138)–(13.142), and equations (13.148)–(13.150), we get

h(𝜇X) +
3∑

j=1

1
j!

g(j)(𝜇X)𝜆X, j𝜂
j
X = P1h(x1) + P2h(x2)

−
∞∑

j=4

1
j!

g(j)(𝜇X)(P1𝜂
j
1 + P2𝜂

j
2)𝜎

j
X (13.151)

Substituting equation (13.151) in equation (13.136),

𝜇Y = P1h(x1) + P2h(x2) +
∞∑

j=4

1
j!

g(j)(𝜇X)(𝜆X, j − P1𝜂
j
1 − P2𝜂

j
2)𝜎

j
X (13.152)

and neglecting the third term in equation (13.152), we get

𝜇Y ≈ P1h(x1) + P2h(x2) (13.153)

This is a third-order approximation. If h(X) is a third-order polynomial, that is, the
derivatives of order higher than three are zero, TPEM gives the exact solution to 𝜇Y .

Similarly, the second- and the third-order moment of Y can be approximated
by

E(Y2) ≈ P1h(x1)2 + P2h(x2)2 (13.154)

E(Y3) ≈ P1h(x1)3 + P2h(x2)3 (13.155)

Function of Several Variables Let Y be a random quantity that is a function of n
random variables, that is,

Y = h(X) = h(x1, x2,… , xn) (13.156)

Let 𝜇X,k, 𝜎X,k, 𝜈X,k stand for the mean, standard deviation, and skewness of Xk, respec-
tively. Let Pk,i stand for the concentrations (or weights) located at

X = [𝜇X,1, 𝜇X,2,… , 𝜇X,n] (13.157)
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and
xk,i = 𝜇X,k + 𝜂k,i𝜎X,k, i = 1, 2,… , n (13.158)

Expand equation (13.156) in a multivariable Taylor series about the mean value of X.
Similar to the case of a function of one variable, the following three equations can be
obtained by matching the first three moments of the PDF of Xk.

n∑

k=1

(Pk,1 + Pk,2) = 1 (13.159)

𝜂k,1Pk,1 + 𝜂k,2Pk,2 = M′
1(Xk)∕𝜎X,k = 𝜆X,k,1 (13.160)

𝜂2
k,1Pk,1 + 𝜂2

k,2Pk,2 = M′
2(Xk)∕𝜎2

X,k = 𝜆X,k,2 (13.161)

𝜂3
k,1Pk,1 + 𝜂3

k,2Pk,2 = M′
3(Xk)∕𝜎3

X,k = 𝜆X,k,3 (13.162)

Equation (13.159) can also be expressed as

Pk,1 + Pk,2 = 1∕n (13.163)

We also can get the solution for the random variable Xk.

𝜂k,1 = 𝜆k,3∕2 +
√

n + (𝜆k,3∕2)2 (13.164)

𝜂k,2 = 𝜆k,3∕2 −
√

n + (𝜆k,3∕2)2 (13.165)

Pk,1 = − 𝜂k,2∕(n𝜀k) (13.166)

Pk,2 = 𝜂k,1∕(n𝜀k) (13.167)

where

𝜀k = 𝜂k,1 − 𝜂k,2 = 2
√

n + (𝜆k,3∕2)2, k = 1, 2,… , n (13.168)

For symmetric probability distributions, 𝜆k,3 = 0, equations (13.164)–(13.167) can
then be simplified as below.

𝜂k,1 =
√

n (13.169)

𝜂k,2 = −
√

n (13.170)

Pk,1 = Pk,2 = 1∕(2n) (13.171)
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Thus, the first three moments can then be approximated by

E (Y) ≈
n∑

k=1

2∑

i=1

(
Pk,ih

([
𝜇X,1,… , 𝜇k,i,… , 𝜇X,n

]))
(13.172)

E
(
Y2) ≈

n∑

k=1

2∑

i=1

(
Pk,ih

([
𝜇X,1,… , 𝜇k,i,… , 𝜇X,n

])2
)

(13.173)

E
(
Y3) ≈

n∑

k=1

2∑

i=1

(
Pk,ih

([
𝜇X,1,… , 𝜇k,i,… , 𝜇X,n

])3
)

(13.174)

Computational Procedure The procedure for computing the moments of the out-
put variables for the OPF problem can be summarized in the following steps [29].

(1) Determine the number of uncertain variables.

(2) Set E(Y) = 0 and E(Y2) = 0.

(3) Set k = 1.

(4) Determine the locations of concentrations 𝜂k,1, 𝜂k,2 and the probabilities of con-
centrations Pk,1,Pk,2 from equations (13.169)–(13.171).

(5) Determine the two concentrations xk,1, xk,2

xk,1 = 𝜇X,k + 𝜂k,1𝜎X,k (13.175)

xk,2 = 𝜇X,k + 𝜂k,2𝜎X,k (13.176)

where 𝜇X,k, 𝜎X,k are the mean and standard derivation of Xk, respectively.

(6) Run the deterministic OPF for both concentrations xk,i using X =
[𝜇X,1, 𝜇X,2,… , 𝜇X,n].

(7) Update E(Y) and E(Y2) using equations (13.172)–(13.173).

(8) Calculate the mean and standard deviation

𝜇Y = E(Y) (13.177)

𝜎Y =
√

E(Y)2 − 𝜇2
Y (13.178)

(9) Repeat steps (4)–(8) for k = k + 1 until the list of uncertain variables is
exhausted.

Comparison TPEM with MCS Since OPF is a deterministic tool, it would have
to be run many times to encompass all, or at least the majority of, possible operating
conditions. More accurate Monte Carlo simulations (MCSs), which are able to handle
“complex” random variables, are an option but are computationally more demanding
and, as such, of limited use for online types of applications. Herein, the mean and
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standard deviation of the TPEM are compared with the corresponding values obtained
with the MCS, which are calculated as

𝜇MCS = 1
N

N∑

i=1

xi (13.179)

𝜎MCS =

√√√√ 1
N

N∑

i=1

(xi − 𝜇MCS)2 (13.180)

where N is the number of Monte Carlo samples, and x is the variable for which the
mean 𝜇MCS and standard deviation 𝜎MCS are calculated. The errors for the mean and
standard deviation, respectively, are therefore defined as

𝜀𝜇 =
𝜇MCS − 𝜇TPEM

𝜇MCS
× 100% (13.181)

𝜀𝜎 =
𝜎MCS − 𝜎TPEM

𝜎MCS
× 100% (13.182)

The investigation and tests show that the output variables tend to have the same
PD as the input variables, which is a normal distribution. Thus, the corresponding
mean and standard deviation of the TPEM and MCS works reasonably well in most
cases, given the fact that output variables tend to be normally distributed.

It is noted that the TPEM approach is accurate provided that the OPF is “well
behaved” and that the number of uncertain parameters is not “too large.” In larger
systems, the TPEM does not perform well if the number of uncertain variables is too
large. With lower numbers of uncertain variables, the performance is adequate. The
TPEM method is computationally significantly faster than using an MCS approach.
This is especially true when the number of uncertain parameters is low, as the compu-
tational time is directly proportional to the number of uncertain variables. When the
number of random variables is large, MCS is a better alternative, given its accuracy.

13.9.3 Cumulant-Based Probabilistic Optimal Power Flow
[32]

Gram–Charlier A Series The Gram–Charlier A Series allows many PDFs,
including Gaussian and gamma distributions, to be expressed as a series composed
of a standard normal distribution and its derivatives. As a part of the proposed P-OPF
method, distributions are reconstructed with the use of the Gram–Charlier A Series.
The series can be stated as follows:

f (x) =
∞∑

j=0

cjHej(x)𝛼(x) (13.183)
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where f (x) is the PDF for the random variable X. cj is the jth series coefficient. Hej(x)
is the jth Tchebycheff–Hermite, or Hermite, polynomial, and 𝛼(x) is the standard
normal distribution function.

The Gram–Charlier form uses moments to compute series coefficients, while
the Edgeworth form uses cumulants, which is discussed here.

Since the PDF for a normal distribution is an exponential term, taking
derivatives successively returns the original function with a polynomial coefficient
multiplier. These coefficients are referred to as Tchebycheff–Hermite, or Hermite,
polynomials.

To illustrate how the Hermite polynomials are generated, the first four deriva-
tives of the standard unit normal distribution are taken as follows.

D0𝛼(x) = D0e−
1
2

x2
= e−

1
2

x2
(13.184)

D1𝛼(x) = D1e−
1
2

x2
= −xe−

1
2

x2
(13.185)

D2𝛼(x) = D2e−
1
2

x2
= (x2 − 1)e−

1
2

x2
(13.186)

D3𝛼(x) = D3e−
1
2

x2
= (3x − x3)e−

1
2

x2
(13.187)

D4𝛼(x) = D4e−
1
2

x2
= (x4 − 6x2 + 3)e−

1
2

x2
(13.188)

where Dn is the nth derivative.
The Tchebycheff–Hermite polynomials are the polynomial coefficients

in the derivatives. Using the results of the first four derivatives in equations
(13.184)–(13.188), the first five Tchebycheff–Hermite polynomials are written as
follows:

He0(x) = 1 (13.189)

He1(x) = x (13.190)

He2(x) = x2 − 1 (13.191)

He3(x) = x3 − 3x (13.192)

He4(x) = x4 − 6x2 + 3 (13.193)

Because of the structure of equations (13.184)–(13.188), the highest power
coefficient of the odd derivatives, that is, the third, fifth, seventh, etc., are negative.
Equations (13.189)–(13.193) have been formed following the convention that the
equations relating to the odd derivatives are multiplied by negative one, such that the
coefficient of the highest power is positive [33].

Therefore, the nth Tchebycheff–Hermite polynomial can be symbolically writ-
ten as

Hen(x)𝛼(x) = (−D)n𝛼(x) (13.194)



13.9 PROBABILISTIC OPTIMAL POWER FLOW 571

In addition, a recursive relationship is available to determine third-order and higher
polynomials

Hen(x) = xHen−1(x) − (n − 1)Hen−2 (13.195)

Edgeworth A-Series Coefficients Given the cumulants for a distribution in stan-
dard form, that is, zero mean and unit variance, the coefficients for the Edgeworth
form of the A series can be computed. In order to find the equations for the A series
coefficients, an exponential representation of the PDF is broken into its series repre-
sentation and equated with the Gram–Charlier A series in equation (13.183).

The PDF, as an exponential, is written in the following form using
cumulants [9]:

f (x) = e

(
−K3

3! D3+K4
4! D4−K5

5! D5+…
)

𝛼(x) (13.196)

where Dn is the nth derivative of the unit normal distribution, Kn is the nth cumulant,
and 𝛼(x) is the standard unit normal PDF.

Expanding equation (13.196) as an exponential series yields

f (x) =
⎡
⎢
⎢
⎢⎣
1 +

(
−K3

3! D3 + K4
4! D4 − K5

5! D5 + · · ·
)

1!

+

(
−K3

3! D3 + K4
4! D4 − K5

5! D5 + · · ·
)2

2!
(13.196)

+

(
−K3

3! D3 + K4
4! D4 − K5

5! D5 + · · ·
)3

3!
+ · · ·

⎤
⎥
⎥
⎥⎦
𝛼(x)

If each of the terms is expanded individually and grouped on the basis of powers
of D, the following result is obtained:

f (x) =

[
1 −

K3

3!
D3 +

K4

4!
D4 −

K5

5!
D5 +

(
K6

6!
+

K2
3

2!3!2

)
D6

+
(

K7

7!
+

2K3K4

2!3!4!

)
D7 + · · ·

]
𝛼(x) (13.197)

Returning to the definition for the Gram–Charlier A series in equation (13.183)
and expanding the summation yields

f (x) = c0He0(x)𝛼(x) + c1He1(x)𝛼(x) + c2He2(x)𝛼(x) + · · · (13.198)
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TABLE 13.5 A Series Coefficient
Equation

Coefficient Equation

0 1

1 0

2 0

3
K3

6

4
K4

24

5
K5

120

6
1

720

(
K6 + 10K2

3

)

7
1

5040

(
K7 + 35K3K4

)

Comparing equations (13.197) and (13.198), the values for the coefficients can
be determined. On the basis of the equations presented, the first seven terms of the
Edgeworth form of the A series are presented in Table 13.5

Adaptation of the Cumulant Method to P-OPF Problem The cumulant
method relies on the behavior of random variables and their associated cumulants
when they are combined in a linear manner. This section discusses the formation of
random variables from a linear combination of others and the role cumulants play in
this combination.

Given a new random variable z, which is the linear combination of independent
random variables, c1, c1,… , cn

z = a1c1 + a2c2 + · · · + ancn (13.199)

the moment generating function Φz(s) for the random variable z can be written as

Φz(s) = E[esz] = E[es(a1c1+a2c2+…+ancn)]

= E[es(a1c1)es(a2c2)......es(ancn)] (13.200a)

Since c1, c1,… , cn are independent, the above equation can be written as

Φz(s) = E[es(a1c1)]E[es(a2c2)] · · · · · ·E[es(ancn)]

= Φc1
(a1s)Φc2

(a2s) · · · · · · Φcn
(ans) (13.200b)
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The cumulants for the variable z can be computed using the cumulant-generating
function, in terms of the component variables as follows:

Ψz(s) = ln(Φz(s)) = ln(Φc1
(a1s)Φc2

(a2s) · · · · · · Φcn
(ans))

= ln(Φc1
(a1s)) + ln(Φc2

(a2s)) + · · · · · · + ln(Φcn
(ans)) (13.201)

= Ψc1
(a1s) + Ψc2

(a2s) + · · · · · · + Ψcn
(ans)

To compute the second-order cumulant, the first-, and second-order derivatives of the
cumulant generating function for the random variable z are computed as

Ψ′
z(s) = a1Ψ′

c1
(a1s) + a2Ψ′

c2
(a2s) + · · · · · · + anΨ′

cn
(ans) (13.202)

Ψ′′
z (s) = a2

1
Ψ′′

c1
(a1s) + a2

2
Ψ′′

c2
(a2s) + ...... + a2

n
Ψ′′

cn
(ans) (13.203)

Evaluating equation (13.203) at s = 0 gives

Ψ′′
z (0) = a2

1
Ψ′′

c1
(0) + a2

2
Ψ′′

c2
(0) + · · · · · · + a2

n
Ψ′′

cn
(0) (13.204)

Similarly, the nth-order cumulant for z, a linear combination of independent random
variables, can be determined with the following equation.

𝜆n = Ψ(n)
z (0) = an

1Ψ
(n)
c1
(0) + an

2Ψ
(n)
c2
(0) + · · · · · · + an

nΨ
(n)
cn
(0) (13.205)

where the exponent (n) denotes the nth derivative with respect to s.
The cumulant method is adapted from the basic derivation above to accom-

modate the P-OPF problem when a logarithmic barrier interior point method
(LBIPM)-type solution is used. The Hessian of the Lagrange function is necessary
for the computation of the Newton step in the LBIPM. The inverse of the Hessian,
however, can be used as the coefficients for the linear combination of random bus
loading variables. The pure Newton step is computed in iteration k of the LBIPM
using the following equation:

yk+1 = yk − H−1(yk)G(yk) (13.206)

where, y is the vector of variables; G(yk) is the gradient of the Lagrange function;
and H−1(yk) is the inverse Hessian matrix, which contains the multipliers for a linear
combination of PDFs for random bus loads.

