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The Pendulum: Its Place in Science, Culture and
Pedagogy

MICHAEL R. MATTHEWS1, COLIN GAULD1 and ARTHUR STINNER2

1School of Education, University of New South Wales, Sydney 2052, Australia; 2Faculty of
Education, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract. The study and utilisation of pendulum motion has had immense scientific, cultural,
horological, philosophical, and educational impact. The International Pendulum Project (IPP) is
a collaborative research effort examining this impact, and demonstrating how historical studies of
pendulum motion can assist teachers to improve science education by developing enriched curricular
material, and by showing connections between pendulum studies and other parts of the school
programme especially mathematics, social studies and music. The Project involves about forty re-
searchers in sixteen countries plus a large number of participating school teachers.1 The pendulum
is a universal topic in university mechanics courses, high school science subjects, and elementary
school programmes, thus an enriched approach to its study can result in deepened science literacy
across the whole educational spectrum. Such literacy will be manifest in a better appreciation of the
part played by science in the development of society and culture.

The Pendulum in Western Science

The pendulum has played a significant role in the development of Western science,
culture and society. The pendulum was studied by Galileo, Huygens, Newton,
Hooke and all the leading figures of seventeenth-century science. The pendulum
was crucial for, among other things, establishing the collision laws, the conserva-
tion laws, the value of the acceleration due to gravity g, ascertaining the variation
in g from equatorial to polar regions and hence discovering the oblate shape of the
earth, and, perhaps most importantly, it provided the crucial evidence for Newton’s
synthesis of terrestrial and celestial mechanics.

The pendulum was important for the Galileo’s new science, and it had a cen-
tral place in Newton’s physics, with the historian Richard Westfall remarking that
‘without the pendulum, there would be no Principia’ (Westfall 1990, p. 82). Sub-
sequently the pendulum was at the core of classical mechanics as it developed
through the eighteenth, nineteenth and early twentieth centuries, with the work of
Stokes, Atwood and Eötvos being especially notable. Foucault’s pendulum, as well
as providing dynamical evidence for the rotation of the earth, also played a role in
the popularisation of science in the late nineteenth and early twentieth centuries
(Conlin 1999, Aczel 2003). Pendulum measurements enabled the shape of the
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MICHAEL R. MATTHEWS ET AL.

earth to be determined, and were pivotal for the science of geodesy (Heiskanen
and Vening Meinesz 1958).

The simple pendulum, when displaced through a small amplitude (<10◦) oscil-
lates with a natural frequency that depends solely upon its length. The pendulum
manifests simple harmonic motion, whereby the restoring force on the bob (the
tangential vector component of the pull of gravity) varies linearly with displace-
ment. This is a marvellous physical system and is emblematic of a wide range of
other such oscillating natural and perhaps social systems. The ideal, non-damped,
simple pendulum is a conservative system in which the potential energy associated
with the displacement is retained in the system when it swings. Galileo had an
understanding of this, and demonstrated it so simply by showing how the pen-
dulum, once released, retained its initial height, but did not exceed it. Low-level
mathematical models can ‘capture’ the motion of simple pendulums. With more
complicated pendulums – when the mass of the string, air disturbance, and fulcrum
resistances are taken into account – more sophisticated mathematics and differen-
tial equations are required in order to ‘capture’ the behaviour. With double and
triple pendulums chaotic motion can be induced which in turn requires still more
sophisticated mathematics in order to be properly modelled. The whole pendulum
system becomes more complex when the pendulum is driven by a varying torque
at its point of suspension and the limits on its amplitude are removed. Then the
pendulum’s behaviour becomes more complex and consequently more resistant to
mathematical capture. In recent decades mathematicians and physicists have jointly
worked on this problem.2

The pendulum can support an extended and integrated pedagogical journey
from elementary school to graduate programmes, in which the interplay of math-
ematics, technology, philosophy, culture, and experiment can be explored and
appreciated. The dependence of science upon mathematics is beautifully illustrated
at every stage of the pendulum story. The point can be made very early when
students, through there own investigations, ‘see’ that period varies as length. With
more sophisticated mathematical tools they can plot T against length (L) and, using
simple curve fitting procedures, eventually see that if T is plotted against

√
(L) a

straight line is obtained. This leads to the mathematical relationship T = k
√

(L).
The square root of length is a mathematical construct rather than something com-
monly used in our everyday life and this exercise demonstrates the importance of
mathematics in doing science.

The Pendulum and Timekeeping

The pendulum played more than a scientific role in the formation of the modern
world. The pendulum was central to the horological revolution that was intimately
tied to the scientific revolution. Huygens in 1673, following Galileo’s epochal ana-
lysis of pendulum motion, utilised the pendulum in clockwork and so provided the
world’s first accurate measure of time (Yoder 1988). The accuracy of mechanical
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clocks went, in the space of a couple of decades, from plus or minus half-an-hour
per day to a few seconds per day. This quantum increase in accuracy of timing
enabled hitherto unimagined degrees of precision measurement in mechanics, nav-
igation and astronomy. It ushered in the world of precision characteristic of the
scientific revolution (Wise 1995). Time could then confidently be expressed as an
independent variable in the investigation of nature.

Accurate time measurement was long seen as the solution to the problem of
longitude determination which had vexed European maritime nations in their ef-
forts to sail beyond Europe’s shores. If an accurate and reliable clock was carried
on voyages from London, Lisbon, Genoa, or any other port, then by comparing its
time with local noon (as determined by noting the moment of an object’s shortest
shadow or, more precisely, by using optical instruments to determine when the
sun passes the location’s north-south meridian), the longitude of any place in the
journey could be ascertained. As latitude could already be determined, this enabled
the world to be mapped. In turn, this provided a firm base on which European
trade and colonisation could proceed. The chances of being lost at sea were greatly
decreased. This story has been enormously popularised by Dava Sobel (1995). By
utilising her work, and that of others, students can realize that the chronological
method rather than the astronomical method was the most practical way to solve
the problem of locating the longitude of a point on earth. Using Galileo’s approach
of correlating the occultation of the moons of Jupiter, the timing of a planetary
transit, or the timing of a solar or lunar eclipse, were all beset with difficulties
of observation and were generally unreliable. John Harrison’s marine chrono-
meter, which followed on his extensive pendulum clock constructions, solved the
longitude problem.3

The clock transformed social life and customs: patterns of daily life could be
‘liberated’ from natural chronology (the seasonally varying rising and setting of the
sun) and subjected to artificial chronology; labour could be regulated by clockwork
and, because time duration could be measured, there could be debate and struggle
about the length of the working day and the wages that were due to agricultural
and urban workers; timetables for stage and later train and ship transport could
be enacted; the starting time for religious and cultural events could be specified;
punctuality could become a virtue; and so on. The transition from ‘natural’ to
‘artificial’ hours was of great social and psychological consequence: technology,
a human creation, begins to govern its creator.4

The clock did duty in philosophy. It was a metaphor for the new mechanical
worldview that was challenging the entrenched Aristotelian, organic and teleolo-
gical, view of the world that has sustained so much of European intellectual and
religious life. In theology, the clock was appealed to in the influential argument
from design for God’s existence – if the world functions regularly like a clock, as
Newton and the Newtonians maintained, then there must be a cosmic clockmaker.5
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Horology

The link between the seventeenth century revolution in timekeeping, and devel-
opments in physics and methodology is oft-ignored. Despite there being scores
of excellent books, and hundreds of research articles, on the technical, social and
comparative history of timekeeping, there are few studies that connect the pendu-
lum clock to Galileo and Huygens’ discoveries of the physics of the pendulum,
and even less studies that connect the pendulum clock to the Galilean revolution in
scientific methodology. Galileo’s law of isochronous motion, and hence his direc-
tions for using the pendulum in timekeeping, could not be accepted until he threw
off the straight- jacket placed on science by the epistemological primacy given by
Aristotelians to experience and the evidence of the senses. As long as scientific
claims were judged by what could be seen, and as long as mathematics and physics
were kept separate, then Galileo’s pendulum claims could not be substantiated.
Their substantiation required not just a new science, but a new way of judging
scientific claims, a new methodology of science.

The Seconds Pendulum as a Universal Standard of Length

Huygens, in the process of elaborating his theory of pendulum motion and clock-
work design argued in 1673 that the seconds pendulum could provide a new
international standard of length (its length is effectively one modern metre). Un-
doubtedly this would have been a major contribution to simplifying the chaotic
state of measurement existing in science and everyday life. He thought that this
standard was dependent only upon the force of gravity, which he took to be constant
all over the earth, and thus the length standard would not change with change of
location. The standard was to be portable over space and time. Alas, Jean Richer’s
Cayenne voyage of 1672 suggested that the Paris seconds pendulum had to be
very slightly shortened to beat seconds in tropical Cayenne (Matthews 2000, pp.
144–146). Still, if a specific latitude were agreed upon (Paris? London? Berlin?
Madrid?) then Huygens’ proposal would answer to the pressing need of a natural,
invariant length unit. Once a subsidiary volume standard was created, by filling
this volume with rain water, an international mass unit would also be created. How
Huygens’ 1673 proposal of the seconds pendulum as a universal length stand-
ard was related to the century later (1793) decree of the French Revolutionary
Assembly establishing the metre length standard as one 40th million part of the
circumference of the earth, is an intriguing story with rich methodological, social
and political overtones.6

Philosophy of Science and Pendulum Studies

Philosophy of science should be informed by history of science. This is one of
the important contributions of Thomas Kuhn’s legacy to science studies. Histor-
ical study of the pendulum case shows how Galileo initiated the methodological
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transition which was to culminate in the Galilean-Newtonian Paradigm (GNP)
which quickly came to characterise the Scientific Revolution, and the subsequent
centuries of modern science. The Aristotelian epistemological taboo on manipulat-
ing nature, or experimenting, was lifted, as was the Aristotelian hesitancy to mix
mathematics with science. The long entrenched conviction that only undisturbed
or ‘natural’ states-of- affairs would reveal their essence was slowly replaced by
the view that nature has to be simplified, that variables had to be controlled, that
‘inputs’ and ‘outputs’ needed to be measured and represented mathematically, and
that scientific understanding was something other than grasping the essence or
nature of things and ascertaining their final causes or teleological purposes.7

There are, admittedly, problems with ‘historicised’ philosophy of science. One
is that history can be mined merely to find support for antecedently arrived at
epistemological positions. History is then ‘reconstructed’ to suit whatever philo-
sophical position is being advocated. Albert Schweitzer, in his monumental 1910
work on The Quest of the Historical Jesus that traced the history of Christian
interpretation of Jesus, remarked that ‘each successive epoch of theology found
its own thoughts in Jesus . . . . But it was not only each epoch that found its reflec-
tion in Jesus; each individual created Him in accordance with his own character’
(Schweitzer 1910, p. 4). Schweitzer could equally have been talking of Galileo. It is
notorious that Galileo has been made out to be a shining example of the full range
of epistemological positions: from rationalist, through empiricist and experiment-
alist, to positivist, and to methodological anarchist (Crombie 1981). The common
thread is that the epistemology attributed to Galileo is usually the one favoured by
the biographer or interpreter.

There is a chicken-and-egg problem with the Kuhnian stance. If philosophy
of science emerges from history of science, how is the history first demarcated?
Independently of a philosophical, normative, position what will count as the subject
matter of history from which our methodological lesson is to be drawn? Do we
draw lessons equally from Christian Science, National Socialist Science, Lysenko-
ism, Astrological Science, Islamic Science, Hindu Science, New-Age Science as
well as classical mechanics, thermodynamics, and quantum mechanics?

The two standard ways around these problems are essentialist approaches on
the one hand, and nominalist approaches on the other. For essentialists, history is
ignored and science is characterised on a priori grounds – usually philosophical,
political or sometimes religious. For nominalists, philosophy is ignored, and sci-
ence is taken to be whatever people claiming to do science actually do. This option
is popular among cultural historians of science and sociologists of science. It is bet-
ter to steer a path between these two alternatives by focussing on an episode that all
can agree upon as being good science, and then teasing out some methodological
lessons from that. If the achievements of Galileo and Newton are not considered
good, or at least, representative, science, then the very question of the epistemology
of science loses its cogency. This is a version of the common ‘paradigm case’
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argument in philosophy: to understand something, first find an exemplary instance
of it, and examine its features and ramifications.8

Galileo’s Methodological Revolution

The seventeenth century’s analysis of pendulum motion is a particularly apt win-
dow through which to view the methodological heart of the scientific revolution.
More particularly, the debate between the Aristotelian Guidobaldo del Monte and
Galileo over the latter’s pendular claims, represents, in microcosm, the larger meth-
odological struggle between Aristotelianism and the new science. This struggle is
about the legitimacy of idealisation in science, and the utilisation of mathematics
in the construction and interpretation of experiments. Del Monte was a prominent
mathematician, engineer and patron of Galileo (Renn et al. 2000, Matthews 2000,
pp. 100–108). He kept indicating how the behaviour of pendulums contradicted
Galileo’s claims about them. Galileo kept maintaining that refined and ideal pendu-
lums would behave according to his theory. Del Monte said that Galileo was a great
mathematician, but a hopeless physicist. This is the methodological kernel of the
scientific revolution. The development of pendular analyses by Huygens, and then
Newton, beautifully illustrates the interplay between mathematics and experiment
so characteristic of the emerging Galilean-Newtonian Paradigm. If students can be
made familiar through their own investigations with some highlights of this nascent
history of the pendulum, then they will have learnt something important about the
origins and nature of modern science.

It is acknowledged that science has moved on, and that it can be claimed that
understanding seventeenth century debates about the pendulum is irrelevant to
understanding modern techno-industrial science and its methodology. This is a
complex issue but, in brief, understanding origins, and development, is important
for understanding and judging the present. This is true in just about all spheres
– political, religious, social and personal – and no less so in conceptual matters.9

Further modern science has not so outgrown its methodological roots as to make
irrelevant an examination of central seventeenth century epistemological debates.
Even if it could be shown that modern science is methodologically different from
its origins, nevertheless understanding where modern science has come from and,
consequently, what occasioned the change, is still important.

In education it is sensible to begin with simple or idealised cases. Presenting
students with the full story – the truth, the whole truth, and nothing but the truth
– is rarely a good idea. Concentrating on just some key aspects of a topic, be it
in history, economics, biology, or what ever, makes pedagogical sense. Galileo’s
debate with del Monte debate does capture in comprehensible form some of the
core issues of epistemology – the distinction between observation and experiment,
the relationship of evidence to knowledge claims, the role of theory in guiding
experiment, and so on – and this gives an educational justification for its present-
ation. Provided students are made aware that the complete picture, or the modern
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picture, might be more complex, and provided they are encouraged to examine how
science may have changed, then dealing with the seventeenth century is education-
ally and philosophically justified. These claims conform to the ‘Genetic Method’
in pedagogy; a method that consciously endeavours to have students re-tread the
intellectual and experimental path that science has moved along from its origins.

‘Big Picture’ History of Science

The pendulum story fits into the ‘big picture’ or ‘grand narrative’ genre of history
of science: it deals with the interrelatedness of timekeeping, pendulum science,
philosophy and social forces; and it endeavours to draw methodological lessons
from all this. Big Pictures in the history of science need not be painted with broad
brush strokes. The IPP endeavours to compose a big picture but does so with fairly
fine brushes. The IPP deals with both internal matters concerning the develop-
ment and refinement of scientific concepts; and external matters such as the social
and cultural contexts in which science develops. This distinction needs detailed
attention, and ultimately it is somewhat conventional. For instance, a change in
epistemology was fundamental to Galileo’s achievements in understanding pen-
dulum motion. Is then epistemology internal or external to science? Huygens’
recognition of the isochronous nature of cycloidal motion rested upon the new
geometrical analysis of the cycloid curve. Is then mathematics internal or external
to science? Neither Galileo’s nor Huygens’ proposals for utilising the pendulum in
timekeeping could be experimentally tested until technological advances in metal-
lurgy, gear-cutting and escapement design were made. Is then technology internal
or external to science? Once science is recognised as part of the intellectual culture
of a society then the separation of ‘internal’ and ‘external’ elements borders on
being conventional.

That the distinction is blurred, does not mean that it cannot be made in some
form. It is clear that the longitude problem played a major role in the development
of clockwork. Solving longitude was one of the major preoccupations of European
nations from the fifteenth to the eighteenth centuries. King’s ransoms were offered
for its solution. Despite all the external financial and political pressure, a solution
had to wait on scientific, methodological and mathematical progress. The world
was the judge of putative solutions, not political or ideological interests. This is
an important point to be appreciated at a time when many maintain that science
simply dances to the tune of the last patron who paid the fiddler. In science, paying
the fiddler and getting a good dance, are two different things.

The Pendulum and Piagetian Research

The pendulum entered into educational research and cognitive psychology with the
publication in 1958 of the English translation of Bärbel Inhelder and Jean Piaget’s
The Growth of Logical Thinking from Childhood to Adolescence (Inhelder and Pia-
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get 1958). Chapter Four of the book describes the pendulum tasks that Piaget and
Inhelder gave to children to ascertain the extent to which they could isolate and
manipulate potential variables (length, amplitude, weight, impetus) that affected
the periodicity of the pendulum. The chapter is titled ‘Operations of Exclusion
of Variables’ because only one of the four potential variables impact upon the
duration of swing. Performing the task of isolating and uncoupling (controlling) the
variables was seen as a window onto the child’s cognitive structures or capacities
and their developmental sequencing. The tasks subsequently became a common-
place in diagnostic testing, being labelled ‘Piagetian Reasoning Tasks’ (PRT); as
they involved extensive engagement with the child, the test procedure was called
‘Méthode Clinique’ (or, the Clinical Method). Successful completion of the tasks
was seen as indicative of the change from concrete to formal operational thinking.
The subheadings of the chapter indicate the cognitive sequencing:

Stage I Indifferentiation between the subject’s own actions and the motion of
the pendulum.

Stage II Appearance of serial ordering and correspondence, but without separ-
ation of variables.

Stage IIIa Possible but not spontaneous separation of variables.

Stage IIIb The separation of variables and the exclusion of inoperant links.

The pendulum did for reasoning and formal thinking tests what it centuries
earlier had done for timekeeping. Subsequently Piaget’s cognitive theory, and his
test protocols, have been extensively scrutinised.10 Contributors to the IPP appraise
this research tradition, commenting on its strengths, weaknesses and seeing how
pendulum investigations might still be used to assess higher order mental capacities
and children’s ability to reason proportionally, to control variables, to make infer-
ences, to draw conclusions about the truth of hypotheses given certain evidence –
in brief, to think scientifically.

Enriched Scientific Literacy

Science literacy should be interpreted in a broad and generous sense, so that liter-
acy is seen as involving an understanding and appreciation the nature of science,
including its history, methodology and interrelations with culture. This is a de-
manding objective, but given the centrality of science to the development of society,
culture and self-understanding, it is one that should be pursued by educationalists.
In the USA, the National Science Education Standards (NRC 1996), and AAAS’s
reports Project 2061 (Rutherford and Ahlgren 1990) and The Liberal Art of Sci-
ence (AAAS 1990) all endorse this wider, liberal idea of scientific literacy. They
recognise that:

Science courses should place science in its historical perspective. Liberally educated students – the
science major and the non-major alike – should complete their science courses with an appreciation

8
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of science as part of an intellectual, social, and cultural tradition . . . . Science courses must convey
these aspects of science by stressing its ethical, social, economic, and political dimensions. (AAAS
1990, p. 24)

This view is shared by the National Curriculum in the UK, a number of pro-
vincial science curricula in Canada, the Norwegian science curriculum, the Danish
science curriculum, and the New South Wales state syllabus in Australia. Most sci-
ence programmes aspire to having students know more than just a certain amount
of science content, and having a certain level of competence in scientific method
and scientific thinking. Most programmes want students to have some sense of
the ‘big picture’ of science: its history, philosophy and relationship to social ideo-
logies, institutions and practices (McComas and Olson 1998). In most countries,
science education has dual goals: promoting learning of science, and also learning
about science. Or, as it has been stated, science education has both disciplinary
and cultural goals (Gauld 1977). Teaching the history and philosophy of pendulum
motion is an ideal vehicle for realising some of these more ambitious aspirations
for scientific literacy.

Teaching the Physics of the Pendulum and Its History

The pendulum is a remarkably simple device and has long been part of the physics
curriculum, a fact well documented in the IPP bibliography of pendulum articles
that have appeared over the past fifty years in major science education journals
(Gauld 2004). In its basic form – a string supporting a heavy bob – the pendu-
lum demonstrates clearly the interchange between gravitational potential energy
and kinetic energy and, with appropriate measuring instruments, the constancy of
the total energy throughout its motion. Teachers have used the simple pendulum,
swinging through small angles, to teach the skills of measurement and graphical
techniques for deriving the relationship between dependent (in this case, period)
and independent variables (length of the string).

More complex types of pendulums (such as the physical, spring-mass, tor-
sional and Wilberforce pendulums) can be used to demonstrate dramatically a
wide range of physical phenomena and provide a context in which students can
become acquainted with the process of mathematical modelling. In the classroom
pendulum motion provides a model for many everyday oscillatory phenomena such
as walking and the movement of a child’s swing.

At the tertiary level there has been renewed interest in the pendulum to
demonstrate chaotic behaviour. For these investigations the pendulum amplitude is
unrestricted and the point of suspension is vibrated at varying amplitudes and fre-
quencies. By removing the requirement that the amplitude be small the behaviour
of the pendulum as a non-linear oscillator can clearly be seen.

The history of the uses of the pendulum in the study of kinematics and dynamics
contains almost everything required to teach the fundamentals of kinematics and
dynamics. The following is a brief history of the pendulum and a list of suggestions
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for the physics classroom.11 Clearly, teachers who would use a historical approach
like this one must have more than a cursory acquaintance with the history of
science.

The inclined plane and the pendulum were crucial in the development of Ga-
lileo’s kinematics and Newton’s dynamics in the seventeenth century. In many
of the key problems of Galileo these simple devices were connected and used
in creative ways to study motion, first without considering the forces involved
(kinematics), and later investigate the forces that caused this motion (dynamics).
Galileo ‘diluted gravity’ and extrapolated to free fall in an attempt to understand
what Aristotle called ‘natural motion’. Studying the pendulum, Galileo thought
that an arc of a circle represented the ’least time’ path of an object in a vertical
plane.

Huygens went beyond Galileo and used the pendulum to find the expression for
‘centrifugal’ force on a body moving in a circle, as well as the modern formula
for the period of a pendulum for small angles. He was the first to find the modern
formula, namely that T = 2π

√
(L/g) for the simple pendulum and also the first

to write the mathematical statement for ‘centrifugal’ acceleration as a = v2/R. He
used long and heavy pendula to determine the value of gravitational acceleration.
He later correlated latitude and the local value of g to test his ideas. Huygens was
also the first show (geometrically) that the path along which a pendulum would
show isochronous motion was a cycloid and not the arc of a circle. From this
background we can generate many experiments and problems that cover all those
found in textbooks and beyond and in more interesting ways (Stinner and Metz
2003).

Huygens constructed the first pendulum clock that kept fairly accurate time.
However, he failed to realize that the cycloid also represented the ‘least time’ path
of descent of a particle in a vertical plane. It was left to Newton, Leibniz and
Johannes Bernoulli to lay the foundation of a new branch of the calculus, in order to
solve problems such as the brachistochrone, or ‘least time’ of descent between two
points in a vertical plane. In the capable hands of Euler their approach then became
a powerful method to solve minimum and maximum problems, called ‘variational
calculus’. Contemporary teachers can build a simple apparatus using two wires,
one straight and the other roughly shaped as a cycloid, with two steel beads slid-
ing down the wires. The bead travelling the longest path (the cycloid) takes the
shortest time! This an example of a discrepant event that is sure to generate much
discussion.

The work of Robert Hooke, a contemporary of Newton, should be included in
this historical presentation. Textbooks mention Hooke only in connection with his
law of springs. Hooke has been called ‘the British Leonardo’. He was a polymath:
scientist, inventor and arguably the greatest experimenter of the seventeenth cen-
tury. He was the curator of the Royal Society and sometime friend of Newton.12

He used his law (F = −kx) to show that simple harmonic motion (SHM), like that
of the pendulum, or an oscillating mass attached to a spring, arises when this law
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holds. His scientific battles with Newton were legendary. When Newton became
the president of the Royal Society in 1705, he expunged all vestiges of Hooke
from the Society. We identify Robert Hooke by the famous drawing he made in his
revolutionary Micrographia that he published at the age of 30 years. Discussing
the confrontation between Newton and Hooke, students quickly come to realize
that science is very much a human endeavor, and that scientists embody the full
range of human foibles.

Students can be asked the question: ‘What experiments did Newton perform that
suggested and confirmed his three laws of motion?’ Textbooks seldom discuss the
experimental work of Newton beyond his optical experiments. It is not generally
known that in his study of dynamics Newton used pendula to test his second and
third laws of motion, as well as centripetal acceleration. Inertia, or his first law of
motion, was seen as the consequence of a thought experiment that could not be
tested directly. Newton went beyond Galileo’s idea of inertia as ‘the circumnavig-
ation of an object on a perfectly smooth Earth’ to the idea of ‘straight line motion
with a constant speed in deep space when there are no forces acting on the object’.
His second law, F = ma, can be applied to a pendulum to demonstrate that if
Hooke’s law holds (restoring force is proportional to the displacement of the mass
of the pendulum from the vertical) then we have simple harmonic motion. This part
of the story is often told in textbooks, but Newton’s experiments to test his third
law is seldom mentioned.

The third law, ‘action is equal to reaction’, was demonstrated by Newton using
two long (3–4m) pendula and having them collide. He used a result of Galileo
(that the speed of a pendulum at its lowest point is proportional to the chord of its
arc) and applied it to the collision by comparing the quantities mass times chord
length, before and after collision. This is one of the few detailed accounts found in
the Principia that high school students can read and understand. Students soon see
that the third law is really equivalent to the principle of the conservation of linear
momentum (Gauld 1993, 1998, 1999). Corollary III to his Laws of Motion states
that ‘The quantity of motion, which is obtained by taking the sum of the motions
directed towards the same parts, and the difference of those directed to contrary
parts, suffers no change from the action of bodies among themselves’ (Newton
1729/1934, p. 17). For Newton this concept of ‘quantity motion’ represents what
we call momentum and this corollary states what we call the law of conservation of
momentum (Cohen 2002). Finally, Newton also used long bifilar pendula to test the
equivalence of inertial and gravitational mass and came to the conclusion that to a
‘thousandth part of the whole’ they were equivalent. It is possible to replicate the
experiments of Newton, using long pendula consisting of large wooden spheres, or
bowling balls, suspended by wires.

The pendulum also played an important role in the next two centuries. Benjamin
Robins in 1742 adapted the pendulum in his ballistic device to measure the muzzle
velocity of bullets. Count Rumford, famous as the debunker of the caloric theory, in
1781 adapted Robins’ method and patented it. This method of finding the muzzle
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velocity of bullets was used until the recent effective application of high speed
photography. Here we have an experiment that can be replicated using a ‘Gauss
gun’ that propels ball bearings at low speeds.

Later, in 1790, George Atwood used the pendulum incorporated in his famous
machine, named after him, as a research apparatus. One of the experiments he
performed was to test Newton’s second law of motion. Atwood’s machine is forever
enshrined in physics textbooks problems, but it is seldom mentioned that Atwood’s
approach was the first direct ‘test’ of Newton’s second law of motion. The pendu-
lum in this experiment is part of the apparatus. A simple pulley can be used with
two dissimilar weights and a pendulum to calculate the value of acceleration due
to gravity.

In 1851 Jean Foucault designed a very long and heavy pendulum to demonstrate
for the first time directly that the Earth revolves around its axis (Aczel 2003).
Teachers can offer a good discussion of this dramatic and celebrated demonstration.
Replication in the classroom is difficult but many science museums and centres
have a Foucault pendulum demonstration.

Included in a rich history of the pendulum should be Hermann von Helmholtz’s
studies of resonance. Although the original studies were made for sound, Helm-
holtz found an analogue for his colleagues Bunsen and Kirchhoff to explain the
dark absorption lines of the solar spectrum. The important phenomenon of reson-
ance can be dramatically demonstrated by using coupled pendula and, at the same
time resonance demonstrations made using tuning forks imbedded in resonance
boxes.

Teachers can discuss what may be the last of the great classical experiments
to use a pendulum at the turn of the early twentieth century, namely the Eötvos
experiment, to test the ratio of inertial and gravitational masses. This experiment is
important even today and is connected with Einstein’s General Theory of Gravity
and with a recent hypothesis of a ‘fifth force’ in nature.

Recently the pendulum has obtained a high profile in the demonstration of chaos
theory. The study of the harmonic oscillator in all its manifestations in dynamics,
electricity, and even atomic theory, can be traced back to the properties of the
pendulum.

Curriculum Considerations

The educational usefulness of the IPP can be gauged from looking at the recently
adopted US National Science Education Standards (NRC 1996). The Standards
adopt a liberal or expansive view of scientific literacy saying that it ‘includes un-
derstanding the nature of science, the scientific enterprise, and the role of science
in society and personal life’ (NRC 1996, p. 21). The Standards also devote two
pages to the pendulum (pp. 146–147): however there is no mention of the history,
philosophy, or cultural impact of pendulum motion studies; there is no mention of
the pendulum’s connection with timekeeping; no mention of the longitude prob-
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lem; and in the suggested assessment exercise, the obvious opportunity to connect
standards of length with standards of time, is not taken, rather students are asked to
construct a pendulum that makes six swings in 15 seconds (Matthews 1998). The
Standards document was reviewed by tens of thousands of teachers and educators,
and putatively represents current best practice in science education. It is clear that a
little historical and philosophical knowledge about the pendulum could have trans-
formed the treatment of the subject in the Standards and would have encouraged
teachers to realise the expansive goals of the document through their treatment of
the pendulum. This would have resulted in a much richer and more meaningful sci-
ence education for US students. That this historical and philosophical knowledge is
not manifest in the Standards, indicates the amount of work that needs to be done
in having science educators become more familiar with the history and philosophy
of the subject they teach.

The same point is recognised in the joint study undertaken by the Biological
Sciences Curriculum Study and the Social Science Education Consortium when
they say that the first barrier to school students understanding anything of the
history and nature of science and technology is ‘the preparation of teachers is
inadequate’ (Bybee et al. 1992, p. xiii). The problem is not confined to the US:
it is an international problem. Hopefully the research publications and classroom
materials generated by the IPP will do something to ameliorate this problem.

Liberal Education and Pendulum Teaching

The contextual, intellectualist, cross-disciplinary proposals advanced by the IPP
find their natural home in the liberal education tradition, whose core commitment
is that education is concerned with the development of a range of knowledge and a
depth of understanding, and with the cultivation of intellectual and moral virtues.13

The intellectual virtues certainly include developing capacities for clear, logical
and critical thought. These liberal goals are contrasted with goals such as pro-
fessional training, job preparation, promotion of self-esteem, social engineering,
entertainment, or countless other putative purposes of schooling that are enunciated
by politicians and administrators. The AAAS well states the matter when it says:

Ideally, a liberal education produces persons who are open-minded and free of provincialism, dogma,
preconception, and ideology; conscious of their opinions and judgments; reflective of their actions;
and aware of their place in the social and natural worlds. (AAAS 1990, p. xi)

And then adds: ‘The experience of learning science as a liberal art must be extended
to all young people so that they can discover the sheer pleasure and intellectual
satisfaction of understanding science’ (ibid). On this liberal view, science education
is seen as contributing to the overall education of students, and thus considerations
about aims and purposes of education constrain decisions about science education.
The development of an educated person is the telos of school science teaching; this
is the ‘prize’ that teachers’ eyes need to be kept on.
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Participants in the IPP believe that the pendulum provides an accessible point of
entry, or door, for students to learn important components of scientific knowledge,
key features of scientific method, and important aspects of the interplay between
science and its social and cultural context. A good pendulum-based, or pendulum-
assisted, course allows students to learn:
(i) Basic scientific knowledge, such as the laws of fall, laws of motion, collision

laws, and the laws of conservation of momentum and energy.
(ii) Essential features of scientific inquiry, such as observation, measurement, data

collection, control of variables, experimentation, idealisation, and the use of
various mathematical representations.

(iii) Important aspects of how science interrelates with society, culture and techno-
logy, as manifest in the use of the pendulum in timekeeping, navigation, length
standards, and so on.

Further, the same door is available at all stages of a student’s education, from
elementary school to graduate studies in physics. What is ‘behind the door’ will
change with teacher sophistication, student preparedness and curricular demands.
It is hoped that the IPP research publications appearing in two special issues of
Science & Education (Vol. 13, Nos. 4–5, 7–8), an associated anthology (Matthews,
Gauld and Stinner 2005), and the pedagogical materials that will follow, will assist
teachers to convey this richer view of science to students, and consequently deepen
students appreciation of science and its impact on human thought and well being.

Notes
1 The Project is coordinated by Michael Matthews at the University of New South Wales. The
book Time for Science Education: How Teaching the History and Philosophy of Pendulum Mo-
tion can Contribute to Science Literacy (Matthews 2000) provides an overview of some of the
scholarly and pedagogical matters with which the Project is concerned. IPP details can be seen at
www.arts.unsw.edu.au/pendulum/ .
2 Many books deal with the physics of the pendulum. Specifically: Tavel (2002, pp. 219–231) deals
with the progressive elaboration of the pendulum from simple to chaotic; Barger and Olsson (1973,
pp. 63–75) work through the mathematics of Lagrangian formulations of pendulum motion; Rogers
(1960), a text written for the PSSC Physics Course, has an excellent chapter on the pendulum; Pólya
(1977) deals with Galileo’s analysis (pp. 82–105) and gives an illuminating derivation of the central
period/length equation (pp. 210–224).
3 Dava Sobel has given the Longitude Problem enormous exposure (Sobel 1995). Other more
detailed and wide-ranging treatments are in Andrewes (1998), Gould (1923) and Howse (1980).
4 Many books deal with the social and cultural history of timekeeping, among them are: Cipolla
(1967), Landes (1983), Macey (1980) and Rossum (1996).
5 Macey 1980, Pt.II is a nice introduction to the utilisation of the clock in eighteenth century
philosophy and theology.
6 Accounts of the development of the standard metre can be found in Alder (1995, 2002), Berriman
(1953, chap. XI), Heilbron (1989), Kline (1988, chap. 9), and Kula (1986, chaps. 21–23). Some of
the methodological and political story is told in Matthews (2000, pp.141–150).
7 Some especially insightful discussions of Galileo’s methodological revolution are McMullin
(1978, 1990), Machamer (1998), and Mittelstrass (1972).
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8 For an exemplary discussion of this paradigm case alternative to essentialism and nominalism, see
Suchting (1995).
9 Ernst Mayr, in the opening pages of his The Growth of Biological Thought, commends historical
study to scientists in these terms:

I feel that the study of the history of a field is the best way of acquiring an understanding of its
concepts. Only by going over the hard way by which these concepts were worked out – by learning
all the earlier wrong assumptions that had to be refuted one by one, in other words by learning all
past mistakes – can one hope to acquire a really thorough and sound understanding. In science one
learns not only by one’s own mistakes but by the history of the mistakes of others. (Mayr 1982, p.
20)

10 Some contributions are: Bond and Bunting (1995), Kuhn and Brannock (1977), Siegler, Liebert,
and Liebert, (1973), Shayer and Adey (1981) and Sommerville (1974).
11 For a more complete treatment of the use of the pendulum in physics programmes, see Stinner and
Metz (2003).
12 For the life and achievements of Hooke see Drake (1996), Jardine (2003) and contributions to
Hunter and Schaffer (1989).
13 Some of the more prominent advocates of liberal education have been: Mortimer Adler (Adler
1939/1988), G.H. Bantock (Bantock 1981), Paul Hirst (Hirst 1974), Richard McKeon (McKeon
1994), John Henry Newman (Tristram 1952), Richard Peters (Peters 1966) and Israel Scheffler
(Scheffler 1973). See Kimball (1986), also contributions to Orrill (1995), and to Schneider and
Shoenberg (1998). Elliot Eisner, in his review of curriculum ideologies, calls this educational tra-
dition ‘rational humanism’ (Eisner 1992). There are connections with the Germanic educational idea
of Bildung (Bauer 2003).
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Abstract. When identifying instruments that have had great influence on the history of physics, none
comes to mind more quickly than the pendulum. Though first treated scientifically by Galileo in the
16th century, and in some respects nearly ‘dead’ by the middle of the 20th century; the pendulum
experienced ‘rebirth’ by becoming an archetype of chaos. With the resulting acclaim for its surprising
behavior at large amplitudes, one might expect that there would already be widespread interest in
another of its significant nonlinearities. Such is not the case, however, and the complex motions
of small amplitude physical pendula are barely known. The present paper shows that a simply-
constructed metallic rod pendulum is capable of demonstrating rich physics in a largely unstudied
area.

1. Introduction

Some students of physics have been described by the expression, “a formula look-
ing for a problem”. In fact, it appears that nearly all of us have difficulty rising
above this tendency. In the present context, it is manifest through our association
with a sacrosanct equation of motion – the simple harmonic oscillator (SHO) with
viscous damping.

It took the science of chaos to recognize the futility, for some applications, of the
approximation sin θ ≈ θ , as applied to the equation of motion for the pendulum.
Here, θ is the angular displacement of the pendulum and, if the approximation
were valid, SHO motion would result because the approximation is equivalent to
the potential function being written as U ∝ θ2/2. But in fact, for the pendulum,
U ∝ 1 − cos θ , at least as a first-approximation. To describe chaotic behavior,
cos θ ≈ 1 − θ2/2 is never acceptable.

Later in this paper we will provide evidence for the author’s conviction that a
real pendulum is not even properly described by U ∝ 1 − cos θ . The difficulties
arise from considerations of damping. It will be shown that the assumption of
viscous damping is untenable, in any serious attempt to understand the physics;
because internal friction is the most important source of energy loss. Moreover, in-
ternal friction implies that the potential well is complex, assuming that the concept
of a potential function has any meaning to begin with. As with a non-Hookean
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spring, the atoms do not remain in fixed lattice positions. Consequently, to assume
a potential well requires that the well be ‘modulated by fine structure’. The problem
is made difficult by the fact that the fine structure is not even constant in time. Be-
cause it is associated with hysteresis that ultimately involves temperature, through
diffusion processes, pendulum motion is extremely complex.

It might be supposed that a very sophisticated instrument would be necessary
to see such phenomena. This paper has been written to demonstrate that this is not
the case at all. Rather, it will be seen that many of the complex features can be
observed with a pendulum and sensor that are easily built. In fact, some features
can be studied in the absence of an electronics sensor altogether – simply through
visual observation.

Properties of the pendulum, as just described, would probably not be surprising
if the physics community had taken note (as did the engineering community) of
the work of two of our number in the 1920’s. In their studies of the creep of alloys
under stress, Portevin and Le Chatelier (1923) observed strains that were complex–
ones that don’t even conform to the fundamental theorem of calculus, because of
‘jumps’.

2. Background

2.1. CREEP

When a wire is subjected to a constant tensile stress (force per unit area), the strain
(fractional change in length) evolves through three phases of creep: (i) primary, (ii)
secondary, and (iii) tertiary. An example of the first two phases of creep is shown
in Figure 1.

In this case, the creep occurred in the coiled spring of the instrument, of LaCoste
‘zero-length’ type. Stress and strain of a coiled spring is more difficult to describe
than the tensile elongation of a wire, but all cases of anelasticity demonstrate the
creep phases indicated.

In the primary stage of creep, the sample is deformed by processes involving
organization of defects in the crystalline structure. Influence of the disordering
mechanisms is progressively reduced as the sample undergoes work hardening
(such as pinning of dislocations). Work hardening would result in a purely expo-
nential creep in the absence of thermal effects, which strive to undo the hardening
via diffusion processes. At zero Kelvin the creep would eventually cease, if de-
scribed by a single time constant. In the secondary stage a balance between work
hardening and thermal softening is attained, in which the strain versus time has
converted from exponential to linear.

In Figure 1 the creep resulted after rebalancing the instrument following a
severe accidental disturbance. Whether a compound pendulum or, as in this case,
a mass-spring oscillator in the form of a vertical seismometer; these long-period
instruments always creep during initial operation.
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Figure 1. Illustration of creep in a vertical seismometer.

The amount of creep in Figure 1 deserves mention. In the indicated 14.2 h, the
mass of the seismometer (11 kg of lead) moved a vertical distance of only 1/4 mm,
as can be ascertained from the ordinate axis, using the sensor calibration constant
of 2000 V/m.

2.2. DAMPING COMPLEXITY

A variety of studies by the author have suggested that physical pendulum motion is
never simple. It is rare, for example, to observe a truly symmetric decay; i.e., one
in which the decline of the amplitude of turning points on one side of equilibrium
matches the decline of those on the opposite side of equilibrium. Furthermore,
neither set of turning points is truly pure exponential. Creep can cause asymmetry
in the decay pattern through a change in equilibrium position with time. Even
if the equilibrium position is not drifting noticeably during decay, there can still
be non-exponential behavior. The decrement from one cycle to the next can vary
unpredictably because of anelasticity. [Note: the prefix ‘an’ means ‘other than’,
and the word anelastic is not equal to inelastic = not elastic.]

The observations noted above result from measurements with the highly sensit-
ive and linear sensors invented by Peters (1993). Departure from ideal SHO might
not be as observable with sensors of lower quality. However, even most of them
should be capable of demonstrating a property of long-period motions that is not
widely known. Specifically, consider the free-decay of a viscous damped oscillator
as the period of the motion is altered. For the damping of the motion to be as
commonly taught, the decrement of the decay δ must be proportional to the period.
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2.3. DECAY DECREMENT δ

The solution to the equation of motion for a viscous damped harmonic oscillator
contains an exponential term that multiplies the harmonic term. It provides for the
decay of amplitude with time, which can be expressed in terms of the nth full-cycle
turning point as

An = A0e−nβT , n = 0, 1, 2, . . . (1)

where A0 is the starting amplitude (n = 0) and T is the period. Although the
parameter β is frequently called the decay ‘constant’, it is not a true constant,
instead being a function of frequency.

A convenient measure of the free-decay of any oscillator is the fractional change
in amplitude that occurs in one cycle of the motion; i.e.,

δ = An − An+1

An

= βT, βT � 1. (2)

In the case of exponential decay, this fractional change in amplitude is called the
logarithmic decrement because δ = βT = ln(An/An+1). For exponential decay, δ

is independent of amplitude. For nonlinear damping, δ can increase with time (Cou-
lomb; i.e., sliding friction) or decrease with time (amplitude dependent dissipation,
such as fluid friction with quadratic velocity dependence).

Studies by the author over the last fourteen years have shown that the functional
dependence on period of the log decrement is not δ ∝ T as commonly assumed,
but usually closer to δ ∝ T 2 (see, for example, Peters & Pritchett 1997). In other
words, β ∝ T rather than being constant. A previous paper by the author showed
that this requires a nonlinear damping term in the equation of motion (Peters 2001).
It was further shown that this term could be understood in terms of secondary
creep. Whereas previous pendula used to demonstrate the indicated behavior were
somewhat sophisticated, the rod pendulum described in the present paper is easy
to fabricate. It also shows, at least in the case of a pendulum built from solder, the
importance of physical properties, such as malleability. The effect is best illustrated
by building two pendula, one of brass (low damping) and the other of solder (high
damping) and comparing their free decays. It should be noted that one doesn’t even
need a sensor in order to see huge differences between the two pendula. As the
center of mass of the solder pendulum begins to approach the axis of rotation, the
damping increases in dramatic fashion. Also dramatic in this limit is the obvious
importance of structural integrity, as one tries to realize long periods of the motion.
In the case of solder it is difficult to configure the rod for sustained oscillations
with a period in excess of 6 s.
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Figure 2. Point mass model of a low-frequency idealized compound pendulum.

3. Idealized Low Frequency Pendulum

Complex pendulum behavior is most readily demonstrated by lengthening the
period of the motion. Means to achieve lower frequency can be understood from a
consideration of Figure 2.

The mass located above the axis is responsible for a ‘destoring’ torque, whereas
the larger torque from the lower mass provides a ‘restoring’ torque. As the two
torques approach the same magnitude (achieved, for example, by moving the upper
mass farther from the axis), the period lengthens dramatically. Period lengthening
causes creep to become visible, since the sensitivity to both internal and external
influence is proportional to the square of the period.

Assume that the masses are separated a distance of 2L with the center of mass
located a small distance �L below the geometric center of the instrument. The
equation of motion is readily obtained from Newton’s 2nd law using the restoring
and destoring torques just mentioned. The result is

θ̈1 + g

2L

(
1 + �L

L

)
sin θ1 − g

2L

(
1 − �L

L

)
sin θ2 = 0 (3)
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where

θ2 = θ1 + η, η = c[θ1 cos δp − (θ̇1/ω) sin δp], ω =
(

g�L

L2

)1/2

. (4)

The constant c is related to the elastic constants of the material of the support
structure, and the constant δp is cause for damping of the motion (dissipation of
the energy). In terms of the log decrement δ

δp = 4L

g

ω2

c

δ

2π
(5)

and the quality factor Q of the oscillator, which is defined as 2π |�E|/E (with
E being the energy of oscillation and �E the energy loss to friction per cycle) is
given by

Q = 2L

gcδp

ω2. (6)

Because L, g, c and δp are all true constants, we see from Equation (6) that Q ∝ ω2

as required to describe the ‘universal’ form of internal friction (and not Q ∝ ω of
the common theory).

The expressions, and particularly the angular frequency indicated in Equation
(4), are valid in the limit of small amplitudes, where the sine of the angle is very
nearly the same as the angle itself in radians.

It should be noted that the above equations describe the motion of a classical
long-period pendulum; i.e., one in which the decay is exponential. Like the equa-
tions generated by all other models known to the author, they fail to describe the
deviations from exponential that derive from complexities of mesoscale friction
(Peters 2003). Later examples of rod pendulum decay, especially the case of the
solder pendulum, illustrate such complexities.

4. The Pendulum

The pendulum is pictured in Figure 3. The rod is made from an ideally straight
piece of malleable metal of uniform circular cross section, whose diameter is about
3 mm and whose length is about 50 cm.

For the picture, the solder pendulum has been mounted on the knife edge sup-
port which is a ‘5 g’ aluminum mass of general education laboratory variety that
has been secured to the shoulder of a short horizontal brass dowel using an 8/32
screw. The shoulder was formed with a hacksaw and then drilled and tapped for the
screw. The dowel is held on the other end by a clamp whose position can be altered
on the vertical rod which is supported by a sawed-off tripod base. The components
rest on a rectangular wooden board. At the bottom of the rod is a thin copper plate,
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Figure 3. Top view of the pendulum.

Figure 4. Close-up views of (i) the bottom of the pendulum inside the sensor (left), and (ii)
the knife edge (right).

which has been attached to the rod by soldering, as shown in the left picture of
Figure 4.

The plate is about 1.2 cm × 5 cm and it oscillates between the stationary
electrodes of the sensor as the pendulum moves. The cables which connect to
the stationary sensor electrodes on one end have been at the other end unplugged
from their electronics support box. The small phono-plug carries the oscillator
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signal from the box, and the large phono-plug carries the ‘sense’ signals to the
instrumentation amplifier in the box. (Note: Sensors of other type could be used
to demonstrate the pendulum complexities that are the heart of this study. It is
important that they be relatively non-perturbing of the instrument, which is best
accomplished by using capacitive or optical types.)

The period is determined by the placement of the knife edge, which is clamped
with a screw at different positions along the upper half of the rod. For the copper
plate to remain in proper position in an altitude sense, it is necessary to reposition
the clamp which holds the dowel, subsequent to any significant change in the period
of the pendulum.

The ‘knife edge’, which is also pictured in a close-up photo of Figure 4, is made
of brass, using the same stock as the brass dowel. A perpendicular hole was drilled
through the center of this short cylinder to accommodate the rod. After drilling,
the piece was filed to form two flats that intersect at an angle of about 70 degrees.
Finally, an axial hole was drilled and tapped from an end to the center, to accept
the set-screw that holds it to the rod. This set-screw is clearly visible in Figure 4.

The motion of the pendulum is recorded on a computer by feeding the output
from the sensor electronics through an analog to digital converter. For this work,
the a to d converter was the inexpensive Dataq DI 154RS. Though only a 12-bit
converter, it is adequate for observing complex motions of the pendulum in free
decay.

Before generating a temporal record, motion was initiated by displacing the
pendulum by hand, roughly 20 mrad, and then letting it decay freely. Especially
at longer periods, because the sensitivity of the instrument is proportional to T 2, it
is important to shield against air currents. For the present work, this was done by
placing a large trash can over the system after the pendulum motion was initiated.

In the present work, as well as in other studies by the author, it has been shown
that internal friction (solid) damping is an important decay mechanism. In the case
of the present rod pendulum, this is easily illustrated by comparing the motion
of pendula constructed from two different alloys, one of brass and the other of
solder. An earlier paper (Peters 2001) also postulated that creep of secondary type
is the basis of the internal friction, at least for low-Q mechanical oscillators. That
conclusion is supported by the present observations by noting that the soft solder
pendulum decays dramatically faster than the brass pendulum. The fact that creep
is a major factor with the rod pendulum is easily demonstrated in the solder case.
The weight of rod material located above the knife edge is supported only by the
structural ‘integrity’ of the material. Left to itself, the rod will quickly deform,
because of creep. Most of the motion associated with creep deformation comes
from the upper rod trying to relocate itself below the knife edge.

Of course the center of mass of the system changes during creep. Continual
shape adjustments are therefore necessary to maintain the bottom sensor plate in
an operational region of the sensor. With every repositioning of the knife edge, a
satisfactory equilibrium relative to the sensor must be established by bending the
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rod, using finger forces that exceed the elastic limit of the material. This is very
easy with the solder pendulum and a bit more difficult with the brass pendulum.
By this means, the knife edge is translated fore or aft of the rod ends to effect a
change in the position of the center of mass. Additionally, to insure that the end
plate moves without touching the static electrodes of the sensor, it is sometimes
necessary to bend the lower part of the rod in a direction perpendicular to that
required for balancing.

4.1. RELATED INSTRUMENTS

As compared to other pendula described in the literature, the present instrument
has some similarities but also major differences. It is most like the instrument used
by the author in his earliest study of low-frequency mechanical oscillations; i.e.,
a compound pendulum built with a pair of ‘point-like’ masses that dominate the
moment of inertia of the instrument (Peters 1990).

With the proper choice of an elastic element in the upper structure, so as to
yield large flexure of the upper mass; the pendulum becomes a Duffing oscillator
that can be chaotic. In this regard it is similar to the flexible component of the
‘inverted pendulum’ treated by Duchesne et al 1991. If properly configured, the
flexure can even be the basis for improved isochronism (Peters 2003).

It should be noted that the present instrument differs greatly from a pendulum
commonly labeled ‘inverted’, and which was first treated by Kapitza. In the Kapitza
pendulum, the otherwise unstable equilibrium (upside down) is made stable by
rapid vertical vibration of the axis of rotation (Kapitza 1930).

5. Some Results

Figure 5 is a typical decay for the brass rod. Although it looks reasonably ideal,
a close inspection reveals fine structure in the turning points, as illustrated by the
magnified upper turning points, shown in Figure 6.�

One cannot say with certainty that the cycle to cycle irregularities evident in
Figure 6 are the result of anelastic structure changes in the metal of the pendulum.
There can be little doubt, however, that such changes are present when one looks
at the decay of the solder rod, as shown in Figure 7.

The influence of anelasticity is now dramatic. Curiously, as the solder oscillates
at longer periods, such as this case; there is not an obvious bending of the pendu-
lum. Evidently opposite sides of the rod, just above the knife edge, undergo phase
reversed compression/extension cycles involving creep and creep-recovery.

It is true that the equilibrium position of the pendulum was shifting during the
collection of the data for Figure 7. After oscillation died out, the mean position

� Note: All of the decay curves presented in this paper are in terms of sensor output voltage rather
than pendulum amplitude. There is no loss of generality because of a calibration constant that relates
the two.
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Figure 5. Brass rod pendulum free decay. The period of the motion was 8 s.

Figure 6. Magnified portion of Figure 5, showing some upper turning points.

continued to drift until the copper plate eventually exited the sensor electrodes. The
evolution of the system during this time was reminiscent of avalanche phenomena,
such as observed in sandpiles, although much slower.

6. Frequency Dependence of β

As noted previously, the decay ‘constant’ β should not depend on frequency (T −1)
if the motion is consistent with viscous damping. Such behavior of a physical
pendulum has never been observed by the author and it was not expected with the
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Figure 7. Solder rod pendulum free decay. The period of the motion was 4.4 s.

rod pendula of the present studies. To test the matter, damping was measured as a
function of the period, which was altered by changing the position of the knife edge
clamp, as previously indicated. The decay constant was estimated from the turning
points, using the generalized method described in the Appendix. Instead of plotting
β in the graphs which follow, the logarithmic decrement (βT ) is plotted versus
the square of the period. If the system were in agreement with viscous damping, a
straight line should result when βT is plotted versus period instead of versus period
squared.

Shown in Figure 8 are the results for the brass pendulum. The rather large error
bars are thought to be associated with nonsteady effects of anelasticity.

These may relate to the Portevin LeChatelier effect mentioned previously. The
fit to the data is closer to a linear regression using T 2 rather than T for the abscissa,
in support of the claim that the damping is nonlinear and due to internal structure
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Figure 8. Logarithmic decrement versus period squared for the brass pendulum.

changes, rather than to some viscosity effect. Moreover, note that there is a reman-
ent damping as the period goes toward zero. In a plot versus T the intercept is found
to be negative and therefore unrealistic.

A similar behavior is found for the solder pendulum, as shown in Figure 9,
although the slope of the line is significantly greater.

Consider the slopes of the indicated linear fit equations. For the same value of
the period, the damping of the solder pendulum is seen to be 4.5 times greater than
the damping of the brass pendulum. This is in keeping with the reduced structural
integrity of the much softer solder. In turn, the upper limit on operational period of
the solder pendulum is only about one-half that of the brass pendulum. As noted
previously, this results from the difficulty of establishing a stable operating point
in the presence of creep.

7. Conclusions

The pendula that have been studied show clearly that pendulum motion is complex.
Especially for the solder pendulum, it is clear that damping of the motion is not
from external forces such as air. The internal friction responsible for the decay is
not simple. It may at times have quasi-periodic features, but it also is generally
erratic. Moreover, cycle to cycle decrement changes can occur that are suggestive
of ‘jerkiness’ reminiscent of the Portevin LeChatelier effect.
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Figure 9. Logarithmic decrement versus square of the period for the solder pendulum.

The primary challenge to any meaningful attempt to model the pendulum’s
complex motion derives from the multiplicity of interactions that are obviously
present. Responsible for the conversion of pendulum motion to heat, these interac-
tions also preclude the possibility of a conventional treatment via the mechanics of
Newton or Lagrange. Specifically, the technique of the Lagrangian is hampered by
the inability for confidence in any potential function which might be assumed.

It is not the intent of this paper to follow the usual path of published results, in
which one gives experimental results and then describes them with a theory. For the
present work, it is felt that physics is woefully lacking in any of the tools thought
necessary to explain the observations. It is a sad fact that science has not apparently
progressed far beyond the earliest efforts to understand anelasticity, beginning with
figures like Maxwell.

From studies such as this, it is clear that the pendulum is still important to
engineering. The author also believes that it is important in a fundamental sense
– that its consideration could increase our understanding of defect properties of
materials. Thus it should not be considered a relic from an earlier era.

Appendix: Estimating the Decay Constant from Turning Points

A method for estimating the decay constant of oscillators was developed by Dr.
Ken Hayes of Hillsdale College in Michigan. He expanded upon a method which
uses three turning points, to improve precision in the presence of random errors–
when the total cycles of the motion is acceptably large in a statistical sense. Hayes’
technique for an arbitrary odd number of turning points is presented below. His
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method was first described in the manual for the computerized Cavendish balance
designed by the author and sold by TEL-Atomic Inc. (described at Web URL
http://www.telatomic.com/sdct1.html) As previously presented, the Hayes method
contains a serious deficiency, for those cases where the equilibrium position is
not constant. This will happen, for example, when the torsion fiber experiences
creep. Fortunately, a simple fix for the deficiency exists and is described below.
To illustrate the importance of using the generalized method, two examples of
torsional oscillation involving creep will be provided.

ORIGINAL METHOD

For an ideal exponential decay, the position is given by

θ(t) = θe + Ae−b tcos(ωt). (7)

Inclusion of the equilibrium position, θe is necessary because it is virtually im-
possible to establish an operating point for which this term is zero, even though it
might be constant.

Consider the turning points, given by

θn = θe + (θ1 − θe)e
−(n−1)βT/2(−1)n−1, n = 1, 2, 3, . . . (8)

Using Equation (2), it can be shown that the decay parameter, x = e−βT/2 may be
estimated from any three adjacent turning points by

x = −(θn+2 − θn+1)/(θn+1 − θn). (9)

Using three, rather than two points, eliminates the need to know θe, assumed
constant.

The Hayes modification of this equation is as follows. Let N , odd only, be the
total number of turning points in the set. For decay in which βT ≈ 0.25, he showed
by means of error analysis that the optimal size of the set is N ≈ 11. By employing
the 3-point expression recursively, he obtained

x = 1 − (θ1 − θN)/(θ1 − θ2 + θ3 − θ4. . .−θN−1). (10)

In Equation (10) the set used for computation begins with 1 and ends with an odd
integer, such as 11. In other words, the set comprises an integral number of total
cycles of the motion. The larger the value of N the better, up to a maximum of
about 11 for the Cavendish balance – to provide for averaging over random errors
to reduce the uncertainty in the estimate of x, from which β is obtained.

It should be noted that Equation (10) assumes that the decay is a pure exponen-
tial; i.e., symmetric with θe constant. In practice, this may be the exception rather
than the rule. Therefore, the following ‘fix’ is presented.
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Figure 10. Torsion pendulum decay that is asymmetric.

GENERALIZED METHOD

Notice in Equation (10) the numerator term that involves a set which begins with
1 and ends with N . It is also possible to use the set that begins with 2 and ends
with N + 1 (with the denominator adjusted to (θ2 − θ3 + θ4 − θ5. . .−θN). This
half-cycle shift in the set gives essentially the same result as the former when the
decay is ideal. For a non-ideal decay, however, the two cases yield different results.
A better estimate for the decay is then obtained by using the mean value of the two
calculations.

Examples

Among oscillators, a torsion balance typically comes closest to being a pure har-
monic oscillator. The potential can be close to quadratic, and if the damping is
primarily from a fluid such as air; then the conventional SHO with damping equa-
tion of motion is fairly good. It should be noted, however, that asymmetry of the
decay can be present. Shown in Figure 10 is the decay of the boom in a Cavendish
balance of the type mentioned above. Instead of the tungsten fiber used with this
instrument to measure the Newtonian constant G, the data of Figure 10 were ob-
tained with the tungsten replaced by a silk thread. The period of 20.2 s is much
shorter than that of the instrument as normally operated. This was done so that
some decay data could be easily and quickly generated.
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Figure 11. Example of creep from mean position shifts in a ‘torsion-gravity’ pendulum.

In addition to the free-decay oscillations of the boom in Figure 10, two curves
have been added to ‘guide the eye’. They correspond to an assumed symmetric
decay with βT = 0.347, where the period of the oscillator is T = 20.2 s. Notice that
the ‘top’ turning points are declining more rapidly at 0.362, whereas the ‘bottom’
ones are less rapid at 0.333. The value of 0.347 is the mean of these two values.
These numbers were calculated by the generalized method described above, with
N = 7; i.e., three cycles of the motion.

The need for two calculations and use of the mean probably results from creep.
Creep is very often important, even in torsion pendula of other design types. For
example, Figure 11 shows decays of a torsional oscillator which uses a tungsten
wire. Even though tungsten is very hard, the metal is seen to creep significantly as
the mean position of the boom is cycled back and forth through an angle of about
0.75 mrad.

The torsion wire of this pendulum is tied to both the top and bottom of the case
and the instrument is therefore tilt sensitive. For that reason, the mean position
could be easily adjusted using a piezo-translator, because the restoration depends
on the Earth’s gravitational field as well as the shear modulus of the tungsten wire.
It is a pendulum similar to another that was used to study chaos (Peters 1995).

No additional discussion of this pendulum will be provided here. The Figure 11
was chosen for inclusion in the paper to simply illustrate the importance of creep,
even in materials that might be erroneously thought of as being very stable.
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Abstract. The simple pendulum is a model for the linear oscillator. The usual mathematical treat-
ment of the problem begins with a differential equation that one solves with the techniques of the
differential calculus, a formal process that tends to obscure the physics. In this paper we begin with
a kinematic description of the motion obtained by experiment and a dynamic description obtained
by the application of Newton’s laws. We then impose the constraint of compatibility on the two
descriptions. This method leads to a fuller understanding of the physics of the oscillator. The paper
demonstrates the ubiquity of the linear oscillator as an idealisation of real physical phenomena. It
treats the general case of damping with forced motion, including the phenomenon of resonance.

1. Introduction

Quite apart from its intrinsic utility as a timing device, the pendulum is a superb
learning tool for science education. It can serve as a model for the study of the
linear oscillator. In developing a complete picture of the phenomenon, it provides
real understanding of the interaction between theory and experiment. It also illu-
minates the meaning of a ‘solution’ to a differential equation and therefore the
role of mathematics in physics. As Matthews (2000) has shown so beautifully, the
pendulum contributes greatly to science literacy.

In this paper I wish to show how the kinematic observations of pendulum
motion combined with Newton’s laws lead to a dynamic equation describing pen-
dulum motion. The second part will show that an equation of this form governs a
wide variety of disparate physical phenomena unified by their harmonic behaviour.
These phenomena are all examples of the linear oscillator, modified to include the
effects of damping.

2. Motion of the Simple Pendulum

Consider a pendulum consisting of a bob of mass m suspended from a pivot point
by a string of length L, as shown in Figure 1. Let the mass of the string be negligible
compared with that of the bob. Let the dimensions of the bob be so much smaller
than the string length that we can treat it as a point mass. We shall also construct the
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Figure 1. The simple pendulum of mass m and length L.

pendulum with exceedingly low friction so that we can neglect damping. Finally
we displace the bob from equilibrium by a very small angle (less than 5◦) and let it
oscillate. What do we observe?

If we measure the angular displacement as a function of time, we note several
facts. The motion is bounded. If our initial displacement is 	, the bob position
never exceeds this limit. We also note that the lower the friction, the closer to
	 does the bob return on each swing. If the friction is completely negligible, it
returns to 	 exactly. The second fact is that the motion is periodic and isochronous
as long we deal with very small angular displacements. Hence we can summarise
our measurements of angle and time by the equation

θ = 	 cos(Kt). (1)

In the equation 	 is the maximum excursion of the bob (the amplitude), and K is
an experimental constant related to the period T of the motion. It is also called the
natural angular frequency ω0 of the system,

K = 2π/T = ω0. (2)
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Equation (1) is a kinematic description of the motion containing two experiment-
ally determined constants, the angular amplitude, 	, and the natural frequency, K.
As yet there is no physical explanation of the equation. It is purely experimental.

However, Newton’s laws provide a dynamic description of the system. The
rotational form of Newton’s second law may be written as

τ = Iα, (3)

in which τ is the torque, I the moment of inertia, and α the angular acceleration.
The torque is mgL sin θ (where g is the acceleration of gravity), the moment of
inertia for a point mass is mL2, and the angular acceleration is d2θ/dt2. Inserting
these quantities into Equation (3) and simplifying, we obtain

d2θ/dt2 = −(g/L) sin θ. (4)

The negative sign for the torque reflects the fact that it is a restoring torque always
acting to return the bob to its equilibrium position.

At this point we introduce the fact that the bob swings through a very small
angle (less than 5◦) so that we can use the small angle approximation

sin θ ∼ θ, (5)

which is valid for θ � 1, when θ is measured in radians. This gives us our final
dynamic equation

d2θ/dt2 = −(g/L)θ. (6)

Equations (1) and (6) look quite different, yet describe the same phenomenon.
Therefore, in spite of their difference, they must be compatible. Differentiating
Equation (1) twice yields

d2θ/dt2 = −K2	 cos Kt = −K2θ = −ω2
0θ. (7)

Comparing Equations (6) and (7) enables us to evaluate the experimentally de-
termined natural frequency, K (or ω0), in terms of the dynamic parameters of the
system, g and L,

K = 2π/T = (g/L)1/2 = ω0. (8)

This is far more than an exercise in mathematical manipulation. Indeed, it serves as
a model of the process of doing physics. One begins with an experimental determ-
ination of the motion. Equation (1), determined solely by experiment, describes the
motion but offers no explanation. Only by invoking Newton’s laws, laws that are
actually the axioms of classical physics, can we relate the experimental constants
to the dynamic parameters of the system (Newburgh 2001).
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Figure 2. The reference circle for pendulum motion. The velocity of the bob is indicated by
v. The velocity of the point p on the circle is indicated by v0.

3. An Alternative Derivation of Pendulum Motion

Peters (2003) has also combined kinematic observations with a dynamic analysis
to obtain a straightforward description of harmonic motion without using calculus.
His description extends the unit reference circle to velocity and acceleration. I have
not seen this approach developed elsewhere.

Peters begins, not with the unit circle, but one with radius equal to x0, the
linear amplitude of the motion (see Figure 2). The point p on the circle moves
with constant speed. The condition of constant speed is an implicit statement of
the fact that friction is negligible. The points shown – 0, 1, 2, and 3 – represent
time differences of one-quarter period, T/4, with 0 corresponding toTT t = 0 or nT,TT
where n is an integer (n = 1, 2, 3, . . .). At any time t , p may be found by dropping
a vertical from the center of the bob to the circle. As shown in Figure 2, p is about
1/8 cycle (45◦) from the initial position.

The reference circle is commonly used to describe position of the oscillating
body only. However, Peters applies it to determine velocity and acceleration as
well. These are all one-dimensional vectors for which direction is determined by
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algebraic sign relative to the horizontal x-axis onto which all projections are made.
This is possible because we are restricting the oscillations to small angles. In the
figure velocity vectors only are shown, one for the circular motion of p (constant
magnitude v0) and one for the pendulum bob (variable magnitude v).

For the point p there are two constant quantities, its speed v0 and its acceleration
a0. Since the point p moves along a circle at constant speed, we can apply the
theorem for the rate of change of a rotating vector to obtain a0 (Newburgh 1998).

a0 = ωv0 = −ω2x0, (9)

where ω2 = 2π/T . This theorem allows the calculation of the rate of change
without resort to calculus. From the figure we conclude

x = x0 cos θ, (10)

v = −v0 sin θ,

a = −a0 cos θ = −ω2x0 cos θ = −ω2x. (11)

These expressions are valid for small oscillations, since x0 � L.
Until now our analysis has been purely kinematic. To obtain the period T in

terms of L and g we apply Newton’s second law. The net force acting on the bob
is a restoring force in the x-direction.

FnetFF = −mgx/L = ma = −mω2x. (12)

From this we can determine the angular frequency and the period in terms of the
acceleration due to gravity, g, and the pendulum length L.

ω = (g/L)1/2 (13)

and

T = 2π(L/g)1/2. (14)

Note that Equation (10) is equivalent to Equation (1) as long as we restrict ourselves
to small oscillations. For small angles sin θ ∼ θ . Therefore

x0/L = sin 	 ∼ 	. (15)

4. The Linear Oscillator

There are numerous physical phenomena that can be described by equations of
the form of Equation (7), namely the temporal second derivative of a quantity that
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equals that quantity multiplied by a negative constant. Two examples are (a) the
displacement x of a mass attached to a massless spring with a spring constant
k and (b) the temporal variation of charge q in a circuit made up of a capacitor
C and an inductance L. Note that an idealised circuit without resistance is the
electrical analogue of a frictionless mechanical system such as our pendulum. The
corresponding equations are

d2x/dt2 = −(k/m)x (16)

and

d2q/dt2 = −(1/LC)q. (17)

Referring to the previous section, we see immediately that for the spring

K = (k/m)1/2 = ω0 (18)

and for the circuit

K = (1/LC)1/2 = ω0. (19)

Moreover, we can immediately write the ‘solutions’ of Equations (9) and (10) as

x = A cos[(k/m)1/2t] (20)

and

q = Q cos[(1/LC)1/2t]. (21)

In these equations A and Q are the respective amplitudes and we have chosen the
initial times appropriately.

The sinusoidal behaviour of the ‘displacement’ – be it angular displacement,
linear displacement, or charge – is reflected in an energy oscillation. Since we are
dealing with idealised, frictionless systems, there are no dissipative energy losses.
Therefore the total energy of the system is conserved. However, it consists of two
forms of energy, kinetic and potential for the mechanical systems and electric and
magnetic for the LC-circuit. Figure 3 shows these energies as a function of position
for the pendulum. Both the kinetic and potential energies exhibit quadratic beha-
viour with displacement. The potential energy is a maximum at the extremities
and a minimum at the equilibrium position (zero with appropriate choice of our
reference point). The kinetic energy is just the reverse, having its maximum value
as the bob goes though equilibrium and zero at the extremities (turn-around points
imply zero velocity).
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Figure 3. Energy of the simple pendulum as a function of angular displacement. The dashed
line is the potential energy. The dotted line is the kinetic energy. The solid line is the
mechanical energy. Note the parabolic behaviour of the potential and kinetic energies.

5. The Forced, Damped Oscillator

In reality it is impossible to construct frictionless systems. All mechanical systems
with moving parts have friction. Air resistance is omnipresent. In electrical circuits
the resistance of conducting elements is the source of dissipative heating. There-
fore in setting up the differential equation governing real systems we must include
dissipative forces. We shall treat those that are proportional to the first derivative of
the ‘displacement’ velocity in mechanical systems and current in electrical circuits.
Taking u to be the symbol of our generalised ‘displacement’, we can write our
differential equation as

ad2u/dt2 + bdu/dt + cu = 0. (22)

In Equation (22) a represents an inertia term such as mass, moment of inertia,
or inductance. The symbol b is a resistance term. For small velocities friction is
proportional to the velocity, du/dt , the proportionality constant being b. For an
electrical circuit du/dt is the current I or dq/dt and b is the resistance R. The
symbol c is the spring constant k for a mechanical system or 1/C, the reciprocal
capacitance for an electrical RLC-circuit.
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Displacing our system from equilibrium, we observe free oscillations that are
damped to zero, quickly or slowly depending on the strength of the frictional
forces. Numerous books give the mathematical details of damped motion. A
particularly lucid treatment is that of Melissinos and Lobkowicz (1975).

Given the reality of friction, we ask how can the pendulum serve as a time-
keeper? True, all clocks run down with time. Therefore we must wind them or
replace batteries. However, while they run, their ticks are periodic and isochron-
ous. The act of winding puts energy into the system. The escapement releases this
energy in discrete, periodic packets, energy that compensates for the friction losses.
Thus the escapement provides a periodic driving force (and therefore torque) that
we may write as F0FF eiωt , where the frequency ω may differ from the natural fre-
quency of the system. (The appendix has a brief discussion of the use of complex
notation and phasor quantities.) The equation that governs the system becomes

ad2u/dt2 + bdu/dt + cu = F0FF eiωt , (23)

As before the natural frequency K is

K = ω0 = (c/a)1/2. (24)

We can rewrite Equation (23) in the form

d2u/dt2 + (b/a)du/dt + (ω0)
2u = (F0FF /a)eiωt . (25)

When the external force is applied, the resultant motion is a combination of the
transient free oscillations and the forced motion. The transients die down with time,
leaving the forced motion only. We find, following Melissinos and Lobkowicz (loc.
cit.) and taking the real part of the solution, that the ‘displacement’ is a function of
time given by:

u = (F0FF /a){1/[(ω2
0 − ω2)2 + (ωb/a)2]1/2} cos(ωt + δ). (26)

The angle δ is the lag of u with respect to F .
This result shows that the motion has the same frequency as the driving force

but is not in phase with it. It also illustrates the phenomenon of resonance. As ω

approaches ω0, the amplitude increases reaching a maximum when the two fre-
quencies are almost (but not quite) equal, as shown in Figure 4. Because of friction
the amplitude can never become infinite. This means that the system can be driven
at its natural frequency with constant mechanical energy.

6. Discussion

In this paper we have not ‘solved’ the differential equation for the frictionless
pendulum. We must remember that finding the solution of a differential equation
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Figure 4. Amplitude as a function of driving frequency ω of the forced, damped oscillator.

is, of necessity, a trial and error process. Although we have a process whereby
we can differentiate all functions, we can integrate only by knowing the answer.
The only way of knowing if we have integrated correctly is by differentiating
our solution and obtaining the original equation. The approach of this paper is
somewhat different, beginning as it does with experimental observations. These
data were reduced to a kinematic equation, Equation (1). Newton’s laws provided
a second, dynamic description of the phenomenon. We arrived at the ‘solution’ by
demanding that the two descriptions be compatible.

We have only touched on the variety of physical phenomena that are examples
of the linear oscillator. These include the pendulum, the physical pendulum, the
oscillating mass on a spring and the LRC-electrical circuit. Musical instruments,
both strings and horns, depend on vibration. Electromagnetic oscillations occur
inside closed cavities with conducting walls. (Microwave ovens can set up standing
waves. That is why they have rotating platforms so that all parts of the food will
be warmed.) Atomic and molecular systems can be treated as a collection of linear
oscillators. Therefore we can apply our theory of resonance to treat anomalous
dispersion.

All these physical phenomena, dissimilar as they may be, do possess one com-
mon feature, namely inertia. In dealing with the pendulum, the moment of inertia
affects the period. In the mass-spring system mass plays the same role, as does
inductance in the LC-circuit. Thus, we may consider inductance to be an electrical
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inertia. In all three situations the ‘inertia’ tries to maintain a steady velocity (or
current). Mathematically, the minus sign in Equations (7), (16), and (17) expresses
this behavior. The inertia opposes the driving force. In other words the acceleration
and displacement have opposite directions at all times.

Another reason for the ubiquity of the oscillator in the natural world is a con-
sequence of stable equilibrium. A criterion for stability relates the effect of a small
displacement from equilibrium. If it results in small, bounded motion about equi-
librium, we have stable equilibrium. It is unstable, if the motion is unbounded.
Goldstein (1951) in his chapter on small oscillations shows that a Taylor series
expansion of the potential energy leads to a quadratic term for the potential energy
for a small displacement. Since the force is the negative gradient of the potential
energy, the result is a negative restoring force proportional to the displacement.
In other words, small displacements from stable equilibrium give rise to linear
oscillations.

A final point of this paper is its illustration of the role of mathematics in physics.
Physics is an inductive science, beginning with and dependent on observation. It
differs from geometry that starts with axioms to which one applies deductive reas-
oning. With the oscillator we first find experimental data that may be summarised
in trigonometric form. Only when we have recognised this, do we begin to erect
the mathematical scaffolding that has proven so powerful.

In the 18th century deists considered God to be a master clockmaker. Perhaps
the term ‘master oscillator’ is even more appropriate.

Appendix: Phasor Quantities

We have written the applied force in Equation (23) using complex notation. This is
an example of phasor notation that was first introduced by Steinmetz. At the end of
the nineteenth century he popularised ‘phasors’ or ‘vectors’ for a-c quantities such
as voltage, current, or electric field. (The term ‘vector’ is not to be confused with
the normal use of the word for space vectors. Calling the voltage a complex vector
does not imply that it is a space vector.) In 1893 at the International Congress in
Chicago he introduced phasors, emphasizing the elegance and usefulness of the
approach.

The method of calculation is considerably simplified. Whereas before we had to deal with periodic
functions of an independent variable ‘time’, now we obtain a solution through the simple addition,
subtraction, etc, of constant numbers . . . Neither are we restricted to sine waves, since we can con-
struct a general periodic function out of its sine wave components . . . With the aid of Ohm’s Law
in its complex for many circuit or network of circuits can be analysed in the same way, and just as
easily, as for direct current, provided that all the variables are allowed to take on complex values.
(Steinmetz, 1893)

The Chicago paper was not well understood, although the ideas became known by
word of mouth. In 1897 Steinmetz described the approach in a book (Steinmetz &
Berg 1897).
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Abstract. We show that the treatment of pendulum movement, other than the linear approximation,
may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly
the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly
forced oscillations of a gravitational pendulum are investigated experimentally without limiting amp-
litudes. By this arrangement new phenomena, the bistability and the jump-effect, can be observed. In
the case of bistability the driven gravitational pendulum can oscillate in two different stable modes.
Either it oscillates with a small amplitude and approximately in phase with the exciting torque or it
oscillates with a larger amplitude and approximately anti-phase. The jump effect is the spontaneous
transition from one mode of oscillation to the other. Both effects can be demonstrated and explained.

1. Introduction

The gravitational pendulum plays an important role in physics and in physics teach-
ing. It is well known by students. We show that it may also facilitate the transition
to the treatment of effects due to non linearity, which are characteristic of many
areas of modern research.

Physics and physics teaching concentrate on the solutions of the linear approx-
imation of the restoring force. Since a mathematical treatment of the gravitational
pendulum for the domains of larger amplitudes involves elliptic integrals these
domains are usually omitted in textbooks and only dealt with in specialized mono-
graphs (Pain 1984, Marion & Thornton 1995). We show that this omission is not
justified because the qualitative effects due to non-linearity can be understood
completely (Weltner et al. 1994, 1995). Far from the region of linear restoring
force the natural frequency is no longer constant but decreases with increasing
amplitudes. This can be demonstrated easily (Khosropur& Milland 1992, Weltner
et al. 1994). Consequently the tuning curve of a driven gravitational pendulum
is bent and, due to this non-linearity, two different modes of stable oscillations
occur. Besides this, a transition between these modes happens under certain condi-
tions a phenomenon which is known as the jump-effect. These new effects can be
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Figure 1. Experimental arrangement. Left: front view. Right: side view.

demonstrated, analyzed and understood and thus the role of non-linearity and its
implications may be introduced. Thus the pendulum, which played a fundamental
role in history of science and in education can be used as well as an introduction
to modern parts of physics (Matthews 2000). The experimental setup is transpar-
ent, familiar to students and easy to arrange for lecturers. Consequently we start
the discussion of non-linear effects by summarizing the properties of the linear
gravitational pendulum and then proceeding to the new effects.

2. Properties of the Pendulum with linear restoring Force

For this and the following experiments, a rigid physical gravitational pendulum is
used. The pendulum is constructed from a symmetrical bar, which is able to rotate
about a horizontal axle through its center in a support as shown by Figure 1. This
experimental arrangement allows unlimited amplitudes.

A small mass fixed to one end of the bar produces the restoring torque. The
dimensions are not critical. Details are given in an appendix at the end of this
paper. To investigate forced oscillations an electric motor is used which allows the
frequency to be varied. To provide the exciting torque the exciting force acts from
above by means of a spring (C= 10 N/m) and a thread twisted around the axle. To
give the thread sufficient tension 50 grams mass is fastened to its lower end.

A dial plate behind the pendulum facilitates control and measurement of
amplitudes. A marker F fixed to the pulley above the pendulum facilitates the
observation of phases between the exciting torque and the oscillation of the
pendulum.
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Figure 2. (a) Tuning curve of a forced gravitational pendulum for small amplitudes. (Natural
frequency: 0.89 Hz). (b) Phase shift as function of frequency.

As a starting point, the properties of pendulum movement in the region of
valid linear approximation can easily be revised and demonstrated. First, the inde-
pendence between the pendulum’s frequency (or period) and its amplitude can be
demonstrated experimentally for the domain of small amplitudes (amplitudes less
than 30◦) by showing that the time of five or more periods is the same regardless of
the amplitude, but differs if the amplitudes exceed substantially the domain of 30◦.

Second, the forced oscillations of a gravitational pendulum in the domain of
a linear restoring force can be demonstrated. The tuning curve with a sharp peak
– the resonance maximum – and the phase shift between exciting force and the
forced oscillation can easily be determined (see Figure 2).

The tuning curve represents the amplitudes of stationary oscillations excited by
an external oscillating torque of constant maximal value. In the stationary case,
there is an equilibrium between energy losses of the pendulum and energy input
by the driving mechanism which compensates these losses. In the following we
denote energy transmission the energy received by the pendulum.

The oscillating pendulum looses energy by friction. There are two important
parts: air friction and friction between axle and support. The air friction may be
regarded in first approximation proportional to velocity and, thus, amplitude. Since
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losses are the product of friction and length of displacement, the latter proportional
to amplitude too, this results in losses proportional to the square of amplitude.

The friction between axle and support may be regarded in first approximation to
be constant. Its product with length of displacement results in losses proportional
to amplitude. The total losses are the sum of both and increase between the first
and second power of amplitude.

The energy received by the pendulum from the driving torque is the product
of the torque and the angular velocity of the axle. The amplitude of the torque
being constant, the amplitude of the velocity being proportional to the oscillation’s
amplitude. Both factors can in first approximation be represented by sine-functions
of equal frequency. But beyond this the product of two sine-functions depends on
the phase between the two functions. The product of two sine functions is max-
imum if the phase shift between both is zero. In this case the torque acts always in
direction of the pendulum’s velocity and is always transmitting energy to it. Since
it is the displacement we observe we must relate our considerations to the observed
displacement ϕ. Velocity and displacement are represented by sine-functions with
a phase shifted by 90◦. Consequently energy transmission is maximum if driving
torque and the pendulum’s displacement have a difference of phase of exactly 90◦.
Energy transmission vanishes if the difference of phase between driving torque and
the pendulum’s displacement is either zero or 180◦. In the steady oscillation the en-
ergy losses are compensated by energy input thus establishing an equilibrium. The
amplitude represented by the tuning curve is, thus, an indicator for energy trans-
mission too. Roughly speaking, energy transmission depends on the phase shift
between driving torque and driven oscillation and, thus, on the difference between
the pendulum’s natural frequency and the exciting frequency. Energy transmission
is maximum if the phase shift between exciting frequency and the pendulum’s
oscillation is 90◦. This condition is given if the exciting frequency coincides with
the natural frequency of the driven pendulum. Energy transmission decreases when
the difference between natural frequency of the pendulum and exciting frequency
increases.

3. Natural Frequency of a Gravitational Pendulum as a Function of Its
Amplitude

If the restoring torque is proportional to displacement the frequency of a pendulum
does not depend on its amplitude. This is a good approximation for a gravitational
pendulum if its amplitude is restricted to values less than 30◦. This is usually shown
by observing and comparing the oscillations of two identical pendula oscillating
with very different amplitudes. This independence may be derived theoretically by
assuming a restoring torque linear to displacement, since this case may be dealt
with by means of elementary mathematics. However, if the correct term describing
the restoring torque is used, the solution involves elliptic integrals and mathemat-
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Figure 3. Restoring torque as a function of displacement.

ical difficulties rise for students. Thus these solutions are generally omitted in basic
physics courses.

Nevertheless, the properties of oscillations with amplitudes beyond the domain
of linear approximation can be treated qualitatively and investigated experiment-
ally.

First, we measure the restoring torque of the gravitational pendulum within
the given experimental arrangement using a dynamometer. The restoring torque
is approximately linear to displacements up to 30◦. Beyond displacements of 90◦
the restoring torque begins to decrease and vanishes for a displacement of 180◦.
The equation describing the restoring torque of a rigid gravitational pendulum is
given by

T = −m · g · l · sin ϑ.

In this equation we neglect the additional restoring torque caused by the spring
which connects the pendulum with the exciting device. Figure 3 is based on ex-
perimental data and shows the effect of the additional restoring torque due to the
connecting spring for displacements of 180◦.

Thus, an increase of period and a decrease of frequency are to be expected due
to the decreasing restoring torque for larger amplitudes. This can be demonstrated
easily by comparing the oscillations of two equal pendula oscillating with different
amplitudes one within the domain of linearity and the other with amplitudes far
outside this domain. If we start both pendula simultaneously, it can be observed
that the oscillation of the larger amplitude pendulum takes noticeably more time
to complete. Next we determine the period of oscillation as function of amplitude,
starting from an amplitude A1 and taking the time required to return to amplitude
A2 which is a bit less due to friction losses. By this procedure we assess the
period of an intermediate amplitude A = (A1 + A2)/2 for which the frequency
is calculated.
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Figure 4. Amplitude versus natural frequency for a rigid gravitational pendulum.

Proceeding this way we establish the relationship between amplitude versus natural
frequency for the full domain of amplitudes from 0◦ to 180◦. This gives a curve,
which starts vertically at the natural frequency f0ff for small amplitudes but then
bends smoothly to the left. For amplitudes approaching 180◦ the correspondent
natural frequencies vanish, because 180◦ represents a point of unstable equilibrium
in which position the pendulum can remain forever. As one approaches this point
the amplitude increases and the torque decreases so that the period time growths
larger and larger.

4. Jump Effect and Bistability

New effects appear if we repeat the experimental investigation of forced oscilla-
tions of the gravitational pendulum discussed in Section 2 increasing the exciting
torque. In Section 2 we restricted the exciting force to keep the amplitudes of the
driven pendulum within the limits of linear restoring torque. Now we increase the
exciting torque by enlarging the crank arm by a factor two or three (see Figure 1).
We expect a tuning curve with amplitudes increased by the same factor.

In a first attempt to assess the tuning curve we start from frequencies well below
the natural frequency f0ff for small amplitudes. Due to the increased value of the
exciting torque we expect and find the amplitudes at the beginning increased by
the same factor. In the following we increase the exciting frequency gradually step
by step allowing the oscillation to approximate its stationary value after each step.
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Figure 5. Tuning curve of forced oscillations of a gravitational pendulum showing the jump
effect. (Dotted curve: tuning curve for linear restoring torque).

The amplitude increases with the frequency. The oscillations are approximately
in phase with the exciting torque. When the amplitude reaches a certain value of
about 30◦ (point A1 in Figure 5) a new phenomenon is observed. The amplitude
does not approximate a stationary value any more, but it increases steadily up to
reach a new and different stable mode with an amplitude of approximately 115◦
(point B1 in Figure 5). During this process the phase shift increases too and the
oscillation is finally anti-phase. This transition from one stable mode of oscillation
to an entirely different mode is called the jump effect. The jump frequency fABff

depends on experimental conditions. Roughly speaking it happens if the amplitudes
exceed the linear domain. If we increase the exciting frequency even more the
amplitudes decrease as is shown in Figure 5. We have labeled the branch of the
tuning curve for exciting frequencies less than the corresponding natural frequency
branch A. Branch B holds for exciting frequencies exceeding the corresponding
natural frequency. At the end of branch B, the amplitudes follow qualitatively the
tuning curve of the linear case, increased by the factor by which the exciting torque
was increased.

We now determine the tuning curve starting with frequencies well above the
natural frequency for the linear case f0ff , represented by branch B. Initially the
amplitudes coincide with those of the preceding experiment. Decreasing frequen-
cies correspond to increasing amplitudes. When we reach the frequency fABff of
the jump effect observed in the preceding experiment represented by point B1 the
oscillations remain stable. If the exciting frequency is decreased even more the
amplitude continues to increase steadily. The oscillations remain approximately
antiphase with respect to the driving torque. We thus get an extended branch B
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Figure 6. Tuning curve of a forced gravitational pendulum starting from high frequencies.

of the tuning curve (point B2 in Figure 6). Then, at a frequency fBAff well below
the former jump frequency, a reverse jump occurs. This time the amplitude of the
oscillation decreases steadily, reaching a small value on branch A (point A2 in
Figure 6). During this process the phase difference decreases and almost vanishes.
Diminishing the exciting frequency even more, we get the values of the former
experiment represented by Figure 5. Thus we obtain different tuning curves de-
pending on the initial conditions and the direction in which the exciting frequency
varies.

We found that the tuning curve of the driven gravitational pendulum has two
different branches depending how the experiment is carried out. The branches
differ in the frequency domain from fABff to fBAff and coincide outside this domain.
Within this domain, there exist two different modes of stable oscillations for the
same exciting torque. This phenomenon is called bistability. It is most fascinating
to observe two identical pendula excited by the same torque oscillating in the same
mode or in different modes simultaneously. Each of them can be brought to oscil-
late in both modes independently of the other. The jump effect and bistability are
new effects never observed in a simple gravitational pendulum in a conventional
physics course. These effects show that non-linearity in variables may cause a
qualitatively new behavior.
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Figure 7. Combined and completed tuning curve for a gravitational pendulum.

5. Explanation of Bistability and Jump-effect as a Consequence of a Bent
Tuning Curve

A clue to understanding bistability and the jump effect is obtained if we combine
the tuning curves just established (Figures 5 and 6) to the amplitude versus natural
frequency curve (Figure 4) shown in Figure 6.

We first consider the development of branch B. Starting the experiment with
high exciting frequencies and reducing them step by step the tuning curve approx-
imates the curve of amplitude versus natural frequency. We remember that highest
amplitudes are obtained with exciting frequencies near the corresponding natural
frequencies of the gravitational pendulum. The equilibrium between energy input
by the driving mechanism and energy losses of the driven pendulum ends for the
exciting frequency fBAff . At this point the losses prevail. The oscillation ceases to
be stationary and a transitional jump effect occurs. The amplitude decreases to a
value represented by branch A. During this process the conditions for energy trans-
mission become less favorable, because the difference between exciting frequency
and the natural frequency associated to the actual amplitude is still increasing dur-
ing this transition. Thus energy losses exceed energy transmission resulting in a
decreasing amplitude.

Starting the experiment with low exciting frequencies, which are increased step
by step, results in increasing amplitudes, as shown by branch A of the tuning
curve. Approaching the jump frequency fABff , the amplitude exceeds 30◦ when the
oscillation ceases to be stable and the jump effect starts. This can be explained
again considering the equilibrium between energy input by the driving mechanism
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Figure 8. Complete tuning curve to analyze stability of oscillations. Exciting frequency fEff .

and energy losses of the driven pendulum. This time the conditions for energy
transmission grow to be more favorable with increasing amplitude since the differ-
ence between exciting frequency and the respective natural frequency associated to
the actual amplitude decreases. This process ends if a new equilibrium is reached
represented by a value on branch B.

We complete the two branches by the dotted parts in Figure 7 to obtain a com-
plete tuning curve, which may be understood as a bent tuning curve. The value of
the amplitude increases if the difference between exciting frequency and natural
frequency decrease. Consequently we find the highest values of the amplitudes in
the vicinity of the amplitude versus natural frequency curve.

A question remains: why we do not observe the oscillations represented by the
dotted part of the bent tuning curve?

In other words, how do we explain the stability of stationary oscillations repres-
ented by the full lined parts and the instability of those represented by the dotted
parts.

Let us consider an oscillation represented by point C on branch B in Figure 8.
An amplified part (circled in Figure 8) is shown by Figure 9. The exciting

frequency is fEff . Point C represents an oscillation which will be shown to be
stable. The natural frequency associated to the given amplitude is fCff ′ . If by some
reason the amplitude is increased to a value C ′ the natural frequency associated to
that amplitude will be fCff ′ . The difference between the exciting frequency and the
corresponding natural frequency is thus increased and consequently the conditions
for energy input are less favorable causing the amplitude to fall back to the point
of equilibrium again, which is given by point C.
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Figure 9. Amplified part of Figure 8.

Figure 10. Amplified part of Figure 8 Point D represents an oscillation which will be shown
to be unstable.

If by some reason the amplitude of the stationary oscillation is reduced to a
value represented by C ′′ the natural frequency associated to this reduced amplitude
is fCff ′′ . This time the difference between fCff ′′ and the exciting frequency fEff is re-
duced causing an increased transmission of energy and consequently an increasing
amplitude. Thus the oscillation approaches again the equilibrium represented by
point C. This explains the stability of the oscillation represented by point C. The
given consideration holds for any point of the full lined branch B of the tuning
curve.

Now we consider an oscillation represented by the point D at the dotted part of
the tuning curve; see Figure 10.
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If for some reason the amplitude is increased to a value D′ the natural frequency
associated to that amplitude is fDff ′ . The difference between the exciting frequency
and the natural frequency is thus reduced and consequently energy transmission
increases causing the amplitude to rise even more. This process will not stop until
a new equilibrium between energy transmission and energy losses is reached with
an oscillation represented by point C on branch B.

If for some reason the amplitude represented by D is reduced to D′′ the nat-
ural frequency associated to this oscillation will be fDff ′′ . The difference between
fDff ′′ and the exciting frequency increases and consequently the transmission of
energy decreases causing a reduction of its amplitude. This process stops only
if a new equilibrium between energy transmission and energy losses is reached.
This equilibrium is represented by a point, which belongs to branch A in Figure
8. Branch A is characterized by small amplitudes where the natural frequency of
the pendulum remains constant. In this case the conditions for energy input to the
pendulum related to differences between driving frequency and the pendulum’s
natural frequency remain unchanged. Thus, the equilibrium at branch A is only
determined by energy input and energy losses as explained in chapter 2.

Thus, oscillations represented by the dotted parts of the tuning curve are un-
stable. Any perturbation will start a process, which finally ends with oscillations
represented, by the full-lined parts of branch A or branch B.

6. Experiments with Different Non-linear Restoring Forces

The gravitational pendulum is an example for a softening restoring torque. For a
softening torque the graph torque against displacement is curved downwards while
for a hardening torque this graph is curved upwards. Our introduction to non-linear
effects can be extended if we investigate the consequences of different but well-
defined non-linear restoring torques.

We modify our experimental arrangement. We replace the mass, which provided
the restoring torque by an arrangement of springs to produce a restoring torque. A
hardening restoring torque is obtained if two identical springs act nearly vertical
from above and from below on the pendulum, as is shown by Figure 11. The springs
are connected with the pendulum by fine threads fixed by pins or fine nails at a
distance r to the axle.

Experimental values of the restoring torque as function of displacement are
shown by Figure 12.

i) For small displacements, (ϕ ≤ 30◦), the restoring torque is approximately
linear. Small displacements do not change the force of the two springs
F0FF = −x0 · C acting on an effective lever arm r sin ϕ which results in a torque
T:

T = −r · sin ϕ · 2 · C · x0;
r = distance between axle and pin. Thus the effective lever arm is: r sin ϕ;
x0 = initial displacement of spring.
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Figure 11. Arrangement to produce a hardening restoring torque.

ii) With increasing displacements the springs are stretched causing an increasing
restoring force and this results in an additional restoring torque given by:

T = −r · sin ϕ · (C[x) + r(1 − cos ϕ)]).
The restoring torque hardens up to displacements of about 80◦.

Figure 12. Restoring torque of the arrangement of springs according Figure 11.
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Figure 13. Amplitude versus natural frequency.

iii) With displacements exceeding this value the restoring torque decreases due to
the reduction of the effective lever arm expressed by r · sin ϕ and vanishes with
a displacement of 180◦.

The natural frequency of this pendulum depends in a non-trivial manner on the
amplitude.

i) With small amplitudes below 30◦ we expect an approximately constant natural
frequency.

ii) In the domain 30◦ < ϕ < 80◦ the restoring torque hardens and consequently
the natural frequency increases, the curve amplitude versus natural frequency
is bent to the right.

iii) In the domain ϕ > 80◦ the restoring torque reaches a maximum and then it
decreases. Consequently the natural frequency decreases resulting in a doubly
bent curve amplitude versus natural frequency.

With this experimental arrangement we can demonstrate three different types of
forced oscillations and associated tuning curves.

i) For small amplitudes resulting from small exciting torques we get the well
known type of tuning curve with a distinct resonance maximum at the natural
frequency f0ff for the linear case similar to Figure 2.

ii) If the exciting torques are increased two stable branches of the tuning curve
can be identified repeating the procedures described for the gravitational pen-
dulum. Starting from low frequencies we observe stable oscillations up to
frequencies above f0ff with increasing amplitudes. At a certain point A1, the
branch A ends and we observe a jump effect and the amplitude decreases to a
point B1 on branch B (see Figure 14).

If we start the experiment from high frequencies well above f0ff we get stable
oscillations represented by branch B. The amplitudes of which increase while

62



INTRODUCTION TO THE TREATMENT OF NON-LINEAR EFFECTS

Figure 14. Two branches of a tuning curve due to a hardening restoring torque.

the exciting frequencies decrease. At point B1 new jump effect happens and the
amplitudes increase up to a point A2 on branch B.

Both branches overlap and we notice a domain of bistability, where two differ-
ent modes of forced oscillations are possible. As it has been shown in the previous
section, we might complete the experimentally established branches to a complete
tuning curve by a dotted part which represents unstable oscillations.

iii) If we increase the exciting torque even more we obtain three parts of the tuning
curve representing stable oscillations. Two of these parts B1 and B2 (see Figure
15) represent oscillations with antiphase and may be regarded as belonging to
the same branch B of the tuning curve since fEff > fnaturalff .

Within a small interval, three different modes of stable oscillations can be estab-
lished caused by the same exciting torque. The dotted parts of the complete tuning
curve again represent unstable oscillations.

To obtain oscillations represented by part B2, we release the pendulum with
appropriate initial conditions. Since this branch is the extension of the branch B
starting from high frequencies its phase should be approximately anti-phase with
respect to the exciting torque. Its amplitude should be about 150◦. If thus released
the pendulum oscillates at first with some perturbations, which damp out and after
a few oscillations the stable mode is approximated. Varying the exciting frequency
step-by-step the experimental values to establish branch B2 can be obtained.

Within a certain interval (for our experimental design 0.98 ≤ f ≤ 1.06 Hz)
there exist three stable modes of oscillation for the same exciting frequency.

The oscillations of branch A are roughly in phase with the exciting torque while
those of branch B1 and B2 are in antiphase.
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Figure 15. Doubly bent tuning curve. The three full-lined parts representing stable oscilla-
tions.

If two pendula are arranged it is a fascinating demonstration to have two
identical pendula oscillate simultaneously both in antiphase but with two entirely
different amplitudes.

7. Transition to Chaotic Behavior

Using the gravitational pendulum, the transition from regular oscillations to chaotic
behavior can be demonstrated if the exciting torque is increased to get amplitudes
approaching 180◦ (crank arm about 5 cm). Starting the experiment from frequen-
cies well above f0ff the exciting frequency is gradually reduced obtaining amplitudes
approaching values near 180◦. Before this value is reached, however the oscilla-
tions become somewhat unstable. Small perturbations result in a turn over which
initiates chaotic and irregular movements. If, as recommended before, two identical
pendula are used it is most impressive to observe the transition from identical and
regular movements of both pendula to irregular and uncorrelated movements. In all
former experiments regular behavior prevailed- the pendula oscillated similarly or
in a well-defined relation regarding phase and amplitude. In the chaotic mode there
is no simple relation and no predictability.
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8. Appendix

Details of the experimental arrangement are shown in Figure 1 in Section 2.
The pendulum is constructed by a symmetrical bar, which is to rotate about

a horizontal axle in a support. The bar may be made of any material. We used a
plastic bar 25 cm × 2 cm the mass of which is about 20 grams. The dimensions are
not critical and may be changed.

A small mass fixed to one end produces the restoring torque. We used a coin
the mass of which is about 3 grams. The given details of our arrangement may be
changed, but for demonstration purposes the natural frequency should not exceed
1 Hz to facilitate observation. The axle is a spoke of a bicycle wheel, which can
rotate freely in the support. The friction can be reduced using graphite powder
as lubrication. A cardboard vane should be fixed to the rear end of the axle to
generate air friction which can be regarded approximately proportional to velocity.
Since energy loss is the product of friction and displacement, both proportional to
amplitude, energy loss is proportional to the square of amplitude.

To investigate forced oscillations an electric motor is used which allows the
frequency to be varied. To provide the exciting torque the exciting force acts from
above by means of a spring (C= 10 N/m) and a thread twisted around the axle. To
achieve sufficient torque the axle must be extended to a diameter of about 0.5 cm.
The easiest way to achieve this is to roll adhesive tape around the axle. To avoid
the thread slipping a piece of rubber tube or plastic tube is glued to the axle. To
give the thread sufficient tension a 50 gram mass is fastened to its lower end.

It has been mentioned, with this driving device, an additional linear restoring
torque is generated, which adds slightly to the restoring torque (see Figure 3).
However with the given arrangement, these influences do not cause important
errors.

The exciting torque is controlled by the motor’s crank arm, which can vary from
0.5 cm to 5 cm.

A dial plate behind the pendulum facilitates control and measurement of amp-
litudes ϕ. A marker F fixed to the pulley above the pendulum facilitates the
observation of phases between the exciting torque and the oscillations of the
pendulum.

All demonstrations are more convincing if two identical pendula are arranged.
This allows comparison of different oscillations and the easier observation of
different amplitudes and phases. Both pendula have to be identical in natural fre-
quency and damping. To control this, both should be released simultaneously from
an initial dislocation of 90◦ observing simultaneity of its movements for about
10 oscillations. If there are differences in frequency these can be eliminated by
readjusting the mass at the end of the bar. This changes mainly the restoring force
and thus the natural frequency. Furthermore the damping should be similar.
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To demonstrate qualitatively the dependency of period from amplitude two
identical pendula can be released simultaneously with substantially different
amplitudes. Within one period the differences show up.

To investigate quantitatively the dependency of natural frequency on amplitude,
the period of one full oscillation should be assessed several times to reduce errors.
From the periods the frequencies can be calculated.

To determine the tuning curve for the gravitational pendulum for the linear case,
a small crank arm of about 1 cm or even less is to be used. In this case the friction
should be as less as possible to get a distinct resonance peak.

To show the jump effect and bistability a crank arm of 2 cm to 3 cm is appro-
priate. Thus the exciting torque is increased proportional to the crank arm. The
exciting frequency should be increased or decreased in small steps. Each variation
causes disturbances and therefore it is necessary to wait a while to let the oscillation
settle into its new stationary state. In this case air friction by a cardboard vane of
about 6 cm × 6 cm fixed to the end of the axle helps to shorten the waiting time.

The basic arrangement for a hardening restoring torque is shown in Figure 11.
Each spring is characterized by C= 25 N/m.

Two equal masses of 6 grams, are fastened symmetrically to the ends of the bar
to increase the moment of inertia of the pendulum and to establish an appropriate
initial natural frequency similar to the gravitational pendulum. The threads are
connected with pins or fine nails fixed to the pendulum at a distance r of 1.0 cm to
1.5 cm from the axle.
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Experimental Control of Simple Pendulum Model
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Abstract. This paper conveys information about a Physics laboratory experiment for students with
some theoretical knowledge about oscillatory motion. Students construct a simple pendulum that
behaves as an ideal one, and analyze model assumption incidence on its period. The following aspects
are quantitatively analyzed: vanishing friction, small amplitude, not extensible string, point mass of
the body, and vanishing mass of the string.

It is concluded that model assumptions are easily accomplished in practice, within small exper-
imental errors. Furthermore, this way of carrying out the usual pendulum experiments promotes a
better understanding of the scientific modeling process. It allows a deeper comprehension of those
physical concepts associated with model assumptions (small amplitude, point mass, etc.), whose
physical and epistemological meanings appear clearly related to the model context. Students are
introduced to a scientific way of controlling the validity of theoretical development, and they learn
to value the power and applicability of scientific modeling.

1. Introduction

The direct references of the scientific theories are not the natural phenomena (be-
cause their are so complex) but the models, i.e., intellectual constructions based on
generalizations, abstractions and idealizations (Bunge 1985).

In particular, simple models, in addition to their scientific relevance, are valu-
able didactic tools. By means of them, students can perform activities and make
decisions consistent with those accepted by the scientific community, and control
the adjustment between theory and reality.

2. The Problem

Our proposal is a Physics laboratory experiment for students with some theoretical
knowledge about oscillatory motion. They have to construct a simple pendulum
that behaves as an ideal one, and analyze model assumptions which affect its
period. The following aspects are quantitatively analyzed: vanishing friction, small
amplitude, not extensible string, point mass of the body, and vanishing mass of the
string.

Among the various textbooks that treat the topic at an adequate level, for easy
access to the lecturer, we chose a well known one: Physics (Vol. I) by Resnick et
al. (1992).
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In particular, students must know the equation for the periods of (a) physical
pendulum: any rigid body, suspended from some axis through it, that can oscillate
on a vertical plane, and (b) ideal simple pendulum: a particle suspended from a
light, not extensible string (Resnick et al. 1992):

(a) Physical pendulum period

TpT = 2π

√
I

mgd
(1)

where TpTT represents the period of the physical pendulum, I the moment of inertia,
m the mass of body, g the acceleration due to gravity and d the distance between
the axis and the center of gravity of the system.

(b) Ideal simple pendulum period

TsTT = 2π

√
l

g
(2)

where l is the length of the string.
Equation (1) was deduced assuming:

A1: negligible friction (the resultant torque on the system about the horizontal axis
is solely due to the weight of the body).

A2: small oscillation amplitudes (in the equation of motion, the sine of the
amplitude angle can be replaced by the angle in radians).

A3: the pendulum is a rigid body (invariable mass distribution, constant moment of
inertia).

In order to consider a simple pendulum as a particular case of a physical one,
we must reformulate assumption A3. In fact, a string cannot be considered a rigid
body, but the pendulum mass distribution can be considered invariable if the string
keeps its length while the pendulum moves. Thus, we have:
A′

3: the string must keep its length.
The system constructed by the students must satisfy these conditions, as well

as two additional ones which are based on two requirements that allow us to pass
from (1) to (2). These are associated with a simple expression for the moment of
inertia and with the condition d = l. Thus,
A4: the string mass must be negligible.
A5: the body mass must be concentrated at a point.

In fact, under these conditions, Equation (1) can be written

TpT = 2π

√
I

m · g · d

= 2π

√
mp · l2

mp · g · l (3)
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TsTT = 2π

√
l

g

where mp is the mass of the particle.

3. Analysis Of The Error Introduced By The Model Assumptions

Once the pendulum is properly built, students are asked to obtain g from (2) with
a random error usually given in relative terms: εg = �g/g (suitable values for εg

are about 5 × 10−2). εg is associated with a random error in T :

εT = εg/2 (4)

Equation (4) was deduced using (2) and assuming

�l/l 		�g/g (5)

which easily holds because l and εg are arbitrary.
Students must realize that, besides the random error, there is a systematic error

in T including several independent terms, introduced by the fact that assumptions
A1 to A5 are not fulfilled.

In the following analysis we will derive equations to value these terms, namely,
the contributions due to friction (εf ), initial amplitude (εα), variable length of the
string due to a variable tension during oscillation (εT ), mass distribution of the
body (εb), and mass of the string (εs). These equations can help students to design
experimental system by determining the suitable values of certain variables so that
real pendulum fits the model, i.e., the system can be designed so that the systematic
error is negligible. Conversely, given a specific experimental system, students can
use these equations to value the effect of model systematic errors, i.e., the system-
atic error in any given system may be not negligible, but can be subtracted from T.
In any case, these equations allow students to control the agreement between a real
pendulum and an ideal simple one.

Assuming the former case (negligible systematic error), the equation for the
compound error, using (4), stands

εf + εα + εT + εb + εs 		 + εg/2 (6)

3.1. VANISHING FRICTION

In a simple pendulum a friction effect may exist between the system and the
medium in which it oscillates, and between the string and the oscillation axis.
The latter is easier to avoid than to compute. Therefore, we suggest fastening the
string to the axis firmly enough to avoid any movement of the knot. In particular,
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coiling must be avoided as well “loose ring” knots. If the string is coiled, during
the oscillation it will coil and uncoil a fraction of turn, varying its effective length
in each oscillation. On the other hand, if the knot is made as a loose ring, it will
introduce an excessive friction the effect of which is difficult to calculate.

In order to evaluate the air friction, the torque, τR, that it produces on the system
can be written:

τR = FRF · d (7)

where d denotes the effective force arm, and FRF , the friction force. Both of them
depend on the shape and size of the body, and FRF also depends on the velocity.
Since the body is supposed to be small, we can assume that d is the distance
between the oscillation axis and the center of gravity. Furthermore, FRF is

FRF = b · v (8)

which is valid for small velocities, b being the friction coefficient between the air
and the body; and v, the tangential relative velocity. Including (7) and (8) in the
differential equation of motion leads to

α = α0 · e−bt
2m · cos(ω′t + ϕ) (9)

where α and α0 are the displacement angle and the amplitude, respectively, the
exponential is the damping factor, and ω′ is equal to 2πf ′ where f ′ is the frequency
of the damped pendulum.

Thus, for a damped simple pendulum, the period becomes

T ′ = 2π/ω′ = 2π

g

l
−

(
b

2m

)2 (10)

In Equation (10), it can be seen that ω′ is different from the angular velocity of
a not damped pendulum, namely, ω = (g/ l)1/2. If the second term in the root of
(10) is much smaller than he first one, the air friction will be negligible. Unless the
body is made of an extremely low density material, this condition easily holds in
most of the common cases. b can be computed from (9), by eliminating the cosine
dependence, setting t = nT in the exponential, and measuring the amplitude after
an entire number, n, of oscillations.

The relative systematic error in the period, introduced by using (2) instead of
(10) is

T ′ − TsTT

TsTT
=

2π√
g

l
−

(
b

2m

)2
− 2π√

g

l

2π
g

l

(11)
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After dividing numerator and denominator of (11) by 2π(g/l)−1/2, this equation
becomes

T ′ − TsTT

TsTT
=

⎛
⎜
⎛⎛
⎜⎜⎜⎜⎜⎜⎝⎜⎜1 −

(
b

2m

)2

g

l

⎞
⎟
⎞⎞
⎟⎟⎟⎟⎟⎟⎠⎟⎟

−1/2

− 1 (12)

Expanding the parenthesis on the right hand side as a binomial series, and
neglecting third and higher order terms, we obtain

T ′ − TsTT

TsTT
= 1

2

(
b

2m

)2

g

l

(13)

Therefore, for the friction effect to be vanishing, it suffices to equate the right hand
side of (13) to εf fitted by (6).

3.2. SMALL INITIAL AMPLITUDE

The general equation for the period, including amplitude dependency, is (Resnick
et al. 1992):

TαTT = 2π

√
l

g

(
1 + 12

22
sin2

(α

2

)
+ 12 · 32

22 · 42
sin4

(α

2

)
+ · · ·

)
(14)

Thus, truncation on the second term, in order to compute the error, leads to

TαTT = 2π

√
l

g

(
1 + 12

22
sin2

(α

2

))
(15)

Therefore, the relative systematic error introduced by using (2) instead of (15),
which depends on amplitude, is

TαTT − TsTT

TsTT
= 12

22
sin2(α/2) (16)

from which the maximum initial amplitude allowed can be valued, after the right
hand side is set equal to εα fitted by (6).
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3.3. INEXTENSIBLE STRING

To analyze this condition we must consider two features: (i) string deforma-
tion while applying the weight statically, and (ii) string deformation during the
oscillation.

(i) While applying the weight statically, the string can undergo a considerable
elongation without altering the model. It suffices that the deformation remains un-
der the elastic limit and the lineal density remains constant, in order to compute the
moment of inertia.

(ii) During the oscillation, one must keep in mind that a variable tension is
applied to the string, due to the radial component of the weight, and the centripetal
force associated with the circular motion:

T = W · cos α + m · v2

l
(17)

where W is the weight of the body, and v, its velocity with respect to the earth.
Equating the maximum kinetic energy of the body to its maximum potential

energy, one can compute its maximum velocity, vm, when it passes through its
equilibrium position:

vm = √
2.g.l(1 − cos α0) (18)

A minimum tension is exerted when the pendulum is in its maximum amplitude,
and a maximum tension when it passes through its equilibrium position. The
difference of tension between these extreme values is

�T = 2W(1 − cos α0). (19)

Therefore, once the initial amplitude is fixed using (16), one must choose a string
strong enough (whether due to its Young coefficient and/or to its size), or a body
light enough, so that the difference of tension given by (19) stretches the string an
amount not greater than that fixed for the error of its length (we have assumed
�l/l � �g/g). Hence, it is suggested that vinyl strings and textile fibers be
avoided.

3.4. POINT MASS OF THE BODY

The distribution of the oscillating body mass affects its moment of inertia. The
moment of inertia about an arbitrary axis may be written as follows (Resnick et al.
1992):

I = IG + m · d2 (20)

where IG is the moment of inertia about a parallel axis through the center of mass
of the body, m is the mass of the body, and d is the distance between the two axis.
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The second term on the right hand side in (20) is the moment of inertia of a
point mass about the suspension point of the pendulum, and we can interpret the
first term as being the error due to the non-point character of the mass of the body.
So, the mass of the body may be considered to behave as a “point mass” if the ratio
between the first and the second terms is very small.

To know how small this quotient must be, let us consider the relative error due
to the use of the simple pendulum period expression (TsTT ) instead of the physical
pendulum period expression (TpTT ). We will assume that a string of vanishing mass
and a body of finite size form the physical pendulum. On the other hand, in the
simple pendulum period expression we will use “d” instead of “l”, given their
identity in the case under consideration. We obtain:

TpTT − TsTT

TsTT
=

2π

√
IG + m · d2

m · g · d
− 2π

√
d

g

2π

√
d

g

=
2π

√
d

g

(
IG

m · d2

)
− 2π

√
d

g

2π

√
d

g

=
(

IG

m · d2
+ 1

)1/2

− 1 (21)

Expanding the statement between parenthesis in (21) as a binomial series and
neglecting third and higher order terms, it can be seen that the mass of the body
may be considered a “point mass” if the following relationship is verified:

1

2

IG

m · d2
≤ εb (22)

where εb must be fitted by (6).

3.5. VANISHING MASS OF THE STRING

The mass of the string affects the oscillation period because:
– it contributes to the moment of inertia of the system
– it changes the position of the center of gravity of the system
– it changes the mass of the system.
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Let us first consider how the mass of the string influences the moment of inertia
of the system. The moment of inertia of the system about the point of suspension
is:

I = IstringII + IbodyII . (23)

In equation (1), this effect of IstringII appears as an increase in the oscillation period.
Let us now consider how the mass of the string influences the position of the

center of gravity of the system. The distance between the oscillation axis and the
gravity center is (Resnick et al. 1992):

d = ms · l/2 + mb · l

ms + mb

(24)

In Equation (24), it can be seen that d < l. So, in Equation (1), this effect of mstring

appears as an increase in the oscillation period.
Let us finally consider how the mass of the string influences the mass of the

system.
The total mass of the system is:

m = mstring + mbody. (25)

In Equation (1), this effect of mstring appears as a decrease in the oscillation period.
Now we will insert (23), (24) and (25) in Equation (1), to find an expression

which shows the quantitative difference between the period values predicted by the
physical and the simple pendulum models.

We will take into account that the moment of inertia of a homogeneous string is
given by the following expression (Resnick et al. 1992):

IstringII = 1

3
· mstring · l2 (26)

and we will define:

k = ms/mb. (27)

We obtain:

TpT = 2π

√
I

m · g · d

= 2π

√√√√√√√√√√√√√ IsI + IbI

(ms + mb) · g · ms · 1/2 + mb · l
ms + mb
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= 2π

√√√√√√√√√√√√√√√√√√√
(

1

3
k + 1

)
· mb · l2

g ·
(

1

2
k + 1

)
· mb · l

TpT = 2π

√
l

g
·

√√√√√√√√√√√√√√√√
1

3
k + 1

1

2
k + 1

(28)

The second root in the right hand side of (28) is less than unity. Thus, TpTT < TsTT ,
i.e., the total influence of the mass of the string is to increase the period value
predicted by the simple pendulum model.

We can write:

TpTT − TsTT

TsTT
=

√
l

g
·

√√√√√√√√√√√√√√√√
1

3
k + 1

1

2
k + 1

− 1 (29)

According to the difference just mentioned between TpTT and TsTT , this expression
gives a negative relative error due to a non-vanishing mass of the string. Thus, it
suffices for the mass of the string effect to be vanishing that the right hand side of
(29) is equal εs fitted by (6).

4. Conclusions

From quantitative analysis of systematic error we have shown that model as-
sumptions are easily accomplished in practice, within small experimental errors.
Considered separately, within an error of 1%:

– an initial amplitude of 23◦ is “small”.
– a sphere, whose diameter is 30% of the length of the string, is “a point mass”.
– a mass of the string equal to 10% of the mass of the body is “vanishing”.
– any elastic elongation suffered by the string during the static process of loading

is negligible, providing the string length is measured after the loading.
– without loosing its property of ’not extensible’, the string may vary its length

during oscillation (due to a variable tension), providing this variation is less
than the measurement error of the string length.

