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  Pref ace   

 Interest in regeneration has waxed and waned since Lazzaro Spallanzani fi rst 
described salamander limb regeneration in the eighteenth century. Currently, regen-
eration is a highly researched area with potential applications derived from bio-
medical and engineering research that will impact future medical therapies. The 
availability of genomic and transcriptomic data from regenerative species, com-
bined with new approaches to identify and culture stem cells, has led to an explosive 
growth in our understanding of the molecular mechanisms of regeneration. In this 
book, we bring together the latest insights into these mechanisms. 

 In the fi rst chapter, Debuque and Godwin describe the history of molecular 
research in salamanders and discuss the latest fi ndings on unique proteins that medi-
ate regeneration. These authors also provide insight into the regeneration of multiple 
structures and tissues and the transgenic tracing of stem cells that contribute to 
newly made tissues. While amphibians demonstrate spectacular regenerative ability, 
the more limited tail regeneration in anole lizards is captivating because these rep-
tiles are evolutionarily more closely related to humans than salamanders, yet retain 
a signifi cant ability to regenerate nerves, skin, muscle, and cartilage. In the second 
chapter, Hutchins et al. update the most recent fi ndings in this model species. 

 The immune response is important for wound healing and initiation of regenera-
tion. In the third chapter, Lynch and coauthors focus on the integration of the infl am-
matory response and the regulation of stem cells in regeneration of skeletal muscle 
in mammals. The role of the immune response is also discussed in amphibians and 
reptiles in the abovementioned chapters. Further, the immune response and signal-
ing pathways during wound healing versus regeneration of amputated mouse digit 
tips is discussed by Dawson et al. This fourth chapter reviews important differences 
that account for regeneration following loss of the digit tip, but not more proximal 
amputations, as seen in very young children. 

 The next chapters focus on regeneration of cartilage, the heart, and the central 
nervous system. In the fi fth chapter, Lozito et al. discuss cartilage regeneration in 
amphibians and reptiles and the application of fi ndings from these species to human 
cartilage repair. Tissue engineering efforts focus on the repair of cartilage defects 
and of damage due to degeneration, such as in osteoarthritis. In the sixth chapter, 
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Judd and Huang provide a comprehensive discussion of cardiomyocyte regenera-
tion in multiple model systems, including neonatal mice, with a focus on tissue 
engineering using stem cells. In the fi nal chapter, Roussas et al. review traumatic 
brain injury and tissue engineering approaches to healing damage to the central 
nervous system. 

 In summary, this volume will appeal to readers interested in the broad overview 
of regenerative research, both in terms of species and tissues. Each chapter has a 
focus on molecular signals, the role of stem cells, and tissue engineering, making it 
a unique collection.  

  Tempe, AZ, USA     Jeanne     Wilson-Rawls    
  Tempe, AZ, USA    Kenro     Kusumi     

Preface



vii

  Contents 

    1     Research into the Cellular and Molecular Mechanisms 
of Regeneration in Salamanders: Then and Now ..................................  1   
    Ryan   J.   Debuque     and     James   W.   Godwin    

     2     Regeneration: Lessons from the Lizard ..................................................  23   
    Elizabeth   D.   Hutchins    ,     Jeanne   Wilson-Rawls    , and     Kenro   Kusumi    

     3     Dependency on Non-myogenic Cells for Regeneration 
of Skeletal Muscle .....................................................................................  37   
    Cherie   Alissa   Lynch    ,     Alexander   B.   Andre    , and     Alan   Rawls    

     4     Cartilage Healing, Repair, and Regeneration: Natural History 
to Current Therapies ................................................................................  57   
    Thomas   P.   Lozito    ,     Yangzi   Jiang    , and     Rocky   S.   Tuan    

     5     Digit Regeneration in Mammals ..............................................................  79   
    Lindsay   A.   Dawson    ,     Paula   P.   Schanes    ,     Connor   Dolan    , 
    Paulina   Ketcham    ,     Ling   Yu    ,     Mingquan   Yan    ,     Tao   Li    , and     Ken   Muneoka    

     6     Cellular Approaches to Adult Mammalian Heart Regeneration ..........  101   
    Justin   Judd     and     Guo   N.   Huang    

     7     Regenerative Strategies for the Central Nervous System .....................  121   
    Adam   Roussas    ,     Briana   I.   Martinez    ,     Caroline   P.   Addington    , 
and     Sarah   E.   Stabenfeldt     

   Index .................................................................................................................  175    

www.ebook3000.com

http://www.ebook3000.org


ix

     Contributors 

     Caroline     P.     Addington      School of Biological and Health Systems Engineering , 
 Arizona State University ,   Tempe ,  AZ ,  USA     

     Alexander     B.     Andre      School of Life Sciences ,  Arizona State University  ,  Tempe ,  AZ , 
 USA     

     Lindsay     A.     Dawson      Department of Veterinary Physiology & Pharmacology ,  Texas 
A&M University ,   College Station ,  TX ,  USA     

     Ryan     J.     Debuque      Australian Regenerative Medicine Institute, Monash University  , 
 Melbourne ,  VIC ,  Australia     

     Connor     Dolan      Department of Veterinary Physiology & Pharmacology ,  Texas A&M 
University ,   College Station ,  TX ,  USA     

     James     W.     Godwin      Australian Regenerative Medicine Institute, Monash Univer-
sity  ,  Melbourne ,  VIC ,  Australia

     The Jackson Laboratory  ,  Bar Harbor ,  ME ,  USA  

   The MDI Biological Laboratory  ,  Bar Harbor ,  ME  , USA     

     Guo     N.     Huang      Department of Physiology ,  Cardiovascular Research Institute, Univer-
sity of California San Francisco ,   San Francisco ,  CA ,  USA     

     Elizabeth     D.     Hutchins      School of Life Sciences ,  Arizona State University ,   Tempe , 
 AZ ,  USA   

  Neurogenomics Division ,  Translational Genomics Research Institute  ,  Phoenix ,  AZ , 
 USA     

     Yangzi     Jiang      Department of Orthopaedic Surgery ,  Center for Cellular and Molec-
ular Engineering, University of Pittsburgh School of Medicine ,   Pittsburgh ,  PA,   USA     

     Justin     Judd      Cardiovascular Research Institute, University of California San Fran-
cisco  ,  San Francisco ,  CA  , USA     



x

     Paulina     Ketcham      Department of Veterinary Physiology & Pharmacology ,  Texas 
A&M University ,   College Station ,  TX  , USA     

     Kenro     Kusumi      School of Life Sciences ,  Arizona State University ,   Tempe ,  AZ  , USA

     Neurogenomics Division,   Translational Genomics Research Institute  ,  Phoenix  , AZ  , 
USA     

     Tao     Li      Department of Hand Surgery ,  Wuhan Union Hospital, Tongji Medical College, 
Huazhong University of Science and Technology  ,  Wuhan ,  Hubei ,  People’s Republic of 
China     

     Thomas     P.     Lozito      Department of Orthopaedic Surgery ,  Center for Cellular and 
Molecular Engineering, University of Pittsburgh School of Medicine   , Pittsburgh  , PA  , 
USA     

     Cherie     Alissa     Lynch      School of Life Sciences ,  Arizona State University ,   Tempe ,  AZ  , 
USA     

     Briana     I.     Martinez      School of Biological and Health Systems Engineering ,  Arizona 
State University ,   Tempe  , AZ ,  USA     

     Ken     Muneoka      Department of Veterinary Physiology & Pharmacology ,  Texas A&M 
University ,   College Station ,  TX  , USA     

     Alan     Rawls      School of Life Sciences ,  Arizona State University   , Tempe  , AZ ,  USA     

     Adam     Roussas      School of Biological and Health Systems Engineering ,  Arizona State 
University ,   Tempe ,  AZ  , USA     

     Paula     P.     Schanes      Department of Veterinary Physiology & Pharmacology ,  Texas 
A&M University ,   College Station ,  TX ,  USA     

     Sarah     E.     Stabenfeldt      School of Biological and Health Systems Engineering ,  Arizona 
State University ,   Tempe  , AZ ,  USA     

     Rocky     S.     Tuan      Department of Orthopaedic Surgery ,  Center for Cellular and Molec-
ular Engineering, University of Pittsburgh School of Medicine  ,  Pittsburgh ,  PA ,  USA     

     Jeanne     Wilson-Rawls      School of Life Sciences ,  Arizona State University ,   Tempe ,  AZ , 
 USA     

     Mingquan     Yan      Department of Veterinary Physiology & Pharmacology ,  Texas A&M 
University ,   College Station  , TX ,  USA     

     Ling     Yu      Department of Veterinary Physiology & Pharmacology ,  Texas A&M Univer-
sity ,   College Station ,  TX ,  USA        

Contributors

www.ebook3000.com

http://www.ebook3000.org


1© Springer International Publishing Switzerland 2016 
J. Wilson-Rawls, K. Kusumi (eds.), Innovations in Molecular Mechanisms 
and Tissue Engineering, Stem Cell Biology and Regenerative Medicine, 
DOI 10.1007/978-3-319-44996-8_1

    Chapter 1   
 Research into the Cellular and Molecular 
Mechanisms of Regeneration in Salamanders: 
Then and Now                     

     Ryan     J.     Debuque     and     James     W.     Godwin    

1.1           Introduction 

 Regenerative medicine encompasses collaboration between scientists with diverse 
 backgrounds   in  wound healing  , immunology, developmental biology, stem cell sci-
ence, tissue engineering and more recently, organic chemistry and nanotechnology. 
Research in this area aims to improve patient outcomes in the contexts of chronic 
diseases, ageing and acute injuries. Therapeutic efforts have focused on delivering 
single molecules, embryonic or adult stem cell derived tissues supported by artifi -
cial scaffolds to either directly replenish lost tissue or provide paracrine factors to 
enhance local  wound healing   [ 1 ]. Promising studies in mammalian  in vitro and 
in vivo models   following this strategy have spawned development of numerous 
clinical trials to varying levels of success but have yet to emulate major aspects of 
true regeneration exemplifi ed in nature. 

 Experimental biologists have been studying natural adult regeneration in many 
phyla for centuries and include vertebrates such as  amphibians and teleosts   
reviewed in [ 2 – 6 ].  Urodele amphibians   (commonly referred to as salamanders) are 
some of the oldest animals to be housed in laboratories and have contributed to 
many fundamental concepts and discoveries in experimental biology [ 7 ]. 
Regeneration is a property shared in all ten families but is best understood in a few 
species representing selected genera [ 8 ]. Evolutionary reasons for the robust 
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regenerative potential in salamanders, in comparison to mammals is poorly 
understood. Classically it has been hypothesized that mammals have lost the cel-
lular machinery or processes required for   scarless  healing  , a potential requirement 
for perfect tissue regeneration, possibly in favor of selecting for strategies to deal 
with a wider range disease pathogens [ 9 – 11 ]. An alternative reason centers around 
the idea that any species with the capacity to regenerate complex tissues may have 
acquired this ability through the selection of specifi c genes and is not an ances-
trally shared property [ 12 ]. 

 Regeneration in  salamanders   was fi rst documented in 1776 by the Italian scien-
tist Lazzaro Spallanzani who  documented   the regeneration of the forelimb, hindlimb, 
tail, gill and jaw [ 13 ]. This chapter encapsulates the major discoveries in the 240 
years since, covering fundamental ideas originating from surgical manipulations, 
insights aided by molecular tools and potential outcomes anticipated using next 
generation sequencing and genome editing technologies.  

1.2     Establishing the Tissue Requirements and Boundaries 
for Regeneration 

1.2.1     The  Regenerative Potential   of Salamanders 

 Early inquiries into the regenerative potential in salamanders defi ned the limb, 
heart, brain, lens, tail, spinal cord, liver, jaw, bone segments, muscle, skin, and gills 
as tissues capable of growth after resection (See Table  1.1 ) [ 13 ,  78 ,  85 ,  102 ,  120 , 
 135 ]. Studies concerning the regeneration of clinically relevant tissues (heart, spinal 

   Table 1.1    Regenerating 
 tissues   in salamanders  

 Tissue  Primary research references 

 Limb  [ 14 – 54 ] a  [ 18 ,  28 ,  39 ,  55 – 65 ] b  
[ 66 – 68 ] c  [ 69 – 71 ] d  [ 72 – 75 ] e  

 Heart  [ 76 ,  77 ] a  [ 78 – 84 ] b  
 Brain  [ 85 ,  86 ] a  [ 87 – 90 ] b  
 Lens/
Retina 

 [ 91 ] a  [ 92 – 96 ] b  [ 97 ] c  [ 98 – 101 ] e  

 Spinal cord  [ 102 – 111 ] a  [ 112 – 115 ] b  [ 116 ] d  [ 117 ] 
 Liver  [ 118 ,  119 ] e  
 Jaw  [ 120 – 122 ] b  [ 123 ] c  [ 124 ] d  
 Bone  [ 125 ,  126 ] a  [ 127 ] c  
 Muscle  [ 128 – 131 ] a  [ 131 – 134 ] b  

   a Ambystoma 
  b Notopthalamus 
  c Cynops 
  d Pleurodeles 

  e Triturus  

R.J. Debuque and J.W. Godwin
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cord, brain, and lens) were reported less frequently compared to the limb. Adult 
salamander limb regeneration is a unique property not observed in any other tetra-
pod. The limb is very amenable to complex procedures with low mortality risks and 
shares structural similarities to  mammals  . The process of limb regeneration after 
amputation has been well characterized and initially defi ned from early gross ana-
tomical and histological observations (Fig.  1.1 ).

1.2.2         Tissue Requirements for Limb Regeneration 

 Many of the experiments performed during this era aimed at identifying methods 
to prevent or perturb limb regeneration. Loss of function studies carried out by 
scientists at the time utilized two main methods, surgical removal of specifi c tis-
sues in the limb or ablation of  blastema cells   via irradiation [ 14 ]. Key fi ndings 
using these methods were the identifi cation of the nerve and wound  epithelium   as 

  Fig. 1.1    Morphological and  histological   view of salamander limb regeneration. ( a ) Gross anatomi-
cal view of the successive stages of regeneration in the newt. ( b ) Histological sections of regenerat-
ing newt limbs. Following amputation, cells of the epidermis have migrated over to cover the 
wound and thicken to form a structure known as the wound epithelium (WE) or apical epidermal 
cap (AEC) (First top two images). Interactions between the WE and nerve provide mitogenic sig-
nals to cells beneath the WE to initiate a proliferative response resulting in the formation of a blas-
tema (third image from the top). Proximal blastema cells differentiate and develop into new limb 
tissues such as bone, muscle and nerve to restore normal limb architecture. Adapted from [ 136 ]       
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essential tissues for regeneration. The clearest example for the requirement of 
wound  epithelium   came from experiments demonstrating a blockade of limb out-
growth by grafting a fl ap of intact skin over the site of amputation [ 15 ,  16 ]. Failure 
of this outgrowth was attributed to a reduction in cellular proliferation after the fi rst 
week of regeneration, within the  blastema   (mound of progenitor cells forming at 
the amputation site) [ 55 ]. First reported in 1823, de-nervation of the limb either 
prior to or at the time of amputation results in the formation of a scar-less stump 
[ 137 ]. Subsequent studies both in the salamander and anuran amphibians identifi ed 
that limb outgrowth is dependent on density of nerve tissue, not type of innervation 
and that signals from the nerve control blastema outgrowth [ 17 ,  56 ,  72 ,  138 – 141 ]. 
Additional experiments supporting this idea originated from experiments where 
nerves were resected and deviated towards foreign areas to produce supernumerary 
limbs [ 74 ,  142 ,  143 ].  

1.2.3     Grafting Tissues to Understand Positional Identity 
During Limb Regeneration 

 Historically salamanders have been known to tolerate both  allografts and xeno-
grafts   without acute rejection, which has allowed the design of long term regen-
eration studies featuring tissue grafts [ 144 ,  145 ]. In particular this technique has 
been useful for understanding ideas regarding positional identity and memory 
during regeneration of a tissue. In the case of the limb, regeneration occurs across 
 three dimensional axis   (proximal-distal, anterior-posterior and dorsal-ventral). 
Most experiments examining positional memory have looked at the proximal-
distal axis (shoulder-wrist). One example is the experiment performed by Goss, 
who implanted a distal amputated limb into the fl ank after which resection of the 
elbow joint (originally proximal) displayed outgrowth of distal skeletal elements 
(wrist) [ 146 ]. 

 Another example was the fi nding that  intercalary regeneration   (replacement of 
missing structures between two juxtaposed tissues) is unidirectional and proceeds in 
a proximal-distal fashion (referred to as the law of distal transformation) [ 19 ,  57 ]. 
Other approaches to studying  positional identity   involved the use of grafting blaste-
mas from different levels along the PD axis onto the dorsal side of proximal stumps 
to observe the displacement of the grafted tissue back to its original position and 
then proceeding with limb outgrowth [ 20 ]. 

 Further work using tissue- grafting experiments   established the concept of 
positional discontinuity during the early stages of regeneration as a requirement 
for outgrowth. Originating from studies in invertebrate models, positional dis-
continuity is achieved when tissues from opposite sides of an axis confront each 
other (e.g. dermis from the anterior side of an amputated limb meets with the 
posterior side) [ 147 ]. Experiments focusing on the relationship of cells along 
transverse axes of the limb (anterior-posterior and dorsal-ventral) demonstrated 
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this requirement by inducing supernumary tissues to form by rotating tissues of 
a stump following amputation or rotating a blastema and grafting them to a 
stump [ 21 ,  22 ,  57 ,  58 ,  148 ]   

1.3     Molecular Mechanisms and Cellular Dynamics 
of Regeneration 

1.3.1     Identifying the  Molecular Mechanisms   Underlying Limb 
Regeneration 

 Experimental approaches for dissecting molecules that regulate limb regeneration 
were inspired by research conducted in the late 1970s by Niazi and Saxena who fi rst 
reported the abnormal effects of vitamin A on limb regeneration in tadpoles [ 149 ]. 
Repeated in the  axolotl   shortly after, Maden was able to show that retinoic acid and 
its derivatives were able to reject the law of distal transformation and cause proxi-
mal limb elements to regenerate from a distal amputation [ 23 ]. Subsequent studies 
later found that regeneration along the transverse axis of the limb was also per-
turbed and have implicated additional roles for retinoic acid signaling in other 
regenerating tissues [ 18 ,  150 ,  151 ]. 

 Research spawning from the infl uence of retinoic acid aimed to utilise the 
molecular tools of the early 1990s to elucidate roles for candidate genes regulating 
limb regeneration. Inspiration for choosing candidates to examine came from a 
plethora of studies on vertebrate limb  development  , which had well defi ned mor-
phogenetic signalling zones. Blastema outgrowth and patterning shares many 
structural similarities to a developing limb thus it is logical to assume that the 
same molecules have similar roles. Indeed such a hypothesis is supported with 
several studies elucidating roles or identifying expression patterns of genes 
belonging to several developmental signalling pathways such as Hox, Fgf, Hh, 
Bmp and Wnt [ 25 – 27 ,  68 ]. 

 A molecular explanation for retinoic acid’s control across the PD axis came 
with the identifi cation of Prod1 [ 59 ]. Identifi ed in a subtractive cDNA screen of 
cultured  newt   blastema cells, Prod1 is known to be expressed at the cell surface 
and regulated by retinoic acid and Meis homeoprotein during limb regeneration 
[ 29 ,  30 ,  59 ]. It is one of the few salamander proteins to have its structure solved 
and is present in nine salamander species spanning four families [ 152 ,  153 ]. 
Interestingly this gene is required for pre-axial digit formation and has no known 
mammalian orthologues making it one of the few known salamander specifi c 
genes involved in limb regeneration [ 12 ,  28 ]. Prod1 is also indirectly involved in 
nerve dependent  regeneration   where it has been shown to bind to the  newt   ortho-
logue/paralogue of anterior gradient protein 2 (nAG) [ 60 ]. nAG is expressed 
fi rst at severed nerve sheaths, secreted by Schwann cells and subsequently in 
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gland cells of the wound epithelium. Over- expression of this protein is suffi cient 
to stimulate blastema cell outgrowth of de- nervated limbs, rescue limb regen-
eration, and provide novel a molecular pathway to study nerve dependent regen-
eration [ 60 ].  

1.3.2     New Insights to  Cellular Contributions   During Limb 
Regeneration 

 Advancements in imaging in cloning have allowed the production of genetic 
tools to fl uorescently label whole animals or tissues and visualise cellular dynam-
ics during regeneration [ 154 ]. Grafting fl uorescent donor tissues into wild-type 
is one of the most common strategies applied when studying cellular contribu-
tion during regeneration, a feature accessible to few models [ 31 ,  32 ,  130 ,  131 ]. 
One study to take advantage of this strategy is the landmark paper by Kragl and 
colleagues who determined the heterogeneity of cells in the blastema and their 
 restricted   nature to contribute to tissues differing from their embryonic origin 
[ 33 ]. Another example was the deployment of a suite of HOXA antibodies stain-
ing donor GFP connective tissue blastema cells during limb regeneration, over-
turning fundamental concepts regarding segment formation along the proximal 
distal axis [ 34 – 36 ]. 

 Research into the potential contributions of the immune system to regenera-
tion has historically been limited with most studies examining its relationship in 
the  wound healing   response. Clear documentation of infi ltrating leukocyte 
kinetics and the infl uences of peripheral lymphoid organs was reported in the 
1980s [ 61 ,  155 ]. Many immune-modulating drugs and procedures have been 
screened for effects on outgrowth with other studies implicating roles for known 
mammalian genes involved with  wound healing   [ 37 ,  62 – 64 ]. Renewed efforts in 
this area have seen the development and adaptation of modern techniques to 
study the immune system in the salamander [ 156 ,  157 ]. Recent evidence using 
the  axolotl   suggests that cells of the evolutionarily conserved innate immune 
system, particularly  macrophages   have roles through all phases of regeneration 
[ 38 ]. Macrophage depletion after blastema formation allows regeneration to 
complete, but is delayed. Macrophage ablation prior to amputation has been 
shown to block limb regeneration but re-amputation following replenishment 
resets normal limb regeneration indicating a temporal requirement for these 
cells prior to blastema formation [ 38 ]. Failed limb regenerations are character-
ised by collagen rich scars, decreased cellular proliferation, and alterations to 
key regeneration associated genes such as MMPs, and TGF-β [ 37 ,  38 ,  65 ]. 
Further work also implicated a role for dependent immune-surveillance and 
clearance of senescent cells in the regenerating limb [ 39 ].  

R.J. Debuque and J.W. Godwin
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1.3.3     Mechanisms of Outgrowth During Regeneration Found 
to be Tissue Specifi c 

 A key concept of regenerative medicine is that mechanisms governing  cellular 
outgrowth   are not universal and should be considered tissue specifi c (Fig.  1.2 ). 
Generally speaking, replacement of a new structure requires cells to arise and 
undergo several rounds of rapid proliferation. The mode through which this is 
conducted can be through the recruitment and activation of  stem-progenitor cells   
or stimulating resident and neighbouring post-mitotic cells to re-enter the cell-
cycle. One example of the former is regeneration of the spinal cord. Regeneration 
of the  spinal cord   following resection activates resident neural stem cells to 
mobilise locally and then migrate along the anterior-posterior axis. These cells 
serve as a multi-potent source for all neural cells in the regenerated tissue [ 103 –
 105 ]. Molecules implicated for regulating in this process include planar cell 
polarity genes and microRNAs both conserved and unique to the salamander 

  Fig. 1.2    A range of clinically relevant tissues can be regenerated in adult salamanders. This fi gure 
illustrates a generalized summary of regenerating tissue in salamanders using various species as 
outlined in Table  1.1 . The tissues identifi ed so far include: brain, spinal cord, tail, skin, limbs, liver, 
skeletal muscle, heart, jaws, and ocular tissues such as retina, cornea, and lens. Variation in modes 
of regeneration and adult capacity are outlined in the text. Injury site is highlighted in  red . Axolotl 
image provided and adapted with permission from Memuco© artist services and IUCN Arkive       
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[ 106 ,  107 ,  109 ,  158 ]. Similar mechanisms have been observed in the case of the 
regenerating  telencephalon and dopaminergic neurons   of the mid-brain. Following 
mechanical removal or chemical ablation, cells within these tissues have been 
shown to cause rapid proliferation and neurogenesis from spatio-temporal 
restricted zones [ 86 – 90 ].

   In contrast many studies have reported that the salamander  lens and heart   uti-
lise the second mode of replacing cells, which interestingly has limited examples 
in mammalian regeneration [ 76 ,  79 ,  92 ]. One of the most studied areas of sala-
mander biology is lens regeneration. After  lentectomy  , pigment epithelial cells 
originating from the dorsal iris, re-enter the cell cycle, lose their pigmentation and 
other differentiated characteristics, before undergoing trans-differentiation into 
new lens tissue. This trans-differentiation is accompanied by the activation of 
sequential lens development gene expression, reviewed in detail elsewhere [ 159 ]. 
It should be noted that this process can be repeated almost indefi nitely as mount-
ing evidence from both histological and molecular studies suggests that lens 
regeneration is not affected by age or the number of times it is removed [ 93 ,  94 ]. 
Similarly  cardiomyocytes   can lose many of their differentiated characteristics and 
proliferate following ventricle resection, replacing up to 20 % of the original ven-
tricle tissue [ 76 ,  80 ]. Signals initiating cell-cycle re-entry have yet to be identi-
fi ed, however one known important regulator is components of the extracellular 
matrix, which has shown to undergo rapid changes during the early stages of heart 
regeneration [ 80 – 82 ]. 

 An intriguing aspect to keep in mind is the potential for identical tissues to make 
use of different mechanisms between species. Already two examples for this have 
emerged. The fi rst being skeletal muscle where  axolotls      deploy activated resident 
satellite cells to contribute to the regenerate whereas the myofi bers of the red spot-
ted  newt   re-enter the cell cycle [ 131 ]. The second example is in the case of the lens, 
where newts replace cells from only the dorsal iris compared with contributions 
from either the dorsal or ventral iris as seen in the  axolotl     , though this potential is 
lost shortly after hatching [ 91 ]. 

 Distinguishing the regeneration specifi c signals from the background noise aris-
ing from amputation associated  wound healing   and trauma, is extremely diffi cult. 
Ideally studies elucidating  molecular signals   from essential regenerative tissues 
(e.g. nerve or wound epithelium) should reduce irrelevant signaling that could 
mask the identifi cation of key pathways and obscure accurate interpretation. One 
available assay that addresses these criteria is the accessory limb model, which 
produces  ectopic limbs   by deviating nerves to positionally discontinuous skin 
grafts [ 40 ]. This unique gain of function ectopic outgrowth assay in the salamander 
is an extremely useful tool in a model where majority of functional experiments 
involve loss of function studies. Indeed several molecules have been tested in this 
system and should gain future utility testing novel candidate genes required for 
limb regeneration [ 41 – 44 ].   
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1.4     Entering the era of Next Generation Sequencing 
and Genome Editing 

1.4.1     Unraveling the Salamander Genome and High- 
Throughput Sequencing Studies in Regeneration 

 Salamanders are known to have some of the largest genomes amongst all vertebrates 
with some species approximately containing between 14 and 120 Gb, compared 
with a  genome size   of around 3.2 Gb in humans [ 160 ,  161 ]. Characterized by high 
percentages of transposable elements, the genomic gigantism observed across the 
salamander family are hypothesized to have originated from a shared period of 
genome expansion during the Jurassic era [ 162 ,  163 ]. As such, complete genome 
assemblies are lacking in all families, which is perhaps the biggest drawback for any 
prospective academics interested in working with the model. Several resources have 
been put in place to obtain sequence information, largely derived from  transcrip-
tome and proteomic analysis   from tissues across multiple species [ 45 ,  46 ,  83 ,  161 , 
 164 ]. In addition online repositories are available and regularly updated with omics 
data from the latest studies [ 165 – 167 ]. 

 Many experiments have already utilized next generation sequencing technolo-
gies for  high through-put transcriptome analysis   during limb, spinal cord and lens 
regeneration [ 47 – 49 ,  95 ,  110 ]. One example was the time course analysis performed 
by Knapp and colleagues examining the transcriptional changes over the course of 
limb regeneration [ 45 ]. This approach revealed that gene expression follows a simi-
lar pattern as seen in morphological studies with signature  wound healing      genes fi rst 
among those upregulated, followed by amputation associated regenerative genes 
and then fi nally, genes implicated in limb development [ 45 ]. Studies utilizing  pro-
teomics   have also been conducted across multiple tissues and species and have con-
tributed major fi ndings such as the identifi cation of novel  newt   specifi c CCN, a 
protein located in the endocardium that is specifi cally upregulated during the early 
stages of heart regeneration [ 83 ,  168 ,  169 ]. 

 Ultimately sequenced based inquiry into the genetic networks of regenera-
tion will require a complete genome assembly however progress towards 
obtaining genomic information in any species has been understandably lim-
ited. Encouragingly the first characterization of the  axolotl      genome has been 
documented [ 170 ]. Estimated to be 32 Gb in size, the axolotl genome provides 
an example of the difficulties associated with assembling sequences from 
large genomes as well as the potential approaches used to overcome current 
com putational limitations [ 170 ].  
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1.4.2     Genome Editing  Technologies      

 Innovations over the last decade in the fi eld of molecular biology have provided a 
multitude of options to genetically modify the salamander Table  1.2 . The application 
of Sce1-meganuclease or Tol2-transposase technology has produced germline trans-
genics expressing ubiquitous fl uorescent proteins in various salamander species 
[ 154 ,  175 ,  176 ,  179 ]. Several transgenic reporters have been developed to track the 
fates of tissues such as nerve, Schwann cells, muscle, epidermis and cartilage or 
signaling molecules like retinoic acid [ 51 ,  52 ]. In addition it is now possible to tem-
porally control gene  expression      within specifi c cells thanks to the development of 

   Table 1.2    Genetic  tools      available in salamanders   

 Genome editing tool  References 

  Non-germline vectors  
 Viruses  Vaccinia virus  [ 171 ] a  

 Adenovirus  [ 133 ,  172 ] b  
 Pseudotyped virus  [ 173 ] a  
 Foamy virus  [ 174 ] a  

  Germline transgenics  
 Ubiquitous reporters  CAGGS;EGFP  [ 154 ,  175 ,  176 ] a,c,d  

 CAGGS;CherryNuc  [ 33 ] a  
 CAGGS;LP-EGFP-LP-Tomato  [ 51 ] a  
 CAGGS;LP-EGFP-LP-p16-T2A-Cherry  [ 51 ] a  
 CAGGS;ER-Cre-ER-T2A-EGFP-nuc  [ 51 ] a  

 Tissue specifi c reporters  B3Tubulin:EGFP  [ 51 ] a  
 CNP;EGFP  [ 51 ] a  
 Col2a1:EGFP  [ 51 ] a  
 Krt12:EGFP  [ 51 ] a  
 CarAct;EGFP  [ 51 ] a  
 AxSox2;cre-ert2-T2A-GFP  [ 51 ] a  
 Col2A1:ER-Cre-ER-T2A-EGFP-nuc  [ 51 ] a  

 Signaling molecule 
reporters 

 RARE;EGFP  [ 52 ] a  

  Loss of function genetics  
 TALENs  Tryosinase  [ 177 ] d  

 Sox2  [ 111 ] a  
 Thrombospondin-1  [ 54 ] a  
 Prod1  [ 28 ] b  

 CRISPR  Brachyury  [ 178 ] a  
 Sox2  [ 111 ] a  

   a Ambystoma 
  b Notophthalamus 
  c Cynops 

  d Pleurodeles  
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loxP and Cre-driver lines that can be bred together and supplemented with tamoxifen 
to induce Cre-mediated recombination [ 51 ]. Such technologies have already allowed 
fate mapping studies in the  axolotl   to be performed and have provided the tools nec-
essary to design complex experiments, which have yielded evidence for species spe-
cifi c mechanisms of tissue regeneration [ 131 ]. It should be noted that considerable 
time is required for germline transgenesis to occur. Thus targeting specifi c cell types 
can be achieved in mosaic backgrounds by delivering vectors such as vaccinia virus, 
adenovirus, pseudotyped virus, and foamy virus to allow more rapid analysis of phe-
notypes [ 133 ,  171 ,  173 ,  174 ].