It is necessary to introduce the cumulants related to the random loads into the
system in such a way that the cumulants for all other system variables can be com-
puted. Some characteristics of the gradient of the Lagrangian are used to accomplish
this. When the gradient of the Lagrangian is taken, the power flow equations appear
unmodified in this vector. Therefore, cumulant models in the bus loads map directly
into the gradient of the Lagrangian. For the purposes of mapping, the mismatch vec-
tor, in equation (13.206), is replaced by a new vector containing the cumulants of the
random loads in the rows corresponding to their associated power flow equations.
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The linear mapping information contained in the inverse Hessian can be used
to determine cumulants for other variables when bus loading is treated as a random
variable. If −H−1(yk) is written in the following form

−H−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

a1,1 a1,2 … a1,n

a2,1 a2,1 … a2,n

… … … …

an,1 an,,2 … an,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(13.207)

then the n th cumulant for the i th variables in y is computed using the following
equation:

𝜆yi,n = an
i,1𝜆x1,n + an

i,2𝜆x2,n + · · · + an
i,n𝜆xn,n (13.208)

where yi is the i th element in y and 𝜆xj,n is the n th cumulant for th j th component
variable.

For the cumulant method used for P-OPF, the cumulants for unknown random
variables are computed from known random variables, and PDFs are reconstructed
using the Gram–Charlier/Edgeworth expansion theory.

13.10 COMPARISON OF DETERMINISTIC
AND PROBABILISTIC METHODS

As we analyzed in this chapter, it is impossible to obtain all available data in the
real time operation because of the aforementioned uncertainties of power systems
and competitive environment. Nevertheless, it is important to select an appropriate
technique to handle these uncertainties. The existing deterministic methods and tools
are not adequate to handle them. The probabilistic methods, Gray Mathematics, fuzzy
theory, and analytic hierarchy process (AHP) [34–37] are very useful to compute the
unavailable or uncertain data so that power system operation problems such as the
economic dispatch, optimal power flow, and state estimation can be solvable even
when some data are not available.

The deterministic and probabilistic methods are compared Table 13.6.
Through comparing the various approaches, the following methods to handle

uncertainties are recommended:

• Characterization and probabilistic methods

• Probabilistic methods/tools for evaluating the contingencies

• Fuzzy/ANN/AHP methods to handle uncertainties (e.g., contingency ranking)

• Risk management tools to optimize energy utilization while maintaining the
required levels of reliability

• Cost–benefit-analysis (CBA) for quantifying the impact of uncertainty.
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TABLE 13.6 Deterministic Versus Probabilistic Methods

Methods Comparison Deterministic Method Probabilistic Method

Contingency selection Typically a few probable and
extreme contingencies

More exhaustive list of
contingencies; ranking based
on fuzzy/AHP methods

Contingency probabilistic Based on judgment Based on inadequate or
uncertain data (ANN, fuzzy,
and AHP methods)

Load levels (forecast) Typically seasonal peaks and
selected off-peak loads

Multiple levels with uncertain
factors (fuzzy, ANN)

Unit commitment Traditional optimization
technology

Optimization technology and
AHP/fuzzy/ANN

Security regions Deterministic security region Variable security regions

Criteria for decision Well established Need a suitable method/criteria
to make decision (ANN,
fuzzy, and AHP methods)

PROBLEMS AND EXERCISES

1. List some uncertainties occurred in power systems operation and planning.

2. List several major methods to handle uncertainties.

3. List several probabilistic OPF methods.

4. What is the chance-constrained optimization method?

5. What uncertainties should be taken into account in a large hydrothermal system opera-
tion?

6. How is the probabilistic method used in power system operation and planning?

7. If the uncertain load PD is expressed as a normal distribution, write the probability density
function of this load.

8. There are two uncertainty loads that are expressed by a triangular fuzzy number, PD1 =
(25, 4, 6)LR and PD2 = (28, 9, 5)LR.

(1) Use a diagram represent these two loads.

(2) Compute the total of the two loads.

9. There are three uncertainty loads that are expressed by a triangular fuzzy number, PD1 =
(20, 3, 6)LR, PD2 = (18, 4, 3)LR, and PD3 = (23, 7, 5)LR

(1) Use a diagram represent these three loads.

(2) Compute the total of the three loads.
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10. Use the same data as in exercise 4. If we represent two uncertainty loads by using an
interval format of a fuzzy number and 0.8-cut of the fuzzy number, what is the sum of
the two uncertainty loads PD1 and PD2?

11. Use the same data as in exercise 5. If we represent three uncertainty loads by using an
interval format of a fuzzy number, and 0.7-cut of the fuzzy number, what is the sum of
three uncertainty loads PD1, PD2 and PD3?
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C H A P T E R 14
OPERATION OF SMART GRID

14.1 INTRODUCTION

Traditionally, the term grid is used for an electricity system that may support all or
some of the following four operations: electricity generation, electricity transmission,
electricity distribution, and electricity control.

A smart grid is a set of disparate goals, including facilitating better competition
among suppliers; enabling better use of different energy sources; and setting up the
automation and monitoring abilities needed for the grid at cross continent.

In 2009, the US President, Barack Obama, asked the United States Congress
“to act without delay” to pass legislation that included doubling alternative energy
production in the next 3 years and building a new electricity “smart grid.” Europe
and Australia are also following similar visions. In those countries the integration
of communications and power control, both of which have generally fallen under
greater government supervision, is more advanced, with utilities often required or
asked to provide competitive access to communications transit exchanges and dis-
tributed power co-generation connection points. The smart grid in China focuses more
on the transmission side than the distribution side at present. China is constructing
ultra-high and extra-high voltage direct current (+∕ − 800 kV, +∕ − 500 kV) and
alternating current transmission systems (1000 kV, 500 kV, 220 kV), and coordinat-
ing the development of a smart grid based on information technology and automation
technology.

To reduce power demand during peak usage periods, communications and
metering technologies inform smart devices in the house, factory, or business
building when energy demand is high and track how much electricity is used and
when it is used. Electricity prices increase during peak usage periods and decrease
during low-demand periods. The end user will tend to consume less during peak
usage periods if it is made possible for users and user devices to be familiar with
the high price premium for using electricity at peak periods. When end users see a
direct economic profit to become more energy efficient, it is more likely that they
will make wise decisions on consumption.

This chapter will introduce some basic concepts and technologies of the smart
grid, as well as applications of smart grid operation [1–32].

Optimization of Power System Operation, Second Edition. Jizhong Zhu.
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14.2 DEFINITION OF SMART GRID

As we mentioned in the previous section, there are different definitions of smart
grid from different viewpoints. Some people call the intelligent transmission and
distribution automation network a smart grid. Some people think the smart grid
refers to distributed generation and storage, which includes solar energy, wind
power, micro turbines, compressed air, energy storage, and so on. Looking the
end-user side, there is another aspect of the smart grid. We call it demand response
and load control. Demand response relates to how the end user reacts to different
price signals, different availability signals, and so on. In addition, the advanced
metering infrastructure (AMI) is also important. It is the interface between the
home or end user and the smart grid. AMI technology uses remote two-way
wireless communication to retrieve customer energy usage information at frequent
intervals from customers’ electric smart meters and/or natural gas meters via a
radio frequency (RF) fixed network. A meter data management system receives and
houses the data for analysis and use by other systems such as customer information
and billing, power outage management, load research, and delivery system planning.
All these are related to smart grid. Then, what is the official definition of a smart
grid? According to the US Department of Energy’s Modern Grid Initiative, “an
intelligent or a smart grid integrates advanced sensing technologies, control methods
and integrated communications into the current electricity grid.” It has seven
characteristics:

1. Consumer participation: Enables and motivates active participation by con-
sumers

2. Accommodate generation options: Accommodates all generation and energy
storage options

3. Enable electricity market: Enables new products, services, and markets

4. High-quality power: Provides the quality of power required for the digital, com-
puter, and communication-based economy

5. Optimize assets: Operates efficiently and optimizes the utilization of existing
and new assets

6. Self-healing: Anticipates and reponds to system disturbances in a self-healing
manner

7. Resist attack: Operates resiliently against attack and natural disaster.

14.3 SMART GRID TECHNOLOGIES

Making the smart grid work will require a series of reliable technologies, which
include integrated communications systems, sensors, advanced meters, and storage
devices. Many of these already exist; others are being adapted to synchronize with a
modern power grid. The US Department of Energy has identified five key technology
areas for the smart grid as follows:
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1. Integrated communications to allow every part of the grid to both “talk” and
“listen,” that is, two-way communication technology.
Some communications are up to date, but are not uniform and not fully inte-
grated into the grid. Areas for improvement include substation automation,
demand response, distribution automation, supervisory control and data acqui-
sition (SCADA), energy management systems, wireless mesh networks and
other technologies, power-line carrier communications, and fiber optics. Inte-
grated communications will allow for real-time control, information and data
exchange to optimize system reliability, asset utilization, and security.

2. Sensing and measurement technologies to support faster and more accurate
response.
The technologies of sensing and measurement include smart meters, meter
reading equipment, phasor measurement units (PMUs), dynamic line rating,
advanced switches and cables, and digital protective relays. Especially, the
smart meters, which replace the analog mechanical meters, record usage in real
time. A wide-area measurement system (WAMS) is a network of PMUS that
can provide real-time monitoring on a regional and national scale.

3. Advanced components to apply the latest research in superconductivity, power
electronics, storage, and diagnostics.
Innovations in superconductivity, fault tolerance, storage, power electron-
ics, and diagnostics components are changing fundamental abilities and
characteristics of grids. The related technologies include flexible alternating
current transmission system devices, high-voltage direct current, first- and
second-generation superconducting wire, high-temperature superconduct-
ing cable, distributed energy generation and storage devices, composite
conductors, and “intelligent” appliances.

4. Advanced control methods for monitoring, diagnosing, and addressing any
event.
The technology categories for advanced control methods are distributed
intelligent agents (control systems), analytical tools (software algorithms and
high-speed computers), and operational applications (SCADA, substation
automation, demand response, etc.). The advanced algorithms have been
discussed in the earlier chapters in the book.

5. Improved interfaces and decision support to enhance human decision making.
Technologies include visualization techniques that reduce large quantities of
data into easily understood visual formats, software systems that provide mul-
tiple options when systems operator actions are required, and simulators for
operational training and “what-if” analysis.

14.4 SMART GRID OPERATION

A smart grid is typically reliable, secure, efficient, economic, environment friendly,
and safe to the extreme extent as feasible. It is the application of technologies to all
aspects of the energy transmission and delivery system that provide better monitoring



582 CHAPTER 14 OPERATION OF SMART GRID

and control, and efficient use of the system. The objectives of smart grid operation
and control are

• to address the challenges that secure and reliable operation of the power grids
will face in the future;

• to develop a solid interdisciplinary theoretical foundation supporting develop-
ment of better tools for planning, operation, and control of power grids inter-
connected at various voltage levels;

• to innovate in power distribution monitoring and control;

• to enable consumers to react to grid conditions making them active participants
in their energy use;

• to leverage conventional generation and emerging technologies when possible
including distributed energy resources, demand response, and energy storage,
to address the challenges introduced by variable renewable resources.

For achieving the aforementioned objectives, it requires on the one hand, a
smart grid to adjust with generation and its possible storage with availability when-
ever and wherever called for, self-healing mechanism in the face of disturbance,
optimum utilization of assets achieving high level of efficiency in operation, while
on the other hand, consumer should get quality electricity as per quantitative require-
ment, through successfully enabled provision of services, products marketed, etc.
Extensive usage of digital technology in terms of communication and information
technology on real-time basis is an essential feature for achieving success in the mat-
ter considering the demand–supply scenario accurately at every instant.

A key factor of smart grid operation will be distributed generation (DG). DG
takes advantage of distributed energy resource (DER) systems (e.g., solar panels
and small wind turbines), which are often small-scale power generators (typically
in the range of 3 to 10,000 kW), in order to improve the power quality and reliability.
However, implementing DG(s) in practice is not an easy thing. First, DG involves
large-scale deployments for generation from renewable resources, such as solar and
wind. As we mentioned in Chapter 10, the operation of renewable energy is subject
to wide fluctuations. Precise wind or solar forecast is required. Therefore, effective
utilization of the DG in a way that is cognizant of the variability of the yield from
renewable sources is important. Second, with the current technologies, the usual oper-
ation costs of distributed generators for generating one unit of electricity are high
compared with that of traditional large-scale central power plants. The development
and deployment of DG further lead to a concept, namely the virtual power plant
(VPP), which manages a large group of distributed generators with a total capacity
comparable to that of a conventional power plant. This cluster of distributed gen-
erators is collectively run by a central controller. The concerted operational mode
delivers extra benefits such as the ability to deliver peak load electricity or load-aware
power generation at short notice. Such a VPP can replace a conventional power plant
while providing higher efficiency and more flexibility. DG and VPP will be further
discussed in the following sections.
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14.4.1 Demand Response

Demand response (DR) encompasses many customer-level actions that can help to
smooth the electric power load shape and reduce energy consumption. There are two
issues: one is reducing the peak load to keep the utility system run more efficiently,
and at the same time using the energy savings by practicing or deploying demand
response programs so that the overall demand for electricity is reduced. Therefore,
demand response has two components. One is the load component or the kilowatt
component, which is applying demand response to reduce the peak load. The other
is the energy component or the kilowatt hour component, which is applying demand
response to save energy by using less or using more efficient devices, appliances, and
so on.

The formal definition of demand response is given by the US Federal Energy
Regulatory Commission (FERC). According to FERC, demand response is “a reduc-
tion in the consumption of electric energy by customers from their expected consump-
tion in response to an increase in the price of electric energy or to incentive payments
designed to induce lower consumption of electric energy.”

The definition of demand response is a little different from that of demand-side
management (DSM). In the DSM scenario, the load is controlled by the electric
utility and once the customer gives their consent to the electric utility to control
their load, it could be air conditioner, water heater and the like, the customer has
no control, that is, the customer cannot choose what to control for how long. The
power company will choose for them. For example, they will turn the water for
30 minutes, change the air conditioner thermostat temperature setting or turn the
AC off for half an hour or 10 minutes, whatever the case may be. So the customer
has no control once they have given consent to the power company to control the
load. On the other hand, in the demand response concept, the customer has full
control. They will decide what load to control for how long depending on the
incentive they get and what their situation is at home or at business to effect the
control.

Demand response needs are driving infrastructure needs, which include smart
devices and control systems that can collect data, present it to the power user, and
then relay their decisions back to the utilities or third party aggregators (also called
curtailment service providers). The enabling technologies include but are not lim-
ited to:

• Building automation systems—the software and hardware needed to monitor
and control the mechanical, heating and cooling, and lighting systems in build-
ings that can also interface with smart grid technologies.

• Home Area Networks—similar to smart building technologies, except for the
home where devices communicate with the smart grid to receive and present
energy use and costs, as well as enable energy users to reduce or shift their use
and communicate those decisions to the load-serving entities.
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14.4.2 Devices Used in Smart Grid

The Smart Grid promises to improve the quality, resiliency, and integrity of the grid
through the optimization of the existing energy delivery infrastructure and integra-
tion of new renewable generation sources. Thus, the smart grid requires seamlessly
integrated products and services to deliver the highest performance possible. With all
kinds of smart devices, utilities can select and confidently use the products they want
knowing everything will operate together as it should.