This way of carrying out the usual pendulum experiments:
– promotes a better understanding of the scientific modeling process.
– allows a deeper comprehension of those physical concepts associated with

model assumptions (small amplitude, point mass, etc.), whose physical and
epistemological meanings appear clearly related to the model context.
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– introduces students to a scientific way of controlling the validity of theoretical
development, and helps them to value the power and applicability of scientific
modeling.
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Soup-can Pendulum
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Abstract. In these studies, a vegetable can containing fluid was swung as a pendulum by supporting
its end-lips with a pair of knife edges. The motion was measured with a capacitive sensor and the
logarithmic decrement in free decay was estimated from computer-collected records. Measurements
performed with nine different homogeneous liquids, distributed through six decades in the viscosity
η, showed that the damping of the system is dominated by η rather than external forces from air or
the knife edges. The log decrement was found to be maximum (0.28) in the vicinity of η = 0.7 Pa s
and fell off more than 15 fold (below 2×10−2) for both small viscosity (η < 1×10−3 Pa s) and also
for large viscosity (η > 1× 103 Pa s). A simple model has been formulated, which yields reasonable
agreement between theory and experiment by approximating the relative rotation of can and liquid.

1. Introduction

Pendulum damping is usually thought of as originating from forces external to the
oscillating member – as for example, from air or knife edges. There are many
mechanical oscillators, however, for which the primary damping mechanism is
internal friction. A recently studied example is that of the long-period pendulum
studied by Peters and Pritchett (1997). The present paper describes another pen-
dulum, whose period is short (<0.5 s), and which is also influenced primarily
by internal friction. The study was partly motivated by the mechanics of rolling
vegetable cans. Although a proper interpretation of some results can be tricky as
shown by Nickas (1989), it has become commonplace for physics teachers and
their students to compare the rolling speed of two different vegetable cans on
an inclined plane. The popularity of these demonstrations suggested that it might
also be fascinating to study a “pendulating” vegetable can. Part of the fascination
with the soup-can pendulum derives from early observations in which behavior
differences of the type illustrated in Figure 1 were noted.

Shown in this figure is the decay of oscillatory amplitude for each of two differ-
ent vegetables: (i) blackeyed peas, and (ii) sweet peas. Unlike the blackeyed peas
case, for which there is little damping, a dramatic loss occurs when the pendulum is
a can of sweet peas. In all studies presently reported, the period of oscillation is in
the vicinity of 0.45 s, using common vegetable cans of size 7.4 cm dia. by 11.2 cm
length, and 56 g empty can mass. Although some variations in period were noted
from case to case, as expected; these changes were small compared to the primary
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Figure 1. Comparison of the decay of two different vegetable cans.

variation, which is the damping. Later studies are planned in which the second
order effects of period will be addressed. The remarkable difference between the
sweet peas and blackeyed peas was not anticipated by means of other comparisons.
For example, shaking the cans revealed a significant volume of water packed with
each of the vegetables. In a rolling comparison it was found that the sweet peas
were faster than the blackeyed peas down an incline, but not with as huge a differ-
ence as in Figure 1. Another interesting feature of Figure 1 are the “steps” in the
decay of the sweet peas. Apparently the peas tend to organize in groups, the size
of which depends on pendulum amplitude. Thus there is evidence for granularity
giving rise to self-organized criticality (Bak et al. 1988). The understanding of
these effects must also await future studies.

2. Pendulum Design

Shown in Figure 2 are (i) the support structure for the pendulating can and (ii)
the placement of the symmetric differential capacitive (SDC) sensor to monitor
position.

The static electrodes of the sensor were attached to the support frame with super
glue, near the top end of the can, using two pieces of 8 mm thick lucite. The frame
was constructed from a 11 cm long section of “c” channel aluminum of 8 mm wall
thickness and 15.3 cm width. Two small aluminum pieces to hold the knife edges
were welded to the 4 cm high sides, using a tungsten inert gas, or TIG welder.
These optionally could have been attached with screws. The clearance between
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Figure 2. Illustration of the soup-can pendulum.

the bottom of a can and the frame is about 1 cm. The knife edges were made
from a section of bandsaw blade 0.5 mm thickness, 1.2 cm width. The teeth were
ground off the blade, and each knife edge was sharpened in the vicinity of the
end which contacts the lip of the can. One of these was press fitted into a slot
cut in its small aluminium holder, and the other was hinged with a small steel
pin so that the can may be easily mounted and dismounted from the frame. The
doubly differential capacitive sensor, which is described elsewhere (Peters 1993)
comprises a pair of static electrodes held in parallel proximity, and a third planar
electrode which moves between the static pair. For the present experiments, the
moving electrode was cut with scissors from thin sheet aluminum. A near right
angle bend in the lower section of this “fan-shaped” piece permits it to be fixed in
position on top of the can by a small magnet.

3. Experimental Technique

When filled with inhomogeneous vegetables, the motion of the can pendulum is
hopelessly complicated, relative to a first effort at theoretical modelling of the
system. The difficulty of such a task may be appreciated by simply inspecting the
sweet pea decay case in Figure 1. For this reason we chose to first look at decays
(for serious study) in which the can is filled with a variety of different homogeneous
liquids, whose primary difference is their viscosity, η. In the results which follow,
it will be seen that a range in η of more than six orders of magnitude is readily
achieved, using only liquids which are common to most physics departments. To
insure a meaningful comparison among runs with different liquids, the vegetable
can selected for use was in all cases the one whose dimensions were indicated
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in the discussion of Figure 1. Following the purchase of a can from the grocery
store, the vegetable contents had to be emptied. To facilitate mechanical integrity
after refilling, the lid was separated from the body of the can using a can-opener
(Culinare) that cuts through the narrow outside crimp in the end-lip. Not only does
this technique result in safe products of separation, since there are no sharp edges
on either the can or its lid; but also their smooth separation permits the pair to be
rejoined, after filling with a test liquid, by means of a thin layer of glue.

3.1. DATA COLLECTION

The analog data from the sensor electronics is input to the 33 MHz 486 PC com-
puter by means of a Metrabyte 1401 analog to digital (A/D) converter. Software of
both acquisition and processing types was written in QuickBasic (compiled), and
the hybrid code had in some cases been written by Metrabyte and in other cases
by the author. Two different modes of operation are employed. The setup mode is
a real-time one in which the duration of the record graphed on the monitor, and
the full-scale sensitivity of the electronics, are chosen after a prompt is displayed.
This permits the operator to adjust the electronics offset for a mean output that is
in the vicinity of zero. The pendulum displacement is mapped against time on the
monitor using the ‘pset’ software command. In this mode, the computer emulates
an old-fashioned strip-chart recorder. The second mode is one in which a record of
2048 points (2 K) is written to memory of the computer for later analysis. During
collection of the record, no graphical information is available for viewing. For
all cases presently reported, the 2 K records from which figures were produced,
were collected using a full scale sensitivity of ±0.1 V. For the sensor used in these
experiments, the calibration constant corresponding to this A/D sensitivity, was
1, 5 × 105 counts/rad for counts in the range −4095 to 4096.

It is possible to view the raw data directly, as illustrated in Figure 3, which
shows the vast difference between a can filled with glycerin and a reference case
for which there is insignificant internal friction.

For this comparison, the ordinate values were normalized to the initial peak
amplitude, which is a straightforward operation with the Microsoft Excel software
that was used to produce all graphs. For a given case, one simply imports from
memory to Excel the 2 K record of interest, and then responds to prompts gen-
erated by the chart “wizard”. The abscissa values (time) are integer ·�t where
�t = 30 s/2048. In addition to the obvious difference between the decay constants
in the two cases of Figure 3, one can also see that the period of the motion is
slightly greater when the can contains glycerin. As compared to the huge difference
in damping coefficients, the variation with period is second order, as previously
mentioned. To produce the reference decay, brass weights were fixed inside an
empty can (56 g mass), the amount selected to approximate the mass of a wa-
ter filled can (510 g). The log decrement in this reference (5.0 ± 0.4 × 10−3,
R2 = 0.993) is evidently influenced largely by the knife edges. By contrast, the
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Figure 3. Decay of glycerin compared to a reference decay.

empty can (8.1 ± 0.9 × 10−3, R2 = 0.998) is evidently influenced primarily by the
viscosity of surrounding air.

The decay constant which is referred to as the log decrement is defined as

L.D. = ln(θN/θN+1) (1)

where θN and θN+1 are the displacements of a pair of turning points of like sign
separated in time by one period of the oscillation.

In a graph which follows (Figure 6) of pendulum damping against viscosity, the
reference damping was subtracted from the measured damping to yield the internal
friction part. Only at low values of the damping was this correction significant.

4. Theoretical Model

The system was modelled by two coupled classical differential equations, based on
Newton’s 2nd law:

θ̈ + c · η1/2(ω − ωL) + θ = 0 (2)

and

θ̈L = η1/2(ω − ωL) (3)

where θ is the angular displacement of the can, θL (less well defined) describes
the displacement of the liquid, ω = dθ/dt and ωL = dθL/dt . The constant c is
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the one adjustable parameter in the model, and η is the viscosity. Being concerned
primarily with trends in the damping versus viscosity, the factor that would nor-
mally multiply the term in θ has been set to unity. Thus the period of oscillation of
the model system is 6.28 when η = 0, rather than the actual experimental period
in the neighborhood of 0.45 s.

The model equations were first tested in a limiting simple case; i.e., by removing
the θ term in Equation (2) and noting that ω and ωL approach a common value
exponentially, with a time constant inversely proportional to η1/2 To solve (2) and
(3) numerically, they were first rewritten as an equivalent coupled set of four first
order equations:

ω̇ = −cη1/2(ω − ωL) − θ (4)

ω̇L = η1/2(ω − ωL) (5)

θ̇ = ω (6)

θ̇L = ωL (7)

Although the liquid motion is undoubtedly complicated in most cases, a simplify-
ing assumption has been made – that the effective angular momentum of the liquid
in this “normalized” model, is proportional to η1/2. This assumption is based on
comparisons of theory and experiment with rotating liquids (Greenspan 1968).

5. Numerical Technique

The equations of motion (4)–(7) were integrated, using QuickBasic, on the basis
of the last point approximation (LPA) (Cromer 1981). The author has used this
algorithm instead of Runge Kutta or other techniques since the 1980’s. Even in
celestial mechanics calculations performed for orbital rendezvous and antisatellite
intercepts, the LPA was found to be quite acceptable as far as errors are concerned,
and much easier to both understand and implement than the algorithms traditionally
known to the computational physics community. Careful comparative studies over
the past decade by graduate students under the direction of Prof Tom Gibson at
Texas Tech University, have shown that the LPA is also unsurpassed in terms of
code size and CPU times for execution. The most common use of LPA has been
for systems described by fewer equations than the present pendulum, even though
the previous equations involved nonlinear terms necessary to produce chaos. An
example is provided in Peters (1995). A testament to the prowess of LPA in the
present modelling is the following observation: When Equations (4)–(7) were in-
tegrated (single precision) with approximately 20 widely distributed values of η,
and the turning points fitted to an exponential; the R2 of the resulting fit was in
every case unity according to Excel – meaning a perfect fit to within at least 4
significant figures. This was true for a particular value of the time step, �t , and the
essential (uncommented) code which was used is supplied in Table I.
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Table I. QuickBasic LPA code to integrate Equations
(4)–(7). (The viscosity parameter is set to η = 1.0,
corresponding to glycerin).

SCREEN12

VIEW (0, 0)–(600, 470)

WINDOW (0, −l)–(1, 1)

L = 1: LL = 0: th = 0: dt = 0.005

eta = 1.0

start:

t = t + dt

L = L − th ∗ dt − 0.16 sqrt(eta) ∗ (L − LL) ∗ dt

LL = LL + sqrt(eta) ∗ (L − LL) ∗ dt

th = th + L ∗ dt

PSET (0.01 ∗ t , 0.5 ∗ LL), 2

PSET (0.01 ∗ t , 0.5 ∗L)

GOTO start

STOP

It should be noted that the integration of ωL (LL in the code) to obtain θL is
not performed since this variable was not used. To estimate the log decrement,
whether of experimental data or of output from the code of Table I written to a file
(the write statement is not indicated in the table), a QuickBasic software program
was produced to identify the turning points of the damped sinusoid. The peak-to-
peak amplitude of the motion, which is the sum of the absolute value of adjacent
turning points of opposite sign, was then plotted vs time expressed in half-cycle
integers.

6. Model Features

Before considering a detailed theory of the pendulum, it was clear that the log
decrement would exhibit a maximum at some midrange value of the viscosity,
since the damping mechanism must depend on relative rotation of can and liquid.
At very high viscosity, the “liquid” is fully coupled to the can, and the absence
of relative motion eliminates damping. At very low viscosity there is maximum
relative rotation but the absence of coupling prevents exchange of energy and so
damping is also low.

6.1. MODEL PARAMETER VARIATIONS WITH η

Using Equations (4)–(7), the phase and amplitude features of the liquid were de-
termined as a function of η. As used here, phase is the angle with which the liquid’s
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Figure 4. Phase and amplitude of liquid angular momentum vs viscosity.

angular momentum dθL/dt lags behind that of the can, dθ/dt “Amplitude” is the
value of the first peak of dθL/dt , obviously influenced by the initial conditions,
which were in all cases θ = 0 = ωL and ω = 1.

The results are shown in Figure 4, where the phase is seen to decrease with
increasing η, from an initial value of 0.25 (×2π).

It should be noted that an increase in amplitude of θL (toward 1 as η → ∞ in
Figure 4) corresponds to a decrease in relative motion between can and liquid.

6.2. PERIOD

The period variation was not compared directly with experiment for this study;
however, the model does predict that it should increase by about 8% as η increases
from 10−3 to 102, as illustrated in Figure 5.

7. Comparison of Theory and Experiment

To compare theory with experiment, the value of η in the model code was set at the
viscosity appropriate to the liquid considered (value shown in Table I being η =
1, corresponding to glycerin). A record was then written to memory (every 10th
point, separated in time by 0.05), which could be compared to the corresponding
experimental record for that liquid. In all cases, the log decrement was computed
by first finding the turning points in a given record. Then the peak-to-peak values
were computed as previously indicated. Finally, an exponential fit to these peak-
to-peak values was generated using Excel, from which the log half-decrement was
obtained as the coefficient in the exponential fit. For the model sets, R2 = 1 in all
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Figure 5. Variation of normalized model period with viscosity.

Table II. Liquids considered in the study.

Liquid Viscosity (Pa s) Mass density (g/cm3)

Acetone 3 × 10−4 0.79

Water 1 × 10−3 1.00

Sugar water 7 × 10−3 1.02

Vegetable oil 9 × 10−2 0.86

Mineral oil 1 × 10−1 0.82

Glycerin 1 × 100 1.26

Corn syrup 3 × 100 1.28

Honey 1 × 101 1.30

Corn starch 1 × 103 1.03

cases as noted previously. The experimental data typically showed some amplitude
dependence to the decay constant, but R2 > 0.93 in all cases. The liquids which
were considered in this study are indicated in Table II.

The sugar water was made by dissolving 40% by weight of sucrose in water to
produce a handbook listed viscosity of the indicated amount. All values of viscosity
less than or equal to that of glycerin in Table II were obtained from handbooks. The
value of η for liquids of higher viscosity was estimated relative to that of glycerin,
using Stoke’s Law. A small steel sphere was dropped in a test tube full of the liquid
and the descent time was measured with a stopwatch. This time was then compared
against the fall time using glycerin.

It should be noted that η is sensitive to temperature and therefore all experi-
ments were performed at a laboratory temperature close to 23 ◦C. In addition to
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Figure 6. Damping vs viscosity-comparison of theory and experiment.

the viscosities, the densities of the liquids are also provided in Table II. These were
estimated from mass and volume measurements and their uncertainty is about 3%.
For an ideal comparison of experiment and present theory, all liquids would have
the same density, which is not possible. This complication will be discussed later.
Theoretical damping (solid curve) is compared against experiment (data points
with error bars in the log half-decrement) in Figure 6.

For this graph the single adjustable parameter of the model, c of Equation (4)
was set to 0.16 – the value which was found by trial and error to give the best
agreement with experiment. The ±16% 1σ -uncertainty (error bars of Figure 6) is
based on careful measurements done on glycerin, corn syrup, and the sugar water,
using a set of 24 different records in each case. The range of the results for the
three was from 14% to 17%, and smaller sample statistics with the other liquids
suggested that an uncertainty of 16% is fairly representative of all cases. The un-
certainty in η is much harder to quantify, particularly for the corn starch, which
may be non-Newtonian. The estimate of its value at 1000 Pa s could be wrong by
as much as 50%. For the other liquids, the uncertainty in viscosity is probably in
the neighborhood of 20%. In Figure 6 two points are shown for water, to emphasize
that there is amplitude dependence to the damping in this experiment. The larger
value of the log half-decrement was obtained with the pendulum oscillating at a
ten times larger amplitude. It was also noted that the R2 declined from 0.99 for the
least viscous liquids to 0.94 for the most viscous ones.
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7.1. INFLUENCE OF MASS DENSITY DIFFERENCES

In the model, the mass of the pendulum has been assumed constant from one liquid
to the next, which clearly is not true. The invariant quantity being the volume of the
liquid, and since the can mass is only about one-tenth the liquid mass; we estimate
from the densities of Table II that the mass of the acetone pendulum is about 80%
that of water and that of the honey pendulum is about 130% that of water. These
are the extremes of the variation for the liquids used in the present study. Future
studies will consider whether the kinematic viscosity would be the better variable
with which to make the comparison; i.e., division of η by the density. This seems
reasonable since the damping constant, for a given viscosity, should decrease with
increasing mass. Moreover, the kinematic viscosity is routinely used instead of
absolute viscosity in engineering comparisons of gases. For the data of Figure 6,
the difference between the graph given and one based on kinematic viscosity is
not great enough to warrant redrawing the figure. A significant reduction in the
viscosity uncertainties, however, would make this meaningful.

8. Use of the Can-Pendulum as a Viscosimeter

The reasonably good agreement between theory and experiment suggests that the
system may be used as an instrument for measuring viscosity. Most liquids for
which one would want to measure η are less viscous than glycerin. Therefore a
power law fit to the low viscosity segment of Figure 6 was performed. The resulting
R2 = 0.986 is not outstanding, but still close enough to unity that ≈20% estimates
in η should be possible from measured log decrements, by inverting the expression:
log half-decr. = 0.145η0.3936 for η < 1. Note that the log half-decrement has
been used in these graphs, rather than the log decrement. To get the latter from
the former, one need only multiply by a factor of 2.

9. Conclusions

It has been shown that some features of a liquid-filled can-pendulum can be readily
understood, whereas others may be so complicated as to defy simple explanation.
Pedagogically, it appears to be a system that is rich in new possibilities for im-
proved teaching of the old physics of classical mechanics. Particularly when the
fluid of the can is made inhomogeneous by mixing solid particles with a pure liquid,
unexpected behaviour can result. For example, it appears that dynamic organization
of particles can then occur for some-conditions, the nature of which are not yet un-
derstood. Planned future studies will attempt to understand these peculiar features.
Future studies will also deal with the importance of pendulum mass, as well as size
of the can. The theory which motivated the η1/2 feature in Equations (4) and (5)
also predicts that the dimensions of the can are important to the damping. Thus, an
obvious follow-on experiment would be one to verify the functional dependence
on can diameter.
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What Makes the Foucault Pendulum Move

Among the Stars??

NORMAN PHILLIPS
18 Edward Lane Merrimack, NH 03054, USA, (E-mail: napmar18@adelphia.net)

Abstract. Foucault’s pendulum exhibition in 1851 occurred in an era now known by devel-
opment of the theorems of Coriolis and the formulation of dynamical meteorology by Ferrel.

Yet today the behavior of the pendulum is often misunderstood. The existence of a horizontal
component of Newtonian gravitation is essential for understanding the behavior with respect
to the stars. Two simple mechanical principles describe why the path of oscillation is fixed only
at the poles; the principle of centripetal acceleration and the principle of conservation of

angular momentum. A sky map is used to describe the elegant path among the stars produced
by these principles.

1. History

On March 26 1851, 150 years ago, the Panthéon was the scene of a dramatic
exhibition as Leon Foucault demonstrated his 67-m pendulum. The slow
clockwise precession of the oscillation path amazed the onlookers, and the
news spread rapidly around the world. Pendulums were immediately set up
on all continents. For the first time it was possible to witness the turning of
the earth in a closed room, with no reference to the skies. No longer was it
reasonable to think that the sun and stars revolved around the earth; the
evidence for the revolving earth was simply too strong (Deligeorges 1990).
The demonstration took place at the time that meteorology, as we know it,
was beginning to be formulated as a branch of mechanics (Ferrel 1859).

Foucault was an extraordinary experimental physicist, with major dis-
coveries in optics as well as the pendulum and gyroscope.1 However in his
report to the Academy he avoided presenting a mathematical explanation of
the pendulum precession (Foucault 1851). He did however suggest that the
precession rate was proportional to the sine of the latitude.

Period of precession ¼ 24 sidereal hours divided by the sine of the latitude.

ð1Þ

? A French version of this paper originally appeared in the journal La Météorologie Vol.
8(34): 38–44, 2001.
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Others immediately leaped to fill the mathematical gap, and the next
several years saw many articles in the scientific literature that attempted to
explain the phenomenon. The sine of latitude factor is now taught to
beginning students of mechanics, using the theorems of Coriolis (Coriolis
1835). The development of vector algebra and calculus by Heaviside and
Gibbs also made it easier to explain mathematically the effects of the earth’s
rotation. The standard classical explanation in rotating coordinates is that by
Sommerfeld (1965).

Although the physics of the precession as seen from the earth are simple
– at least after one has understood the Coriolis force! – the physics as seen
from non-rotating space seems to have been confusing. Even Foucault
seems to have believed that somehow the plane of precession was fixed with
respect to the stars. This is true at the pole, but not elsewhere. The fol-
lowing essay is an attempt to describe the forces that bring about the
precession, avoiding mathematics and using only the simplest mechanical
principles. Hopefully it will be understandable to museum audiences as well
as scientists.2

2. It Does Move Among the Stars

Consider for example the pendulum in the Panthéon. The sine of the latitude
of Paris is close to 0.75, and according to Foucault’s formula, 32 sidereal
hours is required for a full circle. Thus, the plane of oscillation after 24 h has
rotated only 3/4 of a full circle, and is oriented perpendicular to its initial
location in the Panthéon. But since the Panthéon is oriented with respect to
the stars precisely as it was 24 h earlier, the precession path must also be
perpendicular to its initial orientation with respect to the stars. In spite of this
direct explanation – it deserves to be called an observation, it is still common
to find museums (and their web sites) where it is maintained that the pen-
dulum path is fixed in space. This misconception seems to be based on the
idea that there is no horizontal force that could exert a torque to make the
path change in space; the pendulum restoring force, after all, is directed
always toward the equilibrium point of the pendulum. But there is an
additional force acting, a force that greatly simplifies our everyday life al-
though not sensed by any of us.

3. The Resting Pendulum

To examine the forces acting on the bob it is essential to consider first the
simple situation when the pendulum is not oscillating. It then acts as a simple
‘plumb bob’, defining the local vertical. But it is also travelling around with
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the earth from west to east in a circle as the earth rotates. What makes the
non-oscillating bob move in this circle? It cannot be the tension in the wire
because that tension acts only vertically upward along the wire – it is not
dragging the bob around the earth; and if the wire were cut, the bob would
continue to move around with the earth. When one whirls a stone on a string,
it is necessary to pull on the string to make the stone move in a circle instead
of a straight line. There must therefore be a similar force acting on the resting
pendulum bob. This force is a component of Newtonian gravitation that acts
poleward and parallel to the surface of the earth. Figure 1 shows how this
force ‘G’ acts on the resting pendulum bob while Figure 2 illustrates motion
in a circle with the force G accelerating the resting bob toward the pole.

It is not only the pendulum that experiences G; if G were not present, the
water in the oceans would start to accelerate toward the equator instead of
travelling around with the earth. The ellipsoidal shape of the earth, first
imagined by Newton, ensures that Newtonian attraction is oriented with a
component along the surface toward the pole just sufficient to keep the
oceans and atmosphere, etc. in place. And of course it keeps us at the latitude
where we choose to live.

How big is this force? It must be big enough to balance the familiar
outward centrifugal force:

Necessary centripetal force¼mass of bob (m) times square of eastward speed

ðVÞV divided by the distance to the axisðRÞ ¼mV2VV =2 R== : ð2Þ
For a body resting on the earth, V equals the distance R times the rotation
rate of the earth, or

V ¼ R times 2p radians per 24 h:

Figure 1. Forces acting on a resting pendulum bob hanging from the support S, as seen
in a meridional plane. hh¢ is a plane tangent to the earth and perpendicular to the solid

arrow, which represents gravity, g. g is composed of the Newtonian attraction gN minus
the centripetal acceleration V2VV /2R// , where R is the distance to the rotation axis and V is the
eastward speed of a point on the earth’s surface. gN has a component G acting poleward

galong the surface hh¢ p p pp gperpendicular to the support wire. The latitude is the angle Ø.
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Since R in middle latitudes is about 4000 kms, V is about 1000 kms h)1, or
278 m s)1. And for a 1 kg bob, the force is:

Centripetal force ¼ ð1Þð2782Þ=4;000;000 ¼ 0:02 Newtons:

(The kilogram weighs 10Newtons:Þ:
But in this way we have computed the total centripetal force, directed radi-
ally inward perpendicular to the rotation axis and parallel to the equato-
rial plane, as shown in the Figure 2. We are really interested only in how
much is acting in the horizontal plane, since the vertical part of the cen-
tripetal force is contained in ordinary gravity. Therefore this estimate of
0.02 Newtons must be multiplied by the sine of the latitude to get the hori-
zontal component. This will reduce the value to approximately G �
0.015 Newton, say, in middle latitudes. (Note that the horizontal component
will be zero at the equator.)

G is also present when the bob is oscillating. We have already deduced
one major fact – there is a real horizontal force G acting on the bob that is not
part of the tension in the wire or of ordinary gravity acting downward.3

Furthermore, this force does not act only in the plane of oscillation; it is
always directed toward the pole. This frees us from the restraint (supersti-
tion?) that there is no force available to make the pendulum path change its
orientation with respect to the stars. But we will find that the effect of G on
the precession is subtle and indirect.

How big is the force that makes the bob oscillate? If the bob, hanging on a
wire of length L is displaced a distance x from the equilibrium point, there is
a component of gravity equal to:

mass times g times ðx=LÞ

Figure 2. The horizontal component G of Newton’s attraction acts to accelerate a mass
pin a circle around the earth with the rotational speed V of the earth at that latitude.
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acting perpendicular to the wire and accelerating the bob back toward the
equilibrium position.

For g ¼ 9.8 m s)2, L ¼ 67 m, x ¼ 3 m, and a 1 kg bob, we get RF �
0.5 Newton. Thus the restoring force is 33 times stronger than G. (The period
of the oscillation will be about 16.4 s.)

4. The Changing Centrifugal Balance

We have now the problem of finding out how G, pointing always to the pole,
acts to make the oscillation path precess clockwise. To resolve this we will
examine how G operates in two different situations, one when the bob is
oscillating from west to east, and secondly when the bob is oscillating from
south to north.

To focus attention on G, we ignore the pendulum restoring force for a
moment. Consider the bob as it moves from west to east with a speed v as we
observe it from the earth. Its total eastward motion is then V + v, larger than
V. If it were to continue moving in the same latitude circle as the equilibrium
point, it would require a force directed towards the pole that is larger than G,
according to Equation (2). Since that larger force is not present, the bob will
not follow the west–east line of constant latitude, but will accelerate towards
the equator, in a less curved line, somewhat as the whirling stone on our
string would attempt to do if it were speeded up. When the bob is moving
from east to west at a speed v in the return part of its oscillation, its total
speed would be V )v, and the existing poleward force G will exceed the
amount needed to keep the bob on the same latitude circle. The bob would
accelerate poleward. These displacements are pictured in Figure 3.

Figure 3. A mass moving eastward with the speed of the earth’s surface will move as
shown by displacement 2. A mass moving slower to the east (i.e. westward with respect

to the earth) will accelerate northward as shown by displacement 1. A mass moving
yfaster to the east will accelerate to the south of the latitude circle traversed by mass 2.
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In both cases we see that the bob is deflected to the right of its motion with
respect to the earth, just as observed in the precessing pendulum. (In Fig-
ure 3, note that the displacement 1 is for a bob moving westward with respect
to the earth.) The stronger restoring force of the pendulum wire will not
cancel out this effect completely, but it will resist sidewise deflection of the
bob and reduce the clockwise precession. (Detailed mathematics shows that it
cuts the deflection in half.)

5. Conservation of Angular Momentum

Now turn attention to the case of the bob moving from south to north. In
this situation the gravitational force G and the pendulum restoring force are
both directed either at the pole or away from the pole. At this instant they
cannot change the angular momentum of the bob about the rotation axis. The
angular momentum AM about the rotation axis is the product of the total
eastward speed and the radius:

AM ¼ VR

Conservation of AM is what increases the spin (i.e. ‘V ’) of the iceskater when
she pulls in her arms (decreases ‘R’). When the bob moves poleward in its
south–north oscillation, its distance R from the earth’s axis decreases. Vmust
then increase for AM to remain constant. This process is illustrated graph-
ically as displacement 3 in Figure 4. This means that the bob will tend to
acquire an eastward component of motion relative to the earth – it will no
longer move in a strict south–north path but be deflected to the right. And
when the bob moves southward on the return swing, the conservation of AM
will make V decrease, and the bob will acquire a motion to the west with
respect to the earth underneath. (Displacement 1 in Figure 4.) In both situ-

Figure 4. A mass moving eastward with the speed of the earth will move in displace-
ment 2 (A parallel of latitude is shown here as a straight line.) A mass with the same
initial eastward motion but given an added velocity poleward will acquire an additional

eastward velocity from conservation of angular momentum as shown in displacement 3.
A mass with the same initial eastward speed but given an added velocity toward the
equator will lose eastward speed and appear to move westward with respect to the earth
( p )(displacement 1).
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ations, the bob is deflected to the right of its motion with respect to the earth.
And the mathematics for the complete solution again shows that when the
stronger restoring force of the pendulum wire is allowed to act, the clockwise
deflection is only half of what can be deduced from the above argument.

The angular momentum argument of Figure 4 illustrates a truly remark-
able aspect of Foucault’s pendulum. In its south–north oscillations of several
meters, the pendulum recognizes that it has moved a little closer to, or a little
further from, the earth’s axis, by perhaps only 4 m in 4 million meters. Yet it
adjusts its motion to the east or west in an attempt to conserve its angular
momentum about the earth’s axis!

We may conclude our discussion of the forces on the pendulum by noting
that at the equator the horizontal component, G, of the gravitational at-
traction will vanish and the balance with the centripetal force takes place
completely in the vertical axis. Additional west–east motion therefore does
not result in a horizontal acceleration to the right. Furthermore, small pole-
ward displacements from the equator when the pendulum is moving south–
north do not change the distance R to the axis of the earth; conservation of
angular momentum does not then require a change in the west–east motion.
At the equator the precession is therefore zero, as foreseen intuitively by
Foucault.

6. The Path Among the Stars

What does the path look like among the stars? As we observe it the bob
reaches extreme points twice during each oscillation, when it comes to a
momentary halt in its motion. Let us consider only alternate extremes,
beginning with the point of release. We imagine a line drawn from the
equilibrium point of the pendulum to these alternate extreme points, like a
hand of a clock moving on the floor, as these points occur once in every
oscillation period. This line as we observe it on earth will slowly rotate
clockwise, as noticed in 1851 by the observers in the Panthéon. We will follow
the path of this line when it is continued onto the sky, where it always selects
a slowly moving point F on our horizon. If the release point is north of the
equilibrium point, the point F in the heavens begins at the star located at that
moment on the north horizon.

How does point Fmove on the sky? The motion of the pendulum path will
consist of two superimposed rotations when observed from space:

A.a clockwise rotation with respect to the Panthéon about the local vertical
axis, whose period is that given by Foucault’s formula, and

B. a faster counterclockwise rotation as the Panthéon turns with the earth in
a period of 24 h.

FOUCAULT’S PENDULUM 95



Shortly after Foucault’s demonstration in 1851 E. Silvestre designed a device
to demonstrate mechanically how these two rotations combine (Silvestre
1851).4 Nowadays it is possible to easily compute the resulting behavior on
a sky map, using a home personal computer. The results of such a compu-
tation are shown in Figure 5 for a pendulum at 48.6� North latitude. For
this example the pendulum was released from rest at the point north of
its equilibrium point, so the initial location of F is at the star located at
that moment on the northern horizon. (That star is located at latitude
41.4� on the sky map.) The sense of F ’s rotation is counterclock wise, that
of B, the more rapid of the two oscillation components. F starts to move
then counterclockwise toward the equator on the sky map. At 16 h it will
point to the southern horizon and it will halt its motion in the southern
heavens at 41.4� south latitude. At that time it also halts temporarily its
counterclockwise motion among the stars since the two rotations momen-
tarily cancel one another. The result is a cusp. F then reverses its southward
motion, and returns again to the northern skies. At 32 h it will have moved as
far north in the skies as it was at the beginning. It will come again to a
temporary halt and then repeat its path, although at a different longitude on
the sky map.

Latitude 48.6 is such that three pendulum precessional periods (96 sidereal
hours) is equal to four sidereal days. Therefore the path of F on the sky
map is reentrant every 96 h for a pendulum at this latitude, since both the

Figure 5. A sky map containing the North Pole (P) and the Equator. Stars in the

Southern Hemisphere lie outside the circle. (The South Pole is at infinity on this map.)
96 h is shown for the path of the point F among the stars that is pointed to by the
oscillation axis for a pendulum located at 48.6�. The release point is to the north of the

equilibrium point and the precession period is 32 h. Cusps occur every 16 h when the
path reaches an extremum at latitudes 41.4� north latitude and 41.4� south latitude on

y pthe sky map. jUrsa Major yis only a schematic indication.
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pendulum and the earth will have returned to their initial orientation with
respect to the stars every 4 days.
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Notes

1 See Amir Aczel (2003) and William Tobin (2003) [note added by editor].
2 A less detailed explanation has been written recently by A. Marillier (1998).
3 This fundamental fact is sometimes overlooked: Somerville 1972, bottom of p. 45; Hart et al.
1987, left column of p. 69.
4 This device (inventory number 8044) was drawn to my attention by Professor William Tobin

from his wide acquaintance with the work of Foucault. A photograph exists in Jacques Foiret,
Bruno Jacomy & Jacques Payen, ‘Le pendule de Foucault au Musée des Arts et Métiers’, Musée
National des Techniques, Conservatoire National des Arts et Métiers, Paris, 1990 (ISBN2-

908207-04-4) and in the Deligeorges reference listed above. It seems likely that such a device
was useful at a time when the Coriolis theorems were not yet widely known, and when vector
analysis had not yet been invented.
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Galileo and the Pendulum: Latching on to Time

PETER MACHAMER and BRIAN HEPBURN
University of Pittsburgh

Abstract. Galileo changed the very concepts or categories by which natural philosophy could deal
with matter and motion. Central to these changes was his introduction of time as a fundamental
concept. He worked with the pendulum and with the inclined plane to discover his new concept of
motion. Both of these showed him that acceleration and time were important for making motion
intelligible.

1. Introduction

Many accounts of the work that Galileo did and why he became “the father of
modern science” have been given. We will give yet another one that shows how the
pendulum was crucial in Galileo’s thought. First comes a very general historical
narrative outlining a new overview of Galileo’s work. Second we will present tex-
tual evidence from 1590 to 1609 that shows how Galileo used the pendulum and,
by focusing on time, changed his way of thinking. Finally we will suggest what
might be done with science students in ways that parallel the Galilean exemplar.

2. The Outline of the Galileo Story

Galileo wanted to reconstitute the whole of natural philosophy. What Galileo ac-
complished was a replacement of one set of analytical concepts with another. Some
researchers might phrase this claim in terms of mental models. However phrased,
Galileo’s move was from the Aristotelian categories of the one celestial and four
terrestrial elements and their directional natures of movement to only one element,
matter. He then sought the important properties of matter and its motion trying first,
relative heaviness, then specific gravity, then momento and force of percussion, and
finally, acceleration and time. Galileo began his critique in the 1590 manuscript, De
Motu, where he argued that the balance could be used as a model for treating all
problems of motion, and heaviness (weight of the object minus weight of the me-
dium) was the characteristic of all matter. What was not worked out was the positive
characterization of the replacement categories, which probably contributed to his
never publishing De Motu. Later in the 1600 De Meccaniche (Galileo 1600/1960)
he introduces momento and begins to look at the properties of percussion of bodies
of different specific gravities. Still, the details of how to properly treat weight and
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movement elude him. The problem is that the Archimedian simple machines that
Galileo is using as his model of intelligibility are not dynamic enough and, except
for the inclined plane, time is not an aspect that one would normally attend too. The
details will not fall into place until 1603–1604, when Galileo works with pendula
and inclined planes.

The pendulum showed Galileo that acceleration and, therefore, time is a cru-
cial variable. The regularity of the period of a pendulum goes someway towards
showing that equilibirium of times is the form of ratio that needs to be explicit
in representing pendulum motion. Work on the force of percussion and inclined
planes also emphasized acceleration and time. But he would not publish this until
1638 in Discourses on Two New Sciences (Galileo 1638/1954, hereafter Discorsi).
In The Starry Messenger, (Sidereus Nuncius) published in 1610, he would begin
his dismantling of the celestial/terrestrial distinction. But he had already laid the
grounds for treating all matter as having the same nature back in 1590.

The rest of Galileo’s story is well known, but we briefly retell it in this context.
With The Starry Messenger (1610) and in Letters on the Sunspots (1612), Galileo
enumerated many reasons for the breakdown of the celestial/terrestrial distinction.
In the latter he even went so far as saying that the new evidence supported the
Copernican theory.

Yet even with all these changes, two things were missing. First, there was no
way to accurately describe the nature of matter in the new system. He had a start,
but his developed matter theory would not come until Days One and Two of Dis-
corsi. In the first part Galileo would attempt to show mathematically how bits of
matter solidify and stick together, and do so by showing how they break into bits.
The ultimate explanation of the “sticking” eluded him since he felt he would have
to deal with infinitesimals to really solve this problem. The second science, Days
Three and Four of Discorsi, dealt with proper principles of local motion, but this
was now motion for all matter (not just sublunary stuff) and used the idea of time
and acceleration as basic. The Fifth day dealt with the force of percussion, which
had become an important aspect of Galileo’s thinking.

The second missing part of the new natural philosophy was showing how a
unified theory of matter could actually be applied to a moving earth. The change
here was not just the shift from a Ptolemaic, Earth centered planetary system to a
Copernican solar centered one. It was also a shift from a mathematical planetary
model to a physically realizable cosmography. Galileo needed to show how, on a
solar centered scheme, one could intelligibly use any laws of local motion. This
he did by introducing two new principles, that all natural motion was circular, in
Day One of his Dialogues on the Two Chief World Systems (Galileo 1632/1967,
hereafter Dialogo) in 1632, and in Day Two the famous principle of the relativity
of observed motion. The joint effect of these two principles was to say that all
matter shares a common motion, circular, and so only motions different from the
common could be directly observed.
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This sketch provides the basis for understanding Galileo’s changes. He has a
new science of matter, a new physical cosmography, and a new science of local
motion. In all these he is using a mathematical mode of description based upon,
though somewhat changed from, the proportional geometry of Euclid, Book VI
and Archimedes. (For details on the change, see Palmieri 2002).

3. In Search Of the Replacement Categories

Our historical theme is that Galileo’s law of free fall arises out of his struggle to
find the proper categories for his new science of motion. Galileo accepts, perhaps
as early as the 1594 draft of De Meccaniche, that natural motions might be ac-
celerated. But that accelerated motion is properly measured against time is an idea
enabled only later, chiefly through his failure to find any satisfactory dependence on
place. Galileo must have observed that the speeds of bodies increase as they move
downwards and, perhaps, do so naturally. He would have seen speeds changing
particularly in the cases of the pendulum or the inclined plane. Believing the same
causes were at work in free fall and projectile motion, Galileo would have been
more open to acceleration there too.

At this time he also begins thinking about percussive force that a body acquires
during its motion and which shows upon impact. For many years he thinks the
correct science of these changes should describe how speeds change according to
where bodies are on their paths. Specifically, it seems that height is crucial. The
percussive force of a dropped body is directly related to height and the motion
of the pendulum seems to involve essentially equilibrium between the height of
the bob at the start of the swing and its height at the end. This gives height the
same role in understanding the pendulum that weight plays in understanding the
balance. Of course times are also in some sort of equilibrium, each swing taking
the same period (ignoring frictional losses), fixed by the length of the pendulum.
This isochrony also seems to hold regardless of the initial displacement, making the
radius of the path (i.e., the pendulum length) the sole determinant of the motion.
However, these times do not analogize easily with weights on a balance.

The law of free fall, expressed as the distance in fall from rest being proportional
to the time squared (the time-squared law), is discovered by Galileo through his
inclined plane experiments. These were begun sometime before Galileo’s letter of
1604 to Paolo Sarpi in which he gives a “proof” of the time-squared law by deriving
it from the assumption that velocita (a new concept that amount to degrees of speed)
are proportional to the distance fallen. In this proof the overall speed, which results
from the accumulation of velocita, comes out proportional to distance squared and
hence to time to the fourth (see below for details).

What is puzzling is that it is widely known at the time, thanks to the Mertonians
and also to Oresme, that a distance-time-squared relation can easily be derived from
an assumption of uniform acceleration. Galileo remains intent however, on finding
an explanation of the time-squared law in the form of some relation between speed
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and height. The problem is that taking velocity proprotional to time might serve as
a definition of free fall (i.e., defined as uniformly accelerated) but it provides no
more explanation than does taking distance proportional to time squared. That this
is Galileo’s attitude is even in evidence in the Discorsi.

The key to his eventual confidence in the definition is the mean proportional.
Any proportionality between a ratio and the square of a ratio can be expressed in
terms of a mean proportional, and what quantity this mean proportional represents
depends on the geometric and the physical context. Galileo’s eventual definition of
natural acceleration is an insight gained through the combination of pendulum and
inclined plane “contexts” and recognition of the physical significance of the mean
proportional relation.

What follows is a brief chronology intended to illustrate this conceptual shift.
We begin with a description of how Galileo’s first attempt fails in De Motu (1590),
point out some key changes in De Meccaniche (1600) and finally we discuss the
proofs of the working papers and the context that the pendulum and the inclined
plane provide for the mean proportional relation.

4. The Galilean Texts

An early work in Galileo’s search for the replacement categories is De Motu (1590)
which ends with an incomplete attempt at describing projectile motion (Chapter
23, pp. 110–114). Addressed specifically is why a cannonball flies farther the more
vertical the shot. According to the balance model Galileo just laid out for motion
on inclined planes (Chapter 14, pp. 63–69), an object encounters no resistance to
motion in the horizontal direction (which he calls neutral motion). But maximum
range, well known from artillery, is achieved for shots of 45 degrees. The balance
model must therefore be inadequate. The balance model had already been sup-
plemented with an accidental, leaking impressed force (leaky impetus) to account
for acceleration through a changing “effective” or net weight (i.e. intrinsic weight
minus impressed upward force). The artillery example forces Galileo to make even
greater accommodations.

Galileo’s attempted reconciliation is twofold. More force will be imparted to
a cannonball shot vertically, he believes, because it offers greater resistance to
the motion than one shot horizontally or at any acute angle.. Secondly, an object
attempting to turn downward will encounter more resistance the more directly
opposed the downward and upward paths are. For any shot not directly upward,
(see Figure 1).

. . . at the time when the ball begins to turn down [from the straight line], its motion is not contrary to
the [original] motion in a straight line; and, therefore, the body can change over to the [new] motion
without the complete disappearance of the impelling force (Galileo 1590, additions are Drabkin’s.)

The resistance offered by the original projecting force must be overcome before the
ball can turn downward, and so a greater decay of the projecting force is required.
The result is that the more vertical the shot, the longer the trip before it turns
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Figure 1.

downward. But “when the body moves along ae, which is almost parallel to the
horizon, the body can begin to turn downward almost immediately” (Galileo 1590,
p. 114).

This is a coherent picture. If the body falls obliquely to the projecting force, it is
plausible that it would encounter less resistance. The picture is incomplete though.
Galileo has no way of determining the relation between the remaining projecting
force and points on the trajectory. Near the end of De Motu Galileo mentions the
pendulum and how a lead bob will oscillate longer than a lighter bob, claiming that
this is due to the greater retention of the impressed force by the heavier material
(cf. p.108). It is probable that in order to complete the picture Galileo turned to
investigating the rates of leakage of impressed force through observing pendulums.
We will pick up this thread in a moment, but first we consider some other changes
in Galileo’s mechanical theory.

De Meccaniche (ca. 1600) is the product of a period of Galileo’s extensive work
on machines. It begins with three definitions that are, at this stage, his proposals for
the new categories of motion. The definitions are of heaviness (gravitas), defined as
the “tendency to move naturally downward” (Drake 1978, p.56); of momento, also
a tendency to move downward caused not only by the weight, but also compounded
by speed and the geometry of the Archimedian simple machines (something like
mechanical advantage); and the center of gravity. Both the early (ca. 1593–1594)
and later (ca. 1601–1602) versions also conclude with a section on percussion.

But the main focus is to rail against:

those people who think they can raise very great weights with a small force, as if with their machines
they could cheat nature, whose instinct – nay, whose most firm constitution – is that no resistance
can be overcome by a force that is not more powerful than it. (Drake 1978, p.56)
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Figure 2.

Through machines like the lever, resistances do seem to be overcome by less
powerful forces. Galileo therefore distinguishes momento, as a force, from a body’s
intrinsic weight. Galileo’s new conception is that a trade-off can occur between
speed and momento. A weight can overcome a greater resistance but must do so
by travelling faster than the resistance. Because the lighter object is mechanically
linked to the heavier one, their motions occur in the same time. The relation of
the speeds can therefore be stated, as Galileo does, in terms of the distances each
object move . . .

it is seen in all other instruments that any great resistance [or weight] may be moved by any given
little force (momento), provided that the space through which this force is moved shall have to the
space through which the resistant shall be moved that ratio which exists between this large resistant
and the small. . . . (Drake 1978, p. 62)

Galileo provides an analysis of the lever in terms of the new category of mo-
mento. He has by now abandoned a leaking impressed force and believes instead
that speed and force are internal to bodies themselves (See Figure 2).

The heavy body A being placed at the point D, and the other at the point E, it will not be unreasonable
that the former, falling slowly to A, raises the latter swiftly to B, restoring with its heaviness that
which comes to be lost by its slowness of motion. And from this reasoning we may arrive at the
knowledge that speed of motion is capable of increasing momento in the moveable body in the same
ratio as that in which this speed of motion is increased. (Ibid.)

Beside the ability to overcome resistance, Galileo is also interested in per-
cussive force, both of which are measured as a body’s momento. Speed allows
a small weight to overcome a larger one due to the increased momento of the
small weight. Speed also increases percussive effect. The greater the speed of the
percussing object the greater its ability to overcome resistance. Speed acquired in
fall then likewise contributes to momento.This commensurability, through the mo-
mento concept, between lifting force and falling force, suggests an interpretation
of pendulum motion as an equilibrium between the momento or velocity gained by
the weight in the downswing and the force required to overcome the weight’s own
resistance and carry it back to its original height.

Galileo’s further pendulum discovery was the isochrony of the swings, of which
he was convinced by at least November 1602. In a letter to Guidobaldo with that
date Galileo writes:
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You must excuse my importunity if I persist in trying to persuade you of the truth of the proposition
that motions within the same quarter-circle are made in equal times. For this having always appeared
to me remarkable, it now seems even more remarkable that you have come to regard it as false.
(Drake 1978, p. 69)

Notice that Galileo is thinking of isochrony on the quarter circle. The symmetry of
the pendulum path suggested equilibrium between the force gained in fall from an
initial height and that required to climb back up to the same height, but this sym-
metry was ignored. What preoccupied Galileo was finding a relationship between
speed and height that made the initial height not matter. Isochrony still did not
suggest to Galileo that time ought to play any role in his causal account of the
phenomena. Of course times mattered – speed was defined through distances and
times. However, since for isochrony all times were the same, the features that
seemed to make the difference were the path and distances (i.e. the heights of the
initial displacement).

In De Meccaniche Galileo was initially misled with the lever because time
seems to play no part, while with the pendulum the fundamental feature is equal
times. What is even more deceiving in the case of isochrony is that the equality of
times is the thing to be explained. It is only natural that the explanation would be in
terms of something other than time. Moreover, the determinations or explanations
that Galileo sought were through ratios but the ratio of equal times is one to one.
Nonetheless, his consideration of these phenomena was fundamentally new. Time
itself, even if only through the phenomena of equal times, had never before been
subject to mechanical investigation.

Galileo’s investigation of isochrony begins with his chord theorems. The key
theorem makes it into the Discorsi as:

THEOREM VI, PROPOSITION VI: If from the highest or lowest point in a vertical circle there be
drawn any inclined planes meeting the circumference the times of descent along these chords are
each equal to the other. (Galileo 1638/1954, pp. 188–189)

The connection between these theorems and the pendulum is that the circle on
which the chords are transcribed represents a pendulum attached at the center
(see Figure 4). The ordering of theorems in the Discorsi does not, we contend,
reflect the chronology of their discovery. The discovery of isochrony was almost
certainly through observations of the pendulum. On the other hand, the chord law
was probably first conjectured as a step towards achieving a physical explanation
of isochrony and only later, if ever, was it verified by experiment. The letter to
Guidobaldo suggests no distinction between the causes of the equality of times
along the chords and along the arc:

Until now [that is, up to the chord theorems] I have demonstrated without transgressing the terms of
mechanics; but I cannot manage to demonstrate how the arcs SIA and IA have been passed through
in equal times and it is this that I am looking for.

Galileo’s investigation of the chords is thus part of his seeking the causes behind
the isochrony of the pendulum.
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Figure 3.

One of the first things Galileo would have done with the chords was apply his
balance model and so construct a perpendicular from the first point of each chord in
order to find the ratio of their moment (See Figure 4). He would have immediately
realized that those perpendiculars all intersect at the top of the pendulum circle
(Euclid Book III, props 21, 31). Since Galileo knew the times of descent along each
of these chords were the same, the vertical height would have seemed a natural
feature of the diagram by which to represent their common time. All the chords
share the same relationship to this height, which is itself also a chord. Galileo
speculated that a ball rolling down one of the inclined planes represented by a
chord would take the same time as a ball freely falling along the diameter (and
he later carried out experiments to verify this, see (Drake 1978, pp. 217–218) and
Drake, 1989). This would have justified Galileo’s investigations of free fall through
inclined planes since it linked the times and distances of both.

The time-squared law is discovered during Galileo’s experiments with inclined
planes (see Drake, 1975). The experiments involved rolling a brass ball in a highly
polished groove down an inclined plane and marking the ball’s location at success-
ive equal time intervals. The results of the experiment were recorded on folio 107v.
as a column of distances numbered 1 through 8, the numbers thus representing the
times for each distance-the first distance was for one time increment, the second
distance was for two time increments, and so on (See Galileo 1890-1909.) At some,
possibly later, point Galileo added to this folio, to the left of the times, their squares,
indicating he had recognized the correct relation of distances to the square of the
times.

As mentioned above, a standard way for geometers of the time to deal with pro-
portionalities to squares of ratios was through a mean proportionality. The physical
significance of the distance that represented the mean proportional, or even which
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Figure 4.

mean proportional he should consider, was not clear. Nor did Galileo have any
understanding of what caused the time-squared relation to hold.

That Galileo had not recognized the full importance of time and was not pre-
pared to consider velocity as proportional to time, even after having worked with
the mean proportionality, is indicated by his attempted explanation, given on f85v.,
of the time-squared relation (See Figure 5).

I assume that acceleration of bodies falling along line AL to be such that velocita grow in the ratio
of the spaces traversed, so that the velocita at C is to the velocita at B as space CA is to space BA,
etc. . . . But since velocita are increased successively at all points of line AE . . . therefore all these
velocita [taken together] are related, one [case] to another, as all the lines [together] drawn from all
points of line AE parallel to the said BM , CN , and DO. But these [parallels] are infinitely many, and
they constitute the triangle AEP ; therefore the velocita at all points of line AB are, to the velocita
at all points in line AC, as is triangle ABM to triangle ACN , and so on for the others; that is, these
[overall speeds through AB and AC] are in the squared ratio of lines AB and AC.

But since, in the ratio of increases of [speed in] acceleration, the times in which such motions are
made must be diminished, therefore the time in which the moveable goes through AB will be to the
time in which it goes through AC as line AB is to that [line] which is the mean proportional between
AB and AC . (Drake 1978, pp. 98–99)

This is the proof of the time-squared law that Galileo sends to Sarpi in 1604.
Momento has been replaced by velocita which are proportional to distance fallen.
The overall speed the body has at any point in the fall (which contributes to the
momento) is a result of the accumulation of all the degrees of velocita to that point.
Speed is essentially an integral of the triangle and hence proportional to distance
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Figure 5.

squared. Then, rather than state the time-squared law explicitly, Galileo gives the
conclusion as a mean proportionality relation: the ratio of the times through AB

and AC is in proportion to the ratio of distance AB to the mean proportional
between AB and AC. Eventually Galileo will arrive at the correct definition of
natural acceleration but this attempt to find a cause for the time-squared law and
the mean proportional relation is far from that. Here, since speed is proportional
to distance squared and distance is proportional to time square, speed comes out
proportional to time to the fourth.

He has accepted acceleration but thinks a correct physical explanation must be
something like a velocity-distance relation. With hindsight we know that Galileo’s
search for a direct proportionality between velocity and distance would have to
take him in the wrong direction. Moreover, percussion too is leading him in this
way.

(f. 128) I suppose (and perhaps I shall be able to demonstrate this) that the naturally falling body
goes continually increasing its velocita (speed) according as the distance increases from the point
from which it parted. . . . This principle appears to me very natural, and one that corresponds to all
experiences we see in instruments and machines that work by striking, where the percussent works
so much the greater effect, the greater the height from which it falls. (Drake 1978, pp. 102–103)

108



GALILEO AND THE PENDULUM: LATCHING ON TO TIME

Figure 6.

Although Galileo may not be committed to a direct relation between speed and
height, it is definitely height that in some way determines both speed and percussent
force, the two concepts linked in De Meccaniche. Something puzzling arises in the
speed-height relation when Galileo considers speeds along different inclinations
(see Figure 6)

The motion along (motus per) the perpendicular AD is not perhaps quicker (velocior) than that
along the inclined plane AB? It seems so; in fact, equal spaces are traversed more quickly (citius
conficiuntur) along AD than along AB; still it seems not so; in fact, drawing the horizontal BC, the
time along AB is to the time along AC as AB is to AC; then, the moments of velocity (momenta
velocitatis) are equal along AB and along AC. . . . (Wisan trans., p. 202)

Galileo expects the last to be true because percussion tells him the accumulated
moments of velocity at B and C must be the same. Now imagine Galileo asked
himself “under what conditions would both the chord law hold and percussive
force be the same for all inclined planes of identical height?” In Discorsi, a proof
is given that the speed of a body is the same when it traverses different inclines
having the same height. We present that proof and then argue that this suggests how
Galileo might have arrived at an answer to the above paradox that was physically
intelligible, albeit in a new way (Figure 7).

Galileo’s balance analysis of inclined planes says that the ratio of the force
along the incline and along the vertical of an inclined plane are in proportion to the
ratio of the length and height of the plane. Based on this he first argues that:

the speed at C is to the speed at D as the distance AC is to the distance AD. . . . But, according
to the definition of accelerated motion, the speed at B is to the speed of the same body at D as the

109



PETER MACHAMER AND BRIAN HEPBURN

Figure 7.

time required to traverse AB is to the time required for AD; and, according to the last corollary of
the second proposition, the time of passing through the distance AB bears to the time of passing
through AD the same ratio as the distance AC (a mean proportional between AB and AD) to AD.
Accordingly the two speeds at B and C each bear to the speed at D the same ratio, namely, that of
the distances AC and AD; hence they are equal. . . . (Discorsi, p.184)

Let’s restate the argument with S(AB) representing the speed through distance AB,
and t (AB) the time for that distance. Therefore S(AB) = AB/t(AB). Whether
S(AB) represents the instantaneous speed at the point B or average speed over the
distance AB makes no difference to the ratios in this argument since we are dealing
with uniform acceleration. The average speed S(AB) = 1

2S(B), where S(B) is the
speed at B. In all reasoning with ratios of speeds the 1

2 drops out.
Notice also that, if the speeds at C and D are in inverse proportion to the

distances AC and AD, then the times t (AC) and t (AD) are equal. Thus, the first
claim, though stated in Discorsi as resulting from the balance analysis of the forces,
is also equivalent to the chord theorem, even though this theorem does not appear
until later in Discorsi. The argument reads then

1. S(C)/S(D) = AC/AD (equivalent to the chord theorem)
2. S(B)/S(D) = t (AB)/t (AD) (definition of accelerated motion, see below)
3. t (AB)/t (AD) = AC/AD (mean proportionality)
4. S(B)/S(D) = S(C)/S(D) (from 1,2 and 3)

The third premise is a corollary of the time-squared version of uniformly accel-
erated motion, i.e., distance is proportional to time squared. 2. also follows because
free fall is uniformly accelerated and it holds for both average speed over a distance
and instantaneous speed at the end of a distance. Again, any equivocation on aver-
age and instantaneous speeds does not invalidate the argument. Our conjecture is
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that this argument is the reverse of Galileo’s actual reasoning. Rather, Galileo first
wondered under what conditions the speeds – and so the percussive Force – could
be the same at points C and D. This would immediately imply (as we show next)
the mean proportional relation. The real breakthrough would then follow when
Galileo realized that this implied that velocity must change uniformly with respect
to time. Time has been lurking in the background all along and now leaps to the
fore as the essential measure of, in effect, all natural motion.

Refer again to Figure 7, but now reverse (almost) the reasoning. By the chord
law, t (AC) = t (AD). With these times equal then the speeds must be propor-
tional to the distances, i.e., S(AC)/S(AD) = AC/AD. Now, the speeds at S(AB)

and S(AC) would be the same, as implied by percussion, if S(AB)/S(AD) =
S(AC)/S(AD) (two things are equal if their ratios with a third thing are propor-
tional). Combining this with the first result for the speeds, we get S(AB)/S(AD) =
AC/AD. This is where the geometrical context of the pendulum lends to Galileo’s
understanding of the mean proportional. The circle in Figure 7 represents a pendu-
lum and AC, a mean proportional between AB and AD, is twice the pendulum’s
length. Galileo also took double the pendulum length as characteristic of the time
when investigating isochrony. This connects the speed of free fall with his broader
category of natural circular motion. Our argument is not that this is how Galileo
discovers the mean proportional for times. As we pointed out he had conjectured
this relation earlier. He is aware first of the time-squared law, probably on the
basis of the inclined plane experiment, which would imply a mean proportionality.
However, this gives him no physical explanation of the phenomena, and Galileo
fails in his attempted explanation through accumulation of velocita. What we’ve
outlined is the probable way in which t2, the chord law, percussive force and the
mean proportional are brought together in a way that, while it still may not provide
a satisfactory causal explanation of the phenomena, unites them as consequences of
the simple and correct definition of uniform acceleration as velocities proportional
to time.

It is worth pointing out briefly how our reconstruction compares with others. In
ours the pendulum has played a crucial role in many ways. It exhibits acceleration,
is the source of the chord law and for Galileo is subject to the same explanation that
percussion is. The symmetry of the pendulum suggests to Galileo the link between
speeds obtained by a body in fall and its ability to overcome resistance such as
its own weight. A recent article by Renn, et al. (Renn, et al. 2002) argues that
the importance of symmetry chiefly arises in Galileo’s consideration of projectile
motion. In Drake’s various reconstructions (Drake 1978; Drake 1989) acceleration
is accepted by Galileo only after he has overcome the hurdle of accepting instant-
aneous velocities. In Wisan (Wisan 1974, p.175) it is suggested that the search for
the brachistochrone (the path of least time between two points) is what led Galileo
to ask the right questions and that the answer to those questions turned out to be the
law of free fall. Our view does not exclude any of these histories but emphasizes
the pendulum: a simple machine, closely related to the balance, which beautifully
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exhibits acceleration, symmetry and the importance of the relation between path
and time.

5. Science Students Discovery

Briefly, we’ll sketch how science students might “re-do” the Galilean discovery
of time as crucial. This strategy accords with the idea of active learning that has
dominated the science education literature in recent years. First, one might present
students with a balance, an inclined plane and pendulum (and the necessary meas-
uring instruments,) and ask them to discover and describe the basic properties
of each with regard to motion. This might take the form of simply asking them
to make a list, after viewing each experiment independently of one another, of
nouns and verbs they could use to describe what they saw. After all three had been
observed, the students would try to come up with a single, minimal set to describe
the experiments.

Here the teacher ought to introduce the geometry of the circle and its chords, so
that students may see the geometrical relation among the machines. If acceleration
is not noted by the students as a feature of the inclined plane and the pendulum
it should be brought to their attention. The problem is to find a way to represent
time such that it can be seen as the important factor in the inclined plane and the
pendulum, and why it is not necessary for balance problems. The final problem is
to use what was observed and measured on the inclined plane and the pendulum
to transfer to the concept of a freely falling body. Discussion at this point ought
to encourage students to reflect on the basic nature of motions as observed in the
world.
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Abstract. The discovery of the near isochrony of the simple pendulum offered the possibility of
measuring time intervals more accurately than had been possible before. However, the fact that it was
not strictly isochronous for all amplitudes remained a problem. The cycloidal pendulum provided this
strict isochrony and, over a thirty year period from 1659 the analysis of the motion of this pendulum
was developed. Newton’s analysis in his Principia was both elegant and comprehensive and his
argument is illustrated in this paper. It provides insights into the revolutionary nature of Newton’s
thinking especially compared to the Galilean approach to understanding the motion of the simple
pendulum found in early 18th century textbooks.

Introduction

The near isochrony of simple pendulum motion for small amplitudes suggested
early on that it might be used for measuring the time of events. However because
the period of oscillation for different amplitudes was not strictly constant a search
was carried on for ways to render pendulum motion strictly isochronous (Matthews
2000). Yoder (1988, pp. 48–64) has traced the path Huygens followed in 1659 (and
published in 1673) to show for the first time that a pendulum in which the bob
followed a cycloidal path rather than a circular one would perform oscillations
in the same time regardless of its amplitude. Before this time various people had
investigated the properties of the simple cycloid curve. For example, Roberval in
1634 (Kline 1972, p. 350) had shown how its area could be calculated while Wren
in 1659 (Kline 1972, pp. 354–355; Yoder 1988, pp. 77–78) had devised a method
for determining its length. Newton, in Book I of his Principia (Propositions XLVIII
and XLXIX), showed how to determine the lengths of the hypo- and epi-cycloids
and, in the propositions which followed, presented an analysis of the motion of a
cycloidal pendulum under the action of a central force. The first edition of the Prin-
cipia was published in 1687 and Newton acknowledged in it the work of Wren and
Huygens on the common cycloid and the cycloidal pendulum (Newton 1729/1960,
p. 158).

In the following sections the nature of Newton’s reasoning is illustrated by
adapting his discussion of the motion of a cycloidal pendulum under the action
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Figure 1. Some properties of the cycloid.

of central forces as he might have applied it to the motion of a pendulum moving
along the path of a common cycloid.

Some Properties of the Common Cycloid

The cycloid is the curve traced out by a point P on the circumference of a circle
when the circle rolls a distance equal to its circumference. The circle is called the
generating circle (see Figure 1).

The generating circle begins with the point P at the bottom and coincident with
A. As it rolls the centre of the circle moves forward. Points T and V are at the top
and the bottom of the circle as it rolls along the line from A to B. The distance
between A and B is equal to the length of the circumference of the circle.

It can be seen that as the circle rolls the cycloid is traced out by the point P at
the end of the line VP where the point V is fixed for a short time. Thus the cycloid
at P is perpendicular to the line VP[1]. In the circle angle VPT is a right angle so
that PT is a tangent to the cycloid [2].

The following proof for the common cycloid is adapted from Newton’s more
general proof for finding the lengths of the hypo- and epi-cycloids.

As the wheel with radius r rolls along the line AB the point P on the perimeter
traces out the cycloid APSB (see Figure 2). It is helpful to imagine that the small
movement of this point from m to P takes place in two steps. In the first the wheel
slides to the left so that the point moves from m to n. The tangent to the cycloid
at the point m slides across to become Tn. In the next step the circle rotates anti-
clockwise about O so that the point moves from n to P. The distance mn is equal
to the distance nP because the circle rolls from one position to the next.1 Line nq
is part of a circle with centre T and radius Tn so that, if the rotation of the circle is
small, the point q approximately bisects the line Pm and Tn equals Tq. While the
point moves from m to P, the length of the chord from the top of the circle to the
point on the cycloid (i.e. the tangent to the cycloid) changes from Tn to TP. Thus
Pm is the increase in the length of the cycloid as the circle rolls, Pq is the decrease
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Figure 2. Finding the length of the cycloid.

in the length of the chord from the top of the circle to the point on the cycloid and
Pm is equal to 2Pq.

Adding all such small increments from the time the circle begins to roll from A
it can be seen that �Pm = 2�Pq or AP = 2(TV − TP). Thus the length of the half
cycloid AS is equal to 2TV or 4r [3]. The length of the arc, SP, of the cycloid is
equal to AS − AP or 2TV − 2(TV − TP) or 2TP [4].

The Cycloidal Pendulum

In Proposition L of Book I of the Principia Newton dealt with the problem of
causing a pendulum to move in a cycloidal path and showed that the motion of the
string must be constrained by plates shaped themselves like cycloids. Again his
actual argument was a more general one referring to cycloidal motion under the
action of central forces but it can be adapted to our situation by moving the centre
of the force to infinity. His argument was as follows.

The three cycloids are generated by circles with the same radii (see Figure 3).
As the bottom circle rolls to the right from A to O the line NT rotates through an
angle of 180◦ and point T moves from A to S. The top circle rolls to the left and
the point P moves from K to A. When their centres are on the same vertical line as
shown with angle TNV equal to θ the angle PMQ will be equal to 180◦ − θ . Thus
MP is parallel to TN and TV is parallel to PV so that PT is a straight line with PV
equal to TV.

The length AP of the top left cycloid is equal to 2PV (from [4]) or PT so that, for
all positions of the pendulum bob T, the total string length of the pendulum KPT is
equal to the total length of the cycloid KPA and so the pendulum bob follows the
path of the bottom cycloid [5].

In Proposition LI of Book I of the Principia Newton derived the force which
acted on the bob of a cycloidal pendulum and which was responsible for its oscillat-
ory motion. In Figure 4 the weight of the bob, W, is proportional to the length of the
line TZ. This force is resolved into two components, F (proportional to TX) along
the cycloidal path (from [2]), and a force (proportional to XZ) perpendicular to that
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Figure 3. A cycloidal pendulum.

Figure 4. The force acting on a cycloidal pendulum.
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Figure 5. Graphs of the distances covered by two cycloidal pendulums.

path. Because it is at right angle to the motion the component of force along XZ
has no effect on the motion of the bob and the acceleration of the bob is produced
solely by the force, F, in the direction TX.

From Figure 4

F

W
= TX

TZ
= TR

VR

so that F ∝ TR since W and VR are constants. [6]
But the length of the arc of the cycloid TS is equal to 2TR (from [4]) so that F

∝ TS the length of the cycloid still to be passed over [7].
Consequently the force on the bob along its path is at all times proportional to

the distance, along the path, from the lowest point.
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Table I. Motion of the pendulums during the first small interval of time

Pendulum Initial velocity Final velocity Change in distance Distance remaining

b 0 �v1 �s1 = 1
2 �v1�t dr1 = s − �s1

B 0 �V1 �S1 = 1
2 �V1�t DR1 = S − �S1

Isochrony of the Cycloidal Pendulum

Newton dealt with the periodic time of the cycloidal pendulum in Proposition LI
of Book I of the Principia. Again he was interested in the more general context of
pendulum motion under the action of a central force but his treatment applies just as
well to the common cycloidal pendulum studied by Wren and Huygens. Newton’s
proof that, for two pendulums following the same cycloidal path but with different
amplitudes, the periods are equal, reads as follows:

If therefore two pendulums APT [KPT in Figure 4], Apt, be unequally drawn aside from the perpen-
dicular AR [KS in Figure 4], and let fall together, their accelerations will always be as the arcs to be
described TR [TS in Figure 4], tR. But the parts described at the beginning of the motion are as the
accelerations, that is, as the whole spaces that are to be described at the beginning, and therefore the
parts which remain to be described, and the subsequent accelerations proportional to those parts, are
also as the whole, and so on. Therefore the accelerations, and consequently the velocities generated,
and the parts described with those velocities, and the parts to be described, are always as the whole;
and therefore the parts to be described preserving a given ratio to each other will vanish together, that
is, the two bodies oscillating will arrive together at the perpendicular AR [KS].

During the first small time interval, �t, after starting the situation for the two
pendulums is shown in Table I.

f1

F1
= �v1/�t

�V1/�t
= �v1

�V1
= s

S
. [8]

Inspection of the information in the Table I shows that

�s1

�S1
= s

S
and so

dr1

DR1
= s

S
. [9]

�s1 and �S1 are Newton’s “parts described at the beginning of the motion” and
are “as the whole spaces [s and S] that are to be described at the beginning”. DR1

and dr1 are “the parts which remain to be described”.
Thus during the second small time interval, �t, the situation now is shown in

Table II.
Again, since f2ff ∝ dr1 and F2 ∝ DR1 it can be seen from [9] that

f2ff

F2
= �v2/�t

�V2/�t
= �v2

�V2
= s

S
.
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Table II. Motion of the pendulums during the second small interval of time

Pendulum Initial velocity Final velocity Change in distance Distance remaining

b �v1 �v1 + �v2 �s2 = 1
2 (2�v1 + �v2)�t dr2 = dr1 - �s2

B �V1 �V1 + �V2 �s2 = 1
2 (2�V1 + �V2)�t DR2 = DR1 − �S2

Figure 6. Calculation of the speed of the bob of a cycloidal pendulum.

Inspection of the information in Table II shows that

�s2

�S2
= s

S
and so

dr2

DR2
= s

S
.

For each small interval of time “the accelerations, and consequently the velocit-
ies generated, and the parts described with those velocities, and the parts to be
described, are always as the whole”.

Thus when the pendulum, b, travelling the smaller distance has covered the
distance s, the other pendulum, B, will have covered the distance S in the same
time [10] (and so the line MN in Figure 5 should be in the position indicated by
M′N′). It follows that the bob of the cycloidal pendulum will always reach the
lowest point in the same time regardless of the position from which it is released.

The Velocity of the Pendulum along its Path and the Time for One Oscillation

When showing how to calculate the velocity of the pendulum bob at any point on
its path Newton used a device which was also found in many of the textbooks of
the early 18th century when dealing with a force which was proportional to the
distance from a fixed point. Figure 6 illustrates the situation.

The line ASB is the same length as the cycloid ASB in Figure 4 and the semi-
circle is drawn with ASB as the diameter. The pendulum bob, shown in Figure 6 at
the point T, moves along the line from A to B and back under the action of a force
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which is proportional to the distance TS. A line, TI, perpendicular to ASB meets
the semicircle ALB at I. As the bob moves from A to B along the line ASB the
point I moves from A to B along the semicircle ALB. In a small time, �t, the bob
moves from T to U and the point on the semicircle moves from I to J. The line IH
is perpendicular to UJ.

Many writers, including Newton, used this device to analyse the motion of the
cycloidal pendulum (see for example, Keill 1720, pp. 234–242; Maclaurin 1748,
pp. 215–217). Newton used it in Propositions XXXVIII and LII of Book I of his
Principia. The basic reasoning behind the device is given in the following section.

In Figure 6, if the time interval is small enough, the triangles TSI and HJI are
similar so

TS

HJ
= SI

JI
= TI

HI
,

where
(i) SI, the radius of the semicircle is a constant,

(ii) TS, which is proportional to the force, is therefore also proportional to �v, the
increase in velocity between T and U, and

(iii) HI is equal to TU which is equal to v�t and is therefore proportional to v, the
velocity at T.

If JI is constant, then HJ, like TS, is proportional to �v, and TI, like HI, is
proportional to v. These relationships are internally consistent since, if the velocity
at T is proportional to TI, then the velocity at U is proportional to UJ and so the
difference, HJ, is proportional to the increase in velocity.

The above leads to the conclusion that the point I, moving around the semicircle
and mirroring the movement of the point moving along the line ASB, moves at a
constant velocity along the semicircle ALB.2 This velocity is proportional to the
length of the line SL (half the length of the cycloid), and is equal to the velocity
of the bob at its lowest point. Thus the time which the pendulum takes to complete
one swing from A to B is equal to the time the point takes to travel around the
semicircle ALB with a speed equal to the speed, V, of the bob at the bottom of its
path, that is tAB = ALB/V [11].

A body falling freely through the axis of the cycloid (OS in Figure 4) would
reach the same velocity, V, at S as the pendulum bob has at S (see Newton’s proof
in the Appendix) and the time taken to fall would be 2OS/V (see [4] in Gauld,
2002), that is, 1

2ASB/V (see [3] this paper). Hence it follows that the ratio of the
time, tAB, for the pendulum bob to move from A to B to that, tOS, for a body to
fall freely through the axis of the cycloid is equal to ALB/ 1

2ASB or 2ALB/ASB,
that is, the ratio of the circumference of a circle to its diameter [12] a conclusion
well known in the early 18th century (Keill 1720, p. 242; Maclaurin 1748, p. 217;
Pemberton 1728, pp. 73-75; ’sGravesande 1721, p. 63).

Proceeding from this point in more modern terms

OS = 1

2
gt2

OS
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so that

tOS = √
(2OS/g) = √

(l/g),

where l is the length of the pendulum. Thus, from [12], the time taken for the
pendulum to move from A to B and back again, T = 2tAB, is given by

T = 2π
√

(l/g).

It was soon realised by 18th century textbook writers (for example, Keill 1720,
pp. 244–245; Maclaurin 1748, p. 218; Pemberton 1728, pp. 73–74) that the cyc-
loidal pendulum oscillating through a small angle would have a period very close to
that of a simple pendulum oscillating through a small angle and so the above result
for the cycloidal pendulum provided a way of calculating the period of a simple
pendulum given some knowledge of how bodies fell vertically under gravity.

Conclusion

Most 18th century textbooks aimed at presenting Newton’s philosophy and way
of thinking rather than slavishly following Newton’s own presentation. Newton’s
Principia was simply not a textbook but a presentation of a radically new way of
thinking about the world. Most post-Newtonian textbooks dealt with the motion
of the cycloidal pendulum and were consistent with Newton’s treatment presented
above while not following it in every detail. It is interesting that in their treatment
of the motion of the cycloidal pendulum they used Newton’s new approach more
consistently than they did when dealing with the motion of the simple pendulum
where they tended to base their argument on a framework like that provided by
Galileo (Gauld 2002).

The above case study provides a sample of thinking which Newton himself
might have used and can provide a source of illustrations when teaching mechanics
from a historical perspective.

Appendix, Newton’s Proof of Proposition XL in book I of the Principia

Body 1, moves along the straight path DEC while Body 2, moves along the path
ITKk (see Figure 7). The forces on the bodies acts towards the centre C. ID and
KE are circles with centre C and the speeds of the bodies at I and D are equal at a
particular time (i.e. v1 = v2). IC intersects KE at N. The points E and K are on the
paths of the two bodies and, under the action of the forces at I and D, the bodies
arrive at E and K after small intervals of time �t1 and �t2 respectively.

The accelerative force on body 1 at D causes it to accelerate to E and increases
its speed by �v1 in the time �t1 while the force on the body 2 at I, acting along the
line IN, accelerates the body to K and increases its speed by �v2 in the time �t2.
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Figure 7. Newton’s proof for the equality of velocities at equal altitudes.

NT is a line perpendicular to IK and so IT represents the component of the force
from I to C which causes the increase in speed of body 2.

F1

F2
= a1

a2
⇒ DE

IT
= �v1/�t1

�v2/�t2

v1 = v2 ⇒ DE

�t1
= KI

�t2
,

�v1

�v2
= DE.�t1

IT.�t2
= DE.DE

IT.KI
= IN2

IT.KI

But in �KNIT angle KNI = angle NTK = 90◦

so

IN

IK
= IT

IN
or IN2 = IT.IK (if IK is small enough)

thus

�v1 = �v2

and so

v1 + �v1 = v2 + �v2
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or the velocity of body 1 at E is the same as the velocity of body 2 at K.
If the point C is moved downwards an infinite distance the directions of the

forces on the two bodies are parallel. Newton’s conclusion implies that, if two
bodies moving along different smooth surfaces under the action of gravity have the
same velocities at one particular altitude, they will have the same velocities at all
equal altitudes.

Notes
1 I am indebted to Michael Fowler, Department of Physics, University of Virginia, for pointing this
out to me.
2 Newton’s procedure here is akin to the more modern device in which the simple harmonic motion
of a point along a line is represented as the projection of the uniform motion of a point around a circle
of which the line is a diameter. The velocity and acceleration of the point executing simple harmonic
motion are simply the components of the velocity, v, and the acceleration, v2/r, onto the diameter.
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Abstract. Teaching Newtonian physics involves the replacement of students’ ideas about physical
situations with precise concepts appropriate for mathematical applications. This paper focuses on
the concepts of ‘matter’ and ‘mass’. We suggest that students, like some pre-Newtonian scientists
we examine, use these terms in a way that conflicts with their Newtonian meaning. Specifically,
‘matter’ and ‘mass’ indicate to them the sorts of things that are tangible, bulky, and take up space. In
Newtonian mechanics, however, the terms are defined by Newton’s Second Law: ‘mass’ is simply a
measure of the acceleration generated by an impressed force. We examine the relationship between
these conceptions as it was discussed by Newton and his editor, Roger Cotes, when analyzing a
series of pendulum experiments. We suggest that these experiments, as well as more sophisticated
computer simulations, can be used in the classroom to sufficiently differentiate the colloquial and
precise meaning of these terms.

1. Introduction

Teaching Newtonian physics involves, perhaps first and foremost, the replacement
of students’ uncritically held ideas about physical situations with a set of precise
concepts appropriate for mathematical applications. The theoretical concept of
‘force’, for example, is known to be different than the one naturally invoked by
students (Brown 1989) and novel methods for correcting this disparity have been
offered (Gauld 1998; 1999). The idea of ‘matter’ and its theoretically precise kin
‘mass’, however, have been discussed less. Empirical studies regarding these either
follow the work of Piaget and Inhelder by examining the relationship between
‘density’, ‘volume’, ‘mass’ and ‘weight’ in everyday reasoning (Smith et al. 1997;
Baker & Susanne 2001), focus on teaching the distinction between ‘weight’ and
‘mass’ (Galili & Kaplan 1996), or test students’ understanding of atomic theory and
its implications regarding inter-atomic vacua (Novick & Nussbaum 1981). None
examine the relationship between ‘volume’, ‘matter’, and ‘mass’ in a specifically
Newtonian context. Although not an empirical study, this paper will suggest that

� Many thanks to Colin Gauld and Peter Machamer for their insightful comments on an earlier
draft.
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the untutored use of these terms embodies assumptions that are foreign to their
precise Newtonian meaning. Specifically, we suggest that the pre-theoretic use of
the terms implies that ‘matter’ and ‘mass’ are the sorts of things that are tangible,
bulky, and take up some definite volume. In Newtonian mechanics, however, the
terms are given operational meaning only by their use in Newton’s Second Law: a
body’s ‘mass’ or ‘quantity of matter’ is simply a measure of the body’s acceleration
under an impressed force. Although there is no need to think of a massive body as
spatially extended, we suggest that ‘massive’ is often taken to indicate that a body
not only has a certain reaction to impressed forces, but also a determinate volume.

Grasping the distinction between ‘mass’ as a measure of the reaction to
impressed forces and ‘mass’ as a representation of overall size is crucial to un-
derstanding Newtonian mechanics at both advanced and introductory levels. At an
advanced level, a clear view of the distinction can be used to motivate the concepts
of field theory and to teach about the implications of Newtonian mechanics for
atomic physics. At an introductory level, the distinction can be used to counter
students’ basic misconceptions about the relationship between the size of an object
and its ability to exert force. Special care should be taken at this level, since the
confusion between the two senses of ‘mass’ is embodied in our most basic physics
teaching tools. In many collision diagrams, for example, the mass of an object is
represented by the size of a ball. The collision of a massive body with a less massive
body is represented as the meeting of a big ball with a small one (Resnik et al.
1992, pp. 210–217; Young & Freedman 1996, p. 242). This implicitly suggests
that mass is related to spatial extension, and moreover, that bigger objects are
necessarily more massive. Paradoxically, these diagrams are used most often in
a student’s education exactly when it is most crucial that she divorce herself from
the assumptions embodied in them.

In order to demonstrate how this feature of Newtonian mechanics can be better
handled in the classroom, we will examine a short exchange between Isaac Newton
and Roger Cotes, the editor of the Principia’s second edition, concerning pendu-
lum motion. As several studies have suggested, there exists a correlation between
contemporary students’ opinions about mechanics and those of pre-Newtonian sci-
entists (Wandersee 1985; Squeira & Leite 1991), a fact which we will take for
granted. Section 2 examines the historical basis for the distinction between the two
senses of ‘mass’, particularly how it evolved from two different conceptions of the
nature of ‘matter’. Section 3 turns to the pendulum experiments and the exchange
between Newton and Cotes. The pendulum experiments demonstrate that at a fixed
distance gravity depends only on the mass of an object, yet Newton attempts to
draw from this further consequences regarding the composition of bodies and the
nature of matter. What makes the exchange particularly interesting is that Newton
himself plays the role of the pre-Newtonian scientist, and it is his editor who real-
izes the true implications of Newtonian mechanics. In Section 4, we draw morals
from this exchange. Overall, this paper can be taken as yet another example of how
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the wrangling over the meaning of concepts that occurred during their discovery
can be recast and utilized in contemporary pedagogy.

2. Two senses of ‘Matter’ and ‘Mass’

Newton’s Principia appeared in 1687, when the ‘Mechanical Philosophy’ domin-
ated the scientific and philosophical scene in Europe. According to this philosophy,
all physical phenomena were to be explained by the motion and configuration of
bits of matter, where ‘matter’ was taken to mean ‘a substance extended, divis-
ible, and impenetrable’ (Boyle 1666 [1979], p. 18). There was no well-formed
notion of ‘force’ in this program, and a rejection of the idea that bits of matter
could affect one another at a distance.1 All physical interaction was thought to
be reducible to direct contact of homogeneous, though differently sized, material
particles. The Mechanical Philosophy was in large part a critical reaction to the
ontological excesses of Scholastic philosophers, who postulated a multiplicity of
‘substantial forms’ to explain the observable characteristics of matter. For example,
the inherence in a body of the substantial form ‘red’ was thought to explain why
that body was red; the form ‘heaviness’ was thought to explain why it was heavy,
etc. The Mechanists, on the other hand, sought to minimize explanatory principles
and account for the observable characteristics of matter through only a few of its
basic properties (e.g., size and impenetrability) which were thought to be truly es-
sential to it – without them, matter would cease to exist as matter.2 This explanatory
strategy suggested that an explicit identification of matter as such with its essential
properties was philosophically valuable. After all, if all the observable characterist-
ics of matter could be explained by its essential properties, and if these properties
were definitional of what matter is in itself, it would behove a philosopher to invoke
them directly instead of invoking the less fundamental notion of ‘matter’.

A radical version of this identification was endorsed by Rene Descartes, who
claimed that matter was nothing other than spatial extension. He based this on the
idea that spatial extension is the only property of matter which we cannot imagine
eliminated from our experience and is thus matter’s only truly essential property:

There is no real difference between space and corporeal substance.
It is easy for us to recognize that the extension constituting the nature of a body is exactly the same
as that constituting the nature of a space . . . Suppose we attend to the idea we have of some body,
for example a stone, and leave out everything we know to be non-essential to the nature of body: we
will first of all exclude hardness, since if the stone is melted or pulverized it will lose its hardness
without thereby ceasing to be a body; next we will exclude colour, since we have often seen stones
so transparent as to lack colour . . . (Descartes 1644 [1985], p. 227)

After similarly discussing heaviness, heat, and cold, Descartes concludes:

After all this, we will see that nothing remains in the idea of the stone except that it is something
extended in length, breadth and depth. (Descartes 1644 [1985], p. 227, original emphasis)

The very idea of matter is thus reduced to the idea of spatial extension.
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However absurd this identification may seem to the modern reader, it allowed
Descartes to give a quantitative measure of matter: the quantity of matter in a body
was simply the amount of space which it filled. The question of how to measure
quantities of matter has a venerable history, dating back to various attempts by St.
Thomas Aquinas and his followers in the 13th century to explain the preservation
of the observable characteristics of the Eucharist through transubstantiation.3 In
the 17th century, however, the problem needed to be answered for the sake of
getting any mathematical physics off the ground. Although his physics was an
overall failure, Descartes understood the need to mathematize matter and stated
unequivocally that what is important about matter is simply its quantity. He thus
wrote shortly before the passage quoted above:

The distinction between quantity or number and the thing that has quantity or number is merely a
conceptual distinction. (Descartes, 1644 [1985], p. 226, original emphasis)

In other words, the quantity of matter in a body is not on equal footing with
other properties of that body; it is the only one we need to understand in order
to understand the body at all.

Without delving into further details, we note that analogous positions were held
by a variety of mechanical philosophers. Galileo, for example, conceived of matter
primarily in terms of its spatial limits. In this passage from The Assayer, he wrote
that he cannot even entertain the notion of matter that is not contained in some
volume:

Now I say that whenever I conceive any material or corporeal substance, I immediately feel the need
to think of it as bounded, and as having this or that shape; as being large or small in relation to other
things, and in some specific place at any given time . . . (Galilei 1623 [1957], p. 274).

Similarly, Robert Boyle, referring to the properties of the atomic constituents of
matter, wrote:

[We] must admit three essential properties of each entire or undivided, though insensible, part of
matter: namely magnitude (. . . which . . . we in English oftentimes call the size of a body), shape, and
either motion or rest. (Boyle 1666 [1979], p. 20, original emphasis)

These examples should make clear that in the mid-17th century the commonplace
scientific opinion was that one of matter’s definitional properties was its spatial
extension.4 What we call a geometrical conception of matter was thus one of the
core commitments of the mechanical philosophy. Although the scientists above did
not use the term ‘mass’ to describe the geometrical measure of a quantity of matter
before Newton popularized the term, what is important for our purposes is that
insofar as they were concerned with quantifying matter, they invoked a geometrical
measure. As will become clearer later, when the term ‘mass’ came to stand for
‘quantity of matter’ (after the Principia’s publication), the question still remained
which quantification strategy was appropriate.

Newton himself held the geometrical view of matter throughout his long sci-
entific career.5 For example, in De Gravitatione, a treatise that may have been
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written around 1684 as part of the composition sequence of the Principia, Newton
described his conception of matter in terms of matter’s creation by God. Bodies, he
wrote, were nothing other than:

determined quantities of extension which omnipresent God endows with certain [additional] condi-
tions . . . :
(1) that they [the quantities of extension] be mobile; and therefore I did not say that they are numerical
parts of space which are absolutely immobile, but only definite quantities which may be transferred
from space to space;
(2) that two of this kind cannot coincide anywhere; that is, that they may be impenetrable . . . ;
(3) that they can excite various perceptions of the senses and the fancy in created minds. (Hall & Hall
1962, p. 140, original emphasis)

What is important about this passage is that it begins the discussion of matter with
the assumption that bodies are “quantities of extension”. Newton did not doubt that
the physics of material bodies – for which he is setting the scene by discussing the
impenetrability and motion of bodies – must be directly concerned with volumes.
A later passage in the same treatise confirms the importance of the geometrical
conception. Newton offered the following definition of momentum (“motion”, as
he called it):

[M]otion is either more intense or more remiss, as the space traversed in the same time is greater
or less, for which reason a body is usually said to move more swiftly or more slowly . . . motion is
more or less in extension as the body moved is greater or less, or as it is acting in a larger or smaller
body. And the absolute quantity of motion is composed of both the velocity and the magnitude of the
moving body. (Hall & Hall 1962, p. 149)

Newton argued that momentum is proportional to the product of the velocity and
the size (“larger or smaller”) of the body. For modern readers, this is a curious
statement, since momentum should be equal to the product of velocity and mass,
not velocity and size! It seems that Newton believed the two to be equivalent, at
least as far as the atomic particles of matter were concerned.

During the same period, however, Newton was establishing a new conception
of matter that was radically different from the one outlined above. This innovative
dynamical conception of matter related the mass of a body not to its size, but to
its ability to resist impressed forces; i.e., to its inertia.6 Since this conception is
familiar to all those who have some facility in Newtonian mechanics, we only
need to mention that Newton’s second law, put anachronistically as F = ma,
is the ultimate embodiment of this view. According to this law, given a force a
body’s mass can be calculated based on the observable acceleration of the body in
response to that force. Since the second law is one of the foundational principles
of Newtonian mechanics, it is clear that the dynamical sense of matter underlies
Newtonian mechanics. An appeal to the geometrical sense of matter, on the other
hand, is completely out of place: geometric properties of the fundamental particles
are irrelevant to Newton’s mechanics.

It should be noted, however, that when coming to explicitly define mass, Newton
did not state its relation to impressed forces. Rather, Newton defined mass as “a
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measure of the matter that arises from its density and volume jointly” (Newton,
1726 [1999], Defn. 1, p. 403). This more geometrical definition is seldom used in
the Principia and is virtually forgotten in later treatments of Newtonian mechanics.
Starting with Euler’s Mechanica and ending in modern textbooks, the concept
of mass has been traditionally introduced exclusively as a measure of a body’s
resistance to impressed forces.7

The history of physics in the 18th and 19th centuries shows that this dynamical
conception was one of Newton’s greatest contributions to physical theory. In the
18th century, Roger Boscovich suggested that matter should be conceived as a set
of point-sized particles, each considered only as the locus of forces, while in the
19th century, the work of Faraday and Maxwell developed the idea of point sources
into the field concept that still dominates physics today. Overall, the shape and size
of the fundamental constituents of matter turned out to be of no importance for
doing theoretical physics and the geometrical conception was left by the way-side.
Nevertheless, the intuitive appeal of this conception continues to exert its power.
The opinions of 17th century scientists demonstrate that even at a sophisticated
level it is possible to believe that the concept of ‘matter’ appropriate for doing
physics implies that matter is to be understood through its spatial properties. Yet
as far as the theoretical structure of Newtonian mechanics is concerned, this is an
unwarranted belief. We now turn to the exchange between Newton and Cotes that
illustrates this theme.

3. Pendulum Motion and Conceptual Confusion

The conflation of the two conceptions of matter discussed above was first noted by
Newton’s young editor, Roger Cotes. Cotes’ prodigious mathematical talent earned
him an appointment as the first Cambridge Plumian Professor of Astronomy and
Experimental Philosophy at the tender age of 26. In 1709 he was chosen as the
editor of the Principia’s second edition, and his correspondence with Newton over
the ensuing four years reveals that Cotes was one of the Principia’s most astute
readers. Here we will focus only on an exchange between Newton and Cotes in the
winter of 1712. Cotes noticed that Newton himself combined the two conceptions
of ‘matter’ in drawing out the implications of ingenious pendulum experiments
reported in the Principia, and attempted to dispel the confusion in exchanges with
Newton.

Newton’s predecessors thought that gravity (or ‘heaviness’) could depend upon
a wide variety of a body’s properties. Advocates of the geometrical conception
usually explained gravity in terms of a fluid aether pressing upon bodies, and
in this context it was natural to suppose that gravity might depend on a body’s
volume or shape (Descartes 1644 [1985], p. 268). Others thought that gravity
resembles magnetism, which clearly affects some bodies differently than others.
Newton devised a pendulum experiment to rule out the dependence of gravity on
anything but mass (Newton 1726 [1999], Book III, Prop. 6). As Newton notes, this
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experiment is a more controlled version of Galileo’s famous experiment comparing
the free fall of bodies with different densities. Newton constructed two pendulums
of equal length side by side, filled the empty pendulum bobs with equal weights of
a variety of materials, and set them in motion. He had earlier derived the following
relationship between the period of oscillation, the weight of a pendulum, and its
mass, m ∝ w ·p2 (Book II, Prop. 24). In addition, the period of a simple pendulum
depends only its length and the accelerative force due to gravity acting on the bob.
Since the pendulums had the same length, any variation in the periods would reflect
a difference in the accelerative force gravity imparts to different materials. Newton
found that the pendulums exhibited nearly identical periods for all the materials
he tested, and thereby confirmed that the mass and weight of an object are always
directly proportional to one another, m ∝ w, far more accurately than the Galilean
experiment. In modern parlance, this proportionality shows that the ‘inertial mass’
m in F = ma (which measures the response of the bob to the force acting on it)
and the ‘gravitational mass’ m in W = mg (which measures the magnitude of the
force acting on the bob) are one and the same.

This novel feature sets the gravitational force apart from other forces en-
countered in physics. In the corollaries to Prop. 6, Newton draws attention to this
feature via a comparison to magnetism: unlike gravity, the force of magnetism has
strikingly different effects on various materials. In anachronistic terms, gravita-
tional ‘charge’ in the force law for gravitation is exactly equal to the inertial mass,
unlike other force laws (such as Coulumb’s law) which include a separate charge
that determines the magnitude of the force. For forces with a separate charge one
can imagine experimentally varying the ratio of the electric charge to the inertial
mass to distinguish inertial effects from those due to the force. However, the exact
equality of inertial and gravitational mass prevents this in the case of gravitation.
Newton’s notion of ‘mass’ is thus uniquely distinguished from other properties of
matter. A little over two centuries later, Einstein would take this surprising fact to
be one of the guiding principles – he called it the ‘equivalence principle’ – in his
successful search for a new theory of gravitation.8

Newton thought that the pendulum experiments established more than just the
proportionality between mass and weight. In the first edition, he goes on to argue in
a corollary (Book III, Prop 6, Cor. 2) that matter must be filled with empty spaces!9

Newton’s argument is based on two additional premises. The first is that pendulum
motion would be impossible if the density of the pendulum bob was equal to the
density of the medium in which it was moving. This is just a consequence of the fact
that bodies cannot rise and descend unless their specific gravity is different from
that of the ambient medium. Newton’s second premise is that matter is composed
of atoms of fixed density. If atoms have a fixed density yet there is a variation
in the densities of gross bodies, the variation must be due to the presence of a
different number of atoms in equal volumes of gross bodies. This can happen only
if different amounts of empty spaces separate the atoms in each of these bodies.
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Cotes challenged this argument. Although Cotes’ objection may appear to be
a minor quibble related to an unimportant corollary, it actually focuses clearly on
the theme of this paper – the notion of ‘matter’ and its measure via ‘mass’ that is
appropriate in Newtonian mechanics. Cotes asked Newton if it was not possible to
imagine two identically sized atoms which nonetheless possess different masses.
If this is possible, Cotes held, then Newton’s argument fails to show that gross
bodies must possess internal vacua. It would be possible for two identically sized
pendulum bobs to have different masses by virtue of being made from two types
of atomic matter (each with a different density), rather than from the same type
of atomic matter differently distributed in space. One could even image a matter
that is so dense that gross bodies made of it contain no vacua whatsoever. What is
important about this observation, however, is not so much what it says about the
existence of vacua, but what it says about the Newtonian concept of ‘mass’.

Cotes claims that it is inappropriate, in the strict context of Newtonian mechan-
ics, to treat bodies as if they were spatially extended. The only concept of ‘mass’
that is relevant for Newtonian mechanics is the one given by the second law. In
Cotes’ own words:

Let us suppose two globes A & B of equal magnitudes to be perfectly fill’d with matter without any
interstices of void Space; I would ask the question whether it be impossible that God should give
different vires inertia [i.e., forces of inertia] to these Globes. I think it cannot be said that they must
necessarily have the same or an equal Vis Inertia. Now You do all along . . . estimate the quantity of
matter [i.e., mass] by the Vis Inertia . . . Tis possible then, that ye equal spaces possess’d by ye Globes
A & B may be both perfectly fill’d with matter, so no void interstices remain, & yet that the quantity
of matter in each space shall not be the same. Therefore when You define or assume the quantity of
Matter to be proportionable to its Vis Inertia, You must not at the same time define or assume it to
be proportionable to ye space which it may perfectly fill . . . (Turnbull 1977, Volume V, Doc. 893, p.
228)

In other words, the dynamical conception of mass essential to the formulation of
Newtonian mechanics is in no way tied to the geometrical conception advocated
by Newton and the other mechanical philosophers. When Newton assumed that
similarly sized atomic particles must necessarily possess the same mass – i.e., that
their volume was a measure of their quantity of matter – , he was stepping beyond
the limits of his own mechanics. As Cotes noted, it is possible for similarly sized
atoms to possess different masses because ‘mass’ is simply a measure of a body’s
inertia – it need not be at the same time a measure of a body’s volume. Although
the experiments fix the relationship between inertial and gravitational mass, they
have no bearing on the relationship between mass and volume of the fundamental
particles.

The remainder of the exchange between Newton and Cotes is fascinating, yet
beyond the scope of this paper (Biener & Smeenk 2001 for further discussion). It
shows that although Newton ultimately acquiesed and formulated the corollaries
as conditionals, he did not fully understand Cotes’ complaint. Instead, Newton
kept insisting that the proportionality between mass and volume, just as the pro-
portionality between inertial and gravitational mass, was proved by the pendulum
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experiments. As we’ve discussed, however, only the latter was strictly proved by
these experiments. Newton’s belief in the former seems to have been due to a subtle
confusion between the conception of matter he invented and the one generally
accepted at his time. In other words, he failed to sufficiently differentiate in his
proofs when ‘mass’ and ‘quantity of matter’ were used to indicate inertia and when
they were used to indicate volume. The unfounded conclusions drawn from his
pendulum experiments were simply artifacts of this confusion.

4. Morals for Teachers

If Newton’s misconceptions about his own theory are any indication, physics teach-
ers would do well to actively counter students’ insufficient discrimination between
the geometrical and dynamical senses of ‘matter’ and their quantification via the
concept of ‘mass’. This involves both an explicit confrontation with students’ con-
fused views and a more subtle use of existing teaching tools, so that they will not
exacerbate existing confusions.

Newton’s pendulum experiment can be easily modified for use in the classroom.
Although some students might be familiar with the idea that the weight of bod-
ies depends only on their mass, reproducing the experiment will provide a vivid
demonstration of their knowledge. The easiest way to reproduce the experiment
would be to construct two pendulums side by side, with small boxes for pendulum
bobs, and ask students to fill the boxes with a variety of materials. Alternatively,
one could use a single pendulum and have students measure the period for different
materials. In either case, students should be asked to discuss the patterns they have
observed and what they imply regarding the nature of the gravitational force. In
the theoretical treatment of the experiments, it is crucial to distinguish inertial and
gravitational ‘mass’ as mentioned above rather than simply assuming their equality.
Students will discover that the two are very precisely equal, but it is important for
them to recognize that m plays two distinct roles.

On a more introductory level, a series of experiments can be run with pendulum
bobs of different sizes but equal lengths. A ball should be placed at the lowest point
in the pendulum trajectory, so that a collision occurs when the pendulum is moving
directly in the horizontal direction. As students can see, changing the size of the
pendulum bob without changing the mass will not affect the motion of the struck
ball. Changing the mass, however, will affect this motion. From this, the teacher
can stress the point that almost all of a body’s properties – save its dynamical mass
– are irrelevant for Newtonian mechanics. In this experiment, the overall length of
the pendulum should be large in relation to the size of the pendulum bobs, so that
the difference in the length of the pendulum trajectory will be negligibly changed
by a change in the bob size.

Several computer simulations can also be used to press home the idea that a
body’s geometrical properties are irrelevant to the dynamical notion of mass. For
example, a computer simulation in which the volume of a pendulum bob may be

135



ZVI BIENER AND CHRIS SMEENK

varied by the student while the pendulum is oscillating illustrates that no change
in the motion of the pendulum occurs. From this students should conclude that the
volume of the bob is of no consequence. A similar simulation involving collisions
can make an even more powerful teaching tool. In this case, both the volume and
mass of colliding balls may be changed by the student during the course of colli-
sion. Students can see that when volumes are changed, no change in the motion
results. However, a change in mass affects the motion. We believe that such a
demonstration will be most useful if it is performed as a proper part of teaching
Newton’s Third Law and divorcing students’ from the view that a larger body
necessarily contains a larger ‘internal force’ (Gauld 1999). The idea of momentum
and its relation to mass can then be developed more forcefully.

On a more subtle level, a better use of diagrams can also discourage the con-
fusion in the two senses of ‘mass’. As noted earlier, collision diagrams ordinarily
use the size of an object as a representation of its mass. This enforces the notion
that mass and volume are somehow related and even suggest that they are related
linearly. As a corrective, collision diagrams should represent the mass of an object
by internal shading, not size. Different masses should no longer be represented
as differently sized balls, but as differently filled ones. It is important to use
fillings which have a straightforward numerical interpretation (such as a set of dots
with a certain number per unit area) and not color gradients, whose mathematical
interpretation is less clear.

Before concluding, we must sound a single cautionary note: there are plenty
of applications of Newtonian mechanics where size does matter. For example,
in calculating angular momentum, fluid resistance, or coefficients of friction the
size of the bodies involved determines the magnitude of the forces. The point of
this paper is not that ‘size doesn’t matter’, but rather that distinguishing between
‘mass’ as a dynamical measure and ‘mass’ as geometrical measure is crucial for
understanding the foundations of Newtonian mechanics. The historical precedent
suggests that students are likely to confuse these senses and thus teachers should
combat this confusion at all pedagogical education.

5. Conclusion

The concept of ‘mass’ (i.e., a ‘quantity of matter’) in Newtonian mechanics is
different than the one used colloquially. The difference lies in the fact that the
Newtonian concept is derived from other precise concepts – force and acceleration
– while the colloquial concept is derived from our everyday interaction with more
or less massive material bodies. In learning Newtonian mechanics, students need to
divorce themselves from the colloquial concept and understand that a Newtonian
‘mass’ (i.e., a ‘quantity of matter’) is a different notion than the one they are
accustomed to. The difference between these two notions was historically noted
in connection with pendulum experiments and we believe that such experiments
can still be used today to clarify their conceptual interrelations.
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Notes
1 See Westfall (1971) for the evolution of the force concept in the 17th century.
2 See Dijksterhius (1960), especially §III.G.
3 See Jammer 1961, chap. 4) on the medieval notion of ‘quantitas materiae’ and its theological
origins.
4 See Hall (1963) for an extended analysis of similar matter theories.
5 For more on the impact of this view on Newton’s physical theories, in connection with his views
on the explanation of gravitation by aetherial mechanisms, see Biener and Smeenk (2001).
6 Newton was not the only one to recognize that the mechanical philosophy’s conception of matter
as bare, inert geometric extension was insufficient for physics. Newton’s contemporary (and rival)
Leibniz also prominently criticized the mechanical philosophy (see, for example, Leibniz 1989, pp.
245–256).
7 See Jammer (1961, Chap. 8) for an analysis of ‘mass’ in Newton’s successors. An example of a
modern definition of ‘mass’ via Law II can be found in Resnick and Halliday (1960, §5.4.
8 See Einstein (1916) for Einstein’s brief statement of the principle, and Norton (1985) for a detailed
discussion of the principle and its role in Einstein’s discovery of general relativity.
9 Newton revised these corollaries in light of his discussion with Cotes, and the second corollary
from the first edition was revised and expanded into corollaries three and four in later editions.
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The Treatment of the Motion of a Simple Pendulum
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Abstract. The treatment of pendulum motion in early 18th century Newtonian textbooks is quite
different to what we find in today’s physics textbooks and is based on presuppositions and math-
ematical techniques which are not widely used today. In spite of a desire to present Newton’s new
philosophy of nature as found in his Principia 18th century textbook analysis of pendulum motion
appears to owe more to Galileo’s insights than to those of Newton. The following case study outlines
this analysis and identifies some of its distinctive features as a resource for teachers wishing to refer
to this period in the history of science.

1. Introduction

Following the publication of Newton’s Principia in 1687 many other writers began
to promulgate the new mathematical and experimental philosophy which Newton
had presented there. That book was structured on the Euclidean model of Axioms,
Propositions and Theorems (see Newton 1729/1960) and many of those who ad-
opted Newton’s philosophy structured their books in the same way. Many parts of
Newton’s book were complex with much detail or sketchy with important detail
omitted so that one main purpose of his disciples was to present the bones of
his argument as clearly as possible. Although Newton, along with Leibniz, was
credited with the invention of the calculus the Principia did not use that device.
Instead its arguments were often based on the use of small and vanishing quantities
which preceded the introduction of the calculus. He (and others before and after)
rarely used equations but instead based his arguments on proportional relation-
ships. Newton did not discuss the theory behind motion of the simple pendulum
(except in a very condensed form when discussing Proposition XXIV of Book II of
the Principia; see Densmore 1995, pp. 317–332) but instead focused his attention,
as far as pendulum motion is concerned, in Section X of Book I of the Principia,
on the motion of the cycloidal pendulum under the influence of a central force.
In Section VI of Book II he deals with the motion of a cycloidal pendulum in a
resisting medium (Newton 1729/1960).

Some of the books produced to present Newton’s philosophy were for use
in university lecture halls (for example, Desaguliers 1734, 1745; Keill 1720;

in Some Early 18th Century Newtonian Textbooks
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‘sGravesande 1720; Musschenbroek 1744) while others were simply for the edi-
fication of the public (Voltaire 1738) some of these being directed to young people
(Tom Telescope 1779) or women (Algarotti 1739). Books in the former group
contained a full treatment with as much mathematical rigour as necessary while
those in the latter contained little mathematics.

While the treatments of pendulum motion in the university textbooks differ
from each other in some details the basic sequence of the argument is the same
in each. For most the mechanics of pendulum motion was related closely to an
understanding of motion down an inclined plane and treatment of the mechanics of
motion on inclined planes precedes the analysis of pendulum motion.

What follows is a case study to illustrate the types of arguments early 18th cen-
tury textbook writers called on to help their readers understand, from a Newtonian
perspective, the reason a simple pendulum moves as it does.

2. Motion on Inclined Planes

The background to 17th century studies of the mechanics of inclined planes (es-
pecially the movement of bodies down the plane compared to their motion in free
vertical fall) lies in the 13th century with an interest in the conditions of equilibrium
of two bodies connected by a string, one hanging vertically and the other resting
on an inclined plane (Figure 1).

A writer belonging to the school of Jordanus (Clagett 1961, pp. 104–108; Dijk-
sterhuis 1961, pp. 249–250) presented a proof that, when equilibrium existed, the
ratio of these weights, W/w was equal to AB/AC. In the 16th century Stevin
(Dijksterhuis 1961, pp. 326–327) provided an elegant argument for this conclusion
based on the impossibility of perpetual motion. By the 17th century one implication
of this fact, namely that the effective weight of a body on an inclined plane to its full
weight was as AC/AB [1] (see Galileo 1590/1960, p. 65; 1600/1960, pp. 171, 174;
Matthews 2000, p. 97), was taken for granted and used as the basis for comparing
the motion of bodies falling freely or moving down an inclined plane.

The study of uniformly accelerated motion in which the speed of a moving body
increased by the same amount in equal intervals of time [2] was assisted in the 14th
century by the development of a graphical methods of portraying its properties.
Nicholas Oresme (Clagett 1979, II: pp. 285–289; Dijksterhuis 1961, pp. 185–200)
introduced his two dimensional graph on which the time was plotted vertically and
the speed was plotted horizontally (Figure 2; see also ‘sGravesande 1721, p. 53).

It could easily be shown from this presentation that the distance travelled (start-
ing from rest) by the uniformly accelerated body (given by the area under the
graph) was equal to the distance travelled by a body moving with a constant speed
equal to half that acquired by the accelerated body at the end of its fall (see Figure
2). Others in the 17th century expressed the distance travelled by the accelerated
body as half that acquired by a body moving with a constant speed equal to that
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Figure 1. Weights in equilibrium on an inclined plane.

Figure 2. Graph of time against speed.

acquired by the accelerated body at the end of its fall. This fact applied equally to
the uniformly accelerated motion of free fall and to that down an inclined plane.

For a particular uniformly accelerated motion beginning from rest it was well
known in the 17th century that

total distance travelled = 1
2V t (V = velocity at the end) [3]

V ∝ t [4]

the total distance travelled ∝ the square of the time taken (from [3]

and [4]) [5]

the total distance travelled ∝ the square of the velocity at the end

(from [3] and [4]) [6]

The comparison between free fall and motion down an inclined plane was another
topic of interest and because constants of proportionality were not part of the
mathematical vocabulary of the time, care had to be taken to make this comparison.
Accelerations were often understood as proportional to the change in speed from
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Figure 3. Motion down an inclined plane.

rest in the first small period of time, �t , (or in the first second of the motion)
rather than defined as �v/�t at any point of time during the motion. From the
publication of Newton’s Principia acceleration was understood to be proportional
to the “impressed” force. The accelerative force of gravity was the same for all
bodies at a particular place but was reduced for bodies on inclined planes in the
ratio of the height of the plane to its length. Therefore, if one knew the effective
accelerative force of a body (Newton’s Definition VII) on an inclined plane and the
force of the same body in free fall one could then compare their motions.

Keill (1720, Theorem XXXV, pp. 207–208) showed that the ratio of the speed
acquired, in a given time, by a body falling from rest along an inclined plane (Fig-
ure 3) to the speed acquired by the same body falling vertically in the same time is
equal to the ratio of the height, AC, of the plane to its length, AB (both measured
from A to the same horizontal line). He did this using the known fact, established
by Galileo, that the ratio, w/W , of the effective weights of the body on the plane
and freely falling is the same as the ratio AC/AB. From Newton’s second law it
follows that the increases in speed in equal intervals of time, �v/�V are also in
the same ratio [7]. Thus for any given interval of time the ratio of the total speeds,
v/V , is equal to AC/AB [8].

Another important property of motion on an inclined plane was the distance a
body moved down the plane AB in the same time it took the body to fall vertically
through the height, AC, of the plane. Keill (1720, Problem V, 209–211) solved this
problem as follows.

D is the point reached by the body moving down the inclined plane in the time it
takes the body to fall from A to C. The previous Theorem XXXV shows that when
the speed of the body at C is V the speed of the body at D will be V where v/V =
AC/AB [8]. However, because of relation [3] above v/V is equal to AD/AC so
that

AC

AB
= AD

AC
. [9]
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Figure 4. Keill’s diagram for distances travelled in equal times.

If this relationship holds in the two triangles ABC and ACD then they must be
similar and so angle ADC is a right angle. Thus for any inclined plane the foot of
the perpendicular from C onto the plane indicates the distance moved by a body in
the time it takes a freely falling body to move from A to C [10].

From this it can be shown (Keill 1720, Theorem XXXVI, p. 212) that the ratio
of the times the bodies take to travel from A to B and C respectively is equal to
AB/AC. For, from relationship [5],

AD

AB
= (tAD)2

(tAB)2
= (tAC)2

(tAB)2

but from [9]

AD

AC
= AC

AB

so that

AC2

AB2
= (tAC)2

(tAB)2

or

tAC

tAB

= AC

AB
[11]

A final important property of the inclined plane concerns the equality of the
speeds at B and C after two bodies have fallen from rest, one moving from A to B,
the other moving from A to C (Keill 1720, Theorem XXXVII, pp. 213–214).

From [3]

VCVV

VDV
= AC

AD
.

Also from [6]

VBV

VDV
=

√
AB√
AD
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Figure 5. Motion along chords in a circle.

but from relation [9]

AC2 = AB.AD

so that

VBV

VDV
= AC

AD
.

Thus

VBV = VCVV . [12]

Newton in his Principia (Proposition XL, Theorem XIII) showed more gener-
ally that

if a body, acted upon by any centripetal force [including one where the centre was infinitely far
away], is moved in any manuer, and another body ascends or descends in a right [i.e., straight] line,
and their velocities be equal in any one case of equal altitudes, their velocities will be also equal at
all equal altitudes.

A version of Newton’s proof of this proposition is provided in the Appendix.

3. Motion along Chords in a Circle

Relationship [10] presented in the previous section provided an important bridge
to the mechanics of the motion of the pendulum.

Because the angle ADC (in Figures 4 and 5) is a right angle, one can draw a
circle with AC as a diameter passing through A, D and C as shown in Figure 5
(Desaguliers 1734, pp. 369–370). For another inclined plane AE with the same
height AC the point H where it intersects the circle represents the point a body
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Figure 6. A simple pendulum.

moving from rest along AE would reach in the same time a body took to fall from
rest vertically from A to C. Thus two bodies, one moving down AB and the other
moving down AE from rest at A, would reach points D and H respectively in the
same time. If chords CL and CM are drawn parallel to AD and AH these will also
be equal in length to AD and AH . Thus bodies moving from rest down LC and
MC (and NC) would all do so in the same time as one moving from rest along AC

[13].

4. The Simple Pendulum

For Keill (1720, pp. 225–225; see also Musschenbroek 1744, p. 157) “if the Pen-
dulum is swung about B, so that the heavy Body may describe the Arch CAD, the
same Motion will happen to this heavy Body, as would to any Body descending by
its Gravity along the spherical Superficies CAD, if that Superficies was perfectly
hard and smooth” (see Figure 6). The link with the inclined plane was established
by this assumption.

Keill (1720, Theorem XLI, pp. 225–226) added the chords CA, DA, FA and
GA to the path of the pendulum (Figure 6) and argued that the times for a body
to move from rest from C, D, F , or G to A were all equal (from [13]). If the
pendulum bob moved between C and D or between F and G along the chords (see
also ‘sGravesande 1721, pp. 61–62) the times of oscillation would be equal. If the
angle of swing was small the chords are almost the same lines as the equivalent arcs
of the circle and so, Keill and ‘sGravesande reasoned, the times of oscillation of the
pendulum along the large or small arc of the circular path were equal [14] “as far as
our Senses can distinguish” (‘sGravesande 1721, p. 62; see also Desaguliers 1734,
p. 370). It is interesting to note that this argument is very similar to that outlined by
Galileo in his letter of November 29, 1602 to del Monte (see Matthews 2000, pp.
102–103).

If two pendulums with different string lengths (Figure 7) are set swinging so
that they swing through the same angle the chords EB and GD are parallel as are
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Figure 7. Two similar simple pendulums.

Figure 8. The velocity at the bottom of the path of a pendulum.

BF and DH . Thus the ratio of the time for a body to move from E to B along
the chord to that for a body to move from G to D along the chord is equal to the
ratio of the square roots of the lengths of the chords (from [5]). But, because of
the similarity of the diagrams, this is equal to the ratio of the square roots of the
lengths of the strings AB and CD. Thus the ratio of the periods of oscillation of
two pendulums is equal to the ratio of the square roots of their lengths [15].

When a pendulum is released from a particular point it reaches the lowest point
with a particular speed. In Theorem XLIII Keill (1720, pp. 228–230) demonstrated
that this speed was proportional to the length of the chord drawn between the lowest
point and the point from which it was released [16]. Keill argued as follows.

From [6], for bodies falling vertically from points E and G respectively (Figure
8)

VEBV

VGBVV
=

√
EB√
GB

where VEBV and VGBVV are the velocities at B at the end of each fall.
But, because triangles GBD and DBE are similar

GB

DB
= DB

EB
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and so

VEBV

VGBVV
= DB

GB
.

From [12] VEBV = VDBV where VDBV is the velocity at B of a body moving down the
chord or the arc DB starting from rest from B.

Thus

VDBV

VGBVV
= DB

GB
.

For the same reasons

VCBVV

VGBVV
= CB

GB

so that

VCBVV

VDBV
= CB

DB
. [17]

This relationship was employed by many experimenters (including Newton)
who used colliding pendulums in the 17th and 18th centuries to test the laws if
impact and, in particular, the law of conservation of momentum which followed
directly from Newton’s third law of motion (Gauld 1998; Yokoyama 1972).