   Traditionally tools to perform loss of function genetics during regeneration in the 
salamander were limited to the use of morpholinos, which have potential to cause off-
target effects [ 53 ,  96 ,  180 ]. Alternative protocols to perturb gene function have 
focused on inducing double-strand  breaks     , which often leave insertions or deletions 
following non-homologous end joining repair. Two of these methods; transactivator- 
like effector nucleases (TALENs) and clustered regularly interspaced short  palindromic 
repeat (CRISPR) have already completed proof of concept studies in the axolotl, red-
spotted and Iberian ribbed  newt   ( Pleurodeles waltl ) [ 28 ,  54 ,  111 ,  177 ,  178 ].   

1.5     Conclusions 

1.5.1     The Infl uence of Regeneration  Research   in Salamanders 

 Many underlying concepts concerning the determinants for successful regeneration 
have arisen from research in salamanders. Understanding how regenerating cells can 
dynamically navigate across a three-dimensional axis and recapture its original form 
is critical in developing complex tissue transplantation models. Innervation and the 
supply of neurotrophic signals to the tissues of the regenerate has been explored and 
implicated in both teleost and mammalians models of  regeneration   including the heart, 
digit tip, earlobe, bone marrow, and hair follicles [ 181 – 186 ]. The resolution of  wound 
healing   and the subsequent transition to cell cycle re-entry requires precise co-ordina-
tion between infi ltrating immune cells and the local tissue environment harboring resi-
dent progenitor-stem populations. Evidence for this emerging theme is springing from 
the salamander, anuran amphibian, and teleost systems, which has infl uenced transi-
tional studies in most mammalian models of regeneration [ 187 – 191 ].  

1.5.2     Future Perspectives 

 Considerable advances have been made in recent years to improve genomic and 
molecular resources in all salamander species that are regularly used in the labora-
tory. These technologies have enabled scientists to revisit classic experiments with 
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greater resolution to overturn or confi rm fundamental ideas as well as develop new 
lines of investigation to pursue. Progress towards complete genome assemblies will 
be a challenging but is an essential resource for future studies. 

 Developing new genetic  tools   to follow specifi c cellular movements, interactions 
and contributions in all regenerating tissues is necessary to drive the model forward. 
Particular focus will evolve towards identifying taxon-specifi c genes or molecules 
with known orthologues through next-generation sequencing or candidate based 
approaches. Emphasis will be placed on combining knock-down genetics with gain 
of function assays unique to the salamander system to defi ne molecular mecha-
nisms. Research efforts in this area will enable the development of in vitro and 
in vivo gain of function assays in mammals with the eventual goal of translating 
these fi ndings for the treatment of human diseases and injuries.      
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    Chapter 2   
 Regeneration: Lessons from the Lizard                     

     Elizabeth     D.     Hutchins     ,     Jeanne     Wilson-Rawls     , and     Kenro     Kusumi    

2.1           Regeneration in Lizards 

 Regeneration of entire  appendages   requires complex coordination of molecular 
events including activation of stem cells or dedifferentiation to form proliferative 
cells, proliferation, and differentiation into the musculoskeletal, nervous, and epi-
thelial tissues of the regenerated structure. The ability to regenerate entire append-
ages is a common trait found in teleost fi sh, amphibians, and squamate  reptiles   [ 1 , 
 2 ]. The ability to regenerate an appendage can vary between different periods of its 
lifespan and between anatomical structures. These vertebrates have a common 
ancestor and their shared evolutionary  history   is refl ected in their genomes, sharing 
multiple homologous genetic pathways that regulate developmental patterning and 
differentiation [ 3 ]. 

 In the past decade, appendage regeneration research in  reptiles   has focused on 
describing tail regeneration in lizards using the green  anole  ,  Anolis carolinensis , 
(Fig.  2.1 ; [ 4 – 7 ]) and the leopard gecko,  Eublepharis macularius , [ 8 – 11 ] as models. 
The green  anole   is used as model of development [ 12 ,  13 ], population genetics [ 14 , 
 15 ], reproductive physiology and behavior [ 16 ,  17 ], and functional morphology [ 7 , 
 18 ], and it was the fi rst non-avian reptile to have a sequenced genome [ 19 ]. The 
availability of the genome makes molecular genetic studies of regeneration feasible. 
There have been a broad scope of studies of the green anole [ 20 – 32 ] that inform 
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more recent molecular, cellular, and anatomical analyses [ 5 – 7 ]. In alligators while 
tail regeneration has been reported, the structure and process of regeneration are 
unknown [ 33 ,  34 ]. The regenerated lizard tail is an extraordinary example of de novo 
development of hyaline/articular cartilage, muscle groups with tendinous attach-
ments, skin, vasculature, and neural ependymal cells [ 5 ,  7 ,  9 ,  11 ]. In contrast, birds 
and mammals have very limited regenerative capacity. Regeneration in mammals is 
restricted to neonatal and juvenile individuals, including the regrowth of digit tips 
[ 35 – 38 ].

2.2         Stages   of Regeneration in Lizards 

 Lizards represent the evolutionarily closest related group to mammals that demon-
strate the ability to regenerate appendages (Fig.  2.1 ). Many lizard species can 
undergo tail  autotomy   followed by regeneration [ 33 ]; this is a self-induced ampu-
tation induced by physiological and/or mechanical stress leading to shedding of 
the tail as a predator evasion tactic. The vertebrae in the tail of many lizards have 
fracture planes that permit autotomy [ 30 ]. Following  autotomy  , there is a well 
described process of tail regeneration that displays aspects of a two step model of 
regeneration (Fig.  2.2 ; reviewed in [ 39 ]). In this model, there is an initial immune 
response following injury leading to either scar formation or full  regeneration  . The 
regenerative response includes (1) capping of the wound with a blood clot and 
remodeling of the ECM, (2) emergence of a wound epithelium and loss of the 
scab, (3) generation of proliferating cells, blood vessel formation, and thickening 
of the wound epithelium, and (4) growth and differentiation of tissues in the grow-
ing tail, including the neuroependyma, cartilage, and myofi bers [ 11 ,  40 ,  41 ]. 
Studies in the leopard gecko demonstrate that tail regeneration is not limited to 
loss at autotomy planes; regeneration will occur whether or not the loss occurs 
close to the fracture plane, the tail is amputated mechanically, or it is released via 
autotomy [ 8 ]. In contrast to tail autotomy, the amputation of the limb leads to ini-
tial injury responses with partial formation of some tissues but ending in scar for-
mation in the viviparous lizard  Lacerta vivipara  [ 42 ] and the common wall lizard 
 Podarcis muralis  [ 43 ].

  Fig. 2.1    Image of a green anole lizard with a regenerated  tail  . The  arrow  indicates the autotomy 
break  point   and start of the regenerated tail. Photo credit: Joel Robertson       
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2.3        Molecular Mechanisms of Lizard Regeneration 

 Prior to the outgrowth observed in regeneration, the damaged tissue is covered by a 
wound epithelium for  scar-free wound healing   [ 44 ,  45 ]. This wound epithelium 
expands in thickness to twice that of the original epidermis in the lizard and newt 
[ 8 ,  11 ,  40 ]. In the newt, this structure has been called the apical epithelial cap (AEC), 
in reference to the apical ectodermal ridge (AER) formed at the edge of the  limb bud 
development   [ 46 – 48 ]. 

  Remodeling and clean-up   of the damaged tissues takes place before the onset of out-
growth in regeneration. Key to this process is the reorganization of  extracellular matrix 
(ECM)   to create a new scaffolding matrix for the regenerated appendage [ 49 ,  50 ]. 
 Remodeling   of the ECM is a characteristic of the scar-free wound healing that occurs 
prior to regeneration, as opposed to a fi brotic, non-regenerative response [ 51 ,  52 ]. Several 
factors regulating scar-free wound healing have been identifi ed. Matrix metalloproteases 
(MMPs), which have been observed in the regenerating tail of the green anole lizard [ 6 ] 
and the leopard gecko [ 8 ], likely contribute to ECM remodeling. In addition to ECM 
remodeling, regulation of the infl ammatory response and inhibition of  fi brosis   are key 
early steps that permit scar-free regeneration [ 53 – 58 ]. Studies in the Italian wall lizard 
( Podarcis sicula ) have identifi ed infi ltration of granulocytes and monocytes/macrophages 
into the autotomized tail stump [ 59 ,  60 ]. Given their role in regulation of infl ammation, 
ECM remodeling, fi broblast formation, angiogenesis, and peripheral nerve innervation, 
macrophages are of particular interest [ 61 – 64 ].  Macrophages   regulate proliferation of 
endothelial cells,  keratinocytes, and fi broblasts [ 65 ] as well as stimulate the production of 
immune cytokines including PDGFs, IGFs, FGFs, TGFs, CSFs, hepatocyte growth fac-
tors, colony- stimulating factors, and Wnt ligands [ 66 ]. 

  Fig. 2.2    Two step model of regeneration. Lizards are able to regenerate their tails following autot-
omy. However, following limb amputation, lizards display an injury response with partial regrowth 
but followed by fi brosis and scarring. In contrast, tail autotomy is followed by formation of the 
wound epithelium, ECM remodeling, then cell proliferation and patterning in regeneration       
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 The  formation   of the blastema is well described in the regenerating limbs and 
fi ns of amphibians and teleost fi sh. A blastema is traditionally defi ned as the dedif-
ferentiated coalescence of pluripotent proliferating cells concentrated at the tip of 
a regenerating appendage. Importantly, there is a lack of a vascular bed found at 
the distal tip [ 67 – 77 ]. More recently, studies in amphibians have found that the 
traditional view of the  blastema   as a mass of pluripotential, dedifferentiated cells 
is not entirely accurate. Further, the cellular composition of this structure can vary 
by stage and species [ 78 ,  79 ]. For example, in the  newt,  Notophthalmus virides-
cens   , studies with Cre/loxP mediated lineage tracing found that mature muscle of 
an amputated limb dedifferentiated and formed PAX7-negative proliferating cells 
that could be found in the blastema. However, these cells contributed solely to 
regenerating muscle [ 80 ]. Whereas, in the axolotl,   Ambystoma mexicanum    ,  these 
same lineage tracing approaches demonstrated that the remaining muscle did not 
dedifferentiate, nor contribute any cells to the blastema. Muscle regeneration in 
this  salamander   occurs through  PAX7-positive satellite cells  , the resident stem cell 
population found in muscle [ 80 ]. This was also observed when transplanted GFP- 
positive cells were used to track cells in regenerating  axolotl limbs  . These studies 
demonstrated that all cells that contributed to the blastema retained their original 
embryological fate and contributed only to those tissues. Cells that were derived 
from lateral plate mesoderm only contributed to dermis, and skeleton and muscle 
precursors that are derived from presomitic mesoderm only became muscle [ 78 ]. 
Interestingly, in the Japanese newt,  Cynops pyrrhogaster , post-metamorphosis 
muscle regeneration in amputated limbs occurs through muscle dedifferentiation, 
but pre-metamorphosis  PAX7-positive satellite cells   regenerate muscle post- 
amputation [ 79 ]. 

 Clearly de-differentiation as a source of proliferating progenitor cells is not the 
rule, and this is consistent with observations from studies of   A. carolinensis  tail 
regeneration   [ 81 – 84 ]. In histological sections it was noted that differentiating 
muscle was apparent as early as 15 days post autotomy (dpa); regenerating tails in 
this species demonstrate signifi cant distal outgrowth until 65 dpa [ 5 ]. By 20 dpa, 
there was differentiating muscle from the distal tip to the proximal breakpoint, but 
there was no obvious zone of proliferating progenitors at the tip [ 6 ]. Interestingly, 
the distal tip of the regenerating tail is also highly vascularized (Fig.  2.3 ) [ 6 ]. 
Cartilage, which replaces the missing skeleton, and the ependymal cells that 
regenerate the spinal cord, extend from the breakpoint to the distal tip of the early 
regenerating tail (20 dpa) [ 6 ]. Proliferating  cells   were found throughout the regen-
erating anole tail when assayed using an antibody that recognized MCM2, a pro-
tein expressed in cells that are replicating their genome in preparation to divide. 
Subsequent transcriptome analysis of  genes   involved in proliferation comple-
mented these data; it was found that these genes were expressed at similar levels 
all along the tail. Interestingly, the lowest level of expression was found in the 
region of the distal tip [ 6 ]. Similarly in the leopard gecko, proliferating cells were 
found throughout the regenerating tail, instead of restricted to the distal tip, and 
the distal tip is vascularized as well [ 11 ]. In these lizards a true blastema does not 
seem to exist.
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  Fig. 2.3    Histology of 
early regenerating  A. 
carolinensis  tail. Sagittal 
sections through the tips of 
the early regenerating tail 
stained with H&E. At 
10 dpa the outgrowth of 
the tail has not started but 
the epithelium (E) has 
regenerated and the 
distalmost portion is highly 
vascularized (V). At 15 dpa 
outgrowth has started, 
there are muscle (M) 
groups developing near the 
distal tip and the vascular 
network is still prominent. 
At 30 dpa, there is well 
developed muscle and 
cartilage (C). The vascular 
network has extended       
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   Studies in salamanders demonstrated that  satellite cells  , an existing progenitor 
population in muscle, were responsible for muscle regeneration in amputated limbs 
[ 78 ]. Based on our observations, regeneration in anole lizard tails employs a similar 
strategy. Transcriptome  analysis   of proximal to distal gene expression in the early 
regenerating tail (25 dpa) demonstrated that there was signifi cant expression of 
markers of satellite cells and muscle development. These genes include important 
 regulatory factors   such as the marker of mammalian satellite cells paired box domain 
7 ( pax7 ), the myogenic transcriptional regulator MyoD ( myod1 ), myocyte enhancer 
factor 2C ( mef2c)  a cofactor of the myogenic regulators, twist1, and Mohawk ( mkx ). 
The tail also expresses genes that regulate muscle development such as nuclear fac-
tor of activated T cells 1 ( nfatc1) , which regulates skeletal muscle fi ber type and 
negatively regulates MyoD, paraxis ( tcf15 ) a transcription factor that regulates com-
partmentalization of the somite, and myostatin ( mstn ), a TGFβ family member and 
negative regulator of muscle cell growth [ 6 ]. 

 Another gene that was signifi cantly up-regulated in the regenerating anole tail was 
 twist1 . This gene encodes a basic helix-loop-helix transcription factor that in mam-
mals is involved in limb patterning and Saethre-Chozen syndrome [ 85 – 90 ]. There are 
three Twist family members and   Twist1  and  Twist3    were found in specifi c populations 
of cells in the ambystoma limb blastema [ 91 ]. Using single cell PCR, it was found 
that blastemal cells that expressed  Twist1  and  Sox9  and were derived from, and will 
become, cartilage whereas  Myf5  positive cells that will become muscle did not co-
express  Twist1 or Twist3 . Consistently,  Twist1  and  Twist3  co-expressing cells were 
destined to become dermis and were derived from this tissue [ 91 ]. In the anole tail, 
 twist1  was signifi cantly up-regulated in the regenerating tail [ 6 ], a challenge for future 
studies in the lizard will be to identify the source of stem/progenitor cells for different 
musculoskeletal tissues in the regenerating tail. 

 Studies in   Xenopus  frog tadpoles   and salamanders suggest that nerve signaling is a 
crucial positional cue driving regeneration. Similarly, in lizards, damage to the spinal 
cord proximal to the regenerating tail inhibits the regenerative process [ 28 ,  92 ,  93 ]. In 
the Japanese gecko,  Gekko japonicus ,  ependymal cells   at the core of the regenerating 
tail provide positional identity to cells in the regenerating tail [ 94 ]. Studies done in  A. 
carolinensis  and  Scincella lateralis  have shown that the ependyma is necessary for 
regeneration of the cartilage [ 28 ,  81 ,  84 ]. The ependymal cells regrow directly from 
the spinal cord, and there is no evidence of dedifferentiation of nervous tissues in tail 
regeneration in many lizards examined including  A. carolinensis ,  Sphaerodactylus 
goniorhynchus, S. argus  and  Lygosoma laterale  [ 30 ,  81 ,  82 ].  

2.4     Genomic Insights into Lizard Regeneration 

 With the availability of  high throughput sequencing   technologies and emergence 
of annotated genomes for regenerative species, gene expression studies of regen-
eration in  reptiles   have become possible [ 95 ]. In the  green anole lizard  , 
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RNA-Seq analysis has identifi ed at least 326 genes that are differentially 
expressed within different regions of the regenerating tail, including regulators 
of muscle and cartilage development, wound response, and thyroid hormonal 
response, and members of the Wnt and FGF/MAPK pathways. These data can be 
compared to similar  gene expression   studies in other regenerative model organ-
isms in order to identify common factors required for regeneration across verte-
brates. Namely, studies in a number of  vertebrate models   have identifi ed genes 
in the Wnt-Ca 2+  pathway in both regeneration and regulation of the infl amma-
tory response [ 96 – 98 ]. In the green anole lizard,  wnt5a  and the Wnt inhibitors 
 dkk2 and cerberus   were   elevated in the distal tip of the regenerating tail [ 6 ]. 
 Wnt5a  and  wnt5b  are expressed in the axolotl limb blastema [ 99 ], and in the 
regenerating fi ns of zebrafi sh  wnt5a ,  wnt5b , and  wnt10  are co- expressed [ 100 ]. 
Further studies will help to identify the role that Wnt signaling plays in creating 
permissible conditions for regeneration. 

 Given the large number of genes differentially expressed during the process of 
regeneration, attention has been focused on regulatory agents such as microRNAs, 
which are highly conserved amongst metazoans and can modulate the expression of 
multiple  genes   [ 101 ].  MicroRNAs   have been found to regulate a number of biologi-
cal processes, including proliferation and differentiation in cells ranging from skel-
etal and cardiac muscle to neurons [ 102 ], hematopoietic and embryonic stem cells 
[ 103 ,  104 ] and T cells [ 105 ], as well as repair of muscle [ 106 ]. MicroRNAs has also 
been found in regeneration of the limb and tail of axolotl salamanders [ 107 ,  108 ], 
lens and inner ear of newts [ 109 ,  110 ], and tail, spinal cord, and heart in the zebraf-
ish [ 111 – 113 ]. Recently, sequencing in the green anole lizard regenerating tail and 
adult tissues has identifi ed 350 putative novel and 196 known  microRNAs   [ 114 ]. In 
the regenerating tail at peak growth (25 days post autotomy), 11 differentially 
expressed microRNAs were identifi ed within the growing tail, including miR-133a, 
miR-133b, and miR-206, a regulator of stem cell proliferation in other regenerating 
species. In addition, 3 novel microRNAs were identifi ed to be elevated in the tail tip, 
suggesting potentially uncharacterized pathways or regulators specifi c to lizards 
may involved in regeneration. 

 MicroRNAs are not the only factors that may lead to differential expression of 
hundreds of genes; lizards and other regenerative species could potentially dis-
play genomic changes in coding or non-coding regulatory sequences such as 
enhancers, silencers, and insulators that account for regenerative differences. 
Alternately, changes in chromatin regulation between regenerative and non-
regenerative vertebrates may also play a  role  . Further comparative studies making 
use of multiple model systems will allow us to distinguish between these 
possibilities.     
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    Chapter 3   
 Dependency on Non-myogenic Cells 
for Regeneration of Skeletal Muscle                     

     Cherie     Alissa     Lynch     ,     Alexander     B.     Andre     , and     Alan     Rawls    

3.1           Introduction 

 In the search to uncover the mechanisms of tissue regeneration and how they can be 
leveraged for therapeutic approaches,  skeletal muscle   has become an attractive 
model. Studies in the genetically tractable mouse have provided insight into the 
myogenic progenitor cells and signaling networks essential for effi cient muscle 
repair in response to acute and chronic damage. More recently, it has become clear 
that crosstalk between muscle, the innate immune response and interstitial fi bro-
blastic cells is essential for muscle regeneration. An imbalance in signaling, as 
observed with  chronic infl ammation   of Duchenne’s muscular dystrophy patients, 
can lead to a progressive increase in  fi brosis, fat deposition and muscle necrosis  . In 
contrast, de novo muscle regeneration in response to amputation or severe trauma is 
largely limited to amphibians, reptiles, and fi sh among the vertebrates. The addi-
tional layers of regulation are necessary to recruit progenitor cells to the site of the 
amputation as well as impose the positional identity required to accurately regener-
ate individual muscle groups. Similarly,  myeloid and fi broblastic cells   have also 
been shown to participate in these processes. In this chapter, we will review the 
recent advances in our understanding of the role of non-myogenic cells in muscle 
regeneration.  
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3.2     Satellite  Cells   of the Myogenic Lineage 

 Skeletal muscle regeneration is dependent on satellite cells that are functionally 
 defi ned   by their ability to both self-renew and differentiate into myoblasts that are 
able to fuse to form myofi bers. These cells are maintained in a quiescent (G 0  phase) 
state until environmental cues associated with muscle injury stimulate re-entry into 
the cell cycle. During effective muscle repair, activated satellite cells migrate to the 
site of injury, proliferate, and differentiate to generate new muscle fi bers. 

 Satellite cells are characterized by their location beneath the basal lamina of 
 muscle fi bers   and constitutively express the  transcription factors  Pax7  and  Myf5    [ 1 , 
 2 ]. Ablation of  Pax7  results in decreased satellite cell proliferation and self-renewal, 
signifi cantly impacting muscle growth and repair [ 2 ].  Quiescent satellite cells 
(QSCs)      have been found to express 500 genes not present in activated satellite cells 
that participate in cell–cell adhesion, negative regulation of the cell cycle, transcrip-
tional control, and lipid and extracellular matrix  transporter activity   [ 3 ]. Gene loci 
in QSCs that are only expressed at very low levels until induction via the onset of 
satellite cell activation are marked by histone H3 Lys4, a marker of active chroma-
tin, indicating that these regions are open, awaiting the signals necessary to prompt 
activation and begin repair, and not in a dormant state [ 4 ,  5 ]. The ability of  QSCs      to 
immediately respond to injury stimuli allows for effective muscle repair. 

 Upon muscle injury, the  myofi ber sarcolemma and basal lamina   are dismantled, 
resulting in a disconnection between satellite cells and the collagen-laminin net-
work on which they are anchored. This disruption of the myofi ber allows for the 
release and entry of factors critical for satellite cell activation. One of the fi rst fac-
tors implicated in activation,  hepatocyte growth factor (HGF)  , is released from the 
basal lamina, it then proceeds to bind to the Met receptor on the surface of satellite 
cells, causing their activation and aiding in their migration to the injury site [ 6 ]. 
Dying fi bers within the niche generate nitric oxide (NO), further stimulating HGF 
release from the basal lamina. Also implicated in the activation and proliferation of 
satellite cells is the  Notch signaling pathway  ; blockage of Notch leads to inhibition 
of satellite cell proliferation, whereas up-regulation of Notch leads to the promotion 
of muscle regeneration [ 7 ,  8 ]. In the muscle niche itself, several factors are secreted 
that aid in multiple aspects of muscle repair. Fibroblast growth factor (FGF) secre-
tion into the ECM activates the  MAPK cascade  , resulting in the activation and regu-
lation of satellite cell quiescence [ 9 ].  Phosphorylated p38 and MyoD   are among the 
earliest markers of activation, with p38α/β  MAPK   inducing MyoD protein expres-
sion. In support of satellite cell proliferation, Notch3 mRNA and protein levels 
decline upon activation [ 10 ]. Additionally, production of the MYF5 protein begins 
due to a decrease in miR-31 levels, giving activated satellite cells a  Pax7  + ,  Myf5  +  
phenotype. 

 Recently, an additional phase of satellite cell quiescence, termed the  G alert  phase  , 
has been identifi ed in response to injury. Experiments performed by Rodgers et al. 
[ 11 ], demonstrated that satellite cells residing in muscle in the leg contralateral to 
the limb with the induced injury were distinct from both quiescent and activated 
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satellite cells. In culture,  QSCs      in the G alert  phase were found to enter the cell cycle 
earlier than non-injury-induced QSCs. Additionally G alert  phase QSCs demon-
strated an increase in cell size as compared to  QSCs     , and a high transcriptional 
correlation between G alert  phase QSCs and activated satellite cells was identifi ed. 
Both mTORC1 activity and HGF signaling were required for  QSCs   to switch from 
G 0  to the  G alert  phase   in response to injury. These fi ndings suggest that G alert  phase 
QSCs retain properties of both QSCs and activated satellite cells in a phase that is 
“primed” for injury response. In fact, QSCs of the G alert  phase demonstrated height-
ened differentiation in culture and enhanced regeneration following an induced 
injury in vivo [ 11 ]. 

3.2.1     Proliferation of Satellite Cell  and Myoblasts   

 Satellite cell activation is followed by the rapid expansion of   Pax7  + ,  Myf5  +  cells   that 
will form the myoblast population, eventually participating in muscle repair, and 
self-renewal of a smaller population of  Pax7  + ,  Myf5  −  satellite cells that will become 
quiescent in anticipation of later injury events (Fig.  3.1 ). The majority of  Pax7  + , 
 Myf5  +  satellite cells undergo symmetric division, producing two  Pax7  + ,  Myf5  +  pro-
genitor cells. WNT7a, acting through its receptors FZD7 and VANGL2, induces 
symmetric cell division through the planar cell polarity pathway [ 12 ]. In addition to 
HGF, insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), trans-
forming growth factors α/β (TGFα and TGFβ), and platelet-derived growth factor 
(PDGF) also contribute to the proliferation and differentiation of myoblasts [ 13 ]. 
Due to damage of the sarcolemma and basal lamina, myofi bers receive an infl ow of 
calcium from the (ECM) matrix, which aids in proteolysis of the myofi ber [ 14 ]. 
 Pax 7 + ,  Myf 5 +  cells, stimulated through activated leukocyte secretion of IGF-1 and 
delivered through capillaries into the niche, will continue to proliferate through the 
down-regulation of P27 kip1  and through inactivation of the transcription factor 
FOXO1 [ 15 ]. Negative mitogenic modulation of satellite cells exists through the 
transforming growth factor β (TGFβ) superfamily, most notably myostatin, which 
inhibit differentiation of satellite cells through down-regulation of MyoD expres-
sion and inhibits activation through the up-regulation of P21 and decreased levels 
of  CDK2   [ 16 ,  17 ]. Tumor necrosis factor α (TNFα) also negatively mediates dif-
ferentiation through the utilization of the TGFβ activated kinase (TAK1)/p38/
NF-kB pathway, resulting in increased levels of Activin A expression to support 
proliferation [ 18 ].

   Approximately 10 % of the satellite cell population maintains a  Pax7  + ,  Myf5  −  
   profi le and will undergo asymmetrical division to give rise to one  Pax7   +  ,  Myf5  −  
and one  Pax7  + ,  Myf5  +  cell (Fig.  3.1 ). Several signaling pathways present in the 
microenvironment of the satellite cell niche are responsible for controlling asym-
metric satellite cell polarity and fate. Components of the Notch pathway, including 
a Notch3 effector protein, Notch ligand Delta1 (Dll1), and Notch agonist Numb 
have all been found to asymmetrically distribute between daughter cells, with 
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DLL1 and NUMB found selectively in the daughter cell committed to becoming a 
myoblast [ 8 ,  19 ]. Ablation of  Numb  in the muscle lineage profoundly decreased 
satellite cell proliferation, negatively affecting the ability of muscle to repair fol-
lowing an induced injury [ 20 ]. Additionally, factors involved in cell polarity deter-
mination, namely parts of the Par complex and Scribbled planar cell polarity 
protein (Scrib), have been implicated in asymmetric division. Orientation to the 
myofi ber plays an important role in the ability of the satellite cells to asymmetri-
cally  divide  . This relation to the myofi ber, conferred by an apical-basal polarity, is 
dependent on the interaction of cell membrane receptors basal integrin α7β1 and 
apical M-cadherin, resulting in the production of one basal  Pax7  +   Myf5  –   cell   and 
one apical  Pax7  +   Myf5  +  daughter cell [ 8 ]. It has also been proposed that the posi-
tion of the mitotic spindle in relation to the myofi ber axis plays a role in asymmet-
ric division cell fate [ 21 ].  
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  Fig. 3.1    Mechanisms of satellite cell division for muscle maintenance and repair. Following entry 
to the cell cycle, quiescent satellite cells symmetrically or asymmetrically divide along the apical- 
basal axis. Symmetric and asymmetric divisions lead to the generation of additional muscle stem 
cells and progenitor cells. Additionally, satellite cells can directly commit to the myogenic lineage 
and expand the progenitor cell population or differentiate into myocytes. Resulting muscle stem 
cells return to the niche to replenish the pool of quiescent satellite cells. Resulting myocytes fuse 
to form myotubes, leading to the formation of new muscle fi bers       
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3.2.2     Heterogeneity of the Satellite Cell  Population   

 Studies in culture fi rst revealed heterogeneity in the satellite cell population with a 
“responsive population” that readily proliferates in response to damage and par-
ticipates in repair, and a “reserve population” that divides at a slow rate and is 
refractory to differentiation into mature myotubes. This heterogeneity has been 
reported in muscle tissue at a ratio of 5:1 (responsive: reserve), confi rming their 
relevance to normal muscle biology. The slow dividing cells contribute solely to 
skeletal muscle when transplanted back into mouse EDL muscle, confi rming their 
commitment to the myogenic lineage. Genome-wide gene expression studies 
revealed differential expression between the two populations with reserve cells 
expressing higher levels of inhibitor of differentiation (Id) and other genes that 
confer “stemness”. This predicts that the slow dividing cells that are refractory to 
repair signals, are essential to muscle homeostasis for long-term maintenance of 
the satellite cells  population  .   

3.3     Satellite Cell Regulation Through the Stem-Cell Niche 

 The activation, migration, and proliferation of satellite cells are supported by the 
infl ammatory microenvironment created by components of the niche and immune 
cells. In addition to ECM, the niche includes fi bro-adipogenic (FAP) cells, vascula-
ture, and both residential and infi ltrating immune cells that are capable of direct 
communication with satellite cells.  Oxygen free radicals   released by neutrophils 
further break down the sarcolemma, while matrix metalloproteinases released by 
both damaged myofi bers (MMP2) and immune cells (MMP9), aid in the degrada-
tion of ECM proteins [ 22 ]. ECM  digestion      through MMPs plays a vital role in satel-
lite cell migration to the site of injury, especially in fi brotic tissue. 

  FAPs   are bipotent fi ber-associated cells that also proliferate in response to mus-
cle fi ber injury [ 23 ].  FAPs   double in number in less than 48 h and up-regulate the 
expression of Interleukin 6 (IL-6) roughly tenfold. IL-6, along with Wnt and IGFs, 
has been implicated as a pro-differentiation signal that is essential for the differen-
tiation and maturation of myoblasts during muscle repair [ 23 – 25 ]. During myolysis, 
FAPs have been found to assist in the clearing of cellular debris through phagocyto-
sis of necrotic thymocytes, and when compared to macrophages, FAPs have been 
found to be fourfold more effi cient in debris clearance [ 26 ]. 

 Microvasculature and accompanying  pericytes   help to sustain the cells of the 
microenvironment, as well as provide the necessary access to circulation for 
immune cell infi ltration in response to damage and delivery of key factors that 
assist with niche maintenance and satellite cell regulation [ 4 ,  17 ,  27 ]. PDGF and 
vascular- endothelial growth factor (VEGF) are released from ruptured blood ves-
sels in response to injury and play an important role in reciprocal communication 
with satellite cells to promote their proliferation, as well as angiogenesis [ 28 ]. 

