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Preface to the Second Edition
This new edition has been updated to include new material. Specifically,

this new edition has added sections on the following material:

• Generalized Minimal Residual (GMRES) methods

• Numerical differentiation

• Secant method

• Homotopy and continuation methods

• Power method for computing dominant eigenvalues

• Singular-value decomposition and pseudoinverses

• Matrix pencil method

and a significant revision of the Optimization chapter (Chapter 6) to include
linear and quadratic programming methods.

A course structure would typically include the following chapters in se-
quence: Chapter 1, 2, and 3. From this point, any of the chapters can follow
without loss of consistency. I have tried to structure each chapter to give the
reader an overview of the methods with salient examples. In many cases how-
ever, it is not possible to give an exhaustive coverage of the material; many
topics have decades of work devoted to their development.

Many of the methods presented in this book have commercial software
packages that will accomplish their solution far more rigorously with many
failsafe attributes included (such as accounting for ill-conditioning, etc.). It is
not my intent to make students experts in each topic, but rather to develop an
appreciation for the methods behind the packages. Many commercial packages
provide default settings or choices of parameters for the user; through better
understanding of the methods driving the solution, informed users can make
better choices and have a better understanding of the situations in which the
methods may fail. If this book provides any reader with more confidence in
using commercial packages, I have succeeded in my intent.

As before, I am indebted to many people: my husband Jim and my children
David and Jacob for making every day a joy, my parents Lowell and Sondra
for their continuing support, and Frieda Adams for all she does to help me
succeed.

Mariesa L. Crow
Rolla, Missouri

2009





Preface to the First Edition
This book is the outgrowth of a graduate course that I’ve taught at the

University of Missouri-Rolla for the past decade or so. Over the years, I’ve
used a number of excellent textbooks for this course, but each textbook was
always missing some of the topics that I wanted to cover in the class. After
relying on handouts for many years, my good friend Leo Grigsby encouraged
me to put them down in the form of a book (if arm-twisting can be called
encouragement . . . ). With the support of my graduate students, who I used
as testbeds for each chapter, this book gradually came into existence. I hope
that those who read this book will find this field as stimulating as I have found
it.

In addition to Leo and the fine people at CRC Press, I’m grateful to the Uni-
versity of Missouri-Rolla administration and the Department of Electrical and
Computer Engineering for providing the environment to nurture my teaching
and research and giving me the latitude to pursue my personal interests in
this field.

Lastly, I don’t often get the opportunity to publicly acknowledge the people
who’ve been instrumental in my professional development. I’d like to thank:
Marija Ilic, who initially put me on the path; Peter Sauer, who encouraged
me along the way; Jerry Heydt, for providing inspiration; Frieda Adams, for
all she does to make my life easier; Steve Pekarek, for putting up with my
grumbling and complaining; and Lowell and Sondra Crow for making it all
possible.

Mariesa L. Crow
Rolla, Missouri

2003





Contents

1 Introduction 1

2 The Solution of Linear Systems 3
2.1 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 LU Factorization with Partial Pivoting . . . . . . . . . 16
2.2.2 LU Factorization with Complete Pivoting . . . . . . . 20

2.3 Condition Numbers and Error Propagation . . . . . . . . . . 22
2.4 Relaxation Methods . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Conjugate Gradient Methods . . . . . . . . . . . . . . . . . . 28
2.6 Generalized Minimal Residual Algorithm (GMRES) . . . . . 34
2.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Systems of Nonlinear Equations 45
3.1 Fixed Point Iteration . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Newton-Raphson Iteration . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Convergence Properties . . . . . . . . . . . . . . . . . 56
3.2.2 The Newton-Raphson for Systems of Nonlinear Equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Modifications to the Newton-Raphson Method . . . . 60

3.3 Continuation Methods . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Secant Method . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Numerical Differentiation . . . . . . . . . . . . . . . . . . . . 68
3.6 Power System Applications . . . . . . . . . . . . . . . . . . . 72

3.6.1 Power Flow . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Regulating Transformers . . . . . . . . . . . . . . . . . 80
3.6.3 Decoupled Power Flow . . . . . . . . . . . . . . . . . . 84
3.6.4 Fast Decoupled Power Flow . . . . . . . . . . . . . . . 86
3.6.5 PV Curves and Continuation Power Flow . . . . . . . 89
3.6.6 Three-Phase Power Flow . . . . . . . . . . . . . . . . . 96

3.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4 Sparse Matrix Solution Techniques 103
4.1 Storage Methods . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Sparse Matrix Representation . . . . . . . . . . . . . . . . . . 109
4.3 Ordering Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 111



4.3.1 Scheme 0 . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.2 Scheme I . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.3 Scheme II . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.4 Other Schemes . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Power System Applications . . . . . . . . . . . . . . . . . . . 130
4.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Numerical Integration 139
5.1 One-Step Methods . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.1 Taylor Series-Based Methods . . . . . . . . . . . . . . 140
5.1.2 Forward-Euler Method . . . . . . . . . . . . . . . . . . 141
5.1.3 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . 141

5.2 Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2.1 Adams Methods . . . . . . . . . . . . . . . . . . . . . 148
5.2.2 Gear’s Methods . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Accuracy and Error Analysis . . . . . . . . . . . . . . . . . . 152
5.4 Numerical Stability Analysis . . . . . . . . . . . . . . . . . . . 156
5.5 Stiff Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.6 Step-Size Selection . . . . . . . . . . . . . . . . . . . . . . . . 167
5.7 Differential-Algebraic Equations . . . . . . . . . . . . . . . . . 170
5.8 Power System Applications . . . . . . . . . . . . . . . . . . . 173

5.8.1 Transient Stability Analysis . . . . . . . . . . . . . . . 173
5.8.2 Mid-Term Stability Analysis . . . . . . . . . . . . . . . 181

5.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 Optimization 191
6.1 Least Squares State Estimation . . . . . . . . . . . . . . . . . 192

6.1.1 Weighted Least Squares Estimation . . . . . . . . . . . 195
6.1.2 Bad Data Detection . . . . . . . . . . . . . . . . . . . 198
6.1.3 Nonlinear Least Squares State Estimation . . . . . . . 201

6.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . 202
6.2.1 Simplex Method . . . . . . . . . . . . . . . . . . . . . 203
6.2.2 Interior Point Method . . . . . . . . . . . . . . . . . . 207

6.3 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . 212
6.3.1 Quadratic Programming . . . . . . . . . . . . . . . . . 213
6.3.2 Steepest Descent Algorithm . . . . . . . . . . . . . . . 215
6.3.3 Sequential Quadratic Programming Algorithm . . . . 220

6.4 Power System Applications . . . . . . . . . . . . . . . . . . . 223
6.4.1 Optimal Power Flow . . . . . . . . . . . . . . . . . . . 223
6.4.2 State Estimation . . . . . . . . . . . . . . . . . . . . . 234

6.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239



7 Eigenvalue Problems 243
7.1 The Power Method . . . . . . . . . . . . . . . . . . . . . . . . 244
7.2 The QR Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 246

7.2.1 Shifted QR . . . . . . . . . . . . . . . . . . . . . . . . 253
7.2.2 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.3 Arnoldi Methods . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.4 Singular Value Decomposition . . . . . . . . . . . . . . . . . . 261
7.5 Modal Identification . . . . . . . . . . . . . . . . . . . . . . . 264

7.5.1 Prony Method . . . . . . . . . . . . . . . . . . . . . . 266
7.5.2 The Matrix Pencil Method . . . . . . . . . . . . . . . 268
7.5.3 The Levenberg-Marquardt Method . . . . . . . . . . . 269
7.5.4 The Hilbert Transform . . . . . . . . . . . . . . . . . . 272
7.5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.6 Power System Applications . . . . . . . . . . . . . . . . . . . 278
7.6.1 Participation Factors . . . . . . . . . . . . . . . . . . . 278

7.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Index 283

References 289





1

Introduction

In today’s deregulated environment, the nation’s electric power network is
being forced to operate in a manner for which it was not intentionally de-
signed. Therefore, system analysis is very important to predict and continu-
ally update the operating status of the network. This includes estimating the
current power flows and bus voltages (Power Flow Analysis and State Esti-
mation), determining the stability limits of the system (Continuation Power
Flow, Numerical Integration for Transient Stability, and Eigenvalue Analy-
sis), and minimizing costs (Optimal Power Flow). This book provides an
introductory study of the various computational methods that form the basis
of many analytical studies in power systems and other engineering and sci-
ence fields. This book provides the analytical background of the algorithms
used in numerous commercial packages. By understanding the theory behind
many of the algorithms, the reader/user can better use the software and make
more informed decisions (i.e., choice of integration method and step-size in
simulation packages).

Due to the sheer size of the power grid, hand-based calculations are nearly
impossible and computers offer the only truly viable means for system anal-
ysis. The power industry is one of the largest users of computer technology
and one of the first industries to embrace the potential of computer analy-
sis when mainframes first became available. Although the first algorithms
for power system analysis were developed in the 1940’s, it wasn’t until the
1960’s when computer usage became widespread within the power industry.
Many of the analytical techniques and algorithms used today for the simula-
tion and analysis of large systems were originally developed for power system
applications.

As power systems increasingly operate under stressed conditions, computer
simulation will play a large role in control and security assessment. Commer-
cial packages routinely fail or give erroneous results when used to simulate
stressed systems. Understanding of the underlying numerical algorithms is
imperative to correctly interpret the results of commercial packages. For
example, will the system really exhibit the simulated behavior or is the sim-
ulation simply an artifact of a numerical inaccuracy? The educated user can
make better judgments about how to compensate for numerical shortcom-
ings in such packages, either by better choice of simulation parameters or by
posing the problem in a more numerically tractable manner. This book will
provide the background for a number of widely used numerical algorithms that

1



2 Computational Methods for Electric Power Systems

underlie many commercial packages for power system analysis and design.
This book is intended to be used as a text in conjunction with a semester-

long graduate level course in computational algorithms. While the majority
of examples in this text are based on power system applications, the theory is
presented in a general manner so as to be applicable to a wide range of engi-
neering systems. Although some knowledge of power system engineering may
be required to fully appreciate the subtleties of some of the illustrations, such
knowledge is not a prerequisite for understanding the algorithms themselves.
The text and examples are used to provide an introduction to a wide range
of numerical methods without being an exhaustive reference. Many of the
algorithms presented in this book have been the subject of numerous modifi-
cations and are still the object of on-going research. As this text is intended to
provide a foundation, many of these new advances are not explicitly covered,
but are rather given as references for the interested reader. The examples in
this text are intended to be simple and thorough enough to be reproduced
easily. Most “real world” problems are much larger in size and scope, but the
methodologies presented in this text should sufficiently prepare the reader to
cope with any difficulties he/she may encounter.

Most of the examples in this text were produced using code written in
MatlabTM . Although this was the platform used by the author, in practice,
any computer language may be used for implementation. There is no practical
reason for a preference for any particular platform or language.
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The Solution of Linear Systems

In many branches of engineering and science it is desirable to be able to math-
ematically determine the state of a system based on a set of physical relation-
ships. These physical relationships may be determined from characteristics
such as circuit topology, mass, weight, or force to name a few. For example,
the injected currents, network topology, and branch impedances govern the
voltages at each node of a circuit. In many cases, the relationship between
the known, or input, quantities and the unknown, or output, states is a linear
relationship. Therefore, a linear system may be generically modeled as

Ax = b (2.1)

where b is the n× 1 vector of known quantities, x is the n× 1 unknown state
vector, and A is the n × n matrix that relates x to b. For the time being, it
will be assumed that the matrix A is invertible, or non-singular; thus, each
vector b will yield a unique corresponding vector x. Thus the matrix A−1

exists and
x∗ = A−1b (2.2)

is the unique solution to equation (2.1).
The natural approach to solving equation (2.1) is to directly calculate the

inverse of A and multiply it by the vector b. One method to calculate A−1 is
to use Cramer’s rule :

A−1(i, j) =
1

det(A)
(Aij)

T for i = 1, . . . , n, j = 1, . . . , n (2.3)

where A−1(i, j) is the ijth entry of A−1 and Aij is the cofactor of each entry
aij of A. This method requires the calculation of (n + 1) determinants which
results in 2(n + 1)! multiplications to find A−1! For large values of n, the
calculation requirement grows too rapidly for computational tractability; thus,
alternative approaches have been developed.

Basically there are two approaches to solving equation (2.1):

• The direct methods, or elimination methods, find the exact solution
(within the accuracy of the computer) through a finite number of arith-
metic operations. The solution x of a direct method would be completely
accurate were it not for computer roundoff errors.

3



4 Computational Methods for Electric Power Systems

• Iterative methods, on the other hand, generate a sequence of (hopefully)
progressively improving approximations to the solution based on the
application of the same computational procedure at each step. The
iteration is terminated when an approximate solution is obtained having
some pre-specified accuracy or when it is determined that the iterates
are not improving.

The choice of solution methodology usually relies on the structure of the
system under consideration. Certain systems lend themselves more amenably
to one type of solution method versus the other. In general, direct methods
are best for full matrices, whereas iterative methods are better for matrices
that are large and sparse. But as with most generalizations, there are notable
exceptions to this rule of thumb.

2.1 Gaussian Elimination

An alternate method for solving equation (2.1) is to solve for x without cal-
culating A−1 explicitly. This approach is a direct method of linear system
solution, since x is found directly. One common direct method is the method
of Gaussian elimination. The basic idea behind Gaussian elimination is to use
the first equation to eliminate the first unknown from the remaining equations.
This process is repeated sequentially for the second unknown, the third un-
known, etc., until the elimination process is completed. The n-th unknown
is then calculated directly from the input vector b. The unknowns are then
recursively substituted back into the equations until all unknowns have been
calculated.

Gaussian elimination is the process by which the augmented n × (n + 1)
matrix

[A | b ]

is converted to the n × (n + 1) matrix

[I | b∗ ]

through a series of elementary row operations, where

Ax = b

A−1Ax = A−1b

Ix = A−1b = b∗

x∗ = b∗

Thus if a series of elementary row operations exist that can transform the
matrix A into the identity matrix I, then the application of the same set of



The Solution of Linear Systems 5

elementary row operations will also transform the vector b into the solution
vector x∗.

An elementary row operation consists of one of three possible actions that
can be applied to a matrix:

• interchange any two rows of the matrix

• multiply any row by a constant

• take a linear combination of rows and add it to another row

The elementary row operations are chosen to transform the matrix A into
an upper triangular matrix that has ones on the diagonal and zeros in the
sub-diagonal positions. This process is known as the forward elimination
step. Each step in the forward elimination can be obtained by successively
pre-multiplying the matrix A by an elementary matrix ξ, where ξ is the matrix
obtained by performing an elementary row operation on the identity matrix.

Example 2.1

Find a sequence of elementary matrices that when applied to the following
matrix will produce an upper triangular matrix.

A =

⎡
⎢⎢⎣

1 3 4 8
2 1 2 3
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦

Solution 2.1 To upper triangularize the matrix, the elementary row oper-
ations will need to systematically zero out each column below the diagonal.
This can be achieved by replacing each row of the matrix below the diagonal
with the difference of the row itself and a constant times the diagonal row,
where the constant is chosen to result in a zero sum in the column under the
diagonal. Therefore row 2 of A is replaced by (row 2 - 2(row 1)) and the
elementary matrix is

ξ1 =

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

and

ξ1A =

⎡
⎢⎢⎣

1 3 4 8
0 −5 −6 −13
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦
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Note that all rows except row 2 remain the same and row 2 now has a 0 in
the column under the first diagonal. Similarly the two elementary matrices
that complete the elimination of the first column are:

ξ2 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−4 0 1 0
0 0 0 1

⎤
⎥⎥⎦

ξ3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

−9 0 0 1

⎤
⎥⎥⎦

and

ξ3ξ2ξ1A =

⎡
⎢⎢⎣

1 3 4 8
0 −5 −6 −13
0 −9 −11 −24
0 −25 −29 −68

⎤
⎥⎥⎦ (2.4)

The process is now applied to the second column to zero out everything below
the second diagonal and scale the diagonal to one. Therefore

ξ4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 − 9

5 1 0
0 0 0 1

⎤
⎥⎥⎦

ξ5 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 − 25

5 0 1

⎤
⎥⎥⎦

ξ6 =

⎡
⎢⎢⎣

1 0 0 0
0 − 1

5 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Similarly,

ξ6ξ5ξ4ξ3ξ2ξ1A =

⎡
⎢⎢⎣

1 3 4 8
0 1 6

5
13
5

0 0 − 1
5 − 3

5
0 0 1 −3

⎤
⎥⎥⎦ (2.5)

Similarly,

ξ7 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 5 1

⎤
⎥⎥⎦
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ξ8 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −5 0
0 0 0 1

⎤
⎥⎥⎦

yielding

ξ8ξ7ξ6ξ5ξ4ξ3ξ2ξ1A =

⎡
⎢⎢⎣

1 3 4 8
0 1 6

5
13
5

0 0 1 3
0 0 0 −6

⎤
⎥⎥⎦ (2.6)

Lastly,

ξ9 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

6

⎤
⎥⎥⎦

and

ξ9ξ8ξ7ξ6ξ5ξ4ξ3ξ2ξ1A =

⎡
⎢⎢⎣

1 3 4 8
0 1 6

5
13
5

0 0 1 3
0 0 0 1

⎤
⎥⎥⎦ (2.7)

which completes the upper triangularization process.

Once an upper triangular matrix has been achieved, the solution vector x∗

can be found by successive substitution (or back substitution) of the states.

Example 2.2

Using the upper triangular matrix of Example 2.1, find the solution to
⎡
⎢⎢⎣

1 3 4 8
2 1 2 3
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

Solution 2.2 Note that the product of a series of lower triangular matrices
is lower triangular; therefore, the product

W = ξ9ξ8ξ7ξ6ξ5ξ4ξ3ξ2ξ1 (2.8)

is lower triangular. Since the application of the elementary matrices to the
matrix A results in an upper triangular matrix, then

WA = U (2.9)
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where U is the upper triangular matrix that results from the forward elimi-
nation process. Premultiplying equation (2.1) by W yields

WAx = Wb (2.10)
Ux = Wb (2.11)

= b′ (2.12)

where Wb = b′.
From Example 2.1:

W =

⎡
⎢⎢⎣

1 0 0 0
2
5 − 1

5 0 0
2 9 −5 0
1
6

14
6 − 5

6 − 1
6

⎤
⎥⎥⎦

and

b′ = W

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1
5
6
3
2

⎤
⎥⎥⎦

Thus, ⎡
⎢⎢⎣

1 3 4 8
0 1 6

5
13
5

0 0 1 3
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1
5
6
3
2

⎤
⎥⎥⎦ (2.13)

By inspection, x4 = 3
2 . The third row yields

x3 = 6 − 3x4 (2.14)

Substituting the value of x4 into equation (2.14) yields x3 = 3
2 . Similarly,

x2 =
1
5
− 6

5
x3 − 13

5
x4 (2.15)

and substituting x3 and x4 into equation (2.15) yields x2 = − 11
2 . Solving for

x1 in a similar manner produces

x1 = 1 − 3x2 − 4x3 − 8x4 (2.16)

= −1
2

(2.17)

Thus, ⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

1
2

⎡
⎢⎢⎣

−1
−11

3
3

⎤
⎥⎥⎦
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The solution methodology of successively substituting values of x back into
the equation as they are found gives rise to the name of back substitution for
this step of the Gaussian elimination. Therefore, Gaussian elimination con-
sists of two main steps: forward elimination and back substitution. Forward
elimination is the process of transforming the matrix A into triangular factors.
Back substitution is the process by which the unknown vector x is found from
the input vector b and the factors of A. Gaussian elimination also provides
the framework under which the LU factorization process is developed.

2.2 LU Factorization

The forward elimination step of Gaussian elimination produces a series of
upper and lower triangular matrices that are related to the A matrix as given
in equation (2.9). The matrix W is a lower triangular matrix and U is an
upper triangular matrix with ones on the diagonal. Recall that the inverse of
a lower triangular matrix is also a lower triangular matrix; therefore, if

L
�
= W−1

then
A = LU

The matrices L and U give rise to the name of the factorization/elimination
algorithm known as “LU factorization.” In fact, given any nonsingular matrix
A, there exists some permutation matrix P (possibly P = I), such that

LU = PA (2.18)

where U is upper triangular with unit diagonals, L is lower triangular with
nonzero diagonals, and P is a matrix of ones and zeros obtained by rearranging
the rows and columns of the identity matrix. Once a proper matrix P is
chosen, this factorization is unique [6]. Once P, L, and U are determined,
then the system

Ax = b (2.19)

can be solved expeditiously. Premultiplying equation (2.19) by the matrix P
yields

PAx = Pb = b′ (2.20)
LUx = b′ (2.21)

where b′ is just a rearrangement of the vector b. Introducing a “dummy”
vector y such that

Ux = y (2.22)
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thus
Ly = b′ (2.23)

Consider the structure of equation (2.23):
⎡
⎢⎢⎢⎢⎢⎣

l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · lnn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

b′1
b′2
b′3
...

b′n

⎤
⎥⎥⎥⎥⎥⎦

The elements of the vector y can be found by straightforward substitution:

y1 =
b′1
l11

y2 =
1
l22

(b′2 − l21y1)

y3 =
1
l33

(b′3 − l31y1 − l32y2)

...

yn =
1

lnn

⎛
⎝b′n −

n−1∑
j=1

lnjyj

⎞
⎠

After the vector y has been found, then x can be easily found from
⎡
⎢⎢⎢⎢⎢⎢⎣

1 u12 u13 · · · u1n

0 1 u23 · · · u2n

0 0 1 · · · u3n

...
...

...
. . .

...

0 0 0
... 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn

⎤
⎥⎥⎥⎥⎥⎦

Similarly, the solution vector x can be found by backward substitution:

xn = yn

xn−1 = yn−1 − un−1,nxn

xn−2 = yn−2 − un−2,nxn − un−2,n−1xn−1

...

x1 = y1 −
n∑

j=2

u1jxj

The value of LU factorization is that once A is factored into the upper and
lower triangular matrices, the solution for the solution vector x is straightfor-
ward. Note that the inverse to A is never explicitly found.



The Solution of Linear Systems 11

Q =

(2)

(4)

(5)

(3)

(1)

(6)

FIGURE 2.1
Order of calculating columns and rows of Q

Several methods for computing the LU factors exist and each method has its
advantages and disadvantages. One common factorization approach is known
as the Crout’s algorithm for finding the LU factors [6]. Let the matrix Q be
defined as

Q
�
= L + U − I =

⎡
⎢⎢⎢⎢⎢⎣

l11 u12 u13 · · · u1n

l21 l22 u23 · · · u2n

l31 l32 l33 · · · u3n

...
...

...
. . .

...
ln1 ln2 ln3 · · · lnn

⎤
⎥⎥⎥⎥⎥⎦

(2.24)

Crout’s algorithm computes the elements of Q first by column and then row
as shown in Figure 2.1. Each element qij of Q depends only on the aij entry
of A and previously computed values of Q.

Crout’s Algorithm for Computing LU from A

1. Initialize Q to the zero matrix. Let j = 1.

2. Complete the jth column of Q (jth column of L) as

qkj = akj −
j−1∑
i=1

qkiqij for k = j, . . . , n (2.25)

3. If j = n, then stop.

4. Assuming that qjj �= 0, complete the jth row of Q (jth row of U) as

qjk =
1

qjj

(
ajk −

j−1∑
i=1

qjiqik

)
for k = j + 1, . . . , n (2.26)

5. Set j = j + 1. Go to step 2.
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Once the LU factors are found, then the dummy vector y can be found by
forward substitution:

yk =
1

qkk

⎛
⎝bk −

k−1∑
j=1

qkjyj

⎞
⎠ for k = 1, . . . , n (2.27)

Similarly, the solution vector x can be found by backward substitution:

xk = yk −
n∑

j=k+1

qkjxj for k = n, n − 1, . . . , 1 (2.28)

One measure of the computation involved in the LU factorization process
is to count the number of multiplications and divisions required to find the
solution since these are both floating point operations. Computing the jth

column of Q (jth column of L) requires

n∑
j=1

n∑
k=j

(j − 1)

multiplications and divisions. Similarly, computing the jth row of Q (jth row
of U) requires

n−1∑
j=1

n∑
k=j+1

j

multiplications and divisions. The forward substitution step requires

n∑
j=1

j

and the backward substitution step requires

n∑
j=1

(n − j)

multiplications and divisions. Taken together, the LU factorization procedure
requires

1
3
(
n3 − n

)

and the substitution steps require n2 multiplications and divisions. Therefore
the whole process of solving the linear system of equation (2.1) requires a
total of

1
3
(
n3 − n

)
+ n2 (2.29)
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multiplications and divisions. Compare this to the requirements of Cramer’s
rule which requires 2(n+1)! multiplications and divisions. Obviously for a
system of any significant size, it is far more computationally efficient to use
LU factorization and forward/backward substitution to find the solution x.

Example 2.3
Using LU factorization with forward and backward substitution, find the so-
lution to the system of Example 2.2.

Solution 2.3 The first step is to find the LU factors of the A matrix:

A =

⎡
⎢⎢⎣

1 3 4 8
2 1 2 3
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦

Starting with j = 1, equation (2.25) indicates that the elements of the first
column of Q are identical to the elements of the first column of A. Similarly,
according to equation (2.26), the first row of Q becomes:

q12 =
a12

q11
=

3
1

= 3

q13 =
a13

q11
=

4
1

= 4

q14 =
a14

q11
=

8
1

= 8

Thus for j = 1, the Q matrix becomes:

Q =

⎡
⎢⎢⎣

1 3 4 8
2
4
9

⎤
⎥⎥⎦

For j = 2, the second column and row of Q below and to the right of the
diagonal, respectively, will be calculated. For the second column of Q:

q22 = a22 − q21q12 = 1 − (2)(3) = −5
q32 = a32 − q31q12 = 3 − (4)(3) = −9
q42 = a42 − q41q12 = 2 − (9)(3) = −25

Each element of Q uses the corresponding element of A and elements of Q
that have been previously computed. Note also that the inner indices of
the products are always the same and the outer indices are the same as the
indices of the element being computed. This holds true for both column and
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row calculations. The second row of Q is computed:

q23 =
1

q22
(a23 − q21q13) =

1
−5

(2 − (2)(4)) =
6
5

q24 =
1

q22
(a24 − q21q14) =

1
−5

(3 − (2)(8)) =
13
5

After j = 2, the Q matrix becomes:

Q =

⎡
⎢⎢⎣

1 3 4 8
2 −5 6

5
13
5

4 −9
9 −25

⎤
⎥⎥⎦

Continuing on for j = 3, the third column of Q is calculated

q33 = a33 − (q31q13 + q32q23) = 5 −
(

(4)(4) + (−9)
6
5

)
= −1

5

q43 = a43 − (q41q13 + q42q23) = 7 −
(

(9)(4) + (−25)
6
5

)
= 1

and the third row of Q becomes

q34 =
1

q33
(a34 − (q31q14 + q32q24))

= (−5)
(

8 −
(

(4)(8) + (−9)
(

13
5

)))
= 3

yielding

Q =

⎡
⎢⎢⎣

1 3 4 8
2 −5 6

5
13
5

4 −9 − 1
5 3

9 −25 1

⎤
⎥⎥⎦

Lastly, for j = 4, the final diagonal element is found:

q44 = a44 − (q41q14 + q42q24 + q43q34)

= 4 −
(

(9)(8) + (−25)
(

13
5

)
+ (3)(1)

)
= −6

Thus:

Q =

⎡
⎢⎢⎣

1 3 4 8
2 −5 6

5
13
5

4 −9 − 1
5 3

9 −25 1 −6

⎤
⎥⎥⎦
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L =

⎡
⎢⎢⎣

1 0 0 0
2 −5 0 0
4 −9 − 1

5 0
9 −25 1 −6

⎤
⎥⎥⎦

U =

⎡
⎢⎢⎣

1 3 4 8
0 1 6

5
13
5

0 0 1 3
0 0 0 1

⎤
⎥⎥⎦

One method of checking the correctness of the solution is to check if LU =
A, which in this case it does.

Once the LU factors have been found, then the next step in the solution
process is the forward elimination using the L matrix and the b vector to find
the dummy vector y. Using forward substitution to solve Ly = b for y:

y1 =
b1

L11
=

1
1

= 1

y2 =
(b2 − L21y1)

L22
=

(1 − (2)(1))
−5

=
1
5

y3 =
(b3 − (L31y1 + L32y2))

L33
= (−5)

(
1 −
(

(4)(1) + (−9)
1
5

))
= 6

y4 =
(b4 − (L41y1 + L42y2 + L43y3))

L44

=

(
1 − ((9)(1) + (−25)

(
1
5

)
+ (1)(6)

))
−6

=
3
2

Thus

y =

⎡
⎢⎢⎣

1
1
5
6
3
2

⎤
⎥⎥⎦

Similarly, backward substitution is then applied to Ux = y to find the solution
vector x:

x4 = y4 =
3
2

x3 = y3 − U34x4 = 6 − (3)
(

3
2

)
=

3
2

x2 = y2 − (U24x4 + U23x3) =
1
5
−
((

13
5

)(
3
2

)
+
(

6
5

)(
3
2

))
= −11

2
x1 = y1 − (U14x4 + U13x3 + U12x2)

= 1 −
(

(8)
(

3
2

)
+ (4)

(
3
2

)
+ (3)

(
−11

2

))
= −1

2
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yielding the final solution vector

x =
1
2

⎡
⎢⎢⎣

−1
−11

3
3

⎤
⎥⎥⎦

which is the same solution found by Gaussian elimination and backward sub-
stitution in Example 2.2. A quick check to verify the correctness of the solution
is to substitute the solution vector x back into the linear system Ax = b.

2.2.1 LU Factorization with Partial Pivoting

The LU factorization process presented assumes that the diagonal element is
non-zero. Not only must the diagonal element be non-zero, it must be on
the same order of magnitude as the other non-zero elements. Consider the
solution of the following linear system:

[
10−10 1

2 1

] [
x1

x2

]
=
[

1
5

]
(2.30)

By inspection, the solution to this linear system is

x1 ≈ 2
x2 ≈ 1

The LU factors for A are

L =
[

10−10 0
2

(
1 − 2 × 1010

)
]

U =
[

1 1010

0 1

]

Applying forward elimination to solve for the dummy vector y yields:

y1 = 1010

y2 =

(
5 − 2 × 1010

)
(1 − 2 × 1010)

≈ 1

Back substituting y into Ux = y yields

x2 = y2 ≈ 1
x1 = 1010 − 1010x2 ≈ 0

The solution for x2 is correct, but the solution for x1 is considerably off. Why
did this happen? The problem with the equations arranged the way they are
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in equation (2.30) is that 10−10 is too near zero for most computers. However,
if the equations are rearranged such that

[
2 1

10−10 1

] [
x1

x2

]
=
[

5
1

]
(2.31)

then the LU factors become

L =
[

2 0
10−10

(
1 − 1

2 × 10−10
)
]

U =
[

1 1
2

0 1

]

The dummy vector y becomes

y1 =
5
2

y2 =

(
1 − 5

2 × 10−10
)

(
1 − 1

2 × 10−10
) ≈ 1

and by back substitution, x becomes

x2 ≈ 1

x1 ≈ 5
2
− 1

2
(1) = 2

which is the solution obtained by inspection of the equations. Therefore even
though the diagonal entry may not be exactly zero, it is still good practice to
rearrange the equations such that the largest magnitude element lies on the
diagonal. This process is known as pivoting and gives rise to the permutation
matrix P of equation (2.18).

Since the Crout’s algorithm computes the Q matrix by column and row
with increasing index, only partial pivoting can used, that is, only the rows
of Q (and correspondingly A) can be exchanged. The columns must remain
static. To choose the best pivot, the column beneath the jth diagonal (at the
jth step in the LU factorization) is searched for the element with the largest
absolute value. The corresponding row and the jth row are then exchanged.
The pivoting strategy may be succinctly expressed as:

Partial Pivoting Strategy

1. At the jth step of LU factorization, choose the kth row as the exchange
row such that

|qjj | = max |qkj | for k = j, . . . , n (2.32)

2. Exchange rows and update A, P, and Q correspondingly.
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The permutation matrix P is comprised of ones and zeros and is obtained as
the product of a series of elementary permutation matrices P j,k which repre-
sent the exchange of rows j and k. The elementary permutation matrix P j,k,
shown in Figure 2.2, is obtained from the identify matrix by interchanging
rows j and k. A pivot is achieved by the pre-multiplication of a properly cho-
sen P j,k. Since this is only an interchange of rows, the order of the unknown
vector does not change.

jkP   =

1
1

1

1
0

1

1
0

1

1
1

1

1

1

j k

k

j

FIGURE 2.2
Elementary permutation matrix P j,k

Example 2.4
Repeat Example 2.3 using partial pivoting.

Solution 2.4 The A matrix is repeated here for convenience.

A =

⎡
⎢⎢⎣

1 3 4 8
2 1 2 3
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦

For j = 1, the first column of Q is exactly the first column of A. Applying
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the pivoting strategy of equation (2.32), the q41 element has the largest mag-
nitude of the first column; therefore, rows four and one are exchanged. The
elementary permutation matrix P 1,4 is

P 1,4 =

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦

The corresponding A matrix becomes

A =

⎡
⎢⎢⎣

9 2 7 4
2 1 2 3
4 3 5 8
1 3 4 8

⎤
⎥⎥⎦

and Q at the j = 1 step:

Q =

⎡
⎢⎢⎣

9 2
9

7
9

4
9

2
4
1

⎤
⎥⎥⎦

At j = 2, the calculation of the second column of Q yields

Q =

⎡
⎢⎢⎣

9 2
9

7
9

4
9

2 5
9

4 19
9

1 25
9

⎤
⎥⎥⎦

Searching the elements in the jth column below the diagonal, the fourth row of
the jth (i.e., second) column once again yields the largest magnitude. There-
fore rows two and four must be exchanged, yielding the elementary permuta-
tion matrix P 2,4:

P 2,4 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

Similarly, the updated A is ⎡
⎢⎢⎣

9 2 7 4
1 3 4 8
4 3 5 8
2 1 2 3

⎤
⎥⎥⎦

which yields the following Q:

Q =

⎡
⎢⎢⎣

9 2
9

7
9

4
9

1 25
9

29
25

68
25

4 19
9

2 5
9

⎤
⎥⎥⎦
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For j = 3, the calculation of the third column of Q yields:

Q =

⎡
⎢⎢⎣

9 2
9

7
9

4
9

1 25
9

29
25

68
25

4 19
9 − 14

25
2 5

9 − 1
5

⎤
⎥⎥⎦

In this case, the diagonal element has the largest magnitude, so no pivoting
is required. Continuing with the calculation of the 3rd row of Q yields:

Q =

⎡
⎢⎢⎣

9 2
9

7
9

4
9

1 25
9

29
25

68
25

4 19
9 − 14

25 − 12
14

2 5
9 − 1

5

⎤
⎥⎥⎦

Lastly, calculating q44 yields the final Q matrix:

Q =

⎡
⎢⎢⎣

9 2
9

7
9

4
9

1 25
9

29
25

68
25

4 19
9 − 14

25 − 12
14

2 5
9 − 1

5
3
7

⎤
⎥⎥⎦

The permutation matrix P is found by multiplying together the two ele-
mentary permutation matrices:

P = P 2,4P 1,4I

=

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦

The results can be checked to verify that PA = LU . The forward and back-
ward substitution steps are carried out on the modified vector b′ = Pb.

2.2.2 LU Factorization with Complete Pivoting

An alternate LU factorization that allows complete pivoting is the Gauss’
method. In this approach, two permutation matrices are developed: one for
row exchange as in partial pivoting, and a second matrix for column exchange.
In this approach, the LU factors are found such that

P1AP2 = LU (2.33)

Therefore to solve the linear system of equations Ax = b requires that a
slightly different approach be used. As with partial pivoting, the permutation
matrix P1 premultiplies the linear system:

P1Ax = P1b = b′ (2.34)
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Now, define a new vector z such that

x = P2z (2.35)

Then substituting equation (2.35) into equation (2.34) yields

P1AP2z = P1b = b′

LUz = b′ (2.36)

where equation (2.36) can be solved using forward and backward substitution
for z. Once z is obtained, then the solution vector x follows from equation
(2.35).

In complete pivoting, both rows and columns may be interchanged to
place the largest element (in magnitude) on the diagonal at each step in the
LU factorization process. The pivot element is chosen from the remaining
elements below and to the right of the diagonal.

Complete Pivoting Strategy

1. At the jth step of LU factorization, choose the pivot element such that

|qjj | = max |qkl| for k = j, . . . , n, and l = j, . . . , n (2.37)

2. Exchange rows and update A, P, and Q correspondingly.

Gauss’ Algorithm for Computing LU from A

1. Initialize Q to the zero matrix. Let j = 1.

2. Set the jth column of Q (jth column of L) to the jth column of the
reduced matrix A(j), where A(1) = A, and

qkj = a
(j)
kj for k = j, . . . , n (2.38)

3. If j = n, then stop.

4. Assuming that qjj �= 0, set the jth row of Q (jth row of U) as

qjk =
a
(j)
jk

qjj
for k = j + 1, . . . , n (2.39)

5. Update A(j+1) from A(j) as

a
(j+1)
ik = a

(j)
ik − qijqjk for i = j + 1, . . . , n, and k = j + 1, . . . , n (2.40)

6. Set j = j + 1. Go to step 2.
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This factorization algorithm gives rise to the same number of multiplications
and divisions as Crout’s algorithm for LU factorization. Crout’s algorithm
uses each entry of the A matrix only once, whereas Gauss’ algorithm updates
the A matrix each time. One advantage of Crout’s algorithm over Gauss’
algorithm is each element of the A matrix is used only once. Since each qjk

is a function of ajk and then ajk is never used again, the element qjk can be
written over the ajk element. Therefore, rather than having to store two n×n
matrices in memory (A and Q), only one matrix is required.

The Crout’s and Gauss’ algorithms are only two of numerous algorithms
for LU factorization. Other methods include Doolittle and bifactorization
algorithms [20], [26], [49]. Most of these algorithms require similar numbers
of multiplications and divisions and only differ slightly in performance when
implemented on traditional serial computers. However, these algorithms differ
considerably when factors such as memory access, storage, and parallelization
are considered. Consequently, it is wise to choose the factorization algorithm
to fit the application and the computer architecture upon which it will be
implemented.

2.3 Condition Numbers and Error Propagation

The Gaussian elimination and LU factorization algorithms are considered di-
rect methods because they calculate the solution vector x∗ = A−1b in a finite
number of steps without an iterative refinement. On a computer with infinite
precision, direct methods would yield the exact solution x∗. However, since
computers have finite precision, the solution obtained has limited accuracy.
The condition number of a matrix is a useful measure for determining the level
of accuracy of a solution. The condition number of the matrix A is generally
defined as

κ (A) =
√

λmax

λmin
(2.41)

where λmax and λmin denote the largest and smallest eigenvalues of the matrix
AT A. These eigenvalues are real and non-negative regardless of whether the
eigenvalues of A are real or complex.

The condition number of a matrix is a measure of the linear independence
of the eigenvectors of the matrix. A singular matrix has at least one zero
eigenvalue and contains at least one degenerate row (i.e., the row can be
expressed as a linear combination of other rows). The identity matrix, which
gives rise to the most linearly independent eigenvectors possible and has every
eigenvalue equal to one, has a condition number of 1. If the condition number
of a matrix is much much greater than one, then the matrix is said to be ill
conditioned. The larger the condition number, the more sensitive the solution
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process is to slight perturbations in the elements of A and the more numerical
error likely to be contained in the solution.

Because of numerical error introduced into the solution process, the com-
puted solution x̃ of equation (2.1) will differ from the exact solution x∗ by
a finite amount Δx. Other errors, such as approximation, measurement, or
round-off error, may be introduced into the matrix A and vector b. Gaussian
elimination produces a solution that has roughly

t log10 β − log10 κ(A) (2.42)

correct decimal places in the solution, where t is the bit length of the man-
tissa (t = 24 for a typical 32-bit binary word), β is the base (β = 2 for binary
operations), and κ is the condition number of the matrix A. One interpre-
tation of equation (2.42) is that the solution will lose about log10 κ digits of
accuracy during Gaussian elimination (and consequently LU factorization).
Based upon the known accuracy of the matrix entries, the condition number,
and the machine precision, the accuracy of the numerical solution x̃ can be
predicted [35].

2.4 Relaxation Methods

Relaxation methods are iterative in nature and produce a sequence of vectors
that ideally converge to the solution x∗ = A−1b. Relaxation methods can be
incorporated into the solution of equation (2.1) in several ways. In all cases,
the principal advantage of using a relaxation method stems from not requiring
a direct solution of a large system of linear equations and from the fact that the
relaxation methods permit the simulator to exploit the latent portions of the
system (those portions which are relatively unchanging at the present time)
effectively. In addition, with the advent of parallel-processing technology,
relaxation methods lend themselves more readily to parallel implementation
than do direct methods. The two most common relaxation methods are the
Jacobi and the Gauss-Seidel methods [56].

These relaxation methods may be applied for the solution of the linear
system

Ax = b (2.43)

A general approach to relaxation methods is to define a splitting matrix M
such that equation (2.43) can be rewritten in equivalent form as

Mx = (M − A)x + b (2.44)

This splitting leads to the iterative process

Mxk+1 = (M − A)xk + b k = 1, . . . ,∞ (2.45)
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where k is the iteration index. This iteration produces a sequence of vectors
x1, x2, . . . for a given initial guess x0. Various iterative methods can be de-
veloped by different choices of the matrix M . The objective of a relaxation
method is to choose the splitting matrix M such that the sequence is easily
computed and the sequence converges rapidly to a solution.

Let A be split into L + D + U , where L is strictly lower triangular, D is a
diagonal matrix, and U is strictly upper triangular. Note that these matrices
are different from the L and U obtained from LU factorization. The vector
x can then be solved for in an iterative manner using the Jacobi relaxation
method,

xk+1 = −D−1
(
(L + U)xk − b

)
(2.46)

or identically in scalar form,

xk+1
i = −

n∑
j �=i

(
aij

aii

)
xk

j +
bi

aii
1 ≤ i ≤ n, k ≥ 0 (2.47)

In the Jacobi relaxation method, all of the updates of the approximation
vector xk+1 are obtained by using only the components of the previous ap-
proximation vector xk. Therefore this method is also sometimes called the
method of simultaneous displacements.

The Gauss-Seidel relaxation method is similar:

xk+1 = − (L + D)−1 (
Uxk − b

)
(2.48)

or in scalar form

xk+1
i = −

i−1∑
j=1

(
aij

aii

)
xk+1

j −
n∑

j=i+1

(
aij

aii

)
xk

j +
bi

aii
1 ≤ i ≤ n, k ≥ 0 (2.49)

The Gauss-Seidel method has the advantage that each new update xk+1
i relies

only on previously computed values at that iteration: xk+1
1 , xk+1

2 , . . . , xk+1
i−1 .

Since the states are updated one-by-one, the new values can be stored in the
same locations held by the old values, thus reducing the storage requirements.

Since relaxation methods are iterative, it is essential to determine under
what conditions they are guaranteed to converge to the exact solution

x∗ = A−1b (2.50)

It is well known that a necessary and sufficient condition for the Jacobi re-
laxation method to converge given any initial guess x0 is that all eigenvalues
of

MJ
�
= −D−1 (L + U) (2.51)

must lie within the unit circle in the complex plane [56]. Similarly, the eigen-
values of

MGS
�
= − (L + D)−1

U (2.52)
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must lie within the unit circle in the complex plane for the Gauss-Seidel re-
laxation algorithm to converge for any initial guess x0. In practice, these
conditions are difficult to confirm. There are several more general conditions
that are easily confirmed under which convergence is guaranteed. In particu-
lar, if A is strictly diagonally dominant, then both the Jacobi and Gauss-Seidel
methods are guaranteed to converge to the exact solution.

The initial vector x0 can be arbitrary; however if a good guess of the solution
is available it should be used for x0 to produce more rapid convergence to
within some pre-defined tolerance.

In general, the Gauss-Seidel method converges faster than the Jacobi for
most classes of problems. If A is lower-triangular, the Gauss-Seidel method
will converge in one iteration to the exact solution, whereas the Jacobi method
will take n iterations. The Jacobi method has the advantage, however, that
at each iteration, each xk+1

i is independent of all other xk+1
j for j �= i. Thus

the computation of all xk+1
i can proceed in parallel. This method is therefore

well suited to parallel processing [36].

Both the Jacobi and Gauss-Seidel methods can be generalized to the block-
Jacobi and block-Gauss-Seidel methods where A is split into block matrices
L + D + U , where D is block diagonal and L and U are lower- and upper-
block triangular respectively. The same necessary and sufficient convergence
conditions exist for the block case as for the scalar case, that is, the eigenvalues
of MJ and MGS must lie within the unit circle in the complex plane.

Example 2.5

Solve

⎡
⎢⎢⎣
−10 2 3 6

0 −9 1 4
2 6 −12 2
3 1 0 −8

⎤
⎥⎥⎦x =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ (2.53)

for x using (1) the Gauss-Seidel method, and (2) the Jacobi method.

Solution 2.5 The Gauss-Seidel method given in equation (2.49) with the
initial vector x = [0 0 0 0] leads to the following updates:
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k x1 x2 x3 x4

1 0.0000 0.0000 0.0000 0.0000
2 -0.1000 -0.2222 -0.3778 -0.5653
3 -0.5969 -0.5154 -0.7014 -0.7883
4 -0.8865 -0.6505 -0.8544 -0.9137
5 -1.0347 -0.7233 -0.9364 -0.9784
6 -1.1126 -0.7611 -0.9791 -1.0124
7 -1.1534 -0.7809 -1.0014 -1.0301
8 -1.1747 -0.7913 -1.0131 -1.0394
9 -1.1859 -0.7968 -1.0193 -1.0443

10 -1.1917 -0.7996 -1.0225 -1.0468
11 -1.1948 -0.8011 -1.0241 -1.0482
12 -1.1964 -0.8019 -1.0250 -1.0489
13 -1.1972 -0.8023 -1.0255 -1.0492
14 -1.1976 -0.8025 -1.0257 -1.0494
15 -1.1979 -0.8026 -1.0259 -1.0495
16 -1.1980 -0.8027 -1.0259 -1.0496

The Gauss-Seidel iterates have converged to the solution

x = [−1.1980 − 0.8027 − 1.0259 − 1.0496]T

From equation (2.47) and using the initial vector x = [0 0 0 0], the following
updates are obtained for the Jacobi method:

k x1 x2 x3 x4

1 0.0000 0.0000 0.0000 0.0000
2 -0.1000 -0.2222 -0.2500 -0.5000
3 -0.5194 -0.4722 -0.4611 -0.5653
4 -0.6719 -0.5247 -0.6669 -0.7538
5 -0.8573 -0.6314 -0.7500 -0.8176
6 -0.9418 -0.6689 -0.8448 -0.9004
7 -1.0275 -0.7163 -0.8915 -0.9368
8 -1.0728 -0.7376 -0.9355 -0.9748
9 -1.1131 -0.7594 -0.9601 -0.9945

10 -1.1366 -0.7709 -0.9810 -1.0123
11 -1.1559 -0.7811 -0.9936 -1.0226
12 -1.1679 -0.7871 -1.0037 -1.0311
13 -1.1772 -0.7920 -1.0100 -1.0363
14 -1.1832 -0.7950 -1.0149 -1.0404
15 -1.1877 -0.7974 -1.0181 -1.0431
16 -1.1908 -0.7989 -1.0205 -1.0451
17 -1.1930 -0.8001 -1.0221 -1.0464
18 -1.1945 -0.8009 -1.0233 -1.0474
19 -1.1956 -0.8014 -1.0241 -1.0480
20 -1.1963 -0.8018 -1.0247 -1.0485
21 -1.1969 -0.8021 -1.0250 -1.0489
22 -1.1972 -0.8023 -1.0253 -1.0491
23 -1.1975 -0.8024 -1.0255 -1.0492
24 -1.1977 -0.8025 -1.0257 -1.0494
25 -1.1978 -0.8026 -1.0258 -1.0494
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FIGURE 2.3
Convergence rates of the Gauss-Seidel and Jacobi methods

The Jacobi iterates have converged to the same solution as the Gauss-Seidel
method. The error in the iterates is shown in Figure 2.3 on a semi-log scale,
where the error is defined as the maximum |(xk

i − x∗
i )| for all i = 1, . . . , 4.

Both the Gauss-Seidel and the Jacobi methods exhibit linear convergence,
but the Gauss-Seidel converges with a steeper slope and will therefore reach
the convergence tolerance sooner for the same initial condition.

Example 2.6

Repeat Example 2.2 using the Jacobi iterative method.

Solution 2.6 Repeating the solution procedure of Example 2.5 yields the
following iterations for the Jacobi method:

k x1 x2 x3 x4

1 0 0 0 0
2 1.0000 1.0000 0.2000 0.2500
3 -4.8000 -2.1500 -1.6000 -2.8500
4 36.6500 22.3500 9.8900 14.9250
5 -225.0100 -136.8550 -66.4100 -110.6950

Obviously these iterates are not converging. To understand why they are
diverging, consider the iterative matrix for the Jacobi matrix:

MJ = −D−1 (L + U)
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=

⎡
⎢⎢⎣

0.00 −3.00 −4.00 −8.00
−2.00 0.00 −2.00 −3.00
−0.80 −0.60 0.00 −1.60
−2.25 −0.50 −1.75 0.00

⎤
⎥⎥⎦

The eigenvalues of MJ are ⎡
⎢⎢⎣
−6.6212

4.3574
1.2072
1.0566

⎤
⎥⎥⎦

which are all greater than one and lie outside the unit circle. Therefore, the
Jacobi method will not converge to the solution regardless of choice of initial
condition and cannot be used to solve the system of Example 2.2.

If the largest eigenvalue of the iterative matrix MJ or MGS is less than,
but almost, unity, then the convergence may proceed very slowly. In this case
it is desirable to introduce a weighting factor ω that will improve the rate of
convergence. From

xk+1 = − (L + D)−1 (Uxk − b
)

(2.54)

it follows that

xk+1 = xk − D−1
(
Lxk+1 + (D + U)xk − b

)
(2.55)

A new iterative method can be defined with the weighting factor ω such that

xk+1 = xk − ωD−1
(
Lxk+1 + (D + U)xk − b

)
(2.56)

This method is known as the successive overrelaxation (SOR) method with
relaxation coefficient ω > 0. Note that if the relaxation iterates converge,
they converge to the solution x∗ = A−1b. One necessary condition for the
SOR method to be convergent is that 0 < ω < 2 [27]. The calculation of
the optimal value for ω is difficult, except in a few simple cases. The optimal
value is usually determined through trial and error, but analysis shows that
for systems larger than n = 30, the optimal SOR can be more than forty
times faster than the Jacobi method [27]. The improvement on the speed of
convergence often improves as n increases.

2.5 Conjugate Gradient Methods

Another common iterative method for solving Ax = b is the conjugate gradi-
ent method. This method can be considered a minimization method for the
function

E(x) = ‖Ax − b‖2 (2.57)
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FIGURE 2.4
The conjugate gradient method

along a succession of rays. One attractive feature of this method is that it
is guaranteed to converge in at most n steps (neglecting round-off error) if
the A matrix is positive definite. The conjugate gradient method is most
frequently used instead of Gaussian elimination if the A matrix is very large
and sparse, in which case the solution may be obtained in less than n steps.
This is especially true if the A matrix is well conditioned. If the matrix is ill
conditioned, then round-off errors may prevent the algorithm from obtaining
a sufficiently accurate solution after n steps.

In the conjugate gradient method, a succession of search directions ρk is
employed and a parameter αk is computed such that f

(
xk − αkρk

)
is min-

imized along the ρk direction. Upon setting xk+1 equal to xk − αkρk, the
new search direction is found. As the conjugate gradient method progresses,
each error function is associated with a specific ray, or orthogonal expansion.
Therefore the conjugate gradient method is reduced to the process of generat-
ing the orthogonal vectors and finding the proper coefficients to represent the
desired solution. The conjugate gradient method is illustrated in Figure 2.4.
Let x� denote the exact (but unknown) solution, xk an approximate solution,
and Δxk = xk−x�. Given any search direction ρk, the minimal distance from
the line to x� is found by constructing Δxk+1 perpendicular to xk. Since the
exact solution is unknown, the residual is made to be perpendicular to ρk.
Regardless of how the new search direction is chosen, the norm of the residual
will not increase.

All iterative methods for solving Ax = b define an iterative process such
that

xk+1 = xk + αk+1ρk+1 (2.58)

where xk+1 is the updated value, αk is the steplength, and ρk defines the
direction ∈ Rn in which the algorithm moves to update the estimate.
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Let the residual, or mismatch, vector at step k be given by

rk = Axk − b (2.59)

and the error function given by

Ek

(
xk
)

=
∥∥Axk − b

∥∥2 (2.60)

Then the coefficient that minimizes the error function at step k + 1 is

αk+1 =

∥∥AT rk

∥∥2

‖Aρk+1‖2 (2.61)

This has the geometric interpretation of minimizing Ek+1 along the ray defined
by ρk+1. Further, an improved algorithm is one that seeks the minimum of
Ek+1 in a plane spanned by two direction vectors, such that

xk+1 = xk + αk+1 (ρk+1 + βk+1σk+1) (2.62)

where the rays ρk+1 and σk+1 span a plane in Rn. The process of select-
ing direction vectors and coefficients to minimize the error function Ek+1 is
optimized when the chosen vectors are orthogonal, such that

〈Aρk+1, Aσk+1〉 = 0 (2.63)

where 〈·〉 denotes inner product. Vectors that satisfy the orthogonality con-
dition of equation (2.63) are said to be mutually conjugate with respect to
the operator AT A, where AT is the conjugate transpose of A. One method
of choosing appropriate vectors is to choose σk+1 as a vector orthogonal to
ρk, thus eliminating the need to specify two orthogonal vectors at each step.
While this simplifies the procedure, there is now an implicit recursive depen-
dence for generating the ρ vectors.

Conjugate Gradient Algorithm for Solving Ax = b

Initialization: Let k = 0, and

r0 = Ax0 − b (2.64)
ρ0 = −AT r0 (2.65)

While ‖rk‖ ≥ ε

αk+1 =

∥∥AT rk

∥∥2

‖Aρk‖2 (2.66)

xk+1 = xk + αk+1ρk (2.67)
rk+1 = Axk+1 − b (2.68)

Bk+1 =

∥∥AT rk+1

∥∥2

‖AT rk‖2 (2.69)

ρk+1 = −AT rk+1 + Bk+1ρk (2.70)
k = k + 1 (2.71)
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For an arbitrary nonsingular positive definite matrix A, the conjugate gra-
dient method will produce a solution in at most n steps (neglecting round-off
error). This is a direct consequence of the fact that the n direction vectors
ρ0, ρ1, . . . span the solution space. Finite step termination is a significant ad-
vantage of the conjugate gradient method over other iterative methods such
as relaxation methods.