The main devices that are used in the smart grid include:

• Advanced metering (or smart metering) devices—Advanced metering is often
the starting point for a smart grid deployment. Advanced metering devices sup-
port acquiring data to evaluate the health and integrity of the grid and support
automatic meter reading, elimination of billing estimates, and prevent energy
theft.

• Integrated communications devices—These include data acquisition, protec-
tion, and control, and enable users to interact with intelligent electronic devices
in an integrated system.

• Home area network (HAN) devices—A primary element of the smart grid is the
enhanced communications capabilities that enable consumers to better manage
their electricity consumption and costs via new smart appliances and devices
located at the customer’s premises. These are commonly referred to as home
area network (HAN) devices.

• In-home devices—These include communicating thermostats, load control
switches, and electric vehicle (EV) charging stations, which help consumers
to manage their energy use.

• Network infrastructure—This comprises grid routers and signal repeaters, for
example, which enable utilities to cost-effectively network their grid devices.
In addition, as the smart grid extends out to homes and businesses, wireless
sensors and mobile control devices become important elements in monitoring
and managing energy use.

• Geographic information system (GIS)—With the smart grid’s promises of a
more reliable, robust electric delivery system come the virtual representation
of that system used to make operational decisions. The source of the base data
for this virtual representation is the GIS. The GIS must be able to efficiently
and effectively export the required data to the systems that need it, preferably
in a format that is easily imported by those receiving systems.

• Energy storage devices—Energy storage is accomplished by devices or physi-
cal media that store energy to perform useful operation at a later time. A device
that stores energy is sometimes called an accumulator.

14.4.3 Distributed Generation

Distributed generation (DG) means that power sources are widely distributed, so
that power is generated close to the place where it is being used. This includes all
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generation installed on sites owned and operated by utility customers. Most of renew-
able power supplies such as solar energy and wind power are distributed generation.
Renewable energy and distributed generation technologies (REDG) are very impor-
tant to the smart grid operation. Energy access, energy security, poverty alleviation,
and environmental considerations, combined with increasing fossil fuel prices, are
key drivers for accelerating the adoption of affordable and reliable renewable energy
and distributed generation.

Generally, distributed generation is connected to the grid through the distri-
bution system. This is called a grid-connected distributed generation system, which
can make the whole grid more secure because there is less reliance on any particular
source of power in the system. With several smaller distributed generation sources, if
something goes wrong, it is easier for another source of power to step in and fill the
gap. This is essential for many renewable technologies such as solar and wind, which
produce intermittent power and for other technologies that may need to be shut down
for periodic maintenance.

Since distributed generation is typically sited close to customer loads, it can
help reduce the number of transmission and distribution lines that need to be upgraded
or built. Obviously, it reduces transmission and distribution losses.

Distributed generation has the potential to mitigate congestion in transmission
lines, reduce the impact of electricity price fluctuations, strengthen energy security,
and provide greater stability to the smart grid.

Distributed generation encompasses a wide range of technologies includ-
ing solar power, wind turbines, fuel cells, microturbines, reciprocating engines,
load reduction technologies, and battery storage systems. The effective use of
grid-connected distributed energy resources can also require power electronic inter-
faces and communications and control devices for efficient dispatch and operation
of generating units. The main distribution generation technologies are summarized
as follows [9].

(1) Reciprocating engine
A reciprocating engine, also often known as a piston engine, is a heat engine
that uses one or more reciprocating pistons to convert pressure into a rotating
motion. Diesel- or petrol-fueled reciprocating engine is one of the most com-
mon distributed energy technologies in use today, especially for standby power
applications. However, it creates significant pollution (in terms of both emis-
sions and noise) relative to natural-gas- and renewable-fueled generators. As
a result, they are subject to severe operational limitations not faced by other
distributed generating technologies.

(2) Solar photovoltaic cells
Solar photovoltaic (PV) cells is discussed in Chapter 10.

(3) Wind turbine
Wind turbine is also discussed in Chapter 10.

(4) Fuel cells
A fuel cell is an electrochemical cell that converts a source fuel into an electrical
current through a chemical reaction in a fuel. It generates electricity inside a cell
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through reactions between a fuel and an oxidant, triggered in the presence of an
electrolyte. The reactants flow into the cell, and the reaction products flow out
of it, while the electrolyte remains within it. Fuel cells can operate continuously
as long as the necessary reactant and oxidant flows are maintained. For utilities,
most fuel cells currently use natural gas, which is not renewable.

(5) Microturbine
A microturbine is a small turbine (about the size of refrigerator, generally less
than 300 kW) that makes both electricity and heat in small amounts. Microtur-
bines are becoming widespread for distributed power and combined heat and
power applications. They are one of the most promising technologies for pow-
ering hybrid electric vehicles. They range from handheld units producing less
than a kilowatt, to commercial-sized systems that produce tens or hundreds of
kilowatts. They can run on nonrenewable fuels such as natural gas, but can also
use waste fuels.

(6) Internal combustion engine
The internal combustion engine is an engine in which the combustion of
a fuel (normally a fossil fuel) occurs with an oxidizer (usually air) in a
combustion chamber. In an internal combustion engine the expansion of the
high-temperature and high-pressure gases produced by combustion apply
direct force to some component of the engine, such as pistons, turbine blades,
or a nozzle.

(7) CHP technology
CHP is a combined heat and power technology. Conventional electricity gen-
eration is inherently inefficient, using only about a third of the fuel’s potential
energy. In applications where heating or cooling is needed as well, the total effi-
ciency of separate thermal and power systems is still only about 45%, despite
the higher efficiencies of thermal conversion equipment.
Combined cooling, heating, and power systems are significantly more efficient.
CHP technologies produce both electricity and thermal energy from a single
energy source. These systems recover heat that normally would be wasted in
an electricity generator, then use it to produce one or more of the following:
steam, hot water, space heating, humidity control, or cooling. By using a CHP
system, the fuel that would otherwise be used to produce heat or steam in a
separate unit is saved.
Recent technological advances have resulted in the development of a range
of efficient and versatile systems for industrial and other applications. Espe-
cially, with the wide use of the renewable resources today, CHP technologies
are becoming more important.

(8) Distributed energy management
Distributed energy management technologies include energy storage devices
and various methods for reducing overall electrical load.
Energy storage technologies are essential for meeting the levels of power qual-
ity and reliability required by high-tech industries. Energy storage is impor-
tant for other distributed energy devices by giving them more load-following
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capability, and also supporting renewable technologies such as wind and solar
electricity by making them dispatchable.
In the smart grid, reducing electrical load can be accomplished by improving
the efficiency of end-use equipment and devices, or by switching an electrical
load to an alternative energy source—heating water or building interiors with
heat from the earth or sun.

14.4.4 Simple Smart Grid Economic Dispatch with Single
Generator

The economic dispatch (ED) problem is one of the fundamental problems in the
power system. The objective of ED is to reduce the total power generation cost, sub-
ject to system security constraints. Previous chapters discussed various numerical
methods and optimization techniques to solve the ED problem. Owing to the addition
of uncertain wind power and chargeable and dischargeable storage in the smart grid,
economic dispatch problem in the smart grid environment is more complicated. This
section describes a simple smart grid economic dispatch (SGED) approach without
considering the network security constraint.

The simplest SGED problem is a single generator single load with one battery
storage device [10]. As we mentioned before, generator cost function is quadratic and
can be simply expressed as follows.

f (Pg) =
1
2
𝛼P2

g + 𝛽Pg + 𝛾 (14.1)

The cost function of the battery can be expressed as follows.

h(Pb) = 𝜂(Pbmax − Pb) (14.2)

For simplifying the analysis, assume the load is constant for every time period,
that is,

Pd(t) = D t = 1, 2, … ,T (14.3)

Thus, the simplest SGED problem can be expressed as follows.

minJ =
T∑

t=1

[f (Pg(t)) + h(Pb(t))] (14.4)

such that

Pb(t) = Pb(t − 1) + Pg(t) − D (14.5)

0 ≤ Pb(t) ≤ Pbmax (14.6)

0 ≤ Pg(t) ≤ Pgmax (14.7)
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where

Pg: the generator power output
Pgmax: the maximal power output of the generator

Pb: the power value of the battery (charge or discharge)
Pbmax: the maximal capacity of the battery

D: the constant load value
T: the time period of the smart grid operation

𝛼, 𝛽, 𝛾: the coefficients of the generation cost function
𝜂: the coefficient of the battery cost function.

Neglecting Constraint If the battery constraint and generator constraint are inac-
tive, that is, the inequality constraint is ignored, from the objective function and power
balance equation, we can get the following optimality condition:

𝛼P′
g(t) + 𝛽 = 𝜂[T − (t − 1)] (14.8)

or
𝛼P′

g(t) + 𝛽 = 𝜂(T + 1 − t) (14.9)

From above equation, we get

P′
g(t) =

𝜂

𝛼
(T + 1 − t − 𝛽) (14.10)

If the generator cost function is simplified as follows,

f (Pg) =
1
2
𝛼P2

g (14.11)

then the optimal generation becomes

P′
g(t) =

𝜂

𝛼
(T + 1 − t) (14.12)

The power change of the battery can be obtained as

P′
b(t) = Pb(t − 1) + 𝜂

𝛼
(T + 1 − t) − D (14.13)

It can be observed from equation (14.12) that the optimal generation will
decrease linearly over time. From equation (14.13), the battery charges initially, and
then discharges. The battery changes from charging to discharging when

𝜂

𝛼
(T + 1 − t) − D = 0 (14.14)

that is,
P′

b(t) = Pb(t − 1) (14.15)
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Figure 14.1 Simple SGED
without constraint.

when
tD = T + 1 − 𝛼

𝜂
D (14.16)

where tD is the time stage that the battery starts to discharge.
The simple SGED can be illustrated as in Figure 14.1.

Considering Constraint It can be observed from equation (14.12) that the
maximal generation output appears at initial time, and minimal generation output is
appears at the end of operation period T , that is,

𝜂

𝛼
≤ P∗

g(t) ≤
𝜂

𝛼
T (14.17)

It means that the following equation should be satisfied in order to meet the
generation constraint (14.7):

𝜂T
𝛼

≤ Pgmax (14.18)

Obviously, there is no generation constraint problem if the above equation is
met. Since the generator supplies both load and battery, the generator’s capacity must
be greater than the load. Thus, the simple SGED will become a constrained problem
when the generator’s capacity is given as

D ≤ Pgmax ≤
𝜂T
𝛼

(14.19)

If the optimal generation exceeds the generator’s capacity at the initial time tg,
the generation will be set to the limit value of the generator, that is,

P′
g(t) =

𝜂

𝛼
(T + 1 − t) = Pgmax (14.20)

tg = T + 1 − 𝛼

𝜂
Pgmax (14.21)
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Figure 14.2 Simple SGED with
constraint.

The optimal generation over time will be

P∗
g(t) =

{
Pgmax,
𝜂

𝛼
(T + 1 − t) ,

if t ≤ tg
if t > tg

(14.22)

Similarly, the optimal battery value will be

P∗
b(t) =

{
Pb (t − 1) + Pgmax − D,

Pb(t − 1) + 𝜂

𝛼
(T + 1 − t) − D,

if t ≤ tg
if t > tg

(14.23)

Figure 14.2 demonstrated the constrained simple SGED case.
If battery power constraint (14.7) is considered and the computed optimal

charging value exceeds the battery capacity at time tB, the actual charging power
must be set to the maximal limit, that is,

Pb(tB) = Pbmax, if Pb(tB) > Pbmax (14.24)

Owing to the reduction of the battery charging, the optimal generator output
will be reduced and can be computed as follows:

Pb(tB) = Pbmax = Pb(tB − 1) + Pg(tB) − D (14.25)

Pg(tB) = Pbmax − Pb(tB − 1) + D (14.26)

Thus, the optimal generation with battery capacity constraint over time will be

P∗
g(t) =

{
Pbmax − Pb

(
tB − 1

)
+ D,

𝜂

𝛼
(T + 1 − t),

if t = tB
if t ≠ tB

(14.27)
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Similarly, the optimal battery value will be

P∗
b(t) =

{
Pbmax,

Pb (t − 1) + 𝜂

𝛼
(T + 1 − t) − D,

if t = tB
if t ≠ tB

(14.28)

On the other hand, if battery power constraint (14.7) is considered and the com-
puted power value of the battery is negative at the discharging time tb, the actual power
must be set to zero, that is,

Pb(tb) = 0, if Pb(t) < 0 (14.29)

Since the battery cannot discharge enough power, the optimal generator out-
put will increase to meet the power balance of smart grid. This can be computed as
follows:

Pb(tb) = 0 = Pb(tb − 1) + Pg(tb) − D (14.30)

Pg(tb) = D − Pb(tb − 1) (14.31)

In this case, the optimal generation over time will be

P∗
g(t) =

{
Pg

(
tb
)
= D − Pb(tb − 1),

𝜂

𝛼
(T + 1 − t),

if t = tb
if t ≠ tb

(14.32)

Similarly, the optimal battery value will be

P∗
b(t) =

{
0,

Pb (t − 1) + 𝜂

𝛼
(T + 1 − t) − D,

if t = tb
if t ≠ tb

(14.33)

In summary, the optimal SGED with battery capacity constraint can be
expressed as follows.

P∗
b(t) =

⎧
⎪
⎨
⎪⎩

Pbmax,

0

Pb (t − 1) + 𝜂

𝛼
(T + 1 − t) − D,

if Pb(t) > Pbmax
if Pb(t) < 0

if 0 ≤ Pb(t) ≤ Pbmax

(14.34)

P∗
g(t) =

⎧
⎪
⎨
⎪⎩

Pbmax + D − Pb (t − 1) ,
D − Pb(t − 1),
𝜂

𝛼
(T + 1 − t),

if Pb(t) > Pbmax
if Pb(t) < 0

if 0 ≤ Pb(t) ≤ Pbmax

(14.35)

Example 14.1: A simple smart grid has one generator and one storage battery. The
load of 8.0 MW is assumed to be constant over time. The generator cost function is
quadratic, given by

f (Pg) =
1
2
𝛼P2

g = 1
2
(0.04P2

g)
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TABLE 14.1 Results of the Simple SGED

Time t 1 2 3 4 5 6 7

Generation power 14 12 10 8 6 4 2

Battery power 8 12 14 14 12 8 2

The battery has initial power 2MW and the unit coefficient of battery storage
is 𝜂 = 0.08. The capacity of the generator is 25MW. Let us compute the optimal
generation and batter power over the time period 7 hours.

According to the given parameters, we get 𝛼 = 0.04, 𝜂 = 0.08, T = 7, and D =
8. We can first compute the key time point that the battery changes from charging to
discharging, that is,

tD = T + 1 − 𝛼

𝜂
D = 7 + 1 − 0.04

0.08
× 8 = 4

It means the battery will be charged until hour 4, and after that it will discharge. The
optimal generation can be computed through equation (14.22), that is,

P′
g(t) =

𝜂

𝛼
(T + 1 − t) = 0.08

0.04
(7 + 1 − t) = 16 − 2t

The power change of the battery can be obtained on the basis of
equation (14.23), that is,

P′
b(t) = Pb(t − 1) + 𝜂

𝛼
(T + 1 − t) − D = Pb(t − 1) + 8 − 2t

The calculation results are shown in Table 14.1. It can be observed from Table 14.1
that the generation decreases linearly and battery power variation is quadratic.