3 Dependency on Non-myogenic Cells for Regeneration of Skeletal Muscle



42

Satellite cells are commonly found surrounding the  vasculature   within a 5 μm 
radius, with up to 82 % in murine models and 68 % in human residing near capillar-
ies [ 29 ]. Pericytes in the muscle serve a jack of all trades role; they help to replace 
and regenerate the vasculature that can be lost or damaged due to muscle injury, 
also have been found to replace muscle, and become myogenic in vitro [ 30 ]. 
Pericytes have also been shown to give rise to most of the collagen forming cells 
during muscle injury, and, in the presence of neurons, have been shown to produce 
collagens I and III [ 31 ]. 

 The ECM contributes to the regulation of satellite cells in the niche.  Proteoglycans 
and glycoproteins   play a role in niche homeostasis and in the repair process. 
Collagen VI ablation in mice leads to a muscle wasting disease not dissimilar to the 
common dystrophic models [ 32 ]. ECM  proteins      bind to the transmembrane protein 
dystrophin, forming an anchor that connects the satellite cells to the basal lamina 
and maintains their anatomical location [ 33 ]. ECM proteins can also act as mito-
gens for satellite cells. Resting, non-damaged satellite cells are located in fi bronec-
tin rich regions of the myofi ber niche, Syndecan4 (SYN4) and Frizzled7 (FZD7) on 
the satellite cells act as co-receptors to bind fi bronectin [ 34 ]. In the presence of 
WNT7a, this complex will induce symmetrical division. Upon muscle damage, 
fi bronectin is transiently expressed to help maintain the satellite cell pool through 
the Wnt signaling pathway [ 34 ,  35 ]. 

 The  elasticity   of the myofi ber also plays a role in regulation; normal muscle 
fi bers have a  Young’s modulus   of approximately 12 kPa, while those in aged or 
dystrophic muscle are much stiffer [ 36 ,  37 ]. This leads to a decrease in quiescent 
satellite cells because the increased stiffness induces them to enter the cell cycle. 
Recent work using collagen based scaffolds with  elasticity   from 2 to 25 kPa as 
determined by atomic force microscopy (AFM), has shown that on substrates that 
measure 2 kPa most of the satellite cells maintain their quiescent states and do not 
enter the cell cycle. Whereas at 25 kPa only about 45 % remain quiescent in vitro 
[ 38 ]. These fi ndings could explain why in aged or dystrophic muscle there is a 
decreased satellite cell presence, as these two niche environments have an increased 
stiffness [ 38 ,  39 ].  

3.4     Innate Immune Response During Skeletal Muscle Repair 

 Regeneration of skeletal muscle cannot be accomplished solely by satellite cells. 
Several types of  immune cells  , both resident and infi ltrating, play an indispensable 
role in effective tissue regeneration. In healthy homeostatic muscle, immune cells 
are kept at a minimum, however, disruption of the basal lamina and sarcolemma of 
myofi bers initiates several waves of immune cell infi ltration that play discrete roles 
in the removal of necrotic fi bers, activation of satellite cells, and ultimately the effi -
cient differentiation into mature muscle fi bers. The majority of the  immune cells   
involved in muscle repair are those of the innate leukocyte lineage—macrophages, 
neutrophils, dendritic cells, mast cells, eosinophils, basophils, and natural killer 
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cells. Central to the innate immune response is the production and responsiveness to 
cytokines, chemokines, and growth factors. These  signaling molecules   mediate 
crosstalk with satellite cells and FAP cells during the repair process. 

 Immediately upon  myofi ber damage  , resident mast cells within the muscle 
degranulate, releasing TNFα, while resident macrophages release C-C motif che-
mokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 3 (CXCL3), recruiting 
transient polymorphonuclear  neutrophils   from the circulation to the site of injury 
[ 40 ]. Satellite cells also contribute to chemoattraction to the site of damage through 
the release of the pro-infl ammatory cytokines IL-1, IL-6, and TNFα [ 41 ]. 
 Neutrophils   rapidly invade the injured tissue in signifi cant numbers and persist in 
the tissue for approximately 24 h, where they promote sarcolemma damage through 
the release of oxygen-free radicals [ 42 ]. Through the secretion of IL-1 and IL-8, 
neutrophils promote the recruitment of circulating CX3CR1 low , Ly6C + , CCR2 +  phe-
notype monocytes to the site of injury [ 43 ] and binding of CCL2 and CCL7, by the 
C-C motif chemokine receptor, CCR2 [ 44 ]. Disruption of either receptor or ligands 
leads to severe defi cits in monocyte recruitment and effi cient muscle repair [ 45 –
 47 ]. The infi ltrating monocytes differentiate into macrophage subtypes, both  pro- 
and anti-infl ammatory, in a process that is highly dependent on the tissue 
microenvironment. 

 At approximately 24-h post muscle injury,  monocytes/macrophages   begin to 
express high levels of IL-6, supporting  macrophage   infi ltration and myoblast prolif-
eration through the STAT3 pathway. Effective muscle repair requires suffi cient gen-
eration of myoblasts for regeneration of the damaged tissue. Knockout of IL-6, or 
knockdown of STAT3, resulted in decreased MyoD, Myogenin, and macrophage 
infi ltration, ultimately resulting in diminished muscle repair [ 48 ]. 

 Initially, the pro-infl ammatory phenotype is maintained as neutrophils secrete 
 Th1 infl ammatory cytokines  , interferon-gamma (IFNγ) and TNFα, to induce 
monocytes to polarize into M1 macrophages (CX3CR1 low , Ly6C + , CCR2 + ). In addi-
tion to IFNγ and TNFα, pathogens and granulocyte macrophage colony-stimulat-
ing factor (GM-CSF) are capable of stimulating M1 macrophage polarization [ 49 ] 
(Fig.  3.2 ).  M1 macrophages   phagocytose cellular debris and secrete factors, such 
as IL-1b and IL-12, to recruit additional infl ammatory cells for debris clearance 
and pathogen removal. Nitric oxide (NO), produced by M1 cells acts to lyse cells 
for removal, however, if dysregulated, it can lead to increased tissue damage [ 50 ]. 
During the pro-infl ammatory phase, which occurs approximately 24–96 h post 
injury, the  NF- kB pathway   in both macrophages and myoblasts is activated in 
response to TNFα. In macrophages, this enhances the infl ammatory response by 
stimulating the release additional  pro-infl ammatory cytokines  . In muscle, CyclinD1 
expression is induced, while MyoD expression is suppressed, in response to activa-
tion of the NF-kB pathway, supporting myoblast proliferation and preventing dif-
ferentiation [ 51 ,  52 ].

   Phagocytosis by M1  macrophages   and exposure to CSF-1 induce macrophage 
polarization to skew from a pro-infl ammatory phenotype towards an anti- 
infl ammatory phenotype, resolving the infl ammation and beginning the muscle 
repair process [ 53 ]. Infi ltrating monocytes now become CX3CR1 hi , Ly6C − , CCR2 −  
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and differentiate into three subtypes of  M2 macrophages  . Several molecules have 
been identifi ed as regulators of the switch from early pro-infl ammatory to late 
 anti- infl ammatory macrophage phenotypes. cAMP response element-binding pro-
tein (CREB), a multifunctional transcription factor, is critical for the up-regulation 
of genes associated with M2 macrophages (IL-10, IL-13R, Arg-1) and repression 
of M1 macrophage activation [ 54 ].  Mitogen-activated protein kinase (MAPK)   
phosphatase- 1, through inhibition of p38 MAPK activation, functions to control 
macrophage subtype shifting. MAPK also helps to resolve infl ammation to allow 
for proper muscle repair [ 55 ]. Recently,  AMP-activated protein kinase (AMPK)  , 
widely known as a regulator of metabolic homeostasis, has also been identifi ed as 
a regulator of macrophage polarization skewing. Mounier et al. [ 56 ], demonstrated 
loss of M2  macrophage   functionality and a loss of M2 markers expressed in 
AMPKα1 −/−  macrophages. Further, AMPKα1 −/−  mice showed defi cient muscle 
repair resulting from a failure of M1 macrophage phagocytosis-induced polariza-
tion to an M2 phenotype [ 56 ]. 

  Fig. 3.2    Immune cell contribution and modulation in damaged muscle tissue. In response to myo-
fi ber injury,  neutrophils   from circulation invade the site of damage where they aid in further tissue 
break down and recruit CX3CR1 Lo , Ly6C + , CCR2 +  monocytes, differentiating into  M1 macro-
phages  , for continued debris clearance and pro-infl ammatory cytokine secretion. M1 phagocytosis 
induces macrophage polarization towards an anti-infl ammatory phenotype to support muscle 
repair. CX3CR1 Hi , Ly6C Lo , CCR2 −  monocytes differentiate into M2a, M2b, and M2c macrophages, 
functioning to suppress infl ammation and promote satellite cell proliferation and differentiation. T 
regulatory cells assist  M2 macrophages   in resolving infl ammation and fostering muscle repair       
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  M2a macrophages   arise from the release of IL-4 or IL-13 and signal via IL-4 
receptor alpha [ 57 ]. Release of these Th2 infl ammatory cytokines causes increased 
expression of CD206 and CD36 by macrophages. In vitro, it has been shown that 
M2a macrophages, producing arginase, decrease M1 macrophage lysis activity 
through competition for arginine, the shared enzymatic substrate of arginase and 
iNOS [ 58 ]. M2a macrophages secrete IL-10 and TGF-β, thereby inducing the anti- 
infl ammatory M2c macrophage subtype, which aids in IL-10 and TGF-β release 
(Fig.  3.2 ). Secretion of these  cytokines   suppresses infl ammation and promotes sat-
ellite cell proliferation, allowing for  remodeling   of the extracellular matrix, angio-
genesis, and muscle fi ber development to begin [ 58 ].  Glucocorticoids and IFNβ   can 
also stimulate the induction of the M2c subtype [ 59 ]. The release of IL-4 by M2b 
regulatory macrophages, Th2 cells, eosinophils, and basophils further promotes the 
wound healing phase by decreasing phagocytosis and stimulating macrophage 
fusion [ 49 ]. In addition to IL-4, the release of IGF-1 also contributes to continued 
satellite cell growth and myofi ber fusion [ 60 ]. In recent experiments by Tonkin 
et al. [ 61 ],  macrophages   were identifi ed as a major contributing source of IGF-1 at 
the site of muscle damage. Indeed, when muscle injury is induced in mice devoid of 
IGF-1 in myeloid cells, a loss of regenerative capacity is demonstrated. During the 
late stages of healthy muscle repair, Ly6C +  monocytes/macrophages and CD206 +  
 macrophages   were found to express high levels of IGF-1. However, when IGF-1 is 
knocked out from myeloid cells, the population of Ly6C +  monocytes/ macrophages   
is heightened while the population of CD206 +  macrophages is diminished [ 61 ]. 

 Aiding in the establishment of the anti-infl ammatory environment at the site of 
muscle damage, a population of CD4 +   regulatory T cells (T reg )   arises concurrently 
with M2 macrophages, though to a much lesser extent (Fig.  3.2 ). FoxP3, a fork-
head transcription factor, regulates T reg  cell lineage specifi cation, however, it 
remains unclear whether the population of T reg  cells at the site of muscle injury 
derives from resident T reg  cells in the muscle or is recruited in response to damage. 
T reg  cells have been shown to infl uence myeloid and T cell infi ltration, as well as 
satellite cell colony- forming capacity. Additionally, T reg  cells were found express 
IL-10 and amphiregulin, which accumulate during the fi nal stages of muscle repair 
and play important roles in negative regulation of infl ammation and satellite cell 
activation and proliferation, respectively [ 62 ]. Due to the capability of T reg  cells to 
modulate the infl ammatory response and satellite cell activity, research in using 
T reg   cells   to improve muscle repair is of current interest. Villalta et al. demonstrated 
increased levels of T reg  cells in both human Duchenne’s muscular dystrophy (DMD) 
and in the corresponding  mdx  mouse. When T reg  cells are depleted from dystrophic 
muscle, a heightened Th1-cell-mediated response occurs causing increased myofi -
ber damage [ 63 ]. 

 In recent years, the multi-faceted role of macrophages in  wound repair   has 
begun to lend itself to potential use in therapy for muscle injury. M1-polarized 
macrophages delivered to the site of muscle damage resulted in enhanced recovery 
of functionality with reduced myofi ber damage and collagen accumulation [ 64 ]. 
When M2a or M2c macrophages are injected, an increase in tube-like structures is 
observed, indicating improved angiogenesis [ 65 ]. To further aid in the repair of 
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muscle injury, especially in cases of volumetric muscle loss,  tissue scaffolds   with 
inert or biodegradable properties have been the predominating focus. Contrary to 
avoiding an immune response, recent work has sought to take advantage of immune 
cells in the delivery of tissue scaffolds—now termed  “smart scaffolds”  . 
Macrophages and other infl ammatory cells, such as cytokines capable of modulat-
ing macrophage polarization, can be loaded into tissue scaffolds prior to transplan-
tation, allowing for a therapeutic approach that is personalized and works in 
conjunction with the patient’s own immune response to enhance the repair process. 
Through an injectable multidomain peptide scaffold engineered by Kumar et al. the 
potential to recruit specifi c infl ammatory cells and deliver cytokines to the site of 
injection was shown. MCP-1 and IL-4 loaded hydrogel  scaffolds   were capable of 
boosting macrophage recruitment and stimulating polarization towards a pro-heal-
ing M2 phenotype in a time-controlled manner, without inducing a local infl amma-
tory response [ 66 ].  

3.5      De Novo Regeneration   of Skeletal Muscle 

 As described above, mammalian models have been powerful tools in parsing the 
 signaling pathways   regulating the regeneration of skeletal muscle in response to 
acutely damaged muscle. However, de novo muscle regeneration in response to 
amputation is largely limited to amphibians, reptiles and fi sh among the vertebrates. 
This process can be distinguished by the additional layers of regulation necessary to 
recruit progenitor cells to the site of the amputation and a complex set of temporal 
and spatial signals necessary to impose the positional identity required to accurately 
recapitulate individual muscle groups and coordinate the regeneration of distinct 
cell lineages that give rise to the skeletal elements, connective tissue, nerves, vascu-
lature, and skin [ 67 ]. As with  tissue repair  , the study of skeletal muscle regeneration 
has been central to our understanding of complex tissue regeneration. Non-myogenic 
cell types have been implicated in this process. In this section, we will compare the 
regulation of muscle repair to regeneration through the lens of the microenviron-
ment created by the immune cells and myofi broblasts. 

3.5.1      Amphibians   as a Model for the Study of Skeletal Muscle 
Regeneration 

 Members of the Anura (frogs and toads) and Caudata (salamanders and newts) 
orders are the most commonly studied amphibians for muscle regeneration. 
Anurans possess distinct developmental windows preceding metamorphosis where 
complete regeneration of organs can occur, while the urodeles (Caudata) are able to 
regenerate a wide variety of organs throughout adulthood. Perhaps the best studied 
regenerative tissue system has been limb and tail amputations that follow a 
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conserved set of temporal events that include (1) a modifi ed wound healing  pro-
cess  , (2) progenitor cell recruitment and (3) activation and tissue rebuilding 
(reviewed in [ 67 – 69 ]). Conserved regulatory pathways shared between amphibian 
models has provided insight into how regeneration has been maintained in these 
animals and largely lost in mammals.  

3.5.2     Wound  Healing   and  ECM   Remodeling 
During Regeneration 

 Wound healing associated with regeneration shares many common features with 
scar-free wound healing associated with skin repair. Within hours of amputation, 
epithelial cells and dermal fi broblasts migrate to the site of injury and cover the 
fi brin blood clot. The regenerative epithelial cells  thicken   to form an apical ectoder-
mal cap (AEC) reminiscent of the apical ectodermal ridge (AER) that appears dur-
ing limb development. The AEC promotes the remodeling of the basement 
membrane ECM through recruitment of leukocytes and the release growth factors 
that are capable of inducing the subjacent mesenchymal cells to form a blastema of 
undifferentiated proliferating progenitor cells with the  ability   to rise to the distinct 
cell types of the limb [ 70 – 72 ]. In the case of skeletal muscle, progenitor cells can be 
derived from myoblasts ( Pax7  − ,  MyoG  + ) that dedifferentiate muscle fi bers and aid in 
the recruitment of satellite cells ( Pax7  + ,  MyoG  − ) [ 73 ,  74 ]. 

 The ECM at the site of the wound is recognized as an important regulator of 
wound healing and the progression towards regeneration. ECM is a complex net-
work of proteins composed primarily of collagens, laminins and fi bronectins that 
interact to create scaffolding as well as serve as adhesion sites for cells through 
integrin binding. Small leucine-rich proteoglycans within the ECM bind growth 
factors and cytokines that create microenvironment niches for cell signaling [ 75 ]. 
Within  hours   of amputation, migrating epithelial cells express matrix metallopro-
teinases (MMP) that promote ECM breakdown through the digestion of collagen. 
This facilitates cell invasion, debris clearance and  release   of the growth factors and 
cytokines that promote cell migration [ 72 ,  76 ]. A second wave of MMP expression 
after 3 days is believed to participate in ECM remodeling and promoting muscle 
dedifferentiation [ 77 ]. Treating newt wounds with MMP inhibitors resulted in short-
ened stumps with distal scars, indicating the importance of the ECM remodeling 
during regeneration [ 78 ]. Macrophages represent important regulators of ECM 
breakdown and remodeling at the wound site. Infl ammatory cytokines produced by 
macrophages regulate ECM production from fi broblasts and myofi broblasts and 
ensure a pro-regenerative microenvironment at the site of the wound instead of an 
acellular fi brotic scar [ 79 ,  80 ]. Depletion of macrophages in  salamanders   inhibits 
limb regeneration and promotes the formation of a distal scar and an overrepresen-
tation of myofi broblasts [ 81 ]. This underscores the important relationship between 
the organism’s ability to remodel  ECM   and the formation of fi brotic scars that pre-
vent regeneration. In support of this, salamanders maintain the expression of other 
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developmentally regulated collagens III and XII, tenascin, and hyaluronic acid later 
into adulthood than mice and delay the onset of collagen I that gives rise to acellular 
scars through cross-linking with heparin sulfate proteoglycans [ 81 ,  82 ].  

3.5.3     Myogenic Progenitor Cells During Regeneration 

 In classic experiments initially performed in salamanders, myogenic progenitor 
cells contributing to the  blastema   were found to be derived through the dedifferen-
tiation of injured muscle [ 83 – 85 ]. Dedifferentiation is characterized by a loss of 
differentiated muscle-specifi c markers, fragmentation of multinucleated myotubes 
into mononucleated cells and re-entry into the cell cycle [ 86 ]. The resultant mono-
nucleated  Pax7 −  MyoG +  cells   are capable of redifferentiation into muscle [ 87 ]. Cre- 
loxP- based genetic fate mapping experiments have demonstrated that cells generated 
through dedifferentiation remain restricted to the myogenic lineage and are unable 
to contribute to other tissues of the limb or tail [ 68 ,  88 ]. 

 Several transcription factors and cell cycle regulators have been shown to regulate 
muscle dedifferentiation [ 74 ,  89 – 91 ]. Perhaps the best studied are members of the 
MSX family of the homeodomain-containing  transcription factors (MSX1 and MSX2)   
that have been implicated in maintaining cells in proliferative, progenitor state during 
limb development across vertebrates. Over expression of either MSX1 or MSX2 is 
suffi cient to drive myotube dedifferentiation in culture and the formation of differen-
tiation-competent myoblasts [ 90 ]. More recently, it was found that the LIM homeobox 
transcription factor,  Lhx2 , which can suppress muscle-specifi c transcription and dif-
ferentiation in C2C12 cells, is a direct regulator of Msx1 and Msx2  transcription   [ 92 ]. 
Further, ectopic expression of MSX1 or MSX2 can induce dedifferentiation of mam-
malian myotubes suggesting the elements of the dedifferentiation regulatory network 
of the amphibians have been retained in mammals [ 93 – 95 ]. 

 Inactivation of the tumor suppressor  Retinoblastoma (Rb)   through phosphoryla-
tion has also been implicated in muscle regeneration in the newt limb, consistent 
with the requirement for reinitiating the cell cycle during generating progenitor 
cells [ 74 ]. Inactivation of Rb is suffi cient to promote DNA synthesis in differenti-
ated mouse muscle in culture, however, the cells will not progress to proliferating 
myoblasts with the capacity for redifferentiation [ 96 ,  97 ]. Complete recapitulation 
of the dedifferentiation pathway requires an additional insult to the  p53 signaling 
pathway   through inactivation of the Alternate Reading Frame (ARF) of the  Ink4a  
locus [ 91 ]. Interestingly, the earliest identifi ed  ARF  ancestor is in chickens, with no 
candidates in databases for non-amniote organisms [ 98 – 100 ]. This raises the pos-
sibility that loss of regenerative capacity in mammals is related to acquisition of 
additional levels of cell cycle regulation. There is evidence that environmental cues 
participate in the regulation of muscle fi ber dedifferentiation. The  ECM   in the tissue 
proximal to the site of amputation undergoes a shift from a collagen and laminin-
based stiff ECM to a softer transitional ECM rich in  hyaluronic acid, tenascin-C and 
 fi bronectin  . Under cell culture conditions, this  ECM   differentially directs DNA syn-
thesis, migration, myotube fragmentation and myoblast fusion [ 101 ,  102 ]. 
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 In addition to the generation of  Pax7  − ,  Myog  +  myoblasts through dedifferentia-
tion, there is evidence that recruitment of   Pax7  + ,  Myog  −  satellite cells   from muscle 
proximal to the site of amputation participates in muscle regeneration in salaman-
ders [ 73 ]. Further, cultured satellite cells are able to contribute to muscle regenera-
tion upon transplantation [ 68 ,  103 ]. This indicates that the system for recruiting 
myogenic progenitor cells in mammals can participate in regeneration in amphib-
ians as well. Cre-loxP-based genetic fate mapping approaches have been used to 
track cells in the blastema that are  Pax7  − ,  Myog  +  and  Pax7  + ,  Myog  −  [ 68 ,  88 ]. 
Surprisingly, there was a preference for the recruitment of a premyogenic cell 
source between urodeles, with the  Notophthalmus viridescens  (newt) depending 
on dedifferentiation of muscle while the  Ambystoma mexicanum  (axolotl) lever-
ages satellite cells [ 88 ]. The newt employs a dedifferentiation strategy for the 
regeneration of other tissues, including the lens of the eye, while the  axolotl   has 
limited regenerative capacity for the lens [ 104 ,  105 ]. This reveals a divergence in 
strategies for generating progenitor cells for tissue of two urodeles separated by 
approximately 100 million years. This raises interesting questions about the evolu-
tionary pressures that would maintain two discrete mechanisms. The selection pro-
cess has been strong enough that mammalian muscle is able to functionally 
recapitulate dedifferentiation with relatively small changes in  gene expression   of 
extracellular matrix.  

3.5.4     Role of Pro- and Anti-Infl ammatory Immune Response 
in Regeneration 

 The duality of the innate immune response with the pro-infl ammatory arm directed 
by Th1 cytokines and the anti-infl ammatory arm directed by Th2 cytokines is con-
served in urodeles. However, analysis of the cytokines post limb amputation reveals 
two overlapping spikes in  Th1 and Th2 cytokines   as well as CCL and CXCL che-
mokines at days 2 and 7, which predicts that anti-infl ammatory M2 macrophages 
are recruited concurrently to the site of injury with pro-infl ammatory M1 macro-
phages [ 81 ]. This is in contrast to mammalian muscle repair, where a distinct early 
wave of pro-infl ammatory M1 macrophages is followed by anti-infl ammatory M2 
macrophages. The presence of M2 macrophages and Th2 cytokines did not inhibit 
the phagocytic activity of M1 macrophages in the fi rst 24 h post-amputation in the 
salamander, suggesting a different functional relationship between the two cell 
types during regeneration. Interestingly, M1 macrophage activity requires expres-
sion of anti-infl ammatory cytokines as well as several signalling pathways critical 
for regeneration, including metalloproteinases MMP9 and MMP3, dedifferentiation 
regulator  Msx2 , blastemal markers  Prrx1  and  Sp9 , the production of Th2 cytokines, 
and TGFβ signaling [ 81 ]. Thus, despite the temporal overlap, modulation of the 
pro- infl ammatory immune response is essential for promoting regeneration. 

 Studies in  Anurans  , where regenerative capacity is limited to a pre- metamorphosis 
time period provides an opportunity to compare cellular processes associated with 
repair in permissive and non-permissive stages to examine mechanisms by which 
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the immune system regulates regeneration (reviewed in [ 106 ]).   Xenopus   , the most 
common anuran model, will undergo complete limb or tail regeneration between 
pre-metamorphosis stages 50–53. After metamorphosis has started (stages 57–60), 
regeneration is only partially complete as exemplifi ed by a cartilaginous spike 
replacing an amputated limb. The shift from tadpole to adult is associated with 
immunological shifts from a relatively simple “ancestral” system to one that is more 
complex and resembles that of the mammals [ 107 ,  108 ]. Consistent with this, dif-
ferential gene expression studies between regeneration competent and incompetent 
stages confi rms differences in the immune signaling and resolution of infl ammation 
[ 109 – 111 ]. While pro-infl ammatory signals spike early after limb amputation in 
stage 53 of   Xenopus   , they persist at the regeneration non-competent stage 57 [ 110 ]. 
This would indicate that unresolved infl ammation in response to injury contributes 
to the loss of the regenerative capacity in adult frogs. In support of this, immune cell 
depletion can extend the period of regeneration competence in  Xenopus  [ 112 ]. 

 Studies in anurans and urodeles have provided seemingly confl icting models of 
the role of the infl ammatory response to regeneration, with disruption of infl amma-
tory macrophages inhibiting salamander and newt regeneration while extending the 
regenerative refractory period in  frogs   [ 81 ,  112 ]. This can best be reconciled through 
the lens of comparative strength of the immune system. Salamanders are considered 
to have a strong innate immune system, but because of the lack of key adaptive 
immune responses, it is considered relatively weak compared to the frog and mouse 
[ 113 ]. In the case of the  frog  , the strength of the immune system increases with age, 
leading to the hypothesis that the regenerative capacity of the organism is inversely 
proportional to the strength of the immune response to injury. This is likely an over-
simplifi ed axiom as phagocytotic macrophages are essential for salamander limb 
and tail regeneration. There has been considerable effort to understand the immune 
response to pathogens and this can provide insight into differences in humoral and 
cytotoxic immune response between amphibians [ 72 ,  114 ,  115 ]. Understanding 
how the broader immune system plays a role in tissue regeneration should help 
resolve this confusion.      
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   ACI/ACT    Autologous chondrocyte implantation/transplantation   
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  BMP    Bone morphogenetic protein   
  Col    Collagen type   
  CR    Cartilage rod   
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  ECM    Extracellular matrix   
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  Sox    Sry-related high-mobility-group box   
  TGF    Transforming growth factor   
  VEGF    Vascular endothelial growth factor   

4.1          Cartilage Structure   and Function 

  Cartilage      is a specialized tissue with several interesting characteristics that highlight 
a trade-off between function and healing. On the one hand, cartilage is an incredibly 
robust tissue, with the principal function of providing mechanical support, especially 
in weight-bearing circumstances. On the other hand, most cartilage exhibits almost a 
complete lack of intrinsic healing abilities once damaged. These two characteristics, 
mechanical durability and healing resistance, both stem from the unique structure of 
cartilage.  Adult cartilage tissue   is composed of over 90 % of  extracellular matrix 
(ECM)   and less than 10 % chondrocytes in total volume [ 1 ]. Thus cartilage is consid-
ered hypocellular, with few cartilage cells ( chondrocytes  ) embedded in an abundant 
ECM. It is the molecular compositions of the cartilage ECM that defi ne its mechano-
physical properties:  Proteoglycans (PGs)   are responsible for the osmotic swelling 
and the elastic properties of the cartilage tissue. The most abundant cartilage PG, 
 aggrecan  , contains a core protein complexed with covalently bound  glycosaminogly-
can (GAG)   side chains of  chondroitin sulfate   and  keratin sulfate  .  Aggrecan   further 
associates with hyaluronic acid fi laments via link proteins. These  PGs  , which are 
negatively charged, attract cations and associated water molecules. The charged 
GAG side chains also repel one another, thereby trapping more  water   and causing the 
cartilage tissue to swell in the absence of physical load. In fact, the cartilage  ECM   
contains 65–80 % water in wet weight [ 2 ]. Upon application of load, the hydrated 
 GAG   side  chains      allow cartilage to resist compression as water is forced from the 
tissue. When cyclically loaded, this ebb and fl ow of liquid through the cartilage tissue 
enables nutrient transport to  chondrocytes   [ 2 ]. Another important component of the 
cartilage ECM, the  cartilage network  , is responsible for the tensile strength of the 
cartilage matrix [ 1 ].  Collagen  , the most abundant ECM component in the body, is a 
triple helical macromolecule with a cross-banded fi brillar structure that also acts as a 
meshwork that traps large  PGs  . The main  collagen   found in cartilage is  collagen type 
II (Col2)  , but variations in the  amounts   of other collagen types and  ECM   components 
dictate the precise properties of the cartilage further classifi ed as  fi brocartilage  ,  elas-
tic cartilage  , and  hyaline cartilage   [ 2 ]. Fibrocartilage is characterized by the inclusion 
of  collagen type I (Col1)   in the ECM and is found, for example, in the annulus fi bro-
sus of intervertebral discs, the menisci, the pubic symphysis, and the temporoman-
dibular joint.  Elastic cartilage   contains high amount of  elastin   and is found in the 
outer ear (auricular cartilage), the Eustachian tube, and the epiglottis. Hyaline carti-
lage matrix contains high amounts of  Col2  ,  chondroitin sulfate   and  hyaluronan  , and 
is found on the ventral surfaces of ribs, in the larynx, trachea, and bronchi, and on the 
articular surfaces of bones (articular cartilage), where it is responsible for load  bear-
ing   and shock absorption. Articular cartilage is the most clinically relevant form of 
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 cartilage      as it is intimately involved in the pathogenesis of  osteoarthritis (OA)  , and 
the last section of this chapter will focus specifi cally on articular cartilage healing. 

 While the high  matrix-to-cell ratio   of cartilage tissue underlies its mechanical proper-
ties, it also is responsible for its poor intrinsic healing capacities. In addition to being 
hypocellular, healthy adult cartilage is also avascular. Thus, injured cartilage has very 
few reserve  chondrocytes   available to synthesize new matrix. The chondrocytes that are 
present are trapped in their lacunae and embedded in  dense cartilaginous matrix  , making 
migration to wound sites diffi cult. Similarly, the lack of blood vessels also presents a 
barrier for stem cells from other parts of the body to reach the injured cartilage. Once 
cartilage tissue structure is compromised by a wound, the important nutrient transport 
environment begins to break down, causing loss of additional  chondrocytes   and carti-
lage tissue. Thus, rather than healing, even minor cartilage injuries can result in positive 
feedback scenarios in which large areas of  cartilage      are lost and do not regrow. Here we 
will examine special cases in the animal kingdom where cartilage does, in fact, naturally 
regenerate, as well as strategies for the therapeutic enhancement of cartilage  healing     .  