Example 2.7
Repeat Example 2.5 using the conjugate gradient method.

Solution 2.7 The problem of Example 2.5 is repeated here for convenience:
Solve ⎡

⎢⎢⎣
−10 2 3 6

0 −9 1 4
2 6 −12 2
3 1 0 −8

⎤
⎥⎥⎦x =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ (2.72)

with x0 = [0 0 0 0]T .

Initialization: Let k = 1, and

r0 = Ax0 − b =

⎡
⎢⎢⎣
−1
−2
−3
−4

⎤
⎥⎥⎦ (2.73)

ρ0 = −AT r0 =

⎡
⎢⎢⎣

8
6

−31
−12

⎤
⎥⎥⎦ (2.74)

The initial error is
E0 = ‖r0‖2 = (5.4772)2 = 30 (2.75)

Iteration 1

α0 =

∥∥AT r0

∥∥2

‖Aρ0‖2 = 0.0049 (2.76)

x1 = x0 + α0ρ0 =

⎡
⎢⎢⎣

0.0389
0.0292

−0.1507
−0.0583

⎤
⎥⎥⎦ (2.77)

r1 = Ax1 − b =

⎡
⎢⎢⎣
−2.1328
−2.6466
−1.0553
−3.3874

⎤
⎥⎥⎦ (2.78)
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B1 =

∥∥AT r1

∥∥2

‖AT r0‖2 = 0.1613 (2.79)

ρ1 = −AT r1 + B1ρ0 =

⎡
⎢⎢⎣
−7.7644
−8.8668
−8.6195
−3.5414

⎤
⎥⎥⎦ (2.80)

and the error is
E1 = ‖r1‖2 = (4.9134)2 = 24.1416 (2.81)

Similarly for iterations 2–4:

k αk xk rk Bk ρk ‖rk‖

2 0.0464

⎡
⎢⎣
−0.3211
−0.3820
−0.5504
−0.2225

⎤
⎥⎦

⎡
⎢⎣
−1.5391
−0.0030

0.2254
−3.5649

⎤
⎥⎦ 2.5562

⎡
⎢⎣
−24.9948
−17.4017
−14.7079
−28.7765

⎤
⎥⎦ 3.8895

3 0.0237

⎡
⎢⎣
−0.9133
−0.7942
−0.8988
−0.9043

⎤
⎥⎦

⎡
⎢⎣
−1.5779
−0.6320
−0.6146
−0.2998

⎤
⎥⎦ 0.7949

⎡
⎢⎣
−33.5195
−1.0021

−14.9648
−17.1040

⎤
⎥⎦ 1.8322

4 0.0085

⎡
⎢⎣
−1.1981
−0.8027
−1.0260
−1.0496

⎤
⎥⎦

⎡
⎢⎣

0.0000
0.0000
0.0000
0.0000

⎤
⎥⎦ 0.0000

⎡
⎢⎣

0.0000
0.0000
0.0000
0.0000

⎤
⎥⎦ 0.0000

The iterations converged in four steps as the algorithm guarantees.

Unfortunately for a general linear system, the conjugate gradient method
requires significantly more multiplications and divisions than does the LU
factorization method. The conjugate gradient method is more numerically
competitive for matrices that are very large and sparse or that have a special
structure that cannot be easily handled by LU factorization. In some cases,
the speed of convergence of the conjugate gradient method can be improved
by preconditioning.

As seen with the Gauss-Seidel and Jacobi iteration, the convergence rate
of iterative algorithms is closely related to the eigenvalue spectrum of the
iterative matrix. Consequently, scaling or matrix transformation that converts
the original system of equations into one with a better eigenvalue spectrum
might significantly improve the rate of convergence. This procedure is known
as preconditioning. A number of systematic approaches for sparse-matrix
preconditioning have been developed in which the basic approach is to convert
the system

Ax = b

into an equivalent system

M−1Ax = M−1b
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where M−1 approximates A−1. For example, one such approach might be
to use an incomplete LU factorization, where the LU factorization method is
applied but all fills are neglected. If the A matrix is diagonally dominant, a
simple approximation to M−1 is

M−1 =

⎡
⎢⎢⎢⎢⎣

1
A(1,1)

1
A(2,2)

. . .
1

A(n,n)

⎤
⎥⎥⎥⎥⎦

(2.82)

This preconditioning strategy scales the system of equations so that the entries
along the main diagonal are all equal. This procedure can compensate for
orders-of-magnitude differences in scale. Note that scaling will not have any
effect on matrices that are inherently ill conditioned.

Example 2.8
Repeat Example 2.7 using a preconditioner.

Solution 2.8 Let M−1 be defined as in equation (2.82). Thus

M−1 =

⎡
⎢⎢⎣
− 1

10 − 1
9 − 1

12 − 1
8

⎤
⎥⎥⎦ (2.83)

A′ = M−1A =

⎡
⎢⎢⎣

1.0000 −0.2000 −0.3000 −0.6000
0.0000 1.0000 −0.1111 −0.4444

−0.1667 −0.5000 1.0000 −0.1667
−0.3750 −0.1250 0.0000 1.0000

⎤
⎥⎥⎦ (2.84)

b′ = M−1b =

⎡
⎢⎢⎣
−0.1000
−0.2222
−0.2500
−0.5000

⎤
⎥⎥⎦ (2.85)

Solving A′x = b′ using the conjugate gradient method yields the following set
of errors:

k E2
k

0 0.6098
1 0.5500
2 0.3559
3 0.1131
4 0.0000

Although it takes the same number of iterations to converge, note that the
errors for k < 4 are much smaller than in Example 2.7. For large systems, it is



34 Computational Methods for Electric Power Systems

conceivable that the error would be decreased sufficiently rapidly to terminate
the iterations prior to the n-th step. This method is also useful if only an
approximate solution to x is desired.

2.6 Generalized Minimal Residual Algorithm (GMRES)

If the matrix A is neither symmetric nor positive definite, then the term

〈Aρk+1, Aσk+1〉

is not guaranteed to be zero and the search vectors are not mutually orthog-
onal. Mutual orthogonality is required to generate a basis of the solution
space. Hence this basis must be explicitly constructed. The extension of the
conjugate gradient method, called the Generalized Minimal Residual Algo-
rithm (GMRES), minimizes the norm of the residual in a subspace spanned
by the set of vectors

r0, Ar0, A2r0, . . . , Ak−1r0

where vector r0 is the initial residual r0 = ‖b − Ax0‖, and the k-th approx-
imation to the solution is chosen from this space. This subspace, a Krylov
subspace, is made orthogonal by the well-known Gram-Schmidt procedure,
known as the Arnoldi process when applied to a Krylov subspace [37]. At
each step k, the GMRES algorithm applies the Arnoldi process to a set of k
orthonormal basis vectors for the kth Krylov subspace to generate the next
basis vector. Arnoldi methods are described in greater detail in Section 7.3.
At each step, the algorithm multiplies the previous Arnoldi vector vj by A
and then orthonormalizes the resulting vector wj against all previous vi’s.
The columns V = [v1, v2, . . . , vk] form an orthonormal basis for the Krylov
subspace and H is the orthogonal projection of A onto this space.

An orthogonal matrix triangularization such as the Arnoldi method consists
in determining an n × n orthogonal matrix Q such that

QT =
[

R
0

]
(2.86)

where R is an m × m upper triangular matrix R. Then the solution process
reduces to solving the triangular system Rx = Py, where P consists of the
first m rows of Q.

To clear one element at a time to upper triangularize a matrix, the Given’s
rotation can be applied. The Given’s rotation is a transformation based on
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the matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
0 . . . cs . . . sn . . . 0
...

...
. . .

...
0 . . . −sn . . . cs . . . 0
...

...
. . .

...
0 . . . 0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.87)

with properly chosen cn = cos(φ) and sn = sin(φ) for some rotation angle φ
can be used to zero the element Aki.

One of the difficulties with the GMRES methods is that as k increases,
the number of vectors requiring storage increases as k and the number of
multiplications as 1

2k2n (for a n × n matrix). To remedy this difficulty, the
algorithm can be applied iteratively, i.e. it can be restarted every m steps,
where m is some fixed integer parameter. This is often called the GMRES(m)
algorithm.

GMRES(m) Algorithm for Solving Ax = b

Initialization:
Let k = 0, and

r0 = Ax0 − b

e1 = [1 0 0 . . . 0]T

While ‖rk‖ ≥ ε and k ≤ kmax, set

j = 1
v1 = r/‖r‖
s = ‖r‖e1

cs = [0 0 0 . . . 0]T

sn = [0 0 0 . . . 0]T

While j < m,

1. Arnoldi process

(a) form the matrix H such that H(i, j) = (Avj)
T

vi, i = 1, . . . , j

(b) Let w = Avj −
∑j

i=1 H(i, j)vi

(c) Set H(j + 1, j) = ‖w‖
(d) Set vj+1 = w/‖w‖
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2. Givens rotation

(a) Compute
[

H(i, j)
H(i + 1, j)

]
=
[

cs(i) sn(i)
−sn(i) cs(i)

] [
H(i, j)

H(i + 1, j)

]

i = 1, . . . , j − 1

(b) Set

cs(j) =
H(j, j)√

H(j + 1, j)2 + H(j, j)2

sn(j) =
H(j + 1, j)√

H(j + 1, j)2 + H(j, j)2

(c) Approximate residual norm

α = cs(j)s(j)
s(j + 1) = −sn(j)s(j)

s(j) = α

error = |s(j + 1)|

(d) Set

H(j, j) = cs(j)H(j, j) + sn(j)H(j + 1, j)
H(j + 1, j) = 0

3. If error ≤ ε

(a) Solve Hy = s for y

(b) Update approximation
x = x − V y

(c) Method has converged. Return.

4. Set j = j + 1

5. If j = m and error > ε (restart GMRES)

(a) Set s = [1 0 0 . . . 0]

(b) Solve Hy = s for y

(c) Calculate x = x − V y

(d) Calculate r = Ax − b

(e) Set k = k + 1
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Example 2.9
Repeat Example 2.5 using the GMRES method.

Solution 2.9 The problem of Example 2.5 is repeated here for convenience:
Solve ⎡

⎢⎢⎣
−10 2 3 6

0 −9 1 4
2 6 −12 2
3 1 0 −8

⎤
⎥⎥⎦x =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ (2.88)

with x0 = [0 0 0 0]T . Let ε = 10−3.

j=1 Solving the Arnoldi process yields

H =

⎡
⎢⎢⎣
−4.0333 0 0 0

6.2369 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

V =

⎡
⎢⎢⎣
−0.1826 −0.9084 0 0
−0.3651 −0.2654 0 0
−0.5477 0.0556 0 0
−0.7303 0.3181 0 0

⎤
⎥⎥⎦

Applying the Given’s rotation yields

cs =
[−0.5430 0 0 0

]

sn =
[
0.8397 0 0 0

]

H =

⎡
⎢⎢⎣

7.4274 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

s =
[−2.9743 −4.5993 0 0

]T

Since error (= |s(2)| = 4.5993) is greater than ε, j = j + 1 and repeat.

j=2 Solving the Arnoldi process yields

H =

⎡
⎢⎢⎣

7.4274 2.6293 0 0
0 −12.5947 0 0
0 1.9321 0 0
0 0 0 0

⎤
⎥⎥⎦

V =

⎡
⎢⎢⎣
−0.1826 −0.9084 −0.1721 0
−0.3651 −0.2654 0.6905 0
−0.5477 0.0556 −0.6728 0
−0.7303 0.3181 0.2024 0

⎤
⎥⎥⎦
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Applying the Given’s rotation yields

cs =
[−0.5430 0.9229 0 0

]

sn =
[
0.8397 0.3850 0 0

]

H =

⎡
⎢⎢⎣

7.4274 −12.0037 0 0
0 5.0183 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

s =
[−2.9743 −4.2447 1.7708 0

]T

Since error (= |s(3)| = 1.7708) is greater than ε, j = j + 1 and repeat.

j=3 Solving the Arnoldi process yields

H =

⎡
⎢⎢⎣

7.4274 −12.0037 −3.8697 0
0 5.0183 −0.2507 0
0 0 −13.1444 0
0 0 2.6872 0

⎤
⎥⎥⎦

V =

⎡
⎢⎢⎣
−0.1826 −0.9084 −0.1721 −0.3343
−0.3651 −0.2654 0.6905 0.5652
−0.5477 0.0556 −0.6728 0.4942
−0.7303 0.3181 0.2024 −0.5697

⎤
⎥⎥⎦

Applying the Given’s rotation yields

cs =
[−0.5430 0.9229 −0.9806 0

]

sn =
[
0.8397 0.3850 0.1961 0

]

H =

⎡
⎢⎢⎣

7.4274 −12.0037 1.8908 0
0 5.0183 −1.9362 0
0 0 13.7007 0
0 0 0 0

⎤
⎥⎥⎦

s =
[−2.9743 −4.2447 −1.7364 −0.3473

]T

Since error (= |s(4)| = 0.3473) is greater than ε, j = j + 1 and repeat.

j=4 Solving the Arnoldi process yields

H =

⎡
⎢⎢⎣

7.4274 −12.0037 1.8908 1.4182
0 5.0183 −1.9362 0.5863
0 0 13.7007 −1.4228
0 0 0 −9.2276

⎤
⎥⎥⎦

V =

⎡
⎢⎢⎣
−0.1826 −0.9084 −0.1721 −0.3343 0.7404
−0.3651 −0.2654 0.6905 0.5652 0.2468
−0.5477 0.0556 −0.6728 0.4942 0.6032
−0.7303 0.3181 0.2024 −0.5697 0.1645

⎤
⎥⎥⎦
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Applying the Given’s rotation yields

cs =
[−0.5430 0.9229 −0.9806 1.0000

]

sn =
[
0.8397 0.3850 0.1961 0.0000

]

H =

⎡
⎢⎢⎣

7.4274 −12.0037 1.8908 −0.2778
0 5.0183 −1.9362 −1.9407
0 0 13.7007 −1.0920
0 0 0 9.1919

⎤
⎥⎥⎦

s =
[−2.9743 −4.2447 −1.7364 −0.3473 0.0000

]T

Since error (= |s(5)| = 0), the iteration has converged.

Solving for y from Hy = s yields

y =

⎡
⎢⎢⎣
−1.8404
−0.9105
−0.1297
−0.0378

⎤
⎥⎥⎦ (2.89)

Solving for x from
x = x − V y (2.90)

yields

x =

⎡
⎢⎢⎣
−1.1981
−0.8027
−1.0260
−1.0496

⎤
⎥⎥⎦ (2.91)

which is the same as the previous example.
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2.7 Problems

1. Show that the number of multiplications and divisions required in the
LU factorization of an n × n square matrix is n(n2 − 1)/3.

2. Consider the system Ax = b, where

aij =
1

i + j − 1
i, j = 1, . . . , 4

and

bi =
1
3

4∑
j=1

aij

Using only four decimal places of accuracy, solve this system using LU
factorization

(a) no pivoting

(b) partial pivoting

Comment on the differences in solutions (if any).

3. Prove that the matrix

A =
[

0 1
1 1

]

does not have an LU factorization.

4. Assuming that an LU factorization of A is available, write an algorithm
to solve the equation xT A = bT .

5. For the following matrix, find A = LU (no pivoting) and PA = LU
(with partial pivoting)

(a)

A =

⎡
⎢⎢⎣

6 −2 2 4
12 −8 4 10
3 −13 3 3

−6 4 2 −18

⎤
⎥⎥⎦

(b)

A =

⎡
⎢⎢⎣
−2 1 2 5

2 −1 4 1
1 4 −3 2
8 2 3 −6

⎤
⎥⎥⎦
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6. Write an LU factorization-based algorithm to find the inverse of any
nonsingular matrix A.

7. Solve the system of problem 5(b) with the vector

b =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

(a) Using LU factorization and forward/backward substitution
(b) Using a Gauss-Jacobi iteration. How many iterations are required?
(c) Using a Gauss-Seidel iteration. How many iterations are required?
(d) Using the Conjugate Gradient method. How many iterations are

required?
(e) Using the GMRES method. How many iterations are required?

Use a starting vector of

x =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

and a convergence error of 10−5 for the iterative methods.

8. Apply the Gauss-Seidel iteration to the system

A =
[

0.96326 0.81321
0.81321 0.68654

]

b =
[

0.88824
0.74988

]

Use x0 = [0.33116 0.70000]T and explain what happens.

9. Solve the system of equations in problem 2 using the conjugate gradient
method.

10. Solve the system of equations in problem 2 using the GMRES method.

11. Consider an n × n tridiagonal matrix of the form

Ta =

⎡
⎢⎢⎢⎢⎢⎢⎣

a −1
−1 a −1

−1 a −1
−1 a −1

−1 a −1
−1 a

⎤
⎥⎥⎥⎥⎥⎥⎦
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where a is a real number.

(a) Verify that the eigenvalues of Ta are given by

λj = a − 2 cos (jθ) j = 1, . . . , n

where
θ =

π

n + 1

(b) Let a = 2.
i. Will the Jacobi iteration converge for this matrix?
ii. Will the Gauss-Seidel iteration converge for this matrix?

12. An alternative conjugate gradient algorithm for solving Ax = b may
be based on the error functional Ek

(
xk
)

= 〈xk − x, xk − x〉 where 〈·〉
denotes inner product. The solution is given as

xk+1 = xk + αkσk

Using σ1 = −AT r0 and σk+1 = −AT rk + βkσk, derive this conjugate
gradient algorithm. The coefficients αk and βk can be expressed as

αk+1 =
‖rk‖2

‖σk+1‖2

βk+1 =
‖rk+1‖2

‖rk‖2

Repeat Example 2.7 using this conjugate gradient algorithm.

13. Write a subroutine with two inputs (A, flag) that will generate for any
non-singular matrix A, the outputs (Q, P ) such that if

• flag=0, A = LU, P + I

• flag=1, PA = LU

where

L =

⎡
⎢⎢⎢⎢⎢⎣

l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

...
...

ln1 ln2 ln3 . . . lnn

⎤
⎥⎥⎥⎥⎥⎦

and U =

⎡
⎢⎢⎢⎢⎢⎣

1 u12 u13 . . . u1n

0 1 u23 . . . u2n

0 0 1 . . . u3n

...
...

...
...

...
0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

and
Q = L + U − I
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14. For the following non-singular matrices, use the subroutine of Problem
13 and obtain matrices P and Q in each of the following cases:

(a)
⎡
⎣

0 0 1
3 1 4
2 1 0

⎤
⎦

(b)
⎡
⎢⎢⎣

10−10 0 0 1
0 0 1 4
0 2 1 0
1 0 0 0

⎤
⎥⎥⎦

15. Write a subroutine with two inputs (A, b)that will generator for any
non-singular matrix A, the output (x) such that

Ax = b

using forward and backward substitution. This subroutine should in-
corporate the subroutine developed in Problem 13.

16. Using the subroutines of Problems 13 and 15, solve the following system
of equations ⎡

⎢⎢⎣
2 5 6 11
4 6 8 2
4 3 7 0
1 26 3 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦
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Systems of Nonlinear Equations

Many systems can be modeled generically as

F (x) = 0 (3.1)

where x is an n-vector and F represents a nonlinear mapping with both its
domain and range in the n-dimensional real linear space Rn. The mapping F
can also be interpreted as being an n-vector of functions

F (x) =

⎡
⎢⎢⎢⎣

f1 (x1, x2, . . . , xn)
f2 (x1, x2, . . . , xn)

...
fn (x1, x2, . . . , xn)

⎤
⎥⎥⎥⎦ = 0 (3.2)

where at least one of the functions is nonlinear. Each function may or may not
involve all n states xi, but it is assumed that every state appears at least once
in the set of functions. The solution x∗ of the nonlinear system cannot, in gen-
eral, be expressed in closed form. Thus nonlinear systems are usually solved
numerically. In many cases, it is possible to find an approximate solution x̂
arbitrarily close to the actual solution x∗, by replacing each approximation
with successively better (more accurate) approximations until

F (x̂) ≈ 0.

Such methods are usually iterative. An iterative solution is one in which an
initial guess (x0) to the solution is used to create a sequence x0, x1, x2, . . .
that (hopefully) converges arbitrarily close to the desired solution x∗.

Three principal issues arise with the use of iterative methods, namely

1. Is the iterative process well defined? That is, can it be successively
applied without numerical difficulties?

2. Do the iterates (i.e., the sequence of updates) converge to a solution of
equation (3.1)? Is the solution the desired solution?

3. How economical is the entire solution process?

The complete (or partial) answers to these issues are enough to fill several
volumes, and as such cannot be discussed in complete detail in this chapter.

45
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These issues, however, are central to the solution of nonlinear systems and
cannot be fully ignored. Therefore this chapter will endeavor to provide suffi-
cient detail for the reader to be aware of the advantages (and disadvantages)
of different types of iterative methods without providing exhaustive coverage.

3.1 Fixed Point Iteration

Solving a system of nonlinear equations is a complex problem. To better
understand the mechanisms involved in a large-scale system, it is instructive
to first consider the one dimensional, or scalar, nonlinear system

f(x) = 0. (3.3)

One approach to solving any nonlinear equation is the tried-and-true “trial
and error” method that most engineering and science students have used at
one time or another in their careers.

Example 3.1
Find the solution to

f(x) = x2 − 5x + 4 = 0 (3.4)

Solution 3.1 This is a quadratic equation that has a closed form solution.
The two solutions are

x∗
1, x

∗
2 =

5 ±√(−5)2 − (4)(4)
2

= 1, 4

If a closed form solution did not exist, however, one approach would be to
use a trial and error approach. Since the solution occurs when f(x) = 0, the
value of f(x) can be monitored and used to refine the estimates to x∗.

k x f(x)
0 0 0 − 0 + 4 = 4 > 0
1 2 4 − 10 + 4 = −2 < 0
2 0.5 0.25 − 2.5 + 4 = 1.75 > 0
3 1.5 2.25 − 7.5 + 4 = −1.25 < 0

By noting the sign of the function and whether or not it changes sign, the
interval in which the solution lies can be successively narrowed. If a function
f(x) is continuous and f(a) ·f(b) < 0, then the equation f(x) = 0 has at least
one solution in the interval (a, b). Since f(0.5) > 0 and f(1.5) < 0 it can be
concluded that one of the solutions lies in the interval (0.5, 1.5).
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This process, however, tends to be tedious and there is no guidance to
determine what the next guess should be other than the bounds established
by the change in sign of f(x). A better method would be to write the sequence
of updates in terms of the previous guesses. Thus, an iterative function can
be defined as:

I : xk+1 = g
(
xk
)
, k = 1, . . . ,∞ (3.5)

This is known as a fixed-point iteration because at the solution

x∗ = g (x∗) (3.6)

Example 3.2
Find the solution to equation (3.4) using a fixed point iteration.

Solution 3.2 Equation (3.4) can be rewritten as

x =
x2 + 4

5
(3.7)

Adopting the notation of equation (3.5), the iterative function becomes

xk+1 = g
(
xk
)

=

(
xk
)2 + 4
5

(3.8)

Using this iterative function, the estimates to x∗ are:

k xk g
(
xk
)

0 0 0+4
5 = 0.8

1 0.8 0.64+4
5 = 0.928

2 0.928 0.856+4
5 = 0.971

3 0.971 0.943+4
5 = 0.989

It is obvious that this sequence is converging to the solution x∗ = 1.
Now consider the same example, except with a different initial guess:

k xk g
(
xk
)

0 5 25+4
5 = 5.8

1 5.8 33.64+4
5 = 7.528

2 7.528 56.67+4
5 = 12.134
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FIGURE 3.1
Graphical interpretation of the fixed point iteration

In this case, the iterates are increasing rapidly and after a few more iter-
ations would approach infinity. In this case, it is said that the iteration is
diverging.

This example brings up two very important points: will a sequence of it-
erates converge and, if so, to what solution will they converge? In order to
address these questions, consider first a graphical interpretation of Example
3.2. Plotting both sides of the function in equation (3.7) yields the two lines
shown in Figure 3.1.

These two lines intersect at the same two points in which the original func-
tion f(x) = 0. The fixed point iteration works by finding this intersection.
Consider the initial guess x0 shown in Figure 3.1. The function g(x) evalu-
ated at x0 gives the updated iterate x1. Thus a vertical line projected from
x0 points to g(x0) and a horizontal line projected from g(x0) gives x1.

The projection of the function g(x1) yields x2. Similar vertical and hori-
zontal projections will eventually lead directly to the point at which the two
lines intersect. In this way, the solution to the original function f(x) can be
obtained.

In this example, the solution x∗ = 1 is the point of attraction of the fixed
point iteration. A point x∗ is said to be a point of attraction of an iterative
function I if there exists an open neighborhood S0 of x∗ such that for all
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x*

S0

S

FIGURE 3.2
Domain of attraction of x∗

initial guesses x0 in the subset S0 of S, the iterates will remain in S and

lim
k→∞

xk = x∗ (3.9)

The neighborhood S0 is called the domain of attraction of x∗ [34]. This
concept is illustrated in Figure 3.2 and implies that the iterates of I will
converge to x∗ whenever x0 is sufficiently close to x∗. In Example 3.2, the
fixed point x∗ = 1 is a point of attraction of

I : xk+1 =

(
xk
)2 + 4
5

whereas x∗ = 4 is not. The domain of attraction of x∗ = 1 is all x in the
domain −∞ < x < 4.

It is often difficult to determine a priori whether or not an iteration will
converge. In some cases, a series of iterates will appear to be converging,
but will not approach x∗ even as k → ∞. However, there are a number of
theorems that provide insight as to whether an iteration of x = g(x) will
converge.

Mean Value Theorem:[47] Suppose a function g(x) and its derivative g′(x)
are both continuous in the interval a ≤ x ≤ b. Then there exists at least one
ξ, a < ξ < b such that

g′(ξ) =
g(b) − g(a)

b − a
. (3.10)
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FIGURE 3.3
Meaning of the mean value theorem

The meaning of this theorem is shown in Figure 3.3. If a function g(x)
is defined in the region between x = a and x = b and is both differentiable
(smooth) and continuous, then a secant line can be drawn between points A
and A′. The slope of this secant line is

g(b) − g(a)
b − a

The mean value theorem states that there is at least one point on the curve,
at x = ξ where the tangent to the curve has the same slope as the line AA′.

Rewriting the equation of the mean value theorem as

g(b) − g(a) = g′(ξ)(b − a)

then for an successive iterates in which xk+1 = b and xk = a, then

g(xk+1) − g(xk) = g′(ξk)(xk+1 − xk) (3.11)

or taking the absoluate values:

∣∣g(xk+1) − g(xk)
∣∣ = ∣∣g′(ξk)

∣∣ ∣∣(xk+1 − xk)
∣∣ (3.12)

As long as the appropriate ξk is used, the mean value theorem can be suc-
cessively applied to each iteration of the sequence. If the entire region which
includes x∗ as well as all of the xk, then the derivative g′(x) is bounded.
Therefore ∣∣g′(ξk)

∣∣ ≤ M (3.13)
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for any k where M is the positive upper bound. Then starting from the initial
guess x0,

∣∣x2 − x1
∣∣ ≤ M

∣∣x1 − x0
∣∣ (3.14)∣∣x3 − x2

∣∣ ≤ M
∣∣x2 − x1

∣∣ (3.15)
... (3.16)∣∣xk+1 − xk

∣∣ ≤ M
∣∣xk − xk−1

∣∣ (3.17)

and by combining yields
∣∣xk+1 − xk

∣∣ ≤ Mk
∣∣x1 − x0

∣∣ (3.18)

Thus for any initial guess x0,

|g′(x)| ≤ M < 1 (3.19)

then the iterates will converge.
A similar, but slightly different method of determining whether or not an

iterative process will converge is given by the Ostrowski theorem [34]. This
theorem states that if the iterative process

I : xk+1 = g
(
xk
)
, k = 1, . . . ,∞

has a fixed point x∗ and is continuous and differentiable at x∗, and if
∣∣∣∂g(x∗)

∂x

∣∣∣ <
1, then x∗ is a point of attraction of I.

Example 3.3
Determine whether x∗ = 1 and x∗ = 4 are points of attraction of the iterative
function of equation (3.8).

Solution 3.3 The derivative of the iterative process I in equation (3.8) is
∣∣∣∣
∂g (x)

∂x

∣∣∣∣ =
∣∣∣∣
2
5
x

∣∣∣∣

Thus, for x∗ = 1,
∣∣ 2
5x∗∣∣ = 2

5 < 1 and x∗ = 1 is a point of attraction of I. For
x∗ = 4:

∣∣ 2
5x∗∣∣ = 2

5 (4) = 8
5 > 1; thus, x∗ = 4 is not a point of attraction of I.

There are four possible convergence types for fixed point iterations. These
are shown graphically in Figure 3.4. Figure 3.4 (a) shows what happens if
g′(x) is between 0 and 1. Even if the initial guess x0 is far from x∗, the
successive values of xk approach the solution from one side – this is defined
as monotonic convergence. Figure 3.4 (b) shows the situation when g′(x) is
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(a) monotonic convergence (b) oscillating convergence

(c) monotonic divergence (d) oscillating divergence
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x
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x

FIGURE 3.4
Four possible convergence types in the iteration x = g(x)

between -1 and 0. Even if the initial guess x0 is far from x∗, the successive
values of xk approach the solution from first one side and then the other
oscillating around the root. This convergence is oscillatory convergence.

Figure 3.4 (c) shows the case when g′(x) is greater than 1 leading to mono-
tonic divergence. Figure 3.4 (d) illustrates the case when g′(x) < −1 and
|g′(x)| > 1. This is oscillatory divergence.
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3.2 Newton-Raphson Iteration

Several iterative methods offer more robust convergence behavior than the
simple fixed point iteration described in the previous section. One of the
most widely used iterative methods is the Newton-Raphson iterative method.
This method can also be described by the iterative process

I : xk+1 = g
(
xk
)
, k = 1, . . . ,∞

but frequently offers better convergence properties than the fixed point iter-
ation.

Consider again the scalar nonlinear function

f(x∗) = 0 (3.20)

Expanding this function in a Taylor’s series expansion about the point xk

yields

f(x∗) = f
(
xk
)

+
∂f

∂x

∣∣∣∣
xk

(
x∗ − xk

)
+

1
2!

∂2f

∂x2

∣∣∣∣
xk

(
x∗ − xk

)2
+ . . . = 0 (3.21)

If it is assumed that the iterates will converge to x∗ as k → ∞, then the
updated guess xk+1 can be substituted for x∗, yielding

f(xk+1) = f
(
xk
)

+
∂f

∂x

∣∣∣∣
xk

(
xk+1 − xk

)
+

1
2!

∂2f

∂x2

∣∣∣∣
xk

(
xk+1 − xk

)2
+ . . . = 0

(3.22)
If the initial guess is “sufficiently close” to x∗ and within the domain of at-
traction of x∗, then the higher order terms of the expansion can be neglected,
yielding

f(xk+1) = f
(
xk
)

+
∂f

∂x

∣∣∣∣
xk

(
xk+1 − xk

) ≈ 0 (3.23)

Solving directly for xk+1 as a function of xk yields the following iterative
function:

I : xk+1 = xk −
[

∂f

∂x

∣∣∣∣
xk

]−1

f
(
xk
)

(3.24)

which is the well-known Newton-Raphson iterative method.
The Newton-Raphson method also lends itself to a graphical interpretation.

Consider the same function as in Example 3.2 plotted in Figure 3.5. In this
method, the slope of the function evaluated at the current iteration is used to
produce the next guess. For any guess xk, there corresponds a point on the
function f

(
xk
)

with slope
∂f

∂x

∣∣∣∣
x=xk
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FIGURE 3.5
Graphical interpretation of the Newton-Raphson method

Therefore, the next guess xk+1 is simply the intersection of the slope and the
x-axis. This process is repeated until the guesses are sufficiently close to the
solution x∗. An iteration is said to have converged at xk if

∣∣f (xk
)∣∣ < ε

where ε is some pre-determined tolerance.

Example 3.4
Repeat Example 3.2 using a Newton-Raphson iteration.

Solution 3.4 Using the Newton-Raphson method of equation (3.24), the
iterative function is given by:

I : xk+1 = xk −
(
xk
)2 − 5xk + 4
2xk − 5

(3.25)

Using this iterative function, the estimates to x∗ from an initial guess of x0 = 3
are:

k xk g
(
xk
)

0 3 3 − 9−15+4
6−5 = 5

1 5 5 − 25−25+4
10−5 = 4.2

2 4.2 4.2 − 17.64−21+4
8.4−5 = 4.012
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(c)  x0 not close enough to root
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*

FIGURE 3.6
Newton-Raphson regions of convergence

Similarly, the estimates to x∗ from an initial guess of x0 = 2 are:

k xk g
(
xk
)

0 2 2 − 4−10+4
4−5 = 0

1 0 0 − 0−0+4
0−5 = 0.8

2 0.8 0.8 − 0.64−4+4
1.6−5 = 0.988

In this case, both solutions are points of attraction of the Newton-Raphson
iteration.

In some cases however, the Newton-Raphson method will also fail to con-
verge. Consider the functions shown in Figure 3.6. In Figure 3.6 (a), the
function has no real root. In Figure 3.6(b), the function is symmetric around
x∗ and the second derivative is zero. In Figure 3.6 (c), an initial guess of
x0

a will converge to the solution x∗
a. An initial guess of x0

b will converge to
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the solution x∗
b . However, an initial guess of x0

c will cause the iterates to get
locked-in and oscillate in the region denoted by the dashed box without ever
converging to a solution. This figure supports the assertion that if the initial
guess is too far away from the actual solution, the iterates may not converge.
Or conversely, the initial guess must be sufficiently close to the actual solution
for the Newton-Raphson iteration to converge. This supports the initial as-
sumption used to derive the Newton-Raphson algorithm in that if the iterates
were sufficiently close to the actual solution, the higher-order terms of the
Taylor series expansion could be neglected. If the iterates are not sufficiently
close to the actual solution, these higher-order terms are significant and the
assumption upon which the Newton-Raphson algorithm is based is not valid.

3.2.1 Convergence Properties

Note that the rate of convergence to the solution in Example 3.4 is much
faster than in Example 3.2. This is because the Newton-Raphson method
exhibits quadratic convergence, whereas the fixed-point iteration exhibits only
linear convergence. Linear convergence implies that once the iterates xk are
sufficiently close to the actual solution x∗, then the error

εk =
∣∣xk − x∗∣∣ (3.26)

will approach zero in a linear fashion. The convergence of Examples 3.2 and
3.4 is shown in Figure 3.7. Plotted on a log-scale plot, the error for the fixed
point iteration is clearly linear, whereas the Newton-Raphson error exhibits
quadratic convergence until it becomes too small to plot. Numerous methods
have been proposed to predict the rate of convergence of iterative methods.
Let the error of an iterative function be defined as in equation (3.26). If there
exists a number p and a constant C �= 0 such that

lim
k→∞

∣∣εk+1
∣∣

|εk|p = C (3.27)

then p is called the order of convergence of the iterative sequence and C is
the asympototic error constant. If p = 1, the convergence is said to be linear.
If p = 2, the convergence is quadratic, and if p = 3, the order of convergence
is cubic. The Newton-Raphson method satisfies equation (3.27) with p = 2 if

C =
1
2

∣∣∣d2f(x∗)
dx2

∣∣∣∣∣∣df(x∗)
dx

∣∣∣

where C �= 0 only if d2f(x∗)
dx2 �= 0. Thus, for most functions, the Newton-

Raphson method exhibits quadratic convergence.
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FIGURE 3.7
Non-converging iteration (fixed point vs. Newton-Raphson)

3.2.2 The Newton-Raphson for Systems of Nonlinear Equa-
tions

In science and engineering, many applications give rise to systems of equa-
tions such as those in equation (3.2). With a few modifications, the Newton-
Raphson method developed in the previous section can be extended to systems
of nonlinear equations. Systems of equations can similarly be represented by
Taylor series expansions. By making the assumption once again that the ini-
tial guess is sufficiently close to the exact solution, then the multi-dimensional
higher order terms can be neglected, yielding the Newton-Raphson method
for n-dimensional systems:

xk+1 = xk − [J (xk
)]−1

F
(
xk
)

(3.28)

where

x =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn

⎤
⎥⎥⎥⎥⎥⎦

F
(
xk
)

=

⎡
⎢⎢⎢⎢⎢⎣

f1

(
xk
)

f2

(
xk
)

f3

(
xk
)

...
fn

(
xk
)

⎤
⎥⎥⎥⎥⎥⎦
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and the Jacobian matrix
[
J
(
xk
)]

is given by

[
J
(
xk
)]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

. . . ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

. . . ∂f3
∂xn

...
...

...
...

...
∂fn

∂x1

∂fn

∂x2

∂fn

∂x3
. . . ∂fn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Typically the inverse of the Jacobian
[
J
(
xk
)]

is not found directly, but rather
through LU factorization by posing the Newton-Raphson method as

[
J
(
xk
)] (

xk+1 − xk
)

= −F
(
xk
)

(3.29)

which is now in the form Ax = b where the Jacobian is the matrix A, the
function −F

(
xk
)

is the vector b, and the unknown x is the difference vector(
xk+1 − xk

)
. Convergence is typically evaluated by considering the norm of

the function ∥∥F (xk
)∥∥ < ε (3.30)

Note that the Jacobian is a function of xk and is therefore updated every
iteration along with F

(
xk
)
.

Example 3.5
Find the solution to

0 = x2
1 + x2

2 − 5x1 + 1 = f1 (x1, x2) (3.31)
0 = x2

1 − x2
2 − 3x2 − 3 = f2 (x1, x2) (3.32)

with an initial guess of

x(0) =
[

3
3

]

Solution 3.5 The Jacobian of this system of equations is:

J (x1, x2) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=
[

2x1 − 5 2x2

2x1 −2x2 − 3

]

Iteration 1
The Jacobian and the functions f1 and f2 are evaluated at the initial con-

dition [
1 6
6 −9

] [
x

(1)
1 − 3

x
(1)
2 − 3

]
=
[−4

12

]
(3.33)
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Solving this linear system yields
[

x
(1)
1 − 3

x
(1)
2 − 3

]
=
[

0.8
−0.8

]
(3.34)

Thus

x
(1)
1 = 0.8 + x

(0)
1 = 0.8 + 3 = 3.8 (3.35)

x
(1)
2 = −0.8 + x

(0)
2 = −0.8 + 3 = 2.2 (3.36)

The error at iteration 1 is
∥∥∥∥∥∥

⎡
⎣ f1

(
x

(0)
1 , x

(0)
2

)

f2

(
x

(0)
1 , x

(0)
2

)
⎤
⎦
∥∥∥∥∥∥
∞

= 12

Iteration 2
The Jacobian and the functions f1 and f2 are evaluated at x(1)

[
2.6 4.4
7.6 −7.4

][
x

(2)
1 − 3.8

x
(2)
2 − 2.2

]
=
[−1.28

0.00

]
(3.37)

Solving this linear system yields
[

x
(2)
1 − 3.8

x
(2)
2 − 2.2

]
=
[−0.1798
−0.1847

]
(3.38)

Thus

x
(2)
1 = −0.1798 + x

(1)
1 = −0.1798 + 3.8 = 3.6202 (3.39)

x
(2)
2 = −0.1847 + x

(1)
2 = −0.1847 + 2.2 = 2.0153 (3.40)

The error at iteration 2 is
∥∥∥∥∥∥

⎡
⎣ f1

(
x

(1)
1 , x

(1)
2

)

f2

(
x

(1)
1 , x

(1)
2

)
⎤
⎦
∥∥∥∥∥∥
∞

= 1.28

Iteration 3
The Jacobian and the functions f1 and f2 are evaluated at x(2)

[
2.2404 4.0307
7.2404 −7.0307

] [
x

(3)
1 − 3.6202

x
(3)
2 − 2.0153

]
=
[−0.0664

0.0018

]
(3.41)

Solving this linear system yields
[

x
(3)
1 − 3.6202

x
(3)
2 − 2.0153

]
=
[−0.0102
−0.0108

]
(3.42)
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Thus

x
(3)
1 = −0.0102 + x

(2)
1 = −0.0102 + 3.6202 = 3.6100 (3.43)

x
(3)
2 = −0.0108 + x

(2)
2 = −0.0108 + 2.0153 = 2.0045 (3.44)

The error at iteration 3 is
∥∥∥∥∥∥

⎡
⎣ f1

(
x

(2)
1 , x

(2)
2

)

f2

(
x

(2)
1 , x

(2)
2

)
⎤
⎦
∥∥∥∥∥∥
∞

= 0.0664

At iteration 4, the functions f1 and f2 are evaluated at x(3) and yield the
following: ⎡

⎣ f1

(
x

(3)
1 , x

(3)
2

)

f2

(
x

(3)
1 , x

(3)
2

)
⎤
⎦ =

[−0.221× 10−3

0.012× 10−3

]

Since the norm of this matrix is very small, it can be concluded that the
iterates have converged and

[
x

(3)
1

x
(3)
2

]
=
[

3.6100
2.0045

]

are within an order of error of 10−3 of the actual solution.

In the solution to Example 3.5, the error at each iteration is

iteration error
0 12.0000
1 1.2800
2 0.0664
3 0.0002

Note that once the solution is sufficiently close to the actual solution, the er-
ror at each iteration decreases rapidly. If the iterations were carried far enough
the error at each iteration would become roughly the square of the previous
iteration error. This convergence behavior is indicative of the quadratic con-
vergence of the Newton-Raphson method.

3.2.3 Modifications to the Newton-Raphson Method

Although the full Newton-Raphson method exhibits quadratic convergence
and a minimum number of iterations, each iteration may require significant
computation. For example, the computation of a full Jacobian matrix requires
n2 calculations, and each iteration requires on the order of n3 operations
for the LU factorization if the Jacobian is a full matrix. Therefore most
modifications to the Newton-Raphson method propose to reduce either the
calculation or the LU factorization of the Jacobian matrix.
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Consider once again the iterative statement of the Newton-Raphson method:

I : xk+1 = xk − [J (xk
)]−1

f
(
xk
)

This iterative statement can be written in a more general form as:

I : xk+1 = xk − [M (
xk
)]−1

f
(
xk
)

(3.45)

where M is an n × n matrix that may or may not be a function of xk. Note
that even if M �= J , this iteration will still converge to a correct solution for
x if the function f(x) is driven to zero. So one approach to simplifying the
Newton-Raphson method is to find a suitable substitute matrix M that is
easier to compute than the system Jacobian. One common simplification is
to substitute each of the partial derivative entries ∂fi

∂xj
by a difference approx-

imation. For example, a simple approximation might be

∂fi

∂xj
≈ 1

hij

[
fi

(
x + hije

j
)− fi (x)

]
(3.46)

where ej is the jth unit vector:

ej =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the 1 occurs in the jth row of the unit vector and all other entries are
zero. The scalar hij can be chosen in numerous ways, but one common choice
is to let hk

ij = xk
j − xk−1

j . This choice for hij leads to a rate of convergence of
1.62, which lies between quadratic and linear convergence rates.

Another common modification to the Newton-Raphson method is to set M
equal to the Jacobian matrix at occasional intervals. For example, the matrix
M can be re-evaluated whenever the convergence slows down, or at more reg-
ular intervals, such as every other or other third iteration. This modification
is known as the dishonest Newton’s method. An extreme extension of this
method is to set M equal to the initial Jacobian matrix and then to hold it
constant throughout the remainder of the iteration. This is commonly called
the very dishonest Newton’s method. In addition to the reduction in com-
putation associated with the calculation of the matrix, this method also has
the advantage that the M matrix need only be factored into the LU matrices
once since it is a constant. This can save considerable computation time in the
LU factorization process. Similarly, the matrices of the dishonest Newton’s
method need only be factored when the M matrix is re-evaluated.
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3.3 Continuation Methods

Many of the iteration methods described so far will, in general, converge to a
solution x� of f(x) = 0 only if the initial condition is sufficiently close to x�.
The continuation method approach may be considered to be an attempt to
widen the region of convergence of a given method. In many physical systems,
the problem defined by the mathematical equation f(x) = 0 may in some way
depend in a natural way on a parameter λ of the system. When this parameter
is set equal to 0, the system f0(x) = 0 has a known solution x0. However, for
varying λ, and entire family of functions H (x, λ) exist such that:

H (x, 0) = f0(x), H (x, 1) = f(x) (3.47)

where a solution x0 of H (x, 0) = 0 is known, and the equation H (x, 1) = 0
is the desired problem to be solved.

Even if f(x) does not depend naturally on a suitable parameter λ, a family
of problems satisfying equation (3.47) can be defined by

H (x, λ) = λf(x) + (1 − λ) f0(x), λ ∈ [0, 1] (3.48)

when the solution x0 of f0 (x) = 0 is known. As λ varies from 0 to 1, the
family of mappings varies from f0 (x) = 0 to f1 (x) = 0 where the solution of
f1 (x) = f (x) = 0 is the desired value x1 = x�.

As a first approach to obtaining x� = x1, the interval [0, 1] can be parti-
tioned as

0 = λ0 < λ1 < λ2 < . . . < λN = 1

and consider solving the problems

H (x, λi) = 0, i = 1, . . . , N (3.49)

and assuming that a Newton-Raphson iteration is used to solve each problem
i in equation (3.49), then the initial condition for the i-th problem is the
solution from H (x, λi−1) = 0. For small enough intervals between i and i+1,
this solves the problem of identifying a good initial condition.

The relationship given in equation (3.48) is an example of a homotopy in
which two functions f(x) and f0(x) are embedded in a single continuous func-
tion. Formally, a homotopy between any two functions is a continuous map-
ping f, f0 : X → Y :

H : [0, 1] × X → Y (3.50)

such that equation (3.47) holds. If such a mapping exists, then it is said that
f is homotopic to f0.

Homotopy functions are used to define a path from the known solution to
a relatively simple problem (f0(x) = 0) to the solution of a more complex
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problem to which the solution is desired (f(x) = 0) . This path comprises the
solutions to a family of problems which represent the continuous deformation
from the simple problem to the desired problem. Continuation methods are
a numerical approach to following the deformation path.

Homotopy continuation methods can be constructed to be exhaustive and
globally convergent, meaning that all solutions to a given system of nonlinear
equations can be found and will converge regardless of choice of initial condi-
tion [58]. Since a homotopy problem is equal to zero at every point λ ∈ [0, 1]
along the path, it is therefore equal to zero at λ = λk and λ = λk+1 which
are two successive points along the path. This gives:

0 = H
(
xk, λk

)
= λkf(xk) + (1 − λk) f0(xk) (3.51)

0 = H
(
xk+1, λk+1

)
= λk+1f(xk+1) + (1 − λk+1) f0(xk+1) (3.52)

For paths along the path, the homotopy parameter λk+1 is associated with
the parameter set

xk+1 = xk + Δx

If the changes in the parameters are small, the functions f0(xk+1) and f(xk+1)
can be linearly approximated by using a Taylor series expansion about xk

and neglecting all terms higher than second order. Applying this technique
to equation (3.52) yields:

(λk + Δλ)
[
Fx

(
xk
)
Δx
]
+(1 − λk − Δλ)

[
f0

(
xk
)

+ F0x

(
xk
)
Δx
]

= 0 (3.53)

where Fx and F0x are the Jacobians of f(x) and f0(x) with respect to x,
respectively. Subtracting equation (3.51) from equation (3.53) and canceling
like terms yields

0 =
[
λk+1Fx

(
xk
)

+ (1 − λk+1)F0x

(
xk
)]

Δx +
[
f
(
xk
)− f0

(
xk
)]

Δλ (3.54)

Using xk+1 = xk + Δx, equation (3.54) can be rewritten in terms of the
homotopy function to yield the update equation:

xk+1 = xk − ΔλHx

(
xk, λk+1

)−1 ∂

∂λ
H
(
xk, λk+1

)
(3.55)

where
λk+1 = λk + Δλ

and Hx (x, λ) is the Jacobian of H (x, λ) with respect to x.

Example 3.6
Solve

0 = f1 (x1, x2) = x2
1 − 3x2

2 + 3 (3.56)
0 = f2(x1, x2) = x1x2 + 6 (3.57)
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using the homotopic mapping with

0 = f01 (x1, x2) = x2
1 − 4 (3.58)

0 = f02 (x1, x2) = x2
2 − 9 (3.59)

Solution 3.6 Set up a homotopy such that

H (x, λ) = λf(x) + (1 − λ) f0(x), λ ∈ [0, 1] (3.60)

0 = λ
(
x2

1 − 3x2
2 + 3

)
+ (1 − λ)

(
x2

1 − 4
)

(3.61)

0 = λ (x1x2 + 6) + (1 − λ)
(
x2

2 − 9
)

(3.62)

The continuation method advances the solution via equation (3.55):

λk+1 = λk + Δλ (3.63)
[

xk+1
1

xk+1
2

]
=
[

xk
1

xk
2

]
− Δλ

[
λk+1

[
2xk

1 −6xk
2

xk
2 xk

1

]
+
(
1 − λk+1

) [ 2xk
1 0

0 2xk
2

]]−1

×
[

(xk
1)2 − 3(xk

2)2 + 3 − ((xk
1)2 − 4

)
xk

1xk
2 + 6 − ((xk

2)2 − 9
)

]
(3.64)

The solution is then refined through the Newton-Raphson solution for xk+1
1

and xk+1
2 from

0 = λk+1
(
(xk+1

1 )2 − 3(xk+1
2 )2 + 3

)
+ (1 − λk+1)

(
(xk+1

1 )2 − 4
)

(3.65)

0 = λk+1
(
xk+1

1 xk+1
2 + 6

)
+ (1 − λk+1)

(
(xk+1

2 )2 − 9
)

(3.66)

Starting with λ0 = 0 and Δλ = 0.1 yields the easily obtained initial solution
of the system:

x0
1 = 2

x0
2 = 3

Predicting the values for k = 1 from equations (3.63) and (3.64) yields:

x1
1 = 2.3941

x1
2 = 2.7646

Refining the solution via the Newton-Raphson solution to equations (3.65)-
(3.66) yields

x1
1 = 2.3628

x1
2 = 2.7585
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This process is repeated until λ = 1 and x1 = −3 and x2 = 2 which are the
correct solutions to the desired problem.

The same process will work if the inital solutions are chosen as x0
1 = −2 and

x0
2 = −3. In this case, the obtained values are the alternate solution x1 = 3

and x2 = −2 to the desired problem.

3.4 Secant Method

The Newton-Rapshon method is based on using the line tangent to the func-
tion y = f(x). By using the slope of the tangent line, the update to the
iteration can be calculated. The difficulty with this method is the computa-
tional complexity required to compute the function derivative, or f ′(x). An
alternate approach to calculating the slope of the tangent is to take two points
close to the desired root and interpolate between them to estimate the slope
as shown in Figure 3.8. This produces the linear function

q(x) = a0 + a1x (3.67)

where q
(
x0
)

= f
(
x0
)

and q
(
x1
)

= f
(
x1
)
. This line is the secant line and is

given by

q(x)

(
x1 − x

)
f
(
x0
)

+
(
x − x0

)
f
(
x1
)

x1 − x0
(3.68)

Setting x2 = x and solving yields:

x2 = x1 − f
(
x1
)
[

f
(
x1
)− f

(
x0
)

x1 − x0

]−1

(3.69)

The process can now be repeated by using x2 and x1 to produce another
secant line. By repeatedly updating the secant line, the generalized formula
becomes:

xk+1 = xk − f
(
xk
)
[

f
(
xk
)− f

(
xk−1

)
xk − xk−1

]−1

(3.70)

Note that the secant method can be considered an approximation of the
Newton-Raphson method

xk+1 = xk − f
(
xk
)

f ′ (xk)
(3.71)

by using the approximation

f ′ (xk
)

=
f
(
xk
)− f

(
xk−1

)
xk − xk−1

(3.72)
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y=f(x)

(x0,f(x0))

(x1,f(x1))

x0x1

y

x

x2

FIGURE 3.8
Illustration of secant method

The secant method is often faster than the Newton-Raphson method even
though it requires a greater number of iterations to converge to the same
level of accuracy. This is because the Newton-Raphson method requires two
function evaluations

(
f
(
xk
)
and f ′ (xk

))
whereas the secant method only re-

quires one function evaluation
(
f
(
xk
))

since f
(
xk−1

)
can be saved from the

previous iteration.
The secant method exhibits super linear convergence; its convergence is

faster than linear convergence, but not as fast as quadratic convergence (of
the Newton-Raphson method). Let the error at iteration k be given by

ek = xk − x� (3.73)

where x� is the exact solution. Using the Taylor series expansion:

f
(
xk
)

= f
(
x� +

(
xk − x�

))
(3.74)

= f
(
x� + ek

)
(3.75)

= f (x�) + f ′ (x�) ek +
1
2
f ′′ (x�)

(
ek
)2

+ . . . (3.76)

Similarly

f
(
xk−1

)
= f (x�) + f ′ (x�) ek−1 +

1
2
f ′′ (x�)

(
ek−1

)2
+ . . . (3.77)

Furthermore

xk − xk−1 =
(
xk − x�

)− (xk−1 − x�
)

= ek − ek−1
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Subtracting x� from both sides of equation (3.70) and recalling that f (x�) = 0
yields

ek+1 = ek − f ′ (x�) ek + 1
2f ′′ (x�)

(
ek
)2

f ′ (x�) + 1
2f ′′ (x�) (ek + ek−1)

(3.78)

or

ek+1 =
1
2

f ′′ (x�)
f ′ (x�)

ekek−1 + O
(
e3
)

(3.79)

Let
ek = Ck

(
ek
)r

where r is the convergence order. If r > 1, then the convergence rate is super
linear. If the remainder term in equation (3.79) is negligible, then equation
(3.79) can be rewritten

ek+1

ekek−1
=

1
2

f ′′ (x�)
f ′ (x�)

(3.80)

and in the limit
lim

k → ∞ ek+1

ekek−1
= C′ (3.81)

For large k,
ek = C

(
ek−1

)r

and
ek+1 = C

(
ek
)r

= C
(
C
(
ek−1

)r)r

= Cr+1
(
ek−1

)r2

Substituting this into equation (3.81) yields

lim
k → ∞ Cr

(
ek+1

)r2−r−1
= C′ (3.82)

Since limk→∞ ek = 0, this relationship can only be satisfied if r2 − r − 1 = 0,
which has the solution

r =
1 +

√
5

2
> 1 (3.83)

and hence superlinear convergence.

Example 3.7
Use the secant method to find a solution of

0 = ex2−2 − 3 ln(x)

starting with x0 = 1.5 and x1 = 1.4.