Example 14.2: For Example 14.1, if the initial power of the battery is changed to
0.4 MW, and the capacity of the generator is 11.0 MW, then, the SGED becomes a
constrained problem. The time that the generator output will be limited can be com-
puted using equation (14.31).

tg = T + 1 − 𝛼

𝜂
Pgmax = 7 + 1 − 0.04

0.08
× 11 = 2.5

This means the generator’s power will be set to 11.0 MW before hour 2.5. The optimal
generation over time will be computed through equation (14.31)

P∗
g(t) =

{
11,

16 − 2t,
if t ≤ 2.5
if t > 2.5
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TABLE 14.2 Results of the Simple SGED with Generation Constraint

Time t 1 2 3 4 5 6 7

Generation power 11 11 10 8 6 4 2

Battery power 7 10 12 12 10 6 0

The optimal battery value will be computed through equation (14.32)

P∗
b(t) =

{
Pb (t − 1) + 3,

Pb(t − 1) + 8 − 2t,
if t ≤ 2.5
if t > 2.5

The calculation results are shown in Table 14.2. It can be observed from Table 14.1
that the battery power still varies quadratically, and the generation is constant in initial
hours and then decreases linearly.

The numbers in bold in Table 14.2 show that the values change because of
the introduction of generation constraint compared with unconstrained results of
Table 14.1 in Example 14.1.

Example 14.3: For Example 14.1, the capacity of the battery is 12.0 MWh, which
will be added in the problem. The battery power over time can be computed using
equation (14.28).

P∗
b(t) =

{
12,

Pb (t − 1) + 8 − 2t,
if Pb(t) > 12
if Pb(t) ≤ 12

Thus, the optimal generation with battery capacity constraint over time will be

P∗
g(t) =

{
20 − Pb

(
tB − 1

)
,

16 − 2t,
if Pb(t) > 12
if Pb(t) ≤ 12

The calculation results are shown in Table 14.3.
The numbers in bold in Table 14.3 show that the values change because of the

introduction of battery constraint compared with unconstrained results in Table 14.1
of Example 14.1.

TABLE 14.3 Results of the Simple SGED with Battery Constraint

Time t 1 2 3 4 5 6 7

Generation power 14 12 8 8 6 4 2

Battery power 8 12 12 12 10 6 0
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TABLE 14.4 Results of the Simple SGED with Battery Upper and Lower Limits

Time t 1 2 3 4 5 6 7

Generation power 14 11 8 8 6 4 6
Battery power 8 11 11 11 6 2 0

Example 14.4: For Example 14.3, the capacity of the battery is changed to 11.0
MWh. In this case, the computed discharging value at the end of time period will
become negative, which should be set to zero.

The optimal generator power output and the battery power over time can be
computed as follows.

P∗
b(t) =

⎧
⎪
⎨
⎪⎩

11,

0

Pb (t − 1) + 8 − t,

if Pb(t) > 11
if Pb(t) < 0

if 0 ≤ Pb(t) ≤ 11

P∗
g(t) =

⎧
⎪
⎨
⎪⎩

19 − Pb (t − 1) ,
8 − Pb(t − 1),
16 − 2t,

if Pb(t) > 11
if Pb(t) < 0

if 0 ≤ Pb(t) ≤ 11

The calculation results are shown in Table 14.4.
The numbers in bold in Table 14.4 show that the values are change because

of the introduction of generation constraint compared with unconstrained results
Table 14.1 in Example 14.1.

14.4.5 Simple Smart Grid Economic Dispatch with Multiple
Generators

If the smart grid has multiple generators, the SGED problem can be expressed as
follows.

minJ =
T∑

t=1

[
NG∑

i=1

fi
(
Pgi (t)

)
+ h(Pb(t))

]
(14.36)

such that

Pb(t) = Pb(t − 1) +
NG∑

i=1

Pgi(t) − D (14.37)

0 ≤ Pb(t) ≤ Pbmax (14.38)

0 ≤ Pgi(t) ≤ Pgimax (14.39)
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where

Pgi: the power output of generator i
Pgimax: the maximal power output of generator i

NG: the number of generators in the grid.

Similar to the single SGED case, the inequality constraints are ignored first.
A Lagrange function can be formed from the objective function and power balance
equation.

The necessary conditions for an extreme value of the Lagrange function are to
set the first derivative of the Lagrange function with respect to each of the independent
variables equal to zero. Let the cost functions of the generators be

fi(Pgi) =
1
2
𝛼iP

2
gi i = 1, 2, … ,NG (14.40)

The optimality conditions for the SGED with multiple generators can be
obtained:

𝛼iP
′
gi(t) = 𝜂(T + 1 − t) i = 1, 2, … ,NG (14.41)

P′
b(t) = Pb(t − 1) +

NG∑

i=1

P′
gi(t) − D (14.42)

From the above equations, we get

P′
gi(t) =

𝜂

𝛼i
(T + 1 − t) i = 1, 2, … ,NG (14.43)

Pb
′(t) = Pb(t − 1) +

NG∑

i=1

[
𝜂

𝛼i
(T + 1 − t)

]
− D (14.44)

It can be observed from equation (14.43) that the optimal generation of each
unit will decrease linearly over time. From equation (14.44), the battery charges ini-
tially, and then discharges. The battery changes from charging to discharging when

NG∑

i=1

𝜂

𝛼
(T + 1 − t) − D = 0 (14.45)

that is
P′

b(t) = Pb(t − 1) (14.46)

when
tD = T + 1 − D

NG∑

i=1

𝜂

𝛼i

(14.47)
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From equation (14.41), we get

𝛼1Pg1(t) =
𝜕f1
𝜕Pg1

= 𝛼2Pg2(t) =
𝜕f2
𝜕Pg2

= … = 𝛼NGPgNG(t) =
𝜕fNG

𝜕PgNG
(14.48)

This corresponds to the principle of equal incremental rate of economic dispatch for
multiple generators mentioned in Chapter 4.

If the battery capacity constraint is considered, the optimal SGED with multiple
generators can be expressed as follows.

P∗
b(t) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

Pbmax,

0

Pb (t − 1) +
NG∑

i=1

𝜂

𝛼i
(T + 1 − t) − D,

if Pb(t) > Pbmax
if Pb(t) < 0

if 0 ≤ Pb(t) ≤ Pbmax

(14.49)

P∗
gk(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

Pbmax + D − Pb (t − 1) −
NG∑

i=1,i≠k

Pgi(t),

D − Pb(t − 1) −
NG∑

i=1,i≠k

Pgi(t),

𝜂

𝛼k
(T + 1 − t),

if Pb(t) > Pbmax

if Pb(t) < 0

if 0 ≤ Pb(t) ≤ Pbmax

(14.50)

It may be noted that the load is assumed to be constant over time in the above
analysis. If the load is varies as time, that is, D(t), the above mentioned method
can still be adopted. In this case, the optimal SGED with multiple generators can
be expressed as follows.

P∗
b(t) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

Pbmax,

0

Pb (t − 1) +
NG∑

i=1

𝜂

𝛼i
(T + 1 − t) − D(t),

if Pb(t) > Pbmax
if Pb(t) < 0

if 0 ≤ Pb(t) ≤ Pbmax

(14.51)

P∗
gk(t) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

Pbmax + D (t) − Pb(t − 1) −
NG∑

i=1,i≠k

Pgi(t),

D(t) − Pb(t − 1) −
NG∑

i=1,i≠k

Pgi(t),

𝜂

𝛼k
(T + 1 − t),

if Pb(t) > Pbmax

if Pb(t) < 0

if 0 ≤ Pb(t) ≤ Pbmax

(14.52)
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Example 14.5: A simple smart grid has two generators and one storage battery.
The load of 8.0 MW is assumed to be constant over time. The cost functions of two
generators are given as follows.

f1(Pg1) =
1
2
𝛼1P2

g1 = 1
2
(0.04P2

g1)

f2(Pg2) =
1
2
𝛼2P2

g2 = 1
2
(0.02P2

g2)

The battery has no initial power and the unit coefficient of battery storage is 𝜂 =
0.08. The capacities of the two generators are 25 MW and 35 MW, respectively. Let
us compute the optimal generation and battery power over a time period of 7 hours.

According to the given parameters, we get 𝛼1 = 0.04, 𝛼2 = 0.02, 𝜂 = 0.08, T =
7, and D = 30. We can first compute the key time point that the battery changes from
charging to discharging, that is,

tD = T + 1 − D
NG∑

i=

𝜂

𝛼i

= 7 + 1 − 30(
0.08
0.04

+ 0.08
0.02

) = 3

This means the battery will be charged until hour 3, and after that it will discharge.
The optimal generation can be computed through the following equations.

P′
g1(t) =

𝜂

𝛼1
(T + 1 − t) = 0.08

0.04
(7 + 1 − t) = 16 − 2t

P′
g2(t) =

𝜂

𝛼2
(T + 1 − t) = 0.08

0.02
(7 + 1 − t) = 32 − 4t

The power change of the battery can be obtained as follows.

P′
b(t) = Pb(t − 1) +

2∑

i=1

𝜂

𝛼i
(T + 1 − t) − D

= Pb(t − 1) + 16 − 2t + 32 − 4t − 30 = Pb(t − 1) + 18 − 6t

The calculation results are shown in Table 14.5. It can be observed from
Table 14.5 that the generations of the two units decrease linearly and then increase
linearly from hours 6 and 7 as the battery was fully discharged after hour 5, and the
units must make up the power mismatch to meet the power balance of the grid.

14.5 TWO-STAGE APPROACH FOR SMART GRID
DISPATCH

Chapter 5 introduces the two-stage economic dispatch approach. A similar idea will
be used for smart grid dispatch [12].
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TABLE 14.5 Results of the Simple SGED with Multiple Generators

Time t 1 2 3 4 5 6 7

Power of unit 1 14 12 10 8 6 10 10

Power of unit 2 28 24 20 16 12 20 20

Battery power 12 18 18 12 0 0 0

Given that a smart grid consists of integrated electricity and natural gas system,
and also that renewable energy sources such as photovoltaic (PV) and wind installa-
tions are available. The gas pipeline network is modeled on a single pressure level,
which supplies all gas demands. The system takes into account the increased pen-
etration of distributed generation and of renewable resources (wind and PV). Each
household or user decides autonomously when to produce electricity locally, when
to store energy, and to feed it back to the grid at a later instant, or when to consume
energy from higher network levels.

In the first stage of smart grid dispatch, all the loads and renewable energy
resources are fixed. This means the wind and PV power are not controllable or
adjustable during the first stage. In the second stage of smart grid dispatch, the
renewable energy resources are variable at some range. Three objectives can be used
for the second stage. They are (1) to minimize the fuel consumption, (2) to minimize
system loss, and (3) to minimize the movement of generator output from the initial
generation plans.

14.5.1 Smart Grid Dispatch—Stage One

Given the input–output characteristics of NG generating units are FG1(PG1),
FG2(PG2), … ,FGn(PGn). The input–output characteristics of Ng natural gas
units are Fg1(Pg1), Fg2(Pg2), … ,Fgn(Pgn). There are NR renewable resources
(PR1,PR2, … ,PRn),NE storage devices (PE1,PE2, … ,PEn), and ND loads
(PD1, PD2, … , PDn). The values PRi and PDi are fixed during first stage. The
problem is to minimize the total operation cost subject to the components and
network security constraints for a time period (for example, 24 h), that is,

minJ =
24∑

t=1

NG∑

Gi=1

FGi(PGi(t)) +
24∑

t=1

Ng∑

gi=1

Fgi(Pgi(t)) +
24∑

t=1

hEi

NE∑

Ei=1

(|PEi(t) − PEi Cap(t)|)
2

(14.53)
such that

NG∑

Gi=1

PGi(t) +
Ng∑

gi=1

Pgi(t) +
NR∑

Ri=1

PRi(t) =
ND∑

Di=1

PDi(t) +
NE∑

Ei=1

PEi(t) + PL(t)

t = 1, 2, … , 24 (14.54)

PGimin ≤ PGi(t) ≤ PGimax i ∈ NG, t = 1, 2, … , 24 (14.55)
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Pgimin ≤ Pgi(t) ≤ Pgimax i ∈ Ng, t = 1, 2, … , 24 (14.56)

|PEi(t)| ≤ PEi Cap(t) i ∈ NE, t = 1, 2, … , 24 (14.57)

|Pij(t)| ≤ Pijmax ij ∈ NT , t = 1, 2, … , 24 (14.58)

where

PDi: the real power load at bus i
PRi: the power output at renewable resource (wind or PV) bus i
PEi: the stored or released power at storage device bus i. It means that

the storage device is in store mode if the value is positive, otherwise,
in release mode

PEi Cap: the operation limitation of the storage device
PGi: the real power output at generator bus i

PGimin: the minimal real power output at generator i
PGimax: the maximal real power output at generator i

Pgi: the real power output at gas bus i
Pgimin: the minimal real power output at gas bus i
Pgimax: the maximal real power output at gas bus i

Pij: the power flow of transmission line ij
Pijmax: the power limits of transmission line ij

PL: the network losses
hEi: the penalty factor of storage device
NT: the number of transmission lines
NG: the number of generators
Ng: the number of gas units
NR: the number of renewable energy resources
NE: the number of storage devices

t: the hourly time period.

The first term in equation (14.53) corresponds to the overall cost of elec-
tricity, and the generation cost function is generally quadratic. The second term in
equation (14.53) corresponds to natural gas consumption, and the gas cost function
can be linear. The last term in equation (14.53) represents penalties for all storage
devices when they are passing their optimal operation limits.

14.5.2 Smart Grid Dispatch—Stage Two

The energy forecasts of the renewable resources at stage two will be more precise than
those at stage one. Furthermore, these DG units may be adjustable during stage two
according to the practical needs of the end users. To implement the optimal smart grid
dispatch for stage two, several objectives may be selected. On one hand, the system
loss minimization, or the system operation cost minimization can be selected as the
objective function. On the other hand, the operators expect the optimal dispatch points
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close to the economic operation points P0
Gi of the first stage. Thus, the following three

objectives may be adopted in the second stage.

(1) Minimize the fuel consumption

minJ1 =
24∑

t=1

NG∑

Gi=1

FGi(PGi(t)) +
24∑

t=1

Ng∑

gi=1

Fgi(Pgi(t)) +
24∑

t=1

NR∑

Ri=1

FRi(PRi(t))

+
24∑

t=1

hEi

NE∑

Ei=1

(|PEi(t) − PEi Cap(t)|)
2 (14.59)

(2) Minimize the system loss

minJ2 =
24∑

t=1

PL(t) (14.60)

(3) Minimize the adjustment of generation output

minJ3 =
24∑

t=1

[
NG∑

Gi=1

(
PGi (t) − P0

Gi(t)
)2 +

Ng∑

gi=1

(Pgi(t) − P0
gi(t))

2

+
NE∑

Ei=1

(
PEi (t) − P0

Ei(t)
)2

]
(14.61)

In order to actualize the transition from the time point t to t + 1 schedule suc-
cessfully, the real power generation regulations constraint, ΔPGRC imax must be con-
sidered. These are determined from the product of the relevant regulating speed and
regulating time specified.

|PGi(t) − PGi(t − 1)| ≤ ΔPGRC imax i ∈ NG, t = 1, 2, … , 24 (14.62)

or

− ΔPGRC imax + PGi(t − 1) ≤ PGi(t) ≤ ΔPGRC imax + PGi(t − 1)

i ∈ NG, t = 1, 2, … , 24 (14.63)

Thus, the regulating value of the generation is restricted by the two inequality
equations (14.55) and (14.63), which can be combined into one expression:

max{−ΔPGRC imax + PGi(t − 1), PGimin} ≤ PGi(t) ≤ min{ΔPGRC imax

+ PGi(t − 1), PGimax} i ∈ NG, t = 1, 2, ...24 (14.64)
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The optimal smart grid dispatch model for the second stage can be written as

minJ = h1J1 + h2J2 + h3J3 (14.65)

such that.