4.2     Cartilage Formation During Embryonic Development 
and Adult Fracture Healing 

  Cartilage            is initially formed in vertebrates during embryonic development of the 
skeletal system [ 3 ]. In fact, the early skeleton is entirely made up of cartilage, and 
cartilage cell sources vary with body location. For example, cartilage of the head is 
formed from the neural crest. Cartilage of the neck and trunk forms as part of the 
axial skeleton from the sclerotome of paraxial mesoderm, while  cartilage            of the tail 
skeleton originates from tail bud mesenchyme.  Limb cartilage   originates with the 
appendicular skeleton from lateral plate mesoderm. In the earliest stages of  chon-
drogenesis  ,  mesenchymal cells aggregate   and condense in response to signaling 
molecules such as  transforming growth factor-β (TGFβ)  ,  sonic hedgehog (SHH)  , 
and  bone morphogenetic protein (BMP)  . Upon  commitment      to  chondrogenesis  , 
cells express the transcription factor  Sox-9  , which drives expression of cartilage- 
specifi c genes, including the matrix proteins  Col2   and  aggrecan  . In vertebrates that 
undergo  skeletal ossifi cation  , the cartilaginous skeleton acts as a template for the 
eventual replacement with bone, a process known as  endochondral ossifi cation  . 
 Chondrocytes   cease proliferating and undergo  hypertrophy  . This critical milestone 
in the process of  endochondral ossifi cation   is typifi ed by characteristic changes in 
chondrocyte  morphology  , including dramatic increases in cell volume, and a defi ned 
gene expression profi le.  Hypertrophic chondrocytes   begin  secreting            a unique matrix 
consisting of  collagen   type X and  alkaline phosphatase  , which initiates matrix cal-
cifi cation [ 4 – 6 ]. The hypertrophic  chondrocytes   also begin secreting the  protease  , 
 matrix metalloproteinase-13 (MMP-13)   [ 7 – 10 ], that breaks down cartilage matrix, 
and growth factors such as  vascular endothelial growth factor (VEGF)   [ 11 ], which 
induces blood vessels to sprout from the surrounding tissues. The  hypertrophic 
chondrocytes            then undergo apoptosis and are replaced by mesenchymal cells and 
 pre-osteoblasts   brought into the cartilage template via invading capillaries [ 12 – 15 ]. 
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The remnant cartilage matrix is further cleared by  invading osteoclasts   and replaced 
with bone matrix as mesenchymal cells differentiate into  osteoblasts  .  Endochondral 
ossifi cation   concludes when the cartilage template is replaced by bone. Not all 
embryonic cartilage is replaced by bone, however, and the permanent cartilage that 
persists following embryonic development make up the  fi brocartilage  ,  elastic carti-
lage  , and  hyaline cartilage   of the adult organism. 

 Interestingly, many of the same  milestones            observed in  embryonic cartilage   and 
skeletal development are also seen in adult vertebrate fracture healing [ 16 ]. Furthermore, 
the primary morphogenetic pathways that are active during embryonic skeletal devel-
opment are also expressed in  fracture calluses  , and a comparison of the  transcriptomes   
has revealed that genes that  control            appendicular limb development also show increased 
expression during fracture healing [ 17 ].  Fracture healing   begins with an initial anabolic 
phase characterized by an increase in tissue volume related to the de novo recruitment 
and differentiation of stem cells that form skeletal and vascular tissues. The tissue 
between broken bones at the fracture site swells as hematomas form. The  adjacent 
periostium   also swells, and periosteal stem/progenitor cells proliferate into the fracture. 
These cells undergo  chondrogenesis  , forming the cartilage callus. Concurrent with car-
tilage tissue development, cells that will form the nascent blood vessels that supply the 
new bone are recruited and differentiate in the surrounding muscle sheath. As  chondro-
cyte         differentiation progresses through  hypertrophy  , the cartilage extracellular matrix 
undergoes mineralization and the anabolic phase of fracture repair terminates with 
chondrocyte  apoptosis  . Just as in  endochondral ossifi cation  , blood vessels invade in 
response to  VEGF   signals, bringing  pre-osteoblasts   that replace cartilage tissue with 
bone. The  anabolic phase   is followed by a prolonged phase in which catabolic activities 
predominate as the callus is resorbed and remodeled to the bone’s original cortical 
 structure           . The recapitulation of these ontological processes is believed to make fracture 
healing one of the few postnatal processes that is truly regenerative, restoring the dam-
aged skeletal organ to its pre-injury cellular composition, structure and biomechanical 
function [ 16 ]. As discussed in the following section, certain  non-mammalian organ-
isms   are capable of even more impressive feats of  regeneration           .  

4.3     Cartilage Regeneration During Limb/Tail Regeneration 

 Several remarkable  organisms      are able to  regenerate            amputated limbs and/or tails. 
In doing so, the tissues of the lost appendage are replaced, including cartilage. In 
fact, cartilage is the default skeletal tissue for appendage regeneration, and, in these 
special cases, the regenerated cartilage does not ossify for the lifetime of the regen-
erate. These feats of regeneration are achieved through processes that meld embry-
onic development with adult wound healing, and what we learn from them may 
offer clues for improving mammalian regeneration. 

  Urodeles   ( salamanders   and newts) and   Xenopus  frogs   are able to regenerate 
limbs as adults (Table  4.1 ). While  urodeles   are able to regenerate both front and 
back  limbs        , frogs are able to regenerate front limbs only.  Urodeles   retain  non- ossifi ed, 
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cartilaginous skeletons into adulthood and are able to regenerate fully formed  limbs   
(Fig.  4.1a ), with all the cartilaginous skeletal elements of the originals (Fig.  4.1c ). 
Regenerated urodele limbs also recreate the musculature of the amputated arms/
legs. Frogs, which do fully develop and exhibit ossifi ed skeleton as adults, regener-
ate cartilage spikes rather than limbs following  amputation      (Fig.  4.1b ). Cartilage 
spikes are continuous with the radio-ulna bone of the original limb, and no other 
skeletal elements are formed, and very little muscle is regenerated (Fig.  4.1d ). These 
differences between urodele and  frog limb regeneration   are remarkable given that 
both processes begin very similarly. Following limb loss in both animal groups, 
limb stump tissues contract and wound epidermis forms to seal the stump.  Stump 
tissues   are broken down by secreted proteases, releasing cells into the stump. These 
cells migrate and proliferate, forming the  blastema  , the classic indicator of regen-
eration, and  blastema   cells reform the majority of tissues of the replacement limb. 
In  frogs        , regenerated spike cartilage does not originate from blastema cells. Instead, 
cartilage spikes originate from severed bones of amputated limbs and are formed 
similar to  cartilage   calluses during fracture repair [ 18 ]. How this callus-like accu-
mulation of cartilage extends into the spikes of regenerated frog limbs is not known 
currently, but may provide clues for healing bone fracture gaps that exceed critical 
size defect lengths. In urodeles, regenerated limb cartilage does originate from  blas-
tema   cells (Fig.  4.2 ) [ 19 ]. Interestingly, the blastema cells that differentiate into 
cartilage are derived from both the  dermis      and cartilage of the original limb stump, 
but not from muscle. This restriction in differentiation stems from the fact that the 
 urodele   limb  blastema   is a heterogeneous collection of restricted progenitor cells 
that do not cross developmental origins as they reform lost tissues. For example, 
both dermis and skeletal tissues originate from the  lateral plate mesoderm  , and blas-
tema cells originating from either of these tissues are able to differentiate into carti-
lage, but not muscle, which originates from  presomitic mesoderm  . Similarly, limb 
blastema cells derived from muscle do not differentiate into dermis or cartilage.

          Table 4.1    Comparison of  vertebrate cartilage regeneration            and healing abilities   

 Organism  Adult skeleton 
 Limb 
regeneration 

 Tail 
regeneration 

 Full 
thickness 
articular 
defect 

 Partial 
thickness 
articular 
defect 

 Ear 
hole 
closure 

 Amphibia  Urodele  Cartilaginous  Yes [ 18 ,  19 ]  Yes [ 20 – 22 ]  Yes [ 23 ]  ?  NA 
 Frog  Osseous  Yes [ 18 ]  NA  ?  ?  NA 

 Reptilia  Lizard  Osseous  No  Yes [ 24 – 26 ]  Yes [ 27 ]  ?  NA 
 Mammalia   Acomys  

mice 
 Osseous  No  No  ?  ?  Yes 

[ 28 ] 
 MRL 
mice 

 Osseous  No  No  Yes [ 29 ]  No [ 29 ]  Yes 
[ 30 ] 

 Wild 
type 
mice 

 Osseous  No  No  No  No  No 

 Humans  Osseous  No  No  No  No  No 
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  Fig. 4.1    Examples of limb and tail  regeneration      in amphibians and  lizards  . ( a ,  b ) Morphological 
comparison of ( a )  salamander   ( Ambystoma mexicanum ) and ( b ) frog ( Xenopus laevis ) forelimbs 
before ( left ) and 8 weeks after ( right ) amputation.  Salamanders   regenerate new limbs, while frogs 
regenerate cartilage spikes. ( c ,  d ) Histological analysis (pentachrome) of regenerated ( c ) salaman-
der and ( d ) frog limbs. Salamanders regenerate all the skeletal elements of the upper arm and hand,
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     The inverse relationship between complexity and regeneration fi delity and the 
preference for producing  cartilage            noted for limb regeneration are also observed in 
tail regeneration.  Urodeles   and  lizards   regenerate tails (Table  4.1 ) [ 24 – 26 ,  32 ], and 
both regenerated tail skeletons are almost completely cartilaginous (Fig.  4.1e, f ). 
 Salamanders   regenerate  cartilage rods (CR)   ventral to regenerated spinal cords 
(Fig.  4.1e ), while lizards regenerate  cartilage tubes (CT)   that enclose regenerated 
spinal cords (Fig.  4.1f ). However, regenerated tails of the comparatively primitive 
salamander segment and develop neural and hemal arches, and mature regenerated 
salamander tails are almost perfect copies of  originals      (Fig.  4.1g ). The more  com-
plex             lizards  , on the other hand, regrow imperfect regenerated tails, and lizard carti-
lage tubes never segment and are easily distinguishable from original tail skeletons 
(Fig.  4.1g ). Also unlike  salamander   cartilage regeneration, a portion of the regener-
ated lizard cartilage ossifi es [ 24 ]. The most proximal region of the  CT   in contact 
with the original tail  skeleton   undergoes  endochondral ossifi cation   in a process 
similar to what is observed during fracture healing. Proximal CT  chondrocytes   
undergo  hypertrophy   and are replaced by bone. This proximal ossifi cation event is 
not observed in the  urodele   CR, and may refl ect the differences in ossifi cation states 
between adult  urodele         and  lizard   skeletons. Interestingly, the perichondrium of the 
distal lizard CT calcifi es without undergoing ossifi cation, while the CT interior 
remains cartilaginous for the lifetime of the regenerate. Like bone periosteum, the 
 lizard   CT perichondrium harbors a stem/progenitor cell population that forms addi-
tional cartilage in response to stimulation with  TGFβ   [ 24 ]. Like urodele regenerated 
 cartilage     , cartilage formed from  lizard   CT perichondrium cells does not undergo 
 hypertrophy   and endochondral ossifi cation. These observations also indicate a link 
between original and regenerated cartilage ossifi cation: cartilage formed by  cells   
derived from ossifi ed tissues undergo  hypertrophy   and ossifi cation, while cartilage 
derived from cartilaginous tissue elements do not. This topic becomes important 
during discussion of cell therapies for cartilage healing in humans, which are 
plagued by unwanted cartilage  hypertrophy   and ossifi cation. 

  Tail regeneration   also provides an interesting contrast to limb regeneration in 
terms of cell identity. As with limb regeneration,  urodele   and  lizard   tail generation 
begins with  blastemas           . Unlike limb blastema cells, whose differentiation is lineage 
restricted by developmental origin (i.e., mesoderm vs ectoderm) [ 19 ], tail blastema 

Fig. 4.1 (continued) while frogs regenerate a single cartilage spike. ( e ,  f ) Histological (penta-
chrome) and ( e ,  f  Insets) morphological analysis of ( e ) salamander tail 5-weeks post amputation 
and ( f ) lizard ( Anolis carolinensis ) tail 2 weeks post-amputation. ( g ) Salamander ( top ) and lizard 
( bottom ) tails 10 weeks after amputation analyzed by micro-computed tomography. Pentachrome 
stains cartilage  green , bone  orange , muscle  red , and spinal cord and epidermis  purple. Dashed 
lines  denote amputation planes.  c  carpal,  cr  cartilage rod,  cs  cartilage spike,  ct  cartilage tube,  h  
humerus,  m  muscle,  mc  metacarpal,  nc  notochord,  p  phalanges,  r  radius,  rm  regenerated muscle, 
 rsc  regenerated spinal cord,  ru  radio-ulna,  sc  spinal cord,  u  ulna,  ve  vertebra. Bar = 1 mm. Figure 
adapted from [ 31 ]       
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cells are able to transition between developmental lineages during differentiation 
(Fig.  4.2 ). For example, regenerated tail cartilage is formed from  blastema   cells that 
have originated from muscle [ 20 ], dermis, or even spinal cord (ependyma) [ 21 ]. In 
fact, tail skeletal tissue contributes only minimally to regenerating tail blastemas 
and, hence, regenerated cartilage. The reasons for these differences between limb 
and tail blastema origins are not currently understood, but they may refl ect differ-
ences involving both development and healing in the appendicular versus axial 
 skeletons     . 

 In summary, appendage  regeneration      is depended on the formation of wound 
epithelia and  blastemas   or blastema-like structures. This  encapsulation            of proliferat-
ing cells by un-differentiated, embryonic-like epithelial tissue provides the neces-
sary environment for tissue differentiation and extension and avoids scar formation. 
While  lizards  ,  urodeles  , and  frogs   provide perhaps the best examples of these struc-
tures and the regenerative process, certain mammals are also capable of approxi-
mating these healing  responses           .  

4.4     Cartilage Healing and Regeneration in Non-Human 
Mammals 

 As a group,  mammals               exhibit much reduced regenerative abilities compared to 
amphibians and  lizards  . For example, no mammal is capable of limb or tail regen-
eration as adults. While some rodent species, such as  African spiny mice ( Acomys )   
and South American spiny rats (  Proechimys )      shed tails as strategies for escaping 
predators (caudal autotomy), lost tails are not regenerated [ 33 ,  34 ]. Perhaps the 
most impressive naturally-occurring  examples      of adult regeneration among mam-
mals are observed in species capable of skin autotomy. For example, the skin of 

  Fig. 4.2    Summary of  blastema   cell differentiation restrictions during  salamander   limb and tail 
regeneration. Figure adapted from [ 19 ]       
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  Acomys    mice is mechanically weak and easily tears and sloughs off [ 28 ]. This 
makes   Acomys    mice diffi cult for predators to grab and hold onto, allowing the mice 
to escape, but often results in large open wounds and skin loss.  Acomys  mice, but 
not house mice ( Mus ), are able to heal these types of skin wounds quickly and with-
out scarring [ 28 ]. In the lab,  Acomys  mice are capable of healing ear hole punches, 
including auricular cartilage (Table  4.1 ) [ 28 ]. Interestingly, these types of mice 
appear to generate  blastema  -like structures during healing, as evidenced by wound 
epidermis that bears striking similarities to those formed during appendage regen-
eration in  urodeles   and  lizards  . Whether the  Acomys  blastema follows the same 
 rules               in cell fate and differentiation remains to be determined. 

 While   Acomys    mice and   Proechimys       rats may represent the best examples of 
“natural” cartilage regeneration among mammals, certain mouse strains exhibit 
enhanced regenerative abilities following selective breeding over many genera-
tions. The so-called “ super healing  ” mouse strains are able to heal a number of tis-
sues better than wild type  mice     . Collectively known as the  Murphy Roths Large 
(MRL)   mice, this groups includes the MRL/MpJ, Murphy Roths Large/lymphopro-
liferative (lpr)  mouse               strain (MRL/MpJ- Fas   lpr  /J) MRL/MpJ- Fas   lpr  /J, and Large 
strains [ 35 ]. Like   Acomys    mice,  MRL   mice are able to heal ear hole punches and 
regenerate auricular cartilage (Table  4.1 ) [ 30 ]. In addition, MRL mice form a type 
of wound epidermis faster than other strains, and appear to form  blastema  -like accu-
mulations of mesenchymal cells in response to certain types of injuries. It is inter-
esting that neither   Acomys    mice nor MRL strains are able to regenerate limbs, tails, 
or digit tips as adults [ 36 ]. 

 While direct comparisons between  Acomys  mice and MRL strains have yet to be 
made, based on their similar abilities to form blastema-like structures and heal hole 
punch  injuries               it is possible that similar healing mechanisms are at work in both 
animals. Unfortunately, the exact underlying mechanisms responsible for the 
enhanced healing abilities of  MRL   mice have proven diffi cult to specify. The “ super 
healer  ” phenotype appears to depend most heavily on the inclusion of the Large 
strain identity, which includes autoimmune anomalies in addition to enhanced heal-
ing. For example, the MRL/MpJ- Fas   lpr  /J strain was established through selective 
 interbreeding      of the B6 (0.3 %), C3H (12.1 %), AKR (12.6 %), and Large (75 %) 
strains [ 35 ]. These mice are prone to autoimmune disorders, and these phenotypes 
were attributed to a mutant   Fas  gene  , which arose spontaneously at generation F12 
during selective breeding. However, the link between mutant  Fas  and healing is 
confounded by the fact that the  MRL  /MpJ  mice              , which have the wild type  Fas  gene 
and were maintained as a control strain for the  MRL  /MpJ- Fas   lpr  /J mice, also exhibit 
enhanced healing. Still, since all 3 MRL mouse strains exhibit autoimmune pheno-
types, it is natural to suppose a link between regenerative ability and immunity 
dysfunction. However, a multi-strain wound healing survey offers evidence that 
they are not genetically linked. It should be noted, however, that mutations in the 
cell cycle checkpoint gene p21 cause yet another autoimmune disorder similar to 
lupus, but also enhanced healing phenotypes [ 37 ]. Obviously, additional research is 
needed to work out the mechanisms behind the “ super healing  ”  phenotypes                     (see 
comprehensive review by Heydeman [ 35 ]).  
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4.5     Intrinsic Articular Cartilage Repair 

 While cartilage  regeneration         activities in response to appendage amputation and 
ear hole punch injuries are informative in assessing the healing limits of non-
human animals, they are admittedly not readily relatable to human cartilage inju-
ries, which predominantly affect the articular cartilage of limb joints. As previously 
mentioned, highly specialized  hyaline cartilage   lines the articular surfaces of long 
bones. Articular cartilage itself is divided into four zones based on  chondrocyte   
morphology, matrix composition and distribution: (1) superfi cial zone (tangential 
layer), consisting of two to three layers of small, fl attened chondrocytes arranged 
parallel to the surface; (2) middle or transitional zone, where the chondrocytes are 
spherical; (3) deep or radial zone, consisting of large chondrocytes that form col-
umns perpendicular to the surface; and (4) calcifi ed zone, where hypertrophic 
 chondrocytes   are embedded in the calcifi ed matrix, which is connected to the sub-
chondral bone (Fig.  4.3 ). Differences in the  ECM   are seen within the hierarchical 
 structure         of articular cartilage. In the surface zone,  chondrocytes   produce  proteo-
glycans   that reduce friction (i.e., lubricin), protect chondrocytes and cartilage sur-
faces, and inhibit synovial cell  overgrowth         [ 39 ,  40 ]. In the middle zone, the  ECM   
includes  Col2  ,  aggrecan  , and other proteins.  Collagen type X   and  alkaline phos-
phatase   are found in the deep zone and calcifi ed zone, indicating  chondrocyte   
hypotrophy and the calcifi ed matrix environment (Fig.  4.3 ).  Collagen fi brils   are 
oriented mostly parallel to the surface in the superfi cial  zone     , obliquely in the mid-
dle zone, and perpendicular to the joint surface in the deep zone, which is suited to 
load transmission (Fig.  4.3 ) [ 38 ].

Chondrocyte 
distribution

Matrix
distribution

Superficial 
/Tangential 
Zone (STZ)
(10-20%)

Middle 
Zone(MZ)
(40-60%)

Deep 
Zone(DZ)

(30%)
TIDEMARK

Calcified Zone

Subchondral bone

Cancellous Bone

Mechanical
load distributiona b c

  Fig. 4.3    Schematic view of normal  articular cartilage   highlighting ( a ) cell distribution, ( b ) matrix 
distribution, and ( c ) collagen fi bril orientation. Figure modifi ed from [ 38 ]       
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   In terms of  tissue repair ability  , cartilage injury is classifi ed on the basis of the 
depth of defect (Fig.  4.4 ), and tissue remodeling response differs depending on 
the type and size of the defect.  Partial cartilage defects   are limited to the 
superfi cial-to- middle zones and do not involve damage to subchondral bone. 
Full thickness cartilage defects penetrate down to the bone, and are in fact more 
prone to heal than partial thickness defects if the osteochondral junction is also 
damaged. In these cases, where full thickness defects penetrate into the bone 
marrow, bone marrow stromal cells (BMSCs)          fl ow into the lesion site to form a 
stem-cell rich fi brin clot and stimulate intrinsic repair. While humans are unable 
to heal both partial and full thickness defects, some of the species discussed 
above do manage at least some level of articular cartilage healing.  MRL   mice are 
able to heal full thickness defects up to 0.5 mm 2  in depth, and the regenerated 
cartilage is robust hyaline  cartilage      (Table  4.1 ) [ 29 ]. However, even the “ super 
healing  ” mouse strains are unable to heal partial thickness defects (Table  4.1 ). 
Articular cartilage healing has yet to be studied in   Acomys    mice and p21 knock-
out mice, and such experiments would provide interesting context for the results 
involving  MRL   mice. Among non-mammalian animals,  lizards   are able to regen-
erate entire articular cartilage surfaces (Table  4.1 ) [ 27 ], but new cartilage tissue 
appears to undergo  hypertrophy   and is probably more similar to a fracture carti-
lage callus than true regenerated articular cartilage [ 41 ]. It is currently not known 
if lizards or other reptiles can heal partial or full thickness cartilage defects. 
 Salamanders   can regenerate full thickness cartilage  defects         that cover approxi-
mately 50 % of the joint [ 23 ], but it is not yet known if urodeles can regenerate 
partial thickness defects (Table  4.1 ). In any case, these experiments not only 
provide evidence that healing large articular cartilage defects  is  possible, but 
they also provide hope that articular cartilage healing may be achieved by 
humans with the correct  therapies              .

  Fig. 4.4    Three different classes of  cartilage injury   dependent on the depth of defect (rabbit knee 
joint cartilage as background)       
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4.6        Cell-Based Therapies for Human Articular Cartilage 
Repair 

 Unlike the cartilage of the special  species         discussed above, adult human cartilage has 
limited self-repair ability, and damage to articular cartilage leads directly to the pathogen-
esis of  osteoarthritis (OA)  . For example, progressive loss of articular cartilage leads to an 
increase in  subchondral bone formation  , as well as new bone formation at joint margins 
(osteophytes). Unfortunately for the patient, these tissue changes underlie clinical symp-
toms including joint pain and limited joint movement. Overall, these pathologies mani-
fest as degenerative joint diseases, such as OA, which severely affect the quality of life 
[ 42 ]. OA is one of the most common causes of mobility loss and represents the most 
prevalent form of musculoskeletal disease worldwide [ 43 ,  44 ]. For example, OA affects 
27 million Americans, about 60 % of men and 70 % of women above 65 years of age [ 45 , 
 46 ], and directly contributes to disabilities in 9–10 % of the U.S. population [ 47 ]. 

 As mentioned above, humans do not spontaneously heal partial or full thickness 
cartilage  defects        ,  OA   progresses until the entire affected joint needs to be either fused 
or replaced. However, there is evidence of incomplete healing in small and deep 
defects. Osteochondral defects do exhibit limited reparative capacity, and, in clinical 
practice, this intrinsic reparative property is exploited in the microfracture technique, 
which involves surgical drilling to the subchondral bone region to treat small size  car-
tilage defects      (usually 0.5–2 cm 2 ) [ 2 ]. However, the cartilage formed in response to 
subchondral microfracture consists mainly of fi brocartilage rather than the original 
hyaline cartilage, and the therapeutic benefi ts generally last only 2–5 years [ 48 – 50 ]. 
For larger defects that require more extensive healing, tissue transplantation such as 
osteochondral auto/allograft (mosaicplasty) has been used; however, tissue source and 
compatibility present potential complications. Most of the current approaches to treat 
articular cartilage injuries, therefore, have focused on stimulating intrinsic regeneration 
and/or replacing diseased or lost tissue. These therapeutic approaches are collectively 
known as  tissue engineering   and  regenerative medicine  , an area that has been develop-
ing rapidly since the 1970s. Termed the “next evolution of medical treatments” by the 
U.S. Department of Health and Human  Services     , regenerative medicine aims to replace 
or regenerate human  cells        , tissues and organs to restore or establish normal function 
[ 51 ]. The basic principle involves the application of cells, biomaterial scaffolds, and 
signaling molecules to promote endogenous regenerative capacity and/or the replace-
ment of whole tissues with engineered constructs in vitro [ 52 ]. Regenerative medicine 
approaches for healing articular cartilage injuries offer promise for preventing  OA  . 

4.6.1     Autologous  Chondrocyte  -Based Therapies for Cartilage 
Defects 

 The concept of autologous  implantations         to treat cartilage defects began with 
studies by O’Driscoll and co-workers, who used periosteal grafting to treat rabbit 
chondral defects [ 53 ]. Further refi nement by Grande and Peterson included the 

T.P. Lozito et al.



69

use of cultured autologous chondrocytes [ 54 ,  55 ].  Autologous Chondrocyte 
Implantation/Transplantation (ACI/ACT)   was fi rst applied clinically to treat full-
thickness chondral defects in knees by Brittberg et al. [ 56 ]. Briefl y, small amounts 
of healthy  cartilage   were harvested from non-load bearing  areas         under  arthros-
copy  , and the isolated chondrocytes were expanded in vitro for up to 6  weeks        . The 
cultured cells were then injected into the cartilage defect and sealed with a sutured 
periosteal fl ap taken from the proximal medial tibia (Fig.  4.5 ). The overall 
0–5 year therapeutic  effi cacy      was generally 70–90 %, as evidenced by relief of 
 symptoms         and improvement of joint function [ 57 ]. In a 10–20 year (mean 
12.8 year) follow-up study, 74 % of the 224 patients that underwent  ACI   treatment 
reported their status as good or better than before surgery [ 58 ]. ACI/ACT have 
also been reported to be effective in treating larger cartilage defects [ 59 ], with 
therapeutic benefi ts lasting longer than those of  microfracture marrow-stimula-
tion techniques   [ 60 ]. Therefore, ACI provides the possibility of regenerating car-
tilage  tissues         and restoring normal joint function, criteria which meet the basic 
clinical defi nition for functional cartilage  repair  .

   To eliminate the need for secondary surgery sites and to reduce the complex-
ity of the ACI/ ACT   procedure, biomaterials have been adopted in the next gen-
erations of ACI/ACT. Standard procedure of ACI/ACT involves surgical 
 preparation      of the defect(s), periosteal harvesting, suturing of periosteum over 
defect(s), application of fi brin glue sealant, and implantation of  chondrocytes   
with the risks of possible cell leakage from the application sites as well as uneven 
cell distributions. Furthermore, the harvesting of periosteum increases the opera-
tion  time         and requires a larger surgical exposure fi eld [ 61 ]. To address these 
shortcomings, “second generation”  ACI   uses biomaterials (e.g., collagen type I/
type III membranes) instead of periosteum grafts, thereby reducing open injury 
 sites         and shortening operation time. More recently, third generation, or “all in 
one” grafts, have been developed that make use of combinations of cells and 
biomaterials, which are delivered directly to defects without either periosteal 
covers or suture fi xation. This technique is referred to as  matrix-associated 
autologous chondrocyte implantation (MACI)  . Currently, the most commonly 
used biomaterials in MACI involve natural  ECM   materials such as collagen and 
hyaluronan [ 62 ], and there is active, ongoing  research   to develop more optimal 
 biomaterials         [ 62 ,  63 ].  

  Fig. 4.5    Schematic of autologous  chondrocyte   implantation       
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4.6.2     Stem Cell-Based Therapies for Cartilage Regeneration 

 Despite the promise of  ACI            and  MACI        , limitations remain, and current  research         is 
aimed at improving therapeutic effectiveness and availability. For example, ACI 
and MACI are limited by the availability of harvested cell number and quality. In 
clinical application,  chondrocytes   directly derived from healthy hyaline cartilage 
are considered the most appropriate for transplantation [ 64 ]. Unfortunately, the 
numbers of chondrocytes suitable for harvest are very limited. For example, 
patients in need of  ACI   often have experienced extensive cartilage degeneration 
and  loss        ; in addition,  chondrocytes   exhibit only limited life span as differentiated 
cells during culture expansion before cell quality irreversibly suffers. To address 
the shortage of suitable cell populations, stem cells that may serve as  chondropro-
genitors   are under investigation as new candidate cell sources to replace native 
 chondrocytes   for cartilage  repair        . 

  Mesenchymal stem cells (MSCs)   are the most  promising         therapeutic cells for 
cartilage regeneration research, owing to their self-renewal ability, chondrogenic 
potential, and anti-infl ammatory activity [ 65 ]. Clinical application of bone marrow- 
derived MSCs has been reported by several groups [ 66 – 68 ], and a 2 year follow up 
cohort study showed comparable effi cacy of  MSCs      and native  chondrocytes   for use 
in  ACI   [ 69 ]. However, longer term studies are already needed. One of the most 
important and interesting aspects of using MSCs in ACI is the dependency of MSC 
chondrogenic potential on cell source since, ultimately, the clinical outcome 
depends on the ability of the stem cells to form cartilage. A summary of studies 
evaluating the use of  MSCs   from various tissue sources in treating ACI in animal 
studies is presented in Table  4.2 . This comparison indicates that bone marrow-
derived  MSCs         produce more hyaline-like cartilage matrix and promote higher 
functional recovery than MSCs isolated from periosteum, synovium, adipose tis-
sue, and muscle [ 70 ], which tend to undergo  fi brocartilage   differentiation [ 70 ,  95 ]. 
MSCs isolated from tissues other than bone marrow do offer certain advantages, 
however. For example, adipose-derived MSCs are easy to obtain, and adipose tis-
sue contains 100-times greater numbers of stem cells per volume than bone marrow 
aspirates [ 96 ]. Unfortunately the chondrogenic potential of adipose-derived  MSCs   
is lower compared to bone marrow MSCs [ 97 ], suggesting that more research  needs      
to be done to improve the chondrogenic differentiation of these  cells        .

   Furthermore, given their expanded levels of differentiation potencies, both 
 embryonic stem cells (ESCs)   and  induced pluripotent stem cells (iPSCs)   have the 
potential for chondrogenesis [ 94 ,  98 ] with the additional options of founding 
patient-specifi c  cell         lines with high self-renewal potential, these cells may be the 
ideal candidates for cartilage regenerative medicine. Indeed, animal studies have 
already been conducted [ 91 – 93 ,  99 ] (Table  4.2 ). However, several complications 
have yet to be overcome. For example, not all of the transplanted cells contribute 
to hyaline cartilage regeneration [ 93 ], and not all cell lines differentiate into the 
target tissue safely [ 99 ]. Thus, before ESC and  iPSC      cells are used in a clinical 
setting, the topics of differentiation effi ciency and tumor  formation         must be solved.  
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4.6.3     Future Studies to Enhance Stem Cell-Based Cartilage 
Regeneration 

 Both the  ACI   and  MACI   techniques for cartilage repair are well-established exam-
ples of  tissue      engineering/regenerative medicine and represent the current best  solu-
tions         for cartilage injury. However, neither ACI nor  MACI   can completely regenerate 
hyaline cartilage for large defects, and there is signifi cant  need      for further improve-
ments. An important area of current research involves the optimization of differen-
tiation signals and environments for producing robust hyaline cartilage. Clues from 
embryonic cartilage developmental processes, as well as from cartilage regenera-
tion in non-human  animals     , could shed light on such studies. 