5. Conclusion

Successful historical treatments of scientific episodes should refer to modes of
thought and things known at the time rather than being presented in the context
of today’s knowledge. Some of the foundations upon which the above treatment of
pendulum motion was developed include:
(i) a dependence on proportional reasoning;

(ii) the widespread belief that pendulum motion was identical to that of a body
sliding, under the action of gravity, along a smooth circular surface;

(iii) an understanding of the near coincidence of the arc of a circle and its chord for
small angles.

The treatment of pendulum motion followed by many of the textbook writers of
the early 18th century often owed more to the thinking of Galileo (see Matthews
2000, pp. 102–104) than to that of Newton in his Principia. As shown above the
explanation of pendulum motion followed from known properties of motion down
an inclined plane while in Newton’s treatment it was based on the forces which ac-
ted on the pendulum bob (Gauld 2002). The above case study is offered to provide
access to thinking about the simple pendulum after Newton’s new philosophy was
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Figure 9. Newton’s proof for the equality of velocities at the bottom of an inclined plane.

presented so it can be embedded in a more authentic early 18th century context by
teachers today.

Appendix: Newton’s proof of Proposition XL in Book I of the Principia

Body 1, moves along the straight path DEC while Body 2, moves along the path
IT Kk (see Figure 9). The forces on the bodies acts towards the centre C. ID and
KE are circles with centre C and the speeds of the bodies at I and D are equal at
a particular time (i.e. v1 = v2). IC intersects KE at N . The points E and K are
on the paths of the two bodies and, under the action of the forces at I and D, the
bodies arrive at E and K after small intervals of time �t1 and �t2 respectively.

The accelerative force on body 1 at D causes it to accelerate to E and increases
its speed by �v1 in the time �t1 while the force on the body 2 at I , acting along
the line IN , accelerates the body to K and increases its speed by �v2 in the time
�t2.

NT is a line perpendicular to IK and so IT represents the component of the
force from I to C which causes the increase in speed of body 2.

F1FF

F2FF
= a1

a2
⇒ DE

IT
= �v1/�t1

�v2/�t2

v1 = v2 ⇒ DE

�t1
= KI

�t2
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�v1

�v2
= DE.�t1

IT .�t2
= DE.DE

IT .KI
= IN2

IT .KI
.

But in �KNIT angle KNI = angle NT K

= 90◦

so

IN

IK
= IT

IN
or IN2 = IT .IK (if IK is small enough)

thus

�v1 = �v2

and so

v1 + �v1 = v2 + �v2

or the velocity of body 1 at E is the same as the velocity of body 2 at K.
If the point C is moved downwards an infinite distance the directions of the

forces on the two bodies are parallel. Newton’s conclusion implies that, if two
bodies moving along different smooth surfaces under the action of gravity have the
same velocities at one particular altitude, they will have the same velocities at all
equal altitudes.
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Newton’s Path to Universal Gravitation:

The Role of the Pendulum

PIERRE J. BOULOS
School of Computer Science, The University of Windsor, Windsor, Ontario, Canada N9B 3P4
(E-mail: boulos@ uwindsor.ca)

Abstract. Much attention has been given to Newton’s argument for Universal Gravitation in
Book III of the Principia. Newton brings an impressive array of phenomena, along with the
three laws of motion, and his rules for reasoning to deduce Universal Gravitation. At the

centre of this argument is the famous ‘moon test’. Here it is the empirical evidence supplied
by the pendulum and Huygens’ results which drive Newton’s argument. This paper explores
Newton’s argument while paying close attention to the role the pendulum plays in the

argument.

1. Introduction

The centrepiece of Newton’s Principia is the argument for universal grav-
itation contained in Book III of the Principia. The book begins with a
statement of four ‘Rules of Reasoning in Philosophy’ followed by six ‘phe-
nomena’.1 Newton’s basic argument consists of seven propositions that de-
pend on the phenomena, the mathematical demonstrations of Book I, and on
the Rules of Reasoning. For Newton phenomena are not simply data but,
rather, are generalisations that fit not only the best data available to Newton
but are expected to fit new data as they become known. Phenomena, for
instance, include Kepler’s harmonic and area laws. Newton moves on to
deduce universal gravitation from these phenomena and we will explore this
deduction. With this in mind, let us turn to Newton’s argument for universal
gravitation.

2. The Path to Universal Gravitation

Newton’s deductions from phenomena are used ultimately to show universal
gravitation. Newton’s initial volley is to establish two propositions which are
very similar: (1) That the moons of Jupiter and of Saturn are kept in their
respective orbits by an inverse-square force directed toward Jupiter and
Saturn, respectively. (2) Likewise, the primary planets are kept in their orbits
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by an inverse-square centripetal force directed toward the sun. Let use ex-
amine these in turn.

Newton reasons that the moons of Jupiter are deflected into their orbits by
an inverse-square centripetal force because we know that these moons satisfy
the area and harmonic laws (Phenomenon I). Because their orbits satisfy
these laws Newton can apply Propositions II or III of Book I and
Corollary VI, Proposition IV of the same book. The first part of the rea-
soning yields that there is a force directed toward the centre of Jupiter and,
from the second part, we arrive at the fact that this force varies inversely as
the square of the distance.

Newton’s argument for the second proposition is similar to the preceding
argument. In .the second proposition Newton turns to the forces acting on
the planets except, here, he turns to the harmonic law and area law for the
planets, Phenomenas IV and V, respectively. In. addition Newton notes that
according to Corollary I, Proposition XLV, Book I the slightest deviation
from inverse square centripetal force would manifest itself in a motion of the
line of apsides. That is, orbital precession would indicate a deviation from an
inverse-square relationship.

In his discussion of the Phenomena, Newton proceeded from the harmonic
law and area law of Jupiter, Saturn, and their respective satellites to the
planets, and finally to the moon. Likewise, the progression with his deductions
proceeds accordingly. In Proposition III, Newton turns to the moon. Here,
Newton argues that the moon is held in her orbit around the earth by an
inverse-square centripetal force in the direction of the earth’s centre.2

In this proposition Newton pointed out that given that the lunar apogee
precesses 3�3¢ per revolution (in consequentia), the measure of the centripetal
force would not be inverse-square but inversely as 2ð4=243Þ power of the
distance. Furthermore, Newton suggested that we might neglect this pre-
cession as being due to the action of the sun on the moon in her orbit around
the earth. He further suggested that he will show this further on. It turns out
that this lunar theory posed a serious empirical challenge to universal grav-
itation. This doesn’t undermine the task at hand, what is of value here is that
Newton is clearly remarking that we can use precession to measure an inverse
square relationship. That the moon’s orbit does not exemplify this relation-
ship is due to a perturbative effect. In short, if precession is to measure
inverse-square variation3 one must show that the precession is due to per-
turbations. Newton suggests that this is the case with the moon but it was not
successfully shown until Clairaut’s address in 1749 to the Paris Academy.

Proposition IV further carries the discussion of the moon and confirms the
previous proposition’s assertion of inverse-square variation in the earth–
moon system. Newton argues, here, that the moon is continually deflected
from rectilinear motion by the force of gravity and by this force is retained in
her orbit around the earth. Newton has thus inferred that the force holding
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the moon in her orbit is the same force, which we count as terrestrial hea-
viness, i.e., gravity. Prior to the publication of the Principia, ‘gravitas’ lit-‘
erally meant ‘terrestrial heaviness’. To identify the centripetal force that pulls
the moon off of tangential motion with gravity, terrestrial heaviness, was a
radical departure. It was an admission that what causes heavy objects to fall
to the earth also continuously deflected the moon toward the earth and away
from (naturally) following her tangential motion. The planets had been
considered to be of a different sort than terrestrial objects. The ‘Newtonian’
revolution was a revolution that resulted in seeing terrestrial bodies and
celestial bodies as of the same kind. Newton infers this ‘same cause’ by
appealing to Rules of Reasoning I and II. Newton computes how far the
moon, at 60 earth radii from the earth’s centre, would fall in 1 min if it were
deprived of all forward motion.

And now if we imagine the moon, deprived of all motion, to be let go, so
as to descend towards the earth with the impulse of all that force by
which it is retained in its orb, it will in the space of one minute of time,
describe in its fall 15 1/12 Paris feet.4

Assuming, as in Proposition III, that the centripetal force holding the
moon in orbit obeys an inverse-square law then we can calculate the
centripetal accelerative force operating at the distance of the moon.
Newton imagines what would happen if the moon were brought down to
the surface of the earth. The moon is at a distance of 60 earth radii from
the earth’s centre. At just above the earth’s surface it would be at one
earth radius away from the centre. The ratio of the accelerative force at
the current orbit to what it is at the surface is as 1 to 60� 60 on the
assumption of inverse-square variation. Therefore the force at the earth’s
surface would be 3600 times greater. On the assumption that gravity is an
inverse-square force that extends to the moon, it follows that a heavy
object on the earth’s surface would freely fall, in 1 min, 3600 of these 15 1/
12 Paris feet. In the increment of one second this heavy object, then, would
freely fall 15 1/12 Paris feet, or 15 feet, 1 in., and 1 line 4/9, which Newton
claims to be more accurate.5 These calculations are made on the as-
sumption that the lunar distance is 60 earth radii away. Newton cites other
estimates of the lunar distance. To accommodate these estimates I will
derive a general equation, so that the substitution of these various esti-
mates into this equation will permit some analysis. Let,

c = Circumference of the earth =123,249,600 Paris feet,
r = Radius of the earth =12349600

2p =19615783.07 Paris feet,
R = Lunar distance = n r,
T = Lunar orbital period = 27d7h43m = 39343 min,
D = Diameter of lunar orbit = 2nr,
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C = Circumference of lunar orbit = 2pR = pD = 2pnr = 2prn.
Since 2pr is the earth’s circumference, c,

C ¼ cn ¼ 12349600n (in Paris feet).

Since we know the distance travelled by the moon in one-orbital period.
Therefore we know the distance she will travel in 1 min.

C

T
¼ Distance in 1 min

1min
:

Let y= distance travelled in 1 min. Therefore

y ¼ C � 1
T
¼ 12349600n

39343
¼ 3132:6945n Paris feet (i.e., distance

travelled in orbit in 1min).

Now suppose the moon was deprived of this tangential motion. We could
then calculate how far it would fall in 1 min under the influence of the same
centripetal force, which held the moon in her orbit. Newton informs us that
this calculation can be done using Proposition XXXVI or Proposition IV,
Cor. IX of Book I. Corollary IX of Proposition IV, Book I states:

From the same demonstration it likewise follows, that the arc which a
body, uniformly revolving in a circle with a given centripetal force,
describes in any time, is a mean proportional between the diameter of
the circle, and the space which the same body falling by the same given
force would describe in the same given time.6

According to this corollary, the ratio of the distance the moon would fall in
1 min to the distance travelled in orbit in 1 min, y, is equal to the ratio of the
distance travelled in orbit in 1 min, y, to the diameter of the lunar orbit, D.
So, if d = distance the moon would fall in 1 min,

d
y
¼ y

2nr
;

d ¼ y2

2nr
¼ ð3132:6945nÞ2

2ð19615783:07Þn ¼ 0:25015n: (Paris feet)

Newton also informs us how to correct for the action of the sun on the
moon. We are trying to isolate the action of the earth on the moon and so a
correction (Corollary to Proposition III, Book III) is needed to offset the
action of the sun on the moon. This correction amounts to

178ð29=40Þ
177ð29=40Þ ¼

178:725

177:725
¼ 1:00563:

So, more accurately, the distance the moon would fall in 1 min is
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d ¼ 0:251015ð1:00563Þ ¼ n ¼ 0:25156n ¼ Paris feet,

where n refers to the number of diameters used in the calculation.
This is the general equation for the one-minute fall of the moon at the

location of her orbit. But suppose the moon was brought down to an orbit of
one earth-radius. We can now calculate how far she will drop in one second
and compare this to the length of a seconds pendulum.

Let, F is the force on the moon in orbit and f is the force on the moon at
the earth’s surface.

F a
1

R2
;

f a
1

r2
;

F

f
¼ r2

R2
¼ t2=d

T2TT =d

where d is the distance the moon would fall at the distance of one
earth-radius. Thus,

r2

R2
¼ t2d

T2TT d
;

d

d
¼ r2T2TT

R2t2
:

However R = nr and D=0.25156n. Furthermore, T is equal to 60 s and
t is equal to 1 s. So T = 60t. Making these substitutions and solving for d,
which is the distance the moon would fall in 1 s at one earth-radius, we have
the general equation

d ¼ 0:25156n3

3600
:

Note that this general equation incorporates Newton’s correction for the
action of the sun on the moon. Without this correction and depending on the
estimate of the lunar distance in earth-radii, the distance the moon would fall
in 1 s is

0:25015n3

3600
:

Newton sets 60 as the value for n. Table I lists the computed distances
corresponding to a 1 s fall at the surfaceof the earth corresponding to the values
listed in the first edition, the third edition, and the System of the World.

Huygens had shown that, at the latitude of Paris, a seconds pendulum will
be 3 Paris feet, 8 lines 1/2 in. in length (i.e., 3.06 Paris feet).
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Tabel I. Distance corresponding to a 1-second fall of the moon

First edition citation Mean distance
of the moon

from the earth
at syzygies
(in earth-radii)

Distance
corresponding

to a 1 s fall
at 1 earth-radius

Distance
corresponding to

a 1 s fall at 1
earth-radius
(with two body
correction)

Most astronomers 59 14.271 14.351

Vendelin 60 15.009 15.094

Copernicus 60.33 15.258 15.344

Kircher 60.5 15.387 15.474

Tycho (corrected for parallax) 61 15.772 15.861

Mean 60.166 15.139 15.225

Sample standard deviation 0.558 0.561

t-confidence (95%) 0.642 0.646

Third edition

Ptolemy and most astronomers 59 14.271 14.351

Vendelin 60 15.009 15.094

Huygens 60 15.009 15.094

Copernicus 60.33 15.258 15.344

Street 60.4 15.311 15.397

Tycho (corrected for parallax) 60.5 15.387 15.474

Mean 60.038 15.041 15.126

Sample standard deviation 0.409 0.411

t-confidence (95%) 0.429 0.431

System of the world

Ptolemy, Kepler, Bou11iau,

Hewelcke, and Riccioli 59 14.271 14.351

Flamsteed 59.33 14.512 14.594

Tycho (corrected for parallax) 60 or 61

(choose 60.5)

15.387 15.474

Vendelin 60 15.009 15.094

Copernicus 60.33 15.258 15.344

Kircher 62.5 16.964 17.060

Mean 60.277 15.234 15.319

Sample standard deviation 0.951 0.956

t-confidence (95%) 0.998 1.003

Mean of all values 60.166 15.138 15.223

Sample standard deviation 0.648 0.651

t-confidence (95%) 0.404 0.406
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And the space which a heavy body describes by falling in one second of
time is to half the length of this pendulum in the duplicate ratio of the
circumference of a circle to its diameter (asMr. Huygens. has also shown),
and is therefore 15 Paris feet, 1 inch, 1 line 7/9.7

Thus

d

L=2
¼

� �
circumference

diameter

2

¼
� �
2pr
2r

2

¼ p2:

Finally,

d ¼ ðL=2Þp2;
where

L ¼ 3:06 Paris feet.

d ¼ 15:09 Paris feet.

The thought experiment result (all values without the two body correc-
tion) of a free fall of the moon just above the earth’s surface resulted in a
drop of 15.138 ± 0.404 Paris feet. Huygens’ value of 15.09 Paris feet falls
well within the error bounds. We note, first, that Newton chooses to use the
value of 60 earth-radii for the mean lunar distance. This value, as can be seen
from Table I, is near the mean values of the citations in the Principia and in
the System of the World. Second, the result of the moon-test was not
dependent on Newton choosing 60 as the value corresponding to the number
of earth-radii for the lunar distance.8 Third, if we turn our attention to the
results obtained when the correction for the sun’s action on the moon, we
notice again that Huygens’ value falls well within the bounds. The positive
result of the moon-test is not dependent on this correction factor.9

These results agree so well that, by Rules I and II, ‘the force by which the
moon is retained in its orbit is the very same force which we commonly call
gravity’.10 Here we have two phenomena that yield agreeing measurements of
the same inverse-square force gravity – toward the earth’s centre. The length of
a seconds pendulum and the centripetal acceleration of the lunar orbit are two
phenomena which measure the same force. The agreement in measured values
is another phenomenon,which relates the two phenomena in question. ByRule
I if we do not claim that the same force accounts for the centripetal acceleration
of the moon and the length of the seconds pendulum at Paris, then we will have
to claim that there are two separate causes for these phenomena. The cen-
tripetal acceleration of the moon and the length of a seconds pendulum each
measure a force resulting in accelerations at a distance of one earth-radius (i.e.,
at the surface of the earth). The moon-test shows that these accelerations are
not only equally directed toward the centre of the earth, but that they are equal
in value. Now we have this higher order phenomenon of the agreement in
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measurements of the two phenomena. The parsimony invoked by the use of the
first rule informs us not to infer another cause for this agreement.

Notice Newton’s use of Rule II, namely, to the same effect assign the same
cause. That is, we note that something attracts the moon toward the earth
and something attracts heavy objects to the earth. By Rule II, that ‘some-
thing’ is the same. We note that it is not just a qualitative effect that is
generally the same but that it is the same as close as experiments show
that they are the same (in this case, Huygens’ pendulum experiment). It is
Newton’s ideal of empirical success which drives his reasoning to show that
what we call terrestrial gravity reaches to the moon and, therefore, does not
discriminate between terrestrial objects and, thus far, the moon. That is, we
have agreeing measurements of the same inverse-square acceleration field
from the length of the seconds pendulum and the moon test.

Newton moves on to say that

were gravity another force different from that, [from the centripetal
accelerative force on the moon] then bodies descending to the earth with
the joint impulse of both forces would fall with a double velocity, and in
the space of one second of time would describe 30 1/6 Paris feet;
altogether against experience.11

This indirect argument reinforces the appeal, via Rules I and II, to the uni-
fication of the measure of the centripetal acceleration of the moon with the
measure of the length of a seconds pendulum. Notice that the indirect
argument would not count against an alternative hypothesis, say, one which
posited a force maintained the moon in her orbit (an inverse-square force to
boot) but which did not act on terrestrial bodies. So Newton’s appeal to
Rules I and II helps rule out just this sort of alternative. This alternative
hypothesis would demand a separate account of cause for each of the two (or
whatever number) basic phenomena.12 Not only would this alternative
hypothesis require a separate cause for each of the phenomena, it would need
to accommodate or explain the agreement of the measurements of these
phenomena. Furthermore, according to Rule II we are to assign to the same
effects the same cause. Until we have evidence to the contrary, there is
nothing to indicate that the phenomena are of sufficiently different kinds to
warrant us to claim that they have different causes.

Placed in the context of the proof for universal gravitation, Proposition IV
carries a new constraint for Newton’s theory and for any alternative to the
theory. The unification of these phenomena in order to identify the lunar
centripetal force with terrestrial gravity demanded Newton to constrain
systematically the development of the theory. Newton transformed the no-
tion of terrestrial gravity, heaviness, to count as varying inversely with the
square of the distance from the earth’s centre. Gravity applies not only to
terrestrial objects but to the moon as well. After this proposition Newton is

PIERRE J. BOULOS158



committed to counting any phenomena which measure gravity as also
measuring the centripetal force on the moon, be it the length of a seconds
pendulum in Peru or one in Lapland. Rules I and II impose systematic
constraints on theory development such that the measures of the parameters
of phenomena which are to be explained by a theory count as accurate
measurements of the theory. A rival hypothesis to the claim that the moon is
held in her orbit by the very same force which accounts for terrestrial hea-
viness would have to account for the equivalence between the centripetal
force on the moon and the length of a seconds pendulum. Newton raised the
stakes considerably for theory choice. Before moving on we should also note
that Proposition IV emphasises the ‘empirical’ aspect of Newton’s ideal of
empirical success. That is, in answering the theoretical question regarding the
force holding the moon in her orbit and drawing her away from tangential
motion, Newton drew our attention to two phenomena which give us
agreeing measurements of the same theoretical parameter.

In Proposition V, Rule II is now used to prove that the satellites of Jupiter
and of Saturn have heaviness, or gravitate toward their respective centres,
Jupiter and Saturn. Furthermore, this proposition also informs us that the
circumsolar planets gravitate toward the sun. Newton has already shown in
his list of phenomena that the satellites of Jupiter are drawn off of rectilinear
motion in their orbits about Jupiter as their centre. The same holds for the
satellites of Saturn. And finally, the planets orbit the sun. Newton showed
this via the harmonic and area laws. The unification of phenomena shown in
Proposition IV is now used again to claim that

The circumjovial planets gravitate towards Jupiter; the circumsaturnal
towards Saturn; the circumsolar towards the sun; and by the forces of
their gravity are drawn off from rectilinear motions, and retained in
curvilenear orbits13

Since Jupiter’s satellites about Jupiter and the planets about the sun behave
with respect to their centres, or primaries, as the moon behaves with respect
to the earth then, by Rule II, we ought to assign them the same cause,
gravity. Again, though, the application of this rule is quite specific:

especially since it has been demonstrated, that the forces upon which
revolutions depend tend to the centres of Jupiter, of Saturn, and of the
Sun; and that these forces, in receding from Jupiter, from Saturn, and
from the sun, decrease in the same proportion, and according to the
same law, as the force of gravity does in receding from the earth.14

Newton cites two ways in which their behaviour is like that of our moon.
First, Propositions I and II of Book III demonstrated that Jupiter is the
centre of force for its satellites, Saturn is the centre of force for its satellites,
and the sun is the centre of force for the planets. By Proposition III we
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know that the centre of force on which the moon depends is the earth.
Second, from Propositions I and II of Book III Newton determined that the
respective forces acting on the satellites of Jupiter and Saturn and on the
planets about the sun vary as inversely to the square of the distance. This is
the same as what was determined for the moon in Proposition III. By
Proposition IV the force on the moon was shown to be the same as the
force which accounts for heaviness on the earth, gravity. We now have an
equivalence of the measure of the centripetal force on the moon with
terrestrial heaviness. By Rule II, then, we are warranted in concluding that
since gravity is the force which retains the moon in her orbit and draws the
moon off of tangential motion and since the satellites of Jupiter and Saturn
and all the planets are like the moon (i.e., compare Propositions I and II to
Proposition III and then use Proposition IV) then this force must also be
gravity for all these bodies.15

Newton gives three corollaries to Proposition V. The first corollary
explicitly states that ‘there is, therefore, a power of gravity tending to all
planets’ (p. 329) But notice that Mercury, Venus, and all ‘moonless’ planets
do not have satellites affected by centripetal acceleration so that we can
compare effects of the same kind. It is not clear how Newton is to apply Rule
II here unless we grant him that ‘doubtless, Venus, Mercury, and the rest, are
bodies of the same sort with Jupiter and Saturn’. (p .329) Admittedly, we
have not observed bodies in the vicinity of these ‘moonless’ planets but we
may believe that such bodies would be drawn to these planets, by Rule. II.
The counterfactual claim is in line with the sense of parsimony enshrined in
Rule I such that we ought to be inclined to accept the claim that gravity tends
to all these planets. There is more to Corollary 1:

And since all attraction (by Law III) is mutual, Jupiter will therefore
gravitate towards all his own satellites, Saturn towards his, the earth
towards the moon, and the sun towards all the primary planets.16

That is, consider either Jupiter or Saturn and their respective moons. Saturn,
for instance, orbits the sun by gravity. The satellites of Saturn orbit Saturn by
gravity. It stands to reason, then, that an object near one of Saturn’s satellites
would be attracted to this satellite according to gravity. As it turns out there
is such an object, Saturn itself. Notice, though, that Newton does not appeal
to the Rules in his justification but to Law III:

To every action there is always opposed an equal reaction: or the mutual
actions of two bodies upon each other are always equal, and directed to
contrary parts.17

Newton is treating gravity as a force of direct interaction. There is mutual
attraction between a planet and its satellites. Aiton has pointed out that
Huygens
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accepted the Newtonian system, though with important reservations . . .
Huygens declared that he had nothing against the vis centripeta or the
gravity of the planets towards the sun, not only because it was
established by experience but also because it could be explained by
mechanical principles.18

What Huygens objected to was not the inverse-square centripetal force
characterisation of gravity but to gravity being a force of direct action or
mutual interaction between a planet and its satellites.

I have nothing against Vis Centripeta, as Mr. Newton calls it, which
causes the planet to weigh (or gravitate) toward the Sun, and the Moon
toward the Earth, but here I remain in agreement without difficulty
because not only do we know through experience that there is such a
manner of attraction or impulse in nature, but also that is explained by
the laws of motion, as we have seen in what I wrote above on gravity.19

Parting company with Newton, Huygens notes

I say that I agree that the gravity of bodies corresponds to the quantity
of their matter, and I have even demonstrated this in the present
Discourse. But I have also shown that the gravity can well be imparted
to these bodies that we call heavy, by the centrifugal force of a matter
that does not itself weigh (or gravitate) toward the center of the Earth,
because of its very rapid and circular motion, but that tends to move
away from it.20

According to Huygens, without some such mechanical explanation to back
up the account, Newton’s appeal to universal gravitation would be occult. A
mechanical explanation would show that the proper application of Law III
would focus on the interaction between the planet’s satellite and the sur-
rounding vortical particles creating a pressure gradient that would deflect the
satellite away from tangential motion.

In the second corollary Newton extends the force of gravity

which tends to any one planet is reciprocally as the square of the
distance of place from that planet’s centre.21

The inverse-square variation is shown by the series of propositions of Book
III which have led us to this point. That is, the inverse-square variation has
been demonstrated for Jupiter and Saturn in Proposition I, for the primary
planets in Proposition II, and for the moon in Proposition III. The identi-
fication of centripetal inverse-square variation for all these bodies with
gravity takes place in Proposition IV (for the moon) and V (for the rest).

Picking up on the theme of mutual interaction in Corollary I, Newton
concludes the third corollary to Proposition V with the following:
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All the planets do gravitate towards one another, by Cor. 1 and 2. And
hence it is that Jupiter and Saturn, when near their conjunction, by their
mutual attractions sensibly disturb each other’s motions. So the sun
disturbs the motions of the moon; and both sun and moon disturb our
sea, as we shall hereafter explain.22

The first part is a generalisation resulting from Corollaries 1 and 2. The
Newtonian ideal, as we have already stated, points to all these systematic de-
pendencies. That is, the action of the sun on themoon, and the action of the sun
and moon on our oceans are unified in the theory of universal gravitation.23

Newton claims in the Scholium to Proposition V, that gravity will be the
term used for the centripetal force that produces and keeps celestial bodies in
their orbits. It is worth repeating this scholium here:

2.1. SCHOLIUM

The force which retains the celestial bodies in their orbits has been
hitherto called centripetal force; but it being now made plain that it can
be no other than a gravitating force, we shall hereafter call it gravity.
For the cause of that centripetal force which retains the moon in its orbit
will extend itself to all the planets, by Rule 1, 2, and 4.24

This scholium, added in the third edition, contains the only explicit citation
of Rule IV in the argument for universal gravitation. Propositions I–V are
propositions gathered from the phenomena by induction. These proposi-
tions, as we have seen, are backed up by the best data available at that time.
We know from Rule IV that these propositions are to be considerded either
exactly or very nearly true notwithstanding hypotheses to the contrary. We
do this until such time as other phenomena make these propositions either
more accurate or liable to exceptions. Newton adds that we do this so that
hypotheses do not undercut our inferences. Rule IV endorses the inference to
gravity between all the planets because it delivers on the explanations of the
phenomena being supported by measurements of theoretical parameters.

What remains for us is to show how Newton’s argument can withstand the
challenge of the vortex hypothesis accompanied by the metaphysical
commitment to explanations of phenomena by physical contact. To challenge
Newton’s theory, a rival would have to account for systematic dependencies
to which we have alluded (for example the moon test) and to any new
ones not yet mentioned. It turns out there were some serious challenges to
Newton’s theory. Those that Newton foreshadowed in the third corollary to
Proposition V are listed here. Chief among these challenges is the effect of the
sun on the moon in her orbit about the earth. Taking Newton seriously
meant following the spirit of Rule IV. The natural philosophers following
Newton knew perfectly well that Newton’s theory accounted for a vast
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number of phenomena. Furthermore, these phenomena become unified by
giving agreeing measurements. To undercut his theory they would need to
emphasise that part of Rule IV until such time as other phenomena make
these propositions either more accurate or liable to exceptions.

Turning to Proposition VI we find Newton reasoning for a direct pro-
portional relationship between gravitation on a body and the inertial mass of
that body. Here is Newton’s statement of the proposition:

That all bodies gravitate towards every planet; and that the weights of
bodies towards any one planet, at equal distances from the centre of the
planet, are proportional to the quantities of matter which they severally
contain.25

Newton offers several arguments for this proposition and, of these, I wish to
focus on the often-cited set of pendulum experiments. In these experiments,
pendulums of equal weights of different materials were found to oscillate with
equal periods and thus were measured to have equal inertial masses (all the
while accounting for air resistance):

I tried experiments with gold, silver, lead, glass, sand, common salt,
wood, water, and wheat. I provided two wooden boxes, round and
equal: I filled the one with wood, and suspended an equal weight of gold
(as exactly as I could) in the centre of oscillation of the other. The boxes,
hanging by equal threads of 11 feet, made a couple of pendulums
perfectly equal in weight and figure, and equally receiving the resistance
of air. And, placing the one by the other, I observed them to play
together forwards and backwards, for a long time, with equal vibrations.
And therefore the quantity of matter in the gold (by Cor. 1 and 6, Prop.
XXIV, Book II) was to the quantity of matter in the wood as the action
of the motive force (or vis motrix) upon all the gold to the action of the
same upon all the wood; that is, as the weight of the one to the weight of
the other: and the like happened in the other bodies.26

Newton’s appeal to Corollary 1 of Proposition XXIV is an appeal to some of
the major results of Huygens’ work.27 For two synchronised pendulums A
and B, according to this proposition28 we would have the following relation:

mA

mB
¼ wA

wB
:

� �
tA
tB

2

:

If tA ¼ tB and, ex hypothesi, wA=wB, then we know that mA = mB. This is
the first corollary. The equality of periods, a phenomenon, is used to establish
the equivalence of gravitational mass and inertial mass. In order to achieve
this Newton points out that the experiment itself (in Book III) is accurate in
measurement of inertial mass to one part in a thousand. Since wA=wB then

NEWTON’S PATH TO UNIVERSAL GRAVITATION 163



mA

mB
¼

� �
tA
tB

2

:

Suppose, now, that according to Newton’s cited tolerance we have

mA

mB
¼ 1000

1001

and

tA
tB
¼

ffiffiffiffiffiffiffi
mA

mB

rffiffir
m ¼

ffiffiffiffiffiffiffiffiffiffi
1000

1001

rffiffir
¼ 0:9995:

This difference of 0.0005 is a tolerance of one part in two thousand.29

Thus, in order to determine the equality of inertial masses to one part in a
thousand Newton needed to show that the difference in periods does not
differ by more than one part in two thousand. For illustrative purposes only,
let us examine the sort of observations Newton needed to make. We can get
some idea of what is involved in the accuracy by assuming that the centre of
oscillation is at the length of the pendulum which Newton cited to be 11 feet
(=3.3528 m)30, let the acceleration due to gravity, g, be 9.82 m2. Then

T ¼ p

ffiffiffiffi
L

g

sffiffis
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:3528m

9:82 m
s2

sffiffis
¼ p

ffiffiffiffiffiffiffiffiffiffiffi
3:528

9:82

rffiffir
s2 ¼ 1:88 s:

Thus 1.88 s (roughly) is the time needed to make one swing. To make a
back and forth swing we multiply by 2 to get 3.77 s. Notice that a tolerance
of one part in two thousand would mean that Newton would have had to
measure synchronicity for roughly 531 swings, or roughly just over a half-
hour’s worth of measurements. Recall that Newton claimed that he observed
the pendulums’ synchronisation ‘for a long time’. Although the cited toler-
ance would be difficult to detect in just a few swings, over many such swings it
would be detectable. Newton showed sensitivity to this and thus made
observations over a long time.31,32

There are five corollaries to proposition VI. The first two corollaries extend
the argument in proposition VI, the third corollary argues that all spaces are
not equally full,33 the fourth argues that provided atoms are identical and that
any difference in large bodies can be explained by the different arrangements
of their atoms then the existence of a vacuum is plausible, and the fifth
corollary lists the differences between gravity and magnetism. Let us focus our
attention to the first two corollaries. Here is the first:

Cor. I. Hence the weights of bodies do not depend upon their forms and
textures; for if the weights could be altered with the forms, they would be
greater or less, according to the variety of forms, in equal matter;
altogether against experience.34
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Newton is claiming that an object’s weight cannot be altered simply by
changing its shape or texture. Thus melting a piece of wax does not change
its weight. In support of this corollary is a body of evidence in accord with
experience.

The second corollary explicitly appeals to Rule III and implies for all
bodies universally gravitation toward the earth.

Cor. II Universally, all bodies about the earth gravitate towards the
earth; and the weights of all, at equal distances from the earth’s centre,
are as the quantities of matter which they severally contain. This is the
quality of all bodies within the reach of our experiments; and therefore
(by Rule III) to be affirmed of all bodies whatsoever.35

Newton uses Rule III to argue that for all bodies, universally, at equal dis-
tances from the centre of the earth the ratio of weight toward the earth to the
quantity of matter (i.e., inertial mass) is equivalent. At any given distance
from the centre of the earth the ratio of weight to inertial mass is a ‘quality of
all bodies’ which does not lend itself to intensification or to remission and
belongs to all bodies within the reach of experiment. If weight were to depend
on form (Newton cites Aristotle, Descartes, and others as holding this point)
and could be altered (increased or decreased) by transformations then
Corollary 1 would be violated. Since the weights of bodies do not depend on
their forms and textures, by Rule III, at equal distances from the earth’s
centre the weights of bodies are proportional to their inertial mass.

And now. we come upon Proposition VII with its corollaries:

That there is a power of gravity tending to all bodies, proportional to the
several quantities of matter which they Contain.

Cor.1. Therefore the force of gravity towards any whole planet arises
from, and is compounded of, the forces of gravity towards all its parts.

Cor.2. The force of gravity towards the several equal particles of any
body is reciprocally as the square of the distance of places from the
particles.36

Proposition VII asserts both that all bodies have a power of gravity in
proportion to their masses and that the force of gravity toward several
particles of equal mass is proportional to the square of the distance from
the particles. In his argument Newton invokes Law III (to every action
corresponds an equal reaction) to identify that all the planets are attracted
by and attract all other planets. With Proposition VII Newton inferred the
equivalence of gravitational mass with inertial mass. Newton extends this
result such that the gravitational power of bodies is in proportion to their
masses.37
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3. Conclusion

The argument for Universal Gravitation makes use of Newton’s deductions
from phenomena. Stein (1991) has shown that these do not end at Proposition
VII but encompass the entire third book. Nonetheless the engine of the argu-
ment lies in the moontest (Propositions III and IV) and the proportionality of
gravitational and inertial mass (Proposition VI). In both of these we see the
crucial role of the pendulum. The length of the seconds pendulum is a phe-
nomenon. The one second fall of themoon at the surface of the earth is another
phenomenon. The unification of the two is a higher-order phenomenon upon
which Newton’s theory delivers success. It is precisely this sort of unification
that raised the stakes for Newton’s competitors and convinced Newton’s au-
dience of the importance of his work. Westfall, as can be seen from the pre-
ceding, was right: ‘without the pendulum, there would be no Principia’.

Notes

1 The argument for Universal Gravitation is contained in Book III of the Principia. The
book begins with a statement of four ‘Rules of Reasoning in Philosophy’ followed by six

‘phenomena’. Newton’s basic argument consists of seven propositions that depend on the
phenomena, the mathematical demonstrations of Book I, and on the Rules of Reasoning.
2 In ‘Newton’ scholarship the first three propositions of Book III are often dealt with

quickly. It is with Proposition IV, the famous moon test, which historians of science have
noted that Newton’s system stands apart from previous scientific thinking. Proposition IV is
taken to be the crucial link in the argument to universal gravitation. As we will see later, it was

Proposition III of Book III that offered a major empirical challenge to universal gravitation. It
was due to the work of Clairaut, d’Alembert, and Euler that this particular challenge was
resolved.
3 In a sense, we have non-Keplerian orbits. That is, Kepler’s ellipse law seems to be violated
(after all it is an idealized law). This may be why Newton does not include the ellipse law in his
list of phenomena.
4 Principia, p. 408.
5 Principia, p. 408.
6 Principia, p. 46.
7 Principia, p. 408.
8 The value of 60 certainly made the computations easier. Our analysis above indicates that
the value Huygens obtained clearly fell in between the error bounds.
9 Harper takes Westfall (1973) to task regarding the latter’s accusation that Newton

‘fudged’ his results to get a close fit between his moontest and the length of Huygens’ seconds
pendulum. Our analysis here is consistent with Harper’s point that carrying out the moontest,
as per Newton’s instructions, yields the values Newton claims and that Westfall’s accusation is

not credible.
10 Principia, p. 409.
11 Principia, p. 408.
12 Buffon used a similar line to argue against Clairaut’s intial lunar theory which postulated

a force which varies according to ð1=r2Þ þ ð1=r4Þ
13 Principia, p. 410.
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14 Principia, p. 410.
15 Harper (1989) discusses Newton’s application of the Rules of Reasoning as natural kind
reasoning. His interpretation is informed by Whewell’s colligation of facts. Aiton (1995) in
‘The Vortex Theory’ has shown that the vortex theorists, notably Leibniz and Huygens, did

not dispute inverse-square centripetal acceleration. That is, the explicit use of Rule II in the
proof of Proposition V did not pose any problems for the vortex theorists. Their task, rather,
was to give a vortex account of Newton’s results.
16 Principia, p. 410.
17 Principia, p. 13.
18 Aiton (1995, p. 7).
19 Huygens (1986, p. 160).
20 Huygens (1986, p. 163).
21 Principia, p. 410.
22 Principia, p. 410.
23 See George Smith, ‘Planetary Perturbations: The Interaction of Jupiter and Saturn’,
forthcoming in I.B. Cohen (1999) Guide to the Principia, The University of California Press.
See also Wilson (1985).
24 Principia, p. 410.
25 Principia, p. 411.
26 Principia, p. 411.
27 According to corollary 1, if the times are equal, the quantities of matter in the individual

bodies will be as the weights. It is an immediate consequence of proposition. 24. Huygens had
made a major breakthrough when he used the slow motions of seconds pendulums to measure
the acceleration of gravity far more accurately than it could be measured by attempting to

directly determine how far bodies would fall in one second. The much slower motion, in
addition to being easier to accurately measure, greatly reduced the relative effect of air re-
sistance.

The slower motion, while minimizing the effect of air resistance, does not minimize the fact
that balances in air compare relative buoyancies with respect to air rather than the weights
themselves. Proposition 24 is proved for pendulums in vacuums.
28 Proposition XXIV, Book II reads: ‘The quantities of matter in pendulous bodies, whose

centres of oscillation are equally distant from the centre of suspension, are in a ratio com-
pounded of the ratio of the weights and the squared ratio of the times of the oscillation in a
vacuum’. (p. 303)
29

0:0005 ¼ 5

10; 000
¼ 1

2000

30 Unlike the moontest, Newton does not here stipulate Paris feet, so we assume that Newton

is using English feet. Densmore points out that one Paris foot is 1.066 English feet: Based on
this, the length of the pendulum thread was 10.32 feet.
31 See Harper (1991, 1993), and Wilson (1999).
32 The modern reader would benefit from examining Wilson (1999), where Newton’s pen-
dulum experiments are replicated. There, Wilson highlights an affirmative answer to the
question:

‘Can the experiment described by Newton ... be carried out with the precision he claims for it,
using only such means as were available to him (no stopwatches!)?’
33 Principia, p. 414.
34 Principia, p. 413.
35 Principia, p. 413.
36 Principia, p. 414–415.
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37 For a useful discussion of Newton’s reasoning to universal gravitation see Stein (1991, pp.

209–222). Stein argues that it is open to doubt that Newton showed, in the progression to
Proposition VII, that gravity is just the sort of force of interaction that warrants the use of
Law III. Stein also points that Newton’s deductions from the phenomena for universal

gravitation do not end with Proposition VII but include the whole of Book III. The point of
our brief discussion here is to show the argument. That Propositions III and IV figure pro-
minently will form the substance of later discussion.
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Léon Foucault: His Life, Times and

Achievements1

AMIR D. ACZEL
Department of Mathematics, Bentley College, Waltham, Massachusetts 02452, U.S.A
(E-mail: aaczel@bentley.edu)

Abstract. Léon Foucault’s dramatic demonstration of the rotation of the Earth using a freely-

rotating pendulum in 1850 shocked the world of science. Scientists were stunned that such a
simple proof of our planet’s rotation had to wait so long to be developed. Foucault’s public
demonstration, which was repeated at many locations around the world, put an end to cen-
turies of doubt about the Earth’s rotation – skepticism that had been bolstered since antiquity

by Aristotelian philosophy and scripture. This paper puts Foucault’s pendulum experiments in
context, surveying the life and work of this extraordinary physicist, a man who achieved much
– including work on measuring the speed of light, microscopy, astronomy, and photography –

without formal training in the sciences.

1. Foucault’s Childhood

Jean Bernard Léon Foucault was born in Paris on September 18, 1819, to a
comfortable middle-class family. His father was a successful publisher who
was known especially for his publication of a series of highly regarded vol-
umes on the history of France. The father retired with his family to the city of
Nantes, possibly because he suffered from poor health. He died there in 1829.
After his father’s death, the mother took her ten-year-old son back to Paris.
They settled in a comfortable house at the corner of the Rue de Vaugirard
and Rue d’Assas, in the heart of the then-as-now fashionable district of Saint
Germain. Léon Foucault would live with his mother in this house his entire
life; he would never marry.

As a boy, Foucault was weak and small, and he suffered from poor health.
He was reserved, slow to respond, and reluctant to talk or act. Early
biographers, who knew him personally, paint an unappealing portrait of a
frail boy with a small head and asymmetrical eyes, which never looked in the
same direction; one was myopic, and the other far-sighted.

Mme. Foucault had great ambitions for her son. She sent him to the
prestigious Collège Stanislas in Paris. But young Léon Foucault was not a
good student, and for long periods of time he had to be educated at home by
a tutor, since his school performance was so poor. Through the help of a
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series of tutors, Foucault was able to finish his years of schooling and earn his
high school diploma, allowing him to continue his studies at a university.

As a boy, Foucault was clearly not interested in what he was taught at
school. But at the age of 13, he suddenly showed where his true talents, and
his passions, lay. He began to work with his hands, using a variety of tools,
working with great precision and care. He constructed various ingenious toys
and machines. First, Foucault built himself a boat. Then he made a tele-
graph, which was a copy of the telegraph he observed in operation near his
home, by the Church of Saint Sulpice. Later, the boy constructed a small
steam engine, which really worked.

2. An Interrupted Education and Early Scientific Progress

His mother became convinced that the gift he had of working with his hands
would make him a successful surgeon. And since she wanted her son to be-
come a medical doctor, she promptly enrolled him in medical school. Foucault
entered medical school in Paris in 1839. He planned to specialize in surgery, as
his mother had suggested. At medical school, he studied and participated in
the hospital work required of all who aspired to become doctors. One of
Foucault’s favorite classes was a course of microscopy taught by Professor
Alfred Donné (1801–1878). The admiration Foucault developed for Professor
Donné seems to have been mutual. The professor recognized the talents of his
young student and cultivated them. He entrusted his young student with
additional, special assignments and was impressed with his performance. The
young student seemed destined to a great career in medicine.

But soon something unforeseen happened. Foucault saw blood in the
course of his work in the hospital, and it made him sick. In addition, the sight
of the suffering of patients was too much for him to handle. He became so ill
that he could not perform his duties any longer. Foucault had no choice: he
had to withdraw from the medical program, to his mother’s great disap-
pointment.

While still a student of medicine, just before he dropped out, Foucault
discovered the work of Louis-Jacques Daguerre (1787–1851) on photogra-
phy. Foucault shared his excitement about this form of photography with his
friend Armand Hippolyte Louis Fizeau (1819–1896), and the two of them
studied Daguerre’s process carefully. Foucault and Fizeau noticed that Da-
guerre always kept the camera still in front of its subject for at least half an
hour before removing the plate and beginning the development process. And
his subject was always the view outside the window or a still object – never
people. The two talked about it and decided that the technique could have
much greater applicability if it could be used for making portraits. But people
could not easily sit still for half an hour.
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own. They experimented with various chemicals and – biographers say it was
Fizeau who first had the idea – discovered that adding bromine to the plate
sensitized it. Thus, in principle, using bromine to pre-treat the copper plate
coated with silver should allow for a shorter period to record the image. But
how would they implement this discovery? The two young students worked
for many days, and finally Foucault was able to determine the exact way of
submitting the plate to the action of the mercury vapor so that the necessary
exposure time would be only 20 s. This would be their first joint scientific
success. Unfortunately, neither of them was to share in the economic rewards
of their discovery; for the most part, was soon replaced by
other methods of photography.

Even though he was no longer a medical student, Foucault continued to
work for Professor Donné. He earned tremendous respect from his professor,
and Donné began to trust his young assistant more and more, eventually
elevating him to the position of a co-researcher. In 1845, Donné’s textbook,
A Course of Microscopy, was published.2 The second volume of the work was
an atlas of 80 daguerrotypes of the subjects of microscopy discussed in the
book. These photographs were all made by Foucault, and Donné described
his co-author in the preface to the volume as: �a young scholar and distin-
guished amateur of photography.�

Foucault continued to study light, photography, microscopes, and tech-
nical devices with enthusiasm. He made a few scientific advances but, since he
was only a laboratory assistant to Donné and not a trained scientist, he did
not earn much recognition.

3. The Science Reporter

Foucault did not have the mathematical background considered essential for
understanding physics, and had not attended the right schools for science. He
did not have a Ph.D. and was not even enrolled in a program that would
enable him to earn one. Such a degree would constitute a minimal pre-
requisite for entrance to France’s intellectual elite: a group so exclusive and
aware of its social status that, within it, members addressed each other as:
�Cher Confrère Savant� (Dear Scholarly Colleague). Within this group, the
mathematicians were the crème-de-la-crème. They were called �geometers,�
echoing the way mathematicians of ancient Greece referred to themselves
since they considered geometry the purest form of mathematics.

In 1845, Alfred Donné retired from his duties as scientific editor for the
newspaper Journal des Debats (the Journal of Debates), an important daily
paper in France at that time. He passed the assignment on to his co-worker,
Léon Foucault. The science editor had the responsibility of reporting in the
newspaper any important news about science discussed at the weekly Mon-

LIFE, TIMES AND ACHIEVEMENTS OF LÉON FOUCAULT 173
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day meeting of the Academy of Sciences. Foucault performed this job
admirably, and for years wrote these occasional articles explaining to the
public about the trajectories of comets, total solar eclipses, and advances in
chemistry. Through this job, which required attendance at the meetings of the
Academy, Foucault got to know the Perpetual Secretary of the Academy of
Sciences, as well as the many distinguished scientists who were members of
this elite group of scholars.

Joseph Bertrand, who three decades later was the Perpetual Secretary of
the Academy of Sciences, described Foucault as follows in his short biog-
raphy of him, published in 1882.

At the age of 25, having learned nothing in the schools, and even less from books, avid for
science but loving study less, Léon Foucault accepted the mission of making known to the
public the works of the savants and of judging their discoveries. From the beginning, he

demonstrated much sense, much finesse, and a liberty of judgment tempered by more
prudence than one would expect from a biting and severe spirit. His first articles were
remarkable; they were spiritual. He took his task seriously. Introduced without

apprenticeship and without a guide into this academic pell-mell, abundant and confused
mixture of all the problems and all the sciences, he showed no awkwardness, and, in a role
in which mediocrity would never be tolerated, obtained a complete success.3

To compound his problems with the established academic community,
through his articles in the Journal des Debats, Foucault made some enemies
and called unhelpful attention to himself who, as a journalist, expressed
strong and controversial views about science without having proper training.
Bertrand described Foucault’s role as science journalist, revealing aspects of
his personality, in the following words:

Persons of considerable esteem in science solicited Foucault’s attention, less fearful
perhaps of his opinion than of his praise. Coolly polite, attentive only to the truth,
Foucault judged with study and reflection, and without complacency. This unknown

young man, who had no published scientific work to his name, no discovery justifying
his quickly-acquired authority, made them impatient with his assured tranquility,
irritated them by his audacious frankness, exasperated them at times with his thin
irony…. He excited lively resentments and gave rise to deep rancors.4

4. Experiments to Measure the Speed of Light

Foucault and Fizeau worked for François Arago (1786–1853) on measuring
the speed of light. Arago was one of France’s greatest scientists and the
director of the Paris Observatory; he had done work on measuring the speed
of light, mainly trying to prove that light travels slower in water. However,
diminishing eyesight made Arago give up on his experiments and search for
younger researchers to continue the project. At first, Foucault and Fizeau
worked together, but suddenly the two friends had a falling out. For four
years they had studied science together, and had achieved much. According
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to Foucault’s chronicler Lissajous, despite the fact that Foucault and Fizeau
had built a common fund of knowledge through their joint work, each man
had his ideas and wanted to pursue them alone.5

From collaborators, the two young men became competitors. Fizeau
continued on Arago’s track, using the old scientist’s apparatus and tech-
nique. He also pursued his own research on determining the absolute speed of
light. In a now-famous experiment in July, 1849, Fizeau used an experimental
design that spanned 8633 m: from his parents’ house at Suresnes to Mont-
martre, the high hill on the Right Bank in Paris, which during this time was
not settled and was covered with vines. His result was 315,000 km per sec-
ond, which was closer to the actual value than any estimate obtained until
that time. This estimate was 5.1% higher than the value of the speed of light
we know today. The next estimate of the speed of light would be obtained a
few years later by Foucault, and his error would be one-tenth that of
Fizeau’s.

Foucault continued to work exclusively on the project of determining the
relative speed of light in air and in water, and here chose his own route. He
was eager to achieve a good result, now that his friend and new competitor
had won recognition for his experiment to estimate the absolute speed of
light.

Foucault built a small steam engine, and used it to drive a spinning
polygonal mirror at a speed of 800 revolutions per second. His experimental
setup was only 4 m long and consisted of the spinning mirror and a sta-
tionary one. Because light travels at a limited speed, and one mirror spins
fast, the reflected light does not arrive at its starting point, but rather is
deflected somewhat. This relative deflection can be measured when air sep-
arates the two mirrors and also when a transparent tube of water is inserted
between them. In April 1850, Foucault successfully completed his experi-
ment, proving that light traveled slower in water than in air, as predicted by
the wave theory of light.6

5. Foucault’s Discovery of a Proof of the Rotation of the Earth

But on January 6, 1851, Foucault made a discovery the world of science
could not ignore. From his journal, we know that he made the discovery at
exactly 2 o’clock in the morning. He was down in the cellar of the house he
shared with his mother. He had been working feverishly in the cellar for
weeks, but no one walking on the fashionable street above could suspect that
down below, an experiment was being prepared – one that would forever
change the way we view the world. During the last few months of 1850 and
into 1851, Léon Foucault had been concentrating all his efforts on a different
kind of problem. He was attempting to solve the most persistent scientific
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problem of all time: one that had plagued Copernicus, Kepler, Descartes,
Galileo, and Newton in the sixteenth to the eighteenth centuries, and that –
surprisingly – remained unresolved as late as Foucault’s own time. Foucault
was determined to provide the ultimate proof of a historically contentious
scientific theory, the theory that the Earth rotates.

He had prepared his experiment carefully, perfecting it during long hours
of concentrated work in his cellar over a period of months. Foucault’s
remaining problems with the experiment were technical ones, and he was an
expert at doing precision work with his hands. He worked with wires, metal
cutters, measuring devices, and weights. He finally secured one end of a 2-m
long steel wire to the ceiling of the cellar in a special way that allowed it to
rotate freely without resulting torque. At the other end of the wire, he at-
tached a 5 kg bob made of brass. Foucault had thus created a free-swinging
pendulum, suspended from the ceiling.

Once the pendulum was set in motion, the plane in which it oscillated back
and forth could change in any direction. Designing a mechanism that could
secure this property was the hardest part of his preparations. And the pen-
dulum had to be perfectly symmetric: any imperfection in its shape or dis-
tribution of weight could skew the results of the experiment, denying
Foucault the proof he desired. Finally, the pendulum’s swing had to be
initiated in such a way that it would not favor any particular direction be-
cause a hand pushed it slightly in one direction or another. The initial con-
ditions of the pendulum’s motion had to be perfectly controlled.

Since such a pendulum had never been made before, the process of
building it also required much trial and error, and Foucault had been
experimenting with the mechanism for a month. Finally, he got it right. His
pendulum could swing in any direction without hindrance.

On January 3rd, 1851, Foucault’s apparatus was ready, and he set the
devise in motion. He held his breath as the pendulum began to swing. Sud-
denly the wire snapped, and the bob fell heavily to the ground. Three days
later, he was ready to try again. He carefully set the pendulum in motion and
waited. The bob swung slowly in front of his eyes, and Foucault attentively
followed every oscillation.

Finally, he saw it. He detected the slight but clearly perceptible change he
was looking for in the plane of the swing of the pendulum. The pendulum’s
plane of oscillation had moved away from its initial position, as if a magic
hand had intervened and pushed it slowly but steadily away from him.
Foucault knew he had just observed the impossible. The mathematicians, and
among them France’s greatest names: Laplace, Cauchy, and Poisson, had all
said that such motion could not occur, or, if it did, could never be detected.
Yet he, not a mathematician and not a trained physicist, somehow always
knew that the mysterious force would be there. And now, he finally found it.
He saw a clear shift in the plane of the swing of the pendulum. Léon Foucault
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had just seen the Earth turn. This was the first terrestrial, rather than
astronomical, proof of the rotation of the Earth.

6. The Demonstration at the Observatory of Paris

As Foucault later described it, Arago kindly agreed to allow him to present
his pendulum at the Observatory. Thus the largest, highest, and most famous
room in the Observatory, Meridian Hall, was put at Foucault’s disposal.

Foucault had much riding on this experiment, and he wanted it to proceed
perfectly – no snapping wires – and with great precision. Accuracy would be
of paramount importance, if he wanted to prove that the pendulum reflected
the motion of the Earth underneath it. So, at his own expense, he hired the
best craftsman he could find: Paul Gustave Froment (1815–1864), a man who
was well known in France for his high-quality work with brass and other
metals. It was important to have a perfect pendulum, hung just right, and
started on its motion very carefully, so that its natural movement would not
be disturbed by the human hand. For otherwise, the motion of the plane of
the swing of the pendulum could be blamed on the initial conditions of
motion. Froment produced such perfect pendulum bobs that people still
marvel at how they look and perform today. His pendulums made for
Foucault are now displayed at the museum of the Conservatoire National des
Arts et Métiers (CNAM) on Rue Saint-Martin in Paris.7 In the actual
experiment, Froment would burn a woolen thread securing the pendulum to
the wall, so that it would start to swing with no perturbation from human
touch.

Foucault and Froment checked that the apparatus was in order. They
performed a few trial runs in the high-vaulted hall with its arched windows,
and the pendulum – its center aligned with the Paris meridian passing right
underneath it – was ready to go.

It was now time to write the invitations to this great scientific demon-
stration, one that would – Foucault hoped – establish him as a scientist of
repute. For, after all, Foucault had by now invented a revolutionary lighting
technology used in science and the theater; he had measured the speed of
light and proved it was lower in water than in air; and he had come up with
the first piece of irrefutable evidence that the world turns. He deserved credit
for all of these contributions, and this was his great opportunity to impress
the savants of the Académie des Sciences, the mathematicians and scientists
who carried the torch of French scholarship and research.

He made invitation cards, and wrote on each one:

You are invited to come to see the Earth turn, tomorrow,
from three to five, at Meridian Hall of the Paris Observatory.
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On February 3rd, 1851, Foucault sent this invitation to all the known sci-
entists in Paris. France’s scientists and savants did come to the Observatory,
and they did �see the world turn�. Foucault’s pendulum performed excep-
tionally well. There is an elegance to a large, heavy pendulum swinging slowly
back and forth. This pendulum had the added advantage of not only swinging
in a stately manner across the stark surroundings of Meridian Hall – it slowly
shifted its orientation, rotating ever so slowly over the Paris meridian. And
the scientists who gathered around this pendulum immediately understood
what they were seeing.

But soon enough, the questions arose: How was it possible that no one
had thought of this before? The experiment seemed so incredibly simple. Why
had not any of the scientists and mathematicians who had spent lifetimes
studying rotations and gravity and astronomy thought of this experiment?
The mathematicians were angry that their equations had not predicted this
phenomenon, and the physicists were equally upset that their physical intu-
ition and analysis never led them to the �beautiful experiment� demonstrating
so clearly that the Earth rotates. More importantly, another question that
begged an answer was: What does mathematics say about this experiment?
Shouldn’t the equations of motion, developed by generations of mathema-
ticians and physicists (who were often the same people) from Galileo to
Kepler, to Newton, to their own members have predicted this phenomenon?
Some of the members had already begun to say: �But I could have told you
so. It’s all in the equations.� And, in fact, many of them had over the years
developed equations that dealt with rotational motion and moving bodies
and the Earth.

However, not one of them had thought up such an experiment; not one
of them had predicted that a pendulum would exhibit such change in its
plane of oscillation in response to the turning of the Earth. Au contraire:
Some of them had claimed that this would not be possible. Cauchy never
thought it possible that a pendulum should change its plane of oscillation,
and Poisson, as early as 1837, had said that a pendulum would not move in
such a way. But there were now equations galore to explain the movement
Foucault had just shown them. And not one of the mathematicians or
physicists of the Academy had an equation or formula that would tell them
how fast the pendulum’s plane of swing must change at any given location
on Earth.

7. Foucault’s Sine Law

Foucault himself, the �non-mathematician� as the members of the Academy
thought of him, not only provided the proof of the rotation of the Earth: he
had even derived an equation to describe it. Already on February 3, Foucault
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presented to the Academy a discussion of his experiment and its proof of the
rotation of the Earth. In addition, Foucault presented his formula – now
called the sine law – for determining the length of time it takes, at any given
latitude, for the pendulum to sweep a full circle with its plane of oscillation
and return to its starting point.

At the north (or south) pole, it takes 24 h to complete the cycle; on the
equator, the plane of swing of the pendulum does not move at all. And at
intermediate locations, the period is equal to 24 h divided by the sine of the
latitude.

Foucault’s Sine Law : T ¼ 24=SinðhÞ
where T is the time required to complete a circle; Sin is the trigonometric sine
function; an h is the latitude.

Hence in Paris, latitude 48�, 51 min, north it takes just under 32 h for the
plane of oscillation of the pendulum to return to its starting point.8 (Note
that the latitude of the pole is 90�; Sin (90) ¼ 1, and hence T ¼ 24 h. At the
equator the latitude is zero; Sin (0) ¼ 0, and hence T ¼ 24/0= �infinity,�
meaning that the pendulum’s plane of oscillation does not change at all.)

This was an incredible finding, since it is not obvious why the sine function
is the correct one to use in an expression to describe the time it should take
the plane of the pendulum to complete a circle; and proofs of the sine law are
not trivial.9 Foucault had obtained this surprising result without mathe-
matical training or experience in deriving mathematical equations, and he did
it before the mathematicians had even begun to think about the problem.

But the mathematicians refused to be impressed by Foucault’s formula. A
week after Foucault’s demonstration at the Observatory and his presentation
of his paper describing the pendulum experiment and the sine law, members
of the Academy scrambled to explain his experiment their way, as well as to
protect themselves from criticism. They had all been put to shame by Fou-
cault’s achievement. Was it really possible that Foucault should discover
something that the mathematicians’ own equations did not predict? And how
in the world would someone with no training in mathematics develop a law
describing how fast the pendulum’s plane must rotate for a pendulum placed
anywhere on the planet? Foucault only had one observation point: Paris.
They knew that this was a stunning achievement for Foucault, and an equally
embarrassing situation for them, the �experts�.

Joseph Bertrand summed up the circumstances of the proof of the rotation
of the Earth as follows.

Let us say very clearly, for that is true, that the geometers had signaled the direction; and
add, for that is just, that they had not explored it; that deplorably quickly, Poisson had

judged it unworthy of attention; and that it was Foucault, without any help and without
a guide, who was the first to advance it.10
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8. The Dramatic Public Demonstration at the Panthéon

Louis-Napoleon Bonaparte, Napoleon I’s nephew and the President of
France, heard about Foucault’s experiments and decreed that Foucault’s
experiment be repeated in a grand public display under the highest dome in
Paris: that of the Panthéon. Foucault and his engineer Froment worked hard
to implement the experiment commanded by the President of the Republic.
They and their workers climbed to the top of the high dome and installed the
mechanism that would allow this huge pendulum to swing freely in any
direction and change its plane of oscillation without any torque preventing
the movement.

Toward the end of March, newspapers in Paris announced the upcoming
public display of Foucault’s pendulum in the Panthéon, saying that the
President, demonstrating his �support for science,� had decided that the
experiment should be conducted in a grand public forum. On March 26,
1851, the science reporter Terrien wrote an article in Le National:

Have you seen the Earth go round? Would you like to see it rotate? Go to the Panthéon

on Thursday, and, until further notice, every following Thursday, from ten A.M. until
noon. The remarkable experiment devised by M. Léon Foucault is carried out there, in
the presence of the public, under the finest conditions in the world. And the pendulum

suspended by M. Froment’s expert hand from Sufflot’s dome clearly reveals to all eyes
the movement of rotation of the Earth.11

The Parisians flocked to the nation’s shrine to see the great experiment in
physics. This would be a historical moment, in which Galileo, Bruno, and of
course Copernicus and Kepler, would be vindicated – inside a magnificent
church now dedicated to greatness in science and letters and politics.

The Prince-President was there, along with dukes and duchesses and
counts and countesses, leaders of industry and business, and average citizens.
A smiling Foucault stood by the wooden circle, waiting. Froment was
standing to one side under the great dome, from which the steel wire hung
down holding the large pendulum bob. The bob itself was secured by a thread
to a post on the side, near Froment. When Foucault issued the order, Fro-
ment touched a lit match (safety matches had just been invented) to the
thread. As it caught fire, the thread released the pendulum, which swung
down to the center of the circle and on to the opposite side. People were
watching the swinging pendulum with great interest and curiosity. As Fou-
cault later described it in an article in the newspaper Journal des Débates:

After a double oscillation lasting sixteen seconds, we saw it return approximately 2.5

millimeters to the left of its starting point. As the same effect continued to take place
with each new oscillation of the pendulum, this deviation increased continuously, in
proportion to the passing of time.12

The public was fascinated – taken in by science in the making. According to
an eyewitness, every Thursday there were many people inside the Panthéon,
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looking at the strange pendulum hanging from the high dome above – even
during times the pendulum was motionless and the experiment not in action.
Foucault himself was there for hours every day, explaining to those around
him what the pendulum was doing and how it demonstrated that, in fact, it
was the Earth itself that was rotating under the pendulum. The plane of the
swing of the pendulum was actually �fixed in absolute space,� as he put it,
�while we and the planet rotated right under it.�

Foucault was a celebrity. But the world of science continued to ignore
him. According to his biographer Stéphane Deligeorges, the attention given
to Foucault by Louis-Napoléon made it worse for him, because it made the
scientists and members of the Academy jealous. Not only was he not one of
them, but now he was getting all the media attention and was becoming the
darling of Paris high society and the President of the Republic.

A short time later that year, Prince Louis-Napoléon Bonaparte bestowed
on Foucault one of the greatest honors the French nation can accord its
heroes: Foucault became a member of the Legion of Honor. But he was still
not a member of the Academy of Sciences – and thus not recognized by the
scientific community as a peer–and he would not be granted this status for
many years to come.

9. Further Experiments

The very next experiment with Foucault’s pendulum took place not much
over a month after the first demonstration in the Panthéon, in early May, in
the cathedral of the city of Reims, in France’s fertile and prosperous region
of Champagne, northeast of Paris. Others around the world quickly caught
the Foucault pendulum fever. Within a few days, an experiment was carried
out at another French cathedral, this time in the city of Rennes in Brittany, at
almost the same latitude as Paris. There were experiments at the Radcliffe
Library at Oxford, in Geneva, in Dublin, Ireland; three more pendulum tests
were carried out in the U.K. – in Bristol, in the York Cathedral, and in
London. Across the Atlantic, Foucault’s pendulum was demonstrated in
New York that very same year.13

A very important Foucault pendulum experiment was carried out in Rio
de Janeiro in September and October of 1851. Later described as �the mar-
velous demonstration in Rio,� the experiment was the first one, other than the
Panthéon experiment, to be reported by experts in the Proceedings of the
Academy of Sciences.14 Another experiment in low latitudes was done in
Colombo, Ceylon. This one was carried out by Lamprey and Schaw. The pair
used a line made of silk, which was a novelty. The line was 22 m long. It held
a 15 kg spherical bob made of lead, which was attached to the silk line with
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an iron ring. The silk held up well in the experiment. The results accorded
with Foucault’s sine law.

The final test of Foucault’s pendulum in 1851 took place – very signifi-
cantly–in Rome.The experiment was, in fact, performed in the Jesuit Church
of Saint Ignacius in the Vatican. Father Angelo Secchi (1818–1878) carefully
supported a twenty-eight-and-a-half kilogram pendulum with a wire of
31.89 m suspended from the high dome of the baroque church. This was an
especially important experiment, since it was carried out in what was until
then the bastion of anti-Copernican belief. Its successful completion would
signal a major change in the attitude of the Church toward science, and
particularly toward the Copernican theory that the Earth rotates.

Notes

1 Further details of the life,times and achievements of Foucault can be found in Aczel (2003).
2 Donné & Foucault 1845.
3 J. Bertrand, Eloge Historique de Léon Foucault. Paris: Institut de France, 1882, p. 3. Au-
thor’s translation.
4 ibid. p. 4. Author’s translation.
5 Lissajous 1875.
6 It should be noted that other experiments provide equally definite evidence for the particle

theory of light – in particular, Albert Einstein’s 1905 work on the photoelectric effect, for
which he won the Nobel Prize.
7 The CNAM is housed in what used to be, until 1799, the priory of the medieval church of

Saint-Martin des Champs, built in the eleventh century. The Foucault pendulum in this
converted ancient church impressed Umberto Eco so much that he decided to use it as the
setting for the opening, and title, of his novel, Foucault’s Pendulum.
8 Latitude 48� and 51 min means that h ¼ 48.85� (since 51/60 ¼ 0.85). Using a calculator, we

find: Sin (48.85) ¼ 0.753. Now we compute: T ¼ 24/Sin (h) ¼ 24/0.753 ¼ 31.9 h. Try this with
the latitude of your own location. You can find your latitude by consulting any map of your
area. For U.S. addresses, the exact latitude (even as accurate as the location of many public

buildings and landmarks, rather than generally for an entire city or town) can be found at the
U.S. Geological Survey Web site http://geonames.usgs.gov.
9 There are several different proofs of the sine law, which can be found in books on New-

tonian mechanics.
10 J. Bertrand, Eloge Historique de Léon Foucault. Paris: Institut de France, 1882, p. 21.
Author’s translation.
11 Stéphane Deligeorges, The Foucault Pendulum in the Panthéon. Paris: Musée du Conser-
vatoire national des arts et métiers, 1997, p. 9.
12 Journal des Débates, Monday, March 31, 1851,p.4
13 See discussion in Conlin (1999).
14 On October 24, 1887, a demonstration of Foucault’s pendulum took place at the St. Jacques
tower in Paris. W. De Fontveille published a commentary on it in a publication called French
Expeditions to Tonkin. The event was attended by the Emperor of Brazil and the Chinese

general Tcheng Ki-Tong. In his commentary, Fontveille described the experiment in Brazil in
great detail.
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Gilbert, P.-L.: 1879, Léon Foucault, sa vie et son oevre scientifique, A. Vromant, Brussels.

Hagen, J.G., S.J.: 1911, La Rotation de la Terre: Ses Preuves Mechaniques Anciennes et
Nouvelles, Specola Astronomica Vaticana I., Rome.
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The Pendulum: From Constrained Fall to the

Concept of Potential
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Abstract. Kuhn underlined the relevance of Galileo’s gestalt switch in the interpretation of a
swinging body: from constrained fall to time metre. But the new interpretation did not
eliminate the older one. The constrained fall, both in the motion of pendulums and along

inclined planes, led Galileo to the law of free fall. Experimenting with physical pendulums and
assuming the impossibility of perpetual motion Huygens obtained a law of conservation of vis
viva at specific positions, beautifully commented by Mach. Daniel Bernoulli generalised

Huygens results introducing the concept of potential and the related independence of the
‘work’ done from the trajectories (paths) followed: vis viva conservation at specific positions is
now linked with the potential. Feynman’s modern way of teaching the subject shows striking
similarities with Bernoulli’s approach. A number of animations and simulations can help to

visualise and teach some of the pendulum’s interpretations related to what we now see as
instances of energy conservation.

1. A Swinging Body and a Gestalt Switch: Constrained Fall and Isochronism

In Thomas Kuhn’s Structure of Scientific Revolutions we read:

Since remote antiquity most people have seen one or another heavy
body swinging back and forth on a string or chain until it finally comes
to rest. (Kuhn 1970, p. 118).

But did they ‘see’ (Figure 1) the same ‘thing’?

To the Aristotelians, who believed that a heavy body is moved by its
own nature from a higher position to a state of natural rest at a lower
one, the swinging body was simply falling with difficulty. Constrained by
the chain, it could achieve rest at its low point only after a tortuous
motion and a considerable time. Galileo, on the other hand, looking at
the swinging body, saw a pendulum, a body that almost succeeded in
repeating the same motion over and over again ad infinitum. (Kuhn
1970, pp. 118–119).
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A Gestalt shift had occurred, and thus Galileo ‘‘observed other properties of
the pendulum as well and constructed many of the most significant parts of
his new dynamics around them’’ (Kuhn 1970, p. 119).

For Kuhn the switch was made possible by Galileo’s knowledge of late
medieval impetus and latitude of forms theories, which were modifications of
the Aristotelian paradigm.

But ‘‘Galileo could still, when he chose, explain why Aristotle had seen
what he did. Nevertheless, the immediate content of Galileo’s experience with
falling stones was not what Aristotle’s had been’’ (Kuhn 1970, p. 125).

Two interpretations are available, constrained fall and isochronism of
oscillations, and while at a first reading Kuhn attributes the first to the
Aristotelians and the second to Galileo, it is actually well known that the
‘swinging body’ played a main role in Galileo’s interpretation of the fall of
bodies (Matthews 2000, pp. 2–3).

Here we tell a story dealing with the contributions of Galileo, Huygens
and Daniel Bernoulli to the less well-known but more ancient interpretation
of the swinging body: the one that still sees it as a constrained fall. It will
deliver a number of unexpected goods and introduced us to the concept of
‘potential’ and eventually to the interplay between ‘actual’ and ‘potential’
‘energy’ in the principle of energy conservation. Modern terminology itself
reveals that this tradition started with Aristotle.1

2. Galileo: Equal Heights of Ascent and Descent

Studying the constrained fall on an inclined plane Galileo in his ‘De motu’
(On Motion), written between 1589 and 1592, asserts that:

[. . .] a heavy-body tends downward with as much force as it is necessary
to lift it up’’ (Galilei 1890–1909a, p. 297; Galilei 1960, p. 63).2

gFigure 1. g g yA swinging body.
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Thus the basic assumption Galileo makes observing the swinging body
appears at an early stage of his career: this is a shift of attention, from the actual
movement and the actual trajectory of the body to the height of descent and
of ascent. Galileo immediately establishes a first step (Matthews 2000, p. 97)
towards an analogy between inclined planes and another form of constrained
fall: the pendulum (Galilei 1890–1909a, pp. 297–298; Galilei 1960, pp. 64–65)
The leap was made in his ‘Mecaniche (On Mechanics)’, written between 1598
and 1600 (Galilei 1960, p. 137), through the analysis of ‘‘pendulum motion as
motion in a circular rim and as motion in a suspended string. [. . .] [Galileo]
was able to consider pendulum motions as a series of tangential motions
down inclined planes’’ (Matthews 2000, p. 100):

Consider the circle AIC and in this the diameter ABC with center B,
and two weights at the extremities A and C, so that the line AC being
a lever or balance, movable about the center B, the weight C will be
sustained by the weight A. Now if we imagine the arm of the balance
as bent downward along the line BF [. . .] then the moment of the
weight C will no longer be equal to the moment of the weight A,
since the distance of the point F from the line BI, which goes from
the support B to the center of the earth, has been diminished.

Now if we draw from the point a perpendicular to BC, which is FK, the
moment of the weight at F will be as if it were hung from the line KB;
and as the distance KB is made smaller with respect to the distance BA,
the moment of the weight F is accordingly diminished from the moment
of the weight A. Likewise, as the weight inclines more, as along the line
BL, its moment will go on diminishing, and it will be as if it were hung
from the distance BM along the line ML, in which point L a weight
placed at A will sustain one as much less than itself as the distance BA is
greater than the distance BM. You see, then, how the weight placed at
the end of the line BC, inclining downward along the circumference
CFLI, comes gradually to diminish its moment and its impetus to go
downward, being sustained more and more by the lines BF and BL. But
to consider this heavy body as descending and sustained now less and
now more by the, radii BF and BL, and as constrained to travel along
the circumference CFL, is not different from imagining the same
circumference CFLI to be a surface of the same curvature placed under
the same moveable body, so that this body, being supported upon it,
would be constrained to descend along it. For in either case the
moveable body traces out the same path, and it does not matter whether
it is suspended from the center B and sustained by the radius of the
circle, or whether this support is removed and it is supported by and
travels upon the circumference, CFLI. [. . .] Now when the moveable
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body is at F, at the first point of its motion it is as if it were on an
inclined plane according to the tangent line GFH, since the tilt of the
circumference at the point F does not differ from the tilt of the tangent
FG, part from the insensible angle of contact (Galilei 1890–1909c,
p. 181–182; Galilei 1960, pp. 173–174).

It is possible to follow the transformation of this analogy between pendulum
motions and motions along inclined planes into an equivalence through
Galileo’s entire scientific work,3 but we confine ourselves here to its full and
mature expression of 1638 in the Discorsi (First Day):

As may be clearly seen in the case of a rather heavy pendulum which,
when pulled aside fifty or sixty degrees from the vertical, will acquire
precisely that speed and force (virtù) which are sufficient to carry it to an
equal elevation save only that small portion which it loses through
friction on the air. (Galilei 1890–1909b, p. 138; Galilei 1954, pp. 94).

Certainly this shift of attention to the same height of descent and of ascent in
the constrained fall was not an easy step. Obviously it was an assumption and
not an observation: Galileo correctly notes that the pendulum in standard
conditions does not rise to the same height of descent.

Today it is easy to compare through a computer simulation the ideal and
the real case and to show what Galileo had in mind: removing ‘impediments’
such as air resistance, the pendulum actually oscillates in agreement with
Galileo’s assumption (Figures 2 and 3).

We do not follow here the story of the interpretation of the isochronism of
the oscillations, that in its relation with time measurement has already been
brilliantly told (Matthews 2000), but instead, shifting our attention towards
the constrained fall of the swinging body in a vacuum, we want to focus on
the far-reaching role that the assumption that the height of descent and of
ascent are the same plays in Galileo’s physics, both in the case of inclined
planes and of pendulums. This indeed is the main assumption of the third day
of the Discorsi:

gFigure 2. p pComputer simulation of pendulum motion with air.

FABIO BEVILACQUA ET AL.188



The speeds acquired by one and the same body moving down planes of
different inclinations equal when the heights of these planes are equal.
(Galilei 1890–1909b, p. 205; Galilei 1954, p. 169).

This means that the final velocity of fall depends on the vertical height of
descent (elevation) and not on the trajectories actually followed (inclina-
tions). Galileo deals here with inclined planes: the correspondence established
between pendulum trajectories and planes with differing inclinations is a
basic aspect of his work. In fact it is now a ‘constrained’ pendulum motion
that ‘established’ the assumption:

SALV. Your words are very plausible; but I hope by experiment to
increase the probability to an extent which shall be little short of a rigid
demonstration.

gFigure 3. p pComputer simulation of pendulum motion without air.

(a)
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Imagine this page to represent a vertical wall, with a nail driven into it;
and from the nail let there be suspended a lead bullet of one or two ounces
by means of a fine vertical thread, AB, say from four to six feet long, on
this wall draw a horizontal line DC, at right angles to the vertical thread
AB, which hangs about two finger-breadths in front of the wall. Now
bring the thread AB with the attached ball into the position AC and set it
free; first it will be observed to descend along the arc CBD, to pass the
point B, and to travel along the arc BD, till it almost reaches the
horizontal CD, a slight shortage being caused by the resistance of the air
and the string; from this we may rightly infer that the ball in its descent
through the arc CB acquired a momentum [impeto] on reaching B, which
was just sufficient to carry it through a similar arc BD to the same height.
Having repeated this experiment many times, let us now drive a nail into
the wall close to the perpendicular AB, say at E or F, so that it projects
out some five or six finger-breadths in order that the thread, again
carrying the bullet through the arc CB, may strike upon the nail E when
the bullet reaches B, and thus compel it to traverse the arc BG, described
about E as center. From this we can see what can be done by the same
momentum [impeto] which previously starting at the same point B,
carried the same body through the arc BD to the horizontal CD. Now,
gentlemen, you will observe with pleasure that the ball swings to the point
G in the horizontal, and you would see the same thing happen if the
obstacle were placed at some lower point, say at F, about which the ball
would describe the arc BI, the rise of the ball always terminating exactly,
on the line CD. But when the nail is placed so low that the remainder of
the thread below it will not reach to the height CD (which would happen
if the nail were placed nearer B than to the intersection of AB with the
horizontal CD) then the thread leaps over the nail and twists itself about
it.
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This experiment leaves no room for doubt as to the truth of our
supposition; for since the two arcs CB and DB are equal and similarly
placed, the momentum [momento] acquired by the fall through the arc
CB is the same as that gained by fall through the arc DB; but the
momentum [momento] acquired at B, owing to fall through CB, is able
to lift the same body [mobile] through the arc BD; therefore, the
momentum acquired in the fall BD is equal to that which lifts the same
body through the same arc from B to D; so, in general, every momentum
acquired by fall through an arc is equal to that which can lift the same
body through the same arc. But all these momenta [momenti] which
cause a rise through the arcs BD, BG, and BI are equal, since they are
produced by the same momentum, gained by fall through CB, as
experiment shows. Therefore all the momenta gained by fall through the
arcs DB, GB, IB are equal.

SAGR. The argument seems to me so conclusive and the experiment so well
adapted to establish the hypothesis that we may, indeed, consider it as
demonstrated (Galilei 1890–1909b, pp. 205–207;Galilei 1954, pp. 170–172).4

Here again a reconstruction (Figure 4) and an animation (Figure 5) can help
us ‘see’ what Galileo has established: when the fall of the pendulum is con-
strained by nails fixed on the vertical, whenever possible the weight rises to
the same height, even if not in a symmetrical position, and when even that
becomes impossible (the nail is in such a position that the length of the string
left free is too short) it shows it still has a capacity of movement that makes it
revolve around the ‘impediment’.

Image now that the pendulum trajectories are substituted by a set of
differently inclined planes (see Figure b) and the achievements will be
extraordinary (Galilei 1890–1909b, pp. 207–208; Galilei 1954, p. 172):

SALV. I do not wish, Sagredo, that we trouble ourselves too much about
this matter, since we are going to apply this principle mainly in motions
which occur on plane surfaces, and not upon curved, along which
acceleration varies in a manner greatly different from that which we have
assumed for planes. So that, although the above experiment shows us
that the descent of the moving body through the arc CB confers upon it
momentum [momento] just sufficient to carry it to the same height
through any of the arcs BD, BG, BI, we are not able, by similar means,
to show that the event would be identical in the case of a perfectly round
ball descending along planes whose inclinations are respectively the
same as the chords of these arcs. It seems likely, on the other hand, that,
since these planes form angles at the point B, they will present an
obstacle to the ball which has descended along the chord CB, and starts
to rise along the chord BD, BG, BI. In striking these planes some of its

THE PENDULUM: FROM CONSTRAINED FALL TO THE CONCEPT OF POTENTIAL 191



momentum [impeto] will be lost and it will not be able to rise to the
height of the line CD; but this obstacle, which interferes with the
experiment, once removed, it is clear that the momentum [impeto] (which
gains in strength with descent) will be able to carry the body to the same
height. Let us then, for the present, take this as a postulate, the absolute
truth of which will be established when we find that the inferences from
it correspond to and agree perfectly with experiment (Galilei 1890–
1909b, pp. 207–208; Galilei 1954, p. 172).

The emphasis is always on the ‘impetus’ the ‘velocity’, the ‘virtue’, the
‘momentum’ acquired during the fall. This is such to raise the weight (now a
perfect sphere) to its initial height in the absence ‘impediments’.

But what lies behind Galileo’s assumption? The principle, already
expressed long before by Leonardo, that bodies cannot be raised to a higher

Figure 4. Reconstruction of Galileo’s experiment with pendulum motion constrained by nails.

gFigure 5. p g g gAnimation of Galileo’s experiment showing that the weights rise at the same height.

FABIO BEVILACQUA ET AL.192



level by virtue of their own weight, an early statement of the principle of
impossibility of perpetual motion. The bob of the pendulum in its periodical
idealised motion cannot rise to a higher level than that of the first descent;
otherwise ‘work’ would be produced out of nothing.

The important quantity connected with the initial and final height is thus
the velocity acquired during the fall. To every height of fall corresponds a
final velocity acquired during the fall. A link between a static, positional,
quantity (height) and a kinetic one (velocity) is indicated. What is the
mathematical relation that connects the two?

3. Galileo’s Law of Free Fall and the Final Velocity of Fall

Much has been said about Galileo’s formulation of the law of fall (Naylor
1974; Wisan 1974; Drake 1995). Its theoretical roots have been discussed in
relation to the doctrine of the quantification of qualities and to the average
speed theorem, and its experimental roots in relation to Galileo’s manuscripts
and to his famous passage of the Discorsi (see Figure 6):

SALV. [. . .] A piece of wooden moulding or scantling, about 12 cubits
long, half a cubit wide, and three finger-breadths thick, was taken; on its
edge was cut a channel a little more than one finger in breadth; having
made this groove very straight, smooth, and polished, and having lined
it with parchment, also as smooth and polished as possible, we rolled
along it a hard, smooth, and very round bronze ball. Having placed this
board in a sloping position, by lifting one end some one or two cubits
above the other, we rolled the ball, as I was just saying, along the
channel, noting, in a manner presently to be described, the time required
to make the descent. We repeated this experiment more than once in
order to measure the time with an accuracy such that the deviation
between two observations never exceeded one-tenth of a pulse-beat.
Having performed this operation and having assured ourselves of its
reliability, we now rolled the ball only one-quarter the length of the
channel; and having measured the time of its descent, we found it
precisely one-half of the former. Next we tried other distances,
comparing the time for the whole length with that for the half, or with
that for two-thirds, or three-fourths, or indeed for any fraction; in such
experiments, repeated a full hundred times, we always found that the
spaces traversed were to each other as the squares of the times, and this
was true for all inclinations of the plane, i.e., of the channel, along which
we rolled the ball. We also observed that the times of descent, for
various inclinations of the plane, bore to one another precisely that ratio
which, as we shall see later, the Author had predicted and demonstrated
for them. For the measurement of time, we employed a large vessel of
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water placed in an elevated position; to the bottom of this vessel was
soldered a pipe of small diameter giving a thin jet of water, which we
collected in a small glass during the time of each descent, whether for the
whole length of the channel or for a part of its length; the water thus
collected was weighed, after each descent, on a very accurate balance;
the differences and ratios of these weights gave us the differences and
ratios of the times, and this with such accuracy that although the
operation was repeated many, many times, there was no appreciable
discrepancy in the results (Galilei 1890–1909b, pp. 212–213; Galliei
1954, pp. 1780–179).

A simulation (Figure 7) can help understand Galileo’s procedures in this
passage, where he measures time through a constant flow of water.

The results of Galileo’s efforts can be summarised in modern terms as
follows (g* is the vertical acceleration, a ¼ g* sin h. is the acceleration along
the groove that varies with inclination, s ¼ h/sin h is the length of Galileo’s
wooden groove, h its height)
� the instantaneous velocity is proportional to the time elapsed: v ¼ at
� space is proportional to the square of the time: s ¼ at2/2
� from (a) and (b) we get: s ¼ v2/2a,
that is:
� the final velocity is proportional5 to the square root of the height
vfv ¼ �2g*h.

This is a basic law because it connects, perhaps for the first time, position and
velocity, statics and kinematics. One of the extraordinary features of this law,
lost in modem textbooks, is that the two quantities, position and velocity, are
not taken at the same instant. The velocity is the one that the body acquires
falling from the height, that is, it is the ‘virtual’ or ‘potential’ velocity that it
would acquire if it fell from that height. Reversing the two we can also say

Figure 6. Illustration by Gamow of Galileo’s determination of the law of fall (See Gamow
1961, chap. 2).
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that a body with such a velocity can raise itself to such a position. The
pendulum thus acquires a new meaning: in the first quarter of period the
weight falling acquires a velocity that, without friction and other impedi-
ments, will raise it on the symmetrical side in the second quarter to the same
height of descent. The same happens in the third and fourth quarters till the
weight reacquires its original height.

4. Huygens: From the Centre of Oscillation of a Compound Pendulum to Vis
Viva Conservation at Specific Positions

In 1673 Christiaan Huygens in his Horologium Oscillatorium makes a sig-
nificant contribution to our story by solving a difficult and important
problem (Gabbey 1980; Yoder 1988; Erlichson 1996). Pendulums in nature
are not ideal objects, but real ones with weights that are not concentrated in a
point at the end of a weightless string. In the context of his time-measuring
efforts, Huygens needed an answer to the question: what is the centre of
oscillation of a compound pendulum? That is: what is the length of a simple
pendulum that oscillates with the same period as the given compound pen-
dulum? The search for the solution of this problem, perhaps the greatest
among his many achievements, produced important results also for our story
of the constrained fall. Huygens’ early attempts date back to 1661 but 1664
but we refer here to the 1673 account.

The problem had originally been proposed by Mersenne and while
‘‘Descartes, Honoré Fabri, and other famous men who held the promise of
success, also failed to hit the target except in a few of the easier cases’’
(Blackwell 1986, p. 105; Huygens 1888–1950, p. 243), Huygens asserts that:

‘‘In the light of what we will present here [. . .] I think, is demonstrated
by more certain principles and will be found to be entirely in

Figure 7. Simulation of Galileo’s experiments.

THE PENDULUM: FROM CONSTRAINED FALL TO THE CONCEPT OF POTENTIAL 195



agreement with experience’’ (Huygens 1888–1950, p. 243; Huygens
1986, p. 105).

In fact:

[. . .] by starting from the first origin and by using a better approach, I
overcame all the difficulties, and found not only the solution to
Mersenne’s problem but also other more difficult things. I also found a
method by which one can determine with certainty the center of
oscillation in lines, surfaces, and solid bodies (Huygens 1888–1950,
pp. 243–245; Huygens 1986, p. 106).

Huygens gives a number of definitions (Huygens 1888–1950, pp. 245–247;
Huygens 1986, pp. 106–107) and formulates two basic hypothesis. Here too it
is not difficult to see a generalization of Galileo’s approach: namely the
generalization of the assumption, mentioned above, that Galileo proposed in
the third day of the Discorsi. While Galileo was concerned with a single body,
Huygens deals with a number of them, that is with a system of connected
bodies, and thus his concern is with their center of gravity:

[Hypothesis] I. If any number of weights begin to move by the force of
their own gravity, their center of gravity cannot rise higher than the
place at which it was located at the beginning of the motion (Huygens
1888–1950, p. 247; Huygens 1986, p. 108).

This statement in its apparent simplicity will have the most extraordinary
consequences. It is no wonder then that Huygens makes an effort to explain its
meaning.He actually states here, and a number of times after, that the real content
of the hypothesis is simply that bodies cannot by virtue of their own weight rise to
height higher than the one of fall, a statement that, he asserts, is largely shared:

But lest our hypothesis create a doubt, we will show that it states only
what no one has ever denied; namely, that heavy bodies do not move
upwards. For first, if we consider only one heavy body, it is beyond
doubt that it cannot ascend higher by the force of its own gravity, where
‘ascend’ is taken to mean that its center of gravity ascends. Next the
same thing must be conceded in the case of any number of weights
joined to each other by inflexible lines, for there is no reason not to
consider this as only one body. And thus their common center of gravity
cannot rise higher (Huygens 1888–1950, p. 249; Huygens 1986, p. 108).

But now Huygens introduces a comment that was implicit in Galileo’s
Discorsi and that is at the root of our interpretation:

Indeed, if those builders of new machines who tried in vain to produce
perpetual motion [motum perpetuum] had known how to use this
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hypothesis, they would have easily seen their errors and would have
understood that this is in no way possible through mechanical means
[mechanica ratione] (Huygens 1888–1950, p. 251; Huygens 1986, p. 110).

In other words, in modern terms, an endless quantity of work cannot be
produced without compensation, perpetual motion is impossible.

A second hypothesis follows:

II. Air and any other manifest impediment having been removed, as we
wish to be understood in the following demonstrations, the center of
gravity of a rotating pendulum crosses through equal arcs in descending
and in ascending (Huyens 1885–1950, p. 251; Huygens 1986, p. 110).6

In fact one cannot imagine a pendulum that after each half period rises ‘by
virtue of its own weight’ to a higher position! But Huygens’ great achieve-
ment here is to apply this principle to the centre of gravity of the compound
pendulum. From this extension of a Galilean line of thought (Mach 1974,
p. 210) extraordinary consequences will follow.

Huygens’ long analysis now presents a number of ‘propositions’ followed
by a comment. Proposition III and IV are relevant for our analysis of the
constrained fall interpretation of the pendulum; Proposition V, that deals
with the determination of the centre of oscillation, is related to the inter-
pretation of the pendulum as an isochronous device.

In Proposition III Huygens defines some important properties of the
centre of gravity:

If any number of bodies all fall or rise, but through unequal distances,
the sum of the products of the height of the descent of each, multiplied
by its corresponding magnitude, is equal to the product of the height of
the descent or ascent of the center of gravity of all the bodies, multiplied
by the sum of their magnitudes (Huygens 1888–1950, p. 255; Huygens
1986, p. 112).

In modern terms:

Rmihi ¼ HRHH mi:

Thus,

H ¼ Rmihi=Rmi;

where H is the height of ascent–descent of the centre of gravity, mi are the
‘Weights’ and hi their heights of ascent–descent.

7 This is the definition for the
ascent or descent of the centre of gravity of a physical body or of a system of
bodies.

Now Huygens, in Proposition IV, states that the removal of the con-
straints between the bodies or parts of the bodies does not influence the
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equivalence between height of ascent and descent. In modern words, these
constraints do not perform work:

Assume that a pendulum is composed of many weights, and beginning
from rest, has completed any part of its whole oscillation. Imagine next
that the common bond between the weights has been broken and that
each weight converts its acquired velocity upwards and rises as high as it
can. Granting all this, the common center of gravity will return to the
same height which it had before the oscillation began (Huygens 1888–
1950, p. 255; Huygens 1986, p. 113).

The consequences of the assumption that the constraints can be removed
during motion while the centre of gravity regains its initial height will be far-
reaching. Huygens in fact implicitly asserts here that the centre of gravity
regains its initial height not only after a free fall and a free ascent, not only
after a constrained fall and a constrained ascent, but also after a constrained
fall and a free ascent.

Huygens’ explanation is based on a generalised application of Galileo’s
relation, between height of free fall and final velocity acquired, to a com-
pound pendulum made by a number of weights fixed to a line. But here we
have a constrained fall and not a free fall. When we remove the constraints
the weights’ velocities do not correspond to those they would have in the
same positions in the case of free fall. Before Huygens we did not have a
relation to predict them. Huygens’ brilliant solution is based on the appli-
cation of Galileo’s law not to the first but to the second part of the trajectory,
the one after the removal of the constraints. Now we have a free movement
and Galileo’s relation can be applied in reverse order: the final velocity of
constrained fall is now the initial velocity of the free trajectory of ascent for
each single weight. Each weight, now free, will rise to a specific height, lower
or higher than the corresponding initial one of constrained fall. From this
height of ascent we can calculate the actual velocity acquired by each body at
the end of the constrained fall, because after the removal of the constraints
the ascent is free and Galileo’s law can be applied. Huygens does not actually
use the mathematical law but an imagined experimental device: a number of
inclined planes able to show each height of ascent. The weights bounce off the
inclined planes and rise vertically.8 This perhaps is an indication of an
experimental pattern towards the result: Huygens soon realised that the
weights closer to the point of suspension rise to a smaller height, an indi-
cation that they were delayed during the constrained fall. In contrast the
weights farther away rise to a higher height, indication that they were
accelerated during the constrained fall. But the result in any case ‘follows’
from the principles stated. The centre of gravity we are dealing with here is
the one of the system of weights each ‘frozen’ at the maximum height of
ascent. In fact while each weight, depending on its distance from the centre of
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suspension, acquires a higher or lower height of ascent than in the case of free
fall, the centre of gravity of the system of now free weights has to rise to the
same height from which it fell because bodies do not rise by their own weight
and do not violate the impossibility of perpetual motion.

Let us read Huygens’ explanation of Proposition IV:

Let there be a pendulum which is composed of any number of weights
attached to a rod or to a weightless surface. Let this pendulum be
suspended from an axis which is drawn through the point D and which is
understood to be perpendicular to the plane which is seen in the diagram.
In this same plane let E be the center of gravity of the weights A, B, and C.
Also let the center line DE be inclined to the perpendicular line DF by the
angle EDF, since the pendulum has been pulled back this far. From this
point it begins to move and completes any part of its oscillation such that
the weights A, B, and C arrive at the points G, H, and K. Next, imagine
that the common bond between the weights is broken and that each
converts its acquired velocity upwards (which could occur if each
encountered an inclined plane) and rises as high as it can; namely, to L,
M, and N.When they have arrived there, the common center of gravity is
at the point P. I say that P has the same height as the point E.

For first it is clear from the first of our assumed hypotheses that P is not
higher thanE. But that it is not lowerwewill showas follows.Assume, as if
it were possible, that P is lower than E. And imagine that the weights fall
again from the heights LG, MH, and NK, to which they had ascended.
From this it is clear that they would acquire the same velocity which they

(c)
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had in order to ascend to those heights [Proposition 4, Part II], that is, the
velocity they acquired from the motion of the pendulum from CBAD to
KHGD. Consequently, if the weights are now returned with those
velocities to the rod or surface towhich they had been attached, and if they
are, reattached to it and continue their motion along the original arc –
which could occur if before they touch the rod they are imagined to
rebound from the inclined planes QQ – then the pendulum restored in this
way will complete the remaining part of its oscillation just as if it had
continued its motion without any interruption. Thus the center of gravity,
E, of the pendulum crosses equal arcs EF andFR in falling and ascending,
and hence is found to have the same height at R and at E. But it was
assumed that E was higher than P, which is the center of gravity of the
weights located at L, M, and N. Therefore R is higher than P.
Consequently, the center of gravity of the weights falling from L, M,
andN rises higher than the place fromwhich it descended, which is absurd
[Hypothesis 1]. Therefore, the center of gravity P is not lower than E. Nor
is it higher than E. Hence it must have he same height. Q.E.D. (Huygens
1888–1950, pp. 255–259; Huygens 1986, pp. 113–114).

Huygens interestingly asserts the possibility first to eliminate the constraints
during the motion and second to detect the velocities of constrained fall ac-
quired. He eventually asserts that the centre of gravity of the weights, ‘frozen’
each at its highest height of ascent after a constrained descent, rises at the same
height of descent. The interplay between theory and experiment is interesting
here. The assertion that the heights of ascent of each weight is higher or lower
than the corresponding height of descent could not be easily detected experi-
mentally, because obviously the now free ascents are not completed in the same
time. To calculate the position of the centre of gravity onewould need, after the
constrained fall and the release of the constraints, to record each single height of
ascent:without doubt adifficult experimental task.Then the centre of gravity of
this new system had to be calculated. Certainly the assumption of the impos-
sibility of perpetual motion helpedHuygens in the formulation of the principle
of same ascent–descent of the centre of gravity.

5. Huygens’ Results Reinterpreted by Mach: Centre of Gravity and the

Conservation of Vis Viva

A simpler version of this complex undertaking was suggested by Mach
(Figure 8):9 let us imagine that the pendulum is falling from left to right and
that the constraints are removed at the end of the first quarter of period on
the vertical line and that the pendulum’s weights can ascend freely in the
second quarter with the initial velocities of ascent equal to the final velocities
of constrained fall acquired on the vertical line (no use here of inclined
planes).10 Some of the weights will rise to a lower level than in the case of free
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fall and some to a higher level. If we manage to ‘freeze’ the single weights at
their maximum heights of ascent (due to different lengths of the pendulums
they will be reached in different times) we could actually calculate the posi-
tion of the centre of gravity of this new system and understand that Huygens’
hypotheses are perfectly reasonable and, of course, correct.

But how to remove the constraints without perturbing the motions?
Through an experimental device inspired by Mach’s thought experiment and
built by one of us as described in Figure 9.

We imagine that on the vertical line at the end of the first quarter of period
a compound pendulum made by weights (iron balls or marbles) connected by
a weightless constraint (balsa wood) hits an equal number of equal weights
individually suspended and thus free to move. Assuming the conservation of
momentum in the impact, we see that the weights rise to different heights,
higher or lower than the corresponding initial ones, in agreement with
Huygens’ statements. We also realise the difficulty of a precise experimental
assessment of the hypotheses.

Today a much clearer visualisation can be achieved through a computer
simulation (Figure 10): the automatic removal of the constraints, the track-
ing that shows the different maximum heights of ascent and the automatic
calculation of the position of the centre of gravity are of great help not in
proving the hypotheses (the software is built around the mechanical laws we
are dealing with) but in visualising and understanding them.

We know now that the centre of gravity descends and ascends to the
same height for whichever combination of constrained or free movements
(of course if the unconstrained weights are ‘frozen’ at their maximum
height of ascent). Trajectories are not important but only initial and final
heights. Which results can be derived from Huygens’ third and fourth
propositions?

gFigure 8. p yg p pMach’s interpretation of Huygens’ compound pendulum.
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We want to develop the expression H ¼ Rmihi=Rmi resulting from
Huygens’ Proposition III, that equates the height of descent and of ascent of
the centre of gravity of a compound pendulum, made by a number of weights
constrained along a line.

gFigure 10. p p pSimulation of the compound pendulum experiment.

Figure 9. Reconstruction of Mach’s compound pendulum by Paolo Mascheretti, Physics

p , yDepartment, Pavia University.
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Specifically we want to equate the height of descent of the centre of gravity
of the pendulum without constraints (HfHH ), that is with each weight fallingff

independently of the others, with the height of ascent of the centre of gravity
of the same compound pendulum that falls with constraints (HeHH ) till the
vertical line and then loses its constraints and rises without them, as in
Huygens’ Proposition IV.

As to free descent, according to Galileo’s result, the vertical distance
covered by a heavy body in free fall starting from rest is proportional to the
square of the velocity acquired in the fall, with which velocity it could rise to
the same height. Applying the relation vfv ¼

ffiffiffiffiffiffiffiffi
2gh
pffiffi

to each free falling weight:

HfHH ¼ Rmihi=Rmi ¼ ðRmiv
2
i =2gÞ=Rmi:

In the case of the constrained descent and free ascent only experimentally,
through the removal of the constraints, we can detect the individual heights
of ascent ðh0iÞ. But from these heights we can express the final velocities (on
the vertical line) of the constrained fall with Galileo’s same law (the letter u is
used to indicate velocities acquired in the constrained fall):

HcHH ¼ Rmih
0
i=Rmi ¼ ðRmiu

2
i =2gÞ=Rmi:

Thus Huygens’ equivalence of the height of ascent and descent of the centre
of gravity:

HfHH ¼ HcHH

acquires the form:

ðRmiv
2
i =2gÞ=Rmi ¼ ðRmiu

2
i =2gÞ=Rmi

and thus:

Rmiv
2
i ¼ Rmiu

2
i :

This equation was called the theorem of conservation of vis viva.
Huygens’ result consists in this: for a system of bodies under the effect of

gravity, the sum of the products of the masses multiplied by the squares of
the final velocities is the same, whether the bodies move together constrained
or whether they move freely from the same vertical height. It appears from
this result that Rmiv

2
i is an important quantity, which is characteristic of the

position of the system (the vertical heights of its parts) and does not depend
on the paths followed to get to that position. Again we have to remember
that in this quantity, characteristic of a system in a given position, the
velocities, whether constrained or free, are the final velocities of the ‘virtual’
or ‘potential’ fall.

Thus the (compound) pendulum has delivered a very good result: it helped
identify one very important physical quantity, the so-called vis viva, the
capacity of a body to perform ‘work’, its dependence on the position of the
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system of bodies and its independence from those constraints which do not
perform ‘work’. Returning back to the initial position through a closed path,
independently of the trajectories, the value of the vis viva does not change: it
is a constant of the system for a given position. This is here the meaning of
conservation of vis viva. In fact the vis viva during motion varies at each
instant due to the variation of the actual velocities.

6. Daniel Bernoulli: From Vis Viva Conservation to the Concept of Potential

Daniel Bernoulli, the first to introduce the potential function, contributes to
the development of Galileo’s and Huygens’ results in an important way. In
his Hydrodynamica of 1738 he discusses at length the relations between
‘descensus actualis’ and ‘ascensus potentialis’ (Bernoulli 1738, Sectio prima,
passim).

In 1748 (Bernoulli 1748) his contribution was to refer back, through
Galileo’s relation, Rmiv

2
i (now a positional conserved property) to displace-

ments and to positions and then to the external forces (gravity).
Daniel Bernoulli’s approach clearly starts from the conservation of vis viva

derived from Huygens’ results:

mv2 þm 0v 02 þm00v 002 þ � � � ¼ mu2 þm 0u 02 þm00u00 2 þ � � �
In Bernoulli the notation is inverted: v are the velocities acquired by the
weights after the removal of the constraints, u are the velocities acquired
when the weights fall freely (that is the mechanical constraints of the system
are neglected).

How can this law be utilised for the connection of velocities with external
forces? Through Galileo’s theorem: in fact, in the case of uniform and par-
allel gravity, the square of the velocity gained is proportional to the dis-
placement and since this is independent of the path of the body: ‘‘there is
always conservation of vis viva with respect to the height from which the fall
takes place’’ (Bernoulli 1748).

Assuming the acceleration due to gravity as equal to unity and the vertical
fall distances equal to x, x0 and so on:

u2 ¼ 2x; u 02 ¼ 2x0; u002 ¼ 2x00; . . .

the expression of conservation of vis viva becomes

mv2 þm0v 02 þm00v00 2 þ � � � ¼ 2mxþ 2m0x0 þ 2m00x00 þ � � �
and thus ‘‘the total vis viva is equal to the product of the total mass of the
system with twice the vertical distance the centre falls’’ (Bernoulli 1748).

From a modem point of view, the second member expresses double
the ‘work’ done by the forces acting on the system (due to a uniform
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gravitational field with unit field strength). The vis viva of the system in a
certain position (velocities are here still the final velocities of a potential fall)
equals the ‘work’ done to get to that position or the capacity to do ‘work’
falling from that position.

In this sense, the equation is formally equivalent to d’Alembert’s work-vis
viva theorem (Lindsay 1975, p. 391), still used in textbooks as the work-
kinetic energy theorem.

Bernoulli next considers the variation of vis viva for a body under a central
force (Figure 11) and he shows that it only depends on the distance from the
centre of attraction (E) and not on the trajectory:E

Vis viva at D and C is the same, moving from C to D there is no change of
vis viva (no work is performed along paths perpendicular to the force, the
difference in vis viva between A and D thus does not depend on the trajectory
followed (straight down from A to D or going through C). The advantage is
that the principle in Daniel Bernoulli’s version immediately furnishes an
equation connecting the final velocities of the bodies of the system in question
and the variables determining their position in space. Vis viva at D depends
only on the distance from the centre of attraction E, it is now a positional
quantity. In the closed path DACD there is no gain or loss of ‘work’. The
difference in the ‘work’ done depends only on the initial or final positions and
not on the path. The ‘positional’ vis viva is thus an indication of potential
‘work’, later to be called ‘potential energy’. The variation of the vis viva is
equal to the variation of the potential ‘work’.

gFigure 11. g yDiagram used by Bernoulli in his demonstration about central forces.
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7. Modern textbooks Still Utilise Bernoulli’s Approach

The Feynman’s Lectures on Physics of 1963 (Feynman et al. 1975)2 is
revealing. In discussing work done by gravity, Feynman wants to show that
the total work done in going around a complete cycle is zero (Figure 12), in
agreement with the impossibility of perpetual motion (Feynman et al. 1975,2

Vol. 1, p. 13.6). He thus analyses a closed path in a radial gravitational field
(M is the centre of attraction) and shows that on the circular paths the work
is zero because the force is at right angles to the curve, and on the radial
paths the total work is again zero because it is the sum of the same amount of
work done the first time in the direction of the centre of attraction and the
second time in the opposite direction.

Is the situation different for a real curve? No, because we can refer back to
the same analysis (see Figure 13): the work done in going from a to b and
from b to c on a triangle is the same as the work done in going directly from a
to c.

In the same chapter there is also an implicit reference to Huygens’ dis-
cussion of the compound pendulum and to the resulting vis viva conservation
at specific positions, independently of trajectories and constraints. Feynman,
dealing with planetary motion, asserts that:

So long as we come back to the same distance, the kinetic energy will be
the same. So whether the motion is the real undisturbed one, or is
changed in direction by channels, by frictionless constraints, the kinetic
energy with which the planet arrives at a point will be the same
(Feynman et al. 1972,2 Vol. 1, p. 13.8).

A clear, even if implicit and perhaps unaware, reference to Daniel Bernoulli’s
results (through the mediation of the tradition of rational mechanics): work
only depends on the initial and final positions (difference of potential) and
not on the actual path (trajectory).

Thus the insight that pendulums without impediments can only rise back
to their original heights has produced, through a number of achievements, a
very important and lasting historical result: from vis viva conservation at
specific positions we get the concept of potential, a remarkable gestalt switch
from isochronism and a big step towards what is now energy conservation.

Figure 12. (See Feynman et al. I, 13, 3).
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Notes

1 Leibniz’s contributions, however Important, are not discussed here.
2 This work is discussed in Drake (1976), Fredette (1976), see also Camerota (1992).
3 Galileo’s equivalence is correct as far as heights of descent and ascent are considered. It

does not hold for the instantaneous velocities: the rotation of the ball on the inclined plane has
also to be taken in account (the moment of inertia reduces the actual velocities).
4 On the different meanings of ‘momento’ in Galileo, see Galluzzi (1979).
5 In Galileo’s case the vertical acceleration g* differs from today’ s acceleration of gravity g

because of the moment of inertia of the ball rolling and not sliding down the groove: g*=5/
7 g.
6 Here Blackwell’s translation has been modified.
7 The centre of gravity after the removal of the constraints is calculated with each body
‘frozen’ at its maximum height of ascent. In fact the bodies do not get to their final positions at
the same time.
8 In Huygens diagram below the positions L, M, N are not ‘real’ heights of ascent but part of
his ‘by absurd’ demonstration.
9 We will utilise Mach’s 1883 analysis of Huygens 1673, see (Mach 1974, pp. 213–217).
10 ‘Free ascent’ of course still implies a constraint (weightless string) as in the simple pendu-

lum.
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sens général’, in Lindsay 1975, pp. 143–148.

Figure 13. (See Feynman et al. I, 13, 4).

THE PENDULUM: FROM CONSTRAINED FALL TO THE CONCEPT OF POTENTIAL 207



Camerota, M.: 1992, Gli scritti De motu antiquiora di Galileo Galilei: il Ms Gal 7, CUEC,
Cagliari.

Drake, S.: 1976, ‘The Evolution of De Motu’, Physis 14, 321–348.
Drake, S.: 1995, Galileo at Work, Reprinted, Dover Publication, New York.
Erlichson, H.: 1996, ‘Christiaan Huygens’ Discovery of the Center of Oscillation Formula’,

American Journal of Physics, 64, 571–574.
Feynman, R.P., Leighton, R.B. & Sands, M.: 1975, The Feynman Lectures on Physics, Inter

European Editions, Amsterdam.
Gabbey, A.: 1980, ‘Huygens and Mechanics’, in H.J.M., Bos, M.J.S. Rudwick and R.P.W.

Visser. (eds.), Studies on Christiaan Huygens, Swets and Zeitlinger, Lisse, pp. 166–199.
Galilei, G.: 1890–1909a, ‘De Motu’, in Le opere di Galileo Galilei, Edizione Nazionale, Vol. 1,

Barbera, Firenze.

Galilei, G.: 1890–1909b, ‘Discorsi e dimostrazioni matematiche intorno a due nuove scienze’,
in Le opere di Glileo Galilei, Edizione Nazionale, Vol. 8, Barbera, Firenze.

Galilei, G.: 1890–1909c, ‘Mecaniche’, in Le opere di Galileo Galilei, Edizione Nazionale, Vol. 2,

Barbera, Firenze.
Galilei, G.: 1954, Dialogues Concerning Two New Sciences, trans. H. Crew and A.D. Salvio,

Dover Publications, New York.

Galilei, G.: 1960, Galileo Galilei On Motion and On Mechanics, trans. I.E. Drabkin and
S. Drake, University of Wisconsin Press, Madison.

Galluzzi, P.: 1979, Momento: studi galileiani, Edizioni dell’ Ateneo e Bizzarri, Roma.
Gamow, G.: 1961, Biography of Physics, Harper and Row, New York.

Huygens, C.: 1888–1950, ‘Orologium oscillatorium’, in Oeuvres complètes de Christiaan Hu-
ygens, Vol. 18, M. Nijhoff, La Haye.

Huygens,C.: 1986,ThePendulumClock orGeometricalDemonstrationsConcerning theMotionof

Pendula as Applied to Clocks, trans. R.J. Blackwell, The Iowa State University Press, Ames.
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Idealisation and Galileo’s Pendulum Discoveries:

Historical, Philosophical and Pedagogical

Considerations
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Abstract. Galileo’s discovery of the properties of pendulum motion depended on his adoption
of the novel methodology of idealisation. Galileo’s laws of pendulum motion could not be
accepted until the empiricist methodological constraints placed on science by Aristotle, and by
common sense, were overturned. As long as scientific claims were judged by how the world

was immediately seen to behave, and as long as mathematics and physics were kept separate,
then Galileo’s pendulum claims could not be substantiated; the evidence was against them.
Proof of the laws required not just a new science, but a new way of doing science, a new way of

handling evidence, a new methodology of science. This was Galileo’s method of idealisatioin.
It was the foundation of the Galilean–Newtonian Paradigm which characterised the Scientific
Revolution of the 17th century, and the subsequent centuries of modern science. As the

pendulum was central to Galileo’s and Newton’s physics, appreciating the role of idealisation
in their work is an instructive way to learn about the nature of science.

1. Introduction

In a letter of 1632, ten years before his death, Galileo surveyed his achieve-
ments in physics and recorded his debt to the pendulum for enabling him to
measure the time of free-fall, which, he said, ‘we shall obtain from the
marvellous property of the pendulum, which is that it makes all its vibrations,
large or small, in equal times’ (Drake 1978, p. 399). To use pendulum motion
as a measure of the passage of time was a momentous enough achievement,
but the pendulum is also central to Galileo’s treatment of free fall, the motion
of bodies through a resisting medium, the conservation of ‘energy’, and the
rate of fall of heavy and light bodies. The pendulum is even more central to
Newton’s elaboration of the scientific programme begun by Galileo. The
historian Richard Westfall remarked that ‘It is not too much to assert that
without the pendulum there would have been no Principia (Westfall 1990,
p. 82). Thus Galileo’s and Newton’s account of pendulum motion is central
to the overthrow of Aristotelian physics and the development of the modern
science, a development about which the historian Herbert Butterfield has
said:
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Of all the intellectual hurdles which the human mind has confronted and has overcome
in the last fifteen hundred years, the one which seems to me to have been the most
amazing in character and the most stupendous in the scope of its consequences is the one

relating to the problem of motion. (Butterfield 1949, p. 3)

Consequently if students go through again the pendulum arguments, analyses
and experiments of Galileo and Newton, one should expect them to learn a
good deal of physics and a good deal of the methodology of physics; that is,
to learn about the nature of science.

Galileo at different stages makes four novel claims about pendulum mo-
tion. Despite people seeing swinging pendulums for thousands of years, no
one, not even the great Leonardo da Vinci who studied pendulum motion,
saw what Galileo ‘saw’. Galileo claimed that:1

(1) Period varies with length and later, more specifically, the square root of
length; the Law of Length.

(2) Period is independent of amplitude; the Law of Amplitude Indepen-
dence.

(3) Period is independent of weight; the Law of Weight Independence.
(4) For a given length, all periods are the same; the Law of Isochrony.

These laws are taught in all high school and university physics pro-
grammes, with the topic frequently being voted the ‘most boring’ in physics.
But some knowledge of the rich history behind Galileo’s pendulum discov-
eries allows much more than just the physics of pendulum motion to be
taught; such knowledge allows one of the defining methodological features of
the Scientific Revolution and of modern science to be appreciated, namely
the importance of idealisation in the revolutionary scientific achievements of
Galileo and Newton.

2. Teaching the Nature of Science

Most science programmes rightly aspire to having students appreciate
something of the methodology of science; this is frequently expressed as the
importance of teaching and learning about the ‘nature of science’ (NOS) .
One reviewer of curricular developments has said:

Although varying ideas exist for what components constitute a scientifically literate

citizenry, two attributes that have been consistently identified in the literature are an
understanding of the nature of science and an understanding of the nature of scientific
knowledge. (Meichtry 1993, p. 429)

Another reviewer has stated: ‘For more than half a century there has been an
overwhelming consensus of science education literature and science organi-
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zations of instructing science teachers and/or their students in the nature of
science’ (Alters 1997, p. 39). NOS goals are found in numerous national, state
and provincial curricula.2

The 17th century debates about the pendulum provide exemplary material
for methodological, or epistemological, reflection. Understanding the Sci-
entific Revolution is especially important for theories of knowledge, or for
epistemology. An epistemology that pays no attention to the Scientific
Revolution, or is at odds with its achievements and its methodological
innovations, is at best ill-nourished and at worst irrelevant to science.

3. Epistemology and History of Science

The view that the history of science has a prime importance for epistemology,
or theories of knowledge, has a long and distinguished heritage, going back
at least to Bacon, Spinoza and Locke in the seventeenth century, and
including Kant in the eighteenth century, Whewell in the nineteenth century,
and Popper, Putnam and many others in the twentieth century. All these
philosophers thought it incumbent to articulate their theories of knowledge
in the light of their understanding of the new science of Galileo and Newton.
Karl Popper is perhaps the best known twentieth-century advocate of the
position, saying that:

The central problem of epistemology has always been and still is the problem of the
growth of knowledge. And the growth of knowledge can be studied best by studying the
growth of scientific knowledge. (Popper 1934/1959, p. 15, italics in original)

However, linking epistemology to history of science is not without problems.
There is a well recognised problem with philosophers studying the growth of
scientific knowledge, namely they see their own philosophical predispositions
as the ones that are responsible for the growth of science. This Pygmalion
projection has been especially well documented in the case of Galileo, per-
haps for no other reason than he is the scientist most written about by
philosophers. The historian Alistair Crombie, in accepting the 1968 Galileo
Prize given by the Domus Galileiana, Pisa, remarked that:

Galileo has been described as a cultural symbol, transcending history. Rather it seems to
me that his reputation illustrates the universal human habit of creating myths to justify
attitudes taken to the present and future, myths intimately tied in Western culture to our

conception of time and history. As a scientific thinker Galileo has been made by an
astonishing variety of philosophical reformers whatever their hearts desired: an
experimentalist contemptuous of speculation, a mathematical idealist indifferent to
experiment; a positivist in fact hostile to ideas although he may not always have known

this himself, an illustration of the role of ideas in scientific discovery; a Platonist, a
Kantian, a Machian operationalist. … But our intellectual inheritance is also an
essentially critical one, predisposing each generation to take to pieces the history written

by its predecessors in their image, before re-writing it in its own. (Crombie 1970, p. 361)3
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So, mindful of this past ‘projectionist’ history, nevertheless epistemological
lessons can, with caution, be drawn from Galileo’s pendulum discoveries; and
these lessons are of a kind that students can easily enough appreciate.