NG∑

Gi=1

PGi(t) +
Ng∑

gi=1

Pgi(t) +
NR∑

Ri=1

PRi(t) =
ND∑

Di=1

PDi(t) +
NE∑

Ei=1

PEi(t) + PL(t)

t = 1, 2, … , 24 (14.66)

max{−ΔPGRCimax + PGi(t − 1), PGimin} ≤ PGi(t) ≤ min{ΔPGRC imax

+ PGi(t − 1), PGimax} i ∈ NG, t = 1, 2, ...24 (14.67)

PGimin ≤ PGi(t) ≤ PGimax i ∈ NG, t = 1, 2, … , 24 (14.68)

Pgimin ≤ Pgi(t) ≤ Pgimax i ∈ Ng, t = 1, 2, … , 24 (14.69)

PRimin ≤ PRi(t) ≤ PRimax i ∈ NR, t = 1, 2, … , 24 (14.70)

|PEi(t)| ≤ PEi Cap(t) i ∈ NE, t = 1, 2, … , 24 (14.71)

|Pij(t)| ≤ Pijmax ij ∈ NT , t = 1, 2, … , 24 (14.72)

where

ΔPGRC imax: the real power generation regulation rate. It is also called unit ramp
up or down rate

PEimin: the minimal real power output at renewable resource i
PEimax: the maximal real power output at renewable resource i

h1: the weighting factor of the operation cost objective function
h2: the weighting factor of the loss minimization objective function
h3: the weighting factor of the generation output adjustment objective

function.

The weighting factors (h1 + h2 + h3 = 1), which have been discussed in
Chapter 5, can be determined according to the practical situation of the specific
system.

The economic dispatch model for the second stage can be solved by any opti-
mization algorithm mentioned in the preceding chapters.

Example 14.6: A smart grid example based on the IEEE 30-bus system is formed
with some data change. The modified 30 bus system consists of five traditional gen-
eration units, a wind farm, a storage device, 21 loads, and 41 transmission lines and
transformers. A wind farm with 13 MW capacity is connected to bus 9, and the cost
of wind power is $40 MWh. The storage device is connected to bus 4 (the capacity
is 20 MW an hour). For simplification, only one hour smart grid economic dispatch
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TABLE 14.6 The Cost Functions of Generators for Modified IEEE 30 Bus-System (p.u.)

Gen. No. a b c

1 0.00984 0.33500 0.00000

2 0.00834 0.22500 0.00000

5 0.00850 0.18500 0.00000

11 0.00884 0.13500 0.00000

13 0.00834 0.22500 0.00000

Wind power 0.00000 0.40000 0.00000

where: F1 = aiP
2
Gi + biPGi + ci

TABLE 14.7 The Results of Generation Scheduling for IEEE 30-Bus System (p.u.)

Gen. no. Stage one for SGED Stage two for SGED

1 0.60306 0.76099

2 0.59634 0.37911

5 0.60384 0.66204

11 0.57580 0.56390

13 0.59523 0.59998

Wind farm 0.10000 0.10816

TABLE 14.8 The Results of System Cost for IEEE 30-Bus System (p.u.)

Stage Stage one for SGED Stage two for SGED

Total system loss 0.04038 0.04018

Generation cost 0.7342592 0.7291313

(SGED) calculation using a two-stage approach is demonstrated, and the batteries
store the power during this hour. The wind power is estimated as 10 MW at the first
stage, and is adjustable at the second stage with the range of 9–13 MW.

The cost functions of the generators are quadratic curves and are shown in
Table 14.6. The cost function of wind power is linear and is also listed in Table 14.6.
The two stage SGED results are shown in Tables 14.7 and 14.8.

Table 14.7 shows the generation plans for two stages. Table 14.8 shows system
total losses and the generation costs for the two stages.

It can be observed from Table 14.8 that the system losses and the generation
cost of the second stage are lower than those from the first stage, where loss is about
0.495% reduction, and the generation cost is about 0.698% reduction.
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14.6 OPERATION OF VIRTUAL POWER PLANTS

A virtual power plant (VPP) can be understood as a coalition composed of multiple
energy producers (such as renewable sources) and, possibly, energy storage providers
(such as electric vehicles (EVs) or Vehicle-to-Grid (V2G)) that come together to sell
electricity as an aggregate [14–19]. For the sake of simplicity, we assume that there
is a unique VPP in the system, which is the VPP leader. It can contain multiple gen-
eration sites such as PV plants and wind farms. The local loads supplied by the VPP
are constant.

Let the estimated electricity generated by the VPP on the next day at the time
stage t be P(t). This estimated quantity P(t) is produced by all PV plants and wind
farms in the VPP at the time stage t and can be supplied directly to the grid, stored in
the batteries of the electric vehicles, or both. Furthermore, for the same time stage,
the VPP leader may want to transfer to the grid an additional quantity of electricity
that was stored in the batteries of the vehicles in previous time steps. These decisions
depend on the market prices and also on the cost of using storage. Before we discuss
the optimal model of VPP, we assume the method of storage payment as follows.

The payment for storage is provided to the EVs in the form of charging enti-
tlements rather than money, that is, the storage payment scheme is in the form of
energy given away to the EVs by the generators. The amount of energy given away
is measured as a proportion of the amount of storage used, which thereby acts as the
representative of the storage cost. In this way, the agent leading the VPP computes
the optimal schedule that maximizes its profit on the basis of predictions of energy
production and storage capacity for the next day, and uses this schedule to place bids
in the day-ahead market. Then, on the actual day of delivery, the leader continuously
re-optimizes the schedule for the remainder of the day to take into account the con-
tracted energy supply and the latest predictions of the energy production and available
storage [19].

To place the bid in day-ahead optimization, the VPP leader has to compute the
following five parameters that determine the supply schedule: (i) the amount supplied
directly into the grid, (ii) the amount of energy transferred to the storage devices, (iii)
the energy transferred from the storage devices such as batteries to the grid, (iv) the
amount of the storage capacity needed. For example, if the storage provider is EV,
the amount of the storage capacity is used to determine the numbers of EVs needed
in the VPP, and (v) the amount of energy transferred to the EVs as payment.

Let us suppose that the electricity supplied to the grid (either directly or drained
from the storage devices) is paid for at price c(t). Also, let the ratio between the
amount of energy given to the EVs as payment and the amount of storage used be
denoted by 𝛼 and, let 𝛽 be the storage device’s overall conversion loss, which takes
into account the percentage of electricity that is lost when electricity flows from the
grid to the storage device and vice versa. Therefore, it is necessary to store 1 + 𝛽 units
of energy to have 1 unit actually delivered from the storage device. Suppose that the
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transmission losses are ignored, and the local load supplied directly by the VPP is
Pl(t). Then, the optimal VPP model can be expressed as follows [19,20].

maxJ(Pg,Pd) =
24∑

t=1

c(t)[Pg(t) + Pd(t)] (14.73)

subject to

Pg(t) + (1 + 𝛽)Pb(t) + Pe(t) + Pl(t) = P(t) 𝛽 ∈ [0, 1] (14.74)

P(t) =
∑

i∈NW

Pwi(t) +
∑

k∈NV

Pvk(t) (14.75)

ΔE(t) + Pb(t) ≤ Pbmax(t) (14.76)

ΔE(t) − Pd(t) ≥ 0 (14.77)

ΔE(t) =
⎧
⎪
⎨
⎪⎩

0 if t = 0
t−1∑

i=0

(
Pb (i) − Pd(i)

)
otherwise

(14.78)

Pe(t) ≥ 𝛼Pbmax(t) 𝛼 ∈ [0, 1] (14.79)

0 ≤ Pe(t) + Pbmax(t) ≤ Smax(t) (14.80)

Pg(t) ≥ 0, Pb(t) ≥ 0, Pd(t) ≥ 0, Pbmax(t) ≥ 0 (14.81)

where

t: the hourly time stages
P(t): the estimated electricity generated by the VPP on the next-day at the

time stage t
Pwi(t): the power output of wind farm i in the VPP at the time stage t.
Pvi(t): the power output of PV plant k in the VPP at the time stage t
Pl(t): the local load supplied directly by the VPP at the time stage t
Pg(t): the power or energy supplied directly into the grid at the time stage t
Pb(t): the amount of energy transferred to the storage devices (batteries) at the

time stage t.
Pd(t): the energy transferred from the batteries to the grid at the time stage t

Pbmax(t): the amount of the storage capacity needed at the time stage t
Pe(t): the amount of energy transferred to the EVs at the time stage t.

Smax(t): the maximum total storage (upper bound for the storage capacity)
available to the VPP at the time stage t.
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c(t): the price for the electricity supplied to the grid (either directly or
drained from the storage devices) at the time stage t

J(Pg,Pd): the revenues raised by the VPP from the electricity sold in the market,
based on the estimated generations for the next day

ΔE(t): the net energy stored in the EVs’ batteries at the beginning of time slot t
NW: the number of wind farms in the VPP
NV: the number of PV plants in the VPP.

Equations (14.74) and (14.75) represent the power balance at the time stage
t. Equation (14.76) guarantees that the electricity that is stored in the batteries fits
the available storage. The constraint Equation (14.77) guarantees that the electricity
that is drained from the batteries does not exceed the energy that is actually stored
in the batteries. Equation (14.79) is the storage payment constraint. By solving this
optimization problem, the day-ahead bid X is given by X = Pg + Pd.

14.7 SMART DISTRIBUTION GRID

14.7.1 Definition of Smart Distribution Grid

Distribution systems are responsible for transferring electricity from the high-voltage
power grid to commercial, industrial, and residential customers. Distribution lines
consist of medium- and low-voltage circuits ranging from 35 down to 110V. Since
almost 90% of all power outages and disturbances have their roots in the distribu-
tion network, the smart devices and technologies must be applied to the distribution
system.

At present, the smart grid incorporates distributed intelligence at all levels of
the electric grid to improve reliability, security, and efficiency. To fully realize the
potential of the smart grid, it is necessary to examine the distribution system at length.
The traditional distribution system is largely passive and radial, whereas the “smart”
distribution system is expected to be active and networked [21]. Since this smart grid
mainly involves the distribution level, it is generally known as a smart distribution
grid.”

The definition of the smart distribution grid is evolving depending on the level
of deployment of automation technology. The goals of the smart distribution grid are
incremental efficiency and reliability improvements over the present level of automa-
tion technology deployment [21–28]. Better communications, computing and con-
trol schemes, distributed energy sources including microgrids and power electronic
equipment are being introduced in the smart distribution grid at an unprecedented
pace. New topologies such as looped and network structures are being adopted to
provide increased reliability and efficiency to customers.
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The emerging smart grid promises incremental efficiency and reliability
improvement for the electric distribution system. The next-generation distribution
management system (DMS) will be based on a connected model imported from a
geographical information system (GIS). DMS is a collection of applications designed
to monitor and control the entire distribution network efficiently and reliably. It acts
as a decision support system to assist the control room and field-operating personnel
with the monitoring and control of the electric distribution system. Improving the
reliability and quality of service in terms of reducing outages, minimizing outage
time, maintaining acceptable frequency and voltage levels are the key deliverables
of a DMS.

DMS is the key to integrating emerging and mature smart grid technologies
and applications focused on automation, consumer enablement, distributed energy
resources, and controllable demand, while effectively balancing optimal network
operations with environmental and open-market objectives. The DMS will main-
tain the connectivity and interconnected relationship of the distribution SCADA
substation and its associated distribution automation sites at the discrete locations
along the distribution circuit. The operator will be presented with an integrated
view of the electric distribution system including outage management system
(OMS) information and customer information system (CIS) data. Navigation, data
presentation, and analysis techniques are being developed to facilitate the operator’s
response to the dynamics of the distribution system and to system disturbances.

14.7.2 Requirements of Smart Distribution Grid

Information gathering to support decision and control actions in the smart distribu-
tion grid will be distributed, requiring new two-way communications infrastructure
and associated data management framework. In order to make the distribution grid
“smart,” it requires the following:

• Smart infrastructure, low cost sensors, and smart meters

• Smart planning and design, smart operations, smart customers, and smart cus-
tomer appliances

• Distributed energy resources, distributed information, and intelligence

• High-efficiency transformers, new storage devices, and improved fault limiting
and protective devices

• New materials such as high-temperature superconducting materials.

14.7.3 Smart Distribution Operations

Since there has been no comprehensive approach to automation of distribution
systems, distribution management system, which in general can be defined as a
computer- and communication-based system to operate and manage the distribution
systems, has had a different meaning to different utilities. It could be a system for
distribution automation (DA), outage management, or facilities and work order
management utilizing the GIS. In some cases, it is SCADA with enhanced DA
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functionality. In many instances, we find different systems within the same utility
addressing different system management issues. These systems employ application
interfaces between dissimilar applications and frequently these applications run
on separate noncompatible databases. Synchronization of databases is a constant
concern and maintenance issue for the existing DMS. The synchronization issue
has been overcome, but it requires constant attention. Although different utilities
implemented different approaches for automation over the years starting from 1970s,
the boundaries between these systems have become blurred now [23].

A DMS provides the foundation and technology for the emerging automation
technology that is being deployed along the distribution circuits. It also provides an
efficient visual interactive work environment that integrates all information sources
within a common real-time workspace. It reduces the number of systems on the oper-
ator’s desk, predicts operating issues, provides greater clarity in emergency situations
and improves operator response time. DMS also supports management of the system
with less experienced users and promotes improved staff retention.

With SCADA remote terminal units (RTUs) at the substation, the SCADA sys-
tem is immediately aware of faults that cause both temporary and permanent breaker
trips. Utilizing the capabilities of the advanced RTU and line-post sensors, DMS
supports fault detection techniques and reports power quality measurements at dis-
crete locations along the distribution circuit. The advanced RTU is integrated into
the automation system for motor-operated gang switches, pole-mounted reclosers,
pole-mounted regulators, and switched capacitor banks.

Advanced automation needed for smart distribution systems requires faster
decisions and thus real-time analysis of distribution systems. The robust distribution
state estimator is an example of the analysis tools needed for advanced automation.
The input data for analysis includes system topology, parameters of different compo-
nents in the system, status of switches and breakers, and measured data from various
points in the system. Since more data can be measured, the analysis becomes more
complex. The tools should be able to use these data effectively. Real-time analysis
will allow faster control of distribution systems. Real-time monitoring and analysis
not only provide the status on loading of equipment but also allows determination
of the next step, such as location and time of the next switch to be closed to restore
a group of customers. With judicious selection, restoration can be accomplished in
minimum time, thus improving reliability of electricity supply to the customers.