Solution 3.7 Using equation (3.70), the following set of values are obtained.
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xa

f(x)

slope of line is f (a)

a+h

this slope approximates f (a)

FIGURE 3.9
Graphical interpretation of the difference approximation of the slope of f(a)

k xk+1 xk xk−1 f
(
xk
)

f
(
xk+1

)
1 1.4418 1.4000 1.5000 -0.0486 0.0676
2 1.4617 1.4418 1.4000 -0.0157 -0.0486
3 1.4552 1.4617 1.4418 0.0076 -0.0157
4 1.4557 1.4552 1.4617 -0.0006 0.0076
5 1.4557 1.4557 1.4552 -0.0000 -0.0006

3.5 Numerical Differentiation

Using the Newton-Raphson method or any of its modifications requires the
calculation of numerous partial derivatives. In many cases, the analytic com-
putation of the partial derivative may be extremely complex or may be com-
putationally expensive to compute. In these cases, it is desirable to compute
the derivative numerically directly from the function f(x) without explicit
knowledge of ∂f

∂x .
Consider the scalar function f(x). The derivative of the function f ′ at the

point x = a is equivalent to the slope of the function f(a). A reasonable
approximation to the slope of a curve f(a) is to use a nearby point a + h to
compute a difference approximation as shown in Figure 3.9.
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This has a mathematical basis that can be derived by application of the
Taylor series expansion to f(a + h):

f(a + h) = f(a) + h
∂f

∂x
(a) +

h2

2!
∂2f

∂x2
(a) +

h3

3!
∂3f

∂x3
(a) + . . . (3.84)

By rearranging:

f(a + h) − f(a)
h

=
∂f

∂x
(a) +

h

2!
∂2f

∂x2
(a) + . . . (3.85)

By neglecting the higher order terms:

∂f

∂x
(a) ≈ f(a + h) − f(a)

h
(3.86)

This approximation becomes increasingly more accurate as h becomes smaller
(and is exact in the limit as h → 0). This approximation is the one-sided
difference approximation known as the forward difference approximation to
the derivative of f . A similar approach can be taken in which the series is
expanded about a − h and

∂f

∂x
(a) ≈ f(a) − f(a − h)

h
(3.87)

which is the approximation known as the backward difference approximation.
Consider now the combination of the two approaches:

∂f

∂x
(a) ≈ f(a + h) − f(a − h)

2h
(3.88)

This combination is often referred to as the center difference approximation.
The forward and backward difference approximations both have error on the
order of )(h), whereas the center approximation has an error on the order of
O
(
h2
)

and will in general have better accuracy than either the forward or
backward difference approximations.

Example 3.8
Consider the polynomial

f(x) = x3 + x2 − 5
4
x − 3

4

Approximate the derivative of this polynomial in the range [−2, 1.5] with
h = 0.2 using the forward, backward, and center difference approximations.

Solution 3.4 The exact derivative of this function is given by

f ′(x) = 3x2 + 2x − 5
4
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xa
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a-h

FIGURE 3.10
Graphical interpretation of the center difference approximation of the slope
of f(a)

x f(x − h) f(x) f(x + h) f ′(x) f ′(x) f ′(x) f ′(x)
backward forward center exact

-2.0 -3.808 -2.250 -1.092 7.79 5.79 6.79 6.75
-1.8 -2.250 -1.092 -0.286 5.79 4.03 4.91 4.87
-1.6 -1.092 -0.286 0.216 4.03 2.51 3.27 3.23
-1.4 -0.286 0.216 0.462 2.51 1.23 1.87 1.83
-1.2 0.216 0.462 0.500 1.23 0.19 0.71 0.67
-1.0 0.462 0.500 0.378 0.19 -0.61 -0.21 -0.25
-0.8 0.500 0.378 0.144 -0.61 -1.17 -0.89 -0.93
-0.6 0.378 0.144 -0.154 -1.17 -1.49 -1.33 -1.37
-0.4 0.144 -0.154 -0.468 -1.49 -1.57 -1.53 -1.57
-0.2 -0.154 -0.468 -0.750 -1.57 -1.41 -1.49 -1.53
-0.0 -0.468 -0.750 -0.952 -1.41 -1.01 -1.21 -1.25
0.2 -0.750 -0.952 -1.026 -1.01 -0.37 -0.69 -0.73
0.4 -0.952 -1.026 -0.924 -0.37 0.51 0.07 0.03
0.6 -1.026 -0.924 -0.598 0.51 1.63 1.07 1.03
0.8 -0.924 -0.598 -0.000 1.63 2.99 2.31 2.27
1.0 -0.598 -0.000 0.918 2.99 4.59 3.79 3.75
1.2 -0.000 0.918 2.204 4.59 6.43 5.51 5.47
1.4 0.918 2.204 3.906 6.43 8.51 7.47 7.43

Figure 3.11 clearly shows the accuracy levels of the different derivative
approximations.

By continuing in the same approach of using Taylor series expansions and
including additional information, increasingly more accurate approximations
can be achieved. One such approximation that is widely used is the Richardson
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FIGURE 3.11
Exact versus approximate derivatives

approximation:

f ′(x) ≈ f (x − 2h) − 8f (x − h) + 8f (x + h) − f (x + 2h)
12h

(3.89)

This approximation has an error on the order O
(
h4
)
.

Consider once again the Newton-Raphson method which requires the cal-
culation of the Jacobian. The approximations can be utilized to calculate
the derivatives in the Jacobian rather than a direct analytic calculation. For
example, consider the system of nonlinear equations:

f1 (x1, x2, . . . , xn) = 0
f2 (x1, x2, . . . , xn) = 0

...
fn (x1, x2, . . . , xn) = 0

The Jacobian for this system consists of partial derivatives of the form ∂fi

∂xj

which can now be approximated using one of the approximation methods
introduced. For example, using the center difference:

∂fi

∂xj
=

fi (xj + Δxj) − fi (xj − Δxj)
2Δxj

where Δxj is usually chosen to be a small incremental change (of about 1%).
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3.6 Power System Applications

The solution and analysis procedures outlined in this chapter form the ba-
sis of a set of powerful tools that can be used for a myriad of power system
applications. One of the most outstanding features of power systems is that
they are modeled as an extremely large set of nonlinear equations. The North
American transmission grid is one of the largest nonlinear engineering sys-
tems. Most types of power system analysis require the solution in one form
or another of this system of nonlinear equations. The applications described
below are a handful of the more common applications, but are certainly not
a complete coverage of all possible nonlinear problems that arise in power
system analysis.

3.6.1 Power Flow

Many power system problems give rise to systems of nonlinear equations that
must be solved. Probably the most common nonlinear power system problem
is the power flow or load flow problem. The underlying principle of a power
flow problem is that given the system loads, generation, and network config-
uration, the system bus voltages and line flows can be found by solving the
nonlinear power flow equations. This is typically accomplished by applying
Kirchoff’s law at each power system bus throughout the system. In this con-
text, Kirchoff’s law can be interpreted as the sum of the powers entering a bus
must be zero, or that the power at each bus must be conserved. Since power
is comprised of two components, active power and reactive power, each bus
gives rise to two equations – one for active power and one for reactive power.
These equations are known as the power flow equations:

0 = ΔPi = P inj
i − Vi

Nbus∑
j=1

VjYij cos (θi − θj − φij) (3.90)

0 = ΔQi = Qinj
i − Vi

Nbus∑
j=1

VjYij sin (θi − θj − φij) (3.91)

i = 1, . . . , Nbus

where P inj
i , Qinj

i are the active and reactive power injected at the bus i,
respectively. Loads are modeled by negative power injection. The values Vi

and Vj are the voltage magnitudes at bus i and bus j, respectively. The
values θi and θj are the corresponding phase angles. The value Yij∠φij is the
(ij)th element of the network admittance matrix Y . The constant Nbus is the
number of buses in the system. The updates ΔP k

i and ΔQk
i of equations (3.90)

and (3.91) are called the mismatch equations because they give a measure of
the power difference, or mismatch, between the calculated power values, as
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functions of voltage and phase angle, and the actual injected powers. As the
Newton-Raphson iteration continues, this mismatch is driven to zero until the
power leaving a bus, calculated from the voltages and phase angles, equals the
injected power. At this point the converged values of voltages and phase angles
are used to calculate line flows, swing bus powers, and the injected reactive
powers at the generator buses.

The formulation in equations (3.90) and (3.91) is called the polar formula-
tion of the power flow equations. If Yij∠φij is instead given by the complex
sum gij + jbij , then the power flow equations may be written in rectangular
form as

0 = P inj
i − Vi

Nbus∑
j=1

Vj (gij cos (θi − θj) + bij sin (θi − θj)) (3.92)

0 = Qinj
i − Vi

Nbus∑
j=1

Vj (gij sin (θi − θj) − bij cos (θi − θj)) (3.93)

i = 1, . . . , Nbus

In either case, the power flow equations are a system of nonlinear equations.
They are nonlinear in both the voltage and phase angle. There are, at most,
2Nbus equations to solve. This number is then further reduced by removing
one power flow equation for each known voltage (at voltage controlled buses)
and the swing bus angle. This reduction is necessary since the number of
equations must equal the number of unknowns in a fully determined system.
Once the nonlinear power flow equations have been determined, the Newton-
Raphson method may be directly applied.

The most common approach to solving the power flow equations by the
Newton-Raphson method is to arrange the equations by phase angle followed
by the voltage magnitudes as

[
J1 J2

J3 J4

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δδ1

Δδ2

Δδ3

...
ΔδNbus

ΔV1

ΔV2

ΔV3

...
ΔVNbus

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔP1

ΔP2

ΔP3

...
ΔPNbus

ΔQ1

ΔQ2

ΔQ3

...
ΔQNbus

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.94)

where

Δδi = δk+1
i − δk

i

ΔVi = V k+1
i − V k

i
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These equations are then solved using LU factorization with forward/backward
substitution. The Jacobian is typically divided into four submatrices, where

[
J1 J2

J3 J4

]
=
[

∂ΔP
∂δ

∂ΔP
∂V

∂ΔQ
∂δ

∂ΔQ
∂V

]
(3.95)

Each submatrix represents the partial derivatives of each of the mismatch
equations with respect to each of the unknowns. These partial derivatives
yield eight types – two for each mismatch equation, where one is for the
diagonal element and the other is for off-diagonal elements. The derivatives
are summarized as

∂ΔPi

∂δi
= Vi

Nbus∑
j=1

VjYij sin (δi − δj − φij) + V 2
i Yii sin φii (3.96)

∂ΔPi

∂δj
= −ViVjYij sin (δi − δj − φij) (3.97)

∂ΔPi

∂Vi
= −

Nbus∑
i=1

VjYij cos (δi − δj − φij) − ViYii cosφii (3.98)

∂ΔPi

∂Vj
= −ViYij cos (δi − δj − φij) (3.99)

∂ΔQi

∂δi
= −Vi

Nbus∑
j=1

VjYij cos (δi − δj − φij) + V 2
i Yii cosφii (3.100)

∂ΔQi

∂δj
= ViVjYij cos (δi − δj − φij) (3.101)

∂ΔQi

∂Vi
= −

Nbus∑
j=1

VjYij sin (δi − δj − φij) + ViYii sinφii (3.102)

∂ΔQi

∂Vj
= −ViYij sin (δi − δj − φij) (3.103)

A common modification to the power flow solution is to replace the unknown
update ΔVi by the normalized value ΔVi

Vi
. This formulation yields a more

symmetric Jacobian as the Jacobian submatrices J2 and J4 are now multiplied
by Vi to compensate for the scaling of ΔVi by Vi. All partial derivatives of
each submatrix then become quadratic in voltage magnitude.

The Newton-Raphson method for the solution of the power flow equations
is relatively straightforward to program since both the function evaluations
and the partial derivatives use the same expressions. Thus it takes little extra
computational effort to compute the Jacobian once the mismatch equations
have been calculated.
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Example 3.9

Find the voltage magnitudes, phase angles, and line flows for the small power
system shown in Figure 3.12 with the following system parameters in per unit:

bus type V Pgen Qgen Pload Qload

1 swing 1.02 – – 0.0 0.0
2 PV 1.00 0.5 – 0.0 0.0
3 PQ – 0.0 0.0 1.2 0.5

i j Rij Xij Bij

1 2 0.02 0.3 0.15
1 3 0.01 0.1 0.1
2 3 0.01 0.1 0.1

33P   + jQ

3

1 2Z

Z 23

12

13 Z

FIGURE 3.12
Example power system

Solution 3.9 The first step in any power flow solution is to calculate the
admittance matrix Y for the power system. A simple procedure for calculating
the elements of the admittance matrix is

Y (i, j) negative of the admittance between buses i and j
Y (i, i) sum of all admittances connected to bus i

Calculating the admittance matrix for this system yields:

Y =

⎡
⎣

13.1505∠− 84.7148◦ 3.3260∠93.8141◦ 9.9504∠95.7106◦

3.3260∠95.7106◦ 13.1505∠− 84.7148◦ 9.9504∠95.7106◦

9.9504∠95.7106◦ 9.9504∠95.7106◦ 19.8012∠− 84.2606◦

⎤
⎦

(3.104)
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By inspection, this system has three unknowns: δ2, δ3, and V3; thus, three
power flow equations are required. These power flow equations are

0 = ΔP2 = 0.5 − V2

3∑
j=1

VjYij cos (δ2 − δj − θij) (3.105)

0 = ΔP3 = −1.2 − V3

3∑
j=1

VjYij cos (δ3 − δj − θij) (3.106)

0 = ΔQ3 = −0.5 − V3

3∑
j=1

VjYij sin (δ3 − δj − θij) (3.107)

Substituting in the known quantities for V1 = 1.02, V2 = 1.00, and δ1 = 0 and
the admittance matrix quantities yields:

ΔP2 = 0.5 − (1.00) ((1.02)(3.3260) cos(δ2 − 0 − 93.8141◦)
+(1.00)(13.1505) cos(δ2 − δ2 + 84.7148◦)
+ (V3)(9.9504) cos(δ2 − δ3 − 95.7106◦)) (3.108)

ΔP3 = −1.2 − (V3) ((1.02)(9.9504) cos(δ3 − 0 − 95.7106◦)
+(1.00)(9.9504) cos(δ3 − δ2 − 95.7106◦)
+ (V3)(19.8012) cos(δ3 − δ3 + 84.2606◦)) (3.109)

ΔQ3 = −0.5 − (V3) ((1.02)(9.9504) sin(δ3 − 0 − 95.7106◦)
+(1.00)(9.9504) sin(δ3 − δ2 − 95.7106◦)
+ ((V3)(19.8012) sin(δ3 − δ3 + 84.2606◦)) (3.110)

The Newton-Raphson iteration for this system is then given by
⎡
⎢⎣

∂ΔP2
∂δ2

∂ΔP2
∂δ3

∂ΔP2
∂V3

∂ΔP3
∂δ2

∂ΔP3
∂δ3

∂ΔP3
∂V3

∂ΔQ3
∂δ2

∂ΔQ3
∂δ3

∂ΔQ3
∂V3

⎤
⎥⎦
⎡
⎣

Δδ2

Δδ3

ΔV3

⎤
⎦ = −

⎡
⎣

ΔP2

ΔP3

ΔQ3

⎤
⎦ (3.111)

where

∂ΔP2

∂δ2
= 3.3925 sin (δ2 − 93.8141◦)

+9.9504V3 sin (δ2 − δ3 − 95.7106◦)
∂ΔP2

∂δ3
= −9.9504V3 sin (δ2 − δ3 − 95.7106◦)

∂ΔP2

∂V3
= −9.9504 cos(δ2 − δ3 − 95.7106◦)

∂ΔP3

∂δ2
= −9.9504V3 sin (δ3 − δ2 − 95.7106◦)
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∂ΔP3

∂δ3
= 10.1494V3 sin (δ3 − 95.7106◦)

+9.9504V3 sin (δ3 − δ2 − 95.7106◦)
∂ΔP3

∂V3
= −10.1494 cos(δ3 − 95.7106◦)

−9.9504 cos(δ3 − δ2 − 95.7106◦)
−39.6024V3 cos (84.2606◦)

∂ΔQ3

∂δ2
= 9.9504V3 cos (δ3 − δ2 − 95.7106◦)

∂ΔQ3

∂δ3
= −10.1494V3 cos (δ3 − 95.7106◦)

−9.9504V3 cos (δ3 − δ2 − 95.7106◦)
∂ΔQ3

∂V3
= −10.1494 sin(δ3 − 95.7106◦)

−9.9504 sin (δ3 − δ2 − 95.7106◦)
−39.6024V3 sin (84.2606◦)

Recall that one of the underlying assumptions of the Newton-Raphson itera-
tion is that the higher order terms of the Taylor series expansion are negligible
only if the initial guess is sufficiently close to the actual solution to the nonlin-
ear equations. Under most operating conditions, the voltages throughout the
power system are within ±10% of the nominal voltage and therefore fall in
the range 0.9 ≤ Vi ≤ 1.1 per unit. Similarly, under most operating conditions
the phase angle differences between adjacent buses are typically small. Thus
if the swing bus angle is taken to be zero, then all phase angles throughout
the system will also be close to zero. Therefore in initializing a power flow,
it is common to choose a “flat start” initial condition. That is, all voltage
magnitudes are set to 1.0 per unit and all angles are set to zero.

Iteration 1
Evaluating the Jacobian and the mismatch equations at the flat start initial

conditions yields:

[
J0
]

=

⎡
⎣
−13.2859 9.9010 0.9901

9.9010 −20.0000 −1.9604
−0.9901 2.0000 −19.4040

⎤
⎦

⎡
⎣

ΔP 0
2

ΔP 0
3

ΔQ0
3

⎤
⎦ =

⎡
⎣

0.5044
−1.1802
−0.2020

⎤
⎦

Solving

[
J0
]
⎡
⎣

Δδ1
2

Δδ1
3

ΔV 1
3

⎤
⎦ = −

⎡
⎣

ΔP 0
2

ΔP 0
3

ΔQ0
3

⎤
⎦
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by LU factorization yields:
⎡
⎣

Δδ1
2

Δδ1
3

ΔV 1
3

⎤
⎦ =

⎡
⎣
−0.0096
−0.0621
−0.0163

⎤
⎦

Therefore

δ1
2 = δ0

2 + Δδ1
2 = 0 − 0.0096 = −0.0096

δ1
3 = δ0

3 + Δδ1
3 = 0 − 0.0621 = −0.0621

V 1
3 = V 0

3 + ΔV 1
3 = 1 − 0.0163 = 0.9837

Note that the angles are given in radians and not degrees. The error at the
first iteration is the largest absolute value of the mismatch equations, which
is

ε1 = 1.1802

One quick check of this process is to note that the voltage update V 1
3 is

slightly less than 1.0 per unit, which would be expected given the system
configuration. Note also that the diagonals of the Jacobian are all equal or
greater in magnitude than the off-diagonal elements. This is because the
diagonals are summations of terms, whereas the off-diagonal elements are
single terms.

Iteration 2
Evaluating the Jacobian and the mismatch equations at the updated values

δ1
2 , δ1

3 , and V 1
3 yields:

[
J1
]

=

⎡
⎣
−13.1597 9.7771 0.4684

9.6747 −19.5280 −0.7515
−1.4845 3.0929 −18.9086

⎤
⎦

⎡
⎣

ΔP 1
2

ΔP 1
3

ΔQ1
3

⎤
⎦ =

⎡
⎣

0.0074
−0.0232
−0.0359

⎤
⎦

Solving for the update yields
⎡
⎣

Δδ2
2

Δδ2
3

ΔV 2
3

⎤
⎦ =

⎡
⎣
−0.0005
−0.0014
−0.0021

⎤
⎦

and ⎡
⎣

δ2
2

δ2
3

V 2
3

⎤
⎦ =

⎡
⎣
−0.0101
−0.0635

0.9816

⎤
⎦

where
ε2 = 0.0359



Systems of Nonlinear Equations 79

Iteration 3
Evaluating the Jacobian and the mismatch equations at the updated values

δ2
2 , δ2

3 , and V 2
3 yields:

[
J2
]

=

⎡
⎣
−13.1392 9.7567 0.4600

9.6530 −19.4831 −0.7213
−1.4894 3.1079 −18.8300

⎤
⎦

⎡
⎣

ΔP 0
2

ΔP 0
3

ΔQ0
3

⎤
⎦ =

⎡
⎣

0.1717
−0.5639
−0.9084

⎤
⎦× 10−4

Solving for the update yields
⎡
⎣

Δδ2
2

Δδ2
3

ΔV 2
3

⎤
⎦ =

⎡
⎣
−0.1396
−0.3390
−0.5273

⎤
⎦× 10−5

and ⎡
⎣

δ3
2

δ3
3

V 3
3

⎤
⎦ =

⎡
⎣
−0.0101
−0.0635
0.9816

⎤
⎦

where
ε3 = 0.9084× 10−4

At this point, the iterations have converged since the mismatch is sufficiently
small and the values are no longer changing significantly.

The last task in power flow is to calculate the generated reactive powers,
the swing bus active power output and the line flows. The generated powers
can be calculated directly from the power flow equations:

P inj
i = Vi

Nbus∑
j=1

VjYij cos (θi − θj − φij)

Qinj
i = Vi

Nbus∑
j=1

VjYij sin (θi − θj − φij)

Therefore

Pgen,1 = P inj
1 = 0.7087

Qgen,1 = Qinj
1 = 0.2806

Qgen,2 = Qinj
2 = −0.0446

The active power losses in the system are the difference between the sum of
the generation and the sum of the loads, in this case:

Ploss =
∑

Pgen −
∑

Pload = 0.7087 + 0.5 − 1.2 = 0.0087 pu (3.112)
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The line losses for line i−j are calculated at both the sending and receiving
ends of the line. Therefore the power sent from bus i to bus j is

Sij = Vi∠δiI
∗
ij (3.113)

and the power received at bus j from bus i is

Sji = Vj∠δjI
∗
ji (3.114)

Thus

Pij = ViVjYij cos (δi − δj − φij) − V 2
i Yij cos (φij) (3.115)

Qij = ViVjYij sin (δi − δj − φij) + V 2
i Yij sin (φij) (3.116)

Similarly, the powers Pji and Qji can be calculated. The active power loss on
any given line is the difference between the active power sent from bus i and
the active power received at bus j. Calculating the reactive power losses is
more complex since the reactive power generated by the line-charging (shunt
capacitances) must also be included.

3.6.2 Regulating Transformers

One of the most common controllers found in the power system network is
the regulating transformer. This is a transformer that is able to change the
winding ratios (tap settings) in response to changes in load-side voltage. If the
voltage on the secondary side (or load side) is lower than a desired voltage
(such as during heavy loading), the tap will change so as to increase the
secondary voltage while maintaining the primary side voltage. A regulating
transformer is also frequently referred to as an under-load-tap-changing or
ULTC transformer. The tap setting t may be real or complex, and in per
unit, the tap ratio is defined as 1 : t where t is typically within 10% of 1.0.
A phase-shifting transformer is achieved by allowing the tap t to be complex
with both magnitude and angle.

The effect of the regulating transformer is incorporated into the power flow
algorithm through the admittance matrix. To incorporate a regulating trans-
former into the admittance matrix, consider the regulating transformer as a
two-port network relating the input currents Ii and Ij to the input voltages
Vi and Vj as shown in Figure 3.13. The receiving end current is given by

Ij = (Vj − tVi)Y (3.117)

Note that the currents can be found from the power transfer equation:

Si = ViI
∗
i = −tViI

∗
j (3.118)

Therefore

Ii = −t∗Ij (3.119)
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+

−

Y

1:t

tVi

−

+

VjVi

−

+

Ij

ji

Ii

FIGURE 3.13
A regulating transformer

= −t∗ (Vj − tVi)Y (3.120)
= tt∗Y Vi − t∗Y Vj (3.121)

= |t|2 Y Vi − t∗Y Vj (3.122)

Therefore the off-diagonal entries in the admittance matrix become:

Y (i, j) = −t∗Y
Y (j, i) = −tY

and |t|2 Y is added to Y (i, i) and Y is added to Y (j, j).
Since regulating transformers are used as voltage control devices, a common

computational exercise is to find the tap setting t that will hold the secondary
bus voltage magnitude Vj at a specified voltage V̂ . This may be interpreted
as adding one additional variable to the system (t) and one additional con-
straint

(
Vj = V̂

)
. Since the additional constraint is counterbalanced by the

additional degree of freedom, the dimension of the problem remains the same.
There are two primary approaches for finding the tap setting t that results
in Vj = V̂ . One approach is an iterative approach while the second approach
calculates t directly from the power flow equations.

The iterative approach may be summarized as:

1. Set t = t0

2. Run a power flow to calculate Vj

3. Is Vj > V̂ ? If yes, then t = t − Δt, and go to step 2.

4. Is Vj < V̂ ? If yes, then t = t + Δt, and go to step 2.

5. Done

This approach is conceptually simple and requires no changes to the power flow
algorithm. However, it may require numerous runs of a power flow program
if t0 is far from the required tap setting.
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The direct approach applies the Newton-Raphson method directly to the
updated power flow equations as functions of the tap setting t.

1. Set Vj = V̂ and let t be an unknown state

2. Modify the Newton-Raphson Jacobian such that the row of partial
derivatives with respect to Vj are replaced by the row of partial deriva-
tives with respect to t

3. Modify the state vector x such that

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ2

δ3

...
δn

V2

V3

...
Vj−1

t
Vj+1

...
Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the state Vj is replaced by t.

4. Perform the Newton-Raphson

In this case, the set of power flow equations is solved only once, but since the
system Jacobian is modified, a standard power flow program cannot be used.

Since the tap cannot move continuously along the transformer windings,
but must move vertically from one winding to the adjacent winding, the real
tap setting is not a continuous state. Therefore, in both cases, the calculated
tap setting must be rounded to the nearest possible physical tap setting.

Example 3.10
For the system shown in Figure 3.12, place a transformer with reactance X
and real tap t between bus 3 and the load (introduce a new bus 4). Find the
new admittance matrix and the corresponding Jacobian entries.

Solution 3.10 Let the admittance matrix of the subsystem containing buses
1-3 be given by:

Ybus =

⎡
⎣

Y11∠θ11 Y12∠θ12 Y13∠θ13

Y21∠θ21 Y22∠θ22 Y23∠θ23

Y31∠θ31 Y32∠θ32 Y33∠θ33

⎤
⎦ (3.123)
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Adding the transformer between buses 3 and 4 yields the new admittance
matrix:

Ybus =

⎡
⎢⎢⎣

Y11∠θ11 Y12∠θ12 Y13∠θ13 0
Y21∠θ21 Y22∠θ22 Y23∠θ23 0
Y31∠θ31 Y32∠θ32 Y33∠θ33 + t2

jX
−t
jX

0 0 −t
jX

1
jX

⎤
⎥⎥⎦ (3.124)

The power flow equations at bus 3 become:

0 = P3 − V3V1Y31 cos (δ3 − δ1 − θ31) − V3V2Y32 cos (δ3 − δ2 − θ32)

−V3V4

(
t

X

)
cos (δ3 − δ4 − 90◦) − V 2

3 Y33 cos (−θ33) − V 2
3

(
t2

X

)
cos (90◦)

0 = Q3 − V3V1Y31 sin (δ3 − δ1 − θ31) − V3V2Y32 sin (δ3 − δ2 − θ32)

−V3V4

(
t

X

)
sin (δ3 − δ4 − 90◦) − V 2

3 Y33 sin (−θ33) − V 2
3

(
t2

X

)
sin (90◦)

Since V4 is specified, there is no partial derivative ∂ΔP3
∂V4

; instead there is a
partial derivative with respect to t:

∂ΔP3

∂t
= −V3V4

X
cos (δ3 − δ4 − 90◦) (3.125)

Similarly, the partial derivative of ∂ΔQ3
∂t becomes

∂ΔQ3

∂t
= −V3V4

X
sin (δ3 − δ4 − 90◦) + 2V 2

3

t

X
(3.126)

The partial derivatives with respect to δ1, δ2, V1, and V2 do not change, but
the partial derivatives with respect to δ3, δ4, and V3 become

∂ΔP3

∂δ3
= V3V1Y31 sin (δ3 − δ1 − θ31) + V3V2Y32 sin (δ3 − δ2 − θ32)

+V3V4
t

X
sin (δ3 − δ4 − 90◦)

∂ΔP3

δ4
= −V3V4

t

X
sin (δ3 − δ4 − 90◦)

∂ΔP3

∂V3
= −V1Y31 cos (δ3 − δ1 − θ31) − V2Y32 cos (δ3 − δ2 − θ32)

V4
t

X
cos (δ3 − δ4 − 90◦) − 2V3Y33 cos (−θ33)

∂ΔQ3

∂δ3
= −V3V1Y31 cos (δ3 − δ1 − θ31) − V3V2Y32 cos (δ3 − δ2 − θ32)

−V3V4
t

X
cos (δ3 − δ4 − 90◦)

∂ΔQ3

∂δ4
= V3V4

t

X
cos (δ3 − δ4 − 90◦)
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∂ΔQ3

∂V3
= −V1Y31 sin (δ3 − δ1 − θ31) − V2Y32 sin (δ3 − δ2 − θ32)

−V4
t

X
sin (δ3 − δ4 − 90◦) − 2V3Y33 sin (−θ33) − 2V3

t2

X

These partial derivatives are used in developing the Newton-Raphson Jacobian
for the iterative power flow method.

3.6.3 Decoupled Power Flow

The power flow is one of the most widely used computational tools in power
systems analysis. It can be successfully applied to problems ranging from
a single machine system to a power system containing tens of thousands of
buses. For very large systems, the full power flow may require significant
computational resources to calculate, store, and factorize the Jacobian matrix.
As discussed previously, however, it is possible to replace the Jacobian matrix
with a matrix M that is easier to calculate and factor and still retain good
convergence properties. The power flow equations naturally lend themselves
to several alternate matrices for the power flow solution that can be derived
from the formulation of the system Jacobian. Recall that the system Jacobian
has the form: [

J1 J2

J3 J4

]
=
[

∂ΔP
∂δ

∂ΔP
∂V

∂ΔQ
∂δ

∂ΔQ
∂V

]
(3.127)

The general form of the P submatrices are:

∂ΔPi

∂δj
= −ViVjYij sin (δi − δj − φij) (3.128)

∂ΔPi

∂Vj
= ViYij cos (δi − δj − φij) (3.129)

For most transmission lines, the line resistance contributes only nominally to
the overall line impedance; thus, the phase angles φij of the admittance matrix
entries are near ±90◦. Additionally, under normal operating conditions the
phase angle difference between adjacent buses is typically small; therefore:

cos (δi − δj − φij) ≈ 0 (3.130)

leading to
∂ΔPi

∂Vj
≈ 0 (3.131)

Similar arguments can be made such that

∂ΔQi

∂δj
≈ 0 (3.132)
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Using the approximations of equations (3.131) and (3.132), a possible sub-
stitution for the Jacobian matrix is the matrix

M =
[

∂ΔP
∂δ 0
0 ∂ΔQ

∂V

]
(3.133)

Using this matrix M as a replacement for the system Jacobian leads to a set
of decoupled iterates for the power flow solution:

δk+1 = δk −
[
∂ΔP

∂δ

]−1

ΔP (3.134)

V k+1 = V k −
[
∂ΔQ

∂V

]−1

ΔQ (3.135)

where the ΔP and ΔQ iterations can be carried out independently. The
primary advantage of this decoupled power flow is that the LU factorization
computation is significantly reduced. The LU factorization of the full Jaco-
bian requires (2n)3 = 8n3 floating point operations per iteration, whereas the
decoupled power flow requires only 2n3 floating point operations per iteration.

Example 3.11
Repeat Example 3.9 using the decoupled power flow algorithm.

Solution 3.11 The Jacobian of Example 3.9 evaluated at the initial condition
is

[
J0
]

=

⎡
⎣
−13.2859 9.9010 0.9901

9.9010 −20.0000 −1.9604
−0.9901 2.0000 −19.4040

⎤
⎦ (3.136)

Note that the off-diagonal submatrices are much smaller in magnitude than
the diagonal submatrices. For example,

‖[J2]‖ =
∥∥∥∥
[

0.9901
−1.9604

]∥∥∥∥ << ‖[J1]‖ =
∥∥∥∥
[−13.2859 9.9010

9.9010 −20.000

]∥∥∥∥
and

‖[J3]‖ =
∥∥[−0.9901 2.0000

]∥∥ << ‖[J4]‖ = ‖[−19.4040]‖
Thus, it is reasonable to neglect the off-diagonal matrices J2 and J3. There-
fore, the first iteration of the decoupled power flow becomes:

[
Δδ1

2

Δδ1
3

]
= [J1]

−1

[
ΔP2

ΔP3

]
(3.137)

=
[−13.2859 9.9010

9.9010 −20.000

]−1 [ 0.5044
−1.1802

]
(3.138)

[
ΔV 1

3

]
= [J4]

−1 ΔQ3 (3.139)

= −19.4040−1 (−0.2020) (3.140)
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leading to the updates ⎡
⎣

δ1
2

δ1
3

V 1
3

⎤
⎦ =

⎡
⎣
−0.0095
−0.0637

0.9896

⎤
⎦

The iterative process continues similar to the full Newton-Raphson method by
continually updating the J1 and J4 Jacobian submatrices and the mismatch
equations. The iteration converges when both the ΔP mismatch equations
and the ΔQ mismatch equations are both less than the convergence tolerance.
Note that it is possible for one set of mismatch equations to meet the conver-
gence criteria before the other; thus, the number of “P” iterations required
for convergence may differ from the number of “Q” iterations required for
convergence.

3.6.4 Fast Decoupled Power Flow

In Example 3.11, each of the decoupled Jacobian submatrices is updated at
every iteration. As discussed previously, however, it is often desirable to have
constant matrices to minimize the number of function evaluations and LU
factorizations. This is often referred to as the fast decoupled power flow and
can be represented as:

[
ΔP k

]
= [B′]

[
Δδk+1

]
(3.141)[

ΔQk

V

]
= [B′′]

[
ΔV k+1

]
(3.142)

where the B′ and B′′ are constant [48]. To derive these matrices from the
power flow Jacobian, consider the decoupled power flow relationships for the
Newton-Raphson method:

[ΔP ] = − [J1] [Δδ] (3.143)[
ΔQ

V

]
= − [J4] [ΔV ] (3.144)

where the Jacobian submatrices in rectangular form are:

J1(i, i) = Vi

∑
j �=i

Vj (gij sin δij − bij cos δij) (3.145)

J1(i, j) = −ViVj (gij sin δij − bij cos δij) (3.146)

J4(i, i) = 2Vibii −
∑
j �=i

Vj (gij sin δij − bij cos δij) (3.147)

J4(i, j) = −Vi (gij sin δij − bij cos δij) (3.148)

where bij = |Yij sin φij | are the imaginary elements of the admittance matrix
and gij = |Yij cosφij | are the real elements of the admittance matrix. By
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noting that φij ≈ 90◦, then cosφij ≈ 0 which implies that gij ≈ 0. By further
approximating all voltage magnitudes as 1.0 per unit, then

J1(i, i) = −
∑
j �=i

bij (3.149)

J1(i, j) = bij (3.150)

J4(i, i) = 2bii −
∑
j �=i

bij (3.151)

J4(i, j) = bij (3.152)

Since the J1 submatrix relates the changes in active power to changes in an-
gle, elements that affect mainly reactive power flow can be omitted from this
matrix with negligible impact on the convergence properties. Thus, shunt ca-
pacitors (including line-charging) and external reactances as well as the shunts
formed due to representation of off-nominal non-phase-shifting transformers
(i.e., taps are set to 1.0) are neglected. Hence, the admittance matrix di-
agonal elements are devoid of these shunts. Additionally, the lumped series
resistances of the transmission lines are also omitted. The resulting approxi-
mate matrix B′ to the submatrix J1 is given by

B′
ij =

1
xij

(3.153)

B′
ii = −

∑
j �=i

B′
ij (3.154)

Similarly, the J4 submatrix relates the changes in reactive power to changes
in voltage magnitude; therefore elements that primarily affect active power
flow are omitted. Thus all phase-shifting transformers are neglected, resulting
in

B′′
ij = bij (3.155)

B′′
ii = 2bi −

∑
j �=i

B′′
ij (3.156)

where bi is the shunt susceptance at bus i (i.e., the sum of susceptances of all
the shunt branches connected to bus i).

This method results in a set of constant matrices that can be used to ap-
proximate the power flow Jacobian in the Newton-Raphson iteration. This
method is often referred to as the XB version of the fast decoupled power
flow. Both B′ and B′′ are real, sparse, and contain only network or admit-
tance matrix elements. In the Newton-Raphson method, these matrices are
only factorized once for the LU factorization, and are then stored and held
constant throughout the iterative solution process. These matrices were de-
rived based on the application of certain assumptions. If these assumptions do
not hold (i.e., the voltage magnitudes deviate substantially from 1.0 per unit;
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the network has high R/X ratios; or the angle differences between adjacent
buses are not small), then convergence problems with the fast decoupled power
flow iterations can arise. Work still continues on developing modifications to
the XB method to improve convergence [32], [33], [38].

Example 3.12
Repeat Example 3.9 using the fast decoupled power flow algorithm.

Solution 3.12 The line data for the example system are repeated below for
convenience:

i j Rij Xij Bij

1 2 0.02 0.3 0.15
1 3 0.01 0.1 0.1
2 3 0.01 0.1 0.1

and lead to the following admittance matrix:

Ybus =

⎡
⎣

13.1505∠− 84.7148◦ 3.3260∠93.8141◦ 9.9504∠95.7106◦

3.3260∠95.7106◦ 13.1505∠− 84.7148◦ 9.9504∠95.7106◦

9.9504∠95.7106◦ 9.9504∠95.7106◦ 19.8012∠− 84.2606◦

⎤
⎦

(3.157)
Taking the imaginary part of this matrix yields the following B matrix:

B =

⎡
⎣
−13.0946 3.3186 9.9010

3.3186 −13.0946 9.9010
9.9010 9.9010 −19.7020

⎤
⎦ (3.158)

From the line data and the associated B matrix, the following B′ and B′′

matrices result:

B′ =
[− 1

x21
− 1

x23

1
x23

1
x23

− 1
x31

− 1
x32

]
=
[−13.3333 10

10 −20

]
(3.159)

B′′ = [2b3 − (B31 + B32)]
= [2 (0.05 + 0.05)) − (9.9010 + 9.9010)] = −19.6020 (3.160)

Compare these matrices to the J1 and J4 submatrices of Example 3.9 eval-
uated at the initial condition:

J1 =
[−13.2859 9.9010

9.9010 −20.000

]

J4 = [−19.4040]

The similarity between the matrices is to be expected as a result of the defining
assumptions of the fast decoupled power flow method.



Systems of Nonlinear Equations 89

Iteration 1
The updates can be found by solving the following linear set of equations

[
ΔP 0

2

ΔP 0
3

]
=
[

0.5044
−1.1802

]
= −

[−13.3333 10
10 −20

] [
Δδ1

2

Δδ1
3

]

[
ΔQ0

3

]
= [−0.2020] = −19.6020ΔV 1

3

where Δδ1
2 = δ

(1)
2 − δ

(0)
2 , Δδ1

3 = δ
(1)
3 − δ

(0)
3 , and ΔV 1

3 = V
(1)
3 − V

(0)
3 and the

initial conditions are a “flat start.” Solving for the updates yields
⎡
⎣

δ1
2

δ1
3

V 1
3

⎤
⎦ =

⎡
⎣
−0.0103
−0.0642

0.9897

⎤
⎦

where the phase angles are in radians. This process is continued until conver-
gence in both the “P” and “Q” iterations is achieved.

Note that in both the decoupled power flow cases that the objective of the
iterations are the same as for the full Newton-Raphson power flow algorithm.
The objective is to drive the mismatch equations ΔP and ΔQ to within some
tolerance. Therefore, regardless of the number of iterations required to achieve
convergence, the accuracy of the answer is the same as for the full Newton-
Raphson method. In other words, the voltages and angles of the decoupled
power flow methods will be the same as with the full Newton-Raphson method
as long as the iterates converge.

3.6.5 PV Curves and Continuation Power Flow

The power flow is a useful tool for monitoring system voltages as a function of
load change. One common application is to plot the voltage at a particular bus
as the load is varied from the base case to a loadability limit (often known as
the point of maximum loadability). If the load is increased to the loadability
limit and then decreased back to the original loading, it is possible to trace
the entire power-voltage or “PV” curve. This curve, shown in Figure 3.14, is
sometimes called the nose curve for its shape.

At the loadability limit, or tip of the nose curve, the system Jacobian of
the power flow equations will become singular as the slope of the nose curve
becomes infinite. Thus, the traditional Newton-Raphson method of obtaining
the load flow solution will break down. In this case, a modification of the
Newton-Raphson method known as the continuation method is employed. The
continuation method introduces an additional equation and unknown into the
basic power flow equations. The additional equation is chosen specifically to
ensure that the augmented Jacobian is no longer singular at the loadability
limit. The additional unknown is often called the continuation parameter.
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FIGURE 3.14
A PV curve

Continuation methods usually depend on a predictor-corrector scheme and
the means to change the continuation parameter as necessary. The basic ap-
proach to tracing the PV curve is to choose a new value for the continuation
parameter (either in power or voltage) and then predict the power flow so-
lution for this value. This is frequently accomplished using a tangential (or
linear) approximation. Using the predicted value as the initial condition for
the nonlinear iteration, the augmented power flow equations are then solved
(or corrected) to achieve the solution. So the solution is first predicted, and
then corrected. This prediction/correction step is shown in Figure 3.15.

Let the set of power flow equations be given as

λK − f (δ, V ) = 0 (3.161)

or
F (δ, V, λ) = 0 (3.162)

where K is the loading profile (i.e., the base case relationship between P and
Q) and λ is the loading parameter which will vary from unity (at the base
case) to the point of maximum loadability. Equation (3.162) may be linearized
to yield:

∂F

∂δ
dδ +

∂F

∂V
dV +

∂F

∂λ
dλ = 0 (3.163)

Equation (3.163) has one more unknown (λ) than equations, so one more
equation is required:

ek

⎡
⎣

dδ
dV
dλ

⎤
⎦ = 1 (3.164)
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FIGURE 3.15
The predictor/corrector step

where ek is a row vector of zeros with a single ±1 at the position of the un-
known that is chosen to be the continuation parameter. The sign of the one
in ek is chosen based on whether the continuation parameter is increasing
or decreasing. When the continuation parameter is λ (power), the sign is
positive indicating that the load is increasing. When voltage is the continua-
tion parameter, the sign is negative, indicating that the voltage magnitude is
expected to decrease towards the tip of the nose curve.

The unknowns are predicted such that

⎡
⎣

δ
V
λ

⎤
⎦
predicted

=

⎡
⎣

δ0

V0

λ0

⎤
⎦+ σ

⎡
⎣

dδ
dV
dλ

⎤
⎦ (3.165)

where

⎡
⎢⎢⎢⎢⎣

dδ

dV
. . .
dλ

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

JLF

... K

...
. . . . . . . . . . . .

[ek]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦

and σ is the step-size (or length) for the next prediction. Note that the
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continuation state dxk = 1, thus

x
predicted
k = xk0 + σ

so σ should be chosen to represent a reasonable step-size in terms of what the
continuation parameter is (usually voltage or power).

The corrector step involves the solution of the set of equations:

F (δ, V, λ) = 0 (3.166)

xk − x
predicted
k = 0 (3.167)

where xk is the chosen continuation parameter. Typically the continuation
parameter is chosen as the state that exhibits the greatest rate of change.

Example 3.13
Plot the PV curve (P versus V ) of the system shown in Figure 3.16 using the
continuation power flow method as the load varies from zero to the point of
maximum loadability.

1  0

P

V δ
0.1+j1.0

FIGURE 3.16
System for Example 3.13

Solution 3.13 The power flow equations for the system shown in Figure 3.16
are:

0 = −P − 0.995V cos (δ − 95.7◦) − 0.995V 2 cos(84.3◦) (3.168)
0 = −0.995V sin (δ − 95.7◦) − 0.995V 2 sin(84.3◦) (3.169)

During the continuation power flow, the vector of injected active and reactive
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powers will be replaced by the vector λK. The loading vector λK is

λK = λ

[−1
0

]

where λ will vary from zero to the maximum loading value. Typically the
vector K will contain the base case values for all injected active and reactive
powers in the system. In this case, the entry for the load P is negative
indicating that the injected power is negative (i.e., a load).

The loadflow Jacobian for this set of power flow equations is

JLF =
[

0.995V sin (δ − 95.7◦) −0.995 cos (δ − 95.7◦) − 1.99 cos (84.3◦) V
−0.995V cos (δ − 95.7◦) −0.995 sin (δ − 95.7◦) − 1.99 sin (84.3◦)V

]

Iteration 1
Initially, the continuation parameter is chosen to be λ since the load will
change more rapidly than the voltage at points far from the tip of the nose
curve. At λ = 0, the circuit is under no-load and the initial voltage magnitude
and angle are 1∠0◦. With σ = 0.1 pu, the predictor step yields:

⎡
⎣

δ
V
λ

⎤
⎦
predicted

=

⎡
⎣

dδ
dV
dλ

⎤
⎦+ σ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

JLF

... K

...
. . . . . . . . . . . .

[ek]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ (3.170)

=

⎡
⎣

0
1
0

⎤
⎦+ σ

⎡
⎣
−0.9901 −0.0988 −1

0.0988 −0.9901 0
0 0 1

⎤
⎦
−1 ⎡
⎣

0
0
1

⎤
⎦ (3.171)

=

⎡
⎣
−0.1000

0.9900
0.1000

⎤
⎦ (3.172)

where δ is in radians. Note that the predicted value for λ is 0.1 pu.
The corrector step solves the system of equations:

0 = −λ − 0.995V cos (δ − 95.7◦) − 0.995V 2 cos(84.3◦) (3.173)
0 = −0.995V sin (δ − 95.7◦) − 0.995V 2 sin(84.3◦) (3.174)

with the load parameter λ set to 0.1 pu. Note that this is a regular loadflow
problem and can be solved without program modification.

The first corrector step yields
⎡
⎣

δ
V
λ

⎤
⎦ =

⎡
⎣
−0.1017

0.9847
0.1000

⎤
⎦
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Note that this procedure is consistent with the illustration in Figure 3.15.
The prediction step is of length σ taken tangentially to the PV at the current
point. The corrector step will then occur along a vertical path because the
power (λK) is held constant during the correction.

Iteration 2
The second iteration proceeds as the first. The predictor step yields the
following guess: ⎡

⎣
δ
V
λ

⎤
⎦ =

⎡
⎣
−0.2060

0.9637
0.2000

⎤
⎦

where λ is increased by the stepsize σ = 0.1 pu.
Correcting the values yields the second update:

⎡
⎣

δ
V
λ

⎤
⎦ =

⎡
⎣
−0.2105

0.9570
0.2000

⎤
⎦

Iterations 3 and 4
The third and fourth iterations progress similarly. The values to this point
are summarized:

λ V δ σ
0.1000 0.9847 -0.1017 0.1000
0.2000 0.9570 -0.2105 0.1000
0.3000 0.9113 -0.3354 0.1000
0.4000 0.8268 -0.5050 0.1000

Beyond this point, the loadflow fails to converge for a stepsize of σ = 0.1.
The method is nearing the point of maximum power flow (the tip of the nose
curve) as indicated by the rapid decline in voltage for relatively small changes
in λ. At this point, the continuation parameter is switched from λ to V to
ensure that the corrector step will converge. The predictor step is modified
such that: ⎡

⎣
dδ
dV
dλ

⎤
⎦ =

⎡
⎣

dδ0

dV0

dλ0

⎤
⎦+ σ

⎡
⎣ [JLF ] −λ

0
0 − 1 0

⎤
⎦
−1 ⎡
⎣

0
0
1

⎤
⎦

where the -1 in the last row (the ek vector) now corresponds to V rather than
λ. The minus sign indicates that the predictor step will reduce the voltage
magnitude by the stepsize σ. The stepsize σ is reduced to 0.025pu, which is
a value more appropriate for changes in voltage magnitude.

The corrector step is also modified when the continuation parameter switches
to voltage magnitude. The new augmented equations become:

0 = f1(δ, V, λ) = −λ − 0.995V (cos (δ − 95.7◦) + V cos(84.3◦)) (3.175)
0 = f2(δ, V, λ) = −0.995V sin (δ − 95.7◦) − 0.995V 2 sin(84.3◦) (3.176)
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0 = f3(δ, V, λ) = V − V predicted (3.177)

which cannot be solved with a traditional powerflow program due to the last
equation. This equation is necessary to keep the Newton-Raphson iteration
nonsingular. Fortunately, the Newton-Raphson iteration uses the same itera-
tion matrix as the predictor matrix:

⎡
⎣ [JLF ]

−λ
0

0 − 1 0

⎤
⎦
−1 ⎡
⎣

0
0
1

⎤
⎦
⎛
⎜⎝
⎡
⎣

δ
V
λ

⎤
⎦

(k+1)

−
⎡
⎣

δ
V
λ

⎤
⎦

(k)
⎞
⎟⎠ = −

⎡
⎣

f1

f2

f3

⎤
⎦ (3.178)

thus minimizing the computational requirement.
Note that the corrector step is now a horizontal correction in voltage. The

voltage magnitude is held constant while λ and δ are corrected. These iterates
proceed as

Predicted Corrected
λ V δ σ λ V δ

0.4196 0.8019 -0.5487 0.0250 0.4174 0.8019 -0.5474
0.4326 0.7769 -0.5887 0.0250 0.4307 0.7769 -0.5876
0.4422 0.7519 -0.6268 0.0250 0.4405 0.7519 -0.6260
0.4487 0.7269 -0.6635 0.0250 0.4472 0.7269 -0.6627
0.4525 0.7019 -0.6987 0.0250 0.4511 0.7019 -0.6981
0.4538 0.6769 -0.7328 0.0250 0.4525 0.6769 -0.7323
0.4528 0.6519 -0.7659 0.0250 0.4517 0.6519 -0.7654

Note that at the last updates, the load parameter λ has started to decrease
with decreasing voltage. This indicates that the continuation power flow is
now starting to map out the lower half of the nose curve. However, while the
iterations are still close to the tip of the nose curve, the Jacobian will still be
ill conditioned, so it is a good idea to take several more steps before switching
the continuation parameter from voltage magnitude back to λ.

Predicted Corrected
λ V δ σ λ V δ

0.4497 0.6269 -0.7981 0.0250 0.4487 0.6269 -0.7977
0.4447 0.6019 -0.8295 0.0250 0.4438 0.6019 -0.8291
0.4380 0.5769 -0.8602 0.0250 0.4371 0.5769 -0.8598
0.4296 0.5519 -0.8902 0.0250 0.4288 0.5519 -0.8899
0.4197 0.5269 -0.9197 0.0250 0.4190 0.5269 -0.9194

After switching the continuation parameter back to λ, the ek vector becomes

ek = [0 0 − 1]
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where the -1 indicates that the continuation parameter λ will be decreasing
(i.e., the power is decreasing back to the base case). The predictor/corrector
steps proceed as above yielding

Predicted Corrected
λ V δ σ λ V δ

0.3190 0.2899 -1.1964 0.1000 0.3190 0.3564 -1.1088
0.2190 0.2187 -1.2554 0.1000 0.2190 0.2317 -1.2387
0.1190 0.1165 -1.3565 0.1000 0.1190 0.1220 -1.3496
0.0190 0.0166 -1.4553 0.1000 0.0190 0.0191 -1.4523

These values are combined in the PV curve shown in Figure 3.17. Note
the change in step size when the continuation parameter switches from λ to
voltage near the tip of the PV curve. The appropriate choice of step size is
problem dependent and can be adaptively changed to improve computational
efficiency.
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FIGURE 3.17
PV curve for system of Example 3.13

3.6.6 Three-Phase Power Flow

Another special purpose power flow application is for three-phase power flow
analysis. Although much of the power system analysis is performed on bal-
anced three phase systems using one line equivalent diagrams, certain situa-
tions call for a three phase analysis. In particular, in the situation where the
transmission system is not balanced due to non-transposed lines or when the
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loads are considerably unbalanced, it may be desirable to perform a full three
phase load flow to ascertain the effect on the individual line flows and bus volt-
ages. The development of the three phase load flow is similar to that of the
single phase equivalent, except that the mutual coupling between lines must
be incorporated into the admittance matrix, yielding a 3n × 3n matrix with
elements Y pq

ij where the subscript ij indicates bus number (1 ≤ (i, j) ≤ n)
and the superscript pq indicates phase (p, q ∈ [a, b, c]).

The incorporation of each phase individually leads to the similar, but
slightly more complex, three-phase load flow equations:

0 = ΔP p
i = P inj,p

i − V p
i

∑
q∈(a,b,c)

Nbus∑
j=1

V q
j Y pq

ij cos
(
θp

i − θq
j − φpq

ij

)
(3.179)

0 = ΔQp
i = Qinj,p

i − V p
i

∑
q∈(a,b,c)

Nbus∑
j=1

V q
j Y pq

ij sin
(
θp

i − θq
j − φpq

ij

)
(3.180)

i = 1, . . . , Nbus and p ∈ (a, b, c)

There are three times as many load flow equations as in the single phase
equivalent load flow equations. Generator (PV) buses are handled similarly
with the following exceptions:

1. θa = 0◦, θb = −120◦, θc = 120◦ for the swing bus

2. All generator voltage magnitudes and active powers in each phase must
be equal since generators are designed to produce balanced output

A three-phase load flow “flat start” is to set each bus voltage magnitude to

V a
i = 1.0∠0◦

V b
i = 1.0∠− 120◦

V c
i = 1.0∠120◦

The system Jacobian used in the Newton-Raphson solution of the load flow
equations will have a possible (3(2n) × 3(2n)) or 36n2 entries. The Jacobian
partial derivatives are found in the same manner as with the single phase
equivalent system except that the derivatives must also be taken with respect
to phase differences. For example,

∂ΔP a
i

∂θb
j

= V a
i V b

j Y ab
ij sin

(
θa

i − θb
j − φab

ij

)
(3.181)

which is similar to the single phase equivalent system. Similarly

∂ΔP a
i

∂θa
i

= −V a
i

∑
q∈(a,b,c)

Nbus∑
j=1

V q
j Y pq

ij sin
(
θp

i − θq
j − φpq

ij

)
+ (V a

i )2 Y pp
ii cos (φpp

ii )

(3.182)
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The remaining partial derivatives can be calculated in a similar manner and
the solution process of the three-phase power flow follows the method outlined
in Section 3.6.1.
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3.7 Problems

1. Prove that the Newton-Raphson iteration will diverge for the following
functions regardless of choice of initial condition

(a) f(x) = x2 + 1
(b) f(x) = 7x4 + 3x2 + π

2. Devise an iteration formula for computing the fifth root of any positive
real number.

3. Using the Newton-Raphson method, solve

0 = 4y2 + 4y + 52x − 19
0 = 169x2 + 3y2 + 111x− 10y − 10

with [x0 y0]T = [1 1]T .