4. Guidobaldo del Monte’s Criticism of Galileo’s Pendulum Claims

The seventeenth century’s analysis of pendulum motion is a particularly apt
window through which to view the methodological heart of the Scientific
Revolution. More particularly, the debate between the Aristotelian Guido-
baldo del Monte and Galileo over the latter’s pendular claims, represents, in
microcosm, the larger methodological struggle between Aristotelianism and
the new science. This struggle is in large part about the legitimacy of ide-
alisation in science, and the utilisation of mathematics in the construction
and interpretation of experiments.

The most significant opponent of Galileo’s nascent views about the pen-
dulum was his own academic patron, the distinguished Aristotelian Guido-
baldo del Monte (1545–1607) (Figure 1). Del Monte was one of the great
mathematicians and mechanicians of the late-16th century. He was a trans-
lator of the works of Archimedes, the author of a major book on mechanics
(Monte 1581/1969), a book on geometry (Planispheriorum universalium
theorica, 1579), a book on perspective techniques Perspectiva (1600), and an
unpublished book on timekeeping De horologiis that discussed the theory and
construction of sun dials. He was a highly competent mechanical engineer
and Director of the Venice Arsenal. Additionally he was an accomplished
artist, a minor noble, and the brother of a prominent cardinal.

gFigure 1.
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And he was the patron of Galileo who secured for Galileo his first uni-
versity position as a lecturer in mathematics at Pisa University (1588–1592),
and his second academic position as a lecturer in mathematics at Padua
University (1592–1610).4

Del Monte was not only a patron of Galileo, but from at least 1588 to his
death in 1607, he actively engaged in Galileo’s mechanical and technical
investigations. They exchanged many letters and manuscripts on broadly
Archimedean themes. Del Monte believed that theory should not be sepa-
rated from application, that mind and hand should be connected. As he said
in the Preface of his Mechanics: ‘For mechanics, if it is abstracted and sep-
arated from the machines, cannot even be called mechanics’ (Drake &
Drabkin 1969, p. 245). Del Monte was concerned with the long-standing
Aristotelian problem of how mathematics related to physics. In his Mecha-
niche he says:

Thus, there are found some keen mathematicians of our time who assert that mechanics

may be considered either mathematically, removed [from physical considerations], or
else physically. As if, at any time, mechanics could be considered apart from either
geometrical demonstrations or actual motion! Surely when that distinction is made, it

seems to me (to deal gently with them) that all they accomplish by putting themselves
forth alternately as physicists and as mathematicians is simply that they fall between
stools, as the saying goes. For mechanics can no longer be called mechanics when it is

abstracted and separated from machines. (Drake & Drabkin 1969, p. 245)

The methodological divide between del Monte and Galileo, between
Aristotelian science and the embryonic New Science of the Scientific Revo-
lution, was signalled in del Monte’s criticism of contemporary work on the
balance, including perhaps drafts of Galileo’s first published work, La Bi-
lancetta (Galileo 1586/1961). Del Monte cautioned that physicists are:

… deceived when they undertake to investigate the balance in a purely mathematical
way, its theory being actually mechanical; nor can they reason successfully without the
true movement of the balance and without its weights, these being completely physical

things, neglecting which they simply cannot arrive at the true cause of events that take
place with regard to the balance. (Drake & Drabkin 1969, p. 278)

In a 1580 letter to Giacomo Contarini, del Monte says:

Briefly speaking about these things you have to know that before I have written anything
about mechanics I have never (in order to avoid errors) wanted to determine anything,

be it as little as it may, if I have not first seen by an effect that the experience confronts
itself precisely with the demonstration, and of any little thing I have made its experiment.
(Renn et al. 1988, p. 39)

This then is the methodological basis for del Monte’s criticism of Galileo’s
mathematical (or geometric) treatment of pendulum motion. Del Monte, a
mathematician and a great technician, is committed to the core Aristotelian
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principle that physics, or science more generally, is about the world as
experienced, and that sensory evidence is the bar at which putative physical
principles are examined. Vision was Aristotle’s primary sense; it provided the
material for mind or nous. Aristotle reverses Plato’s ordering of reason and
observation. In his On the Generation of Animals, Aristotle remarks:

Credit must be given rather to observation than to theories, and to theories only if what

they affirm agrees with observed facts. (Barnes 1984, p. 1178)

This is also the commonsense understanding of science. Del Monte believed
that Galileo was a great mathematician, but that he was a hopeless physicist.
This is the methodological kernel of the Scientific Revolution. The sub-
sequent development of pendular analyses by Huygens, and then Newton,
beautifully illustrate the interplay between mathematics and experiment so
characteristic of the emerging Galilean–Newtonian Paradigm.

Galileo and del Monte had had an early exchange of letters about motion
in a semi-circle, and Galileo’s belief that such motion was tautochronous;5

unfortunately these letters were lost by the time Galileo’s Opere was collected
and edited by Antonio Favaro (20 volumes, Florence 1890–1909). Del Monte
could not believe Galileo’s pendular claims, and found them contradicted
when he rolled balls inside an iron hoop. He was a scientist-engineer, and
enough of an Aristotelian, to believe that tests against experience were the
ultimate adjudicator of claims in physics. Galileo’s claims failed the test. But
Galileo replies that accidents interfered with del Monte’s test: his wheel rim
was not perfectly circular and it was not smooth enough. These are perfectly
understandable qualifications, yet it needs to be appreciated that they are
modern qualifications. Galileo introduced this, now well established, process
of abstracting from real circumstances to ideal ones.

The crucial surviving document in the exchange between Galileo and his
patron is a 29th November 1602 letter where Galileo writes of his discovery
of the isochrony of the pendulum and conveys his mathematical proofs of the
proposition.6 The letter warrants discussion because it is a milestone in the
science of mechanics, and as it illustrates important things about Galileo and
his scientific style.

You must excuse my importunity if I persist in trying to persuade you of the truth of
the proposition that motions within the same quarter-circle are made in equal times. For
this having always appeared to me remarkable, it now seems even more remarkable that

you have come to regard it as false. Hence I should deem it a great error and fault in
myself if I should permit this to be repudiated by your theory as something false; it does
not deserve this censure, nor yet to be banished from your mind – which better than any

other will be able to keep it more readily from exile by the minds of others. And since the
experience by which the truth has been made clear to me is so certain, however
confusedly it may have been explained in my other [letter], I shall repeat this more clearly

so that you, too, by making this [experiment], may be assured of this truth.

MICHAEL R. MATTHEWS214



Therefore take two slender threads of equal length, each being two or three braccia long
[4–6 feet]; let these be AB and EF (Figure 2). Hang A and E from two nails, and at the
other ends tie two equal balls (though it makes no difference if they are unequal). Then

moving both threads from the vertical, one of them very much as through the arc CB,
and the other very little as through the arc IF, set them free at the same moment of time.
One will begin to describe large arcs like BCD while the other describes small ones like

FIG. Yet in this way the moveable [that is, movable body] B will not consume more time
passing the whole arc BCD than that used up by the other moveable F in passing the arc
FIG. I am made quite certain of this as follows.

The moveable B passes through the large arc BCD and returns by the same DCB and
then goes back toward D, and it goes 500 or 1000 times repeating its oscillations. The
other goes likewise from F to G and then returns to F, and will similarly make many

oscillations; and in the time that I count, say, the first 100 large oscillations BCD, DCB
and so on, another observer counts 100 of the other oscillations through FIG, very
small, and he does not count even one more – a most evident sign that one of these large

arcs BDC consumes as much time as each of the small ones FIG. Now, if all BCD is
passed in as much time [as that] in which FIG [is passed], though [FIG is] but one-half
thereof, these being descents through unequal arcs of the same quadrant, they will be
made in equal times. But even without troubling to count many, you will see that

moveable F will not make its small oscillations more frequently than B makes its larger
ones; they will always be together.

The experiment you tell me you made in the [rim of a vertical] sieve may be very

inconclusive, perhaps by reason of the surface not being perfectly circular, and again
because in a single passage one cannot well observe the precise beginning of motion. But
if you will take the same concave surface (Figure 3) and let ball B go freely from a great

distance, as at point B, it will go through a large distance at the beginning of its
oscillations and a small one at the end of these, yet it will not on that account make the
latter more frequently than the former.

Then as to its appearing unreasonable that given a quadrant 100 miles long, one of
two equal moveables might traverse the whole and [in the same time] another but a single
span, I say that it is true that this contains something of the wonderful, but our wonder

will cease if we consider that there could be a plane as little tilted as that of the surface of
a slowly running river, so that on this [plane] a moveable will not have moved naturally
more than a span in the time that on another plane, steeply tilted (or given great impetus

even on a gentle incline), it will have moved 100 miles. Perhaps the proposition has

gFigure 2.
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inherently no greater improbability than triangles between the same parallels and on
equal bases are always equal [in area], though one may be quite short and the other 1000
miles long. But keeping to our subject, I believe I have demonstrated that the one

conclusion is no less thinkable than the other.
Let BA be the diameter of circle BDA erect to the horizontal, and from point A out to

the circumference draw any lines AF,FF AE, AD, and AC (Figure 4). I show that equal

moveables fall in equal times, whether along the vertical BA or through the inclined
planes along lines CA, DA, EA and FA. Thus leaving at the same moment from points B,
C, D, E, and F, they arrive at the same moment at terminus A; and line FA may be asFF

short as you wish.
And perhaps even more surprising will this, also demonstrated by me, appear: That

line SA being not greater than the chord of a quadrant, and lines SI and IA being any

whatever, the same moveable leaving from S will make its journey SIA more swiftly than
just the trip IA, starting from I. This much has been demonstrated by me without
transgressing the bounds of mechanics. But I cannot manage to demonstrate that arcs

SIA and IA are passed in equal times, which is what I am seeking. (Drake 1978, pp. 69–
71)

Thus in 1602 Galileo is claiming two things about motion on chords within a
circle:

1. That in a circle, the time of descent of a body free-falling along all chords
terminating at the nadir, is the same regardless of the length of the
chord.

2. In the same circle, the time of descent along two composite chords is
shorter than along a single chord joining the beginning and end of the
composites, even though the composite route is longer than the direct
route.

This gets him tantalisingly close to a claim about motion along the arcs of
the circle, the pendulum case, but not quite there. He is not prepared to make
the leap, saying ‘But I cannot manage to demonstrate that arcs SIA and IA
are passed in equal times, which is what I am seeking’. Although he has
confident intuitions about the isochronism of circular motion, nevertheless
these intuitions are mistaken. In just a few decades Christiaan Huygens will
establish geometrically that it is motion in a cycloid, not in a circle, that is
isochronic; but nevertheless, for small amplitudes, the circle and the cycloid
coincide (Matthews 2000, Chapter 6).

gFigure 3.
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The above diagram (Figure 4), of the circle and its chords, has great
potential in Galileo’s physics. He is asserting that the time of free fall along
BA is the same as the motion along the inclines DA, EA, FA – given the
contrary-to-fact idealised assumption that the chord-planes are perfectly
smooth and without friction. In just a few years (1604) he will formulate his
‘times-squared’ law saying that distance fallen on an inclined plane, or in free
fall, varies as the square of the time elapsed (s � t2); or, as we can say, time
elapsed varies as the square root of distance fallen (t � �s).

Consider a redrawing of the above figure, as in Figure 5. Galileo says that
a sphere released from B will drop to A in the same time as a sphere released
from E will travel down a perfectly smooth plane EA of length d.

This can be easily be shown. If <EAK ¼ h, then <ABE ¼ h, because
<AEK ¼<EAB, and together <EAK + <AEK ¼ 90 �. The sphere at E
has a vertical acceleration of g (acceleration due to gravity) along EK. If EA
is inclined at an angle h to the horizontal AK, then the sphere’s acceleration
component along EA is g sin h. So the time t taken to travel the distance d
from rest to A, will be derived from d ¼½a t2. Thus:

t ¼ p2d=d a ¼ p2d=d g sin h

Consider now the sphere falling from B to A. It falls the distance 2l, with an
acceleration of g. So the time (t1) it takes to fall is given by

t1 ¼ p2:2l=g ¼ 2
p
l=g

From the D ABE, d ¼ 2l sin h, and substituting in the first equation, we
have:

t ¼ p2:2l sin h=g sin h ¼ 2
p
l=g

Thus t ¼ t1, so the time to fall vertically BA equals the time to travel on the
incline EA. And the same holds for decent along all other chords in the circle:
the time of decent is the same as the time of free fall from B to A.

The redrawn figure allows us to connect motion in free fall, motion on an
inclined plane, and pendulum motion. Movement along the arc EA (=s) is

gFigure 4.
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precisely that of a pendulum suspended at O with length l and a bob or
sphere at E. The amplitude of the pendulum swing is 2h. The period of this
pendulum (T) is four times the time taken to travel along the arc EA (periodTT
equals time for the bob to descend EA, then up the other side, and back again
to E). If h is small, then arc length s (l rad 2h) is approximately equal to chord
length d, and sin 2dd h approximates radian 2h. With approximations, we can
derive the familiar formulae:7

T � 4t � 4:2
p
l=g � 2p

p
l=g

Thirty years later, in his Dialogue Concerning the Two Chief World Systems
(1633), Galileo returns to this example of del Monte’s, saying, in defence of
his claims for the tautochronism of circular motion, that:

Take an arc made of a very smooth and polished concave hoop bending along the

curvature of the circumference ADB (Figure 6), so that a well-rounded and smooth ball
can run freely in it (the rim of a sieve is well suited for this experiment). Now I say that
wherever you place the ball, whether near to or far from the ultimate limit B … and let it

go, it will arrive at the point B in equal times … a truly remarkable phenomenon.
(Galileo 1633/1953 p. 451)

5. Testing Idealised Laws

Galileo did not develop a system of rational mechanics in the way that
medieval scientists constructed mathematical models of physical systems,

gFigure 5.
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and then proceeded no further. He was not content with merely making a
‘world on paper’. In contrast to the medievals, Galileo’s theoretical con-
structions are the means for engaging with, and working on, the natural
world. For him the theoretical object provides a plan for interfering with the
material world, and where need be, for making the real world in the image of
the theoretical. When del Monte tells Galileo that he has done an experiment
with balls in an iron hoop and the balls do not behave as Galileo asserts,
Galileo replies that the hoop must not have been smooth enough, that the
balls were not spherical enough and so on. These suggestions for improving
the experiment are driven by the theoretical object that Galileo has already
constructed. Without the theoretical object he would not know whether to
correct for the colour of the ball, the material of the hoop, the diameter of
the hoop, the mass of the ball, the time of day or any of a hundred other
factors.

In his more candid moments, Galileo acknowledged that events do not
always correspond to his theory; that the material world and his so-called
‘world on paper’, the theoretical world, do not correspond. Immediately after
geometrically establishing his famous law of parabolic motion of projectiles,
he remarks that:

I grant that these conclusions proved in the abstract will be different when applied in the
concrete and will be fallacious to this extent, that neither will the horizontal motion be
uniform nor the natural acceleration be in the ratio assumed, nor the path of the

projectile a parabola. (Galileo 1638/1954, p. 251)

Galileo is not deterred by the ‘perturbations’, ‘accidents’, and ‘impedi-
ments’ that interfere with the behaviour of the free falling, rolling, and
projected bodies with which his New Science is dealing.8 His procedure is
explicitly stated immediately after the disclaimer about the behaviour of real
projectiles in contrast to his ideal ones. Galileo says:

igu e 6.Figure 6.

IDEALISATION AND GALILEO’S PENDULUM DISCOVERIES 219



Of these properties [accidenti] of weight, of velocity, and also of form [i figura[[ ] infinite in
number, it is not possible to give any exact description; hence, in order to handle this
matter in a scientific way, it is necessary to cut loose from these difficulties; and having

discovered and demonstrated the theorems, in the case of no resistance, to use them and
apply them with such limitations as experience will teach. (Galileo 1638/1954, p. 252,
253)

In an historical understatement, Galileo adds: ‘And the advantage of this
method will not be small’ (ibid.).

One can imagine the reaction of del Monte and other hardworking
Aristotelian natural philosophers and mechanicians when presented with
such a qualification. When baldly stated, it confounded the basic Aristotelian
and empiricist objective of science, namely to tell us about the world in which
we live. Consider, for instance, the surprise of Giovanni Renieri, a gunner
who attempted to apply Galileo’s theory of projectile motion to his craft,
who when he complained in 1647 to Torricelli that his guns did not behave
according to Galileo’s predictions, was told by Torricelli that ‘his teacher
spoke the language of geometry and was not bound by any empirical result’
(Segre, 1991, p. 43).

The law of parabolic motion was supposedly true, but not of the world we
experience: this was indeed as difficult to understand for del Monte as it is for
present-day students. Furthermore it confounded the Aristotelian method-
ological principle that the evidence of the senses is paramount in ascertaining
how the world functions. That is, for a healthy observer what the eye sees is
how the world is. Aristotle more than once asks that: ‘If we cannot trust our
eyes what can we trust?’

There is, of course, a problem of idealisation hiding fundamental
mechanisms in the world. Keeping one’s eye on the essential property is
scientifically commendable, provided that it is the essential property, and
that concentration on it does not blind one to other significant influences
or properties. This is the case when Galileo maintains the isochrony of
circular motion, dismissing experimental deviations as ‘accidents’ – due to
air resistance, friction, compounding effect of the weight of the string,
etc. Some of the deviation was accidental, but not all of it. The core
deviation of experiment from theory was because the theory was wrong:
it was the cycloid, not the circle that was isochronous. For theories that
explicitly deal with idealised cases or situations, there is always the
danger of maintaining that ‘my theory is right, do not bother me with
the facts’.9

Undoubtedly there was an element of metaphysics in Galileo’s adherence
to the circle as the tautochrone. The same conviction perhaps that lead him
to discuss and defend Copernicus’s theory of circular planetary orbits, despite
Kepler’s elliptical refinement of Copernicus’s views being published in 1619,
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14 years before Galileo’s great Dialogue, and Galileo having a copy of the
work in his library. The same conviction perhaps led Galileo to the doctrine
of circular inertia.10

6. Galileo’s Idealisations and the Beginning of Modern Science

What Galileo does with pendulum and projectile motions, he also does
more generally with free fall. In his 1638 Discourse on Two New Sciences
he explicitly turns away from Aristotelian attention to the kaleiodoscopic
variety of behaviours exhibited by different shaped objects falling in dif-
ferent media – think of the innumerable ways that autumn leafs fall in
air, to say nothing of how different bodies fall in water – and concen-
trates on how bodies would fall in a vacuum. As there was then no
vacuum that could be observed or manipulated, and further as Aristotle’s
physics denied the very possibility of a vacuum, Galileo’s idealisation was
thought to be fundamentally insane. He was investigating another world,
so to speak. But his method of idealisation marked the beginnings of
modern science.11

Newton adopted and extended Galileo’s method of idealisation. This is
why the methodology of modern science can be referred to as the ‘Galilean–
Newtonian Paradigm’.12 At the beginning of the Principia Newton
announces that: ‘in philosophical disquisitions, we ought to abstract from
our senses, and consider things themselves, distinct from what are only
sensible measures of them’ (Newton 1729/1934, p. 8). The whole structure of
the Principia manifests this methodology. In Book One, Newton considers
bodies as point masses moving in an infinite void. This allows him to for-
mulate mathematically the physics of the simplest, or ideal, case. In Book
Two, he introduces resistance and considers bodies moving in a medium. In
the final section of the Principia he considers ‘The System of the World’
where the orbit of the earth is studied in full interaction with the moon and
other planets.

In the beginning, as soon as Newton states his First Law of Motion [the
Law of Inertia], he elaborates by saying: ‘Projectiles continue in their mo-
tions, so far as they are not retarded by the resistance of air, or impelled
downwards by the force of gravity’ (Newton 1729/1934, p. 13). This is the
statement of a massive contrary-to-fact idealisation. We are asked to consider
first, the behaviour of a body in the absence of air, and no such situation had
been observed; and second, the behaviour of a body in the absence of any
other body, and no such situation is even possible, as if an observer is there to
see what happens, then gravitational [attractive] forces have been introduced
by the observer.
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Again, early in the Principia Newton uses pendulum-collision experiments
to prove his law of conservation of momentum: ‘the sum of the motions [after
collision] directed towards the same way, or from the difference of those that
were directed towards contrary ways, was never changed’ (Newton 1729/
1934, p. 24). Having stated this, he immediately adds: ‘the bodies were either
absolutely hard, or at least perfectly elastic (whereas no such bodies are to be
found in Nature)’ (ibid). That is, baldly stated, the law is true for bodies that
do not exist!

Bernard Cohen wrote of Newton’s methodology that:

The great power of the Newtonian style was that it made possible the study of forces of

different sorts in relation to motions in general, and in relation to those motions
observed in the external world, without any inhibiting considerations as to whether such
forces can actually (or do actually) exist in nature. (Cohen 1980, p. xiii)

Aristotle had taken experience as the foundation of science, and so his ‘law’
of motion stated that ‘speed of motion varied directly as the force being
applied and inversely as the resistance of the medium through which the body
was being moved’. This is commonsense, it is the articulation of everyday
experience, but it was also an ‘epistemological obstacle’ to the birth of
modern science.13

7. Idealisation and Experiment

Galileo abstracted from ‘impediments’ and ‘accidents’ – the shape and colour
of bodies, wind, air resistance, friction, and so on – in order to get a math-
ematical formulation of the principal causal relationships. But he did not
confine himself to ‘a world on paper’, he did not just make speculations and
draw pictures – as many of the medieval physicists had done. Through
experimental manipulation, elimination of impediments, and progressive
approximations, he tried to have the real world mirror his ideal. As he said:
‘having discovered and demonstrated the theorems, in the case of no resis-
tance, to use them and apply them with such limitations as experience will
teach’ (Galileo 1638/1954, p. 252). Galileo defended this procedure in a 1637
letter to Pierre Carcavy:

I argue ex suppositione, picturing to myself motion with respect to a point from which [a
thing] leaving from rest goes accelerating, increasing its speed in the same proportion

with which time increases, and in this way I conclusively demonstrate many events; then
I add that if experience shows that such events are found verified in the motion of
naturally descending heavy things, we can without error affirm this [natural motion] to
be the same motion that I defined and assumed. (Drake 1978, p. 378)

This sounds fairly straightforward, but then Galileo immediately adds a
qualification:
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If [they are] not, my demonstrations founded on my assumption lose nothing of their
force and conclusiveness, just as it in no way prejudices the conclusions proved by
Archimedes about the spiral that no naturally moving body moves spirally in that

manner. (ibid.)

Newton followed the same procedure. He proposed three laws of motion for
a thoroughly idealised world, but then bit by bit introduced complications.
Nowak and colleagues call this the process of ‘concretization’; progressively
making concrete or real the idealised situation or model. This is how scientific
experimentation is to be understood. The 200-year history of classical me-
chanics can be considered as a long attempt to make the world conform to
Newtonian theory!

This fairly simple interpretation of experiment (‘simple’, once Aristotelian
objections to the very idea of interference with nature are put aside) allows
a number of perplexing matters about science to be understood. Not the
least of which is the disjunction between scientific laws and everyday
observation.

Michael Scriven, forty years ago, arrestingly remarked that ‘The most
interesting thing about laws of nature is that they are virtually all known to
be in error’ (Scriven 1961, p. 91). This position was subsequently taken up by
Nancy Cartwright who in her How the Laws of Physics Lie says that if the
laws of physics are interpreted as empirical, or phenomenal, generalisations,
then the laws lie (Cartwright 1983). As Cartwright states the matter: ‘My
basic view is that fundamental equations do not govern objects in reality;
they govern only objects in models’ (Cartwright 1983, p. 129). The world
does not behave as the fundamental equations dictate. This claim is not so
scandalous: the gentle and random fall of an autumn leaf obeys the law of
gravitational attraction, but its actual path is hardly as described by the
equation s ¼½gt2. This equation refers to idealised situations. A true
description, a phenomenological statement, of the falling autumn leaf would
be complex beyond measure. The law of fall states an idealisation, but one
that can be experimentally approached. These laws are usually stated with a
host of explicit ceterus paribus, or ‘other things being equal’, conditions.14

For the laws of pendulum motion to hold at least the following ceterus
paribus conditions need to be stated:

1. the string is weightless (so no dampening occurs);
2. the bob does not experience air resistance;
3. there is no friction at the fulcrum;
4. all the bob’s mass is concentrated at a point;
5. the pendulum moves in a plane and does not experience any elliptical

motion;
6. that gravity and tension are the only forces operating on the bob.
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But these conditions can only be approached, never realised – something
that Ronald Giere has been at pains to point out (Giere 1988, pp. 76–78;
1994; 1999, chapter 5). Giere believes that not only are scientific laws
false, they are also neither universal or necessary (Giere 1999, p. 90).
He says:

On my alternative interpretation, the relationship between the equations and the world is

indirect. … the equations can then be used to construct a vast array of abstract
mechanical systems … I call such an abstract system a model. By stipulation, the
equations of motion describe the behavior of the model with perfect accuracy. We can

say that the equations are exemplified by the model or, if we wish, that the equations are
true, even necessarily true, for the model. (Giere 1999, p. 92)

8. Philosophical Approaches to Idealisation

Despite the popularity, both professional and lay, of empiricist, and even
inductivist, interpretations of Galileo’s achievements, many philosophers
have recognised the centrality of idealisation in his science. Immanuel Kant
famously wrote in the Preface to his Critique of Pure Reason that:

When Galileo caused balls, the weights of which he had himself previously determined,
to roll down an inclined plane; when Torricelli made the air carry a weight which he had
calculated beforehand to be equal to that of a definite volume of water … a light broke

upon all students of nature. They learned that reason has insight only into that which it
produces after a plan of its own, and that it must not allow itself to be kept, as it were, in
nature’s leading-strings, but must itself show the way with principles of judgment based

upon fixed laws, constraining nature to give answer to questions of reason’s own
determining. Accidental observations, made in obedience to no previously thought-out
plan, can never be made to yield a necessary law, which alone reason is concerned to

discover. … It is thus that the study of nature has entered on the secure path of a science,
after having for so many centuries been nothing but a process of merely random groping.
(Kant 1787/1933, p. 20)

One hundred years later, Pierre Duhem wrote about the development of
Galileo’s and Newton’s account of inertia, pointing out that:

Now is it clear merely in the light of common sense that a body in the absence of
any force acting on it moves perpetually in a straight line with constant speed? Or
that a body subject to a constant weight constantly accelerates the velocity of its

fall? On the contrary such opinions are remarkably far from common-sense
knowledge; in order to give birth to them, it has taken the accumulated efforts of
all the geniuses who for two thousand years have dealt with dynamics. (Duhem

1906/1954, p. 263)

Alexandre Koyré, in his influential 1943 essay on ‘Galileo and the Sci-
entific Revolution’ supported Kant’s account, when he wrote that:

Aristotelian physics is based on sense-perception and is therefore decidedly non-

mathematical. It refuses to substitute mathematical abstractions for the colourful,
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qualitatively determined facts of common experience, and it denies the very possibility of
a mathematical physics. (Koyré 1943a/1968, p. 5)

Latter he would write:

… observation and experience – in the meaning of brute, common-sense observation
and experience – had a very small part in the edification of modern science; one could

even say that they constituted the chief obstacles that it encountered on its way. … the
empiricism of modern science is not experiential; it is experimental. (Koyré 1953/1968, p.
90)

Gaston Bachelard, stressed these matters in his influential 1930s work:

Empirical notions derived from ordinary experience have to be revised and modified

repeatedly before they can be of any use to microphysics, which defines reality by
interference rather than discovery. (Bachelard 1934/1984, p. 160)

Laura Fermi and Gilberto Bernardini draw attention to the same meth-
odological point regarding the centrality, for Galileo’s science, of abstracting
from everyday experience. They put the matter this way:

In formulating the ‘Law of Inertia’ the abstraction consisted of imagining the motion of
a body on which no force was acting and which, in particular, would be free of any sort

of friction. This abstraction was not easy, because it was friction itself that for thousands
of years had kept hidden the simplicity and validity of the laws of motion. In other
words friction is an essential element in all human experience: our intuition is dominated

by friction. (Fermi & Bernadini 1961, p. 116)

The historian Richard Westfall stated well the more general methodo-
logical principle that distinguished Galileo and early modern science from del
Monte and the medieval and ancient traditions:

Beyond the ranks of historians of science, in my opinion, the scientific revolution is
frequently misunderstood. A vulgarized conception of the scientific method, which one
finds in elementary textbooks, a conception which places overwhelming emphasis on the

collection of empirical information from which theories presumably emerge spontane-
ously, has contributed to the misunderstanding, and so has a mistaken notion of the
Middle Ages as a period so absorbed in the pursuit of salvation as to have been unable to
observe nature. In fact medieval philosophy asserted that observation is the foundation

of all knowledge, and medieval science (which certainly did exist) was a sophisticated
systematization of common sense and of the basic observations of the senses. Modern
science was born in the sixteenth and seventeenth centuries in the denial of both.

(Westfall 1988, p. 5)

Leszek Nowak and his Polish colleagues have over the past forty years
provided a very developed account of the logic of idealisation in science, and
of the role of idealisation in the history of natural and social science.15 And
the topic has been addressed by other philosophers.16 In an early paper
(1975) Nowak says that ‘In brief, the Galilean breakthrough consisted in the
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introduction of the method of idealization in physics’ (Nowak 1980, p. 36).
By this he meant:

According to the proper scientific method, and investigator should separate the principal
and secondary factors for a given phenomenon and abstract from them establishing the

law connecting the phenomenon with the principal determinants of it. Thus idealization
laws express scientists’ convictions concerning the essential stratification of the world.
(Nowak 1980, p. 37)

In a later paper he states the matter as follows:

The Galilean revolution consisted in making evident the misleading nature of the world
image which senses produce. We only see phenomena which are the joint effect of all the
relevant influences. As a result, senses do not contribute in the slightest to the
understanding of the facts. In order to understand phenomena the work of reason is

necessary which selects some features of the objects through idealization and in their
idealized models recognizes some other features of the empirical originals. These models
differ a great deal from their sensory prototypes, what is more, they present images of

hidden relationships which could not be grasped with the aid of experience at all.
(Nowak 1994, p. 123).

9. Idealisation and Anti-Science Sentiment

A failure to appreciate what idealisation is and is not has been at the basis of
a lot of anti-science criticism. It was, of course, Newtonian idealisation that
the Romantic reaction was directed against. For Keats, Goethe and other
Romantics and Naturalists, the rich world of lived experience was not cap-
tured by the colourless point masses of Newton. In the twentieth century,
Sartre, Marcuse, Husserl, Tillich and others of an Existentialist or Personalist
bent, have repeated this charge. Sartre at one point says that evil is ‘the
systematic substitution of the abstract for the concrete’ (Passmore 1978, p. 70).
This substitution is precisely the charge of del Monte against Galileo. This
substitution is exactly what Gaston Bachelard identified as the raison d’être
of the scientific revolution. Although it might be fashionable to agree with
Sartre, the price is the rejection of the unequalled methodology of the sev-
enteenth century’s new science. There is obviously a problem here. Aldous
Huxley, at the end of World War Two, intelligently commented on the matter
saying:

The scientific picture of the world is inadequate, for the simple reason that science does
not even profess to deal with experience as a whole, but only with certain aspects of it in
certain contexts. All of this is quite clearly understood by the more philosophically

minded men of science. … [Unfortunately] our times contains a large element of what
may be called ‘nothing but’ thinking. (Huxley 1947, p. 28)

A historically and philosophically literate science teacher can assist students
to grasp just how science captures, and does not capture, the real, subjective,
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lived world. An HPS-illiterate teacher leaves students with the unhappy
choice between disowning their own world as a fantasy, or rejecting the world
of science as a fantasy.

10. Idealisation, Constructivism and Science Learning

Children have the same difficulty seeing the properties of pendulum motion
that the sixteenth century Aristotelians had. School children, even with
highly refined laboratory pendulums, struggle to see isochrony of large and
small amplitude swings (the theoretical limit for ‘largeness’ is about 23�);
their cork and brass pendulums are soon out of synchrony, with the cork one
ceasing to swing well before the brass one. All of this experiential evidence is
hard to reconcile with the ‘laws’ of pendulum motion. Children are in the
position of the early pioneers of a science. Children can eventually, with lots
of prompting, see that period increases as length increases, but they are
unlikely to ‘see’ isochronic motion. Looking is important, but something else
is required, namely a better appreciation of what science is and what it is
aiming to do, an epistemology of science.

Aristotle, Oresme, Buridan, Bradwardine, da Vinci, del Monte, and
countless hundreds of other natural philosophers had all ‘seen’ pendulum
motion, but they did not see what Galileo saw. The historian E.J. Di-
jksterhuis had an appreciation of this when he observed:

To this day every student of elementary physics has to struggle with the same errors and
misconceptions which then [in the seventeenth century] had to be overcome … in the

teaching of this branch of knowledge in schools, history repeats itself every year.
(Dijksterhuis 1961/1986, p. 30)

Dijksterhuis goes on to make a fundamental point. Classical mechanics is not
only not verified in experience, but its direct verification is fundamentally
impossible: ‘one cannot indeed introduce a material point all by itself into an
infinite void and then cause a force that is constant in direction and mag-
nitude to act on it; it is not even possible to attach any rational meaning to
this formulation’.

Galileo’s exchange with del Monte, and more generally the recognition of
the centrality of idealisation to science, basically undermines all naı̈ve
experiential and inductivist approaches to learning; they also undermine
most constructivist and ‘discovery’ learning approaches to teaching. The
young Dewey shared with Ernst Mach and John Stuart Mill the wide-spread
19th century view that it was by looking carefully at nature, and then pro-
ceeding with cautious inductions, that Galileo and Newton launched modern
science. He thought that if children likewise ‘experienced’ the world at first
hand, they would come to know the world. In 1898 he confidently wrote that:
‘After the conquest of the inductive method in all spheres of scientific inquiry,
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we are not called upon to defend its claims in pedagogy’ (Prwawat 2003, p.
281). This confidence was instilled in the Progressive Education Association
that Dewey founded. But sometime around 1915 Dewey changed his mind on
inductivism; he no longer saw it as the method of modern science, saying
rather that:

It would be difficult to imagine a doctrine more absurd than the theory that general ideas

or meanings arise by the comparison of a number of particulars, eventuating in the
recognition of something common to them all. (Dewey 1929, p. 155)

Unfortunately many progressive educators either did not notice or did not
attend to Dewey’s change of mind; they persisted with various forms of
experiential, student-centred, learning. A good deal of this tradition has been
resurrected by contemporary constructivists, who have persisted in the
mantra that ‘knowledge cannot be transferred, it has to be constructed by the
knower’ (Matthews 2000a).

The weakness of simple inductivist views of learning is that intuitive beliefs
and ‘natural’ interpretations are so strongly influenced by everyday, concrete
experience. Lewis Wolpert, in his The Unnatural Nature of Science (1992), has
correctly remarked that:

Scientific ideas are, with rare exceptions, counter-intuitive: they cannot be acquired by

simple inspection of phenomena and are often outside everyday experience … doing
science requires a conscious awareness of the pitfalls of ‘natural’ thinking. (Wolpert
1992, p. xi)

Some decades ago Myron Atkin, a science educator pointed out this very
problem with the community’s enthusiasm for discovery learning:

A basic flaw in the process is the apparent assumption that science is a sort of
commonsensical activity, and that the appropriate ‘skills’ are the primary ingredients in
doing productive work. There seems to be no explicit recognition of the powerful role of

the conceptual frames of reference within which scientists and children operate and to
which they are firmly bound. These general views of the physical world demand careful
nurture … by a variety of means. (Glass 1970, p. 20)

And clearly language, as in telling, explaining, defining, clarifying etc., is
integral to this ‘careful nurture’.

Schecker (1992) has addressed some of these questions in an interesting
way. He asked 254 high school students to comment upon the following
statement:

In physics lessons there are often assumptions or experiments of thought, which

obviously cannot be realized in actual experiments, like completely excluding air
resistance and other frictional effects or assuming an infinitely lasting linear motion.

The students were asked to comment on whether the method was useful or
not useful. Eleven percent said it was useless, ‘Why should I consider
something that does not exist?’ A large group, up to 50% said it was useful,
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but only for physics because physics did not deal with reality, ‘I don’t need to
refer everything to reality. I am simply interested in physics … physics is not
about the world’ (Schecker 1992, p. 75). Only 25% had any comprehension of
the method of idealisation in science.

César Medina and colleagues at the University of Tucumán have con-
ducted pendulum-focussed practical programmes for university physics
classes that are based explicitly on the programme of concretisation (Medina,
Velazco & Salinas 2004). In class students:

have to construct a simple pendulum that behaves as an ideal one, and analyze model
assumptions which affect its period. The following aspects are quantitatively analyzed:
vanishing friction, small amplitude, non extensible string, point mass of the body, and

vanishing mass of the string.

From theory, the students have Galileo’s ‘world on paper’, but the practical
work imitates Galileo’s efforts to ‘embody’ or make concrete this world.
Students experimentally investigate each of the idealised assumptions, and
ascertain that:

Considered separately, within an error of 1%:

– an initial amplitude of 23� is ‘‘small’’.
– a sphere, whose diameter is 30 % of the length of the string, is ‘‘a point mass’’.
– a mass of the string equal to 10 % of the mass of the body is ‘‘vanishing’’.

– any elastic elongation suffered by the string during the static process of loading is neg-
ligible, providing the string length is measured after the loading.

– without losing its property of ‘not extensible’, the string may vary its length during

oscillation (due to a variable tension), providing this variation is less than the mea-
surement error of the string length.

Medina and colleagues say of this way of carrying out the usual pendulum
experiments, that it:

Promotes a better understanding of the scientific modeling process.

Allows a deeper comprehension of those physical concepts associated with model
assumptions (small amplitude, point mass, etc.), whose physical and epistemological
meanings appear clearly related to the model context.

Introduces students to a scientific way of controlling the validity of theoretical
development, and helps them to value the power and applicability of scientific modeling.

11. Conclusion

The science curriculum and classroom can give students an appreciation of
the scientific tradition and of the nature of science, but only if the scientific
tradition is included in the programme. Teachers need to be selective, not
everything can be dealt with historically, or by the ‘genetic’ method. However
the pendulum story, and more specifically the del Monte and Galileo debate
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is a simple, yet scientifically and methodologically rich, part of the tradition
that can easily be included in science programmes. The story is tailor-made
for teaching the core scientific principles of mechanics; for teaching the chief
aspects of scientific methodology, especially the importance of idealisation;
and finally for displaying the human face of science.

The argument of this paper has been made many times over – with Ernst
Mach, F.W. Westerway, Gerald Holton, Lloyd Taylor, Arnold Arons, James
Rutherford and Leo Klopfer being familiar names to science educators. The
argument was also made 40 years ago by Arthur Koestler, a person well
outside the science classroom. He lamented the ‘anti-humanism’ and ‘bore-
dom’ of school science, writing:

To derive pleasure from the art of discovery … the student must be made to re-live, to
some extent, the creative process. In other words he must be induced, with proper aid

and guidance, to make some of the fundamental discoveries of science himself, to
experience in his own mind some of those flashes of insight which have lightened its path.
This means that the history of science ought be made an essential part of the curriculum.

(Koestler, 1964, p. 268)

Galileo’s discovery and utilisation of the properties of pendulum motion is a
stunning example of the ‘creative process’. If students are fortunate enough
to have teachers capable of providing ‘proper aid and guidance’, then re-
living the process can be a manageable and illuminating task.

Notes

1 For a more complete account of Galileo’s pendulum discoveries, see Matthews (2000,
chap.5).
2 A comprehensive survey of such ‘big-picture’ curriculum goals can be found in McComas

and Olsen (1998).
3 See also Crombie (1981) for a more extended discussion of this projection phenomena in
philosophy.
4 Del Monte’s Mechanics is translated in Drake and Drabkin (1969) who describe del Monte

as the greatest mechanician of the sixteenth century. Dugas (1988, pp. 100-101) discusses
sympathetically del Monte’s contribution to mechanics. See also the pen-picture of del Monte
in Drake (1978, p. 459); a more extensive picture in Rose (1980, 1992); accounts of del Monte’s

patronage of Galileo in Biagioli (1993, pp. 30 and 31) and Sharratt (1994, p. 43 and 44);
accounts of del Monte in Henninger-Voss (2000) and Bertoloni Meli (1992). An extensive
discussion of del Monte as representative of the newly emerging engineer-scientist class is in

Renn et al. (1998, pp. 36–40). These latter authors also translate a number of key letters
between del Monte and Galileo, and provide documentation of archival sources.
5 There are three different kinds of curve that need to be separated:

Tautochrone, meaning the curve where a body falling freely reaches the lowest point in the

same time, regardless of where on the curve it was released. (from tauto ¼ same)
Brachistochrone, meaning the curve where a body freely falling (but not in a straight line)
will reach its lowest point fastest. (from brachis ¼ short)
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Isochronous, meaning the curve on which each successive oscillation takes the same period

of time. (from iso ¼ equal)

Tautochronous and Isochronous motion, though conceptually different, are in reality much
the same thing.
6 The letter was written in October 1602 (Opere, Edizione Nazionale, Florence 1934, vol. 10,
pp. 97–100), and a translation has been provided by Stillman Drake (Drake 1978, pp. 69–71).
Arguably a better translation is in Renn et al. (1998, pp. 104–106). Ronald Naylor (1980, pp.
367–371) and W.C. Humphreys (Humphreys 1967, pp. 232–234) discuss the letter in the

context of Galileo’s work on the law of fall.
7 For derivations of the formulae that are cognisant of its historical origins, see French (1965,
pp. 434–440), Kline (1959, pp. 288–293), Pólya (1977, pp. 211-224), and Taylor (1941, pp. 188–

194). An excellent discussion is in Stinner and Metz (2002).
8 On Galileo’s recourse to ‘accidental’ factors, and their crucial role in his scientific meth-
odology, see Koertge (1977) and McMullin (1985).
9 There are everyday parallels of this ‘blinkering’, as when ideologues maintain that their
‘party’, ‘church’, ‘economic system’ etc. is the correct one and that contrary evidence
(numerous gulags, systemic sexual abuse and massive unemployment) counts only against

‘imperfect’ realisations of the ideal.
10 Alexandre Koyré (Koyré 1943b/1968) and Edwin Burtt (Burtt 1932, pp. 61–95) regarded
this metaphysical conviction as evidence of Galileo’s Platonism.
11 The following are especially comprehensive accounts of Galileo’s methodological innova-

tion and its relation to other medieval and renaissance traditions: McMullin (1978, 1985,
1990), Wisan (1978, 1981) and Wallace (1981). In terms of the epistemological lessons to be
learnt, few articles are better than Mittelstrass (1972) and Suchting (1995).
12 The expression is used by Wallis Suchting (1995). Ernan McMullin remarked that: ‘a
philosophy of science shaped by the mechanics of the Principia was rapidly accepted as
appropriate for natural science generally. Newtonian mechanics was to become for a time the

paradigm of what any science of nature ought to look like.’ (McMullin 2001, p. 289).
13 The expression comes from Gaston Bachelard (1934/1984).
14 For a historical and critical discussion of Ceterus Paribus laws see Earman et al. (2002).
15 See numerous issues of the Poznań Studies in the Philosophy of the Sciences and Humanities.

Also Nowak (1972, 1980, 1992, 1994, 2000).
16 See for example Barr (1971, 1974), Dilworth (1989), Harré (1989), Hughes (1990), Laymon
(1985), Niiniluoto (1990), Nola (2004) and Shaffer (2001).
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Koyré, A.: 1943b/1968, ‘Galileo and Plato’, Journal of the History of Ideas 4, 400–428.

Reprinted in his Metaphysics and Measurement, 1968, pp. 16–43.
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Abstract. It is argued that Galileo made an important breakthrough in the methodology of science by
considering idealized models of phenomena such as free fall, swinging pendula and the like, which
can conflict with experience. The idealized models are constructs largely by our reasoning processes
applied to the theoretical situation at hand. On this view, scientific knowledge is not a construction out
of experience, as many constructivists claim about both the methods of science and about the learning
of science. In fact Galileo’s models can, depending on their degree of idealization or concretization,
be at variance with experience. This paper considers what is meant by idealization and concretization
of both the objects and properties that make up theoretical models, and the ideal laws that govern
them. It also provides brief illustrations of ideal laws and how they may be made more concrete, and
briefly considers how theories and models might be tested against what we observe. Finally some
difficulties are raised for a radical constructivist approach to both science and learning in the light
of Galileo’s methodological approach. The upshot is that both the dialogue structure of Galileo’s
writings and his method of model building provide a rich resource for science education that rivals
that of the standard varieties of constructivism, and at the same time gives a much better picture of
the actual procedures of science itself.

Key words: Models in science, pendulum motion, realism in science, constructivism, Galileo,
idealization.

Galileo systematically applied the method of idealiza-
tion. And that was the real meaning of the revolution
in the natural sciences which was named after him.
(Nowakowa & Nowak 2000, p. 21)

1. Galileo and the Subversion of Experience by Reason

It is commonly agreed that Galileo has an important place in the history of science,
particularly concerning his astronomical observations, the development of concepts
such as momentum and theories of motion on the Earth, such as free-fall, pendulum
motion, projectile motion, and the like. It is also agreed, as the above quotation sug-
gests, that Galileo was innovative in the methodological breakthrough that he made
in science, and that, in respect of what has been commonly called the ‘scientific
revolution’ of the 17th and 18th centuries, his methodological contribution was
revolutionary. In this respect Galileo’s methodology was taken up by Newton and
fully exploited by him as his new theory of dynamics was applied to various models
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of the real world. However, there is less agreement about how the Galileo–Newton
methodological breakthrough is to be characterized. Lesek Nowak has given one
useful characterization:

The Galilean revolution consisted in making evident the misleading nature of the world image which
senses produce. We only see phenomena which are the joint effect of all the relevant influences.
As a result, senses do not contribute in the slightest to the understanding of the facts. In order to
understand phenomena the work of reason is necessary which selects some features of the objects
through idealization and in their idealized models recognizes some other features of the empirical
originals. These models differ a great deal from their sensory prototypes; what is more, they present
images of hidden relationships which could not be grasped with the aid of experience at all. Science
idealizing phenomena opposes commonsense . . . . (Nowak 1994, p. 123)

Two aspects of Nowak’s remarks will be discussed here. The first is the two-part
claim that the senses can be misleading, and that our senses may not be able to re-
veal the hidden joint causes which bring about happenings we can observe with our
senses. This leads to the second point concerning how idealizations are to be made
in science, even when the idealizations and/or their consequences run contrary to
commonsense and what we in fact experience. This raises issues about the import-
ant role of reason in constructing idealizations which are models of phenomena,
such as swinging pendula, where such models are not given directly in experience,
and may not be fully in accordance with experience but only approximately so. If
Nowak is right about Galileo’s methodology, then it provides an important contrast
with any account of scientific method that is too strongly oriented to empiricism,
or claims that science is a ‘construct’ out of experience, one of the common central
tenets of constructivism within science education. So a further aspect of this paper
will be devoted to noting the contrast between a methodology based on Galilean
idealizations and the tenets of constructivism in science education. This latter doc-
trine adopts the epistemological thesis that scientific knowledge is a construct out
of experience for scientists, and then extends this to a theory of learning for students
of science.

A quite different kind of construction goes on in Galileo’s science (and the
science of others), as characterized by Nowak. If we can expand the ‘construction’
metaphor, we can say that scientific knowledge is a construct out of reason. The role
of reason is two-fold; in the first place to ‘construct’ idealizations or models, and
then to make inferences from the models about possible observations that might
only fit our experience to some degree of approximation.

Here we cannot discuss the various views that historians and philosophers of
science have taken about the contrasting a priori or rationalist versus empiricist
approaches that Galileo took in his science. Suffice to say that many note the often
strong ‘rationalism’ to be found as opposed to the empiricism of commonsense
or sense perception. As a single illustration from historians, consider Alexander
Koyré, an eminent historian of Galilean science. He expresses a kindred contrast
when he speaks of the difference between thought in Galileo and an appeal to
experience that is often infused with commonsense views about the world that he
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wishes to challenge. This, in Koyré’s view, is particularly the case in our under-
standing of motion. He says that for Galileo our natural ways of imagining lead us
to talk of effort and impetus. But we need to overcome these natural tendencies
through thought that leads us to the more appropriate notion of momentum, a
notion which is in many respects ‘unnatural’ to us. The contrast he expresses as
follows:

Thus we must choose: either to think or to imagine. To think with Galileo, or to imagine with common
sense. For it is thought, pure unadulterated thought, and not experience or sense-perception, as until
then, that gives the basis for the new science of Galileo Galilei. Galileo is perfectly clear about it.
(Koyré 1968, p. 13)

More dramatically Koyré sees the new approach that Galileo took in building math-
ematical models of motion as a victory of a more Platonic and abstract idealizing
approach to science over that of Aristotle and Galileo’s contemporary Aristotelians
who appealed to experience: ‘for the contemporaries and pupils of Galileo, as well
as Galileo himself, the Galilean philosophy of Nature, appeared as a return to Plato,
a victory of Plato over Aristotle’ (ibid., p. 15). Though such contrast can mean
many things, the emphasis on Plato will be understood here as one in which reason
plays a major role in the construction of idealized models in science, even where
such models, and what they give rise to as allegedly observable consequences, may
go against commonsense experience.

Is Novak (amongst many others such as Koyré) right in his characterization
of Galileo’s methodology? Much evidence for it can be found in Galileo’s own
writings, a little of which will be indicated here. Nowhere does Galileo give an
explicit account of his method. But as he develops his theory of motion he makes
comments aside about his methodological procedure. We will look at just a few of
his comments. First, there is the famous passage in the Two Chief World Systems in
which Galileo says, through his mouthpiece Salviati, that we should make reason
conquer the senses:

You wonder that there are so few followers of the Pythagorean opinion whereas I am astonished that
there have been any . . . . Nor can I ever sufficiently admire the outstanding acumen of those who
have taken hold of this opinion and accepted it is true; they have through sheer force of intellect
done such violence to their own senses as to prefer what reason told them over that which sensible
experience plainly showed them to the contrary. For the arguments against the whirling of the earth
which we have already examined are very plausible, as we have seen; and the fact that the Ptolemaics
and Aristotelians and all their disciples took them to be conclusive is indeed a strong argument of
their effectiveness. But the experiences which overtly contradict the annual movement are indeed so
much greater in their apparent force that, I repeat, there is no limit to my astonishment when I reflect
that Aristarchus and Copernicus were able to make reason so conquer sense that, in defiance of the
latter, the former became mistress of their belief. (Galileo 1967, p. 328)

Not only was Galileo aware that in some cases in science we would have to act
and think contrary to our experiences, but he was also aware that the models we
construct might not accurately fit what we experience. Thus in making the Earth
move rather than the Sun, we appear to do violence to our very sensory observa-
tions as when we speak of the Sun rising or setting. However the moving Earth and
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stationary Sun are an essential part of the Copernican model of the solar system.
This model is not given as some ‘construct’ out of experience. It is still a ‘construct’
but out of different materials, especially reason as employed in model building. As
Nowak put it in the above: ‘in order to understand phenomena the work of reason
is necessary which selects some features of the objects through idealization and in
their idealized models recognizes some other features of the empirical originals’
(loc. cit.)

That experience can be an obstacle to model construction, especially where
it is infused with allegedly ‘commonsense’ beliefs, is a point found in Galileo
and commonly commented upon by historians from Koyré to Nowak. It is also
a centerpiece of Feyerabend’s account of Galileo, especially his critique of the
‘natural interpretations’ that must be exposed in reports of experience. In chapters
6 to 9 of Against Method (1975) Feyerabend makes much of the point that ‘natural
interpretations’ infuse experience and our reports of experience, this being one
aspect of Feyerabend’s view that all observations are theory laden. In criticizing
earlier theories we may also have to criticize the quite deeply hidden and embedded
natural interpretations and replace them by what may appear to be quite ‘unnat-
ural’ interpretations employing ‘unnatural’ concepts. Our commonsense reports of
experience may, from a quite different point of view, be a quite unsuitable base
from which any new theory can be constructed. On Feyerabend’s understanding of
Galileo’s method, we need to overcome, and even contradict, the commonsense
deliverances of experience, especially when new, profoundly deep theories are
being developed.

Feyerabend makes much of the above quotation from Galileo, and many other
remarks, that show that experience, and reports of it, need to be subverted. And he
goes on to cite other remarks from Galileo such as ‘they [the Copernicans] were
confident of what reason told them’ as opposed to the deliverances of experience
upon which the Aristotelians relied. And again he cites approvingly Galileo say-
ing ‘with reason as his guide he [Copernicus] resolutely continued to affirm what
sensible experience seemed to contradict’ (Feyerabend 1975, p. 101). Particularly
significant for Feyerabend’s understanding of Galileo’s procedure is the latter’s
discussion of the tower experiment in which a rock, dropped from the top of the
tower, falls to the bottom. Does this show that the Earth is stationary, as many
Aristotelians argued? Or does this result have to be understood anew if the Earth
is taken to be rotating? On this Galileo says: ‘for just as I . . . have never seen nor
ever expect to see the rock fall any way but perpendicularly, just so do I believe
that it appears to the eyes of everyone else. It is therefore better to put aside the
appearance, on which we all agree, and to use the power of reason either to con-
firm its reality or to reveal its fallacy’ (Galileo 1967, p. 257; cited in Feyerabend
1975, p. 7; chapter 7 deals with Galileo’s ‘tower experiment’). Galileo uses strong
words when he says that there may be a fallacy in experience to be overcome by
reason. He gives an illustration of this when he continues, saying that ‘one may
learn how easily anyone may be deceived by simple appearances, or let us say by
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the impressions of one’s senses. This event is the appearance to those who travel
along a street at night of being followed by the moon, with steps equal to theirs,
when they see it go gliding along the eaves of the roofs. . . . an appearance which, if
reason did not intervene, would only too obviously deceive the senses’ (loc. cit.).

Galileo’s point is well taken. For him, neither the deliverances of our senses,
nor even our commonsense beliefs, are a sufficient basis for science; both may be
called into question or even overturned if reason requires. And the converse can
also be the case where what reason delivers fails to accord with experience. For
Galileo, neither dominates the other; instead there is a complex dialectic between
the two. Of interest here are the cases where our natural presuppositions built into
our experience must be called into question and replaced by what seems ‘unnatural’
if science is to advance at all (the understanding of what we observe in the ‘tower
experiment’ being a case in point).

We must be careful about the two aspects of the points being made. The first
point concerns the understanding of the role of experience in science. The very
building of models may, in some examples Galileo considers such as that proposed
by Copernicus for the solar system, go against the commonsense view of the world.
Reports of relevant experience may contain ‘natural interpretations’ of the world
that are second nature to us, yet they must be overturned if science is to advance.
For Galileo, the very same lessons that the Copernican modeling of the solar sys-
tem taught us are to be extended to our understanding of motion itself (as Koyré
emphasises), and to the construction of models for particular kinds of motion such
as projectiles or swinging pendula. Here the second point emerges in that particular
models of phenomena we can observe may be idealizations; the observational con-
sequences of these models will involve approximations that may be at variance with
what is experienced. In what follows we will focus on this second aspect of models
as idealizations. But given the account of Galileo’s methodology so far, the fact
that a model may well be inconsistent with what we (report of) experience shows
that an empiricist account of science in which theory is somehow a ‘construct’
out of experience is at variance with, and cannot capture, Galileo’s methodological
procedure. What is missing is the crucial role of ‘reason’, as we may put it, in
providing models in science, and in persisting with these models even when they
go against experience.

2. A Brief Characterization of Galileo’s Methodology Using Idealization

Let us now turn to model building. In constructing models we may make a number
of idealizations; but these can be made more concrete when we drop some of the
idealizations and approach something like the real systems we are investigating.
Terms (or their Italian equivalents) such as ‘concrete’ or ‘material’, which are
applied to ordinary real objects, are contrasted by Galileo when he talks some-
times of ‘ideal’ but more commonly of ‘abstract’ or ‘immaterial’ objects. As an
illustration, see the many passages (for example Galileo 1967, pp. 206–208) where
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Galileo talks of material planes and spheres in contrast to immaterial planes and
spheres and considers what might happen in concrete actual cases when they touch
as compared to ideal or abstract cases. Part of the matter for debate is whether
actual spheres and planes touch in one or many points in contrast with ideal planes
and spheres which are said, by their very definition, to touch in only one point.
For Galileo’s opponents it is obvious that real, material spheres will, by their very
weight, press down on a plane over many points. As a result they cannot see the
rationale for adopting such an abstract and idealized model that is defined into
existence and that is not true of real, material planes and spheres. But Galileo’s
response is to say ‘I grant you all these things but they are beside the point’ (ibid.,
p. 206), the point being one about idealized spheres and planes and not their actual
counterparts.

The above terminology of ‘abstract’, ‘concrete’, etc is, for us now, a quite nat-
ural mode of discourse to adopt, and such usage introduced by Galileo has become
part and parcel of the discourse of contemporary theorists when they discuss the
processes of model building in science. In comparing the manner in which ideal-
ized and perfect spheres and planes touch when compared with real spheres and
planes, Galileo says:

just as the computer who wants his calculations to deal of sugar, silk, and wool must discount the
boxes, bales and other packings, so the mathematical scientist (filosofo geometra(( ), when he wants
to recognise in the concrete the effects which he has proved in the abstract, must deduct the ma-
terial hindrances, and if he is able to do so, I assure you that things are in no less agreement than
arithmetical computations. (Galileo 1967, p. 207)

As a further example of idealization and model building we find Galileo responding
in the Two New Sciences to objections to his method of idealization through Salviati
when he says of projectile motion:

All these difficulties and objections which you urge are so well founded that it is impossible to
remove them: and, as for me, I am ready to admit them all, which indeed I think our Author would
also do. I grant that these conclusions proved in the abstract will be different when applied in the
concrete and will be fallacious to this extent, that neither will the horizontal motion be uniform nor
the natural acceleration be in the ratio assumed, nor the part of the projectile a parabola etc. But, on
the other hand, I ask you not to begrudge our Author that which other eminent men have assumed
even if not strictly true. The authority of Archimedes alone will satisfy everybody. (Galileo 1954, p.
251)

Galileo sees in the work of Archimedes the same methods of idealization as he
proposes to use in his theory of motion. In the context above, Galileo is imagining
a perfectly smooth ball rolling with uniform motion along a flat frictionless surface
which, upon reaching its edge, acquires a downward motion which is to be added
to its original horizontal motion. Galileo’s task is to give an account of this new
motion, but he recognises that the model he has given of it is ideal and does not
fully specify what happens in real systems. Other participants in the Dialogue tell
him that he has ignored the resistance due to the medium through which the object
falls, he has ignored the fact that when the body moves along the horizontal plane it
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will have a variable distance from the centre of the earth, and so on. Galileo admits
that all these are idealizing assumptions, and recognizes that any models which
ignore them cannot be ‘strictly true’, as he says. However he does claim that in his
models he has set out the central, primary or essential features of what is happening
in such motion. It sets aside peripheral, secondary or all non-essential features of
the motion; but these can be taken into account by dropping idealizations when the
model is made more concrete.

What is important about Galileo’s methodological revolution is the construction
of models by reasoning about the theory of motion which, when applied to some
situation, gives the essential features of the motion; but these features are not given
in experience at all. Moreover, the model leaves out other features that one might
envisage holding of real systems, but which are inessential to the motions being
modeled. The distinction between essential and inessential, or primary versus sec-
ondary, features of models is an important aspect of Galileo’s scientific method.
Making this distinction is not one that can be based in experience but must be
determined by reasoning, in the light of the theory, about the model being con-
structed. It is also important to note that the models might fit the observed facts
only approximately; but they do capture the essential hidden features of the motion
not given immediately in experience. In the next section a theory of idealization in
models will be set out which reflects much of Galileo’s methodological procedure.

Of course Galileo was aware of the important role that experience and ex-
perimentation play in science. But in his view these do not play the only role in
determining what theories we are to accept. Importantly experience may play no
role when it comes to constructing models which get to the essentials of what is
happening in ways not evident in, or even controverted by, experience. An import-
ant role must be given to reason in constructing models of real systems that are
then to be compared to reality itself, or with what we observe. Galileo was aware
that many contemporary Aristotelians held the view that experience was the only
determinant of what theories we should accept. Thus Galileo has the Aristotelian
mouthpiece Simplicio say the following: ‘Aristotle would not give assurance from
his reasoning of more than was proper, despite his great genius. He held in his
philosophizing that sensible experiments were to be preferred above any argument
built by human ingenuity, and he said that those who would contradict the evidence
of any sense deserve to be punished by the loss of that sense’ (Galileo 1967, p. 32).
For Galileo the theories of Aristotle and Aristotle’s contemporaries were already,
in their science, quite close to experience; there was no need to bring them any
closer to experience. The problem was, however, to find an analysis through reason
of what we experience where what the analysis reveals is not immediately evident
in that experience, and may even go against it. In this respect Galileo was divided
from his contemporaries, (such as Del Monte, as will be seen in the final section),
over the role experience is to play in theory construction. For Galileo there is a
paramount role of reason in constructing idealized models of real systems. Of
course there is a role for experience in comparing models, or the consequences
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deduced from them, with observation or experimentation to determine the extent
to which the models approximate real systems. But experience may have to be set
aside when reason is applied to model construction and development.

3. Abstraction and Idealization

Though there is no agreed way of using the terms ‘abstraction’ and ‘idealization’
in the literature, they can be used to mark an important distinction. In this sec-
tion an account is given of how they will be used. In this respect I follow, but
not completely, the use of these terms as in Nowak (1994), and Nowakowa and
Nowak (2000). Once these terms have been carefully defined it will be see that
the distinction drawn has considerable consequences for our characterization of
theoretical models.

All objects with which we are familiar, or postulate in the sciences, have (in-
trinsic) properties such as colour, weight, charge, etc; and they have relational (or
extrinsic properties) such as position, spatial relationships to one another, owner-
ship relations, etc. Now consider some real object such as a blob of metal stuck on
the end of fine wire (i.e., a pendulum). From the point of view of mechanics we are
not interested in some of its extrinsic properties, such as who owns it. But note that
from the point of view of, say, theory in economics or sociology, whether or not it
is owned, or who owns it, is of interest. We will say that the dynamicist abstracts
away from the extrinsic or relational property of ownership in that it is irrelevant to
the dynamicist whether it is owned or not. But the economist does not abstract away
from such an extrinsic property since it is part of his science to consider ownership
relations; but the economist does abstract away from the energy properties of the
swinging pendulum. However both the dynamicist and the economist will abstract
away from its relational property of being so far from, say, the Grand Canal in
Venice. Neither have an interest in their theories with this relational property of the
real object. Both will also abstract away from intrinsic properties such as colour;
what colour the pendulum has is not a matter of interest in their theories. Any
real, existing, actual, pendulum will have some colour (including black or white).
But what colour it has is irrelevant to both theories of dynamics, or economics
(but maybe not irrelevant to some other theory to do with the optical properties of
objects, or the aesthetic properties prized by an art collector).

In general, we may say that we make an abstraction from a real object, such
as a pendulum or the Moon, when the real object has a property P but it is of
no concern to, or it is irrelevant to, some theory T whether the real object has that
very property P . Note the emphasis here on real or actual objects and their real and
actual properties. The actual object is of interest to some theory T (of dynamics, or
of economics) and so are some of its actual properties (such as respectively, mass
or production cost); but other actual properties are not considered in theory T (e.g.,
for both dynamics and economics, the colour of the object). Finally we need to note
that some abstractions may be erroneous. Thus classical dynamicists erroneously
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thought that they could abstract away from the frame of reference in which a body
was moving and talk about, say, its absolute mass. This is an erroneous abstraction,
as pointed out within Einsteinian Special Theory of Relativity. Of course, scientists
might make some such abstraction for various purposes and later discover they
were wrong to make it. However dealing with such matters really takes us into the
territory of idealization (as defined here.)

The term ‘idealization’ will be used differently. In the case of abstraction an
object is still a real object with property P , but we ignore property P for certain
purposes, such as whether it is a property with which our theory deals. But in
the case of idealization we do not merely ignore a property; we regard P as a
property that the object definitely does not possess. Thus we idealize humans when
we consider that they are always just, honest, loving or act with good intentions.
It is not that we merely ignore or set aside their unjust behaviour, their dishonesty,
their propensity for hatred, or their bad intentions. Of course, we could merely
abstract from these, in the sense of allowing that we have these negative features
but we simply set them aside. But when we idealize humans and think of beings
that lack these negative characteristics, then we are not talking of real humans at
all. They have features in common with humans, but they are not actual human
beings; they are more strictly akin to a God, or are angels or saints. What we are
talking about is best described as an idealized human. Here the word ‘idealized’
carries with it the connotation that it is not a real item to be found in the actual, real
world. But it is still an item of our scientific discourse that we can characterise as
‘abstract’ or ‘ideal’.

Consider now real tables, chairs, rocks, plants, and animals. These all have some
colour or other. Now if we abstract from the colour of these items then we are
still considering these items as real items but ignore their colour properties. But
what happens if we idealize in the sense above, and consider them as definitely
lacking colour properties? Most would agree that no item can be real and yet not
be coloured in some way. It is not that we have here a real object, but that it is
colourless. Rather we do not have real object at all. But we still have an object of
some sort since we continue to claim that it has other properties such as mass, or
volume, or inertia or the power to gravitationally attract. In so far as the object lacks
colour we can conclude that it cannot be a real item that we can bump into in our
real spatio-temporal system. We do not find middle-size objects lacking colour in
the real spatio-temporal system. But such ‘objects’ lacking colour are not nothing.
They are, let us say, ideal objects or idealizations of real objects. Such items are,
to use the terminology of philosophers, abstract objects and not concrete, actual,
objects found in the space-time system. Note however that we do attribute temporal
and spatial properties to ideal objects even though we do not expect to find such
ideal objects in the actual space-time system we inhabit.

Another example might also help. Often in dynamical theory we consider ob-
jects to be point-like, that is, they lack any volume. Thus in simple models of the
solar system the Sun, the Moon, and the planets are often considered to be point-
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like objects with forces either acting from, or acting upon, that point. But is there
such a thing in the world as a point-Sun, point-Moon, or point-planet? No. But
in dynamics they are not nothing. They are, let us say, idealized objects, or ideal-
izations of real objects; they are not objects to be found in the real actual world.
However we might be able to show, by means of a proof along the lines suggested
by Newton, that treating an object as point-like with all its mass at its centre of
gravity is equivalent to a body with volume in three-dimensional space and with its
mass evenly distributed about the centre of gravity. Such an equivalence does not
necessarily undermine the point that we are still idealizing an object when we treat
it as if it were point-like. But what such an equivalence does show is that we are
not making an idealization which is at a large distance from reality; in one respect
the idealized and the real object share some common features, such as gravitational
attraction, which are the object of investigation.

Hopefully the illustrations should make the difference between abstraction and
idealization clear without setting out necessary and sufficient general characterisa-
tions of what these terms mean in this context. We abstract from real objects when
we still consider them as real objects but ignore some of their properties. We do
not say they lack these properties; rather we set them aside for reasons to do with
our theories and what properties of real objects we wish to consider. But when
we idealize, we are no longer considering real or actual objects, but non-real or
non-actual ideal objects. This is so because we consider the object to lack some
of the properties that would be necessary for it to have if it is to be a real object.
The difference here is between an epistemic matter, as when we ignore properties
while abstracting, and an ontological matter, as when we claim that an object lacks,
does not have, certain properties when we idealize. In both cases it is humans that
do the abstracting, and do the idealizing. To some extent the metaphor of humans
constructing such objects can be helpful. Human activity is involved in both cases;
in particular it is we who construct ideal objects since they do not actually exist
outside our idealizing activities in science.

Just how far can the idealization process go? It can go quite far, but not so
far as to denude the ideal object of all the properties of its real counterpart. But
in treating a real object as, say, a point-like object one has gone a consider-
able distance in that the point-like object is considered only to have, say, mass,
inertia and the power of gravitational attraction, along with velocity and accel-
eration, viz., just those properties of dynamics. Using some notation developed
by Nowak let us assume that some real object, or class of real objects, O, have
real properties A, B, C, . . . , Q. We can represent the object as a whole by
‘O{A,B,C, . . . , P,Q}’. In idealizing we consider O to lack properties, say, D

to Q and indicate this by a negative sign ‘∼’. Thus we can represent the ideal-
ized object as ‘O{A,B,C,∼D,∼E, . . . ∼P,∼Q}’. Nowak then suggests that the
remaining properties may be linked in an idealized law L (see Section 4), where
L is a function of the positive properties O has, such as A, B and C only. We
can represent such a law as follows: L(A,B,C), where in the law A, B and C are
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related in some way. For example, such an idealized law might be Newton’s second
law, which relates only mass, force and acceleration, F = m (where bold F and a
indicate vectors). The law clearly does not relate other properties if we abstract
away from real situations. And nor does it relate other properties if we idealize
the objects concerned since under such idealization the objects do not have any of
these other properties.

Given the above we can now easily introduce Nowak’s idea of concretization.
This is the reverse of the process of idealization. It is the process of making ideal
objects more like real actual objects, by attributing to the ideal object more of
the actual properties possessed by its real counterpart. Thus consider ideal object
O{A,B,C,∼D,∼E, . . . ,∼P,∼Q}. This might be made less ideal, or more con-
crete, by regarding O not as lacking properties D and E but as actually possessing
them while still lacking F to Q. In so concretizing we move to an object which is
still ideal, viz., O{A,B,C,D,E,∼F, . . . ,∼Q}; but we do move in the direction
of greater concretization. In complete concretization we would consider an object
with all its real properties.

On what grounds are some properties retained in an ideal object, and others
abandoned? This is a question that can only be answered by considering what
properties are postulated in a theory and what resources there are for handling
them. Thus from the point of view of certain idealizations, the properties which are
retained are said to be essential or primary for the understanding of the phenomena
under consideration, while the abandoned properties are said to be inessential or
secondary to that understanding. But this is not to say that these inessential or
secondary properties are unimportant in all respects; they can be accommodated
in models which are more concrete, and so do come to play some role in un-
derstanding the phenomena being considered. But they are not essential to that
understanding, as Galileo says.

Note that so far we have treated only objects as idealizations, and have charac-
terized this in terms of properties they are considered to either have or lack. But
we could do exactly the same thing with the properties themselves and treat them
as idealizations from real properties in much the same way; some of the features
of properties are retained while others are abandoned. Thus we might idealize a
property of being an ovoid, or oviform (egg-shaped). Such properties might be
mathematically difficult to deal with; so initially we might treat the property as the
idealized property of sphericity, and later the property of being ellipsoidal. In such
a case there is an initial idealization of the property as one of sphericity, but this is
made progressively more concrete, but still ideal, as when we move to considering
the property of being an ellipsoidal. Such property idealization might be viewed
as a case of object idealization, as in the case of the Earth. In dynamical theory
initially the Earth was considered to be point-like; but with successive concret-
isation it was considered to be a perfect sphere, and then a sphere rotating about
an axis, and then an oblate spheroid rotating about an axis. But if we view this
as a case of property idealization we need to prescind from the objects in which
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the properties are instantiated and adopt a more Platonic view in which we consider
the geometrical properties themselves, and not their instantiation in some object. In
this way the sequence of properties, say, from being an ovoid, to being ellipsoidal,
and then to being spherical, can be regarded as successive idealizations (in which,
say, the different lengths of the axes and their different points of intersection in
the case of an ellipsoid become identical and yield sphericity). Laws can also be
idealized; this is the topic of the next section.

Now we can introduce the notion of a theoretical model. This is a set of ideal-
ized objects having idealized properties and being in idealized relations to one
another and obeying idealized laws. An excellent example of this is provided by
Lakatos in his discussion of scientific research programmes in which he illustrates
how they might progress by considering a sequence of models of the solar system
that begin in a highly idealized manner but become successively more concrete
(Lakatos 1978, p. 50). Thus he says that Newton began by considering the solar
system as a collection of separate planetary systems, one for each point-like planet
orbiting a point-like Sun as centre of gravity. But it was known, even by Newton
as he worked on his models, that the centre of gravity of a single Sun-planet model
cannot be where the point-like Sun is, but outside it. When Newton dropped this
idealizing assumption, he worked on an even more concrete, but still ideal, model
by considering all the planets in one unified model, but only under the action of the
Sun’s gravitational force. Clearly the theory on which Newton was working sug-
gests even further concretizations, such as: allowing the planets to gravitationally
affect one another (this gives rise to the difficult many-body problem in dynamics);
removing the assumption that the Sun and planets are point-like objects; allowing
the planets to rotate about an axis, or even wobble; and so on.

Importantly Lakatos considers how such progressive concretization can occur
even when it is known by those developing the models that they are inconsistent
with what can be observed, and even always remain so. Lakatos’ main point is
that model building is an entirely theoretical process, or to use the vocabulary of
Galileo, is a rational process. It is not a ‘construction out of experience’, though
empirical claims are an input into the process of model building. In fact Lakatos’
discussion of this issue is in a section with a title that includes the phrase ‘the
relative autonomy of theoretical science’. Here the autonomy is of what we can
construct from theory independently of what we might be able to construct from
experience, a point about model construction on which Lakatos and Galileo are at
one.

Such models are common in dynamics, but they also have a role in the rest of
physics and chemistry. The role of models also looms large in the human sciences
from psychology to economics. In economics one can find a range of models
about the economic behaviour of rational humans being made more concrete by
adding empirically discovered hypotheses about actual human behaviour in eco-
nomic situations. (It should be noted that there are many different senses of the
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term ‘model’ at work in the sciences, and different kinds of model as well. Here
we are considering only one kind of model, viz., that defined above.1)

4. Idealized Laws

Some philosophers of science would argue that all scientific laws are really idealiz-
ations of what happens in reality and that no law is strictly obeyed; however as the
laws are made more concrete they come to apply more accurately to real observed
happenings. Since this will be the position adopted here, what needs to be done is to
give an account of what an idealized law is like. We will find that this characterises
quite closely Galileo’s approach to the laws he discovered. In what follows we will
adopt the view of idealized laws set out by Nowak and his school.

Let, I1, I2II , . . . , InII , IcII be n + 1 idealizing assumptions made about the objects
and properties and their magnitudes in some theoretical model. For example, these
might be the assumptions made in models of the Solar System that the Earth has
zero volume and is a point-like object, or that it does not rotate; or that it is a perfect
sphere, or that its centre of gravity is the geometrical centre of a perfect sphere, and
so on. In the case of free fall the idealizing assumptions often include the claims
that the body falls through a constant gravitational field, or that it experiences no
drag of the air as it falls, and so on.

The final idealizing assumption has been labelled as ‘IcII ’, where the letter ‘c’
stands for a ‘catch-all’ idealization. That is, the last idealizing assumption says that
I2II , I2II , . . . , InII are all the idealizing assumptions to be made. Of course we could be
wrong about this and there are a number of matters we have not taken into account
in making our idealizations about them; we might not even be aware of them. For
example, early work on the solar system assumed that the only forces at work were
gravitational and inertial; but we now know that this is false. If the idealized models
of the solar system did not include a catch-all idealization, then the model would
have failed to idealize to only the dynamical forces under consideration. So there
is a need for a final catch-all idealization assumption.

Now we can set out a general schema for an idealized law, and then illustrate it
in some simple cases. The general schema is:

If I1, I2II , . . . , InII , IcII , idealizing assumptions were to hold then law L would hold.
Let us fill in this schema with some particular cases, the first being Newton’s

First Law of motion (stated in the Principia, Book I, under ‘Axioms, or Laws of
Motion’): ‘Every body continues in its state of rest, or of uniform motion in a
right line, unless compelled to change that state by the forces impressed upon
it’. Now as many have noted, there may be no example of a body in the entire
cosmos that is under the action of no forces. It is not that the sum of the resultant
forces acting on it is zero; rather there is always some resultant non-zero force
due to gravitational attraction, or whatever. So there is no actual instantiation of
Newton’s First Law in the entire cosmos. But this does not mean that the Law
is false; rather it is an idealized law that has an idealizing condition about zero
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resultant force in an antecedent clause. So understood the Law is unproblematic,
even in an idealized universe in which there are only gravitational forces and they
are ubiquitous throughout space and time.2

Consider now Galileo’s free fall law. He discovered that the distance a body fell
in free fall when close to the Earth was proportional to the square of the time of the
fall. We now know that this law can be expressed as follows:

s(x) = 1

2
gt2(x),

where ‘x’ stands for some body, ‘s’ is the distance fallen by x, ‘t’ is the time of
the fall from initial movement to impact on the surface of the Earth, ‘g’ is the
acceleration on Earth due to gravity.

Now we can consider the idealizing assumptions.
I1 is the assumption that the body x falls in a perfect vacuum and suffers no air

resistance; that is, if F are the forces due to air friction then I1 is the assumption
that F = 0. I2II is the assumption that the Earth’s gravitational field exerts, contrary-
to-fact, a constant force at all times in the fall of x; that is, g = constant, and is not,
say, a function of distance.

There is also the ‘catch-all’ idealizing assumption that the model specifies all
and only the items to be considered in the model and that none have been left out.
Of course the idealizations that have been adopted do not hold in real systems,
including the idealizing ‘catch-all’ that only the dynamical forces mentioned are
those at work.

There is a further assumption that is not strictly an idealizing assumption of
the sort indicated in the previous section. Rather it is more like an abstraction. We
have not considered whether x had an initial motion before falling; it could have
had some component of motion in the direction of the Earth, say a velocity of
u(x); but we have ignored this rather than take it into account. That is, we make
the assumption that at the initial time of to the initial velocity of xu(x, t0tt ) = 0. If
we remove this abstraction then the law under consideration becomes:

s(x) = u(x, t0tt )t (x) + 1

2
gt2(x).

But if we set the first initial velocity factor u(x, t0tt ) = 0, we abstract from (i.e.,
ignore) any initial velocity rather than idealize it.

It is fairly evident in a case like this what are the essential or primary features of
free fall motion and what are the inessential or secondary features of that motion.
And it is fairly evident that such a law will not give a correct account of free fall;
in particular it ignores the fact that there is a terminal velocity of free fall in the
atmosphere (but one which can vary according to height). However the inessential
or secondary features can be incorporated into the theoretical model through a
process of concretisation that will give a better accord with the free fall motions
that we can observe. What is important to note is that Galileo was fully aware of
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what his procedures were in considering free fall, and other motion; he was con-
structing a series of idealized models that could be concretized once one dropped
idealizing assumptions. But the construction is not one out of experience; it is a
construction based on reasoning about the hidden essential features of the motion
under consideration.

A further example, that of the pendulum, will help illustrate assumptions about
idealized objects, properties and laws. In most physics textbooks there is a proof,
based on what is called the ‘simple’ pendulum, of the period law T = 2π

√
(l/g)

where ‘T ’ is the period of swing, ‘l’ the length of the pendulum, and ‘g’ the accel-
eration due to the Earth’s gravity. And the same textbooks usually make clear the
idealizing assumptions made in the deduction of the law, all of which Galileo was
one of the first to be aware. Compare the idealized model of a simple pendulum
with a real swinging device such as wire attached at one end and to the other
end of which is attached a lump of lead, and the whole allowed to freely swing
back and forth. In the idealized model of such a real system the top of the simple
pendulum is suspended from a frictionless point; the body of the pendulum is a
weightless, dimensionless, frictionless, rigid (and so idealized) line-like rod. The
bob is attached to the free end; but it is treated as a point-like mass that swings in a
plane. The gravitational center of the whole system is situated at the same position
as the center of gravity of the point-like mass.

Such an idealized model fits the real system of the pendulum to only to some
extent. In the real system the pendulum is attached to a joint where there is a
frictional force affecting the motion of the pendulum. After a short while the real
pendulum will have slowed considerably while the idealized one swing indefinitely.
The pendulum rod also swings in the air, which causes friction, as does the massive
blob that is attached to the free end of the pendulum. The air friction is not always
a linear function of the object’s velocity; usually it is a non-linear function. This
pertains not so much to the idealized objects in the model as to the idealized laws
in which, in most cases, all frictional forces are disregarded. The bob itself is not
point-like and occupies volume. And the center of gravity of the whole system is
not situated at the center of gravity of the bob, but some distance away from it.

The model also assumes that the Earth’s gravitational field is uniform. This
would be the case if the Earth were a perfect homogeneous sphere; but it is not.
Moreover the field is affected by the buildings, hills and mountains, not to mention
the changes in the field due to the presence of the Sun, Moon and the planets.
There is also a central assumption about the restoring force function at work. It
is usually assumed to be linear, and is generally known as ‘Hooke’s Law’. The
force varies with the distance x along the arc of the swing, F = −kx (where k is
a constant and the minus sign indicates the direction of the force is back towards
the vertical). Using Hooke’s Law, and the force due to gravitational attraction, one
can then deduce a formula close to the period formula given above, except that
there is a trigonometrical function of the angle of swing, θ , to take into account,
such as cos θ . But where the angle of swing is small, this factor can be neglected.

251



ROBERT NOLA

Granted all these idealizing assumptions the period law, first noted by Galileo, can
be deduced from the model. Of course with various kinds of concretization a better
swing law can be deduced. (This is discussed more fully in other places such as
Morrison (1999), section 3.4.1 entitled ‘Theoretical models meet the world’).

If the swinging pendulum were to be of a different sort, such as that in a Grand-
father clock, then different idealizing assumptions would have to come into play.
One important assumption of the ideal pendulum model is that nothing is said of
the periodic force acting on the Grandfather clock pendulum by the escapement
mechanism. This abruptly starts and stops the motion. Further, through a system of
falling weights or a spring, it applies a force that prevents the swing from gradually
decreasing its amplitude, thereby ensuring a more even way of indicating time. The
real system of the pendulum of a Grandfather clock is at a considerable distance
from the idealized model of the simple pendulum; less ideal models which move in
the direction of greater concretization, and more mathematics, are needed to even
approximate to such a real system.

As a final example to illustrate how a series of concretizations can lead to a
succession of less ideal laws, consider the case of the Boyle–Charles Law

PV = RT, (1)

where P is the pressure of a gas, V its volume, T its temperature and R is a con-
stant. This law can be deduced from the (idealized) laws of Newtonian mechanics
as applied to a simple model of a gas in which the gas molecules are perfectly
elastic corpuscles bouncing off one another and the perfectly elastic walls of the
container; it is also assumed that they are point-like and take up no room in the
container. If the assumption that the gas molecules take up no room is dropped
through one concretizing move, then van der Waals recognized that the above
equation becomes

P(V − b) = RT, (2)

where b is a factor related directly to the volume occupied by the molecules. He
also recognised that if one takes into account the fact that the gas molecules attract
one another thereby changing their force of interaction with the container then a
further equation can be developed to take into account this concretization:

(P + an2/V 2)(V − b) = RT, (3)

where ‘a’ is a constant and ‘n’ is the number of molecules.
This last equation is really a cubic equation in V . Yet other equations based on

models of the molecules that are quite different from those just mentioned, lead to
further equations (some named after physicists) such as:

Dieterci; P(V − b) = RT (exp −a/V RT ) (4)
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Bertholet : (P + a/T V 2)(V − b) + RT (5)

Virial Equation : PV/RT = 1 + B/V + C/V 2 + D/V 3 · · · (6)

(where B, C, etc are functions of T for which further mathematical equations are
to be given).3

Further concretizations are possible when one takes into account electrical
attraction forces, quantum effects, and so on.

What the above sequence of concretizations of the first ideal gas law equation
(1) show is that from each equation lower down one can deduce the equation
immediately above by setting certain values in the lower equation equal to zero.
Thus there is an important relationship between the various idealized equations
as concretisation takes place. More generally, this relationship can be expressed
by what has been known since Bohr as the Correspondence Principle. Roughly
this says that a preceding theory should be obtained from a subsequent theory as
a special case of latter, especially when some factor is set as zero. This principle
applies not only in Quantum Mechanics but also in, for example, the Special The-
ory of Relativity in which classical laws of motion can be obtained by letting the
velocity of light go to infinity, in which case the 1/c factor tends to zero. As can be
seen the Correspondence Principle applies to the above gas law equations and is
simply another expression of increasing idealization, or in reverse, and expression
of increasing concretization. As such the Correspondence Principle is an important
notion in science given a rationale in terms of the theory of idealization developed
here.4

5. Theories, Models, Reality and Test

In this section a number of the above points about ideal models will be brought
together and linked into the question of how we might compare our theories and
models with reality. The underlying ideas of this section have been advocated by
Ronald Giere in what he calls constructive realism (Giere 1988, chapters 3 and
4). What will be presented here are some of Giere’s basic ideas, but with some
modifications. Only a sketch can be given; and it will be assisted by some diagrams
that hopefully will convey the basic points quite graphically.

A theoretical model, M, as we have defined it, is a system of idealized objects,
with idealized properties and obeying idealized laws. We can now ask just how
well such a model M (of pendulum motion or gases) fits the real system RS (or
a real swinging pendulum or a real gas) The notion of fit is to be understood in
terms of the degree of similarity that holds between the real items in RS and the
idealized items of M. Clearly many features of real systems will be absent from
models; the more that are absent the lesser will be the degrees of resemblance that
hold between RS and M, and so the smaller the measure of fit. But with successive
concretizations of M so that it approaches RS more closely, the higher the various
degrees of resemblance, and so the greater the measure of overall fit.
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A theory, we will say, has two elements; it is a set of theoretical statements,
and a family of models that are ‘defined’ as we might say, by the statements. The
first diagram sets this out. It also specifies a relationship of fit between the model
M (its idealized features indicated by a regular square) and a Real System, RS

(indicated by an irregular figure – real systems are always ‘messy’). The M − RS

hypotheses describe these relationships of fit and the degree to which they do, or
do not, fit. Using the M-RS hypotheses we can derivatively speak of the degree of
verisimilitude of theory T (that defines the models); that is, T has some degree of
truth-likeness with respect to reality.

The scientific realism implicit in the account of the relationship between T ,
M and RS departs radically from a constructive empiricist view of theories of
the sort advocated by van Fraassen (see van Fraassen 1980, chapters 2 and 3).
For constructive empiricists, there can be a fit between the observable aspects of a
theoretical model and what we observe. What is denied is that we can meaningfully
speak of a fit between the unobservable, or theoretical, features of the theory plus
model and what is out there in unobservable reality.

In contrast the constructive realist view maintains not only that there can be a
fit between the observational aspects of a model and observable reality, but also
that there are relations of fit to be considered between the unobservable items of
the model and unobservable reality. Thus while the constructive empiricist and
the constructive realist can agree about what may be the relations of fit between
the observable aspects of a model and observable reality of, say, the temperature,
volume and pressure of a gas, they disagree about whether or not we can have a
relation of fit between the idealized items of the model, the idealized molecules,
and molecular reality.

The claims of the realist clearly go beyond what we can observe. Because of
this the constructive empiricist denies what the constructive realist asserts, viz.,
that there are such relations of fit between idealized unobservables and real unob-
servables; or if there are such relations of fit, then we can know nothing of them.
Realists presuppose that such comparisons are an integral part of the relationship
between theory and models on the one hand and reality on the other and that a
measure of them can be given; these claims are denied by those of an empirical
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constructivist persuasion. Arguing the case for constructive realism is one of the
major controversies of recent philosophy of science that cannot be entered into
here.5

Constructive empiricism of the sort advocated by van Fraassen does share one of
the features of the kind of radical constructivism found in science education. This is
the claim that relations of fit cannot hold between the unobservable idealized reality
postulated in M and unobservable reality itself. But where they part company is
over whether there can be such relations of fit between observable idealized reality
postulated in M and observable reality itself. Constructive empiricists say that such
relations of fit are possible, and we can know of them; radical constructivists deny
this. It is a feature of many varieties of constructivism about scientific theories
that such relations of fit cannot be established at all; if they do exist we can know
nothing of them.6 We will return to this and other matters in the next section.

Let us now turn to the matter of testing. Again we can adapt some useful
diagrams in Giere (1991, pp. 28–37) for our purposes.

We can observe real systems such as the solar system and obtain much obser-
vational data about planetary positions, their juxtapositions and opposition, their
paths against the background of the stars, and the like. Or we can perform con-
trolled experiments on some real system RS, such as a swinging pendulum, and
record the values of certain observable or detectable features of RS. This is indic-
ated in the second diagram in which, on the right hand side of the dotted line a real
system in the world is either observed, or experimented upon, and data collected.
Also indicated in the second diagram is the relationship of fit, or lack of fit, between
the idealized model M and what it models, viz., a real system RS.

Now we are in a position to consider the important matter of the agreement or
disagreement (within some degree of error) between the test consequences and the
data. There are two alternatives here. First, there might be a satisfactory agreement
(up to some degree of error) between the test consequences and the data. All that
one can legitimately infer from this is that the conjunction of the set of statements
T , and the model M (and any other auxiliary statements A not indicated in the
diagram that assist in the deduction of the test consequences), have jointly passed
the test. With some theory of confirmation, one might even be able to ascertain
what degree of confirmation the conjunction of these items has by the data, and
how it can be distributed amongst T , M and A.
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Second, there might be disagreement between the test consequences and the
data that exceeds any compatibility within the allowable degree of error. So, if the
test consequences are to be rejected as false, then so must the items from which they
were derived. That is, either all of T , M and A are false, or any two of these, or just
one. This leads to the well-known Quine–Duhem thesis in which no hypotheses can
be refuted in isolation from other hypotheses. But the situation may not always be
as grim as the Quine–Duhem thesis suggests. Perhaps one has good independent
grounds to say that the auxiliary assumptions A are true, and so A is not to be
blamed; the blame must fall on T , or on M. Now one can readily see a way to
sheet the blame home to M with all its idealizations. All models are idealized
to some extent; and as such, when combined with theory may not lead to test con-
sequences that fit the data within an acceptable degree of error. It is then possible to
concretize aspects of the model to improve the values of the test consequences that
flow from it so that the discrepancy between test consequences and data might be
lessened, or removed altogether. That is, when confronted with a conflict between
test consequences and data, there is a procedure of concretization to be carried out
to bring the test consequences and the data into accord. But it might also be the
case that successive concretizations, leading to the complete concretization of the
model in which all idealizing assumptions have been removed, still do not remove
the discrepancies. In such a case one would have grounds for thinking that the fault
lies not with the model proposed but the theory that is used in combination with the
model. (On testing idealized laws, see Nowakowa & Nowak (2000, pp. 130–134).)

In summary, there is a test procedure for determining which of our theory, or
the models to which theory is applied, are to be accepted, modified or rejected. The
process of concretization plays an important role here in enabling us to improve on
our models by dropping idealized assumptions. Such a procedure is an important

256



PENDULA, MODELS, CONSTRUCTIVISM AND REALITY

part of the methodology of idealization that Galileo introduced and applied to a
number of dynamical phenomena, such as free-fall or pendulum motion.

6. Consequences for a Radical Constructivist Account of Science

Galileo was aware that his contemporaries would not fully grasp his novel meth-
odology based on models and idealization. In his dialogues he put a number of
considerations against it in the speeches of those who opposed the views of his
mouthpiece, Salviati. His opponents were Aristotelians who adopted the common-
sense and empirically based conception of science that Galileo was at pains to
re-evaluate. There were also live, contemporary opponents who were expert mech-
anics and engineers in their own right and who challenged Galileo’s procedures.
One such was Del Monte who complains of the considerable distance between the
ideal models proposed by pure mathematicians (such as Galileo) and the actual
physical systems and machines they purport to describe.

Thus, there are found some keen mathematicians of our time who assert that mechanics may be
considered either mathematically, removed from physical considerations, or else physically. As if,
any time, mechanics could be considered apart from either geometrical demonstrations or actual
motion! Surely when that distinction is made, it seems to me (to deal gently with them) that all they
accomplish by putting themselves forth alternatively as physicists and as mathematicians is simply
that they fall between stools, as the saying goes. For mechanics can no longer be called mechanics
when it is abstracted and separated from machines. (cited in Matthews 2000, p. 101)

This remark, and others like it by Del Monte, can be found in Matthews book on the
pendulum along with a longer discussion of the issues involved (Matthews 2000,
pp. 100–107). What these remarks of Del Monte show is that mechanics is to be
strongly connected to what we can experience of the workings of machines and
the like. Any other alternative view of mechanics, such as Galileo’s treatment of
motion by means of models that might not even fit experience, is to be regarded
with suspicion.

Moving to our own time, how does Galileo’s methodological approach compare
with constructivism as it arises in science education? In some respects it provides
a serious challenge – depending on how constructivism is understood. There are at
least three aspects to constructivism depending on whether it is (a) a philosophical
doctrine that provides an epistemology and a view of the world and science that
flows from it, or (b) an account of how science has grown throughout its history,
or (c) an account of how students in fact do, or ought to, learn about the world or
science.

Let us consider the first aspect (a), using the remarks of a leading advocate of
radical constructivism, von Glasersfeld. Radical constructivism is not radical in
an immediately political sense (though it is this too); it is radical in that it aims
to overthrow the domination of traditional epistemology of the last two and half
millennia. What is to be overthrown in that tradition is the idea that any of our
theories are true, or are a copy of reality: ‘Although Piaget said dozens of times
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that, in his theory, “to know” does not mean to construct a picture of the real world,
most of his interpreters still cling to the notion that our knowledge must correspond
to a world thought to be independent of the knower’ (von Glasersfeld 2000, p. 4).
Now it is not necessary for a realist theory of truth to be committed to a ‘copy’
view, whatever that means. All that is required is, as Aristotle put it: ‘to say of
what is that it is not, or of what is not that it is, is false; while to say of what is that
it is, and of what is not that is not, is true’ (Metaphysics 1011b, 25–28). But we will
not labour this point. The point that von Glasersfeld wishes to make is against the
realist’s epistemological claim that we can have knowledge of an external reality.
Instead it is alleged that we can never know that anything we say is true or false
(even if it be true, or false).

According to von Glasersfeld skeptics have, from ancient times onwards, shown
that the realist claim of knowability is unrealizable; but they failed to shake people’s
convictions about realism because they did not propose a plausible alternative.
However an alternative explanation might be that people were not convinced by the
skeptics’ argument; some reasons are given for rejecting the skeptics’ conclusion
in Nola (2003) and will not be repeated here. Von Glasersfeld’s rejection of (a)
is radical in two ways. First, he appears to be rejecting, because it is otiose, one
of the central conditions that distinguish knowledge from belief or opinion, viz.,
that if one knows some proposition, that p, then it follows that p is true. In this
respect the epistemology of von Glasersfeld and others is seriously at odds with the
philosophical tradition. Second, it should be noted that the radical constructivist’s
rejection of the realists’ claim of knowability is quite broad; it has the consequence
that we should give up on ever knowing the truth of even observational claims such
as ‘there is an open page of a book in front of me now’. That is, not even for the
observational realm can we say that we know that our observational reports are true
of an external reality in which there is a book in front of one now and it is open at
a page. Radical constructivists take skepticism about the external world seriously
as part of their position.

This distinguishes radical constructivism from the constructive empiricism of
the previous section. On this issue constructive empiricists join hands with real-
ists; both acknowledge the possibility of the truth of reports about what we can
observe, and our knowing that they are true. However constructive empiricists join
hands with radical constructivists against realists in denying that we can know the
truth about reports of unobservable, or theoretical, objects and happenings. Their
common objection is that we cannot check our claims about the unobservable by
directly comparing the claim with a bit of reality – which in the nature of the case is
unobservable. To illustrate, see the second diagram of the previous section where
realists wish to talk not only of some degree of fit holding between observable
aspects of models and observable reality, but also of some degree of fit holding
between unobservable aspects of models and unobservable reality. Realists would
insist that even if the comparison cannot be directly made in the latter case, it does
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not follow that there are not other indirect means for testing truth of claims about
the unobservable, or the unobserved.7

Von Glasersfeld is also aware of moves that attempt to replace talk of truth
by that of verisimilitude; his objections are meant to apply also to claims about the
truth-likeness of our theoretical beliefs to unobservable reality (see von Glasersfeld
2000, p. 5). It follows from this that there is no room for talk of how well the
idealized models advocated by Galileo or Newton fit reality, that is, how truth-like
they are. For radical constructivists this applies to talk not only of the unobservable
but also to talk of the observable. In this respect the doctrine is radical. At no point,
either at the observable or unobservable level, is there any contact between, or cor-
respondence with, our theories and/or models and reality, or if there is some contact
or correspondence we can never know that there is (this being the point made by
skeptics about our knowledge of the external world). To underline this point, in
his discussion of Popper’s distinction between realism and instrumentalism, von
Glasersfeld tells us: ‘Radical constructivism is uninhibitedly instrumentalist’ (von
Glasersfeld 1995, p. 22). But it is an instrumentalism that must reach right down to
the very reports of observations themselves and cannot stop at them as the pivotal
points at which we make contact with the world. Such contact with the world is not
to be countenanced even at the level of our reports of what we see, or hear.

So what positive epistemological position does radical constructivism advocate
against traditional epistemology? ‘Radical constructivism . . . holds that knowledge
is under all circumstances constructed by individual thinkers as an adaptation to
their subjective experience. . . . The task is to show that and how what is called
knowledge can be built up by individual knowers within the sensory and con-
ceptual domain of individual experience and without reference to ontology’ (von
Glasersfeld 2000, p. 4). The last clause ‘without reference to ontology’ we can
take to reiterate the point that we should make no assumptions about how external
reality is, or whether our non-traditional constructivist conception of ‘knowledge’
is true of it, or even a copy of it. Reality is to be set aside as a ‘something-we-
do-not-know-what’ that plays no role in the construction process. The only thing
that plays a role in the construction is individual sensory experience – and, though
their role is not clear, concepts about one’s individual experience also get into the
constructing act.

In the sense of radical constructivism, can everything we claim to ‘know’ be
constructed in this way? Von Glasersfeld acknowledges that there is at least a
problem about how the constructors themselves get constructed (see ibid., pp. 5–6).
Each constructor can, on this doctrine, only be constructed out of their own ‘sens-
ory and conceptual domain of individual experience’. We will not explore here the
difficulties for the self-construction of the constructors. There are also difficulties
for the construction of ‘things’ other than the individual constructor. Such other
‘things’ must include other constructors; at best they can only be the construction
of each constructor. (Is there not an incoherence in the idea that each constructor
constructs all the other constructors that is akin to the problems of solipsism?)
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Given the importance radical constructivists attach to social processes in education
and elsewhere, it should be noted that the social Other is entirely an individual
construction. Not to notice this is to help oneself to items in ontology of the Other,
which is independent of each individual constructor and their constructions. But
this has been explicitly ruled out given the above account of ‘knowledge’ within
radical constructivism with its ban on any reference to ontology.

Let us set these problems aside and consider items in the external world that
physical science might examine, such as rock, trees, tables, pages of books, and
mass, gravitational attraction, electrons, and the like. All items in the external
world, the ‘Other’, are to be constructed out of individual experience. They are,
as von Glasersfeld says, to be ‘constructed by individual thinkers as an adaptation
to their subjective experience’. But to most this seems nothing other than a version
of extreme empiricism, or of phenomenalism. The very external objects such as
rocks or books are really epistemological constructs of an individual and are not
really out there at all.

But let us set these points of contention aside and consider the doctrine in re-
lation to Galileo’s methodology. It is prone to all the difficulties raised by Galileo
and mentioned in Section 1 about how we might have to correct our experiences.
It is also prone to Feyerabend’s problem of ‘natural interpretations’ that infuse
experience, or our reports of experience (that is, how concepts get applied to exper-
ience in making the reports). Radical empiricism also has a restricted view of what
can count as the materials out of which the constructions emerge. Only individual
experience is mentioned. However, as pointed out in Sections 1 and 2, in model
building experience may play only a minimal, or even no, role; what plays the
central role is, as Galileo put it, reason or thought. This is the missing dimension
in the radical constructivist’s store of materials out of which constructions, such as
ideal models, are to be made.

So far radical constructivism seems not to be able to give an account of Galileo’s
methodological procedure; in fact it runs counter to it. Elsewhere von Glasersfeld
tells us that he follows Piaget who ‘saw cognition as an instrument of adaptation, as
a tool for fitting ourselves into the world of our experience’ (von Glasersfeld 1995,
p. 14). If we think of cognition here as including the kinds of theoretical models
that Galileo constructed, then they may never fit the world of experience and may
run counter to it. Think of the idealizations of Section 4, such as Newton’s Law of
Motion which may fit no actual motion, whether we experience it or not.

If realist truth is under a heavy cloud of suspicion, with what do radical
constructivists replace it? With the notion of viability: ‘Actions, concepts, and
conceptual operations are viable if they fit the purposive or descriptive contexts in
which we use them. Thus, in the constructivist way of thinking, the concept of vi-
ability in the domain of experience, takes the place of the traditional philosopher’s
concept of Truth, that was to indicate a ‘correct’ representation of reality’ (von
Glasersfeld 1995, p. 14). Here we need to focus on the idea of viability of which
von Glasersfeld says in another context, invoking Piaget’s idea of equilibration:
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‘ “viability” is tied to the concept of equilibrium. . . . In the sphere of cognition,
though indirectly linked to survival, equilibrium refers to a state in which an epi-
stemic agent’s cognitive structures have yielded and continue to yield expected
results, without bringing to the surface conceptual conflicts or contradictions’ (von
Glasersfeld 1998, p. 16). An important issue here is whether the notion of viability
must depend ultimately on the notion of truth and that it cannot be avoided alto-
gether. First, the idea of a contradiction can not be understood without an appeal to
the notion of truth: that two claims are contradictory just means that if one is true,
then, as a matter of logical necessity, the other must be false. Here the notions of
truth (and of falsity, and of logical necessity) enter into the definition and cannot
be avoided.

Second, how do we tell of our ‘cognitive structures’ (these will include theories
and models we entertain, let us suppose) that they are viable; that is, they ‘yield
expected results’ (in a contradiction-free manner). Surely we must be able to tell,
even be able to know, that some result we expect, E (on the basis of our ‘cognitive
structures’) has actually been yielded, that is, that it has turned up as a bit of reality
R. In other words, we need to be able to tell that expectation E is made true
by R (or, if one wants to use ‘copy’ or ‘correspondence’ talk, that E copies, or
corresponds to, bit of reality R). Thus it appears that if the notion of viability is
to be understood at all, the notion of truth that reaches out to the world, matching
expectations with reality, has to invoked. We need to lift the ban that tells us to
proceed ‘without reference to ontology’ if the notion of viability is to have any
content at all. If some such ‘cognitive structure’/world relationship is available
then our ‘cognitive structures’ do not become merely castles that we build in the
air; that would produce a miracle, the miracle that the very castles we build in the
air manage to help us cope with a world that bears no connection at all to the airy
castles of cognition in which we must, perforce, live. But that it is no miracle is
something realists can explain and radical constructivists cannot.8

Given the large role that Piaget’s views are to be given as a part of radical
constructivism, perhaps there is another way in which the doctrine is to be under-
stood other than merely a construction out of individual experience. We should
also invoke Piaget’s model of schema, perturbation, followed by accommodation
that leads to equilibration and the rest of his theory of cognitive development.
That is, we need to add these Piagetian elements to our understanding of von
Glasersfeld’s account of how we construct out of individual experience. Some see
in this a version of the commonly invoked theory of ‘trial and error’ that is not too
distant from Popper’s theory of conjectures and refutations. Let us go along with
this understanding of radical constructivism, and then make the analogy with ‘trial
and error’.

But does the analogy hold? It is quite unclear that anything like the kind of
conscious model building, and more generally scientific method, that Galileo pre-
scribes is actually to be taken on board as part of what happens generally in such
cognitive development. Piaget’s account of cognitive development is one thing and
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scientific method is another; there is no reason why they should be the same (des-
pite what followers of Piaget say about the psychogenesis of science throughout
its history). For Galileo the application of method is a deliberate conscious activity
using a quite specific scientific theory, and understanding the model as capturing
the essential, and dropping the non-essential, aspects of what is going on in real
systems. (Galileo’s idea that we are capturing the essence of what is going on in
some real system undercuts any attempt to understand this along the lines of the
instrumentalism that von Glasersfeld ‘uninhibitedly’ adopts).

The analogy fails in a deeper way pointed out by Popper (see Popper 1999,
chapter 1, the paper originally appearing in 1972). He claims quite broadly that ‘all
life is problem solving’, including the life of an amoeba, the life of a learning child,
or the life of a Galileo or a Newton or an Einstein and the scientific problems they
faced and solved. He suggests a three-part model that broadly captures all of these
problem-solving activities:

(1) problem → (2) attempted solutions → (3) elimination [→ new problem, etc.]

The problems to be solved may be those to do with brute survival, including
problems in which evolutionary change is required; or they might be intellectual
scientific problems. Those confronted with the problems attempt various solutions.
Then these various attempts are put to the test; some are eliminated because they
fail as solutions while one attempted solution is taken up since it does not fail. (If
an agent fails to come up with any non-failing solution then they may well cease to
be, such is the magnitude of the problem facing them.)

However for Popper there is an important difference at stage (3) in the case of
science. It is we who have to conduct the elimination process through the applic-
ations of methodology that lead to elimination or acceptance. Popper, of course,
is an advocate for his own methodological theory of falsificationism. However we
need not adopt his view; we can instead consider a range of extant theories of
method. This leads to a four-part model:

(1) old problem → (2) formation of tentative theories → (3) attempts at elimination
through critical discussion and testing → (4) new problems → etc.

The big difference for Popper is step (3), the element of critical, rationally based
discussion of the tentatively formed theories which members of the scientific com-
munity carry out amongst themselves. If a comparison is to be made between
Piaget’s equilibration model for cognitive development and Popper’s two models,
then Piaget’s is akin to the first three-stage model and more distant from the second
four-stage model. But what is crucially missing is the kind of appeal to consciously
used theories of method as part of the critical discussion of theories.

Various kinds of critical discussion are clearly indicated in Galileo’s dialogues
in which he actively proposes new concepts and tentative theories, including his
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theoretical models, and then subjects them to critical evaluation by comparing them
with rival views, or developing less idealized models and so on. More generally
this critical discussion has been vastly enhanced in the 20th century through the
development of theories of statistical method and analysis that goes well beyond
anything that is envisaged in Piaget’s model of cognitive development. The import-
ant point that Popper makes for our purposes is that the critical discussion we carry
out is consciously carried out using such principles of method; in large part it is
constitutive of our idea of rationality. It is this that also takes us away from Piaget’s
model of cognitive development despite superficial similarities to Popper’s two
quite broad models indicated above.

In sum, von Glasersfeld’s characterization of radical constructivism as indi-
vidual construction out of experience (‘without reference to ontology’) is inad-
equate in that it must appeal at least to a notion of viability that involves truth (and
so to the banned appeal to ontology). It is also inadequate on other grounds; its
appeal to experience leaves out all the richness of Galilean methodology indicated
in Sections 1 and 2 that puts great store on the role of reason in model building. If
we add to this account of radical constructivism all the elements of Piaget’s theory
of cognitive development, then we still fall short of Popper’s notion, expressed in
the four-part schema, of subjecting our ‘cognitive structures’, theories, models, or
whatever, to an explicit rational, critical evaluation through the application of our
theories of scientific method.

As indicated at the beginning of this section, radical constructivism is not only
(a) an epistemological doctrine, but it is also (b) an account of how science has
grown throughout its history, and (c) an account of how students do, or ought to,
learn about the world or science. We have said enough of (a). And (b) must be
passed over with the bare comment that the actual history of science has proved
to be recalcitrant when it comes to squeezing it into any simple account of the
growth of science suggested by philosophers (such as Popper, Lakatos, Kuhn, the
Bayesians, and so on), historians, or sociologists, as well as those who have picked
up theories of cognitive development from psychology. This includes Piaget’s psy-
chogenetic account of the growth of the history of science. While each of these
attempts to explain the growth of science does, in varying degrees, have something
useful to say, they often fall far short of an adequate account of the growth of
science.

But what of (c)? Enough has been said to show that learning on the basis of
construction out of individual experience can be very misleading. This is evident
in Section 1 where Galileo shows that our commonsense beliefs and experience
are often inadequate to the task of obtaining a proper understanding of even quite
simple dynamical matters such as what is really going on in the tower experiment,
or when a pendulum swings. We need to expose misleading ‘natural interpreta-
tions’ that infuse (reports of) experience; and we may have to replace them by
‘unnatural’ (to the pupil) concepts which are more correct. And as was shown in
Section 1 and 2, it is not enough to merely appeal to experience. Galileo made
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the case for an appeal to reason, since reason is the crucial ingredient in the con-
struction of models. It is the very idea of constructing models that is at the core
of Galileo’s account of the scientific revolution. What is suggested above is that
radical constructivism, while it employs the metaphor of construction that can have
application (but not in a way that it spells out), is neither an adequate epistemology
for science, nor an adequate account of its growth, nor an adequate account of
how science ought to be learned. We need other theories to perform these three
tasks. Galileo’s dialogues suggest an alternative theory (that needs to be given more
serious consideration than it has) as a way of approaching the first and the third
tasks.
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Notes

1 For a range of different kinds of model to be found in science, see Giere (1991, chapter 2.3) who
distinguishes between scale models, models as analogies, theoretical models and models as maps.
Achinstein (1968, chapters 7 and 8) considers these and other models. In the above the emphasis is
on theoretical models only.
2 There are several accounts of the idealized version of Newton’s Law of Motion; for one account in
line with the approach to idealization taken here see Nowakowa & Nowak (2000, Chapter 1, section
III, especially pp. 52–53).
3 The term ‘virial’ is Clausius’ term, derived from vis for force, which has to do with the stresses
due to inter-molecular attraction, repulsion and impact. These increasingly concretized equations are
commonly given in physics textbooks; the source used here is Bromberg (1980, chapter 2). For a
further fuller discussion of the different models and equations and their simplifying assumptions, see
Morrison (2000, pp. 47–52).
4 Much more could be said of the role of idealisation in science than has been said here. Important
is the notion that our idealised fundamental laws of science are false of the actual world, a matter
clearly indicated in Cartwright’s (1983) book that has the provocative title How the Laws of Physics
Lie.
5 A fuller account can be found in Niiniluoto (1999, especially chapter 5) where diagrams akin to
those in the text can be found. The treatment in this book of the rivalry between realists and their
opponents is at an advanced level.
6 That radical versions of constructivism, especially those found in science education, are committed
to the view that we cannot even compare our observation and experiential reports with reality is
discussed more fully in Nola (2003).
7 Realists often use inference to the best explanation to argue for their realism about scientific
theories. This cannot be discussed here; for an account, see Niiniluoto (1999 chapter 6).
8 See the reference in the previous footnote for why it is no miracle.
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The Poet and the Pendulum
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Abstract. We begin with the pendulum and the curious authority of the expression for the period of
its swing, T = 2π

√
l/g. That this is not an empirical result −π is an irrational number -leads to an

examination of the nature of physics. In the course of things, we come to Plato’s critique of poetry
in The Republic and the fundamental differences he points to between the authority of the particular
and that of reason. Extending this distinction to physics, we show how the study of the pendulum
illustrates Plato’s project. The study of the pendulum not only prompts the question, “What is the
nature of physics?” it also proves to be an excellent way for students to come to appreciate the kind
of reasoning that is at the heart of physics.

1. Introduction

The period of a pendulum is given by the expression: T = 2π
√

l/g
√√

. What is the
authority for this expression? It is clearly not empirical. No one has ever measured
the time it takes for a pendulum bob to swing back and forth to be T = 2π

√
l/g

√√
.

Nor is it the average of carefully determined data. It cannot be, because π is an
irrational number. You can’t get there from the data. You can’t get there from
experience.

This expression is an invitation to look at the nature of physics with an eye on
just what kind of enterprise it is. Moreover, by following its lead, we shall find
ourselves considering not only the nature of physics but also that of poetry, and
we shall find that there is a special value to the pendulum in leading students to
appreciate the kind of reasoning that is at the heart of physics. In the end, the
pendulum proves to be a delightful pedagogical tool for getting students to engage
the distinctive character of physics.

2. What is Physics About?

Curiously, it is common for physics textbooks not to discuss this question. Instead
of defining the discipline, authors tend to offer a few observations about the sci-
entific method and the importance of measurement, or perhaps they sketch the
over-all parameters of the universe. (Halliday et al. 1998; Holton and Brush 1973;
Caspar and Noer 1997) Then they get down to business. This is unfortunate, in that
unlike other science disciplines such as astronomy, biology, or geology, there is no
reason to assume that students know what physics is about.
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Physics seems to have become essentially a set of topics. For example, Concep-
tual Physics, a highly successful text, describes physics as “the most basic of all
the sciences”, and proceeds to explain: “It’s about the nature of basic things such as
motion, forces, energy, matter, heat, sound, light, and the inside of atoms” (Hewitt
1998). Hewitt offers no clear way to characterize this set, other than these are the
topics traditionally dealt with in physics courses. That is, physics is as physics
does.

There is nothing wrong with this. Tradition is an adequate framework for prac-
tice. And indeed, it may be that the real character of physics lies in some ineffable
quality or sensibility that only emerges in the interaction with the discipline, such
as an apprentice might gain at the feet of a master. Nevertheless, there is a value
to raising the question – why are these topics in the same set? What binds them
together? That is, what is the proper character of an introduction to physics?

The curiously non-empirical authority of the expression for the period of a pen-
dulum suggests that unlike other sciences, the domain of physics might be defined
by its analytical character rather than by a set of objects. In this vein, consider this
passage from Physics by Halliday and Resnick (1964): “Indeed, if idealizations
or approximations are not made, the vast majority of significant problems of all
kinds in physics and engineering cannot be solved at all”. This is an intriguing
observation because, as the pendulum expression makes clear, we are not simply
talking about a casual attitude toward the data. Something is going on.

So if idealizations and approximations are of a distinctive significance to phys-
ics, how should we understand them? To get a handle on this question, we may turn
to the history of physics where we find an interesting episode involving Galileo.
Galileo is associated with a host of remarkable discoveries from the thermometer
to the telescope, as well as for his work on falling bodies and his critique of Aris-
totelean physics. In this context he came to the study of the trajectory of projectiles,
such as cannon balls. Galileo argued that a projectile would move uniformly in the
forward direction as it rises and falls subject to the force of gravity. The result
would be a parabola.

It is not, and Galileo knew it was not.
The actual trajectory of a cannon ball lacks the symmetry of a parabola. It rises

in an arc, but then drops rather precipitously. This is not far removed from the
Aristotelean view, and scientists before Galileo had carefully analyzed this motion
and given it sophisticated form. (Whewell 1837)
Galileo knew this, too.

The problem was, Galileo explained, that this work was too close to the phe-
nomena. The actual behavior of a cannon ball was supernatural! Its natural motion,
its real motion was parabolic –despite the fact that this is not what we see. This
is an extraordinary claim, especially when we so often extol the virtues of careful
observation in the sciences. Galileo has denied a rival theory because it fitted the
data! From his perspective, the data carried more than it should, and of course, he
was right – air resistance so distorts the real motion as to make it un-natural.
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Galileo’s work and his language suggest how idealization works in physics. It
carries you passed the distortions of experience down to the genuine contours of
underlying reality. Idealizations undo the supernatural. Michael Matthews (2000)
describes a delightful example of this in an exchange between Galileo and his
patron and mentor, Guidobaldo del Monte. Del Monte is stunned by Galileo’s sug-
gestion that a pendulum’s swing keeps uniform time. How could it, when it slows
down to a standstill? Here again, it is clear that the ideal is curiously detached from
experience. And so we return to our initial problem. Galileo’s notion of the real
motion beneath actual experience reveals physics to be a curiously un-empirical
discipline where reasoning is somehow independent of the data.

3. What Physics is about – First Go

To try to make sense of things, I propose to follow the advice of George Grote.
Over a century ago, Grote asked why it was that the writings of ancient Greece
had such a firm hold on the Western imagination, so that after more than 2,000
years not only were they read, but they were at the heart of a good education. The
answer, he offered, was not the direct relevance of the writings themselves. Modern
science had far outstripped its Greek proportions, as had modern philosophy and
historical criticism. No, the real claim on the modern mind was that in the ancients
every generation could find anew the discovery of reason itself, and so uncover
the deepest questions and stirrings within the various disciplines (Grote, 1844).
Perhaps, then, we can find the distinctive character of physics by looking at its
emergence in classical antiquity.