    Table 4.2    Human stem cells for cartilage  regeneration           

 Cell sources  Animal model  General outcome 

 MSCs  Bone marrow  Rabbit 
[ 70 – 77 ] 
 Pig [ 78 ] 
 Goat [ 79 ] 
 Rat [ 80 ,  81 ] 

 • Increased tissue formation and reduction in 
degenerated cartilage [ 71 ,  72 ] 

 • Histological score improvement [ 71 ,  76 ] 
 • Repaired cartilage was hyaline-like [ 70 ,  73 ,  75 , 

 77 ,  80 ] 
 • Restoration of mechanical properties [ 78 ] 
 • Cartilage specifi c markers expression and 

cartilage formation, forming hyaline 
cartilaginous tissue [ 80 ] 

 Adipose  Rat [ 82 ] 
 Rabbit [ 70 , 
 71 ,  83 ] 

 • Cells differentiated into functional 
chondrocytes that secreted cartilaginous matrix 
[ 70 ,  71 ,  82 ,  83 ] 

 • Less repair than bone marrow- derived MSC [ 70 ] 
 Synovium  Rabbit [ 71 , 

 84 – 87 ] 
 Minipig [ 88 ] 

 • High histological score improvement [ 71 , 
 84 – 86 ] 

 • Enhanced cartilage matrix production [ 87 ,  88 ] 
 • Integrated with surrounding native cartilage [ 87 ] 

 Periosteum  Rabbit [ 70 ]  • Increased histological grading [ 70 ] 
 Muscle  Rat [ 89 ,  90 ] 

 Rabbit [ 70 , 
 71 ] 

 • Enhanced histological scores and ECM 
deposition [ 89 ,  90 ] 

 • Less repair than BMSCs [ 70 ,  71 ] 
 Umbilical cord  Rabbit [ 75 ]  • Enhanced histological score than no-cell 

control but lower than BMSC [ 75 ] 
 ESCs  Embryo  Rat [ 91 ,  92 ] 

 Sheep [ 93 ] 
 • Produce cartilage, resulting in repair of defects 

without forming any teratomas [ 91 ] 
 • Formed neocartilage layer with good surface 

regularity and complete integration [ 92 ] 
 • Promoted better organization and tissue bulk, 

but no effect on histological evaluation [ 93 ] 
 iPSCs  Cells by 

reprogramming 
 Nude  mice         
[ 94 ] 

 • Some cell lines formed tumors, others induced 
cell lines generated cartilage- like tissue, but 
others formed tumors [ 94 ] 
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 For example, to improve stem cell differentiation effi cacy and maintain  chondro-
cyte   phenotype, signaling factors such as TGF- βs   are required. However, a growing 
amount of evidence has indicated that treatment with single signaling factors is 
insuffi cient for initiating maximal stem cell  chondrogenesis         and phenotype mainte-
nance. Thus, knowledge gained on embryonic skeletal system development/nonhu-
man cartilage regeneration should be used a guide. 

  Embryonic chondrogenesis   begins with mesenchymal cell recruitment, prolifera-
tion and condensation. Cell  condensations         are initiated by several growth factors, 
including TGF- β  , FGF, Wnt, and BMPs, acting in concert [ 3 ,  100 ,  101 ]. Afterwards, 
several matrix molecules, including  fi bronectin  ,  hyaluronan   and  collagens        , interact 
with the cell surface receptors to initiate the transition from chondroprogenitor to  chon-
drocytes   [ 100 ,  102 ,  103 ] and regulation of the chondrogenesis-specifi c transcription 
factor  Sox-9   [ 104 ]. In an example of recreating multi-step differentiation schemes 
in vitro, ESCs/ iPSCs      were treated with two-step differentiation  strategies     . First, ESCs/
iPSCs were differentiated into multipotent states (ESC-MSC or iPSC- MSC), which 
were then differentiated towards the chondrogenic linage [ 105 ]. These strategies offer 
promise for creating signifi cant  amounts         of healthy cartilage, but additional work is 
required to fi ne-tune the differentiation signals. For human  MSCs  , TGF β2   and TGFβ3 
were shown to be more active than TGFβ1 in promoting chondrogenesis [ 106 ]. 
Interestingly, the effect of TGFβ3 stimulation is enhanced if the growth factor is applied 
during the initial  phase         of the culture period and then withdrawn [ 107 ,  108 ]. Adding to 
the complexity, the effects of growth factor treatments varies with  MSC   tissue source. 
For example, BMP6 in addition to TGFβs is required by adipose-derived stem cells for 
effi cient stimulation of chondrogenesis [ 109 ,  110 ]. Again broadening our discussion to 
non-human animals, TGF βs   and  Indian hedgehog (Ihh)   regulate cartilage  formation      
and maturation during  lizard   tail regeneration [ 24 ]. TGFβ1 and TGFβ3 induce cartilage 
formation in lizard CT perichondral  cells     , which express the  MSC   markers CD90 and 
CD66, and the CT perichondrium calcifi es in response to Ihh. Inhibiting hedgehog 
signaling in the regenerating  lizard   tail suppresses cartilage maturation, which may 
provide  clues         for preventing similar maturation in cartilage derived from progenitor 
cells in other species, including human  MSCs  . Indeed, considering the complex mix-
ture of factors involved in  embryonic skeletogenesis   and  appendage regeneration   
in vivo, we may surmise that a similarly complex, multifactorial biochemical environ-
ment will be required for effective long-term cartilage  engineering                    .   

4.7     Conclusion 

 Cartilage is a tissue that most animals, including humans, are unable to repair. In 
this chapter we have summarized the cartilage healing abilities of the few species 
which are able to regenerate cartilage. We have also described the current approaches 
in therapeutic enhancement of cartilage repair in humans. It is noteworthy that car-
tilage therapies may be adapted to mimic the pattern and sequence of biological 
events seen in naturally regenerative tissues. For example, the use of autologous 
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stem cells to augment the resident progenitor cell population represents a strategy 
that echoes the role of the  blastema   in appendage regeneration. As future research 
works out the intricacies of cell differentiation and signaling, similar advancements 
will help in closing gaps in wound healing  capabilities     .     
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    Chapter 5   
 Digit Regeneration in Mammals                     

     Lindsay     A.     Dawson     ,     Paula     P.     Schanes     ,     Connor     Dolan     ,     Paulina     Ketcham     , 
    Ling     Yu     ,     Mingquan     Yan     ,     Tao     Li     , and     Ken     Muneoka    

5.1           Introduction 

 The astonishing regenerative ability of the  urodele   amphibian limb has long been 
investigated as the chief model for regeneration  in vertebrates  . The urodele limb 
responds to  amputation   via a process called  epimorphic regeneration     , and involves 
the formation of a  blastema   comprised of proliferating cells that are undifferentiated. 
The regeneration process involves a series of stages (e.g. infl ammation, wound clo-
sure, dedifferentiation, cell migration, etc.) many of which are known to be essential 
for the successful replacement of the amputated structure. Such a stepwise view of 
regeneration [ 1 ] points to the fact that the regenerative response involves a complex 
series of interconnecting processes, and not simply an event that can be toggled on 
or off. While the  urodele   limb represents a beacon for regeneration among higher 
vertebrates, mammals, including humans, are not without regenerative capabilities 
and can successfully regenerate the distal portion of the fi ngertip [ 2 ,  3 ]. This regen-
eration response is  amputation   level specifi c, in that conservative treatment of  ampu-
tations   distal to the nail matrix can successfully regenerate, while amputations 
proximal to the nail matrix results in a more traditional wound healing response that 
culminates with scar formation. This  regenerative ability   is particularly enhanced in 
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children, however a similar response has been documented in adults [ 4 ]. While 
 human fi ngertip regeneration      is well documented in the clinical literature, the details 
of this response have not been well characterized, thus it remains more a curiosity 
rather than a model upon which regenerative therapies might evolve. 

 Like the human fi ngertip, the  digit   tip of mice possesses a similar ability to 
regenerate; amputation through the terminal phalanx results in the faithful restora-
tion of the digit tip [ 5 ]. This regenerative response is highly reproducible and occurs 
following digit  amputation      during fetal, neonatal and adult stages. Like the regener-
ating  urodele   limb, the digit tip regenerative response involves blastema  formation   
and goes through a series of inter-dependent stages, some of which are known to be 
essential for successful regeneration.  Regeneration   of the  mouse   digit tip correlates 
with  amputation   distal to the nail matrix making it amputation level specifi c, much 
like human fi ngertip regeneration. Thus, the regenerating  mouse   mammalian digit 
functions as an important investigative model for uncovering the details surround-
ing endogenous mammalian regenerative response, and conversely, regenerative 
failure. In this chapter we summarize recent advances in our understanding of how 
regeneration in mammals is controlled.  

5.2     Overview of Digit Regeneration 

 The adult  mouse   distal phalanx (P3)       is a triangular shaped bone with a relatively 
wide base and a comparatively smaller distal apex, encased dorsally and medially 
within the nail organ (Fig.  5.1a, b ).  Distal amputation      of P3 transects multiple tissue 
types, including the P3 bone, the surrounding soft connective tissue, nerves, vascu-
lature, the ventral epidermis, the nail and associated nail bed (Fig.  5.1b, c ). Distal 
 amputation   does not remove the nail matrix, damage the ventrally located fat pad, 
or transect the highly  vascularized marrow cavity   (Fig.  5.1c ). While prompt wound 
closure is associated with the  urodele   regeneration response, the wound closure of 
the mammalian P3  digit   is comparatively slow and shows considerable variability, 
taking between 8 and 12  days   to complete [ 6 ]. Wound healing is complicated 
because the wound epidermis does not close directly over the amputated bone sur-
face. Instead, the epidermis initially retracts and attaches to the periosteal surface at 
a location proximal to the original amputation plane (Fig.  5.1d ). During this initial 
wound response and prior to wound closure, overt tissue histolysis occurs, exempli-
fi ed by the degradation of the bone stump (Fig.  5.1d ). The bone  degradation   
response is mediated by osteoclasts that create large pits in the stump bone that 
eventually causes a secondary  amputation   proximal to the original (Fig.  5.1e, f ). 
Following this  injury-induced secondary amputation  , the proximally contracted 
 epidermis   is able to migrate through the region of regressed bone and forms a 
wound epidermis that eventually caps the distal digit region. In most cases the deg-
radation of distal bone is incomplete and the completion of wound closure results in 
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  Fig. 5.1    ( a ) Photograph of the  unamputated mouse digit      illustrating the nail encasing the triangu-
lar shaped P3 bone. ( b ) Histological section of the unamputated digit, showing the nail matrix 
(nm), the P3 bone ( b ), the bone marrow (bm), and the fat pad (fp). ( c )  Amputation   removes the 
distal digit tip without transecting the  vasculature   rich marrow cavity. ( d ) Simultaneous events at 
7 DPA include epidermal retraction from the amputation plane ( arrow ) and  osteoclast   erosion 
( asterisk ) of the bone stump proximal to the original amputation level. ( e ) TRAP staining at 7 DPA 
detects osteoclasts adjacent to the eroded bone stump ( arrow ) and secondary amputation plane. ( f ) 
Epidermal migration ( arrow ) beneath the eroded bone stump at 7 DPA. ( g – i ) Quantifi cation of 
bone length, volume, and μCT 3-D renderings illustrate the regeneration response is characterized 
by an initial degradation of bone ( arrows  in  g  and  i ) and a corresponding decrease in bone length 
and volume, followed by continued bone regeneration resulting in an overall overshoot in bone 
volume. ( j ) The variable process of  wound closure   and  wound epidermis (WE)   formation occurs 
between 8 and 12 DPA. At 12 DPA, the bone  marrow cavity   is open to the wound site and the 
blastema (bl) is prominent, and regeneration of bone is evident in the proximal blastema ( arrow ). 
( k ) By 17 DPA, proximal regeneration of woven bone ( b ) has enclosed the bone marrow cavity, 
and the distal blastema is still present. ( l ) AT 28 DPA, the amputated digit is largely regenerated, 
showing evidence of robust woven bone formation, soft connective tissue regeneration, and rees-
tablishment of pre- amputation   bone and  digit   length. ( m ) At 128 DPA, the regenerated digit is 
comprised of thick trabecular bone, and consequently is not a perfect replica of the unamputated 
digit. ( a – f  and  j – m ) Distal is to the  right , dorsal is to the  top . ( i ) Distal is to the  left , dorsal is to the 
 top . ( a – g  and  j – m ) are reprinted from Fernando et al. [ 6 ] and ( h ) and ( i ) are reprinted from 
Sammarco et al. [ 7 ]       
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the casting off of the distal bone fragment. Sequential  micro-computed tomography 
(μCT)   3-D renderings illustrate the intense degradation of the bone stump in 
response to  amputation  , and showcases the eventual expelling of the distal bone 
stump evident by 10 days post-amputation (DPA; Fig.  5.1i ). In summary, the early 
stages of this amputation model is characterized by a slow and variable wound heal-
ing response and an extensive histolytic  response   of bone tissue that results in an 
injury-induced  re- amputation   of the digit [ 6 ]. This re- amputation causes a decrease 
in both bone volume and bone length that is signifi cantly greater than that caused 
by the initial amputation injury (Fig.  5.1g, h ).

   The timing of wound closure and blastema  formation   is tightly linked; the blas-
tema forms rapidly once wound closure is complete. The blastema consists of a 
population of undifferentiated  mesenchymal cells   with a relatively  high prolifera-
tion index   that is proximally bounded by the bone stump and distally bound by the 
thickened wound epidermis (Fig.  5.1j ). One consequence of the  injury-induced re- 
amputation      is that the distal wound site where blastema  formation   occurs is directly 
adjacent to the P3 marrow region which is highly vascularized. We note that the 
transition between the cell dense  blastema   and the highly vascularized but relatively 
less cell dense bone marrow is quite dramatic (Fig.  5.1j ). The next step of  regenera-
tion   is the redifferentiation of the  blastema  , which occurs via  intramembranous ossi-
fi cation  , with no evidence of chondrogenesis [ 6 ,  8 ,  9 ]. The bone  redifferentiation 
stage   begins at approximately 12 DPA, with initial boney condensations showing 
continuity with the bone stump at both the proximal boundary of the blastema and 
the dorsal periosteal surface (Fig.  5.1j ). The overt intramembranous redifferentia-
tion of the blastema occurs in a proximal to distal fashion, resulting in an increase 
in bone and associated surrounding connective tissue length, as well as an increase 
in bone volume (Fig.  5.1h, k, l ). By 28 DPA, the  digit   has completed regeneration, 
including integration of the newly formed bone with the bone stump, reconstitution 
of the marrow cavity, and regeneration of the surrounding connective tissues, i.e. 
vasculature, dermis, epidermis, and nail. The digit regenerates to the  pre-amputation   
bone length and characteristic pointed edge, but notably, the resulting regenerate 
exhibits a disorganized  trabecular bone pattern   and an overshoot in bone volume 
(Fig.  5.1l ). By 128 DPA, the trabecular bone of the regenerate has condensed, yet 
the relative disorganized morphology is easily distinguishable from the original 
bone  stump  , thus the regeneration response does not result in a perfect replica of the 
amputated structure (Fig.  5.1m ). 

 While digit tip regeneration in adult mice  digit   embodies a rather complex but 
coordinated series of events leading to blastema  formation   and re-differentiation, 
the events associated with neonatal and fetal regeneration appear to be less com-
plex.  Neonatal digits      are structurally patterned but immature, containing cells still 
undergoing  chondrogenesis   and ossifi cation is just initiating [ 8 ]. Unlike adult digit 
 amputations     , the neonatal wound epidermis closes directly over the stump bone, 
however the timing to completely close the wound is highly variable by  comparison   
to non-regenerative amputations [ 10 ]. The  osteoclast-mediated bone degradation   
response observed in adult amputations is absent in neonates, and regenerative out-
growth is not preceded by an injury-induced re-amputation of the stump. Once 
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formed the  neonatal blastema      is similar to the adult blastema, composed of 
 undifferentiated mesenchymal cells with a relatively high proliferative index and 
reduced vascularity. Re-differentiation of the  digit   tip occurs in a proximal to distal 
manner by direct ossifi cation as it does in adults. Regeneration of the fetal digit tip 
is, however, considerably different. The fetal  mouse   digit tip is largely undifferenti-
ated at the time of  amputation  , wound closure and blastema formation occurs rap-
idly, and the regeneration  process   is completed over a very short timeframe. While 
uniquely different from post-natal and adult regeneration, the process of  fetal regen-
eration      can occur ex vivo making it an attractive model to experimentally dissect the 
regenerative  response   [ 11 ].  

5.3     Regenerative Failure and Induced Regeneration 

  Mouse   digit tip  regeneration      is a valuable model for  mammalian regeneration     , but it 
also has added value because the response is amputation level specifi c;  amputation   
at any digit or limb level proximal to the digit tip fails to regenerate. Uncovering 
critical events important for the  endogenous regenerative response   can be studied 
during the healing events associated with regenerative failure. In recent years strate-
gies to induce regeneration from  proximal amputations      have been successful, thus 
demonstrating for the fi rst time, that mammalian regeneration can be specifi cally 
induced and, in some cases, provide evidence that events associated with the non- 
regenerating healing response actively inhibit the regenerative process. These fi nd-
ings are critically important because they demonstrate the existence of a regenerative 
potential that is actively repressed in normally non-regenerative injuries that can be 
activated by targeted treatments during wound healing. 

 One of the fi rst successful demonstrations of induced mammalian regeneration 
focused on the importance of  Bone Morphogenetic Proteins (BMPs)  , members of 
the TGFβ superfamily of signaling molecules, signaling in digit tip regeneration 
[ 12 ]. Studies of the regenerating fetal  digit      demonstrated that expression of the 
homeobox-containing gene   Msx1    and   Bmp4    were co-expressed in the  digit   tip and 
were re-expressed during the regenerative response [ 11 ,  13 ]. Moreover, the expres-
sion domain of   Msx1    correlates with regeneration permissive  amputation   levels, and 
amputation studies of  Msx1  mutant digits failed to regenerate, thus providing evi-
dence that the  Msx1  gene is functionally required for a regenerative response [ 11 ]. 
In other studies,  Msx1  was shown to repress cell differentiation during embryonic 
development [ 14 ], and was implicated in the control of tail regeneration in the 
 Xenopus tadpole   [ 15 ]. In addition,  Msx1  activity has been linked to the induction of 
de-differentiation of mammalian myotubes in  vitro      [ 16 ], suggesting that its activity 
is essential for a regenerative response. Using the digit regeneration  defect  , Han 
et al. [ 11 ] discovered that treatment with exogenous  BMP4   was able to rescue the 
  Msx1    regeneration phenotype in a dose dependent manner. This resulted in enhanced 
cell proliferation, the re-expression of a number of  digit   specifi c genes, and the 
restoration of the digit tip. To test if  BMP   signaling was critical for wildtype digit 
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tip  regeneration     , treatment of amputated wildtype digits with Noggin, a BMP 
 signaling antagonist, was found to inhibit the regeneration response [ 11 ]. These 
regeneration studies identifi ed both   Msx1    function and BMP signaling as key 
players in the control of mammalian digit regeneration. Just as important, analogous 
studies focused on two other genes expressed in the fetal  digit   tip,  Msx2  and  Dlx5 , 
failed to yield a regeneration phenotype as single mutants or in combination indicat-
ing that regenerative failure is not simply a general phenotype of distally expressed 
 digit   genes [ 11 ,  17 ]. 

 Shifting to neonatal digit studies,  Msx1  and  Bmp4  are also prominently expressed 
in the neonatal digit tip at the time of  amputation  , and re-expressed during digit tip 
regeneration [ 8 ,  18 ]. In this post-natal regeneration model, digit tip regeneration is 
inhibited by targeting Noggin treatment to the amputation wound after epidermal 
closure indicating that  BMP   signaling is essential for the regenerative response 
[ 10 ]. This fi nding indicates that BMP signaling is critical for a successful regenera-
tive response. In addition to   Bmp4   , the neonate digit regeneration blastema is asso-
ciated with prominent expression of   Bmp2    and  Bmp7  as well as known receptors for 
BMP signaling ( Bmpr1a ,  Bmpr1b , and  Bmpr2 ) so the specifi c BMP signal(s) impor-
tant for regeneration remains uncertain. To determine whether BMP  signaling      could 
induce a regenerative response, studies were focused on  amputations   transecting the 
proximal portion of the neonate P3 bone. Such amputations do not form a  blastema  , 
but undergo a wound healing response and resulted in truncated  digits   [ 10 ]. To test 
for the induction of a regenerative response, purifi ed  BMP2  , BMP4, or BMP7 were 
absorbed onto  agarose micro-carrier beads   and implanted between the wound epi-
dermis and the digit stump after wound closure was complete. These tests showed 
that  BMP2   and BMP7, but not BMP4, were able to induce a regenerative response 
that resulted in the restoration of the amputated digit tip. The  BMP  -induced regen-
eration response was associated with the accumulation of a  blastema   of proliferat-
ing undifferentiated cells that expressed two blastema-specifi c marker genes,   Msx1    
and  Pedf  (see below). Notably, whereas the endogenous regeneration of P3 forms a 
blastema that re-differentiates bone by  intramembranous ossifi cation   [ 8 ], BMP- 
 induced regeneration      created a blastema that formed an  endochondral ossifi cation   
center contiguous with the bone stump [ 10 ]. Moreover, the polarity of the induced 
 endochondral ossifi cation   center was the same as the proximal P3 growth plate with 
 proliferating chondrocytes      proximal to the  distal hypertrophic chondrocytes      
(Fig.  5.2a, b ). Taken together, proximal P3 amputation injuries respond to  BMP   
treatment via the formation of a transient  blastema  , comprised of proliferating cells 
re-expressing relevant genes, reactivating a position-specifi c differentiation response 
that results in the regeneration of a normally patterned terminal phalanx (Fig.  5.2e ).

   A similar study was conducted to test the  regeneration      potential after  amputation   
midway through the  neonate middle phalanx   (P2). The P2 bone is similar to a typical 
long bone with joint articulations both proximally (P1/P2 joint) and distally (P2/P3 
joint), and a marrow region that extends the length of the bone. After  amputation  , 
wound closure occurs over the amputated bone and is consistently completed within 
4–5 days [ 19 ].  BMP2    soaked micro-carrier beads   were implanted between the wound 
epidermis and the amputated bone stump after wound closure. The anatomical 
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response to  BMP2   was the elongation of the P2 skeletal  element      to almost 90 % of 
stage-matched unamputated control length, however there is no evidence for the 
regeneration of the P2/P3 joint or any part of the P3 element. Thus, the induced 
response was specifi c to the amputated skeletal segment. The  BMP2  -induced regen-
eration response included the re-expression of  blastema   marker genes (  Msx1    and 
 Pedf ), an enhanced proliferation response, and the accumulation of  mesenchymal 
cells   associated with the bead and distal to the  amputation   plane. This mesenchymal 
cell aggregate initially expressed  Col2a1  indicative of chondrocyte differentiation, 
and then transitioned to  Col10a1  expression indicative of differentiation into  hyper-
trophic chondrocytes     . The  organization      of this induced  endochondral ossifi cation   
center was consistent with an elongating skeletal element:  proliferating chondrocytes      
distal to the  hypertrophic chondrocytes      associated with the stump bone, and resulted 
in the deposition of new bone onto the amputated stump (Fig.  5.2c, d ). The spatial 

  Fig. 5.2    ( a )  In-situ hybridization   probing for the cartilage proliferation marker  Col2a1  in proxi-
mally amputated P3 digits show transcripts within the regenerating tissue, yet not in close associa-
tion ( arrowheads ) with the  BMP2   soaked bead ( asterisk ). ( b ) In situ hybridization probing for the 
hypertrophic cartilage marker  Col10a1  in proximally amputated P3  digits   show transcripts in 
direct association ( arrow ) with the BMP2 soaked bead ( asterisk ). ( c ) In situ hybridization for 
 Col2a1  in P2 amputated digits treated with BMP2 shows robust transcript localization directly 
adjacent ( arrow ) to the bead ( asterisk ). ( d )  Col10a1  in situ hybridization detected transcripts in the 
regenerating P2 stump, yet not in close association ( arrowheads ) with the BMP2 soaked bead 
( asterisk ). ( e ) Schematic diagram illustrating the in-situ results following BMP2-induced regen-
eration of proximal P3  amputation   and P2 amputation. Amputation level shown as  arrow . The 
BMP2-induced P3 regeneration response is characterized by blastema formation and the subse-
quent differentiation into  chondrocytes   to regenerate the  digit   in a distal to proximal fashion, thus 
following P3 developmental mechanisms. The  BMP2  -induced P2 regeneration response is charac-
terized by blastema formation and the regeneration of a growth plate, resulting in proximal to distal 
bone regeneration, therefore following the  mechanism   of P2 development. Distal is to the  top . 
Reprinted from Yu et al. [ 19 ]       
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organization of distally-located proliferating chondrocytes differentiating into hyper-
trophic chondrocytes demonstrates the induction of an  endochondral ossifi cation   
center in response to  BMP2   that is analogous to the chondrogenic organization of the 
developing P2 bone (Fig.  5.2e ). While cartilaginous cells of the regenerate lacked the 
customary columnar  organization      of a growth plate, the polarized production of 
matrix, thus suggestive of  columnar chondrocytes     , was similar to that of the growth 
plate. These data supported the conclusion that P2 bone elongation was mediated via 
the regeneration of a growth plate-like structure in response to  BMP2   treatment. 
Moreover, and akin to bone development, the  endochondral ossifi cation   center of the 
regenerate is comprised of chondrocytes, which function to create a template for 
subsequent bone deposition, thus  regeneration      of the amputated bone. The  BMP2  -
induced regeneration of bone was contiguous with and constrained to P2, however 
with no indication of joint tissue or P3 regeneration, thus the induced regeneration 
response is segment specifi c. The segment-specifi c nature of this  BMP2  -induced 
regenerative response was also demonstrated in an adult model of limb  amputation   
where patterned skeletal elements were induced to regenerate following amputation 
through the shank [ 19 ]. 

 For  non-regenerating amputations      of adult digits, the P2 amputation has emerged 
as a model system to study both tissue repair after  amputation      and induced regen-
eration [ 20 – 24 ]. P2 is analogous to other long bones of the mammalian body, in that 
it cannot mount a successful endogenous regeneration response after  amputation  . 
Instead, the injured structure undergoes wound repair and ultimately scar formation, 
nonetheless, the wound repair response of P2 is quite dynamic. P2 is located cen-
trally within the  digit  , bounded dorsally by a ligament and overlying dermis and 
epidermis rich with hair follicles, and ventrally by a deep digital fl exor tendon with 
associated  fi brocartilage  , and underlying dermis and  epidermis     . The P3 marrow is 
distinct from the P2 marrow, in that P3 contains abundant vasculature and is rela-
tively more cell dense compared to the fatty P2 marrow.  Amputation   through P2 
exposes the marrow cavity to the wound site and completely removes the nail organ 
and digit tip (Fig.  5.3a ). P2 wound closure is achieved by forward contraction of the 
dermal tissues, apparent by 6  DPA     , distinct from the characteristic epidermal retrac-
tion of P3 post amputation (Fig.  5.3b ). Moreover, while osteoclast mediated bone 
 erosion      is associated with the P2 amputation response, evident by the signifi cant dip 
in bone volume at 7 DPA, the bone erosion typically does not result in expelling the 
bone with concomitant wound closure as it does in P3. Instead the epidermis and 
underlying soft connective tissue migrate distal to the bone stump, closing the 
wound, with wound epidermis formation by 9 DPA (Fig.  5.3c ). Unlike the  blastemal 
intramembranous bone redifferentiation   that represents P3 regeneration, the P2 
response to  amputation         is via the formation of a  periosteal-derived cartilaginous 
callus  , testing immunopositive for several cartilage matrix proteins, including 
 Collagen 2   and  Aggrecan   by 9 DPA (Fig.  5.3c–e  outlined). Importantly, the  transient 
cartilaginous callus   is observed exclusively along the periosteal surface proximal to 
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  Fig. 5.3    ( a ) P2  amputation   ( dashed line ) transects the mid-portion of the bone and completely 
removes the nail organ. ( b )  Distal scab formation   (S) and circumferential swelling of the  digit   are 
apparent by 6 DPA. ( c ) By 9 DPA, wound closure over the distal stump and wound  epidermis   
formation (WE) have occurred. Robust  chondrogenesis      along the periosteal surface ( outlined ) 
extends perpendicular to the bone stump, not distal to the amputation plane. ( d ) ColII immunos-
taining localized to the periosteal cartilaginous callus at 9 DPA. ( e ) ACAN immunostaining con-
fi rms the presence of a periosteal chondrogenic callus at 9 DPA. ( f )  Immunostaining   for the 
osteoblast marker Osterix, OSX, shows  osteoblasts   localized to the 9 DPA periosteal callus and 
within the bone marrow space. ( g ) By 15 DPA, the cartilaginous callus has been largely replaced 
with woven bone and marrow formation. ( h )  Distal intramembranous bone formation   has sealed 
the marrow space ( arrowhead ) and the callus has undergone remodeling by 24 DPA. ( i ) At 45 
DPA, the amputated  digit   has completely healed and the ventral tendon has re-inserted into the 
bone on the dorsal surface ( arrowhead ). ( j  and  k ) μCT 3-D renderings and quantifi cation of bone 
volume changes illustrate the robust periosteal growth in response to  amputation  , corresponding to 
an overshoot in bone volume, yet no increase in bone length. ( a – i ) Distal is to the  right , dorsal is 
to the  top . ( j ) Distal is to the  bottom . Reprinted from Dawson et al. [ 23 ]       
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the bone stump, not distal to the amputation plane. The cartilaginous callus functions 
as a template for the invading osteoblasts, which act to deposit woven bone in close 
association with the periosteal surface, thus the bone repair response to P2 amputa-
tion is mediated via  endochondral ossifi cation   (Fig.  5.3f ). Sequential μCT 3-D 
images illustrate periosteal bone deposition by 14 DPA, with continued bone depo-
sition corresponding to an increase in bone volume, yet new bone  formation      distal 
to the  amputation   plane, i.e. regeneration, is not observed (Fig.  5.3j, k ).  Endosteal-
derived osteoblasts function   to cap the bone stump, separating the marrow space 
from the wound site by 24 DPA (Fig.  5.3h , arrowhead). Remodeling of the bone 
stump continues, complete with reconstitution of the marrow, evident at 24 and 45 
DPA (Fig.  5.3h , i). In addition, there is clear evidence that soft tissues, such as the 
ventral tendon which normally attaches to the P3 element, elongates across the 
amputation wound and re-inserts into the dorsal aspect of the P2 bone stump 
(Fig.  5.3i , arrowhead). The dynamic healing of P2 in response to amputation pro-
vides evidence that the injury response is not static but quite dynamic and sugges-
tive of an initiated but failed attempt at  regeneration     .

5.4        The Blastema 

 At the core of the problem of regenerative failure is the inability to form a  blastema   
rather than to proceed along a pathway of traditional wound repair. It is clear that 
cells present at non-regenerating  amputation   wounds individually possess the 
potential for involvement in a regeneration response, but what is missing is a mech-
anism whereby different cell types can interact to organize a coordinated multi- 
tissue response. In  regeneration-competent models   the blastema functions as the 
regenerative developmental site where  morphogenesis   and pattern formation occurs. 
In addition, there is experimental evidence that patterning mechanisms guiding 
development are similar to those guiding  regeneration   [ 25 ,  26 ]. For this reason, 
understanding how a regeneration blastema forms following amputation can pro-
vide critical clues for inducing or otherwise enhancing regenerative capabilities. 
The fi rst question about blastema  formation   concerns the origin of cells. The blas-
tema is a heterogeneous population of undifferentiated cells that are proliferative 
and have the potential to differentiate into the structures that make up the  digit   tip; 
tissue types include bone, bone marrow, connective tissue, blood vessels, nerves and 
epidermis. The question of cell origin can be addressed using cell type specifi c 
markers coupled with a lineage marker. There are a number of important questions 
that need to be addressed and some progress has been made in the past few years. 
These  questions   include what tissue types contribute cells? Do cells arise from 
stem/progenitors and/or from dedifferentiation? Are cells lineage restricted or can 
they transdifferentiate during the re-differentiation process? Recent studies using 
genetic approaches to label specifi c cell types and track them during digit regenera-
tion provide evidence for lineage-restriction in  regeneration   [ 18 ,  27 ,  28 ]. These 
studies show that (1) epidermal cells gave rise to the nail organ and wound 
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epidermis, (2) endothelial cells contribute only to the vasculature of the regenerate, 
(3) osteoblasts precursors of the limb give rise only to regenerated bone, and (4) as 
a negative result, transplanted hematopoietic stem cells do not contribute to the 
regenerate. These fi nding are consistent with the conclusion that cells involved in 
the regeneration of the  urodele   limb are lineage-restricted [ 29 ], so it is tempting to 
draw the general conclusion that the regeneration process does not involve the re- 
programming of cell types [ 18 ,  27 ]. Yet, it is important to point out that a number of 
cell  types   have yet to be carefully tested and there is considerable evidence that 
support the participation of multipotent progenitor cells in other injury repair mod-
els [ 30 ]. The question of whether progenitor cells arise from a population of stem 
cells versus the de-differentiation of mature cells has yet to be addressed in this 
mammalian regenerative response. 