4. Using the Newton-Raphson method, solve

0 = x − 2y + y2 + y3 − 4
0 = −xy + 2y2 − 1

with [x0 y0]T = [1 1]T .

5. Repeat Problems 3 and 4 using numerical differentiation to compute the
Jacobian. Use a perturbation of 1% in each variable.

6. Repeat Problems 3 and 4 using the secant method.

7. Repeat Problems 3 and 4 using the homotopic mapping with 0 = f01 =
x2

1 − 2 and 0 = f02 = x2
2 − 4

8. Write a generalized (for any system) power flow program. Your program
should:

(a) Read in load, voltage, and generation data. You may assume that
bus #1 corresponds to the swing bus.

(b) Read in line and transformer data and create the Ybus matrix.
(c) Solve the power flow equations using the Newton-Raphson algo-

rithm, for a stopping criterion of
∥∥f (xk

)∥∥ ≤ ε = 0.0005.
(d) Calculate all dependent unknowns, line flows, and line losses.

The Newton-Raphson portion of the program should call the lufact and
permute subroutines. Your program should give you the option of using
either a “flat start” or “previous values” as an initial guess. The easiest
way to accomplish this is to read and write to the same data file. Note
that the first run must be a “flat start” case.
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FIGURE 3.18
Ward-Hale 6 bus system

9. The data for the system shown in Figure 3.18 are given below:

No. Type |V | θ Pgen Qgen Pload Qload

1 0 1.05 0 0 0 0.25 0.1
2 1 1.05 0 0.5 0 0.15 0.05
3 2 1.00 0 0 0 0.275 0.11
4 2 1.00 0 0 0 0 0
5 2 1.00 0 0 0 0.15 0.09
6 2 1.00 0 0 0 0.25 0.15

No. To From R X B
1 1 4 0.020 0.185 0.009
2 1 6 0.031 0.259 0.010
3 2 3 0.006 0.025 0.000
4 2 5 0.071 0.320 0.015
5 4 6 0.024 0.204 0.010
6 3 4 0.075 0.067 0.000
7 5 6 0.025 0.150 0.017

Calculate the load flow solution for the system data given above. Re-
member to calculate all dependent unknowns, line-flows, and line losses.

10. Modify your loadflow program so that you are using a decoupled load
flow (i.e., assume

[
∂ΔP
∂V

]
= 0 and

[
∂ΔQ
∂θ

]
= 0). Repeat problem 9.

Discuss the difference in convergence between the decoupled and the
full Newton-Raphson Power Flows.

11. Increase the line resistances by 75% (i.e. multiply all resistances by
1.75) and repeat problem 9 and problem 10. Discuss your findings.
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12. Using a continuation power flow, map out the “PV” curve for the orig-
inal system data by increasing/decreasing the load on bus 6 holding a
constant P/Q ratio from P = 0 to the point of maximum power transfer.

13. Making the following assumptions, find a constant, decoupled Jaco-
bian that could be used in a fast, decoupled 3-phase load flow.

• V p
i ≈ 1.0pu for all i and p

• θpp
ij ≈ 0

• θpm
ij ≈ ±120o p �= m

• gpm
ij << bpm

ij
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Sparse Matrix Solution Techniques

A sparse matrix is one that has “very few” non-zero elements. A sparse sys-
tem is one in which its mathematical description gives rise to sparse matrices.
Any large system that can be described by coupled nodes may give rise to a
sparse matrix if the majority of nodes in the system have very few connections.
Many systems in engineering and science result in sparse matrix descriptions.
Large systems in which each node is connected to only a handful of other
nodes include the mesh points in a finite-element-analysis, nodes in an elec-
tronic circuit, and the busbars in an electric power network. For example,
power networks may contain thousands of nodes (busbars), but the average
connectivity of electric power network nodes is three; each node is connected,
on average, to three other nodes. This means that in a system comprised of a
thousand nodes, the non-zero percentage of the descriptive system matrix is

4 non-zeros elements
row × 1000 rows

1000× 1000 elements
× 100% = 0.4% non-zero elements

Thus, if only the non-zero elements were stored in memory, they would require
only 0.4% of the memory requirements of the full 1000 × 1000 matrix. Full
storage of an n×n system matrix grows as n2, whereas the sparse storage of the
same system matrix increases only linearly as ∼ n. Thus significant storage
and computational savings can be realized by exploiting sparse storage and
solution techniques. Another motivating factor in exploiting sparse matrix
solution techniques is the computational effort involved in solving matrices
with large percentages of zero elements. Consider the solution of the linear
problem

Ax = b

where A is sparse. The factorization of L and U from A requires a signifi-
cant number of multiplications where one or both of the factors may be zero.
If it is known ahead of time where the zero elements reside in the matrix,
these multiplications can be avoided (since their product will be zero) and
significant computational effort can be saved. The salient point here is that
these computations are skipped altogether. A person performing an LU fac-
torization by hand can note which values are zero and skip those particular
multiplications. A computer, however, does not have the ability to “see” the
zero elements. Therefore the sparse solution technique must be formulated in
such a way as to avoid zero computations altogether and operate only upon
non-zero elements.

103
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aij
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column
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j

i

FIGURE 4.1
Basic storage element for aij

In this chapter, both the storage and computational aspects of sparse matrix
solutions will be explored. Several storage techniques will be discussed and
ordering techniques to minimize computational effort will be developed.

4.1 Storage Methods

In sparse storage methods, only the non-zero elements of the n×n matrix A are
stored in memory, along with the indexing information needed to transverse
the matrix from element to element. Thus each element must be stored with
its real value (aij) and its position indices (row and column) in the matrix.
The basic storage unit may be visualized as the object shown in Figure 4.1.

In addition to the basic information, indexing information must also be
included in the object, such as a link to the next element in the row, or the
next element in the column, as shown in Figure 4.2.

The only additional information necessary to fully transverse the matrix
either by row or column is an indication of the first element in each row or
column. This is a stand-alone set of links that point to the first element in
each row or column.

Example 4.1
Determine a linked list representation for the sparse matrix:

A =

⎡
⎢⎢⎢⎢⎣

−1 0 −2 0 0
2 8 0 1 0
0 0 3 0 −2
0 −3 2 0 0
1 2 0 0 −4

⎤
⎥⎥⎥⎥⎦

Solution 4.1 A linked list representation of this matrix is shown in Figure
4.3. The last element of each column and row are linked to a null point.
Note that each object is linked to its adjacent neighbors in the matrix, both
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aij

row

column

value

j

i
link to next in row

link to next in column

link from previous in column

link from previous in row

FIGURE 4.2
Storage element for element aij with links

by column and by row. In this way, the entire matrix can be transversed in
any direction by starting at the first element and following the links until the
desired element is reached.

If a command requires a particular matrix element, then by either choosing
the column or row, the element can be located by progressing along the links.
If during the search, the null point is reached, then the desired element does
not exist and a value of zero is returned. Additionally, if the matrix elements
are linked by increasing index and an element is reached that has a greater
index than the desired element, then the progression terminates and a value
of zero is returned.

A linked list representation for a sparse matrix is not unique and the ele-
ments do not necessarily have to be linked in increasing order by index. How-
ever, ordering the elements by increasing index leads to a simplified search
since the progression can be terminated before reaching the null point if the
index of the linked object exceeds the desired element. If the elements are not
linked in order, the entire row or column must be transversed to determine
whether or not the desired element is non-zero. The drawback to an ordered
list is that the addition of new non-zero elements to the matrix requires the
update of both row and column links.

Example 4.2

Insert the matrix element A(4, 5) = 10 to the linked list of Example 4.1.
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FIGURE 4.3
Linked list for Example 4.1



Sparse Matrix Solution Techniques 107

1

-2

3

2

-4
2

Remainder of Linked List

10

FIGURE 4.4
Insertion of matrix element A(4, 5) = 10

Solution 4.2 The insertion of the new element is shown in Figure 4.4. The
addition of this element requires two transversals of the matrix to insert the
new element and to update the links; one transversal by row and one by
column. Starting at the first in row link for row 4 (value=−3), the elements
are progressed by link. Following the links and monitoring the column indices,
it is discovered that the element with column index 3 (value=2) is the last
element in the row since it points to null. Since the new element has column
index 5, it is inserted between the (value=2) element and the null point in
the row linked list. Similarly, starting at the first in column link for column 5
(value=−2), the column is transversed and inserted between the elements with
row indices 3 (value=−2) and 5 (value=−4). The column links are updated
to reflect the insertion.
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If the linked lists of the matrix are not ordered by index, then new elements
can be added without transversing the rows or columns. A new element can
be inserted in each row or column by inserting them before the first element
and updating the first in row and first in column pointers.

Many software languages, however, do not support the use of objects, point-
ers, and linked lists. In this case it is necessary to develop a procedure to
mimic a linked list format by the use of vectors. Three vectors are required to
represent each non-zero element object: one vector containing the row num-
ber (NROW), one vector containing the column number (NCOL), and one
vector containing the value of the element (VALUE). These vectors are of
length nnz where nnz is the number of non-zero elements. Two vectors, also
of length nnz, are required to represent the next-in-row links (NIR) and the
next-in-column (NIC) links. If an element is the last in the row or column,
then the NIR or NIC value for that element is 0. Lastly, two vectors of length
n contain the first in row (FIR) and first in column (FIC) links.

The elements of the matrix are assigned a (possibly arbitrary) numbering
scheme that corresponds to their order in the NROW, NCOL, VALUE, NIR,
and NIC vectors. This order is the same for each of these five vectors. The
FIR and FIC vectors will also refer to this number scheme.

Example 4.3

Find the vectors NROW, NCOL, VALUE, NIR, NIC, FIR, and FIC for the
sparse matrix of Example 4.1.

Solution 4.3 The matrix of Example 4.1 is reproduced below with the num-
bering scheme given in parentheses to the left of each non-zero element. The
numbering scheme is sequential by row and goes from 1 to nnz = 12.

A =

⎡
⎢⎢⎢⎢⎣

(1) − 1 0 (2) − 2 0 0
(3) 2 (4) 8 0 (5) 1 0

0 0 (6) 3 0 (7) − 2
0 (8) − 3 (9) 2 0 0

(10) 1 (11) 2 0 0 (12) − 4

⎤
⎥⎥⎥⎥⎦

The ordering scheme indicated yields the following nnz vectors:
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k VALUE NROW NCOL NIR NIC
1 -1 1 1 2 3
2 -2 1 3 0 6
3 2 2 1 4 10
4 8 2 2 5 8
5 1 2 4 0 0
6 3 3 3 7 9
7 -2 3 5 0 12
8 -3 4 2 9 11
9 2 4 3 0 0
10 1 5 1 11 0
11 2 5 2 12 0
12 -4 5 5 0 0

and the following n vectors:
FIR FIC

1 1 1
2 3 4
3 6 2
4 8 5
5 10 7

Consider the matrix element A(2, 2) = 8. It is the 4th element in the
numbering scheme, so its information is stored in the fourth place in vectors
VALUE, NROW, NCOL, NIR, and NIC. Thus VALUE(4)=8, NROW(4)=2,
and NCOL(4)=2. The next element in row 2 is A(2, 4) = 1 and it is element
5 in the numbering scheme. Therefore NROW(4)=5, signifying that element
5 follows element 4 in its row (note however that it does not indicate which
row they are in). Similarly, the next element in column 2 is A(4, 2) = −3 and
it is element 8 in the numbering scheme. Therefore NCOL(4)=8.

4.2 Sparse Matrix Representation

Sparse matrices arise as the result of the mathematical modeling of a sparse
system. In many cases, the system has a naturally occurring physical network
representation or lends itself to a physically intuitive representation. In these
cases, it is often informative to visualize the connectivity of the system by
graphical means. In the graphical representation, each node of the graph
corresponds to a node in the system. Each edge of the graph corresponds to
a branch of the network. As with a network, the graph, consisting of vertices
and edges, is often represented by a set of points in the plane joined by a
line representing each edge. Matrices that arise from the mathematical model
of a graphically represented network are structurally symmetric. In other
words, if the matrix element aij is non-zero, then the matrix element aji is
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FIGURE 4.5
(a) A finite element grid model, (b) The corresponding matrix
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also non-zero. This implies that if node i is connected to node j, then node
j is also connected to node i. Matrices that are not structurally symmetric
can be made symmetric by adding an element of value zero in the appropriate
position within the matrix.

In addition to a graphical representation, it is also common to visualize
sparse matrices by a matrix that is clear except for an identifying symbol
(such as a ×, •, ∗, or other mark) to represent the position of the non-zero
elements in the matrix. The finite element grid of the trapezoid shown in
Figure 4.5(a) gives rise to the sparse matrix structure shown in Figure 4.5(b).
Note that the ordering of the matrix is not unique; another numbering scheme
for the nodes will result in an alternate matrix structure.

4.3 Ordering Schemes

Node ordering schemes are important in minimizing the number of multipli-
cations and divisions required for both L and U triangularization and for-
ward/backward substitution. A good ordering will result in the addition of
few fills to the triangular factors during the LU factorization process. A fill
is a non-zero element in the L or U matrix that was zero in the original A ma-
trix. If A is a full matrix, α = n3−n

3 multiplications and divisions are required
for the LU factorization process and β = n2 multiplications and divisions
are required for the forward/backward substitution process. The number of
multiplications and divisions required can be substantially reduced in sparse
matrix solutions if a proper node ordering is used.

Example 4.4

Determine the number of multiplications, divisions, and fills required for the
solution of the system shown in Figure 4.6.

Solution 4.4 The LU factorization steps yield

q11 = a11

q21 = a21

q31 = a31

q41 = a41

q51 = a51

q12 = a12/q11

q13 = a13/q11
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FIGURE 4.6
Graph and matrix for Example 4.4

q14 = a14/q11

q15 = a15/q11

q22 = a22 − q21q12

q32 = a32 − q31q12

q42 = a42 − q41q12

q52 = a52 − q51q12

q23 = (a23 − q21q13) /q22

q24 = (a24 − q21q14) /q22

q25 = (a25 − q21q15) /q22

q33 = a33 − q31q13 − q32q23

q43 = a43 − q41q13 − q42q23

q53 = a53 − q51q13 − q52q23

q34 = (a34 − q31q14 − q32q24) /q33

q35 = (a35 − q31q15 − q32q25) /q33

q44 = a44 − q41q14 − q42q24 − q43q34

q54 = a54 − q51q14 − q52q24 − q53q34
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q45 = (a45 − q41q15 − q22q25 − q43q35) /q44

q55 = a55 − q51q15 − q52q25 − q53q35 − q54q45

The multiplications and divisions required for the LU factorization are sum-
marized by row and column.

row column multiplications divisions fills
1 0 0

1 0 4
2 4 0 a32, a42, a52

2 3 3 a23, a24, a25

3 6 0 a43, a53

3 4 2 a34, a35

4 6 0 a54

4 3 1 a45

5 4 0

Therefore α = 40 is the total number of multiplications and divisions in the
LU factorization. The forward (Ly = b) and backward (Ux = y) substitution
steps yield:

y1 = b1/q11

y2 = (b2 − q21y1) /q22

y3 = (b3 − q31y1 − q32y2) /q33

y4 = (b4 − q41y1 − q42y2 − q43y3) /q44

y5 = (b5 − q51y1 − q52y2 − q53y3 − q54y4) /q55

x5 = y5

x4 = y4 − q45x5

x3 = y3 − q35x5 − q34x4

x2 = y2 − q25x5 − q24x4 − q23x3

x1 = y1 − q15x5 − q14x4 − q13x3 − q12x2

forward backward
row multiplications divisions multiplications divisions
1 0 1 4 0
2 1 1 3 0
3 2 1 2 0
4 3 1 1 0
5 4 1 0 0
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Graph for Example 4.4

Thus β = 25 is the total number of multiplications and divisions in the
forward and backward substitution steps. The total number of multiplications
and divisions for the solution of Ax = b is α + β = 36.

A fill occurs when a matrix element that was originally zero becomes non-
zero during the factorization process. This can be visually simulated using a
graphical approach. Consider the graph of Example 4.4 shown again in Figure
4.7.

In this numbering scheme, the row and column corresponding to node
1 is factorized first. This corresponds to the removal of node 1 from the
graph. When node 1 is removed, all of the vertices to which it was connected
must then be joined. Each edge added represents two fills in the Q matrix
(qij and qji) since Q is symmetric. The graph after the removal of node 1 is
shown in Figure 4.8. The dashed lines indicate that six fills will occur as a
result: q23, q24, q25, q34, q35, and q45. These are the six fills that are also
listed in the solution of the example.

Example 4.5
Determine the number of multiplications, divisions, and fills required for the
solution of the system shown in Figure 4.9.

Solution 4.4 The LU factorization steps yield

q11 = a11

q51 = a51

q15 = a15/q11
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FIGURE 4.9
Graph and matrix for Example 4.5
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q22 = a22

q25 = a25/q22

q52 = a52

q33 = a33

q53 = a53

q35 = a35/q33

q44 = a44

q54 = a54

q45 = a45/q44

q55 = a55 − q51q15 − q52q25 − q53q35 − q54q45

The multiplications and divisions required for the LU factorization are sum-
marized by row and column.

row column multiplications divisions fills
1 0 0

1 0 1
2 0 0

2 0 1
3 0 0

3 0 1
4 0 0

4 0 1
5 4 0

Therefore α = 8 is the total number of multiplications and divisions in the
LU factorization. The forward (Ly = b) and backward (Ux = y) substitution
steps yield:

y1 = b1/q11

y2 = b2/q22

y3 = b3/q33

y4 = b4/q44

y5 = (b5 − q51y1 − q52y2 − q53y3 − q54y4) /q55

x5 = y5

x4 = y4 − q45x5

x3 = y3 − q35x5

x2 = y2 − q25x5

x1 = y1 − q15x5
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forward backward
row multiplications divisions multiplications divisions
1 0 1 1 0
2 0 1 1 0
3 0 1 1 0
4 0 1 1 0
5 4 1 0 0

Thus β = 13 is the total number of multiplications and divisions in the
forward and backward substitution steps. The total number of multiplications
and divisions for the solution of Ax = b is α + β = 21.

Even though both original matrices had the same number of non-zero el-
ements, there is a significant reduction in the number of multiplications and
divisions by simply renumbering the vertices of the matrix graph. This is due,
in part, by the number of fills that occurred during the LU factorization of
the matrix. The Q matrix of Example 4.4 became full, whereas the Q matrix
of Example 4.5 retained the same sparse structure as the original A matrix.
From these two examples, it can be concluded that although various node
orders do not affect the accuracy of the linear solution, the ordering scheme
greatly affects the time in which the solution is achieved. A good ordering
scheme is one in which the resulting Q matrix has a similar structure to the
original A matrix. This means that the number of fills is minimized. This
objective forms the basis for a variety of ordering schemes. The problem of
optimal ordering is an NP-complete problem [54], but several schemes have
been developed that provide near-optimal results.

Example 4.6
Determine number of fills, α, and β for the matrix shown in Figure 4.10 as
currently ordered.

Solution 4.6 The first step is to determine where the fills from LU factoriza-
tion will occur. By observation, the fills will occur in the places designated
by the � in the matrix shown in Figure 4.11. From the figure, the number of
fills is 24.

Rather than calculating the number of multiplications and divisions re-
quired for LU factorization and forward/backward substitution, there is a
handy way of calculating α and β directly from the filled matrix.

α =
n∑

i=1

(nnz in column i below qii + 1) × (nnz in row i to right of qii) (4.1)

β = nnz of matrix Q (4.2)

Using equations (4.1) and (4.2),

α = (3 × 4) + (4 × 5) + (5 × 6) + (4 × 5) + (4 × 5) + (3 × 4)
+(3 × 4) + (2 × 3) + (1 × 2) + (0 × 1) = 134
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Matrix for Example 4.6
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FIGURE 4.11
Matrix with fills for Example 4.6
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and β = nnz = 68 for the Q matrix shown in Figure 4.11, thus α + β = 202.
Compare this with the α + β = 430.

Even without an ordering scheme, the sparse matrix solution process yields
over a 50% reduction in computation. One goal of an ordering scheme is to
introduce the least number of fills in the factored matrix Q to minimize the
number of multiplications and divisions α. A second goal is also to minimize β,
which is the number of multiplications and divisions in the forward/backward
substitution step. These dual objectives lead to several approaches to order-
ing.

4.3.1 Scheme 0

From Examples 4.4 and 4.5, it can be generalized that a better ordering is
achieved if the nodes are ordered into a lower-right pointing “arrow” matrix.
One rapid method of achieving this effect is to number the nodes according
to their degree, where the degree of a node is defined as the number of edges
connected to it. In this scheme, the nodes are ordered from lowest degree to
highest degree.

Scheme 0
1. Calculate the degree of all vertices.

2. Choose the node with the lowest degree. Place in ordering scheme.

3. In case of a tie, choose node with lowest natural ordering.

4. Return to step 2.

Example 4.7
Using Scheme 0, reorder the matrix of Example 4.6. Calculate α, β and the
number of fills for this ordering.

Solution 4.7 The degrees of each of the nodes are given below:

node degree
1 3
2 3
3 5
4 3
5 5
6 2
7 6
8 3
9 1
10 3
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FIGURE 4.12
Matrix with fills for Example 4.7

Applying Scheme 0, the new ordering is

Ordering 0 = [9 6 1 2 4 8 10 3 5 7]

Reordering the matrix of Example 4.6 to reflect this ordering yields the ma-
trix (with fills) shown in Figure 4.12. Note how the non-zeros elements begin
to resemble the desired lower-right pointing arrow. The Scheme 0 ordering
results in 16 fills as compared to 24 with the original ordering. From the
matrix and equations (4.1) and (4.2), α = 110 and β = 60, thus α + β = 170
which is a considerable reduction over the original α + β = 202.

4.3.2 Scheme I

Scheme 0 offers simplicity and speed of generation, but does not directly take
into account the effect of fills on the ordering procedure. To do this, the effect
of eliminating the nodes as they are ordered must be taken into account. This
modification is given in Scheme I.

Scheme I

1. Calculate the degree of all vertices.

2. Choose the node with the lowest degree. Place in ordering scheme.
Eliminate it and update degrees accordingly.
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FIGURE 4.13
Graph of the matrix in Figure 4.10

3. In case of a tie, choose node with lowest natural ordering.

4. Return to step 1.

Scheme I is also known by many names including the Markowitz algorithm
[31], the Tinney I algorithm [50], or most generally as the minimum degree
algorithm.

Example 4.8

Using Scheme I, reorder the matrix of Example 4.6. Calculate α, β and the
number of fills for this ordering.

Solution 4.8 The ordering for Scheme I takes into account the effect of fills
on the ordering as nodes are placed in the ordering scheme and eliminated.
This algorithm is best visualized using the graphical representation of the
matrix. The graph of the orginal unordered matrix of Figure 4.10 is shown in
Figure 4.13.
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FIGURE 4.14
Updated graph with the removal of node 9

The degrees of each of the nodes are given below:

node degree
1 3
2 3
3 5
4 3
5 5
6 2
7 6
8 3
9 1
10 3

From the degrees, the node with the lowest degree is ordered first. Node
9 has the lowest degree with only one connection. Its elimination does not
cause any fills. The updated graph is shown in Figure 4.14.
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FIGURE 4.15
Updated graph with the removal of node 6

The updated degree of each of the nodes is given below:

node degree
1 3
2 3
3 5
4 3
5 5
6 2
7 5
8 3
10 3

Node 7 now has one less degree. Applying the Scheme I algorithm again
indicates that the next node to be chosen is node 6, with a degree of 2.
Node 6 is connected to both node 5 and node 7. Since there is a pre-existing
connection between these nodes, the elimination of node 6 does not create a
fill between nodes 5 and 6. The elimination of node 6 is shown in Figure 4.15.
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FIGURE 4.16
Updated graph with the removal of node 1

The new node degrees are

node degree
1 3
2 3
3 5
4 3
5 4
7 4
8 3
10 3

As a result of the elimination of node 6, the degrees of nodes 5 and 7
decrease by one. Applying the Scheme I algorithm again indicates that the
nodes with the lowest degrees are nodes [1 2 4 8 10]. Since there is a tie
between these nodes, the node with the lowest natural ordering, node 1, is
chosen and eliminated. Node 1 is connected to nodes 2, 4, and 8. None of
these nodes is connected; therefore, the elimination of node 1 creates three
fills: 4–8, 4–2, and 2–8. These fills are shown with the dashed edges in Figure
4.16.
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Updated graph with the removal of node 10

The new node degrees after the removal of node 1 are

node degree
2 4
3 5
4 4
5 5
7 5
8 4
10 3

The addition of the three fills increased the degrees of nodes 2, 4, and 8.
Applying the Scheme I algorithm again indicates that the node with the lowest
degree is node 10. There is no tie in degree this time. Node 10 is chosen and
eliminated. The elimination of node 10 creates two fills between nodes 2–5
and 2–3. These fills are shown with the dashed edges in Figure 4.17.
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FIGURE 4.18
Matrix with fills for Example 4.8

Continuing to apply the Scheme I algorithm successively until all nodes
have been chosen and eliminated yields the following final ordering:

Ordering I = [9 6 1 10 4 2 3 5 7 8]

Reordering the matrix of Example 4.8 to reflect this ordering yields the
matrix (with fills) shown in Figure 4.18. Note how the non-zero elements
continue to resemble the desired lower-right pointing arrow. The Scheme I
ordering results in 12 fills as compared to 24 with the original ordering, and
16 with Scheme 0. From the matrix and equations (4.1) and (4.2), α = 92 and
β = 56, thus α + β = 148 which is a considerable reduction over the original
α + β = 202, and the α + β = 170 of Scheme 0.

4.3.3 Scheme II

Scheme 0 offers a rapid way to order the nodes to give a quick “once-over” and
obtain a reasonable ordering. It requires little computation beyond calculating
the degrees of each node of the matrix. Scheme I takes this approach one
step further. It still relies on the minimum-degree approach, but it includes
a simulation of the LU factorization process to update the node degrees at
each step of the factorization. One further improvement to this approach is
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to develop a scheme that endeavors to minimize the number of fills at each
step of the factorization. Thus, at each step, each elimination alternative is
considered and the number of resulting fills is calculated. This scheme is also
known as the Berry algorithm and the Tinney II algorithm and is summarized
below:

Scheme II

1. For each node, calculate the number of fills that would result from its
elimination.

2. Choose the node with the lowest number of fills.

3. In case of a tie, choose node with lowest degree.

4. In case of a tie, choose node with lowest natural ordering.

5. Place node in ordering scheme. Eliminate it and update fills and degrees
accordingly.

6. Return to step 1.

Example 4.9

Using Scheme II, reorder the matrix of Example 4.6. Calculate α, β and the
number of fills for this ordering.

Solution 4.9 The ordering for Scheme II takes into account the effect of fills
on the ordering as nodes are placed in the ordering scheme and eliminated.
The degrees and resulting fills are given below:

node degree fills if eliminated edges created
1 3 3 2–4, 2–8, 4–8
2 3 3 1–7, 1–10, 7–10
3 5 6 4–7, 4–8, 4–10, 5–8, 7–10, 8–10
4 3 2 1–3, 1–5
5 5 6 3–6, 4–6, 4–7, 4–10, 6–10, 7–10
6 2 0 none
7 6 12 2–3, 2–5, 2–6, 2–8, 2–9, 3–6,

3–9, 5–8, 5–9, 6–8, 6–9, 8–9
8 3 2 1–3, 1–7
9 1 0 none
10 3 2 2–3, 2–5

From this list, the elimination of nodes 6 or 9 will not result in any additional
edges, or fills. Since there is a tie, the node with the lowest degree is chosen.
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Thus, node 9 is chosen and eliminated. The number of fills and degrees is
updated to apply the Scheme II algorithm again.

node degree fills if eliminated edges created
1 3 3 2–4, 2–8, 4–8
2 3 3 1–7, 1–10, 7–10
3 5 6 4–7, 4–8, 4–10, 5–8, 7–10, 8–10
4 3 2 1–3, 1–5
5 5 6 3–6, 4–6, 4–7, 4–10, 6–10, 7–10
6 2 0 none
7 5 7 2–3, 2–5, 2–6, 2–8, 3–6, 5–8, 6–8
8 3 2 1–3, 1–7
10 3 2 2–3, 2–5

The next node to be eliminated is node 6 because it creates the fewest fills
if eliminated. This node is therefore chosen and eliminated. The number of
fills and degrees is again updated.

node degree fills if eliminated edges created
1 3 3 2–4, 2–8, 4–8
2 3 3 1–7, 1–10, 7–10
3 5 6 4–7, 4–8, 4–10, 5–8, 7–10, 8–10
4 3 2 1–3, 1–5
5 5 6 3–6, 4–6, 4–7, 4–10, 6–10, 7–10
7 5 7 2–3, 2–5, 2–6, 2–8, 3–6, 5–8, 6–8
8 3 2 1–3, 1–7
10 3 2 2–3, 2–5

The two nodes that create the fewest fills are nodes 4 and 8. Both nodes
have the same number of degrees; therefore, the node with the lowest natural
ordering, node 4, is chosen and eliminated.

The Scheme II algorithm continues until all nodes have been added to the
ordering scheme and subsequently eliminated. Scheme II results in the fol-
lowing ordering:

Ordering II = [9 6 4 8 2 1 3 5 7 10]

Reordering the matrix of Example 4.6 to reflect the ordering of Scheme II
yields the ordering with fills shown in Figure 4.19. This ordering yields only
10 fills, leading to an α = 84, β = 54, and α + β = 138. This represents a
computational effort of only 68% of the original unordered system.

Scheme I endeavors to reduce the number of multiplications and divisions
in the LU factorization process, whereas Scheme II focuses on reducing the
multiplications and divisions in the forward/backward substitution process.
Scheme 0 offers simplicity and speed of generation, but the performance
improvement of Scheme I offsets the additional algorithm complexity [50].
Scheme II, however, frequently does not offer enough of an improvement to
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FIGURE 4.19
Matrix with fills for Example 4.9

merit implementation. The decision of which scheme to implement is problem
dependent and is best left up to the user.

4.3.4 Other Schemes

Modifications to these algorithms have been introduced to reduce computa-
tional requirements. These modifications are summarized below [18]. The first
modification to the minimum-degree algorithm is the use of mass elimination,
inspired by the concept of indistinguishable nodes [17]. This modification al-
lows a subset of nodes to be eliminated at one time. If two nodes x and y
satisfy

Adj(y) ∪ {y} = Adj(x) ∪ {x} (4.3)

where Adj(y) indicates the set of nodes adjacent to y, then nodes x and y
are said to be indistinguishable and can be numbered consecutively in the
ordering. This also reduces the number of nodes to be considered in an or-
dering, since only a representative node from each set of indistinguishable
nodes needs to be considered. This accelerates the degree update step of the
minimum-degree algorithm, which is typically the most computationally in-
tensive step. Using mass elimination, the degree update is required only for
the representative nodes.

The idea of incomplete degree update allows avoiding degree update for
nodes that are known not to be minimum degree. Between two nodes u and
v, node v is said to be outmatched by u if [11]

Adj(u) ∪ {u} ⊆ Adj(v) ∪ {v} (4.4)



130 Computational Methods for Electric Power Systems

Thus, if a node v becomes outmatched by u in the elimination process, the
node u can be eliminated before v in the minimum-degree ordering algorithm.
From this, it follows that it is not necessary to update the degree of v until
node u has been eliminated. This further reduces the time-consuming degree
update steps.

Another modification to the minimum-degree algorithm is one in which
all possible nodes of minimum degree are eliminated before the degree up-
date step. At a given step in the elimination process, the elimination of
node y does not change the structure of the remaining nodes not in Adj(y).
The multiple-minimum-degree (MMD) algorithm delays degree update of the
nodes in Adj(y), and chooses another node with the same degree as y to elim-
inate. This process continues until there are no more nodes left with the same
degree as y. This algorithm was found to perform as well as the minimum-
degree algorithm regarding the number of fills introduced [30]. In addition,
it was found that the MMD algorithm performed faster. This was attributed
to the identification of indistinguishable and outmatched nodes earlier in the
algorithm, as well as the reduced number of degree updates.

Ties often occur for a given criteria (degrees or fills) in an ordering algo-
rithm. The tie breaker often falls back on the natural ordering of the original
matrix. It has been recognized that the natural ordering greatly affects the
factorization in terms of number of fills and computation time. Thus it is
often preferable to use a rapid “pre-conditioning” ordering before applying
the ordering algorithm. Scheme 0 offers one such pre-ordering, but to date no
consistent optimum method for pre-ordering has been developed that works
well for all types of problems.

4.4 Power System Applications

Large sparse matrices occur frequently in power system applications, includ-
ing state estimation, power flow analysis, and transient and dynamic stability
simulations. Computational efficiency of these applications depends heavily
on their formulation and the use of sparse matrix techniques. To better un-
derstand the impact of sparsity on power system problems, consider the power
flow Jacobian of the IEEE 118 bus system shown in Figure 4.20.

The Jacobian of this system has 1051 non-zero elements and has the struc-
ture shown in Figure 4.21(a). Note the dominance of the main diagonal and
then the two sub-diagonals which result from the ∂ΔQ

∂δ and ∂ΔP
∂V sub-Jacobians.

The LU factorization of this Jacobian yields the structure shown in Figure
4.21(b). This matrix has 14849 non-zero elements. Notice that the two sub-
diagonals have created a large number of fills extending between them and
the main diagonal.
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FIGURE 4.20
IEEE 118 bus system
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FIGURE 4.21
IEEE 118 bus system (a) Jacobian, and (b) LU factors
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FIGURE 4.22
IEEE 118 bus system Scheme 0 (a) Jacobian, and (b) LU factors
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FIGURE 4.23
IEEE 118 bus system Scheme 1 (a) Jacobian, and (b) LU factors
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FIGURE 4.24
IEEE 118 bus system Scheme 2 (a) Jacobian, and (b) LU factors

Figure 4.22(a) shows the structure of the load flow Jacobian reordered ac-
cording to Scheme 0. In this reordering, the presence of the sub-diagonals is
gone. The LU factorization of the Scheme 0 reordered Jacobian yields the
structure shown in Figure 4.22(b). This matrix has only 1869 non-zero ele-
ments, which is almost an order of magnitude reduction from the non-ordered
Jacobian.

Figure 4.23(a) shows the structure of the load flow Jacobian reordered ac-
cording to Scheme 1. Note how the elements are gradually pulling into the
main diagonal, which leads to a decrease in the number of fills. The LU fac-
torization of the Scheme 1 ordering is shown in Figure 4.23(b), which has 1455
non-zero elements.

Lastly, Figure 4.24(a) shows the structure of the Scheme 2 reordered Jaco-
bian which yields the LU factorization in Figure 4.24(b). This ordering yields
only 1421 non-zero elements, which is more than a full order of magnitude
reduction. The LU factorization solution time for a sparse matrix is on the
order of n2 multiplications and divisions. The non-reordered load flow solu-
tion would require on the order of 220.5 × 106 multiplications and divisions
per iteration, whereas the Scheme 2 reordered load flow solution would re-
quire only 2.02 × 106 multiplications and divisions. Thus, the solution of the
reordered system is over 100 times faster than the original system! When the
solution time is multiplied by the number of iterations in a Newton-Raphson
power flow or by the number of time steps in a time-domain integration, it
would be computationally foolhardy to not use a reordering scheme.



134 Computational Methods for Electric Power Systems

4.5 Problems

1. Verify equations (4.1) and (4.2) for calculating α and β.

2. Let A and B be two sparse (square) matrices of the same dimension.
How can the graph of C = A + B be characterized with respect to the
graphs of A and B?

3. Consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) Draw the graphical representation of A. How many multiplications
and divisions will the LU factorization of A require?

(b) Reorder the matrix using the new node numbering φ = [1, 3, 4, 2, 5, 6].
Draw the graphical representation of the reordered matrix. How
many multiplications and divisions will the LU factorization of the
reordered matrix require?
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FIGURE 4.25
Sparse Test System I
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4. For the matrix shown in Figure 4.25:

(a) Using the given ordering, compute α + β.

(b) Reorder the nodes in the network using Scheme 0 discussed in class.
Compute α + β for this ordering.

(c) Reorder the nodes in the network using Scheme I. Compute α + β
for this ordering.

(d) Reorder the nodes in the network using Scheme II. Compute α+β
for this ordering.

(e) Repeat Problem 4 for the matrix shown in Figure 4.26:
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FIGURE 4.26
Sparse Test System II

5. Write a subroutine sparmat for sparse matrix storage that will

• Read in data line by line in the format:

i j aij

where the end of the data is signified by a 0 in the first column

• Sequentially build the vectors FIR, FIC, NIR, NIC, NROW, NCOL,
and Value as defined in class. Do not explicitly create the ma-
trix A.
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6. Write a subroutine sparvec for sparse vector storage that will

• Read in data line by line in the format:

i bi

where the end of the data is signified by a 0 in the first column

• Sequentially build the vectors index, next, and Value. Do not
explicitly create the vector b.
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7. For the data given below, use sparmat and sparvec to create the sparse
storage vectors.

A matrix b vector
i j aij i bi

7 10 2.0 2 5
2 6 1.5 9 2
9 1 4.7 3 -1
5 5 -18.5
8 7 2.8
1 1 -15.0
4 3 3.8
6 7 6.1
8 3 3.3
5 7 4.4

10 6 2.5
6 5 1.1
3 2 5.2
7 8 2.9
9 9 -12.1
3 4 3.0
7 6 5.6

10 9 4.7
8 8 -10.8
1 9 4.5
7 5 3.9
5 6 7.2
9 10 4.9
5 4 0.8
8 1 3.4
5 10 4.5
2 3 5.0
6 6 -9.8
7 9 1.8
4 5 0.7
7 7 -21.2
1 2 4.4

10 5 5.4
3 8 3.1
9 7 1.6
4 4 -5.1
6 10 2.7

10 10 -16.9
2 1 4.7
3 3 -17.7
1 8 3.5

10 7 2.1
2 2 -13.0
6 2 1.2
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8. Write a subroutine sparLU that modifies your LU factorization routine
to incorporate the sparse storage vectors of Problem 5 and apply it to
the data of Problem 7 to compute the sparse LU factors (in sparse vector
form).

9. Write a subroutine sparsub that modifies your forward/backward substi-
tution routine sub to incorporate the sparse storage vectors of Problem
2 and apply it to the data of Problem 7 to solve the sparse linear system

Ax = b

10. Write a subroutine scheme0 that will input the sparse vectors FIR, FIC,
NIR, NIC, NROW, NCOL, and Value and will output the same vectors
reordered according to Scheme 0, and calculate α + β.

11. Write a subroutine scheme1 that will input the sparse vectors FIR, FIC,
NIR, NIC, NROW, NCOL, and Value and will output the same vectors
reordered according to Scheme I, and calculate α + β.

12. Write a subroutine scheme2 that will input the sparse vectors FIR, FIC,
NIR, NIC, NROW, NCOL, and Value and will output the same vectors
reordered according to Scheme II, and calculate α + β.
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Numerical Integration

Dynamic systems may frequently be modeled by systems of ordinary differ-
ential equations (or ODEs) of the form

ẋ(t) = f(x, t) x(t0) = x0 (5.1)

where x(t) ∈ Rn is a time-varying function that depends on the initial con-
dition x0. Such problems are often referred to as “initial value problems.”
A system of nonlinear differential equations cannot typically be solved ana-
lytically. In other words, a closed form expression for x(t) cannot be found
directly from equation (5.1), but rather must be solved numerically.

In the numerical solution of equation (5.1), a sequence of points x0, x1, x2 . . . ,
are computed that approximate the true solution at a set of time points
t0, t1, t2, . . .. The time interval between adjacent time points is called the
time step and an integration algorithm advances the numerical solution by
one time step with each application. The time step hn+1 = tn+1 − tn may be
constant for all time intervals over the entire integration interval t ∈ [t0, tN ],
or may vary at each step.

The basic integration algorithm advances the solution from tn to tn+1 with
integration step size hn+1 based on a calculation that involves previously com-
puted values xn, xn−1, . . . and functions f (xn, tn) , f (xn−1, tn−1) , . . . . Each
practical integration algorithm must satisfy certain criteria concerning

1. numerical accuracy,

2. numerical stability, and

3. numerical efficiency.

Numerical accuracy ensures that the numerical error incurred at each step
of the integration remains bounded. The global error of an integration error
is the total error accrued over a given time interval. The global error at time
tn is given by

global error = ‖x (tn) − xn‖
where x (tn) is the exact solution to equation (5.1) at time tn and xn is the
approximated solution. Of course, it is impossible to determine the global er-
ror exactly if the solution x(t) is not known analytically, but it is possible to
establish bounds on the error incurred at each step of the integration method.

139
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The numerical stability of an integration algorithm implies that errors in-
curred at each step do not propagate to future times. Numerical efficiency is
a function of the amount of computation required at each time step and the
size of the step sizes between adjacent time intervals. Each of these criteria
will be discussed in greater detail later in this chapter after an introduction
to several different forms of integration algorithms.

5.1 One-Step Methods

The basic form of an integration algorithm is one that advances the solution
from xn to xn+1 using only the information currently available. This type of
solution is called a one-step method, in that only information from one step
of the integration algorithm is used. The family of one-step methods has the
advantage of conserving memory, since only the previous solution must be
retained. Several well-known methods fall into this category.

5.1.1 Taylor Series-Based Methods

One important class of integration methods is derived from using the Taylor
series expansion of equation (5.1). Let x̂(t) denote the exact solution to equa-
tion (5.1). Expanding x̂(t) in a Taylor series about t = tn and evaluating the
series at t = tn+1 yields the following series expansion for x̂ (tn+1):

x̂ (tn+1) = x̂ (tn) + ẋ (tn) (tn+1 − tn)

+
1
2!

ẍ (tn) (tn+1 − tn)2 + . . . +
1
p!

x(p) (tn) (tn+1 − tn)p + h.o.t.

where h.o.t. stands for higher order terms of the expansion. If the time step
h = tn+1 − tn then

x̂ (tn+1) = x̂ (tn) + hẋ (tn) +
h2

2!
ẍ (tn) + . . . +

hp

p!
x(p) (tn) + h.o.t.

From equation (5.1), ẋ(t) = f(x, t), therefore

x̂ (tn+1) − h.o.t. = x̂ (tn) + hf (x (tn) , tn)

+
h2

2!
f ′ (x (tn) , tn) + . . . +

hp

p!
f (p−1) (x (tn) , tn) (5.2)

If the higher order terms are small, then a good approximation xn+1 to
x̂ (tn+1) is given by the right hand side of equation (5.2).
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In general, the Taylor series-based integration methods can be expressed as

xn+1 = xn + hTp (xn) (5.3)

where

Tp (xn) = f (x (tn) , tn) +
h2

2!
f ′ (x (tn) , tn) + . . . +

hp

p!
f (p−1) (x (tn) , tn)

and the integer p is called the order of the integration method. This method
is very accurate for large p, but is not computationally efficient for large p
since it requires a large number of function derivatives and evaluations.

5.1.2 Forward-Euler Method

For p = 1, the Taylor series-based integration algorithm is given by:

xn+1 = xn + hf (xn, tn) (5.4)

which is also the well-known Euler or forward Euler method.

5.1.3 Runge-Kutta Methods

A second order Taylor’s method can be derived for p = 2.

xn+1 = xn + hT2 (xn, tn)

= xn + hf (xn, tn) +
h2

2
f ′ (xn, tn)

As the order of the Taylor’s method increases, so does the number of deriva-
tives and partial derivatives. In many cases, the analytic derivation of the
derivatives can be replaced by a numerical approximation. One of the most
commonly known higher-order Taylor series-based integration methods is the
Runge-Kutta method, where the derivatives are replaced by approximations.
The fourth-order Runge-Kutta method is given by

xn+1 = xn + hK4 (xn, tn) (5.5)

where K4 is an approximation to T4:

K4 =
1
6

[k1 + 2k2 + 2k3 + k4]

k1 = f (xn, tn)

k2 = f

(
xn +

h

2
k1, tn +

h

2

)

k3 = f

(
xn +

h

2
k2, tn +

h

2

)

k4 = f (xn + hk3, tn + h)
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where each ki represents the slope (derivative) of the function at four differ-
ent points. The slopes are then weighted

[
1
6

2
6

2
6

1
6

]
to approximate the T4

function.
The advantages of Taylor series-based methods is that the method is straight-

forward to program and only depends on the previous time step. These meth-
ods (especially the Runge-Kutta methods) suffer from difficult error analysis,
however, since the derivatives are approximated and not found analytically.
Therefore the integration step size is typically chosen conservatively (small),
and computational efficiency may be lost.

5.2 Multistep Methods

Another approach to approximating the solution x(t) of equation (5.1) is to
approximate the nonlinear function as a polynomial of degree k such that

x̂(t) = α0 + α1t + α2t
2 + . . . + αktk (5.6)

where the coefficients α0, α1, . . . , αk are constant. It can be proven that any
function can be approximated arbitrarily closely (within a pre-determined
ε) with a polynomial of sufficiently high degree on a finite interval [t0, tN ].
The polynomial approximation can be related to the solution of equation
(5.1) through the introduction of multistep methods. A multistep method is
one in which the approximation xn+1 can be a function of any number of
previous numerical approximations xn, xn−1, . . . and corresponding functions
f (xn, tn) , f (xn−1, tn−1) , . . . unlike one-step methods (such as the Runge-
Kutta) which depend only on the information from the immediately previous
step. In general,

xn+1 = a0xn + a1xn−1 + . . . + apxn−p + h [b−1f (xn+1, tn+1) + b0f (xn, tn)
+b1f (xn−1, tn−1) + . . . + bpf (xn−p, tn−p)] (5.7)

=
p∑

i=0

aixn−i + h

p∑
i=−1

bif (xn−i, tn−i) (5.8)

To relate the integration method to the polynomial approximation, a rela-
tionship between the coefficients must be determined. A k-degree polynomial
is uniquely determined by k + 1 coefficients (α0, . . . , αk). The numerical in-
tegration method has 2p + 3 coefficients; therefore, the coefficients must be
chosen such that

2p + 3 ≥ k + 1 (5.9)

The order of the numerical integration method is the highest degree k of a
polynomial in t for which the numerical solution coincides with the exact
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solution. The coefficients may be determined by selecting a set of linear basis
functions [φ1(t) φ2(t), . . . , φk(t)] such that

φj(t) = tj j = 0, 1, . . . , k

and solving the set of multistep equations

φj (tn+1) =
p∑

i=0

aiφj (tn−i) + hn+1

[
p∑

i=−1

biφ̇ (tn−i)

]

for all j = 0, 1, . . . , k.
This method can be applied to derive several first order numerical integra-

tion methods. Consider the case where p = 0 and k = 1. This satisfies the
constraint of equation (5.9); thus, it is possible to determine multistep coef-
ficients that will result in an exact polynomial of degree 1. The set of basis
functions for k = 1 is

φ0(t) = 1 (5.10)
φ1(t) = t (5.11)

which lead to the derivatives

φ̇0(t) = 0 (5.12)
φ̇1(t) = 1 (5.13)

and the multistep equation

xn+1 = a0xn + b−1hn+1f (xn+1, tn+1) + b0hn+1f (xn, tn) (5.14)

Representing the multistep method of equation (5.14) in terms of basis func-
tions yields the following two equations

φ0 (tn+1) = a0φ0(tn) + b−1hn+1φ̇0 (tn+1) + b0hn+1φ̇0 (tn) (5.15)
φ1 (tn+1) = a0φ1(tn) + b−1hn+1φ̇1 (tn+1) + b0hn+1φ̇1 (tn) (5.16)

Substituting the choice of basis functions of equations (5.10) and (5.11) into
equations (5.15) and (5.16) results in

1 = a0(1) + b−1hn+1(0) + hn+1b0(0) (5.17)
tn+1 = a0tn + b−1hn+1(1) + b0hn+1(1) (5.18)

From equation (5.17), the coefficient a0 = 1. Recalling that tn+1− tn = hn+1,
equation (5.18) yields

b−1 + b0 = 1 (5.19)

This choice of order and degree leads to two equations in three unknowns;
therefore, one of them may be chosen arbitrarily. By choosing a0 = 1, b−1 = 0,
and b0 = 1, Euler’s method is once again obtained:

xn+1 = xn + hn+1f (xn, tn)
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However, if a0 = 1, b−1 = 1, and b0 = 0, a different integration method is
obtained:

xn+1 = xn + hn+1f (xn+1, tn+1) (5.20)

This particular integration method is frequently called the backward Euler
method. Note that in this method, the coefficient b−1 is not identically zero;
thus, the expression for xn+1 depends implicitly on the function f (xn+1, tn+1).
Methods in which b−1 �= 0 are referred to as implicit methods; otherwise they
are explicit. Since there is an implicit (and often nonlinear) dependence on
xn+1, implicit integration methods must usually be solved iteratively at each
time interval.

Consider now the case where p = 0, and k = 2. In this case, 2p + 3 =
k + 1 and the coefficients can be uniquely determined. Choosing the basis
functions as previously with φ2(t) = t2 and φ̇2(t) = 2t yields the following
three equations:

1 = a0(1) + b−1hn+1(0) + hn+1b0(0) (5.21)
tn+1 = a0tn + b−1hn+1(1) + b0hn+1(1) (5.22)
t2n+1 = a0t

2
n + hn+1 (b−1 (2tn+1) + b0 (2tn)) (5.23)

If tn = 0, then tn+1 = hn+1, and equations (5.21) through (5.23) yield a0 =
1, b−1 = 1

2 , and b0 = 1
2 , thus

xn+1 = xn +
1
2
hn+1 [f (xn+1, tn+1) + f (xn, tn)] (5.24)

This second-order integration method is called the trapezoidal method and
it is also implicit. This formula is called the trapezoidal method since the
second term of equation (5.24) can be interpreted as being the area under a
trapezoid. The trapezoidal is considered a two step method since information
from both tn and tn+1 is required.

Example 5.1

Numerically solve
ẍ(t) = −x(t) x(0) = 1 (5.25)

using the Euler, backward Euler, trapezoidal, and Runge-Kutta methods for
different fixed step sizes.

Solution 5.1 This second-order differential equation must first be converted
to ODE format by defining x1 = x and x2 = ẋ. Then

ẋ1 = x2 = f1 (x1, x2) x1(0) = 1 (5.26)
ẋ2 = −x1 = f2 (x1, x2) (5.27)
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By inspection, the analytic solution to this set of equations is

x1(t) = cos t (5.28)
x2(t) = − sin t (5.29)

Typically it is not possible to find the exact solution, but in this example, the
exact solution will be used to compare the numerical solutions against.

Forward-Euler
Applying the forward-Euler method to the ODEs yields

x1,n+1 = x1,n + hf1 (x1,n, x2,n) (5.30)
= x1,n + hx2,n (5.31)

x2,n+1 = x2,n + hf2 (x1,n, x2,n) (5.32)
= x2,n − hx1,n (5.33)

or in matrix form: [
x1,n+1

x2,n+1

]
=
[

1 h
−h 1

] [
x1,n

x2,n

]
(5.34)

Backward-Euler
Applying the backward-Euler method to the ODEs yields

x1,n+1 = x1,n + hf1 (x1,n+1, x2,n+1) (5.35)
= x1,n + hx2,n+1 (5.36)

x2,n+1 = x2,n + hf2 (x1,n+1, x2,n+1) (5.37)
= x2,n − hx1,n+1 (5.38)

or in matrix form: [
x1,n+1

x2,n+1

]
=
[

1 −h
h 1

]−1 [
x1,n

x2,n

]
(5.39)

In the solution of equation (5.39), the inverse of the matrix is not found
explicitly, but rather the equations would be solved using LU factorization.

Trapezoidal
Applying the trapezoidal method to the ODEs yields

x1,n+1 = x1,n +
1
2
h [f1 (x1,n, x2,n) + f1 (x1,n+1, x2,n+1)] (5.40)

= x1,n +
1
2
h [x2,n + x2,n+1] (5.41)

x2,n+1 = x2,n +
1
2
h [f2 (x1,n, x2,n) + f2 (x1,n+1, x2,n+1)] (5.42)

= x2,n − 1
2
h [x1,n + x1,n+1] (5.43)
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FIGURE 5.1
Numerical solutions for Example 5.1

or in matrix form:
[

x1,n+1

x2,n+1

]
=
[

1 − 1
2h

1
2h 1

]−1 [ 1 1
2h

− 1
2h 1

] [
x1,n

x2,n

]
(5.44)

Runge-Kutta
Applying the Runge-Kutta method to the ODEs yields

k11 = x2,n k21 = −x1,n

k12 = x2,n + h
2 k11 k22 = −x1,n − h

2 k21

k13 = x2,n + h
2 k12 k23 = −x1,n − h

2 k22

k14 = x2,n + hk13 k24 = −x1,n − hk23

and

x1,n+1 = x1,n +
h

6
(k11 + 2k12 + 2k13 + k14) (5.45)

x2,n+1 = x2,n +
h

6
(k21 + 2k22 + 2k23 + k24) (5.46)

The numerical solution of equation (5.25) for each of the methods is shown
in Figure 5.1 including the exact solution cos t. Note that the trapezoidal and
Runge-Kutta methods are nearly indistinguishable from the exact solution.
Since the forward- and backward-Euler methods are first-order methods, they
are not as accurate as the higher order trapezoidal and Runge-Kutta methods.
Note that the forward-Euler method generates a numerical solution whose
magnitude is slightly larger than the exact solution and is increasing with
time. Conversely, the backward-Euler method generates a numerical solution
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FIGURE 5.2
Error in numerical solutions for Example 5.1

whose magnitude is slightly less than the exact solution and is decreasing with
time. Both properties are due to the local truncation error of the methods.
The forward-Euler method has a tendency to generate numerical solutions
that increase with time (under-damped), whereas the backward-Euler method
tends to add damping to the numerical solution. Therefore, caution must be
used when using either of these first-order methods for numerical integration.

Figure 5.2 shows the global error with time for each of the numerical meth-
ods. Note that the errors for the forward and backward-Euler methods are
equal in magnitude, but opposite in sign. This relationship will be further dis-
cussed later in this chapter. The numerical errors for the trapezoidal and the
Runge-Kutta methods are reproduced in Figure 5.3 on a magnified scale. The
errors in each method are comparable even though the trapezoidal method is
a second order polynomial approximation method and the Runge-Kutta is a
fourth order Taylor method. Section 5.3 will further explore the development
of expressions for estimating the error of various integration methods.