In a fine study of the origins of science, Giorgio de Santillana (1961) makes an
intriguing observation. He links the Greek word physis and the Latin natura. Both
were agricultural notions referring to the push of a plant as it breaks through the
soil. From this perspective then, Anaximander – by tradition the author of the first
prose text, an essay on ‘the physis of things’ – had characterized what would be-
come the sciences with an organic metaphor that tapped into the quality of agency,
of push. We still use ‘nature’ in this sense when we speak of an individual’s nature
or character, something within that lies at the root of their behavior and makes them
what they are.

De Santillana’s notion is that the origins of science rest in the effort to under-
stand the ‘nature’ of things, that is their internal push. We may go a long way
toward capturing what physics is about by seeing it as the systematic examination
of agency. Where biology is about life and geology about the earth, so physics
is about the causes of things, what makes them what they are -the roots of their
behavior.

Such a notion explains many of the most striking features of physics. In the
first place, it explains the need for an introduction to physics. We can see why
ambiguity surrounds just what physics is about. Instead of studying a particular
patch of natural phenomena, it studies the ‘nature’ of nature itself. It also explains
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the distinctive status of physics as the most basic of the sciences, in that other
disciplines draw upon the conceptualization of agency within physics.

It does not, however, explain the pendulum. It does not explain that distinctive
quality we have seen in idealizations and approximations. For that we need to
extend our discussion to Plato and his critique of poetry.

4. Second Go – Physics and Poetry

It was clear to the ancients that Thales, Anaximander, Anaximenes, Heraclitus and
Parmenides had marked a profound change in the character of story telling. With
the work of Plato, however, we find that reflective moment which most clearly
signals the birth of a new approach to things. So let us begin by considering the
Republic, perhaps the most widely read of Plato’s dialogues. The Republic sets
forth a utopian society founded upon the ideal form of the good and the just. In the
course of things, there is a curious problem with this text. The Republic is divided
into ten books. The tenth book features a critique of poetry. Not a simple sorting
out of the good and the bad, but a principled condemnation of the whole. There
would be no poetry in the republic. How is this possible? How can the culminating
chapter of a lengthy treatise on the just society come down to a matter of rhyming
couplets?

Remarkably, the answer to this question will prove to be the key to our problem
regarding the pendulum and the nature of physics.

Plato’s critique of poetry has been somewhat of a puzzle for a long time. Some
commentators, presumably quite fond of poetry, have been hard-pressed to see how
it could threaten a just state. But Eric Havelock in his fine study, Preface to Plato
(1963), explains why Plato’s critique is exactly right. The problem, Havelock urges,
is with us. We have taken poetry to mean . . . well, poetry.

Havelock carefully establishes his case, but we can, perhaps, sketch it with a few
bold lines. First we must recognize that for Plato poetry would have meant first and
foremost the epics of Homer, and further more that the Iliad and the Odyssey were
oral ‘documents’. Though they had been written down by Plato’s day, they had
long been preserved from story teller to story teller by the extraordinary effort of
memorizing what we now see as two and three hundred page texts.

Such a massive amount of memorizing carries with it a certain set of the mind
that makes criticism very difficult. Plato lays this out in terms of mimesis where
both audience and story teller relive the tale. In this way, a false image of events
is taken for the real thing. At the same time, the act of supporting this false image
cuts out that distance which is needed for examination and criticism. We cannot
pause to consider when we are re-enacting.

Reflecting on this, we may observe that the systematic preservation of such
lengthy ‘texts’ would have required extraordinary efforts. What would warrant such
commitment? More than entertainment. We shade here onto the grounds of the
sacred. Poetry, and Homer’s in particular, was the leading institution in classical

270



THE POET AND THE PENDULUM

antiquity. It was the central authoritative voice within the culture, setting values
and guiding judgements. The Homeric encyclopaedia, as Havelock terms it, was
more than tales of epic proportion. It was the way through the thicket.

The literature of ancient Greece has continued to capture the imagination of
successive generations, but we need to be careful. The colorful tales we read to
our children – the exploits of Hercules or Achilles, the cruelty of Prometheus’
punishment, and the cleverness of the young Theseus – these meant much more to
the ancients.

The bold print of Odysseus’ story is an excellent example. It is the plight of a
man caught between his obligations as a Greek and those of a father, a husband,
and the head of an extended household. To have read of his doubts about joining
the Greek expedition in the 1960’s would have underlined the continued relevance
of such issues and sensibilities, visible in the torn sense of obligation that divided
citizens in the United States and elsewhere over the war in Vietnam.

This is the hallmark of the Homeric encyclopaedia. Again and again throughout
these epics, Homer has portrayed people caught between great forces and great
principles, and everywhere they must resolve tensions and draw conclusions. What
Homer had drawn would prove to be the central body of lines and proprieties that
would shape ancient Greek life.

Homer informed the character of Greek life more deeply than we can readily
imagine. These were not just good stories. They had a formal authority, as well as
a general influence. One way to appreciate this authority is to consider an ancient
court. Plaintiff and defendant would stand before their ruler/judge and make their
case. But judgement was not a matter of the law. It was not a matter of ferreting
out who was telling the truth and who was lying, nor was it a question of which
statute applied to what degree. Rather, it was a matter of linking the issues in the
case to an episode within Homer. Judgement would then unfold in a natural, that
is, an Homeric fashion.

These epics were not simply romantic tales about great adventures. They
provided a set of conceptual devices whereby the ancient Greek could come to an
understanding of his world: What it was; How it had come to be the way it is, and
What claims it made upon you. But these devices were not laid out as principles,
bare and abstract like theorems of geometry or the code of a constitution; rather,
they were embedded in stories, textured, rich and suggestive. To return to Odys-
seus, that was how loyalties to the state, to one’s family, and so on were configured
-not in legal code, but in the unfolding of Odysseus’ decisions and the events that
befell him and his family.

The brilliance of Plato lay in his ability to push to the most fundamental matters.
The problem was not the Homeric encyclopaedia itself. It was the way decisions
were being made. In this sort of decision-making, there was a misplaced authority
in particular episodes. The wise ruler could ‘see’ the right analogy to draw between
the present conflict and the Homeric corpus, but this rested justice upon particular
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just acts. Plato sought a new, radical alternative where just decisions would be
drawn from principles of justice.

5. Physics and Reason – from Poetry to Orbits

To appreciate Plato’s radical shift and with it to appreciate the pendulum and the
distinctive character of physics, we may pause to consider the paradigm for Plato
of non-poetic reasoning, geometry. Years ago, I was teaching geometry and the
theorem before the class was – the angle bisector of the vertex angle of an isosceles
triangle is also a median. When asked to prove this, a student took a meter stick to
the board and found the theorem to be false. One section of the base of the triangle
I had drawn was longer than the other. The angle bisector had not divided the base
evenly. The student had made a categorical error. He was, of course, right; but more
profoundly, he was dead wrong. There were two triangles, the one I had drawn and
the one in our minds. Geometry is a discipline, a schooling that teaches us how to
play upon a mental field, tracing our reasoning not in the sand but in our minds.

When Plato sought a foundation for the practice of justice in his ideal state, it
was to have it approach the authority of geometry, a move reflected in the language
he used. The Greek word for the form or shape of an object was ’eidos’, from
which we derive ’idea’. Plato’s theory of forms, his theory of ideas, his view that
we needed to understand the underlying idea of such notions as the good, the just,
or the beautiful, was a mathematical vision. And of course, it was a politically
charged vision, perfectly appropriate for the culminating chapter of the Republic.
Plato sought to completely re-define the authority of the state, anchoring it in a new
kind of reasoning.

Plato had distinguished between the muse of poetry and that of mathematics.
There is a problem with poetry. It instructs through the authentic particular. It gets
us to look at the world through a lens set by these particulars, and in this way, Plato
argued, we are led to mistakes. It is like seeking the truths of geometry with a meter
stick.

The rejection of the particular, the heart of Plato’s critique of poetry, also figured
prominently in one of Plato’s most extraordinary contributions to natural philo-
sophy, his radical reform of astronomy. Astronomy was as old to Plato as he is to
us. In a stroke, he so deeply transformed this science that what was done before
would not be done again after, and what has been done since, has been done in the
spirit of his work. Plato invented the orbit.

What is an orbit? It is not a thing, at least not in an ordinary sense. We need
not worry about banging into it or tripping over it. It is a path, a path traced by the
mind’s eye. We do not see orbits; yet they are real. They are the idea that informs
the behavior of the heavenly bodies. Astronomy had erred by fixing its eye upon
the patterns of the night sky. Instead, Plato argued, it should seek the underlying
structures that inform these appearances. The first models of the heavens are a
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response to his call, explaining the behavior of the planets via combinations of
circular motions.

Plato’s critique of poetry was not about rhyming couplets, but was a call for a
new way to see the truth, a truth that lay behind or beneath experience. It ranged
from the proportions of the just state and the character of virtue to the forms that
guided the heavenly bodies, and in each case the alternative to poetry was the art
of geometry.

There is more here than a framework of axioms, postulates, and theorems. The
art of geometry is the discipline of a mental field ruled by reason. A key issue
within this field was how can one push, poke, and prod and so come to new under-
standings when it is not by examining particulars more carefully. This is precisely
the problem of the pendulum. When we look at the formative models of Platonic in-
struction, that is the dialogues, we find Socratic teaching. Here notions are offered,
questions asked, challenges raised, and alternative views explored. These texts do
not present answers so much as a process for coming to answers. They are manuals
on how to push.

6. The Pendulum, Pedagogy, and Reason

Our discussion thus far has led us to see physics as a study of agency character-
ized by the use of idealizations. Inspired by Grote, we sought the origins of this
approach to making sense of things, and we came to Plato and, in particular, to his
critique of poetry. Plato has given us a context for meaningful statements that do
not directly connect with experience. That is, the approximations and idealizations
that Halliday and Resnick talked about are somehow in the manner of geometry
and those two triangles that are always there – the one we draw and the one traced
in the mind.

We come now to a new problem. Physics is a body of knowledge. It is a set
of expressions like the expression for the period of a pendulum. Indeed, there is
a whole alphabet soup of expressions. But physics is also an approach to making
sense of things -a process that makes critical use of idealizations and approxim-
ations. It would certainly be possible to teach physics as a body of knowledge.
Indeed, I suspect it most often is taught that way. The question is how would we go
about teaching physics so that it highlights the distinctive character we have been
considering? The answer involves the processes of the art of geometry, and most
particularly the derivation.

Take the pendulum.
Play with a pendulum pretty quickly suggests that the period of a pendulum is

largely independent of the mass of the pendulum bob and the vigor of its swing,
and further that it is very sensitive to differences in the length of the string. If we
take a set of data on the time of swing and the length of string and ask students
to find an expression, the result is intriguing. Most students I have taught have no

273



LOUIS B. ROSENBLATT

idea what they should do and the rest treat it as a mathematical problem, seeking a
function that will satisfy the data.

What follows when we come together to consider the task is a really important
conversation. Students have been led to see the connection between mathematics
and the sciences in essentially algebraic terms. That is, they map the data. In this
case, every year several students will come up with delightfully ornate third de-
gree equations relating time and length that they have drawn from their graphing
calculators.

When I suggest that we might want to try a more geometric approach, they give
me a strange look. But I push, saying that we should try to derive an expression in
much the same way we would derive a theorem in geometry. What do you know, I
ask, that might provide a framework for understanding the swing of a pendulum?

As I typically do this exercise very early in the year when their background
in physics is really only kinematics, their resources here are pretty limited. Yet,
delightfully, it is enough to get the ball rolling, as it were. Start, I suggest, by
thinking about the back and forth motion of the pendulum bob as a ball rolling in
a smooth bowl, or along an arc of track. We had already established that as a ball
rolls down a ramp the acceleration is a function of the angle. In this case, however,
the angle is constantly changing.

We need to simplify things.
Since my goal is to have students come to see how to derive relations from

what they know, I suggest we reduce the curvature of the track to a straight line.
Even here we have several options. Referring to the diagram below, the pendulum
swings from C to B. We could use the chord from C to B, for example, but I prefer
another hypothetical slope. The line from B to E is perpendicular to AC and is the
hypotenuse of the right triangle, BDE. Note, the angle ABD is also a right angle,
and thus, the angle EBD is of the same measure as the angle at the top, angle A –
both of these angles are compliments of angle ABE.

A number of things now fall into place. To begin with, we can see that the
acceleration down the slope E to B would be: a = g sin A. Furthermore, we
can express the length of BE in terms of the sine of A in triangle ABE; that
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is, letting l represent the length of the pendulum, AB, and x represent the line BE,
we have: x = l sin A. We can now use the kinematic expression: x = v1t +1/2at2.
Since v1 = 0, substituting the above values leaves the following expression:
l sin A = 1/2g sin At2. If we re-arrange this to solve for time, we get: t2 = 2l/g

or t = √
2l/g. As this value for t is for one trip down the slope, the period of this

simplified, approximate pendulum would be 4t or T = 4
√

2(
√

l/g).
There are one or two things worth noting about this expression. In the first

place, we have addressed our initial question. We have seen how you can have
an irrational number in the equation for the period of a regular motion. Plato’s
geometric approach, by allowing us to derive an expression rather than map the
data, has yielded a curiously un-empirical result. As one student would observe late
in the year in an essay on relativity: “The first thing we learned is that you don’t
do physics with a ruler”. Furthermore, comparing this expression to the standard
one, we find that the numerical constants, 4

√
2 and 2π are not significantly differ-

ent values. One is slightly under 6, the other slightly over. More importantly, the
functional dependencies here are identical.

It is clear to everyone that this simplification is only an approximation of the
real pendulum. The fact that the numerical constant we derive differs from the real
constant is not at all surprising. Indeed, the real surprise is that our expression
is so close to the right answer. This thereby suggests the value of further study.
Kinematics could take us just so far. Perhaps with further study, we might find
other frameworks where we could make less distorting approximations that would
bring us closer to the standard result. Across the year, we do return to the pendulum,
re-deriving expressions for the period of its swing. In each visit, we try to gauge
the amount of distortion introduced by our simplification, and the power we find in
the new approach. By the way, we leave it to the reader to find other approaches to
the pendulum, including approaches that yield the standard result.

Derivations are central to physics, and we do a real disservice to our students
when we do not help them to earn this more formal aspect to the discipline. The
sort of reasoning used in this exercise with the pendulum helps students to see a
new aspect of the mathematical face of physics. In addition to the basic enterprise
of solving problems and practicing various algorithms where the relevant expres-
sions are given, here students were to determine the expression. As they engaged
this problem, they came to see the fundamental differences between finding an
expression that maps the data, basically an algebraic process, and starting from
established principles to derive an expression. This more geometric sort of math-
ematical reasoning is, we believe, the key to seeing what physics is really about.
Derivations are the opposite of poetry. They are played out in a mental field quite
removed from the particular. As for the pendulum, it is a lovely challenge that
enables students to see a host of nuances in this enterprise and so gain a real feel
for what physics is about.

And there is more. The Socratic method, as Plato would have us extend it to
physics, shifts the politics of discourse in the classroom. Rather than seeing the
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flow through the material as a matter of preparing students so that they may re-
ceive the right answer – defining terms, practicing algorithms, and verifying these
relations in various activities and lab exercises -Plato points us in a different dir-
ection. Progress is earned through a series of problems and puzzles. Students are
everywhere encouraged to engage these puzzles and draw upon what they know
in working out how to solve them. And the solutions, by involving derivations,
take them back to what they know. The flow becomes more essentially a matter of
making sense of things, and that seems to me to be right where it ought to be.
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Abstract. This article refers to a framework to teach the philosophy of science to prospective and
in-service science teachers. This framework includes two components: a list of the main schools
of twentieth-century philosophy of science (called stages) and a list of their main theoretical ideas
(called strands). In this paper, I show that two of these strands, labelled intervention/method and
context/values, can be taught to science teachers using some of the instructional activities sketched
in Michael Matthews’s Time for Science Education. I first explain the meaning of the two selected
strands. Then I show how the pendulum can be used as a powerful organiser to address specific issues
within the nature of science, as suggested by Matthews.

Introduction

The importance of the philosophy, history and sociology of science (collectively
referred to as the nature of science, from now on) in the science curriculum and in
science teacher education has been acknowledged all over the world by educational
researchers and policy makers (AAAS 1989; Matthews 1994; Driver et al. 1996;
NRC 1996; Millar and Osborne 1998). Accordingly, a number of important ra-
tionales and practical proposals have been put forward in the last twenty years or so
with the aim of teaching elements of the nature of science to different populations
(Duschl 1990; Matthews 1991, 2000; Jiménez Aleixandre 1996; McComas 1998).

The available theoretical developments in this research line (known by its ac-
ronym NOS) generally point to the need for an identification of the epistemological
foundations of science teaching. Authors usually focus on establishing connec-
tions between well-known philosophical views (e.g., rationalism, hypothetico-
deductivism, revolutionism, constructivism) and models of teaching (Nussbaum
1983; Cleminson 1990; Mellado and Carracedo 1993; Izquierdo and Adúriz-Bravo
2003). As an instance of this procedure, following a critical review during the
1990s of the extensive use of constructivism in science education, some authors
have highlighted the urgent need to recover temperate versions of realism and
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rationalism,1 which are more compatible than relativist philosophies with the aims
of a liberal science education for all (Matthews 1994, 1997; Giere 1999; Good and
Shymansky 2001; Cobern and Loving 2003). I think with these authors that cur-
rently available perspectives on realism and rationalism are modern and accurate
views of NOS that have enormous value to achieve a science education of quality.

Instructional proposals typically select topics from the nature of science on
whose relevance for science education there is reasonable consensus amongst
researchers, for instance: scientific method, theory change, realism, scientific ex-
planation. The proposals infuse such topics into classroom activities using various
strategies (for a broad range of strategies, see McComas 1998). For instance, a
number of authors have turned to Giere’s (1988) decisional model of scientific
judgement in order to design nature-of-science activities for prospective and in-
service science teachers (Duschl 1990; Jiménez Aleixandre 1996; Izquierdo 2000).
These activities select and discuss famous episodes from the history of science.

In spite of the impressive base of proposals that has been thus generated, a
weakness in the connection between theory and practice can be detected in many
cases. Some instructional units employ content from the nature of science that
can be considered outdated, or they combine contents from incompatible schools
of thought. Another problem is a lack of reflection about the specific role of the
nature of science in science teachers’ professional induction.� I have been devel-
oping, in previous publications (Adúriz-Bravo 2001b, c, 2002b; Adúriz-Bravo and
Izquierdo, 2001; Adúriz-Bravo et al. 2001, 2002), some ideas that seek to provide
criteria for a more theoretically founded selection of nature-of-science content.
Such criteria should permit the adaptation of existing instructional procedures and
also the development of new ones. Therefore, they could prove to be a powerful
instructional tool both for science teachers and teacher educators.

This paper exemplifies the teaching of a few key elements from the nature of sci-
ence selected through the use of this theoretical framework. The elements, bearing
on scientific method and values, are infused into instructional activities by means
of two historical episodes around the use of the pendulum, examined by Michael
Matthews in his book Time for Science Education (Matthews 2000). Our selection
of these two specific topics is supported by their appearance in many materials
designed for NOS education of science teachers, but will be further justified below.

The first section of this paper identifies some available ideas to account for
the need for a science teacher education that includes the nature of science as
a central component. The second section makes a brief reference to my theor-
etical framework that could guide the inclusion of that component. I focus on
one particular construct, the strands (i.e., structuring ideas) of the philosophy of
science. The third section provides two examples of how episodes extracted from

� Readers can refer to the proceedings of the very successful IHPST international conferences
(e.g., Pavia 1999; Denver 2001; Winnipeg 2003) to spot instructional activities where the NOS topics
to be taught are taken for granted without discussion, and where no specific theoretical basis for the
pedagogical design is provided.
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Matthews’s work on the pendulum may be used for teaching the strands. I mainly
profit from the ‘Huygens section’ of his book (Matthews 2000), later published
independently (Matthews 2001). Finally, there is a short section that states some
conclusive comments and future perspectives.

This paper is written with the intention of being a plausible example of the claim
that theoretical reflection on the use of the nature of science in science teacher
education permits both the adaptation of existing procedures (evaluative function)
and the creation of new ones (heuristic function). In the instructional activities that
I present, I take some available suggestions and further develop them along new
directions. It is my hope that the ideas presented here can be of use and inspiration
to other science teacher educators.

The Nature of Science in Science Teacher Education

A rapid review of the theoretical scenario related to science teacher education in
the nature of science suggests that the available positions cover a broad spectrum.
There is a small group of researchers who strongly object to an abusive use of
the nature of science in compulsory education and therefore assume that this com-
ponent has a restricted value when preparing science teachers. These researchers
usually denounce the difficulties associated with the history of science in particular,
stating that a heavily distorted ‘pseudo-history’ is often present in the secondary
science curriculum (Brush 1974; Lombardi 1997; Fried 2001). Other authors con-
tend that elements of the nature of science should be implicit in science education;
there would be no need to contemplate specific instruction in the philosophy of
science when designing the curriculum.

Among those frankly in favour of teaching the nature of science to science
teachers, two main positions can be identified. One group concentrates on the
intrinsic value that the nature of science has for the education of citizens; these
authors resort to what Rosalind Driver and her colleagues label democratic and
cultural arguments:

An understanding of the nature of science is necessary if people are to make sense of socioscientific
issues and participate in the decision-making process. (. . . ) [It] is necessary in order to appreciate
science as a major element of contemporary culture. (Driver et al. 1996, pp. 18–19)

Therefore, these authors argue that the nature of science needs to be introduced
in science teacher education mainly because teachers are going to teach it in the
classroom. I call this a curriculum perspective; it is well represented in the works
of Hodson (1988) and Matthews (1994).

The other group looks rather at the participation of the nature of science in sci-
ence teachers’ professional development (Duschl 1990; Izquierdo 2000; Seroglou
and Koumaras 2001), to a certain extent independently of curriculum considera-
tions. The nature of science is assumed to represent a second-order reflection on the
content and methods of science that positively contributes to teachers’ autonomy
in the task of didactical transposition (i.e., the decision-making when transforming
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scientists’ science into school science). I call this a meta-theoretical perspective;
my own proposals are in tune with this second perspective.

Along this latter line, one of the main points on which there is consensus is
the idea of functionality. By this I mean a strong requirement that science teacher
education in the nature of science must act as a tangible contribution to their own
professional practice. That is, theoretical reflection on science is valuable in that it
provides criteria and tools for science teachers to act in their classrooms (McCo-
mas 1998). Following this requirement, several constructs and activities have been
diffused for public discussion.

I would like to argue that, although the enormous value of some of these
available activities cannot be denied, some general directions are still lacking. Ac-
cording to many authors (Abimbola 1983; Gil-Pérez 1993; Izquierdo 2000; Leach
2001), science teacher education would require an explicit selection of some par-
ticular families of nature-of-science models. Choosing some models and rejecting
others would ensure a convergent participation of this meta-theoretical component
in teachers’ thinking and practice. In my case, preference goes mainly towards the
cognitive model of science (Giere 1988, 1999) and its counterpart in science educa-
tion research (Izquierdo and Adúriz-Bravo 2003). I strongly adhere to Matthews’s
call for a rationalist and realist science curriculum; this conviction ‘restricts’ the
diversity of epistemological and philosophical models at which I am looking when
working with science teachers. Giere’s account of the nature of science, and the
ideas of the rest of authors that I claim it is worth examining with science teachers,
fulfil this initial requirement.

In an attempt to achieve some degree of usefulness (or functionality, as defined
above), I suggest that science teacher educators need an encompassing comprehen-
sion of the ideas on the nature of science that have been produced in academia, at
least during last century. The constructs that I have developed are for the purpose
of providing a chart of the available content and some criteria to prioritise and
sequence it. The next section is devoted to one particular construct, which acts as
a content organiser and inspires my pragmatic selection of two contributions by
Matthews.

The ‘Structuring Theoretical Fields’ of the Philosophy of Science

My framework for teaching the nature of science to science teachers contains a
number of elements that have been exposed in the previous publications mentioned
above; in this sense, it is not my intention to repeat here material that readers have
access to elsewhere. The core of the framework is related to a carefully guided
selection of the content from the nature of science that can be taught to teachers
once the role of this component in science teacher education is established and
clarified. Selection is done by reviewing and articulating two key elements of
twentieth-century philosophy of science – its major schools of thought and its main
theoretical concepts.
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I have proposed a coarse division of academic philosophy of science in three
overlapping periods, which I call stages:

1. Logical positivism and received view (roughly covering from 1920 to 1965).
This first stage sustains a strict, almost naïve, rationalist and realist reconstruc-
tion of science both as product and process. An initial division between the
contexts of discovery and justification is respected. Formal logic and linguistics
are extensively used. This stage is paradigmatically represented by the classical
works of Carl Hempel (1966).

2. Critical rationalism and the new philosophy of science (approximately going
from 1935 to 1980). This second stage represents a serious questioning of
philosophical orthodoxy. Thomas Kuhn, Imre Lakatos and Stephen Toulmin
are representatives of the ‘irruption’ of the history of science in the philosophy
of science (Estany 1993); they defend the idea that a narrow internalism is
theoretically insufficient.

3. Postmodernism and contemporary accounts (starting around 1970). Relevant
authors representing postmodernism would be Larry Laudan and Paul Feye-
rabend, while Fred Suppe, Ulises Moulines and Ronald Giere, among a host of
others, have produced what I rather broadly label ‘contemporary’ philosophical
accounts. As I portray it, current philosophy of science comprises derivations
and syntheses of both previous stages.

In parallel with this view of stages, I have put forward an abstract organisation
of the stock of ideas on the nature of science, which I call the structuring theoret-
ical fields of the philosophy of science, or more briefly strands. My design of this
construct stems from a review of the literature in science education research that
proposes a science curriculum development based on a few powerful pillar con-
cepts, called ‘structuring concepts’ (Sanmartí and Izquierdo 1997). Accordingly, a
‘structuring field’ would be a set of interrelated concepts that give identity to a dis-
cipline. Some structuring concepts of physics would be ‘energy’ and ‘interaction’,
while examples of structuring fields in the same discipline would be ‘motion’ or
‘waves’.

I have been able to identify seven strands in twentieth-century philosophy of
science, which roughly cover all the major theoretical concerns of this discipline
produced by different schools of thought. Strands are labelled as follows:

1. Correspondence and rationality. This strand comprises two complementary
aspects of the nature of scientific knowledge: the way in which it is believed
that knowledge fits reality, and the criteria that scientists use in order to assess
this fit.2

2. Representation and languages. This strand concerns the different structural
units that philosophers of science have produced in order to account for the
process of representation of the natural world (i.e., theories, models, laws,
paradigms, . . . ). Abstract scientific entities are characterised by means of
specialised language that is object of philosophical study.
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3. Intervention and method. Approaches to the nature of science usually examine
methodological matters pre-supposing various degrees of relationship between
science and reality. ‘Scientific method’ is a construct that has generated strong
debate among philosophers of science.

4. Contexts and values. This strand focuses on the relationships between science
and the technological, socio-cultural and educational contexts, which are all
characterised by their own aims and values.

5. Evolution and judgement. All models on the nature of science have included
a diachronic component that provides assumptions on how science advances
(Estany 1990).

6. Demarcation and structure. A philosophical issue as old as meta-theoretical
reflection is that of distinguishing, or demarcating, between science and non-
scientific intellectual enterprises.

7. Normativity and recursion. This last strand refers to the unique nature of the
philosophy of science as a meta-scientific discipline, i.e., an academic discip-
line reflecting on science as a discourse and as an activity. Philosophers usually
range from normative positions, in which a priori or absolutist parameters are
sought, to a strong relativism.

Stages and strands permit us to map different theoretical models on the nature of
science and to a certain extent assess their pertinence in science teacher education.
In this sense, these constructs permit clearer options when selecting the nature-
of-science elements to be taught. Both constructs work together in what I have
called the matrix of stages and strands (Adúriz-Bravo and Izquierdo 2001). As
they are ‘orthogonal’, they can be combined in a diachronic representation of the
philosophy of science. The matrix thus obtained maps ideas, schools and authors
placing them in a particular stage in time and in a particular thematic space (i.e.,
one or more strands).

My use of the matrix with science teachers can be exemplified with the topic
of scientific explanation, which many NOS instructional proposals seek to teach.
Figure 1 shows how we can trace three ‘models of explanation’, each one corres-
ponding to a stage. Scientific explanation itself combines at least four strands, since
it coalesces logical, linguistic, representational and methodological considerations
and, at the same time, has been a nodal point in the task of demarcation.

This apparatus has allowed me to identify scientific method and scientific val-
ues as two interesting ideas for this paper (other key nature-of-science ideas are
inspected in Adúriz-Bravo 2001c). I will show in the next section how I have
designed specific instructional activities to teach these two ideas to prospective
science teachers.

I follow earlier suggestions that contents of the nature of science can be success-
fully taught using central historical episodes as case studies (Irwin 2000; Matthews
2001). My source of materials from the history of science is Michael Matthews’s
extensive work on the role of the pendulum in Western culture.
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Figure 1. The ‘matrix of stages and strands’ permits tracing the evolution of meta-theoretical
ideas on scientific explanation.

Practical Proposals Using Matthews’s Work on the Pendulum

This section exemplifies two of the numerous and diverse instructional activities
that can be constructed using material extracted from Matthews’s (2000) book.
The first activity is concerned with the use of formal logic in order to character-
ise algorithmic aspects of the scientific method, generally referred to as scientific
judgement. A hypothetico-deductive model that regards theory testing as a falsifica-
tion process is examined. The second activity examines the influence of contextual
matters in science. Scientific progress is seen as a series of informed choices that
take place within a scientific community holding a worldview and a set of values.

Rationales for including these two particular nature-of-science topics – method
and context – in science teacher education have been extensively provided in NOS
literature. It is easy to see how the methodological aspects of science matter in
the international setting of new curricula that require students to answer, besides
the usual scientific question ‘what do we know?’, the epistemological question,
‘how have we come to know it?’ (Duschl 1990; Osborne 1996). Scientific context
and values have also been spotted as an important issue in science education; in
this sense, the influence of Kuhn’s inspiring ideas is enormous within our research
community.

The activities that I present resort to well-known episodes spanning from
seventeenth- to nineteenth-century history of science. These episodes are related
to the European voyages of discovery and to the search of international standards
for weights and measures. Both episodes can be connected to the life and works
of the Dutch scientist Christiaan Huygens (1629–1695), who was one of the most
active defenders of the use of the ‘seconds pendulum’ (i.e., a simple pendulum that
swings at second intervals) as a universal standard of length.

I think that the Huygens section of Time (Matthews 2000, chapter 6, pp.
141–150) provides advantageous opportunities to address two of my strands: in-
tervention/method and context/values. For the first strand, I select the key concept
of scientific method and choose to teach it by analysing the advantages and limita-
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tions of a strictly logical account. To treat the second strand, the overall validity of
externalism as a theoretical perspective on the nature of science is examined.

In relation to the scientific method, philosophers of science in the first half of
last century favoured heavily rational reconstructions. Formal logic was extensively
used within the so-called context of justification. Several versions of the method
were put forward: an Aristotle-inspired inductive-deductive scheme, classical ra-
tionalist approaches following Newton and others, Popper’s hypothetico-deductive
falsificationism, and so on. The second half of last century saw the emergence
of a more flexible view, acknowledging the existence of methodological diversity
and identifying modelling via abduction as a key element. I suggest that Richer’s
voyage to Cayenne, as reported by Matthews, is an appropriate ‘staging’ to learn
the distinction between the successive views on theory testing.

Regarding contextual factors, I adhere to a moderate externalism that is avail-
able in what I have called the third stage of the philosophy of science. The first stage
completely disregarded the interference of social, cultural, economic and religious
factors in scientific change. Authors from the second stage introduced as a great
novelty a radical denial of this position (Estany 1990, 1993). But it can be argued
that a synthesis of these two positions is more adequate for science teachers. The
establishment of a metre that was accepted world-wide, as it is reconstructed by
Matthews, is an excellent opportunity to reflect on these nature-of-science issues.

TEACHING THE STRAND OF INTERVENTION AND METHOD

Matthews briefly describes Jean Richer’s trip to the French Guyana (South Amer-
ica), commissioned by the Académie Royale des Sciences in 1672–1673. One of
the purposes of this trip was to confirm the invariability of the pendulum period
with latitude (although the presence of a centrifugal effect due to Earth rotation
had been predicted following Newton’s framework, it was thought that this effect
would prove too small to be detected). This assumed invariability came from the
acceptance of the postulates of classical mechanics and the additional requirement
of a perfectly spherical Earth.

Richer’s negative results – he found that the seconds pendulum was shorter near
the Equator – made it apparent that a revision of the apparatus underlying the study
of pendulum motion and its use in time-keeping was needed. But several ways of
doing this revision were suggested, attacking more or less deeply the theoretical
core.

Under the label ‘methodological matters’ (p. 146 in the book), Matthews briefly
exposes a standard process of falsification via a modus tollens, that is, a way of
rejecting theories by means of a logical inference of a strict deductive nature. This
scheme is best known through the work of Sir Karl Popper (1959). A theory T gives
place through deduction to some predictions O that are ‘observable’. According to
classical formal logic, if these predictions are falsified (i.e., proved to be incorrect:
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∼O) when contrasted against experimental evidence, T needs to be rejected also
(∼T ). The scheme would then be:

T → O

∼O

———
∼T

But this too direct account proves to be inapplicable in the Richer controversy.
If the pendulum effectively changes its period, the source of the prediction O

about invariability (that is, Newtonian mechanics T ) is undermined. This overtly
contradicts what happened in history.

A more elaborate version of the falsification process is obtained by means of
the inclusion of a ceteris paribus clause C. This clause is implicitly attached to
the deductive pattern and represents the hypothesis that ‘other things are equal’
when moving from theoretical predictions to experimental results. In the example
with which we are dealing, C represents, among other things, the assumption of
a spherical Earth. Within this new scheme, the premises of deduction include a
conjunction between theory T and the clause C:

(T .C) → O

∼O

—————-
∼T v �= ∼�� C

The conclusion of this reasoning represents the choice between rejecting theory
or C. In the Richer example, this latter option is of course more sensible and the
oblate form of the Earth is eventually accepted.

Up till here, I have more or less described the activity suggested by Matthews,
with my additional proviso that it needs to be adjusted and specified for the popu-
lation of secondary science teachers (Matthews does not mention the target of his
proposal in this section of the book). But there are still more elements that can be
added to deepen this proposal inside the corresponding strand and introduce more
recent accounts on the nature of the scientific method.

My own contribution to this proposal consists in going further into the use
of patterns of logical inference. I suggest using compact representations of three
different forms of inference: deduction, induction and abduction. I follow Charles
Sanders Peirce’s canonical presentation of deductive, inductive and abductive ar-
gumentation patterns as permutations of the same three statements, alternatively
functioning as premises and conclusions (Samaja 1994). It can be argued that a
more complex account of the scientific method rises from the use of a refined
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version of what was traditionally named the fallacy of the affirmation of the
consequent:

T → O

O

. . . . . . . . .
T

From a strictly classical viewpoint, this form of method is flawed (and thus the
dotted line represents a fallacious inference). Observations that confirm the predic-
tion O do not add to the truth of T . But an abductive framework focussing on the
ample analogical relationships between evidence and theoretical models avoids this
difficulty and seems to provide a plausible reconstruction of scientists’ cognitive
and social functioning (Giere 1988; Samaja 1994).

One of the instructional activities that I have designed to discuss these ideas
with science teachers uses Agatha Christie’s Death on the Nile in book and film
format (Adúriz-Bravo 2001a, 2002a). The detective story works as an analogue for
scientific research, respecting its three key elements: problem, solution, and infer-
ential connection between them. There is explicit comparison of two approaches
to explanation (return to Figure 1), namely the one purported by philosophers of
the received view and the one favoured by contemporary philosophers of science.
The deductive-nomological model is mapped to Agatha Christie’s construction of
the plot: she deduces the clues knowing the murderer beforehand. The abductive-
analogical model would correspond to detective Hercule Poirot’s reconstruction of
the crime: he abduces the identity of the murderer only knowing the clues.

Historical episodes – in connection with the evolution of atomic models – are
provided to stage the rather abstract reflections generated during the activity. More
concretely, the transition between Thomson’s ‘pudding model’ and Rutherford’s
‘planetary model’ for the atom is reconstructed as an abductive process. Working
on Geiger’s and Mardsen’s well-known experiments of the gold-foil lamina, stu-
dent teachers reconstruct Rutherford’s inference. A mechanical analogue (‘If small
balls are thrown against a grid of knots and empty spaces, the balls can go through
or bounce at variable angles’) inspires the major premise:

If alpha particles are projected against a gold lamina constituted of small atomic nuclei and big empty
spaces, the particles can go through or bounce at variable angles.
Some particles go through and some others (very few) bounce at variable angles.

The lamina is constituted of small atomic nuclei and big empty spaces.

TEACHING THE STRAND OF CONTEXT AND VALUES

I use Matthews’s proposal once again in order to illustrate what is an externalist
approach to the study of the nature of science, that is, one taking into account
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variables other than the internal logic of scientific knowledge. A strictly classical
view on the processes of scientific change would minimise the relevance of socio-
cultural forces in scientists’ choices. On the other hand, a relativist – i.e., a ‘second
stage’ – approach is excessively externally-driven and blurs epistemic consider-
ations. I suggest turning to a synthetic view that attends to contexts and values
and provides a more accurate picture of how scientific change takes place (Estany
1990).

Under the label ‘political matters’ (p. 147 in the book), Matthews narrates the
debate concerning the French post-revolutionary decision for the establishment
of an international standard of length. Huygens had proposed one hundred years
before that the seconds pendulum could be used as a cheap and portable universal
measure; a recovery of such proposal was considered and rejected by the Com-
mission des Poids et Mesures. Instead, the committee approved and financed a
determination of the length standard by means of a geodetic procedure – measuring
the span of a ten-millionth part of the quadrant of arc of an Earth meridian. The
length of the selected meridian, notably that going through Paris, was measured
by Delambre and Méchain between 1792 and 1799, and after these measures the
(in)famous brass ‘metre’ was cast.

This apparently irrational choice – the more expensive and time-consuming
method is favoured because of somewhat obscure political matters – suggests that
externalism is a sound theoretical idea for understanding the nature of science. But
the same example can show that some amount of internalism needs to be conserved
for a more accurate reconstruction of the episode, since

Huygens’ seconds pendulum length standard did survive its rejection by the academy. After years of
patient measurement of the meridian sector, and the expenditure of a great deal of state money, the
academy chose a fraction of the meridian distance that coincided with Huygens “three horological
feet”, and accepted the seconds pendulum as a secondary reference for its new length standard.
(Matthews 2000, pp. 149–150)

The epistemic values of economy and simplicity are present in this survival,
as well as the connections of Huygens’s proposal to established physical theories.
And Matthews suggests another internal element that can be usefully analysed by
science teachers. The committee’s rejection of Huygens’s idea was partly founded
on the argument that time and length considerations should not be mixed when
establishing consensual space standards. Some two hundred years later, the shift
to a length standard dependent on the speed of light would therefore represent an
important epistemic breakpoint.

This proposal as stated by its original author can be expanded with the addition
of more theoretical elements (theory load, incommensurability, conceptual change)
and the translation to new historical contexts. Along the first line, I suggest the
use of Giere’s (1988) decisional model, which tries to strike an adequate balance
between cognitive and social components in the scientific enterprise. On the other
hand, in order to historically re-contextualise the discussion, the dispute between
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phlogiston- and oxygen-defenders in eighteenth-century chemistry provides the
opportunity for a rich case study (Izquierdo 2000; Adúriz-Bravo 2001c).

Final Remarks

In the last twenty years or so, a vast number of practical proposals have become
available world-wide to teach elements of the nature of science to prospective and
in-service science teachers. Although these proposals are very valuable, most of
them suffer from an absence of theoretical support. Marilar Jiménez Aleixandre
(1996), for instance, has pointed to the fact that many NOS activities for teachers
make use exclusively of the ‘new philosophy of science’ (i.e., philosophical de-
velopments from the 1960s), referring to this school as ‘recent’ or ‘contemporary’
NOS.

The strands are my proposal – still being refined and tested – to oppose this
tendency and construct plausible examples for teacher education that give to sci-
ence teachers professional autonomy in the field of the nature of science. The
strands permit identifying very basic, structuring, ideas that should not be omitted
in science teacher education.

One crucial question that remains unanswered in this paper is whether pre-
service science teachers can benefit from my approach to NOS instruction.3 I have
not conducted so far any specific investigations to support an affirmative answer.
As anecdotal data, I can comment that the application of these two activities on ten
separate instances in three different countries suggests that the matrix of stages and
strands is a powerful device to help teachers ‘navigate’ the philosophy of science,
which to them represents a very complex and unknown discipline.

In relation to Michael Matthews’s specific contribution centred around the pen-
dulum, I am convinced that Time for Science Education contains an enormous
number of ideas, suggestions and materials that deserve being further explored.
One possible exploration can be done by means of the theoretical framework to
which I have briefly referred in this paper. The two practical examples developed
here are intended to constitute a proposal together with an opportunity for further
developments.

Some slight imprecisions (cf. de Castro Moreira 2001) in the historical treat-
ment of the Richer and metre episodes do not hinder their use in instructional
sequences. I regard these two specific incidents suggested by Matthews as clear
examples of his claim of the profound contribution which a study of pendulum
motion can make to the science curriculum (Matthews 2000, p. 14).

Notes

1 By ‘temperate’ realism and rationalism I refer to recent critical re-formulations of these long-
standing philosophical positions; for instance, perspectival realism as depicted by Ronald Giere
(1988, 1999) and moderate rationalism as proposed by Norwood Hanson (1958).
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2 Giere (1988) considers the ideas of representation and judgement, which closely correspond to
this first strand, a major tool for discriminating between different philosophies of science.
3 I am grateful to an anonymous reviewer of the paper who suggested the inclusion of this remark
in the final version.
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Degree of Influence on Perception of Belief and

Social Setting: Its Relevance to Understanding

Pendulum Motion

DENNIS LOMAS
Philosophy Department, University of Prince Edward Island, Canada

Abstract. Modern visualization techniques in science education present a challenge of sorting
out the contributions of perception to understanding science. These contributions range over
degrees to which perception is influenced by belief (including systematic sets of beliefs which
comprise scientific theories) and social setting. This paper proposes a (first-approximation)

categorization of these perceptions. A perception is categorized according to the degree of
influence on it from belief and social setting. The contributions of perception to understanding
scientific phenomena are drawn from the history of the discovery of the secrets of pendulum

motion.

1. Introduction

Even though visualization is important to science education and new visu-
alization techniques continue to be introduced, few philosophers who address
issues in school education attempt to sort out the contributions of perception
to understanding scientific phenomena. Instead, philosophical discussion of
perception’s role in understanding scientific phenomena tends to focus on the
claim that social settings and beliefs, including adherence to scientific theo-
ries, and other psychological attitudes (for example, desires and expectations)
decisively influence what one perceives. One such claim is that of theory-
ladenness of observation. Discussion also focusses on a range of related
claims, including some claims with an anti-empiricism thrust.1 Since the is-
sues raised in these discussions have a direct bearing on how we acquire
scientific knowledge, these discussions directly pertain to science education.
However, from the perspective of how we come to understand scientific
phenomena, something vital seems to have gone missing from the philo-
sophical discussion. There is little appreciation of the various degrees in
which belief and social setting influence perception. All perception tends to
get painted with the same brush.

With a view to helping to redress the lack of attention paid to the degree of
influence on perception of belief and social setting, I develop in this paper a
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first-approximation categorization (scheme of classification) based on the
degree of influence. (This is a categorization of visual perception. Except for a
brief mention of auditory perception, to which the categorization also seems
to apply, no other mode of perception is considered.) For this purpose, from
the outset I assume that perception displays degrees of influence from belief
and social setting and that some perceptions are relatively free from this
influence, while others are not.2

The discussion and development of the categorization runs as follows. I
first propose a categorization with respect to the influence of belief and social
setting. I then provide examples of the categories in the overall categoriza-
tion, taken from how we come to understand pendulum motion. Matthews’s
historical study of the discovery of the secrets of pendulum motion acts as the
main reference.

2. A Categorization of Perceptions

A natural place to start a categorization of perception according to the de-
gree of influence of belief and social setting is at an extreme in which this
influence is minimal, even in a perceptual learning stage. This extreme point I
will call primary perception. A primary perception occurs when I see a big
chunk of something or other, I do not know quite what, straight ahead as I
am skiing. In the hospital, later, I am told it was a tree. Perceiving colour is
another example of primary perception (naming colour is another matter).
Belief and social setting can influence primary perception, for example, in the
context of degraded stimuli or of a malfunction in the visual system.3

However, in general, belief and social setting have little influence on primary
perceptions, largely because primary perceptions are either innate or do not
involve perceptual learning which takes place at the conscious level.

While beliefs and social setting have little influence on primary perception,
their influence is much more pronounced on what I call secondary perception.
Their influence occurs during the learning stage of a secondary perception.4

Inference is involved in this learning stage. For example, I have a socially
conditioned belief that a flittering pattern of flight, yellow colouration, and
small size are properties sufficient to identify a goldfinch and, hence, I con-
sciously infer the presence of a goldfinch when I perceive a conjunction of these
properties. After sufficient time for perceptual learning, I perceive a goldfinch
without conscious inference when I perceive this conjunction of properties.
Secondary perceptions always encompass primary perceptions. In having a
secondary perception of a goldfinch based on its flight pattern, colouration,
and size, I have primary perceptions of these things. Although secondary
perceptions have a derivative character in contrast to primary perceptions,
secondary perceptions do not have a different ‘feel’ from primary perceptions.
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That is, in both secondary and primary perceptions, we get the sense of
immediate cognitive contact with an object and its properties and relations.5

Another fundamental distinction between primary and secondary per-
ception concerns the extent to which perceptions can be intentionally revised.
Generally, we cannot intentionally revise primary perceptions, even if we
know that what we perceive is an illusion. In the Mueller–Lyer illusion, we
perceive unequal lengths of lines, even though we know that this perception is
mistaken. Secondary perceptions are intentionally revisable. Someone might
tell me that goldfinches are not the only bird in my neighbourhood with a
flittering flight pattern, yellow colouration, and small size, after which I
intentionally unlearn the secondary perception of a goldfinch based on the
conjunction of the three properties.

While secondary perception contrasts with primary perception with re-
spect to intentional revisability, the two compare in another respect. Both
occur without conscious inference (although conscious inference can occur in
the learning stage of secondary perception). In this respect, they both con-
trast with quasi-perception (my term) which consists of a primary or sec-
ondary perception plus a quick, conscious inference. (Quasi-perception could
be a later stage in learning a secondary perception.)

So we have a two-part (first-approximation) categorization based on degree
of influence from belief and social setting. Belief and social setting influence
primary perception very little. They influence secondary perception much
more. There are plenty of ways in which one might consider refining the
categorization. One might consider including, for example, quasi-perception
(perhaps renamed) in the categorization. Additionally, one might consider
differentiating among beliefs and social settings which influence perception.
There is an evident difference, for example, between a scientific theory (a
refined set of beliefs) which influences perception and tacit, non-verbal social
practice which influences perception. Probably many refinements are possible.
However, the two-part division given by primary and secondary perception
seems to be fundamental and fundamental in the right way, for it marks a
difference in the domain of immediate perceptual awareness. While refine-
ments are possible, the two-part categorization concerning the influence of
belief and social setting seems to be a good, maybe the best, starting point.6

Conditions for non-veridical primary perception contrast with those for
non-veridical secondary perception. The ways primary perception can go
wrong do not include unsound inference, but include degraded stimuli, hal-
lucinations, and many others. (A long list could be composed.) In contrast,
unsound inference in a learning stage can cause incorrect secondary per-
ception. The unsound inference could result from untrue premises, or invalid
application of principles of inference. The untrue premises for inference stem
from false belief, which can be socially induced. I might, for example, based
on the information provided by my friends, incorrectly infer the presence of a
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chickadee when I perceive a conjunction of a flittering flight pattern, yellow
colouration, and small size. This inference could lead to incorrect secondary
perception. Additionally, secondary perceptions can go wrong due to
incorrectness of component primary perceptions.

Furthermore, conditions for veridical primary perception contrast with
those for veridical secondary perception. A normally functioning visual
system and clear stimuli generally make for veridical primary perception.
True belief and a grasp of valid inference generally are also needed to make
for veridical secondary perception.

We have seen that the two categories based on the influence of belief and
social setting correspond to division of perceptions based on other factors. In
terms of inclusion of one type of perception within others, secondary per-
ceptions include primary perceptions; and primary perceptions include no
other perceptions. In terms of intentional revisability of perception, it is
difficult to shake primary perceptions, unlike secondary perceptions. In terms
of learning, primary perceptions are generally innate or not learned at the
conscious level, while a significant component of the learning of secondary
perceptions involves conscious inference. In terms of error, inference is not
involved in error in primary perception, while problems both in incorrect
application of the principles of inference and in holding false beliefs which
enter inference can arise in the learning process leading to secondary per-
ception. (Patterns pertaining to lack of error in perception reflect those
pertaining to its presence.) Thus, although the categorization is based on the
degree of influence of belief and social setting, it corresponds to a division of
perceptions according to other factors – inclusion, intentional revisability,
and so on. The correspondences suggest that the categorization cuts the
subject matter at its main joint.

Examples of the two categories are found in how science came to
understand pendulum motion. These examples pertain to perception of or-
dinary pendulum motion, perception of experimental measurement in pen-
dulum research, and diagrams used to investigation pendulum motion.

3. Primary Perception of Pendulum Motion

We begin with an example of primary perception of pendulum motion. A
pendulum, once it is set in motion, sways back and forth before stopping
(unless propelled by a driving force). A great insight due to Galileo and
others holds that the motion is due (in Newtonian terms) to a composite of
forces, including the natural force of oscillation, drag or friction and other
perturbing factors, and a driving force. Primary perception does not reveal
these refined features of this swaying, but it does reveal the brute fact of
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swaying. (Thus, a key function of primary perception is to bring potentially
scientific phenomena to our attention.)

As long as the amplitude of the swaying remains large, belief and social
setting will have little influence. However, once the amplitude becomes quite
small, too small for the calibration of perceptual motion detection, belief and
social setting might, for example, prompt perception of swaying when none
obtains.

4. Secondary Perception of Pendulum Motion

While belief and social setting exercises only minimal influence on primary
perceptions, belief and social setting can have significant influence on sec-
ondary perceptions of aspects of pendulum motion, at least a plausible case
can be made in this regard. For example, acceptance of a claim that the
period of an ideal pendulum depends, not on amplitude of the swing, but on
the length of the pendulum (implying that an ideal pendulum is isochronic,
i.e., all periods are equal) could engender a secondary perception in which
discrepancies are perceived as due solely to friction and other perturbing
factors. Such secondary perception could confirm a mistaken theory of iso-
chronic motion. Secondary perception like this may lie behind Galileo’s
following remark about motion of two pendulums with equal length.

Referring to the representation of pendulummotions in Figure 1, he wrote:

The moveable B passes through the large arc BCD and returns by the same DCB and
then goes back toward D, and it goes 500 or 1,000 times repeating its oscillations. The

other goes likewise from F to G and then returns to F, and will similarly make many
oscillations; and in the time that I count, say the first 100 large oscillations BCD, DCB
and so on, another observer counts 100 of the other oscillations through FIG, very small,

and he does not count even one more – a most evident sign that one of these large arcs
BDC consumes as much time as each of the small ones FIG. Now, if all BCD is passed in
as much time [as that] in which FIG [is passed], though [FIG is] but one-half thereof,

these being descents through unequal arcs of the same quadrant, they will be made in
equal times. But even without troubling to count many, you will see that moveable F will
not make its small oscillations more frequently than B makes its larger ones; they will
always be together. (1969; quoted from Matthews, p. 1037)

gFigure 1. ( , p )(taken from Matthews, p. 103).
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Galileo is mistaken. The pendulums would not stay in motion anywhere
close to 500 oscillations, nor would they stay in synchronization anywhere
close to 100 oscillations.8 At best, before stopping, they would stay in close
synchronization for a little while, then to an unprejudiced eye the oscillations
would diverge, although still approximately in synchronization, and then the
oscillations would widely diverge. The reasons for Galileo’s mistaken
observational claims may never be known. Nonetheless, it seems plausible
that these claims arise, in part, from secondary perception in which dis-
crepancies are perceived as being due solely to friction and other perturbing
factors. His theory of synchronization in ideal pendulum motion could be
confirmed by this perception.

Because secondary perception can be so heavily influenced by belief and
social setting, it can lead to error, as in the case of Galileo. His theory, which
plausibly secondary perception helped confirm, turned out to be wrong. Ideal
circular pendulums with equal length, but unequal amplitudes of oscillation,
do not stay in synchronization. (Ideal cycloidal pendulums are required for
that.) On the positive side, theory-informed secondary perception promotes
seeing phenomena in light of theory. This can lead to greater insight. Addi-
tionally, theory-informed secondary perception makes for efficient reasoning.

5. Primary Perception Pertaining to Measurement

Because belief and social setting influence primary perception only very little,
primary perception is a natural candidate for perception pertaining to mea-
surement because primary perception typically does not depend on the theory
being tested (although, of course, data interpretation often depends on the
theory). In this regard, consider a well-known experiment by Mersenne in
1647, which used pendulum motion in an attempt to find a gravitational
constant (the distance that a body falls in the first second after release). This
experiment led to doubt about Galileo’s theory of pendulum motion. About
this experiment Matthews writes:

Mersenne’s earlier investigations pointed to three Parisian feet being the length of the
seconds pendulum, and so in a famed experiment (1647) he held a 3 foot pendulum out

from a wall and released it along with a freefalling mass [Figure 2]. He adjusted a
platform under the mass until he heard both the pendulum strike the wall and the mass
strike the platform at the same time. He reasoned that this should given him the length of

freefall in half a second (a complete-one-way swing of the pendulum taking one second),
and so, by the times-squared rule, he calculated the length of freefall in one second, the
gravitational constant. Mersenne did not get consistent results. He was frustrated by his

experiments and became convinced that the circular pendulum was not isochronic. He
was not however able to proceed beyond this point of frustration. Huygens thought the
ear could not separate the pendulum and freefall sounds to better than six inches of free

fall. (Matthews, pp. 116–117)
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The measurement crucially involves auditory perception of simultaneous
striking, a primary perception, which does not depend on knowing the theory
and is generally little influenced by it. Instead, the perception depends on
auditory mechanisms. Huygen’s criticism (‘the ear could not separate the
pendulum and freefall sounds to better than six inches of free fall’) directly
pertains to such considerations (and is illustrative of the concern within
science for such matters).

As already mentioned, primary perception does not function totally free
from the influence of belief and social setting. This influence could become a
factor in Mersenne’s experiment if the stimulus of simultaneous striking is
not clear.

6. Secondary Perception Pertaining to Measurement

In Mersenne’s experiment, the simultaneous striking requires interpretation.
We need to know, for example, the cause of the striking – a pendulum hitting
a wall, a ball hitting a platform. Some of this interpretation, which depends
on belief and social setting, can become incorporated into secondary per-
ceptions.

Perception of time as indicated by a clock is another example of secondary
perception. (Horology was central to the development of the theory of
pendulum motion, as Matthews points out. In particular, the accuracy of a
clock provided evidence for the theory implemented in the workings of the
clock.) The physical motion of the hands of a clock are merely that, physical
motions. They, in themselves, do not tell time. Considerable interpretation,
engendered by belief and social setting, must come into play in order for a
perception of a clock face to count toward telling the time. Much of this
interpretive information gets incorporated into secondary perception as in,
for example, perceiving the time as noon when we perceive the hour and
minute hands pointing directly upward during daylight hours.

gFigure 2. ( , p )(taken from Matthews, p. 117).

DEGREE OF INFLUENCE ON PERCEPTION OF BELIEF AND SOCIAL SETTING 299



7. Primary Perception of Scientific Diagrams

Scientific diagrams, including geometric diagrams, typically incorporate
optimal conditions for primary perception (with the exception of sloppily
drawn diagrams sometimes drawn by scientists in the course of working out
problems).9 These primary perceptions function to supply crucial informa-
tion needed to understand the diagram. For example, basic perception can
provide information concerning ‘betweenness’ relations. An example of such
a relation occurs in a diagram in Figure 3 of a cycloid (of much importance
in the theory of pendulum motion). Point K is between points A and D.
Perception of this relation is primary perception because it is likely not
consciously learned and may even be innate. Thus, it is little influenced by
belief and social setting. In addition to this primary perception we have
primary perception of other betweenness relations and in general primary
perception of many elementary topological relations (of which betweenness is
one). Without these primary perceptions, the diagram could not be perceived
as a shape.

8. Secondary Perception of Scientific Diagrams

Diagrams also require interpretation. A diagram, for example, needs to be
interpreted as a representation. This interpretation, evidently, is heavily
influenced by belief and social setting. It is highly likely that some interpre-
tation becomes incorporated into secondary perception in a learning stage.
An example pertains to the diagram in Figure 4 which depicts acceleration
throughout an oscillation of a pendulum. We do not have to pause to con-
sider that the arrows indicate direction. This is incorporated in secondary
perception.

To summarize briefly: regarding scientific phenomena, measurements, and
scientific diagrams, primary perception provides basic information which is
little influenced by belief and social setting, while secondary perception
provides information with interpretation derived from belief and social set-
ting. It is hoped that the categorization finds its way into theoretical dis-

gFigure 3. ( , p )(taken from Matthews, p. 125).
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cussion about science education where it seems relevant to current concerns
such as that with visualization in teaching and learning science.10

Notes

I wish to thank anonymous referees for helpful comments.
1 See, for example, Mathews (2000, p. 257). All subsequent references to Matthews’s work in

this paper refer to Matthews (2000).
2 Although a defence of this assumption would take us too far afield in this paper, a good fit
of the categorization with the practice of science would offer partial motivation for the
assumption, which underlines the categorization. The examples drawn from understanding

pendulum motion in this paper suggest that there is a fairly good fit.
3 See Goldman (1986, pp. 188–189).
4 Perceptual learning at the conscious level can also serve to unlearn previously learned

secondary perceptions. Additionally, secondary perceptions can participate in the learning of
other secondary perceptions, in this way allowing for the emergence of many secondary
perceptions.
5 The primary–secondary division of perception follows a fairly common view in philoso-
phy. See, for example, Price (1953, p. 45 ff.) who proposes the categories of primary and
secondary recognition.
6 A typical objection to the categorization would deny the existence of primary perception,
or anything like it, by maintaining that belief and social setting heavily influence all percep-
tion. (Using my terminology one might, along this line, hold that primary perception is really
secondary perception.) However, as mentioned earlier, for the purposes of this paper, I assume

some perceptions remain quite free from the influence of belief and social setting. The category
of primary perception reflects this assumption.

Another objection might question where I place the boundary between primary and sec-

ondary perception. It might be contended that perceptions of a flittering pattern of flight,
yellow colouration, and small size are not primary perceptions, but secondary perceptions;
consequently, only something more basic can count as primary perception. Although I think I

have provided a reasonable (albeit rough) boundary between primary and secondary per-
ceptions, I have no fundamental objection to attempts to move this boundary, provided any
such attempt does not have the category of primary perception come to refer only to ‘pure’
sensation (if there is such a thing), upon which judgements cannot be based because it is bereft

of concepts.

gFigure 4. ( , p )(taken from Matthews, p. 287).
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7 The square brackets in this passage are Matthews’s.
8 See Matthews (2000, p. 106).
9 Although clear diagrams do not guarantee veridical primary perception (as illustrated by
the Muller–Lyer illusion), clear diagrams are generally conducive to veridical perception.
10 The categorization seems compatible with a view in science education which calls attention
to ways in which science is fallible. In fact, secondary perception and, to a small degree,
primary perception, can be sources of error due to the influence exerted on them from belief
and social setting.
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Piaget and the Pendulum
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Abstract. Piaget’s investigations into children’s understanding of the laws governing the movement
of a simple pendulum were first reported in 1955 as part of a report into how children’s knowledge of
the physical world changes during development. Chapter 4 of Inhelder & Piaget (1955/1958) entitled
‘The Oscillation of a Pendulum and the Operations of Exclusion’ demonstrated how adolescents
could construct the experimental strategies necessary to isolate each of the variables, exclude the
irrelevant factors and conclude concerning the causal role of length. This became one of the most
easily replicable tasks from the Genevan school and was used in a number of important investigations
to detect the onset of formal operational thinking. While it seems that the pendulum investigation
fits nicely into Piaget’s sequence of studies of concepts such as time, distance and speed suggested
to him by Einstein, more recent research (Bond 2001) shows Inhelder to be directly responsible
for the investigations into children’s induction of physical laws. The inter-relationship between the
pendulum problem, developing thought and scientific method is revealed in a number of Genevan
and post-Piagetian investigations.

Key words: Cognitive development, Piaget, Inhelder, genetic epistemology, ceteris paribus, experi-
mental method, induction, formal operations.

Introduction

1958 saw the Genevan treatise on the development of mature forms of thinking
appear in its English language translation. What had appeared three years earlier
as De la logique de l’enfant à la logique de l’adolescent (‘From the logic of
the child to the logic of the adolescent’) was translated as The growth of logical
thinking from childhood to adolescence: an essay on the construction of formal
operational structures (GLT, Inhelder & Piaget 1955/1958). The translated titleTT
subtly moved the emphasis away from the development of adolescent thought out
of its less sophisticated predecessor, to the development of logical thought per se.
Half a century later GLT remains the singular detailed examination of the structure
and functioning of adolescent thinking, describing and explaining the transition
from the thinking that typifies childhood to that of which the adolescent becomes
capable.

GLT contains chapters each reporting children’s efforts to discover and then to
explain the functioning of 15 experimental devices drawn from physics, mechanics,
optics, chemistry etc. Each chapter provides exemplary excerpts from the protocols
transcribed from the children’s problem solving efforts, divided into the sequence
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of increasing cognitive sophistication posited by the authors, along with a detailed
logico-mathematical modelling of those performances due largely to Jean Piaget.
A final three integrative chapters summarize the operational structures and relate
the discoveries of the previous chapters to a more general conceptualisation of the
possibilities and realities of ‘Adolescent Thinking’.

Although what is now commonly known as the ‘pendulum task’ is reported in
detail in but one of these chapters (Chapter 4), and reprised in Chapters 16 and
(esp.) 17 for logicomathematical modelling, it has reached a status in Piagetian
research which reflects a number of features of the problem which have salience
for science and experimental method in general, and for school science educators
in particular. Central to the exalted status that the pendulum problem enjoys is
the role that the ceteris paribus principle plays in determining that the period of
the pendulum bears an inverse relationship to its length and the role that same key
problem-solving strategy has as a defining feature of mature thought. Moreover, the
basic law of pendulum motion (periodicity) is ubiquitous in school science texts
and the materials required for a satisfactory display of that pendulum principle
are so basic that a demonstration could be made in all but the most straightened
circumstances.

Fifty years of research and commentary into the investigations and theory
central to GLT leave the following issues for explanation and/or consideration:

• While GLT does describe a particular form of mature thought, is Piaget’s
logico-mathematical modelling of it inappropriate, irrelevant or just plain
wrong-headed?

• Why would a text ostensibly about the development of adolescent thinking be
so restricted to thinking in ‘scientific’ problem-solving situations?

• Why does the incidence of formal operational thinking detected by independ-
ent researchers seem considerably lower than that in the Genevan sample
inferred from GLT?TT

There is the hint of a clue to the central role given to scientific reasoning in GLT
in the preface of that book which reported a new style of synthesis of the research
agendas of the two authors, Bärbel Inhelder and Jean Piaget:

In other words while one of us was engaged in an empirical study of the transition in thinking from
childhood to adolescence, the other worked out the analytical tools needed to interpret the results. It
was only after we had compared notes and were making final interpretations that we saw the striking
convergence between the empirical and analytic results. This prompted us to collaborate again, but
on a new basis. The result is the present work. (Inhelder & Piaget 1958, p. xxiii)

The Induction of Physical Laws

Ostensibly, it seems that the pendulum investigation fits nicely into Piaget’s se-
quence of studies of core scientific concepts such as time, distance and speed
suggested to him by Einstein in Davos in 1928. Their discussion on the relationship
between distance, speed and time (encapsulated in every high school child’s notes
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as s = d/t) raised the question as to which of these interrelated notions was ‘prim-
itive’ – in the epistemological sense. Piaget and his team launched themselves into
a series of studies into the construction of key physical notions in children: quant-
ity (1941a/1974), number (1941b/1965), time (1946a/1969), movement and speed
(1946b/1970), space (1948/1967), and chance (1951/75) (Ducret 1990, p.61). The
movement and speed book reported that the notion ‘overtaking’ and none of the
earlier suspects, distance, speed or time, was the primitive notion from which the
s = d/t interrelationship was constructed during the early school years (Piaget
1946b/1970).

More recent research (Bond 2001) based on original source materials held at the
Archives Jean Piaget in Geneva, shows Bärbel Inhelder to be directly responsible
for the investigations into children’s induction of scientific laws reported in GLT.TT
About a dozen chapters of the original hand-written manuscript for LELA/GLT
have been housed in the Archives Jean Piaget in Geneva for over a decade, and
another three chapters were added to the manuscript in 1998 when Inhelder’s aca-
demic papers were collected together. A note, added apparently later to the preface
in Piaget’s hand, indicated that a book on Induction, would ‘be the subject of a
special work by the first author’ (i.e., Inhelder, n.d.). While I had previously found
some 80 pages or so of draft materials for Inhelder’s book on the induction of
physical laws in various folders at the AJP, a mostly complete draft of some 150
type-written pages was collated from her papers in 1998.

Although the investigation into the pendulum and other devices reported in
GLT, is well-grounded in Piaget’s epistemological interests (1918, 1950 etc.) inTT
general, and the work of Lalande on induction and experimentation (Lalande 1929;
Piaget 1950, p. 161), all the existing evidence confirms that Inhelder conceptual-
ised, conducted and interpreted the investigations into how children’s conduct of
scientific experiments changed over the school years. ‘This experiment forms part
of a complete research project on the development of induction currently underway
at our institute under the direction of B. Inhelder.’ (Piaget 1950, p. 199 footnote)

Two chapters of GLT are explicitly focussed on what might be more generally
termed, the control of variables schema. Chapter 3, ‘Flexibility and the Operations
Mediating the Separation of Variables’ is based on an experimental device, Flexible
Rods. Chapter 4 ‘The Oscillation of a Pendulum and the Operations of Exclusion’
reports the investigation into the induction of the qualitative length/period relation-
ship of a simple pendulum. The complementary roles of these two situations can be
gleaned from two of Inhelder’s own reports. Her autobiographical chapter reports:

One of the questions we asked was how the method called ceteris paribus (all other things being
equal) was discovered. J. Rutschman, A. Weil-Sandler, and I designed an experiment in which the
subjects were asked to determine the various factors, that make metal rods more or less flexible
(length, thickness, shape of section, kind of metal). The results of a series of experiments of this kind
were highly promising, and in the corridors of the Institute one could hear excited discussions about
how we had discovered a new stage: formal thought is not achieved before the age of fifteen or so.
(Inhelder 1989, p. 223)
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This complements delightfully a section in a 1954 conference report to teachers
at Saint-Cloud, recently translated into English as part of a festschrift for Inhelder
(Tryphon and Vonèche 2001):

THE PENDULUM
An analogous, but much simpler, experiment can be arranged by means of a pendulum. It is used for
children or adolescents to discover that the frequency of a pendulum is a function of its length, to the
exclusion of all other invoked factors, such as, for example, the suspended weight, the momentum
imparted or even the height of its drop.
Towards 14–15 years, but not earlier, adolescents correctly test all the possible hypotheses by com-
bining them methodically. In varying the length, they take care to maintain the weight, the amplitude
and momentum constant. In varying the weight, they hold constant the length of the string, as
well as all the other factors, etc. The famous method, familiarly called “method of all other things
equal”, then always has recourse to combinatorial operations on the one hand and neutralisation or
compensation of factors on the other. (Inhelder 1954/2001, pp. 200–201)

1. Pendulum Research in Geneva

Much of the original investigation reported in GLT was conducted by psychology
students, directly under the supervision of a research assistant (usually one for each
experimental device) and Inhelder. Each of the psychology students submitted an
assessable report which addressed the ten or so cases personally conducted, while
each of Inhelder’s assistants produced annual reports which both summarised
and analysed all the year’s investigations on one problem. For example, graduate
student F. Maire’s report ‘Recherche sur l’induction de la loi du pendule’ (July
1950) on that academic year’s pendulum investigations referred to matters left
unresolved in his previous (June 1949) summary report, and along with the usual
summary of the performances of school-aged subjects, he included the results of an
investigation of the abilities of one superior adult university student. (Bond 1994)

The school children reported on by Maire numbered 33 children aged from
6 years 2 months to 16 years 3 months from six Genevan schools. Maire’s re-
port reveals two important features of the pendulum investigation not detailed in
the GLT chapter. Firstly, a watch or stopwatch was provided to any subject who
requested one (after all, at that time Geneva was the centre of the watchmaking
world). Secondly, to help those subjects who appeared to confuse the speed of the
bob with the frequency, the investigator would lightly tap the weight each time it
reached one extremity of its swing. Remarkably, absence of a timing device and
confusion of speed and frequency were specifically remarked upon by Bunting
(1993) and Stafford (2002) in her detailed replication of the pendulum problem,
which adopted the Genevan investigative technique.

The interrelated foci of the suite of scientific experimental situations reported in
GLT underline several of the key reasons for the pendulum task appearing almost as
archetypical for the adolescent phase of the Genevan research into the development
of knowledge construction. The law of the periodicity of the simple pendulum is
scientifically significant both in its own right and for its consequent contributions to
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scientific knowledge as well as to discovery, commerce etc. (see Mathews (2000)).
While that law often might be taught formally in an expository mode in schools,
the induction of the law from the use of a pendulum requires the interrelated use
of a number of strategies central to scientific experimentation. These include: the
identification of possible variables as well as the ordered values of those variables
(i.e., increasing: lengths of string, weights of bobs, angles of amplitude and force
of release); and the realization of an exhaustive multifaceted matrix of all possible
combinations of these variables and their values. The subheadings of the pendulum
chapter indicate the cognitive sequencing by stage and substage:

Stage I. Indifferentiation between the subject’s own actions and the motion of the pendulum.
Stage II . Appearance of serial ordering and correspondence, but without separation of variables.
Stage IIIa. Possible but not spontaneous separation of variables.
Stage IIIb. The separation of variables and the exclusion of inoperant links. (Inhelder & Piaget
1955/1958, pp. 69–75)

Central to such an investigation is the strategy of systematic experimentation
which varies but one variable at a time while holding all others constant – the
ceteris paribus approach. Moreover, the experimenter must adopt hypothetico-
deductive reasoning techniques in order that valid conclusions may be derived
from the sequence of experimental manipulations: a suite of alternative hypotheses
concerning possible operant variables are each disconfirmed or otherwise in turn as
the sequence of manipulations are executed. In this manner the inoperant variables
of impetus, amplitude and weight are then excluded from involvement in the final
explanation of pendulum frequency. (In fact, variations in amplitude can affect
periodicity, but not to an extent that is detectable in qualitative investigations such
as those described here.) While this experimental strategy does not and can not
overcome the ubiquitous philosophical problem of inducing general laws from re-
stricted sets of observations (e.g., Russell 1993, pp. 209, 534), it is consistent with
the views of French philosopher of science, Lalande (1929), endorsed separately
by both Piaget (1950) and Inhelder (1954/2001), that induction makes an important
contribution to scientific method in its own right: it is not merely the impoverished
inferior of deduction.

2. The Contribution to Piagetian Theory

But what did Inhelder’s 1949–1950 work on induction with the pendulum task
contribute to Piaget’s conception of developing intellectual competence during
childhood? Recent research into original sources at the Archives Jean Piaget in
Geneva (Bond 2001) clearly concludes that Piaget’s understanding of the nature
of formal thought persisted almost unchanged for three decades since his first
foray into the topic in one of his very first psychological investigations (1922).
Indeed, several of his accounts in that period contained no reference to cognitive
development after childhood; Inhelder’s claim for the discovery of a new stage at
about age fifteen seems easily sustainable in hindsight (Bond 2001, p.80). The dis-
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tinctive features of the Genevan account of formal operational thinking might now
be summarized as follows: formal operational thinking is hypothetico-deductive,
propositional and combinatorial. This is a succinct, almost cryptic summary of the
complexities of schemata for formal operational thought laid out in chapter 17 of
GLT, ‘Concrete and Formal Structures’.TT

It is clear that the Piagetian account of what was termed for three decades
as ‘formal thought’ consisted of the logical deduction component – where the
conclusions deduced from stated premises follow the well-known logical rules of
modus ponens, modus tollens etc. After Inhelder’s investigation of the pendulum
and other science problems this account was clearly insufficient. Her research
team discovered that it was during adolescence that thinking became, in a word,
scientific; the pendulum problem was not solved without the induction of exper-
imental hypotheses, the propositional thinking instantiated in ‘if p then q’, ‘p
whether or not q’ strategies, and the ability the develop an exhaustive list of all the
possible combinations of variables. It is from the consideration of all possible com-
binations that the adolescent induces competing hypotheses in turn. The logically
necessary conclusions deduced from each hypothesis are compared to the actual
results observed, as a sequence of ‘fair tests’ based on the ceteris paribus principle
is undertaken. Indeed, it seems quite a reasonable conclusion that Piaget’s early
account of formal thought based on logical deduction became the 1955 Genevan
account of formal operational thinking as hypothetico-deductive, propositional and
combinatorial as a direct consequence of the scientific problem solving strategies
that Inhelder and her team uncovered as school students confronted the pendulum
and other problems at the end of the 1940s.

Scientific Thinking and Education

In the context of education generally and science education in particular, it is a
shame that we had to wait half a century for Inhelder’s 1954 conference report
to teachers on ‘The experimental approach of children and adolescents’ to be
translated into English.

Indeed it reflects so well the particular skills of Inhelder and the immediate relevance of her work
to education and psychology that one could easily imagine quite a different scenario if this paper
had been published in a key English language psychological journal at the same time as the French
original had been. It appeared as “Les attitudes expérimentales de l’enfant et de l’adolescent” in the
Bulletin de Psychologie in France, the year before LELA appeared in print. (Bond 2001, p. 70)

Inhelder’s interest in children and schooling was quite explicit; she concluded
the paper with a direct challenge for education:

Towards 14–15 years, gifted adolescents seem then to possess the psychological aptitude necessary
for the acquisition of the experimental and inductive method – it’s up to the school to create the
climate that is favourable to its implementation. (Inhelder 1954/2001, pp. 202, 282)

In the past, ideas generally attributed to Piaget have permeated the rationales
for science education programs in the UK, the US and Australia to such an extent
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that science educators and reviewers for science education journals now often refer
to ‘having gone past that Piaget stuff’, ‘no longer interested in Piaget’, or just
plain, ‘Piaget’s been disproved’. Such was the impact of the Genevan work that
for the decade that straddled 1970, two journals in the US, Science Education
and Journal of Research in Science Teaching might have easily accounted for the
bulk of all published research into formal operational thinking in that period. The
impact was quite considerable in the UK where Nuffield Science and Concepts in
Secondary Mathematics and Science (CSMS) paved the way for three decades of
work by Shayer and Adey into the relationship between cognitive development and
science education (Shayer & Adey 1981) and the impact of classroom interventions
on cognitive development and achievement in secondary school science (Adey &
Shayer 1994; Shayer & Adey 2002).

In Australia, the Australian Science Education Project (ASEP) of that era ex-
plicitly claimed a Piagetian formulation: ‘ASEP materials have been designed for
use at three levels of student cognitive development.

Stage 1 materials are suitable for students at Piaget’s concrete stage of thinking when thinking is
dependent on the presence of concrete objects and examples.
Stage 2 materials are for students in transition from the concrete to the formal stage.
Stage 3 materials are for students at Piaget’s formal stage when there is freedom from dependence
on concrete examples, and hypothetical situations can be considered. (Tisher & Dale 1975, p. 3)

En passant, this style of description of formal operational thinking, ‘when there
is freedom from dependence on concrete examples, and hypothetical situations can
be considered’ was almost ubiquitous in science education research of the time; in
direct contra-distinction, every single demonstration of mature scientific reasoning
in GLT involves an adolescent actively physically manipulating actual concrete
experimental devices such as the simple pendulum.

A Testing Time for the Pendulum Task

It appears that educational applications of the Genevan work – especially in science
education settings – drove many of the replications and developments of Inhelder’s
investigatory procedures, including the pendulum task. While early research adop-
ted techniques based more or less directly on the one-on-one ‘Piagetian interview’
style apparently evident in GLT, moves to standardize procedures and to administerTT
the tasks to whole classes (rather than individuals) at a time resulted in versions
of the pendulum problem being developed where class demonstrations, or even
printed diagrams, prompted children to make written responses which were later
scored.

Even if one were to try to maintain the view that the Genevan method of critical
exploration (méthode critique or méthode clinique) was the gold standard for ad-
ministering and interpreting the pendulum problem (following GLT), there wouldTT
remain a plethora of problems to be overcome before that standard could be applied
to evaluating the quality and outcomes of the secondary research in the area. First
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of all, it takes more than a superficial reading to be aware of the philosophical
underpinnings of the Genevan work on formal thinking (Bond & Jackson 1991).
Even those who are persistent about being sensitive, well-informed researchers
would find great difficulty in replicating the Genevan interview technique, be-
cause there is much more to it that is ever revealed in the literature, whether in
English translation or the original French (Bond 1994). It is only in the original
French-language protocols or the summary reports such as that of Maire on the
pendulum task where the provision of a timing device and the tapping of the bob
are mentioned at all.

The Genevan method produced obviously qualitative data; Piaget was not in-
terested in quantitative indices of his ideas (Piaget 1941/1965) and elsewhere he
espoused sound philosophical reasons for rejecting the social sciences’ techniques
for quantification as being inadequate in scientific measurement terms (Piaget
1970). In the secondary research, the méthode critique thereby suffers on two
rather contradictory grounds: it was dismissed as qualitative when the dominant
paradigms in science education required quantification, and in the current post-
modernist times, it is dismissed as passé when qualitative approaches are now in
vogue.

The Pendulum Task Measures Up

Indeed, it has taken modern developments in measurement theory for the social
sciences (Bond 1995a, b; Bond & Fox 2001) to reveal the fine psychometric qualit-
ies of the Genevan method, properly applied. Bunting’s ground-breaking research
used the Rasch partial credit model thoroughly to quantify the nuances of chil-
dren’s performances on the pendulum task (Bunting 1993; Bond & Bunting 1995;
Bond & Fox 2001; Stafford 2002) and to demonstrate that Inhelder’s pendulum
task and its closest standardised analogue – the Piagetian Reasoning Task III –
Pendulum (Shayer 1976) from the CSMS suite of Piagetian tasks – measure the
same underlying formal operational ability. But there is a sting in the tail: the class
task is considerably more difficult, on average, than is the Genevan original. Piaget
insisted that the Genevan method aimed at the best estimate of a child’s intellectual
competence, not merely the child’s quotidian performance. This gives some clue
as to why the results of the CSMS survey of cognitive development were less
optimistic than GLT seems to suggest was the case for Genevan school-children.

The Logic of Scientific Experimentation

In conclusion, it is still worth asking if Piaget’s rather idiosyncratic logical mod-
elling of formal operational thinking still has any role in Piaget’s conception of
adolescent or scientific reasoning. In the latest edition of the authoritative Hand-
book of Child Psychology, Moshman finds surprisingly strong support for Piaget’s
proposal that hypothetico-deductive reasoning plays an important role in mature
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thought ‘but is rarely seen much before the age of 11 or 12’. He makes the routinely
accepted observation that ‘[T]he theory of formal operations – strictly construed as
the logical model proposed by Inhelder and Piaget (1958) – no longer plays much
role in the literature.’ (Moshman 1998, p. 972). The apparent truth of this conclu-
sion begs two important questions. The first revolves around whether those who
have dismissed the logico-mathematical modelling of formal operational thinking
had read it in the context of Piaget’s self-declared philosophical and epistemolo-
gical perspective (Bond & Jackson 1991). The second asks how could the Thinking
Science classroom interventions (Adey & Shayer 1994) continue to be so success-
ful in increasing cognitive development and school achievement of adolescents
(Endler & Bond 2001) if its explicit base in Piaget’s formal operational schemata
is not worthy of further attention? (Tryphon & Bond, 2002).

It is of more than mere passing interest, that Piaget recurred to the Inhelder work
on induction, with specific reference to the pendulum (and flexible rods) problem,
in Psychogenesis and the History of Science (Piaget and Garcia 1983/1989, p. 83)
– the book whose final draft was completed the day before Piaget suffered the
trauma which was to end his life. This final chapter in the Piagetian oeuvre was
an integration of reflections on the psychogenetic evidence collected over more
than half a decade with a reading of the history of science, especially geometry,
mechanics and algebra. ‘But it turns out that, as we studied, with B. Inhelder, the
induction of the simple laws of physics in 11-year old pre-adolescents, who had
received absolutely no academic instruction in the subject, we have been able to
observe the formation of a methodology derived only from their logical reasoning,
rather than experimental expertise or pre-existing theoretical knowledge’ (Piaget
& Garcia 1983/1989, p. 83). He then rehearses his old favourites from the 1950s:

The only answer possible appears to be that, on the basis of the propositional operations construc-
ted, such as conjunction, implication, and exclusive or nonexclusive disjunction, which enable the
subjects to reason about simple hypotheses and to evaluate these by deriving from them logically
necessary consequences, the subject then apply this logic to the problems we present them with.
(Piaget & Garcia 1983/1989, p. 83)

In the context of the history of science, this poses a double conundrum for
Piaget: ‘And why, above all, did the great logicians and methodologists of the
thirteenth century not elaborate one [a theory of physics] more scientific than that
of Aristotle?’ (p. 85) and what of the particular case of Aristotle, who, ‘although the
inventor of logic failed to apply it to experimentation’ (p. 86). Clearly, Piaget had
not resiled from his earlier explanation of mature thought, even though he regarded
himself as the chief revisionist of his own theory.

What price, then, a doctoral dissertation rereading the history of the roles
of various pendula in the progress of science from the perspective of Piaget’s
psychogenesis?
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Abstract. Inhelder and Piaget (1958) studied schoolchildren’s understanding of a simple pendulum
as a means of investigating the development of the control of variables scheme and the ceteris paribus
principle central to scientific experimentation. The time-consuming nature of the individual interview
technique used by Inhelder has led to the development of a whole range of group test techniques
aimed at testing the empirical validity and increasing the practical utility of Piaget’s work. The Rasch
measurement techniques utilized in this study reveal that the Piagetian Reasoning Task III – Pendu-
lum and the méthode clinique interview reveal the same underlying ability. Of particular interest
to classroom teachers is the evidence that some individuals produced rather disparate performances
across the two testing situations. The implications of the commonalities and individual differences
in performance for interpreting children’s scientific understanding are discussed.

Introduction

Science educators have long held an interest in Piaget’s philosophy and methods of
understanding the development of scientific reasoning in children and adolescents.
The 15 tasks outlined in Chapter 4 of the Inhelder and Piaget’s The Growth of
Logical Thinking (GLT) have been utilised, not merely as a means of teachingTT
scientific principles but, more importantly, as a tool in measuring students’ level
of scientific reasoning through their approach to these tasks. Piaget developed the
méthode clinique technique to investigate intellectual development. This clinical
approach, as used in GLT consisted of physical tasks (developed by Inhelder) and
an unstructured interview method. The interview situation is highly flexible, allow-
ing the experimenter to prompt and question the child, searching for the strengths
and limitations of the strategies which govern the child’s actions in attempting to
solve the task.

Amongst the tasks outlined in GLT, the pendulum experiment, in particular, hasTT
been widely used in science classrooms as a means of studying students’ ability to
use the principle of ceteris paribus in scientific reasoning. The pendulum problem
utilised a simple apparatus consisting of a string, which could be shortened or
lengthened, and a set of weights of varying masses. Other variables, which might
at first be considered relevant, are the height of the release of the weight, and the

315

M.R. Matthews et al. (eds.), The Pendulum, 315–348.
© 2005 Springer. Printed in the Netherlands.



ERIN STAFFORD

force of push given by the subject. The task is used for children or adolescents
to discover that the frequency of a pendulum is a function of its length, to the
exclusion of all other factors.

The literal translation of ceteris paribus, ‘other things being equal’, alludes
to a methodology which may be described as ‘controlling variables’, In order to
investigate the effect (or lack of it) for any single factor, all other variables in
the situation must be held constant while the variable of interest is manipulated
and corresponding effects are noted. This concept is especially operative in the
’control’ mechanism of the experimental method. It follows, therefore, that an
awareness of the principle of ceteris paribus is critical to the current scientific
understanding of the world around us.

MEASURING FORMAL OPERATIONS

While replications of Piaget’s work (Lovell 1961; Pauli et al. 1974; Somerville
1974) have shown the accuracy of the méthode clinique in eliciting cognitive
competence and differentiating between operational levels, they also describe its
limitations in that the method is time-consuming and requires considerable ex-
pertise for administration and interpretation. Researchers interested in empirical
studies have also argued “that results obtained by such a flexible procedure as the
méthode clinique do not lend themselves to statistical treatment” (Wallace 1965,
p. 58). These factors have restricted the utility of the m,thode clinique for teachers
seeking to establish students’ operational levels (Shayer & Wharry 1974).

In the literature, two lines of argument have derived from an awareness of the
restrictions of the méthode clinique. Those concerned with empirical investigations
have provided impetus for the proliferation of formal reasoning measures. These
researchers maintained that:

[i]t should not be presumed that the méthode clinique provides the only technique by which com-
petence with the sixteen binary operations can be inferred. Indeed, there exists a variety of tests of
formal operational ability which require a whole range of different responses such that the size and
nature of the inferential leap from observed performance to inferred operational competence vary
considerably. (Bond & Jackson 1991, p. 47)

Others interested in the structural aspects of the cognitive model suggest that
only the flexibility of the méthode clinique interview and Piaget’s method of struc-
tural analysis provide adequate insight into adolescent cognitive schemata (Easley
1974).

At a practical level, Inhelder and Piaget’s pendulum experiment has been
translated into a range of alternative test formats aimed at examining students’
operational abilities with greater ease and efficiency than was provided by the
original experiments. Possibly the most widely used of these testing formats is
the Piagetian Reasoning Task (PRT) III – Pendulum developed by Shayer and his
associates (Shayer & Adey 1981) working in the Concepts in Secondary Mathem-
atics and Science (CSMS) Program, based at the Chelsea College in London. The
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PRT III is advantageous in that its group test format allows the administration of
the task to a class of students in a single session. Further, the authors claim that the
provision of a timing device in the PRT III facilitates more accurate experiments
for the students and a more valid assessment of intellectual competence.

However, the question of prime importance for science educators is – Do the
PRT III and the méthode clinique administration of the pendulum task measure the
same underlying ability?

Establishing students’ operational levels is obviously significant for teachers at-
tempting to develop Piagetian-based curriculum programs which begin at the level
of students’ abilities. The use of invalid classroom measures of operational ability
is misleading at best and an impediment at worst. Given the apparent relevance of
the PRT III in schools, the imperative to ensure its validity should be a necessary
prerequisite to its implementation.

THE THREE TIERS

In view of the distinction Piaget made between performance and structural compet-
ence, his theory may be regarded as existing in three distinct tiers (Shayer & Adey
1981). At the first tier are the descriptions of behavioural responses by children
of various ages on Inhelder’s tasks. The second tier is the classification of these
observations into stages which constitute a developmental pattern characterising
preoperational, concrete operational and formal operational behaviours. These be-
haviours are held as being the overt products of the set of available covert cognitive
structures. At the third tier is Piaget’s metatheory. Here, tier two’s behavioural and
classificatory descriptions are couched in terms of symbolic logic. For Piaget, these
three tiers constitute a structure d’ensemble in that the description at any one level
is consonant with, and derivative of, descriptions at each of the other tiers.

For educators and developmental psychologists, the most salient applications of
Piaget’s work are tiers at one and two of the model, whereby observed behaviours
are classified in terms of the various stages of cognitive development. This paper
provides an analysis of two methods which have been used to examine aspects of
tier one and tier two of Piaget’s model of cognitive ability.

ANALYSING PERFORMANCES ON PIAGETIAN TASKS

Concurrent validity must be of foremost consideration in the selection of appro-
priate tests of formal reasoning for classroom use. The importance of concurrent
validity of test instruments derives from the recognition that different research
strategies display varying degrees of accuracy in their ability to display formal
operational performance. This difference gives rise to a critical interaction between
performance and assessment strategy which has vital implications for the degree
and nature of the inferential leap between observed performance and cognitive
competence. It follows, therefore, that teachers interested in establishing students’
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competence in the use of the control of variables scheme must adopt methods
which provide a valid account of this scheme.

Most frequently, researchers have employed relational statistics to test the uni-
factorial hypothesis for group tests and, hence, the unidimensionality of formal
reasoning (Bart 1971; Gray 1976; Lawson & Renner 1974; Lawson et al. 1978;
Shayer 1979). As relational statistics assume equivalence of difficulty of test items,
it follows that individual performance across test items should be consistent. Since
it has been shown that this assumption is inapplicable to Piagetian data, the appro-
priateness of these statistics for such a measure have been questioned (Bond 1991,
1992; Hacker et al. 1985; Hautamäki 1989).

Relational statistics such as factor analysis and correlations are limited in that
test item difficulty and the subject’s ability can only be calculated in relation to the
parameters of the sample being tested (Hautamäki 1989). It follows, therefore, that
relatively low correlations between tests can be calculated simply due to a limited
ability range in the selected sample. While Lawson (1979, 1985) and Shayer (1979)
suggested that this problem can be overcome by the selection of an appropriately
wide age-stage sample, the fact remains that the hierarchial structure of Piage-
tian tasks could produce any number of factors based on comparative differences
between groups of test items (Ferguson 1941).

The inadequacy of psychometrically defined measures, such as factor analysis,
in quantitative Piagetian research, is now widely accepted (Bond 1989, 1991, 1992;
Gray 1990; Hacker et al. 1985; Hautamäki 1989). Attention has, instead, been
directed toward latent trait theories or item-response theories. In particular, the
Simple Logistic Model, developed by Rasch (1960), is held to be one analytic
model appropriate for the measurement of performances on Piagetian tasks (Bond
1989; Bond & Fox 2001; Hacker et al. 1985; Hautamäki 1989).

At the most basic level, the Rasch analytic model differs from factor-analytic
methods in that each item on a test is assumed to have equal discriminating power
as part of that test. Hence, an underlying assumption of the Rasch model is that per-
formance on a given test is determined by only two factors; the ability of the subject
and the difficulty of the test item (Hautamäki 1989). The unique characteristic of
the Rasch model is that it is the only fully unidimensional analytic model (Elliot
1983). Since formal reasoning is a unitary mental construct, this type of statistic
has obvious applications to the Piagetian model (Hacker et al. 1985; Hautamäki
1989).

Rasch analysis considers “errors” in relation to the difficulty of the test item.
Hence, it could be expected that there is a greater possibility of getting an easier test
item correct than a more difficult one. The “necessary precondition” model treats
success on easier items as a precursor to success on a more difficult item (Bond
1991). This treatment of item difficulty corresponds to the hierarchial structure of
formal reasoning.

Wright and Masters’ (1981, 1982) work has more been concerned with develop-
ing a variation on the rating-scale analysis model to deal with situations in which
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the relative difficulties or “steps” between achieved performance “levels” on an
item is of greater significance. This type of Partial Credit Model is most appropriate
to the form of data examined in the present research.

PIAGETIAN REASONING TASKS

The hybrid class tasks developed by become widely
used in secondary school science classrooms, particularly in England. The advant-
age of these Piagetian Reasoning Tasks (PRTs) is in the ease of administration
for the teacher, the clear guidelines provided for marking and the requirement
for only a single set of readily available apparatus. An important criterion for the
development of the PRTs was that the child should be given at least two separate
opportunities to display each of the criterion behaviours described in GLT. Fur-TT
ther, since the tasks are closely based on Piagetian theory, which incorporates the
structure d’ensemble of formal operations, a child’s performance on any one (or a
maximum of two tasks) is considered sufficient to accurately determine the level
of cognitive development (Wylam & Shayer 1978).

The validity and reliability of the series of PRTs was tested prior to their pub-
lication. Probably the most widely used of the tasks is the PRT III – Pendulum,
based on Chapter 4 of GLT “The Oscillation of the Pendulum and the Operation
of Exclusion”. Shayer and Adey (1981) report the following statistics for the PRT
III: KR20 internal consistency 0.83, test-retest correlation 0.79 (n = 24), and task-
interview correlation 0.79 (n = 24). While these statistics reflect favourably on the
reliability and validity of the pendulum task, the small sample size involved in the
testing restricts the inferential power of the results.

RASCH ANALYSIS AND THE PRT III

While it has been argued that Rasch analysis is appropriate for this type of data,
investigations of the fit of the PRT III to the Rasch model have not been entirely
conclusive. Bond (1989, 1991) and Hautamäki (1989) have both found that the PRT
III data fit the Rasch model remarkably well. It could be inferred, then, that since
the Rasch model can be held to represent the unidimensional structure of formal
operations, the PRT IIII is a valid measure of those abilities.

On the other hand, Hacker et al.’s (1985) analysis of the PRTs suggest that six
of the fourteen items on the PRT III do not fit the unidimensionality aspect of the
model. They found a joint test of fit of p < 0.001 and, consequently, rejected the
test unidimensionality. However, with the subsequent removal of these six items,
the researchers obtained a joint test of fit of p = 0.09. They conclude that “task
III is not recommended because of the larger number of misfitting items” (p. 30).
Given the critical necessity of employing valid classroom measures (Ahlawat &
Billeh 1987; Blake 1980; Bond 1992; Gray 1990; Lawson 1985), these criticisms
merit further investigation of the PRT III.
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Methodology

The purpose of the present study was to test the concurrent validity of the Piagetian
Reasoning Task III – Pendulum with the traditional méthode clinique interview
technique. Accordingly, it was fundamental to the design that each subject was ex-
posed to both the PRT III and the méthode clinique measures, so that a comparative
analysis could be performed between the two scores.

THE SAMPLE

The total tested sample for this study consisted of 72 students from a very large
public secondary school in Townsville of approximately 2,000 students. The sub-
jects were drawn from three science classes at grade 8 (n = 28), grade 9 (n = 23)
and grade 10 (n = 21). There was an even mix of gender in the sample.

The PRT III was completed by 68 students, while the méthode clinique admin-
istration of the pendulum task was undertaken by 58 students. Complete data sets
for students tested under both measurement conditions were obtained for a total
of 57 students. This sample comprised 20 grade 8 students, 17 grade 9 students
and 20 grade 10 students. In accordance with the cautions of Shayer (1976) and
Lawson (1985) regarding the need for a distribution of abilities across the sample,
the classes used in the study were selected by the science teachers at the school,
on the basis of classroom performance and grades, to ensure that a wide range of
ability levels would be obtained. Selection for participation in the méthode clinique
situation was based on alphabetised placement on the class roll. Starting from the
beginning of the roll, interviews were held with each nominated student present on
the given day of testing.

DESIGN

A counterbalanced design was most suited to the methodological and analytic re-
quirements of this study so that the order of presentation of the tasks for students
in Group A would be reversed for Group B students. The experimental design is
shown in Figure 1.

ADMINISTRATION

Administration of the test instruments took place over a period of approximately
two months, with a two-week mid-semester break between the testing of group A
and group B. The sample of grade 8–10 students was divided such that group A
consisted of the grade 8 class and half of the grade 10 class, and group B was made
up of the remainder of the grade 10 class and the grade 9 class.

Group A undertook the PRT III in the initial testing phase followed by a one
week break before the second phase of individual interviews began. Group B began
testing at a period two weeks after the completion of Group A’s testing phase. For
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Figure 1. Counterbalanced design for the concurrent validation of the PRT III with the
methode clinique´ .

this group, a three week méthode clinique phase was completed before the group
testing with the PRT III in the final phase.

APPARATUS

The apparatus for the méthode clinique administration was the same as that used
in GLT (pp. 67–79), consisting of an adjustable string and a series of three weights
(40 grams, 80 grams and 100 grams), which were experimented with in order to
deduce which of the variables (weight, length, angle and push) affects the period
of the pendulum. A general purpose laboratory stand, measuring 60 centimetres in
height was used as the base for suspension.

The apparatus Shayer and Wharry (1974) describe for the PRT III is similar
to that used in GLT, except that there are only two strings (long and short), fromTT
which either of two different weights may be hung. The two strings measured 69cm
and 35 cm respectively, and the two weights were 40 grams and 100 grams.

Shayer and Wharry suggest the use of a stopclock to time 30 second intervals
while the students count the swings. In the present study, a stopwatch was used as
the timing device. The stopwatch was given to a chosen student who indicated to
the class when each 30 second interval had elapsed. For the PRT III, each subject
recorded individual responses to questions on the task paper.

TESTING PROCEDURES

In the investigation of the pendulum problem, each situation involved separate test-
ing procedures and organisational requirements, in accordance with the guidelines
provided by the respective test developers.

Piagetian Reasoning Task III – Pendulum (PRT III)

The Piagetian Reasoning Task III – Pendulum was conducted during three separ-
ate group test situations, the group size varying from nine to forty students. Each
testing session lasted approximately one hour.
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The PRT III was administered by a trained and experienced administrator of
the test and was overseen by the researcher each time. Following the guidelines
set down by Küchemann (1979) and in the Wylam and Shayer (1978) guidebook,
testing consisted of a series of teacher-demonstrated manipulations of variables po-
tentially related to the swing of the pendulum. At particular intervals, the students
made written responses on the PRT III task paper.

In accordance with the stipulated organisational requirements (Wylam & Shayer
1978), the students were seated so as to minimise the risk of cheating, but still
allowing all of them to see the apparatus from their seating positions. Wylam and
Shayer (1978) attest the importance of the students having a clear understanding of
the questions being asked. Hence, testing frequently involved repeating, rephrasing
and clarifying questions to help ensure that each child understood the meaning of
the question.

Méthode Clinique

The conditions of the méthode clinique replicated, as far as it was possible, those
of the original researchers in GLT. The method is unique in that it allows the childTT
to demonstrate mental operations through actions on concrete materials as well as
through language, and incorporates an element of flexibility as the experimenter is
able to pursue the direction of the child’s thought (Ginsburg & Opper 1988). The
experimenter modifies questions and experimental conditions, seeking clarification
of genuineness and consistency in the child’s responses.

Piaget recommended that experimenters using the méthode clinique should un-
dergo extensive training in its effective usage. Such training was not possible in the
present case. However, the study was piloted by a series of rehearsal interviews (n =
10) with the pendulum apparatus, according to the models set down by Piaget. The
interviewer was not a complete novice in this regard, having completed méthode
clinique interviews with the pendulum as part of earlier undergraduate work.

The individual interview with each subject lasted 10-20 minutes and was video-
taped for later transcription and analysis. The interviews took place in an allocated
quiet room in the school library. Students were individually presented with the ap-
paratus, shown how to manipulate appropriate variables and encouraged to explain
what they were thinking and doing. On all occasions, the students were aware that
the interview was being recorded and would be reviewed later by the researcher.

SCORING PROCEDURES

In order to examine the concurrent validity of the méthode clinique with the PRT
III, two levels of analysis were conducted. Firstly, the items comprising the PRT
III and the classificatory guidelines for the méthode clinique administration of the
pendulum were scored and analysed using Quest procedures for Rasch analysis.
The aim of this step was to examine the unidimensionality of each of the measures,
and the extent to which each of the measures could be found to be conforming
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to the stage placements suggested by their respective authors. Secondly, the items
on the PRT III and the GLT criteria were together subjected to Rasch analysis to
examine the degree to which items on the two scales fit with each other, fall into the
indicated stage allocations, and can be said to be measuring the same underlying
ability.

The different administration procedures used for the PRT III and méthode cli-
nique situation necessitate similarly unique scoring procedures for the assessment
of the performances on the tasks.

Piagetian Reasoning Task III – Pendulum (PRT III)

The PRT III answer sheets were collected at the end of the class testing time.
Papers were marked by the present author using the clear guidelines set down by
Wylam and Shayer (1978) and each was allocated a stage classification according
to Küchemann’s (1979) criteria.

Performances on each PRT III item are scored dichotomously, resulting in a
total score out of 14. The Quest procedures produce item difficulty estimates,
and associated error estimates, infit and outfit mean square values as well as
transformed infit and outfit t statistics for each test item.

Méthode Clinique

Classificatory guidelines derived directly from Chapter 4 of the original GLT text
(p. 67–79) were used as the sole basis for stage classification of the protocols ob-
tained from the méthode clinique interviews. The initial set of behavioural criteria
was extracted from GLT prior to the commencement of data collection. Subsequent
elaboration and refinement of these descriptions produced 18 items (clusters of
related criteria) representing the different pendulum problem-solving behaviours
from the preoperational (I) to late formal operational (IIIB) levels of ability.

In the scoring of performances, the wealth of descriptions provided in GLT
suggested that, while a simple dichotomous yes/no procedure would be appropri-
ate for some of the identified behaviours, that would not provide sufficient detail
for other areas of performance. Rather, an ordinal scale was used to allow for
the inclusion of (polychotomous) items with three or more graded values across
performances, reflecting lesser or greater operational ability. The resultant set of
34 substantive performance criteria (and 14 criteria representing null categories) is
shown in Appendix A. Details of the scoring procedures used with the GLT-derivedTT
criteria are outlined in Bond and Bunting (1995).

Protocols from the méthode clinique interviews were assessed according to
the 18 items (constituting 34 classificatory criteria) extracted from Chapter 4 of
GLT. The data obtained from analysis according to these criteria were subjected toTT
statistical analysis under Rasch principles using Quest software (Adams & Khoo
1992). The Quest program provides access to the validation of variables from both
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dichotomous and polychotomous information, in accordance with the Partial Credit
option of the Rasch model (Wright & Masters 1982).

Results

Shayer and Adey’s (1981) description of the three-tiered Piagetian model has
been outlined as incorporating behavioural, classificatory and logico-mathematical
levels. While this study incorporated analysis at each of these three tiers, beha-
vioural and classificatory levels (tiers one and two) are of particular interest to
educators and will be addressed here. Data analysis consisted of a statistical ana-
lysis of the empirical results from the PRT III and the méthode clinique interview.
Empirical data collected in this study was analysed according to Rasch principles
using Quest software (Adams & Khoo 1992). Quest is an Australian software pack-
age designed to perform the functions of Rasch analysis according to the partial
credit models.

Quest offers a comprehensive test and questionnaire analysis environment by providing a data analyst
with access to the most recent developments in Rasch measurement theory.[It] can be used to con-
struct and validate variables based on both dichotomous and polychotomous observations. It scores
and analyses instruments such as multiple choice test scores, short answer items, and partial credit
items. (Khoo & Adams 1992, p.1).

Elaboration of the use of the Partial Credit model in this study can be found in
Bond and Bunting (1995).

TIER 1 – THE PROBLEM-SOLVING BEHAVIOURS

Piaget’s description of the behaviours which constitute tier one of his theory
incorporates two assumptions about the nature of these behaviours. Firstly, the
behaviours displayed on the pendulum task must demonstrate some spread of dif-
ficulty consonant with the developmental acquisition of the abilities. Secondly, the
behaviours should demonstrate homogeneity indicative of the inter-relatedness of
the abilities used in solving the pendulum problem (Shayer 1979). Data from both
of the testing procedures were analysed using Rasch procedures to determine their
conformity to these premises.

Rasch Analysis of the PRT III Behaviors

Rasch analysis of the students’ raw scores on the 14 assessable PRT III items
produced the results shown below in Table I.

The conventional interpretation of item-fit data is that the transformed t statistic
should range from −2 to +2 at the p < 0.05 level to demonstrate fit to the
model. Results in Table I show that item 8 on the PRT III has infit and outfit t

balues of +2.1 and +2.5 respectively, falling just outside the acceptable limits
conventionally imposed under Rasch procedures. This result suggests that item 8

324



A COMPARISON OF METHODS

Table I. PRT III item statistics

Item Difficulty Error Infit t Outfit t

estimate estimate

1 −2.65 0.32 +1.4 +3.1

2 +2.16 0.54 −0.4 −0.4

3 +0.09 0.33 +0.8 +0.1

4 −1.23 0.29 −0.7 −0.8

5 −0.82 0.30 −1.1 −0.8

6 +0.89 0.38 0.0 +0.1

7 −0.01 0.32 −1.3 −1.5

8 −2.74 0.33 +2.1 +2.5

9 +1.03 0.39 +1.2 +1.9

10 −1.06 0.30 −1.7 −0.9

11 +0.63 0.36 −0.6 −1.0

12 −0.90 0.30 −0.6 0.0

13 +2.45 0.59 −0.5 −0.1

14 +2.16 0.54 +0.1 −0.2

is not measuring precisely the same set of abilities as the other 13 items on the test.
Item 8 (question A.5 on the test paper) is concerned with the ability to establish
a relationship of inverse correspondence between the length of the string and the
period of the pendulum. In Chapter 4 of GLT, Inhelder and Piaget note: “At sub-TT
stage II-A.the subject discovers the inverse relationship between the length of the
string and the frequency of the oscillations” (p. 70). Item 8 is the only PRT III item
which measures abilities at the lower end of concrete operations; the remaining
items relate to the late concrete and formal operational stages. It is possible, then,
that item 8 appears misfitting relative to the other PRT III items merely because it
is located at one extreme end of the measurement range for the PRT III.

Further, the test of joint fit of the PRT III items with the GLT items (results
shown in Table III) shows that, when all items on both tests are analysed together,
item 8 on the PRT III no longer appears to be misfitting (infit t = +1.3). Since
the GLT items measure a range of abilities from II-A to III-B, the relatively greater
amount of information provided about these easier items in the joint test might be
regarded as providing a more accurate fit statistic for PRT III item 8.

Item 1 demonstrated an outfit t statistic of +3.1. However, the low infit t statistic
relative to the outfit t indicates that the fit of this item is uncertain. At the p < 0.05
level, up to one item in a set of fourteen could fall outside acceptable boundaries,
due to random fluctuations alone.
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Rasch analysis of the test data produced the error estimates for each of the PRT
III items, shown in Table I. For the PRT III error estimates ranged from 0.29 logits
(for item 4) to 0.59 for logits (for item 13).

Item estimates of the PRT III items produced a spread of items along a logit
scale from +2.45 logits for the most difficult item (item 13) to −2.74 logits for the
easiest item (item 8), as shown in Figure 2. The spread of persons along the same
logit scale located the least successful most successful person (person 9) at +3.48
logits, and the least successful (persons 1, 13, 20, 22, 33, 53) at −3.54 logits. Each
X on the graph respresents one person.

Rasch Analysis of the Méthode Clinique Behaviors

Table II shows the results of the statistical analysis of the GLT raw scores. Ac-
cording to Rasch principles, any items on which all persons score correctly or
incorrectly provide inadequate information about the difficulty level of that item.
Hence, item 1 (on which all students scored correctly) was excluded from the ana-
lysis. This item concerns subjects’ ability to accurately serially order the lengths of
the string.

From Table II, it can be seen that the majority of GLT items fit the Rasch model
as all test items, excepting items 8.1 and 8.2, produced infit t statistics within the
acceptable (−2.0 < t < +2.0) boundaries. Items 8.1 and 8.2 appear as misfitting
items in the set of 34 items. However, the low infit t statistic relative to the outfit t
statistic, suggests that the fit of these items is uncertain. Estimates of the GLT item
difficulties are spread along a logit scale from −2.41 logits for the easiest item
(item 6.1) to +3.12 for the most difficult item (item 18). Error estimates for the
GLT criteria are consistently larger than those for the PRT III, ranging from 0.29
(criterion 16) to 1.25 (criterion 6.1).

The spread of persons along this same scale showed the most successful person
(65) at +4.38 logits and the least successful (person 21) at −1.14 logits. This
information is shown in Figure 3.

Joint Test of Fit

A joint test of the fit of the two test measures to the Rasch model was undertaken
in order to establish whether both tests could be considered as assessing the same
ability or latent trait. Item 1 on the GLT criteria was again omitted from the cal-
culations because all subjects scored correctly on this item. Table III shows the
substantial fit of 30 of the 32 items to the Rasch model. Item 10 on the PRT III
(infit t = −2.1; outfit t = −2.0) and item 15 on the GLT (infit t = +2.7; outfit
t = +1.7) appear as two misfitting items from a total of 32 test items. However, for
GLT item 15, the low outfit t statistic, relative to the infit t statistic again suggests
that the determination of fit for this item is uncertain. At the conventional p < 0.05
level, it would be expected that one or two items in a set of 32 could show some
variation from the model, based on random fluctuations alone.
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Figure 2. PRT III person ability and item difficulty estimates.
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Table II. GLT criteria statistics

Item Difficulty Error Infit t Outfit t

estimate estimate

1 Item has perfect score

2 −2.37 0.73 +0.3 +0.5

3 −2.37 0.73 +0.3 +0.5

4 −2.37 0.73 +0.1 −0.4

5 −2.37 0.73 +0.1 −0.4

6.1 −2.41 1.25 0.0 −0.2

6.2 +0.36 0.63 0.0 −0.2

7.1 −0.97 0.69 +1.0 +0.6

7.2 +0.89 0.58 +1.0 +0.6

8.1 −0.65 0.30 +0.6 +2.3

8.2 −0.65 0.30 +0.6 +2.3

9.1 −0.28 0.59 −0.5 −0.3

9.2 +0.72 0.55 −0.5 −0.3

10.1 −1.50 1.13 −0.3 −0.2

10.2 −1.22 1.08 −0.3 −0.2

10.3 +1.12 0.52 −0.3 −0.2

10.4 +3.11 0.64 −0.3 −0.2

11.1 −1.19 0.66 0.0 −0.2

11.2 +1.63 0.52 0.0 −0.2

11.3 +2.15 0.52 0.0 −0.2

12.1 −0.06 0.53 −0.7 −0.7

12.2 +1.73 0.53 −0.7 −0.7

12.3 +2.88 0.63 −0.7 −0.7

13.1 −2.06 0.97 −0.8 −0.9

13.2 +1.40 0.56 −0.8 −0.9

14.1 −1.59 0.78 +0.7 +0.5

14.2 +1.07 0.48 +0.7 +0.5

14.3 +1.12 0.49 +0.7 +0.5

15.1 +0.97 0.47 +1.8 +1.7

15.2 +1.22 0.48 +1.8 +1.7

15.3 +2.14 0.51 +1.8 +1.7

16 +1.42 0.29 −1.2 −0.9

17 +2.37 0.33 −1.2 −1.3

18 +3.12 0.41 −0.5 −0.9

328



A COMPARISON OF METHODS

Figure 3. GLT person ability and item difficulty estimates.
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Figure 4. Person ability estimates, item difficulty estimates and stage placements for PRT III
and GLT items together.

Estimates of the item difficulties of the 32 test items together produced a spread
along a logit scale from +3.12 logits for the most difficult item (item 13 of PRT III)
to – 3.38 logits for the easiest item (GLT criterion 6.1). These estimates are shown
in Figure 4.

Tier 2 – Stage Placements of Problem-Solving Behaviours

At the second tier of Piaget’s model, the behavioural descriptions of tier one are
classified into developmental stages of preoperational, concrete operational and
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Table III. Statistics for joint test of PRT III and revised
GLT items

Item Difficulty Error Infit t Outfit t

estimate estimate

PRT 1 −1.05 0.29 +1.4 +1.9

PRT 2 +2.88 0.48 +0.1 −0.5

PRT 3 +1.18 0.29 −0.6 −0.7

PRT 4 +0.13 0.26 −0.9 −0.8

PRT 5 +0.46 0.26 −1.9 −1.9

PRT 6 +1.83 0.34 −0.2 −0.5

PRT 7 +1.10 0.28 −0.9 −1.3

PRT 8 −1.14 0.29 +1.3 +0.8

PRT 9 +1.94 0.35 +0.4 +0.5

PRT 10 +0.26 0.26 −2.1 −2.0

PRT 11 +1.62 0.35 −0.8 −0.9

PRT 12 +0.39 0.26 −0.5 −0.9

PRT 13 +3.12 0.53 +0.2 +0.2

PRT 14 +2.88 0.48 0.0 −0.5

GLT 1 Item has perfect score

GLT 2 −3.34 0.73 +0.3 +0.5

GLT 3 −3.34 0.73 +0.3 +0.5

GLT 4 −3.34 0.73 +0.2 −0.3

GLT 5 −3.34 0.73 0.0 −0.7

GLT 6.1 −3.38 1.29 −0.3 −0.6

GLT 6.2 −0.58 0.65 −0.3 −0.6

GLT 7.1 −1.88 0.69 +1.0 +1.0

GLT 7.2 0.0 0.54 +1.0 +1.0

GLT 8.1 −1.57 0.29 +1.0 +1.0

GLT 8.2 −1.57 0.29 +1.0 +1.0

GLT 9.1 −1.19 0.59 +0.1 +0.3

GLT 9.2 −0.18 0.53 +0.1 +0.3

GLT 10.1 −2.41 1.13 −0.1 0.0

GLT 10.2 −2.14 1.06 −0.1 0.0

GLT 10.3 +0.24 0.53 −0.1 0.0

GLT 10.4 +2.18 0.65 −0.1 0.0

GLT 11.1 −2.13 0.66 +0.4 +0.8

GLT 11.2 +0.74 0.53 +0.4 +0.8

GLT 11.3 +1.25 0.52 +0.4 +0.8

GLT 12.1 −0.94 0.50 +0.5 +0.6

GLT 12.2 +0.84 0.52 +0.5 +0.6

GLT 12.3 +1.96 0.59 +0.5 +0.6

GLT 13.1 −3.00 0.97 −0.6 −0.7
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Table III. Continued

Item Difficulty Error Infit t Outfit t

estimate estimate

GLT 13.2 +0.52 0.54 −0.6 −0.7

GLT 14.1 −2.50 0.75 +1.8 +1.3

GLT 14.2 +0.17 0.48 +1.8 +1.3

GLT 14.3 +0.23 0.48 +1.8 +1.3

GLT 15.1 +0.09 0.47 +2.7 +1.7

GLT 15.2 +0.33 0.47 +2.7 +1.7

GLT 15.3 +1.22 0.50 +2.7 +1.7

GLT 16 +0.53 0.28 −1.2 −1.3

GLT 17 +1.49 0.33 −0.6 −0.8

GLT 18 +2.23 0.40 −0.3 −0.6

Figure 5. PRT III Items at each Piagetian level.

formal operational ability. In particular, the GLT problems are related to discrim-
ination between concrete and formal levels of operational ability (Parsons 1958;
Smith 1987).

A further consequence of Rasch analytic procedures is that, since item difficulty
estimates are obtained for test items on the two measurement procedures, it is pos-
sible to make a comparison of those estimates relative to stage estimates of item
difficulties, as stipulated by the test developers. Accordingly, difficulty estimates
of PRT III items, and of the criteria derived from GLT were compared with the
qualitative descriptions of behaviours suggested by the respective authors at each
level of development.

PRT III Difficulties and Stage Allocations

In the development of the PRT III, Wylam and Shayer (1978) included assessable
items at each of the Piagetian levels of cognitive development. Küchemann (1979)
indicated levels of individual items, as shown in Figures 4 and 5.
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When these allocations are interpreted in terms of the item difficulty estimates
(see Table I), it can be seen that the results provide general support for Küchem-
ann’s stage classifications of the PRT III. These results are represented on Figure
4. The areas showing more intense shading indicate those items for which stage
allocation is relatively certain. Where the shaded colour is less intense, the stage
barriers and, consequently, the stage placement of the items is less certain.

The single exception is item 5, which Küchemann identified as a IIIB item.
From the analysis of the data reported here, it appears that item 5 is easier than the
other IIIB items, with a level of item difficulty within the band of the other IIIA
items on the PRT III.

GLT Item Difficulties and Stage Allocations

The 34 performance criteria extracted from the descriptions in the Inhelder and
Piaget text were ascribed a stage classification to each ordinal level, according to
the GLT specifications. These stage allocations are shown in Figure 6.