 The second critical question to address involves how cells are recruited to form 
the  blastema   at the  amputation   wound site. During regeneration, cells migrate from 
different regions of the amputation wound to form the centrally located blastema 
[ 31 ,  32 ]. Previous studies have implicated  Stromal Cell Derived Factor-1 (SDF- 
1)  / CXCR4   signaling in the cellular recruitment to sites of  BMP2  -induced ectopic 
bone formation, bone repair, and  zebrafi sh fi n regeneration      [ 33 – 35 ]. A comprehen-
sive study investigating the role of SDF- 1  / CXCR4   signaling in blastema formation 
and digit  regeneration   was carried out [ 36 ] and a summary of this study follows. 
 Immunohistochemical   and  in situ hybridization   studies focused on the regenerating 
digit identifi ed cells expressing SDF- 1   in the blastema, wound epidermis, and bone 
marrow vasculature, and other cells expressing CXCR4 in the wound epidermis and 
within the blastema (Fig.  5.4a–d ). Immunostaining for Phospho-CXCR4, used to 
identify the SDF-1 mediated activation of CXCR4, showed positive signal localized 
to the wound epidermis and the vasculature proximal to the blastema (Fig.  5.4e ). In 
line with this, CD31+ endothelial cells within the blastema tested immunopositive 
for SDF- 1  , suggesting endothelial cells may function in cellular recruitment during 
regeneration (Fig.  5.4f ). Primary cultures of blastema cells express  CXCR4   and 
display a dose-dependent response to SDF1 in transwell migration assays that is 
inhibited by AMD3100, a known antagonist for CXCR4 signaling. To test the 
in vivo role of SDF-1/CXCR4 signaling in neonatal digit regeneration, systemic 
 injections   of  AMD3100   resulted in a signifi cant attenuation in regenerated bone 
length compared to vehicle control treated digits (Fig.  5.4g ). Importantly, no differ-
ence was found in bone length of the developing P3  digit   after  AMD3100   systemic 
treatment, providing evidence that SDF- 1  / CXCR4   signaling is specifi c to the regen-
eration response. The  BMP2  -induced regeneration response was used to provide a 
gain of function test for a role of SDF1 recruitment in regeneration. First, introduc-
ing labeled blastema cells in conjunction with a  BMP2   bead resulted in a chemotactic 
response with labeled cells aggregating around the BMP2 source.  Transwell migra-
tion assays   demonstrated that BMP2 itself does not infl uence blastema cell migra-
tion indicating that the in vivo response was indirect. BMP2 treatment of P2 
 amputations   was found to induce both SDF- 1   and  CXCR4   expression and SDF-1 
expression co-localized with endothelial cells in the amputation wound (Fig.  5.4h–
m ). A BMP2/SDF-1 link was confi rmed in vitro by studies showing that BMP2 
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treatment of  human microvascular endothelial cells (HMVEC)   stimulated a dose- 
dependent increase in  Sdf-1  transcripts, and that BMP2-treated HMVEC cells stim-
ulated migration of blastema cells that was specifi cally inhibited by  AMD3100  . 
Finally, engraftment of COS cells over-expressing  Sdf1  into the neonatal P2  ampu-
tation   induced a partial skeletal elongation  response   that is similar to the  BMP2   
induced response. These studies provide both loss and gain of function evidence 
that cell recruitment via the SDF- 1  / CXCR4   signaling axis plays a critical role in 

  Fig. 5.4    ( a – f  and  h – m )  Immunostained digits  , counterstained with DAPI. ( a ) SDF-1α is not 
detected in the unamputated digit. ( b ) P3 amputation induces SDF1α in the proximal  wound epi-
dermis (WE)   and within the blastema (inset), shown at 7 DPA. ( c )  CXCR4   is not detected in the 
unamputated digit. ( d ) CXCR4 is localized to the WE and the blastema of the regenerating 7 DPA 
P3 digit. ( e ) Activated CXCR4, detected by phospho-CXCR4  immunostaining  , is present in the 
newly formed vessels (V) of the proximal blastema at 7 DPA. ( f )  Co-immunostaining   for SDF-1α 
and the endothelial cell marker CD31 show double labeled cells within the regenerating digit at 7 
DPA. ( g ) Inhibition of the SDF1α/ CXCR4   signaling axis via  AMD3100   systemic treatment sig-
nifi cantly attenuates the bone regeneration response compared to vehicle treated  digits  . ( h  and  j ) 
P2  amputation   and BSA control bead ( asterisk ) treatment show a low level of SDF1α and  CXCR4   
protein at 2 DPI. ( i  and  k )  BMP2  -treated P2 amputations show heightened SDF1α and CXCR4 
 immunostaining   in close association with the bead at 2 DPI. ( l  and  m ) Co-immunostaining for 
SDF1α and CD31+ endothelial cells ( arrowheads ) after P2 amputation and bead treatment shows 
double labeled cells in BMP2-treated samples at 2 DPI. Distal is to the  right , dorsal is to the  top . 
Reprinted from Lee et al. [ 17 ,  36 ]       
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blastema cell recruitment during regeneration. In addition, endothelial cells in the 
blastema and at non-regenerating  amputation   wounds are identifi ed as critical medi-
ators of  BMP2   action by transducing the BMP2 signal into a functional cell recruit-
ment signal.

   The third critical topic concerns one of the hallmarks of the regenerative pro-
cess–the proliferative nature of the  blastema  . Endogenous blastema formation as 
well as BMP-induced regeneration is associated with enhanced proliferation. Using 
a  transgenic BMP      reporter  mouse   strain, Yu et al. [ 19 ] showed that  BMP2   induced 
P2 regeneration specifi cally enhanced proliferation of BMP responsive cells sug-
gesting that the mitogenic action of BMP2 was a rapid and direct effect on cells at 
the  amputation   wound. In addition to BMP2, there is evidence that regenerative 
proliferation is also controlled by  WNT signaling      that is linked to a  neurotrophic 
effect   critical for the regeneration response [ 28 ]. 

 The amputation level-specifi c nature of digit tip regeneration is associated with 
the presence of the nail matrix in the stump. The  nail organ   is a continuously elon-
gating structure that consists of a nail plate that encases a proximal nail matrix of 
proliferating nail stem  cells  , a distal nail matrix of transiently amplifying cells, and 
the nail bed that extends to the distal digit tip [ 28 ].  Nail elongation   is a process that 
requires canonical  WNT signaling  , and nail  dysmorphogenesis   results when this 
signaling pathway is disrupted [ 28 ,  37 ]. Importantly, regenerative defects are also 
observed when the canonical WNT signaling pathway is disrupted, thus providing 
an explanation for the close link between regenerative capabilities and the nail in 
both humans and mice [ 28 ,  37 ]. In addition, studies in which the canonical WNT 
pathway is constitutively activated in epidermal cells, including nail cells, show that 
regeneration following  amputation   at a proximal P3 level can be induced [ 28 ], thus 
canonical  WNT signaling      by epidermal cells is required for the endogenous regen-
eration response, and can induce regeneration from a normally non-regenerative 
amputation injury. A secondary feature of canonical WNT signaling in epidermal 
cells is evidence that inhibiting signaling causes a reduction in innervation associ-
ated with the regeneration response [ 28 ]. This raises the possibility that the  nail 
matrix effect   on digit  regeneration   may be mediated via modifi cation of a  neuro-
trophic effect   on the regenerative response. The effect of  denervation   on cell prolif-
eration and blastema formation in regenerating salamander limbs is well documented, 
resulting in the complete inhibition of regeneration [ 38 ]. Unlike the  salamander   
limb, however, denervation of the  mouse    digit   tip does not completely inhibit the 
regenerative response, but it does impair the normal formation of both nail and bone 
of the regenerate [ 28 ,  39 ,  40 ].  Denervation   of the digit tip inhibits mesenchymal 
proliferation and the expression of  Fgf2  which is mitogenic for blastema cells both 
in vivo and in vitro [ 28 ], thus providing evidence that the FGF  signaling   pathway is 
also an important trophic infl uence for  mammalian regeneration     . While there is 
likely a laundry list of trophic infl uences important for the digit regenerative 
response, the evidence to date point to two critical signaling pathways (BMP and 
WNT) that are required for the endogenous regenerative response, and can also 
induce regeneration at a non- regenerative  amputation     .  
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5.5     Wound to Blastema 

 One of the prominent characteristics of the  blastema      is its relative avascularity 
compared to surrounding tissues. This is true for both the  salamander   limb blastema 
as well as the  mouse    digit   blastema [ 6 ,  41 ]. The digit blastema is not devoid of 
endothelial cells, instead they are present as individual cells dispersed randomly 
throughout the  blastema      and not organized into functional vascular units. The endo-
thelial cells of the blastema express the stem cell marker  Sca1  , suggesting that the 
regeneration of vasculature in the  digit   tip is mediated via endothelial stem cells [ 6 ]. 
Associated with  avascularity  , the wound healing and early blastema stages is char-
acterized by the expression of the anti- angiogenic  factor  ,   pigment epithelial derived 
factor  ( Pedf )   (Fig.  5.5a ) and the absence of transcripts for the angiogenic factor, 
 vascular endothelial growth factor A ( VegfA )   [ 42 ,  43 ]. The expression of the antian-
giogenic factor   Pedf    and the corresponding lack of expression of the angiogenic 
factor  Vegf , coupled with the presence of endothelial stem cells in the blastema, are 
consistent with the conclusion that blastemal  avascularity      is causally linked to the 
control of  angiogenesis   during blastema formation. Why is blastema avascularity 
important? To test the importance of re-vascularization in regeneration, amputated 
neonate  digits         were treated with  VEGF-soaked beads   after the completion of wound 
closure. VEGF-treatment led to an increase in endothelial cells within the blastema 
and adjacent to the VEGF source within 3  days post implantation (DPI)  , an enhanced 
level of vascularity by 7  DPI   and the complete inhibition of the regenerative response 
(Fig.  5.5b, c ) [ 42 ]. The inhibition of regeneration by VEGF was shown to be dose- 
dependent, and these fi ndings provide evidence that the control of re-vascularization 
during  blastema   formation plays a critical role in the control of regeneration.

   The conclusion that enhanced re-vascularization inhibited regeneration is sug-
gestive that the avascular state of the blastema is required for the regenerative 
response. To address this issue we explored the role that PEDF played in the inhibi-
tion of re-vascularization. We took advantage of the observation that treatment of 
the  digit    amputation   with BMP9, a member of the TGFβ superfamily, inhibited the 
regenerative response (Fig.  5.5h ). While  Bmp9  is not expressed during digit tip 
regeneration,  BMP9   has been shown to act in a context-dependent manner acting as 
either an  anti-angiogenic factor   or to enhance  angiogenesis         [ 44 – 46 ], and a  microar-
ray analysis of BMP9      treated digits showed a signifi cant increase in several known 
modulators of  angiogenesis  , including   Vegfa   . Further studies showed that  BMP9   
treatment induced an immediate upregulation of  Vegfa  expression, and a persistent 
and expanded  Vegfa  expression domain at later time points (Fig.  5.5d–g ), and an 
enhanced level of re- vascularization     . In short, the data were consistent with the 
conclusion that the BMP9 inhibition of regeneration was causally linked to the 
induced expression of  Vegfa , and we were able to use this model to test the role of 
PEDF in blastema formation and regeneration. PEDF treatment after BMP9 inhibi-
tion markedly decreased the expression domain of  Vegfa , thus restoring the avascu-
lar character of the blastema, and ultimately rescuing  osteogenesis   associated with 
the regeneration response (Fig.  5.5h–n ). Taken together, the evidence shows PEDF 
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functions during the early stages of regeneration to repress VEGF induced re- 
vascularization and to maintain the blastema in an avascular state. The data are 
consistent with the conclusion that an  avascular blastema   is essential for promoting 
the regenerative response. 
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  Fig. 5.5    ( a ) Transcripts for   Pedf    are found within the stump and the blastema ( arrowhead ) of the 
regenerating 10 DPA  digit  . ( b  and  c ) μCT 3-D renderings at 14 DPI illustrate the inhibition of 
regeneration in VEGF-treated digits. ( d  and  e )   Vegfa    transcripts are absent in BSA treated control 
digits, yet are detected ( arrowhead ) at 1 DPI in close association with the  BMP9 soaked bead   
( asterisk ). ( f  and  g ) By 7 DPI,  Vegfa  transcripts are detected in the proximal region of the BSA 
treated digit, yet show an expanded expression domain ( arrowhead ) in BMP9 treated digits. ( h – j ) 
Application of PEDF in conjunction with  BMP9   treatment rescues the BMP9-induced inhibition 
of regeneration versus BMP9/BSA treated digits, resulting in a signifi cant increase in bone regen-
eration. ( k  and  l ) At 7 DPI, BMP9/BSA treated digits show attenuated  Ocn  expression, while 
BMP9/PEDF-treated  digits   show an expanded domain of   Ocn  expression   ( arrowheads ). ( m  and  n ) 
At 7 DPI, BMP9/BSA treated digits show an expanded domain of   Vegfa    expression, while BMP9/
PEDF treated digits show a paucity of   Vegfa    transcripts. Distal is to the  right , dorsal is to the  top . 
Reprinted from Yu et al. [ 42 ]       
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 In general,  tissue vascularity    plays      a critical role in maintaining physiological 
function and  homeostasis  . Although there are a few tissues that are inherently avas-
cular, e.g.  cornea   and  articular cartilage  , most of the body depends on the vascula-
ture for distributing nutrients and blood bound signals as well as removing waste 
products. In this context, the  avascular digit blastema   exists as a structure that is 
largely isolated from the physiological infl uences of the body. One consequence of 
this is that the blastema creates a physically less  turbulent microenvironment      that 
might be more conducive for effective long range cell-cell signaling involving 
secreted factors (e.g.  BMPs  , WNTs, FGFs, etc.), some of which are known to play 
essential roles in the regenerative  response     . In this context, enhanced revasculariza-
tion might physically disrupt  intercellular signaling   between blastema cells and thus 
contribute to the failed regenerative response. The observation that blastema forma-
tion occurs following VEGF or  BMP9   treatment is consistent with this hypothesis. 
On the other hand, the  avascular microenvironment      also limits the availability of 
essential nutrients, such as oxygen, to blastema cells and this would create a  hypoxic 
microenvironment     . Indeed, recent studies document that the blastema is hypoxic, 
and that oxygen availability during the regenerative  response      is dynamic [ 7 ]. 

  Oxygen tensions   change dynamically in temporally and spatially distinct and 
predictable patterns during P3 regeneration. In histological samples, hypoxic 
regions are identifi ed by  immunohistochemical localization   of injected  pimonida-
zole   ( Hypoxyprobe-1 Plus  ) that forms stable adducts in regions of less than 1.3 % 
oxygen, and hyperoxic regions are identifi ed immunohistochemically based on the 
presence of  FBLX5  , a protein that is stabilized at oxygen levels greater than 5.5 % 
[ 7 ]. During digit regeneration, hyperoxic conditions remain relatively constant and 
are predominantly associated with the vasculature, consistent with the conclusion 
that  vasculature   plays a role in limiting  oxygen      availability. The development of a 
very prominent, but transient,  hypoxic zone   is observed during stages of blastema 
formation, and that zone dissipates with the initiation of re-differentiation 
(Fig.  5.6a–d ). To test the requirement of the hypoxic blastema  microenvironment      on 
the regeneration process, mice were exposed to  Hyperbaric Oxygen (HBO) treat-
ment  , targeting the period of  blastema formation     . A single HBO  treatment   is suffi -
cient to disrupt the  hypoxic microenvironment      of the blastema, but regeneration is 
not inhibited by either targeted or continuous HBO treatment [ 7 ,  47 ], thus the 
hypoxic microenvironment of the blastema is not required for successful regenera-
tion. However, there is clear indication that HBO treatment does induce specifi c 
modifi cations of the regeneration process. HBO treatment enhances the activity of 
 osteoclasts   during the histolytic phase resulting in an extended period of bone deg-
radation and a delay in blastema formation (Fig.  5.6e ) [ 47 ]. This suggests that while 
a hypoxic blastema is not a requirement for regeneration, cells involved in regen-
eration are responsive to changing oxygen  tension   and this  plays      a role in regulating 
phase transitions during the regenerative process. The interaction between  osteo-
clasts   and  osteoblasts   has been studied in the context of bone turnover and bone 
diseases, such as  osteoporosis   and  osteopetrosis  , and regulatory pathways have 
been identifi ed.  Osteoclasts   are derived from  monocytes   and express  Receptor 
Activator of Nuclear Factor kβ (RANK)  , while osteoclastogenesis during 
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infl ammation is induced by  RANK Ligand (RANKL)   stimulation [ 49 ]. Both RANK 
and RANKL are cell surface receptors and this signaling pathway is down- regu-
lated by  Osteoprotegerin (OPG)  , a secreted decoy receptor for RANK [ 50 ]. 
Regulation of  osteoclastogenesis   by this pathway is regulated by  oxygen sensing 
mechanism   in  osteoblasts   by responding to  hypoxia   by enhancing  Hypoxia Inducing 
Factor   2a  activity      which directly up-regulates expression of  OPG   [ 51 ]. In this way 
hypoxia induces the termination of an osteoclastogenic response. This model pro-
vides a general mechanism in which a blastema  hypoxic event   can trigger  osteo-
blasts   within the blastema to produce  OPG   thereby inhibiting  osteoclast   activity 
and signaling the transition from a degradative phase to an anabolic phase of digit 
 regeneration     .
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  Fig. 5.6    P3 regeneration represents a dynamic  oxygen microenvironment     . ( a – d )  Oxygen pseudo-
shading   of in vivo  Hypoxyprobe‐1 Plus   staining (<1.3 % oxygen) indicates hypoxic microenviron-
ments (<1.3 % oxygen) at ( a ) 10 DPA ( shading  encircling the bone stumps distally), ( b ) 12 DPA 
( shading  in blastema;  star  emphasizing expanded area), and 14 DPA (isolated regions adjacent to 
newly forming bone). ( d ) Quantifi cation of Hypoxybrobe-1 as a percentage of total area. ( e ) Effect 
of daily  HBO   application on osteoclast numbers at 7, 10, and 14 DPA.  Gray bars  indicate HBO 
treated  digits  ;  black bars  are controls. Results are expressed as mean ±SEM.  Star  indicates signifi -
cance. NOc/BPm: number of osteocalsts/bone perimeter. ( f )  Cyanoacrylic wound dressing   
( Dermabond  ) application results in a hypoxic epidermis.  Arrow  and  arrowhead  indicate 
Hypoxyprobe-1 staining in both the dorsal and ventral wound epidermis, respectively. ( g ) 
Dermabond-treated digits exhibit early wound closure distal to the  amputation   plane ( asterisk ). ( h ) 
A representative  Dermabond  -treated digit illustrating wound closure and blastema formation 
( asterisk ) by 6 DPA. ( i  and  j )  Immunostaining   for the osteoclast marker  Cathepsin K (CathK)   
shows decreased  osteoclast   fusion ( arrow ) in Dermabond-treated  digits   and large multinuclear 
immunopositive osteoclasts ( arrows ) in untreated digits. Nuclei counterstained with DAPI. ( k ) 
μCT 3-D renderings in Dermabond-treated digits show attenuated bone degradation in response to 
 Dermabond   treatment. Distal is to the  left , dorsal is to the  top . ( l ) Quantifi cation of bone volume 
changes from μCT data of Dermabond treated and control digits,  asterisks  for signifi cance. ( a – d ) 
are reprinted from Sammarco et al. [ 7 ], ( e ) is reprinted from Sammarco et al. [ 47 ], and ( f – l ) are 
reprinted from Simkin et al. [ 48 ]       
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   In addition to osteoclasts, cells of the wound epidermis are also responsive to 
HBO  treatments  . The completion of epidermal closure following  amputation   is 
slowed by HBO treatment [ 47 ], and this  process      can be accelerated by treatment 
with a commercially available  cyanoacrylic wound dressing  ,  Dermabond   [ 48 ]. 
Cyanoacrylics applied to a wound rapidly polymerize to form a fl exible skin adhe-
sive, which have been shown to enhance the rate of wound closure [ 52 ]. When used 
as a wound dressing for digit tip amputations, application of  Dermabond   creates a 
sustained  hypoxic microenvironment      that is restricted to the stump wound epider-
mis and doubles the rate of wound closure (Fig.  5.6f, g ). The  Dermabond   treated 
epidermis does not retract but is able to migrate directly over the amputated stump 
bone, and this effect is ameliorated by HBO  treatment  . These data implicate  hypoxia   
as a positive  regulator      of epidermal migration during wound healing. Once  amputa-
tion   wound closure is complete blastema formation occurs precociously (Fig.  5.6h ) 
and the forming blastema becomes hypoxic.  Immunohistochemical studies   show 
that large multinucleated cathepsin K positive osteoclasts are absent, however 
 cathepsin K positive pre-osteoclasts   are observed (Fig.  5.6i, j ), and  microCT analy-
ses   show that stump bone degradation is signifi cantly reduced (Fig.  5.6k ). The pre-
cociously formed blastema re-differentiates to form the distal  digit         tip, but 
remarkably the overshoot in regenerated bone that characterizes the endogenous 
response is not observed, and the regenerated bone has a structure that is lamellar 
rather than woven. In other words, the resulting regenerate is structurally identical 
to the amputated  digit   tip when the wound epidermis is induced to close rapidly. It 
is interesting to note that limb regeneration in  salamanders   is characterized by  rapid 
wound closure   that is driven by a rapid cell migration response coupled with a gen-
eral injury induced epidermal swelling response [ 53 ,  54 ]. 

 Data from  HBO   and  Dermabond    studies      are consistent with a model in which 
oxygen availability plays a key role in regulating the histolytic phase of regenera-
tion, particularly  hypoxia   induced termination of  osteoclast   activity. These studies 
also demonstrate that regulating osteoclast activity correlates with blastema size: 
reduced osteoclast activity induced by  Dermabond   results in small blastemas 
whereas enhancing  osteoclast   activity with HBO  treatment   results in large blaste-
mas. These observations suggest that osteoclast  activity      is linked to the number or 
proliferation of stump cells that participate in the regenerative response. One pos-
sibility is that  histolysis   of mature stump tissues is required to release progenitor 
cells so they can participate in blastema formation; enhancing histolysis results in a 
larger regeneration competent progenitor cell population while reducing histolysis 
results in a smaller population of progenitors. An alternative, but not mutually 
exclusive, possibility is that proteolytic activities associated with histolysis degrades 
extracellular matrix and releases  chemotactic   and/or  mitogenic signals   known to be 
present in mature tissues. For example, bone tissue is known to store extracellular 
 BMPs   [ 55 ], which have been shown to be essential for a regenerative response [ 10 , 
 11 ]. Similarly, matrix degradation products (e.g.  cryptic peptides  ) and metallopro-
teinase  activity      have been implicated in cell recruitment and regeneration after 
 amputation   injury [ 20 – 22 ,  56 ]. Regardless of mechanism, the evidence supports the 
conclusion that  histolysis      of mature stump  tissue   is a critical early phase of a 
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 successful regenerative response. Another fascinating aspect of HBO  treated   
regenerates is that when  osteoclast   mediated bone degradation is de-regulated, the 
extended phase of bone  erosion   degrades the stump bone into regions that are nor-
mally non- regenerative following simple  amputation  , yet these  digits   eventually 
transition to a blastema phase and regenerate the complete digit tip [ 47 ]. In some 
case we have observed degradation into the P2/P3 joint with the successful regen-
eration of both joint and distal bone tissues. These observations support the counter-
intuitive conclusion that enhancing histolytic degradation of stump  tissues   can, in 
fact, enhance regenerative  capabilities     .     
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    Chapter 6   
 Cellular Approaches to Adult Mammalian 
Heart Regeneration                     

     Justin     Judd      and     Guo     N.     Huang    

6.1           Introduction 

6.1.1     Human  Heart Failure   

  Cardiomyopathies   are a major cause of death throughout the world, due in part to 
the inability of the human heart to signifi cantly regenerate. Improvements in the 
management of acute myocardial infarction (MI) have led to drastic improvements 
in short-term mortality rates since the 1960s [ 1 ]. However, due to a scarcity of effec-
tive long-term therapeutic options, the 5-year survival after diagnosis of heart fail-
ure is only 50 % [ 2 ]. Thus, heart failure remains an incurable condition and a major 
cause of death. 

 The etiology of heart failure is complex, but the  syndrome   is characterized by 
cardiac output that is insuffi cient to meet the metabolic demands of the body. A 
central  complication   of heart failure in general is the loss of cardiomyocytes through 
various cell death mechanisms (reviewed in [ 3 ]). In acute myocardial infarction, 
catastrophic cell death is incurred due to the occlusion of coronary vasculature, 
which deprives the infarcted region of oxygen and nutrient rich blood.  Cardiomyocytes   
die from both apoptosis and necrosis, though the percent contribution of each death 
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mechanism is unclear. Necrotic myocardium is eventually replaced by scar tissue, 
which lacks the contractile and elastic properties needed for optimal heart function. 
 Ischemic reperfusion   is  thought   to contribute to cell death [ 4 ] through infl ammation 
[ 5 ], radical oxygen species generation [ 6 ], and abnormal calcium handling [ 7 ]. 
Strategies to mitigate peripheral myocardial cell death could potentially be imple-
mented during surgical reperfusion [ 8 ,  9 ]. However, due to the acute lack of blood 
supply, reperfusion therapy is typically too late to save the dying infarcted myocar-
dium, and fi brotic remodeling follows. 

 In  chronic   heart failure,  cell death   is thought to slowly contribute to deterioration 
of the ventricular myocardium, thus reducing its ability to effectively contract. This 
is further complicated in many cases by several aspects of remodeling, such as pro-
liferation of fi broblasts, conversion to myofi broblasts [ 10 ], and accompanying alter-
ations in extracellular matrix composition [ 11 ]. The re-expression of fetal-specifi c 
genes during heart failure has been described by several groups, including a switch 
from α-myosin heavy chain to β-myosin heavy chain (reviewed in [ 12 ]). Metabolic 
remodeling of cardiomyocytes is also seen in heart failure, such as a shift from fatty 
acid oxidation to glycolysis (reviewed in [ 13 ]). Collectively, these aspects of  myo-
cardial remodeling   can result in gross morphological changes and associated  altera-
tions   in tissue mechanics, such as myocardial stiffening, thickening or thinning of 
the ventricular myocardium, and ventricular dilation, as well as alterations in cal-
cium handling and contractility; all of which can severely affect heart function and 
feedback on disease progression.  

6.1.2     Species Variability in Heart Regeneration 

 Although adult mammals exhibit an insuffi cient natural ability to repair damaged myo-
cardium, several lower vertebrates, such as zebrafi sh, newt, and axolotl, maintain a 
remarkable regenerative capacity, even in later stages of life. These species- specifi c 
differences in  regenerative capacity   (reviewed in [ 14 ,  15 ]) are an important topic of 
study in the pursuit of human regeneration. Due to the availability of transgenic models, 
zebrafi sh is the best characterized of these species. Mechanistically, genetic lineage 
tracing experiments show that  zebrafi sh   heart regeneration relies primarily on the dedif-
ferentiation and expansion of pre-existing differentiated cardiomyocytes [ 16 ,  17 ]. Poss 
and colleagues showed this myocardial dedifferentiation involves re-expression of early 
developmental markers such as  gata4  with an accompanying reduction in myocardial 
conduction velocity at the injury site [ 16 ]. Furthermore, a cryoinjury model demon-
strated enhanced cell cycling in a fraction of cardiomyocytes expressing embryonic 
cardiac myosin heavy chain [ 18 ].  Epicardial signaling   seems to play a role in the regen-
erative response to injury [ 19 ,  20 ], but myocyte contributions from epicardial cells 
directly are apparently limited. The role of a dynamic extracellular matrix was shown to 
be important in mediating zebrafi sh heart regeneration [ 21 ]. Specifi cally,  fi bronectin   
was upregulated in the myocardium following injury and was required for regeneration. 
Interestingly, fi bronectin deposition in adult mammalian hearts has also been observed 
post-injury [ 22 ,  23 ], but may signal a fi brotic response in this context [ 24 – 26 ]. 
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 Several reports have also demonstrated a strong regenerative ability in adult newt 
[ 27 – 30 ] and  axolotl   hearts [ 31 ] using various injury models. Due to a lack of lineage 
tracing transgenic tools in these organisms, the source of new myocardium has not 
been defi nitively shown. However, Braun and colleagues showed a reduction in 
contractile protein expression after injury [ 32 ], reminiscent of the  cardiomyocyte 
dedifferentiation   observed in zebrafi sh heart regeneration [ 16 ,  17 ], suggesting a pos-
sible common mechanism. Not surprisingly, changes in  extracellular matrix protein 
expression   were also shown to accompany adult newt heart regeneration. Of particu-
lar interest, tenascin C was found to increase newt cardiomyocyte cell cycle re-entry 
in vitro [ 33 ]. However, evidence for  cytokinesis   was not shown. Interestingly, matrix 
production and remodeling enzymes were shown to change along with differentia-
tion of immortalized CPCs in vitro, providing a direct link between the state of 
cardiomyocyte maturation and extracellular matrix remodeling [ 34 ]. 

 Some reports have suggested that accelerated lower vertebrate regeneration is a 
consequence of  cellular plasticity  . For example, adult newt cardiomyocytes have 
been shown to transdifferentiate toward skeletal myocyte or chondrocyte lineages 
after transplantation into regenerating limb blastema [ 32 ]. Conversely,  transdiffer-
entiation   was not observed during in vitro culture or after transplantation into intact 
limbs. It would be interesting to see if adult mammalian cardiomyocytes can be 
transdifferentiated by  amphibian blastema  ; this would indicate a conserved intrinsic 
regenerative program within vertebrate cardiomyocytes and a non-conserved 
extrinsic tissue response to injury. 

 Although adult mammalian hearts do not effi ciently regenerate, Olson and col-
leagues showed in 2011 that neonatal mice (up to postnatal day 7) can regenerate their 
heart after apical resection [ 35 ].  Genetic lineage tracing   experiments showed that, simi-
lar to zebrafi sh, the cardiomyocytes are repopulated by pre-existing cardiomyocytes. 
 Immunostaining   with anti-Troponin antibodies demonstrated sarcomeric disassembly 
in myocytes, again suggesting dedifferentiation and expansion of resident cardiomyo-
cytes as a driver of regeneration. Notably, there has been some controversy over the 
extent of neonatal cardiac regeneration, where it has been suggested that neonatal hearts 
heal by scarring after apical resection [ 36 ]. However, several investigators report the 
reproducibility of  neonatal   heart regeneration in an apical resection model and have 
suggested technical differences as a source of variability [ 37 ]. Furthermore, it is not 
surprising that the severity of injury infl uences the effi ciency of regeneration [ 38 ]. 