When implicit methods, such as the trapezoidal method, are used to solve
nonlinear systems of differential equations, the system of equations must be
solved iteratively at each time step. For example, consider the following non-
linear system of equations:

ẋ = f(x(t), t) x0 = x(t0) (5.47)

Applying the trapezoidal method to numerically integrate this system results
in the following discretized system:

xn+1 = xn +
h

2
[f (xn, tn) + f (xn+1, tn+1)] (5.48)
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Error in trapezoidal and Runge-Kutta numerical solutions for Example 5.1

Since this nonlinear expression is implicit in xn+1, it must be solved numeri-
cally:

xk+1
n+1 = xk

n+1 −
[
I − h

2
∂f

∂x

]−1
∣∣∣∣∣
xk

n+1

(
xk

n+1 − xn − h

2
[
f (xn) + f

(
xk

n+1

)])

(5.49)
where k is the Newton-Raphson iteration index, I is the identity matrix, and
xn is the converged value from the previous time step.

5.2.1 Adams Methods

Recall that the general class of multistep methods may be represented by

xn+1 =
p∑

i=0

aixn−i + h

p∑
i=−1

bif (xn−i, tn−i) (5.50)

A numerical multistep algorithm will give the exact value for xn+1 if x(t)
is a polynomial of degree less than or equal to k if the following exactness
constraints are satisfied:

p∑
i=0

ai = 1 (5.51)

p∑
i=1

(−i)pai + j

p∑
i=−1

(−i)(j−1)bi = 1 for j = 1, 2, . . . , k (5.52)
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The exactness constraint of equation (5.51) is frequently referred to as the
consistency constraint. Numerical multistep integration algorithms that sat-
isfy equation (5.51) are said to be “consistent.” For a desired polynomial
of degree k, these constraints can be satisfied by a wide variety of possibili-
ties. Several families of methods have been developed by pre-defining some
of the relationships between the coefficients. The family of Adams methods
are defined by setting the coefficients a1 = a2 = . . . = ap = 0. By the consis-
tency constraint, the coefficient a0 must therefore equal 1.0. Thus, the Adams
methods are reduced to

xn+1 = xn + h

p∑
i=−1

bif (xn−i, tn−i) (5.53)

where p = k − 1. The Adams methods can be further classified by the choice
of implicit or explicit integration. The explicit class, frequently referred to as
the “Adams-Bashforth” methods, is specified by setting b−1 = 0 and applying
the second exactness constraint as:

k−1∑
i=0

(−i)(j−1)bi =
1
j

j = 1, . . . , k (5.54)

In matrix form, equation (5.54) becomes
⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
0 −1 −2 . . . −(k − 1)
0 1 4 . . . (−(k − 1))2
...

...
...

. . .
...

0 (−1)(k−1) (−2)(k−1) . . . (−(k − 1))(k−1)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b0

b1

b2

...
bk−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
1
2
1
3
...
1
k

⎤
⎥⎥⎥⎥⎥⎦

(5.55)

By choosing the desired degree k (and subsequently the order p), the remaining
bi coefficients may be found from solving equation (5.55).

Example 5.2
Find the third-order Adams-Bashford integration method.

Solution 5.2 Setting k = 3 yields the following linear system:⎡
⎣

1 1 1
0 −1 −2
0 1 4

⎤
⎦
⎡
⎣

b0

b1

b2

⎤
⎦ =

⎡
⎣

1
1
2
1
3

⎤
⎦

Solving this system yields

b0 =
23
12

b1 = −16
12

b2 =
5
12
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Thus the third-order Adams-Bashforth method is given by:

xn+1 = xn +
1
12

h [23f (xn, tn) − 16f (xn−1, tn−1) + 5f (xn−2, tn−2)] (5.56)

When implementing this algorithm, the values of xn, xn−1, and xn−2 must be
saved in memory.

The implicit versions of the Adams methods have b−1 �= 0, p = (k − 2), are
called the “Adams-Moulton” methods, and are given by

xn+1 = xn + h

k−2∑
i=−1

bif (xn−i, tn−i) (5.57)

The second exactness constraint yields

k−2∑
i=−1

(−i)(j−1)bi =
1
j

j = 1, . . . , k (5.58)

or in matrix form:
⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1
1 0 −1 −2 . . . −(k − 2)
1 0 1 4 . . . (−(k − 2))2
...

...
...

...
. . .

...
1 0 (−1)(k−2) (−2)(k−2) . . . (−(k − 2))(k−2)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

b−1

b0

b1

...
bk−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
1
2
1
3
...
1
k

⎤
⎥⎥⎥⎥⎥⎦

(5.59)

Example 5.3
Find the third-order Adams-Moulton integration method.

Solution 5.3 Setting k = 3 yields the following linear system:
⎡
⎣

1 1 1
1 0 −1
1 0 1

⎤
⎦
⎡
⎣

b−1

b0

b1

⎤
⎦ =

⎡
⎣

1
1
2
1
3

⎤
⎦

Solving this system yields

b−1 =
5
12

b0 =
8
12

b1 = − 1
12

Thus the third-order Adams-Moulton method is given by:

xn+1 = xn +
1
12

h [5f (xn+1, tn+1) + 8f (xn, tn) − f (xn−1, tn−1)] (5.60)
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When implementing this algorithm, the values of xn and xn−1 must be saved
in memory and the equations must be solved iteratively if the function f(x)
is nonlinear.

The Adams-Moulton method is implicit and must be solved iteratively using
the Newton-Raphson method (or other similar method) as shown in equation
(5.49). Iterative methods require an initial value for the iterative process to re-
duce the number of required iterations. The explicit Adams-Bashforth method
is frequently used to estimate the initial value for the implicit Adams-Moulton
method. If sufficiently high-order predictor methods are used, the Adams-
Moulton method iteration will typically converge in only one iteration. This
process is often called a predictor-corrector approach; the Adams-Bashforth
method predicts the solution and the implicit Adams-Moulton corrects the
solution.

Another implementation issue for multistep methods is how to start up
the integration at the beginning of the simulation since a high order method
requires several previous values. The usual procedure is to use a high-order
one-step method or to increase the number of steps of the method with each
time step to generate the required number of values for the desired multistep
method.

5.2.2 Gear’s Methods

Another well-known family of multistep methods are the Gear’s methods [14].
This family of methods is particularly well suited for the numerical solution
of stiff systems. As opposed to the Adams family of methods where all the ai

coefficients except a0 are zero, Gear’s methods are identified by having all of
the bi coefficients equal to zero except b−1. Obviously since b−1 �= 0, all Gear’s
methods are implicit methods. The k-th order Gear’s algorithm is obtained
by setting p = k − 1 and b0 = b1 = . . . = 0 yielding

xn+1 = a0xn + a1xn−1 + . . . + ak−1xn−k+1 + hb−1f (xn+1, tn+1) (5.61)

The k + 1 coefficients can be calculated explicitly by applying the exactness
constraints as illustrated with the Adams methods:

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 0
0 −1 −2 . . . −(k − 1) 1
0 1 4 . . . [−(k − 1)]2 2
...

...
...
. . .

...
...

0 (−1)k (−2)k . . . [−(k − 1)]k k

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a0

a1

a2

...
b−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
...
1

⎤
⎥⎥⎥⎥⎥⎦

(5.62)

The solution of equation (5.62) uniquely determines the k + 1 coefficients of
the k-th order Gear’s method.
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Example 5.4
Find the third-order Gear’s integration method.

Solution 5.4 Setting k = 3 yields the following linear system:
⎡
⎢⎢⎣

1 1 1 0
0 −1 −2 1
0 1 4 2
0 −1 −8 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a0

a1

a2

b−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

Solving this system yields

b−1 =
6
11

a0 =
18
11

a1 = − 9
11

a2 =
2
11

Thus the third-order Gear’s method is given by:

xn+1 =
18
11

xn − 9
11

xn−1 +
2
11

xn−2 +
6
11

hf (xn+1, tn+1) (5.63)

When implementing this algorithm, the values of xn through xn−2 must be
saved in memory and the equations must be solved iteratively if the function
f(x) is nonlinear.

5.3 Accuracy and Error Analysis

The accuracy of numerical integration methods is impacted by two primary
causes: computer round-off error and truncation error. Computer round-off
error occurs as a result of the finite precision of the computer upon which the
algorithm is implemented and little can be done to reduce this error short of
using a computer with greater precision. A double precision word length is
normally used for scientific computation. The difference between the exact
solution and the calculated solution is dominated by truncation error, which
arises from the truncation of the Taylor series or polynomial being used to
approximate the solution.

In the implementation of numerical integration algorithms, the most effec-
tive methods are those methods that require the least amount of calculation to
yield the most accurate results. In general, higher order methods produce the
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most accurate results, but also require the greatest amount of computation.
Therefore, it is desirable to compute the solution as infrequently as possible
by taking the largest time step possible between intervals. Several factors
impact the size of the time step including the error introduced at each step
by the numerical integration process itself. This error is the local truncation
error (LTE) and arises from the truncation of the polynomial approximation
and/or the truncation of the Taylor series expansion depending on the method
used. The term local emphasizes that the error is introduced locally and is
not residual global error from earlier time steps. The error introduced at a
single step of an integration method is given by

εT
Δ= x (tn+1) − xn+1 (5.64)

where x (tn+1) is the exact solution at time tn+1 and xn+1 is the numerical
approximation. This definition assumes that this is the error introduced in one
step, therefore x(tn) = xn. The local truncation error is shown graphically
in Figure 5.4. To compute the error, the solution x (tn−i) is expanded about
tn+1:

xn−i = x (tn−i) =
∞∑

j=0

(tn−i − tn+1)
j

j!
d(j)

dt
x (tn+1) (5.65)

Recall that

f (xn−i, tn−i) = ẋ (tn−i)

=
∞∑

j=0

(tn−i − tn+1)
j

j!
d(j+1)

dt
x (tn+1) (5.66)

Solving for x (tn+1) − xn+1 yields

εT = C0x (tn) + C1x (tn−1)
+C2x (tn−2) + . . . + Ckx (tn−k) + Ck+1x (tn−k−1) + . . . (5.67)

If the order of this method is k, then the first k coefficients are equal to zero
and the local truncation error is given by

εT = Ck+1h
k+1x(k+1) (tn+1) + O

(
hk+2

)
(5.68)

where O
(
hk+2

)
indicates an error on the order of hk+2.

Example 5.5
Find expressions for the local truncation error of the forward-Euler, backward-
Euler, and trapezoidal integration methods.
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Graphical depiction of local truncation error

Solution 5.5

Forward Euler
Recall that the expression for the forward-Euler integration algorithm is

xn+1 = xn + hf (xn, tn)

If xn = x (tn) (by the definition of the local truncation error), then

xn = x (tn+1) − hẋ (tn+1) +
1
2!

h2ẍ (tn+1) + . . . (5.69)

and
f (xn, tn) = ẋ (tn) = ẋ (tn+1) − hẍ (tn+1) + . . . (5.70)

Thus

εT = x (tn+1) − xn+1 (5.71)
= x (tn+1) − xn − hf (xn, tn) (5.72)

= x (tn+1) −
[
x (tn+1) − hẋ (tn+1) +

1
2!

h2ẍ (tn+1) + . . .

]

−h [ẋ (tn+1) − hẍ (tn+1) + . . .] (5.73)

=
h2

2
ẍ (tn+1) + O

(
h3
)

(5.74)
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Backward Euler
The expression for the backward-Euler integration algorithm is

xn+1 = xn + hf (xn+1, tn+1)

Following the same approach as the forward-Euler method, but using

f (xn+1, tn+1) = ẋ (tn+1) (5.75)

then

εT = x (tn+1) − xn+1 (5.76)
= x (tn+1) − xn − hf (xn+1, tn+1) (5.77)

= x (tn+1) −
[
x (tn+1) − hẋ (tn+1) +

1
2!

h2ẍ (tn+1) + . . .

]

−hẋ (tn+1) (5.78)

= −h2

2
ẍ (tn+1) − O

(
h3
)

(5.79)

Note that the local truncation errors for the forward- and backward-Euler
methods are equal, but opposite in sign. This property is consistent with the
results of Example 5.1 shown in Figure 5.2, where the respective errors were
identical except in sign.

Trapezoidal
The expression for the second order trapezoidal integration algorithm is

xn+1 = xn +
1
2
h [f (xn+1, tn+1) + f (xn, tn)]

Following the same approach as the previous methods using similar substitu-
tions, then

εT = x (tn+1) − xn+1 (5.80)

= x (tn+1) − xn − 1
2
hf (xn, tn) − 1

2
hf (xn+1, tn+1) (5.81)

= x (tn+1) −
[
x (tn+1) − hẋ (tn+1) +

h2

2
ẍ (tn+1) − h3

3!
x(3) (tn+1) + . . .

]

−h

2

[
ẋ (tn+1) − hẍ (tn+1) +

h2

2
x(3) (tn+1) + . . .

]
− h

2
ẋ (tn+1) (5.82)

=
h3

6
x(3) (tn+1) − h3

4
x(3) (tn+1) + O

(
h4
)

(5.83)

= − 1
12

h3x(3) (tn+1) + O
(
h4
)

(5.84)

Both the first order Euler methods had errors on the order of h2, whereas the
second order method (trapezoidal) had an error on the order of h3. Both meth-
ods are implicit and must be solved iteratively at each time step. Consider



156 Computational Methods for Electric Power Systems

the iterative solution of the trapezoidal method repeated here from equation
(5.49):

xk+1
n+1 = xk

n+1 −
[
I − h

2
∂f

∂x

]−1
∣∣∣∣∣
xk

n+1

(
xk

n+1 − xn − h

2
[
f (xn) + f

(
xk

n+1

)])

(5.85)
Similarly, the iterative solution of the backward-Euler method is given by

xk+1
n+1 = xk

n+1 −
[
I − h

∂f

∂x

]−1
∣∣∣∣∣
xk

n+1

(
xk

n+1 − xn − h
[
f
(
xk

n+1

)])
(5.86)

Note that both methods require the same function evaluations and compa-
rable computational effort, yet the trapezoidal method yields a much smaller
local truncation error for the same time step size h. For this reason, the
trapezoidal method is a more widely used general purpose implicit numerical
integration algorithm than the backward-Euler method.

For multistep methods, a generalized expression for the local truncation
error has been developed [6]. For a multistep method

xn+1 =
p∑

i=0

aixn−i + h

p∑
i=−1

bif (xn−i, tn−i) (5.87)

which is exact for a polynomial solution of degree less than or equal to k, the
local truncation error is given by:

εT = Ckx(k+1)(τ)hk+1 = O
(
hk+1

)
(5.88)

where −ph ≤ τ ≤ h and

Ck
Δ=

1
(k + 1)!

{
(p + 1)k+1 −

[
p−1∑
i=0

ai (p − i)k+1 + (k + 1)
p−1∑
i=−1

bi (p − i)k

]}

(5.89)
This expression provides an approach for approximating the local truncation
error at each time step as a function of h and x.

5.4 Numerical Stability Analysis

From the previous discussion, it was shown that the choice of integration step
size directly impacts the numerical accuracy of the solution. Less obvious
is how the choice of step size impacts the numerical stability of integration
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method. Numerical stability guarantees that the global truncation error re-
mains bounded. This guarantees that the error introduced at each time step
does not accrue with time, but rather dissipates such that the choice of step
size can be made by considering the local truncation error only. To analyze the
effect of step size on the numerical stability of integration methods, consider
the simple, scalar ODE:

ẋ = f(x) = λx(t) x0 = x(t0) (5.90)

By inspection, the solution to this equation is

x(t) = x0e
(λt) (5.91)

If λ < 0, then x(t) approaches zero as t goes to infinity. Conversely, if λ > 0,
then x(t) approaches infinity as t goes to infinity. Numerical stability ensures
that the global behavior of the estimated system matches that of the actual
system. Consider the forward-Euler method applied to the scalar system of
equation (5.90):

xn+1 = xn + hλxn

= (1 + hλ)xn

thus

x1 = (1 + hλ)x0

x2 = (1 + hλ)x1 = (1 + hλ)2x0

...
xn = (1 + hλ)nx0

If λ < 0, then x(t) should approach zero as t goes to infinity. This will be
achieved only if

|1 + hλ| < 1 (5.92)

Therefore, this system is stable for λ < 0 only if hλ lies within the unit circle
centered at (-1, 0) shown in Figure 5.5. Thus the larger the value of λ, the
smaller the integration step size must be.

Similarly, consider the backward-Euler integration method applied to the
same scalar ODE system:

xn+1 = xn + hλxn+1

=
xn

(1 − hλ)

thus

x1 =
x0

(1 − hλ)



158 Computational Methods for Electric Power Systems

Im(h    )λ

λRe(h   )

1−1−2

2

2

−1

−2

1

FIGURE 5.5
Region of absolute stability of the forward-Euler method

x2 =
x1

(1 − hλ)
=

x0

(1 − hλ)2

...
xn =

x0

(1 − hλ)n

If λ < 0, then x(t) should approach zero as t goes to infinity. This will be
achieved only if

|1 − hλ| > 1 (5.93)

Therefore, this system is stable for λ < 0 only if hλ does not lie within the
unit circle centered at (1, 0) shown in Figure 5.6. This implies that for all
λ < 0, the backward-Euler method is numerically stable. Thus if the ODE
system is stable, the integration step size may be chosen arbitrarily large
without affecting the numerical stability of the solution. Thus the selection
of integration step size will be dependent only on the local truncation error.
Note that if hλ is large, then xn will rapidly approach zero. This characteristic
manifests itself as a tendency to over-damp the numerical solution. This
characteristic was illustrated in Figure 5.1.

Extending this approach to the general family of multistep methods yields

xn+1 =
p∑

i=0

aixn−i + hλ

p∑
i=−1

bixn−i (5.94)
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FIGURE 5.6
Region of absolute stability of the backward-Euler method

Rearranging the terms of the multistep method gives

xn+1 =
(a0 + hλb0)
(1 − hλb−1)

xn +
(a1 + hλb1)
(1 − hλb−1)

xn−1 + . . .

+
(ap + hλbp)
(1 − hλb−1)

xn−p (5.95)

= γ0xn + γ1xn−1 + . . . + γpxn−p (5.96)

This relationship specifies the characteristic equation

P (z, hλ) = zp+1 + γ0z
p + . . . + γp = 0 (5.97)

where z1, z2, . . . , zp+1 are the (complex) roots of equation (5.97). Therefore

xn+1 =
p+1∑
i=1

Ciz
n+1
i (5.98)

If λ < 0, the solution xn+1 will go to zero as n goes to infinity only if |zj | < 1
for all j = 1, 2, . . . , p + 1. Thus, a multistep method is said to be absolutely
stable for a given value of hλ if the roots of P (z, hλ) = 0 satisfy |zi| < 1 for
i = 1, . . . , k. Absolute stability implies that the global error decreases with
increasing n. The region of absolute stability is defined to be the region in
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the complex hλ plane where the roots of P (z, hλ) = 0 satisfy |zi| < 1 for
i = 1, . . . , k. Let

P (z, hλ) = Pa(z) − hλPb(z) = 0

where

Pa(z) Δ= zp+1 − a0z
p − a1z

p−1 − . . . − ap

Pb(z) Δ= b−1z
p+1 + b0z

p + b1z
p−1 + . . . + bp

then
hλ =

Pa(z)
Pb(z)

(5.99)

Since z is a complex number, it can also be represented as

z = e(jθ)

The boundary of the region can be mapped by plotting hλ in the complex
plane as θ varies from 0 through 2π where

hλ(θ) =
ej(p+1)θ − a0e

jpθ − a1e
j(p−1)θ − . . . − ap−1e

jθ − ap

b−1ej(p+1)θ + b0ejpθ + b1ej(p−1)θ + . . . + bp−1ejθ + bp
(5.100)

Example 5.6
Plot the regions of absolute stability of the Gear’s third order and the Adams
third order (both implicit and explicit) methods.

Solution 5.6

Gear’s
The region of stability of a Gear’s method can be found by plotting hλ in the

complex plane from equation (5.100) by setting p = k − 1 and b0, b1, . . . = 0.

hλ(θ) =
ejkθ − a0e

j(k−1)θ − . . . − ak−1

b−1ejkθ
(5.101)

Substituting in the coefficients for the third order Gear’s method yields the
following expression in θ:

hλ(θ) =
ej3θ − 18

11ej2θ + 9
11ejθ − 2

11
6
11ej3θ

(5.102)

By varying θ from zero to 2π, the region of absolute stability of the Gear’s
third-order method is shown as the shaded region of Figure 5.7.
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FIGURE 5.7
Region of absolute stability for Gear’s third-order method

Adams-Moulton
The region of absolute stability of the Adams-Moulton methods can be

developed from equation (5.100) by setting p = k − 1, and a1, a2, . . . = 0:

hλ(θ) =
ejkθ − a0e

j(k−1)θ

b−1ejkθ + b0ej(k−1)θ + b1ej(k−2)θ + . . . + bk−2ejθ
(5.103)

After substituting in the third-order coefficients, the expression for the region
of absolute stability as a function of θ is given by

hλ(θ) =
ej3θ − ej2θ

5
12ej3θ + 8

12ej2θ − 1
12ejθ

(5.104)

The region of absolute stability of the Adams-Moulton third-order method
is shown as the shaded region of Figure 5.8.

Adams-Bashforth
The stability of the family of Adams-Bashforth methods can be derived

from equation (5.100) by setting p = k − 1, b−1 = 0, and a1, a2, . . . , = 0:

hλ(θ) =
ejkθ − a0e

j(k−1)θ

b0ej(k−1)θ + b1ej(k−2)θ + . . . + bk−1
(5.105)

hλ(θ) =
ej3θ − ej2θ

23
12ej2θ − 16

12ejθ + 5
12

(5.106)



162 Computational Methods for Electric Power Systems

λ

λIm(h    )

Re(h   )

2 4 6−2−4−6 0

FIGURE 5.8
Region of absolute stability for Adams-Moulton third-order method
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FIGURE 5.9
Region of absolute stability for Adams-Bashforth third-order method
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The region of absolute stability of the Adams-Bashforth method is shown
as the shaded region in Figure 5.9.

This example illustrates one of the primary differences between implicit
and explicit methods. For the same order, the two implicit methods (Gear’s
and Adams-Moulton) exhibit much larger regions of absolute stability than
does the explicit method (Adams-Bashforth). The Gear’s region of absolute
stability contains nearly the entire left half hλ plane; thus, for any stable
dynamic system, the step size can be chosen as large as desired without any
consideration for numerical stability. Even the Adams-Moulton region of ab-
solute stability is quite large compared to the Adams-Bashforth. Typically,
the region of stability of explicit methods is much smaller than the region of
absolute stability of corresponding order implicit methods. For this reason,
implicit methods are frequently used in commercial integration packages so
that the integration step size can be chosen based purely on the local trunca-
tion error criteria. The region of absolute stability shrinks as the order of the
method increases, whereas the accuracy increases. This is a trade-off between
accuracy, stability, and numerical efficiency in integration algorithms.

5.5 Stiff Systems

Gear’s methods were originally developed for the solution of systems of stiff
ordinary differential equations. Stiff systems are systems that exhibit a wide-
range of time varying dynamics from “very fast” to “very slow.” A stiff linear
system exhibits eigenvalues that span several orders of magnitude. A nonlin-
ear system is stiff if its associated Jacobian matrix exhibits widely separated
eigenvalues when evaluated at the operating points of interest. For efficient
and accurate solutions of stiff differential equations, it is desirable for a multi-
step method to be “stiffly stable.” An appropriate integration algorithm will
allow the step size to be varied over a wide range of values and yet will remain
numerically stable. A stiffly stable method exhibits the three stability regions
shown in Figure 5.10 such that:

1. Region I is a region of absolute stability

2. Region II is a region of accuracy and stability

3. Region III is a region of accuracy and relative stability

Only during the initial period of the solution of the ODE do the large nega-
tive eigenvalues significantly impact the solution, yet they must be accounted
for throughout the whole solution. Large negative eigenvalues (λ < 0) will
decay rapidly by a factor of 1/e in time 1/λ. If hλ = γ + jβ, then the change
in magnitude in one step is eγ . If γ ≤ δ ≤ 0, where δ defines the interface
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FIGURE 5.10
Regions required for stiff stability

between Regions I and II, then the component is reduced by at least eδ in one
step. After a finite number of steps, the impact of the fast components is neg-
ligible and their numerical accuracy is unimportant. Therefore the integration
method is required to be absolutely stable in Region I.

Around the origin, numerical accuracy becomes more significant and rela-
tive or absolute stability is required. A region of relative stability consists of
those values of hλ for which the extraneous eigenvalues of the characteristic
polynomial of equation (5.97) are less in magnitude than the principal eigen-
value. The principal eigenvalue is the eigenvalue which governs the system
response most closely. If the method is relatively stable in Region III, then
the system response will be dominated by the principal eigenvalue in that
Region. If γ > α > 0, one component of the system response is increasing by
at least eα one step. This increase must be limited by choosing the step sizes
small enough to track this change.

If ‖β‖ > θ, there are at least θ/2π complete cycles of oscillation in one
step. Except in Region I where the response is rapidly decaying, and where
γ > α is not used, the oscillatory responses must be captured. In practice,
it is customary to have eight or more time points per cycle (to accurately
capture the magnitude and frequency of the oscillation); thus, θ is chosen to
be bounded by π/4 in Region II.

Examination of the family of Adams-Bashforth methods shows that they
all fail to satisfy the criteria to be stiffly stable and are not suitable for
integrating stiff systems. Only the first and second order Adams-Moulton
(backward-Euler and trapezoidal, respectively) satisfy the stiffly stable cri-
teria. Gear’s algorithms on the other hand were developed specifically to
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address stiff system integration [14]. Gear’s algorithms up to order six satisfy
the stiff properties with the following choice of δ [6]:

Order δ
1 0
2 0
3 0.1
4 0.7
5 2.4
6 6.1

Example 5.7
Compare the application of the third-order Adams-Bashforth, Adams-Moulton,
and Gear’s method to the integration of the following system:

ẋ1 = 48x1 + 98x2 x1(0) = 1 (5.107)
ẋ2 = −49x1 − 99x2 x2(0) = 0 (5.108)

Solution 5.7 The exact solution to Example 5.7 is

x1(t) = 2e−t − e−50t (5.109)
x2(t) = −e−t + e−50t (5.110)

This solution is shown in Figure 5.11. Both states contain both fast and slow
components, with the fast component dominating the initial response and
the slow component dominating the longer term dynamics. Since the Gear’s,
Adams-Bashforth, and Adams-Moulton methods are multistep methods, each
method is initialized using the absolutely stable trapezoidal method for the
first two to three steps using a small step size.

The Adams-Bashforth algorithm with a time step of 0.0111 seconds is shown
in Figure 5.12. Note that even with a small step size of 0.0111 seconds the
inherent error in the integration algorithm eventually causes the system re-
sponse to exhibit numerical instabilities. The step size can be decreased to
increase the stability properties, but this requires more time steps in the in-
tegration window (t ∈ [0, 2]) than is computationally necessary.

The Adams-Moulton response to the stiff system for an integration step size
of 0.15 seconds is shown in Figure 5.13. Although a much larger time step
can be used for integration as compared to the Adams-Bashforth algorithm,
the Adams-Moulton algorithm does not exhibit numerical absolute stability.
For an integration step size of h = 0.15 seconds, the Adams-Moulton algo-
rithm exhibits numerical instability. Note that the solution is oscillating with
growing magnitude around the exact solution.
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FIGURE 5.11
Stiff system response
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FIGURE 5.12
Adams-Bashforth stiff system response with h = 0.0111 s step size
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FIGURE 5.13
Adams-Moulton stiff system response with h = 0.15 s step size

Figure 5.14 shows the Gear’s method numerical solution to the stiff system
using an integration step size of 0.15 s which is the same step size as used in the
Adams-Moulton response of Figure 5.13. The Gear’s method is numerically
stable since the global error decreases with increasing time.

The comparison of the three integration methods supports the necessity
of using integration algorithms developed specifically for stiff systems. Even
though both the third order Adams-Bashforth and Adams-Moulton have re-
gions of absolute stability, these regions are not sufficient to ensure accurate
stiff system integration.

5.6 Step-Size Selection

For computational efficiency, it is desirable to choose the largest integration
step size possible while satisfying a pre-determined level of accuracy. The level
of accuracy can be maintained by constant vigilance of the local truncation
error of the method if the chosen method is numerically stable. If the function
x(t) is varying rapidly, the step size should be chosen small enough to cap-
ture the significant dynamics. Conversely, if the function x(t) is not varying
significantly (nearly linear) over a finite time interval, then the integration
time steps can be chosen quite large over that interval while still maintaining
numerical accuracy. The true challenge to a numerical integration algorithm
is when the dynamic response of x(t) has intervals of both rapid variance
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FIGURE 5.14
Gear’s stiff system response with h = 0.15 s step size

and latency. In this case, it is desirable for the integration step size to have
the ability to increase or decrease throughout the simulation interval. This
can be accomplished by choosing the integration step size based on the local
truncation error bounds.

Consider the trapezoidal method absolute local truncation error:

εT =
1
12

h3x(3)(τ) (5.111)

The local truncation error is dependent on the integration step size h and the
third derivative of the function x(3)(τ). If the local truncation error is chosen
to be in the interval:

BL ≤ ε ≤ BU (5.112)

where BL and BU represent the prespecified lower and upper bounds respec-
tively, then the integration step size can be bounded by

h ≤ 3

√
12BU

x(3)(τ)
(5.113)

If x(t) is rapidly varying, the x(3)(τ) will be large and h must be chosen small
to satisfy ε ≤ BU , whereas if x(t) is not varying rapidly, then x(3)(τ) will be
small and h can be chosen relatively large while still satisfying ε ≤ BU . This
leads to the following procedure for calculating the integration step size:
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Integration Step Size Selection

Attempt an integration step size hn+1 to calculate xn+1 from xn, xn−1, . . .

1. Using xn+1, calculate the local truncation error εT .

2. If BL ≤ εT ≤ BU , then PASS, accept hn+1, hnext = hn+1, and continue.

3. If ε > BU , then FAIL (hn+1 is too large), set hn+1 = αhn+1, repeat
integration for xn+1.

4. If ε ≤ BU , then PASS, accept hn+1, set hnext = αhn+1, and continue.

where

α =
[
Bavg

ε

] 1
k+1

(5.114)

where BL ≤ Bavg ≤ BU and k is the degree of the method.

Some commercial integration packages implement an algorithm that is slightly
different than this one. In these packages, if the local truncation error is
smaller than the lower bound, then the attempted integration step size also
FAILS, and the integration step is re-attempted with a larger integration step
size. Once again, there is a trade off between the time spent in recalculating
xn+1 with a larger step size and the additional computational effort acquired
by simply accepting the current value and continuing on.

The difficulty in implementing this step size selection approach is the cal-
culation of the higher order derivatives of x(t). Since x(t) is not known analyt-
ically, the derivatives must be calculated numerically. One common approach
is to use difference methods to approximate the derivatives. The (k + 1)st

derivative to x(τ) is approximated by

x(k+1)(τ) ≈ (k + 1)!∇k+1xn+1 (5.115)

where ∇k+1xn+1 is found recursively:

∇1xn+1 =
xn+1 − xn

tn+1 − tn
(5.116)

∇1xn =
xn − xn−1

tn − tn−1
(5.117)

... (5.118)

∇2xn+1 =
∇1xn+1 −∇1xn

tn+1 − tn−1
(5.119)

∇2xn =
∇1xn −∇1xn−1

tn − tn−2
(5.120)

... (5.121)

∇k+1xn+1 =
∇kxn+1 −∇kxn

tn+1 − tn−k
(5.122)
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Example 5.8

Find an expression for step size selection for the trapezoidal integration method
with an upper bound of 10−3 on the local truncation error.

Solution 5.8
The LTE for the trapezoidal method is given by

h ≤ 3

√
12BU

x(3)(τ)
(5.123)

The first step is to find an expression for the third derivative:

x(3)(τ) ≈ 3!∇3xn+1 (5.124)

∇3xn+1 =
∇2xn+1 −∇2xn

tn+1 − tn−2
(5.125)

=
∇2xn+1 −∇2xn

hn+1 + hn + hn−1
(5.126)

=
1

hn+1 + hn + hn−1

{
1

hn+1 + hn

[
xn+1 − xn

hn+1
− xn − xn−1

hn

]
−

1
hn + hn−1

[
xn − xn−1

hn
− xn−1 − xn−2

hn−1

]}
(5.127)

Substituting the value for BU and the approximation for the third derivative
into equation (5.123) yields the bound for h:

hn+1 ≤ 1
10

3

√
2

∇3xn+1
(5.128)

where ∇3xn+1 is given in equation (5.127).

5.7 Differential-Algebraic Equations

Many classes of systems can be generically written in the form of:

F (t, y(t), y′(t)) = 0 (5.129)

where F and y ∈ Rm. In some cases, equation (5.129) can be rewritten as

F (t, x(t), x′(t), y(t)) = 0 (5.130)
g (t, x(t), y(t)) = 0 (5.131)
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In this form, the system of equations is typically known as a system of
differential-algebraic equations, or DAEs [5]. This form of DAEs may be con-
sidered to be a system of differential equations (equation (5.130)) constrained
to an algebraic manifold (equation(5.131)). Often the set of equations (5.131)
are invertible (i.e. y(t) can be obtained from y(t) = g−1 (t, x(t))) and equation
(5.130) can be rewritten as an ordinary differential equation:

F
(
t, x(t), x′(t), g−1 (t, x(t))

)
= f (t, x(t), x′(t)) = 0 (5.132)

Although the set of ODEs may be conceptually simpler to solve, there are
usually several compelling reasons to leave the system in its original DAE
form. Many DAE models are derived from physical problems in which each
variable has individual characteristics and physical significance. Converting
the DAE into an ODE may result in a loss of physical information in the
solution. Furthermore, it may be more computationally expensive to obtain
the solution of the system of ODEs since inherent sparsity may have been lost.
Solving the original DAE directly provides greater information regarding the
behavior of the system.

A special case of DAEs is the semi-explicit DAE:

ẋ = f(x, y, t) x ∈ Rn (5.133)
0 = g(x, y, t) y ∈ Rm (5.134)

where y has the same dimension as g. DAE systems that can be written in
semi-explicit form are often referred to as index 1 DAE systems [5]. The first
concerted effort to solve semi-explicit DAEs was proposed in [15] and later
refined in [16], and consisted of replacing ẋ(t) by a k-step backwards difference
formula (BDF) approximation

ẋ(t) ≈ ρnxn

hn
=

1
hn

k∑
i=0

αixn−i (5.135)

and then solving the resulting equations

ρnxn = hnf (xn, yn, tn) (5.136)
0 = g (xn, yn, tn) (5.137)

for approximations to xn and yn.
Various other numerical integration techniques have been studied for ap-

plication to DAE systems. Variable step size/fixed formula code has been
proposed to solve the system of DAEs [44]. Specifically, a classic fourth-order
Runge-Kutta method was used to solve for x and a third order BDF to solve
for y.

In general, however, many DAE systems may be solved by any multistep
numerical integration method which is convergent when applied to ODEs
[21]. The application of multistep integration methods to a DAE system
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is straightforward. A general multistep method of the form equation (5.8)
applied to equations (5.133) and (5.134) yields:

xn+1 =
p∑

i=0

aixn−i + h

p∑
i=−1

bif (xn−i, yn−i, tn−i) (5.138)

0 = g (xn+1, yn+1, tn+1) (5.139)

Multistep methods applied to semi-explicit index one DAEs are stable and
convergent to the same order of accuracy for the DAE as for standard nonstiff
ODEs [5].

There are two basic approaches to solving equations (5.138) and (5.139).
One is the iterative approach in which equation (5.139) is solved for yn+1

which is then substituted into equation (5.139). This equation is then solved
for xn+1. This process is repeated at tn+1 until the values for xn+1 and yn+1

converge, and then the solution is advanced to the next time step.
Another approach is the simultaneous approach in which both sets of equa-

tions are solved simultaneously for xn+1 and yn+1 using a nonlinear solver
such as the Newton-Raphson method. In this case, the system of equations
are recast as:

0 = F (xn+1, yn+1, tn+1)

= xn+1 −
p∑

i=0

aixn−i − h

p∑
i=−1

bif (xn−i, yn−i, tn−i) (5.140)

0 = g (xn+1, yn+1, tn+1) (5.141)

and the Newton-Raphson Jacobian becomes

Jxy =

[
In − hb1

∂f
∂x −hb1

∂f
∂y

∂g
∂x

∂g
∂y

]
(5.142)

Solving the full n + m system of equations yields both xn+1 and yn+1 simul-
taneously.

The solvability of a DAE system implies that there exists a unique solution
for sufficiently different inputs and consistent initial conditions, unlike the
ODE system which has a unique solution for arbitrary initial conditions. For
a DAE system, there exists only one set of initial conditions to the non-state
(algebraic) variables. The initial values that are consistent with the system
input are called admissible initial values. The admissible initial values are
those that satisfy

y0 = g−1(x0, t0) (5.143)
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5.8 Power System Applications

Power systems in general are considered to be large scale, often involving sev-
eral hundred equations to describe the behavior of an interconnected power
system during and following a fault on the system. As power system op-
erations become increasingly complex, it becomes necessary to be able to
perform analyses of voltage conditions and system stability. A medium-sized
power company serving a mixed urban and rural population of two to three
million people operates a network that may typically contain hundreds of
buses and thousands of transmission lines, excluding the distribution system
[12]. Under certain assumptions such as instantaneous transmission lines, in-
terconnected power systems are often modeled in DAE form with over 1000
differential equations and 10,000 algebraic constraint equations. One tradi-
tional approach to solving large scale systems of this type has been to replace
the full system model with a reduced-order state space model.

5.8.1 Transient Stability Analysis

The “classical model” of a synchronous machine is often used to study the
transient stability of a power system during the period of time in which the
system dynamics depend largely on the stored kinetic energy in the rotating
masses. This is usually on the order of a second or two. The classical model
is derived under several simplifying assumptions [1]:

1. Mechanical power input, Pm, is constant.

2. Damping is negligible.

3. The constant voltage behind transient reactance model for the syn-
chronous machines is valid.

4. The rotor angle of the machine coincides with the voltage behind the
transient reactance angle.

5. Loads are represented as constant impedances.

The equations of motion are given by

ω̇i =
1

Mi

⎛
⎝Pmi − E2

i Gii − Ei

n∑
j �=i

Ej (Bij sin δij + Gij cos δij)

⎞
⎠ (5.144)

δ̇i = ωi − ωs i = 1, . . . , n (5.145)

where n is the number of machines, ωs is the synchronous angular frequency,
δij = δi − δj , Mi = 2Hi

ωs
, and Hi is the inertia constant in seconds. Bij and
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Gij are elements of the reduced admittance matrix Y at the internal nodes
of the machine. The loads are modeled as constant impedances which are
then absorbed into the admittance matrix. The classical model is appropriate
for frequency studies that result from faults on the transmission system for
the first or second swing of the rotor angle. The procedure for setting up a
transient stability analysis is given below.

Transient Stability Analysis

1. Perform a load flow analysis to obtain system voltages, angles, active
and reactive power generation.

2. For each generator i, . . . , n, in the system, calculate the internal voltage
and initial rotor angle E∠δ0:

I∗gen =
(Pgen + jQgen)

VT ∠θT
(5.146)

E∠δ0 = jx′
dIgen + VT ∠θT (5.147)

where Pgen+jQgen are the generated active and reactive power obtained
from the power flow solution and VT ∠θT is the generator terminal volt-
age.

3. For each load 1, . . . , m in the system, convert the active and reactive
power loads to admittances:

YL = GL + jBL =
IL

VL∠θL
(5.148)

=
S∗

L

V 2
L

(5.149)

=
PL − jQL

V 2
L

(5.150)

Add the shunt admittance YL to the corresponding diagonal of the ad-
mittance matrix.

4. For each generator in the system, augment the admittance matrix by
adding an internal bus connected to the terminal bus with the transient
reactance x′

d as shown in Figure 5.15.

Then let

Ynn =

⎡
⎢⎢⎢⎢⎢⎣

jx′
d1

0 0 . . . 0
0 jx′

d2
0 . . . 0

0 0 jx′
d3

. . . 0
...

...
...

. . .
...

0 0 0 . . . jx′
dn

⎤
⎥⎥⎥⎥⎥⎦
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FIGURE 5.15
Voltage behind transient reactance

and

Ynm =
[
[−Ynn] [0n×m]

]

Ymn = Y T
nm

where [0n×m] is an (n × m) matrix of zeros.

Further, let

Ymm =
[
Yoriginal +

[
Ynn 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

]]

This matrix layout assumes that the systems buses have been ordered
such that the generators are numbered 1, . . . , n, with the remaining load
buses numbered n + 1, . . . , m.

5. The reduced admittance matrix Yred is found by

Yred =
[
Ynn − YnmY −1

mmYmn

]
(5.151)

= Gred + jBred (5.152)

The reduced admittance matrix is now n × n where n is the number of
generators, whereas the original admittance matrix was m × m.

6. Repeat steps 4 and 5 to calculate the fault-on reduced admittance
matrix and the post-fault reduced admittance matrix (if different from
the pre-fault reduced admittance matrix).
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FIGURE 5.16
Three-machine, nine-bus system of Example 5.9

7. For 0 < t ≤ tapply , integrate the transient stability equations (5.144)-
(5.145) with the integration method of choice using the pre-fault reduced
admittance matrix, where tapply is the time the system fault is applied.
In many applications tapply = 0.

8. For tapply < t ≤ tclear, integrate the transient stability equations (5.144)-
(5.145) with the integration method of choice using the fault-on reduced
admittance matrix, where tclear is the time the system fault is cleared.

9. For tclear < t ≤ tmax, integrate the transient stability equations (5.144)-
(5.145) with the integration method of choice using the post-fault re-
duced admittance matrix, where tmax is end of the simulation interval.

At the end of the simulation, the state variables (δi, ωi) for each of the gen-
erators may be plotted against time. The rotor angle responses are in radians
and may be converted to degrees if desired. The rotor angular frequency is
in radians per second and may be converted to hertz (cycles per second) if
desired. These waveforms may then be analyzed to determine whether or
not system stability is maintained. If the system responses diverge from one
another or exhibit growing oscillations, then the system is most probably
unstable.
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Example 5.9
For the three-machine, nine-bus system shown in Figure 5.16, a solid three-
phase fault occurs at bus 8 at 0.1 seconds. The fault is cleared by opening line
8-9. Determine whether or not the system will remain stable for a clearing
time of 0.12 seconds after the application of the fault.

Solution 5.9 Following the procedure for transient stability analysis out-
lined previously, the first step is to perform a power flow analysis of the system.
The line and bus data are given in Figure 5.16. The load flow results are

i V θ Pgen Qgen

1 1.0400 0 0.7164 0.2685
2 1.0253 9.2715 1.6300 0.0669
3 1.0254 4.6587 0.8500 -0.1080
4 1.0259 -2.2165
5 1.0128 -3.6873
6 1.0327 1.9625
7 1.0162 0.7242
8 1.0261 3.7147
9 0.9958 -3.9885

where the bus angles are given in degrees and all other data are in per unit.
The admittance matrix for this system is given in Figure 5.17.

The generator data for this system are

i x′
d H

1 0.0608 23.64
2 0.1198 6.40
3 0.1813 3.01

The internal voltages and rotor angles for each generator are computed us-
ing the generated active and reactive powers, voltage magnitudes, and angles
as:

I∗1 =
(0.7164 + j0.2685)

1.0400∠0◦
= 0.6888 + j0.2582

E1∠δ1 = (j0.0608)(0.6888− j0.2582) + 1.0400∠0◦ = 1.0565∠2.2718◦

I∗2 =
(1.6300 + j0.0669)
1.0253∠9.2715◦

= 1.5795− j0.1918

E2∠δ2 = (j0.1198)(1.5795 + j0.1918) + 1.0253∠9.2715◦ = 1.0505∠19.7162◦

I∗3 =
(0.8500− j0.1080)
1.0254∠4.6587◦

= 0.8177− j0.1723

E3∠δ3 = (j0.1813)(0.8177 + j0.1723) + 1.0254∠4.6587◦ = 1.0174∠13.1535◦
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Admittance matrix for Example 5.9
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The next step is to convert the loads to equivalent impedances:

G5 + jB5 =
(0.90 − j0.30)

1.01282
= 0.8773− j0.2924

G7 + jB7 =
(1.00 − j0.35)

1.01622
= 0.9684− j0.3389

G9 + jB9 =
(1.25 − j0.50)

0.99582
= 1.2605− j0.5042

These values are added to the diagonal of the original admittance matrix.
The reduced admittance matrices can now be computed as outlined in steps

4 and 5 above. The pre-fault admittance matrix is

Y
pre-fault
red =

⎡
⎣

0.8453− j2.9881 0.2870 + j1.5131 0.2095 + j1.2257
0.2870 + j1.5131 0.4199− j2.7238 0.2132 + j1.0880
0.2095 + j1.2257 0.2132 + j1.0880 0.2769− j2.3681

⎤
⎦

The fault-on matrix is found similarly, except that the Ymm is altered to re-
flect the fault on bus 8. The solid three-phase fault is modeled by shorting the
bus to ground. In the admittance matrix, the row and column corresponding
to bus 8 are removed. The lines between bus 8 and adjacent buses are now
connected to ground; thus, they will still appear in the original admittance
diagonals. The column of Ynm and the row of Ymn corresponding to bus 8
must also be removed. The matrix Ynn remains unchanged. The fault-on
reduced admittance matrix is

Y
fault-on
red =

⎡
⎣

0.6567− j3.8159 0 0.0701 + j0.6306
0 0 − j5.4855 0

0.0701 + j0.6306 0 0.1740− j2.7959

⎤
⎦

The post-fault reduced admittance matrix is computed in much the same
way, except that line 8-9 is removed from Ymm. The elements of Ymm are
updated to reflect the removal of the line:

Ymm(8, 8) = Ymm(8, 8) + Ymm(8, 9)
Ymm(8, 9) = Ymm(9, 9) + Ymm(8, 9)
Ymm(8, 9) = 0
Ymm(9, 8) = 0

Note that the diagonals must be updated before the off-diagonals are zeroed
out. The post-fault reduced admittance is then computed:

Y
post-fault
red =

⎡
⎣

1.1811− j2.2285 0.1375 + j0.7265 0.1909 + j1.0795
0.1375 + j0.7265 0.3885 − j1.9525 0.1987 + j1.2294
0.1909 + j1.0795 0.1987 + j1.2294 0.2727− j2.3423

⎤
⎦

These admittance matrices are then ready to be substituted into the transient
stability equations at the appropriate time in the simulation.
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Applying the trapezoidal algorithm to the transient stability equations
yields the following system of equations:

δ1(n + 1) = δ1(n) +
h

2
[ω1(n + 1) − ωs + ω1(n) − ωs] (5.153)

ω1(n + 1) = ω1(n) +
h

2
[f1(n + 1) + f1(n)] (5.154)

δ2(n + 1) = δ2(n) +
h

2
[ω2(n + 1) − ωs + ω2(n) − ωs] (5.155)

ω2(n + 1) = ω2(n) +
h

2
[f2(n + 1) + f2(n)] (5.156)

δ3(n + 1) = δ3(n) +
h

2
[ω3(n + 1) − ωs + ω3(n) − ωs] (5.157)

ω3(n + 1) = ω3(n) +
h

2
[f3(n + 1) + f3(n)] (5.158)

where

fi(n+1) =
1

Mi

⎛
⎝Pmi − E2

i Gii − Ei

n∑
j �=i

Ej (Bij sin δij(n + 1) + Gij cos δij(n + 1))

⎞
⎠

(5.159)
Since the transient stability equations are nonlinear and the trapezoidal

method is an implicit method, they must be solved iteratively using the
Newton-Raphson method at each time point. The iterative equations are

[
I − h

2
[
J(n + 1)k

]]

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1(n + 1)k+1 − δ1(n + 1)k

ω1(n + 1)k+1 − ω1(n + 1)k

δ2(n + 1)k+1 − δ2(n + 1)k

ω2(n + 1)k+1 − ω2(n + 1)k

δ3(n + 1)k+1 − δ3(n + 1)k

ω3(n + 1)k+1 − ω3(n + 1)k

⎤
⎥⎥⎥⎥⎥⎥⎦

=

−

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

δk
1 (n + 1)

ωk
1 (n + 1)

δk
2 (n + 1)

ωk
2 (n + 1)

δk
3 (n + 1)

ωk
3 (n + 1)

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1(n)
ω1(n)
δ2(n)
ω2(n)
δ3(n)
ω3(n)

⎤
⎥⎥⎥⎥⎥⎥⎦
− h

2

⎡
⎢⎢⎢⎢⎢⎢⎣

ωk
1 (n + 1) + ω1(n) − 2ωs

fk
1 (n + 1) + f1(n)

ωk
2 (n + 1) + ω2(n) − 2ωs

fk
2 (n + 1) + f2(n)

ωk
1 (n + 1) + ω1(n) − 2ωs

fk
3 (n + 1) + f3(n)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.160)

where

[J ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
∂f1
∂δ1

0 ∂f1
∂δ2

0 ∂f1
∂δ3

0
0 0 0 1 0 0

∂f2
∂δ1

0 ∂f2
∂δ2

0 ∂f2
∂δ3

0
0 0 0 0 0 1

∂f3
∂δ1

0 ∂f3
∂δ2

0 ∂f3
∂δ3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.161)
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FIGURE 5.18
Rotor angle response for Example 5.9

Note that LU factorization must be employed to solve the discretized equa-
tions. These equations are iterated at each time point until convergence of the
Newton-Raphson algorithm. The fault-on and post-fault matrices are substi-
tuted in at the appropriate times in the integration. The simulation results are
shown in Figures 5.18 and 5.19 for the rotor angles and angular frequencies,
respectively. From the waveforms shown in these figures, it can be concluded
that the system remains stable since the waveforms do not diverge during the
simulation interval.

5.8.2 Mid-Term Stability Analysis

Reduction processes frequently destroy the natural physical structure and
sparsity of the full order system. Numerical solution algorithms which make
use of structure and sparsity for efficiency perform poorly on the reduced-order
system even though the reduced-order system is still quite large. After the first
few seconds of a power system disturbance, the classical model representation
may no longer be valid due to the dynamic behavior of the automatic voltage
regulator, the turbine/governor system, under-load-tap-changing transform-
ers, and the dynamic nature of some system loads. For mid-term stability
analyses, a more detailed model is required to capture a wider range of system
behavior. Since the behavior of loads may significantly impact the stability of
the system, it is desirable to be able to retain individual load buses during the
simulation. This type of model is often referred to as a “structure-preserving”
model, since the physical structure of the power system is retained. The inclu-
sion of the load buses requires the solution of the set of power flow equations
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Angular frequency response for Example 5.9

governing the system network. This constraint leads to the inclusion of the
algebraic power flow equations in conjunction with the differential equations
describing the states. One example of a structure-preserving DAE model is
given below:

Td0iĖ
′
qi

= −E′
qi
− (xdi − x′

di

)
Idi + Efdi (5.162)

Tq0iĖ
′
di

= −E′
di

+
(
xqi − x′

qi

)
Iqi (5.163)

δ̇i = ωi − ωs (5.164)
2Hi

ωs
ω̇i = Tmi − E′

di
Idi − E′

qi
Iqi −

(
x′

qi
− x′

di

)
IdiIqi (5.165)

TEiĖfdi = − (KEi + SEi (Efdi))Efdi + VRi (5.166)

TFiṘFi = −RFi +
KFi

TFi

Efdi (5.167)

TAi V̇Ri = −VRi +KAiRFi −
KAiKFi

TFi

Efdi + KAi(Vrefi−VTi)(5.168)

TRHi ṪMi = −TMi +
(
1 − KHPiTRHi

TCHi

)
PCHi +

KHPiTRHi

TCHi

PSVi (5.169)

TCHiṖCHi = −PCHi + PSVi (5.170)

TSViṖSVi = −PSVi + PCi −
1
R

ωi

ωs
(5.171)
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and

0 = Vie
jθi +

(
rs + jx′

di

)
(Idi + jIqi) ej(δi−π

2 )

− [E′
di

+
(
x′

qi
− x′

di

)
Iqi + jE′

qi

]
ej(δi−π

2 ) (5.172)

0 = Vie
jθi (Idi − jIqi ) e−j(δi−π

2 ) −
N∑

k=1

ViVkYikej(θi−θk−φik) (5.173)

0 = Pi + jQi −
N∑

k=1

ViVkYikej(θi−θk−φik) (5.174)

These equations describe the behavior of a two-axis generator model, a simple
automatic voltage regulator and exciter, a simple turbine/governor, and con-
stant power loads. This set of dynamic equations is listed here for illustration
purposes and is not intended to be inclusive of all possible representations. A
detailed development of these equations may be found in [42].

These equations may be modeled in a more general form as

ẋ = f(x, y) (5.175)
0 = g(x, y) (5.176)

where the state vector x contains the dynamic state variables of the gener-
ators. The vector y is typically much larger and contains all of the network
variables including bus voltage magnitude and angle. It may also contain
generator states such as currents that are not inherently dynamic. There are
two typical approaches to solving this set of differential/algebraic equations.
The first is the method suggested by Gear whereby all equations are solved
simultaneously. The second approach is to solve the differential and algebraic
sets of equations separately and iterate between each.

Consider the first approach applied to the DAE system using the trapezoidal
integration method:

x(n + 1) = x(n) +
h

2
[f (x(n + 1), y(n + 1)) + f (x(n), y(n))] (5.177)

0 = g (x(n + 1), y(n + 1)) (5.178)

This set of nonlinear equations must then be solved using the Newton-Raphson
method for the combined state vector [x(n + 1) y(n + 1)]T :

[
I − h

2
∂f
∂x −h

2
∂f
∂y

∂g
∂x

∂g
∂y

] [
x(n + 1)k+1 − x(n + 1)k

y(n + 1)k+1 − y(n + 1)k

]

=
[

x(n + 1)k − x(n) − h
2

[
f
(
x(n + 1)k, y(n + 1)k

)
+ f (x(n), y(n))

]
g
(
x(n + 1)k, y(n + 1)k

)
]

(5.179)
The advantages of this method are that since the whole set of system equations
is used, the system matrices are quite sparse and sparse solution techniques
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can be used efficiently. Secondly, since the set of equations are solved simul-
taneously, the iterations are more likely to converge since the only iteration
involved is that of the Newton-Raphson algorithm. Note, however, that in
a system of ODEs, the left hand side matrix (the matrix to be factored in
LU factorization) can be made to be diagonally dominant (and therefore well-
conditioned) by decreasing the step size h. In DAE systems, however, the
left hand side matrix may be ill conditioned under certain operating points
where ∂g

∂y is ill conditioned causing difficulty in solving the system of equations.
This situation may occur during the simulation of voltage collapse where the
states encounter a bifurcation. The subject of bifurcation and voltage collapse
is complex and outside the scope of this book; however, several excellent texts
have been published that study these phenomena in great detail [25] [42] [55].