Comparison of the difficulty estimates for the criteria derived from the sample
data (see Table II) in relation to Piaget’s specifications indicated that not all the
items fall at the statistical levels of difficulty which might be seen as congruent
with stage allocations based on Piaget’s purely logical analysis. These results are
also shown in Figure 4. The clustering of items where the colour is more intense
indicates greater certainty of stage placement with those items.

Under these estimations, items 3, 4 and 12.1 appear to be empirically more
difficult than predicted under the theory, and items 7.2, 8.2, 9.2, 13.1, 13.2, 14.1,
14.3 and 16 easier than the GLT allocations suggest. Each of these items, therefore,
is considered somewhat problematic.

RELATIVE DIFFICULTY OF THE TWO TEST PROCEDURES

When independent person ability estimates and a joint-test of fit had been obtained
for each test measure, it was possible to use these results to estimate the relative
difficulty levels of the two tests. While the spread of item difficulties for each
of the three analyses is centred around an arbitrary zero point for convenience,
the comparison of difficulties for the closest to centre items (item 12.1 from the
méthode clinique and item 7 for PRT III) on the joint test indicates that the written
demonstrated class task version of the pendulum task is about two logits more diffi-
cult for this sample than was the méthode clinique administration of the pendulum
task.

This estimate for Rasch analysis results was supported further by analysis which
showed that 33 percent of the subjects performed at a higher level of ability in
the individual méthode clinique situation than on the PRT III. When the general
consistency of performances across test situations was analysed, it was found that
45% of subjects scored at exactly the same stage level across both tasks, and 89%
of all subjects scored consistently within one substage on the tasks.
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Discussion

The central purpose of the present study was to investigate the concurrent validity
of the Piagetian Reasoning Task III – Pendulum (Shayer & Adey 1981) with the
traditional Genevan méthode clinique technique for ‘the oscillation of the pendu-
lum and the operation of exclusion’. The results presented here generally provide
support for the concurrent validity question. The results of the Rasch analysis of
performance on the PRT III and the méthode clinique administration of the pen-
dulum problem indicate that both scales are substantially unidimensional. Further,
the combined scale consisting of all items form both tests was also substantially
unidimensional, providing support for the claim that both scales are measuring the
same underlying ability. However, the combined analysis also indicated that the
GLT criteria is a somewhat more difficult test of formal operational abilities than
the PRT III.

Analysis at tiers one and two of Piaget’s model is a useful way in which to
examine the results.

TIER 1 – RASCH ANALYSIS OF PROBLEM-SOLVING BEHAVIOURS

Rasch Analysis of PRT III Performances

The study provides support for the results reported in the work of Shayer and
Adey (1981) suggesting that the test provides a useful classroom measure of the
operational abilities encompassed in the méthode clinique administration of the
pendulum task. However, the larger sample used in this study provides a more
reliable basis for this conclusion. The present results also confirm the conclusions
of Bond (1989, 1991) and of Hautamäki (1989), who both claimed that the PRT
III may be considered to be substantially unidimensional in the terms encountered
under Rasch analysis.

Rasch Analysis of Méthode Clinique Performance

The statistical analysis of the GLT criteria undertaken in this study provides the
first published attempt to test the empirical validity of Piaget’s theory using a
detailed quantitative assessment of the original méthode clinique administration of
the pendulum task. The results outlined above provide remarkable corroboration
of Piagetian theory. The analysis of the GLT criteria (shown in Table II) provides
support for the underlying unidimensionality (p < 0.05) of the detailed set of be-
haviours described by Inhelder and Piaget in Chapter 4 of GLT. The strength of theTT
results obtained in this study attests to the validity of Piaget’s theory of operational
ability – statistical analysis of essentially qualitative data was used to indicate that
the performance criteria may be regarded as essentially unidimensional.
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Relative Test Difficulties

While Rasch analysis confirmed the joint fit of the PRT III items and the GLT
criteria, analysis of the difficulty estimates of the PRT III items together with the
GLT items (in Figure 4) showed that the three most difficult items across the scale
are all PRT III items, and the fourteen easiest items on the scale are derived from the
GLT items. Further, when the relative difficulties of these two test situations were
compared, it was revealed that the difficulty level of the PRT III is two logits higher
than that of the méthode clinique administration of the same task. Together, these
results suggest that the PRT III is a more difficult test measure than the méthode
clinique based on GLT performance criteria.

The results of the joint-fit analysis of the PRT III with the GLT criteria
also relate to previous research using the PRT III. In Shayer’s (1978) review of
Somerville’s (1974) replication of the pendulum task, he takes issue with the range
of the sample used in that study. Somerville’s results indicated that up to 97 per-
cent of her 236 subjects (aged 10–14 years) had reached a late formal level of
operational ability, and that none of her subjects were at the early concrete (IIA)
stage. These results differed considerably from Shayer’s (1976) findings of about
24 percent of his sample demonstrating formal operational thinking by 14 years
of age. His results were obtained using the PRT III as the measure of problem-
solving ability on the pendulum task. In his 1978 paper, Shayer claimed that the
discrepancies between the results were due to the inadequate representativeness of
Somerville’s sample, and held that representative sampling would provide a more
accurate reflection of the incidence of formal operational ability.

In this regard, the results obtained in this study provide general support for
Shayer’s arguments. In the present research, the same sample was tested in the
traditional méthode clinique interview technique (used by Somerville) and with
the PRT III (used by Shayer). However, analysis of student performance data
indicates that the majority of students scored noticeably higher in the individual
méthode clinique situation than on the PRT III. While 45% of students scored at
exactly the same level across the two tasks, 33% were allocated a higher level
of operational ability in the méthode clinique situation than on the PRT III. This
finding of greater difficulty of the PRT III over the méthode clinique provides a
competing explanation to Shayer’s sampling argument for the discrepancy between
Somerville’s results, and those of Shayer’s original investigation.

TIER 2 – ITEM ESTIMATES AND STAGE PLACEMENTS

At the second tier of Piagetian theory, the behaviours on the pendulum task are clas-
sified into stages of operational ability. The results of a comparison between item
difficulty estimates (as obtained under Rasch analysis procedures) and suggested
item stage placements for each test are shown in Figure 4.
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Item Estimates and Stage Placements for PRT III Items

Comparison of the relative difficulty levels of the PRT III items with the stage
classifications made by Küchemann (1979) showed general consistency between
the estimates, with only item 5 appearing to be problematic. Küchemann suggests
that this item tests abilities at the IIIB level. However, statistical estimates of item
difficulty placed item 5 at −0.82 logits, closer to other IIIA items. This item (ques-
tion A.6) on the test paper calls for the subject to identify possible tests to determine
the effect of weight, and then exclude any tests which are not needed, such that a
necessary and sufficient set of tests is obtained.

GLT Criteria Estimates and Stage Placements

Comparison of item difficulties and the stage estimates described in Chapter 4
indicated that some clusters of GLT criteria were placed at levels of difficulty
along the scale which did not conform to stage estimates derived from GLT. FromTT
Figure 4 it was noted that GLT criteria 8.2, 12.1, 13.1 and 14.1 are particularly
discrepant, while the positioning of criteria 3, 4, 7.2, 9.2, 14.3 and 16 requires
further comment. Detailed discussion of these misfitting items is undertaken in
Bond and Bunting (1995). The results of the Rasch analysis of the 34 GLT criteria
suggest that some refinement may be required in terms of the relative difficulties
involved in producing combinations of each of the factors of the problem.

Performance Discrepancies

While the results provide support for the concurrent validity of the PRT III, it was
quite apparent that some individuals produced rather disparate performances across
the two testing situations. In particular, four students (persons 013, 035, 050 and
068) were ascribed Piagetian levels which differed by more than two substages,
across the two assessment conditions. This finding is of particular issue for teachers
as it may indicate variability in the reliability of testing instruments for different
students.

The nature of this study allowed for some additional information to be obtained
about each of these subjects. While this information cannot provide conclusive
reasons for performance discrepancies, it indicates the potential influence of the
interaction between the particular measurement situations and individual factors
that subjects bring to the experimental context (Hales 1986). These performance
discrepancies are considered noteworthy and may have implications for the deploy-
ment of diagnostic tests and selection of assessment strategies in the classroom.
They suggest that, at least for some students, a single test of operational ability
may not provide an accurate reflection of that individual’s level of intellectual
development, either in performance or competence terms.
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Subject 013

A male students from year 10 who is confined to a wheelchair because he has mus-
cular dystrophy. He performed at the IIB level of concrete operations in the PRT III
situation, but was able to produce a level of mature formal performance (IIIB) in
the méthode clinique situation. During the individual interview, the experimenter
manipulated the experimental variables according to the subject’s instructions, as
he was unable to perform the experiments himself. It may be deduced, then, that the
interactional mode of the méthode clinique, and the lack of demands for writing,
provide a more reliable assessment of this student’s abilities.

Subject 035

A male student in year 8in Group A of the sample performed at the IIIB level
on the PRT III test, but at the IIB level of concrete operations in the individual
situation. According to his teacher, the student’s family has a military background
and has moved around the country a great deal. His teacher reported that, although
the student worked well in class, he seemed to experience some difficulty relating
to people on a one-to-one basis, particularly people with whom he is not familiar.
His relatively poorer performance in the méthode clinique interview may have been
affected by a difficulty in relating to the interviewer.

Subject 050

A male student in year 9, this student responded to every question on the PRT III
paper, yet failed to answer a single item correctly, suggesting a complete lack of
understanding of the problem. He was, consequently, allocated a IIB-, indicating
that the test could not provide an accurate assessment of operational ability since he
had not yet reached the level of concrete operations. Yet the student demonstrated
performance at the early formal (IIIA) stage when interviewed in the individual
situation. In the interview situation, the student was enthusiastic and appeared to
enjoy the interactive nature of the testing situation.

Subject 068

A female student in year 10, this subject produced performance at the fully formal
operational (IIIB) level during the individual interview, but in the group PRT III
situation, she demonstrated performance at a low level of concrete operations
(IIB-). The seating arrangements in this final PRT III test were, perhaps, more
conducive to social distractions than Wylam and Shayer (1978) would have recom-
mended; she was almost entirely distracted by her interest in a male neighbour.
Infit t statistics for this subject were +0.67 for the PRT III and −0.78 for the GLT,TT
indicating some systematic constraint on the student’s performance in the GLT
situation.
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These cases are informative since they suggest that, while both the PRT III
and the méthode clinique interview may provide substantially similar indications
of operational abilities, neither can be unconditionally regarded as the accurate
measure of individual operational ability on the pendulum task. While the PRT III
was found to be a somewhat more difficult test of formal operational abilities, there
are a number of items from the GLT criteria which did not conform to the expected
stage placement, based on the descriptions given in GLT. Some refinement of theseTT
criteria may be required.

The results support the claims of Bond and Jackson (1991), Nagy and Grif-
fiths (1982) and Flavell and Wohlwill (1969) that operational performances may
be influenced by both the type of assessment task administered and the relation-
ship between the individual and the task, and is consistent with Hales’ (1986)
description of the role of the human subject in psychological investigation. Given
the differences for the four subjects discussed in this sample, it is clear that the
possibilities for intervening variables remain indeterminable.

EVALUATION OF THE METHODS

This study was chiefly concerned with the collection of data through PRT III pro-
cedures and méthode clinique interviews. However, the study format also allowed
the collection of additional data through direct observation of each method used
and informal discussions with the students involved. This information is useful
with regard to the identification of benefits and limitations associated with each
method.

Evaluation of the PRT III

A recognised deficiency of paper and pencil testing is the demand placed on the
reader’s interpretation of written test questions and the marker’s interpretation of
the written responses. While such difficulties are a feature of all written tests, the
degree of interpretation involved could potentially produce highly discrepant res-
ults. The administration and marking of the PRT III in the present study revealed
that this was a limitation in the test and, consequently, provided another obstacle
to interpretation of the nexus between individual’s performance and intellectual
competence. Indeed, when the two test formats were discussed with the year 10
students in Group B, several students noted the difficulties they had in clearly
expressing their ideas on the test paper.

A second concern derives from the more structured format of the PRT III, as
compared with the méthode clinique technique. Küchemann’s (1979) guidelines
for administration clearly set out a series of six experiments on the pendulum,
performed in a specific sequence, with questions posed at key intervals. However,
several students noted that the experiments provided nsufficient basis for their de-
ductions and more experiments (such as available in the méthode clinique format)
would have been advantageous.
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The second limitation is well reflected in an incident which occurred at the
completion of the second PRT III with the year 9 class. Two female students
approached the administrator at the end of the session, asking if they could use
the pendulum apparatus to do some more experiments. After these students had
performed two more experiments themselves, one of the students exclaimed, “See,
I was right! I told you that’s what it would do!” The restricted number and types
of experiments demonstrated in the class-test procedure often resulted in a repet-
itive test format and extended periods of thinking and writing which might have
constrained performances for some students, and indicating a potential limitation
of the PRT III procedure.

Thirdly, the written answers on the PRT III format necessarily introduce a
greater level of interpretation on the part of the teacher than is characteristic of the
more interactive Genevan interview situation, where any responses can be followed
up for immediate elaboration. While PRT III test questions were clearly explained
during administration, and the students were encouraged to ask questions about
the testing situations if they needed to, the frequent ambiguity of some individual
answers remains an issue of concern. These problems arose despite the fact that
students were asked to express their answers as clearly as possible. In the marking
of the PRT III task papers, difficulties in the interpretation of students’ answers
indicated that clearer wording and more specific instructions might be necessary in
order to obtain amore accurate assessment of students’ abilities.

A fourth point of some note is that the group test situation inevitably introduces
a social dimension to the assessment procedure, which might distract student’s
performances in a number of ways, for example, the intentional omission of test
questions, or making inappropriate responses. Wylam and Shayer (1978) stipulate
that students should be seated so as to avoid copying answers. However, even
with these seating positions, the social aspects which often characterise adolescent
classrooms appear to be an unavoidable feature of the group test situation.

A related factor is that, even in the open and flexible structure of the PRT III,
some students lagged behind the pace of the rest of the class. To this end, in the
testing undertaken here, the experimenter was able to survey the classroom and
assist individual as the administrator oversaw the class experiments. While it is
likely that such assistance facilitated a more accurate assessment of competencies
for some students in the study, it is notable that this type of extra intervention would
not be possible under the conditions of a regular (one-teacher) classroom admin-
istration of the test. Rather, the effective implementation of the testing procedure
would rely on the diligence and appropriate repertoire of management strategies
used by individual teachers experienced with their own class.

In a more positive regard, however, the specifics of the PRT III testing proced-
ures encompass a number of characteristics which might be considered beneficial
to assessment in formal operations. In particular, the provision of a stopclock in
the class administration of the PRT III facilitated accuracy in observations and
the deduction of effects. The Grade 10 students in group B who discussed the
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administration formats stated that the use of a timing device was preferable since it
allowed observations to be more accurate. Indeed, during the individual interviews
with group A students (who had previously completed the PRT III), a number of
students expressed an interest in timing, or made some crude attempt to time the
pendulum swings, in order to make their observations more exact.

Evaluation of Méthode Clinique

As the original Genevan method, the méthode clinique remains the conventional
means of investigating operational ability (Dale 1970; Lovell 1961; Somerville
1974). However, during the course of testing in the present study, three proced-
ural aspects in the administration of the pendulum problem were identified which
provide potential for misinterpretation of performances in the individual méthode
clinique situation.

Firstly, the provision of a timing device in the PRT III apparatus facilitated
a greater degree of objectivity and accuracy in observation, which the students
themselves identified. The absence of a stopclock in the interview situation was
frequently noted by subjects in group A (who had previously completed the PRT
III) and some made attempts at timing the oscillations. In one case, a Year 10
student used his own digital watch to time the swing of the pendulum. Of course,
the effective inclusion of a timing device would also require there be some initial
demonstration of the use of the instrument so that subjects could the equipment
to provide accurate feedback. However, it is not likely that this would limit the
possibilities for the subject to experiment with the variables of the problem.

A second issue regards the influence of expectations on observations, as was
noted in the early replication studies of the pendulum problem by Lovell (1961)
and Somerville (1974). For many subjects, even those who otherwise demon-
strated mature use of the control of variables scheme, observations of effects on
the pendulum seemed to be heavily influenced by their expectations of the results.
Piaget (1972, 1974) discussed this type of unconscious repression of observations
as characterising the performances at the earlier preoperational level.

However, it should be considered that the discrepancy may be related to a deeper
problem in the interpretation of the requirements of the pendulum problem. While
the subjects manipulate the independent variables of length, weight, angle and
impetus on the apparatus, their observations of effects may have been confused
between the dependent variables of frequency of oscillations and speed or velocity
of oscillation. This distinction is problematic, because the independent variables of
length, angle and impetus affect velocity, but only the length of the string affects
the frequency of oscillation. Consequently, observations which would otherwise be
labelled as ‘faulty’ may be derived from an inability to distinguish between the two
dependent variables, or a misdirection of attention to the variables in which relevant
changes are noticed, even though this is not the intended focus of the experimental
situation.
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Even when the difference between the variables of velocity and frequency was
clearly identified for the subjects, they were often unable to discriminate between
the two in practice. This failure to attend to relevant variables is exemplified in the
protocol of the individual interview with subject 048:

048 (14;2): “If you push it hard when it’s up here, it keeps swinging out further” – “Does that make
a difference to how quickly it goes?” – “It makes it go more slowly. Just giving it a little push, it
doesn’t have as far to go, so it goes quicker”.

It is noteworthy that this confusion of independent variables was most apparent
for group B subjects, for whom the first exposure to the pendulum apparatus was
in the méthode clinique situation. Group A subjects, undertaking the PRT III prior
to the individual interview, did not appear to experience the problem to the same
extent. It is possible that the direction of attention to the frequency variable and the
provision of the timing device used in the PRT III provided a means of avoiding
the interpretational confusion.

COMPETENCE AND PERFORMANCE

The purpose of the recommended modifications to both the méthode clinique pro-
cedure and the PRT III test format is to use the information obtained from this
study as a means of narrowing the inferential gap between children’s performances
on the tasks and their level of operational competence.

At the same time, the differences in the difficulty levels of the PRT III and the
méthode clinique technique shown in this study illustrate an important educational
issue in the investigation of student operational competence using performances on
tests of operational ability. The point has been made by Bond and Jackson:

different research strategies exhibit varying degrees of tractability in their capacity to display formal
operational performance. This gives rise to a critical interaction between the investigatory methods
used in any given setting and the degree to which operational performance could be expected to show
up in a cogent way. (1991, p. 48)

The outcomes of this research are significant in terms of the validity and utility
of the PRT III as a classroom measure of problem-solving abilities on the pendulum
task. Beyond these results, the wealth of information obtained through individual
méthode clinique interviews, and the statistical analysis of those results enabled a
quite substantial investigation and analysis of the Piagetian model itself.

EDUCATIONAL IMPLICATIONS

The results of the analysis reported in this paper have a number of significant
implications for the nature of science teaching and education in general. In the
first place, analysis of the performances of this group of students on the PRT III
supported claims for the unidimensionality of the PRT III and for its validity and
utility as a measure of concrete and formal operational abilities. The principle of
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ceteris paribus in the control of variables scheme constitutes an important ability in
the areas of science and mathematics, with application apparent in school subjects
of English and history, among others. The PRT III represents a useful classroom
test of the ability to apply this principle in the use of the control of variables
scheme.

However, since the analysis of the difficulty of this test relative to the méthode
clinique administration of the same pendulum task indicated that the PRT III is
two logits more difficult than the original technique, it seems that measurements of
performance on the PRT III tend to underestimate subjects’ ability to isolate and
systematically test variables in a controlled experiment.

Secondly, if investigators using the méthode clinique format for the pendulum
problem intend that it should provide maximal insight into student competence,
then it seems that two variations are worth further consideration and investiga-
tion. The unavoidable recommendation is that the provision of a suitable timing
device would allow students to make more objective observations of their exper-
imental manipulations so that their deductions and conclusions may be exercised
on interpretations of correct data. Likewise it seems worthwhile to trial further
investigations of the pendulum problem, removing the inclusion of the independ-
ent variable push or impetus (Items 12 and 115, shown in Appendix A). Its less
concrete nature makes push difficult to accurately quantify in the experimental
procedures under investigation. Given that impetus directly affects the amplitude
of swing, experimental procedures which varied release position (angle, amplitude)
rather than release force (impetus, push) could reduce an unnecessary (and mis-
leading) complication in the méthode clinique administration of the pendulum
problem.

Finally, the degree to which the performance-competence nexus may be in-
fluenced by a range of interacting factors including test instruments, individual
differences and environmental factors should be a primary consideration in as-
sessing students’ abilities. The qualitative and quantitative results reported here
indicate that variability in each of these factors can greatly influence the degree to
which an individual’s formal reasoning abilities is revealed in any given situation.
It follows, then, that while different test instruments vary in their capacity to eli-
cit formal reasoning abilities, no single instrument is likely to provide a reliable
indication of operational ability for all individuals under all situations.
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Appendix A. Performance criteria derived from Chapter 4 of GLT

IIA IIB IIIA IIIB
1 Able to accurately

serially order lengths
2 Unable to accurately Able to accurately

serially order weights serially order weights
3 Able to accurately

serially order push
4 Establishes inverse

relationship between
length and frequency of
oscillation

5 Unable to manipulate Able to vary all factors
some variables

6 6.1 6.2
Does not make Makes inferences Makes inferences going
inferences. Limited to based only on observed beyond observations,
observations concrete without needing to test

correspondence all possibilities.
7 7.1 7.2

To test for length, Manipulates incorrect Systematically
manipulates incorrect variable, but makes manipulates lengths to
variable and in an logical deductions by test for their effects
unsystematic manner inference to results on

earlier experiments
8 8.1 8.2

Manipulates incorrect Manipulates incorrect Systematically
variable and is variable, but makes manipulates weights to
unsystematic in testing logical deductions by test for their effects
for weight inference to results on

earlier experiments
9 9.1 9.2

Manipulates incorrect Manipulates incorrect Systematically
variable and is variable, but makes manipulates impetus to
unsystematic in testing logical deductions by test for the effect of
for push inference to results on push

earlier experiments
10 10.1 10.2 10.3 10.4

Makes illogical Excludes the effect of Logically deduces Deduces equivalence of
deductions about the length (because of positive relationship of length and frequency of
role of length inaccurate affirmation or oscillation
(including illogical observations) implication for the role
exclusion of length in of length
favour of weight or
impetus)

11 11.1 11.2 11.3
Makes illogical Logically deduces a Excludes the role of
deductions about the positive relationship of weight
role of weight (either affirmation or
illogical exclusion or implication for weight,
positive implications) based on inaccurate

observations
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IIA IIB IIIA IIIB
12 12.1 12.2 12.3

Preoccupied with the Testing results in the Logically deduces a Excludes the role of
role of impetus as the illogical exclusion of positive relationship of push
cause of variations in the role of push affirmation or
frequency of implication for push,
oscillation. Illogical based on inaccurate
deduction of positive observations
implication

13 13.1 13.2
Does not produce Produces combinations Produces sets of
combinations of length of different lengths with combinations of lengths
with other variables different weights or with various weights

pushes to test for effects and pushes to test for
their effects

14 14.1 14.3
Does not produce Produces combinations Produces sets of
combinations of of different weights combinations of
weights with other with different lengths to weights with various
variables test for effects lengths and pushes to

14.2 test for their effects
Produces combinations
of different weights
with different pushes to
test for effects

15 15.1 15.3
Does not produce Produces combinations Produces sets of
combinations of push of different pushes with combinations of various
with other variables different lengths, to test pushes with lengths and

for effects weights, to test for their
15.2 effects
Produces combinations
of different pushes with
different weights, to test
for effects

16 Unsystematic method Systematically
produces all
combinations, using the
method of varying a
single factor, while
holding all else constant

17 Unable to exclude the Logically excludes the
effect of weights effect of weight

18 Unable to exclude the Logically excludes the
effect of push effect of push
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Abstract. Phenomena associated with the pendulum present numerous opportunities for assessing
higher order human capabilities related to scientific inquiry and the discovery of natural law. This
paper illustrates how systematic assessment of scientific inquiry capabilities, using pendulum phe-
nomena, can provide a useful tool for classroom teachers and program planners. Structured inquiry,
a technique of teacher-facilitated student inquiry involving direct interaction between students and
natural phenomena, is presented as a way to establish student competence in applying scientific
inquiry capabilities (e.g., conceptualizing variation due to error). This approach to assessment can
heighten student curiosity and provide a concrete referent for complementary cultural, historical, and
scientific instruction. The role of assessment in constructively shaping science education programs
is considered.

1. Introduction

Those who advocate inquiry-based learning and the development of process skills
in science education must look back upon a century of failed attempts to realize
these goals in mainstream science classrooms. While there are a number of social
and particularly institutional forces that share responsibility for this state of affairs,
there is also a technical impediment, one that, if not properly addressed, will con-
tinue to frustrate attempts to move the agenda forward. Namely, that in spite of
extensive evidence that assessment methods mold instructional programs, we still
have not developed methods of assessment that foster inquiry-based learning and
discovery learning (Zachos, Hick, Doane, and Sargent 2000). In the United States,
the science teacher, increasingly, must navigate a wary course between the Scylla
of ‘high-stakes, norm-referenced tests’ and the Charybdis of the teacher-made
classroom test. High-stakes, norm-referenced tests (Glaser 1963; Kohn 2000) exert
enormous leverage over curriculum and instruction (Fredricksen 1984; Heubert &
Hauser 1999), but typically do not produce information which is either useful or
timely for classroom application (Madaus & Tan 1993). Moreover, such tests have
contributed to trivializing the science curriculum (Resnick & Resnick 1990). On
the other hand, studies of classroom tests (McMorris & Boothroyd 1993; Stiggins
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2001) indicate that teacher-made tests tend to be unreliable and inadequate to the
task of providing the information needed to support instructional effectiveness.

Here, I present an approach to assessment that constitutes an alternative path,
both for the science teacher and for stakeholders in the educational enterprise who
are in search of ways to promote high quality inquiry-based learning programs.
The approach is illustrated through explication of a Classroom Event that centers
on the phenomenon of pendulum periodicity. The pendulum, in addition to its
rich cultural context (Matthews 2000), has properties which make it particularly
useful for developing assessment instruments that support instruction in scientific
thinking, scientific inquiry, and the attainment of concepts through a process of
discovery. Implied in all of the educational goals to be presented here is the
overarching goal of developing the human capability to discover natural law.

2. A Classroom Event

A secondary school science teacher begins a session by telling students that they
will be taking a journey into the past. She unfolds the vision of a young man,
of their own age, sitting in a church in Renaissance Italy, staring upwards as if
at the edge of a revelation. He is watching incense burners, suspended from the
ceiling above, swinging to and fro on long chains. Periodically, when their contents
have burned down, a long stick emerges from an upper balcony. Someone pulls the
incense burners in, replenishes their charcoal and incense and sets them swinging
again. The young man, watching, wonders if the complete swings are indeed taking
different amounts of time to go back and forth as they appear to be. The teacher
explains that this man does not have a wristwatch with a second hand to check his
perceptions. In fact, she points out that the clock, as we know it today, had not
yet been invented. Undeterred, this young man considers what might provide him
with a stable indicator of the passage of time so that he could answer his question.
He decides to use his pulse, for all its irregularities, probably the most dependable
method available in his time for this purpose.

Yes, he found, the incense burners were taking different amounts of time to
swing back and forth. But why? Was it how long they had been swinging? The
weight of their contents? How hard they had been pushed?

The teacher brings the class back to today and presents the students with a
mass suspended from a one meter long string. She coaxes these materials into
swinging motion and asks if anyone knows what the resulting phenomenon is
called. Typically, someone has heard of the pendulum.

She explains that this equipment will allow them to conduct a series of invest-
igations into the properties of the pendulum, not unlike those that were conducted
by Galileo Galilei and many others around the year 1600; investigations which
became a foundation of what we think of as modern scientific methods.

She calls the students’ attention to the period of time it takes for the suspended
mass to swing back and forth and explains that this is called the period of the
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pendulum. She prods members of the class to explain in their own words what the
period of the pendulum is until she feels secure that they have grasped the concept.

“Our goal today will be to consider how to construct a pendulum that has a
period of one second. We may not be able to accomplish our goal in one day, but
we’ll take some important steps to getting there”. Again she queries the class until
they satisfy her that they have understood the goal.

“What do you think we need to do first”? A wide range of suggestions emerge.
. . . We should try different masses. We need to drop it from a different point, etc.
The teacher guides the conversation so that the class realizes (hopefully based on a
student’s suggestion) that it is too early to start changing the period when the period
associated with the existing configuration has not yet been established. This gives
the teacher the support to steer the class to recognition of the virtues of starting
with a measurement of the period.

“How shall we measure the period”? The teacher suggests to the class that
they use a stopwatch. One student is called up to set the pendulum in motion and
another to operate the stopwatch. Typically, students let it swing once and catch it.
Almost inevitably the student with the stopwatch operator will call out something
like “1.81”.

The teacher asks, “1.81 what”?
“Seconds” responds another student.
“Write that down on your response sheet”, the teacher instructs, “where it says,

Period of the Pendulum. We’re going to keep an accurate record of what we do here
today”.

The teacher then elicits from the students, factors that might affect the period
of the pendulum. After compiling a list from their suggestions she says, “Today,
we’re going to consider just three of the factors that you have proposed: the mass
of the bob, the length of the string, and the height from which the pendulum was
dropped. Please take these into consideration in all of your reports today”.

“Let’s try one of them out. Let’s change the height of the drop”. The teacher
calls on the student who first set the pendulum in motion to prepare to drop the bob
from a different position.

“Before we set it swinging again, I would like each of you to predict what the
new period of the pendulum will be. Write down your answer in the space provided
for your prediction”.

The pendulum is swung again and a student calls out the time.
“Now, as I mentioned before, we want to keep an accurate record of what we

did and what happened. So please do the following: Give a complete description
of the pendulum that we worked with, describe what we did, and what resulted”.

“Was there a difference between what you predicted and the actual result?
Describe what that difference was. Give as many reasons as you can think of to
explain that difference. I want to know what you think; so, for now, don’t share
your answers with anyone else”.
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Next, the teacher suggests that she would like the last trial to be repeated. She
asks the same student to release the pendulum again from the same height and
members of the class, individually, to predict what the new period will be. Again,
they are asked to record their description of the experimental setting and the results,
and to elaborate on discrepancies between their predictions and the actual results.

The class is left with the value obtained from the stopwatch and asked to present
reasons why that value might have been obtained. Then she moves forward, “Now
when Galileo did such an experiment he might well have let it swing 50 times.
Why do you think he would do that? Write down as many reasons as you can for
why he may have wanted the pendulum to swing so many times”.

3. The Assessment of Scientific Inquiry Capabilities

What is this teacher doing? Teaching history? . . . science? . . . critical thinking?
Preparing students for an upcoming lesson in the pendulum? Indeed, all of these are
intended. However, although significant, and perhaps even critical for the learning
that is intended to follow, all these aims are put aside in deference to the teacher’s
immediate aim. The immediate aim is to obtain systematic information about how
competent her students are in scientifically approaching tasks and problems in
the natural world. In particular, this Classroom Event provides the teacher with
information about the students’ levels of competence regarding:

• describing the experimental setting,
• attending to the properties of experimental factors,
• distinguishing inference from observation,
• control of variation due to error, and
• consistent use of units of measure.

For each of the above capabilities, the teacher has available to her scales of
levels of student competence that can be inferred from samples of student per-
formance. For example, Figure 1 displays the levels of competence for ‘Control of
Variation Due to Error’, and samples of student responses that exemplify the levels.

Instructions for rating student performance are supported by definitions, explan-
ations, and examples that help the teacher to make reliable judgments of student
performance. Once the judgment is made, it is entered into an information system
that allows the teacher to keep track of students’ progress on each of these inquiry
capabilities over time. A sample report from the information system is presented
in Figure 2 for a student and a class over time.

Figure 2 shows ratings of student competence in ‘Control of Variation Due to
Error’ based on information derived from several administrations of tasks such
as the Classroom Event (previous section). The bar graph shows that assessments
were administered on two occasions – 8/27/02 and 9/26/02. In the 8/27 administra-
tion, 19 out of 20 students (95%) were performing at the lowest level of competence
on this capability (0 – Does not attempt to control for error). One month later,
evidence was available that 25% of the class expressed the need to control for
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Figure 1. Levels of competence and student response samples (in italics) for a scientific
inquiry capability: Control of variation due to error.

error (Level 1) and 10% were giving evidence of having available to them some
means for exercising that control (Level 2 – e.g., repeated measures, averaging).
This particular report, however, is intended to reveal the progress of one particular
student and the classroom display is, in this case, the context against which to inter-
pret the student’s performance. Jane Jones’ performance is presented in the growth
chart at the top of Figure 2. Here, it becomes evident that she was the only student
that had indicated the necessity to control for error on 8/27 (Level 1), and that
by 9/26 she had shown evidence of a valid method of controlling for error (Level
2). Looking back into her performance history we find earlier entries indicating
that in the previous school year she too had been performing at the lowest level of
competence on this capability (Level 0).

Looking back over the Classroom Event we can begin to see that the teacher
was following a rigorous protocol, the purpose of which was to elicit information
that would allow her to make valid judgments about students’ level of compet-
ence regarding specific scientific inquiry capabilities that are learning objectives
in her course. Explaining what is meant here by the terms learning objectives
and scientific inquiry capabilities will permit a rigorous discussion of the role
that assessment using pendulum phenomena can play in supporting inquiry-based
learning.

4. Learning, Learning Objectives, and Assessment

At the heart of the educational enterprise there is a great intangible which we call
learning. It is the goal of all educational processes. It has both process and product
aspects but, in both cases, it refers to experiences or inherent qualities of students,
which are ultimately imperceptible. This limitation makes it necessary to rely on
careful study of observable student performance in order to make valid inferences
about the state of the underlying hypothesized learning. To effectively make such
inferences about learning it is necessary to have goals or objectives for learning

353



PAUL ZACHOS

Figure 2. Sample assessment results for a student and a class over time.

and to collect evidence on the extent to which these goals and objectives have
been achieved (Mager 1962). Assessment is the process of obtaining evidence to
support inferences concerning the attainment of learning objectives (Zachos et al.
2000). Assessment is thus a necessary basis for determining whether an educational
program has been successful and comparing the relative contributions to success
of different methods of instruction (Johnson 1977; Tyler 1949). The present dis-
cussion will concentrate on learning objectives that refer to observable student
performance. These are properly called performance objectives. Performance ob-
jectives provide practical goals of instruction and objects of assessment for teachers
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and stakeholders. In this paper the term curriculum refers to learning objectives and
ordered sets of learning objectives (Johnson 1967).

5. A Central Problem for Student Assessment in Science Education

In the United States, high-stakes, norm-referenced tests increasingly drive cur-
riculum and instruction in educational programs. Typically, these examinations do
not provide reports that indicate how well students performed on specific learning
objectives representing valued ‘learning outcomes’. When such results are made
available, it is often at the end of the year when it is too late to use the information
to plan instruction for current students. Rather than planning instruction around val-
ued intended learning, teachers find themselves gearing instruction to a ‘shadow’
curriculum, an extrapolation of what they believe students will have to know and
do to perform well on the next year’s high stakes test. Anyone who has worked
in such settings has found teachers deliberating on how much attention is to be
given to a learning objective, not on the basis of its contribution to further learning
or value in solving life problems, but rather based on the likelihood that it will
form a component of a high-stakes test. Often, a substantial portion of a school
year is devoted simply to preparing students to do well on the exam. Ironically, this
decision-making and instruction often occurs in the absence of reliable information
about the level of competence of these students on the targeted learning objectives.
The consequences of this system can be counter-productive for student, school,
and state agency alike. This is a problem for the educational researcher as well
because the absence of valid and reliable measures of valued learning objectives
amounts to nothing less than the absence of dependent variables for the educational
enterprise. The question that must arise from such a situation is, “How can we build
a program for developing higher order cognitive capabilities in secondary school
science in which assessment plays a supportive role to teaching and learning, rather
than serves as a distraction from or inhibitor to these processes”?

6. Theoretical and Empirical Foundations for Assessing Scientific Inquiry
and Discovery

6.1. THE EMPIRICAL DEFINITION OF SCIENTIFIC INQUIRY CAPABILITIES

In 2000, Zachos, Hick, Doane, and Sargent approached the question of how to
identify the capabilities that should be part of a secondary school science cur-
riculum in scientific inquiry. The study documented wide agreement on the notion
that the discovery of concepts which bring to light relationships in the natural world
was the chief aim of the scientific enterprise. (The word ‘concepts’ is used here as
a surrogate for laws, rules, principles etc.). Moreover, that study reported, again,
wide agreement among scientists, historians of science, philosophers of science,
cognitive scientists, and science educators (in spite of their diverse terminologies)
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that discovery has two facets – ‘concept building’ and ‘concept testing’. Operation-
ally, for use in educational programs, scientific discovery was defined as growth in
level of conceptualization of a phenomenon based on building and testing concepts
in a direct phenomenal inquiry. Therefore, a scientific inquiry capability could be
defined as any human attribute that contributes to success in making scientific dis-
coveries as defined. A distinction was made in this study between the ‘historical’
discoveries made by scientists and the ‘personal’ discoveries made by students.

On this foundation, methods were developed for empirically validating human
attributes as scientific inquiry capabilities (i.e., demonstrating that they contributed
to success in making discoveries). The same body of research literature used to
define discovery (above) was culled to identify human attributes (skills, knowledge,
and dispositions) that were perceived as contributing to success in making discov-
eries. Some 30 or so scientific inquiry capabilities were identified. The method
employed was a study of the correlation between the inquiry capabilities and suc-
cess in discovery (i.e., growth in ‘level of conceptualization’ through building and
testing concepts in the context of a phenomenon-based inquiry). Because this was
an ‘observational study’ (Rosenbaum 1995), causal links between scientific inquiry
capabilities and discovery could not be established. However, instruments were
developed for measuring these variables and associative links were established that
set the stage for future studies study of how these capabilities might contribute to
success in discovery. Curriculum development can now go beyond the previous
limitation of identifying learning objectives through judgments by experts and
negotiation among stakeholders (Ravitch 1995). A curriculum for scientific inquiry
could now be developed by setting learning objectives for inquiry capabilities that
have been validated against the criterion of their contribution to success in making
discoveries.

6.2. STRUCTURED INQUIRY

Tasks were developed which provided opportunities to elicit growth in concep-
tualization and competence in conducting inquiry (Zachos et al. 2000). It is a
special characteristic of these tasks that success is based on building and testing
conceptualizations of the phenomenon and that students receive no assistance re-
lated to concepts or methods. Three tasks were administered to 33 upper level
secondary school students by a facilitator/teacher. Students were presented with a
phenomenon and a problem. The tasks are structured in such a way that brings stu-
dents into a direct conversation with Nature, in which each step of inquiry results in
an immediate response, telling the students whether their concepts and methods of
investigation are working. The facilitator elicits the students’ concepts, reasoning,
and dispositions without mediating the quality of student performance. This special
way of presenting phenomenal tasks is referred to as structured inquiry. Three
phenomena were adopted from the research of Inhelder and Piaget (1958) in order
to take advantage of their thoughtful analyses of young people’s conceptualizations
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and inquiry strategies. These phenomena were – Floating and Sinking, Equilibrium
on the Balance Beam, and the Period of the Pendulum. The task associated with
the pendulum was to come up with a method for building a pendulum for any given
period that the facilitator might propose.

6.3. OVERALL FINDINGS - CRITICAL SCIENTIFIC INQUIRY CAPABILITIES

The results of that study (Zachos et al. 2000) revealed correlations between success
in discovering the concepts underlying these phenomena on the one hand, and the
following scientific inquiry capabilities:

• coordinating theories with evidence,
• searching for an underlying principle,
• concern for precision,
• identifying sources of error in measurement, and
• proportional reasoning.

7. Special Findings and Considerations Related To The Investigation of
Pendulum Periodicity and the Role of the Pendulum in Assessing
Scientific Inquiry Capabilities

While each of these three phenomena had special characteristics and points of
interest for assessment and implications for subsequent instruction, the pendulum
task was especially notable in that it posed striking problems for students as they
attempted to build and test concepts that could explain periodicity. Inhelder and
Piaget (1958) had already pointed out that the ability to control variables was
crucial to success on this task. However, a number of other capabilities proved
necessary even before control of variables could be properly applied. Most dramat-
ically, students were unable to make progress identifying the factors which affect
the period of the pendulum until they confronted problems associated with error.

Real progress, then, in establishing the factor underlying periodicity requires:
• systematic organization of measurements taken from observations,
• distinguishing variation attributable to undetermined factors, or factors not un-

der the control of the experimenter, from variation attributable to manipulations
of the independent variables,

• having means for controlling for the effects of indeterminate factors (e.g.,
repeated measures, averaging), and

• exercising systematic control over independent variables in testing for effects.
These elementary capabilities are needed in order to disentangle the factors

affecting the period of the pendulum. Learning objectives associated with these
capabilities should be parts of the foundation of a curriculum for scientific think-
ing and scientific inquiry. The Classroom Event depicted earlier in this paper is
designed to elicit evidence of student competence related to measurement, error,
and the control of variables based on the findings of this study.
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Just as Galileo’s investigation of the pendulum became a foundation for the
establishment of what is now considered the scientific approach to investigating
phenomena, so the investigation of pendulum periodicity by students today can
be a foundation for assessing and developing the fundamental capabilities that are
needed for a scientific approach to the investigation of phenomena. The search
for the causes underlying pendulum periodicity has the marvelous property of
serving as a guardian at the gate, refusing access to the properties of periodicity
for those investigators who are not competent in measuring, working with error,
and controlling variables.

This phenomenon and task do not, however, exhaust the value of the pendulum
as a tool for eliciting capabilities related to scientific inquiry. The investigation
of pendulum periodicity can be an opportunity to assess and develop many other
scientific inquiry capabilities including:

• techniques for organizing and presenting data,
• using evidence to support hypotheses concerning correlation,
• causal reasoning,
• reasoning with proportions, and
• modeling relationships between variables through graphing and mathematical

functions.
Indeed the phenomenon continues to be a rich source of opportunities for em-

pirical and theoretical study beyond the issue of causes of pendulum periodicity.
Investigations into cycloids, isochronicity, harmonic motion, and issues of friction
and drag associated with different shaped bobs etc., can provide links to mathemat-
ics, physics, engineering, and technology, as well as opportunities to build and test
concepts. Capabilities associated with more sophisticated techniques for dealing
with error can be developed through a link to elementary and advanced statistical
methods. A host of important learning objectives can be assessed and developed
around pendulum phenomena.

8. Moving From Educational Research to Educational Practice: The
Extension of the Assessment of Scientific Inquiry to the Classroom

From its inception, the research just described was intended to set foundations
for teaching scientific inquiry capabilities. For this reason, the scientific inquiry
capabilities were designed so that their top levels of competence constituted valued
learning objectives appropriate for secondary school instruction and assessment.
The integration of these learning objectives with inquiry tasks that are imbedded
in natural phenomena assures that they are performance objectives, and therefore,
that judgments of level of competence can be based on the evidence of observable
student performance. The primary problem with the method of structured inquiry
described above is that it requires one facilitator for each student assessed. While
this is a highly desirable ratio for assessment or instruction, it cannot be practically
realized in existing educational institutions.
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8.1. EXPLICATING THE CLASSROOM EVENT

In view of this problem, versions of structured inquiry appropriate for classroom
use have been developed. The Classroom Event presented above is part of just
such an instrument. Classroom versions of structured inquiry can be administered
to a full class of students who provide their responses on a special form. The
teacher’s presentation is intended to engage student interest in the phenomenon and
the investigation. After administering such an assessment task the teacher reviews
student responses and enters judgments of student competence on the targeted
learning objectives into an information system in about the time it takes to score a
test or writing assignment.

In administering a task of this sort to a class, there must be great flexibility in
wording so as to allow the teacher to speak meaningfully to the group of students
present, to their levels of knowledge and skills, their dispositions, and the contexts
of their lives. Ideas and suggestions elicited from students as part of this conver-
sation are not those that are being assessed. What is important is that the teacher’s
presentation elicits the targeted capabilities without providing leading information
that would confound the aim of identifying the students’ spontaneous conceptualiz-
ations and true levels of competence. In the Classroom Event, the repeated requests
for comparisons between prediction and result require reflection and judgments
concerning sources of variation, and particularly on the possible effects of error.
The use of a stopwatch with readings to hundredths of a second ensures that stu-
dents will run head on into problems of error related to their measurements and
manipulations.

The story, which serves as prelude to the assessment, is left to the imagination of
the teacher but must serve the purpose of motivating students, both to achieve their
active participation in the assessment and to set the stage for subsequent instruc-
tion. The story, if successful, will activate the imaginative capacities of students,
stimulate interest in divergent areas of study, and prepare the ground for subsequent
empirical investigations. A virtue of the phenomenon of the pendulum, at the heart
of the story, is that it can pose a real problem, one that “awakens students’ in-
terest and encourages them to ask questions and seek answers” (National Research
Council 1996, p. 146).

The assessment activity described here is at the most elementary level of in-
troduction to the scientific reasoning and the phenomenon of periodicity. It is
also presented in a manner that is highly teacher-directed. Once the capabilities
associated with this activity are attained, the class can move to more independent
assessment and instructional activities. For instance, a logical next step is student-
directed design and conduct of experiments to test for causal relationships between
various factors and the pendulum’s period.
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8.2. CONTRIBUTIONS OF ASSESSMENT BASED ON STRUCTURED INQUIRY

The Classroom Event thus presents the actual protocol for administering a perform-
ance assessment of scientific inquiry capabilities. It is designed to combine the
rigor of administration of a standardized test with the flexibility needed to interact
with students at their level of comprehension and performance in the presence of
a natural phenomenon of interest. The Classroom Event elicits many of the same
capabilities that were associated with success in discovery in the research cited
above, and that were identified as critical to success in investigating the factors
underlying pendulum periodicity.

For the science teacher, the primary obstacles to using performance assessments
have been inadequate awareness of the principles for constructing valid and reliable
assessments, the time it takes to construct tests, and the time it takes to administer
and score assessments (Stecher & Klein 1997). The assessment methods described
here solve these problems by providing teachers with ready-made assessment in-
struments that yield reliable information concerning the extent of attainment of
higher order learning objectives, but take no longer to administer and score than
classroom tests. Because the students must apply their knowledge and skills in the
context of a problem posed by a natural phenomenon, the associated assessment
and instruction address the higher order capabilities associated with the upper
levels of Bloom’s taxonomy of educational objectives in the cognitive domain
(Bloom et al. 1956).

Yeh suggests that:

If state-mandated tests focused on critical thinking rather than more recall of factual knowledge,
teachers who feel pressured to teach to the test, could focus on teaching critical thinking rather than
on the universe of items that student might otherwise be asked to recall (2001, p. 12).

Assessments based on structured inquiry require students to demonstrate com-
petence by applying their inquiry capabilities to a task or problem lodged in a
phenomenon. To solve the problem, the student must build and test concepts about
the phenomenon. Consequently, the use of such assessments to evaluate programs
that aim at developing inquiry capabilities should support the type of instruction
that will most effectively achieve these capabilities, this will more than likely be
inquiry-based learning. Having students working with living phenomena can also
serve as a remedy against excesses of ‘intellectualism and cognitivism’ in science
education pointed out by Dahlin (2001). These excesses are thought to alienate
academically successful science students from the natural world, and to alienate
more experientially and aesthetically inclined students from the subject matter and
process of science itself.

The great argument for high-stakes, norm-referenced tests have been the ‘reliab-
ility’ of the scores that they generate and this has been achieved through classical
standardization procedures (Thorndike 1971). Black has pointed out the dangers
of decisions based on unreliable assessment results (1998). However, ‘reliability’
can also be achieved through professional development (Brennan, 2001). Judg-
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ments emerging from rating student responses to structured inquiry sessions can
be highly reliable when sufficient attention has been taken to prepare the teacher to
understand the distinguishing characteristics of the levels of competence for each
learning objective.

9. Conclusion

I hope that I have been able to show that assessment, far from necessarily trivializ-
ing educational programs, can contribute to the achievement of worthy educational
goals, such as the development of the human capabilities leading to the potential
to infer natural law. The pendulum has a special contribution to make towards
achieving such goals. The pendulum’s historical role in building the foundations
of scientific approaches to the physical world can be re-experienced at the level
of the individual. Its continued importance in the evolution of critical scientific
concepts (Peters 2002) makes it a prime candidate for a core around which to build
a curriculum of scientific thinking, scientific inquiry capabilities, and fundamental
scientific concepts. Matthews (2000 & 2002) has made the case that learning about
the pendulum can improve science education. It is also true that learning about
how our students conceptualize and investigate the pendulum can improve science
education.
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Abstract. The purpose of the present study was to test the hypothesis that student’s abductive
reasoning skills play an important role in the generation of hypotheses on pendulum motion
tasks. To test the hypothesis, a hypothesis-generating test on pendulum motion, and a prior-

belief test about pendulum motion were developed and administered to a sample of 5th grade
children. A significant number of subjects who have prior belief about the length to alter
pendulum motion failed to apply their prior belief to generate a hypothesis on a swing task.

These results suggest that students’ failure in hypothesis generation was related to abductive
reasoning ability, rather than simple lack of prior belief. This study, then, supports the notion
that abductive reasoning ability beyond prior belief plays an important role in the process of

hypothesis generation. This study suggests that science education should provide teaching
about abductive reasoning as well as scientific declarative knowledge for developing children’s
hypothesis-generation skills.

1. Introduction

A hypothesis is defined as a single proposition proposed as a possible
explanation for the occurrence of some observed phenomena (Barnhart
1953). Science educators know well that scientific reasoning involves gener-
ating as well as testing hypotheses. Specifically, hypothesis generation has
been regarded as one of core reasoning processes in creative thinking and
scientific discovery (Klahr & Dunbar 1988; Kuhn et al. 1988; Ohlsson 1992;
Lawson 1995; Kwon et al. 2000). However, regardless of its importance,
teaching of science and science textbooks have heavily concentrated on
procedures for testing hypotheses (e.g., designing experiment, manipulating
and controlling variables, collecting data, measurement, analyzing data) and
largely ignore procedures for generating the hypotheses (Kwon et al. 2000).

A particular hypothesis might be generated quickly. On the other hand, a
complex, revolutionary hypothesis might take some time to form. Sometimes
a reasoner leaps to a hypothesis almost as soon as she/he sees the problem
while another reasoner needs to puzzle a long time to generate such a
hypothesis about the same problem. What, then, is the principal difference
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between good and poor reasoners in generating hypotheses? Generally
speaking, there are two factors that influence hypothesis generation. One
factor is reasoner’s prior belief and the other is the reasoner’s ability to
retrieve that stored belief.

An important alternative factor exists that could explain the perfor-
mance differences in terms of the presence or absence of declarative
knowledge, as opposed to procedural knowledge (Anderson 1995), specific
to the solving of each task (c.f., Korthagen & Lagerwerf 1995). Science
instructors might assume that their students’ prior declarative belief plays a
crucial role in their ability to acquire new concepts. This view regarding the
importance of prior declarative knowledge has been largely stated in terms
of Ausubel’s theory of meaningful learning (Ausubel et al. 1978; Novak &
Musonda 1991). In other words, according to this domain-specific prior
knowledge hypothesis, if students have acquired the necessary declarative
knowledge, they will successfully generate alternative hypotheses. Lacking
that knowledge, however, they will fail. The acquisition of declarative
knowledge is not only a necessary condition for hypothesis generating, it is
also sufficient. In this sight, it means that our students should have only
specific declarative knowledge about the period of pendulum motion for
solving successfully a pendulum task.

Traditionally, two types of reasoning, induction and deduction have been
recognized in the logic of science. By means of induction one ascertains how
often in the ordinary course of experience one phenomenon will be accom-
panied by another. No definite probability attaches to the inductive con-
clusion. By means of deduction one predicts the special results of things and
calculates how often they will occur in the long run. A definite probability
should be attached to make deductive conclusion. According to Hempel
(1966) and Popper (1968), science proceeds by free formulation of a
hypothesis from which empirical tests can be deduced or induced. However, a
long line of discussion has shown that another type of scientific reasoning,
called retroduction or abduction, in addition to induction and deduction
exists in scientific endeavor (Peirce 1903; Burk 1946; Lawson 1995; Giere
1997; Kwon et al. 2000). For example, the American philosopher Charles S.
Peirce recognized a distinctive type of scientific reasoning, called ‘‘abduction’’
in his terminology, which is a necessary condition for successful performance
of scientific task. Abduction is the mental process of generating hypotheses in
which an explanation that is successful in one situation is borrowed and
applied as a tentative explanation in a new situation (Hanson 1958; Lawson
1995; Kwon et al. 2000; Fisher 2001).

Hypothesis generation involves presumably a reasoning procedure
involving exploring, combining, comparing, and selecting possible alterna-
tives (Kwon et al. 2000). First, the process of hypothesis generating starts
with identifying qualitative constructs of the current causal question and the
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previously experienced world which may have a strong qualitative likeness to
the current situation. Second, the scientific reasoner explores and combines
several explanations of the previously experienced world. Third, the reasoner
compares the combined several explanations and selects the most likely one
based on the qualitative likeness between the current situation with its
question and the previously experienced world. Finally, the reasoner uses the
selected explanation as the hypothesis for the current question. This process
of hypothesis generating is shown diagrammatically in Figure 1.

Figure 1 has four boxes, labeled ‘‘Questioning Situation’’, ‘‘Experienced
Situation’’, ‘‘Hypothetical Explicans’’, and ‘‘Causal Explicans’’. These boxes
mean prior beliefs which are represented during the process of scientific
hypothesis generation. The questioning situation is a fact, event, type of
behavior, etc., of an experimental situation. The experienced situation is an
experience or prior belief that is similar to the questioning situation. The causal
explicans are causal factors that explain the experienced situation. The
hypothetical explicans are causal factors that explain the questioning situation.

Figure 1 has three kinds of arrows indicating the boxes of prior beliefs.
The first one ($) is ‘‘comparing’’ which is the process of comparing between
the questioning situation and the experienced situation on the basis of sim-
ilarity among these situations. The second one (") is ‘‘explaining’’ by which
the situation are explained causally with the explicans. The last one ( ) is
‘‘borrowing’’ by which the causal explicans are borrowed as the hypothetical
exlicans for the questioning situation on the basis of the similarity between
the questioning situation and the experienced situation.

Ohlsson (1992) also has argued that the structure of explanation, which is
one of the types of theory articulation, is required to produce explanation
patterns the person already knows. Furthermore, Ohlsson argued the most
important type of theory articulation is explanation, which is a narrative of
the cause/effect events that produced the observed phenomenon. In his
arguments, to generate a hypothesis, in part, is to explain an observed phe-
nomenon that is associated with a theory. For example, the Darwinian
explanation for the long neck of the giraffe, the hypothesis of evolution
consists of two basic causes, the random variation and the natural selection.

gFigure 1 yp g g p. An abduction model of hypothesis-generating process.
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These causes which are used to explain the giraffe’s long neck can be used to
explain other animals’ anatomy. Ohlssen’s notion might be an argument to
support the abduction model of hypothesis-generating process in this study.

In other ways, recent studies have argued that in addition to prior belief, the
skills to represent the prior belief from his/her cognitive structure are pivotal
factors in hypothesis generation (Kwon et al. 2000; Kwon et al. 2003a; Kwon
et al. 2003b). Therefore, the primary purpose of the present study is to test the
notion that student’s abductive reasoning skills exist in addition to prior belief
as defined above. Furthermore, we test the hypothesis that one’s abductive
reasoning skill is required for successful generation of hypotheses in pendulum
motion tasks. To test the hypothesis, we conducted two experiments.

Pendulum motion has been regarded as a significant role not only in
educational and psychological research but also in teaching children’s logical
thinking since Jean Piaget’s initial work. Piaget and Inhelder, in their The
Growth of Logical Thinking from Childhood to Adolescence (Inhelder & Piaget
1958), describe the pendulum motion tasks that Piaget and Inhelder gave to
children to ascertain the extent to which they could isolate and manipulate
potential variables (length, amplitude, weight) that affected the period of
pendulum motion. Performing the task of isolating and controlling the
variables was considered as a window into the child’s logical ability and their
developmental process. The present study adapted the pendulum task as an
experimental tool to investigate children’s hypothesis generation.

2. Methods

2.1. SUBJECTS

For the experiment I, a sample of 290 five graders (164 female, 126 male)
were selected from four elementary schools located in a Korean metropolitan
area. The subjects’ age ranged from 9.9 to 12.1 years (mean age ¼ 11.1 years,
SD ¼ 0.4). In addition, a sample of 34 five graders (18 female, 16 male) was
selected from one elementary schools for the experiment II. The subjects’ age
ranged from 10.0 to 12.2 years (mean age ¼ 11.2 years, SD ¼ 0.4).

2.2. INSTRUMENTS

In experiment I, we developed and administered the hypothesis-generation
test and the Prior-Belief Test I to the subjects.

Hypothesis-generation test. A hypothesis-generation test was designed to
test hypothesis generation about a swing situation which relates presumably
to a simple pendulum motion. There were two swings moving at different
speeds in the test. Children were asked to think about what cause makes a
difference in the speed of the swings. A face validity of this test was investi-
gated. To obtain the measure of face validity of the test, nine experts (a
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professor and eight graduate students majoring science education) were asked
a question, ‘‘Which item in the test can assess 5th grade elementary school
students’ hypothesis-generation in a swing situation which presumably relates
to the simple pendulum motion?’’ The result of responses indicated that the
face validity of this test was 0.87. The hypothesis-generation test is as follows:

While Mary and Joe got on each swing side by side, they detected that Joe’s swing is faster

than Mary’s. So they decided to measure the speed of two swings. They didn’t take any
actions such as swinging their legs during themeasuring. Themeasuring results are shown in
following a table.

Why did Joe’s swing go back-and-forth faster thanMary’s?What caused the difference in the
speeds between Joe’s swinging and the Mary’s swinging?

Prior-belief test I. Children’s prior belief about pendulum motion was as-
sessed by a multiple-choice test. In the test, subjects were asked to respond
with one of three variables which affect the period of the pendulum motion.
A face validity of this test was investigated. To obtain the measure of face
validity of the test, nine experts (a professor and eight graduate students
majoring science education) were asked a question, ‘‘Which item in the test
can assess prior belief about pendulum motion of 5th grade elementary
school students?’’ The result of responses indicated that the face validity of
this test was 0.90. The prior belief test is as follows:

The periods of Mary’s swing and Joe’s swinging

Swing Period (time for 10 swings)

Mary’s 32

Joe’s 25

In this experiment, the bob swings repetitively back-and-forth along the line from A
through B to C and back again A. The time of each swing is the period of the pendulum

motion. What factor causes to increase or decrease the pendulum period?
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Following picture shows an experimental setting of a simple pendulum.

In experiment II, we also administered the hypothesis-generation test that
was used in experiment I to identify children’s hypothesis about swing. To
assess the children’s prior-belief about pendulum, we used the prior-belief test
II which was open response type paper test. This test was slightly modified
from the prior-belief test I which was a multiple-choice test.

2.3. PROCEDURES AND PREDICTION

In this study, there were two study hypotheses for test, prior-belief and belief-
abduction hypotheses. The prior-belief hypothesis is that prior belief is the
only one factor that influences children’s hypothesis-generation. The belief-
abduction hypothesis is that there are two factors that influence hypothesis
generation. One factor is children’s prior belief and the other is children’s
ability to use the stored belief.

In the experiment I, test procedures were divided into two sessions. In the
first session, the hypothesis-generation test was administered to identify
hypotheses of the children. In the second session, we assessed the children’s
prior belief about pendulum motion with the prior-belief test I. By the types
of the children’s prior belief, they were divided into one of three groups,
namely angle, length, and weight prior-belief groups. According to the prior-
belief hypothesis, if children have prior belief about potential variables that
affect the period of pendulum motion, they should generate hypotheses on
the swing task which is related to the variable already thought to vary the
pendulum motion. The predicted patterns of results for the prior-belief
hypothesis are shown as Figure 2.

An alternative explanation is the belief-abduction hypothesis. In this view,
children’s successful performance on the swing task is affected by their not

gFigure 2 p p yp. The predicted results of the prior-belief hypothesis.
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only prior belief but also abductive reasoning skills. The predicted result of
this hypothesis is shown as Figure 3.

In the experiment II, test procedures were divided into two sessions. In the
first session, we taught all children pendulum motion knowledge, and then
assessed the pendulum motion belief with the prior-belief test II. In the
second session, the hypothesis-generation test was administered to identify
hypotheses of the children. And then the prior-belief test II was again
administered to the children. Finally, we interviewed the children how they
generated their hypotheses. Table 1 shows teaching and test procedures.

In experiment II, there were also two study hypotheses for test, prior-
belief and belief-abduction hypotheses. According to the prior-belief
hypothesis, all of the subjects who have prior belief that length of a pendulum
affects period of pendulum motion should generate hypotheses using the
belief on the swing task which is related to the pendulum motion. The pre-
dicted results of the prior-belief hypothesis are shown as the Prediction 3 of
Figure 4.

On the other hand, the belief-abduction hypothesis leads to a prediction
that some of children who have the pendulum belief cannot generate
hypotheses on the swing task. These children are insufficient in the abduction

Figure 3. The predicted result of the belief-abduction hypothesis.

Table 1. Test procedures of experiment II.

Session Step Procedure

I 1 Teaching

2 Prior-belief test II

II 1 Hypothesis-generation test

2 Prior-belief test II

3 Interview
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ability of using the belief. The predicted result of this hypothesis is shown in
the Prediction 4 of Figure 4.

3. Results and Discussions

3.1. TYPES OF CHILDREN’S HYPOTHESES

The types of children’s hypotheses which were generated on the hypothesis-
generation test in the first experiment are reported in Table 2.

As shown in the Table 2, there were three types of children’s hypotheses.
The first type (1–11 in Table 2) involves internal factors of a simple pendu-
lum. In this type, 1–3 hypotheses are related to the angle of a pendulum, 4–6
are related to the length of a pendulum, and 7–11 are related to the weight of
a bob. The second type (12–22) involves to external factors, such as skill,
exercise, and wind. Hypotheses 23–25 are classified as a non-scientific
hypothesis. The 23rd is just the repetition of the question while the 24th and
25th are far from an answer to the hypothesis-generation question.

3.2. FREQUENCY OF HYPOTHESES BY PRIOR-BELIEF GROUPS

Children’s responses to the prior-belief test I are summarized in Table 3.
As shown in Table 3, 86 (29.7%) children from 290 respondents claimed

that the angle of the swing determines the period of the pendulum motion.
Sixty (20.7%) children responded to the length of the string, 135 (46.6%)
children responded to the weight of the bob, and 9 (3.1%) children responded
to that they didn’t know.

To test the roles of subject’s prior belief and abduction, we analyzed the
first type hypotheses by prior-belief groups. Table 4 shows frequencies of the
first type hypotheses by each prior-belief group.

gFigure 4 p p yp. The predicted results of the prior-belief and the belief-abduction hypotheses.
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As shown, the percentages for angle and the other (length, weight, and
other) hypotheses were 19.8 and 80.2% in the angle prior-belief group. For the
length prior-belief group, the percentage of the length and the other (angle,
weight, and other) hypotheses were 30.0 and 70.0%, respectively. In addition,
the percentage of the weight and the other (angle, length, and other)

Table 2. Children’s hypotheses on the hypothesis-generation test in experiment I.

Types of hypotheses Frequency

Internal factors 168

1. Joe’s swing went up lower than Mary’s. 18

2. The moving distance of Joe’s swing was shorter than Mary’s. 8

3. Joe’s swing went up higher than Mary’s. 10

4. The ropes of the swings were different in length. 4

5. The length of the ropes of Joe’s swing was shorter than Mary’s. 18

6. The length of the ropes of Joe’s swing was longer than Mary’s. 8

7. Mary’s weight and Joe’s weight were not the same. 6

8. Joe’s weight was lighter than Mary’s. 51

9. The weight of Joe’s swing was lighter than Mary’s. 6

10. Joe’s weight was heavier than Mary’s. 37

11. The weight of Joe’s swing was heavier than Mary’s. 2

External factors 90

12. Joe was able to get on a swing with specific skill. 17

13. Joe begun to get on a swing earlier than Mary did. 15

14. Joe swung better than Mary did. 12

15. Joe was stronger than Mary. 10

16. Joe’s swing was new. 9

17. Wind stud against the movement of Mary’s swing. 7

18. There was something wrong with Mary’s swing. 6

19. Joe took exercise better than Mary did. 4

20. Joe had a fine physique. 4

21. Joe’s swing was older than Mary’s. 3

22. Joe’s swing had little frictional resistance. 3

The others 32

23. Joe’s swing was faster than Mary’s. 15

24. Joe measured exactly the swing time. 3

25. The speeds of the swings of are same. 2

26. I don’t know. 12

Total 290
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hypotheses were 48.9 and 51.1%, respectively, for the weight prior-belief
group. A bar chart showing the percentage is plotted as Figure 5.

To test the roles of subject’s prior belief and abduction, we also analyzed
the type hypotheses by prior-belief groups in experiment II. Table 5 shows
frequencies of the first type hypotheses by each prior-belief group.

Table 3. Summary of children’s responses to the prior-belief test I.

Prior-belief Number (%)

Angle 86 (29.7)

Length 60 (20.7)

Weight 135 (46.6)

I don’t know 9 (3.1)

Total 290 (100)

Table 4. The frequency of hypotheses by prior-belief groups in experiment I.

Hypothesis Prior-belief group

Angle (%) Length (%) Weight (%) I don’t know Total

Angle 17 (19.8) 7 (11.7) 12 (8.9)17 (19.8) 36 (12.4)

Length 7 (8.1) 18 (30.0) 5 (3.7)18 (30.0) 30 (10.3)

Weight 22 (25.6) 14 (23.3) 66 (48.9) 102 (35.2)

Other 40 (46.5) 21 (35.0) 52 (38.5) 9 (100) 122 (40.1)

Total 86 (100) 60 (100) 135 (100) 9 (100) 290 (100)

gFigure 5 p g yp y p g p p. The percentages of hypotheses by prior-belief groups in experiment I.
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As shown in Table 5, 31 subjects from 34 respondents claimed that
the length of the swing determines the period of the pendulum motion. The
percentages for length and other hypotheses were 61.3 and 38.7% in the
length prior-belief group. For the other prior-belief group, the percentage of
the length and other were 0 and 100.0%. A bar chart showing the percentage
is plotted as Figure 6.

These results can be compared with the predicted results shown in Figures
2–4. According to the prior-belief explanation, all children who have ac-
quired the necessary prior belief should successfully generate hypotheses
related to their prior belief. However, Figures 5 and 6 reveal that many
children did not employ their prior-belief about pendulum motion to gen-
erate hypotheses on the swing task.

In experiment I, 17 of the angle group, 18 of the length group, and 66 of
the weight group students generated hypotheses related to their prior-belief.
The result of the Chi-square test showed a statistically significant difference
between the expected and the observed frequencies in the angle group (v2 ¼
5536018.50, p < 0.001), the length group (v2 ¼ 2939974.75, p < 0.001) and

Table 5. The frequency of hypotheses by prior-belief groups in experiment II.

Hypothesis Prior-belief group

Length (%) Other (%) Total

Length 19 (61.3) 19 (55.9)

Other 12 (38.7) 3 (100) 15 (44.1)

Total 31 (100) 3 (100) 34 (100)

gFigure 6 p g yp y p g p p. The percentages of hypotheses by prior-belief groups in experiment II.
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the weight group (v2 ¼ 3526599.00, p < 0.001), respectively. In addition,
only 19 of the length group students generated hypotheses related to the
length prior-belief in experiment II. The result of the Chi-square test of
experiment II indicated that the difference between the expected and the
observed frequencies was statistically significant (v2 ¼ 464501.41, p < 0.001).
Thus, these results do not conform to the expectation of the prior-belief
hypothesis.

However, the Predictions 2 and 4 related to the belief-abduction
hypothesis in Figures 2 and 4 fit more closely to the results of Figures 5 and 6.
According to the belief-abduction hypothesis, some of the children who have
the pendulum belief could not generate hypotheses on the swing task.
Therefore, the results of the Figures 5 and 6 provide positive evidence to
support the belief-abduction hypothesis in children’s hypothesis generation.

Cognitive psychologists believe that the process of knowledge generation
is an interaction between declarative knowledge and procedural knowledge
(Anderson 1995; Gagne et al. 1997; Solso 2001). For example, a scientist
might generate a hypothesis that is a proposition intended as a possible
explanation for an observed phenomenon. The input information (‘‘Why do
male Dawson’s bees exist in two distinctly different size groups? I need to
generate a hypothesis for the phenomenon.’’) would be transformed to
produce an output (the hypothesis: minor males are the incidental byproduct
of external environmental factors) that looks quite different from the input.
The previous example shows that procedural knowledge is used to operate to
generate a hypothesis and knowledge (such as a hypothesis) generation is the
result of interaction between declarative knowledge for prior knowledge and
procedural knowledge for abductive reasoning.

In the experiment II, we interviewed the subjects to confirm the cognitive
process of hypothesis-generation. We requested that the subjects say every-
thing that went through their mind while they generated a hypothesis. The
results of this additional interview support the belief-abduction hypothesis.
Actually 17 (89.5%) children from 19 respondents who generated length
hypotheses on the hypothesis-generation test responded that they represented
the simple pendulum motion that was taught by the researchers during the
teaching session. In addition, 9 (75.0%) children from 12 respondents
instantly generated length hypotheses when we presented the simple pendulum
motion task. These results indicate that nine subjects’ failures were caused by
insufficiency of representing a experienced situation that was similar to the
questioning situation.

4. Conclusion and Implication

The results of this study provide support for the hypothesis that students’
abductive reasoning skills beyond typical sorts of prior or declarative
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knowledge exist and might be required for generating scientific hypotheses in
the hypothesis-generation test. This study shows that these skills appear to
have been used by students to generate hypotheses for the swing task. Evi-
dence suggests that the presence of prior belief of pendulum motion alone is
not sufficient to produce successful hypothesis-generation performance.
Hypothesis generation seems to require, we call, abductive reasoning skills of
declarative knowledge, which is beyond possessing prior knowledge. This is
not to say that prior belief is unimportant in generating hypotheses. Prior
belief, such as that relating to angle, length, and weight about pendulum
motion may have been used as resources for generating hypotheses. Results
of this study, then, support the notion that knowledge generating in science is
completed by a compensatory interaction between prior belief and scientific
reasoning, such as abductive reasoning described in this study.

Results of experiment II showed that 12 from 31 children who claimed
that length of pendulum affected the period of pendulum motion did not
generate a length hypothesis for the swinging, and 9 (75.0%) children from 12
respondents generated length hypotheses for the hypothesis-generation test.
These results support the notion that hypothesis generation requires rea-
soning skills to explore, select, and represent possible alternatives in expla-
nations of the previously experienced situation. Clearly, this is an example of
what we call abductive reasoning skills. Interestingly, the conclusion that a
new cause to produce hypothesis generation in pendulum motion task exists
seems to have been foretold by Charles S. Peirce (Peirce Edition Project
1998). Although Peirce’s notion of retroductive reasoning was not widely
recognized by philosophers of science and educators, several studies found
that his notion of retroductive or abductive reasoning beyond inductive and
deductive reasoning exists in scientific reasoning.

Hypothesis-generation skills could be applied to a broad range of stu-
dents’ reasoning development. School science teachers should not only
concern themselves with introducing declarative knowledge in the classroom.
They also should concern themselves with developing students’ reasoning
abilities, which are skills to generate and test hypotheses. To do this, a careful
analysis and selection of various scientific issues and the development of
those selected issues as educational materials should become a matter of
concern in science teaching. Pendulum motion tasks possess systematic
cognitive-sequencing and plenty of scientifically declarative knowledge.
Therefore, pendulum motion can be used as an educational material for
teaching and developing students’ hypothesis-generating skills.
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Types of Two-Dimensional Pendulums and Their
Uses in Education

ROBERT J. WHITAKER
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Springfield, MO 65804, U.S.A.

Abstract. Pendulums which swing in two dimensions simultaneously and are designed to leave a
record of their motion are termed ‘harmonographs’. The curves which they draw are known, alternat-
ively, as ‘Bowditch curves’ or ‘Lissajous curves’. A variety of designs of harmonographs have been
invented over the years. These may be a ‘Y-suspended’ ‘simple’ pendulum, or they may be a complex
‘physical’ pendulum system. Harmonographs have been built as demonstration apparatus in physics
(or mathematics) or as ‘art’ machines for enjoying the aesthetics of the curves produced.

1. Introduction

The pendulum and its motion are frequently topics in a beginning physics course.
A ‘simple’ pendulum may be considered as a point mass fastened to the end of a
massless cord. It is then allowed to swing in a plane, its motion being constrained
to one dimension. The history and the educational importance of such a device
have recently been discussed by Matthews (2000, 2001).

If a pendulum swings with a small amplitude, its motion is often referred to
as ‘simple harmonic motion’ (SHM). This term was first introduced by Sir Wil-
liam Thomson (later, Lord Kelvin) and P.G. Tait in their classic texts on Natural
Philosophy (Thomson & Tait 1873, p. 19). In addition they demonstrated that the
projection, on the diameter of the circle, of a point that is moving with uniform
circular motion also executes simple harmonic motion. This can easily be observed
if one sights, edge on, a rod mounted near the circumference of a large turntable
(such as a merry-go-round); as the turntable rotates at a constant angular speed, the
rod’s horizontal motion is SHM (French 1971, pp. 7–9).

In 1815 James Dean, Professor of Mathematics and Natural Philosophy at the
University of Vermont, published an analysis of the motion of the moon about the
Earth (Dean 1815; Crowell 1981). Instead of viewing the moon from the Earth,
Dean placed an observer on the equator of the moon and observed the Earth.
Following his analysis he noted that this motion ‘may be easily imitated by a
pendulum’ that is hung with a Y-suspension (Figure 1) (Dean 1815, p. 245). The
pendulum’s mass is free to swing with two independent lengths – first, the length
from the top of the ‘Y’ suspension; second, the length from the junction of the three
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Figure 1. James Dean’s ‘Y-suspended’ pendulum (Dean 1815, Plate I).

cords forming the ‘Y’. Each of these, then, was free to swing in two independent,
vertical planes.

Nathaniel Bowditch, in the same year, extended Dean’s idea for a Y-suspended
pendulum and provided a detailed mathematical analysis of its motion (Bowditch
1815). The curves, described by the equations of the motion of a (dimensionless)
pendulum mass swinging with a small amplitude in two dimensions, are some-
times referred to as ‘Bowditch curves’. While Bowditch was the first to derive
and demonstrate these, one may more often find these same curves referred to
as ‘Lissajous curves’, after Jules Antoine Lissajous who produced these curves
with a pair of vibrating tuning forks and described his work in a series of papers
beginning in 1855 (Lovering 1881, p. 298; Crowell 1981, p. 454; Whitaker 2001a,
pp. 169–170).

The Y-suspended pendulum was again introduced around 1844 by Hugh Black-
burn while a student at Cambridge. Blackburn was a classmate and friend of
William Thomson (who would later be better known as Lord Kelvin). Curiously,
Blackburn does not seem to have left any description of this pendulum himself. We
learn of it from the secondary literature, where it is referred to as the ‘Blackburn
pendulum’. The difference in this design is that a permanent (or semi-permanent)
record of its motion was made. Several alternative methods are mentioned in the lit-
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erature. A heavy, hollow funnel is filled with fine sand (or ink) which falls through
a small hole leaving a trace as the pendulum swings. Other pendulums have a sharp
point which trace the motion on a plate of smoked glass or in a layer of sand. Later
versions used electrical sparks to mark a sheet of paper placed on a conducting plate
(Whitaker 1991, 2001a, pp. 163–164). Worland and Moelter (2000) have recently
described the use of a spreadsheet to analyze the data produced by a modern spark
generator of a Y-suspended pendulum in a student laboratory.

An alternative version, built by John Dobson around 1877, was described by
J.G. Hagen (Hagen 1879, pp. 287, 297–299; Rigge 1926, pp. 68–71). Dobson’s ver-
sion had the advantage of having bifilar suspensions so that twisting was eliminated
as the mass swung. A pen recorded its motion on paper.

2. The ‘Physical’ Pendulum

The Y-suspended pendulum was basically a simple pendulum which was free
to swing in two independent directions simultaneously. These usually had large
masses and long supporting cords. This limited the location where this pendulum
could be demonstrated. If one removes the restrictions of a ‘small’ mass and a
‘massless’ support, one has a ‘physical pendulum’. A common example of this in
introductory physics is a rigid rod (such as a meter stick), fitted with a knife edge
clamp, which may swing on an appropriate support. The knife edge is adjusted
along different positions of the stick, and the period of this pendulum is found to
be dependent on the position of the knife edge. Because of the uniformity of mass
distribution along a meter stick, the period of the pendulum, as a function of mass
distribution, may be readily obtained (Stephenson 1969, pp. 210–218; Halliday et
al. 1993, pp. 390–393).

An early example of a physical pendulum for precision time measurements was
introduced in 1817 by Captain Henry Kater (Kater 1818, pp. 33–102). Known now
as ‘Kater’s reversible (or convertible) pendulum’, Kater’s pendulum

consisted of a brass rod to which were attached a flat circular bob of brass and two adjustable weights,
the smaller of which was adjusted by a screw. The convertibility of the pendulum was constituted
by the provision of two knife edges turned inwards on opposite sides of the center of gravity. The
pendulum was swung on each knife edge, and the adjustable weights were moved until the times
of swing were the same about each knife edge. When the times were judged to be the same, the
distance between the knife edges was inferred to be the length of the equivalent simple pendulum,
. . . . (Lenzen & Multhauf 1965, p. 314)

Appropriate corrections for error (such as buoyancy of the air) were made, and this
equivalent seconds pendulum made possible improved accuracy for measurements
of gravitational acceleration at different locations to aid in determining the ‘figure
of the Earth’. While studies of this kind were a part of ‘physics’ in the Nineteenth
Century, one must look for them today in references on ‘geodesy’ or ‘geophys-
ics’ as these have evolved as separate disciplines. Kater’s pendulum has served
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as a model for subsequent modifications and refinements in the measurement of
gravitational acceleration or differences in acceleration (Garland 1965, pp. 6–27).

3. ‘Harmonographs’

The preceding discussion is indicative of the use made of the physical pendulum
as part of the ‘mainstream’ physics research in the 19th century. The pendulums
used also oscillated in one dimension. We now return to the use of those physical
pendulums which, like the Y-suspended pendulum, were designed to oscillate in
two dimensions. In 1873 S.C. Tisley reported on an apparatus made of two vertical
rods, fitted with knife edges, which could swing at right angles to each other. This
is illustrated in Figure 2 (Engineering 1874, p. 101). A ball-and-socket joint was
attached to the top of each rod; a wire arm was attached to the joint and perpen-
dicular to the rods. A pen, mounted at the intersection of the two wires, traces the
curves resulting from the motion of the pendulums. The period of each pendulum
could be adjusted by means of weights attached to each rod (Tisley 1873, p. 48).
Tisley’s pendulum apparatus was soon offered for sale by the firm, ‘Tisley and
Spiller, Opticians, etc.’. By May 1877 the apparatus was advertised as ‘Tisley’s
Harmonograph. For drawing Lissajous’ and Melde’s figures . . . ’. This seems to be
the first use of the term, ‘harmonograph’, in the literature (Whitaker 2001a, p. 171).
The term is subsequently applied to a variety of different designs of curve drawing
apparatus.

A simplified modification of Tisley’s design was offered by Newton & Co. and
described by Herbert Newton in 1909 (Goold et al. 1909, pp. 4–8). This is shown in
Figure 3. The drawing table is mounted on the top of one of the pendulums, and the
pen is attached, by means of a long rod, to the top of the second pendulum. Each
pendulum is mounted on a knife edge and can be set in motion in any direction.

4. Wheatstone’s Kaleidophone

While not a pendulum, per se, the motion of the ‘kaleidophone’ discussed by
Charles Wheatstone (Wheatstone 1827) is closely related. The kaleidophone con-
sists of a thin rod, clamped at one end. This could be set in vibration with a small
hammer or violin bow. A small silvered glass bead, mounted on the end, reflects a
beam of light incident upon it. Persistence of vision permits one to observe the
path of the bead. William Sang, in 1832, produced a mathematical analysis of
the kaleidophone in which there is asymetry in the vibration of the rod in two
directions. The motion of the bead is described by equations identical to those of
Bowditch (Greenslade 1992; Whitaker 1993). A common automobile radio antenna
will exhibit the same effects under appropriate conditions (Annet 1979; Merivuori
& Sands 1984; Newburgh & Newburgh 2000).
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Figure 2. Tisley’s compound pendulum (Engineering 1874, p. 101).
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Figure 3. Newton’s harmonograph (Goold et al. 1909, p. 5).

5. ‘Bowditch/Lissajous’ Curves

When the pendulums are set to vibrate perpendicular to one another, their motion
traces the same system of curves described by Bowditch. Since the periods of
each pendulum can be adjusted independently, a nearly infinite number of different
curves of varying complexity may be drawn. Figure 4 shows two simple examples
(Poynting & Thomson 1900, p. 74). Of particular interest are those curves pro-
duced when the periods of the two pendulums are in integer ratios of one another.
A range of ideal curves (without damping) are shown in the plate reproduced as
Figure 5.

The plate itself is of interest; a number of authors have illustrated their works
with this identical plate. Zahm (1892, p. 416) and Tyndall (1894, p. 418), for
example, used it to demonstrate the curves produced by properly adjusted tuning
forks based on Lissajous’ work. Poynting and Thomson (1900, p. 76) reproduced
the same plate as an example of kaleidophone figures. Interestingly, this practice
was not that uncommon. In his study of scientific illustration Knight has noted:
‘Plates were expensive to make, and wherever possible were reused; otherwise,
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Figure 4. Damped harmonic curves (Poynting & Thomson 1900, p. 74).

they were often copied (sometimes reversed in the process) – we keep meeting
recycled illustrations’ (Knight, 1998, p. 249). This writer has made no effort to
determine the first use of this plate, nor to list its (probably) many other locations.

6. Harmonographs in Popular Works

In addition to the ‘ideal’ curve the gradual reduction of amplitude of each pendu-
lum adds to the complexity (and interest) of the resulting product. Thus, while the
harmonograph was used to demonstrate the drawing of these curves, the demon-
stration was, as often as not, for the purposes of entertainment. As a result, authors
of popular works soon began to include descriptions of commercial harmonographs
in their books or to describe simplified versions that could be constructed by the
home craftsman. J.H. Pepper, in the fourth edition of his Cyclopaedic Science
Simplified, described Tisley’s apparatus and reproduced a picture of it (Pepper
1877, pp. 562–565). Tissandier, in 1883, discussed Tisley’s apparatus, but he also
provided details for constructing one from simple materials (Tissandier 1883, p.
175; Whitaker 2001a, p. 167).

Cundy and Rollet wrote in 1961 that: ‘The harmonograph was a popular di-
version in Victorian drawing-rooms, since when it has suffered a decline and is
rarely seen today’ (Cundy & Rollett, 1961, p. 244). While one might not find the
elaborate commercial versions that once were sold, harmonographs are still popular
as science projects for students and for hobbyists. Directions for their construction
are readily available. Cundy and Rollet, for example, provide detailed directions
for the construction of a harmonograph similar to Newton’s earlier commercial
design. Bulman has provided directions for a similar device, as well as a simple
Wheatstone kaleidophone (Bulman 1968a, pp. 86–94, 82—85). In a second book
he describes a device for drawing curves that result from the rotation of gears
(Bulman 1968b, pp. 12–31). Most recently Ashton has written a little book that
describes the construction of a harmonograph similar to Newton’s design, as well
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Figure 5. Ideal harmonic curves (Zahm 1892, p. 416; Tyndall 1894, p. 418).

as a three pendulum harmonograph, similar to Tisley’s, which has the drawing
table mounted on a third pendulum (Ashton 1999, pp. 3, 29). His account is illus-
trated with drawings produced by his apparatus as well as illustrations from older
references. A variety of harmonograph designs, under different names, have been
discussed by this author (Whitaker 2001a). These are summarized in Table I.
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Table I. Various pendulum apparatus

Device Year Designer Reference

‘Y-suspended Pendulum’ 1815 Dean; Bowditch Crowell 1981,

pp. 452-454

‘Blackburn Pendulum’ 1844 Blackburn Whitaker 1991,

pp. 330–333

‘Tisley’s Compound Pendulum’ 1873 Tisley Whitaker 2001a,

pp. 164–165

‘Tisley’s Harmonograph’ 1877 Tisley & Spiller Whitaker 2001a,

p. 165

‘Sympalmograph’ 1877 Browning; Benham Goold et al. 1909,

pp. 39–50;

Whitaker 2001a,

p. 166

‘Dobson Duplex Pendulum’ 1877 Dobson Hagen 1879,

pp. 287, 297–299;

Rigge, 1926,

pp. 68–71

‘Double Pendulum’ 1894 Bryan Whitaker 2001a,

p. 166

‘Pendulograph’ 1895 Andrew Whitaker, 2001a,

pp. 167–168

‘Quadruple Harmonic-Motion 1899 Hoferer Whitaker, 2001a,

Pendulum’ p. 168

‘Twin-elliptic Pendulum’ 1906 Benham Goold et al. 1909,

pp. 61–79

‘Benham’s Triple Pendulum’ 1909 Benham Goold et al. 1909,

pp. 51–61

7. Harmonic Motion in College Textbooks

As with the simple pendulum, the compound pendulum (and Kater’s pendulum in
particular) has seen reduced discussion in introductory college physics textbooks.
However some older textbooks present detailed accounts of the topic. Among sev-
eral of these are Watson (1902, pp. 132–134) and Poynting & Thomson (1909,
pp. 12–27). Pointing and Thomson, particularly, provide a detailed discussion of
various pendulum methods and sources of error as well as extensive historical
account of the problems involved in determining a standard unit of length and of
the figure of the Earth. The textbook by Millikan, Roller, and Watson was noted
for the introduction of historical material into the text. The authors’ discussion of
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simple harmonic motion and pendulum motion (including the Kater pendulum) in
its historical context is noteworthy (Millikan et al. 1937, pp. 330–345). Similar
historical emphasis was provided by Lloyd William Taylor in his book published
in 1941 (Taylor 1941, 1959, pp. 182–197). Feather’s account is insightful (Feather
1959, pp. 182–194). And, in an intermediate level text, Stephenson includes the
Kater pendulum as an example of a physical pendulum (1969, pp. 213–215).

One example of the Kater’s pendulum, as an experiment in the laboratory, may
be found in Searle (1934, pp. 7–15). Searle provides a thorough discussion of the
theory, as well as sample data gathered from an experiment. Apparatus for the
study of Kater’s pendulum and for the study of the compound pendulum were
sold for many years by Central Scientific Company (Cenco), and detailed instruc-
tions in their ‘Selective Experiments in Physics’ series were provided with these
to assist in their use (Eaton 1940, 1941). A simplified version may be found in
Ingersoll, Martin, and Rouse, who include it as part of a series of experiments on
moment of inertia (1953, pp. 54–57). Modifications in the Kater pendulum have
been discussed more recently as laboratory experiments in physics (Jesse 1980,
pp. 785–786; Peters 1999, pp. 390–393; Candela et al. 2001, pp. 714–720). It
is less clear, however, how many institutions may be using these as part of their
instruction.

Arnold Sommerfeld, in his classic work on theoretical physics, wrote in the
introduction to his chapter on ‘oscillation problems’:

‘The investigations that are to follow will teach us nothing new about the principles of mechanics.
So great, however, is the significance of oscillation processes for physics and engineering that their
separate systematic treatment is deemed essential’ (Sommerfeld 1952, p. 87).

Sommerfeld’s mathematical analysis of a ‘simple’ pendulum and of a ‘physical’
pendulum is based on assumptions regarding the mass distribution of the pendulum
as well as the location of its support. Similar restrictions are placed on ‘coupled’
pendulums, including the ‘double pendulum’, in which a mass is connected by a
cord to a second mass, which is in turn connected to a support. (This is the basis
of the ‘twin-elliptic’ pendulum harmonograph.) Assumptions again arise involving
‘point’ masses and ‘massless’ cords. His mathematical analysis of such a problem,
which is usually restricted to advanced courses in mechanics, is a model of clarity
(Sommerfeld 1952, pp. 87–117).

It should not be surprising, then, that none of the discussions of harmonographs
includes a mathematical analysis of the motion of the pendulums. We find that
the period of each is adjusted by trial and error. Small differences in adjustment
may produce large variations in the curves produced. Under ‘proper’ adjustment
the recording point of the pendulum traces the same curve but with a continually
decreasing amplitude. These differences seem to be one of the fascinations with
harmonographs. Rigge, for example, devoted a full chapter in his book on the
beauty of curves (Rigge 1926, pp. 122–132).

A second class of harmonographs should be mentioned in passing. These make
use of gears or pulleys in their operation. While they do not operate under pen-
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Table II. Various ‘gear’ apparatus

Device Year Designer Reference

‘Geometric Chuck’ 1833 Ibbetson Whitaker 2001b,

p. 174

‘Lissajous’ Apparatus 1869 Pickering Whitaker 2001b,

p. 174

‘Harmonic Curve Apparatus 1873 Donkin Whitaker 2001b,

pp. 174–175

‘Cycloidotrope’ 1883 Pumphery Rigge 1926,

pp. 74–75

‘Campylograph’ 1900 Dechevrens Rigge 1926,

pp. 78–81

‘Wondergraph’ 1913 Tuck Tuck 1913,

pp. 436–439;

1931 Collins Collins 1931,

pp. 71–74

‘Cyclo-harmonograph’ 1916 Moritz Whitaker 2001b,

p. 176

‘Creighton Compound Harmonic 1924 Rigge Rigge 1926,

Motion Machine’ pp. 81–91;

Whitaker 2001b,

p. 178

‘Kukulograph’ 1933 Hoferer Whitaker 2001b,

p. 177

‘Spirograph�’ 1967 Kenner Products, Co. Whitaker 1988;

Whitaker 2001b,

pp. 177, 179–180

‘Schemagraph’ 1968 Bulman Bulman 1968b,

pp. 12–31

‘Turntable Oscillators’ 1971 Project Physics Whitaker 2001b,

p. 177

dulum motion, they are related to an important problem in astronomy – the effort
to describe the motion of the heavenly bodies with a system of circular motions.
An appropriate example of one of these is the popular toy, Spirograph� , which
came on the market in 1967. It is designed to produce that class of curves known
as ‘trochoids’ (Whitaker 1988b, 2001b, pp. 179–180). A number of elaborate
devices, however, have also been invented and described over the years; these are
summarized in Table II (Whitaker 2001b).
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8. Previous Surveys of Curve Drawing Apparatus

Several surveys of curve drawing apparatus have been published. Among the earlier
was Hagen (1879). Lovering, in surveying the role of Bowditch, also summarized
those devices of which he was aware. An extensive survey of a variety of devices
was provided in Goold et al. (1909), many of which were sold by Newton and
Co. Rigge (1926) provided an extensive mathematical description of the curves
possible with various machines, including the highly complex ‘Creighton Com-
pound Harmonic Motion Machine’ which he had begun in 1915 and completed
in 1924. Greenslade, for a number of years, has encouraged continual interest
in harmonographs in his series of articles (Greenslade 1979, 1992, 1993, 1998).
This writer has recently provided a survey of the history of various harmonographs
(Whitaker 1988a, b, 1991, 1993, 2001a, b).

9. Conclusions

This article has attempted to summarize those pendulums, constructed to swing
in two dimensions, which produce records of those curves known as ‘Bowditch
curves’ or ‘Lissajous curves’. These ‘harmonographs’ were designed as demon-
stration devices to illustrate vibrations in mechanics as well as in the physics of
sound and of harmonies in music. They were also designed to entertain through
the ingenuity of the machine or the variety of the curves it produced. While the
equations for these various curves may be programed into a computer, and the
curves changed almost instantly, there is still a fascination in watching them being
drawn by a mechanical device. Tolansky, in introducing his two pendulum har-
monographs, has noted: ‘. . . it so happens that sophisticated electronics systems
cannot create patterns which even remotely compare either in interest or in aes-
thetic appeal with those that can be formed by quite crude mechanical pendulum
devices . . . ’ (Tolansky 1969, p. 267). Romer, similarly, has described a ‘corridor
apparatus’ for student interaction and has observed that ‘. . . this apparatus can be
used to produce a wide variety of designs which seem to have considerable aes-
thetic appeal to many people. We have found it very valuable, both in stimulating
an interest in the simple physics on which it is based and perhaps, more honestly,
simply as an “art machine” ’ (Romer 1970, p. 1116).

Today one may find large scale harmonographs as interactive displays in science
museums. While we may no longer find elaborate harmonographs listed in the
catalogs of apparatus companies, the continual discussion of these in the literature
is indicative of their inherent interest to students, teachers, and the general public.
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Abstract. In this article we use the pendulum as the vehicle for discussing the transition from clas-
sical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all
harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the
unanticipated consequences of quantum phenomena at the atomic level. We intend to illustrate how
classical deterministic physical ideas are replaced by a point of view that contains both deterministic
and probabilistic aspects. For example, the wave function contains probabilistic information but it
evolves in time according to a fixed law, the Schrodinger equation. Discussion of the transition from
classical to quantum thinking is historically grounded in the work of twentieth-century physicists
who developed quantum ideas. We see application to current science in areas such as semiconductors,
optics, GPS systems, and superconductivity. Our notion is that a scientifically-literate public should
have a sense of the broad, conceptual schemes in modern physics, as well as those associated with
classical physics. We discuss educational challenges and strategies connected to including quantum
theory in a general education physics course. Our work would have other applications in college and
secondary school settings.

1. Introduction

The quantum pendulum is an excellent model for introducing some of the ba-
sic principles of quantum mechanics to university-level ‘non-science’ physics
students.1 The authors – a science educator, a physicist, and a science historian
– in this paper report their initial efforts on the construction of a team-taught
introductory conceptual physics course that takes as one of its central models the
quantum pendulum.

Our overarching motivation for this endeavor is the belief that a scientifically
literate public should have a sense of the broad, conceptual schemes in modern
physics, as well as those associated with classical physics. All too often even the
best introductory physics courses leave the students with an understanding that
stops with the nineteenth century.

Current, influential science education documents argue the importance of sci-
ence literacy for all (American Association for the Advancement of Science
(AAAS), 1993; National Research Council (NRC), 1996). Should some under-
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standing of modern physics be a component of science literacy? Many introductory,
general education physics courses exclude quantum theory because it is abstract,
highly mathematical, and often counter-intuitive. However, several arguments sup-
port its inclusion in general education settings (Bohm & Peat 1987; Johnston et al.
1998; Petri & Neidderer 1998) in order to:

• demystify it;
• dispell misconceptions about the nature of science and scientists;
• introduce a non-Newtonian world view in which probability is a foundational

idea;
• connect to major advancements in modern life, such as lasers, transistors,

semiconductors, modern optics, nanostructures, satellite technology;
• inquire into the quest for interrelated ideas, as science is evolving and

constantly testing models and theories; and/or
• understand current views of reality and the contribution that science has made

to them.
We need to be wary of the impact of specialization and fragmentation of ideas

on student learning, especially in liberal arts settings. Transmissionist teaching
strategies do not support the goal of scientific literacy if they postpone meaning
making until students reach research-level experiences not accessible to non-
science majors (Johnston et al. 1998). These same students are excluded from
opportunities for critical thinking when their science courses focus entirely on
mathematical procedures rather than conceptual tools (Bailin 2002).

We begin with a review of some of the pertinent history of the development of
quantum ideas by examining the transition from classical to quantum thinking. Un-
der the assumption that readers are familiar with classical mechanical ideas, some
of the fundamental principles of quantum mechanics are then presented along axio-
matic lines. The quantum oscillator (an approximation to the quantum pendulum)
features prominently as an accessible illustration. The allure of quantum mechanics
to general students is highlighted by stressing some philosophical controversies
within quantum theory. The final section explores the challenges of teaching the
highly abstract and mathematical discipline of quantum mechanics to conceptual
physics students in light of the latest findings in science education research.

2. Historical Foundations: Transitioning from Classical to Quantum Ideas

2.1. THE CLASSICAL WORLD VIEW: THE PENDULUM AND PROBABILITY

The pendulum (or oscillator) has played such a vital role in the development of
scientific thought, that it continues to be a useful tool for structuring the curriculum
in classical mechanics (Matthews 2000, 2001). Can we also use the pendulum to
effectively introduce students already familiar with classical concepts to quantum
theory? By ‘quantizing’ the pendulum, we believe we can offer a means for intro-
ducing students to quantum thinking and the intellectual process by which quantum
theory was created.
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We begin with the classical picture. Consider a pendulum bob of mass, m, that
is in oscillation. In both the classical and quantum treatment (below) we assume
the bob oscillates with small amplitude oscillations, thereby treating the pendulum
as a simple harmonic oscillator. To simplify matters we focus on the shadow of the
bob cast on the floor below and orient the x-axis along the floor. Many of the basic
mechanics principles, both classical and quantum mechanical, may be illustrated
by this system.

In classical mechanics the initial state of the bob is given by the initial con-
ditions, that is the position and velocity of the bob at time zero, x(t = 0) and
v(t = 0). The state of the bob at any future time t is,

x(t) and v(t). (1)

The fundamental problem in classical mechanics is to find the state at time t given
the initial state and the forces, F , acting on the bob. The way this time depend-
ence is determined is by solving the fundamental equation of classical mechanics,
Newton’s Second Law of Motion,

F = ma, (2)

where a is the acceleration of the bob under the influence of the forces F acting
on it. Equation (2) is called the classical equation of motion. In principle, classical
mechanics is a deterministic description (Mach 1989), although – as a practical
matter – it falls short of determinism due to the lack of precision with which the
state of the system can be measured (Feynman et al. 1965, Vol. III, pp. 2–9).

With an eye toward directing students’ thoughts to quantum thinking, probab-
ility ideas may be brought to bear on the classical description of the pendulum
(Anderson 1971. See pp. 198–199 for the classical probability distribution for the
simple harmonic oscillator). Imagine the following experiment: For the pendulum
bob, use a sphere that contains sand and that has a tiny hole in its bottom. As
the pendulum swings back and forth, the sand steadily falls out of the hole onto
the floor below. After a period of time a pattern will emerge on the floor. Near
the extremes of the swing, where the pendulum has a low speed, the sand will
be piled high but near the lowest part of the swing; where the pendulum has its
highest speed, there will not be much sand. The crucial question for the student is
this: Without specific information of the location of the pendulum bob at a given
time t , where is the bob most likely to be? The sand pattern directly reveals that the
classical pendulum has its highest probability of being present near the extremes of
its motion and its lowest probability at its lowest point, where x = 0. We will later
return to this example after introducing the quantum viewpoint of the pendulum,
showing the striking changes that appear in the sand pile in the quantum world.
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2.2. INTO THE 1920S AND THE PRESENT VERSION OF QUANTUM MECHANICS

Physicists formulated the first quantum theory between 1900 and 1920,2 the theory
reaching its zenith with the Bohr model of the structure of the hydrogen atom
(Eiseberg 1961). In constructing his model, Bohr’s main theoretical goal was to
explain the stability of the atom and hence account for its chemical properties.
Building on the experimental results of Rutherford, Bohr needed to construct an
atomic model that placed a dense, positively charged nucleus at the center of the
atom with electrons in orbit around the nucleus. The immediate problem, however,
was that accelerated charged particles emit energy. Assuming that the electrons
within an atom are in continuous circular motion, electromagnetic theory predicts
that atoms would quickly collapse, making molecules and higher order composites
impossible. Bohr’s initial solution was to limit the electron orbits to stable station-
ary states, each with a specific and unchanging quantum of energy. Unable to emit
energy on a continuous basis, electrons would neither spiral into the nucleus nor
continuously absorb energy and move to larger, more energetic orbits. Dubbed the
‘quantum postulate’, this assumption was nevertheless ad hoc; it saved the stability
of the atom, but what did it actually mean? And would it ultimately rest on more
fundamental principles?

A partial answer came soon after when Bohr hypothesized that electrons jumped
between energy states, emitting radiation when jumping from a higher energy level
to a lower energy level, absorbing radiation when jumping from a lower energy
state to a higher energy state. The energy of the electromagnetic radiation emitted
or absorbed could then be calculated by the difference between the two energy
levels occupied by the electron. Close agreement with the established energies
given by the Balmer formula for hydrogen and the prediction of as yet unobserved
spectral lines helped to propel the theory into the limelight, despite its obvious
limitations. Bohr set about trying to understand the meaning of the discontinuous
electron jumps, but troubling questions remained. How did the electron ‘know’
to stay in particular energy states? Why does the electron, still considered to be
a particle, not radiate energy on a continuous basis? What could it mean that
electrons instantaneously go from one energy state to another (Folse 1985; Kragh
1999)?

The Bohr model was displaced in the early 1920s by a more wide-ranging
theory comprising our current understanding of quantum mechanics (van der
Waerden 1959). Beginning with the thoughts of de Broglie, it was argued that if
radiation – normally thought of as consisting of electromagnetic waves – could
in certain instances behave like a collection of particles (photons), then in some
instances why could particles (e.g., electrons) not behave like waves? Einstein,
taken with some of de Broglie’s ideas, introduced them to Schrödinger, who
soon developed a three-dimensional electron model (Kragh 1999). According to
de Broglie and Schrödinger, electrons were to be represented as standing waves
enshrouding the nucleus. Because standing waves can only exist in states with
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integer and half-integer wavelengths, an electron in a stable orbit would have a
specific energy associated with the wavelength of that state. Thus, with the appar-
atus of Schrödinger’s mathematics, particles could now be represented by wave
functions that, presumably, captured all the information contained in the state of
the particle itself. Furthermore, Schrödinger believed that this model saved the
atom from Bohr’s discontinuous quantum jumps by creating the possibility that the
wave function � could transform continuously in time (Whitaker 1996). In 1925,
Schrödinger developed the fundamental equation from which the wave function
and energy of the particle can be found.

But while Schrödinger (and Einstein) found solace in this physical interpreta-
tion of the wave function, Bohr and Heisenberg did not. Even before Schrödinger
had created his ‘wave mechanics’, Heisenberg had created a ‘matrix mechanics’
that sought to account for all the experimental results related to measurements of
the atom. Unlike wave mechanics, however, the power of matrix mechanics was
that it absolved quantum theory of requiring physical models (Whitaker 1996); like
the statistical mechanics of the late nineteenth century, matrix mechanics transcen-
ded the need for picturable physical events. From this point of view, Schrödinger’s
theory was not only mistaken; it was seen as entirely wrongheaded. While Bohr
may not have been as ready to dismiss wave mechanics as so much nonsense, the
question for him was, what does the wave function represent? Certainly it cannot
represent a physical particle, since such particles were no longer the subject of
direct observation.

Following the striking example of symmetrical reasoning (i.e., wave-particle
duality), Max Born offered his postulate as to what in fact was waving in the
Schrödinger waves. In a 1926 paper, Born suggested that the wave function in
a region of space associated with a particle gives the probability of finding the
particle in that region. In effect, the recognized power of Schrödinger’s mathem-
atical formalism combined with Born’s probabilistic interpretation put the wave
theory securely in the conceptual camp of Bohr and his colleagues (Kragh 1999).

The tidy quantum mechanical picture that emerged by the end of the 1920s
was soon found to imply a number of features that troubled physicists (Bohm
1951). With the development of the wave picture of subatomic particles, harmonic
variables like wavelength and frequency became fundamental to the understanding
of how the atom ‘worked’. But the application of wave properties to what had
previously been thought to be particles raised a number of conceptual difficulties.
The advantage of ‘wave mechanics’ was that it built on familiar concepts related
to macroscopic wave phenomena. By applying a well known conceptual scheme
to the poorly understood structure of the atom, physicists developed a theory that
not only accounted for a great deal of observable phenomena; it also provided a
means for making future predictions that could then be experimentally tested. At
the same time, however, wave mechanics begged the question, what does it mean
for particles to have wave properties?
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The apparent contradiction between particle and wave phenomena implied
that the subatomic world had to be understood on very different terms than the
macroscopic world. The development of Heisenberg’s ‘matrix mechanics’, on the
other hand, offered an approach to quantum systems that, like the thermodynamic
systems of the nineteenth century, focused on measurable quantities and their math-
ematical relationships. The seemingly contradictory nature of the quantum world
and the increasingly abstract mathematical theories used to describe it fostered the
notion that subatomic phenomena could not be conceived in the same visual terms
as the macroscopic world. While the mathematics of Heisenberg and Schrödinger
provided powerful tools for analyzing and predicting the energy states of sub-
atomic particles, the mathematical picture became increasingly divorced from
visual analogues.

Quantum mechanics as it is now understood and taught (Shankar 1994) thus
consists of highly abstract rules and procedures. Understandably, this poses unique
and interesting challenges to teachers of modern physics. Should students develop
an understanding of the mathematics without worrying about the philosophical
implications of the theories themselves? Should the historical development of
quantum theory be included in a program of study? Or does the messiness of his-
tory prove to be too distracting, taking time away from internalizing the procedures
of axiomatic knowledge?

2.3. EINSTEIN–BOHR DEBATES ON FOUNDATIONS OF QUANTUM MECHANICS

One of the assumptions of the International Pendulum Project (IPP) is that the
history and philosophy of science can contribute greatly to an appreciation of both
the content of science and the nature of science as a professional activity. The
project thus recognizes that science is a process subject to the social and cultural
conditions of the historical periods in which it is pursued as well as a set of received
doctrines and procedures that students should know and understand.

Through a focus on process, a course on the conceptual features of quantum
mechanics can look at how prominent scientists such as Bohr, Einstein,
Schrödinger, and Heisenberg defined and dealt with the challenges that the new
theory created for physicists. Through an instructional approach emphasizing the
different scientific and philosophical styles these historical figures brought to their
understanding of nature, and the marked disagreements that resulted from their
encounters with one another, we believe students can come to see contemporary
science as a dynamic, ongoing process of debate rather than a static body of pre-
defined notions about the natural world. The abstract and relatively remote nature
of quantum theory makes a historical consideration of the development of the
theory even more relevant for younger students. The passions and philosophical
commitments of the early framers of the theory can engage students on a variety
of levels. It helps that Einstein, for instance, is already popularly known, even if
rarely understood. The Einstein–Bohr debates provide a perfect case study of how
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different philosophical commitments and scientific methodologies can lead to dif-
ferent styles of doing science. Students will thus be encouraged to understand more
deeply the contingencies of doing pioneering work in science as they develop an
understanding of the scientific ideas and processes themselves (Matthews, 2004).

The Einstein–Bohr debates have drawn a considerable amount of historical
attention over the years, so it remains the task of this section to consider how
the themes and issues present in the debates can be presented in the classroom.
It should be cautioned at the outset that the historical importance of the de-
bate should not be exaggerated. As Kragh has pointed out (1999), the exchanges
between Einstein and Bohr have been both romanticized and exaggerated in the
literature. Yet the impact of the debates did not initially extend far beyond those
physicists who were interested in or troubled by the philosophical implications
of the quantum worldview. For most working physicists, the debates did not lead
to any fundamental new equations for understanding the structure of matter, so
they could safely be disregarded. But for the conceptual physics audience the
series of exchanges between Einstein and Bohr should help generate awareness
of the important philosophical problems the quantum theory raised and thus help
to demonstrate the broader impact of modern physics on the way we think about
nature. At the college level, where the mathematics of quantum mechanics may
play a larger role in the classroom experience, the discussion can be expanded to
include the work of Heisenberg and Schrödinger to demonstrate how quantum the-
ory developed its high degree of abstractness and how Bohr’s early visual planetary
model of the atom gave way to what were, at first, competing mathematical models.
Discussion of these models will also give the students an opportunity to consider
the relationship between experimental results and the descriptive/predictive power
of mathematical models. Heisenberg in particular was most eager to generate pre-
existing experimental results in such a way that visual models of the atom would
no longer be necessary in order for the new quantum theory to be useful.

The series of encounters between Bohr and Einstein were not so much debates
as they were challenges, with Einstein and others (including Schrödinger) posing
thought experiments that were intended to undermine Bohr’s notion that quantum
theory, particularly as it rested on Heisenberg’s Uncertainty Principle and Bohr’s
Complementarity Principle (see discussion below), gave a complete description of
nature. At its core, the debate rested on fundamental disagreements about the nature
of scientific explanations. Historians and philosophers have argued, however, that
deep misunderstandings characterized the positions of both figures, with Bohr often
frustrated that Einstein did not understand the revolutionary nature of quantum
theory, and Einstein firmly convinced that the quantum theory led to logical and
experimental absurdities and hence could not be a complete theory (Folse 1985).

Einstein’s position rested on a strong philosophical commitment to the determ-
inism of classical mechanics. According to the assumptions of classical mechanics,
all material bodies existing in space and time have properties that can be theoretic-
ally determined without changing those properties in the process of measurement.
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In the simplest case, the momentum and spatial position of a material object should
be knowable without affecting those very same properties. The classical analysis
of the simple pendulum exemplifies what is meant here. Once the position and mo-
mentum of a physical system has been determined, its future course of motion, both
alone and in contact with other physical systems that are equally well known, will
be fully determined by the known laws of nature. This point of view underscored
the sciences throughout the eighteenth and nineteenth centuries. Einstein’s Theory
of Relativity expanded the notion of determinism by supplying the equations that
would allow one to translate measurements of length, time, and mass from one
inertial reference frame to another. As far as Einstein was concerned, a complete
theory of nature would give a complete knowledge of any physical system. If a
theory was unable to give such complete knowledge, then this implied that the
theory itself was incomplete.

The necessary precondition for this view of nature is that the process of de-
termining the physical properties of an object will in no way alter the properties
themselves. But this was the very premise that quantum mechanics called into
doubt. Instead, quantum theory claimed that at atomic levels the process of meas-
uring a physical system imparted enough energy to change the state of the system
being measured. Furthermore, theoretical consistency seemed to demand that en-
ergy states within an atom had to be discreet and discontinuous. The process of
measurement, then, caused fundamental discontinuous changes in the energy states
of atomic particles and hence made it impossible to make a certain determination
of a particle’s energy state before the measurement. The implication, therefore,
was that the state of a physical system before measurement could not in prin-
ciple be known. One could predict the probable states of the system, but this was
not the deterministic system of Newtonian mechanics. Making the situation even
more problematic was the notion that physical systems at the atomic level showed
signs of having the properties of both waves and particles. Which set of properties
showed up in experiments depended on the type of properties being measured for.
What was one to make of such counter-intuitive ideas?

Bohr’s attempts to make sense of these apparent contradictions led him to
formulate a theoretical perspective that even he believed entirely recast our un-
derstanding of nature (Folse 1985). To Bohr, the uncertainty principle, quantum
jumps, and quantized energy levels were not symptoms of an incomplete theory,
but rather the inherent characteristics of nature at the atomic level. They thus had
to be embraced rather than overcome. Of course, Einstein could not have disagreed
more.

3. Formal Principles of Quantum Mechanics Illustrated by the Quantum
Pendulum

Today, the practicing physicist or aspiring physics student rarely retraces the color-
ful and rich history of the development of quantum mechanics. As in most areas of
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physics, textbooks present a polished and consistent mathematical scheme with few
traces of history remaining. To complete the picture of quantum mechanics we wish
to paint for the ‘non-science major’, we now turn to a brief modern presentation of
the basic principles of quantum mechanics (Shankar 1994) with the aid of using the
pendulum to demonstrate the counter-intuitive nature of the theory. Although the
mathematics used is elementary and accessible to general students, the concepts
are far from trivial.

3.1. STATE OF THE PENDULUM

The quantum mechanical description of a pendulum is markedly different from
the classical model reviewed in 2.1; however, this discussion parallels that of the
classical pendulum. The quantum state of the bob is fully determined by the wave
function or state, |�〉, which we can visualize as an arrow. The initial state is
assumed known |�(t = 0)〉. The quantum state of the bob at any future time,
t , we write as,

|�(t)〉. (3)

The primary problem in quantum mechanics is to find the wave function at time
t given the initial state and the forces that act on the particle. The way this is
determined is by solving the fundamental equation of quantum mechanics (i.e., the
Schrödinger equation), which is called the quantum equation of motion,

|�(t)〉 = UopUU (t)|�(t = 0)〉, (4)

where UopUU (t) is called the propagator operator. (We will not consider how this op-
erator is found other than to say it depends on the forces acting on the particle.) The
mathematical procedure by which |�(t)〉 is found is not crucial to the explanation
of quantum mechanics to general students.

3.2. WHAT DOES |�(t)〉 TELL ABOUT THE PENDULUM?

One of the first hurdles students must jump is to gain an understanding of just what
|�(t)〉 is telling them. Whatever information it contains, it is dogma in quantum
mechanics that it contains all the information we are able to know about the bob.

Suppose it is desired to know some property of the pendulum, for example, its
energy, E. To this particular property we associate an operator, HopHH that is called
the Hamiltonian operator, which is simply a mathematical rule stipulating what HopHH

does when it is multiplied times the wave function, |�(t)〉. Another fundamental
principle of quantum mechanics states that multiplying Hop times |�(t)〉 is the
same as, for certain special choices of |�(t)〉 (denoted |�i(t)〉), a number Ei , times
|�i(t)〉,

HopHH |�i(t)〉 = Ei |�i(t)〉. (5)
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Figure 1. The two-state system in the mixed state. The eigenstates form the axes.

The above equation is called the eigenequation. Any wave function that obeys
this equation is called an eigenfunction of HopHH and the Ei is called an eigen-
value of HopHH corresponding to eigenfunction |�i(t)〉. Henceforth, when |�(t)〉 is
an eigenfunction |�i(t)〉, we will use the common notation, |Ei〉, to refer to this
eigenstate.

For conceptual physics students, it is not important to know how to solve the
eigenequation; rather, it is essential to understand what the solutions tell about
the system. Quantum mechanics assumes that, if the pendulum is described by a
wave function |�(t)〉 and an energy measurement is made on the pendulum, then
the measurement will only yield one of the eigenvalues Ei of HopHH . An important
question is, given the wave function of the particle |�(t)〉, how does this give the
probability of measuring a given energy eigenvalue Ei? To answer this question,
it is advantageous to discuss by example a simpler case, the so-called two-state
system. We will then return to the pendulum.

As the name implies, a two-state system has only two energy eigenvalues. We
denote these numbers as E1 and E2. The corresponding eigenstates are written,
|E1〉 and |E2〉. Imagine a Cartesian coordinate system with |E1〉 and |E2〉 directed
along the x- and y-axes, respectively. The state of the system |�(t)〉 may be viewed
as a vector in this coordinate system (Figure 1).

In Figure 1, the vectors, s1|E1〉 and s2|E2〉, represent the projection of |�〉 onto
the coordinate axes, i.e., they are the shadow of |�〉 projected along the horizontal
and vertical axes in the figure. In general, these projection vectors add vectorially
to give the total vector,

|ψ〉 = s1|E1〉 + s2|E2〉. (6)

The state given by Equation (6) is not a single eigenstate, but is called a ‘mixture’
of eigenstates.
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The assumption is made that if the particle is in the mixed state then the prob-
ability, P(Ei), of measuring the energy and obtaining the energy eigenvalue Ei is
given by,

P(Ei) = s2
i , where i = 1, 2. (7)

Accordingly, s2
1 + s2

2 = 1, since probabilities must add up to one.
The two-state system showcases the property of quantum mechanics that gives

the field its name: quantization. In classical physics, most variables that describe a
system, such as energy, can take on any value; i.e., energy is a continuous variable.
In quantum mechanics, variables are often restricted or may not be continuous.
In the two-state system, it is possible to measure only one of two values for the
energy, E1 or E2, and so the energy of the system is quantized and not continuous.
The best known example of quantization is the allowed energies of an atom.