 Whether or not neonatal hearts exhibit complete regeneration in response to 
injury, their apparent  neomyogenic capacity   is a major point of focus that could 
potentially be used clinically if similar mechanisms can be exploited in the adult 
myocardium. Thus, it is important to critically evaluate not only the functional 
recovery after MI, but also the extent of new cardiomyocyte generation in neonatal 
mice. To that end, cell cycle re-entry of neonatal cardiomyocytes has been thor-
oughly demonstrated. Soonpaa et al. used tritiated thymidine to demonstrate a spike 
in S-phase DNA synthesis in neonatal murine cardiomyocytes, beginning near birth 
and persisting throughout the fi rst week of life [ 39 ]. The fraction of binucleated 
cardiomyocytes increased steadily during this period as the cells lost the ability to 
complete cytokinesis.
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   In contrast to S-phase re-entry, the study of cell division is currently more techni-
cally challenging.  Cytokinesis   has traditionally been evaluated using antibodies 
against cleavage furrow markers such as Aurora B kinase. These techniques can be 
diffi cult to interpret with in vivo or in vitro samples, since staining in closely associ-
ated non-cardiomyocytes could contribute to false-positive results. This has led 
investigators to explore alternative methods, such as  mosaic analysis with double 
markers (MADM)  , to genetically trace divided cardiomyocytes [ 40 ]. Interestingly, 
pulsing of MADM transgenic mice with tamoxifen between postnatal day 2 and 8 
revealed that 5 % of labeled MYH6-expressing cardiomyocytes had undergone 
cytokinesis, giving rise to single labeled (GFP +  or RFP + ) cells. Due to differential 
sorting of chromosomes, as well as non-sortable labeling in G0/G1, this fi gure 
likely underestimates the actual rate of  cytokinesis   in labeled cardiomyocytes. 
Furthermore, it is unclear whether Cre-mediated interchromosomal recombination 
is unbiased with respect to different cellular states in the heterogeneous cardiomyo-
cyte population. Thus, at this time it is diffi cult to quantify the actual rate of cardio-
myocyte cell division. Nonetheless, it is generally accepted that a signifi cant 
proportion of neonatal cardiomyocytes have the ability complete cell division and 
contribute to cardiac regeneration. However, by postnatal day 7, murine cardiomyo-
cytes have mostly exited the cell cycle [ 39 ] and lost their ability to regenerate 
injured myocardium [ 35 ]. 

 Interestingly, it has been suggested that altered  cardiac circulation   accompanies 
newt heart regeneration, where blood is shunted away from the left ventricle [ 41 ]. 
This is reminiscent of enhanced cardiomyocyte cell cycle and myocardial remodel-
ing in patients with ventricular assist device [ 42 ,  43 ], where a reduction in load may 
allow partial induction of a regenerative response. It would be interesting to see if 
neonatal mice exhibit a similar phenomenon during cardiac regeneration. For exam-
ple, although functional closure of the  ductus arteriosus   occurs within 3 h post-birth 
in mice, remodeling takes place over several weeks [ 41 ]. Thus, additional studies 
would be prudent to evaluate the possibility of compensatory shunting of circulation 
during ventricular regeneration in neonatal mice.  

6.1.3     Developments in Induced Heart Regeneration 

 Despite signifi cant progress in understanding regenerative processes in lower verte-
brates and in neonatal mice, it is still unclear how many of these fi ndings can be 
applied to induce cardiac regeneration in adult mammals. The observation that  neo-
natal mouse hearts   can regenerate cardiac injuries is alluring, but there are major 
differences between neonates and adults with respect to cardiac physiology at the 
cellular, tissue, and neurohumoral levels. A modest degree of cell cycle re-entry has 
been observed in adult human and mouse cardiomyocytes [ 39 ,  44 – 46 ], but evidence 
for cardiomyocyte cell division in adult mammals is scant. To estimate human car-
diomyocyte turnover, Bergmann et al. took advantage of a period of nuclear bomb 
testing in the 1950s and 1960s, which resulted in a pulse of atmospheric  14 C 
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eventually being incorporated into newly synthesized DNA in human  cardiomyo-
cytes   [ 44 ,  45 ]. They found that less than 1 % cardiomyocytes were turned over 
annually in adult humans. Additionally, they showed that DNA content increased in 
the fi rst 10 years of human life, until most cardiomyocytes were tetraploid [ 44 ]. In 
contrast to mice, most adult human  cardiomyocytes   are mononucleate [ 47 ]. 
Together, these results indicate that most human cardiomyocytes terminally exit the 
cell cycle before karyokinesis, whereas mouse cardiomyocytes tend to exit the cell 
cycle after karyokinesis, but before cytokinesis [ 48 ]. 

 Although measurement of  cell division   in human cardiomyocytes is extremely 
diffi cult, recent advances in lineage tracing technology have enabled defi nitive 
labeling of divided cardiomyocytes in mice. A recent study using mosaic analysis 
with double markers [ 49 ] showed that approximately 1 % of labeled adult cardio-
myocytes had undergone cell division after 2 weeks of daily tamoxifen induction 
[ 40 ]. However, as discussed above, potential bias of interchromosomal recombina-
tion could obscure quantifi cation of cell division. Importantly, myocardial infarc-
tion prior to labeling did not increase cell division, indicating a lack of regeneration 
in adult mouse hearts. Still, the immense burden on human health has warranted an 
abundance of investigations seeking the ultimate feat of cardiovascular medicine: 
induced adult human heart regeneration. 

 Numerous strategies have been devised to induce adult mammalian heart regen-
eration and typically rely on mouse models of  myocardial infarction  , such as perma-
nent left anterior descending (LAD) artery ligation [ 50 ,  51 ]. Ischemia-reperfusion 
(IR) models [ 52 ] are an even better representation of human myocardial infarction, 
due to post-MI surgical intervention [ 8 ,  9 ]. Large animal models [ 53 ,  54 ] are useful 
to translate fi ndings in mice and to test regenerative strategies that are diffi cult in 
rodent models due to differences in anatomy, physiology or scalability. 

 Here, we discuss various therapeutic approaches (summarized in Fig.  6.1 ) to 
induce mammalian heart regeneration, including strategies that augment endoge-
nous cardiac regeneration, or supply an exogenous source of cardiomyocyte replace-
ment, consisting of allografts or the re-introduction of modifi ed autologous cells.  

6.1.4     Cardiac Progenitor  Cells   

 Attempts to stimulate  endogenous   heart regeneration and replenish lost cardiomyo-
cytes has been in part motivated by the hypothetical existence of a population of resi-
dent or non-resident cardiac progenitor cells (CPCs), which were thought to be a 
renewable source of committed cardiomyogenic cells. In theory, either autologous or 
allogeneic CPCs could conceivably be grafted into ischemic injuries to facilitate car-
diac regeneration. However, several supposed CPC cell types have ultimately been 
found to represent at best a very rare contributor to new cardiomyocytes in vivo. For 
example,  Lin   −   c-kit   +   CPCs initially showed promise for adult mammalian heart regen-
eration [ 55 ]. However, these cells were later reported to have limited utility in induced 
adult mammalian heart regeneration, despite their potential to support regeneration in 
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neonates [ 56 ,  57 ]. A recent article confi rmed the lack of signifi cant direct contribution 
by cardiac resident c-kit +  progenitors to new cardiomyocytes [ 58 ]. Specifi cally,  c-kit   +   
cells did not co-express  Nkx2.5  or sarcomeric proteins at any stage, but were consis-
tently found to co-express the endothelial marker CD31. Furthermore, endothelial-
specifi c  Tie2- driven expression of Cre completely abolished a  c-kit  driven fl oxed LacZ 
reporter. Thus, despite the observation of c-kit +  cells in both the developing and adult 
heart, they were found to contribute  mostly   to endothelial cells, rather than cardiomyo-
cytes. As an exogenous cell therapy for heart regeneration [ 59 ], it seems likely that any 
potential benefi t of  c-kit   +   progenitor cells to cardiac function would be indirect, for 
example through paracrine signaling. Other potential endogenous adult murine  CPCs   
have been described, such as  Sca1   +   cells [ 60 ,  61 ]. However ectopic Cre-expression 
may have confounded initial interpretations of  Sca1   +   CPCs, and the lack of a human 
ortholog limits the application to human heart failure therapy (reviewed in [ 62 ]). 

 By contrast,  Isl1   +   cells are a true cardiomyocyte progenitor population derived 
from the second heart fi eld and have been shown to give rise to a majority of 
cardiomyocytes in the developing mouse heart [ 63 ,  64 ]. Cre-based lineage tracing 

  Fig. 6.1     Autologous cellular approaches   to cardiac regeneration. Promising sources of autologous 
patient cells for therapeutic cardiac regeneration include dermal fi broblasts and bone marrow cells, 
which can be delivered to the infarct via intracoronary (IC) or intramyocardial (IM) injection. 
Bone marrow cells are thought to act via paracrine effects to encourage regeneration. Fibroblasts 
can be converted directly to cardiomyocyte-like cells via GHMT or small molecules (SCPF) and 
Oct4. An expandable population of cardiac progenitors can be created using cell activated and 
signaling-directed (CASD) lineage conversion. CPCs and cardiomyocytes can also be created via 
embryonic stem cells created using somatic cell nuclear transfer (SCNT). ( Inset ) In vivo repro-
gramming can be used to convert resident cardiac fi broblasts into cardiomyocyte-like cells in situ 
using GHMT factors       
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experiments showed that by embryonic day 9.75,  Isl1   +   progenitor cells generated 
nearly all cells in the outfl ow tract and right ventricle, as well as 65 % of the left 
atria and 20 % of the left ventricle [ 63 ]. Moretti et al. showed that  Isl1   +   precursors 
are multipotent and could give rise to smooth muscle and endothelial  lineages   in 
addition to cardiomyocytes [ 65 ]. They also demonstrated that  Isl1   +   cells could be 
differentiated in vitro from ES cells and propagated on cardiac mesenchyme 
feeder layers, indicating a  potential   source of therapeutic progenitor cells for 
heart failure. A majority of the remaining heart, including the left ventricle, is 
derived from  Isl1   −   progenitors from the primary heart fi eld, characterized by 
expression of early developmental markers such as GATA4, NKX2.5, and TBX5 
(reviewed in [ 66 ]). 

 The persistence of a clinically useful population of resident CPCs in adult mam-
malian hearts has been an elusive and ongoing pursuit. However, more tangible 
applications of developmental CPC research in heart regeneration have come 
through the use of CPC markers to identify potential alternative therapeutic cellular 
sources of neomyogenesis. Such induced CPCs can now be obtained by pretreat-
ment of ES and iPS cells, as discussed below. Furthermore, the understanding of 
fetal heart  development      on the molecular level has led to the discovery of fetal gene 
re-expression during heart failure [ 12 ], which could  represent   failed attempts to 
regenerate the adult heart through developmental recapitulation.  

6.1.5     Bone-Marrow Derived Cells 

  Bone marrow-derived cells (BMCs)   represent an attractive source of regenerative 
therapy, since autologous donor tissue can be easily and safely  obtained  . Initial 
promise came from an early study that showed 5-azacytidine treatment could induce 
cardiomyocyte differentiation from immortalized BMCs in vitro [ 67 ]. Subsequently, 
it was shown that autologous BMCs could improve recovery after myocardial 
infarction in rats [ 68 ,  69 ]. A 2001 study showed a low rate of myocardial engraft-
ment in an ischemia-reperfusion model after bone marrow transplantation of sup-
posed multipotent  CD34   -/low  ,  c-kit   +  ,  sca1   +   side population (SP) cells, obtained from 
 Rosa26-lacZ  donor mice [ 70 ]. The purity of the SP cells was high at 91 %, but a 
even a low rate of contamination by other cell types could confound the interpreta-
tion that SP cells themselves give rise to cardiomyocytes. Nevertheless, the observa-
tion that bone marrow derived cells could contribute to endothelial cells and 
cardiomyocytes at all was encouraging for future developments. 

 Numerous other pre-clinical and clinical studies have investigated the safety and 
 effi cacy   of bone marrow-derived cell  therapy      on acute myocardial infarction and 
heart failure. Results from some individual clinical trials have been positive [ 71 ], 
but large-scale meta-analyses have shown either modest or no benefi t on cardiac 
function or mortality [ 72 ,  73 ]. Looking forward, it will be interesting to see the 
results of an ongoing large scale phase III clinical trial testing the effi cacy of intra-
coronary delivery of autologous BMCs [ 74 ].  
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6.1.6     Embryonic Stem Cells 

 Human embryonic stem (hES) cells can be obtained from sperm-fertilized blasto-
cysts [ 75 ] or, more conveniently, produced from adult fi broblasts by somatic cell 
nuclear transfer into oocytes [ 76 ,  77 ]. Being pluripotent,  ES cells      have the ability to 
give rise to all three germ layers, including all cell types of the heart. Thus, ES cells 
are a promising source of cardiomyocyte replacement in the failing heart. However, 
teratoma formation from direct ES cell injection demonstrates that neither normal 
nor failing myocardium lacks the developmental signals for faithful differentiation 
into myocardial lineages [ 78 ,  79 ]. ES cell-derived cardiomyocytes (ES-CMs) can be 
differentiated from hES cells in vitro by treatment with activin A and BMP4 [ 80 ]. 
In an athymic rat IR model, it was shown that infarcted myocardium could be 
grafted with hES-CMs by direct cardiac injection [ 80 ]. Importantly, a pro-survival 
cocktail (containing cell adhesion promoting Matrigel, mitochondrial death inhibi-
tors Bcl-KL peptide and cyclosporine A, vasodilator pinacidil, AKT activator IGF-
1, and caspase inhibitor ZVAD-fmk) was used to improve graft survival and 
functional recovery. 

 Despite the initial excitement for ES-CM treatment, a later study showed that 
although both allogeneic undifferentiated ES cell and ES-CM treatment pro-
vided improvements to ejection fraction in infarcted mouse myocardium, the 
ES- CM      treated groups had an increased risk of cardiac arrhythmia and death 
[ 81 ]. This observation was presumably due to incomplete maturity of  in vitro  
differentiated hES-CMs, or alternatively to the mismatch in normal heart rate 
between human and mouse cardiomyocytes. A subsequent study using an immu-
nocompromised guinea pig cryoinjury model showed engraftment by hES-
derived cardiomyocytes with reduced arrhythmia [ 82 ]. However, a non-human 
primate model of the more relevant IR injury again showed signifi cant arrhythmia 
after engraftment of hES-CMs [ 83 ]. 

 These exciting developments in ES-derived myocardial grafts show promise 
for future heart failure treatments. However, there is a clear need to better under-
stand cardiomyocyte differentiation and to develop protocols to create more 
mature cardiomyocyte grafts that can recapitulate native pacing. In that light, a 
recent study showed that 1 year old in vitro differentiated ES- CMs      are more 
similar to mature myocardial tissue in vivo and that the let-7 miR family plays 
an important role in the maturation process [ 84 ]. Furthermore, an earlier study 
showed that forced expression of connexin 43 improved conduction not only in 
embryonic cardiomyocyte grafts, but even in skeletal myoblast grafts in infarcted 
mouse hearts [ 85 ]. 

 Despite the use of  ES cells   as a powerful research tool, and the promising results 
of preclinical heart regeneration studies, reluctance to enter clinical trials hinges in 
part on their potential for immune rejection and tumorigenesis [ 86 ], not to mention 
ethical constraints. It will be interesting to see if future developments in autologous 
ES cell creation [ 76 ] and refi nements in differentiation and purifi cation protocols 
will change these perspectives.  
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6.1.7     Induced Pluripotent Stem Cells 

 In 2006, Takahashi and Yamanaka reported that adult fi broblasts could be repro-
grammed to become  induced pluripotent stem (iPS) cells   [ 87 ]. By forced expression 
of  Oct3/4 ,  Sox2 ,  c-Myc , and  Klf4 , adult mouse fi broblasts became competent for 
teratoma formation and differentiation into all three germ layers. However, it was 
still not clear whether the same protocol could be used with human cells. The fol-
lowing year, the same group reported that  iPS cells   could be generated using human 
fi broblasts [ 88 ]. This was a landmark development in regenerative medicine because 
it indicated that dispensable autologous adult donor tissue could be used to poten-
tially regenerate any tissue, including the heart. 

 Although iPS cells theoretically should avoid complications due to immune rejec-
tion when using reprogrammed autologous cells, some evidence has suggested oth-
erwise [ 89 ]. Furthermore, the tumorigenic risk of retrovirus-reprogrammed cells has 
led others to pursue chemical or protein-mediated derivation of reprogrammed cells 
[ 90 ,  91 ]. Still, the pluripotency of iPS  cells      necessitates a better understanding of 
differentiation and the development of robust progenitor purifi cation  before   clinical 
applications can safely use iPS cells. Nonetheless, iPS cells have become an invalu-
able research tool and will continue to change the face of regenerative research.  

6.1.8      Direct Reprogramming   

 The discovery of iPS cell reprogramming and the risk of teratoma/tumor formation from 
the use of pluripotent stem cells quickly led others to pursue alternative approaches to 
cellular reprogramming. Related approaches were then used to directly reprogram fi bro-
blasts into induced cardiomyocyte-like (iCM) cells without a pluripotent intermediate. 
The motivation for this type of reprogramming lies in the abundance of fi broblasts in the 
infarcted myocardium that could serve as a source of new cardiomyocytes. A key obser-
vation that led to the discovery of  direct reprogramming   approaches was the recognition 
that several core transcription factors (GATA4, HAND2, MEF2C, MESP1, NKX2-5, 
and TBX5) play a major role in heart development and differentiation. In 2010, a subset 
of these factors, GMT (GATA4, MEF2C, and TBX5), was used to directly reprogram 
mouse cardiac and dermal fi broblasts into iCM cells in vitro [ 92 ]. Subsequently, in vivo 
reprogramming was achieved with either GMT or GHMT (GMT + HAND2), yielding 
improved cardiac function after myocardial infarction in mice [ 93 ,  94 ]. Co-injection of 
thymosin β4 with GMT reprogramming improved myocardial function after MI [ 93 , 
 95 ]. Ding and colleagues showed that small molecules SCPF (SB431542, CHIR99021, 
parnate, and forskolin) and Oct4 alone could achieve direct reprogramming in vitro [ 96 ]. 
Alternative reprogramming formulations have since been developed, including a 
microRNA cocktail that effectively converts adult cardiac fi broblasts [ 97 ]. Importantly, 
Olson and colleagues reported a cardiac reprogramming cocktail that works in human 
cells [ 98 ]. Recently, it was shown that Akt1/protein kinase B enhances GHMT conver-
sion effi ciency and iCM maturity, including increased polynucleation [ 99 ]. 
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 In contrast to iPS  cells  ,  direct reprogramming   offers a source of cardiomyocyte 
replacement that bypasses the teratoma-competent pluripotent stage. However, 
more effi cient methods to convert and target cardiac fi broblasts need to be devel-
oped to move forward in the clinic [ 100 ]. In addition, the use of safe vectors or 
chemical approaches for reprogramming factors would expedite clinical utility of 
direct reprogramming [ 96 ,  100 ]. Furthermore, despite its promising direction, the 
tradeoff of reprogramming fi broblasts into cardiomyocytes must still be critically 
evaluated with respect to the loss of fi broblast function in the failing heart [ 101 ]. 
Perhaps the recent discovery of expandable induced cardiomyocyte-like progeni-
tors [ 102 ] will lead to similar strategies that can address concerns of a fi broblast- 
cardiomycote tradeoff for in vivo conversion.  

6.1.9     Dedifferentiated Adult Cardiomyocytes 

 Dedifferentiation of adult  cardiomyocytes   can be seen through the re-expression of 
fetal gene programs in heart failure [ 12 ]. Thus, it should not be surprising that adult 
mammalian cardiomyocytes can dedifferentiate to some degree in culture [ 103 ,  104 ]. 
Still, evidence for true adult cardiomyocyte cell division, even in the far- removed 
in vitro environment, is scarce. This suggests that despite varying degrees of dediffer-
entiation of adult cardiomyocytes in vitro and in vivo, there may exist an inherent 
block to actually complete cell division. This idea is further supported by the rarity of 
cardiomyocyte-derived cancers. Nevertheless, rare examples of signifi cantly prolifer-
ating adult mammalian cardiomyocytes have been reported, such as rat cardiomyo-
cytes showing high levels of bromodeoxyuridine (BrdU), Ki67 and phosphohistone 3 
(PH3) staining in vitro [ 104 ]. Recently, the dedifferentiation process of these cultured 
myocytes was shown to be regulated by epigenomic reprogramming [ 105 ]. 

 Fascinatingly, explanted cardiac tissue, cultured under non-adhesive conditions, 
has been shown to recapitulate a stem cell-like niche that apparently contributes to 
myocardial repair [ 106 ]. The cell preparations  derived   from such cultures, deemed 
cardiosphere-derived cells (CDCs) are now being evaluated for the treatment of 
heart failure in humans. Phase I clinical trials have shown positive results with an 
increase in viable mass and a reduction in scar size [ 107 ,  108 ]. Interestingly, it was 
recently shown that exosomes from CDCs may help mediate their regenerative 
effects [ 109 ]. It will be interesting to see how ongoing clinical trials could poten-
tially improve patient outcome [ 110 ].  

6.1.10     Stimulation of Adult Cardiomyocyte Proliferation 

 The induction of  cardiomyocyte proliferation   through cell cycle re-entry and true 
cell division has been a heavily sought goal of research, with the ultimate goal of 
adult human heart regeneration through the expansion and replenishment of 
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endogenous cardiomyocytes. Numerous reports have demonstrated induced re-entry 
into S-phase by adult mammalian cardiomyocytes, for example by cell cycle activa-
tors Cyclin A2 [ 111 ] and E2F [ 112 ]. Although cytokinetic fi gures have been observed, 
robust cardiomyocyte cell division has been diffi cult to achieve. Immortalization 
with SV40TAg indicated that it is possible to induce persistent cell  division   in adult 
rat ventricular myocytes [ 113 ]. However, it is unclear what percentage of adult car-
diomyocytes have the capacity to divide without apoptosis even under oncogenic 
conditions. Since the risk of tumorigenesis precludes serious consideration of 
SV40Tag in the clinic, the search for regulated stimulation of cardiomyocyte prolif-
eration continues. Various approaches have since been used to increase cardiomyo-
cyte proliferation and enhance MI repair, such as those involving miRNAs [ 114 – 116 ] 
and neuregulin [ 117 ,  118 ] signaling. The Hippo pathway has recently become an 
intense subject of investigation in heart regeneration due to its role in organ size 
control [ 119 ]. Modulation of the Hippo pathway has been shown to extend the devel-
opmental window of cardiomyocyte proliferation and offer modest improvements 
when administered after MI in several reports [ 120 – 122 ]. Despite promising results 
from many of these studies, the major cell cycle blocks in adult  mammalian   cardio-
myocytes are largely not well understood. Furthermore, defi nitive regeneration in 
adult mammals is still an active pursuit with room for improvement.  

6.1.11      Tissue Mechanics   

 As mentioned earlier, mechanical stiffness has been associated with reduced ventricular 
function and progressive heart failure. Recombinant elastin production by transduced 
endothelial cell transplants reduced infarct size and improved cardiac function after 
myocardial infarction in rats [ 123 ]. This result corroborates observations of progressive 
heart malfunction as a result of mechanically mediated myofi broblast conversion and 
runaway fi brosis accompanied by cardiomyocyte cell death (reviewed in [ 124 ]). Tissue 
mechanics has been shown to be important in several aspects of cardiomyocyte biology, 
such as contractility [ 125 ], development [ 126 – 128 ], differentiation [ 129 ], and matura-
tion [ 130 ]. Recently, a collagen matrix patch containing FSTL1 was used to promote 
myocardial repair in a porcine myocardial infarction model [ 131 ]. It was found that 
therapeutic effect was  infl uenced   not only by the location of FSTL1 secretion, but also 
by the elasticity of the collagen patch. Thus, it is becoming increasingly clear that tis-
sue/matrix mechanics plays an important role in cardiac disease and remodeling and 
should be carefully considered in future efforts to induce heart regeneration.  

6.1.12     Engraftment 

  Engraftment   of exogenous cells into the heart has been a challenging hurdle to treat 
heart disease via cellular approaches. The dynamic mechanical demands of the 
human heart, forcefully pumping at approximately 1 Hz, likely pose a 
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thermodynamic barrier to cell attachment and integration within the dense extracel-
lular matrix. Not surprisingly, there may be an age-dependence on the success of 
donor cell engraftment, as shown by higher engraftment of fetal and neonatal rat 
cardiomyocytes into injured and non-injured adult rat hearts when compared to adult 
cardiomyocyte engraftment [ 132 ]. Despite a higher rate of engraftment for younger 
donor tissue,  engraftment   cell survival is typically very low, even for stem and pro-
genitor cell grafts [ 133 ]. Nevertheless, an enormous body of work describes various 
attempts to achieve therapeutic benefi t from exogenous cell therapy in heart injury 
models, as reviewed above. Concurrent developments are underway to increase cell 
engraftment in the heart and other tissues, including cell adhesive matrices [ 134 , 
 135 ] as well as cell pretreatment to increase cardiac homing (reviewed in [ 136 ]).   

6.2     Conclusions 

 The fi eld of regenerative  biology   has made enormous progress in understanding 
some of the  species   differences in cardiac regeneration and in the discovery of sev-
eral therapeutic strategies that have shown some effect on mitigating the effects of 
human heart failure. However, the ultimate therapeutic endpoint is still out of reach, 
and further work will be required to obtain a better basic understanding of myocar-
dial biology, including the molecular nature of adult cardiomyocyte cell cycle block, 
the role of tissue mechanics in heart disease, and the interplay between fi brosis and 
cardiomyocyte health. Exciting clinical and preclinical developments in cellular and 
molecular therapies utilizing cardiospheres or miRNA and Hippo signaling could 
be revealing in the oncoming years. Still, it will be crucial to continue the pursuit of 
basic discovery in cardiomyocyte biology and the refi nement of drug, gene, and cell 
delivery approaches to maximize progress toward human heart regeneration.     
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    Chapter 7   
 Regenerative Strategies for the Central 
Nervous System                     

     Adam     Roussas     ,     Briana     I.     Martinez     ,     Caroline     P.     Addington     , 
and     Sarah     E.     Stabenfeldt    

7.1           Injury in the Central Nervous System: Physiology 
and Barriers to Regeneration 

 The central nervous  system   (brain and spinal cord; CNS) consists of complex molecular 
and cellular networks, which in turn renders the CNS sensitive to mechanical injury and 
neurodegenerative  disease  . Several CNS ailments, including traumatic brain injury 
(TBI), stroke, Alzheimer’s disease, Parkinson’s disease, and spinal cord injury (SCI) are 
increasing in prevalence in several countries, highlighting the need to delineate their 
pathophysiology [ 1 – 3 ]. In both the spine and brain, both degenerative and contusive 
injuries result in devastating, life changing results for patients such as partial or complete 
paralysis, neuropathic pain, and death [ 4 ]. SCI pathology is defi ned as the partial or 
complete paralysis and/or loss of sensation below the injury site, and TBI as perturba-
tions in the brain that induce functional or cognitive disabilities. It is estimated that CNS 
injury impacts the lives of nearly six million people world-wide [ 5 ], with 276,000 of 
those individuals residing in the US [ 6 ].  Stroke and TBI patients   also face great fi nancial 
burden, paying hundreds of thousands of dollars per year, contributing to a total annual 
cost ranging from $30 to over $60 billion across the United States [ 7 ]. Further, patients 
expressing these pathologies report signifi cantly lower quality of life, due in part to 
physical limitations and pain [ 8 ]. Although signifi cant progress has been made in the 
pursuit of clinical methods to ameliorate injury progression, no viable technique to fully, 
or even partially, restore brain or spinal cord function after injury has emerged. 
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 Advances in neuroregenerative strategies are largely hindered by the complexity 
of the injury or disease pathology. For example,  traumatic injury   to the central ner-
vous system, be it spinal cord or brain, stimulates a complex injury sequelae, com-
monly categorized into two major categories: the primary injury, known as the acute 
phase, and a more complex secondary injury (Fig.  7.1 )   . Immediately following 
mechanical insult, the injury site swells with an infl ux of peripheral blood cells, 
various cytokines, and tissue debris that contribute to a hostile, neurotoxic environ-
ment [ 9 ]. Further, the swelling of soft  tissue   within a confi ned space (i.e. skull or 
vertebrae) leads to ischemia and cell death resulting in apoptosis of neurons and 
oligodendrocytes [ 9 – 11 ]. Together, these deleterious effects culminate in the pro-
gressive loss of neural function [ 9 – 12 ]. In the coming days to weeks, the infl amma-
tory environment will continue to be stimulated and play an active role in shaping 
the secondary injury environment through loss of local vasculature and degenera-
tion of surrounding myelinated axons and interneurons [ 9 ,  13 ]. Finally, via the inter-
actions of a number of cytokines, growth factors, and  astrocytes  , a fl uid-fi lled cyst 
lined with reactive astrocytes called the glial scar is left in place of the lesion. The 
scar  acts   as a barrier between the damaged area and healthy neural tissue, and the 
scar itself may extend beyond the lesion cavity boundary and acts as an impenetra-
ble barrier for the growth of new axons [ 13 ,  14 ]. Many neuroscience and bioengi-
neering research efforts have focused on developing methods to circumvent these 
barriers (i.e. exploring delivery options and modulating cellular environment). The 
purpose of this review is to discuss key approaches in neuroregeneration along with 
their benefi ts, limitations, and considerations for future research.

  Fig. 7.1    General  neuroinfl ammation    cascade   after CNS injury       
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7.2        Manipulation of the Glial Scar 

 Local  infl ammation   is an immediate consequence of  neural injury   and may lead to 
progressive cavitation and exacerbation of the primary lesion. As injury pathology 
progresses, local  astrocytes   activate to a reactive phenotype, exhibited by hypertro-
phy, in response to an intricate cascade of cytokine and growth factor signaling. The 
reactive astrocytes then form a dense scar tissue in an effort to protect intact neural 
networks from further damage [ 15 ,  16 ]. Although scar tissue is primarily produced by 
reactive astrocytes, the glial scar is a heterogeneous collection of many interacting cell 
types, forming a complex system of dystrophic axons, reactive astrocytes, stromal 
cells, activated microglia, and oligodendrocyte progenitors [ 17 – 23 ]. Leakage of blood 
and serum elements into the  CNS parenchyma   is considered an integral event in the 
formation of the glial scar. Most notably, however, astrocytes produce and deposit 
 chondroitin sulfate proteoglycan (CSPG)   throughout the extracellular matrix (ECM) 
within 24 h post-injury; high concentrations of CSPGs may persist at the injury site for 
months [ 24 – 27 ]. Although literature suggests that the glial scar acts to prevent propa-
gation of the  infl ammatory response   to healthy tissue [ 16 ,  28 – 30 ], it also serves as a 
signifi cant barrier to axon regeneration [ 13 ,  14 ]. As such, many groups are seeking 
ways to break down or inhibit production and propagation of the glial scar. In particu-
lar, the direct administration (bolus or controlled release devices) of bacterial enzyme 
chondroitinase ABC ( chABC)   has shown to be effective in degrading the glial scar 
and promoting axonal growth by cleaving CSPGs in animal models of SCI [ 31 – 34 ]. 