The second approach to solving the system of DAEs is to solve each of the
subsystems independently and iteratively. The system of differential equations
is solved first for x(n + 1) while holding y(n + 1) constant as an input. After
x(n + 1) has been found, it is then used as an input to solve the algebraic
system. The updated value of y(n + 1) is then substituted back into the
differential equations, and x(n+1) is recalculated. This back and forth process
is repeated until the values x(n+1) and y(n+1) converge. The solution is then
advanced to the next time point. The advantage of this method is simplicity in
programming, since each subsystem is solved independently and the Jacobian
elements ∂f

∂y and ∂g
∂x are not used. In some cases, this may speed up the

computation, although more iterations may be required to reach convergence.
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5.9 Problems

1. Determine a Taylor-series expansion for the solution of the equation

ẋ = x2 x(0) = 1

about the point x̂ = 0 (a McClaurin series expansion). Use this approx-
imation to compute x for x̂ = 0.2 and x̂ = 1.2. Compare with the exact
solution and explain the results.

2. Use the following algorithms to solve the initial value problem

ẋ1 = −2x2 + 2t2 x1(0) = −4

ẋ2 =
1
2
x1 + 2t x2(0) = 0

on the interval 0 ≤ t ≤ 5 with a fixed integration step of 0.25 seconds.

(a) Backward Euler

(b) Forward Euler

(c) Trapezoidal Rule

(d) Fourth Order Runge Kutta

Compare the answers to the exact solution

x1(t) = −4 cos t

x2(t) = −2 sin t + t2

3. Consider a simple ecosystem consisting of rabbits that have an infinite
food supply and foxes that prey upon the rabbits for their food. A
classical mathematical “predator-prey” model due to Volterra describes
this system by a pair of non-linear, first-order differential equations:

ṙ = αr + βrf r(0) = r0

ḟ = γf + δrf f(0) = f0

where r = r(t) is the number of rabbits, f = f(t) is the number of foxes.
When β = 0, the two populations do not interact, and so the rabbits
multiply and the foxes die off from starvation.

Investigate the behavior of this system for α = −1, β = 0.01, γ = 0.25,
and δ = −0.01. Use the trapezoidal integration method with h = 0.1 and
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T = 50, and the set of initial conditions r0 = 30 ± 10 and f0 = 80 ± 10.
Plot (1) t vs. r and f , and (2) r vs. f for each case.

4. Consider the following linear multistep formula

xn+1 = a0xn + a1xn−1 + a2xn−2 + a3xn−3 + hb−1f(xn+1, tn+1)

(a) What are the number of steps in the formula?

(b) What is the maximum order that will enable you to determine all
the coefficients of the formula?

(c) Assuming uniform step size h, find all the coefficients of the formula
such that its order is the answer of part (b).

(d) Is the formula implicit or explicit?

(e) Assuming uniform step size h, find the expression for the Local
Truncation error of the formula.

(f) Is the formula absolutely stable?

(g) Is the formula stiffly-stable?

5. Consider the following initial value problem:

ẋ = 100(sin(t) − x), x(0) = 0;

The exact solution is:

x(t) =
sin(t) − 0.01 cos(t) + 0.01e−100t

1.0001

Solve the initial value problem with h = 0.02 s using the following
integration methods. Plot each of the numerical solutions against the
exact solution over the range t ∈ [0, 3.0] seconds. Plot the global error
for each method over the range t ∈ [0, 3.0] seconds. Discuss your results.

(a) Backward Euler

(b) Forward Euler

(c) Trapezoidal Rule

(d) Fourth Order Runge Kutta

(e) Repeat (a)-(d) with step size h = 0.03 s.



Numerical Integration 187

6. The following system of equations are known as the Lorenz equations:

ẋ = σ (y − x)
ẏ = ρx − y − xz

ż = xy − βz

Let σ = 10, ρ = 28, and β = 2.67. Use the trapezoidal method to plot
the response of the system for 0 ≤ t ≤ 10 seconds using a fixed integra-
tion time step of h = 0.005 seconds and a Newton-Raphson convergence
error of 10−5. Plot x versus y in two dimensions and x vs. y vs. z in
three dimensions.

(a) Use [x(0) y(0) z(0)]T = [20 20 20]T .

(b) Use [x(0) y(0) z(0)]T = [21 20 20]T . Explain the difference.

7. Consider the following system of “stiff” equations:

ẋ1 = −2x1 + x2 + 100 x1(0) = 0
ẋ2 = 104x1 − 104x2 + 50 x2(0) = 0

(a) Determine the maximum step size hmax for the forward Euler al-
gorithm to remain numerically stable.

(b) Use the forward Euler algorithm with step size h = 1
2hmax to solve

for x1(t) and x2(t) for t > 0.

(c) Repeat using a step size h = 2hmax.

(d) Use the backward Euler algorithm to solve the stiff equations.
Choose the following step sizes in terms of the maximum step size
hmax.

i. h = 10hmax
ii. h = 100hmax
iii. h = 1000hmax
iv. h = 10, 000hmax

(e) Repeat using the multistep method (Gear’s method) of Problem 4.

8. Consider a multistep method of the form

xn+2 − xn−2 + α (xn+1 − xn−1) = h [β (fn+1 + fn−1) + γfn]

(a) Show that the parameters α, β, and γ can be chosen uniquely so
that the method has order p = 6.

(b) Discuss the stability properties of this method. For what region is
it absolutely stable? Stiffly stable?
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9. A power system can be described by the following ODE system:

δ̇i = ωi − ωs

Miω̇i = Pi − Ei

n∑
k=1

EkYik sin (δi − δk − φik)

Using a step size of h = 0.01 s and the trapezoidal integration method,
determine whether or not this system is stable for a clearing time of 4
cycles.

Let

E1 = 1.0566∠2.2717◦

E2 = 1.0502∠19.7315◦

E3 = 1.0170∠13.1752◦

P1 = 0.716
P2 = 1.630
P3 = 0.850

and the following admittance matrices:

Prefault:
0.846− j2.988 0.287 + j1.513 0.210 + j1.226
0.287 + j1.513 0.420 − j2.724 0.213 + j1.088
0.210 + j1.226 0.213 + j1.088 0.277− j2.368

Fault-on:
0.657− j3.816 0.000 + j0.000 0.070 + j0.631
0.000 + j0.000 0.000 − j5.486 0.000 + j0.000
0.070 + j0.631 0.000 + j0.000 0.174− j2.796

Post-Fault:
1.181− j2.229 0.138 + j0.726 0.191 + j1.079
0.138 + j0.726 0.389 − j1.953 0.199 + j1.229
0.191 + j1.079 0.199 + j1.229 0.273− j2.342
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Double pendulum system

10. A double pendulum system is shown in Figure 5.20. Masses m1 and m2

are connected by massless rods of length r1 and r2. The equations of
motion of the two masses, expressed in terms of the angles θ1 and θ2 as
indicated, are:

−(m1 + m2)gr1 sin θ1 = (m1 + m2)r2
1 θ̈1 + m2r1r2θ̈2 cos(θ1 − θ2)

+m2r1r2θ̇
2
2 sin(θ1 − θ2)

−m2gr2 sin θ2 = m2r
2
2 θ̈2 + m2r1r2θ̈1 cos(θ1 − θ2)

−m2r1r2θ̇
2
1 sin(θ1 − θ2)

(a) Choose x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2, show that [0; 0; 0; 0] is
an equilibrium of the system.

(b) Show that the second-order Adams-Bashforth method is given by:

xn+1 = xn + h

{
3
2
f (xn, tn) − 1

2
f (xn−1, tn−1)

}

with
εT =

5
12

x̂(3)(τ)h3

(c) Show that the third-order Adams-Bashforth method is given by:

xn+1 = xn + h

{
23

12
f (xn, tn) − 16

12
f (xn−1, tn−1) +

5

12
f (xn−2, tn−2)

}
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with
εT =

3
8
x̂(4)(τ)h4

(d) Let r1 = 1, r2 = 0.5, and g = 10. Using the second-order Adams-
Bashforth method with h=0.005, plot the behavior of the system
for an initial displacement of θ1 = 25◦ and θ2 = 10◦, for T ∈ [0, 10]
with

i. m1 = 10 and m2 = 10.
ii. m1 = 10 and m2 = 5.
iii. m1 = 10 and m2 = 1.

(e) Repeat (d) using a variable step method with an upper LTE bound
of 0.001 and Bavg = 0.1BU . Plot h versus t for each case. Discuss
your solution.

(f) Repeat (d) and (e) using a third-order Adams-Bashforth method.
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Optimization

The basic objective of any optimization method is to find the values of the
system state variables and/or parameters that minimize some cost function
of the system. The types of cost functions are system dependent and can
vary widely from application to application and are not necessarily strictly
measured in terms of dollars. Examples of engineering optimizations can
range from minimizing

• the error between a set of measured and calculated data,

• active power losses,

• the weight of a set of components that comprise the system,

• particulate output (emissions),

• system energy, or

• the distance between actual and desired operating points

to name a few possibilities. The basic formulation of any optimization can be
represented as minimizing a defined cost function subject to any physical or
operational constraints of the system:

minimize f(x, u) x ∈ Rn (6.1)
u ∈ Rm

subject to

g(x, u) = 0 equality constraints (6.2)
h(x, u) = 0 inequality constraints (6.3)

where x is the vector of system states and u is the vector of system param-
eters. The basic approach is to find the vector of system parameters that
when substituted into the system model will result in the state vector x that
minimizes the cost function f(x, u).

191
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6.1 Least Squares State Estimation

In many physical systems, the system operating condition cannot be deter-
mined directly by an analytical solution of known equations using a given set
of known, dependable quantities. More frequently, the system operating con-
dition is determined by the measurement of system states at different points
throughout the system. In many systems, more measurements are made than
are necessary to uniquely determine the operating point. This redundancy
is often purposely designed into the system to counteract the effect of inac-
curate or missing data due to instrument failure. Conversely, not all of the
states may be available for measurement. High temperatures, moving parts,
or inhospitable conditions may make it difficult, dangerous, or expensive to
measure certain system states. In this case, the missing states must be esti-
mated from the rest of the measured information of the system. This process
is often known as state estimation and is the process of estimating unknown
states from measured quantities. State estimation gives the “best estimate”
of the state of the system in spite of uncertain, redundant, and/or conflicting
measurements. A good state estimation will smooth out small random errors
in measurements, detect and identify large measurement errors, and compen-
sate for missing data. This process strives to minimize the error between the
(unknown) true operating state of the system and the measured states.

The set of measured quantities can be denoted by the vector z which may
include measurements of system states (such as voltage and current) or quan-
tities that are functions of system states (such as power flows). Thus,

ztrue = Ax (6.4)

where x is the set of system states and A is usually not square. The er-
ror vector is the difference between the measured quantities z and the true
quantities:

e = z − ztrue = z − Ax (6.5)
Typically the minimum of the square of the error is desired to negate any
effects of sign differences between the measured and true values. Thus, a
state estimator endeavors to find the minimum of the squared error, or a least
squares minimization:

minimize ‖e‖2 = eT · e =
m∑

i=1

⎡
⎣zi −

m∑
j=1

aijxj

⎤
⎦

2

(6.6)

The squared error function can be denoted by U(x) and is given by:

U(x) = eT · e = (z − Ax)T (z − Ax) (6.7)
=
(
zT − xT AT

)
(z − Ax) (6.8)

= zT z − zT Ax − xT AT z + xT AT Ax (6.9)
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Note that the product zT Ax is a scalar and so it can be equivalently written
as

zT Ax =
(
zT Ax

)T
= xT AT z

Therefore the squared error function is given by

U(x) = zT z − 2xT AT z + xT AT Ax (6.10)

The minimum of the squared error function can be found by an unconstrained
optimization where the derivative of the function with respect to the states x
is set to zero:

∂U(x)
∂x

= 0 = −2AT z + 2AT Ax (6.11)

Thus,
AT Ax = AT z (6.12)

Thus, if b = AT z and Â = AT A, then

Âx = b (6.13)

which can be solved by LU factorization. This state vector x is the best
estimate (in the squared error) to the system operating condition from which
the measurements z were taken. The measurement error is given by

e = zmeas − Ax (6.14)

Example 6.1

A set of measurements for the circuit shown in Figure 6.1 is given by:

Ammeter 1 z1 4.27 A
Ammeter 2 z2 -1.71 A
Voltmeter 1 z3 3.47 V
Voltmeter 2 z4 2.50 V

where R1 = R3 = R5 = 1.5Ω and R2 = R4 = 1.0Ω. Find the node voltages
V1 and V2.

Solution 6.1 The Kirchoff voltage and current law equations for this system
can be written as:

−V1 + R1z1 + z3 = 0
−V2 − R5z2 + z4 = 0

z3/R2 − z1 + (z3 − z4)/R3 = 0
z4/R4 + z2 + (z4 − z3)/R3 = 0
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FIGURE 6.1
Circuit for Example 6.1

These equations can be rewritten in matrix form as:

⎡
⎢⎢⎢⎣

R1 0 1 0
0 −R5 0 1
1 0 −

(
1

R2
+ 1

R3

)
1

R3

0 1 − 1
R3

1
R3

+ 1
R4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦
[

V1

V2

]
(6.15)

To find the relationship between the measurements z and x, this equation
must be reformulated as z = Ax. Note that this equation can be solved easily
by LU factorization by considering each column of A individually. Thus,

⎡
⎢⎢⎢⎣

R1 0 1 0
0 −R5 0 1
1 0 −

(
1

R2
+ 1

R3

)
1

R3

0 1 − 1
R3

1
R3

+ 1
R4

⎤
⎥⎥⎥⎦ [A(:, 1)] =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ (6.16)

Similarly,

⎡
⎢⎢⎢⎣

R1 0 1 0
0 −R5 0 1
1 0 −

(
1

R2
+ 1

R3

)
1

R3

0 1 − 1
R3

1
R3

+ 1
R4

⎤
⎥⎥⎥⎦ [A(:, 2)] =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ (6.17)

yielding
⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.4593 −0.0593
0.0593 −0.4593
0.3111 0.0889
0.0889 0.3111

⎤
⎥⎥⎦
[

V1

V2

]
(6.18)
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Thus,

b = AT z =
[

0.4593 0.0593 0.3111 0.0889
−0.0593 −0.4593 0.0889 0.3111

]
⎡
⎢⎢⎣

4.27
−1.71

3.47
2.50

⎤
⎥⎥⎦

=
[

3.1615
1.6185

]

and

Â = AT A =
[

0.3191 0.0009
0.0009 0.3191

]

Leading to: [
0.3191 0.0009
0.0009 0.3191

] [
V1

V2

]
=
[

3.1615
1.6185

]
(6.19)

Solving this equation yields

V1 = 9.8929
V2 = 5.0446

The error between the measured values and the estimated values of this system
is given by

e = z − Ax (6.20)

=

⎡
⎢⎢⎣

4.27
−1.71

3.47
2.50

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

0.4593 −0.0593
0.0593 −0.4593
0.3111 0.0889
0.0889 0.3111

⎤
⎥⎥⎦
[

9.8929
5.0446

]

=

⎡
⎢⎢⎣

0.0255
0.0205

−0.0562
−0.0512

⎤
⎥⎥⎦

6.1.1 Weighted Least Squares Estimation

If all measurements are treated equally in the least squares solution, then the
less accurate measurements will affect the estimation as significantly as the
more accurate measurements. As a result, the final estimation may contain
large errors due to the influence of inaccurate measurements. By introducing a
weighting matrix to emphasize the more accurate measurements more heavily
than the less accurate measurements, the estimation procedure can then force
the results to coincide more closely with the measurements of greater accuracy.
This leads to the weighted least squares estimation:

minimize ‖e‖2 = eT · e =
m∑

i=1

wi

⎡
⎣zi −

m∑
j=1

aijxj

⎤
⎦

2

(6.21)
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where wi is a weighting factor reflecting the level of confidence in the mea-
surement zi.

Example 6.2
Suppose that the ammeters are known to have been more recently calibrated
than the voltmeters; thus, the level of confidence in the current measurements
is greater than the voltage measurements. Using the following weighting ma-
trix, find the node voltages V1 and V2.

W =

⎡
⎢⎢⎣

100 0 0 0
0 100 0 0
0 0 50 0
0 0 0 50

⎤
⎥⎥⎦

Solution 6.2 By introducing the weighting matrix, the new minimum is given
by

AT WAx = AT Wz (6.22)

The matrix AT WA is also known as the gain matrix. Using the same
procedure as before, the weighted node voltage values are given by:

[
V1

V2

]
=
[

9.9153
5.0263

]
(6.23)

and the error vector is given by

e =

⎡
⎢⎢⎣

0.0141
0.0108

−0.0616
0.0549

⎤
⎥⎥⎦ (6.24)

Note that the added confidence in the current measurements has decreased
the estimation error in the current, but the voltage measurement error is
approximately the same.

Example 6.2 illustrates the impact of confidence weighting on the accuracy
of the estimation. All instruments add some degree of error to the measured
values, but the problem is how to quantify this error and account for it during
the estimation process. In general, it can be assumed that the introduced
errors have normal (Gaussian) distribution with zero mean and that each
measurement is independent of all other measurements. This means that
each measurement error is as likely to be greater than the true value as it is
to be less than the true value. A zero mean Gaussian distribution has several
attributes. The standard deviation of a zero mean Gaussian distribution is
denoted by σ. This means that 68% of all measurements will fall within ±σ
of the expected value, which is zero in a zero mean distribution. Further, 95%
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of all measurements will fall within ±2σ and 99% of all measurements will
fall within ±3σ. The variance of the measurement distribution is given by σ2.
This implies that if the variance of the measurements is relatively small, then
the majority of measurements are close to the mean. One interpretation of
this is that accurate measurements lead to small variance in the distribution.

This relationship between accuracy and variance leads to a straightforward
approach from which to develop a weighting matrix for the estimation. Con-
sider the squared error matrix given by

e · eT =

⎡
⎢⎢⎢⎢⎢⎣

e1

e2

e3

...
em

⎤
⎥⎥⎥⎥⎥⎦
[
e1 e2 e3 . . . em

]
(6.25)

=

⎡
⎢⎢⎢⎣

e2
1 e1e2 e1e3 . . . e1em

e2e1 e2
2 e2e3 . . . e2em

...
...

...
...

...
eme1 eme2 eme3 . . . e2

m

⎤
⎥⎥⎥⎦ (6.26)

where each ei is the error in the ith measurement. The expected, or mean,
value of each error product is given by E [·]. The expected value of each
of the diagonal terms is the variance of the ith error distribution σ2

i . The
expected value of each of the off-diagonal terms, or covariance, is zero because
each measurement is assumed to be independent of every other measurement.
Therefore, the expected value of the squared error matrix (also known as the
covariance matrix) is

E
[
e · eT

]
=

⎡
⎢⎢⎢⎣

E
[
e2
1

]
E [e1e2] . . . E [e1em]

E [e2e1] E
[
e2
2

]
. . . E [e2em]

...
...

...
...

E [eme1] E [eme2] . . . E
[
e2

m

]

⎤
⎥⎥⎥⎦ (6.27)

=

⎡
⎢⎢⎢⎣

σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
...

...
0 0 . . . σ2

m

⎤
⎥⎥⎥⎦ (6.28)

= R (6.29)

With measurements taken from a particular meter, the smaller the variance
of the measurements (i.e., the more consistent they are), the greater the level
of confidence in that set of measurements. A set of measurements that have a
high level of confidence should have a higher weighting than a set of measure-
ments that have a larger variance (and therefore less confidence). Therefore,
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a plausible weighting matrix that reflects the level of confidence in each mea-
surement set is the inverse of the covariance matrix W = R−1. Thus, mea-
surements that come from instruments with good consistency (small variance)
will carry greater weight than measurements that come from less accurate in-
struments (high variance). Thus, one possible weighting matrix is given by

W = R−1 =

⎡
⎢⎢⎢⎢⎣

1
σ2
1

0 . . . 0
0 1

σ2
2

. . . 0
...

...
...

...
0 0 . . . 1

σ2
m

⎤
⎥⎥⎥⎥⎦

(6.30)

6.1.2 Bad Data Detection

Frequently, a set of measurements will contain one or more data points from
faulty or poorly calibrated instruments. Telemetered measurements are sub-
ject to noise or error in metering and communication. These “bad” data
points typically fall outside of the standard deviation of the measurements
and may affect the reliability of the state estimation process. In severe cases,
the bad data may actually lead to grossly inaccurate results. Bad data may
cause the accuracy of the estimate to deteriorate because of the “smearing”
effect as the bad data will pull, or smear, the estimated values away from the
true values. Therefore, it is desirable to develop a measure of the “goodness”
of the data upon which the estimation is based. If the data lead to a good
estimate of the states, then the error between the measured and calculated
values will be small in some sense. If the error is large, then the data contain
at least one bad data point. One error that is useful to consider is the esti-
mated measurement error ê. This error is the difference between the actual
measurements z and the estimated measurements ẑ. Recall the error vector
from equation (6.14) where e = z−Ax; then the estimated measurement error
becomes

ê = z − ẑ (6.31)
= z − Ax̂ (6.32)

= z − A
(
AT WA

)−1
AT Wz (6.33)

=
(
I − A

(
AT WA

)−1
AT W

)
z (6.34)

=
(
I − A

(
AT WA

)−1
AT W

)
(e + Ax) (6.35)

=
(
I − A

(
AT WA

)−1
AT W

)
e + A

(
I − (AT WA

)−1
AT WA

)
x(6.36)

=
(
I − A

(
AT WA

)−1
AT W

)
e (6.37)
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Thus the variance of ê can be calculated from

êêT = (z − ẑ) (z − ẑ)T (6.38)

=
[
I − A

(
AT WA

)−1
AT W

]
eeT
[
I − WA

(
AT WA

)−1
AT
]

(6.39)

The expected, or mean, value of êêT is given by

E
[
êêT
]

=
[
I − A

(
AT WA

)−1
AT W

]
E
[
eeT
] [

I − WA
(
AT WA

)−1
AT
]

(6.40)
Recall that E

[
eeT
]
is just the covariance matrix R = W−1, which is a diagonal

matrix. Thus

E
[
êêT
]

=
[
I − A

(
AT WA

)−1
AT W

] [
I − A

(
AT WA

)−1
AT W

]
R (6.41)

The matrix [
I − A

(
AT WA

)−1
AT W

]

has the unusual property that it is an idempotent matrix. An idempotent
matrix M has the property that M2 = M ; thus no matter how many times
M is multiplied by itself, it will still return the product M . Therefore,

E
[
êêT
]

=
[
I − A

(
AT WA

)−1
AT W

] [
I − A

(
AT WA

)−1
AT W

]
R(6.42)

=
[
I − A

(
AT WA

)−1
AT W

]
R (6.43)

= R − A
(
AT WA

)−1
AT (6.44)

= R′ (6.45)

To determine whether the estimated values differ significantly from the
measured values, a useful statistical measure is the χ2 (chi-squared) test of
inequality. This measure is based on the χ2 probability distribution which
differs in shape depending on its degrees of freedom k, which is the difference
between the number of measurements and the number of states. By comparing
the weighted sum of errors with the χ2 value for a particular degree of freedom
and significance level, it can be determined whether the errors exceed the
bounds of what would be expected by chance alone. A significance level
indicates the level of probability that the measurements are erroneous. A
significance level of 0.05 indicates there is a 5% likelihood that bad data exist,
or conversely, a 95% level of confidence in the goodness of the data. For
example, for k = 2 and a significance level α = 0.05, if the weighted sum
of errors does not exceed a χ2 of 5.99, then the set of measurements can
be assured of being good with 95% confidence; otherwise the data must be
rejected as containing at least one bad data point. Although the χ2 test is
effective in signifying the presence of bad data, it cannot identify locations.
The identification of bad data locations continues to be an open research topic.
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χ2 Values
α

k 0.10 0.05 0.01 0.001
1 2.71 3.84 6.64 10.83
2 4.61 5.99 9.21 13.82
3 6.25 7.82 11.35 16.27
4 7.78 9.49 13.23 18.47
5 9.24 11.07 15.09 20.52
6 10.65 12.59 16.81 22.46
7 12.02 14.07 18.48 24.32
8 13.36 15.51 20.09 26.13
9 14.68 16.92 21.67 27.88
10 15.99 18.31 23.21 29.59
11 17.28 19.68 24.73 31.26
12 18.55 21.03 26.22 32.91
13 19.81 22.36 27.69 34.53
14 21.06 23.69 29.14 36.12
15 22.31 25.00 30.68 37.70
16 23.54 26.30 32.00 39.25
17 24.77 27.59 33.41 40.79
18 25.99 28.87 34.81 42.31
19 27.20 30.14 36.19 43.82
20 28.41 31.41 37.67 45.32
21 29.62 32.67 38.93 46.80
22 30.81 33.92 40.29 48.27
23 32.00 35.17 41.64 49.73
24 33.20 36.42 42.98 51.18
25 34.38 37.65 44.31 52.62
26 35.56 38.89 45.64 54.05
27 36.74 40.11 46.96 55.48
28 37.92 41.34 48.28 56.89
29 39.09 42.56 49.59 58.30
30 40.26 43.77 50.89 59.70
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A test procedure to test for the existence of bad data is given by:

Test Procedure for Bad Data

1. Use z to estimate x

2. Calculate the error
e = z − Ax

3. Evaluate the weighted sum of squares

f =
m∑

i=1

1
σi

2

e2
i

4. For k = m − n and a specified probability α, if f < χ2
k,α then the data

are good; otherwise at least one bad data point exists.

Example 6.3
Using the chi-square test of inequality with α = 0.01, check for the presence
of bad data in the measurements of Example 6.1.

Solution 6.3 The number of states in Example 6.1 is 2 and the number of
measurements is 4; therefore k = 4 − 2 = 2. The weighted sum of squares is
given by

f =
m=4∑
i=1

1
σi

e2
i

= 100(0.0141)2 + 100(0.0108)2 + 50(−0.0616)2 + 50(0.0549)
= 0.3720

From the table of chi-squared values, the chi-square value for this example
is 9.21. The weighted least squares error is less than the chi-square value;
thus, this indicates that the estimated values are good to a confidence level
of 99%.

6.1.3 Nonlinear Least Squares State Estimation

As in the linear least squares estimation, the nonlinear least squares estima-
tion attempts to minimize the square of the errors between a known set of
measurements and a set of weighted nonlinear functions:

minimize f = ‖e‖2 = eT · e =
m∑

i=1

1
σ2

[zi − hi(x)]2 (6.46)

where x ∈ Rn is the vector of unknowns to be estimated, z ∈ Rm is the vector
of measurements, σ2

i is the variance of the ith measurement, and h(x) is the
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function vector relating x to z, where the measurement vector z can be a set
of geographically distributed measurements, such as voltages and power flows.

In state estimation, the unknowns in the nonlinear equations are the state
variables of the system. The state values that minimize the error are found
by setting the derivatives of the error function to zero:

F (x) = HT
x R−1 [z − h(x)] = 0 (6.47)

where

Hx =

⎡
⎢⎢⎢⎣

∂h1
∂x1

∂h1
∂x2

. . . ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

. . . ∂h2
∂xn

...
...

...
...

∂hm

∂x1

∂hm

∂x2
. . . ∂hm

∂xn

⎤
⎥⎥⎥⎦ (6.48)

and R is the matrix of measurement variances. Note that equation (6.47) is
a set of nonlinear equations that must be solved using Newton-Raphson or
another iterative numerical solver. In this case, the Jacobian of F (x) is

JF (x) = HT
x (x)R−1 ∂

∂x
[z − h(x)] (6.49)

= −HT
x (x)R−1Hx(x) (6.50)

and the Newton-Raphson iteration becomes
[
HT

x

(
xk
)
R−1Hx

(
xk
)] [

xk−1 − xk
]

= HT
x

(
xk
)
R−1

[
z − h(xk)

]
(6.51)

which is solved repeatedly using LU factorization. At convergence, xk+1 is
equal to the set of states that minimize the error function f of equation
(6.46). The test procedure for bad data is the same as that for the linear
state estimation.

6.2 Linear Programming

Linear programming is one of the most successful forms of optimization. Lin-
ear programming can be used when a problem can be expressed by a linear
objective (or cost) function to be maximized (or minimized) subject to linear
equality or inequality constraints. A general linear programming problem can
be formulated as

minimize f(x) = cT x (6.52)
subject to Ax ≤ b (6.53)

x ≥ 0 (6.54)

Note that almost any linear optimization problem can be put into this form
via one of the following tranformations:
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1. maximizing cT x is the same as minimizing −cT x

2. any constraint of the form aT x ≥ β is equivalent to −aT x ≤ −β

3. any constraint of the form aT x = β is equivalent to aT x ≤ β and
−aT x ≤ −β

4. if a problem does not require xi to be nonnegative, then xi can be
replaced by the difference of two variables xi = ui − vi where ui and vi

are nonnegative.

Any linear programming problem described by (A, b, c), there exists another
equivalent, or dual problem (−AT ,−c,−b). If a linear programming problem
and its dual both have feasible points (i.e. any point that satisfies Ax ≤
b, x ≥ 0 or −AT y ≤ −c, y ≥ 0 for the dual problem), then both problems
have solutions and their values are the negatives of each other.

6.2.1 Simplex Method

One of the most common methods of solving linear programming problems is
the well-known simplex method. The simplex method is an iterative method
that moves the x vector from one feasible basic vector to another in such
a way that f(x) always decreases. It gives the exact result after a number

of steps which is usually much less than
( n
n − m

)
, generally taking 2m to

3m iterations at most (where m is the number of equality constraints) [7].
However, its worst-case complexity is exponential, as can be demonstrated
with carefully constructed examples.

The simplex method is often accomplished by representing the problem in
tableau form, which is then modified in successive steps according to given
rules. Every step of the simplex method begins with a tableau. The top
row contains the coefficients that pertain to the objective function f(x). The
current value of f(x) is displayed in the top right corner of the tableau. The
next m rows in the tableau represent the equality constraints. The last row of
the tableau contains the current x vector. The rows in the tableau pertaining
to the equality constraints can be transformed by elementary row operations
without altering the solution.

The rules of the tableau that must be satisfied are:

1. The x vector must satisfy the equality constraints Ax = b

2. The x vector must satisfy the inequality x ≥ 0

3. There are n components of x (designated nonbasic variables) that are
zero. The remaining m components are usually nonzero and are desig-
nated as basic variables.

4. In the matrix that defines the constraints, each basic variable occurs in
only one row.
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FIGURE 6.2
Example of simplex method search

5. The objective function f(x) must be expressed only in terms of nonbasic
variables.

6. An artificial variable may be added to one or more constraints to obtain
a starting solution.

The Simplex Algorithm is summarized:

Simplex Algorithm

1. If all coefficients in f(x) (i.e. top row of the tableau) are greater than
or equal to zero, then the current x vector is the solution.

2. Select the nonbasic variable whose coefficient in f(x) is the largest neg-
ative entry. This variable becomes the new basic variable xj .

3. Divide each bi by the coefficient of the new basic variable in that row,
aij . The value assigned to the new basic variable is the least of these
ratios (i.e. xj = bk/akj).

4. Using pivot element akj , create zeros in column j of A with Gaussian
elimination. Return to 1.

The series of inequalities in equation (6.53) when taken together form inter-
secting hyperplanes. The feasible region is the interior of this n-dimensional
polytope and the minimum f(x) must occur on an edge or vertex of this poly-
tope. The simplex method is an organized search of the vertices by moving
along the steepest edge of the polytope until x� is obtained as shown in Figure
6.2.
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Example 6.4

Minimize
f(x) : −6x1 − 14x2

subject to the following constraints:

2x1 + x2 ≤ 12
2x1 + 3x2 ≤ 15
x1 + 7x2 ≤ 21

x1 ≥ 0, x2 ≥ 0

Solution 6.4 Introduce slack variables x3, x4, and x5 such that the problem
becomes:

Minimize
f(x) : −6x1 − 14x2 + 0x3 + 0x4 + 0x5

subject to the following constraints:

2x1 + x2 + x3 = 12
2x1 + 3x2 + x4 = 15
x1 + 7x2 + x5 = 21

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

Form the tableau:
−6 −14 0 0 0 0

2 1 1 0 0 12
2 3 0 1 0 15
1 7 0 0 1 21
0 0 12 15 21

The starting vector is x = [0 0 12 15 21]T . The current value of f(x) is dis-
played in the top right corner. In the next step, the function f(x) is examined
to determine which variable will cause the greatest decrease. Since −14 is more
negative than −6, a unit increase in x2 will decrease f(x) faster than a unit
increase in x1. Therefore, hold x1 constant at zero and allow x2 to increase as
much as possible (i.e. traverse one edge of the polytope to the next vertex).
To determine the new value of x2 consider the constraints:

0 ≤ x3 = 12 − x2

0 ≤ x4 = 15 − 3x2

0 ≤ x5 = 21 − 7x2
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From these constraints, the possible values of x2 are x2 ≤ 12, x2 ≤ 5, x2 ≤ 3.
The most stringent is x2 ≤ 3, therefore x2 can be increased to 3, and

x3 = 12 − x2 = 9
x4 = 15 − 3x2 = 6
x5 = 21 − 7x2 = 0

yielding the new vector x = [0 3 9 6 0]T and f(x) = −42.
The new basic (non-zero) variables are x2, x3, and x4, therefore f(x) must

be expressed in terms of x1 and x5. By substitution,

x2 =
(21 − x5)

7

and

f(x) = −6x1 − 14x2 = −6x1 − 14
(21 − x5)

7
= −6x1 + 2x5 − 42

To satisfy the rule that a basic variable must occur in only one row, Gaussian
elimination is used to eliminate x2 from every row but one using the pivot as
defined in Step 3 of the algorithm.

The new tableau after Gaussian elimination is:

−6 0 0 0 2 −42
13
7 0 1 0 − 1

7 9
11
7 0 0 1 − 3

7 6
1 7 0 0 1 21
0 3 9 6 0

The method is again repeated. Any increase in x5 will increase f(x), so x1

is chosen to become a basic variable. Therefore x5 is held at zero and x1 is
allowed to increase as much as possible. The new constraints are:

0 ≤ x3 = 9 − 13
7

x1

0 ≤ x4 = 6 − 11
7

x1

0 ≤ 7x2 = 21 − x1

or x1 ≤ 63
13 , x1 ≤ 42

11 , and x1 ≤ 21. The most stringent constraint is x1 ≤ 42
11 ,

therefore x1 is set to 42
11 and the new values of x2, x3 and x4 are computed.

The new vector is x =
[

42
11

27
11

21
11 0 0

]T
and f(x) is rewritten in terms of x4

and x5:

x1 =
7
11

(6 − x4)

f(x) = −6x1 + 2x5 − 42

=
42
11

x4 + 2x5 − 714
11
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FIGURE 6.3
Comparison of two different points in the interior

Since all coefficients in f(x) are positive, the simplex method terminates be-
cause any increase in x4 or x5 will increase f(x). This signifies that the current
x vector is the solution and the final value of f(x) is f

(
42
11 , 27

11

)
= − 630

11 .

6.2.2 Interior Point Method

A different type of method for linear programming problems are interior point
methods (also known as Karmarkar’s methods), whose complexity is polyno-
mial for both average and worst case. The simplex method has the potential
to have a worst case scenario of exponential complexity that can occur in the
situation in which the solution visits every vertex in the feasible region before
reaching the optimum. For this reason, interior point methods have received
considerable attention over the past few decades. Interior point methods con-
struct a sequence of strictly feasible points (i.e., lying in the interior of the
polytope but never on its boundary) that converges to the solution.

The interior point method constructs a series of feasible solutions x0, x1, . . .
that must satisfy Axi = b. Since x0 satisfies Ax0 = b and the next point
must satisfy Ax1 = b, the difference in solutions must satisfy AΔx = 0. In
other words, each step must lie in the nullspace of A, which is parallel to
the feasible set. Projecting −c onto that nullspace gives the direction of most
rapid change. However, if the iterate xk is close to the boundary (as with x̂k in
Figure 6.3), very little improvement will occur. If however, the current iterate
is near the center (as with x̄k) there could be significant improvement. One of
the key aspects of the interior point method is that a tranformation is applied
such that the current feasible point is moved (through the transformation)
to the center of the interior. The new direction is then computed and the
interior point is transformed back to the original space.

This direction of change is the projected gradient direction, or pk, and the
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feasible points are updated through

xk+1 = xk + αpk (6.55)

where α > 0 is the steplength. Since the feasible points must lie in the null
space of A, each pk must be orthogonal to the rows of A. The projection
matrix P

P = I − AT (AAT )−1A (6.56)

will transform any vector v into Pv = p and p will be in the null space of A
because AP is the zero matrix.

Since projecting −c onto the nullspace gives the direction of most rapid
change, then to maintain feasibility a new iterate must satisfy pk = −Pc. To
remain in the interior of the space, the steplength α is chosen at each step to
ensure feasibility of the nonnegativity constraints. To ensure that the updates
remain in the interior of the feasible space, the steplength is chosen to be less
than the full distance to the boundary, usually 0.5 ≤ α ≤ 0.98.

The last aspect is the transformation required to center the iterate in the
feasible space. This is accomplished by a scaling, such that the iterate is
equidistant from all constraint boundaries in the transformed feasible space.
Therefore, after rescaling xk = e, where e = [1 1 . . . 1]T . Let D=diag(xk)
be the diagonal matrix with each component of the current iterate xk on the
diagonals. This is accomplished by letting x = Dx̂ so that x̂k = e. The new
problem to be solved then becomes:

minimize ĉT x̂ = z (6.57)
subject to Âx̂ ≤ b (6.58)

x̂ ≥ 0 (6.59)

where ĉ = Dc and Â = AD. After scaling, the projection matrix becomes:

P̂ = I − ÂT (ÂÂT )−1Â (6.60)

Hence, at each iteration k, the iterate xk is rescaled to x̂k = e and the update
is given by

x̂k+1 = e − αP̂ ĉ (6.61)

and then the updated iterate is transformed back to the original space:

xk+1 = Dx̂k+1 (6.62)

This process repeats until ‖xk+1 − xk‖ < ε. This process is often referred to
as the Primal Affine interior point method [8]. The steps of the method are
summarized:
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Primal Affine Interior Point Method

1. Let k = 0.

2. Let D=diag(xk)

3. Compute Â = AD, ĉ = Dc

4. Compute P̂ from equation (6.60)

5. Set pk = P̂ ĉ

6. Set θ = −minj pk
j . The factor θ is used to determine the maximum

steplength that can be taken before exiting the feasible region.

7. Compute
x̂k+1 = e +

α

θ
pk

8. Compute xk+1 = Dx̂k+1

9. If ‖xk+1 − xk‖ < ε, then done. Else set k = k + 1. Go to step 2.

Example 6.5
Repeat Example 6.4 using the Primal Affine Interior Point Method.

Solution 6.5 The problem is restated (with slack variables included) for
convenience:

Minimize
f(x) : −6x1 − 14x2 + 0x3 + 0x4 + 0x5 = z

subject to the following constraints:

2x1 + x2 + x3 = 12
2x1 + 3x2 + x4 = 15
x1 + 7x2 + x5 = 21

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

A feasible initial starting solution is

xo = [1 1 9 10 13]

with z0 = cT x0 = −20. The first scaling matrix is

D =

⎡
⎢⎢⎢⎢⎣

1
1

9
10

13

⎤
⎥⎥⎥⎥⎦



210 Computational Methods for Electric Power Systems

The rescaled matrix Â and objective function vector ĉ are computed as:

Â = AD =

⎡
⎣

2 1 1 0 0
2 3 0 1 0
1 7 0 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎣

1
1

9
10

13

⎤
⎥⎥⎥⎥⎦

=

⎡
⎣

2 1 9 0 0
2 3 0 10 0
1 7 0 0 13

⎤
⎦

ĉ = Dc =

⎡
⎢⎢⎢⎢⎣

1
1

9
10

13

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−6
−14

0
0
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−6
−14

0
0
0

⎤
⎥⎥⎥⎥⎦

The projection matrix P̂ is:

P̂ = I − ÂT (ÂÂT )−1Â

=

⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

2 2 1
1 3 7
9 0 0
0 10 0
0 0 13

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

⎡
⎣

2 1 9 0 0
2 3 0 10 0
1 7 0 0 13

⎤
⎦

⎡
⎢⎢⎢⎢⎣

2 2 1
1 3 7
9 0 0
0 10 0
0 0 13

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

−1

⎡
⎣

2 1 9 0 0
2 3 0 10 0
1 7 0 0 13

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

0.9226 −0.0836 −0.1957 −0.1595 −0.0260
−0.0836 0.7258 −0.0621 −0.2010 −0.3844
−0.1957 −0.0621 0.0504 0.0578 0.0485
−0.1595 −0.2010 0.0578 0.0922 0.1205
−0.0260 −0.3844 0.0485 0.1205 0.2090

⎤
⎥⎥⎥⎥⎦

The projected gradient is

p0 = −P̂ ĉ = −

⎡
⎢⎢⎢⎢⎣

0.9226 −0.0836 −0.1957 −0.1595 −0.0260
−0.0836 0.7258 −0.0621 −0.2010 −0.3844
−0.1957 −0.0621 0.0504 0.0578 0.0485
−0.1595 −0.2010 0.0578 0.0922 0.1205
−0.0260 −0.3844 0.0485 0.1205 0.2090

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−6
−14

0
0
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

4.3657
9.6600

−2.0435
−3.7711
−5.5373

⎤
⎥⎥⎥⎥⎦

Calculate θ = −minj p0
j = 5.5373. Rescale the current iterate to x̂0 =
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D−1x0 = e and move to x̂1 in the transformed space with α = 0.9:

x̂1 =

⎡
⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎦

+ αp0 =

⎡
⎢⎢⎢⎢⎣

1.7096
2.5701
0.6679
0.3871
0.1000

⎤
⎥⎥⎥⎥⎦

Transforming this point back to the original space:

x1 = Dx̂1 =

⎡
⎢⎢⎢⎢⎣

1.7096
2.5701
6.0108
3.8707
1.3000

⎤
⎥⎥⎥⎥⎦

and the updated cost function is cT x1 = −46.2383.

Performing one more iteration (and omitting the detailed text) yields:

Â =

⎡
⎣

3.4191 2.5701 6.0108 0 0
3.4191 7.7102 0 3.8707 0
1.7096 17.9904 0 0 1.3000

⎤
⎦

ĉ =

⎡
⎢⎢⎢⎢⎣

−10.2574
−35.9809

0
0
0

⎤
⎥⎥⎥⎥⎦

P̂ =

⎡
⎢⎢⎢⎢⎣

0.5688 −0.0584 −0.2986 −0.3861 0.0606
−0.0584 0.0111 0.0285 0.0295 −0.0766
−0.2986 0.0285 0.1577 0.2070 −0.0017
−0.3861 0.0295 0.2070 0.2822 0.0991

0.0606 −0.0766 −0.0017 0.0991 0.9803

⎤
⎥⎥⎥⎥⎦

p1 =

⎡
⎢⎢⎢⎢⎣

3.7321
−0.2004
−2.0373
−2.8975
−2.1345

⎤
⎥⎥⎥⎥⎦

x̂1 =

⎡
⎢⎢⎢⎢⎣

2.1592
0.9378
0.3672
0.1000
0.3370

⎤
⎥⎥⎥⎥⎦



212 Computational Methods for Electric Power Systems

x1 =

⎡
⎢⎢⎢⎢⎣

3.6914
2.4101
2.2072
0.3871
0.4381

⎤
⎥⎥⎥⎥⎦

and the updated cost function is cT x1 = −55.8892.
This continues until ‖xk+1 − xk‖ < ε at which time the solution is:

x� =

⎡
⎢⎢⎢⎢⎣

3.8182
2.4545
1.9091
0.0000
0.0000

⎤
⎥⎥⎥⎥⎦

and the updated cost function is cT x1 = −57.2727 both of which are the same
as the simplex method.

6.3 Nonlinear Programming

Continuous nonlinear optimization problems are typically of the following
form:

minimize f(x) x ∈ R
n (6.63)

subject to ci(x) = 0, i ∈ ξ (6.64)
hi(x) ≥ 0, i ∈ Ξ (6.65)

where [c(x) h(x)] is an m-vector of nonlinear constraint functions such that ξ
and Ξ are nonintersecting index sets. The function f(x) is sometimes referred
to as a “cost” function. It is assumed throughout that f , c, and h are twice-
continuously differentiable. Any point x satisfying the constraints of equations
(6.64) and (6.65) is called a feasible point, and the set of all such points is the
feasible region. These types of problems are known generically as nonlinear
programming problem, or NLP.

Often in optimization problems, it is convenient to refer to the “Karush-
Kuhn-Tucker” (or KKT) conditions. The first-order KKT conditions for the
inequality-constrained problem hold at the point x�, if there exists an m-
vector λ� called a Lagrange-multiplier vector, such that [3]

c(x�) ≥ 0 (feasbility condition) (6.66)
g(x�) = J(x�)T λ� (stationarity condition) (6.67)

λ� ≥ 0 (nonnegativity of the multipliers) (6.68)
c(x�) · λ� = 0 (complementarity) (6.69)
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The stationarity condition (6.67) can be written as

∇xL (x�, λ�) = 0, where L (x, λ) Δ= f(x) − λT c(x) (6.70)

where λ is often generically known as a Lagrangian multiplier and equation
(6.70) as the Lagrangian equation. The Karush-Kuhn-Tucker conditions are
necessary for a solution in nonlinear programming to be optimal.

6.3.1 Quadratic Programming

A special subset of nonlinear problems are quadratic problems that are char-
acterized by the following formulation:

minimize f(x) =
1
2
xT Qx + cT x x ∈ R

n (6.71)

subject to Ax ≤ b (6.72)
x ≥ 0 (6.73)

If Q is a positive semidefinite matrix, then f(x) is a convex function. If Q is
zero, then the problem becomes a linear program. The Lagrangian function
for the quadratic program is given by:

L(x, λ) = cT x +
1
2
xT Qx + λ (Ax − b) (6.74)

where λ is an m dimensional row vector. The KKT conditions for a local
minima are

cT + xT Q + λA ≥ 0 (6.75)
Ax − b ≤ 0 (6.76)

xT
(
c + Qx + AT λ

)
= 0 (6.77)

λ(Ax − b) = 0 (6.78)
x ≥ 0 (6.79)
λ ≥ 0 (6.80)

To put these equations in a more manageable form, the nonnegative slack
variable y ∈ R

n is introduced to the inequalities in equation (6.75) and the
slack variable v ∈ R

m in equation (6.76) to obtain:

c + Qx + AT λT − y = 0 (6.81)
Ax − b + v = 0 (6.82)

and the KKT equations are:

Qx + AT λT − y = −cT (6.83)
Ax + v = b (6.84)
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x ≥ 0 (6.85)
y ≥ 0 (6.86)
v ≥ 0 (6.87)
λ ≥ 0 (6.88)

yT x = 0 (6.89)
λv = 0 (6.90)

Now any linear programming method can be used to solve this set of equa-
tions by treating the complementary slackness conditions (equations (6.89-
6.90)) implicitly with a restricted basis entry rule. The goal is to find the
solution to the linear program problem with the additional requirement that
the complementary slackness conditions be satisfied at each iteration. The
objective function is satisfied by adding an artificial variable to each equation
and minimizing the sum of the artificial variables.

Example 6.6
Minimize

f(x) : −10x1 − 8x2 + x2
1 + 2x2

2

subject to the following constraints:

x1 + x2 ≤ 10
x2 ≤ 5

x1 ≥ 0, x2 ≥ 0

Solution 6.6 This can be written in matrix form as:
Minimize

f(x) : [−10 − 8]
[

x1

x2

]
+

1
2

[x1 x2]
[

2 0
0 4

] [
x1

x2

]

subject to the following constraints:
[

1 1
0 1

] [
x1

x2

]
≤
[

10
5

]

The linear program problem becomes (where the artificial variables are given
by a1 − a4):

Minimize a1 + a2 + a3 + a4

subject to

2x1 +λ1 −y1 +a1 = 10
4x2 +λ1 +λ2 −y2 +a2 = 8

x1 +x2 v1 +a3 = 10
x2 v2 +a4 = 5
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This can now be solved using either the simplex or interior point methods.
The solution is:

x =
[

5.0000
2.0000

]

λ =
[

0.6882
0.7439

]

y =
[

0.6736
1.3354

]

v =
[

3.0315
3.0242

]

a = [0 0 0 0]

with the cost function f(x) = −33.

6.3.2 Steepest Descent Algorithm

For engineering applications, general nonlinear programming problems are
generally solved by two classes of approaches:

1. gradient methods such as steepest descent, or

2. iterative programming techniques such as successive quadratic program-
ming

In an unconstrained system, the usual approach to minimizing the function
f(x) is to set the function derivatives to zero and then solve for the system
states from the set of resulting equations. In the majority of applications,
however, the system states evaluated at the unconstrained minimum will not
satisfy the constraint equations. Thus, an alternate approach is required to
find the constrained minimum. One approach is to introduce an additional
set of parameters λ, frequently known as Lagrange multipliers, to impose the
constraints on the cost function. The augmented cost function then becomes

minimize f(x) − λc(x) (6.91)

The augmented function in equation (6.91) can then be minimized by solving
for the set of states that result from setting the derivatives of the augmented
function to zero. Note that the derivative of equation (6.91) with respect to
λ effectively enforces the equality constraint of equation (6.64).

Example 6.7
Minimize

C :
1
2
(
x2 + y2

)
(6.92)
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subject to the following constraint:

2x − y = 5

Solution 6.7 Note that the function to be minimized is the equation for a
circle. The unconstrained minimum of this function is the point at the origin
with x = 0 and y = 0 which defines a circle with a radius of zero length. How-
ever, the circle must also intersect the line defined by the constraint equation;
thus, the constrained circle must have a non-zero radius. The augmented cost
function becomes

C∗ :
1
2
(
x2 + y2

)− λ (2x − y − 5) (6.93)

where λ represents the Lagrange multiplier. Setting the derivatives of the
augmented cost function to zero yields the following set of equations:

0 =
∂C∗

∂x
= x − 2λ

0 =
∂C∗

∂y
= y + λ

0 =
∂C∗

∂λ
= 2x − y − 5

Solving this set of equations yields [x y λ]T = [2 − 1 1]T . The cost function
of equation (6.92) evaluated at the minimum of the augmented cost function
is:

C :
1
2
(
(2)2 + (−1)2

)
=

5
2

Both the cost function f and the constraint equations c may be a function
of an external input u, that may be varied to minimize the function f(x). In
this case, equation (6.91) may be more generally written as:

minimize f(x, u) − λc(x, u) (6.94)

If there is more than one equality constraint then λ becomes a vector of
multipliers and the augmented cost function becomes:

C∗ : f(x) − [λ]T c(x) (6.95)

where the derivatives of C∗ become:[
∂C∗

∂λ

]
= 0 = c(x) (6.96)

[
∂C∗

∂x

]
= 0 =

[
∂f

∂x

]
−
[

∂c

∂x

]T

[λ] (6.97)

[
∂C∗

∂u

]
= 0 =

[
∂f

∂u

]
−
[

∂c

∂u

]T

[λ] (6.98)
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Note that for any feasible solution to the equality constraint, equation (6.96)
is satisfied, but the feasible solution may not be the optimal solution which
minimizes the cost function. In this case, [λ] can be obtained from equation
(6.97) and then only [

∂C∗

∂u

]
�= 0

This vector can be used as a gradient vector [∇C] which is orthogonal to the
contour of constant values of the cost function C. Thus,

[λ] =

[[
∂c

∂x

]T
]−1 [

∂f

∂x

]
(6.99)

which gives

∇C =
[
∂C∗

∂u

]
=
[
∂f

∂u

]
−
[

∂c

∂u

]T

[λ] (6.100)

=
[
∂f

∂u

]
−
[

∂c

∂u

]T
[[

∂c

∂x

]T
]−1 [

∂f

∂x

]
(6.101)

This relationship provides the foundation of the optimization method known
as the steepest descent algorithm.

Steepest Descent Algorithm

1. Let k=0. Guess an initial vector uk = u0.

2. Solve the (possibly nonlinear) system of equations (6.96) for a feasible
solution x.

3. Calculate Ck+1 and ∇Ck+1 from equation (6.101). If ‖Ck+1 − Ck‖ is
less than some pre-defined tolerance, stop.

4. Calculate the new vector uk+1 = uk−γ∇C, where γ is a positive number
which is the user-defined “stepsize” of the algorithm.

5. k=k+1. Go to step 2.

In the steepest descent method, the u vector update direction is determined
at each step of the algorithm by choosing the direction of the greatest change
of the augmented cost function C∗. For example, consider a person skiing
from the top of a mountain to the bottom as illustrated in Figure 6.4. The
skier will travel in a straight path for a certain distance. At that point, he may
no longer be pointed directly down the mountain. Therefore he will adjust
his direction so that his skis point in the direction of steepest descent. The
direction of steepest descent is perpendicular to the tangent of the curve of
constant altitude (or cost). The distance the skier travels between adjustments
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FIGURE 6.4
Example of steepest descent

is analogous to the stepsize γ of the algorithm. For small γ, the skier will
be frequently altering direction; thus, his descent will be slow. For large γ,
however, he may overshoot the foot of the mountain and will start ascending
again. Thus the critical part of the steepest descent algorithm is the choice
of γ. If γ is chosen small, then convergence to minimum value is more likely,
but may require many iterations, whereas a large value of γ may result in
oscillations about the minimum.