During the measurement of the energy, the mixed state wave function suddenly
changes to the eigenstate |Ei〉 whose eigenvalue Ei is found in the measurement. In
Figure 1, the state vector shown, |�〉, rotates suddenly to |Ei〉 in a transition aptly
phrased ‘the collapse of the wave function’. Notice after the measurement one is
certain of the state of the system, |Ei〉, while before the measurement knowledge is
probabilistic in the mixed condition. Before the measurement is made, the expected
value of energy, written 〈E〉 and also called the mean or average value of the
energy, is given by,

〈E〉 = P(E1)E1 + P(E2)E2 = s2
1E1 + s2

2E2. (8)

For students who are comfortable with the concept of standard deviation, it is
meaningful to introduce uncertainty at this juncture, particularly given the import-
ance of the term in quantum mechanics. To accomplish this, imagine there are N
identical and independent two-state systems, each one described by the same state
vector |�〉. Suppose measurement of the energy finds n1 of the systems to have
energy eigenvalue E1 and finds n2 of the systems with eigenvalue E2. Evidently,
N = n1 + n2 and

P(E1) = s2
1 = n1/N and P(E2) = s2

2 = n2/N. (9)

The uncertainty in energy is the standard deviation of these measurements,

�E = [〈E2〉 − 〈E〉2]1/2. (10)

Quantitative Example: A Biased Coin
To further illustrate the two-state system in the context of an everyday phenomenon
familiar to students, suppose there is a collection of N identical coins. A coin can
exist in a state of being a head, |Head〉, or a tail |Tail〉; these are the eigenstates of
the ‘flip the coin’ operator, FopFF . Notice the only possible measurable states are
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the eigenstates. Let the eigenvalue of |Head〉 be +1 and that for |Tail〉 be −1.
Therefore,

FopFF |Head〉 = +1|Head〉 and FopFF |Tail〉 = −1|Tail〉.
For the sake of the argument, assume the coins are a bit biased – there is a

greater chance of the coin landing on heads than landing on tails. To be precise, let
the probability of heads be 2/3 and tails 1/3. Each of the N coins in the collection
of coins would then be described by the state,

|�〉 = (2/3)1/2|Head〉 + (1/3)1/2|Tail〉.
The wave function |�〉 would cast a longer shadow on |Head〉 than on |Tail〉 indic-
ating the greater likelihood of landing on heads. The average value and uncertainty
of FopFF are then found to be,

〈F 〉 = (2/3) · (1) + (1/3) · (−1) = 1/3, and

�F = [(2/3) · 1 · 1 + (1/3) · (−1) · (−1) − (1/3)2]1/2 = [8/9]1/2

3.3. COMPLEMENTARITY AND THE HEISENBERG UNCERTAINTY PRINCIPLE

In quantum mechanics, certain properties or ideas are said to complement each
other. For example, the concept of a particle complements that of a wave. Early
experiments indicated that in some situations what was normally thought of as a
wave behaved more like a particle. At a very fundamental level, nature exhibits
this dualism in wave-particle duality. It should not surprise us that classical models
which emerge from our experience with the macroscopic world might fail when
extrapolated to the microscopic world, where the language and models of classical
physics may prove inadequate.

The best known example of complementarity is the position and momentum of
a particle. It is found that the more precisely the position of a particle is known,
the less precisely the momentum is known. The Heisenberg Uncertainty Principle
relates this imprecision between complementary variables in the mathematical
statement,

�x�p > h/2 (11)

where �x is the uncertainty in position and similarly for the momentum. In Equa-
tion (11), h is a universal constant, Planck’s constant. The uncertainty is an estimate
of the error in measurement of that quantity; it is the standard deviation of the
measurements.

Using the pendulum as an example, the roots of the uncertainty principle are
found. When a measurement of the bob’s position is made, the bob’s momentum is
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changed by the measurement. Consequently, measurement of x and then measure-
ment of p gives different results than if these measurements were carried out in the
reverse order. Equation (11) ultimately arises from this ‘non-commutative’ aspect
of quantum measurements. It turns out that for certain other pairs of variables,
measuring one variable in the pair – such as, what time it is – disturbs the value
one subsequently measures for the other member of the pair, the energy of the
bob. Not all variables interfere with each other in this fashion; instead, some are
commutative.

3.4. THE BORN POSTULATE

We return now to the discussion of the pendulum begun in Section 2.1. Recall that
the classical pendulum had a greater chance of being found near the extremes of
its motion, the sand piled higher there. In quantum mechanics the probability of
finding the bob at a given location is an important issue. Suppose a student asked
Born the question, “What is the chance of finding the bob between position x and
position x + �x”? Born would have argued that the probability, �P , is based on
the value of the pendulum’s wave function �(x) at position x and is given by,

�P = �2(x)�x. (12)

In words, the probability of finding the bob near x is proportional to the square of
the wave function at x. The wave function tells us where we would likely find the
bob.

3.5. CORRESPONDENCE PRINCIPLE REQUIREMENT APPLIED TO THE

PENDULUM

The Correspondence Principle introduced by Bohr begins with the observation that
classical physics works very well in the everyday world. Quantum mechanics is
needed primarily to describe the microscopic world. Bohr’s principle states that
any new theory (quantum mechanics) must agree with an older theory (classical
mechanics) in those circumstances for which the older theory gives the correct
predictions. Applied to quantum mechanics, this requires quantum mechanics to
agree with classical predictions for macroscopic systems.

The pendulum affords a direct way of illustrating the Correspondence Principle.
Moreover, an understanding of the pendulum has wide ramifications since any
mechanical system that has an equilibrium will behave as an oscillator. Figure 2
is a graphic illustration typically used to visualize this relationship. In the figure,
the vertical axis graphs (roughly) the probability of finding the pendulum bob in a
given region around position x versus the position of the pendulum bob, x, on the
horizontal axis. The dotted curve in the figure is the classical prediction of Section
2.1. Notice the higher chance of finding the bob at the extremes of the motion.
The oscillatory curve is the quantum probability corresponding to the tenth energy
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Figure 2. The classical (dotted curve) and quantum (solid curve) probability versus position
for an oscillator. The oscillator is in the tenth energy level. The vertical lines show the limits of
the classical motion, the classical turning points. The classical probability distribution is based
on the fraction of time the bob is in a given interval on the x-axis. (For a detailed derivation of
this distribution, see Anderson (1971, pp. 198–199.)) [Note: This figure is provided courtesy
of Rod Nave, Georgia State University, Atlanta, Georgia, as retrieved from his educational
website, http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc6.html.]

level (an excited state) and therefore a nearly macroscopic pendulum, close to the
everyday world. Because the Correspondence Principle states that, as the quantum
numbers become large, the predictions of quantum mechanics become the same
as those of classical mechanics, the diagram helps one visualize how the quantum
pendulum is approaching the classical one. Not shown in the figure is the quantum
probability for the ground state – the microscopic world of atoms. For this state,
the quantum probability curve would look like a bell curve centered on the origin
and much different than the classical curve.

In summary, quantum mechanics creates a shift from classical mechanistic
determinism to a new quasi-deterministic viewpoint. In the nineteenth century,
Poincare proved that any finite mechanical system obeying Newtonian mechanics
will, given enough time, return to any initial mechanical state (Huang 1963). Tak-
ing this point of view to its extremes, some concluded that all mechanical properties
of the universe are determined and, if thought is simply a result of mechanics, then
all thought is determined as well. Since the time of Newton through Einstein, some
have argued in favor of this ‘clockwork’ model of the universe.

In the sense that it introduces probability into the description of the state of a
system, quantum mechanics is not deterministic. However, it is deterministic in the
sense that this probability ‘fluid’ moves in space according to a fixed law of nature,
the Schrödinger equation. Given the wave function at all points of space, then the
wave function at all future times and places is strictly determined. The knowledge
the wave function gives is of a probabilistic nature, but that knowledge evolves in
time according to a fixed law.
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4. The Challenges of Teaching Quantum Mechanics to Non-Scientists

In introducing quantum theory to non-science students, we have pondered several
questions: Is there any purpose to having students learn mathematical procedures
that they will most likely never use once they have left the science classroom? On
the other hand, might not banishing mathematics from physics give a superficial,
distorted understanding and does not this go against the grain of how physics pro-
gressed historically? How does one encourage students to take seriously a subject
that at first seems so removed from everyday experience? How can we motivate stu-
dents to take an active interest in the theory and its applications? Certainly quantum
mechanics is fundamental to our understanding of nature. Furthermore, it is often
as important as classical mechanics in the development of modern technologies.
Consequently, we believe that any basic understanding of modern science and
technology requires some understanding of quantum mechanics. But the question
remains, how can we make the teaching and learning of the subject as accessible
as possible without becoming overly vague and incoherent?

Since the onset of quantum thinking, considerable knowledge has accrued about
how people learn (Arons 1990; NRC 2000). [For an overview of how people
learn in relation to physics education, see Redish & Rigden 1996.] Interdiscip-
linary learning and memory research provide us with insights into how the mind
processes stored and new information. Successful students are able to find relation-
ships among ideas and not just remember isolated entities devoid of meaning and
intellectual utility. In a review of literature, Brekke (1994) identifies myriad and
complex variables that affect success in high school and college physics, including
problem-solving ability, visual-spatial ability, gender-related factors, motivation,
teaching style and curricula. Even decisions to take physics courses are affected by
institutional, cultural, and social factors.

What, then, should be major goals of conceptual physics courses? In 1912,
Mann wrote of the essence of physics in a book about physics teaching:

The spirit of physics is not composed of Newton’s laws of motion, Boyle’s law, et al.; and this spirit
cannot be imparted to pupils by imposing on them ideas, arranged in a logical system, to be learned
by fair means or foul. The spirit of physics is the intuition of universal relatedness, which the pupils
already have; and the function of physics teaching is to assist them in making that intuition concrete
and in proving its validity. (p. 216)

Further, he offers the following suggestions that are relevant to the current context
of physics learning:

Our present problem is, (1) to find out how the pupils actually do observe and think, and (2) to
discover by experiment how the material of physics may be used most effectively to develop ideals
of scientific method while acquiring a mastery of the most useful physical principles. (p. 287)

How do students learn ‘relatedness’ in physics and how do we discern how
they think as they attempt to learn physics? Research indicates that students learn
through cognitive conflict, much like the emergence of new theories in a scientific
revolution (Kwon et al. 2000; Villani 1992). Disequilibrium occurs when data
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contradict current theory and new conceptualizations result when equilibrium is
restored, sometimes supporting a higher intellectual developmental level (Piaget
1985). Posner, Strike et al. (1982) assert that learning is inquiry by means of
a conceptual change model (CCM) in which a current conception is no longer
adequate and a new conception is produced by accommodation in the cognitive
structure of the individual. Further, they hold that, because accommodation is tied
to a student’s fundamental assumptions and knowledge of the world, we as edu-
cators should aim to develop in students an awareness of their assumptions and
those implied in scientific theories; consistency in their beliefs about the world;
an appreciation of the historical and philosophical foundations of modern science;
and, an appreciation of the worth of new conceptions (Posner et al. 1982, pp. 224–
225). Students often pass through transitions in model making (Villani 1992). Tao
and Gunstone (1999) concur with CCM, but found that conceptual change may
occur progressively and differ by context, thus affecting transfer to new situations.
Students need to be reminded of analogous contexts and commonalities when faced
with a new situation. For example, computer simulations can be useful when used
in groups in which students can explore, manipulate, and negotiate meanings in
various contexts.

Context and personal cognitive elements must be addressed in physics learning.
More insights are needed into intricacies of student learning pathways, especially
those of non-science majors (Tobias 1990). Petri and Niedderer (1998) have iden-
tified examples of ‘cognitive attractors’ that are likely to appear on the road to
understanding. Often scientifically incomplete or erroneous, these attractors are
affected by meta-cognitive beliefs and may vary in strength as instructional ex-
periences lead to more accurate conceptual understanding. Current knowledge is a
powerful gatekeeper to developing new knowledge.

4.1. TEACHING STRATEGIES

Mental models are critical to science learning as they are means by which learners
make predictions and formulate explanations. However, some students are mired
in mathematical abstractions that have limited meaning for them. How, then, are
the complex, abstract ideas constituting quantum theory to be communicated to
students who may not pursue further formal science courses?

Using research reviewed and acknowledging the challenge in communicating
quantum ideas to a general audience, we have identified a series of strategies that
will support the general education conceptual physics course that we are planning.
The course will be our initial teaching manifestation of the IPP, and we expect
others (such as linked courses and faculty discussion groups) to follow.
1. Rutherford (2001) argues for the inclusion of history and philosophy of science

as an ingredient of science literacy. Science is a complex human endeavor and
the history can be depicted in a schematic to show the major players, their
views, and emergence of new ideas (Leary & Kippany 1999). We intend to tell
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the story of the dialog, controversy, and passion surrounding the emergence
of quantum theory by the scientists in the early part of the twentieth century.
We will explore the Bohr and Einstein debates as an example of the impact
of world view on data interpretation (Bohm & Peat 1987). Quantum theory
accepts duality, an understanding so important that Bohr actually used the yin
yang symbol when knighted (Hobson 1996). The need for addressing conflict
in views is reinforced by Kalman (2002), who advocates having students use
a designated science philosopher’s world view when studying their discipline.
An interplay of learning models occurs as students study scientific process
and how theories emerge, thereby refining their own views and their critical
thinking skills.

2. We will introduce semantics (conceptual understanding) prior to syntax (math-
ematical formulas), in line with research reported by Greca and Moreira
(2002), reflecting the work of the Physics Education Group. Their findings
encourage tapping into students’ tacit abilities to employ analogies, idealiz-
ation, and abstraction as they develop their mental models, idiosyncratically
and recursively. We will use their findings to explicitly treat the modeling
process by using the pendulum as the transition vehicle from the locality and
determinism of classical thinking (classical pendulum) to the probability, non-
locality, uncertainty, and dualism of quantum thinking (quantum pendulum).
In so doing we will study the nature and impact of scientists’ world views as
we explore the shift from the classical to the quantum pendulum. For instance,
we will end discussion of the classical pendulum by equating it to Einstein’s
world view.

3. We will acknowledge that learning occurs in social settings by using peer
collaboration and reflection, rather than simply reproducing information (John-
ston et al. 1998). Success in collaborative physics learning is related to
resolving cognitive conflict by co-construction in which students consider and
confront one another’s varied ideas before constructing problem solutions. This
kind of shared, reflective exercise involves implicit and tacit awareness and
precedes individual meaning making, which seems to improve with exposure
to varied contexts (Tao 2000). In addition, it mirrors the process of dialog and
debate that led to the evolution of quantum theory.

4. As assessments often limit inquiry in a course (Lawrence & Pallrand 2000),
we will assure that our assessment strategies are matched to our learning goals
in order to provide appropriate feedback to students and to ourselves as in-
structors. Alternative assessments, such as student-generated concept maps,
will assist us and the students in analyzing their sense of relevant concepts and
how they are related. As we attempt to build bridges between students’ con-
ceptions and the fundamental tenets of quantum theory, we will map students’
conceptual change (Dykstra et al. 1992), realizing the tenuous nature of many
students’ mental models, and identify ‘cognitive attractors’ that accompany
the transition from classical to quantum thinking. Indeed, we look forward to

409



MARIANNE B. BARNES ET AL.

a research agenda that focuses on students’ thinking about quantum theory as
we explore the quantum pendulum and related conceptual schemes.

5. Acknowledging the need for assistance with spatial representations, we will
use computer simulations to assist with conceptual transitions as we employ
multiple modes of learning (Peña & Alessi 1999), supported with classroom
dialog. Because the notion of uncertainty is fundamental to quantum theory
and yet so often misunderstood, we will explore ways to make it more tangible
(e.g., in exploring the meaning of standard deviation).

6. We will allow time for students to reorganize their thoughts and accommodate
new information, realizing that a time investment early on will yield a return
later in the course (Nussbaum 1998). In the spirit of science education reform,
we will free ourselves to choose depth over breadth of content coverage and to
link quantum ideas to current scientific and technological advances.

5. Conclusion

As a team with diverse individual backgrounds, we feel that we have benefited from
the ongoing dialog and research that have informed our constructing a rationale
and plan of action for teaching quantum theory to non-science students. In that
conceptual change is often accompanied by cognitive and even emotional struggle,
we hypothesize that learning key aspects of quantum theory, itself fraught with
cognitive dissonance, will meet with less student resistance than would theories
based on their own experiences in a classical world. Perhaps ‘letting go’ is easier in
a quantum milieu. We intend to develop a research agenda around that possibility.

In addition to our plans to teach quantum ideas in a conceptually-based
undergraduate course, we intend to work with high school teachers on their under-
standing of quantum theory and its importance, as we believe that quantum thinking
should begin in secondary schools. The quantum world appeals to the imagination
and students should not be deprived of opportunities to appreciate the stories and
world views connected to the emergence of modern science. We believe that the
pendulum will serve our students well as they journey toward understanding the
duality of their worlds.
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Notes

1 In this article we are primarily concerned with students majoring in the humanities and the social
sciences. We presume that conceptual physics courses are designed to introduce such students to the
ideas of modern physics with minimum use of the mathematics commonly associated with courses
for prospective majors in the physical and biological sciences. We thus use the labels ‘non-science
students’, ‘conceptual physics students’, and ‘general students’ synonymously to refer to these more
traditional students. Also see Hobson (1996).
2 The history of quantum mechanics is a rich field within the history of modern science. The
best recent treatment can be found in Kragh (1999) (see references), which includes an extensive
bibliography of the secondary literature. See also contributors list to Science & Education 12:(5–6).
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Abstract. A pendulum ‘engine’ with dynamic parameters can be created and pendulum functions
manipulated and analyzed using interactive elements in Flash. The effects of changing the damping
(convergence) properties, initial release angle and initial velocity conditions can be explored. The
motions then can be digitized using the Flash Digitizer 1.1, exported and graphed. The powerful
properties of actionscripting, coupled with the flexible interactivity of the Flash environment, allows
for attractive and mathematically driven Flash movies. Along with the accessibility and interactive
nature of the Web, and by contextualizing the history and mathematical applications of pendulum
motions, this lesson becomes teacher and student-friendly for physics and mathematics classrooms.

1. Introduction and Rationale

If we want to understand why our instruction works or doesn’t, we have to understand something
about how our students’ minds function.

– Robert Redish - Millikan Award Lecture, AAPT, Lincoln, NB, Aug 1998.

Based in current thinking about learning theories, educators are making predic-
tions that effective learning environments in the 21st century will function quite
differently from the structure of classroom settings in the past century (Pellegrino
1999). ‘Extremely powerful information technologies will become ubiquitous in
educational settings, fundamentally changing the nature of learning environments
at all educational levels’ (Schoenfeld 1992). In the last 10 years, new facilitating
technologies have been developed and implemented with an ‘exponential’ growth
in data, information and knowledge. Research that attempts to gain insight into and
design a pattern for change of the shifting and developing roles of both the teacher
and the student has begun in earnest. Definitive studies about ‘naïve conceptions’

� This material is based on work supported by the National Science Foundation under Grant No.
008336.
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that students may have about physics have been undertaken by various individuals
and research groups for the last twenty five years and more, (Riche 2000).1

In addition, there are many others researching in the areas of cognition and
learning, especially in the areas of educational psychology, innovative computer
technologies and the study of computer-human interactions.2

Cognitive research has shown that learning is most effective when four funda-
mental characteristics are present: (1) active engagement of students in the lesson;
(2) participation in a group setting; (3) frequent interaction with feedback; and
(4) connections to real-world contexts are present (Roschelle et al. 2000). Brown
(1992) proposes that richer and more lasting knowledge acquisition ensues as
a more in-depth probing of students occurs. The effective use of Diagnoser is
an example of this active engagement, when run in parallel with other instruc-
tional activities, such as problem-solving, laboratory activities, after the individual
student ‘facets’ have been discovered and targeted (Minstrell 2001).3

Integrally, teachers need a fundamental understanding of the history and philo-
sophy of science and its nature. ‘Knowledge of science (science content and
method), and knowledge about science (its history, philosophy and sociology) are
both important components of scientific literacy’ (Matthews 2000). In addition,
educator-teachers should not only have a rich understanding of their content, but
also its teaching context. Science is an explanatory and exploratory system used to
account for natural phenomena (Cobern & Loving 1991).

The study of the pendulum offers a ‘unifying concept’ through which the study
of the physical world can be taught in a powerful context. In the study of the
history of mathematics and science, invention and progress have been accelerated
by unexpected and novel applications of new discoveries.

2. Some Science Educational Research Perspectives

The most serious criticism which can be urged against modern laboratory work in physics is that it
often degenerates into a servile following of directions, and thus loses all save a purely manipulative
value. Important as is dexterity in the handling and adjustment of apparatus, it can not be too strongly
emphasized that it is a grasp of principles, not skill in manipulation, which should be the primary
object of General Physics courses. (Robert A. Millikan, in Redish 1990).

An important area of cognitive research in physics is the study of misconceptions.
Many researchers have shown that misconceptions:

(1) Are extremely common;
(2) Are not easily displaced;
(3) Can be found (even) among experts; and
(4) Hinder understanding.

It appears that people continually and unconsciously build models of how the
world operates. The human brain seeks patterns and quickly establishes categories.
Patterns of experience are put into models, but often, these models are based on in-
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sufficient experience. Furthermore, these models, misconceptions included, affect
how later experiences are interpreted.

From the results of their ‘balance scale task’, Siegler and Klahr conclude that
acquisition of new knowledge depends on the interaction between existing know-
ledge, ‘encoding processes,’ and the instructional environment (Siegler and Klahr
1999, p. 197).

Learning in interactive environments allows students not only to make decisions
about the physical situation that is represented, but also to interact with it, proceed-
ing from familiar schemas toward constructing new ones. There is wide-spread
agreement by many educational researchers that prior experience and precon-
ception of physical situations can ‘be at odds’ with newly presented concepts.
Consequently, learners will distort this presented material, learning something op-
posed to the educator’s intentions, no matter the quality of the lesson (Roschelle
2000). Prior knowledge appears to be simultaneously necessary and problematic.
Thus, in order to invoke a move toward conceptual change, making the most of
each novel experience, an ‘anchor’ in prior experience must be constructed and
discussed. Further, instructional designs must include strategies that endeavor to
illuminate, discuss and take steps to resolve these conflicts. This requires very care-
ful consideration of the assumptions that are made about knowledge, experience
and learning.

Many conceptual change explanations have been attempted, although they can
at most claim some limited lasting success. Learners can succeed in conceptual
change as long as appropriate care is taken in acknowledging students’ ideas,
embedding them in an appropriate social discourse, and providing ample support
for the cognitive struggles that will occur, combining the theoretical frameworks
of Piaget et al. (Roschelle 2000). There have been some exemplary endeavors,
however, most notably:

• Clement, Brown & Zeitsman (1989) have developed a science curriculum
based on ‘anchoring analogies’ – everyday concepts from which scientific
concepts can grow.

• Minstrell (2001) has developed classroom techniques for gradually restructur-
ing students’ conceptions by identifying students’ facets of learning.

• White (1993) has developed a computer-based curriculum called ‘Thinker
Tools’ which develops a scientific concept of motion gradually over sev-
eral months and includes explicit attention to differences between scientific
discourse and ordinary discourse.

• Roschelle (1991) studied students’ learning from similar computer software
and concluded that students learn the scientific concept of acceleration through
a series of gradual transformations of their prior knowledge.

• Van Heuvelen & O’Kuma developed Active Learning modules, using ‘mul-
tiple representation problem-solving, and along with Dave Maloney, developed
Ranking Tasks for physics problems, providing authentic and interactive
learning environments for students.
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Table I. Comparison of the differences in the learning styles of novices and experts

Experts Novices

Knowledge characteristics

Large store of domain-specific knowledg Sparse knowledge set

Knowledge richly interconnected and hierarch-
ically structured

Disconnected and amorphous structure

Integrated multiple representations Poorly formed and unrelated representations

Problem-solving behavior

Conceptual knowledge impacts problem-solving Problem-solving largely independent of con-
cepts

Performs qualitative analysis Manipulates equations

Uses forward-looking concept-based strategies Uses backward-looking means-ends tech-
niques

Retrieved from, http://umperg.physics.umass.edu/perspective/researchFindings.

summarizes some of the differences between experts and
novices that cognitive research has studied and revealed. One of the tasks of excel-
lent curriculum materials is to encourage beginners to think more like experienced
problem-solvers.

3. Some Math Educational Research Perspectives

[The universe] cannot be read until we have learnt the language and become familiar with the charac-
ters in which it is written. It is written in mathematical language, and the letters are triangles, circles
and other geometrical figures, without which means it is humanly impossible to comprehend a single
word.

– Galilei, Galileo, Opere Il Saggiatore p. 171 (Woodard 2000).

‘It is widely accepted in the psychological literature that people organize their
experiences mentally via mental representations of familiar classes of experience
[schema]. . . . Attached to a schema are its typical features, some knowledge related
to it, and typical ways of behaving when that schema has been called to mind
(Schoenfeld 1998).

A generally accepted perspective on the nature of learning is that it is the ‘pro-
cess of conceptual change’, integrating new concepts with previous knowledge and
experience, and integrating old conceptions with new perspectives (Riche 2000).
Although much of what is written on conceptual change is built upon the Piagetian
concepts of assimilation, accommodation and cognitive disequilibrium, some cur-
rent research on the brain is critical even outright hostile to the methods of Piaget,
Inhelder and others. Stanislas Dehaene, mathematician and cognitive neuropsy-
chologist, has carried out careful and definitive research on how humans acquire
and use number sense. ‘According to the theory first set forth some fifty years ago
by Jean Piaget, logical and mathematical abilities are progressively constructed in
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a baby’s mind by observing, internalizing, and abstracting regularities about the
external world. . . . [He] believed that number.must be constructed in the course of
sensorimotor interactions with the environment’ (Dehaene 1997, p. 42). Dehaene
targets what he calls ‘Piaget’s errors’. He counters some of Piaget’s findings and
research methods by asserting:

• Children not only have mental representation of numbers, but have it soon after
birth.

• Piaget relied on an ‘open dialog’ between experimenters and children, other re-
searches, examining similar tasks demonstrated that test results varied widely,
depending on the context in which questions were framed and the motivation
of the subjects tested (Dehaene 1997, p. 44).

• Children were led by Piagetian researchers to misinterpret instructions and
chose the ‘longest row’ rather than the one that had more items.

The results of more recent ‘brain research’ has yielded evidence that children
not only do not have an ‘optimum developmental stage’ at which numbers make
sense. ‘From an evolutionary viewpoint, it is rather remarkable that nature founded
the bases of arithmetic on the most fundamental laws of physics. At least three laws
are exploited by the human “number sense”.’

• First, an object cannot simultaneously occupy several separate locations.
• Second, two objects cannot occupy the same location.
• Finally, a physical object cannot disappear abruptly, nor can it suddenly surface

at a previously empty location; its trajectory has to be continuous’ (Dehaene
1997, p. 60).

This link between discrete physical objects and numerical information (often
called one-to-one correspondence) endures in many children up to a much older
age and can even inhibit mathematical development.

As a child develops mathematical representations and conceptions about the
physical world, conclusions they may draw are based on observation and experi-
ence with objects in the real world. When students learn physics, they bring these
naive conceptions to the classroom. Careful questioning, discrepant situations and
demonstrations may illuminate these ‘native ideas’ which must be recognized, vo-
calized and analyzed, before they can be incorporated into a more sophisticated
view of the physical world. Bruer defines representations as the link between a real
world and our internal processing systems. ‘Our initial problem representations are
important because they shape the course of our problem solving’ (Bruer 1999, p.
32–22).

WHY THE PENDULUM? AN ‘INTEGRATED’ MODEL

U.S. physicists have solved a 350 year old riddle of why the pendulums of two clocks become
synchronized. The clocks were the first example of spontaneous synchronization, a phenomenon
found throughout nature from cells to the Solar System (‘Ancient Pendulum Conundrum Solved’)
(Whitfield 2002).
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Table II. Comparison of NCTM and science education standards, pendulum motion

The power of functions to simplify complex situations and to predict outcomes can be
demonstrated by observing a phenomenon involving an underlying functional relationship
between two variables, gathering and plotting observational data, fitting a graph to the plotted
points, using the graph to formulate the relationship between the variables, and then predicting
outcomes for unobserved values of one of the variables. For example, students could record the
number of swings during a given time period for pendulums of differing lengths, graph the
relationship between the number of swings and the length of the pendulum, formulate this
relationship, use it to predict the number of swings for pendulums of other lengths, and validate
their predictions of the motion of a pendulum through written lab reports.

National Science Education Standards, 9

Teaching Standard A. (Community of Learners.) Teachers of science plan an inquiry-based
science program for their students. In doing this,
‘Students will be using an inquiry-based approach to study pendulum motion. In addition, the
students will develop computational models that add to their understanding of the periodic
motion of a pendulum’.

Content Standard A. (Understanding Scientific Inquiry). Science as Inquiry – As a result of
activities in grades 9-12, all students should develop:
Students will be using an inquiry-based approach in their initial study of pendulum motion.

Content Standard E. (Understanding abilities of technological design). Science and Technology
– As a result of activities in grades 9–12, all students should develop:
‘Students will develop computational models of ipendulum motion using spreadsheets. Students�
will use computational modeling techniques using (STELLA).4 And, they will also study the
pendulum problem using modeling software.

Both the National Center for Teaching of Mathematics and the National Science
Standards include pendulum motions specifically. A portion of each standard,
dealing with pendulums and their motions is given in Table II.

Pendulum motions figure prominently in several accepted sources for student
misconceptions about motion.5 The study of pendulum motion has pervaded the
development of Western Thought. Scientific investigations began in the fourteen
century experiments of Galileo and the development of the pendulum clock by
Huygens. This figured into the solution of the measurement of longitude. Next
was the establishment of the behavior of objects under gravitational force, the
conservation laws and Newton’s synthesis of the laws of classical mechanics –
supplanting an Aristotelian view of physics with the ‘new’ science of observation
and measurement? Mathematics, physics, philosophy, politics, religion, sociology
and historical perspectives are all intricately involved in the study of the pendulum
and its motions.

Students are familiar from infancy with experiences involving such motions,
from the swaying of a lamp to the tetherball on the playground. The pendulum
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Figure 1. Picture represented by permission.6

represents a primordial motion not unlike those of the fetus in a mother’s womb, in
the simple harmonic motions of a rocking chair and in peristalsis, the progressive,
wavelike contracting of the longitudinal and circular muscles, primarily in the di-
gestive tract and in some other hollow tubes of the body. Peristaltic waves occur in
the esophagus, stomach and intestines, as is shown in Figure 1a and b.

Personal and recurrent experience, however, does not make the mathematical
representations of such motion intuitive. Careful analysis of concept and function
must be undertaken in order for the student to understand the wide implications of
these motions.

In the last half of the 20th century, information processing models became the
dominant view of how knowledge was transferred. ‘Information processing psy-
chology builds on the metaphor of mind as a computer of symbolic data, . . . the
major contribution of IP is the production of innovative representational systems
and sound scientific methodology for analyzing learning processes’ (Roschelle
2000).

In the last ten years, ‘situated cognition theories,’ have emerged as a counter-
point to IP theories, maintaining that learning occurs within experiential transac-
tions, ‘co-ordinations’ between a student and the environment. Situated learning is
a general theory of knowledge acquisition. It has since been applied in the context
of technology-based activities for learning that focus on problem-solving skills
(Kuhn 1992). Converting ‘recalcitrant reasoning’, into well-understood forms can
succeed only so long as the older forms are of less prominence than those
that fit with the constructed knowledge. Until the computer revolution, reason-
ing using non-sequential representation was soundly discounted as ‘illogical’, or
‘anti-logical’ (Barwise & Etchemendy 1998).

Tapping research in the areas delineated above, interactive stand-alone models
can be developed to positively impact the process of student concept- building in
physics. Beginning with the motions of the pendulum, which have been studied
for centuries, if not millennia, as a ‘vehicle for conceptual change’, students can
interact, derive and describe myriad situations in which these actions apply.
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Figure 2. Force distributions for a simple pendulum.

4. Modeling the Motion of a Simple Pendulum

Modeling the mathematics in a modern way (for Galileo had no equations and
solved his problems by geometric proof), Figure 2, shows a distribution of force
for an idealized pendulum of mass (m), suspended from a ‘massless’ string or rod,
of length (L). As the pendulum is moved to its maximum positive displacement
from rest (as pictured), and released, it will swing to the left some distance (max-
imum negative displacement). The time it takes to swing one complete cycle (from
positive maximum and back again, for example), is one period of the pendulum.

The forces acting on the pendulum bob are:

• The gravitational force on its mass (weight) compels the motion.
• The force exerted by the string (tension), constrains the circular path.
• A damping force (if any).

Pendulum Motion: Modeling dθ/dt :
We make the following definitions and set notations. Let θ(t) be the correspond-

ing angle with the vertical (see Figure 2). Then −mg sin θ be the tangential force
(the only force producing motion) and mg cos θ be the radial force with respect to
the path (exactly offset by the tension in the string). The basic law of motion,
F = ma, will be applied where (a) is the acceleration of the bob and where
a = g, the acceleration of gravity. Assume for now that the damping force = 0.
The direction of the gravitational force g is downward (taken to be the negative
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direction). This is a constant 9.807 m/sec/sec; at sea level on the earth. The length
of the string or radius of a complete circle and be measured in meters is L. It then
follows that when the pendulum is moving to the left, dθ/dt < 0. Conversely, as
it swings to the right, dθ/dt > 0. The restoring force acts in the direction opposite
the swing.

From Newton’s Second Law
ma = −mg sin θ

We have that a = d2s/dt2 and therefore in angular measure a = Ld2θ/dt2.
So, m L d2θ/dt2 = −mg sin θ . We rewrite this as

d2θ/dt2 = −g/L sin θ

Using the approximation for small angles θ ≈ sin θ , we arrive at the standard
form for the undamped pendulum

d2θ/dt2 = −g/Lθ.

This second order differential equation has a solution given by

θ(t) = a cos

√
L

g
(t) + b sin

√
L

g
(t).

If we assume that the pendulum is held and then released; that is, it has zero
initial velocity, the solution simplifies to

θ(t) = a cos

√
L

g
(t).

Since the restoring force is proportional to the displacement, the pendulum is a
model of a simple harmonic oscillator with a spring constant g/L. The period
of the pendulum is T = 2π

√
L/g. The angular frequency (reciprocal of the

period) is

ω = −
√

L

g
.

Now we model the damping by assuming that the damping force is propor-
tional to the angular velocity (ω), the simplest case, with proportionality factor
(b). This gives the damping force term to have the form

−b/mdθ/dt

where the constant of proportionality b > 0. The damped motion, with the
θ ≈ sin θ , angular approximation is therefore

d2θ/dt2 = −b/mdθ/dt − g/θ.
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The solution is more complex in this circumstance having the form

θ(t) = a e

(
−1/2 (Lb−√

L
√√ 2b2−4m2gL)t

mL

)
+ b e

(
−1/2 (Lb−√

L
√ 2b2−4m2gL)t

mL

)

× e

(
−1/2 (Lb−√

L
√√ 2b2−4m2gL)t

mL

)

For the small angle approximation, the amplitude of the pendulum has no effect
on the period. As a pendulum is damped, it loses energy, however the period is
constant – great for timekeeping.

Huygens, in his Horologium Oscillatorium sive de motu pendulorum, in 1673,
(and later Johann Bernoulli), solved the correct path of quickest descent (brachis-
tochrone) for a pendulum to be the cycloid curve. Huygens established that the
cycloid curve was the tautochrone (path independent of time) and work on the
compound pendulum (O’Connor & Robertson 2002).

‘Torricelli was the first to publish the solution of the [cycloid] problem (in Opera
Geometrica, “De dimensione Parabolae, solidique Hyperbolici problemata duo
. . . ” pp. 85–90). Three demonstrations are found as an appendix to the chapter
indicated, “by means of which we demonstrate”, wrote Torricelli, “with the help of
God that [the cycloidal space] is the triple [of the generating circle]”. The first and
the third demonstration are carried out using the method of indivisibles, the second
is made in the manner of the ancients, by double reductio ad absurdum’.7

Properties of a cycloid curve:

x(t) = at − b sin(t),

and

y(t) = a − b cos(t)

In the following section, the modeling in Flash will include a comparison of the
motions of the pendulum and the cycloid curves.

5. Flash Animations and Digitizing

Doing physics is not just creating a new map; it’s about creating new understandings of the physical
world, (Redish 1998).

Why Flash? There are many delightful and well-executed Java programs and soft-
ware available commercially.8 However, as the landscape of online learning (along
with e-standards) is changing, educators are compelled to tap new authoring re-
sources available, that they, themselves may use as tools, without the steep learning
curve that programming in Java requires.

The plethora of computer resources available today yields a much richer and
complete array of representations, and new forms of valid inference and applic-
ation. Computers with their increasingly user-friendly graphical capabilities can
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Figure 3. The cycloid curve I described by a point P, attached to a circle C that rolls, without
sliding, on a fixed line AB. The full arc ABD has a length equal to 8r (r = the radius of the
generating circle), and the surface included between one complete arc and the fixed line is 3pr2
. The cycloid curve is “brachistochrone”, i.e., a curve of least time: given two points A, B in a
vertical plane, a heavy point will take the least time to travel from A to B if it is displaced along
an arc of a cycloid. It is also an “isochronic” curve, i.e., a curve of equal time. A heavy point
which travels along an arc of cycloid placed in a vertical position with the concavity pointing
upwards will always take the same amount of time to reach the slowest point, independent of
the point from which it was released.

provide powerful tools for understanding a wide variety of representation patterns.
So, a dynamic inference process can be captured and reproduced. Deductive sys-
tems can be constructed using complex and sophisticated representations (Barwise
& Etchemendy 1998).

With Flash, almost everything that Java can be asked to do is also available
and more easily accessible. A teacher can easily use many of the considerable
resources available in the Flash environment. Every teacher can construct mean-
ingful problem scenarios after only a few hours of training. Flash also offers a
considerable built-in tutorial with online support. Many flash web resources are
also freely accessible, including instructions on how to enhance Flash lessons for
the novice through expert user. With Flash, teachers can create classroom activities,
demos and lessons that are

• Interchangeable (easily editable)
• Durable (of lasting value).
• Assessable (Flash has many test and quiz templates built in).
• Accessible (Flash is web-friendly but also can function as a computer-based

lesson).

Flash MX is a powerful development tool, with the ability to integrate a wide
variety of media and external data sources (Reinhardt & Lentz 2001).

Using Flash allows:

• Interactivity (active learning between student and learning environment).
• Emulation of difficult-to-produce-in-the-real world elements in physics.
• Ability to isolate variables and watch their effect on motion.
• Powerful front-end graphics, integrated animations and presentations.
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Table III. Student misconceptions of pendulum motion

Students naïve conceptions:
• The period of oscillation of the pendulum depends on the amplitude
• The restoring force is constant at all points in the oscillation
• The heavier a pendulum bob, the shorter the period
• All pendulum motion is perfect simple harmonic motion, for any initial angle
• Harmonic oscillators go on forever.
• A pendulum accelerates through the lowest point of its swing
• Amplitude of oscillations is measured peak to peak on a graph of pendulum motion
• The acceleration is zero at the end points of the swing of a pendulum

Table compiled from C3P data retrieved
from: http:www.shodor.org/cserd/applets_desk/Pendulum/educator.html.

If presented with interactive Flash components embedded into the context of a
lesson on pendulum motions, along with the ability to digitize and compare related
types of motions, understanding of the nuances and differences between motion
types can help students recognize their own preconceptions and naive thinking and
encourage them to explore other conceptions.

To this end, and based on the research findings delineated above, two simple
pendulum Flash animations were designed in Flash and digitized – one pendulum
transcribes a circle, the other a cycloid path. Each was digitized using Digitizer 1.1
(Allen 2002). Also, a Flash animation for the pendulum has been programmed so
that the user can manipulate the variables of angle, length, damping factor, time
step and tracking the period. The key ingredient is user interactivity. Teachers can
modify each scenario fairly easily and can assemble them into a powerful lesson.

These Flash elements can be orchestrated into a coherent, dynamic Flash gener-
ated module, based on the elements of ‘best practices’ delineated above. Students’
misconceptions regarding the pendulum are considered; these are organized in
Table III.

Ultimately, the use of Flash to create ‘learning objects, and analyze their mo-
tions, imbed them in a coherent lesson and plan for measurement of student
learning, builds on accepted educational practice and reinforces the need to design
instruction that is responsive not only to content but also to student needs.

‘Minstrell conceives of physics as a sense-making activity, and he believes that
students’ classroom experience with physics should support the development of
students’ abilities as sense-makers’ (Schoenfeld 1998). Making sense is the first
step all students must take in the learning process. Awareness of their own diffi-
culties, and what they may already know about a subject, (prior learning) along
with recognition of what steps they may need to take in order to complete the
‘whole picture’, are all key elements in helping students toward active participation
in their own learning.
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Figure 4. Dynamic interactive pendulum motion.

Although the original pendulum animation was begun in Flash 5, it was conver-
ted quickly to Flash MX, as MX is a considerably more powerful tool. In Flash,
construction of a Flash animation (Fla) is done on several levels with a ‘theatre’
model. Action is directed:

• On the Stage
• On the Timeline
• In the Actions menu
• On the objects

An overview of the process of the production of the Dynamic Interactive
Pendulum animation is described in Figure 4.

This was constructed partially on the timeline, where comments, actions and
motions can be attached to individual frames, corresponding to time steps – the
key ingredient to designing effective Flash movies, keeping the parts separate and
editable. On the stage is where the action takes place. The programming is done in
a code called ActionScript, an object oriented programming language.

The Dynamic Pendulum was programmed using ActionScript, attached to the
pendulum, to frames in the movie, to buttons and other objects. Buttons were cre-
ated for playing, stopping, stepping forward and stepping backward. Input boxes
hold the variables, defined in the program.

The brachistochrone model was programmed, next.
After constructing the pendulum, and the cycloid Flash animations, each was

imported into Digitizer 1.1 and ‘coordinized.’ Just about anything that can be meas-
ured can be analyzed from a variety of viewpoints: arithmetic, algebra, geometry,
calculus and physics. Students can learn, first hand, the importance of coordin-
ate systems, the value of system scales and the importance of multiple sampling.
Students can learn many mathematical concepts and skills using digitization, such
as:
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Figure 5. Cycloid motion.

Figure 6. Digitized pendulum motion.

• Error of approximation
• Relationships between coordinates and other quantities
• Identification of shapes from data
• Use of spreadsheet software (Allen 2002).

The digitized images appear in Figures 5–11.
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Figure 7. Digitized cycloid motion.

Digitization allows for the exporting of data sets to Excel and for the analysis
of generated data. An example catenary curve digitization appears in Figure 8.

An example follows for the side by side pendulum and cycloid objects (Figure
9). The second Flash object created illustrates the difference between the pendulum
motion and that of the cycloid (see previous discussion).

These were also each digitized, using Flash Digitizer 1.1, in Figure 10.
These data were then imported into Excel and graphed, in Figure 11.
The differences in motions as well as in their functions can then be visually

compared. And, students are encouraged to repeat these data, fitting the formulae
to the curves and comparing data.

These graphs were then inserted into a coherent ‘active lesson’ on motion, pro-
grammed in Flash – the presentation.9 Thornton and Sokoloff, (1990) showed that
traditional lectures, homework and recitations do not do well in helping students
build good mental models. By changing the learning environment to an active-
engagement one, most students gain success in grasping difficult physics concepts.
Flash is an attractive medium in which to design and implement physics lessons,
based on the best thinking in educational research. The use of Flash in interactive
lesson design, allows the student the ability to not only change the parameters and
observe the effect on motions, but also to apply the digitization of the motions and
graphically analyze them. Combined with the accessibility and interactive nature
of the Web and Flash, mathematical applications of pendulum motions can be
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Figure 8. Comparisons with a catenary curve – digitized.

Figure 9. Side by side flash motions of the pendulum and cycloid.

taught and learned effectively and more holistically in physics and mathematics
classrooms. ‘To function in an intuitive mode, our brain needs images (Dehaene
1997, p. 88).
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Figure 10. Side-by-side digitization of pendulum and cycloid.

Figure 11. Comparison graphs of the pendulum and cycloid motions.

6. Conclusions and Implications

The union of the mathematician with the poet, fervor with measure, passion with correctness, this
surely is the ideal

– (William James, in MacKay, 1977).

The motion of the pendulum, especially as Galileo perceived it, with its isosyn-
chronicity (independence of path), was a ‘paradigm shattering’ event. Once set in
motion, it culminated in a flurry of new discoveries and invention of many new
mechanical devices. More importantly, Galileo effectively challenged the Aris-
totelian scientific world view and defined scientific methods and perspective for
future generations. Although Galileo’s use of the pendulum was as a simple timing
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device, it may be one of the rare examples where a machine was born from pure
theory (Lienhard 1998).

Initially, the pendulum was chosen as the subject of interest for Flash animated
lessons because it had an important impact on the authors as it arose in several
contexts in the spring of 2002. Its mathematics and physics applications were
explored at the same time that its scientific, historical and pedagogical contexts
were examined. The opportunity to employ Flash in the programming of the pen-
dulum and related motions, had special significance in that it would tie together
the myriad aspects of the pendulum study, already underway. A Flash slideshow
with branching options highlights the history and philosophy of the pendulum
while analyzing its motions and comparing them with the cycloid and others will
be online, shortly. Student interactions will be observed and the Flash modules
modified as the data are collected and analyzed in a pilot project completed during
the 2002–2003 academic year.

Implications for improved and interactive learning environments are many. Stu-
dent and teacher access to immediate feedback on student pre- conceptions and
learning progress will be enhanced. Interactivity of the Flash lessons in a ‘com-
plete’ learning environment, will weave together the many threads making up the
breadth of scientific concepts. The teacher has added control over modifications of
the Flash environment, editable for each student’s needs. The interactive Flash and
physics and mathematics lesson responds to the best in educational research and,
along with digitization as an enhanced analytical tool, has the potential to become
a powerful new learning environment design for the future. Adding to this the Web
accessibility, Flash lessons can be available for widespread use among teachers in
the mathematics and scientific communities.

Erwin Schrödinger codified a simple but profound viewpoint about our sci-
entific thinking,

Thus, the task is, not so much to see what no one has yet seen; but to think what nobody has yet
thought, about that which everybody sees. (Woodard 2000).

Notes
1 Exhaustive research has been done by: Caramazza et al. (1981), Dykstra et al. (1982), Minstrell
(1982), Posner et al. (1982), McCloskey (1983), Dobson (1985), Terry et al. (1985), Feldsine (1987),
Ivowi & Ouvulton (1987), Lawson & McDermott (1987), Schultz et al. (1987), Tobias (1987), Brown
(1989), Hammer (1989), Kyle et al. (1989), Marioni (1989), Maloney (1990), Renner et al. (1990),
Scott et al. (1991), Hewson & Hewson (1991), Van Heuvelen (1991), Andre (1992), Mazur (1992),
Roach (1992), Eckstein & Shamesh (1993), Linder (1993), Committee on Undergraduate Education
(1994), Wandersee et al. (1994), Gordon (1996), Colman (1997), Seifert (1997), Tao & Gunstone
(1999), Minstrell & Kraus (19??), Bransford, et al., at Vanderbuilt University, and others. The most
prevalent physics topic researched in the area of student conceptions is that of force and motion.
2 Research in the area of human-computer interactions and user-friendly ‘physics-ware’ is
being done by educational research groups at: the University of Nebraska, led by Scott
Henniger, http://pooh.unl.edu/ scotth/Welcome.html; York University, led by Michael Har-
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rison, and others, http://www.cs.york.ac.uk/hci/formal/; University of Oldenburg, http://www-cg-
hci.informatik.uni-oldenburg.de/; the University of Maryland, http://www.cs.umd.edu/hcil/; Univer-
sity of California, Irvine, http://www.isr.uci.edu/research-HCI.html; Carnegie-Mellon University,
http://www.hcii.cs.cmu.edu/; Web Physics, at Davison College and IUPUI by Wolfgang Chris-
tian, Mario Belloni and Gregor Novak, http://webphysics.davidson.edu/Applets/Applets.html; JitT,
Andy Gavrin, Evelyn Patterson, Gregor Novak; Web Assign – Larry Martin, Aaron Titus, et al. A
synopsis of these and other groups’ research can be found at http://futureofchildren.org/usr_doc/10-
2d_tab1.pdf.
3 Facets in Thinking refers to a description using ‘middle language’ to get at the right level of
student thinking as it is seen or heard in a learning situation. Facets have been derived from research
on student thinking during learning and derived from classroom situations during learning.
4 Some additional sources are: CSERD,
http://www.shodor.org/cserd/applets_desk/Pendulum/educator.html; Saskatchewan Education (1992),
http://www.sasked.gov.sk.ca/docs/physics/u5d3phy.html; Robert Riche,
http://www.bishops.ntc.nf.ca/rriche/ed6390/paper.html.
5 Alternative modeling software can be used.
6 Permission: http://arbl.cvmbs.colostate.edu/hbooks/pathphys/digestion/basics/peristalsis.html
7 See 4, above.
8 Illustration from the Online Enciclopedia Treccani, Institute and Museum of History of Science,
Florence, ITALY, http://galileo.imss.firenze.it/multi/torricel/etorat32.html.
9 The presentation will be active online so that the user can view the interactive elements, see the
slideshow and get the flavor of the Flash Active-lesson environment, soon.
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Abstract. In light of the established validity of pendulum as a topic in physics curricula (Matthews
2000), the study looked at the place of pendulum motion in the physics curriculum of the high school
in Israel. The data is available through presenting results of the nationwide matriculation examination
in its units of Mechanics and Research Laboratory for the Advanced Placement program (several
thousands students). Although the assessment questions and problems mainly tested students’ per-
formance, and less their understanding of the subject, the study, by discussing these problems and
questions, allows a perception of the extent to which the pendulum topic is addressed in High School
physics instruction. The results can support a discussion on the nature of the requirements and values
encouraged by the particular educational system and the strengths and weaknesses of the adopted
educational policies.

Background

To describe the educational activities related to pendulum motion, we first, very
briefly, present the structure of the physics education system in Israeli High
Schools. In grade 10, the Ministry of Education suggests that physics be taught
three hours per week throughout the whole academic year. The extent of this in-
struction constitutes “one unit” (1-u) in the general score of the requirements for
matriculation certificate – the formal goal of the secondary school studies. This
1-u program is compulsory. Further physics education is elective and is presented
at two levels: two and four additional units, comprising regular (3-u) and expanded
(5-u) curricula.1 The 3-u program approximately corresponds to GCSE2 level, and
the 5-u program corresponds to A-level in the UK (“Advanced Placement” in the
USA).

The curriculum at the elementary level (1-u) includes presentation of the simple
pendulum, mainly for the purpose of mastering fundamental skills of measurement
of physical quantities (time period of a periodic process) and their dependence on
variables (length, mass, amplitude), which can be isolated. Although the formula
for the time-period is not taught, students are required to graphically represent the
functional dependence of time period on the length of the pendulum.
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Only within the extended 5-u curriculum do students have a chance to explore
pendulum motion at a more comprehensive level. This can occur in three places
within the curriculum: mechanics (within the topic on harmonic oscillation), rigid
body (physical pendulum) and laboratory (different types of pendulums).3

Unlike many other countries, in Israel 3-u and 5-u streams include matriculation
examination tests, which are administered simultaneously to all students across the
country. This makes students’ responses in the matriculation examination available
for analysis and interpretation. Due to the large numbers of participants, the data
can reliably indicate student’s difficulties in learning pendulum motion. Secondly,
it is easy to understand that the format of nationwide (or, as is said in Israel,
“nationlong”) examinations has a major influence on the content of the studies
during years 11–12 at school, which has both positive and negative aspects. In any
case, both perspectives invite and justify a review of the matriculation examinations
with regard to pendulum motion. Investigation of the problems and tasks used in
the exams may reveal the nature of student knowledge of the topic, accepted by the
system as a standard. Therefore, we will demonstrate examples of problems and
tasks, which were related to pendulum motion and used in the 5-u matriculation
examinations in recent years. We will reproduce some statistics of students’ suc-
cesses and difficulties, analyze the requirements and discuss the rationale of the
examination and the values adopted in physics education, at least in our country.

Representative Problems and Tasks

“MECHANICS” EXAMINATION

The mechanics exam lasts 90 minutes. The questionnaire includes five problems,
of which three are required to be solved.

Problem M1 (1998)

The following are the results of measurement of period (T ) of several simple pendulums of
different length (l) swinging at small amplitudes as performed by a student:

Period T (sec) 0.90 1.25 1.55 1.80 2.00

Length l (m) 0.2 0.4 0.6 0.8 1.0

436



PENDULUM ACTIVITIES IN THE ISRAELI PHYSICS CURRICULUM

a.

b.

c.

Provide the graph that will facilitate your calculation
of the free fall acceleration g (45%).∗
Calculate from the graph the free fall acceleration
(40%).
For the pendulum length 1.0 m and period 2.0 sec,
the student measured the height y of the pendulum
bob, as a function of time (see the figure). The student
discovered that the function is periodic. What is the
period of this function?
Explain your answer (15%).

∗ Percentage in brackets shows the relative weight of the particular sub-question.

Relevant results:
58% chose the problem. The average score was 83% (the average score for the
whole test was 74%). If one summarizes the expected responses based on the
knowledge required, we observe the following:

(a) The question required the graph T 2 versus l. Some provided the graph T

versus l, which cannot support simple calculation of the free fall acceleration.
(b) The question required equating the slope in the graph T 2 versus l to 4π2/g.

The typical mistake here was the calculation of the slope according to a single
point, not the whole graph.

(c) The typical mistake here was identifying the period of y with the period
of the pendulum. The failure was the greatest in comparison with the other sub-
questions.

Problem M2 (1991)

A small body of mass m is suspended from a
stationary point A on the rope of the length l. The
body rotates with frequency f along a circular
horizontal trajectory (see the figure). The angle
between the rope and vertical is α.

a. Show the forces acting on the body during
its movement (specify each force, its direction
and its origin) (12%).

b. Using the equation of motion, obtain the
expression for cos α as a function of the given
length l, and frequency f (45%).
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c. After doubling the length of the rope the body continued to rotate with the same frequency. Did
the distance h between the point of suspension and the center of the circular trajectory (see the
figure) increase, decrease or not change? Explain your answer (27%).

d. Is it possible that the rope takes a horizontal position while rotating the body? (16%).

Relevant results:
64% (4700 students) chose the problem. The average score was 75% (with standard
deviation 25) while the average score for the whole test was 73%. 45% of the
students provided a full answer and 21% failed. If one groups here the expected
performance with the prevailing flaws, the following summary is obtained:

(a) Two forces only act on the body: the gravitational attraction to the Earth and
the tension of the rope. The typical mistake (50% of the students) was to mention
the centripetal force as additional force acting on the body. Other students men-
tioned centrifugal force (unnecessary within the Newtonian framework of forces
and required only in the description within the rotating frame of reference not
studied at high school).

(b) Newton’s second law written in vertical and horizontal axis for the con-
sidered motion yields: cos α = g/(4π2lf 2).

(c) The obtained expression for cos α implies its reduction by the factor of two,
following the doubling of the length l preserves the distance h, which is equal to
l cos α.

(d) The negative answer could be supported by the fact that there is always a
vertical component of the tension (equal to mg).

Problem M3 (2001)

The figure schematically represents a swing in
the amusement park. Long metallic ropes from
the semicircular frame suspend the carriage (see
the figure). Three passengers, with a total mass of
200 kg, are in the carriage. At the vertical position
of the ropes the carriage is at the height of 1 m. To
initiate swings the carriage is raised to the height
of 46 m (the top of the tower nearby) and released.

The trajectory of the oscillating carriage is
along the arc ABC of the radius of 50 m. Assume
that during the swings the ropes do not lengthen
and their own mass is negligible. Neglect the
friction with the air as well.

a. Calculate the speed of the carriage when it passes point B (24%).

b. Calculate the centripetal acceleration of the carriage when it passes point B (24%).

c. Calculate the total force of the ropes on the carriage when it passes point B (30%).
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d. The drawing on the right presents the trajectory
of the carriage movement ABC. A point is marked
on the trajectory and eight directions labeled as I,
II, . . . VIII. What direction from the eight better
represents the direction of the acceleration of the
carriage when passing the point? (22%)

One may mention that the problem is presented without using the term pendulum,
although it is equivalent to the simple pendulum motion, implying that all the
required knowledge has been taught to the students.

Relevant results:
59% (5400 students) chose the problem. The average score was 83% (with stand-
ard deviation 18.2) while the average score for the whole test was 80%. 48% of
the students provided a full answer and 9% failed. Grouping here the expected
performance with the prevailing flaws, the following summary is obtained:

(a) Usage of energy conservation was required. A few students slipped up here
by ignoring the finite height of 1 m in energy conservation balance.

(b) Calculation of the centripetal acceleration required the correct answer of the
previously calculated speed and the knowledge of the corresponding formula.

(c) The calculation of the rope tension T required the previously obtained res-
ults and using Newton’s Second Law. Some students mistakenly equated it to the
weight of the carriage. Others mistakenly equated T with the centripetal force.
Some students had confused the presence of two ropes mentioning the tension of
each as equal to the calculated total result for T .

(d) The correct direction III represents the net force in this case and thus the
total acceleration of the carriage. Some students mistakenly rendered only partial
acceleration, either radial, or tangential.

In 2001 the twenty teachers employed to check the examination results were in-
vited to comment on the questions used. Their evaluation is indicative. We present
below several questions and the distribution of responses received regarding
Problem M3.
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Question 1: Did the question adequately reflect the material taught in class?

Very much so Yes Reasonably Does not No relation

10 9 1 0 0

Question 2: Was the presentation of the question clear?

Very clear Clear Reasonably Not clear Very unclear

6 7 3 1 1

Question 3: Were the provided drawings clear?

Very clear Clear Reasonably Not clear Very unclear

4 7 1 7 1

Question 4: Evaluate the loading of the question.

Too loaded Very Reasonably Normally Underloaded

loaded loaded loaded

0 1 11 8 0

Question 5: Was the question frightening to the students?

Very much so Yes Reasonably Only in the beginning No

0 3 5 7 2

Question 6: Evaluate the overall level of difficulty of the question.

Too difficult Difficult Normal Easy Very easy

0 1 14 5 0

Such evaluation made by the teachers importantly represents the expectations and,
to a certain extent, the views of practicing teachers regarding the assessment and
curriculum.

“RIGID BODY” EXAMINATION

Unlike the Mechanics section, the Rigid Body section presented one of ten elective
sections, each containing two questions from which students had to choose one.
Students are given 90 minutes to solve two questions out of four in the two elective
sections. The topic of pendulum appears with regard to the physical pendulum in
the Rigid Body section. We represent this examination using one example.
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Problem RB (1997)

a. One can consider the simple pendulum as a
limiting case of the physical pendulum. Develop
expression for the period of oscillation of the
simple pendulum from the corresponding formula
for the physical pendulum. Explain your reasoning
(40%).

b. A uniform rod of length L and mass M

represents a physical pendulum. It swings round
the axis through one of its edges (see figure A).
Show that the length of the simple pendulum (see
figure B) that has the same period is (40%):

l = 2
3 L.

c. Two pendulums, physical (length L) and
mathematical of the length l = 2

3 L are released
from the same angle of initial deviation θ with the
vertical (see figures A and B). Will the angular
velocities of both pendulums be equal at the
moment they are vertical? (20%)

Relevant results:
1% (35 students) chose this problem.4 The average score was 85.6% (standard
deviation 20), while the average score for the whole test was 75.4%. 71% of the
students provided a full answer and only 6% failed. The answers expected were to
include the following:

(a) Starting from the formula for physical pendulum, one requires the know-
ledge of the expression for the moment of inertia of the point body relative to a
certain axis and of the torque relative to the pivot point to attain the answer. (b)
Equating of the two appropriate formulas and the knowledge of the moment of
inertia of the uniform rod relative to its edge could provide the answer.

(c) The answer of equal angular velocities follows directly from the equality
of periods of oscillation of the two pendulums: being released together, the two
pendulums swing synchronously. This implies the equality of angular velocities.
Very few failed in this question.

“RESEARCH LABORATORY” EXAMINATION

Currently in schools, the physics laboratory is included only at the highest level
of instruction – 5-u (advanced placement curriculum). A special examination is
provided for this section. We demonstrate it here with two tasks that touch on the
topic of pendulum motion. The tasks appeared in the test mode of “unseen exper-
iment” (one of the two forms adopted for laboratory examination5). Within this
format students are invited, to follow explicit instructions, perform an experiment
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they have never seen before, demonstrate the skills of manipulation with simple
and common physical apparatus, perform the requested measurements, elaborate
the data and interpret it basing on the knowledge they have acquired in the subject.
The examination lasts 120 minutes.

Experiment L1 (1992) “Oscillations of metallic rod”

The question regarding the experiment was: “What is the relationship between the distance of the
center of a metallic plate to the pivot point and the period of oscillations of the plate?”

Basic apparatus:
A 25 cm aluminum ruler with seven equidistant
holes at 2 cm (figure A), a thin rigid rod to hang
the ruler through one of the holes allowing its free
oscillation (figure B).6

Although the experiment dealt with a physical pendulum, it was designed to ad-
dress all the students, including those who did not learn the elective section “Rigid
Body”. Thus, knowledge of the concepts of torque, momentum of inertia, etc. was
not assumed. The subject for testing was the above mentioned skills required for
carrying out a physical experiment. Explicit instructions guided the performance
of the experiment. It was followed by a series of questions based on (1) the accu-
mulated data regarding the period of oscillations with various pivot points and (2)

the provided theoretical expression for the period of oscillations: T = 2π

√
k2+l2

lg
,

in which k =
√

a2+b2

12 (a, b are length and width of the plate), l – the distance
between the center of mass of the plate and the point of suspension, g – the free
fall acceleration.

The questions asked for: (1) determination of the length l for which the period
T is a minimum, (2) explanation for the choice of axis for which the graph become
linear, (3) determination of g from the graph and interpretation of this result, (4)
elicitation of k from the same graph, its comparison with the calculated value and
the interpretation of the difference between them; (5) the sensitivity of the results
to the material of the plate.

One thousand students took the exam. The average success in the test was 87%
(standard deviation 12) with 2% failure. The typical difficulties were (Rosen 1993;
Vardin & Sela 1993):

1. Inappropriate choice of unit scale for graph representation (approaching zero
at the time axis causes the graph to become inconvenient for later use).
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2. Some students drew linear graphs regardless of the nature of the corresponding
function.

3. Some students extended graphs to pass the zero point (crossing of the axes)
regardless of the data and the nature of the function.

4. Instead of using the slope and point of crossing the vertical axis (in the graphic
T 2l versus l) to determine g and k, some students used the formula and
particular data points to calculate the requested unknowns.

5. In calculating the slope, some students took close points of the graph, thus
increasing the inaccuracy of the evaluation.

Experiment L2 (1999) “Euler’s pendulum”

The question of the experiment was: “What is the relationship between the distance d (of the axle
stopping the pendulum rope to the bob at its lowest location – see the figure) and the period of
oscillations of the pendulum?”

Basic apparatus:
Simple pendulum of length L. A stand which
provided variation of the distance d .
The students were instructed to collect data for
the periods of oscillation for several distances
d . They were also provided with the theoretical
formula describing the period of oscillations at
small amplitudes:

T = C + π

√√
d
g

with constant C, depending on the geometry
of the apparatus, and g – the free fall acceleration.

The questions asked for: (1) determination of the appropriate axis for the data
presentation, which can produce a linear graph of the data, (2) explanation of the
graphical meaning of the slope and crossing point of the graph with the vertical
axis, (3) calculation of g (free fall acceleration) from the graph and explanation
of the meaning of this calculation, (4) addressing the sensitivity of the error in the
measurement of the period of oscillations to the change of distance d.

3250 students took the exam. The average score in the test was 87%, (stand-
ard deviation 9.2), 68% high scores and 1% failure. The typical difficulties they
encountered were:

1. The length of the pendulum was mistakenly taken (by 33%) as the length of
the rope (neglecting the size of the bob).

2. Incorrect choice for axes to obtain the linear graph (10%).
3. Incorrect interpretation of the points of crossing the axes by the graph (40%).
4. Failure to recognize the decrease of the relative error of the measured quantity

when the absolute error remains the same, but the quantity itself increases
(48%).

443



IGAL GALILI

Discussion

The matriculation examination reliably reflects the curriculum. Its content commu-
nicate the accepted standards of the particular educational system, as well as the
goals, values and standards of the subject matter knowledge to be acquired in high
school. At the same time, the performance of students is expected to represent the
extent to which these goals have been fulfilled.

The first feature of the accumulated results on which we reflect, is that the
examination, in its “theoretical” as well as “practical” (laboratory) applications,
does not require students to show any knowledge of physical theory and is solely
aimed at: (1) formal problem-solving ability and (2) manipulating the empirical
data.

The examples presented here (especially Problem M1), demonstrate that know-
ledge of a simple formula of pendulum motion for small amplitudes is sufficient
to achieve full marks. The richness of the related physical knowledge (the ap-
preciation of pendulum motion, the simplest among the complex motions, the
appreciation of the origin of isochronism obtained as an approximation) is un-
necessary for successful performance. The provision of the pendulum formula, as
a given piece of exact knowledge ready to use, the request for simple algebraic
manipulations with it do not encourage construction of a conceptual account of the
topic by the student, but requires a sort of “instrumental” skill. Instead, one could
use the vision of Galileo, who considered the simple pendulum as a modified free
falling and thus conceptually bridged between the isochronism of a pendulum and
the fact that all bodies fall with the same acceleration, regardless of their weight
(Drake 1978, p. 73). This aspect is extremely important in the physics curriculum,
and requires other kinds of testing questions.

Problem M2 was not presented as a pendulum problem and its original name
“a conical pendulum” was not even mentioned. The relationship between conical
and simple pendulums is often not addressed in instruction, although the two are
simply related and can be accounted for by similar formulas of oscillation periods
for small angles, showing isochronism. The difference between the two pendulums
is the additional horizontal velocity of the bob, which significantly changes the ap-
pearance. In this regard, other conceptual questions are important for understanding
elementary physics of pendulum motion, such as:

Why the conical pendulum does not “fall down” (a clear analogy with a gravitational satellite), while
the regular pendulum does?
Given that the case of h = 0 (α = 90◦) is impossible, what happens to the velocity of the bob, period
of rotation (“swinging”) and tension of the rope while approaching this case?

Such questions could significantly contribute to students’ understanding of why a
satellite “does not fall” the question which has similar conceptual idea. This is a
common problem and students of all ages can cope with it (Gardner 1984). All this
is missed in the curriculum and the exam. Instead, the student is asked to develop
the mathematical expression for cos α through given parameters and use it in reas-
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oning its variation, expecting a pure algebraic (if not arithmetical) consideration of
compensation. Only question (d) in this problem, contributing 16% to the score,
required qualitative understanding of conical pendulum.

Problem M3, presented in an everyday context of an amusement park, addressed
vertical circular movement.7 The relation to the pendulum was not mentioned and
the term pendulum was not used. In fact, the term “swing” often replaces “pendu-
lum” in physics classes. Within this terminology, many students may comprehend
the pendulum to be solely an isochronic device. In a more general presentation,
the isochronic feature of pendulum would represent only a special case. Generally,
problem M3 requires formal and qualitative knowledge, presenting a good example
of such a combination. As was shown, the teachers who were selected to check the
solutions confirmed this evaluation with strong agreement.

Problem RB, in the Rigid Body unit, deserves even greater evaluation due to its
strong conceptual emphasis addressing the important connection between physical
and mathematical pendulums. It is significant to notice the small fraction of stu-
dents, who chose it, compared to the second, alternative, question of this section
(in the examination form), which was less related to the theory of the subject.8

Summarizing our inspection of the theoretical examination, one may infer that
pendulum is widely used in high schools. However, in the assessment, comprehen-
sion of the pendulum topic was examined using problems which required mainly
“instrumental” skills, significantly impoverishing this conceptually rich topic. Even
the development of related skills, such as reading the numerical data, constructing
a corresponding graph and its interpretation, cannot change the fact that the assess-
ment did not invite students to explain phenomena, define concepts, present laws
of Nature, illustrate their theoretical statements by choosing relevant experiments,
etc. Instead, seeking success in the matriculation exam, the success which will
determine the future career of students, forces them to focus on the development
of problem solving ability of standard problems and manipulating with formulas
which no-one expects them to explain.9 Whether or not desired, this must cause
a limitation of knowledge gained at school, restricting the scientific and cultural
literacy of the individual. In the existing orientation on problem solving, students
abandon regular physics textbooks, since they can manage without mastering the
theoretical content of physics courses. Teaching, thus becomes similar to military
instruction, and learning, to training. Physics ideology: ontology, epistemology,
ethics, worldview, history of physics, become a useless burden (although inter-
esting for many), a waste of time for a pragmatically oriented and ambitious
youth, seeking a successful career and ascribing the highest value to the focused
instruction on problem solving. Consequently, problem-solving manuals seemingly
replace physics textbooks – a highly regretting phenomenon.

Using pendulum motion in the laboratory exam deserves special comment.
Since the physics content of the practical activities used and their theoretical back-
ground were beyond the curriculum and thus unknown to students, the activities
solely address the experimental skills, that is, the ability of the students to measure
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physical quantities and provide simple elaboration of the numerical data collected
(Vardin 1997). The students are provided with a ready-to-use formula of an oscilla-
tion period of a particular device. Since the examination is individual, no discussion
or questioning is allowed. Therefore, all the steps of “inquiry” have to be exactly
set down in a rigid sequence and provided to the student who is not expected to
deviate from them. Although the meaning of such a mode of examination was not
investigated in depth, some questions can be raised regarding the appropriateness,
efficacy and worthiness of this activity. Apparently, not much was learned by the
students regarding pendulum motion, even though the experiments designed were
elegant and interesting (for an expert). Among the questions physics educators
should consider in this regard are:

1. Is any kind of inquiry really skill tested by the examination which involves
step-by-step guidance through an experiment, when the student’s theoretical back-
ground is unknown? What kind of knowledge about physics is encouraged by this
kind of testing?

2. Does the fact that physics presents an experimental science (requiring ele-
mentary skills of accumulation and elaboration of numerical data), justify an
isolated focus on these skills in a conceptually unknown to the student context?

3. What kind of advantage does the “unseen” experiment present, relative to the
second mode of laboratory examination? In that, the student has to perform one of
fifteen experiments, known in advance, chosen from various areas of physics. He
or she has to orally explain its meaning and answer the questions of two physics
teachers (one of them an external examiner). This examination is the only oral
matriculation examination still existing in the school education system.

4. The test format of an “unseen” experiment is performed simultaneously by
all students taking the exam in the country. This fact inevitably restricts the equip-
ment to being the simplest possible, available in adequate numbers. This constraint
excludes the use of advanced apparatus (V-scope, MBL, etc.) available in many
schools but in small numbers. Is this restriction justified?

Thus, with regard to pendulum motion, advanced apparatus allows the measur-
ing of variables such as rope tension in different bob locations and the investigation
of pendulum deviation from isochronism, when the period of oscillation varies with
amplitude. The latter case provides an elegant opportunity to “enter the historical

1638/1914, pp. 95–97), leading him to the great insight of falling speed independ-
ent of weight (Drake 1978, p. 73). Another opportunity for such an activity with
the pendulum is to reveal the meaning of the centripetal force (Krakover 1995). Is
the neglect of these opportunities of knowledge checking justifiable?

5. At first glance, the “unseen” experiment mode of laboratory exam might
look as an imitation of real research in physics. Is this a true resemblance? Does
a physics researcher move in accordance with the script (prepared by somebody
else) he/she never designed and discussed, without an idea, model or framework of
what he/she is going to do in the experiment?
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6. The mode of a written examination checked as an anonymous product by a
teacher is usually claimed to be a preferable assessment, to be a more standard-
ized and objective assessment. Do these advantages compensate for the apparent
disadvantages: a restriction of the required knowledge content, an inability of an
examiner to clarify an ambiguous answer, an inability of the student to argue for
his/her answer, even an apparently incorrect answer? For instance, students may
provide stipulating conditions and new meanings, which could testify to his/her
creativeness and power of imagination.

Concluding Remarks

Although the pendulum topic is well entrenched in physics curriculum of Israeli
High Schools, its presentation is usually restricted to a mere illustration of basic
laws and concepts of Newtonian dynamics, and is used as a convenient setting
for standard problem solving and simple laboratory measurements. At the same
time, the focus of the assessment solely on the performance of simple standard
problems naturally causes simplification of the acquired disciplinary knowledge
of pendulum. It ignores such important issues as the approximate nature of its
isochronism, different kinds of pendulums and their relationship, the rich history
of the progress in human understanding of pendulum motion and the role of pen-
dulum in establishing of the new paradigm of modern science (Matthews 2000).
All these represent the missed opportunities of the pendulum topic in the Israeli
physics curriculum. The single type of assessment regarding theoretical knowledge
– the matriculation examination, being focussed primarily on problem solving,
contributes to this situation, as well as to the depletion of literacy and a lack of
cultural knowledge of physics. At the same time, one can use the advantages of the
centralized nationwide assessment and by its virtue produce a fast improvement
in the situation by changing the contents of the matriculation examination and/or
by establishing alternative streams in the physics education in High Schools.10 Of
course, this change to a more liberal education presumes a reconsideration of the
goals, values and theoretical framework of physics instruction in High Schools.
Open discourse involving science educators, philosophers and historians of science
can be useful in making physics curriculum culturally rich. The manner of present-
ation of the pendulum topic in the physics curriculum may serve as an exemplar of
such a new approach. It can be a representative and reliable indicator of the new
cultural scope, standards and norms adopted by particular education system.

Notes
1 The two elective physics education levels are curricula of 3 and 5 units. Altogether both these
curricula are taught to about 14% of the students. Others elect chemistry, biology or technology
(electronics, mechanics, computer science), if they choose the science-technology stream. In total,
the science-technology stream is taken by about 50% of the students.
2 GCSE – General Certificate of Secondary Education.
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3 Similar situation is in the USA (American Association for the Advancement of Science, 2000)
and in the UK (Grounds & Kirby 1995).
4 Even within the elective section of “Rigid Body” (one of ten elective sections), this number was
extremely low, only a small fraction compared to those who preferred the second question in this
section (500).
5 The other mode is a format (in the past the only one), in which the student is asked to perform and
explain one of 15 known in advance laboratory units.
6 We do not mention standard laboratory equipment such as, stopper, metric ruler, etc.
7 Two ropes of suspension, instead of the usually used one rope with regard to a pendulum was
another variation of the setting, reflecting the practically common case of a swing.
8 It is a trivial fact that an individual chooses the simplest task in a test setting. The more standard
and technical the question is, the more probable it is that students will choose it. A very high average
score in this question hints at the fact that those who choose it were good students. It is however
up to the designers of the test to establish standards that can encourage the student to achieve more
desirable outcomes.
9 This statement does not exclude the existence of enthusiastic teachers, who despite of the shortage
of time deviate from the pragmatic needs of the curriculum and enrich the classroom teaching with
cultural and conceptual contents, so abundant in physics. Their number, however, as well as the
extent to which it is done, cannot be reliably checked within with the adopted form of assessment.
Moreover, one may think that each such deviation is made at the expense of training in such skills as
problem solving, the main skill required by the exam.
10 We elaborated more on this in the paper “Physics Teaching in the Search for Itself: From Physics
as a Discipline to Physics as a Discipline-Culture” to be published in 2004 in Science & Education.
11 Tehuda [Resonance] – the Journal of the Israeli Association of Physics Teachers.
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Abstract. When we refer to scientific knowledge, we, implicitly or explicitly, refer to its three
components, namely its conceptual framework, its methodological principles and its cultural

aspects. The pendulum is a topic of science teaching and learning where all three of these
aspects can be examined with the aim of gaining a holistic appreciation of the transformation
of a natural phenomenon into a phenomenon of the physical sciences and how this can then be

recontextualized into a topic of school science learning. The main objective of this study is to
examine whether this richness of the pendulum as a topic of teaching is revealed in the school
science textbooks in Greece and Cyprus, for both primary and secondary education. We will

use an analytical mapping instrument in order to determine, whether the pendulum is intro-
duced at some grade level and, if so, in what context. We will then use an interpretive
instrument, which relies on taxonomy of science curricula into traditional, innovative and

constructivist programs, in order to attach meaning to the analysis. Finally, we will formulate
a series of proposals in relation to the educational value of the simple pendulum at the Greek
and Cypriot gymnasium level.

Key words: pendulum, science curriculum, science textbook

1. Introduction

The term scientific knowledge refers to wider appreciation of the three com-
ponents of science, namely its concepts, methodology and cultural attributes
(Bybee & DeBoer 1994). The pendulum constitutes an object of teaching and
learning that makes it possible for someone to dwell equally well on all three
dimensions of the scientific knowledge. On the other hand, there has been
noted ‘a striking imbalance between the importance of the pendulum in the
history of science and the meager attention it commands in science curricula’
(Matthews 2000, p. 3, ch.11).

The main objective of this study is to investigate if and how the above
comment holds true in the case of the school science textbooks used in pri-
mary and secondary education in Greece and Cyprus. We use a model of
analysis of school curricula and science textbooks, which is designed to
investigate the way a thematic or conceptual topic is handled in the context of
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formal education. Based on this instrument, we shall prove that the study of
the pendulum at all levels of the school system in both countries is restricted
to the simple pendulum and reflects the main features of a traditional per-
spective to science curricula. The main attributes of the traditional approach
are a mathematicized or ‘pseudo-qualitative’ conceptualization, an ‘empiri-
cist’ methodological treatment and a minimal cultural emphasis. These
features appear to contradict the opinion which regards the pendulum as
an important object of teaching and learning by virtue of its conceptual,
methodological and cultural richness.

Finally, based on the same model of analysis, we undertake to for-
mulate proposals for improvement aimed at enhancing the role of pen-
dulum study in Greek and Cypriot schools while at the same time
providing practically feasible solutions in the context of established school
curricula.

2. A Model of Analysis of School Curricula and Textbooks

Research in the field of science curricula and textbook analysis is multifac-
eted. A great number of research projects, conducted with the aim to analyze
school science textbooks, concentrate on the content, while a substantially
lower interest is in linguistic and sociological analysis (Koulaides &
Tsatsaroni 1996). The model presented here is a model of analysis as to the
content, revealing the epistemological and cultural features belonging to the
school curricula and the textbooks. The originality of this model lies in that,
as well as serving as a research tool, it can also operate as a teacher prepa-
ration tool for educators at all levels, since it has been designed as a medium
for closing the gap between research and pedagogic practice. It is a gener-
alized version of a model that was used, initially, for the analysis of school
curricula and textbooks relevant to the concept of ‘energy’ (Koliopoulos &
Ravanis 2000). This model proved to be especially useful in encouraging
educators to appreciate the characteristics and constraints of their teaching,
to be able to explain their practice and, potentially, to proceed in exploring
alternative options for reorganizing their teaching (Koliopoulos & Ravanis
1998).1

The proposed model is based on the distinction between two frameworks2

served by the school curricula and science textbooks that present a con-
ceptual character (Driver & Millar 1986).3 Each of these frameworks refers
to the way a science school curriculum or a science school textbook
manipulates the concepts, methodology or cultural characteristics of one or
more thematic or conceptual units. At this point, we have to note that the
proposed classification of frameworks, even though it derives from an
empirical analysis of the existing school curricula, does not correspond to
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one or more specific curricula. Rather, it reflects an abstract entity inte-
grating general epistemological characteristics which could appear partly or
wholly in a concrete science curriculum or science textbook. The two
frameworks are as follows:
(i) The ‘traditional’ framework. This framework is characterized by:
(a) the juxtaposition of small thematic units leading to juxtaposition or

dispersion of various conceptual frameworks. A typical example is
found in the study of the concepts of energy and light in Greek and
international curricula of lower grades of education (elementary and
secondary education). These concepts are dispersed in various the-
matic and/or conceptual unities. The dispersion is such that concepts
acquire a different systemic meaning (i.e. a meaning that emanates
from the relations of the concept with the other concepts of a
conceptual system). They also acquire an empirical meaning (i.e. a
meaning that emanates from assigning the concept to some real
phenomenon in the course of the transformation of this phenome-
non to a scientific object) in each of the thematic units (Baltas 1990).

(b) the mathematical, in higher grades of education, or the ‘pseudo-
qualitative’, in lower grades, dealing of science concepts. In the
mathematical approach the systemic meaning of concepts is favored.
In contrast, in the ‘pseudo-qualitative’ approach, the systemic
meaning of the concepts is totally cancelled, because of the lack of
mathematical expressions, thus resulting to the domination of the
empirical meaning of these concepts.4 A typical example of this ap-
proach is the study of the concept of friction in Greek and interna-
tional elementary curricula. In Greece, a research of analysis
regarding the content of textbooks has shown that, at the elementary
school, the concept of friction has been treated in the same way as at
the university level. This means that mathematical language has been
replaced by everyday language destroying the systemic meaning of the
concept of friction.

(c) the empirical – experimental approach in which, carrying out one
(usually) experiment is sufficient to introduce or confirm a concep-
tual framework (Joshua & Dupin 1993). In the school textbooks, this
approach appears in the form of setting a sequence of instructions
the students have to follow accurately in order ‘for the experiment to
work’. This framework is rooted in the empirical tradition according
to which the methodological observation of a natural phenomenon
leads to the formation of scientific models. It is found at all grades of
education but, mostly, at the lower ones even for concepts that
cannot be formed in that manner (Zogza et al. 2001).

(d) the limited use of cultural features which does not favor the possi-
bility of developing scientific literature. A clear example of the
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limited use of cultural features in school textbooks is that, where
everyday applications of science are mentioned, these are often not
integrated into the main text but placed in a separate box.

(ii) The ‘innovative’ framework. This framework is rooted in the inno-
vative changes on the science curriculum in the 1970s and 1980s and
is characterized by:

(a) the formation of broad thematic/conceptual units in which the
emphasis is placed on the structure of the unit or/and the so-called
directed theme. A typical example of this framework is the unit of
‘Optics’ in the French school project Sciences Physiques, Libres
Parcours (Chanut et al. 1979), which provides three alternative
structures of teaching the unit. In the first, emphasis is placed on
the construction of the conceptual model ‘source – transmission –
recipient’, the second presents a more methodological character
and is structured around the observation of astronomical phe-
nomena while in the third, the approach is more technological with
the study of various optical instruments. However, all three
structures serve the same conceptual, methodological and cultural
goals set by the curriculum. Another example is the American
program Physical Science II (Physical Science Group 1972) where
the concept of energy recommends an organized principle of the
whole teaching program.

(b) The ‘in-depth’ dealing with a conceptual framework which, at many
times, is characterized by a ‘qualitative/semi-quantitative’ approach
to science concepts trying to form a selected relation of the quali-
tative – quantitative. The approach of the energy concept through
the conceptual framework of energy chains is a typical example of
this approach.

(c) the effect of the ‘hypothetico-deductive’ methodological approach
showing the prime role of ‘didactical activity – problem’. In this, the
hypothetical substance of the science knowledge is shown, which
arises out of the study of an open problem the students have to
familiarize themselves with while participating, partly or wholly, in
designing the experiments (Robardet 2001). Including this approach
in the school textbooks is not easy. The example of the French school
textbooks Sciences Physiques, Libres Parcours (Chanut et al. 1979),
where the teaching activities play a prime role and which do not allow
a lineal reading of the text, is indicative of this approach.

(d) the organic enclosure of the cultural dimension of science in the
various thematic units. This means that daily/technological prob-
lems (e.g. energy saving, cooking, constructing a measuring instru-
ment) or science historical texts support on their own starting points
and frameworks within which the conceptual and methodological
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approach is formed (e.g. the German teaching project Neue Physik,
Das Energiebuch (Falk & Herrmann 1981) and the American Har-
vard Project Physics – Holton et al. 1970).

3. The Approach of the Pendulum in Greek and Cypriot Teaching Programs

3.1. METHOD

A first step to analyzing the school textbooks was using an inventory
instrument of the position, content and form of the pendulum study in every
educational level.5 The structure of the study defines the unit of analysis and
supports information relevant to the thematic units or sub-units dealing with
the pendulum and the coherence or dispersion level of the pendulum study in
one or more educational levels. The content provides information on the
conceptual, methodological and cultural approach of the pendulum. The key
– phrases used in this part of analysis code the conceptual framework, the
methodological approach and the cultural features of the unit. Finally, the
form of the study refers to the means of expression (mostly texts, issues,
exercises/problems, pictures/figures, experimental activities etc.) and the way
of studying (simple reference, detailed study) the unit and offers information
concerning the importance given by the school textbook to the specific unit.
In Table I we give an extract of the instrument used.

The information collected for each analysis unit and coded underneath the
column ‘Comments/Remarks’ could lead to conclusions which can be inter-
preted through the model of analysis already described in the previous unit.

3.2. RESULTS

3.2.1 The pendulum study in different educational levels

Both in Greece and Cyprus, the pendulum study is confined mainly to the
study of a simple pendulum and never introduces a comprehensive unit with
its own character. The simple pendulum is introduced in various units in each
of which the conceptual framework of its study is different. The following
conceptual frames of study have been identified:6

– [a] application of Newton’s 2nd law or/and measurement of the
pendulum period within the study of the phenomenon of oscillation
(circular or/and cycloid curve of a simple pendulum or/and torsional
pendulum, measure of frequencies of a system of matched pendula,
qualitative approach of wave transmission through the analogy of
matched pendula),

– [b] tracing interactions or/and measuring forces during the motion or/
and the equilibrium of a pendulum,
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– [c] qualitative representation of energy transfer or/and application of
the laws of momentum and energy conservation (simple and/or tor-
sional and/or ballistic pendulum),

– [d] tracing a noninertial frame of reference system or/and measuring
the rotation period of the earth (Foucault’s pendulum),

– [e] measurement of the gravitational constant or/and gravitational
acceleration (Cavendish’ torsion balance or/and acceleration meters)
and

– [f] tracing or/and measuring the electric/magnetic force or/and of the
electric charge (use of pendulum for detecting electric or magnetic field/
Coulomb’s balance).

Table II presents a general picture of pendulum study in Greek and Cypriot
curricula at all three educational levels (elementary, gymnasium, lyceum),
based on the conceptual frameworks of this study. In this Table we can see
that, in both countries, the pendulum is introduced quite early in science
teaching as an instrument, which is appropriate while dealing with various
conceptual frameworks. This does not signify that there is always a detailed
study of the pendulum. In most conceptual frameworks, the study of the
pendulum is incidental and limited. For instance, even though the simple
pendulum forms one of the usual phenomena of the Newtonian study con-
cerning the equilibrium of a material point, in Greek and Cypriot school
textbooks, is not mean that it is also essential. The same applies to the study
of the energy conservation of a mechanical system. It is quite a different thing
to chose the simple pendulum chosen as the main phenomenon to introduce
this concept (Holton 1985) than for it to simply be one of a number of
examples of its application, as occurs in Greek and Cypriot textbooks. In
these cases there is a simple reference for the simple pendulum also relating to

Table II. A general picture of the conceptual frameworks (see Section 3.2.1) within which

the pendulum study is conducted in Greek and Cypriot school textbooks in different
educational levels

Greece Cyprus

5th Grade of elementary [c] –
6th Grade of elementary – –

2nd Grade of gymnasium [f] [a], [f]
3rd Grade of gymnasium [a], [c], [e] [b]

General

education

Direction General

education

Direction

1st Grade of lyceum [b], [c] – [c], [b] –

2nd Grade of lyceum [a] – – [b], [c], [f]

3rd Grade of lyceum – [a] – [a], [e], [c]
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the conceptual dimension of scientific knowledge. In opposition, the simple
pendulum on its own forms an object of detailed study only in the units of
‘Oscillations’ and ‘Waves’. This appears in the 3rd grade of the gymnasium
and the 2nd grade of the lyceum in the Greek curriculum and the 3rd grade of
the lyceum in the Cypriot curriculum.

3.2.2 The content of a detailed study of the pendulum

In the Greek curriculum the detailed study of the pendulum occurs within the
core curriculum. In contrast, to the Cypriot curriculum this study takes place
within an optional curriculum for students of practical studies. Table III
gives a comparative picture of detailed study of the pendulum.

Two approaches are apparent: the first in Greek textbook in the 3rd grade
of the gymnasium and the second in the 2nd grade of lyceum in Greece and
3rd grade of lyceum in Cyprus. The first approach gives special meaning to
the pendulum study since the pendulum is chosen as the favored phenome-
nological field for the study of the phenomenon of oscillation and especially
the definition of the period of oscillation. This does not appear in the second
approach in which the introduction to the phenomenon of oscillation and the
study of its modeling (simple harmonic oscillation) is done based on the
retrogressive motion of a sphere aided by a spring (spring-mass pendulum).7

The second point on which the two approaches differ is the absence of the
cultural dimension in the second approach. That is, we do not have these
experiential features, which endow the concepts with what Baltas (1990) call
‘excess meaning’. In contrast, in the first approach the cultural dimension
appears in the form of historical or contemporary references to the sundial
and Foucault’s pendulum, however, without a thorough study. Finally, a

Table III. Comparison of the textbooks in those levels where the pendulum study is done in a
detailed manner (see & Section 3.2.1)

3rd Grade
of gymnasium
(Greece)

2nd Grade of
lyceum (Greece)

3rd grade of
lyceum
(Cyprus)

A. Introduction and study of the

oscillation phenomenon and the

simple harmonic oscillation

X [a] – –

B. Study of the pendulum movement
B1. Conceptual approach X [a], [c], [e] X [a] X [a], [e], [c]
B2. Methodological approach X – X

B3. Cultural approach X – –

C. Study of matched oscillations – X [a] X [a]

D. Introduction to waves X X [a] X [a]
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third difference is relative to the quantitative or qualitative character of the
conceptual framework. (In the first approach, in both circumstances, there is
an introduction of texts simply using common language to describe mathe-
matical equations. In the second approach the treatment of force and energy
analysis is carried out exclusively in mathematical terms.

Similarities are also apparent between the two approaches. One similarity
concerns the methodological study of measuring the period of the simple
pendulum as well as the study of the relation between the period and the
measures ‘length of string’ and ‘gravitational acceleration’. More specifically,
the derivation of this relation seems to occur in a ‘natural way’ through the
experimental activity whereas the students are directed to check the nature of
the relationship since the relation has been announced by naming the factors
on which the pendulum period depends. Another similarity is related to the
use of simple matching pendula for the qualitative study of the energy and
elastic wave transmission.

4. Conclusions – Proposals

Both in Greece and Cyprus, the study of the pendulum occurs within the
traditional framework over the school curricula and science textbooks.
(a) Whether in the case of a simple reference, or the case of a detailed

study of the pendulum, the options of the educational grade and its
position in the school curriculum and the relevant school textbook, do
not seem to be derived from a specific pedagogical plan but rather
follow the material separation into traditional thematic units as this
appears in classic introductory university textbooks. Similar to these
textbooks, in the traditional school curriculum all subjects, and mainly
the concepts, have the same pedagogical value considering there is not
some kind of ‘external’ criterion to the scientific knowledge (e.g. the
social importance of a theme) that will give greater or lesser impor-
tance to a conceptual framework. At the same time, the feature of
setting different conceptual frameworks within which the pendulum
study occurs is apparent, even though a favored field seems to be the
one of Newtonian analysis, at least in the lyceum grades. Nevertheless,
the effort to elevate the simple pendulum into favored field of studying
the phenomenon of oscillation, in the gymnasium grades, shows that
innovative framework for the school curricula and science textbooks
has influenced the authors of the corresponding school textbook.

(b) In the gymnasium grades, the ‘pseudo – qualitative’, conceptual
approach is followed, considering this approach does not differ in
anything from the one used in the lyceum but the exchange of the
mathematical language with everyday language. So, the phrase ‘in
extreme positions of oscillation the sphere acquires its maximum
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gravitational dynamic energy as to the equilibrium position and zero
kinetic energy’ can not acquire any meaning if not included in the
quantitative/mathematical approach of the conservation of the
mechanical energy. On the other hand, in the lyceum, we find a totally
mathematicized approach. A series of mathematical equations replace
the problem that can give meaning to the concepts corresponding to
mathematical symbols. Issues such as ‘which problem leads to the
Newtonian analysis of the simple pendulum motion’ or ‘how did the
connection of the motion of the simple pendulum with the law of
energy conservation occur’ (Matthews 2000, ch.8) are not included in
any of the three educational levels.

(c) In the gymnasium, one more clearly sees the empirical methodological
approach to the simple pendulum. For example, the dependence of the
period on the length of the string of the simple pendulum and the
acceleration of gravity does not appear as a conceptual problem, but as
a technical problem solved through a series of instructions for the
‘successful’ performance of an experimental activity. Thus, the
impression is given that the relation of period with the other physical
entities emerges from a simple (however, systematic) observation of the
pendulum motion. This impression leads to the empirical logic that
scientific knowledge, especially mathematical relations expressing it, is
‘hidden’ within the natural phenomenon. In the two grades of the ly-
ceum we find, apart from the specific experimental activity, the deriva-

tion of the formula T ¼ 2p
ffiffi
l
g

qffiffiq
g from a series of mathematical relations.

(d) Lastly, the absence of any cultural reference relating to the pendulum in

qq
the lyceum as well as the loose connection between the scientific
knowledge of the pendulum and the everyday/technological or/and
historical applications in the gymnasium, sets all three approaches
within the traditional framework for school curriculum and science
textbooks. Still, the reference to time measuring and the Foucault’s
pendulum supports the possibility of curriculum change so as to attain
the features of an innovative framework. This change from the tradi-
tional to the innovative framework will be occupying us afterwards.

As already pointed out, the instrument of analysis and interpretation of
school textbooks we presented has another value since it can be used as a
learning tool for educators of science of different grades. In a previous study
relevant to how educators can modify the traditional tradition of the school
curriculum in science and move towards the innovative framework (Kolio-
poulos & Ravanis 1998), the following ways of intervention were identified:
(A) Part or whole modification of the curriculum which relates to the union

of thematic units or the formation of a broad unit over a directed
theme and
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(B) Modification of one or some features of the traditional framework
within a certain thematic unit like the modification of the methodo-
logical framework for the introduction of experimental activities.

In the following, we are about to present an example of transformation of
the traditional framework to an innovative one for teaching about the pen-
dulum. Firstly, this example cannot be generalized because it refers to the
existing Greek curriculum. This approach can replace or complete, if there is
enough time, the traditional approach of the 3rd grade of the gymnasium
(case A). In Table IV is presented a sequence of didactical units, based on
didactical activities – problems while for each unit we propose the basic
conceptual, methodological and cultural elements of the concerned study.
This approach differs from the traditional approach as to the following points:
(a) A broad unit is formed in which time measurement constitutes the main

theme, that is the (cultural) frameworkwithin which the desired conceptual
and methodological features of the pendulum study acquire meaning.

Table IV. A sequence of units relevant to the teaching of the simple pendulum, which is based

on the ‘innovative’ framework for the school curriculum

Activity – Problem Conceptual Frame Methodological
Frame

Cultural Frame

Why is it needed

for time measuring

to be accurate?

Periodicity Measuring accuracy Sundial, mechanisms in

Ancient Greece and

Cyprus, pendulum clock,

modern clocks

How can we

measure time in

the pendulum

clock?

Period/frequency Measuring accuracy

Measuring the

pendulum period,

measuring faults

From a true

pendulum clock

to the simple

mathematical

pendulum

Period/frequency

Period – length

of string relation

Measuring accuracy

Measuring the

pendulum period,

measuring faults

Showing factors

on which the

pendulum period

depends

Once again the

issue of accuracy

in time measuring

Period/frequency

Period – gravity

relation

Showing factors on

which the pendulum

period depends

Examples derived

from science history

(The differences in time

measurement)
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(b) There is an in-depth analysis of a conceptual framework that, in the
specific occasion, relates to showing a qualitative/semi-quantitative
relation between the period of the simple pendulum, the string length
of the pendulum and gravitational acceleration. The mathematical
approach to this relation is not necessary in this grade. At the same
time, the paragraphs relating to other conceptual frameworks, like the
Newtonian analysis, energy analysis and measure of gravitational
acceleration, are omitted.

(c) A hypothetico-deductive approach to the relation between the period
and the string length of the pendulum and gravitational acceleration is
attempted. Concerning the length of the string, a practical problem is
raised concerning the explanation of how a clock ‘ticks the seconds’.
This problem, with the educator’s guidance, can lead the students to
plan on their own the same experimental activity imposed by the school
textbooks in the traditional approach.8 In gravitational acceleration, a
problem is presented through science history (Matthews 2000, ch.6) that
can lead students to realize primarily, the qualitative relation between
the pendulum period and the force of gravity. If there is also an analogy
between the gravitational field and the magnetic field or one can be
established, teaching practice can include an experimental activity of
measuring the period while placing a magnet under the pendulum.

(d) The cultural dimension is specified as an essential element of the
educational procedure. The cultural dimension not only (a) acts as a
means for approaching the everyday/technological reality and of get-
ting familiarized with the scientific/technological tradition (e.g. in
Greece and Cyprus, familiarization with the sundial and the mecha-
nism of Antikythera) and (b) constitutes a guiding principle of the
broad unit but also (c) acquires an organic relation with the conceptual
and methodological dimension thus attributing meaning to the study
of these two dimensions. Hence, the function of the clock is not viewed
as a simple application of the pendulum study. Instead, the study of the
technological and natural phenomenon of the clock’s operation leads
to the procedure of its conversion to a physical phenomenon (study of
the modeled simple pendulum) (Baltas 1990).

As we have already noted the limits of the above approach relate to the
school curriculum tradition (see Table III) and its pedagogical frameworks
(e.g. teaching methods and means) within which it is called to function.
Another factor influencing this approach can be the mental representations
the students acquire for the concepts of time measurement, pendulum period
or/and for representing patterns/models in selected data. If this factor is also
considered, then it is possible to have radical changes in the sequence and
context of the approach proposed.
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Epilogue

We consider this article as a small contribution to the area of research in
science education by showing how a conceptually, methodologically and,
most importantly, culturally rich object of teaching, such as the pendulum, is
limited through the traditional framework for science school curricula. At the
same time, the same instruments of analysis used in this case study seem to be
suitable for identifying specific ways of reorganizing this framework. The
transformation of this new framework into educational practice by suitably
prepared teachers is the next phase of our research.

Notes

1 The generalized version of the model was presented in a series of lectures given to the
students of the Department of Educational Sciences of the University of Cyprus during

the academic year 1999–2000. A preliminary evaluation of the results of these courses indicates
the potential of this model as an effective teacher preparation tool for primary education.
2 The complete version of the proposed model includes a third framework, the ‘constructivist’

framework, which is conceptualized not so much as a teaching methodology but more as a
framework that determines the sequencing of many innovative teaching programs (Tiberghien
et al. 1995, Koliopoulos & Ravanis 2000). Such programs are mostly experimental in nature

and have not in general been transformed to established school curricula. It is for this reason
that we have chosen to omit this third perspective in the context of the present paper.
3 We do not include here curricula that emphasize other attributes such as STS or those that
emphasize methodological process skills
4 In the ‘pseudo-qualitative’ approach the replacement of mathematical language by everyday
language leads to the breakdown of any logical connection between the two concepts. This
occurs because this connection results exclusively from a mathematical model. That is,

someone who is trying to comprehend a text belonging to the ‘pseudo-qualitative’ approach
should have priorily comprehended the corresponding mathematical model. In contrast, in a
‘qualitative’ approach the natural language or other symbolic representation is used in such a

way as to favor the construction of different forms of physical causality (e.g., the establishment
of series of intermediaries and series ordered in time – Antoine 1982)
5 In both Greece and Cyprus teaching is entirely implemented through one officially ap-

proved textbook. The fact that the last two years there are two officially approved textbooks
for the primary school doesn’t change anything in our research since only one of these text-
books refers to pendulum.
6 This is a synthetic description of many conceptual frameworks, which include both quan-

titative and qualitative approaches. Usually only some of the attributes of each framework
appear in the school textbooks under examination. For instance, the reference in frame (c) to
the level of primary education concerns the implementation of an experimental activity where

a simple pendulum is used to familiarize children with the transfer of the sound that is
generated when a glass is hit with a spoon.
7 In the French bibliography the system of spring-sphere with vertical motion is called the

«elastic pendulum».
8 In Greece, a corresponding activity has been implemented successfully in the case of
Hooke’s law of elasticity. In this case, 8th grade students propose by themselves the well

DIMITRIS KOLIOPOULOS AND COSTAS CONSTANTINOU462



known experimental procedure with a coiled spring which results in an analogical relation

between weight and extension, in the context of project work in response to the problem «How
can we make a force meter?»
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Presses Universitaires de France.
Koliopoulos, D. & Ravanis, K.: 1998, ‘L’Enseignement de l’Energie au CollÈge vu par les
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Abstract. This paper describes life-span development of understanding about pendulum motion
and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88
years senior citizens. The conflict and consensus between children and their parent’s understanding
of pendulum motion were also analyzed. The kindergartner’s understanding, mostly non-scientific,
made a marked developmental change to another type of non-scientific understanding by the time
they reach G 4. Parents with scientific understanding do not presumably nurture scientifically minded
children, even though about half of them can apply scientific conceptions that shorter pendulums
swing faster, and the amplitude and speed of pendulum motion do not depend on its weight. There
seems to be another type of developmental change from scientific understanding to non-scientific
understanding around their fifties. It is suggested that the scientific understanding in the public about
pendulum motion become predominant due to the educational intervention through school science.

1. Introduction

Sometimes we find an expert in one area of specialization almost ignorant in an-
other area. This characteristic of understanding can be explained by the cognitive
framework which constrains cognition of an event in the external world; in other
words the view of domain-specific understanding. Since the second half of the
1970s, there has emerged in science education a cognitive paradigm known as
alternative conceptions movement (ACM) (Gilbert & Swift 1985), by which, based
on a domain-specific view of understanding, children’s conceptions on specific
topics in school science curriculum are recorded and analyzed. Contributing to
this approach was the emergence of post-behaviorism psychology referred to as
the cognitive revolution (Gardner, 1985), and the influence on science education of
relativist viewpoints from philosophy of science.

However, studies on knowledge acquisition and conceptual change in science
based on a domain-specific view of understanding have the problem that few stud-
ies have been made on the understanding in science covering learners from a wide
spectrum of ages. Cognitive research used in science education centers on how to

in the curriculum, and mainly concerns evaluation of the achievement of learning.

The Public Understanding of Pendulum Motion:
From 5 to 88 Years Old
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A typical task of research is based on a rule common among, and understandable by
nobody else, than learners of dynamics, such as the question asking to express the
direction of force by an arrow, used by Watts and Zylbersztajn (1981) and Clem-
ent (1982). According to a survey of undergraduate students by Viennot (1979),
scientific conceptions of dynamics presented in school science are forgotten over
time, but it is yet to be studied and found out over how long a period and at what
rate the frequency of occurrence of a scientific response decreases and continues
to decrease. The relativist view of science after Kuhn (1970) is characterized by
its focus on the social context in scientific discoveries and revolutions, and the
cognitive theory of science learning, by its focus on cognition in an informal con-
text. Nevertheless, few studies have been made on the scientific context of society
surrounding children. Even in research on parents and their substitutes (guardians)
who are likely to share much of their time with children outside school (Wang &
Wildman 1995), no work has been done studying their understanding of science
topics.

Furthermore, many of the cognitive studies made on specific science topics
tend to assume the understanding by a learner at a given point of time as being
something unitary and fixed. Against this tendency, Hewson (1985) proposed a
dimension of commitment, and attempted to express the learning process by using
a theory of conceptual ecology. Brown (1987) and Clement et al. (1989) used the
level of commitment as a means to find an anchor conception out of the various
conceptions a learner may have. While this task of commitment level is character-
ized by a more dynamic grasp of the process of conceptual change by checking
the level of confidence in the subject’s reply (Morifuji 1994), few cross-age studies
have ever been made to find out how this level of confidence may vary with the
difference in school grade or in the experience in science learning.

The “domain” of this study was the topic of dynamics. Out of this domain,
pendulum motion, which Matthews (1994, 2000) claims to be by far the suitable
topic for discussing science studies, cognitive science and science education was
selected. The subjects would be selected from a wide spectrum of age brackets
ranging kindergarteners to senior citizens, and surveyed in a cross-age manner
using the same question to find what differences in the learner’s understanding
of pendulum motion are made by the age and the experience or inexperience in
learning. Then, the understanding of pendulum motion by guardians of children of
all school grades, from the kindergarten to the third grade of junior high school,
would be examined. The purpose of study is to consider whether or not there is any
difference in the trend of response between the children whose guardians choose
scientific answers and the children whose guardians do not and assess the role of
science learning at school in children’s understanding in science from the life-span
perspective.

466



THE REPRODUCTION OF SCIENTIFIC UNDERSTANDING

2. Methodology

This study is intended to consider in a life-span perspective the understanding by
a learner of the motion of an object and the effect of science learning at school by
developing original tasks which concern pendulum motion and can be commonly
used for subjects of all age brackets from kindergarteners to senior citizens and
surveying and analyzing their responses in a cross-age manner. This study covered,
as shown in Table 1, a total of 2,766 subjects living in Naruto City, Tokushima Pre-
fecture, ranging from five-year-old kindergarteners to 88 year old senior citizens.
The guardians selected had children ranging from the kindergarten age to the third
grade of junior high school. Previous studies have pointed out that a variety of
diseases and an extreme decline in physical strength may affect the intelligence
of a senior citizen (Nakazato 1990). For this study, elderly subjects were selected
from healthy senior citizens visiting a service facility for the aged only to receive
day care, as they were considered suitable for the purpose of the study.

The subjects of this survey, those from the kindergarten age to the fifth grade
of elementary school have not yet studied pendulum motion at school. On the
other hand, those from the sixth grade of elementary school to the highest age
have presumably learnt about pendulum motion in one way or another. Out of the
guardians, two age groups, one of 40 to 47 and the other of 30 to 37, are extracted
and classified as same curriculum experienced groups with the period of transition
of curriculum being taken into account.

The tasks to be studied are basically two. One is the “length task” to ask about
the speed of pendulum motion, the “length” of the pendulum being an independent
variable (Figure 1a). The other is the “weight task” to ask about the amplitude and
speed of the pendulum motion, the “weight” of the pendulum being an independent
variable (Figure 1b, c).

For the “length task”, two similar bobs (wooden balls each weighing about 10 g)
were hung by strings of different lengths and swung in equal amplitudes. The
subjects were asked in a multiple choice question which of the two bobs would
hit the wall first.

The “weight task” contains two further tasks: the “amplitude task" to examine
the subject’s cognition of the relationship between the weight of the bob and the
amplitude of the pendulum, and the “speed task” to check his or her cognition
of the relationship between the weight of the bob and the swinging speed. For the
“amplitude task”, two bobs differing only in weight (a wooden ball weighing about
10 g and an iron ball weighing about 200 g) were let swing freely from the left side
at the same height. The subjects were asked in a multiple choice question how far
the two bobs would reach in their first swing (going route). For the “speed task”,
two bobs differing only in weight (a wooden ball weighing about 10 g and an iron
ball weighing about 200 g) were let swing freely from two sides, right and left, at
the same height. The subjects were asked in a multiple choice question where the
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two bobs would hit each other. Each of them was further asked to grade his or her
confidence to the answer he or she gave on each task (Figure 1).

The surveying method for kindergarteners was interviewing, adapted from the
questionnaire and having the same contents, asked by the same person for every
child. That for elementary schoolchildren and junior and senior high school stu-
dents used a printed questionnaire, and each subject was supposed to answer
multiple choice questions in the sequence of question numbers. For guardians,
the same questionnaire as that for junior high students was used. For each of
these adults, an answering manual and a return envelope were enclosed with the
questionnaire, and the sealed envelope containing them was entrusted to the child
for delivery to his or her guardian. The reply was put into the return envelope,
which was sealed and collected by the school through the child. For every school
grade, guardians were surveyed after the children. The collection rate of requested
data from the guardians was about 86%. For senior citizens, the same questions
and method as for kindergarteners were used through one-to-one interviews by the
same person.

3. Life-span Development of Understanding about Pendulum Motion and
Effects of Science Learning at School

The responses of the subject to the length task can be classified into the following
three types by the answer on the expected position of collision between two pen-
dulums differing only in the length of string. The rates of occurrence of and the
average levels of confidence to different types of response to the length task are
classified by school grade, and shown in Figure 2 and Figure 3, respectively.

[Long < Short] type: The shorter pendulum swings faster.

[Long = Short] type: The swing is as fast irrespective of the pendulum length.

[Long > Short] type: The longer pendulum swings faster.

The results regarding the length task diagrammed in Figure 2 and Figure 3 can
be described as follows. No significant difference in response type among children
from the kindergarten level to the fifth grade of elementary school, who have been
subject to no educational intervention in this regard, and many of the subjects
in this age range chose the [Long < Short] type, which is scientifically correct.
Science lessons at school on pendulum motion, which are given in the fifth grade of
elementary school, seemingly contribute to an increase in the frequency of [Long <

Short] type responses, but science lessons at the junior high and higher levels rather
appear to be contributing to an increase in the frequency of [Long = Short] type
responses, which is unscientific. Among the two groups of guardians, the frequency
of [Long = Short] type responses is about the same as among senior high students,
and if this means that science lessons at the junior high and higher levels contribute
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Figure 2. Prevalence of subjects’ response to “Length Task”.

Figure 3. Prevalence of subjects’ confidence to “Length Task”.

to an increase in the frequency of [Long = Short] type responses, it may well be
suspected that the effect of science learning at school is sustained on the subjects in
their forties. Furthermore, since the response pattern of senior citizens significantly
differs from those of subjects of all other age brackets including the guardian group
whose average age is the closest to theirs, there is a possibility that in some age
range after 48 years many learners substantially reconstruct what they learned at
school.

Regarding the level of confidence, no significant difference in this respect was
witnessed among the different response types in all the groups from kindergarten-
ers to the fifth grade of elementary school but the elementary second grade. By
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Figure 4. Prevalence of subjects’ response to “Amplitude Task”.

contrast, in almost all the age brackets of and above the sixth grade of elementary
school, the level of confidence to the scientifically correct [Long < Short] type was
higher than that to any other response type. To compare science course students
and non-science course students at high school, the former were found more firmly
committed irrespective of the response type.

Then, as regards the amplitude task, the responses of subjects can be classified
into the following three types by comparing the replies of the same subject concern-
ing the reach of the wooden ball of about 10 g referred to in the first question and
concerning that of the iron ball weighing about 200 g in the second question. The
rates of occurrence of and the average levels of confidence to different types are
classified by school grade and response type, and shown in Figure 4 and Figure 5,
respectively.

[Heavy > Light] type: The heavier pendulum swings more widely.

[Heavy = Light] type: The swing is as wide irrespective of the pendulum weight.

[Heavy < Light] type: The lighter pendulum swings more widely.

Figure 4 and Figure 5 reveal the following results regarding the amplitude task.
While the [Heavy < Light] type is dominant among kindergarteners, the [Heavy
< Light] type and the [Heavy > Light] type become about equal at and above the
elementary first grade, but almost none of the kindergarten through the elementary
fifth grade ages chooses the scientifically correct [Heavy = Light] type. Learning
about dynamics including pendulum motion at the elementary fifth and junior high
third grades and in later science classes seems to be contributing to the rise in the
frequency of [Heavy = Light] type responses. Since the frequency of [Heavy =
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Figure 5. Prevalence of subjects’ confidence to “Amplitude Task”.

Light] type responses is high among both groups of guardians, who presumably
are distant from the educational intervention by science lessons at school, and this
seems to indicate that the earlier supposed effect of science learning at school as
the understanding of the [Heavy = Light] type still sustains its functioning even on
subjects in their forties. Since the response pattern of senior citizens significantly
differs from subjects of all other age brackets (including the guardian group whose
average age is the closest to theirs) with the exception of the elementary third
grade, there is a possibility that in some age range after 48 years many learners
substantially reconstruct what they learned at school about the amplitude task, too.

Regarding the level of confidence, as Figure 5 shows, no significant difference
in this respect was witnessed among the different response types in all the groups
from kindergarteners to the fifth grade of elementary school but the kindergarten
age, and younger children were found more firmly committed. In the age brackets
of and above the sixth grade of elementary school, the level of confidence to the
scientifically correct [Heavy = Light] type was higher than that to the [Heavy <

Light] type and to the [Heavy > Light] type. To compare science course students
and non-science course students at high school, the former were found more firmly
committed irrespective of the response type.

As regards the speed task, the responses of subjects can be classified into the
following three types by comparing the replies of the same subject concerning the
colliding position of bobs differing in weight. The rates of occurrence of and the
average levels of confidence to different types are classified by school grade and
response type, and shown in Figure 6 and Figure 7, respectively.

[Heavy > Light] type: The heavier pendulum swings faster.

[Heavy = Light] type: The swing is as fast irrespective of the pendulum weight.
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Figure 6. Prevalence of subjects’ response about “Speed Task”.

Figure 7. Prevalence of subjects’ confidence to “Speed Task”.

[Heavy < Light] type: The lighter pendulum swings faster.

As regards the rates of occurrence of different response types concerning the
speed task, learners’ cognition varies from the kindergarten age until the element-
ary fifth grade, the age range in which children have as yet experienced no formal
learning on pendulum motion and the [Heavy = Light] type, which is scientific-
ally correct, and the [Heavy > Light] type are more frequently found. Although
learning about pendulum motion in school science lessons at the fifth grade of
elementary school seems to be contributing to the increase in the frequency of
choice of the [Heavy = Light] type, this learning effect is short-lived. Nor does
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science learning at and above the junior high school level contribute much to an
increase in the frequency of choice of the [Heavy = Light] type. However, since
about half of guardians in both age groups choose the scientifically correct [Heavy
= Light] type, being away from school science cannot be regarded as a negative
factor to the occurrence of the scientifically correct response type. However, the
response pattern of senior citizens significantly differs from subjects of all other
age brackets. This seems to suggest the possibility that in some age range after 48
years many learners substantially reconstruct what they learned at school about the
speed task as they do about the length task and the amplitude task.

Regarding the level of confidence, as with the length task and the amplitude
task, the difference in confidence level with the difference in response type is absent
in most of the groups from kindergarteners to the fifth grade of elementary school.
In the age brackets of and above the sixth grade of elementary school, the level
of confidence to the scientifically correct [Heavy = Light] type was higher than
that to the [Heavy < Light] type and to the [Heavy > Light] type. Science course
students were found more firmly committed than non-science course irrespective
of the response type.

4. Interrelatedness between Guardians and Children in Understanding
about Pendulum Motion

In the foregoing section, we classified guardians into age groups by reason of
curricular experience, and analyzed their responses. The groups of guardians taken
up in this survey have children ranging from the kindergarten age to the junior
high third grade. The findings described in the foregoing section suggest that the
understanding of pendulum motion by children of this age range may vary from
one grade to another. If children’s understanding varies and guardians are a major
factor in children’s intellectual environment (Costa 1995; Phelan et al. 1991), the
guardians’ understanding may differ with the school grade of children. In view of
this possibility, guardians’ understanding is analyzed in this section as classified
by the school grade of children. Further, any direct correspondence is identified
between children and their guardians, children are classified by the response type
of guardian, and any interrelatedness between guardians and children would be
discussed.

Guardians’ responses to the length task, amplitude task and speed task are
sequenced according to the above-stated criteria of classification, and further clas-
sified by the rates of occurrence of and the average levels of confidence to different
types according to the child’s school grade. The results are shown in Figure 8
through Figure 13, respectively.

As is evident from Figure 8 through Figure 13, guardians’ response patterns
and levels of confidence do not significantly differ with the difference in the child’s
school grade. It is seen that, the age difference between a kindergartener’s guard-
ian (averaging 34.7 years in age) and a junior high third grade student’s guardian
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Figure 8. Prevalence of guardian’s response to “Length Task”.

Figure 9. Prevalence of guardian’s confidence to “Length Task”.

(averaging 42.1) being assumed to be about the same as the children’s difference in
school grade, scientific conceptions are held with considerable stability by guard-
ians farther away from formal science learning at school than children. Regarding
the level of confidence, too, only the main effect of the response type was witnessed
with respect to every task, and the confident to scientifically correct response types
was found higher than that to other response types.

Thus, the children from the kindergarten age to the junior high third grade who
were subjects of this survey are, with respect to pendulum motion, presumably in
a relatively constant intellectual environment out of school. Broadly classified, this
is true, with respect to the length task, of the guardian group of the scientifically
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Figure 10. Prevalence of guardian’s response to “Amplitude Task”.