Application integration envisioned for the next generation integrated DMS
includes [23]:

• Optimal volt/var optimization

• Online power flow and short circuit analysis

• Advanced and adaptive protection

• (N − 2) Contingency analysis

• Advanced fault detection and location

• Advanced fault isolation and service restoration

• Automated vehicle management system
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• Dynamic derating of power equipment due to harmonic content in the load

• Distribution operator training simulator

• System operation with large penetration of customer-owned renewable gener-
ation

• Distribution system operation as a microgrid

• Real-time pricing and demand response applications.

14.8 MICROGRID OPERATION

14.8.1 Application of Microgrid

A microgrid is defined as a low-to-medium voltage network of small load clusters
with distributed generation sources and storage. It is characterized by the following:

• It is locally controlled.

• It is a section of distribution system, usually connected to the primary or sec-
ondary distribution system depending on the capacity.

• It contains multiple distributed energy resources (DERs), which include photo-
voltaic (PV), small wind turbines (WT), heat or electricity storage, combined
heat and power (CHP), and controllable loads.

• It is seen as an aggregate source or load by the system, which can be dispatched
if seen as a source.

• It has a capacity of less than 10 MVA.

DER applications play important role in the operation of a microgrid, which
would increase the efficiency of energy supply and reduce the electricity delivery
cost and carbon footprint in the microgrid. In addition, DER applications would also
make it possible to impose intentional islanding in microgrids. Among the DERs,
electricity storage is paid increasing attention in the smart grid. Storage devices
including batteries, supercapacitors, and flywheels could be used to match generation
with demand in microgrids. Storage can supply generation deficiencies, reduce load
surges by providing ride-through capability for short periods, reduce network losses,
and improve the protection system by contributing to fault currents. Vehicle-to-grid
(V2G) communicates with the power grid to sell demand response services by either
delivering electricity into the grid or by throttling their charging rate. V2G and
electric vehicle (EV) technologies can reduce the microgrid reliance on the grid
supply.

Owing to the DER applications and the flexibilities of microgrid operation, the
microgrid has the following advantages:

(1) For utilities

∘ The microgrid has hierarchical control of DERs;

∘ It ensures decreased transmission losses and increased efficiency.

∘ It behaves as either an interruptible load or a dispatchable source.
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∘ With fewer load sources, the demand on the microgrid infrastructure is less
than in a typical grid.

∘ By being smaller and closer to source and demand and being able to use
power generation more specific to the location, the system has higher relia-
bility and is able to respond to demand more quickly.

∘ Microgrids are laid out in a modular manner making expansion and updating
more efficient.

∘ With local control, both design and future planning are specific to the needs
of the entities participating in the microgrid.

(2) For customers

∘ There is a more diverse generation mix.

∘ There is increased reliability through islanding.

∘ Power quality and reliability are increased.

(3) For society and environment

∘ There is an increased ability for renewable energy integration.

∘ Emissions are reduced.

∘ There is potential for increased fuel efficiency (CHP).

14.8.2 Microgrid Operation with Wind and PV Resources

A “microgrid” is a cluster of distributed energy resource units, both distributed gener-
ation and distributed storage units, serviced by a distribution system, and can operate:

• in the grid-connected mode;

• in the islanded (autonomous) mode;

• dynamically between the two modes.

In the normal operation, the microgrid is connected to a traditional power grid
(main grid or macrogrid). The users in a microgrid can generate low-voltage electric-
ity using distributed generation, such as solar panels, wind turbines, and fuel cells.
The single point of common coupling with the main grid can be disconnected, with the
microgrid functioning autonomously. This operation will result in an islanded micro-
grid, in which distributed generators continue to power the users in this microgrid
without obtaining power from the electric utility located in the main grid. Thus, the
multiple distributed generators and the ability to isolate the microgrid from a larger
network in disturbance will provide highly reliable electricity supply. This island-
ing operation of microgrid is good for the users under the emergency condition. The
users will reconnect to the main grid and obtain power from the electric utility once
the whole system is back to normal status.

Major modeling components in microgrid operation with wind and PV
resources are discussed in the following sections.

Wind Speed Model Wind speed is a variable and uncertain factor. Fuzzy numbers
are one of the methods used to represent the uncertainty of wind speed. The wind
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speed is said to be an LR-type fuzzy number if

𝜇PD(x) =
⎧
⎪
⎨
⎪⎩

L
(m − x

a

)
, x ≤ m, a > 0

R
(x − m

b

)
, x ≥ m, b > 0

(14.82)

The LR-type fuzzy number of the uncertainty wind speed can be written as

v = (m, a, b)LR (14.83)

where

v: the wind speed
m: the mean value of uncertainty wind speed
a: the inferior dispersion of uncertainty wind speed
b: the superior dispersion of uncertainty wind speed.

Wind Power Model Wind model input assumptions vary from constant torque
to constant power. The frequently made assumption of constant torque means any
changes in shaft speed will result in a change in captured mechanical power, and
consequently, a change in power output of the wind plant. A simple relationship exists
between the power generated by a wind turbine and the wind parameters.

Pw = 1
2
𝜌ACp𝜂g𝜂bv3 (14.84)

where

Pw: the power generated by a wind turbine
𝜌: the air density (about 1.225 kg∕m3 at sea level, less at higher elevations)
A: the rotor-swept area, exposed to the wind (m2)

Cp: the coefficient of performance (0.59 to 0.35 depending on turbine)
𝜂g: the generator efficiency
𝜂b: the gearbox/bearings efficiency
v: the wind speed in m/s.

PV Array Model Solar cells, also called photovoltaic (PV) cells by scientists, con-
vert sunlight directly into electricity. PV panels used to power homes and businesses
are typically made from solar cells combined into modules that hold about 40 cells.
Many PV panels combined together to create one system called a PV array. For large
electric utility or industrial applications, hundreds of PV arrays are interconnected to
form a large utility-scale PV system.

In the actual utility, the controlled current source is generally used for modeling
the PV array. For a PV array with NS PV cells in series and NP PV cells in parallel,
the terminal current IA is

IA = NP ⋅ IL − NP ⋅ I0 ⋅

[
exp

(
q ⋅

(
VA + IA ⋅ Rsa

)

NS ⋅ n ⋅ m ⋅ k ⋅ T

)
− 1

]
(14.85)
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where

NS: the number of PV modules in series
NP: the number of PV modules in parallel
I0: the diode saturation current
IL: the short-circuit current of the PV cell
n: the ideal constant of diode

VA: the terminal voltage of the PV array
IA: the terminal current of the PV array

Rsa: the equivalent series resistance of the PV array.

Energy Storage System Model Energy storage system (ESS) applications are
classified according to power, energy capacity, usage time, etc. Applications include
megawatt-scale power storage for frequency regulations, large-capacity energy stor-
age (MWh scale) for peak-time demand response, and residential energy storage with
medium capacity (kWh scale).

If a storage device is modeled as ideal storage in combination with a storage
interface, the power exchange P𝛼(k) is defined as the difference between the amounts
of stored energy E𝛼(k) at two consecutive time steps, plus some standby energy losses
Estb
𝛼 , which must be covered at each time period (Estb

𝛼 ≥ 0) [13]:

P𝛼(k) =
Ė𝛼
e𝛼

= 1
e𝛼

dE𝛼
dt

≈ 1
e𝛼

ΔE𝛼
Δt

= 1
e𝛼

(
E𝛼 (k) − E𝛼(k − 1)

Δt
+ Estb

𝛼

)
(14.86)

The parameter e𝛼 stands for the charging (e+𝛼 ) or discharging (e−𝛼 ) efficiency
of the storage device. The subscript𝛼stands for the storage mediums such as heat or
electricity.

The stored energy E𝛼(k) and the power exchange P𝛼(k) have to remain within
limits, resulting in the following constraints for the storage device:

P𝛼,min(k) < P𝛼(k) < P𝛼,max(k) (14.87)

E𝛼,min(k) − 𝜀(k) < E𝛼(k) < E𝛼,max(k) + 𝜀(k) (14.88)

𝜀(k) ≥ 0 (14.89)

14.8.3 Optimal Power Flow for Smart Microgrid

Distributed Optimal Power Flow Model [29–31] As we mentioned above,
a microgrid is a portion of an electric distribution network located downstream
of the distribution substation that supplies a number of industrial and residential
loads through distributed energy resources such as distributed generation (DG) and
distributed storage (DS) units. To achieve the goal of economic operation of the
entire system, it is necessary to optimally operate all energy resources (traditional
generation units in the main grid and DG units in the microgrid) for the whole
system. However, for real-time network management, it is generally required to
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find a new network operational setup rapidly (e.g., in a few seconds or minutes)
in order to promptly respond to abrupt local load variations and to cope with the
intermittent power generation that is typical of renewable-based DG units. It is
then of paramount importance to solve the distributed OPF problem in a distributed
manner, by decomposing the main problem into multiple sub-instances that can
be solved efficiently and in parallel. The microgrid optimization operation may
have some differences compared with the general optimization problems that are
discussed in Chapters 8 and 12, where the distribution system has been typically
assumed to be a balanced three-phase system, and hence single-phase equivalents
are used to reduce the computational burden. However, such an assumption for
distribution feeders is not very realistic because of untransposed three-phase feeders,
existence of single-phase laterals, and unbalanced loads. In addition, single-phase
DG units may worsen the network imbalance. Thus, there is a need to consider
three-phase models of distribution systems for more precise operational decisions in
optimal microgrid operation [29–31].

There are two types of components in a microgrid, namely, the series and
shunt components. Conductors/cables, transformers, Load tap changers (LTCs),
and switches are series components. Conductors and cables can be modeled as
𝜋-equivalent circuits. Switches are modeled as zero-impedance series components.
Three-phase transformer models depend on the connection type (wye or delta),
with the most common types of distribution system transformers being considered,
namely, single-phase and three-phase wye grounded–wye grounded, delta–wye
grounded, and open wye–open delta connections. Voltage-regulating transformers
in distribution systems are equipped with LTCs.

DG units, loads, and capacitors are shunt components, which are modeled
for individual phases separately to represent unbalanced three-phase loads, as
single-phase loads and single-phase capacitors are common in distribution feeders.
A polynomial load model is adopted, where each load is modeled as a mix of
constant-impedance, constant-current, and constant-power components. Capacitors
are modeled as constant-impedance loads. Capacitor banks are modeled as multiple
capacitor units with switching options. Wye-connected and delta-connected loads
and capacitors are often adopted.

For each series element, a set of equations based on the ABCD parameters
are used, which relate the three-phase voltages and currents of the sending-end and
receiving-end as follows:

[
Vs,f

Is,f

]
=

[
A B
C D

] [
Vs,r

Is,r

]
∀s (14.90)

where

s: the series elements, s = 1, 2, … Ns
A,B,C,D: the three-phase ABCD parameter matrices, p.u.

V: the vector of three-phase line voltage phasors, p.u.
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I: the vector of three-phase line current phasors, p.u.
r: the receiving-end of the component
f : from-end or sending-end of the component

The ABCD parameters of all series elements are constant except for LTCs,
which depend on the setting of tap positions during operation. The following addi-
tional set of equations is needed to represent the A and D matrices in (14.88) for each
LTC:

At = W
⎡
⎢
⎢⎣

1 + ΔSttapa,t
1 + ΔSttapb,t
1 + ΔSttapc,t

⎤
⎥
⎥⎦

∀t (14.91)

Dt = At
−1 ∀t (14.92)

where

tap: the tap position
t: the controllable tap changers, t = 1, 2, … Nt

ΔS: the percentage voltage change for each LTC tap
a, b, c: the phases

W: the 3 × 3 identity matrix.

Equations (14.91) and (14.92) are for a tap changer with per-phase tap controls.
For a three-phase tap changer, the following additional equation is used to make sure
that all tap operations are the same:

tapa,t = tapb,t = tapc,t (14.93)

If the load is wye-connected on a per-phase basis, the load can be represented
as follows.

For constant power loads:

Vp,dI∗p,d = Pp,d + jQp,d ∀p,∀d (14.94)

For constant impedance loads:

Vp,d = Zp,dIp,d ∀p,∀d (14.95)

For constant current loads:

|Ip,d|(∠Vp,d − ∠Ip,d) = |I0
p.d|∠𝜃p,d ∀p,∀d (14.96)
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where

p: the phases, p = a, b, c
d: the demand loads, d = 1, 2, … Nd
𝜃: the load power factor angle, rad

I0: the load phase current at specified power and nominal voltage, p.u.
P: the active power, p.u.
Q: the reactive power, p.u.
Z: the load impedance at specified power and nominal voltage, p.u.

For each wye-connected capacitor bank with multiple capacitor blocks, the cor-
responding model are represented by following mathematical models:

Vp,c = Xp,cIp,c ∀p,∀c (14.97)

Xp,c =
−j(I0

p,c)2

Cp,cΔQp,c
∀p,∀c (14.98)

Qp,c = Nmaxp,cΔQp,c ∀p,∀c (14.99)

where

c: the controllable capacitor banks, c = 1, 2, … Nc
V0: the nominal phase voltage, p.u.
X: the reactance of capacitor, p.u.

Nmax: the number of capacitor blocks available in capacitor banks
C: the number of capacitor blocks switched in capacitor banks

ΔQ: the size of each capacitor block in capacitor banks, p.u.

If the loads and capacitors banks are delta-connected, line-to-line voltages
and currents need to be used. In that case, equations (14.95)–(14.99) can be used
by replacing the line variables with line-to-line variables. The relationships of
line-to-line variables to line variables are as follows:

⎡
⎢
⎢⎣

Va,b
Vb,c
Vc,a

⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

1 −1 0
0 1 −1

−1 0 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

Va
Vb
Vc

⎤
⎥
⎥⎦

(14.100)

⎡
⎢
⎢⎣

Ia
Ib
Ic

⎤
⎥
⎥⎦
=

⎡
⎢
⎢⎣

1 −1 0
0 1 −1

−1 0 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

Ia,c
Ib,a
Ic,b

⎤
⎥
⎥⎦

(14.101)

Equations (14.90)–(14.101) correspond to the component models in the micro-
grid. If the objective of the optimal microgrid operation is to minimize the power
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losses of the microgrid, the distributed optimal power flow model for the smart micro-
grid can be expressed as follows.

min f =
NS∑

s=1

Rp,sI
2
p,s s ∈ NS (14.102)

such that
Equations (14.90)–(14.101), and

∑

DG→i

Ip,DG+
∑

c→i

Ip,c+
∑

r→i

Ip,s,r =
∑

f→i

Ip,s,f +
∑

d→i

Ip,d ∀p,∀d,∀DG,∀c (14.103)

Vp,DGi = Vp,ci = Vp,s,ri = Vp,s,fi = Vp,di = Vp,i ∀p,∀d,∀DG,∀c (14.104)

|Ip,s| ≤ Ip, s max s ∈ NS (14.105)

Vp,imin ≤ Vp,i ≤ Vp,imax i ∈ N (14.106)

where

Ip,s: the plural current in the series component s
Rp,s: the resistance of the series component s
Vp,i: the node voltage at node i
DG: the DG units in microgrid

N: the set of nodes in microgrid
NS: the set of the series components.