Example 6.8
Minimize

C : x2
1 + 2x2

2 + u2 = f (x1, x2, u) (6.102)

subject to the following constraints:

0 = x2
1 − 3x2 + u − 3 (6.103)

0 = x1 + x2 − 4u + 2 (6.104)

Solution 6.8 To find ∇C of equation (6.101), the following partial derivatives
are required:

[
∂f

∂u

]
= 2u

[
∂f

∂x

]
=
[

2x1

4x2

]
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[

∂c

∂u

]T

=
[
1 −4

]
[

∂c

∂x

]
=
[

2x1 −3
1 1

]

yielding:

∇C =
[
∂f

∂u

]
−
[

∂c

∂u

]T
[[

∂c

∂x

]T
]−1 [

∂f

∂x

]

= 2u − [1 −4
] [[2x1 −3

1 1

]T
]−1 [

2x1

4x2

]

Iteration 1
Let u = 1, γ = 0.05, and choose a stopping criterion of ε = 0.0001. Solving

for x1 and x2 yields two values for each with a corresponding cost function:

x1 = 1.7016 x2 = 0.2984 f = 4.0734
x1 = −4.7016 x2 = 6.7016 f = 23.2828

The first set of values leads to the minimum cost function, so they are selected
as the operating solution. Substituting x1 = 1.7016 and x2 = 0.2984 into the
gradient function yields ∇C = 10.5705 and the new value of u becomes:

u(2) = u(1) − γ∇C

= 1 − (0.05)(10.5705)
= 0.4715

Iteration 2
With u = 0.4715, solving for x1 and x2 again yields two values for each

with a corresponding cost function:

x1 = 0.6062 x2 = −0.7203 f = 1.6276
x1 = −3.6062 x2 = 3.4921 f = 14.2650

The first set of values again leads to the minimum cost function, so they are
selected as the operating solution. The difference in cost functions is

∣∣∣C(1) − C(2)
∣∣∣ = |4.0734− 1.6276| = 2.4458

which is greater than the stopping criterion. Substituting these values into
the gradient function yields ∇C = 0.1077 and the new value of u becomes:

u(3) = u(2) − γ∇C

= 0.4715− (0.05)(0.1077)
= 0.4661
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Iteration 3
With u = 0.4661, solving for x1 and x2 again yields two values for each

with a corresponding cost function:

x1 = 0.5921 x2 = −0.7278 f = 1.6271
x1 = −3.5921 x2 = 3.4565 f = 14.1799

The first set of values again leads to the minimum cost function, so they are
selected as the operating solution. The difference in cost functions is

∣∣∣C(2) − C(3)
∣∣∣ = |1.6276− 1.6271| = 0.0005

which is greater than the stopping criterion. Substituting these values into
the gradient function yields ∇C = 0.0541 and the new value of u becomes:

u(4) = u(3) − γ∇C

= 0.4661− (0.05)(0.0541)
= 0.4634

Iteration 4
With u = 0.4634, solving for x1 and x2 again yields two values for each

with a corresponding cost function:

x1 = 0.5850 x2 = −0.7315 f = 1.6270
x1 = −3.5850 x2 = 3.4385 f = 14.1370

The first set of values again leads to the minimum cost function, so they are
selected as the operating solution. The difference in cost functions is

∣∣∣C(3) − C(4)
∣∣∣ = |1.6271− 1.6270| = 0.0001

which satisfies the stopping criterion. Thus, the values x1 = 0.5850, x2 =
−0.7315, and u = 0.4634 yield the minimum cost function f = 1.6270.

6.3.3 Sequential Quadratic Programming Algorithm

Gradient descent techniques work well for small nonlinear systems, but be-
come inefficient as the dimension of the search space grows. The nonlinear
sequential quadratic programming (SQP) optimization method is computa-
tionally efficient and has been shown to exhibit superlinear convergence for
convex search spaces [4]. The SQP method also attempts to solve the system

minimize f(x) x ∈ R
n (6.105)

subject to ci(x) = 0, i ∈ ξ (6.106)
hi(x) ≥ 0, i ∈ Ξ (6.107)



Optimization 221

As before, the usual approach to solving this optimization problem is to use
Lagrangian multipliers and minimize the hybrid system:

L (x, λ) = f(x) + λT c(x) + πT h(x) i = 1, . . . , m (6.108)

The KKT conditions are

∇f(x) + CT λ + HT π = 0
c(x) = 0

h(x) + s = 0
πT s = 0
π, s ≥ 0

where λ is a vector of Lagrange multipliers for the equality constraints, π is a
vector of Lagrange multipliers for the inequality constraints, s is a vector of
slack variables and

C =
∂c(x)
∂x

(6.109)

H =
∂h(x)

∂x
(6.110)

This nonlinear system can be solved for x, λ, π, and s using the Newton-
Raphson method. Consider the case of only x and λ. Applying the Newton-
Raphson method to solve for y = [x λ]T with

F (y) = 0 =
[∇f(x) + CT λ

c(x)

]

and the Newton-Raphson update becomes

yk+1 = yk − αk [∇Fk]−1 F (yk)

or in original variables
[

xk+1

λk+1

]
=
[

xk

λk

]
− αk

[∇2L ∇cT

∇cT 0

]−1

k

[∇L
c

]

k

(6.111)

where αk is a positive steplength usually taken to be less than or equal to
one.

Example 6.9
Repeat Example 6.8 using the SQP method.

Solution 6.9 The problem is repeated here:

Minimize
C : x2

1 + 2x2
2 + u2 = f (x1, x2, u) (6.112)
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subject to the following constraints:

0 = x2
1 − 3x2 + u − 3 (6.113)

0 = x1 + x2 − 4u + 2 (6.114)

Applying the KKT conditions yields the following nonlinear system of equa-
tions:

0 = 2x1 + 2λ1x1 + λ2

0 = 4x2 − 3λ1 + λ2

0 = 2u + λ1 − 4λ2

0 = x2
1 − 3x2 + u − 3

0 = x1 + x2 − 4u + 2

The Newton-Raphson iteration becomes

⎡
⎢⎢⎢⎢⎣

x1

x2

u
λ1

λ2

⎤
⎥⎥⎥⎥⎦

k+1

=

⎡
⎢⎢⎢⎢⎣

x1

x2

u
λ1

λ2

⎤
⎥⎥⎥⎥⎦

k

−

⎡
⎢⎢⎢⎢⎣

2 + 2λk
1 0 0 2xk

1 1
0 4 0 −3 1
0 0 2 1 −4

2xk
1 −3 1 0 0

1 1 −4 0 0

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

2xk
1 + 2λk

1x
k
1 + λk

2

4xk
2 − 3λk

1 + λk
2

2uk + λk
1 − 4λk

2

(xk
1)2 − 3xk

2 + uk − 3
xk

1 + xk
2 − 4uk + 2

⎤
⎥⎥⎥⎥⎦

(6.115)
Starting with an intitial guess:

[
x1 x2 u λ1 λ2

]T = [1 1 1 1 1]T yields the
following updates:

k x1 x2 u λ1 λ2 f(x)
0 1.0000 1.0000 1.0000 1.0000 1.0000 4.0000
1 0.5774 -0.7354 0.4605 -0.9859 -0.0162 1.6270
2 0.8462 -0.5804 0.5664 -0.7413 0.0979 1.7106
3 0.6508 -0.7098 0.4853 -0.9442 0.0066 1.6666
4 0.5838 -0.7337 0.4625 -0.9831 -0.0145 1.6314
5 0.5774 -0.7354 0.4605 -0.9859 -0.0162 1.6270

which is the same solution as previously.
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6.4 Power System Applications

6.4.1 Optimal Power Flow

Many power system applications, such as the power flow, offer only a snap-
shot of the system operation. Frequently, the system planner or operator is
interested in the effect that making adjustments to the system parameters will
have on the power flow through lines or system losses. Rather than making
the adjustments in a random fashion, the system planner will attempt to op-
timize the adjustments according to some objective function. This objective
function can be chosen to minimize generating costs, reservoir water levels,
or system losses, among others. The optimal power flow problem is to for-
mulate the power flow problem to find system voltages and generated powers
within the framework of the objective function. In this application, the in-
puts to the power flow are systematically adjusted to maximize (or minimize)
a scalar function of the power flow state variables. The two most common
objective functions are minimization of generating costs and minimization of
active power losses.

The time frame of optimal power flow is on the order of minutes to one hour;
therefore it is assumed that the optimization occurs using only those units that
are currently on-line. The problem of determining whether or not to engage a
unit, at what time, and for how long is part of the unit commitment problem
and is not covered here. The minimization of active transmission losses saves
both generating costs and creates a higher generating reserve margin.

Usually generator cost curves (the curves that relate generated power to
the cost of such generation) are given as piecewise linear incremental costs
curves. This has its origin in the simplification of concave cost functions with
the valve points as cost curve breakpoints [19]. Piecewise linear incremental
cost curves correspond to piecewise quadratic cost curves by integrating the
incremental cost curves. This type of objective function lends itself easily to
the economic dispatch, or λ-dispatch problem where only generating units are
considered in the optimization. In this process, system losses and constraints
on voltages and line powers are neglected. This economic dispatch method is
illustrated in the following example.

Example 6.10

Three generators with the following cost functions serve a load of 952 MW.
Assuming a lossless system, calculate the optimal generation scheduling.

C1 : P1 + 0.0625P 2
1 $/hr

C2 : P2 + 0.0125P 2
2 $/hr

C3 : P3 + 0.0250P 2
3 $/hr
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Solution 6.10 The first step in determining the optimal scheduling of the
generators is to construct the problem in the general form. Thus the opti-
mization statement is:

Minimize C: P1 + 0.0625P 2
1 + P2 + 0.0125P 2

2 + P3 + 0.0250P 2
3

Subject to: P1 + P2 + P3 − 952 = 0

From this statement, the constrained cost function becomes

C∗ : P1+0.0625P 2
1 +P2+0.0125P 2

2 +P3+0.0250P 2
3 −λ (P1 + P2 + P3 − 952)

(6.116)
Setting the derivatives of C∗ to zero yields the following set of linear equations:

⎡
⎢⎢⎣

0.125 0 0 −1
0 0.025 0 −1
0 0 0.050 −1
1 1 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

P1

P2

P3

λ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1
−1
−1
952

⎤
⎥⎥⎦ (6.117)

Solving equation (6.117) yields

P1 = 112 MW

P2 = 560 MW

P3 = 280 MW

λ = $15/MWhr

for a constrained cost of $7,616/hr.

This is the generation scheduling that minimizes the hourly cost of pro-
duction. The value of λ is the incremental or break-even cost of production.
This gives a company a price cut-off for buying or selling generation: if they
can purchase generation for less than λ, then their overall costs will decrease.
Likewise, if generation can be sold for greater than λ, their overall costs will
decrease. Also note that at the optimal scheduling:

λ = 1 + 0.125P1 = 1 + 0.025P2 = 1 + 0.050P3 (6.118)

Since λ is the incremental cost for the system, this point is also called the point
of “equal incremental cost,” and the generation schedule is said to satisfy the
“equal incremental cost criterion.” Any deviation in generation from the equal
increment cost scheduling will result in an increase in the production cost C.

Example 6.11
If a buyer is willing to pay $16/MW hr for generation, how much excess gener-
ation should be produced and sold, and what is the profit for this transaction?
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Solution 6.11 From Example 6.10, the derivatives of the augmented cost
function yield the following relationships between generation and λ:

P1 = 8 (λ − 1)
P2 = 40 (λ − 1)
P3 = 20 (λ − 1)

from which the equality constraint yields:

8 (λ − 1) + 40 (λ − 1) + 20 (λ − 1) − 952 = 0 (6.119)

To determine the excess amount, the equality equation (6.119) will be aug-
mented and then evaluated at λ= $16/MW hr:

8 (16 − 1) + 40 (16 − 1) + 20 (16 − 1) − (952 + excess) = 0 (6.120)

Solving equation (6.120) yields a required excess of 68 MW, and P1 = 120
MW, P2 = 600 MW, and P3 = 300 MW. The total cost of generation becomes

C : P1 + 0.0625P 2
1 + P2 + 0.0125P 2

2 + P3 + 0.0250P 2
3 = $8, 670/hr (6.121)

but the amount recovered by the sale of generation is the amount of excess
times the incremental cost λ,

68MW × $16/MWhr = $1, 088/hr

Therefore, the total cost is $8,670–1,088 = $7,580/hr. This amount is $34/hr
less than the original cost of $7,616/hr; thus, $34/hr is the profit achieved
from the sale of the excess generation at $16/MW hr.

Figure 6.5 shows an incremental cost table for a medium size utility. The
incremental cost of generation is listed vertically along the left hand side of
the table. The various generating units are listed across the top from least
expensive to most expensive (left to right). Nuclear units are among the least
expensive units to operate and the nuclear unit Washington at the far left
can produce up to 1222 MW at an incremental cost of 7.00 $/MW hr. This
incremental cost is half of the next least expensive unit Adams at 14 $/MW
hr which is a coal unit. As the available units become increasingly more
expensive to operate, the incremental cost also increases.

Example 6.12
What is the incremental cost for the utility to produce 4500 MW?

Solution 6.12 To find the incremental cost that corresponds to 4500 MW
from the Incremental Cost Table in Figure 6.5, the maximum generation avail-
able from each unit is summed until it equals 4500 MW. This amount is
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Figure for Example 6.13

reached by the gas unit of Monroe 1-2. This corresponds to an incremental
cost of 28.00 $/MW hr. This is the breakeven point for 4500 MW.

If power can be purchased for less than 28.00 $/MW hr, the utility should
purchase generation.

The primary drawback with the equal incremental cost scheduling is that
it neglects all losses in the system. The only enforced equality constraint is
that the sum of the generation must equal the total load demand. In reality,
however, the sum of the generation must equal the load demand plus any
system losses. In the consideration of system losses, the equality constraints
must include the set of power flow equations, and the optimization process
must to be extended to the steepest descent, or similar, approach [10].

Example 6.13

Consider the three machine system shown in Figure 6.6. This system has the
same parameters as the three bus system of Example 3.9 except that bus 3 has
been converted to a generator bus with a voltage magnitude of 1.0 pu. The
total load and cost functions of the generators are the same as in Example
6.10. Using the equal cost criterion scheduling as a starting point, find the
optimal scheduling of this system considering losses.

Solution 6.13 Following the steepest descent procedure detailed in Section
6.3.2, the first step is to develop an expression for the gradient ∇C, where

∇C =
[
∂f

∂u

]
−
[

∂g

∂u

]T
[[

∂g

∂x

]T
]−1 [

∂f

∂x

]
(6.122)

where f is the sum of the generator costs:

f : C1 + C2 + C3 = P1 + 0.0625P 2
1 + P2 + 0.0125P 2

2 + P3 + 0.0250P 2
3
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g is the set of load flow equations:

g1 : 0 = P2 − PL2 − V2

3∑
i=1

ViY2i cos (δ2 − δi − φ2i)

g2 : 0 = P3 − PL3 − V3

3∑
i=1

ViY3i cos (δ3 − δi − φ3i)

where PLi denotes the active power load at bus i, the set of inputs u is the
set of independent generation settings:

u =
[

P2

P3

]

and x is the set of unknown states

x =
[

δ2

δ3

]

The generator setting P1 is not an input because it is the slack bus generation
and cannot be independently set. From these designations, the various partial
derivatives required for ∇C can be derived:

[
∂g

∂u

]
=
[

1 0
0 1

]
(6.123)

[
∂g

∂x

]
=

[
∂g1
∂δ2

∂g1
∂δ3

∂g2
∂δ2

∂g2
∂δ3

]
(6.124)

where
∂g1

∂δ2
= V2 (V1Y12 sin (δ2 − δ1 − φ21) + V3Y13 sin (δ2 − δ3 − φ23)) (6.125)

∂g1

∂δ3
= −V2V3Y32 sin (δ2 − δ3 − φ23) (6.126)

∂g2

∂δ2
= −V3V2Y23 sin (δ3 − δ2 − φ32) (6.127)

∂g2

∂δ3
= V3 (V1Y13 sin (δ3 − δ1 − φ31) + V2Y23 sin (δ3 − δ2 − φ32)) (6.128)

and [
∂f

∂u

]
=
[

1 + 0.025P2

1 + 0.050P3

]
(6.129)

Finding the partial derivative
[

∂f
∂x

]
is slightly more difficult since the cost

function is not written as a direct function of x. Recall, however, that P1 is
not an input, but is actually a quantity that depends on x, i.e.,

P1 = V1 (V1Y11 cos (δ1 − δ1 − φ11)
+ V2Y12 cos (δ1 − δ2 − φ12) + V3Y13 cos (δ1 − δ3 − φ13)) (6.130)
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Thus, using the chain rule,
[
∂f

∂x

]
=
[

∂f

∂P1

] [
∂P1

∂x

]
(6.131)

= (1 + 0.125P1)
[

V1V2Y12 sin (δ1 − δ2 − φ12)
V1V3Y13 sin (δ1 − δ3 − φ13)

]
(6.132)

From the previous example, the initial values of P2 = 0.56 pu and P3 = 0.28
pu are obtained from the equal incremental cost rule. Using P2 = 0.56 pu
and P3 = 0.28 pu as inputs into the power flow yields the following states:
[δ2 δ3] = [0.0286 − 0.0185] in radians and P1 = 0.1152. Converting the gen-
erated powers to MW and substituting these values into the partial derivatives
yields:

[
∂g

∂u

]
=
[

1 0
0 1

]
(6.133)

[
∂g

∂x

]
=
[−13.3267 9.9366

9.8434 −19.9219

]
(6.134)

[
∂f

∂u

]
=
[

15.0000
15.0000

]
(6.135)

[
∂f

∂x

]
= 15.4018

[ −52.0136
−155.8040

]
(6.136)

which yields

∇C =
[−0.3256
−0.4648

]
(6.137)

Thus, the new values for the input generation are:
[

P2

P3

]
=
[

560
280

]
− γ

[−0.3256
−0.4648

]
(6.138)

With γ = 1, the updated generation is P2 = 560.3 and P3 = 280.5 MW.
Already the gradient ∇C is very small, indicating that the generation values

from the equal incremental cost process were relatively close to the optimal
values, even considering losses. Proceeding with one more iteration yields the
final generation values for all of the generators:

⎡
⎣

P1

P2

P3

⎤
⎦ =

⎡
⎣

112.6
560.0
282.7

⎤
⎦ MW

which yields a cost of $7,664/MW hr. Note that this amount is greater than
the calculated cost for the equal incremental cost function. This increase is
due to the extra generation required to satisfy the losses in the system.

Often the steepest descent method may indicate either states or inputs lie
outside of their physical constraints. For example, the algorithm may result
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in a power generation value that exceeds the physical maximum output of the
generating unit. Similarly, the resulting bus voltages may lie outside of the
desired range (usually ± 10% of unity). These are violations of the inequality
constraints of the problem. In these cases, the steepest descent algorithm must
be modified to reflect these physical limitations. There are several approaches
to account for limitations and these approaches depend on whether or not the
limitation is on the input (independent) or on the state (dependent).

6.4.1.1 Limitations on Independent Variables

If the application of the steepest descent algorithm results in an updated
value of input that exceeds the specified limit, then the most straightforward
method of handling this violation is simply to set the input state equal to its
limit and continue with the algorithm except with one less degree of freedom.

Example 6.14

Repeat Example 6.13 except that the generators must satisfy the following
limitations:

80 ≤ P1 ≤ 1200 MW
450 ≤ P2 ≤ 750 MW
150 ≤ P3 ≤ 250 MW

Solution 6.14 From the solution of Example 6.13, the output of generator
3 exceeds the maximum limit of 0.25 pu. Therefore after the first iteration
in the previous example, P3 is set to 0.25 pu. The new partial derivatives
become:

[
∂g

∂u

]
=
[

1
0

]
(6.139)

[
∂g

∂x

]
= same (6.140)

[
∂f

∂u

]
= [1 + 0.025P2] (6.141)

[
∂f

∂x

]
= same (6.142)

From the constrained steepest descent, the new values of generation become:
⎡
⎣

P1

P2

P3

⎤
⎦ =

⎡
⎣

117.1
588.3
250.0

⎤
⎦ MW
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with a cost of $7,703/MW hr which is higher than the unconstrained cost of
generation of $7,664/MW hr. As more constraints are added to the system,
the system is moved away from the optimal operating point, increasing the
cost of generation.

6.4.1.2 Limitations on Dependent Variables

In many cases, the physical limitations of the system are imposed upon states
that are dependent variables in the system description. In this case, the in-
equality equations are functions of x and must be added to the cost function.
Examples of limitations on dependent variables include maximum line flows
or bus voltage levels. In these cases, the value of the states cannot be inde-
pendently set, but must be enforced indirectly. One method of enforcing an
inequality constraint is to introduce a penalty function into the cost function.
A penalty function is a function that is small when the state is far away from
its limit, but becomes increasingly larger the closer the state is to its limit.
Typical penalty functions include:

p(h) = ekh k > 0 (6.143)
p(h) = x2nekh n, k > 0 (6.144)
p(h) = ax2nekh + bekh n, k, a, b > 0 (6.145)

and the cost function becomes

C∗ : C(u, x) + λT g(u, x) + p (h(u, x) − hmax) (6.146)

This cost equation is then minimized in the usual fashion by setting the ap-
propriate derivatives to zero. This method has the advantage of simplicity of
implementation, but also has several disadvantages. The first disadvantage is
that the choice of penalty function is often a heuristic choice and can vary by
application. A second disadvantage is that this method cannot enforce hard
limitations on states, i.e., the cost function becomes large if the maximum is
exceeded, but the state is allowed to exceed its maximum. In many applica-
tions this is not a serious disadvantage. If the power flow on a transmission
line slightly exceeds its maximum, it is reasonable to assume that the power
system will continue to operate, at least for a finite length of time. If, how-
ever, the physical limit is the height above ground for an airplane, then even a
slightly negative altitude will have dire consequences. Thus the use of penalty
functions to enforce limits must be used with caution and is not applicable
for all systems.

Example 6.15

Repeat Example 6.13, except use penalty functions to limit the power flow
across line 2-3 to 0.4 per unit.
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Solution 6.15 The power flow across line 2-3 in Example 6.13 is given by

P23 = V2V3Y23 cos (δ2 − δ3 − φ23) − V 2
2 Y23 cosφ23 (6.147)

= 0.467 per unit

If P23 exceeds 0.4 per unit, then the penalty function

p(h) =
(
1000V2V3Y23 cos (δ2 − δ3 − φ23) − 1000V 2

2 Y23 cosφ23 − 400
)2
(6.148)

will be appended to the cost function. The partial derivatives remain the
same with the exception of

[
∂f
∂x

]
which becomes:

[
∂f

∂x

]
=
[

∂f

∂P1

] [
∂P1

∂x

]
+
[

∂f

∂P23

] [
∂P23

∂x

]
(6.149)

= (1 + 0.125P1)
[

V1V2Y12 sin (δ1 − δ2 − φ1,2)
V1V3Y13 sin (δ1 − δ3 − φ1,3)

]

+2 (P23 − 400)
[−V2V3Y23 sin (δ2 − δ3 − φ23)

V2V3Y23 sin (δ2 − δ3 − φ23)

]
(6.150)

Proceeding with the steepest gradient algorithm iterations yields the final
constrained optimal generation scheduling:

⎡
⎣

P1

P2

P3

⎤
⎦ =

⎡
⎣

128.5
476.2
349.9

⎤
⎦ MW

and P23 = 400 MW. The cost for this constrained scheduling is $7,882/MW
hr which is slightly greater than the non-constrained cost.

In the case where hard limits must be imposed, an alternate approach to
enforcing the inequality constraints must be employed. In this approach, the
inequality constraints are added as additional equality constraints with the
inequality set equal to the limit (upper or lower) that is violated. This in
essence introduces an additional set of Lagrangian multipliers. This is often
referred to as the dual variable approach, because each inequality has the
potential of resulting in two equalities: one for the upper limit and one for
the lower limit. However, the upper and lower limit cannot be simultaneously
violated; thus, out of the possible set of additional Lagrangian multipliers
only one of the two will be included at any given operating point and thus
the dual limits are mutually exclusive.

Example 6.16
Repeat Example 6.15 using the dual variable approach.

Solution 6.16 By introducing the additional equation

P23 = V2V3Y23 cos (δ2 − δ3 − φ23) − V 2
2 Y23 cosφ23 = 0.400 per unit (6.151)
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to the equality constraints adds an additional equation to the set of g(x).
Therefore an additional unknown must be added to the state vector x to yield
a solvable set of equations (three equations in three unknowns). Either PG2

or PG3 can be chosen as the additional unknown. In this example, PG3 will
be chosen. The new system Jacobian becomes:

[
∂g

∂x

]
=

⎡
⎢⎣

∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

∂g3
∂x1

∂g3
∂x2

∂g3
∂x3

⎤
⎥⎦ (6.152)

where
∂g1

∂x1
= V2 (V1Y12 sin (δ2 − δ1 − φ21) + V3Y13 sin (δ2 − δ3 − φ23))

∂g1

∂x2
= −V2V3Y32 sin (δ2 − δ3 − φ23)

∂g1

∂x3
= 0

∂g2

∂x1
= −V3V2Y23 sin (δ3 − δ2 − φ32)

∂g2

∂x2
= V3V1Y13 sin (δ3 − δ1 − φ31) + V2Y23 sin (δ3 − δ2 − φ32)

∂g2

∂x3
= 1

∂g3

∂x1
= −V2V3Y23 sin (δ2 − δ3 − φ23)

∂g3

∂x2
= V2V3Y23 sin (δ2 − δ3 − φ23)

∂g3

∂x3
= 0

and [
∂g

∂u

]
=

⎡
⎣

1
0
0

⎤
⎦ ;

[
∂f

∂u

]
= [1 + 0.025PG2]

Similar to Example 6.13, the chain rule is used to obtain
[

∂f
∂x

]
:

[
∂f

∂x

]
=
[

∂C

∂PG1

] [
∂PG1

∂x

]
+
[

∂C

∂PG3

] [
∂PG3

∂x

]
(6.153)

= (1 + 0.125PG1)

⎡
⎣

V1V2Y12 sin (δ1 − δ2 − φ12)
V1V3Y13 sin (δ1 − δ3 − φ13)

0

⎤
⎦+ (1 + 0.050PG3) ×

⎡
⎣

V3V2Y32 sin (δ3 − δ2 − φ32)
−V3 (V1Y13 sin (δ3 − δ1 − φ31) + V2Y23 sin (δ3 − δ2 − φ32))

0

⎤
⎦ (6.154)
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Substituting these partial derivatives into the expression for ∇C of equation
(6.122) yields the same generation scheduling as Example 6.15.

6.4.2 State Estimation

In power system state estimation, the estimated variables are the voltage
magnitudes and the voltage phase angles at the system buses. The input to
the state estimator is the active and reactive powers of the system, measured
either at the injection sites or on the transmission lines. The state estimator is
designed to give the best estimates of the voltages and phase angles minimizing
the effects of the measurement errors. Another consideration for the state
estimator is to determine if a sufficient number of measurements are available
to fully estimate the power system. This is the notion of system observability.

A set of specified measurements of a power system is said to be observable
if the entire state vector of bus voltage magnitude and phase angles can be
estimated from the set of available measurements. An unobservable system
is one in which the set of measurements do not span the entire state space.
The power system is observable if the matrix Hx in equation (6.47) has rank
n (full rank), where the number of measurements m is greater than or equal
to the number of system states n. A redundant measurement is one whose
addition to the measurement does not increase the rank of the matrix Hx.

The observability of a power system can be determined by examining the
measurement set and the structure of the power system. A tree is a set of
measurements (either bus or line) that spans the entire set of power system
buses. In other words, by graphically connecting the buses and lines that
contribute to the set of measurements, the entire set of system buses can
be connected by a single connected graph. A power system can be made
observable by adding measurements at those lines that will connect disjoint
trees.

Example 6.17

The SCADA system for the power network shown in Figure 6.7 reports the
following measurements and variances:

zi state measurement variance (σ2)
1 V3 0.975 0.010
2 P13 0.668 0.050
3 Q21 -0.082 0.075
4 P3 -1.181 0.050
5 Q2 -0.086 0.075

Estimate the power system states and use the chi-square test of inequality
with α = 0.01 to check for the presence of bad data in the measurements.
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FIGURE 6.7
Example power system

Solution 6.17 The first step in the estimation process is to identify and enu-
merate the unknown states. In this example, the unknowns are [x1 x2 x3]

T =
[δ2 δ3 V3]

T . After the states are identified, the next step in the estimation
process is to identify the appropriate functions h(x) that correspond to each
of the measurements. The nonlinear function that is being driven to zero to
minimize the weighted error is

F (x) = HT
x R−1 [z − h(x)] = 0 (6.155)

where the set of z − h(x) is given by

z1 − h1(x) = V3 − x3

z2 − h2(x) = P13 −
(
V1x3Y13 cos (−x2 − φ13) − V 2

1 Y13 cosφ13

)

z3 − h3(x) = Q21 −
(
V2V1Y21 sin (x1 − φ21) + V 2

2 Y21 sin φ21

)

z4 − h4(x) = P3 − (x3V1Y31 cos (x2 − φ31) + x3V2Y32 cos (x2 − x1 − φ32)
+ x2

3Y33 cosφ33

)

z5 − h5(x) = Q2 −
(
V2V1Y21 sin (x1 − φ21) − V 2

2 Y22 sinφ22

+ V2x3Y23 sin (x1 − x2 − φ23))

and the matrix of partial derivatives for the set of functions (6.155) is Hx =:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 V1x3Y13 sin (−x2 − φ13) V1Y13 cos (−x2 − φ13)

V1V2Y21 cos (x1 − φ21) 0 0
x3V2Y32 sin (x2 − x1 − φ32) −x3V1Y31 sin (x2 − φ31) V1Y31 cos (x2 − φ31)

−x3V2Y32 sin (x2−x1−φ32) +V2Y32 cos (x2−x1−φ32)
+2x3Y33 cos φ33

V1V2Y21 cos (x1 − φ21) −V2x3Y23 cos (x1−x2−φ23) V2Y23 sin (x1 − x2 − φ23)
+V2x3Y23 cos (x1−x2−φ23)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.156)

This matrix has rank 3; therefore, this set of measurements spans the ob-
servable space of the power system.
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The covariance matrix of the measurements is

R =

⎡
⎢⎢⎢⎢⎣

1
0.0102

1
0.0502

1
0.0752

1
0.0502

1
0.0752

⎤
⎥⎥⎥⎥⎦

(6.157)

The Newton-Raphson iteration to solve for the set of states x that minimize
the weighted errors is:
[
HT

x

(
xk
)
R−1Hx

(
xk
)] [

xk−1 − xk
]

= HT
x

(
xk
)
R−1

[
z − h(xk)

]
(6.158)

Iteration 1
The initial condition for the state estimation solution is the same flat start

as for the power flow equations; namely, all angles are set to zero and all
unknown voltage magnitudes are set to unity. The measurement functions
h(x) evaluated at the initial conditions are

h(x0) =

⎡
⎢⎢⎢⎢⎣

1.0000
0.0202

−0.0664
−0.0198
−0.1914

⎤
⎥⎥⎥⎥⎦

The matrix of partials evaluated at the initial condition yields

H0
x =

⎡
⎢⎢⎢⎢⎣

0 0 1.0000
0 −10.0990 −1.0099

−0.2257 0 0
−9.9010 20.0000 1.9604
−1.2158 0.9901 −9.9010

⎤
⎥⎥⎥⎥⎦

The nonlinear functions (6.155) are

F (x0) =

⎡
⎣

0.5655
−1.4805
−0.2250

⎤
⎦

The incremental updates for the states are

Δx1 =

⎡
⎣
−0.0119
−0.0625
−0.0154

⎤
⎦

leading to the updated states
⎡
⎣

δ1
2

δ1
3

V 1
3

⎤
⎦ =

⎡
⎣
−0.0119
−0.0625

0.9846

⎤
⎦
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where δ2 and δ3 are in radians. The error at iteration 0 is

ε0 = 1.4805

Iteration 2
The updated values are used to recalculate the Newton-Raphson iterations:

h(x1) =

⎡
⎢⎢⎢⎢⎣

0.9846
0.6585

−0.0634
−1.1599
−0.0724

⎤
⎥⎥⎥⎥⎦

The matrix of partials is:

H1
x =

⎡
⎢⎢⎢⎢⎣

0 0 1.0000
0 −9.9858 −0.3774

−0.2660 0 0
−9.6864 19.5480 0.7715
−0.7468 0.4809 −9.9384

⎤
⎥⎥⎥⎥⎦

The nonlinear function evaluated at the updated values yields:

F (x1) =

⎡
⎣

0.0113
−0.0258

0.0091

⎤
⎦

The incremental updates for the states are

Δx2 =

⎡
⎣

0.0007
−0.0008

0.0013

⎤
⎦

leading to the updated states
⎡
⎣

δ2
2

δ2
3

V 2
3

⎤
⎦ =

⎡
⎣
−0.0113
−0.0633

0.9858

⎤
⎦

The error at iteration 1 is
ε1 = 0.0258

The iterations are obviously converging. At convergence, the states that
minimize the weighted measurement errors are

x =

⎡
⎣
−0.0113
−0.0633

0.9858

⎤
⎦
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To check for the presence of bad data, the weighted sum of squares of the
measurement errors are compared to the chi-square distribution for k = 2 and
α = 0.01. The weighted sum of squares is

f =
5∑

i=1

1
σ2

i

(zi − hi(x))2

=
(−0.0108)2

0.0102
+

(0.0015)2

0.0502
+

(−0.0184)2

0.0752
+

(0.0008)2

0.0502
+

(−0.0001)2

0.0752

= 1.2335

This value is less than χ2,0.01 = 9.21; therefore, the data set is good and does
not contain any spurious measurements.
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FIGURE 6.8
Load curve for Problem 1

6.5 Problems

1. The fuel costs for a three-unit plant are given by

F1 : 173.61 + 8.670P1 + 0.00230P 2
1 $/MWhr

F2 : 180.68 + 9.039P2 + 0.00238P 2
2 $/MWhr

F3 : 182.62 + 9.190P3 + 0.00235P 2
3 $/MWhr

The daily load curve for the plant is given in Figure 6.8. Obtain and
sketch the optimal power generated by each unit and the plant’s incre-
mental cost of power delivered (λ).

2. Use the method of least squares to find the “best fit” coefficients c0 and
c1 in the following function

f(x) = c0 + c1x
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for the following measured data:

x f(x)
1 -2.1
3 -0.9
4 -0.6
6 0.6
7 0.9

3. Use the method of least squares to find the “best fit” coefficients a0, a1,
and a2 in the following function

f(t) = a0 + a1 sin
2πt

12
+ a2 cos

2πt

12

for the following measured data:

t f(t)
0 1.0
2 1.6
4 1.4
6 0.6
8 0.2
10 0.8

This function describes the movement of the tide with a 12-hour period.

4. Minimize −7x1 − 3x2 + x3 subject to the constraints

x1 + x2 + x3 ≤ 15
2x1 − 3x2 + x3 ≤ 10
x1 − 5x2 − x3 ≤ 0

x1, x2, x3 ≥ 0

(a) Using the simplex method

(b) Using the Primal Affine method with α = 0.9.

Both methods should be augmented with slack variables x4, x5, x6 and
initiated with the feasible vector x0 = [1 1 1 12 10 5]T .

5. Using the steepest descent method, minimize x2
1 + x2

2 subject to the
constraint

x2
1 + 2x1x2 + 3x2

2 − 1 = 0

6. Find the minimum of

C : x2
1 + x2

2 + u1x1 + u2x2 + 1
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FIGURE 6.9
3 bus system

(a) subject to:

x1 cos(x2) + x2
2 − u1 cos(x1) = 1
x1 − x2 + 3u2 = −3

(b) subject to:

x1 cos(x2) + x2
2 − u1 cos(x1) = 1
x1 − x2 + 3u2 = −3

u2 ≥ −0.8

(c) subject to:

x1 cos(x2) + x2
2 − u1 cos(x1) = 1
x1 − x2 + 3u2 = −3

x2 ≤ 0.30

using the penalty function f (x2) = aeb(x2−c), where a and b are
positive constants and c is the function offset.

Use an initial guess of x0 = [0 0]′ and u0 = [0 0]′ and a γ = 0.05. You
might want to experiment with other values of γ as well. Your stopping
criterion should be ‖∇C‖ ≤ 0.01.

7. Repeat Problem 6 using the SQP method.

8. Consider the system shown in Figure 6.9. The bus and line data are
given below:
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Line R X B
1-2 0.01 0.1 0.050
1-3 0.05 0.1 0.025
2-3 0.05 0.1 0.025
Bus |V | PL QL

1 1.00 0.35 0.10
2 1.02 0.40 0.25
3 1.02 0.25 0.10

The fuel costs for the generators are:

F1 : PG1 + 1.5P 2
G1

F2 : 2PG2 + P 2
G2

F3 : 2.5PG3 + 0.5P 2
G3

(a) Using the equal incremental cost criterion, find the optimal schedul-
ing for the units (remember that this method neglects system
losses).

(b) Using your answer for part (a) as the initial control vector, use
the steepest descent method to find the optimal scheduling for this
system, which considers system losses.

(c) Now assume the following limits are imposed:

F1 : PG1 + 1.5P 2
G1

0 ≤ PG1 ≤ 0.6

F2 : 2PG2 + P 2
G2

0 ≤ PG2 ≤ 0.4

F3 : 2.5PG3 + 0.5P 2
G3

0 ≤ PG3 ≤ 0.1

Repeat part (b).
(d) Interpret your results relating the generator settings to the Cost

functions.

9. For the system shown in Figure 6.9, the following measurements were
obtained:

V2 1.04
V3 0.98
PG1 0.58
PG2 0.30
PG3 0.14
P12 0.12
P32 –0.04
P13 0.10

where σ2
V = (0.01)2, σ2

PG
= (0.015)2, and σ2

Pij
= (0.02)2.

Estimate the system states, the error, and test for bad data using the
chi-square data below using α = 0.01.
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Eigenvalue Problems

Small signal stability is the ability of a system to maintain stability when sub-
jected to small disturbances. Small signal analysis provides valuable informa-
tion about the inherent dynamic characteristics of the system and assists in
its design, operation, and control. Time domain simulation and eigenanalysis
are the two main approaches of studying system stability.

Eigenanalysis methods are widely used to perform small signal stability
studies. The dynamic behavior of a system in response to small perturbations
can be determined by computing the eigenvalues and eigenvectors of the sys-
tem matrix. The locations of the eigenvalues can be used to investigate the
system’s performance. In addition, eigenvectors can be used to estimate the
relative participation of the respective states in the corresponding disturbance
modes.

A scalar λ is an eigenvalue of an n × n matrix A if there exists a nonzero
n × 1 vector v such that

Av = λv (7.1)

where v is the corresponding right eigenvector. If there exists a nonzero vector
w such that

wT A = λwT (7.2)

then w is a left eigenvector. The set of all eigenvalues of A is called the spec-
trum of A. Normally the term “eigenvector” refers to the right eigenvector
unless denoted otherwise. The eigenvalue problem in equation (7.1) is called
the standard eigenvalue problem. Equation (7.1) can be written as

(A − λI) v = 0 (7.3)

and thus is a homogeneous system of equations for x. This system has a
non-trivial solution only if the determinant

det (A − λI) = 0

The determinant equation is also called the characteristic equation for A and
is an n-th degree polynomial in λ. The eigenvalues of an n × n matrix A are
the roots of the characteristic equation

λn + cn−1λ
n−1 + cn−1λ

n−1 + . . . + c0 = 0 (7.4)

Therefore, there are n roots (possibly real or complex) of the characteristic
equation. Each one of these roots is also an eigenvalue of A.

243
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7.1 The Power Method

The power method is one of the most commmon methods of finding the domi-
nant eigenvalue of the n×n matrix A. The dominant eigenvalue is the largest
eigenvalue in absolute value. Therefore if λ1, λ2, . . . , λn are eigenvalues of A,
then λ1 is the dominant eigenvalue of A if

|λ1| > |λi| (7.5)

for all i = 2, . . . , n.
The power method is actually an approach to finding the eigenvector v1

corresponding to the dominant eigenvalue of the matrix A. Once the eigen-
vector is obtained, then the eigenvalue can be extracted from the Rayleigh
quotient:

λ =
〈Av, v〉
〈v, v〉 (7.6)

The approach to finding the eigenvector v1 is an interative approach. There-
fore, from an initial guess vector v0, a sequence of approximations vk is con-
structed which hopefully converges as k goes to ∞. The iterative algorithm
for the power method is straightforward:

The Power Method

1. Let k = 0 and choose v0 to be a non-zero n × 1 vector.

2. wk+1 = Avk

3. αk+1 = ‖wk+1‖
4. vk+1 = wk+1

αk+1

5. if ‖vk+1 − vk‖ < ε then done. Else, k = k + 1, go to Step 2.

The division by the norm of the vector in Step 4 is not a necessary step,
but it keeps the size of the values of the eigenvector close to 1. Recall that a
scalar times an eigenvector of A is still an eigenvector of A, therefore scaling
has no adverse consequence. However, without Step 4 and αk = 1 for all k,
the values of the updated vector may increase or decrease to the extent that
the computer accuracy is affected.

Example 7.1
Use the power method to find the eigenvector corresponding to the dominant
eigenvalue of the following matrix:

A =
[

6 −2
−8 3

]
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Solution 7.1 Start with the initial guess v0 = [1 1]T . Then

w1 = A ∗ v0 =
[

4
−5

]

α1 = ‖w1‖ = 6.4031

v1 =
[

0.6247
−0.7809

]

The second iteration follows:

w2 = A ∗ v1 =
[

5.3099
−7.3402

]

α2 = ‖w2‖ = 9.0594

v2 =
[

0.5861
−0.8102

]

Continuing to convergence yields the eigenvalue:

v∗ =
[

0.5851
−0.8110

]

From the eigenvector, the corresponding eigenvalue is calculated

λ =

[
0.5851 −0.8110

] [ 6 −2
−8 3

] [
0.5851

−0.8110

]

[
0.5851 −0.8110

] [ 0.5851
−0.8110

] =
8.7720

1
= 8.7720

which is exactly the largest eigenvalue of A (the smaller eigenvalue is 0.2280).

To see why the power method converges to the dominant eigenvector, let
the initial guess vector v0 be expressed as the linear combination:

v0 =
n∑

i=1

βivi (7.7)

where vi are the actual eigenvectors of A and the coefficients βi are chosen to
make equation (7.7) hold. Then applying the power method (without loss of
generality it can be assumed that αk = 1 for all k) yields

vk+1 = Avk = A2vk−1 = . . . = Ak+1v0

=
n∑

i=1

λk+1
i βivi = λk+1

1

(
β1v1 +

n∑
i=2

(
λi

λ1

)k+1

βivi

)
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Because ∣∣∣∣
λi

λ1

∣∣∣∣ < 1 i = 2, . . . , n

then as k successively increases, these terms go to zero, and only the compo-
nent corresponding to v1 is left.

The power method will fail if there are two largest eigenvalues of the same
absolute magnitude. Recall that the eigenvalues of a real matrix A are in
general complex and occur in conjugate pairs (which necessarily have the
same absolute value). Therefore if the largest eigenvalue of A is not real, then
the power method will certainly fail to converge. For this reason, it is sensible
to apply the power method only to matrices whose eigenvalues are known to
be real. One class of real eigenvalue matrices are symmetric matrices.

There are also cases in which the power method may not converge to the
eigenvector corresponding to the dominant eigenvalue. This would occur in
the case in which β1 = 0. This implies that the initial guess v0 contains
no component of the eigenvector v1. In this case, the method will converge
to the eigenvector contained in the decomposition of v0 of the next largest
eigenvalue.

The rate of convergence of the power method is determined by the ratio
|λ2
λ1
|. Thus if |λ2| is only slightly smaller than |λ1|, then the power method

will converge slowly and a large number of iterations will be required to meet
the required accuracy.

There are several extensions to the power method. For example, if instead of
the dominant eigenvalue, the smallest eigenvalue was desired, then the power
method can be applied to A−1. Since the eigenvalues of A−1 are 1

λn
, . . . , 1

λ1
,

the inverse power method should converge to 1
λn

.
Another extension is the spectral shift. This approach uses the fact that the

eigenvalues of A− aI are λ1 − a, . . . , λn − a. Thus having computed the first
eigenvalue λ1, the power method can be reapplied using the shifted matrix
A−λ1I. This reduces the first eigenvalue to zero and the power method now
converges to the largest in absolute value of λ2 − λ1, . . . , λn − λ1.

7.2 The QR Algorithm

Many methods for solving the eigenvalue problem are based on a sequence of
similarity transformations with orthogonal matrices. Thus, if P is any non-
singular matrix, then the matrices A and PAP−1 have the same eigenvalues.
Furthermore, if v is an eigenvector of A, then Pv is an eigenvector of PAP−1.
If the matrix P is othogonal, then the condition of the eigenproblem is not
affected. This is the basis for the similarity transformation methods.
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The QR method [20], [52], [53] is one of the most widely used decompo-
sition methods for calculating eigenvalues of matrices. It uses a sequence of
orthogonal similarity transformations [13] [28] such that A = A0, A1, A2, . . .
is computed by

Ai = QiRi, RiQi = Ai+1, i = 0, 1, 2, . . . ,

Similar to the LU factorization, the matrix A can also be factored into two
matrices such that

A = QR (7.8)

where Q is a unitary matrix and R is an upper triangular matrix. The matrix
Q is unitary if

QQ∗ = Q∗Q = I (7.9)

where (∗) denotes complex conjugate transpose.
Examples of unitary matrices are

Q1 =
[

0 1
1 0

]
Q2 =

[
cos θ − sin θ
sin θ cos θ

]

It also follows that the inverse of a unitary matrix is also its conjugate trans-
pose, i.e.,

Q−1 = Q∗

This decomposition yields the column vectors [a1, a2, . . . , an] of A and column
vectors [q1, q2, . . . , qn] of Q such that

ak =
k∑

i=1

rikqi, k = 1, . . . , n (7.10)

The column vectors a1, a2, . . . , an must be orthonormalized from the left to
right into an orthonormal basis q1, q2, . . . , qn.

In the implementation of the QR algorithm, it is common practice to trans-
form A into a Hessenberg matrix H having the same eigenvalues and then
apply the QR matrix to H . In the end, the matrix becomes upper triangular
and the eigenvalues can be read off of the diagonal. A Hessenberg matrix is
essentially an upper triangular matrix with one extra set of non-zero elements
directly below the diagonal. The reason for reducing A to a Hessenberg ma-
trix is that this greatly reduces the total number of operations required for
the QR algorithm.

The Householder method is one method used to reduce A to a Hessenberg
matrix. For each n × n matrix A, there exist n − 2 Householder matrices
H1, H2, . . . , Hn−2, such that for

Q = Hn−2 . . . H2H1

the matrix
P = Q∗AQ
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is a Hessenberg matrix [27]. A matrix H is a Householder matrix if

H = I − 2
vv∗

v∗v

Note that Householder matrices are also unitary matrices. The vector v is
chosen to satisfy

vi = ai ± ei ‖ai‖2 (7.11)

where the choice of sign is based upon the requirement that ‖v‖2 should not
be too small, ei is the ith column of I, and ai is the ith column of A.

Example 7.2
Find the QR decomposition of the matrix A:

A =

⎡
⎢⎢⎣

1 3 4 8
2 1 2 3
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦

Solution 7.2 The first transformation will be applied to zero out the first
column of A below the subdiagonal, thus

v1 = a1 + e1 ‖a1‖2

=

⎡
⎢⎢⎣

1
2
4
9

⎤
⎥⎥⎦+ 10.0995

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

11.0995
2.0000
4.0000
9.0000

⎤
⎥⎥⎦

leading to

H1 = I − 2
v1v

∗
1

(v∗1v1)

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦− 2

224.1990

⎡
⎢⎢⎣

11.0995
2.0000
4.0000
9.0000

⎤
⎥⎥⎦
[
11.0995 2.0000 4.0000 9.0000

]

=

⎡
⎢⎢⎣
−0.0990 −0.1980 −0.3961 −0.8911
−0.1980 0.9643 −0.0714 −0.1606
−0.3961 −0.0714 0.8573 −0.3211
−0.8911 −0.1606 −0.3211 0.2774

⎤
⎥⎥⎦
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and

H1A =

⎡
⎢⎢⎣
−10.0995 −3.4655 −9.0103 −8.1192

0 −0.1650 −0.3443 0.0955
0 0.6700 0.3114 2.1910
0 −3.2425 −3.5494 −9.0702

⎤
⎥⎥⎦

The second iteration will operate on the part of the transformed matrix
that excludes the first column and row. Therefore

v2 = a2 + e2 ‖a2‖2

=

⎡
⎣
−0.1650

0.6700
−3.2425

⎤
⎦+ 3.3151

⎡
⎣

1
0
0

⎤
⎦

=

⎡
⎣

3.1501
0.6700

−3.2425

⎤
⎦

which results in

H2 = I − 2
v2v

∗
2

(v∗2v2)

=

⎡
⎢⎢⎣

1 0 0 0
0 0.0498 −0.2021 0.9781
0 −0.2021 0.9570 0.2080
0 0.9781 0.2080 −0.0068

⎤
⎥⎥⎦

and

H2H1A =

⎡
⎢⎢⎣
−10.0995 −3.4655 −9.0103 −8.1192

0 −3.3151 −3.5517 −9.3096
0 0 −0.3708 0.1907
0 0 −0.2479 0.6108

⎤
⎥⎥⎦

Continuing the process yields

v3 =
[

0.0752
−0.2479

]

H3 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0.8313 0.5558
0 0 0.5558 −0.8313

⎤
⎥⎥⎦

which results in

R = H3H2H1A =

⎡
⎢⎢⎣
−10.0995 −3.4655 −9.0103 −8.1192

0 −3.3151 −3.5517 −9.3096
0 0 −0.4460 0.4980
0 0 0 −0.4018

⎤
⎥⎥⎦
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and

Q = H1H2H3 =

⎡
⎢⎢⎣
−0.0990 −0.8014 −0.5860 −0.0670
−0.1980 −0.0946 0.2700 −0.9375
−0.3961 −0.4909 0.7000 0.3348
−0.8911 0.3283 −0.3060 0.0670

⎤
⎥⎥⎦

It can be verified that A = QR and further that Q∗ = Q−1.

The elimination by QR decomposition can be considered as an alternative to
Gaussian elimination. However, the number of multiplications and divisions
required is more than twice the number required for Gaussian elimination.
Therefore QR decomposition is seldom used for the solution of linear systems,
but it does play an important role in the calculation of eigenvalues.

Although the eigenvalue problem gives rise to a simple set of algebraic
equations to determine the solution to

det (A − λI) = 0

the practical problem of solving this equation is difficult. Computing the roots
of the characteristic equation or the nullspace of a matrix is a process that is
not well suited for computers. In fact, no generalized direct process exists for
solving the eigenvalue problem in a finite number of steps. Therefore iterative
methods for calculation must be relied upon to produce a series of successively
improved approximations to the eigenvalues of a matrix.

The QR method is commonly used to calculate the eigenvalues and eigenvec-
tors of full matrices. As developed by Francis [13], the QR method produces
a series of similarity transformations

Ak = Q∗
kAk−1Qk Q∗

kQk = I (7.12)

where the matrix Ak is similar to A. The QR decomposition is repeatedly per-
formed and applied to A as the subdiagonal elements are iteratively driven to
zero. At convergence, the eigenvalues of A in descending order by magnitude
appear on the diagonal of Ak.

Example 7.3
Find the eigenvalues and eigenvectors of the matrix of Example 7.2.

Solution 7.3 The first objective is to find the eigenvalues of the matrix A
using the QR method. From Example 7.2, the first QR factorization yields
the Q0 matrix

Q0 =

⎡
⎢⎢⎣
−0.0990 0.8014 0.5860 −0.0670
−0.1980 0.0946 −0.2700 −0.9375
−0.3961 0.4909 −0.7000 0.3348
−0.8911 −0.3283 0.3060 0.0670

⎤
⎥⎥⎦
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Using the given A matrix as A0, the first update A1 is found by

A1 = Q∗
0A0Q0

=

⎡
⎢⎢⎣

12.4902 −10.1801 −1.1599 0.3647
−10.3593 −0.9987 −0.5326 −1.2954

0.2672 0.3824 −0.4646 0.1160
0.3580 0.1319 −0.1230 −0.0269

⎤
⎥⎥⎦

The QR factorization of A1 yields

Q1 =

⎡
⎢⎢⎣
−0.7694 −0.6379 −0.0324 −0.0006

0.6382 −0.7660 −0.0733 0.0252
−0.0165 0.0687 −0.9570 −0.2812
−0.0221 0.0398 −0.2786 0.9593

⎤
⎥⎥⎦

and the A2 matrix becomes

A2 = Q∗
1A1Q1

=

⎡
⎢⎢⎣

17.0913 4.8455 −0.2315 −1.0310
4.6173 −5.4778 −1.8116 0.6064

−0.0087 0.0373 −0.5260 −0.1757
0.0020 −0.0036 0.0254 −0.0875

⎤
⎥⎥⎦

Note that the elements below the diagonals are slowly decreasing to zero. This
process is carried out until the final A matrix is obtained:

A∗ =

⎡
⎢⎢⎣

18.0425 0.2133 −0.5180 −0.9293
0 −6.4172 −1.8164 0.6903
0 0 −0.5269 −0.1972
0 0 0 −0.0983

⎤
⎥⎥⎦ (7.13)

The eigenvalues are on the diagonals of A∗ and are in decreasing order by
magnitude. Thus the eigenvalues are

λ1,...,4 =

⎡
⎢⎢⎣

18.0425
−6.4172
−0.5269
−0.0983

⎤
⎥⎥⎦

The next step is to find the eigenvectors associated with each eigenvalue.
Recall that

Avi = λivi (7.14)

for each eigenvalue and corresponding eigenvector i = 1, . . . , n. Equation
(7.14) may also be written as

Avi − λivi = 0



252 Computational Methods for Electric Power Systems

In other words, the matrix defined by A − λiI is singular; thus, only three of
its rows (or columns) are independent. This fact can be used to determine
the eigenvectors once the eigenvalues are known. Since A − λiI is not of full
rank, one of the elements of the eigenvector vi can be chosen arbitrarily. To
start, partition A − λiI as

A − λiI =
[

a11 a1,2n

a2n,1 a2n,2n

]

where a11 is a scalar, a1,2n is a 1× (n− 1) vector, a2n,1 is a (n− 1)× 1 vector,
and a2n,2n is an (n − 1) × (n − 1) matrix of rank (n − 1). Then let vi(1) = 1
and solve for the remaining portion of the eigenvector as

⎡
⎢⎢⎢⎣

vi(2)
vi(3)

...
vi(n)

⎤
⎥⎥⎥⎦ = −a−1

2n,2na2n,1vi(1) (7.15)

Now update vi(1) from

vi(1) = − 1
a11

a2n,1 ∗

⎡
⎢⎢⎢⎣

vi(2)
vi(3)

...
vi(n)

⎤
⎥⎥⎥⎦

Then the eigenvector corresponding to λi is

vi =

⎡
⎢⎢⎢⎣

vi(1)
vi(2)

...
vi(n)

⎤
⎥⎥⎥⎦

The last step is to normalize the eigenvector; therefore,

vi =
vi

‖vi‖
Thus, for the vector of eigenvalues

Λ =
[
18.0425 −6.4172 −0.5269 −0.0983

]

the corresponding eigenvectors are:
⎡
⎢⎢⎣

0.4698
0.2329
0.5800
0.6234

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0.6158
0.0539
0.2837

−0.7330

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0.3673
−0.5644
−0.5949

0.4390

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0.0932
0.9344

−0.2463
−0.2400

⎤
⎥⎥⎦
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7.2.1 Shifted QR

The QR iterations can converge very slowly in many instances. However, if
some information about one or more of the eigenvalues is known a priori,
then a variety of techniques can be applied to speed up convergence of the
iterations. One such technique is the shifted QR method, in which a shift σ
is introduced at each iteration such that the QR factorization at the kth is
performed on

Ak − σI = QkRk

and
Ak+1 = Q∗

k (Ak − σI) Qk + σI

If σ is a good estimate of an eigenvalue, then the (n, n − 1) entry of Ak

will converge rapidly to zero, and the (n, n) entry of Ak will converge to the
eigenvalue closest to σk. Once this has occurred, an alternate shift can be
applied.