Figure 11. Prevalence of guardian’s confidence to “Amplitude Task”.

correct [Long < Short] type with a high level of confidence and that of the [Long
= Short] type with a low level of confidence and, with respect to the amplitude
and speed tasks, the scientifically correct [Heavy = Light] type with a high level
of confidence and that of the [Heavy > Light] type with a low level of confidence.

Then, for each task, the difference in understanding between the children of the
two main guardian groups was examined. With respect to neither the length task
nor the speed task, there was any finding to demonstrate that the child’s response
type differed with a difference in the guardian’s response type. Only with respect
to the amplitude task, the interaction between the guardian’s response type and the
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Figure 12. Prevalence of guardian’s response to “Speed Task”.

Figure 13. Prevalence of guardian’s confidence to “Speed Task”.

child’s was found significant. In this aspect, when the guardian’s response was of
the [Heavy = Light] type, the child’s was more likely to be of the [Heavy = Light]
type, too, and when the guardian’s was of the [Heavy > Light] type, the child’s
also was more likely to be of the [Heavy > Light] type. Figure 14 and Figure 15
suggest that this tendency is more conspicuous at and above the elementary sixth
grade having undergone educational intervention. Then, the children were divided
into two groups, one of the kindergarten age to the elementary fifth grade and the
other of the elementary sixth to the junior high third grade. The result indicated sig-
nificant interactions among the guardian’s response type, the child’s response type
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Figure 14. Children’s responses to “Amplitude Task” (whose guardian responds scientific
type).

Figure 15. Children’s responses to “Amplitude Task” (whose guardian responds [H > L]
type).

and the child’s experience of science learning. Table 2 shows children’s responses
classified by the guardian’s response type for each of the two groups.

Thus, when viewed against the criterion of whether or not educational inter-
vention has been experienced, in the comparison of children from the kindergarten
age until the elementary fifth grade having experienced no formal science learning
and children from the elementary sixth to the junior high third grade having experi-
enced learning about pendulum motion at school, the frequency of the scientifically
correct [Heavy = Light] type was higher, and that of the [Heavy < Light] type was
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Table II. The cross-effect of guardian’s understanding and educational intervention in school science
on children’s understanding

Children’s group Guardian’s Frequency of response

understanding [H < L] type [H = L] type [H > L] type

Before educational intervention (K-G5) [H = L] type 159 28 137

(N = 525) (N = 324) (49.1) (8.9) (42.3)

[H > L] type 94 22 85

(N = 201) (46.8) (10.9) (42.3)

After educational intervention (G6–G9) [H = L] type 50 103 126

(N = 423) (N = 279) (17.9) (36.9) (45.2)

[H > L] type 30 33 81

(N = 144) (20.8) (22.9) (56.3)

lower, in the latter group than in the former. Further, while no difference in the
child’s response was observed with the guardian’s response type in the subject
group from the kindergarten age until the elementary fifth grade, the child whose
guardian replied in the [Heavy = Light] type was found more likely to give the
[Heavy = Light] type response, and the child whose guardian gave a [Heavy >

Light] type response was more likely to reply in the [Heavy > Light] type in the
subject group from the elementary six to the junior high third grade.

5. Discussion

The first thing to consider, on the basis of the findings of this study, is the real-
ities of children’s understanding about “pendulum motion”, which is first taught
in the elementary fifth grade in the formal curriculum of school science, and the
character of their understanding. The survey results suggest that the kindergarten-
ers did not respond at random to the tasks of the survey, but they had already
formed understanding about pendulum motion. Since their understanding differs
from guardians’ in most cases, the origin of children’s understanding about pen-
dulum motion could perhaps be traced back to something innate. As a matter of
fact, it is generally agreed among cognitive psychologists that naïve conceptions
in physics are acquired considerably early, already in infancy (Elman et al. 1996;
Karmiloff-Smith 1992; Spelke 1988, 1990). Since understanding varies, as the res-
ults of this study indicate, at a low age where children are not so familiar with the
“pendulum” and have experienced no overt learning about it, it is well conceivable
that not only infants but also many of the children learning science at elementary
school already have a repertoire of many conceptions regarding the motions of
objects. The repertoire of conceptions further expands in learners having undergone
educational intervention by school science. This observation seems to well fit the
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argument of Yates et al. (1988) who labels the cognition of motion by learners
as prototypes, rather than a theory, and that there are many prototypes which are
like domain-specific images, and the context-dependent research findings about
cognition reported by Clough and Driver (1986) and Wakimoto (1992).

Then, what seriously matters in assessing the “scientific correctness” of chil-
dren’s answer, children who learn about pendulum motion for the first time in
a higher elementary grade, for instance learners who have arrived at the [Heavy
> Light] type or the [Heavy = Light] type via the [Heavy < Light] type, may
well have cognitions of various types already, including the scientifically correct
cognition. Thus, a learner who has seemingly given a wrong answer may perhaps
have simply chosen a wrong context of application. Conversely, it is well conceiv-
able that senior high students and guardians who have experienced educational
intervention and show a high proportion of scientifically correct responses give
their scientifically correct answers in accordance with an unscientific understand-
ing. This is particularly true of those subjects who, for instance, gave the [Heavy
> Light] type response to the speed task in spite of their scientifically correct
[Heavy = Light] response to the amplitude task. Learners having experienced no
educational intervention, including infants, showed no significant response type-
dependent difference in the level of confidence to their respective response types
though the frequency of occurrence tended to concentrate on one specific response
type or another. This finding suggests that, as one of conceivable possibilities,
children’s informal learning takes place from a very different ontological point of
view from the criteria of classification we suppose, and their responses regarding
pendulum motion vary as an effect or a byproduct of that learning (Chi et al. 1994;
Bliss & Ogborn 1994).

In this study, subjects who consistently gave scientifically correct responses
were scarcely found among those from the kindergarten age to the elementary
fifth grade having experienced no formal educational intervention. Thus it is quite
unlikely for children to acquire scientific knowledge spontaneously from their
own experience in life. Since subjects of and above the elementary sixth grade,
including guardians having finished learning school science decades ago, give
scientifically correct type responses at a higher frequency than younger subjects,
and it is not very likely for guardians, even if they have held scientific concep-
tions, to have communicated those conceptions to the children, science learning
at school concerned with such contents necessarily play an important role in the
communication and reproduction of scientific understanding in the public. We
also identified another type of developmental change from scientific understand-
ing to non-scientific understanding around their fifties. Baltes (1987) attempted to
theorize two kinds of intelligence in life-span cognitive development. One is the
crystallized intelligence that maintains even in senior citizen and another is the
fluid intelligence that declines with aging. There may be the second/third phase of
developmental change of understanding in science in the public.
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No parallel is found with the level of confidence. Science learning at school does
not contribute to any rise in the level of confidence to one’s response, even if it is a
scientifically correct type. Comparison of the level of confidence between children
from the kindergarten age to the elementary fifth grade who have experienced no
formal educational intervention and subjects of higher school grades reveals an
evidently higher level of the former. However, the group of subjects having exper-
ienced school science and giving scientifically correct response is characterized by
a higher level of confidence than others. The comparison of science course students
and non-science course students at high school reveals a higher level of confidence
of the former irrespective of the response type.

These findings can be interpreted in the following way. As a positive effect of
science learning at school, not only learners who can give scientifically correct
responses but also ones who do not, are enabled to compare their own responses
and the scientifically correct ones. Thus the learners who give scientifically correct
responses become even more scrupulous and therefore more likely to give scien-
tifically correct responses, and even those who do not give scientifically correct
responses gain learning experience that enables them to become more scrupulous
and expect to some extent that theirs are not scientifically correct responses. An
implication of the findings of this study is that science learning at school not only
functions to reproduce scientific conceptions but also effectively and consistently
performs an important role in the scientific understandings at the meta level.

Furthermore, the achievement of this study which, as revealed with respect to
the amplitude task, suggests the effect of group affiliation in the scientific under-
standing seems to imply the need for research in a broader context and in a longer
term perspective by expanding the choice of subjects to include not just children
learning the given topic but also adults if the raison d’etre of science education is to
be more clearly defined. From now on, it will become a basic issue in science edu-
cation how coordination can be achieved between such scientific understandings
and understandings acquired outside school while taking note of the contradictions
and conflicts between the scientific cultures and the cultures outside school in the
public.
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Using Excel to Simulate Pendulum Motion and
Maybe Understand Calculus a Little Better

MICHAEL FOWLER
Department of Physics, University of Virginia, PO Box 400714, Charlottesville VA 22904, USA
E-mail: mfowler@virginia.edu

Abstract. As part of a first-year college Introductory Physics course, I have students construct an
Excel� spreadsheet based on the differential equation for pendulum motion (we take a pendulum
having a light bar rather than a string, so it can go ‘over the top’). In extensive discussions with the
students, I find that forcing them to make the spreadsheet themselves, entering velocities as position
differences divided by time, etc., leads to a firmer grasp of basic calculus concepts. And, the instant
graphical response of the finished product gives a sense of accomplishment as well as a lot of fun
while building intuition about pendulum motion.

Introduction

Anyone who has taught calculus-based introductory physics knows that many stu-
dents have a hard time understanding acceleration. They soon learn to compute
how high a ball thrown vertically upwards will go, but just ask them if the ball is
accelerating at the topmost point, and many will say no. An analogous exercise with
the simple pendulum is to have students draw diagrams showing the acceleration
vector for the pendulum bob at various stages in the swing. The results can be
disappointing if this assignment is given without a few hints!

Of course, acceleration is a difficult concept – the Greeks, for all their geometric
intuition and clarity of thought, never analyzed falling motion carefully enough to
come to grips with it. Galileo was the first to understand one-dimensional constant
acceleration, and for half his life he understood acceleration as the rate of change
of speed with respect to distance traversed, not time elapsed. It was a little over
half a century later that Newton and others developed the full basis of classical
dynamics, encoded in Newton’s Laws. An essential part of this development was
the invention of calculus.

It is no surprise, then, that student difficulties with the concept of acceleration
are closely related to their difficulties with the basic concepts of calculus: the
definition of velocity as a limit of distance moved divided by time taken for very
short times, and the parallel expression for acceleration. (An added problem is that
once these ideas are fully digested, they seem very straightforward. Consequently,
some teaching assistants in college, and even beginning teachers, forget how much
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time they personally spent mastering the material, and become frustrated with the
students’ apparent inability to grasp these ‘simple’ concepts readily.)

I have found that an effective way of getting the students to seriously think
about velocity, acceleration and differentiation is to have them construct Excel
spreadsheets. I emphatically do not mean having them use an already constructed
spreadsheet to find how, say, the path of a projectile depends on various parameters
– that can be useful later, but will not help them with the fundamentals. One big
reason the spreadsheet approach is so effective is that almost all students now
come with Excel already on their laptops, and most of them are eager to develop
spreadsheet skills.

Constructing a Very Simple Spreadsheet

The first exercise I give is something really simple: the most naïve possible numer-
ical integration of the vertical motion of a falling ball without air resistance. I have
the students construct a spreadsheet with four columns (perhaps 100 rows, from,
say, the tenth spreadsheet row down) labeled: time, position, velocity and accelera-
tion. The 100 rows will give the values of position, etc., at 100 successive times, as
calculated by the spreadsheet. The rows left blank at the top of the spreadsheet are
for name, date, a brief description of the exercise, and a list of the basic parameters:
g, initial velocity and the time interval delta_t between successive rows.

The instructions for creating the spreadsheet are as follows: first, the basic
parameters must be entered. This is straightforward: write in cell A4: g =. Then
select cell B4, and from the toolbar at the top click Insert, Name, Define. Excel
will suggest the name g for B4, click OK. Then enter a suitable value, say –10, in
B4. (Units can be exhibited by writing m/sec∧2 in C4.) In exactly similar fashion,
put the variables initial velocity v_init and time interval (between successive cal-
culated rows) delta_t in cells B5 and B6, with initial numerical values 0, and 0.1
respectively.

Turning now to the four columns where the computation will take place, they
can be labeled by writing ‘time’, ‘position’, ‘velocity’, ‘accel’ in A9, D9, C9, D9
respectively. In A10 enter the initial time, take it 0. Immediately underneath, in
A11, enter =A10 + delta_t. A11 should now read 0.1. Now select A11 and drag
down 100 rows using the small black square at the bottom right of the selecting
frame around the cell. This should fill in all the times. In the acceleration column,
enter =g in the first cell, D10, then drag that down. (This may seem a bit pointless,
but sets up a structure in anticipation of variable acceleration problems, such as the
pendulum.) In the velocity column, enter =v_init in C10, then in C11 enter = C10
+ D10∗delta_t. In the position column, enter 0 in B10, then in B11 enter = B10 +
C10∗delta_t.

These entries in B11, C11 – in effect; the first steps in numerically integrating
the equation of motion – are the most important step in constructing the spread-
sheet. The students should figure out what to enter in B11, C11 by themselves, or
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with the minimum guidance necessary. The instructor can later review how this
connects with basic concepts of calculus, with simple diagrams of the discretized
function and using the diagrams to make the point – which will be important in the
next example – that greater accuracy would be gained by using the velocity in the
middle of an interval rather than that at the beginning to find the change in position
over the interval. But first, it is easy to complete the spreadsheet by drag-copying
B11 and C11 down 100 rows, to find out if it’s going to work.

Now comes the fun part. Many of the students will already be familiar with
Excel’s ChartWizard (the little colored bar graph up on the toolbar). ChartWizard
can be used to graph the position of the falling object as a function of time as
follows: select (highlight) all the numerical entries in the first two columns (time
and position), click on ChartWizard, then XY Scatter, then Finish (refinements
such as labeling, titles, and decorative touches can be added in a moment). The
familiar half-parabola appears. Different values for v_init can be entered, and,
if necessary, delta_t adjusted. An enlightening new graph can be constructed by
selecting all four columns and clicking ChartWizard, XY Scatter, etc. Now three
curves for position, velocity and acceleration appear. Putting in v_init = 40, the
chart makes very clear how the acceleration remains constant at the topmost point!
It is instructive for the students to dwell on the relationships between position,
velocity and acceleration as exhibited by this graph.

The Simple Harmonic Oscillator: Wild Oscillations and the Leapfrog
Solution

This same spreadsheet can be readily adapted to a simple harmonic oscillator:
delete (or ignore) g, introduce a new named cell k, put k = 10, this is our spring
constant. Replace =g in D10 (the first cell in the acceleration column) by = - k∗B10
(B10 being the position x) and drag-copy this down column D. That’s all – we’ve
now replaces the constant gravitational force with a linear spring restoring force.
We should see some oscillations. Putting v_init = 20, the chart displays oscillations,
all right, but of a rather alarming kind – the amplitude is clearly diverging! We
know this is not what happens with a real simple harmonic oscillator, and in fact
we know the equation we are trying to solve numerically has a simple sine wave
solution, so where did we go wrong? The answer is that our approximation of
finding the new position (and velocity) by the Euler method, taking the old position
and adding the old velocity multiplied by the time interval is just too crude. (It
worked better for gravity because there the acceleration doesn’t change.)

Fortunately, it’s easy to improve our approximation dramatically. Instead of
using the velocity at the beginning of a time interval to find the change in pos-
ition during that interval, we need to use the velocity in the middle of the time
interval. Similarly, to find the change in velocity over a small time interval we get
a much more accurate result if we use the acceleration in the middle of the time
interval multiplied by the time elapsed. To build this into our spreadsheet, we use
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the ‘leapfrog’ concept: we measure position and acceleration at times 0. 0.1, 0.2,
0.3, say, but velocities at times 0.05, 0.15, 0.25, . . . . To get the change in position
from 0.1 to 0.2 we use the velocity at time 0.15: and to get the change in velocity
from 0.15 to 0.25 we use the acceleration at time 0.2, so the position and velocity
leapfrog over each other as time goes on, and for each numerical step forward in
time we are using the derivative in the middle of the time interval.

Building the leapfrog into the spreadsheet is surprisingly simple: we replace
=v_init in C10 with =v_init + 0.5∗delta_t∗D10. In other words, the velocity in C10
is now at time just halfway between the time in A10 and the time in A11. (Of
course, this entry is not to be copied down the column – once the first entry in
the column has been budged down half a time interval, the others automatically
follow.) The position column can be left intact, as the existing formula B11 =
B10 + C10∗delta_t (and subsequent copies) will now be automatically using the
velocity C10 at the midpoint of the position time intervals to find the successive
changes in position. The acceleration column also stays unaltered. however, we are
not quite through with the velocity column. Going from C10 to C11 is going in
time from 0.05 to 0.15, so we need to use the acceleration at the midpoint time
0.1. In other words, in C11 we must replace =C10 + D10∗delta_t with =C10 +
D11∗delta_t and drag-copy that down the column. The spreadsheet is now a fully-
fledged leapfrog spreadsheet, and the oscillations no longer diverge. Our improved
numerical method gives the right answer! It is not difficult to check this further
in Excel, because the function sin(x) is built in. The student can plot Asin(Bx +
C) and adjust the parameters appropriately to see how well the numerical solution
matches the exact one. It is instructive to try different values of delta_t, etc.

A Spreadsheet Analysis of the Simple Pendulum

First, let me make clear what I mean by a simple pendulum: not a bob on a string
but a bob at the end of a light rod, the rod being constrained to move in a vertical
plane, so it can go ‘over the top’ but not ‘sideways’ – it always stays within the
vertical plane. This is the same thing as a bob attached to the rim of a light wheel,
which rotates about a fixed horizontal axis.

To adapt the simple harmonic oscillator leapfrog spreadsheet constructed above
to the simple pendulum, all one need do is replace the acceleration –k∗B10 in the
fourth column by (g/L)∗sin(B10) and drag-copy it down the column. (Of course,
we also need to add cells for g and L to our ‘named cells’ list, and we might as well
put one in for initial position x_init, then enter =x_init in A10. Strictly speaking,
we should at this point replace x, v, accn., by theta, omega and alpha, and adjust
the units appropriately, but first let’s look at the curves the spreadsheet generates!)

Many students will be surprised at first by the curves for the position of the
simple pendulum as a function of time. Entering first g = –10, L = 1, x_init =
0, v_init = 0.001 gives the expected simple harmonic oscillator type curves. But
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things really change for high v_init! Try v_init = 6, then 7 – the curve goes from
periodic to a sloping line with slight wiggles.

This is the time to introduce a physical model – perhaps a light wheel with
a weight on the rim. It immediately becomes clear that the ‘wiggly’ curves cor-
respond to a sufficiently high v_init for the bob to go over the top and the wheel
continues to rotate in the same direction. It is amusing to try tuning the initial ve-
locity in the spreadsheet to get the pendulum to stop at the top. One can then check
the accuracy of the spreadsheet’s computation by using conservation of energy. (In
fact, one can add an extra column giving total energy as a function of time as an
accuracy check, remembering that the velocity and position listed on the same row
are at slightly different times, and correcting accordingly.)

In contrast to the simple harmonic oscillator, the simple pendulum’s motion
cannot be integrated using functions the students know, so the spreadsheet enables
them to find new quantitative information. For example, they can find the period as
a function of amplitude, by putting v_init = 0, and varying x_init, so they can figure
the error if a pendulum clock swings with an amplitude other than that assumed by
the manufacturer.

Are Spreadsheets Pedagogically Effective?

I have not tried to assess how well students learn this material compared with
a course not using spreadsheets. That would certainly be worth doing. However,
many students have told me that they understood calculus and acceleration much
better after being forced to construct their own spreadsheets to predict position as
a function of time for the examples given above. (But they will only learn if they
are not handed the finished spreadsheet!) Once the spreadsheet is running, they
enjoy playing with it. They can easily extend it from 100 to 2000 rows or more,
and see how that improves accuracy. The falling ball spreadsheet can be extended
to include air resistance, to go to two dimensions, even to planetary orbits. (Details
can be found on my website.) The simple harmonic oscillator can be generalized to
a driven damped oscillator (or pendulum), generating beautiful graphs of resonant
behavior, critical damping, etc. The instant feedback from the graph means the
students can explore parameter space fairly thoroughly in a reasonable time. My
experience over several classes has been that students really enjoy constructing and
using spreadsheets for physics problems, they are more positive about the course,
and they learn a great deal.

Web Resources

A fuller discussion of the leapfrog method can be found on my website at
<http://www.phys.virginia.edu/classes/152.mfli.spring02 /ExcelPendulum.html>.

A polished version of the finished spreadsheet can be downloaded from:
<http://www.phys.virginia.edu/classes/581/SimpPend.xls> . That is part of my
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Physics 581 website, which also contains spreadsheets for many other problems:
<http://www.phys.virginia.edu/classes/581>.

Acknowledgment

My first physics spreadsheet efforts years ago were based on the excellent book
Spreadsheet Physics, by Misner and Cooney which teaches the leapfrog method,
and many other tricks. Unfortunately the book is now more than 10 years old, has
not been revised, and is based on Lotus 1-2-3 for DOS, so students do not find it
appealing, severely limiting its usefulness.
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Abstract. This article explores the relationship between specific cultural events such as Gali-
leo’s work with the pendulum and a curriculum design that seeks to establish in skeletal form a
comprehensive epic narrative about the co-evolution of cultural systems and human con-

sciousness. The article explores some of the challenges and some of the strategies needed to
represent complex primary events in the concise, viscerally immediate form necessary to make
this curriculum offering practical.

1. Foundational Perspectives on Curriculum

I have elsewhere argued that foundational perspectives should be used to
enrich the teaching of individual subject areas as well as to frame the whole
curriculum (Carson 1997a, b, 1998, 2002a, b). Foundational perspectives are
those derived from bringing to bear upon the study of any subject area the
disciplines of history, philosophy, sociology, anthropology, and psychology,
such as ‘history of science’, ‘philosophy of mathematics’, and so forth. Thus,
in the teaching of science, we may choose to teach science content as a canon
of knowledge and skills to be acquired by the learner, or we can teach
something of the history of the subject, showing how it evolved over time,
introduce some insights from philosophy on the nature of knowledge, of
perception, and of the act of knowing, and so forth (see Matthews 1994). We
could also study how different societies construct their understandings
(Shweder 1991) including those of the physical world, and how in the dis-
ciplines of science we strive to see things differently.

The argument for foundational perspective is that we end up with a richer,
more authentic, and probably more intellectually honest account of the
subject (Scheffler 1970). The teaching of some disciplines, such as music, art,
and literature, would be severely impoverished if those works were taught
with no regard to the social, historical, philosophical, and cultural contexts in
which they have arisen. Thus, it is customary to pursue an education in art
partially through art history and courses in the philosophy of art. But in

Paper presented to the International Pendulum Project Conference, Sydney, Australia,
October 18–19, 2002.

491

M.R. Matthews et al. (eds.), The Pendulum, 491–503.
© 2005 Springer. Printed in the Netherlands.



science there is hesitation to do this because it seems to imply that the
findings of science are somehow provisional (which they are) and context
bound (which, in a qualified sense, they also are). And that would threaten
the lofty public impression that scientific knowledge is timeless, objective,
absolute, and that it is dynamic only in the sense of its showing incremental
movement toward a fixed and perfect state. To be sure, scientific findings are
not a matter of whim or fashion, subject to complete revision should the
political winds shift or the social climate undergo a change, the Edinburgh
strong program notwithstanding (Matthews 1994, p. 40, 93, 142). Science as a
human undertaking produces an account of the natural world that is more
clear, more reliable, more useful, and more accurate than any other cultural
system, precisely because it has been designed with that end in mind. But how
and why that has been possible, and making the case convincingly to neo-
phytes, requires giving them some exposure to foundational perspectives.

In previous articles (Carson 2002a, b) I have argued for a comprehensive
middle school curriculum framed by historical epochs over the whole three
years, beginning with human prehistory and early societies and proceeding
through the conventional historical epochs to the 21st century. In this ap-
proach, a kind of skeletal history of culture would be deployed, made up of
the ‘primary events’ of cultural evolution. There is no definitive canon of
primary events, of course, but sample listings, narrative histories, and
anthologies are available (cf. Van Doren 1991; Thompson 2001; Carson,
2002b). In particular, our goal would be to ‘tell the story’ of the development
of art, music and architecture; science and technology; literature and lan-
guage; mathematics and logic; and that story would be told against the
backdrop of an account of the world’s huge spectrum of traditional cultures.
The latter are intriguing evidence of humankind’s tremendous adaptability
and of the manner in which culture functions as one of the primary adaptive
mechanisms between human beings and their various environments.

For each discipline examined, the account – viewed as a kind of narrative
history, a story (here, consider Egan 1986) – would begin with a careful
grounding in humankind’s pre-historical conditions. In telling the story of
mathematics, for example, we could acknowledge that the proverbial cave-
man did not need a numbering system to wake up each morning and know
that he still had all of his fingers and toes. There is a relatively simple,
intuitive basis for mathematics that even ducks and geese have. If humankind
dates back three million years to our earliest evolutionary ancestors (Wenke
1990), it is fair to say that this intuitive-empirical grasp of number was
sufficient for most of that time. But following the close of the last ice age
some twelve thousand years ago, humans began to invent tools not only to
modify their physical abilities but tools to modify their cognitive abilities
(Eccles 1991). It is this discovery of our ability to create tools for the mind
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that results in such dramatic cultural change over the past four to five
thousand years (Vygotsky 1986).

The early progress in cultural innovation left a pretty serviceable record,
once historical records were kept. The Greeks, for example, were very con-
scious of the significance of their discoveries in almost every domain of
learning (Snell 1982/1953), and they celebrated as heroes those who made
substantial contributions. While the telling of their story has a somewhat
mythological flavor about it, the events are at least developmentally pretty
accurate. Heath’s (1981/1921) account of the history of mathematics, for
example, offers numerous corrections to the historical record as given by the
Greeks themselves, but the developmental sequence of geometry given there
seems generally quite accurate.

In any event, it is that story, of the primary discoveries, innovations, and
conventions that make up the skeletal history of this curriculum project, that
I have proposed. The project, named ‘Ourstory,’ is composed of six subject
matter areas: Social Studies, History and Geography; Music, Art and
Architecture; Mathematics and Logic; Science and Technology; Literature
and Language; and Traditional Cultures. Over a three year period, beginning
with Early Cultures and Societies, a narrative history is deployed in which
developmental events in each of these subject areas are reconstructed for the
learner. Coordinating these subject area narratives by historical epoch per-
mits the learner to see how cultural trends transgress disciplinary boundaries
and affect whole cultures. The really big themes come to define entire cultural
epochs, and they account for the seeming stylistic unity of a given age.

What this hints at is a comprehensive narrative history of intellectual
culture in all of its major domains. Clearly, the time needed to deliver such a
massive history would be prohibitive. Yet the goal is not to put forth a
comprehensive history, but rather to supply the learner with a concise, par-
simonious framework that establishes an initial index in space and time
(geography and history) for the location of culturally significant historical
events. The establishment of this framework then provides a basis for the
operation of locale memory in nearly all subsequent learning.

1.1. PSYCHOLOGICAL AND CULTURAL CONSTRAINTS

There are psychological considerations that I have tried to heed in proposing
this for a middle school, such as respecting the developmental limits of
emergent teenagers and the limits typical of that age group in terms of lan-
guage sophistication and cultural background. The use of narrative and
simulations rather than a more didactic approach is intended to key into the
one comprehensive framework all learners have, namely a sophisticated
grasp of what it is like to be a human being, and to experience events from
that highly visceral perspective (Damasio 1999). Simulations, enactments,
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and narratives are powerful precisely because learners know how and where
to locate massive amounts of contextual information in ‘setting the scene’
both physically and psychologically, and can therefore construct and process
fairly complex scenarios when the problem space itself has this human con-
text as its frame.

There are also philosophical considerations I have tried to honor, since
any statement offered as instructional fodder can be refuted ad infinitum for
its epistemic and ontological ambiguities and deficiencies. The goal has been
to teach the conflicts honestly without trying to resolve them, thus recog-
nizing that unresolved and interesting philosophical issues are a stimulus to
higher order thinking.

There are sociological and cultural issues too, since every culture has its
story, and every human his or her unique variant of that story, so that
attempting to tell ‘our story’ is presumptuous, bordering on folly.

Rather than deny the folly, I have preferred to let it stand out as a cau-
tionary beacon, clear enough in its exposure that anyone can spot it, take it
into consideration, and move beyond it as the value of this curricular offering
gets absorbed and then subsumed by a richer understanding which hopefully
follows. It is, after all, a heuristic, a kind of temporary scaffolding designed to
establish a basis for learning that takes advantage of the brain’s vast locale
memory system (for an undergraduate level discussion of this, see Caine and
Caine 1991). Heuristics have limitations if taken too literally, but they are so
powerful in their capacity to tap higher order thinking that we tolerate those
limitations. The goal is to be able to incorporate foundational perspectives in
a way that is natural and coherent, that comes to the student in ways the
mind is prepared to receive them. That means telling a story and embedding
the important information into that historical narrative. It would be quite
wonderful if somehow we could transport the learner back in time and take
her to the exact time and place where each culturally significant event was
unfolding, to experience for herself the problem and its context, as well as the
humans who worked through the problem. She could gain vicarious con-
nection to the whole situation and the epiphany that comes from seeing
through the problem to the solution, whether it be a discovery, an innova-
tion, establishment of a new cultural convention, or a new way of looking at
something in the world or in our own mental landscape.

In the absence of foundational perspectives teaching risks being unas-
sailably dogmatic, and that really disadvantages students who are trying to
answer the ‘why’ questions, as well as those whose cultural backgrounds
stand opposed to the things being taught. Providing foundational perspective
means providing the means to recognize alternative views and, if well done,
to assess their relative merits. The value of this project is that it provides an
organizational framework (see Table I) for all that subject matter students
are expected to learn, collates it in ways that promote richer connections, and
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therefore aids the learner in acquiring, understanding, and remembering
knowledge that must otherwise be encountered as disconnected, less mean-
ingful chunks of information. Central to our ability to learn is our ability to
detect and construct patterns and connections, and thus to link the pieces
into coherent, meaningful wholes. One thing that makes this approach
especially attractive is that entire cultural epochs tend to derive their char-
acter from the wholesale generalization of a relatively small number of very
powerful ideas, the discovery of rationality, abstraction, and a meta-narrative
on the nature of mind and culture among the first philosophers, for example.
Seeing how these find expression across disciplinary boundaries provides the
basis for a conceptually rich historical treatment of human cultures and
human consciousness.

2. Large Scale History

We cannot tell the whole cultural story in all of its complex detail. But we can
identify those cultural shifts that have to be understood in order to follow the
evolving nature of each formal discipline. The key to restricting the number
of episodes to a manageable number is to focus on dynamics of cultural
development, and to highlight those events that precipitate the most dramatic
and significant changes in the ways we think and act.

In mathematics, for example, a fundamental change takes place when
Thales begins to ponder the possibility of a formal explanation for mathe-
matical propositions. Seeing that something is true intuitively is different
from being able to demonstrate that truth by means of a formal argument.
Later, the Pythagoreans codify the method of proof. Still later, Plato
extrapolates from the evident ‘necessity’ of mathematical truths to propose
the immortal Forms upon which all things material and otherwise were
patterned. These events are significant because they redefine general cultural
trends far beyond their significance for geometry per se. It is events like these
that we want to identify and use to create a kind of conceptual lattice-work,
which we may then think of as a kind of epic narrative of the evolution of the
world’s formalized cultural systems.

In trying to flesh out what this whole project would look like I have
identified approximately five hundred of these primary events (Carson 2002b).
An event may be something as discrete as ‘the advent of the phonetic
alphabet,’ or as broad and complex as ‘the mathematization of physics in the
17th century’.

Matthews’ work on the contributions of Galileo to the development of
modern science (Matthews 2000) explores several of those primary cultural
events in detail. Galileo is significant because both the discipline of science
and the world view of the society he lived in were different as a result of his
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work. In general, this is what identifies primary developmental events in this
approach to curriculum. They occur in response to various cultural pressures,
and they are dramatic and far-reaching in scope and effect. Typically – and
this is important – they affect more than the discipline in which they origi-
nate. They spill out by metaphorical transference into the whole of the cul-
ture and effect changes throughout. Removing humankind from the center of
the universe, as Galileo did, in effect, has its correlates in every other cultural
domain from art and literature to theology and philosophy. Typically, such
shifts in human consciousness unfold gradually, such that the initial event
can seem far more pedantic and distant from everyday life than it actually
proves to be.

Galileo’s work on the pendulum is a wonderful example of an (at first)
seemingly esoteric and minor bit of tinkering by an eccentric old fellow.
Looked at from the perspective of an immature student indifferent to such
matters, interest in the topic is not immediate, but surface appearances are
deceptive. The pendulum provided Galileo a means to study the effects of
gravity in a controlled fall. It provided an encapsulated instance of complex
motion, that is, motion in which the velocity was not constant, but increasing
and decreasing in a regular manner. Basic concepts that would eventually
enter mathematical thinking as foundational to the calculus began with the
study of motion, acceleration, and other dynamic features of the natural
world. It requires the kind of refined, patient, astute observation of a Galileo
to realize the nature of the pendulum’s motion, and then to figure out ways to
portray that motion mathematically. As he did so, he contributed a set of
conceptual templates that were destined to reshape human consciousness.
Students can replicate the very development of those conceptual templates,
and a helpful strategy for doing so is to relive the historical sequence of their
unfolding.

On a more practical level, the work on the pendulum led to development
of accurate clocks, which in turn had profound implications for a host of
applications. It was crucial to the whole cultural shift of the 17th century, the
beginnings of modern science (Matthews 2000, pp. 2–3), and, ultimately, the
evolution of sophisticated industrial societies. The clock, based upon the
action of the pendulum, is a machine that eventually came to represent
metaphorically the precise workings of nature. These, too, are cultural
developments the student can learn to appreciate, if provided access to the
historical context.

In each historical epoch, we want to ask, how is this particular domain of
learning (science, mathematics, literature, art, etc.) different at the end of the
epoch from what it was at the beginning, and we want to account for that
change by looking at the events around which those changes appear to have
precipitated. A new way of looking at the world can change the way science
(or art, or poetry) is done. An innovation, such as the microscope or the
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telescope, can take us into whole new ranges of experience. The advent of a
new nomenclature, such as Lavoisier developed in chemistry, can help the
mind see familiar phenomena in new ways. When these events have unfolded,
they not only affect the original problem (perhaps resolving it) but they also
result in a host of collateral effects that could not have been anticipated. The
advent of writing systems, especially the highly compact phonetic alphabet,
occurred because of the need to keep records, but once it happened it became
a technology for crystalizing ideas as well. The invention of writing altered
fundamentally our relationship to our own thoughts, making them tangible
objects we could look at in our leisure rather than mysterious voices ema-
nating from the silence of the mind.

3. Planning Instruction in Ourstory

The challenge is to develop Ourstory as an austere lattice-work that can be
slipped in and amongst the interstices of the existing curriculum in middle
schools, and then to engineer a gradual migration of the whole curriculum
around that temporal framework. We are attempting to create this frame-
work in the local middle schools in the community where I live, establishing it
to begin with in the social studies curriculum with the hope that each subject
area will then come to claim those portions that rightfully belong to them.

The standard US social studies curriculum could use some improvement
anyway. Its purposes are confused, and somewhat anachronistic. It tends to
be a compromised history, made up primarily of economic, political, and
military topics, the purposes for which are questionable. Presumably, schools
have as their primary obligation the moving along of a cultural heritage to
the next generation, equipping that next generation to think for itself, and
that requires an emphasis on cultural history rather than imperial history.

Understanding how we have made the transitions from traditional hunter-
gatherer societies to modern scientific-technological societies, and encoun-
tering that history in a way that engenders neither arrogance nor bigotry, but
understanding and humility, would be a goal worthy of the schools in any
civilized society.

To tell this story, we have to separate it into modules which can form the
units and lessons. These are the ‘primary events’ mentioned above. Then, we
have to do something with those primary events in order to connect the
learner with them. Simply telling about them, in lecture form, would quickly
become tedious, and it is not the most vivid way to achieve a strong vicarious
connection to those events. So the goal has been to get the learner to
encounter and engage those primary events as if she were there when they
first happened. We want to take the learner back in time, locate her in the
problem space that gave rise to that event, and then guide the learner through
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the cultural transformation that makes the event so significant in the first
place. Egan (1997) describes this pedagogical moment as a special case of
recapitulation, one in which the historical dynamic of cultural change is
recreated for the learner and is experienced as a shift of consciousness.

3.1. THE GALILEO EPISODE

What this takes, ironically, is thorough scholarship into each event, and then
an almost catastrophic compression and simplification to make it both
digestible at the middle school level and concise enough to make room for the
other 499 or so events. The key to this is figuring out what the transformation
of consciousness is that occurred during the denouement of these primary,
threshold events. In the case of Galileo, at least two extraordinary changes in
consciousness took place.

One had to do with the mathematization of physics. Galileo demonstrated
that the motion of the pendulum was a modified example of free fall, and that
it portrayed characteristics of acceleration similar to those of a free-falling
body. He used mathematics as a descriptive language, and he crafted that
description in the language of classical geometry. That in itself was a sub-
stantial achievement. In doing this he set the stage for the eventual use of
analytical geometry and algebra as the new descriptive languages of science.
His work with the pendulum, significant in itself because it reveals the
dynamics of gravity, is significant in Ourstory because it is the subject matter
around which students can understand the restructuring of consciousness
that takes place when science begins to use mathematics for descriptive and
predictive purposes.

A second threshold event attributable in part to Galileo was the estab-
lishment of the Copernican universe. In some respects, this is a far more
difficult event to portray in the form of a compressed historical narrative, for
most attempts end up as caricature, with the Church authorities looking
foolish. The richness of this event has to do with fundamental questions of
what is real and how we know, for the locus of authority shifts as a conse-
quence of the revolution of thought Galileo contributes to. We are reminded
of Plato’s breath-taking pronouncement that ‘The Good is not good because
the gods approve; the gods approve because it is good.’ In other words, Plato
put the locus of authority in the natural order of the universe, rather than in
the gods.

By a similar token, Galileo challenged the authority of holy writ and
insisted that evidence and reason would reveal the way things really were.
The refusal of cardinal Bellarmino to look through the telescope constitutes a
moral stand in which he is refusing to acknowledge the authority of empirical
evidence to arbitrate questions pertaining to the world. Like traditional
cultures worldwide, Christian doctrine could not stand up to the dissembling
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influence of science. It is not that the doctrine is wrong necessarily, but that it
is designed with different purposes in mind and that it resolves human
problematics using an entirely different strategy from that of scientific cul-
ture. Thus, even though the immediate event has to do with whether the earth
revolves around the sun or vice versa, the essential cultural dynamic we
would be interested in with respect to Ourstory is the clash of two funda-
mentally different and incommensurable cultural systems, representing two
very different ways of knowing, two different world views.

Telling that story in a way that respects both the traditions of a religious
culture and the findings of scientific culture is no easy task. But in a world
comprised of multiple, competing cultural systems we are faced with only two
alternatives, one in which cultures go head to head in a process of elimina-
tion, or one in which the incommensurability of cultural systems is
acknowledged as part of the cultural landscape. In our work we have taken
the position that schools must not falsify the distinction between science and
cultural traditions (which occurs when creationism is touted as ‘science’), that
those distinctions do exist and probably cannot be reconciled, that it is not
within the competence of public schools to reconcile those differences, and
that the role of the school is to teach about the world as it is, which includes
teaching the conflicts in a manner that is intellectually honest. This consti-
tutes an ethical stand, of course, but, more to the point, it represents a
pedagogical strategy based on the assumption that the astringent of com-
peting viewpoints has greater pedagogical value than does the resolution of
all conflicts by selective omission or dogmatic certainty.

3.2. LANGUAGE AND CULTURE

Different cultural systems, formal and informal, constitute human con-
sciousness in particular ways (Vygotsky 1978, 1986; Shweder 1991; Carroll
1995). The most powerful and ubiquitous cultural structure is natural lan-
guage. As language has evolved for humankind consciousness has gained
extension, clarity, and versatility (Lieberman 1984; Innis 1994; Deacon 1997).
By a similar token, as language is acquired by the individual the capacity to
think in a clear, extensive and versatile manner increases (Barrow 1993).
Different languages, or different symbolic and representational systems,
frame consciousness in different ways (Jacobi 1959; Carroll 1995; Jackendoff
1996). The ‘language’ of mathematics, which is also symbol-based in all of its
advanced forms, structures human consciousness in ways that are uniquely
different from natural language. It takes us into whole new ranges of thought
that would otherwise be inaccessible to us. So too the ‘languages’ of artistic
convention. They cause us not only to see things that are different by putting
novel images before us, but to see in ways that are different even those things
that are familiar to us.
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Vygotsky’s observation, that humans have learned to invent ‘tools’ for the
mind, is an especially potent insight as we contemplate what events should be
considered as the pivotal, threshold events in the history of formal intellec-
tual culture. The advent of symbols and their accretions as languages are
among the most powerful examples of human cultural innovation. So too are
the unique ways we have learned to capture insights and concepts by various
strategies for modeling, idealizing, representing, and structuring thought in
science.

Clearly, the advent of a new system of thought, such as the calculus, the
development of new tools to aid cognition, such as computers, the intro-
duction of a new convention for the organization of perception, such as the
metric system, or various conventions of twentieth century art that focus our
attention on the mind’s contributions to perception – all of these may be
viewed as primary events that effect substantial change in the cultural
landscape and that help to explain how and why the world we experience
today is so different from the world that existed when humans first expressed
themselves by painting on the walls of limestone caves. This focus on the
evolution of cultural systems reflects Hirst’s emphasis on the varieties of
thought and experience made possible for humankind because of the various
formal disciplines. His defense of liberal education hinged on the argument
that each domain of learning opens up a territory in our mental landscape
that would otherwise not exist for us (Hirst 1973). In this sense, education is
about acquiring these different ways of knowing.

4. Conclusions

The domestication of human consciousness is the central story of any cur-
riculum concerned with cultural education. How we arrange those episodes
to tell our whole epic narrative, and how those stories are crafted so the
learner will participate in the historical transformation each represents, are
the central tasks demanded by this approach to schooling. As we contemplate
these challenges from within the confines of any single discipline, we must
also make the attempt to see how historical patterns of development in other
disciplines run parallel to the patterns of development in our own. By
aligning those disciplinary narratives we gain a synergistic advantage,
revealing the larger themes that have defined entire cultural epochs and
revealing the ingenuity of human imagination as it transposes those con-
ceptual themes into the various media of art, music, architecture, mathe-
matics, logic, science, technology, literature, historiography, philosophy,
theology, poetry, theater... as well as social and political patterns, economic
activity, jurisprudence, and so on. The style of an age is determined by the
generalizing of fundamental aesthetic/philosophical/conceptual thematics
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that find expression in many or most of these domains. Taking into account
the relationship between these larger thematics and the specific dynamics of
primary cultural events is the challenge we are attempting to meet in the
design of the Ourstory curriculum project.

References

Barrow, R.: 1993, Language, Intelligence, and Thought, Edward Elgar Publishing, Brookfield,
VT.

Carroll, J. (ed.): 1995, Language, Thought, and Reality – Selected Writings of Benjamin Lee
Whorf, MIT Press, Cambridge, MA.ff

Carson, R.: 1997a, ‘Why Science Education Alone is Not Enough’, Interchange 28(2&3), 109–

120.
Carson, R.: 1997b, ‘Science and the Ideals of Liberal Education’, Science & Education 6, 225–

238.

Carson, R.: 1998, ‘Ourstory – A Culturally Based Curriculum Framed by History’, in
American Educational Studies Association National Conference, Philadelphia, PA.

Carson, R.: 2002a, ‘The Epic Narrative of Intellectual Culture as a Framework for Curricular
Coherence’, Science & Education 11(3), 231–246.

Carson, R.: 2002b, ‘Ourstory – Outline of Suggested Topics’, Working paper prepared for the
BPS/MSU Social Studies Consortium Group, unpublished.

Caine, R. & Caine, G.: 1991, Making Connections – Teaching and the Human Brain, Associ-

ation for Supervision and Curriculum Development, Alexandria, VA.
Damasio, A.: 1999, The Feeling of What Happens: Body and Emotion in the Making of Con-

sciousness, Harcourt Brace, New York.

Deacon, T.: 1997, The Symbolic Species – The Co-Evolution of Language and the Brain, W.W.
Norton & Co., New York.

Eccles, J.: 1991, Evolution of the Brain – Creation of the Self, Routledge, New York.ff

Egan, K.: 1997, The Educated Mind – How Cognitive Tools Shape Our Understanding, Uni-
versity of Chicago Press, Chicago.

Egan, K.: 1986, Teaching as Story Telling – An Alternative Approach to Teaching and Cur-
riculum in the Elementary School, University of Chicago Press, Chicago.

Heath, T.: 1981/1921, A History of Greek Mathematics (2 vols), Dover Publications, New
York.

Hirst, P. H.: 1973, ‘Liberal Education and the Nature of Knowledge’, in R. S. Peters (ed.), The

Philosophy of Education, Oxford University Press, Oxford, pp. 87–111.
Innis, R.: 1994, Consciousness and the Play of Signs, Indiana University Press, Bloomington.
Jackendoff, R.: 1996, Languages of the Mind – Essays on Mental Representation, MIT Press,

Cambridge, MA.
Jacobi, J.: 1959, Complex/Archetype/Symbol – in the Psychology of C.G. Jung (trans. by R.

Manheim), Princeton University Press, Princeton, NJ.
Lieberman, P.: 1984, The Biology and Evolution of Language, Harvard University Press,

Cambridge, MA.
Matthews, M.: 1994, Science Teaching – The Role of History and Philosophy of Science,

Routledge, New York.

Matthews, M.: 2000, Time for Science Education – How Teaching the History and Philosophy of
Pendulum Motion can Contribute to Science Literacy, Kluwer Academic/Plenum Publish-
ers, New York.

ROBERT N. CARSON502



Scheffler, I.: 1970, ‘Philosophy and the Curriculum’, in Reason and Teaching, Routledge,
London, 1973, pp. 31–44; Reprinted in Science & Education 1(4), 385–394.

Shweder, R.: 1991, Thinking Through Cultures – Expeditions in Cultural Psychology, Harvard
University Press, Cambridge, MA.

Snell, B.: 1982/1953, The Discovery of The Mind – In Greek Philosophy and Literature, Dover,

New York.
Thompson, W.: 2001, Transforming History – A Curriculum for Cultural Evolution, Lindisfarne

Books.
Van Doren, C.: 1991, A History of Knowledge – Past, Present, and Future, Ballantine Books,

New York.
Vygotsky, L.: 1986, Thought and Language (Ed. and trans. by A. Kozulin), MIT Press,

Cambridge, MA.

Vygotsky, L.: 1978,Mind in Society – The Development of Higher Psychological Processes (Ed.
M. Cole, V. John-Steiner, S. Scribner, E. Souberman), Harvard University Press, Cam-
bridge, MA.

Wenke, R.: 1990, Patterns in Prehistory – Humankind ’s First Three Million Years, Oxford
University Press, New York.

TEACHING CULTURAL HISTORY 503



Pendulums in The Physics Education

Literature: A Bibliography

COLIN GAULD*
University of New South Wales, 9 Michael Crescent, Kiama Downs, NSW 2533, Australia
(E-mail: cgauld@smartchat.net.au)

Abstract. Articles about the pendulum in four journals devoted to the teaching of physics and

one general science teaching journal (along with other miscellaneous articles from other
journals) are listed in three broad categories – types of pendulums, the contexts in which these
pendulums are used in physics teaching at secondary or tertiary levels and a miscellaneous
category. A brief description of the sub-categories used is provided.

1. Introduction

The pendulum has been dealt with in science textbooks for almost four
centuries. The following bibliography consists of articles dealing mainly with
pendulums – their nature and behaviour – found in four journals devoted
specifically to the teaching of physics – The American Journal of Physics
(Vols. 1–69), The Physics Teacher (Vols. 1–39), Physics Education (Vols. 1–
36) and European Journal of Physics (Vols. 1–23) – and one general science
teaching journal – The Australian Science Teachers Journal (Vols. 1–45). A
number of miscellaneous articles from other journals have also been in-
cluded. The articles have been classified into three broad groups: in the first
are those articles concerned with the nature of different types of pendulums,
in the second are those concerned with the pendulum in particular contexts
and in the third are those articles in which the pendulum is not the main point
of interest. Within the first two groups there are further subdivisions the
natures of which are explained further below.

2. Types of Pendulums

The name ‘pendulum’ is associated with an oscillating system in which kinetic
energy is converted into potential energy and back again. Usually, but not
always, the potential energy is gravitational potential energy.

* PaulMcColl, a physics teacher fromBundoora Secondary College in Victoria and a doctoral
student in science education at Monash University, assisted with the collection of the biblio-
graphical material below and I owe a debt of gratitude to him for his contribution to this project.
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The simplest type of pendulum (the simple pendulum) consists of a
spherical ball suspended from a thin string so that the ball can move back-
wards and forwards in one plane along a path which is a portion of a circle.
As Matthews (2000) has pointed out this device has been central to the early
beginnings of modern science. The physical pendulum (also known as the
compound pendulum) consists of a solid object pivoted about a fixed point
and the motions of both the simple and the physical pendulum are described
by the same relationship, namely,

s ¼ I€hII

or

I€hII ¼ �mgd sin h

where s is the torque acting on the system, I is the moment of inertia of the
object about the pivot point, m is the mass of the object, d is the length of
the line between the centre of mass of the object and the pivot point and h
is the angle between this line and the vertical. In an ideal pendulum, for
which the amplitude, h0, is constant, the periodic time is constant and de-
pends the length, d, the value ofdd g and the size of h0. In a real pendulum the
amplitude decreases with time as energy is expended in the system so that the
motion is damped. For small values of h0, sin h � h, and the pendulum
executes simple harmonic motion with a period, T ¼ 2p�(I/II mgd), that isdd
independent of h0. For a simple pendulum, d ¼ l and I ¼ ml2ll , so that
T ¼ 2p�(l/l g).

Kater’s pendulum is a physical pendulum which has two points of support
allowing it to be suspended upside down. When the position of a mass is
changed on the pendulum rod or the position of one of the points is adjusted
so that the period in both positions is the same, the length of the equivalent
simple pendulum is equal to the distance between the supports.

If a pendulum is constructed so that the line between the point of support
and the centre of mass when at rest is not vertical but at an angle u to the
vertical the effective value of g is reduced and the period of oscillation is
T ¼ 2p�(l/g cosl u). Escriche’s pendulum is one example of a variable gravity
pendulum.

Huygens (Matthews 2000) and Newton (1729/1960, Propositions 48–52)
showed that if a pendulum moved along a cycloidal rather than a circular
path its period was independent of its amplitude for all values of h0. The
cycloidal pendulum was thus shown to be an ideally suited device to regulate
the mechanism of a time-keeping instrument.

If the supporting string of a simple pendulum can stretch elastically the
pendulum is called in the literature an elastic pendulum.

The bifilar pendulum is a simple or physical pendulum which is suspended
from two points so that it is constrained to oscillate about a fixed horizontal
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axis through the line joining the two points of suspension rather than having
the freedom to move in any direction. In ‘Newton’s cradle’ a number of
bifilar pendulums hang in a row so that their steel bobs just touch one
another. An extended bob, supported in the above manner by two strings
attached to different points on the bob, as well as oscillating about a fixed
horizontal axis, can also oscillate about a vertical axis.

In the most common version of the ballistic pendulum a large block of
wood is suspended by four strings so that it remains horizontal when it
swings. It is used to determine the speed of a projectile fired into the block by
measuring the height the block rises and using the law of conservation of
momentum during the collision and the law of conservation of mechanical
energy after the block has begun to move (Taylor 1941, pp. 205–206; Resnick
and Halliday 1966, pp. 219–220). A more recent version, the Blackwood
pendulum, consists of a solid rod which is suspended at its top (Blackwood
1973, p.104). The bob, at the bottom end of the rod, is a cage into which a
spherical metal ball is fired and captured causing the pendulum to swing
upwards. When it stops, a ratchet holds the bob in its highest position so that
its height can be measured. This information provides the data from which
the initial speed of the ball can be calculated.

The ring pendulum is a physical pendulum in which the object is a ring
which is suspended from a point on the inside surface.

Because a simple pendulum is free to move in any direction the two-
dimensional pendulum can be used to study the nature of the motion of the
bob in two dimensions. In the conical pendulum the pendulum bob moves in a
horizontal circle so that the string is at a fixed angle to the vertical. The
period of the conical pendulum is T ¼ 2p�(h/g) where h is the distance of the
point of suspension above the plane in which the bob moves.

The Blackburn pendulum is a bifilar pendulum in which the lower part is
another pendulum supported by a single string attached to the V formed by
the upper pair of strings. The pendulum as a whole is constrained to move
in one plane while the lower portion can move at right angles to this plane.
The motion of the bob thus consists of two perpendicular oscillatory mo-
tions.

If the material which is used to connect the pendulum bob to the point of
suspension is solid and elastic the pendulum can be turned upside down so
that the fixed point is at the bottom and the bob moves from side to side
above it. This is called an inverted pendulum. If the connecting rod is rigid the
inverted pendulum is unstable but stability can be achieved by driving it
either vertically or horizontally from the bottom.

A double pendulum often consists of two physical pendulums with one
usually but not always being suspended from the bottom of the other. It can
also consist of two simple pendulums with one suspended from the bob of the
other.
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Pendulums can be arranged so that they are joined near the tops of the
strings by a horizontal string. The motion of one pendulum is then com-
municated by this string to the pendulum to which it is linked. Such pen-
dulums are called coupled pendulums.

The name ‘pendulum’ is also used for other systems in which the potential
energy is not always (or not totally) gravitational. In the spring-mass pen-
dulum the bob is suspended by a spring so that it can move up and down. In
this case the kinetic energy which the system has in its equilibrium position is
converted into gravitational and elastic potential energy as the spring stret-
ches or compresses. Ignoring the mass of the spring, the period of such a
pendulum is T ¼ 2p�(m/j) where j is the spring constant.

The torsion pendulum also consists of a mass suspended by a spring but in
this case the potential energy is stored in the spring as it twists. Changes in
gravitational potential energy are of minor consideration. The period of this
pendulum is given by T ¼ 2p�(I/II k) where k is the torsion constant. However,
as the spring twists so that the coils close up the length of the spring decreases
a little and when the spring unwinds its length becomes a little greater. If the
spring constant and the moment of inertia of the object are carefully chosen
the period of the torsional motion and the period of the natural vertical
motion (as a spring-mass pendulum) can be made equal. When this is the case
the torsional motion slowly decreases and the vertical oscillations gradually
increase until all the original rotational kinetic energy appears as kinetic
energy of vertical motion and torsional motion ceases. In this mode, as the
spring stretches it also unwinds a little and when it compresses it winds up a
little. Gradually, the vertical motion decreases and the torsional motion in-
creases again. This type of pendulum is called a Wilberforce pendulum and
demonstrates the conservation of energy as the mode of vibration changes.

When it is pulled aside and released a pendulum will fall to its lowest
position along a plane which contains the initial line of the string and the line
of the string when it is vertical. If no other external influences than gravity act
the pendulum will continue to swing in this plane until it stops. However, if
the frame to which the point of support is attached is rotated a torque can be
exerted on the string and the plane of oscillation may rotate about a vertical
axis with the rotation of the frame. On the other hand, if the point of support
is carefully designed to prevent this torque from acting the initial plane of
oscillation can be maintained even as the frame rotates. This property was
used by Foucault to show that the Earth itself was rotating.

3. Pendulum Contexts

In teaching physics/science the pendulum has been used both as a device to
be studied and as a tool for finding out other things. For example, in the
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Principia Newton (1729/1960) presented the theory which lies behind the
motion of the pendulum and also used it as a means of measuring the
velocities of balls before and after they collided.

The simple pendulum is a physical system which is easy to make and to
study and it is often used to teach investigative skills and skills of measure-
ment. Its role in timekeeping is also something which students can explore.

Two everyday systems which can be modelled by pendulum motion are
walking and swinging and both have been extensively discussed in the physics
education literature. If one considers the leg as a simple or double pendulum
(with a second pivot at the knee) then the most comfortable leg movement is
related to the natural period of this pendulum. One of the implications of the
law of conservation of momentum is that forces within a system are unable to
change the total momentum of the system. This raises the question of how
the kinetic energy of a child’s swing can be increased by a person sitting on
the swing and the subsequent discussion of this issue is most illuminating (see
also Walker 1977, pp. 37–38).

In the 17th and 18th centuries ‘laws of motion’ referred to the laws which
governed elastic and inelastic collisions between two bodies and the laws
enabled predictions to be made about the outcomes of different types of
collisions (Gauld 1998). Colliding pendulums were widely used to measure the
velocities before and after the collisions to check the predictions. Today they
can be very effective in demonstrating the law of conservation of momentum
in a dynamic rather than a static context. ‘Newton’s cradle’ consists of a
series of colliding bifilar pendulums.

Coupled pendulums in which the motion of one pendulum influences the
motion of a nearby pendulum can be used to demonstrate resonance. If one
pendulum in a pair of equal-length, coupled pendulums is set in motion the
second will begin to move and the first will begin to slow down. This con-
tinues until the second is moving with the same amplitude with which the first
began and the first one has stopped. The total energy is transferred from one
pendulum to the other and back again. Driven pendulums also demonstrate
resonance at particular frequencies.

Chaotic motion can be demonstrated using a multiply-connected pendu-
lum or a pendulum in which the point of suspension is driven backwards and
forwards at different frequencies.

The importance of the pendulum in Galileo’s thinking has also been dis-
cussed in the physics education literature.

Since Piaget’s famous studies of adolescent thinking published in 1958
student conceptions of the pendulum and their explanations for its motion
have been of interest to physics teachers and others. More recently error
analysis of student responses to questions about the pendulum provide some
idea of the pre-conceptions which students have when they first begin to learn
physics.
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4. Miscellaneous

In the miscellaneous category are articles in which other phenomena than
pendulum motion is the focus of attention. There are also articles which
cover a wide variety of pendulum types.

References

Blackwood, O.H., Kelly, W.C. & Bell, R.M.: 1973, General Physics, 4th edn., Wiley, New
York.

Gauld, C.: 1998, ‘Solutions to the Problem of Impact in the 17th and 18th Centuries and

Teaching Newton’s Third Law Today’, Science and Education 7(1), 49–67.
Matthews, M.:2000, Time for Science Education, Kluwer/Plenum, New York.
Newton, I.: 1729/1960, The Mathematical Principles of Natural Philosophy, (translated A.

Motte, 1729; revised F. Cajori, 1934), University of California Press, Berkeley, CA.

Piaget, J.: 1958, The Growth of Logical Thinking, Routledge & Kegan Paul, London.
Resnick, R. & Halliday, D.: 1966, Physics, Wiley, New York.
Taylor, L.: 1941, Physics: The Pioneer Science, Houghton Mifflin, Boston.

Walker, J.: 1977, The Flying Circus of Physics with Answers, Wiley, New York.

Bibliography

Ballistic Pendulum

Alt, R.L.: 1940, ‘A Corrupted Ballistic Pendulum’, American Journal of Physics 40(11), 1688–
1689.

Barnes, G.: 1957, ‘Addition to the Ballistic Pendulum Experiment’, American Journal of
Physics 25(7), 452–453.

Barton, R.W.: 1964, ‘A Versatile Ballistic Pendulum’, American Journal of Physics 32(3), 229–

232.
Bayliss, L.T. & Ffolliott, C.F.: 1968, ‘Using a Blowgun with the Ballistic Pendulum’, American

Journal of Physics 36(6), 558–559.
Christensen, F.E.: 1968, ‘Beck Ball Pendulum’, American Journal of Physics 36(9), 851.

Gupta, P.: 1985, ‘Blackwood Pendulum Experiment and the Conservation of Linear
Momentum’, American Journal of Physics 53(3), 267–269.

Ivey, D.G.: 1956, ‘Modification of the Ballistic Pendulum Experiment’, American Journal of

Physics 24(6), 459–460.
McCaslin, J.G.: 1984, ‘A Different Blackwood Pendulum Experiment’, The Physics Teacher

22(3), 184–186.

Peterson, F.C.: 1983, ‘Timing the Flight of the Projectile in the Classical Ballistic Pendulum
Experiment’, American Journal of Physics 51(7), 602–604.

Sachs, A.: 1976, ‘Blackwood Pendulum Experiment Revisited’, American Journal of Physics
44(2), 182–183.

Sandin, T.R.: 1941, ‘Nonconservation of Linear Momentum in Ballistic Pendulums’, Ameri-
can Journal of Physics 41(3), 426–427.

Scheie, C.: 1973, ‘Ballistic Pendulum’, The Physics Teacher 11(7), 426–427.

Schramm, R.W.: 1962, ‘An Improved Ballistic Pendulum’, American Journal of Physics 30(5),
386–387.

COLIN GAULD510



Stoylov, S.P., Nsanzabera, J.C. & Karenzi, P.C.: 1972, ‘A Demonstration of Momentum
Conservation Using Bow, Arrow and Ballistic Pendulum’, American Journal of Physics

40(3), 430–432.
Strnad, J.: 1970, ‘Trouble with the Ballistic Pendulum’, American Journal of Physics 38(4),

532–534.

Wagner, W.: 1985, ‘The Spring Gun Ballistic Pendulum: An Alternative Method for Finding
the Initial Velocity’, American Journal of Physics 53(11), 1114–1115.

Weltin, H.: 1963, ‘Vertical Ballistic Pendulum Apparatus’, American Journal of Physics 31(9),
719–722.

Wicher, E.: 1977, ‘Ballistics Pendulum’, American Journal of Physics 45(7), 681–682.

Bifilar Pendulum

Cromer, A.: 1995, ‘Many Oscillations of a Rigid Rod’, American Journal of Physics 63(1), 112–

121.
Quist, G.M.: 1983, ‘The PET and the Pendulum: An Application of Microcomputers in the

Undergraduate Laboratory’, American Journal of Physics 51(2), 145–149.
Schery, S.D.: 1976, ‘Design of an Inexpensive Pendulum for Study of Large–angle Motion’,

American Journal of Physics 44(7), 666–670.
Sutton, R.S.: 1953, ‘An Experimental Encounter with Bifilar Pendula’, American Journal of

Physics 21(2), 408.

Then, J.W.: 1965, ‘Bifilar Pendulum – An Experimental Study for the Advanced Laboratory’,
American Journal of Physics 33(7), 545–547.

Then, J.W. & Chiang, K.-R.: 1970, ‘Experimental Determination of Moments of Inertia by the

Bifilar Pendulum Method’, American Journal of Physics 38(4), 537–539.

Blackburn Pendulum

Bayman, B.F. & Thayer, D.: 1969, ‘A Rotating Two-dimensional Harmonic Oscillator’,
American Journal of Physics 37(8), 841–842.

Case, W.: 1980, ‘Parametric Instability: An Elementary Demonstration and Discussion’,
American Journal of Physics 48(3), 218–221.

Crowell, A.D.: 1981, ‘Motion of the Earth as Viewed from the Moon, and the Y-suspended

Pendulum’, American Journal of Physics 49(5), 452–454.
Fox, J.W.: 1958, ‘Experiments with Modified Form of Simple Pendulum’, American Journal of

Physics 26(8), 559–560.
Whitaker, R.: 1991, ‘A Note on the Blackburn Pendulum’, American Journal of Physics 59(4),

330–333.

Conical Pendulum

Anon: 1963, ‘The Conical Pendulum’, The Physics Teacher 1(5), 238–239.
Hilton, W.A.: 1963, ‘Another Version of the Conical Pendulum’, American Journal of Physics

31(1), 58–59.
Moses, T. & Adolphi, N.L.: 1998, ‘A New Twist for the Conical Pendulum’, The Physics

Teacher 36(6), 372–373.

Richards, J.A.: 1956, ‘Conical Pendulum’, American Journal of Physics 24(9), 632.
Saitoh, A.: 1986, ‘Winding Motion’, Physics Education 21(2), 98–102.
Verwiche, F.: 1964, ‘The Conical Pendulum Paradox’, The Physics Teacher 3(5), 238.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 511



Coupled Pendulums

Blair, J.M.: 1971, ‘Laboratory Experiments Involving Two-mode Analysis of Coupled
Oscillations’, American Journal of Physics 39(5), 555–557.

McKibben, J.L.: 1977, ‘Triple Pendulum as an Analog to Three Coupled Stationary States’,
American Journal of Physics 45(11), 1022–1026.

Moloney, M.J.: 1978, ‘String-coupled Pendulum Oscillators: Theory and Experiment’,

American Journal of Physics 46(12), 1245–1246.
Priest, J. & Poth, J.: 1982, ‘Teaching Physics with Coupled Pendulums’, The Physics Teacher

20(2), 80–85.

Damped Pendulum

Allen, M. & Saxl, E.J.: 1972, ‘The Period of Damped Simple Harmonic Motion’, American
Journal of Physics 40(7), 942–944.

Basano, L. & Ottonello, P.: 1991, ‘Digital Damping: The Single-oscillation Approach’,

American Journal of Physics 59(11), 1018–1023.
Benham, T.A.: 1947, ‘Bessel Functions in Physics: Theory’, American Journal of Physics 15(4),

285–294.

Boving, R., Hellemans, J. & de Wilde, R.: 1983, ‘Teaching Damped and Forced Oscillations in
the Student Laboratory’, Physics Education 18(6), 275–276.

Crawford, F.S.: 1975, ‘Damping of a Simple Pendulum’, American Journal of Physics 43(3),
276–277.

McInerney, M.: 1985, ‘Computer–aided Experiments with the Damped Harmonic Oscillator’,
American Journal of Physics 53(10), 991–996.

Permann, D. & Hamilton, I.: 1992, ‘Self-similar and Erratic Transient Dynamics for the

Linearly Damped Simple Pendulum’, American Journal of Physics 60(5), 442–450.
Squire, P.: 1986, ‘Pendulum Damping’, American Journal of Physics 54(11), 984–991.
Zonetti, L., Camago, A., Sartori, J., de Sousa, D. & Nunes, L. 1999, ‘A Demonstration of Dry

and Viscous Damping of an Oscillating Pendulum’, European Journal of Physics 20(2), 85–
88.

Double Pendulum

Bender, P.: 1985, ‘A fascinating Resonant Double Pendulum’, American Journal of Physics

53(11), 1114.
Bueche, F. & Pavelka, C.: 1964, ‘An Undergraduate Laboratory Experiment for Studying the

Motion of Coupled Mechanical Systems’, American Journal of Physics 32(3), 226–228.

Lee, S.M.: 1970, ‘The Double–Simple Pendulum Problem’, American Journal of Physics 38(4),
536–537.

Levien, R. & Tan, S.: 1993, ‘Double Pendulum: An Experiment in Chaos’, American Journal of
Physics 61(11), 1038–1044.

Romer, R.H.: 1970, ‘A Double Pendulum ‘‘Art Machine’’’, American Journal of Physics 38(9),
1116–1121.

Satterley, J.: 1950, ‘Some Experiments in Dynamics, Chiefly on Vibrations’, American Journal

of Physics 18(7), 405–416.
Shinbrot, T., Grebogi, C., Wisdom, J. & Yorke, J.: 1992, ‘Chaos in a Double Pendulum’,

American Journal of Physics 60(6), 491–499.

COLIN GAULD512



Elastic Pendulum

Anicin, B., Davidovic, D. & Babovic, V. 1993, ‘On the Linear Theory of the Elastic Pendu-
lum’, European Journal of Physics 14(3), 132–135.

Carretero-Gonzalez, R., Numez-Yepez, H.& Salas-Brito, A.: 1994, ‘Regular and Chaotic
Behavior in an Extensible Pendulum’, European Journal of Physics 15(3), 139–148.

Cayton, T.E.: 1975, ‘The Laboratory Spring-mass Oscillator: An Example of Parametric

Instability’, American Journal of Physics 45(8), 723–732.
Cuerno, R., Ranada, A. & Ruiz-Lorenzo, J.: 1992, ‘Deterministic Chaos in the Elastic Pen-

dulum: A Simple Laboratory for Nonlinear Dynamics’, American Journal of Physics 60(1),

73–79.
Davidovic, D., Anacin, B. & Babovic, V.: 1996, ‘The Libration Limits of the Elastic Pendu-

lum’, American Journal of Physics 64(3), 338–342.
Dobrovolskis, A.: 1941, ‘Rubber Band Pendulum’, American Journal of Physics 41(9), 1103–

1106.

Foucault Pendulum

Brown, W.A.: 1961, ‘Suspension for Foucault Pendulum’, American Journal of Physics 29(9),

646.
Crane, H.R.: 1981, ‘Short Foucault Pendulum: A Way to Eliminate Precession Due to

Ellipticity’, American Journal of Physics 49(11), 1004–1006.
Crane, H.R.: 1990, ‘The Foucault Pendulum as a Murder Weapon and a Physicist’s Delight’,

The Physics Teacher 28(5), 264–269.
Curott, D.R.: 1972, ‘The Role of the Constraining Force in a Foucault Pendulum’, American

Journal of Physics 40(7), 1007–1009.

French, A.P.: 1978, ‘The Foucault Pendulum’, The Physics Teacher 16(1), 61–62.
Hart, J., Miller, R. & Mills, R.: 1987, ‘A Simple Geometric Model for Visualizing the Motion

of a Foucault Pendulum’, American Journal of Physics 55(1), 67–70.

Hecht, K.T.: 1983, ‘The Crane Foucault Pendulum: An Exercise in Action–angle Variable
Perturbation Theory’, American Journal of Physics 51(2), 110–114.

Hilton, W.A.: 1978, ‘The Foucault Pendulum: A Corridor Demonstration’, American Journal
of Physics 46(4), 436–438.

Horne, J.E.: 1996, ‘Classroom Foucault Pendulum’, The Physics Teacher 34(4), 238–239.
Kruglak, H.: 1983, ‘A Very Short, Portable Foucault Pendulum’, The Physics Teacher 21(7),

477–479.

Kruglak, H., Oppliger, L., Pittet, R. & Steele, S.: 1978, ‘A Short Foucault Pendulum for a
Hallway Exhibit’, American Journal of Physics 46(4), 438–440.

Kruglak, H. & Pittet, R.: 1980, ‘Portable, Continuously Operating Foucault Pendulum’,

American Journal of Physics 48(5), 419–420.
Kruglak, H. & Steele, S.: 1984, ‘A 25cm Continuously Operating Foucault Pendulum’, Physics

Education 19(6), 294–296.

Kimball, W.S.: 1945, ‘Foucault Pendulum Starpath and the N-leaved Rose’, American Journal
of Physics 13(5), 271–277.

Leonard, B.E.: 1981, ‘A Short Foucault Pendulum for Corridor Display’, The Physics Teacher
19(6), 421–423.

Mackay, R.S.: 1953, ‘Sustained Foucault Pendulums’, American Journal of Physics 21(3), 180–
183.

Mattila, J.O.: 1991, ‘The Foucault Pendulum as a Teaching Aid’, Physics Education 26(2),

120–123.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 513



McClatchey, S. & Flint, N.: 1981, ‘A Sustained Demonstration Foucault Pendulum’, The
Physics Teacher 19(2), 134.

Miller, D. & Caudill, G.W.: 1966, ‘Driving Mechanism for a Foucault Pendulum’, American
Journal of Physics 34(7), 615–616.

Noble, W.J.: 1952, ‘Direct Treatment of the Foucault Pendulum’, American Journal of Physics

20(6), 334–336.
Opat, G.: 1991, ‘The Precession of a Foucault Pendulum Viewed as a Beat Phenomenon of a

Conical Pendulum Subject to a Coriolis Force’, American Journal of Physics 59(9), 822–
823.

Reynhardt, E., van der Walt, T. & Soskolsky, L.: 1986, ‘A Modified Foucault Pendulum for a
Corridor Exhibit’, American Journal of Physics 54(8), 759–761.

Romano, J.D.: 1997, ‘Foucault’s Pendulum as a Spirograph’, The Physics Teacher 35(3), 182–

183.
Schulz-Dubois, E.O.: 1970, ‘Foucault Pendulum Experiment by Kammerlingh Onnes and

Degenerate Perturbation Theory’, American Journal of Physics 38(2), 173–188.

Weltner, K.: 1979, ‘A New Model of the Foucault Pendulum’, American Journal of Physics
47(4), 365–366.

Inverted Pendulum

Alessi, N., Fischer, C. & Gray, C.: 1992, ‘Measurement of Amplitude Jumps and Hysteresis in

a Driven Inverted Pendulum’, American Journal of Physics 60(8), 755–756.
Blackburn, J., Smith, H. & Grønbich-Jensen, N.: 1992, ‘Stability amd Hopf Bifurcations in an

Inverted Pendulum’, American Journal of Physics 60(10), 903–908.

Blitzer, L.: 1965, ‘Inverted Pendulum’, American Journal of Physics 33(12), 1076–1078.
Butikov, E.I.: 2001, ‘On the Dynamic Stabilization of an Inverted Pendulum’, American

Journal of Physics 69(7), 755–768.
Duchesne, B., Fischer, C., Gray, C. & Jeffrey, K.: 1991, ‘Chaos in the Motion of an Inverted

Pendulum: An Undergraduate Laboratory Experiment’, American Journal of Physics
59(11), 987–992.

Fenn, J., Bayne, D. & Sinclair, B.: 1998, ‘Experimental Investigation of the ‘Effective Po-

tential’ of an Inverted Pendulum’, American Journal of Physics 66(11), 981–984.
Friedman, M.H., Campana, J.E., Kelner, L., Seeliger, E.H. & Yergeny, A.L.: 1982, ‘The

Inverted Pendulum: A Mechanical Analog of the Quadrupole Mass Filter’, American

Journal of Physics 50(10), 924–931.
Grandy, W. & Schock, M.: 1997, ‘Simulations of Nonlinear Pivot-Driven Pendula’, American

Journal of Physics 65(5), 376–381.

Jones, H.W.: 1969, ‘A Quick Demonstration of the Inverted Pendulum’, American Journal of
Physics 37(9), 941.

Kalmus, H.P.: 1970, ‘The Inverted Pendulum’, American Journal of Physics 38(7), 874–878.
McInerney, M.: 1985, ‘Computer-aided Experiments with the Damped Harmonic Oscillator’,

American Journal of Physics 53(10), 991–996.
Michaelis, M.: 1985, ‘Stroboscopic Study of the Inverted Pendulum’, American Journal of

Physics 53(11), 1079–1083.

Moloney, M.: 1996, ‘Inverted Pendulum Motion and the Principle of Equivalence’, American
Journal of Physics 64(11), 1431.

Nelson, R. & Olsson, M.: 1986, ‘The Pendulum – Rich Physics from a Simple System’,

American Journal of Physics 54(2), 112–121.
Ness, D.J.: 1967, ‘Small Oscillations of a Stabilized, Inverted Pendulum’, American Journal of

Physics 35(10), 964–967.

COLIN GAULD514



Phelps, F.M. & Hunter, J.H.: 1965, ‘An Analytical Sopution of the Inverted Pendulum’,
American Journal of Physics 33(4), 285–295.

Pippard, A. 1987, ‘The Inverted Pendulum’, European Journal of Physics 8(3), 203–206.
Priest, J.: 1986, ‘Interfacing Pendulums to a Microcomputer’, American Journal of Physics

54(10), 953–955.

Scott, T.A.: 1983, ‘Resonance Demonstration’, The Physics Teacher 21(6), 409.
Smith, H. & Blackburn, J.: 1992, ‘Experimental Study of an Inverted Pendulum’, American

Journal of Physics 60(10), 909–911.
Spencer, R.L. & Robertson, R.D.: 2001, ‘Mode Detuning in Systems of Weakly Coupled

Oscillators’, American Journal of Physics 69(11), 1191–1197.

Kater Pendulum

Candela, D., Martini, K.M., Krotkov, R.V. & Langley, K.H.: 2001, ‘Bessel’s Improved Kater

Pendulum in the Teaching Laboratory’, American Journal of Physics 69(6), 714–720.
Crummett, W.: 1990, ‘Measurement of Acceleration due to Gravity’, The Physics Teacher

28(5), 291–295.
Jesse, K. & Born, H.: 1972, ‘Possible Sources of Error When Using the Kater Pendulum’, The

Physics Teacher 10(8), 466.
Jesse, K.E.: 1980, ‘Kater Pendulum Modification’, American Journal of Physics 48(9), 785–

786.

McCarthy, J.T.: 1950, ‘Use of WWV Signals to Time Pendulums’, American Journal of Physics
18(5), 306–307.

Peters, R.: 1997, ‘Automated Kater Pendulum’, European Journal of Physics 18(3), 217–221.

Peters, R.D.: 1999, ‘Student-friendly Precision Pendulum’, The Physics Teacher 37(7), 390–
393.

Physical Pendulum

Armstrong, H.L.: 1985, ‘An Experiment on the Inertial Properties of a Rigid Body’, Physics

Education 20(3), 138–141.
Bartunek, P.: 1951, ‘A Driver for the Calthrop Resonance Pendulum’, American Journal of

Physics 19(1), 57.

Basano, L. & Ottonello, P.: 1991, ‘Digital Pendulum Damping: The Single-oscillation Ap-
proach’, American Journal of Physics 59(11), 1018–1023.

Benenson, R. & Marsh, B.: 1988, ‘Coupled Oscillations of a Ball and a Curved-track Pen-
dulum’, American Journal of Physics 56(4), 345–348.

Bulur, E., Anilturk, S. & Mozer, A.M.: 1996, ‘Computer Analysis of Pendulum Motion: An
Alternative Way of Collecting Experimental Data’, American Journal of Physics 64(10),
1333–1337.

Butikov, E.: 1999, ‘The Rigid Pendulum – an Antique but Evergreen Physical Model’,
European Journal of Physics 20(6), 429–441.

Cady, W.M.: 1942, ‘Remarkable Isochronous Pendulum’, American Journal of Physics 10(2),

114–116.
Corrado, L.: 1974, ‘The Meter Stick Pendulum’, The Physics Teacher 12(8), 494.
Cromer, A.: 1995, ‘Many Oscillations of a Rigid Rod’, American Journal of Physics 63(1), 112–

121.

Freeman, I.M.: 1954, ‘Rectangular Plate Pendulum’, American Journal of Physics 22(4), 157–
158.

Giltinan, D., Wagner, D. & Walkiewicz, T.: 1996, ‘The Physical Pendulum on a Cylindrical

Support’, American Journal of Physics 64(2), 144–146.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 515



Greenslade, T.B. & Owens, A.J.: 1980, ‘Reconstructed Nineteenth-century Experiment with
Physical Pendula’, American Journal of Physics 48(6), 487–488.

Hinrichsen, P.F.: 1981, ‘Practical Applications of the Compound Pendulum’, The Physics
Teacher 19(5), 286–292.

Horton, G.: 1966, ‘Some Laboratory Work with Physical Pendulums’, The Physics Teacher

4(2), 78–79.
Iona, M.: 1979, ‘The Physical Pendulum’, The Physics Teacher 17(4), 224, 276.
Irons, E.J.: 1947, ‘Graphical Treatment of the Physical Pendulum Problem’, American Journal

of Physics 15(5), 426.

Kannewurf, C.R. & Jensen, H.C.: 1957, ‘Coupled Oscillations’, American Journal of Physics
25(7), 442–445.

Katz, E.: 1949, ‘Note on Pendulums’, American Journal of Physics 17(7), 439–441.

Kettler, J.: 1995, ‘The Variable Mass Physical Pendulum’, American Journal of Physics 63(11),
1049–1051.

Kolodiy, G.O.: 1979, ‘An Experiment with a Physical Pendulum’,The Physics Teacher 17(1), 52.

Levinson, D.A.: 1975, ‘Natural Frequencies of a Spherical Compound Pendulum’, American
Journal of Physics 45(6), 579.

Marshall, J.: 1972, ‘Two Compound Pendulums with the Same Period of Oscillation’, School

Science Review 54(186), 130–131.
McInerney, M.: 1985, ‘Computer-aided Experiments with the Damped Harmonic Oscillator’,

American Journal of Physics 53(10), 991–996.
Mills, D.S.: 1980, ‘The Physical Pendulum: A Computer-augmented Laboratory Exercise’,

American Journal of Physics 48(4), 314–316.
Mires, R. & Peters, R.: 1994, ‘Motion of a Leaky Pendulum’, American Journal of Physics

62(2), 137–139.

Nicklin, R.C. & Rafert, J.B.: 1984, ‘The Digital Pendulum’, American Journal of Physics 52(7),
632–639.

Olssen, M.G.: 1981, ‘Spherical Pendulum Revisited’, American Journal of Physics 49(6), 531–

534.
Pedersen, N.F. & Soerensen, O.H.: 1975, ‘The Compound Pendulum in Intermediate Labo-

ratories and Demonstrations’, American Journal of Physics 45(10), 994–998.
Peters, R.: 1996, ‘Resonance Response of a Moderately Driven Rigid Planar Pendulum’,

American Journal of Physics 64(2), 170–173.
Peters, R.D.: 1999, ‘Student–friendly Precision Pendulum’, The Physics Teacher 37(7), 390–393.
Peters, R. & Pritchett, T.: 1997, ‘The Not-so-simple Harmonic Oscillator’, American Journal of

Physics 65(11), 1067–1073.
Peters, R. & Shepherd, J.: 1989, ‘A Pendulum with Adjustable Trends in the Period’, American

Journal of Physics 57(6), 535–539.

Raychowdhury, P.N. & Boyd, J.N.: 1979, ‘Centre of Percussion’, American Journal of Physics
47(12), 1088–1089.

Reidl, C.J.: 1996, ‘Moment of Inertia of a Physical Pendulum’, The Physics Teacher 34(2),

114–115.
Sherfinski, J.: 1997, ‘A Counter-intuitive Physical Pendulum Lab’, The Physics Teacher 35(4),

252–253.
Spradley, J.L.: 1990, ‘Meter-stick Mechanics’, The Physics Teacher 28(5), 312–314.

Squire, P.: 1986, ‘Pendulum Damping’, American Journal of Physics 54(11), 984–991.
Sutton, R.S.: 1953, ‘An Experimental Encounter with Bifilar Pendula’, American Journal of

Physics 21(5), 408.

Trilton, D.: 1986, ‘Ordered and Chaotic Motion of a Forced Spherical Pendulum’, European
Journal of Physics, 7(3), 162–169.

COLIN GAULD516



Weltin, H.: 1964, ‘Inexpensive Physical Pendulum Experiment’, American Journal of Physics
32(4), 267–268.

Weltner, K., Esperodiao, A., Andrade, R. & Guedes, G.: 1994, ‘Demonstrating Different
Forms of the Bent Tuning Curve with a Mechanical Oscillator’, American Journal of
Physics 62(1), 56–59.

Worrell, F.T. & Correll, M.: 1958, ‘Elementary Experiment in Deriving an Empirical Rela-
tionship’, American Journal of Physics 26(9), 607–609.

Zilio, S.C.: 1982, ‘Measurement an Analysis of Large-angle Pendulum Motion’, American
Journal of Physics 49(5), 450–452.

Ring Pendulum

Jensen, H.C. & Haisley, W.E.: 1967, ‘On the Equivalence of Truncated Ring Pendula’,
American Journal of Physics 35(10), 971–972.

Wagner, D., Walkiewicz, T. & Giltinan, D.: 1995, ‘The Partial Ring Pendulum’, American
Journal of Physics 63(11), 1014–1017.

Walkiewicz, T.A. & Wagner, D.L.: 1994, ‘Symmetry Properties of a Ring Pendulum’, The
Physics Teacher 32(3), 142–144.

Willey, D.G.: 1991, ‘Conservation of Mechanical Energy using a Pendulum’, The Physics
Teacher 29(9), 567.

Simple Pendulum

Abdel-Rahman, A.M.: 1983, ‘The Simple Pendulum in a Rotating Frame’, American Journal

of Physics 51(8), 721–724.
Alford, W.L.: 1972, ‘Approximation for Horizontal Motion of a Plane Pendulum’, American

Journal of Physics 42(5), 417–418.

Anderson, J.L.: 1959, ‘Approximations in Physics and the Simple Pendulum’, American
Journal of Physics 27(3), 188–189.

Armstrong, H.L.: 1976, ‘Effect of the Mass of the Cord on the Period of a Simple Pendulum’,

American Journal of Physics 44(6), 564–566.
Benham, T.A.: 1947, ‘Bessel Functions in Physics: Theory’, American Journal of Physics 15(4),

285–294.

Berg, R.: 1991, ‘Pendulum Waves: A Demonstration of Wave Motion Using Pendula’,
American Journal of Physics 59(2), 186–187.

Blisard, T.J. & Duursema, C.H.: 1952, ‘A Demonstration of the Transformation of
Mechanical Energy for Student Computation’, American Journal of Physics 20(9), 559–

561.
Blitzer, L.: 1979, ‘Equilibrium and Stability of a Pendulum in an Orbiting Spaceship’,

American Journal of Physics 47(3), 241–246.

Burns, G.P.: 1950, ‘Simple Pendulum’, American Journal of Physics 18(7), 468–469.
Cadwell, L. & Boyko, E.: 1991, ‘Linearization of the Simple Pendulum’, American Journal of

Physics 59(11), 979–981.

Cook, G. & Zaidens, C.: 1986, ‘The Quantum Point-mass Pendulum’, American Journal of
Physics 54(3), 259–261.

Crawford, F.S.: 1975, ‘Damping of a Simple Pendulum’, American Journal of Physics 43(3),
276–277.

Curtis, R.K.: 1981, ‘The Simple Pendulum Experiment’, The Physics Teacher 19(1), 36.
Denman, H.H.: 1959, ‘Amplitude Dependence of Frequency in a Linear Approximation to the

Simple Pendulum Equation’, American Journal of Physics 27(7), 524–525.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 517



Di Lieto, A., Fenecia, S. & Mancini, P.: 1991, ‘A Computer-Assisted Pendulum for Didactics’,
European Journal of Physics 12(1), 51–52.

Epstein, S.T. & Olsson, M.G.: 1975, ‘Comment on ‘‘Effect of the Mass of the Cord on the
period of a Simple Pendulum’’’, American Journal of Physics 45(7), 671–672.

Erkal, C.: 2000, ‘The Simple Pendulum: A Relativistic Visit’, European Journal of Physics

21(5), 377–384.
Fulcher, L.P. & Davis, B.F.: 1976, ‘Theoretical and Experimental Study of the Motion of the

Simple Pendulum’, American Journal of Physics 44(1), 51–55.
Gleiser, R.J.: 1979, ‘Small Amplitude Oscillations of a Quasi-ideal Pendulum’, American

Journal of Physics 47(7), 640–643.
Gough, W.: 1983, ‘The Period of a Simple Pendulum is not 2p�(l/g)’, European Journal of

Physics 4(1), 53.

Grandy, W. & Schock, M.: 1997, ‘Simulations of Nonlinear Pivot-driven Pendula’, American
Journal of Physics 65(5), 376–381.

Gupta, M.L.: 1972, ‘The Critical Points of a Simple Pendulum’, American Journal of Physics

40(3), 478–480.
Hall, D.E.: 1981, ‘Comments on Fourier Analysis of the Simple Pendulum’, American Journal

of Physics 49(8), 792.

Haque-Copilah, S.: 1996, ‘Extremely Simple Demonstration of Forced Oscillations’, American
Journal of Physics 64(4), 507–508.

Head, J.H.: 1995, ‘Building New Confidence with a Classic Pendulum Demonstration’, The
Physics Teacher 33(1), 10–15.

Helrich, C. & Lehman, T.: 1979, ‘A Rolling Pendulum Bob: Conservation of Energy and
Partition of Kinetic Energy’, American Journal of Physics 47(4), 367–368.

Hughes, J.V.: 1953, ‘Possible Motions of a Sphere Suspended on a String (the Simple Pen-

dulum)’, American Journal of Physics 21(1), 47–50.
Jackson, D.P.: 1996, ‘Rendering the ‘‘Not-so-simple’’ Pendulum Experimentally Accessible’,

The Physics Teacher 34(2), 86–89.

Jensen, H.C. & Monohan, J.R.: 1968, ‘Air Bearing Support for a Pendulum’, American
Journal of Physics 36(5), 459–460.

Knauss, H.P. & Zilsel, P.R.: 1951, ‘Magnetically Maintained Pendulum’, American Journal of
Physics 19(5), 318–320.

Mace, W.: 1972, ‘Isochronism and Hooke’s Law’, School Science Review 53(185), 773–
774.

Miller, B.J.: 1972, ‘More Realistic Treatment of the Simple Pendulum without Difficult

Mathematics’, American Journal of Physics 42(4), 298–303.
Molina, M.I.: 1997, ‘Simple Linearization of the Simple Pendulum for any Amplitude’, The

Physics Teacher 35(8), 489–490.

Montgomery, C.G.: 1978, ‘Pendulum on a Massive Cord’, American Journal of Physics 46(4),
411–412.

Pitucco, A.: 1980, ‘An Approximation of a Simple Pendulum’, The Physics Teacher 18(9), 666.

Santarelli, V., Carolla, J. & Ferner, M.: 1993, ‘A New Look at the Simple Pendulum’, The
Physics Teacher 31(4), 236–238.

Schwarz, C.: 1995, ‘The Not-so-simple Pendulum’, The Physics Teacher 33(4), 225–228.
Siddons, J.: 1976, ‘Bits and Pieces: A Physics Miscellany’, School Science Review 57(200), 441–

453 (esp. 451–453).
Simon, R. & Riesz, R.P.: 1979, ‘Large Amplitude Simple Pendulum: A Fourier Analysis’,

American Journal of Physics 47(10), 898–899.

Zheng, T.F. et al.: 1994, ‘Teaching the Non-linear Pendulum’, The Physics Teacher 32(4), 248–
251.

COLIN GAULD518



Spring-mass Pendulum

Armstrong, H.L.: 1969, ‘The Oscillating Spring and Weight – An Experiment often Misin-
terpreted’, American Journal of Physics 37(4), 447–448.

Blair, J.M.: 1975, ‘Precision Timing Applied to a Driven Mechanical Oscillator’, American
Journal of Physics 43(12), 1076–1078.

Cayton, T.E.: 1975, ‘The Laboratory Spring-mass Oscillator: An Example of Parametric

Instability’, American Journal of Physics 45(8), 723–732.
Crawford, H.: 1964, ‘A Space Clock’, The Physics Teacher 2(6), 290.
Cushing, J.T.: 1984, ‘The Spring-mass Pendulum Revisited’, American Journal of Physics

52(10), 925–933.
Cushing, J.Y.: 1984, ‘The Method of Characteristics Applied to the Massive Spring Problem’,

American Journal of Physics 52(10), 933–937.
Dewdney, J.W.: 1958, ‘Simple Pendulum Equivalent to Spring-Mass System’, American

Journal of Physics 26(5), 340–341.
Edwards, T.W. & Hultsch, R.A.: 1972, ‘Mass Distribution and Frequencies of a Vertical

Spring’, American Journal of Physics 40(3), 445–449.

Erlichson, H.: 1976, ‘The Vertical Spring-Mass System and its Equivalent’, The Physics
Teacher 14(9), 573–574.

Fyfe, F.M., Stroink, G., March, R.H. & Calkin, M.G.: 1981, ‘Large-scale Spring Experiment’,

American Journal of Physics 49(11), 1074–1075.
Galloni, E.E. & Kohen, M.: 1979, ‘Influence of the Mass of the Spring on its Static and

Dynamic Effects’, American Journal of Physics 47(12), 1076–1078.

Glanz, P.K.: 1979, ‘Note on Energy Change in a Spring’, American Journal of Physics 47(12),
1091–1092.

Grant, F.: 1986, ‘Energy Analysis of the Conical-spring Oscillator’, American Journal of
Physics 54(3), 227–233.

Greiner, M.: 1980, ‘Elliptical Motion from a Ball and Spring’, American Journal of Physics
48(6), 488–489.

Heard, T.C. & Newby, N.D.: 1975, ‘Behavior of a Soft Spring’, American Journal of Physics

45(11), 1102–1106.
Holzworth, D.E. & Malone, J.: 2000, ‘Pendulum Period versus Hanging-spring Period’, The

Physics Teacher 38(1), 47.

Jalbert, R.: 1963, ‘On Springs and Simple Harmonic Motion’, The Physics Teacher 1(3),
124.

Karioris, F. & Mendelson, K.: 1992, ‘A Novel Coupled Oscillation Demonstration’, American

Journal of Physics 60(6), 508–513.
Lai, H.M.: 1984, ‘On the Recurrence Phenomenon of a Resonant Spring Pendulum’, American

Journal of Physics 52(3), 219–223.
Lipham, J.G. & Pollak, V.L.: 1978, ‘Constructing a ‘‘Misbehaving’’ Spring’, American Journal

of Physics 46(1), 110–111.
McDonald, A.: 1980, ‘Deceptively Simple Harmonic Motion: A Mass on a Spiral Spring’,

American Journal of Physics 48(3), 189–192.

Mills, D.S.: 1981, ‘The Spring and Mass Pendulum: An Exercise in Mathematical Modeling’,
The Physics Teacher 19(6), 404–405.

Nunes da Silva, J.: 1994, ‘Renormalized Vibrations of a Loaded Spring’, American Journal of

Physics 62(5), 423–426.
Olsson, M.G.: 1976, ‘Why Does a Mass on a Spring Sometimes Misbehave?’, American

Journal of Physics 44(12), 1211–1212.
Ouseph, P. & Ouseph, J.: 1987, ‘Electromagnetically Driven Resonance Apparatus’, American

Journal of Physics 55(12), 1126–1129.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 519



Porta, A. & Sandoval, J.L.: 1982, ‘A Detection System for Mass-Spring Oscillations’, The
Physics Teacher 20(3), 186.

Rusbridge, M.G.: 1980, ‘Motion of the Spring Pendulum’, American Journal of Physics 48(2),
146–151.

Scott, A.: 1985, ‘Transfer of Energy in a Spring-mass Pendulum’, The Physics Teacher 23(6),

356.
Sears, F.W.: 1969, ‘A Demonstration of the Spring-Mass Correction’, American Journal of

Physics 37(6), 645–648.
Walker, J. & Soule, T.: 1996, ‘Chaos in a Simple Impact Oscillation: The Bender Bouncer’,

American Journal of Physics 64(4), 397–409.

Torsion Pendulum

Abbott, H.: 1983, ‘Torsion Resonance Demonstrator’, The Physics Teacher 21(5), 333.

Allen, M. & Saxl, E.J.: 1972, ‘The Period of Damped Simple Harmonic Motion’, American
Journal of Physics 40(7), 942–944.

Chapmen, S.: 1948, ‘Discovering the Torsion Pendulum Expression in the Freshman Labo-
ratory’, American Journal of Physics 16(5), 308–309.

Cromer, A.: 1995, ‘Many Oscillations of a Rigid Rod’, American Journal of Physics 63(1), 112–
121.

Green, R.E.: 1958, ‘Calibrated Torsion Pendulum for Moment of Inertia Measurements’,

American Journal of Physics 26(7), 498–499.
Miller, J.S.: 1957, ‘Coupled Torsion Pendulums’, American Journal of Physics 25(9), 649–650.
Milotti, E.: 2001, ‘Non-linear Behavior in a Torsion Pendulum’, European Journal of Physics

22(3), 239–248.
O’Connell, J.: 2000, ‘Magnetic Torsion Pendulum’, The Physics Teacher 38(6), 377–378.
Pollock, R.E.: 1963, ‘Resonant Detection of Light Pressure by a Torsion Pendulum in Air – An

Experiment for Underclass Laboratories’, American Journal of Physics 31(12), 901–904.

Smedt, J. De & Bock, A. De.: 1957, ‘Horizontal Pendulum with Variable Modulus of Torsion
(Resonance Curve)’, American Journal of Physics 25(3), 155–156.

Taylor, K.N.: 1983, ‘Tinker Toys Have their Moments of Inertia’, The Physics Teacher 21(7),

456–458.
Tyagi, S. & Lord, A.E.: 1979, ‘An Inexpensive Torsional Pendulum Apparatus for Rigidity

Modulus Determination’, American Journal of Physics 47(7), 632–633.

Yu, Y.-T.: 1942, ‘Double Torsion Pendulum in a Liquid’, American Journal of Physics 10(3),
152–153.

Two-dimensional Pendulum

Livesey, D.: 1987, ‘The Precession of Simple Pendulum Orbits’, American Journal of Physics

55(7), 618–621.
Whitaker, R.J.: 2001, ‘Harmonographs. I. Pendulum Design’, American Journal of Physics

69(2), 162–173.

Worland, R.S. & Moelter, M.J.: 2000, ‘Two-dimensional Pendulum Experiments Using a
Spark Generator’, The Physics Teacher 38(8), 489–492.

Variable Gravity Pendulums

Feliciano, J.: 1998, ‘The Variable Gravity Pendulum’, The Physics Teacher 36(1), 51–52.

Kwasnoski, J.B. & Murphy, R.S.: 1984, ‘The Classic Pendulum Experiment – on Jupiter or
Saturn’, American Journal of Physics 52(1), 85.

COLIN GAULD520



Tufilaro, N.B., Abbott, T.A. & Griffiths, D.J.: 1984, ‘Swinging Attwood’s Machine’, American
Journal of Physics 52(10), 895–903.

Vaquero, J.M. & Gallego, M.: 2000, ‘An Old Apparatus for Physics Teaching’ The Physics
Teacher 38(7), 424–425.

Wilberforce Pendulum

Berg, R. & Marshall, T.: 1991, ‘Wilberforce Pendulum Oscillations and Normal Modes’,

American Journal of Physics 59(1), 32–38.
Debowska, E., Jakubowicz, S. & Mazur, Z.: 1999, ‘Computer Visualization of the Beating of a

Wilberforce Pendulum’, European Journal of Physics 20(2) 89–95.

Kopf, U.: 1990, ‘Wilberforce’s Pendulum Revisited’, American Journal of Physics 58(9), 833–
837.

Whitaker, R.J.: 1988, ‘L.R. Wilberforce and the Wilberforce Pendulum’, The Physics Teacher

26(1), 37–39.
Williams, J. & Keil, R.: 1983, ‘A Wilberforce Pendulum’, The Physics Teacher 21(4), 257–258.

Pendulum Contexts

Chaos and the Pendulum

Alessi, N., Fischer, C. & Gray, C.: 1992, Measurements of Amplitude Jumps and Hysteresis in
a Driven Inverted Pendulum’, American Journal of Physics 60(8), 755–756.

Baker, G.: 1995, ‘Control of the Chaotic Driven Pendulum’, American Journal of Physics
63(9), 832–838.

Berdahl, J.P. & Lugt, K.V.: 2001, ‘Magnetically Driven Chaotic Pendulum’, American Journal

of Physics 69(9), 1016–1019.
Blackburn, J. & Baker, G.: 1998, ‘A Comparison of Commercial Chaotic Pendulums’,

American Journal of Physics 66(9), 821–830.
Blackburn, J., Smith, H. & Grønbich-Jensen, N.: 1992, ‘Stability and Hopf Bifurcations in an

Inverted Pendulum’, American Journal of Physics 60(10), 903–908.
Carretero-Gonzalez, R., Numez-Yepez, H. & Salas-Brito, A. 1994, ‘Regular and Chaotic

Behavior in an Extensible Pendulum’, European Journal of Physics 15(3), 139–148.

Cohen, Y., Katz, S., Peres, A., Santo, E. & Yitzhaki, R.: 1988, ‘Stroboscopic Views of Regular
and Chaotic Orbits’, American Journal of Physics 56(11), 1042.

Cuerno, R., Ranada, A. & Ruiz-Lorenzo, J.: 1992, ‘Deterministic Chaos in the Elastic Pen-

dulum: A Simple Laboratory for Non-linear Dynamics’, American Journal of Physics
60(1), 73–79.

De Jong, M.L.: 1992, ‘Chaos and the Simple Pendulum’, The Physics Teacher 30(2), 115–121.
Duchesne, B., Fischer, C., Gray, C. & Jeffrey, K.: 1991, ‘Chaos in the Motion of an Inverted

Pendulum: An Undergraduate Laboratory Experiment’, American Journal of Physics
59(11), 987–992.

Irons, F.: 1990, ‘Concerning the Non-Linear Behaviour of the Forced Spherical Pendulum

including the Dowsing Pendulum’, European Journal of Physics 11(2), 107–115.
Kautz, R.: 1993, ‘Chaos in a Computer-Animated Pendulum’, American Journal of Physics

61(5), 407–415.

Levien, R. & Tan, S.: 1993, ‘Double Pendulum: An Experiment in Chaos’, American Journal of
Physics 61(11), 1038–1044.

Marega, E., Ioriatti, L. & Zilio, S.: 1991, ‘Harmonic Generation and Chaos in an Electro-

mechanical Pendulum’, American Journal of Physics 59(9), 858–859.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 521



Martin, S.J. & Ford, P.J.: 2001, ‘A Simple Experimental Demonstration of Chaos in a Driven
Spherical Pendulum’, Physics Education 36(2), 108–114.

Mendelson, K. & Karioris, F.: 1991, ‘Chaoticlike Motion of a Linear Dynamical System’,
American Journal of Physics 59(3), 221–224.

Oliver, D.: 1999, ‘A Chaotic Pendulum’, The Physics Teacher 37(3), 174.

Pemann, D. & Hamilton, I.: 1992, ‘Self-similar and Erratic Transient Dynamics for the
Linearly Damped Simple Pendulum’, American Journal of Physics 60(5), 442–450.

Peters, R.: 1995, ‘Chaotic Pendulum Based on Torsion and Gravity in Opposition’, American
Journal of Physics 63(12), 1128–1136.

Shew, W., Coy, H. & Lindner, J.: 1999, ‘Taming Chaos with Disorder in a Pendulum Array’,
American Journal of Physics 67(8), 703–708.

Shinbrot, T., Grebogi, C., Wisdom, J. & Yorke, J.: 1992, ‘Chaos in a Double Pendulum’,

American Journal of Physics 60(6), 491–499.
Taylor, M.: 2001, ‘Pendumonium’, Physics Education 36(5), 425.
Trilton, D.: 1986, ‘Ordered and Chaotic Motion of a Forced Spherical Pendulum’, European

Journal of Physics 7(3), 162–169.
Walker, J. & Soule, T.: 1996, ‘Chaos in a Simple Impact Oscillation: The Bender Bouncer’,

American Journal of Physics 64(4), 397–409.

Galileo and the Pendulum

Ball, M.: 1985, ‘Galileo Galilei and Christiaan Huygens: Addendum’, Antiquarian Horology
15, 373–374.

Bjelic, D.: 1996, ‘Lebenswelt Structures of Galilean Physics: The Case of Galileo’s Pendulum’,

Human Studies 19, 409–432.
Dobson, R.: 1985, ‘Galileo Galilei and Christiaan Huygens’, Antiquarian Horology 15, 261–

270.
Drake, S.: 1986, ‘Galileo’s Physical Measurements’, American Journal of Physics 54(4), 302–

306.
Erlichson, H.: 1997, ‘Galileo to Newton – a Liberal Arts Physics Course’, The Physics Teacher

35(9), 532–535.

Erlichson, H.: 1999, ‘Galileo’s Pendulum’, The Physics Teacher 37(8), 478–479.
Matthews, M.R.: 1990, ‘Galileo and the Pendulum: A Case for History and Philosophy in the

Classroom’, Australian Science Teachers Journal 36(1), 7–13.

Naylor, R.: 1974, ‘Galileo’s Simple Pendulum’, Physis: Rivista Internazionale di Storia della
Scienza 16, 23–46.

Naylor, R.: 1977, ‘Galileo’s Need for Precision: The ‘‘point’’ of the Fourth Day Pendulum

Experiment’, Isis 68, 97–103.
Wood, H.T.: 1994, ‘The Interrupted Pendulum’, The Physics Teacher 32(7), 422–423.
Yamazaki, M.: 1993, ‘Galileo and the Laws of Pendulum and Fall’, Journal of History of

Science 32, 12–18.

Historical Contexts

Conlin, M.: 1999, ‘The Popular and Scientific Reception of the Foucault Pendulum in the
United States’, Isis 90(2), 181–204.

Edwardes, E.: 1980, ‘The Suspended Foliot and New Light on Early Pendulum Clocks’,

Antiquarian Horology 12, 614–626.
Foley, V.: 1988, ‘Besson, da Vinci, and the Evolution of the Pendulum: Some Findings and

Observations’, History and Technology 6, 1–43.

COLIN GAULD522



Garcia-Diego, J.: 1988, ‘On a Mechanical Problem of Lanz’, History and Technology 5, 301–
313.

Gauld, C.: 1998, ‘Solutions to the Problem of Impact in the 17th and 18th Centuries and
Teaching Newton’s Third Law Today’, Science and Education 7(1), 49–67.

Hall, B.: 1978, ‘The Scholastic Pendulum’, Annals of Science 35, 441–462.

King, D.: 1979, ‘Ibn Yunus and the Pendulum: A History of Errors’, Archives Internationale
d’Histoire des Sciences 29, 35–52.

Sheynin, O.: 1994, ‘Ivory’s Treatment of Pendulum Observations’, Historica Mathematica 21,
174–184.

Investigating the Motion of the Simple Pendulum

Araki, T.: 1994, ‘Measurement of Simple Pendulum Motion Using Flux-gate Magnetometer’,
American Journal of Physics 62(6), 569–571.

Burris, J.A. & Hargrave, W.J.: 1944, ‘Simple Pendulum Energy Experiment’, American
Journal of Physics 12(4), 215–217.

Chinn, L.: 1979, ‘Demonstration of the Conservation of Mechanical Energy’, The Physics
Teacher 17(6), 385.

Crummett, W.: 1990, ‘Measurement of Acceleration due to Gravity’, The Physics Teacher
28(5), 291–295.

Curtis, R.K.: 1981, ‘The Simple Pendulum Experiment’, The Physics Teacher 19(1), 36.

Curzon, F., Locke, A., Lefrançois & Novick, K.: 1995, ‘Parametric Instability of a Pendulum’,
American Journal of Physics 63(2), 132–136.

Denardo, B. & Masada, R.: 1990, ‘A Not-so-obvious Pendulum Experiment’, The Physics

Teacher 28(1), 51–52.
Dix, F.: 1975, ‘A Pendulum Counter-timer Using a Photocell Gate’, American Journal of

Physics 43(3), 280.
Hall, D.E. & Shea, M.J.: 1977, ‘Large-amplitude Pendulum Experiment: Another Approach’,

American Journal of Physics 45(4), 355–357.
Lewowski, T. & Wozmiak, K.: 2002, ‘Period of a Pendulum at Large Amplitudes: A Labo-

ratory Experiment’, European Journal of Physics 23(5), 461–464.

Li, S.-P. & Feng, S.-Y.: 1967, ‘Precision Measurement of the Period of a Pendulum Using an
Oscilloscope’, American Journal of Physics 35(11), 1071–1073.

Matous, G. & Matolyak, J.: 1991, ‘Teaching Important Procedures with Simple Experiments’,

The Physics Teacher 29(8), 541–542.
McCormick, W.W.: 1939, ‘A Pendulum Timer for the Elementary Laboratory’, American

Journal of Physics 7(6), 260.

Santarelli, V., Carolla, J. & Ferner, M.: 1993, ‘A New Look at the Simple Pendulum’, The
Physics Teacher 31(4), 236–238.

Smith, M.K.: 1964, ‘Precision Measurement of Period vs. Amplitude for a Pendulum’,
American Journal of Physics 32(8), 632–633.

Pendulum Collisions

Becchetti, F.D. & Cockerill, A.: 1984, ‘Collision Balls and Coupled Pendulums for the
Overhead Projector’, The Physics Teacher 22(4), 258–259.

Chapman, S.: 1960, ‘Misconception Concerning the Dynamics of the Impact Ball Apparatus’,

American Journal of Physics 28(8), 705–711.
Domenech, A. & Domenech, T.: 1988, ‘Relationships between Scattering Angles in Pendulum

Collisions’, European Journal of Physics 9(2), 116–122.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 523



Erlich, R.: 1996, ‘Experiments with ‘‘Newton’s Cradle’’’, The Physics Teacher 34(3), 181–183.
Erlichson, H.: 2001, ‘A Proposition Well Known to Geometers’, The Physics Teacher 39(3),

152–153.
Gauld, C.F.: 1998, ‘Colliding Pendulums, Conservation of Momentum and Newton’s Third

Law’, Australian Science Teachers Journal 44(3), 37–38.

Gauld, C.F.: 1999, ‘Using Colliding Pendulums to Teach Newton’s Third Law’, The Physics
Teacher 37(2), 42–45.

Gavenda, J.D. & Edington, J.R.: 1997, ‘Newton’s Cradle and Scientific Explanation’, The
Physics Teacher 35(7), 411–417.

Gupta, P.: 1985, ‘Blackwood Pendulum Experiment and the Conservation of Linear
Momentum’, American Journal of Physics 53(3), 267–269.

Hecht, K.: 1961, ‘Collision Experiments in Shadow Projection’, American Journal of Physics

29(9), 636–639.
Herrmann, F. & Schmalzle, P.: 1981, ‘Simple Explanation of a Well-known Collision

Experiment’, American Journal of Physics 49(8), 761–764.

McCaslin, J.G.: 1984, ‘A Different Blackwood Pendulum Experiment’, The Physics Teacher
22(3), 184–186.

Satterly, J.: 1945, ‘Ball Pendulum Impact Experiments’, American Journal of Physics 13, 170.

Siddons, J.: 1969, ‘Swinging Spheres’, School Science Review 51(174), 152–153.

Pendulum Resonance

Abbott, H. :1983, ‘Torsion Resonance Demonstrator’, The Physics Teacher 21(5), 333.
Bruns, D.G.: 1988, ‘Synchronized Swinging’, The Physics Teacher 26(4), 220–221.

Edge, R.D.: 1981, ‘Coupled and Forced Oscillations’, The Physics Teacher 19(7), 485–488.
Fajans, J. & Friedland, L.: 2001, ‘Autoresonant (Nonstationary) Excitation of Pendulums,

Plutinos, Plasmas and Other Nonlinear Oscillators’, American Journal of Physics 69(10),
1096–1102.

Grosu, T. & Ursu, D.: 1982, ‘Simple Apparatus for Obtaining Parametric Resonance’,
American Journal of Physics 50(6), 561.

Lai, H.M.: 1984, ‘On the Recurrence Phenomenon of a Resonant Spring Pendulum’, American

Journal of Physics 52(3), 219–223.
Olsen, L.O.: 1945, ‘Coupled Pendulums: An Advanced Laboratory Experiment’, American

Journal of Physics 13(5), 321–324.

Ouseph, P. & Ouseph, J.: 1987, ‘Electromagnetically Driven Resonance Apparatus’, American
Journal of Physics 55(12), 1126–1129.

Peters, R.: 1996, ‘Resonance Response of a Moderately Driven Rigid Planar Pendulum’,

American Journal of Physics 64(2), 170–173.
Pinto, F.: 1993, ‘Parametric Resonance: An Introductory Experiment’, The Physics Teacher

31(6), 336–346.
Priest, J. & Poth, J.: 1982, ‘Teaching Physics with Coupled Pendulums’, The Physics Teacher

20(2), 80–85.
Scott, T.A.: 1983, ‘Resonance Demonstration’, The Physics Teacher 21(6), 409.
Stockman, H.E.: 1960, ‘Pendulum Parametric Amplifier’, American Journal of Physics 28(5),

506–507.

Student Conceptions of the Pendulum

Czudkova, L. & Musilova, J.: 2000, ‘The Pendulum: A Stumbling Block of Secondary School
Mechanics’, Physics Education 35(6), 428–435.

COLIN GAULD524



Wolman, W.: 1984, ‘Models and Procedures: Teaching for Transfer of Pendulum Knowledge’,
Journal of Research in Science Teaching 21(4), 399–415.

Swinging and the Pendulum

Anon.: 1966, ‘A Child’s Swing’, The Physics Teacher 4(7), 307.
Anon.: 1966, ‘A Child’s Swing’, The Physics Teacher 4(8), 374–375.
Burns, J.A.: 1970, ‘More on Pumping on a Swing’, American Journal of Physics 38(7), 920–

922.
Case, W.: 1996, ‘The Pumping of a Swing from the Standing Position’, American Journal of

Physics 64(3), 215–220.

Case, W. & Swanson, M.: 1990, ‘The Pumping of a Swing from the Seated Position’, American
Journal of Physics 58(5), 463–467.

Curry, S.M.: 1976, ‘How Children Swing’, American Journal of Physics 44(10), 924–926.

Gore, B.F.: 1970, ‘The Child’s Swing’, American Journal of Physics 38(3), 378–379.
Gore, B.F.: 1971, ‘Starting a Swing from Rest’, American Journal of Physics 39(3), 347.
Hesketh, R.V.: 1975, ‘How to Make a Swing Go’, Physics Education 10(5), 367–369.
McMullan, J.: 1940, ‘On Initiating Motion in a Swing’, American Journal of Physics 40(5),

764–766.
Mellen, W.R.: 1994, ‘Spring String Swing Thing’, The Physics Teacher 32(2), 122–123.
Sanmartin, J.R.: 1984, ‘O Botafumeiro: Parametric Pumping in the Middle Ages’, American

Journal of Physics 52(10), 937–945.
Siegman, A.F.: 1969, ‘Comments on Pumping on a Swing’, American Journal of Physics 37(8),

843–844.

Tea, P.L. & Falk, H.: 1968, ‘Pumping on a Swing’, American Journal of Physics 36(12), 1165–
1166.

Time Measurement and the Pendulum

Aked, C.: 1994, ‘The First Free Pendulum Clock’, Bulletin of the Scientific Instrument Society

41, 20–23.
Bazin, M. & Lucie, P.: 1981, ‘The Pendulum Reborn: Time Measurements in the Teaching

Laboratory’, American Journal of Physics 49(8), 758–761.

Bensky, T.J.: 2001, ‘Measuring g with a Joystick Pendulum’, The Physics Teacher 39(2), 88–
89.

Carlson, J.E.: 1991, ‘The Pendulum Clock’, The Physics Teacher 29(1), 8–11.
Crawford, H.: 1964, ‘A Space Clock’, The Physics Teacher 2(6), 290.

Crook, A.: 2001, ‘A Tale of a Clock’, European Journal of Physics 22(5), 549–560.
Denny, M.: 2002, ‘The Pendulum Clock’, European Journal of Physics 23(4), 449–458.
Dobson, R.: 1979, ‘Huygens, the Secret in the Coster–Fromanteel ‘‘Contract’’, the Thirty-

hour Clock’, Antiquarian Horology 12, 193–196.
Edwardes, E.: 1983, ‘The Fromanteels and the Pendulum Clock’, Antiquarian Horology 14,

250–265.

Kesteven, M.: 1978, ‘On the Mathematical Theory of Clock Escapements’, American Journal
of Physics 46(2), 125–129.

Lee, R.: 1978, ‘Early Pendulum Clocks’, Antiquarian Horology 11, 146–160.
Ments, M.v.: 1956, ‘Synchronization of Pendulum Clocks with the Help of Signals Taken from

a Quartz-Crystal Clock’, American Journal of Physics 24(7), 489–495.
Mills, A.: 1993, ‘The Earl of Meath’s ‘Free Pendulum’ Water-driven Clock: An Incredible

Scientific Instrument’, Bulletin of the Scientific Instrument Society 39, 3–6.

PENDULUMS IN THE PHYSICS EDUCATION LITERATURE 525



Walking and the Pendulum

Bachman, C.H.: 1976, ‘Some Observations on the Process of Walking’, The Physics Teacher
14, 360.

Dumont, A. & Waltham, C.: 1997, ‘Walking’, The Physics Teacher 35(6), 372–376.
Prigo, R.: 1976, ‘Walking Resonance’, The Physics Teacher 14, 360.
Sutton, R.M.: 1955, ‘Two Notes on the Physics of Walking’, American Journal of Physics

23(7), 490–491.

Miscellaneous

Asano, K.: 1975, ‘On the Theory of an Electrostatic Pendulum Oscillator’, American Journal
of Physics 43(5), 423–427.

Bartunek, P.: 1956, ‘Some Interesting Cases of Vibrating Systems’, American Journal of
Physics 24(5), 369–373.

Berg, R.: 1991, ‘Pendulum Waves: A Demonstration of Wave Motion Using Pendula’,

American Journal of Physics 59(2), 186–187.
Chapman, A.: 1993, ‘The Pit and the Pendulum: G.B. Airy and the Determination of Gravity’,

Antiquarian Horology 21, 70–78.

Doyle, W.T. & Gibson, R.: 1979, ‘Demonstration of Eddy Current Forces’, American Journal
of Physics 47(5), 470–471.
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