In the above model, subscripts “min” and “max” represent the lower and
upper bounds of the constraint. The symbol x → i means that x is connected to
node i. Equation (14.103) represents Kirchhoff’s first law (KCL) for each node and
phase. Obviously, at each node and phase, the voltages of the elements connected
to that node are equal to the corresponding nodal voltage, which is shown in
equation (14.104).

Solution Method In the above three-phase DOPF model, LTC and capacitor-
switching actions are discrete operations. Thus, this is a mixed integer nonlinear
programming (MINLP) problem. In order to simplify the solution of such an MINLP
problem, we may relax the integer variables and convert the problem into a nonlinear
programming (NLP) one.

To alleviate the use of integer variables, a quadratic penalty term is aug-
mented to the objective function, resulting in the following modified objective
function:

min f ′ = f +
∑

ki

hki(xki − round(xki))2 (14.107)
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where

ki: the integer variables, ki = 1, 2, … Ni
xki: the tap and cap variables
hki: the penalty value, which is a big number.

The quadratic term adds a high penalty value to the objective function at nonin-
teger solutions, and thus drives xki close to its corresponding integer value round (xki).
By employing the above method, the MINLP problem of DOPF in Section 14.6.2 is
converted into an NLP problem. The optimization algorithms presented in Chapter 8
can be used to solve the DOPF.

14.9 A NEW PHASE ANGLE MEASUREMENT
ALGORITHM

With the adoption of PMU and other intelligent devices in the smart grid, all kinds of
power system parameters such as phase angle are easily measured. To ensure secure,
reliable, and stable operation the smart grid, as well as to reduce the impact of the
measurement error, proper methods to analyze and handle the measurement data are
needed. This section introduces a new phase angle measurement algorithm [32].

14.9.1 Error Analysis of Phase Angle Measurement Algorithm

Owing to its superiority in the aspect of harmonic restraining, the discrete Fourier
transform (DFT) is generally usedto study phase angle measurement. This has been
proven to be sufficiently accurate in a variety of power system applications when
the input signal is three-phase voltage and the voltage frequency is near the nominal
value.

When the frequency of the input signal deviates from the nominal value, the tra-
ditional DFT may cause a fence effect and spectrum leakage due to the asynchronous
sampling, which brings large error in the phase angle measurement. Considering a
sinusoidal input signal x(t), which is sampled N times per cycle of the f0 waveform,
then the error of measured phase angle by DFT method should be as follows:

Δ𝜑 ≈
(N − 1)𝜋Δf

Nf0
−

Δf

2f0 + Δf
sin

(
2𝜑 +

2𝜋 (N − 1) (f0 + Δf )
Nf0

)
= Δ𝜑0 + Δ𝜑s

(14.108)
According to the above equation, when the frequency deviation of the input

stays at a constant value, the phase angle measurement error consists of the invari-
ant part Δ𝜑0 and the sine variation part Δ𝜑s. The frequency deviation is practically
deemed as unchanged during only one or two cycles in power systems. A sample x(t)
of frequency deviation Δf with sampling frequency Nf0 can be expressed by Euler’s
formula as follows:

x(n) =
√

2X

(
e

j
(

2n𝜋(f0+Δf )
Nf0

+𝜑
)

+ e
−j

(
2n𝜋(f0+Δf )

Nf0
+𝜑

))

2
(14.109)
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Considering a sinusoidal input signal of angular frequency 𝜔 given by

x(t) =
√

2X cos(𝜔t + 𝜑) (14.110)

where, 𝜔 = 2𝜋(Δf + f0), f0 is the nominal frequency, and Δf is the frequency devia-
tion from the nominal value.

According to electrical engineering convention, this signal is usually repre-
sented by a complex number:

•
x = Xej𝜑 = X cos𝜑 + jX sin𝜑 (14.111)

which is called the phasor of the input signal.
If the input signal is sampled N times per cycle of the f0 waveform, we can get

x(n) = x(t)|t=nTs
=

√
2X cos

(
2n𝜋

(
f0 + Δf

)

Nf0
+ 𝜑

)
(14.112)

Equation (14.112) can be expressed with the help of Euler’s formula as follows:

x(n) =
√

2X

(
e

j
(

2n𝜋(f0+Δf )
Nf0

+𝜑
)

+ e
−j

(
2n𝜋(f0+Δf )

Nf0
+𝜑

))

2
(14.113)

Windowing x(n) with a rectangular window d(n), we can obtain

xd(n) = x(n)d(n) (14.114)

where

d(n) =

{
1, 0 ≤ n ≤ N − 1

0, n < 0, n ≥ N
(14.115)

The DFT of d(n) is

D(ej𝜔) =
N−1∑

n=0

e−jn𝜔 = e−j𝜔 N−1
2

sin(𝜔N∕2)
sin(𝜔∕2)

(14.116)

So we can deduce the DFT of xd (n) as

Ẋ =
N−1∑

n=0

xd(n)e
−j 2𝜋n

N

=
√

2Xej𝜑e
j
(
(N−1)𝜋(Δf )

Nf0

) sin
(
𝜋Δf
f0

)

N sin
(
𝜋Δf
Nf0

)
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+
√

2Xe−j𝜑e
−j

(
2n(N−1)

N
+ (N−1)𝜋(Δf )

Nf0

) sin
(
𝜋Δf
f0

)

N sin
(
𝜋Δf
Nf0

+ 2𝜋
N

)

= Aej𝜑 + Be−j𝜑 (14.117)

where

A =
√

2X
sin

(
𝜋Δf
f0

)

N sin
(
𝜋Δf
Nf0

)e
j
(
(N−1)𝜋Δf

Nf0

)

(14.118)

B =
√

2X
sin

(
𝜋Δf
f0

)

N sin
(
𝜋(2f0+Δf )

Nf0

)e
−j

( (N−1)𝜋(2f0+Δf )
Nf0

)

(14.119)

For the convenience of analyzing the phase angle, equation (14.117) can be written
as

•
x = Aej𝜑

⎛
⎜
⎜
⎜⎝

1 + e
−j

(
2𝜑+ 2𝜋(N−1)(f0+Δf )

Nf0

) sin
(
𝜋Δf
Nf0

)

sin
(
𝜋Δf
Nf0

+ 2𝜋
N

)
⎞
⎟
⎟
⎟⎠

(14.120)

In equation (14.120), the phase angle of the term A is just the invariant error part
Δ𝜑0 in equation (14.108) and the angle of phasor in the bracket is the sine variation
error part Δ𝜑s in (14.108) according to the definition of phasor addition. The above
derivation shows that the existence of B∗(exp(−j(𝜑))) in (14.117) is the essential rea-
son that induces the Δ𝜑s, so the B∗(exp(−j(𝜑))) could be the key point in maximally
eliminating the sinusoidal function error when improving the algorithm.

Considering that the coordinate axis has the orthogonality property in 𝛼𝛽 sta-
tionary coordinates system, and two expression forms of 𝛽-axis that phase reversed
with each other can be obtained according to leading or lagging 𝛼-axis 90∘, these
characteristics could be applied to the calculation of eliminating the B∗(exp(−j(𝜑))).
Let us imitate an 𝛼𝛽 stationary coordinate including two reversed-phase 𝛽-axis, and

set input signal
•
x as phasor 𝛼, 𝜋∕2 after the phasor 𝛼 as an imitation of phasor 𝛽1,

and 𝜋∕2 before the phase 𝛼 as an imitation of phasor 𝛽2. Since the input frequency is
not exactly the nominal one, the expressions of phasor 𝛼, phasor 𝛽1, and phasor 𝛽2
should be written as follows:

•
x𝛼 = Aej𝜑 + Be−j𝜑 (14.121)

•
x𝛽1 = Ae

j
(
𝜑+ 𝜋(f0+Δf )

2f0

)

+ Be
−j

(
𝜑+ 𝜋(f0+Δf )

2f0

)

(14.122)

•
x𝛽2 = Ae

j
(
𝜑− 𝜋(f0+Δf )

2f0

)

+ Be
−j

(
𝜑− 𝜋(f0+Δf )

2f0

)

(14.123)
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By convention, the positive sequence component of phase 𝛼 is defined as the
positive sequence phasor of the 𝛼𝛽 stationary coordinate, which can be derived by
phasor 𝛼 and phasor 𝛽1 as well as phasor 𝛼 and phasor 𝛽2.

•
x1+ =

•
x𝛼1+

= 1
2

(•
x𝛼 + e−j 𝜋

2
•
x𝛽1

)

= 1
2

(
Aej𝜑

(
1 + e

j 𝜋Δf
2f0

)
+ Be−j𝜑

(
1 + e

−j
(
𝜋+ 𝜋Δf

2f0

)))
(14.124)

•
x2+ =

•
x𝛼2+

= 1
2

(•
x𝛼 + ej 𝜋

2
•
x𝛽2

)

= 1
2

(
Aej𝜑

(
1 + e

−j 𝜋Δf
2f0

)
+ Be−j𝜑

(
1 + e

j
(
𝜋+ 𝜋Δf

2f0

)))
(14.125)

What is expressed in equations (14.124) and (14.125) is the same positive sequence

phasor
•
x+. When both phasor 𝛽1 and phasor 𝛽2 are orthogonal with phasor 𝛼 and we

can deduce the following expression.

2
•
x+ = 1

2

(
Aej𝜑

(
1 + e

j 𝜋Δf
2f0

)
+ Be−j𝜑

(
1 + e

−j
(
𝜋+ 𝜋Δf

2f0

)))

+ 1
2

(
Aej𝜑

(
1 + e

−j 𝜋Δf
2f0

)
+ Be−j𝜑

(
1 + e

j
(
𝜋+ 𝜋Δf

2f0

)))
(14.126)

The variable 𝜋Δf∕2f0 is very small in practical applications, so equation (14.86) can
be simplified as (14.131) through performing a series of transformation shown below.

1 + e
j 𝜋Δf

2f0 = 1 +
(

cos
𝜋Δf

2f0
+ j sin

𝜋Δf

2f0

)
(14.127)

1 + e
−j

(
𝜋+ 𝜋Δf

2f0

)

= 1 + cos

(
𝜋 +

𝜋Δf

2f0

)
− j sin

(
𝜋 +

𝜋Δf

2f0

)

= 1 − cos
𝜋Δf

2f0
+ j sin

𝜋Δf

2f0
(14.128)

1 + e
−j 𝜋Δf

2f0 = 1 +
(

cos
𝜋Δf

2f0
− j sin

𝜋Δf

2f0

)
(14.129)

1 + e
j
(
𝜋+ 𝜋Δf

2f0

)

= 1 + cos

(
𝜋 +

𝜋Δf

2f0

)
+ j sin

(
𝜋 +

𝜋Δf

2f0

)
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= 1 − cos
𝜋Δf

2f0
− j sin

𝜋Δf

2f0
(14.130)

•
x+ = 1

2

(
Aej𝜑

(
1 + cos

𝜋Δf

2f0

)
+ Be−j𝜑

(
1 − cos

𝜋Δf

2f0

))

= 1
2

(
Aej𝜑

(
2 −

(
1 − cos

𝜋Δf

2f0

))
+ Be−j𝜑

(
2sin2 𝜋Δf

4f0

))

= 1
2

(
Aej𝜑

(
2 − 2sin2 𝜋Δf

4f0

)
+ Be−j𝜑

(
2sin2 𝜋Δf

4f0

))
(14.131)

If the frequency deviation is small, the following simplification could be used:

2 − 2sin2 𝜋Δf

4f0
≈ 2 (14.132)

2sin2 𝜋Δf

4f0
≈

(𝜋Δf )2

8f0
2

(14.133)

From (14.91)–(14.93), we get

•
x+ = Aej𝜑 +

(
𝜋Δf

4f0

)2

Be−j𝜑 (14.134)

According to equations (14.108)–(14.120), the phase angle measurement error
of the proposed algorithm can be specified as

Δ𝜑 =
(N − 1)𝜋Δf

Nf0
−

(
𝜋Δf

4f0

)2 Δf

2f0 + Δf
sin

(
2𝜑 +

(N − 1) 2𝜋(f0 + Δf )
Nf0

)

(14.135)
Equation (14.135) shows that the sinusoidal function error was multiplied by an atten-
uation coefficient (𝜋Δf∕4f0)2, which effectively eliminates the sine variation part
Δ𝜑s.

When the sampling rate N is an integer multiple of 4, and the vector of the

samples is xk, the actual phasor
•
x𝛼 and the simulative phasor

•
x𝛽1, and

•
x𝛽2 can be

expressed in DFT form as follows:

•
x𝛼 =

2
N

N−1∑

k=0

xke−jk 2𝜋
N (14.136)

•
x𝛽1 = 2

N

5N
4
−1∑

k=N
4

xke−jk 2𝜋
N (14.137)
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•
x𝛽2 = 2

N

3N
4
−1∑

k=−N
4

xke−jk 2𝜋
N (14.138)

According to the discussion above, we can get the practical equation to imple-
ment the algorithm as equation (14.139).

•
x+ = 1

N

⎛
⎜
⎜
⎜⎝

ej 𝜋
2

3N
4
−1∑

k=− N
4

xke−jk 2𝜋
N + 2

N−1∑

k=0

xke−jk 2𝜋
N + e−j 𝜋

2

5N
4
−1∑

k= N
4

xke−jk 2𝜋
N

⎞
⎟
⎟
⎟⎠

(14.139)

14.9.2 Simulation Results

MATLAB-based simulation examples are presented to verify the effectiveness of the
algorithm. The frequency of the input signal is set to 48Hz, and the number of sam-
ples N = 36. The curves in Figure 14.3 show the measurement errors obtained by
the proposed method, the Qps–DFT algorithm and the conventional DFT algorithm,
respectively, with the phase angle of input signal varying from −180∘ to 180∘. It can
be observed from Figure14.3 that the average deviations of the three methods are
equal, whereas the peak–peak value of sine variation error of the proposed method,
which is remarkably eliminated compared to that of DFT algorithm, is only 0.00232.

To clarify the measurement accuracy of the proposed method compared with
the Qps–DFT algorithm more clearly, Figure 14.4 shows the phase angle errors of the
two methods with offset compensation, in which a pure sinusoidal continuous-time
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Figure 14.3 The error comparison between proposed method and conventional DFT for
48-Hz input.
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signal is employed as the input signal. From Figure14.4, the peak–peak value of
sinusoidal function error of Qps–DFT is 0.11102, which is smaller than that of DFT,
but still much bigger than that of the proposed method, 0.00232.

Considering the large amount of harmonics in practical power system, which
greatly affect the precision of the phase angle measurement, Figure 14.5 shows
the angle errors of the proposed method and the Qps–DFT algorithm with offset
compensation under the existence of the third, fifth, and seventh harmonics, and the
THD (total harmonic distortion) of the input signal to be 10.11%. As seen from the
Figure 14.5, the accuracy of both methods is decreased compared with Figure 14.4.
The peak–peak value of sinusoidal variation error presented is 0.03964, which is
much smaller than 0.141625 of Qps–DFT, still within the precision allowed in
power system.