Example 7.4

Repeat Example 7.3 using shifts.

Solution 7.4 Start with using a shift of σ = 15. This is near the 18.0425 eigen-
value; so, convergence to that particular eigenvalue should be rapid. Starting
with the original A matrix as A0, the QR factorization of A0 − σI yields

Q0 =

⎡
⎢⎢⎣
−0.8124 0.0764 0.2230 0.5334

0.1161 −0.9417 −0.0098 0.3158
0.2321 0.2427 −0.7122 0.6164
0.5222 0.2203 0.6655 0.4856

⎤
⎥⎥⎦

and the update A1 = Q∗
0 (A0 − σI)Q0 + σI

A1 =

⎡
⎢⎢⎣
−4.9024 0.8831 −1.6174 2.5476
−0.2869 0.0780 −0.1823 1.7775
−2.9457 0.5894 −1.5086 2.3300

2.5090 1.0584 3.1975 17.3330

⎤
⎥⎥⎦

The eigenvalue of interest (λ = 18.00425) will now appear in the lower right
corner since as the iterations progress Ak+1(n, n) − σ will be the smallest
diagonal in magnitude. Recall that the eigenvalues are ordered on the diagonal
from largest to smallest and since the largest eigenvalue is “shifted” by σ,
it will now have the smallest magnitude. The convergence can be further
increased by updating σ at each iteration, such that σk+1 = Ak+1(n, n). The
iterations proceed as in Example 7.3.
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7.2.2 Deflation

The speed of convergence of the QR method for calculating eigenvalues de-
pends greatly on the location of the eigenvalues with respect to one another.
The matrix A − σI has the eigenvalues λi − σ for i = 1, . . . , n. If σ is chosen
as an approximate value of the smallest eigenvalue λn, then λn − σ becomes
small. This will speed up the convergence in the last row of the matrix, since

|λn − σ|
|λn−1 − σ| � 1

Once the elements of the last row are reduced to zero, the last row and column
of the matrix may be neglected. This implies that the smallest eigenvalue is
“deflated” by removing the last row and column. The procedure can then be
repeated on the remaining (n−1)×(n−1) matrix with the shift σ chosen close
to λn−1. Using the shift and deflation in combination can significantly improve
convergence. Additionally, if only one eigenvalue is desired of a particular
magnitude, this eigenvalue can be isolated via the shift method. After the
last row has been driven to zero, the eigenvalue can be obtained and the
remainder of the QR iterations abandoned.

7.3 Arnoldi Methods

In large interconnected systems, it is either impractical or intractable to find
all of the eigenvalues of the system state matrix due to restrictions on com-
puter memory and computational speed. The Arnoldi method has been de-
veloped as an algorithm that iteratively computes k eigenvalues of an n × n
matrix A, where k is typically much smaller than n. This method therefore
bypasses many of the constraints imposed by large matrix manipulation re-
quired by methods such as the QR decomposition. If the k eigenvalues are
chosen selectively, they can yield rich information about the system under
consideration, even without the full set of eigenvalues. The Arnoldi method
was first developed in [2], but suffered from poor numerical properties such
as loss of orthogonality and slow convergence. Several modifications to the
Arnoldi method have overcome these shortcomings. The Modified Arnoldi
Method (MAM) has been used frequently in solving eigenvalue problems in
power system applications [29], [51]. This approach introduced precondition-
ing and explicit restart techniques to retain orthogonality. Unfortunately
however, an explicit restart will often discard useful information. The restart
problem was solved by using implicitly shifted QR steps [45] in the Implicitly
Restarted Arnoldi (IRA) method. Several commercial software packages have
been developed around the IRA method, including the well known ARPACK
and the Matlab speig routines.
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The basic approach of the Arnoldi method is to iteratively update a low
order matrix H whose eigenvalues successively approximate the selected eigen-
values of the larger A matrix, such that

AV = V H ; V ∗V = I (7.16)

where V is an n × k matrix and H is a k × k Hessenberg matrix. As the
method progresses, the eigenvalues of A are approximated by the diagonal
entries of H yielding

HVi = ViD (7.17)

where Vi is a k × k matrix whose columns are the eigenvalues of H (approxi-
mating the eigenvectors of A) and D is a k× k matrix whose diagonal entries
are the eigenvalues of H (approximating the eigenvalues of A). The Arnoldi
method is an orthogonal projection method onto a Krylov subspace.

The Arnoldi procedure is an algorithm for building an orthogonal basis of
the Krylov subspace. One approach is given as:

The k-step Arnoldi Factorization
Starting with a vector v1 of unity norm, for j = 1, . . . , k compute:

1. H(i, j) = vT
i Avj for i = 1, . . . , j

2. wj = Avj −
∑j

i=1 H(i, j)vi

3. H(j + 1, j) = ‖wj‖2

4. If H(j + 1, j) = 0, then stop

5. vj+1 = wj

H(j+1,j)

At each step, the algorithm multiplies the previous Arnoldi vector vj by
A and then orthonormalizes the resulting vector wj against all previous vi’s.
The k-step Arnoldi factorization is shown in Figure 7.1, and is given by

AVk = VkHk + wkeT
k (7.18)

The columns V = [v1, v2, . . . , vk] form an orthonormal basis for the Krylov
subspace and H is the orthogonal projection of A onto this space. It is desir-
able for ‖wk‖ to become small because this indicates that the eigenvalues of H
are accurate approximations to the eigenvalues of A. However, this “conver-
gence” often comes at the price of numerical orthogonality in V . Therefore,
the k-step Arnoldi factorization is “restarted” to preserve orthogonality.

Implicit restarting provides a means to extract rich information from very
large Krylov subspaces while avoiding the storage and poor numerical proper-
ties associated with the standard approach. This is accomplished by continu-
ally compressing the information into a fixed size k-dimensional subspace, by
using a shifted QR mechanism. A (k + p)-step Arnoldi factorization

AVk+p = Vk+pHk+p + wk+peT
k+p (7.19)
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A (k + p)-step Arnoldi factorization

is compressed to a factorization of length k that retains the eigen-information
of interest. This is accomplished using QR steps to apply p shifts to yield

AV̂k+p = V̂k+pĤk+p + ŵk+p (7.20)

where V̂k+p = Vk+pQ, Ĥk+p = Q∗Hk+pQ, and ŵk+p = wk+peT
k+pQ. It may be

shown that the first k − 1 entries of the vector eT
k+pQ are zero [46]. Equating

the first k columns on both sides yields an updated k-step Arnoldi factoriza-
tion. This now provides the “restart” vectors for extending the k-step Arnoldi
factorization to the k + p-step Arnoldi factorization, shown in Figure 7.2.

The implicitly restarted Arnoldi algorithm consists of three main steps:
initialization, iteration/refinement, and final calculation of the eigenvalues
and eigenvectors.

Implicity Restarted Arnoldi Algorithm

1. Initialization
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Using the vector v1 as a starting vector, generate a k-step Arnoldi factor-
ization. At each step k of the factorization, the vector Vk is augmented
by a vector vk satisfying equation (7.18). Note that Hk is a Hessenberg
matrix. The shaded regions in Figure 7.1 represent non-zero entries.
The unshaded region of feT

k is a zero matrix of (k − 1) columns. The
last column of feT

k is f . The Arnoldi factorization is entirely dependent
on the choice of initial vector v1.

2. Iteration/Refinement

(a) Extend the k-step factorization by p steps.
Each of the p additions represents an eigenvalue/eigenvector that
can be discarded at the end of the iteration if it does not meet
the chosen criteria. In general, the choice of p is a trade-off be-
tween the length of factorization that may be tolerated and the
rate of convergence. For most problems, the size of p is determined
experimentally. The only requirement is that 1 ≤ p ≤ n − k.

(b) Calculate eigenvalues of Hk+p

After the p-step extension has been completed, the eigenvalues of
Hk+p are calculated by the QR method and sorted according to
a pre-determined sort criterion S and ordered from best to worst.
The p worst eigenvalues (σ1, σ2, . . . , σp) are used as shifts to per-
form p shifted QR factorizations. Since the matrix Hk+p in the
Arnoldi factorization

AVk+p = Vk+pHk+p + wk+peT
k+p (7.21)

is relatively small, the shifted QR factorization can be used effi-
ciently to calculate the eigenvalues of H .

(c) Update the Arnoldi matrices

V̂k+p = Vk+pQ

Ĥk+p = Q∗Hk+pQ

ŵk+p = wk+pe
T
k+pQ

Note that the updated matrix V̂k+p has orthonormal columns since
it is the product of V and an orthogonal matrix Q.

(d) Obtain a new k-step Arnoldi factorization by equating the first k
columns on each side of equation (7.20) and discarding the last p
equations:

AV̂k = V̂kĤk + ŵkeT
k

The vector ŵ is the new residual vector that is being driven to zero.
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(e) If
‖AVk − VkHk‖ ≤ ε

where ε is the pre-selected convergence tolerance, then the itera-
tion/refinement terminates. Otherwise the process is repeated until
tolerance is achieved.

3. Eigenvalue/Eigenvector Calculation

The last step in the Arnoldi method is to compute the eigenvalues and
eigenvectors of the reduced matrix Hk from

HkVk + VhDk (7.22)

The eigenvectors of A are then calculated as

Vk = VkVh (7.23)

and the desired eigenvalues of A may be obtained from the diagonal
entries of Dk:

AVk = VkDk (7.24)

Example 7.5
Using a 3-step Arnoldi factorization, find the two smallest (in magnitude)
eigenvalues and corresponding eigenvectors of the matrix of Example 7.2.

Solution 7.5 Since the two smallest eigenvalues are desired, the value of k is
two. After the initialization step, the 2-step Arnoldi method will be extended
up to 3-steps; therefore, p is one. Thus at each step, three eigenvalues will be
calculated and the worst eigenvalue will be discarded.

The factorization can be initialized with an arbitrary non-zero vector. In
many software implementations, the starting vector is chosen randomly such
that all of the entries have absolute value less than 0.5. The starting vector
for this example will be

v0 =

⎡
⎢⎢⎣

0.2500
0.2500
0.2500
0.2500

⎤
⎥⎥⎦

To satisfy the requirement that the initial vector have unity norm, the starting
vector is normalized to yield:

v1 =
Av0

‖Av0‖

=

⎡
⎢⎢⎣

0.4611
0.2306
0.5764
0.6340

⎤
⎥⎥⎦
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After the initial vector has been chosen, the Arnoldi factorization is applied
for k steps; thus,

h2,1v2 = Av1 − h1,1v1 (7.25)

where v2 produces the second column of the matrix Vk and h1,1 is chosen such
that

h1,1 = 〈v1, Av1〉 = vT
1 Av1 (7.26)

where 〈·〉 denotes inner product. Thus, solving equation (7.26) yields h1,1 =
18.0399. Applying the Arnoldi factorization for f1 yields

w1 = h2,1v2 = Av1 − h1,1v1

=

⎡
⎢⎢⎣

1 3 4 8
2 1 2 3
4 3 5 8
9 2 7 4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0.4611
0.2306
0.5764
0.6340

⎤
⎥⎥⎦− (18.0399)

⎡
⎢⎢⎣

0.4611
0.2306
0.5764
0.6340

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.2122
0.0484
0.0923

−0.2558

⎤
⎥⎥⎦

The factor h2,1 is chosen to normalize v2 to unity, thus h2,1 = 0.3483, and

v2 =

⎡
⎢⎢⎣

0.6091
0.1391
0.2650

−0.7345

⎤
⎥⎥⎦

Calculating the remaining values of the Hessenberg matrix yields:

h1,2 = v∗1Av2 = 0.1671
h2,2 = v∗2Av2 = −6.2370

and

w2 = h3,2v2 = Av2 − h1,2v1 − h2,2v2 =

⎡
⎢⎢⎣
−0.0674

0.5128
−0.1407
−0.0095

⎤
⎥⎥⎦

These values can be checked to verify that they satisfy equation (7.18) for
i = 2:

AV2 = V2H2 + w2 [0 1]

where

V2 = [v1 v2] =

⎡
⎢⎢⎣

0.4611 0.6091
0.2306 0.1391
0.5764 0.2650
0.6340 −0.7345

⎤
⎥⎥⎦
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and

H2 =
[

h1,1 h1,2

h2,1 h2,2

]
=
[

18.0399 0.1671
0.3483 −6.2370

]

This completes the initialization stage.
After the initial k-step Arnoldi sequence has been generated, it can be

extended to k + p steps. In this example p = 1, so only one more extension is
required. From the initialization, w2 = h3,2v2 from which h3,2 and v2 can be
extracted (recalling that ‖v2‖ = 1.0) to yield h3,2 = 0.5361 and

v3 =

⎡
⎢⎢⎣
−0.1257

0.9565
−0.2625
−0.0178

⎤
⎥⎥⎦

The Hessenberg matrix H3 becomes

H3 =

⎡
⎣

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

0 h3,2 h3,3

⎤
⎦ =

⎡
⎣

18.0399 0.1671 0.5560
0.3483 −6.2370 2.0320

0 0.5361 −0.2931

⎤
⎦

where

h1,3 = vT
1 Av3

h2,3 = vT
2 Av3

h3,3 = vT
3 Av3

and

w3 = Av3 − h1,3v1 − h2,3v2 − h3,3v3 =

⎡
⎢⎢⎣

0.0207
−0.0037
−0.0238

0.0079

⎤
⎥⎥⎦

The next step is to compute (using QR factorization) and sort the eigenvalues
(and eigenvectors) of the small matrix H3. The eigenvalues of H3 are:

σ =

⎡
⎣

18.0425
−6.4166
−0.1161

⎤
⎦

Since the smallest two eigenvalues are desired, the eigenvalues are sorted such
that the desired eigenvalues are at the bottom (which they already are). The
undesired eigenvalue estimate is σ1 = 18.0425. Applying the shifted QR
factorization to H3 − σ1I yields:

H3 − σ1I =

⎡
⎣
−0.0026 0.1671 0.5560

0.3483 −24.2795 2.0320
0 0.5361 −18.3356

⎤
⎦
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and

QR =

⎡
⎣
−0.0076 −0.0311 0.9995

1.0000 −0.0002 0.0076
0 0.9995 0.0311

⎤
⎦
⎡
⎣

0.3483 −24.2801 2.0277
0 0.5364 −18.3445
0 0 0

⎤
⎦

From Q, the update Ĥ can be found:

Ĥ3 = Q∗H3Q

=

⎡
⎣
−6.2395 2.0216 0.2276

0.5264 −0.2932 −0.5673
0 0 18.0425

⎤
⎦

Note that the Ĥ(3, 2) element is now zero. Continuing the algorithm yields
the update for V̂ :

V̂ = V3Q =

⎡
⎢⎢⎣

0.6056 −0.1401 0.4616
0.1373 0.9489 0.2613
0.2606 −0.2804 0.5699

−0.7392 −0.0374 0.6276

⎤
⎥⎥⎦

where V3 = [v1 v2 v3], and

ŵ3e
T = w3e

T
3 Q =

⎡
⎢⎢⎣

0 0.0207 0.0006
0 −0.0037 −0.0001
0 −0.0238 −0.0007
0 0.0079 0.0002

⎤
⎥⎥⎦

Note that the first column of ŵeT is zeros, so that a new k-step Arnoldi
factorization can be obtained by equating the first k columns on each side
such that

AV̂2 = V̂2Ĥ2 + f̂2e
T
2 (7.27)

The third columns of V̂ and Ĥ are discarded.
This iteration/refinement procedure is continued until

‖AV − V H‖ =
∥∥weT

∥∥ < ε

at which time the calculated eigenvalues will be obtained within order of ε
accuracy.

7.4 Singular Value Decomposition

Singular value decomposition (SVD) produces three matrices whose product
is the (possibly rectangular) matrix A. In matrix form, the SVD is

A = UΣV T (7.28)
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where U satisfies UT U = I and the columns of U are the orthonormal eigen-
vectors of AAT , V satisfies V T V = I and the columns of V are the orthonor-
mal eigenvectors of AT A, and Σ is a diagonal matrix containing the square
roots of the eigenvalues corresponding to U (or V ) in descending order.

The SVD decomposition can be found by applying the either the QR or
Arnoldi method to the matrices AT A and AAT to compute the eigenvalues
and eigenvectors. Once the eigenvalues are found, the singular values are
the square roots. The condition number of a matrix is a measure of the
“invertibility” of a matrix and is defined as the ratio of the largest singular
value to the smallest singular value. A large condition number indicates a
nearly singular matrix.

Example 7.6
Find the singular value decomposition of

A =

⎡
⎢⎢⎣

1 2 4 9 3
3 1 3 2 6
4 2 5 7 7
8 3 8 4 10

⎤
⎥⎥⎦

Solution 7.6 The matrix A is 4 × 5, therefore U will be a 4 × 4 matrix, Σ
will be a 4 × 5 matrix with the four singular values on the diagonal followed
by a column of zeros, and V will be a 5 × 5 matrix.

Starting with
Â = AT A

The QR method for finding the eigenvalues and eigenvectors of Â yields

Â =

⎡
⎢⎢⎢⎢⎣

90 37 97 75 129
37 18 45 46 56
97 45 114 109 145
75 46 109 150 128

129 56 145 128 194

⎤
⎥⎥⎥⎥⎦

D =

⎡
⎢⎢⎢⎢⎣

507.6670 0 0 0 0
0 55.1644 0 0 0
0 0 3.0171 0 0
0 0 0 0.1516 0
0 0 0 0 0.0000

⎤
⎥⎥⎥⎥⎦

V T =

⎡
⎢⎢⎢⎢⎣

−0.3970 0.4140 −0.3861 −0.7189 0.0707
−0.1865 −0.0387 −0.2838 0.3200 0.8836
−0.4716 0.0610 −0.5273 0.5336 −0.4595
−0.4676 −0.8404 0.0688 −0.2645 −0.0177
−0.6054 0.3421 0.6983 0.1615 0.0530

⎤
⎥⎥⎥⎥⎦
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The matrix Σ has the squares of the singular values on the diagonals and
must be the same dimension as A, thus

Σ =

⎡
⎢⎢⎣

22.5315 0 0 0 0
0 7.4273 0 0 0
0 0 1.7370 0 0
0 0 0 0.3893 0

⎤
⎥⎥⎦

To find U , repeat with Â = AAT to obtain:

U =

⎡
⎢⎢⎣
−0.3853 −0.8021 −0.2009 0.4097
−0.3267 0.2367 0.7502 0.5239
−0.5251 −0.2161 0.3574 −0.7415
−0.6850 0.5039 −0.5188 0.0881

⎤
⎥⎥⎦

In addition to condition number, another common use of the SVD is to
calculate the pseudoinverse A+ of a non-square matrix A. The most commonly
encountered pseudoinverse is the Moore-Penrose matrix inverse, which is a
special case of a general type of pseudoinverse known as a matrix 1-inverse.
The pseudoinverse is commonly used to solve the least-squares problem Ax =
b when A is non-singular or non-square. From Section 6.1, the least squares
problem solution is given by

x =
(
AT A

)−1
Ab

= A+b

The matrix A+ can be found through LU factorization, but a much more
common approach is to use SVD. In this case, the pseudoinverse is given by

A+ = V Σ+UT (7.29)

where Σ+ is a matrix of the same dimension as AT with the reciprocal of the
singular values on the diagonal.

Example 7.7
Repeat Example 6.1 using a pseudoinverse.

Solution 7.7 The system of equations are repeated here for convenience:
⎡
⎢⎢⎣

4.27
−1.71

3.47
2.50

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.4593 −0.0593
0.0593 −0.4593
0.3111 0.0889
0.0889 0.3111

⎤
⎥⎥⎦
[

V1

V2

]
(7.30)

Use the pseudoinverse to solve for
[

V1

V2

]
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Applying the SVD:

U =

⎡
⎢⎢⎣
−0.5000 −0.6500 −0.5505 −0.1567

0.5000 −0.6500 0.1566 0.5505
−0.5000 −0.2785 0.8132 −0.1059
−0.5000 0.2785 −0.1061 0.8131

⎤
⎥⎥⎦

Σ =

⎡
⎢⎢⎣

0.5657 0
0 0.5642
0 0
0 0

⎤
⎥⎥⎦

V =
[−0.7071 −0.7071
−0.7071 0.7071

]

The matrix Σ+ is

Σ+ =
[

1.7677 0 0 0
0 1.7724 0 0

]

leading to A+

A+ =
[

1.4396 0.1896 0.9740 0.2760
−0.1896 −1.4396 0.2760 0.9740

]

and

[
V1

V2

]
=
[

1.4396 0.1896 0.9740 0.2760
−0.1896 −1.4396 0.2760 0.9740

]
⎡
⎢⎢⎣

4.27
−1.71

3.47
2.50

⎤
⎥⎥⎦

=
[

9.8927
5.0448

]

which is the same solution as Example 6.1.

7.5 Modal Identification

Although many systems are inherently nonlinear, in some instances they may
respond to well-tuned linear controls. In order to implement linear feedback
control, the system designer must have an accurate model of sufficiently low
order from which to design the control. Several approaches to developing
such lower-order models have included dynamic equivalencing, eigenanalysis,
and pole/zero cancellation. Frequently, however, the original system is too
complex or the parameters are not known with enough accuracy to produce an
adequate reduced order model. In practice, the system may have parameters
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that drift with time or operating condition which compromises the accuracy
of the mathematical model. In these cases, it is desirable to extract the modal
information directly from the system response to a perturbation. Using this
approach, it may be possible to replace the actual dynamic model with an
estimated linear model that is derived from the system output waveform.
The time-varying dynamic response of a power system to a disturbance may
be composed of numerous modes that must be identified. Several methods
have been proposed to extract the pertinent modal information from time
varying responses. An appropriate method must consider the inclusion of
nonlinearities, the size of the model that can be effectively utilized, and the
reliability of the results.

Methods that are applied directly to the nonlinear system simulation or
field measurements include the effects of nonlinearities. In full-state eigen-
value analysis, the size of the system model is typically limited to several
hundred states with present computing capabilities. This means that a typi-
cal system containing several thousand nodes must be reduced using dynamic
equivalencing. Modal analysis techniques that operate directly on system out-
put are not limited by system size. This means that standard time-domain-
analysis results are directly usable. This eliminates the possibility of losing
some of system modal content due to reduction. The estimated linear model
may then be used for control design applications or other linear analysis tech-
niques. The estimated model may be chosen to be of lower order than the
original model, but still retain the dominant modal characteristics.

This problem may be posed such that given a set of measurements that vary
with time, it is desired to fit a time-varying waveform of pre-specified form
to the actual waveform (i.e., minimize the error between the actual measured
waveform and the proposed waveform). The coefficients of the pre-specified
waveform yield the dominant modal characteristics of the underlying linear
system. Consider the following linear system:

ẋ(t) = Ax(t) x (t0) = x0 (7.31)

where

xi(t) =
n∑

k=1

ake(bkt) cos (ωkt + θk) (7.32)

is one of the n states. The parameters ak and θk are derived from influ-
ence of the initial conditions, whereas the parameters bk and ωk are derived
from the eigenvalues of A. The estimation of these responses yields modal
information about the system that can be used to predict possible unstable
behavior, controller design, parametric summaries for damping studies, and
modal interaction information.

Any time-varying function can be fit to a series of complex exponential
functions over a finite time interval. However, it is not practical to include a
large number of terms in the fitting function. The problem then becomes one
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of minimizing the error between the actual time-varying function and the pro-
posed function by estimating the magnitude, phase, and damping parameters
of the fitting function. In the problem of estimating a nonlinear waveform by
a series of functions, the minimization function is given by:

minf =
N∑

i=1

[
n∑

k=1

[
ake(bkti) cos (ωkti + θk)

]
− yi

]2

(7.33)

where n is the number of desired modes of the approximating waveform, N
is the number of data samples, yi is the sampled waveform, and

[a1 b1 ω1 θ1, . . . , an bn ωn θn]T

are the parameters to be estimated.
There are several approaches to estimating the modal content of a time

varying waveform. The Prony method is well-known and widely used in power
systems applications. The matrix pencil approach was introduced for extract-
ing poles from antennas’ electromagnetic transient responses. The Levenberg-
Marquardt iteratively updates the modal parameters by an analytic optimiza-
tion to minimize the error between the resulting waveform and the input data.

7.5.1 Prony Method

One approach to estimate the various parameters is the Prony method [23].
This method is designed to directly estimate the parameters for the exponen-
tial terms by fitting the function

ŷ(t) =
n∑

i=1

Aie
σit cos (ωit + φi) (7.34)

to an observed measurement for y(t), where y(t) consists of N samples

y (tk) = y(k), k = 0, 1, . . . , N − 1

that are evenly spaced by a time interval Δt. Since the measurement signal
y(t) may contain noise or dc offset, it may have to be conditioned before the
fitting process in applied.

The basic Prony method is summarized as

Prony Method

1. Construct a discrete linear prediction model from the measurement set

2. Find the roots of the characteristic polynomial of the model

3. Using the roots as the complex modal frequencies for the signal, deter-
mine the amplitude and phase for each mode
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These steps are performed in the z-domain, translating the eigenvalues to the
s-domain as a final step.

Note that equation (7.34) can be recast in complex exponential form as:

ŷ(t) =
n∑

i=1

Bie
λit (7.35)

which can be translated to

ŷ(k) =
n∑

i=1

Biz
k
i (7.36)

where
zi = e(λiΔt) (7.37)

The system eigenvalues λ can be found from the discrete modes by

λi =
ln (zi)

Δt
(7.38)

The zi are the roots of the n-th order polynomial

zn − (a1z
n−1 + a2z

n−2 + . . . + anz0
)

= 0 (7.39)

where the ai coefficients are unknown and must be calculated from the mea-
surement vector as:

⎡
⎢⎢⎢⎣

y(n − 1) y(n − 2) . . . y(0)
y(n − 0) y(n − 1) . . . y(1)

...
...

...
...

y(N − 2) y(N − 3) . . . y(N − n − 1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2

...
an

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

y(n)
y(n + 1)

. . .
y(N − 1)

⎤
⎥⎥⎦ (7.40)

Note that this is a system of N equations in n unknowns and therefore must
be solved by the least squares method to find the best fit.

Once zi has been computed from the roots of equation (7.39), then the
eigenvalues λi can be calculated from equation (7.38). The next step is to
find the Bi that produces ŷ(k) = y(k) for all k. This leads to the following
relationship:

⎡
⎢⎢⎢⎣

z0
1 z0

2 . . . z0
n

z1
1 z1

2 . . . z1
n

...
...

...
...

zN−1
1 zN−1

2 . . . zN−1
n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

B1

B2

...
Bn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y(0)
y(1)

...
y(N − 1)

⎤
⎥⎥⎥⎦ (7.41)

which can be succinctly expressed as

ZB = Y (7.42)
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Note that the matrix B is n × N ; therefore, equation (7.42) must also be
solved by the least squares method. The estimating waveform ŷ(t) is then
calculated from equation (7.35). The reconstructed signal ŷ(t) will usually
not fit y(t) exactly. An appropriate measure for the quality of this fit is a
“signal to noise ratio (SNR)” given by

SNR = 20 log
‖ŷ − y‖
‖y‖ (7.43)

where the SNR is given in decibels (dB).
Since the fit for this method may be inexact, it is desirable to have control

over the level of error between the fitting function and the original waveform.
In this case, a nonlinear least squares can provide improved results.

7.5.2 The Matrix Pencil Method

The Prony method described in the previous section is a “polynomial” method
in that it includes the process of finding the poles zi of a characteristic polyno-
mial. The matrix pencil (MP) method produces a matrix whose roots provide
zi. The poles are found as the solution of a generalized eigenvalue problem
[24]-[41]. The matrix pencil is given by

[Y2] − λ [Y1] = [Z1] [B] {[Z0] − λ [I]} [Z2] (7.44)

where

[Y ] =

⎡
⎢⎢⎢⎣

y(0) y(1) . . . y(L)
y(1) y(2) . . . y(L + 1)

...
...

...
y(N − L) y(N − L + 1) . . . y(N)

⎤
⎥⎥⎥⎦ (7.45)

[Z0] = diag [z1, z2, . . . , zn] (7.46)

[Z1] =

⎡
⎢⎢⎢⎣

1 1 . . . 1
z1 z2 . . . zn

...
...

...
z
(N−L−1)
1 z

(N−L−2)
2 . . . Z

(N−L−1)
n

⎤
⎥⎥⎥⎦ (7.47)

[Z2] =

⎡
⎢⎢⎢⎣

1 z1 . . . zL−1
1

1 z2 . . . zL−1
2

...
...

...
1 Zn . . . Zl−1

n

⎤
⎥⎥⎥⎦ (7.48)

[B] = matrix of residuals
[I] = n × n identity matrix
n = desired number of eigenvalues
L = pencil parameter, such that n ≤ L ≤ N − n



Eigenvalue Problems 269

Matrix Pencil Method

1. Choose L such that n ≤ L ≤ N − n

2. Construct the matrix [Y ]

3. Perform a singular value decomposition of [Y ] to obtain

[Y ] = [U ][S][V ]T (7.49)

where [U ] and [V ] are unitary matrices and contain the eigenvectors of
[Y ][Y ]T and [Y ]T [Y ] respectively.

4. Construct the matrices [V1] and [V2] such that

V1 = [v1 v2 v3 . . . vn−1] (7.50)
V2 = [v2 v3 v4 . . . vn] (7.51)

where vi is the i-th right singular vector of V .

5. Construct [Y1] and [Y2]

[Y1] = [V1]T [V1]
[Y2] = [V2]T [V1]

6. The desired poles zi may be found as the generalized eigenvalues of the
matrix pair {[Y2] ; [Y1]} .

From this point, the remainder of the algorithm follows that of the Prony
method to calculate the eigenvalues λ and the residual matrix B.

If the pencil parameter L is chosen such that L = N/2, then the perfor-
mance of the method is very close to the optimal bound [24].

It has been shown that under noise, the statistical variance of the poles
found from the Matrix Pencil method is always less than that of the Prony
Method [24].

7.5.3 The Levenberg-Marquardt Method

The nonlinear least squares for data fitting applications has the general form

minimize f(x) =
N∑

k=1

[ŷ(x, ti) − yi]
2 (7.52)

where yi is the output of the system at time ti, and x is the vector of magni-
tudes, phases, and damping coefficients of equation (7.34), which arise from
the eigenvalues of the state matrix of the system.
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To find the minimum of f(x), the same procedure for developing the Newton-
Raphson iteration is applied. The function f(x) is expanded about some x0

by the Taylor series:

f(x) ≈ f(x0) + (x − x0)T f ′(x0) +
1
2
(x − x0)T f ′′(x0)(x − x0) + . . . (7.53)

where

f ′(x) =
∂f

∂xj
for j = 1, . . . , n

f ′′(x) =
∂2f

∂xj∂xk
for j, k = 1, . . . , n

If the higher order terms in the Taylor’s expansion are neglected, then mini-
mizing the quadratic function on the right hand side of equation (7.53) yields

x1 = x0 − [f ′′ (x0)]
−1

f ′ (x0) (7.54)

which yields an approximation for the minimum of the function f(x). This
is also one Newton-Raphson iteration update for solving the necessary mini-
mization condition

f ′ (x) = 0

The Newton-Raphson equation (7.54) may be rewritten as the iterative linear
system

A(xk) (xk+1 − xk) = g(xk) (7.55)

where

gj(x) = − ∂f

∂xj
(x)

ajk(x) =
∂2f

∂xj∂xk
(x)

and the matrix A is the system Jacobian (or similar iterative matrix).
The derivatives of equation (7.52) are

∂f

∂xj
(x) = 2

N∑
k=1

[ŷk − yk]
∂ŷi

∂xj
(x)

and
∂2f

∂xj∂xk
(x) = 2

N∑
k=1

{
∂ŷk

∂xj
(x)

∂ŷi

∂xk
(x) + [ŷk − yk]

∂2ŷk

∂xj∂xk
(x)
}

In this case, the matrix element ajk contains second derivatives of the func-
tions ŷi. These derivatives are multiplied by the factor [ŷi(x) − yi] and will
become small during the minimization of f . Therefore the argument can be
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made that these terms can be neglected during the minimization process.
Note that if the method converges, it will converge regardless of whether the
exact Jacobian is used in the iteration. Therefore the iterative matrix A can
be simplified as

ajk = 2
N∑

i=1

∂ŷi

∂xj
(x)

∂ŷi

∂xk
(x) (7.56)

and note that ajj(x) > 0.
The Levenberg-Marquardt method modifies equation (7.55) by introducing

the matrix Â with entries

âjj = (1 + γ) ajj

âjk = ajk j �= k

where γ is some positive parameter. Equation (7.55) becomes

Â(x0)(x1 − x0) = g (7.57)

For large γ, the matrix Â will become diagonally dominant. As γ approaches
zero, equation (7.57) will turn into the Newton-Raphson method. The Levenberg-
Marquardt method has the basic feature of varying γ to select the optimal
characteristics of the iteration. The basic Levenberg-Marquardt algorithm is
summarized:

Levenberg-Marquardt Method

1. Set k = 0. Choose an initial guess x0, γ and a factor α.

2. Solve the linear system of equation (7.57) to obtain xk+1.

3. If f(xk+1) > f(xk), reject xk+1 as the new approximation, replace γ by
αγ, and repeat step 2.

4. If f(xk+1) < f(xk), accept xk+1 as the new approximation, replace γ
by γ/α, set k = k + 1, and repeat step 2.

5. Terminate the iteration when

‖xk+1 − xk‖ < ε

In the problem of estimating a nonlinear waveform by a series of functions,
the minimization function is given by:

minimizef =
N∑

i=1

[
m∑

k=1

[
ake(bkti) cos (ωkti + θk)

]
− yi

]2

(7.58)

where m is the number of desired modes of the approximating waveform, and
x = [a1 b1 ω1 θ1 . . . am bm ωm θm]T .
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As with all of the nonlinear iterative methods, the ability of the Levenberg-
Marquardt method to converge to a solution depends on the choice of initial
guess. In this case, it is wise to use the results of the matrix pencil or the
Prony method to provide the initial values.

7.5.4 The Hilbert Transform

The shape of a signal that contains a rapidly oscillating component that ver-
ies slowly with time is called the “envelope.” With the use of the Hilbert
transform, the rapid oscillations can be removed from the signal to produce
the representation of the envelope.

The Hilbert transform for x(t) is:

XH(t) = − 1
πt

x(t) = f(t)x(t) = F−1 {F (jω)X(jω)} (7.59)

The Fourier transform of (−πt)−1 is i sgn ω, which is +i for positive ω and
−i for negative ω. The Hilbert transformation is equivalent to a filter in
which the amplitudes of the spectral components are left unchanged, but their
phases are altered by π/2, positively or negatively according to the sign of ω.
The Hilbert transforms of even functions are odd and those of odd functions
are even. The cosine component transforms into negative sine components
and sine components transform into cosine components. A more in-depth
explanation of the Hilbert transform can be in found in [22].

The impulse response function of a single-degree-of-freedom system is an
exponential damped sinusoid. The Hilbert transform is used to calculate a
new time signal from the original signal. Both the signals are combined to
form the analytical signal

¯x(t) = x(t) − iXH(t) (7.60)

The magnitude of the analytic signal is the envelope of the original time
signal. When the envelope is plotted in the dB scale, the graph is a line.
Then the slope of the line is related to the damping ratio. The impulse
response function of a single-degree-of-freedom system can be described with
the following equation:

x(t) = Ae−ξωnt sin
(
ωn

(√
1 − ξ2

)
t
)

(7.61)

where ωn is the natural frequency, ξ is the damping ratio, and A is the residue.
The Hilbert transform of equation (7.61) is

XH(t) = Ae−ξωnt cos
(
ωn

(√
1 − ξ2

)
t
)

(7.62)

The analytic signal is

¯x(t) = Ae−ξωnt
(
sin
(
ωn

(√
1 − ξ2

)
t
)

+ i cos
(
ωn

(√
1 − ξ2

)
t
))

(7.63)
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The magnitude of the analytic signal eliminates the oscillatory component
and gives the envelope:

∣∣ ¯x(t)
∣∣ =
√

(Ae−ξωnt)2
(
sin2

(
ωn

(√
1 − ξ2

)
t
)

+ cos2
(
ωn

(√
1 − ξ2

)
t
))

= Ae−ξωnt

Taking the natural log of each side yields

ln
∣∣ ¯x(t)

∣∣ = ln
(
Ae−ξωnt

)

= ln A − ξωnt

This is the equation of a straight line in t. If the slope of the line is calculated,
the estimate of the damping ratio becomes

ξ = − slope
ωn

(7.64)

The Hilbert transform provides an approach to estimate the number of modes
in a waveform when the number of modes is not known beforehand.

7.5.5 Examples

The effectiveness of these methods will be illustrated with several examples
ranging from a simple three mode linear system to an actual power system
oscillation.

Simple Example

The application of the methods will initially consider the waveform shown in
Figure 7.3 which is generated from

x(t) =
3∑

i=1

aie
bit (cosωit + θi)

where

mode ai bi ωi θi

1 1.0 -0.01 8.0 0.0
2 0.6 -0.03 17.0 π
3 0.5 0.04 4.7 π/4

If the problem were approached as if the system data were not known,
applying the Hilbert transform would be the first step to estimate the number
of modes in the system. The frequency response from the Hilbert transform
is shown in Figure 7.4. From this figure, there are obviously three dominant
modes at 4.7, 8.0 and 17 radians which agree with the given data very well.
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FIGURE 7.3
Three mode waveform

Furthermore, the amplitudes are 0.48, 0.9 and 0.51 respectively, which also
correspond relatively well. The damping at each resonance frequency can
be determined if each natural frequency is isolated and the impulse response
frequency is calculated for each mode. The slope of the envelope of impulse
response can be used to estimate ξ for each frequency. After estimating the
damping ratio of each mode, the eigenvalues can be calculated.

Each of the three methods described previously is used to estimate the
signal parameters and to reconstruct the waveform.

Prony:

mode ai bi ωi θi

1 0.9927 -0.0098 7.9874 0.0617
2 0.6009 -0.0304 17.0000 3.1402
3 0.5511 0.0217 4.6600 0.9969

Matrix Pencil

mode ai bi ωi θi

1 1.0121 -0.0130 8.0000 0.0008
2 0.6162 -0.0361 16.9988 3.1449
3 0.5092 0.0364 4.6953 0.7989
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FIGURE 7.4
Frequency response of Figure 7.3

Levenberg-Marquardt

mode ai bi ωi θi

1 1.0028 -0.0110 7.9998 0.0014
2 0.6010 -0.0305 16.9994 3.1426
3 0.5051 0.0378 4.6967 0.7989

The reconstruction error in each waveform is measured

error =
N∑

i=1

[
m∑

k=1

[
ake(bkti) cos (ωkti + θk)

]
− yi

]2

(7.65)

and the errors for each method are:

Method error
Matrix Pencil 0.1411

Levenberg-Marquardt 0.0373
Prony 3.9749

Not surprisingly, the Levenberg-Marquardt yielded the best results since
it is an iterative method, whereas the other estimation methods are linear
non-iterative methods.

Power System Example

In this example, the accuracy of the methods will be compared using the
dynamic response of PSS/E simulation of a large Midwestern utility system
shown in Figure 7.5. This simulation contains several hundred states compris-
ing a wide range of responses. The number of dominant modes is not known.
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PSS/E waveform
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FFT of PSS/E waveform
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FIGURE 7.7
Reconstruction of the PSS/E waveform using various methods

Using the Hilbert method first to determine the number of probable modes
yields the FFT results shown in Figure 7.6. From this figure, it appears as
if there are five dominant modes that contribute significantly to the original
waveform, with several of the modes concentrated at low frequencies. There-
fore, the estimation methods introduced earlier will be applied to extract five
modes.

Extracting five modes, the results are shown in Figure 7.7 and summarized:

Prony:

mode ai bi ωi θi

1 1.7406 -0.5020 3.7835 -1.4870
2 1.5723 -0.1143 4.8723 -1.1219
3 1.0504 -0.0156 6.2899 -0.0331
4 2.1710 -0.2455 7.7078 2.2011
5 0.9488 -0.3515 8.3854 -1.6184

Matrix Pencil

mode ai bi ωi θi

1 2.0317 -0.5610 3.7357 -1.5158
2 1.3204 -0.0774 4.8860 -1.3607
3 0.7035 0.0527 6.3030 -0.3093
4 1.2935 -0.2400 7.4175 2.9957
5 0.6718 -0.0826 8.0117 0.3790
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Levenberg-Marquardt

mode ai bi ωi θi

1 1.8604 -0.5297 3.6774 -1.3042
2 1.1953 -0.0578 4.8771 -1.3405
3 0.8164 0.0242 6.2904 -0.2537
4 1.9255 -0.2285 7.6294 2.1993
5 0.6527 -0.2114 8.3617 -1.5187

The error in each method as determined by equation (7.65) and the relative
computation times are:

method CPU Error
Prony 0.068 228.16
Matrix Pencil 39.98 74.81
Levenberg-Marquardt 42.82� 59.74

� Depends on initial condition

Note that the Prony method is the most computationally efficient since it
only requires two least squares solutions. The Matrix Pencil method is more
computationally expensive since it requires a singular value decomposition
of a relatively large matrix. It also requires an eigensolution, but since the
matrix itself is relatively small (the size of the number of required modes), it is
not overly burdensome. Not surprisingly, the Levenberg-Marquardt method
is the most computationally expensive since it is an iterative method. Its
computational burden is directly related to the initial guess: the better the
initial guess, the faster the method converges. It is wise to choose the initial
guess as the parameters obtained from either the Prony or the Matrix Pencil
methods.

Similarly, the level of error in each method varies with the complexity of
the method. The Levenberg-Marquardt method yields the best results, but
with the greatest computational effort. The Prony has the largest error, but
this is offset by the relative speed of computation.

7.6 Power System Applications

7.6.1 Participation Factors

In the analysis of large scale power systems, it is sometimes desirable to have
a measure of the impact that a particular state has on a selected system
mode (or eigenvalue). In some cases, it is desirable to know whether a set
of physical states has influence over an oscillatory mode such that control of
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that component may mitigate the oscillations. Another use is to identify which
system components contribute to an unstable mode. One tool for identifying
which states significantly participate in a selected mode is the method of
participation factors [57]. In large scale power systems, participation factors
can also be used to identify inter-area oscillations versus those that persist
only within localized regions (intra-area oscillations).

Participation factors provide a measure of the influence each dynamic state
has on a given mode or eigenvalue. Consider a linear system

ẋ = Ax (7.66)

The participation factor pki is a sensitivity measure of the ith eigenvalue to
the (k, k) diagonal entry of the system A matrix. This is defined as

pki
∂λi

∂akk
(7.67)

where λi is the ith eigenvalue and akk is the kth diagonal entry of A. The
participation factor pki relates the kth state variable to the ith eigenvalue. An
equivalent, but more common expression for the participation factor is also
defined as

pki =
wkivik

wT
i vi

(7.68)

where wki and vki are the kth entries of the left and right eigenvectors as-
sociated with λi. As with eigenvectors, participation factors are frequently
normalized to unity, such that

n∑
k=1

pki = 1 (7.69)

When the participation factors are normalized, they provide a straightforward
measure of the percent of impact each state has on a particular mode. Par-
ticipation factors for complex eigenvalues (and eigenvectors) are defined in
terms of magnitudes, rather than complex quantities. In the case of complex
eigenvalues, the participation factors are defined

pki =
|vik||wki|∑n
i=1 |vik||wki| (7.70)

In some applications, it may be preferred to retain the complex nature of the
participation factors to yield both phase and magnitude information [29].
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FIGURE 7.8
Waveform for Problem 3

7.7 Problems

1. Find the eigenvalues and eigenvectors of the following matrices

A1 =

⎡
⎢⎢⎣

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎤
⎥⎥⎦

A2 =

⎡
⎣

2 3 4
7 −1 3
1 −1 5

⎤
⎦

2. Find the eigenvalues of the follow matrix using the shifted-QR method.

A =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦

3. Generate the waveform shown in Figure 7.8 on the interval t ∈ [0, 10]
with a time step of 0.01 seconds

x(t) =
3∑

i=1

aie
bit (cos cit + di)
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where
mode ai bi ci di

1 1.0 -0.01 8.0 0.0
2 0.6 -0.03 17.0 π
3 0.5 0.04 4.7 π/4

(a) Using 100 equidistant points on the interval [0, 10], estimate the six
system eigenvalues using Prony analysis. How do these compare
with the actual eigenvalues?

(b) Using 100 equidistant points on the interval [0, 10], estimate the
six system eigenvalues using Levenberg-Marquardt. How do these
eigenvalues compare with the actual eigenvalues? with those ob-
tained from the Prony analysis?

(c) Using 100 equidistant points on the interval [0, 10], estimate the
six system eigenvalues using the matrix pencil method. How do
these eigenvalues compare with the actual eigenvalues? with those
obtained from the Prony analysis?

(d) Using all of the points, estimate the six system eigenvalues using
Prony analysis. How do these compare with the actual eigenvalues?

(e) Using all of the points, estimate the six system eigenvalues us-
ing Levenberg-Marquardt. How do these compare with the actual
eigenvalues?

(f) Using all of the points, estimate the six system eigenvalues using
the matrix pencil method. How do these compare with the actual
eigenvalues?

(g) Using all of the points, estimate the two dominant modes (two
complex eigenvalue pairs) of the system response using the matrix
pencil method. Substitute the estimated parameters into

x(t) =
2∑

i=1

aie
bit (cos cit + di)

and plot this response versus the three mode response. Discuss the
differences and similarities.





References

[1] P. M. Anderson and A. A. Fouad, Power System Control and Stability.
Ames, IA: Iowa State University Press, 1977.

[2] W. E. Arnoldi, “The principle of minimized iterations in the solution of
the matrix eigenvalue problem,” Quart. Appl. Math., vol. 9, 1951.

[3] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, 2nd ed. Wiley Press, 1993.

[4] L. T. Biegler, T. F. Colemam, A. R. Conn, and F. N. Santosa, Large-scale
Optimization with Applications - Part II: Optimal Design and Control.
New York: Springer-Verlag, Inc., 1997.

[5] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical Solution of
Initial-Value Problems in Differential-Algebraic Equations. Philadelphia:
Society for Industrial and Applied Mathematics, 1995.

[6] L. O. Chua and P. Lin, Computer Aided Analysis of Electronic Circuits:
Algorithms and Computational Techniques. Englewood Cliffs, New Jer-
sey: Prentice-Hall, Inc., 1975.

[7] G. Dahlquist, A. Bjorck, Numerical Methods. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1974.

[8] G. Dantzig, Linear Programming: Introduction. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1997.

[9] R. Doraiswami and W. Liu, “Real-time estimation of the parameters of
power system small signal oscillations,” IEEE Transactions on Power
Systems, vol. 8, no. 1, February 1993.

[10] H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,”
IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 10,
pp. 1866-1874, October 1968.

[11] S. Eisenstate, M. Gursky, M. Schultz, and A. Sherman, “The Yale Sparse
Matrix Package I: The symmetric codes,” International Journal of Nu-
merical Methods Engineering, vol. 18, 1982, pp. 1145-1151.

[12] O. I. Elgerd, Electric Energy System Theory, An Introduction. New York,
New York: McGraw-Hill Book Company, 1982.

283



284 Computational Methods for Electric Power Systems

[13] J. Francis, “The QR Transformation: A unitary analogue to the LR
Transformation,” Comp. Journal, vol. 4, 1961.

[14] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations, Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1971.

[15] C. W. Gear, “The simultaneous numerical solution of differential-
algebraic equations,” IEEE Transactions on Circuit Theory, vol. 18, pp.
89-95, 1971.

[16] C. W. Gear and L. R. Petzold, “ODE methods for the solution of dif-
ferential/algebraic systems,” SIAM Journal of Numerical Analysis, vol.
21, no. 4, pp. 716-728, August 1984.

[17] A. George and J. Liu, “A fast implementation of the minimum degree
algorithm using quotient graphs,” ACM Transactions on Mathematical
Software, vol. 6, no. 3, September 1980, pp. 337-358.

[18] A. George and J. Liu, “The evoluation of the minimum degree ordering
algorithm,” SIAM Review, vol. 31, March 1989, pp. 1-19.

[19] H. Glavitsch and R. Bacher, “Optimal power flow algorithms,” Control
and Dynamic Systems, vol. 41, part 1, Analysis and Control System
Techniques for Electric Power Systems, New York: Academic Press,
1991.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore:
Johns Hopkins University Press, 1983.

[21] G. K. Gupta, C. W. Gear, and B. Leimkuhler, “Implementing linear
multistep formulas for solving DAEs,” Report no. UIUCDCS-R-85-1205,
University of Illinois, Urbana, Illinois, April 1985.

[22] Stefan Hahn, Hilbert Transforms in Signal Processing, Boston: Artech
House Publishers, 1996.

[23] J. F. Hauer, C. J. Demeure, and L. L. Scharf, “Initial results in Prony
analysis of power system response signals,” IEEE Transactions on Power
Systems, vol. 5, no. 1, February 1990.

[24] Y. Hua and T. Sarkar, “Generalized Pencil-of-function method for ex-
tracting poles of an EM system from its transient response,” IEEE
Transactions on Antennas and Propagation, vol 37, no. 2, February 1989.

[25] M. Ilic and J. Zaborszky, Dynamics and Control of Large Electric Power
Systems, New York: Wiley-Interscience, 2000.

[26] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software,
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[27] R. Kress, Numerical Analysis, New York: Springer-Verlag, 1998.



References 285

[28] V. N. Kublanovskaya, “On some algorithms for the solution of the com-
plete eigenvalue problem,” USSR Comp. Math. Phys., vol. 3, pp. 637-
657, 1961.

[29] P. Kundur, Power System Stability and Control. New York: McGraw-
Hill, 1994.

[30] J. Liu, “Modification of the minimum-degree algorithm by multiple elim-
ination,” ACM Transactions on Mathematical Software, vol. 11, no. 2,
June 1985, pp. 141-153.

[31] H. Markowitz, “The elimination form of the inverse and its application
to linear programming,” Management Science, vol. 3, 1957, pp. 255-269.

[32] A. Monticelli, “Fast decoupled load flow: Hypothesis, derivations, and
testing,” IEEE Transactions on Power Systems, vol. 5, no. 4, pp 1425-
1431, 1990.

[33] J. Nanda, P. Bijwe, J. Henry, and V. Raju, “General purpose fast de-
coupled power flow,” IEEE Proceedings-C, vol. 139, no. 2, March 1992.

[34] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear
Equations in Several Variables, San Diego: Academic Press, Inc., 1970.

[35] A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for
Electromagnetics, New York: IEEE Press, 1997.

[36] M. J. Quinn, Designing Efficient Algorithms for Parallel Computers,
New York: McGraw-Hill Book Company, 1987.

[37] Y. Saad and M. Schultz, “GMRES: A generalized minimal residual al-
gorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comput., vol. 7, no. 3, July 1986.

[38] O. R. Saavedra, A. Garcia, and A. Monticelli, “The representation of
shunt elements in fast decoupled power flows,” IEEE Transactions on
Power Systems, vol. 9, no. 3, August 1994.

[39] J. Sanchez-Gasca and J. Chow, “Performance comparison of three iden-
tification methods for the analysis of electromechanical oscillations,”
IEEE Transactions on Power Systems, vol. 14, no. 3, August 1999.

[40] J. Sanchez-Gasca, K. Clark, N. Miller, H. Okamoto, A. Kurita, and
J. Chow, “Identifying Linear Models from Time Domain Simulations,”
IEEE Computer Applications in Power, April 1997.

[41] T. Sarkar and O. Pereira, “Using the matrix pencil method to estimate
the parameters of a sum of complex exponentials,” IEEE Antennas and
Propagation, vol. 37, no. 1, February 1995.

[42] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability,
Upper Saddle River, New Jersey: Prentice-Hall, 1998.



286 Computational Methods for Electric Power Systems

[43] J. Smith, F. Fatehi, S. Woods, J. Hauer, and D. Trudnowski, “Transfer
function identification in power system applications,” IEEE Transac-
tions on Power Systems, vol. 8, no. 3, August 1993.

[44] G. Soderlind, “DASP3–A program for the numerical integration of par-
titioned stiff ODEs and differential/algebraic systems,” Report TRITA-
NA-8008, The Royal Institute of Technology, Stockholm, Sweden, 1980.

[45] D. C. Sorensen, “Implicitly restarted Arnoldi/Lanzcos methods for
large scale eigenvalue calculations,” in D. E. Keyes, A. Sameh, and V.
Venkatakrishnan, editors, Parallel Numerical Algorithms: Proceedings of
an ICASE/LaRC Workshop, May 23-25, 1994, Hampton, VA, Kluwer,
1995.

[46] D. C. Sorensen, “Implicit application of polynomial filters in a k-step
Arnoldi method,” SIAM J. Mat. Anal. Appl., vol. 13, no. 1, 1992.

[47] P. A. Stark, Introduction to Numerical Methods, London, UK: The
Macmillan Company, 1970.

[48] B. Stott and O. Alsac, “Fast decoupled load flow,” IEEE Transactions
on Power Apparatus and Systems, vol. 93, pp. 859-869, 1974.

[49] G. Strang, Linear Algebra and Its Applications, San Diego: Harcourt
Brace Javanonich, 1988.

[50] W. Tinney and J. Walker, “Direct solutions of sparse network equations
by optimally ordered triangular factorizations,” Proceedings of the IEEE,
vol. 55, no. 11, November 1967, pp. 1801-1809.

[51] L. Wang and A. Semlyen, “Application of sparse eigenvalue techniques to
the small signal stability analysis of large power systems,” IEEE Trans-
actions on Power Systems, vol. 5, no. 2, May 1990.

[52] D. S. Watkins, Fundamentals of Matrix Computations. New York: John
Wiley and Sons, 1991.

[53] J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford, England:
Clarendon Press, 1965.

[54] M. Yannakakis, “Computing the minimum fill-in is NP-complete,” SIAM
Journal of Algebraic Discrete Methods, vol. 2, 1981, pp. 77-79.

[55] T. Van Cutsem and C. Vournas, Voltage Stability of Electric Power
Systems, Boston: Kluwer Academic Publishers, 1998.

[56] R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1962.

[57] G. C. Verghese, I. J. Perez-Arriaga, and F. C. Schweppe, “Selective
modal analysis with applications to electric power systems,” IEEE
Transactions on Power Systems, vol. 101, pp. 3117-3134, Sept. 1982.



References 287

[58] W. Zangwill and C. Garcia, Pathways to Solutions, Fixed Points, and
Equilibria. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1981.