PROBLEMS AND EXERCISES

1. What is a “smart grid”?

2. What are the major characteristics of the smart grid?

3. What is a “smart distribution grid”?

4. What is meant by “demand response”?

5. What is DMS?

6. What is VPP?

7. Will smart grid reduce outages?

8. Will smart grid give utility companies control of customers’ electric use?

9. How can a customer use or take advantage of the smart grid?

10. What is AMI?

11. State “True” or “False”

11.1 The smart grid does not contain a generation system.

11.2 The microgrid is part of a distribution system.

11.3 Islanding operation for a microgrid is not allowed.

11.4 A battery can supply power to a grid.

11.5 There is no load curtailment in the smart grid.

11.6 The PMU will completely replace the traditional SCADA system in the smart grid.

11.7 Transmission losses can be reduced in the smart grid.

11.8 The smart grid can reduce the chance of system fault.

12. Multiple choices

12.1 Which ones are smart devices?

(a) PMU (b) Smart meter
(c) Transmission line (d) Digital protective relay



624 CHAPTER 14 OPERATION OF SMART GRID

12.2 Which ones are components of a virtual power plant?

(a) Energy storage (b) Hydro plant
(c) Wind farm (d) PV plant

12.3 Which ones are energy storage providers?

(a) Electric vehicles (EVs) (b) Renewable sources
(c) Wind farm (d) Vehicle-to-Grid (V2G)

12.4 Which ones are storage devices?

(a) Super-capacitors (b) Batteries
(c) Flywheels (d) Generator

12.5 Which ones are distributed energy resources?

(a) Photovoltaic (b) Small wind turbines
(c) Electricity storage (d) Combined heat and power

13. A simple smart grid has one generator and one storage battery. The load is assumed as
constant over time, 12.0MW. The generator cost function is quadratic:

f (Pg) =
1
2
𝛼P2

g = 1
2
(0.02P2

g)

The unit coefficient of battery storage is 𝜂 = 0.08. The capacity of generator is 30MW.
The time period is 5 h.

(1) if the battery has initial power 2 MW, compute the optimal generation and battery
power over time.

(2) if the battery has no initial power, compute the optimal generation and battery power
over time.

(3) Does the battery starts to discharge at the same time for the above two cases?

14. A simple smart grid has one generator and one storage battery taking generator constraint
into consideration. If all data are the same as those in Exercise 14, but the generator
capacity, which is 18MW.

(1) if the battery has initial power 2 MW, compute the optimal generation and battery
power over time.

(2) if the battery has no initial power, compute the optimal generation and battery power
over time.

15. A simple smart grid has one generator and one storage battery. The load is assumed as
constant over time, 8.0MW. The generator cost function is quadratic:

f (Pg) =
1
2
𝛼P2

g = 1
2
(0.03P2

g)
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The unit coefficient of battery storage is 𝜂 = 0.06. The capacity of generator is 30MW.
The time period is 7 h.

(1) When does the battery start to discharge?

(2) If the battery has initial power 3 MW, compute the optimal generation and battery
power over time.

(3) If the battery has no initial power, compute the optimal generation and battery power
over time.

16. A simple smart grid has one generator and one storage battery taking both generator and
battery constraints into consideration. If all data are the same as those in Exercise 16, but
the generator capacity and the battery capacity. The generator limit is 12 MW.

(1) Considering only generation constraint. If the battery has initial power 2 MW and the
generator limit is 12 MW, compute the optimal generation and battery power over
time (T = 7).

(2) Considering only generation constraint. If the battery has no initial power and the
generator limit is 12 MW, compute the optimal generation and battery power over
time (T = 7).

(3) Considering only battery constraint. If the battery has initial power 2 MW and the
battery capacity limit is 12 MW, compute the optimal generation and battery power
over time (T = 7).

(4) Considering both generator and battery constraints. If the battery has initial power
4MW, the generator limit is 11MW, and the battery capacity is 10MWh, compute
the optimal generation and battery power over time (T = 7).

17. A simple smart grid has two generators and one storage battery. The load is assumed as
constant over time, 28.0 MW. The cost functions of two generators are

f (Pg1) =
1
2
𝛼1P2

g1 = 1
2
(0.06P2

g1)

f (Pg2) =
1
2
𝛼2P2

g2 = 1
2
(0.03P2

g2)

The unit coefficient of battery storage is 𝜂 = 0.12. The time period is 7 h.

(1) When does the battery start to discharge?

(2) If the battery has initial power 4 MW, compute the optimal generation and battery
power over time.

(3) If the battery has no initial power, compute the optimal generation and battery power
over time.

(4) If the battery has no initial power, and the limits of two generators are 25 MW, com-
pute the optimal generation and battery power over time.

(5) If the battery has no initial power, and the battery capacity is 20 MW, compute the
optimal generation and battery power over time.

(6) If the battery has no initial power, the battery capacity is 20 MW, and the limits of
two generators are 25 MW, compute the optimal generation and battery power over
time.
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AC power flow, 33, 43, 312, 561
Admittance matrix, 14, 543
Advanced metering infrastructure,

AMI, 580,
AGC, 52
AHP, 2, 253, 338, 437, 522, 574
Analysis:

Contingency, 56, 175
Sensitivity, 68

Analytic Hierarchy Process:
Eigenvalue, 279, 345
Eigenvector, 279, 345
Hierarchical model, 444
Judgment matrix, 279, 345, 444
Performance index, 234, 286, 378, 444,

491
Scaling method, 286

Available transfer capability:
ATC, 221
Congestion management, 437
Total transfer capability, 215

Average production cost, 254

Battery, 585
B’ matrix

Decoupled power flow, 36
Sensitivity analysis, 68

B coefficients, losses, 105
Benefit cost ratio:

CBA, 574
Cost benefit analysis, 574

Beta distribution, 533
Biomass energy, 409
Bus:

Load, 15, 308
PQ, 15, 308
PV, 15
Reference, 15
Slack, 15
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Capability, ATC, 221
Capacity, generation, 222
Chance Constrained Optimization, 555
Chi-square distribution, 536
Classic economic dispatch, 91
Combined active and reactive dispatch,

337
Combined heat and power technology,

CHP, 586
Complementary slackness conditions, 160,

165
Congestion management, 437
Constraints

Active power, 341
Dynamic, 344
Import and export, 341
OPF, 354
Reactive power, 341
Shift factor, 56
Spinning reserve, 266

Contingency analysis, 56
Continuation power flow method, 245
Control, VAR, 561
Controller, 412, 468
Convergence, Power flow, 20
Coordination equation, 108
Cost

Decremental, 216
Fuel, 10, 91, 233
Incremental, 216

Cost benefit analysis, 574
Cost function:

Linear, 146
Piecewise linear, 156
Quadratic, 133, 152

Customer information system, CIS, 606

Dantzig-Wolf decomposition, 552
DC power flow, 43
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Decoupled power flow, 13
Demand response, DR, 580
Demand Side Management, DSM, 583
Density function, probability, 563
Deterministic method, 555
Discrete Fourier Transform, DFT, 616
Dispatch:

Economic, 91, 145, 215, 545, 587
Multiple areas, 215
Secure, 145

Distributed energy resource, DER, 582
Distributed generation, DG, 407, 580
Distributed interruptible load shedding,

437
Distributed storage, 609
Distribution automation, DA, 580
Distribution factor, line outage, 61
Distribution management system,

DMS, 606
Distribution network:

Load flow, 488
Reconfiguration, 483

DNRC, 483
Dual:

Optimization, 260
Theory, 165, 261
Variables, 166

Duality gap, 262, 559
Dynamic programming, 253, 559

Economic dispatch, 91, 145, 215, 545,
587

Economic operation, 98, 197, 218, 611
Eigenvalue, 279, 345
Eigenvector, 279, 345
Electric vehicle, EV, 584
Energy

Control center, 52
Function, 128
Management system, EMS, 52
Market, 52
Storage, 584
Storage device, 584
Storage system, 611

Equal incremental rate, 97
Everett method, 451
Evolutionary algorithm, 266, 521
Evolution programming, 266
Expansion method, security regions, 381
Exponential distribution, 533

Fast decoupled power flow, 33
Fault, 427
Federal Energy Regulatory Commission,

FERC, 583
Fitness function, 124, 201, 507
Frequency drop, 438
Fuel cost, 10, 91, 233
Fuzzy

Numbers, 537, 609
Power flow, 544
Set, 537

GA, 9, 123, 201, 269
Gamma distribution, 569
Gauss-Seidel method, 13
Geographic Information System, GIS, 584
Generator

Bus, 13
Doubly fed, 424
Input-Output Characteristic, 91
Shift factor, 51
Squirrel-cage Induction, 424
Synchronous, 424

Genetic algorithm
Chromosomes, 127, 202, 265
Crossover, 124, 202, 269
Fitness function, 124, 201, 507
Mutation, 124, 202, 269
Selection, 202, 265

Geothermal energy, 409
Gradient:

Economic dispatch, 116
Method, 116
OPF, 297
Search, 116

Graph theory, 164, 483
Grid-Connected PV System, 409
Gumbel distribution, 535

Harmonic, 411, 608
Heuristic algorithm, 484, 559
Hierarchical model, 444
Home area network, HAN, 583
Hopfield Neural Network, 128
Hydro

Input output, 96
Scheduling, 96
Unit, 96

Hydro characteristic, unit, 96
Hydrothermal system, 109
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IEEE test systems, 150
Incremental:

Cost, 216
Power loss, 105
Rate, 97

Input output characteristic, 91
Intelligence search methods, 9, 297
Intelligent load shedding, 440
Interchange, 215
Interconnected area, 221
Interior point algorithm, 317
Internal combustion engine, 586
IPOPF, 317
IQIP, 315
Integrated communications device, 584
Iteration, Power flow, 16

Jacobian matrix, 17, 68, 246, 309
Judgment matrix, 279, 345

KCL, 5, 57, 174
Kuhn-Tucker conditions, 8, 141
KVL, 5, 187

Labeling algorithm, OKA, 196
Labeling rules, NFP, 196
Lagrange:

Equation, 140
Function, 53, 100, 260
Multiplier, 99
Relaxation, 253

Line outage distribution factor, 61
Line overload, 329
Linear programming

Constraints, 145
Economic dispatch, 145
Objective function, 145, 385
OPF, 297
Security regions, 365

Load:
Bus, 15
Flow, 13, 377, 484, 542
Damping coefficient, 439
Probability distribution function, 531
Reference, 56
Shedding, 437

LODF, 51
Lognormal distribution, 531
Loss:

Factor, 53

Minimization, 198, 314
Network, 53
Power, 68
Sensitivity, 68, 472
Sensitivity calculation, 68
Transmission, 51

LP, 2, 145, 261, 450

MAED, 215
Marginal cost, 172, 233
Market, energy, 53
Matrix:

B’, 36
B”, 36
Jacobian, 17, 68, 246, 309

Matroid theory, 515
Maximum Power Point Tracking,

MPPT, 410
Mean value, 531
Microturbine, 585
Min-max optimal, 545
Mixed-integer linear programming, 483
Modified interior point OPF, 314
Monte Carlo simulations, 568
Multiarea

Economic dispatch, 215
Interconnection, 215
Wheeling, 225

Multiplier, Lagrange, 99
Multiobjective optimization, 510

Network flow programming, NFP, 2, 145,
215

Network:
Limitation, 273
Losses, 53
Security, 145, 342

Neural network, 128
Newton method

OPF, 298
Power flow, 16

Newton-Raphson method, 15
NFP, 2, 145, 215
NLCNFP, 183, 226
NLONN, 237
Nonlinear convex network flow

programming, 183, 226
Nonlinear optimization neural network, 237
Normal distribution, 531
N - 1 security constraints, 174, 366
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OKA, NFP, 164
Operating cost, 91
OPF:

Gradient method, 307
Interior point method, 322
Linear programming method, 315
Modified interior point, 314
Multiple objective, 337
Newton method, 298
Optimal power flow, 297
Particle swarm optimization, 346
Phase shifter, 328
Quadratic programming, 356

Optimal load shedding, 437
Optimal power flow, 297
Optimal reconfiguration, distribution

network, 483
OTDF, 65
Outage, 56
Outage management system, OMS, 606
Outage transfer distribution factor, 65
Out-of-Kilter algorithm, 164

Pareto-optimal, 521
Participation factors, 15
Particle swarm optimization, 346
Peak load, 224, 556
Penalty factor, 231, 272
Perturbation method, 68
Phase angle, 59
Phase shifter, 59
Phasor measurement units, PMU, 581
Photovoltaic, PV, 408, 585
Point of common coupling, PCC, 410, 609
Polar Coordinate System, power flow, 18
Pool:

Operation, 218
Savings, 216

Post contingency, 177
Power balance, 103, 146, 226, 260, 341,

588
Power, pools, 218
Power flow:

AC, 33, 43, 312, 561
Analysis, 13
Convergence, 16
DC, 43
Decoupled, 33
Equation, 14
Gauss Seidel, 31

Newton-Raphson, 15
Optimal, 145, 297, 611

Power output, unit, 88
P-Q decoupling method, power flow, 33
Principle, equal incremental rate, 97
Priority list, unit commitment, 253
Probabilistic optimal power flow, 563
Probabilistic power flow, 542
Probability density function, 531
Probability theory, 558
PSO, 346
PV

Array, 410
Cell, 408
Inverter, 411
Panel, 410
Plant, 412
Power, 410
System, 408

Quadratic function, unit fuel cost, 92
Quadratic interior point method, 322
Quadratic programming, 157, 356

Radial network, 484
Random variable, 547
Rated blade pitch wind turbine, 423
Reconfiguration, distribution network, 483
Rectangular coordinate system, power

flow, 23
Reduced gradient method, 184
Reference bus, 15
Reliability, 437
Remote Terminal Unit, RTU, 607
Renewable energy resources

Biomass, 409
Geothermal, 409
Hydropower, 408
Solar, 407
Wind, 408

Root method, 279

Savings, pool, 216
SCADA, 607
Scheduling, 109, 274
Search, gradient, 116
Secure constrained economic dispatch,

145
Security analysis, 163
Security corridor, 366
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Security region, 365
Sensitivity analysis, 68
Shift factor, generation, 51
Simplex method, 7, 189
Slack bus, 15
Slack variable, 318
Smart Distribution Grid, 605
Smart grid, 579
Smart grid economic dispatch, SGED, 587
Smart metering, 584
Solar energy, 407
Spinning reserve, 266
Stability, 71, 585
Standard deviation, 531
Steady-state security regions, 365
Stochastic model, 546
Stochastic programming, 555
Storage battery, 591
Sum method, 282

Tabu Search Method, 263
Taylor series, 15
Tie-line, 226
Total harmonic distortion, 623
Total transfer capability, 344
Transfer path, 67
Transmission:

Losses, 51
Services, 223
System, 13, 67

Two-point estimate method, 563

UC, 253
Uncertainty, 529
Uncertainty analysis, 529
Uncertain load, 531

Unit commitment:
Analytic Hierarchy Process, 273
Dynamic programming, 256
Evolutionary programming, 263
Lagrange Relaxation, 259
Particle swarm optimization, 269
Priority list method, 255
Tabu search, 263

VAR
Compensation, 72
Control, 561
Support, 72

Variables, Slack, 318
Variable blade pitch wind turbine, 423
Variance, 266, 543
Vehicle-to-Grid, V2G, 603
Virtual Power Plant, VPP, 603
Voltage

Analysis, 426
Collapse, 72, 427
Dip, 427
Sensitivity analysis, 71
Stability, 71

Weibull distribution, 537
Weighted, least squares, 44
Wheeling, 225
Wide-Area Measurement Systems,

WAMS, 581
Wind

Energy, 408
Farm, 408
Power, 408
Speed, 418
Turbine, 408
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