7.2.1      Direct Delivery   of chABC 

 Application of chABCs has been extensively studied in experimental brain and spi-
nal cord injury models in attempts to delineate the enzyme’s infl uence on the dam-
aged CNS. chABC has traditionally been delivered to the injury site by bolus 
injection, as several groups have demonstrated the effi cacy of intrathecal injections 
of chABC in murine models [ 31 ,  35 – 39 ]. Bradbury et al. fi rst demonstrated that 
acute phase injections on alternating days up to 10 days post spinal cord injury was 
suffi cient to promote CPSG degradation and functional recovery [ 31 ]. These results 
were later corroborated by both Barritt et al. and Cheng et al., where acute phase 
intrathecal injection of  chABC   post-SCI promoted  CSPG   degradation and subse-
quent axonal sprouting [ 37 ,  38 ]. Further, Cheng et al. demonstrated the dose depen-
dence of chABC effi cacy, with high dose groups exhibiting subarachnoid 
hemorrhages and death within 48 h of treatment [ 38 ]. In the brain, direct delivery via 
infusion after rodent models of TBI and nigrostriatal damage demonstrate the ability 
of chABC to locally degrade excessive CSPGs, thereby promoting axon regenera-
tion [ 40 ,  41 ].  Moreover  , bolus injection of chABC has demonstrated persistence in 
a rodent model of TBI, sustaining decreased inhibitory CSPG levels out to 28 days 
post injection [ 40 ]. Further, delayed chABC treatment in a rodent model of stroke 
demonstrated similar benefi cial effects alongside behavioral recovery [ 31 ].  
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7.2.2      Controlled Release   of chABC 

 In spite of promising results, diffusion of  chABC   into deep regions of the spinal 
cord and brain is limited when delivered intrathecally due to overfl ow beyond the 
intrathecal space and loss of bioactivity [ 42 ]. As such, controlled release systems 
(also see Sect. 7.6.1), such as hydrogel scaffolds and microspheres, have been 
explored as a method for direct, prolonged chABC administration. For example, 
Hyatt et al. demonstrated that controlled release from a fi brin delivery system 
afforded increased concentrations of bioactive chABC and enhanced  CSPG   degra-
dation surrounding the lesion site compared to intraspinal injections [ 43 ]. Other 
groups have corroborated the use of natural hydrogel systems for sustained and 
controlled release of chABC to the injury site in murine models of SCI, recording 
stable release and augmented preservation of bioactivity [ 42 ,  44 ,  45 ]. Further, 
Huang et al. found that  chABC   loaded into poly-lactic acid microspheres is an 
effective method for preserving bioactivity and delivering chABC [ 45 ].  

7.2.3     Genetic Engineering Approaches to Limit CSPG  levels   

 Recently, researchers have explored genetic engineering approaches to imitate the 
effects chABC administration. Zhao et al. employed lentiviral vectors in a rat model 
of corticospinal tract lesion and observed signifi cant degradation of  CSPGs   in the 
injured brain following intracortical injections of lentiviral vectors containing the 
chABC gene [ 46 ]. This reduction in  CSPGs   was correlated with marked reduction in 
axonal degeneration and augmented sprouting and short-range regeneration of corti-
cospinal axons. The results of this study were corroborated by Bartus et al. [ 47 ]. An 
in vitro model of SCI using a Tet-On adenoviral vector encoding chABC also exhib-
ited signifi cant CSPG degradation in treatment groups [ 48 ]. In addition to increasing 
the expression of chABC, Donnelly et al. explored the effects of knocking down 
expression of one of the major pathways of CSPG formation, NG-2 [ 49 ]. They found 
that rats treated with short hairpin (sh) RNA designed to target NG-2 delivered by 
lentiviral vectors exhibited signifi cantly reduced glial scar volume[ 49 ].  

7.2.4     Drug Delivery Approaches to Enhance Neural  Sprouting   

 Aside from high inhibitory levels of  CSPG   within the injury penumbra, additional 
inhibitory signals are readily present, including the neurite growth inhibitor Nogo-A, 
a myelin-associated protein. As such, researchers are investigating approaches to 
neutralize the inhibitory effects of Nogo-A. Infusion of Nogo-A antibodies 24 h 
after experimental stroke signifi cantly increased axonal sprouting, subsequently 
promoting recovery from middle cerebral artery occlusion [ 50 ]. Moreover, delayed 
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anti-Nogo-A treatment in a rodent model of stroke (7 days after infarct) signifi cantly 
decreased infarct volume in comparison to animals with no treatment [ 51 ]. 
Ameliorating infl ammation via Nogo-A modulation has also been observed in 
TBI. In a rat model of TBI, treatment with a Nogo-A antibody signifi cantly increased 
axonal sprouting while decreasing behavioral defi cits in comparison to a non- 
treatment group [ 52 ]. Several groups have assessed the viability of using Nogo-A 
antibodies to enhance neuroregeneration post injury in both murine and non-human 
primate models of SCI injury [ 53 – 56 ]. Caroni and Schwab fi rst  demonstrated   the 
ability to augment neurite outgrowth and axonal growth using monoclonal antibod-
ies to Nogo-A using cultured optic nerve explants [ 53 ], spurring many other groups 
to investigate the effi cacy of Nogo-A antibodies. Leibscher et al. demonstrated the 
effectiveness of this technique in rat models of SCI, recording that antibody treated 
groups exhibited signifi cantly enhanced regeneration of corticospinal neurons [ 54 ]. 
Soon after, the fi rst non-human primate model of anti-Nogo-A administration was 
tested on Marmoset monkeys [ 55 ]. This group reported signifi cantly enhanced 
sprouting and growth of lesioned spinal cord axons into and through the lesion site 
[ 55 ]. Freund et al. corroborated these fi ndings in a Macaque monkey model [ 56 ]. A 
similarly promising approach for encouraging axonal growth is to target down-
stream intracellular signaling pathways such as the Rho/ROCK pathway, inhibition 
of which has been shown by a number of groups to promote axonal regeneration 
from neurites [ 57 ]. Rho/ROCK receptor antagonists like C3-exoenzyme, Y-27632, 
and ibuprofen have been associated with improved locomotor outcome in murine 
models of SCI. Several studies have found that administration of either Y-27632 or 
C3 transferase to inactivate Rho was suffi cient to stimulate axon regeneration in SCI 
models [ 58 – 60 ]. Other  groups   corroborate the use of Y-27632 both in vivo and 
in vitro and also suggest that the effectiveness of treatment with Y-27632 is both 
dependent on dosage and timing: acute administration of high doses being most 
effective and low doses being potentially detrimental [ 60 – 63 ].   

7.3     Modulation of the Infl ammatory and Immune Response 

 As the infl ammatory response progresses in the CNS after injury, the injury region 
is fl ooded with a myriad of infl ammatory and immune response signaling factors. In 
an effort to induce neuroprotective signaling within the injury microenvironment 
and potentially mitigate the detrimental effects of CNS injury, molecular targets to 
modulate this response have been highly researched. For the purpose of this chapter, 
only a few specifi c factors will be discussed as they relate to modulating the injury 
microenvironment in both the spinal cord and brain: tumor necrosis factor alpha 
(TNFα), interleukin 1-β (IL-1β), vascular endothelial growth factor (VEGF), fi bro-
blast growth factor 2 (FGF-2), and brain-derived neurotrophic factor (BDNF). The 
discussion will be centered on the role of various drugs/molecules, their delivery 
mechanisms, and how they modulate the infl ammatory process after CNS injury. 
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7.3.1     Administration of Cytokines, Growth Factors, 
and Neurotrophic  Factors   to Modulate Infl ammation 

 Cytokines are released into the infl ammatory milieu by local activated glial cells 
and leukocytes and have been recorded to have both pro and anti-infl ammatory 
effects in both the brain and spinal cord [ 64 ,  65 ]. Growth factors are naturally occur-
ring proteins that promote cell proliferation, growth, and survival. Neurotrophins 
are a subset of these proteins and induce similar effects, specifi cally in neurons. 
Each of these proteins is a preferred ligand for a specifi c tyrosine kinase and there-
fore activates distinct signaling pathways [ 66 ,  67 ]. Cytokines, growth factors, and 
neurotrophic factors have been researched extensively in the injured or degenerating 
brain and spinal cord in attempts to provide new insights into the complex roles of 
these molecules in various neurological ailments. In this section, we discuss a select 
few of these molecules in terms of their functions and distinct avenues of their  deliv-
ery  . While we have selected only a small number of molecules that are relevant in 
both the brain and spinal cord, there are many other factors, such as chemokines and 
transcription factors, that signifi cantly impact the infl ammatory milieu, and it is 
important to note their effect on the injury environment as well.  

7.3.2     Tumor Necrosis Factor α 

  Tumor necrosis factor α (TNFα)   has primarily been characterized as a pro- 
infl ammatory cytokine, inducing similar neurodegenerative and pro-infl ammatory 
processes in both TBI and SCI [ 68 – 70 ]. Concentrations of  TNFα   have been found 
to peak at 1 h post injury in murine models of TBI/SCI, and as such, most research 
has focused on the acute phase of injury [ 64 ,  71 – 73 ]. At this early time point during 
the injury progression of both the brain and spinal cord, TNFα is expressed by all 
CNS cell types: microglia, astrocytes, neurons, and oligodendrocytes. While two 
weeks post injury, expression is primarily restricted to activated microglia and mac-
rophages [ 74 ]. The major deleterious consequences of  TNFα   are apoptosis, isch-
emia, and glial cell activation. Acute inhibition of TNFα expression by either 
knockout or  TNFα   antagonist administration decreases edema, cortical tissue loss, 
and enhances performance on standard motor tasks after TBI and ischemic injury 
[ 70 ,  75 ,  76 ]. These data were corroborated in models using TNFα receptor (TNFR) 
knockout mice, where neuronal apoptosis was diminished in mice lacking TNFR 
after induced focal cerebral ischemia [ 76 ]. Similarly, TNFα was linked to apoptosis 
of both neurons and oligodendrocytes in murine contusion and crush SCI models 
[ 77 ,  78 ]. It is thought that TNFα acts to promote infl ammation by inducing c-FOS in 
the spinal cord and nuclear factor k-light-chain-enhancer of activated B cells (NF-
kB) in the brain, a protooncogene associated with apoptosis [ 79 ,  80 ] and a transcrip-
tion factor linked to glial activation [ 81 ]. As a result of enhanced glial activation in 
the spinal cord, TNFα contributes to the initiation of Wallerian degeneration (the 
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disruption of myelin sheaths) [ 72 ,  82 ]. TNFα induces this degeneration via the acti-
vation of microglia at the injury site, which will then begin to phagocytose myelin 
at an augmented rate [ 83 ]. Previous studies identifi ed a direct correlation between 
TNFα levels and the rate of Wallerian degeneration [ 82 ,  83 ]. 

 In spite of the neurodegenerative effects discussed above, some evidence sug-
gests that  TNFα   does offer some level of neuroprotection as well. For example, 
Mattson et al. reported in vitro protection of cultured hippocampal and neocortical 
astrocytes by  TNFα   under glucose deprivation and glutamate toxicity. Moreover, 
Mattson et al. demonstrated upregulation of calbindin, a calcium binding protein, in 
TNFα-treated cells, which may have suppressed elevation of intracellular calcium 
and conferred resistance to the glutamate insult [ 84 ]. Other studies corroborate this 
information and suggest that the neuroprotective and pro-infl ammatory effects of 
TNFα act in a temporally dependent manner. In a cortical contusion TBI model, 
Scherbel et al. reported a biphasic response to injury from TNFα defi cient mice 
when compared to wild type controls. At 24–48 h following cortical contusion, the 
knockout mice recovered faster than the respective controls; however, between 1 
and 4 weeks they demonstrated greater neurological dysfunction [ 70 ]. In contrast, 
Bruce et al. reported that when evaluated 24 h after middle cerebral artery occlusion 
(MCAO), infract area and oxidative stress in TNFR defi cient mice were signifi -
cantly higher than wild type controls [ 76 ]. This biphasic trend has also been demon-
strated in spinal cord models of neural injury. Chi et al. observed that in the acute 
phase post-SCI, transgenic rats over-expressing  TNFα   exhibited signifi cantly higher 
levels of apoptotic cells, while in the chronic phase,  TNFα      over-expressing rats 
displayed improved tissue healing and more activated astrocytes on the lesion bor-
der compared to wild type controls[ 85 ]. Taken together, these studies suggest that 
TNFα exerts a toxic effect in the acute stage of infl ammation, while the absence of 
TNFα is deleterious in the chronic stage of infl ammation [ 86 ].  

7.3.3     Interleukin-1β 

  Interleukin-1β (IL-1β)   is a pro-infl ammatory cytokine whose expression is greatly 
enhanced after injury in both the brain and spinal cord. Similar to TNFα,  IL-1β   is 
expressed by astrocytes and microglia in the brain 3–8 h after injury occurs, and its 
presence sharply decreases after 1–2 days, as evidenced by controlled cortical 
impact (CCI) and moderate fl uid percussion injury (FPI) models [ 64 ,  87 ,  88 ]. While 
the same cells express  IL-1β   in the spinal cord, its expression peaks at 12 h and then 
immediately begins to decrease thereafter [ 74 ]. The primary function of IL- 1β   is to 
promote astrogliosis and initiate an array of pro-infl ammatory responses [ 89 ,  90 ] 
and/or promote angiogenesis,  neurogenesis  , and leukocyte infi ltration [ 91 ,  92 ] 
within the injury environment. IL-1β also activates microglia and endothelial cells, 
which in turn potentiates IL-1β’s action on all affected cells [ 92 – 94 ]. Studies in 
IL-1β receptor (IL-1R) knock out (KO) mice have provided evidence of the events 
discussed above. In the brain, Basu et al. found that the presence of microglia/
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macrophages and astrocytes after penetrating brain injury was signifi cantly reduced 
in IL-1R KO mice as compared to wild type controls[ 91 ]. These fi ndings were also 
associated with depressed basal levels of IL-1β itself [ 91 ]. A similar study looking 
at the spinal cord observed decreased macrophage recruitment and TNFα expres-
sion after spinal cord transection in IL-1R KO mice compared to wild type con-
trols[ 95 ]. Intracerebroventricular injection of IL- 1β   was also strongly implicated in 
inducing neutrophil infi ltration as compared to saline injected controls and IL-1R 
KO mice [ 93 ]. This fi nding was further corroborated by a study that induced chronic 
infection with  Trypanosoma brucei  and observed limited leukocyte infi ltration in 
IL-1R KO mice [ 93 ]. Due to its effects on local infl ammatory cell types,  IL-1β   is 
also associated with Wallerian degeneration in the spinal cord. Perrin et al. found 
that microinjection of IL-1β into the dorsal column white matter 5 days after dorsal 
hemisection resulted in signifi cantly increased recruitment of microglia/macro-
phages and rapid clearance of myelin 9 days later [ 96 ]. 

 IL-1β also acts indirectly on local cell types via modulating the expression of 
growth factors like BDNF [ 95 ,  97 ,  98 ] and FGF [ 99 ] and has been shown to increase 
lesion size after both TBI and SCI in correlation with increases in these growth fac-
tors [ 93 – 95 ,  97 – 101 ]. A study of rat hippocampal formations revealed that direct 
administration of IL-1β or lipopolysaccharide (LPS) (which potentiates IL-1β) was 
suffi cient to decrease BDNF mRNA levels [ 97 ]. Tong et al. further validated these 
effects by demonstrating that IL- 1β      can interrupt the neuroprotective effects of 
BDNF by directly disrupting BDNF’s signal transduction pathway [ 98 ,  101 ]. 
Conversely, an in vitro investigation found that direct administration of  IL-1β   
augmented production of FGF by astrocytes and microglia [ 99 ].  

7.3.4     Vascular Endothelial Growth  Factor   

 Vascular endothelial growth factor (VEGF) is a secreted mitogen that signifi cantly 
impacts the development of vascular networks and other endogenous repair mecha-
nisms. For example, administration of a VEGF antagonist  post-ischemia/reperfu-
sion injury   in the mouse brain signifi cantly decreased infarct size compared to a 
control group [ 102 ]. Additionally, using VEGF-A knockout mice, Argaw et al. 
observed a signifi cant decrease in CD45 +  infl ammatory cells compared to wild type 
controls in a multiple sclerosis model [ 103 ]. In general, administration of VEGF 
post SCI or TBI reportedly promotes  anti-infl ammatory effects   in the injury envi-
ronment such as inhibition of infl ammatory cytokines, amelioration of the cytotoxic 
injury environment, and induction of autophagy. Specifi cally, VEGF administration 
following  LPS   stimulated bacteria exposure to spinal neuroglia decreased protein 
expression of infl ammatory cytokines IL-1β and TNFα [ 104 ]. The same study also 
linked VEGF administration with increased levels of autophagy proteins Beclin1 
and LC3B, suggesting that  VEGF   administration may stabilize the injury microen-
vironment by inducing autophagy in local glia [ 104 ]. VEGF has also been associ-
ated with reducing the detrimental effects of  glutamate- induced excitotoxicity   and 
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 hypoxia/hypoglycemia   in spinal cord neurons [ 105 – 107 ]. Although current studies 
were performed on motor neurons, these results may be benefi cial for advancing 
knowledge of VEGF-mediated infl ammatory modulation in the CNS as the path-
ways utilized in each study have direct connections to CNS injury, such as the ERK 
pathway, MAPK pathway, and phosphatidylinositol 3-kinase (PI3K) pathway.  

7.3.5     Basic Fibroblast Growth Factor-2 

  Fibroblast growth factor-2 (FGF-2)   has also been found to play an important  role   in 
decreasing infl ammation and gliosis, amongst many other positive benefi ts via the 
ERK and PI3K pathways in the brain and spinal cord, respectively [ 108 – 113 ]. 
Ruffi ni et al. and Rottlaender et al. both report diminished infl ammation via the 
reduction of multiple infl ammatory cell types such as macrophages, microglia, and 
CD8-positive T-cells in murine encephalomyelitis models [ 114 ,  115 ]. Another study 
corroborated these fi ndings in vitro, reporting that FGF-2 administration results in 
limited leukocyte migration [ 116 ]. Additionally, FGF-2  expression   was signifi cantly 
increased after gold ion injection in a cryo-lesion model of TBI, causing a signifi -
cant decrease in activated microglia as well as an increase in cell proliferation in the 
subventricular zone [ 117 ]. There is also evidence linking FGF-2 to modulation of 
astrocytosis and gliosis, yet results have been contradictory in this respect. For 
example, in vitro studies have found that administration of FGF-2 signifi cantly 
increases astrocyte migration and proliferation [ 118 ]. Goddard et al. reported that 
intraventricular injection of FGF- 2      induced reactive gliosis, while Kasai et al. and 
Reilley at al. both demonstrated the inhibition of reactive gliosis with in vitro and 
in vivo models of SCI, using an intraventricular osmotic pump to provide growth 
factor in vivo [ 96 ,  119 ,  120 ]. Differences in results could depend on relative concen-
trations, model, and/or delivery methods used. Although FGF-2 may be a potent 
inhibitor of reactive astrocytosis and leukocyte migration to the injury area, there are 
signifi cant barriers to its clinical use in the CNS, as it does not cross the blood-brain 
barrier (BBB) or blood-spinal cord barrier (BSCB) [ 121 ,  122 ]. Thus,  FGF-2   admin-
istration is limited to either intrathecal injection, direct administration to the lesion 
site, or potentially via biomaterial-based micro- or nanocarriers.  

7.3.6     Brain-Derived Neurotrophic  Factor   

 Brain-derived neurotrophic factor (BDNF) is a neurotrophic growth factor that 
plays a signifi cant role in both the brain and spinal cord. With respect to neuroin-
fl ammation, BDNF has been shown to have both pro- and anti-infl ammatory effects 
in the injured CNS. In the brain, the Jiang group observed upregulation of  infl am-
matory cytokines IL-10 and TNFα   after BDNF treatment in murine stroke models 
stroke as compared to injured animals without treatment [ 123 ]. In contrast, BDNF 
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and FGF-2 administered in combination have been shown to ameliorate neuroin-
fl ammation in an experimental model of epilepsy by decreasing  astrocytosis, micro-
cytosis, and IL-1β levels   [ 124 ]. Further, it has been shown that increased 
concentration of BDNF can be induced by high peroxide concentrations in the 
rodent model of focal  cerebral ischemia,   which, in turn, reduces peroxide levels at 
the injury site [ 125 ]. Although  BDNF   is primarily associated with modulating 
infl ammation in the brain, there has been signifi cant work demonstrating its rele-
vance to spinal cord pathologies as well. In vivo studies have reported that BDNF 
downregulates nitric oxide synthase (NOS) in damaged neurons after  spinal cord 
injury  , leading to decreases in free radical production and a more stable injury 
microenvironment [ 121 ,  122 ]. BDNF has also been reported to limit the accumula-
tion of  lipid peroxidation   byproducts in injured spinal cord by manipulating microg-
lial function, serving to prevent further oxidative damage [ 126 ,  127 ]. Moreover, 
 BDNF   may reduce BSCB breakdown, edema formation, and neuronal injury in the 
traumatized spinal cord in vivo [ 126 ] .    

7.4     The Role of Drug Delivery to Modulate Infl ammation 

 Many groups have also successfully used drug delivery to manipulate the infl amma-
tory response via cellular modulation and inhibition of gliosis. For instance, one 
approach blocks key chemotactic receptors on infl ammatory cells, thereby limiting 
their inherent chemotactic response towards the injury site. Specifi cally, the chemo-
kine antagonist, vMIPII, displays a broad spectrum of receptor activities and has 
been shown to bind with high affi nity to various classes of  chemokine receptors   on 
many different infl ammatory cells such as XCR, CCR, CXCR, and CX 3 CR [ 128 , 
 129 ]. However, vMIPII binding is not associated with the normal, rapid mobiliza-
tion of calcium from intracellular stores and, furthermore, blocks calcium mobiliza-
tion induced by endogenous chemokines [ 130 ], likely due to the inhibition of 
extravasation by hematogenous cells [ 128 ,  131 ]. Using rat models of stab wound 
injury and spinal cord contusion injury, Ghirnikar et al. reported that continuous 
infusion of vMIPII decreased infi ltration of neutrophils, macrophages, and microg-
lia at the site of injury [ 131 ]. Further,  vMIPII infusion   resulted in substantial reduc-
tions in neuronal loss and gliosis with concomitant increased expression of  Bcl2  
gene [ 128 ], an endogenous inhibitor of apoptosis [ 132 – 135 ]. 

 Other pharmaceutical approaches focus primarily on modulating  leukocyte infi ltra-
tion   and infl ammatory cytokine production. Such drugs include Lipitor, Imatinib, 
Rolipram, Thalidomide, and Minocycline [ 136 – 139 ]. A sphingosine receptor modula-
tor, FTY720, has also been shown to inhibit leukocyte recruitment to the injury site 
when administered daily after spinal cord contusion [ 140 ]; however, the mechanism 
behind this action is still under investigation.  Lipitor   attenuates BSCB dysfunction by 
suppressing isoprenoid-dependent RhoA activation and preventing matrix metallo-
proteinase-9 (MMP9) expression, which results in reduced infi ltration of neutrophils/
macrophages and reduced expression of the infl ammatory mediators TNFα and IL-1β 
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[ 136 ]. In addition to leukocyte infi ltration modulation,  Lipitor   may also reduce axonal 
degeneration, myelin degeneration, gliosis, and neuronal apoptosis as well as enhance 
tissue sparing after spinal cord contusion [ 136 ]. 

  Imatinib   reportedly modulates tyrosine kinase signaling cascades involved 
in local infl ammation. Imatinib has been shown to mediate cytokine production in 
mast cells, macrophages, and effector T cells via inhibition of the protooncogene 
c-Kit, macrophage colony stimulating factor (MCSF), and the lymphocyte-specifi c 
protein tyrosine kinase (LCK) pathway, respectively [ 141 ]. Administration of 
Imatinib after a contusion SCI model improved BSCB integrity and functional out-
comes, attenuated astrogliosis, decreased deposition of  CSPGs  , and increased tissue 
sparing [ 138 ]. Positive effects have also been observed with Imatinib administra-
tion after TBI. Imatinib is an effi cient antagonist of platelet-derived growth factor 
receptor-α (PDFR), a receptor that plays a vital role in BBB permeability [ 142 ]. 
Treatment with  Imatinib   in a rodent model of TBI inhibited the PDFR pathway and 
consequently decreased BBB leakage, edema formation, and lesion size in the 
rodent model of TBI and subarachnoid hemorrhage [ 142 ,  143 ]. 

 Similarly,  Rolipram  , a phosphodiesterase-4 specifi c inhibitor, is a potent sup-
pressor of TNFα and IL-1β expression from LPS-stimulated macrophages [ 144 , 
 145 ]. Rolipram’s anti-infl ammatory effects are induced via elevated intracellular 
cAMP levels [ 146 ]. Further, Rolipram administration in the rat ventrolateral funicu-
lus was found to save oligodendrocytes in contusive spinal injury [ 147 ,  148 ]. Data 
collected in other murine models corroborate these fi ndings and suggest that intra-
venous (IV) injections of Rolipram 1 h post-injury increase neuronal and oligoden-
dral survival [ 139 ]. This group also investigated the effects of IV, subcutaneous, and 
oral Rolipram administration in the spinal cord, concluding that IV administration 
yields the most potent effects [ 139 ]. In the brain, administration of Rolipram has 
shown promise in treating ailments that arise from focal cerebral ischemia. 
Researchers have observed reduced expression of IL-1β and TNFα as well as 
improved sensorimotor function in rodent stroke models [ 149 ,  150 ]. Additionally, 
 Rolipram   has been found to increase survival of newborn neurons in the hippocam-
pus after stroke, possibly by sustaining activation of the cAMP-responsive element 
binding protein pathway, which regulates  neurogenesis   under pathological condi-
tions [ 150 ]. While Rolipram has been effective in stroke research, studies of 
Rolipram administration after TBI have demonstrated unfavorable results. Even 
though Rolipram decreases pro-infl ammatory cytokines after injury, administration 
worsened injury outcome by signifi cantly increasing hemorrhage and infarct size 
compared to vehicle-treated animals [ 151 ,  152 ]. These data suggest that while 
 Rolipram   administration is benefi cial for some CNS injuries, further investigation is 
required to delineate how Rolipram may modulate the infl ammatory response in 
certain pathophysiological contexts. 

 Another group found that the combination of Rolipram and  Thalidomide   acts as 
a potent inhibitor of TNFα and IL-1β expression, leading to signifi cant tissue spar-
ing [ 153 ]. Thalidomide alone has been reported to readily cross the BBB, reduce the 
release of TNFα from LPS-stimulated macrophages, and promote production of 
IL-10, an anti-infl ammatory cytokine [ 154 ]. Administration of  Thalidomide  , in 
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similar fashion to Rolipram, demonstrates favorable outcomes in experimental 
models of stroke due to its ability to suppress TNFα and IL-1β infl ammatory cyto-
kines. Not only have researchers observed decreased infarct volume and motor con-
trol defi cits, but also signifi cant decreases in oxidative damage to the brain [ 155 , 
 156 ]. Due to its success in models of infl ammation in the CNS, the mechanisms of 
Thalidomide treatment in other CNS injuries would be of interest. 

 The anti-microbial drug  minocycline  , when administered in the acute phase, can 
modulate the behavior of microglia via caspase 1 inhibition to reduce the infl amma-
tory response and maintain a pro-regenerative milieu, leading to enhanced rehabili-
tative outcomes in SCI contusion models in mice [ 157 ]. A similar effect was 
recorded in murine contusion models of the brain, where minocycline attenuated 
microglial activation in one study [ 158 ] and IL-1β expression in another [ 159 ]. 
Given these results and others in both the spinal cord [ 160 ,  161 ] and brain [ 159 , 
 162 – 166 ], there is currently a clinical trial recruiting participants to assess the safety 
and feasibility of clinical  minocycline   use after TBI [ 165 ]. While the scientifi c com-
munity has witnessed the failure of over 100 different neuroprotective drugs to 
enhance recovery in treatment of SCI and TBI [ 167 ], these fi ve are still promising 
in their own merit and may also serve to elucidate new pathways for research.  

7.5     Promoting Neuroprotection and Neuroregeneration 
through Administration of Growth Factors, 
Neurotrophic Factors or Small Molecules 

 In the previous  sections  , we presented the barriers to regeneration in the CNS such 
as gliosis, ischemia, and induced apoptosis, and key examples of employing growth 
factors, neurotrophic factors, and drugs to ameliorate these processes with the ulti-
mate goal of promoting a more favorable microenvironment for neuroprotection 
and neuroregeneration. In this section, we discuss the direct links between growth/
neurotrophic factors and neuroprotection/neuroregeneration (see Table  7.1 ).

7.5.1       Vascular Endothelial Growth Factor 

 Vascular endothelial growth factor ( VEGF)   is induced by hypoxia and ischemia and 
plays a role in enhancing angiogenesis and aproviding neuroprotection in the brain 
through the extracellular signal-regulated kinase (ERK) and endoplasmic reticulum 
(ER) stress pathways [ 168 – 172 ]. This group has  shown   that the actions of VEGF are 
dose dependent (demonstrating effi cacy at about 2.5 ng/μL) and act most effectively 
within the fi rst 3 h of transient MCAO [ 173 ]. VEGF effi cacy may also be temporally 
dependent as evidenced in a rodent model of  stroke   [ 170 ]. Chu et al. observed VEGF 
IV administration 1 h post- insult to increase BBB leakage and lesion size, while 
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administration 48 h post-insult increased angiogenesis [ 174 ]. Interestingly, routes of 
administration may also infl uence the effect of VEGF on infarct size following stroke 
in rodents. Kaya et al. observed IV administration of VEGF to increase lesion size, 
whereas intracerebroventricular administration of VEGF decreased lesion size and 
BBB permeability in the same animal model [ 175 ]. 

 As a likely result of the  anti-infl ammatory properties   of  VEGF  , several groups 
have demonstrated that VEGF signifi cantly reduces lesion size, promotes endothe-
lial cell proliferation, and promotes tissue sparing in ex vivo, in vitro, and in vivo 
models of SCI [ 104 ,  176 – 178 ]. Further, Kim et al. suggest that VEGF delivered by 
neural progenitor stem cells ( NPSCs)      genetically modifi ed to overexpress VEGF 
enhanced the proliferation of glial progenitor cells and promoted angiogenesis and 
tissue sparing in an ex vivo model of SCI [ 177 ]. The  neuroprotective effects   of 
VEGF were further described by De Laporte et al., who demonstrated that in vivo, 
biomaterial-facilitated VEGF delivery in a rat hemisection SCI model enhanced tis-
sue sparing and angiogenesis [ 179 ], with these effects exaggerated in the presence 

   Table 7.1    Cytokines and neurotrophic/signaling  factors   associated with their respective effects on 
the CNS post-injury       

7 Regenerative Strategies for the Central Nervous System

www.ebook3000.com

http://www.ebook3000.org


134

of FGF-2 [ 179 ]. These VEGF-mediated molecular and cellular changes have been 
observed by some to correlate with improvements in motor function after various 
murine SCI models. Liu et al. found that induction of VEGF with an engineered 
transcription factor after clip compression SCI promoted revascularization, 
decreased apoptosis, and was associated with greater functional outcomes for ani-
mals expressing VEGF compared to wild type animals [ 180 ]. Similarly, Nori et al. 
observed enhanced  motor recovery   when  NPSCs   were implanted after murine con-
tusion SCI models, and these results were directly linked to presence of  VEGF      in 
treated animals as compared to saline injected controls [ 181 ]. In general, VEGF 
appears to promote neuroregeneration in the CNS: supporting the regeneration of 
brain and spinal cord microvasculature, axonal growth in the spinal cord, and direct 
neurotrophic effects in both the brain and spinal cord.  

7.5.2     Brain-Derived Neurotrophic Factor and Neurotrophin- 3   

 Other molecules found to be effective in preventing apoptosis are BDNF and  neuro-
trophin- 3 (NT-3)   [ 155 ,  182 ]. Similar to BDNF, NT-3 is a neurotrophin in the nerve 
growth factor (NGF) family that is diversely expressed in the CNS, with greater 
expression in the spinal cord than the brain after injury. In fact, levels of NT-3 
mRNA have been shown to decrease after hippocampal fl uid percussion injury 
[ 178 ,  183 ]. Nonetheless, experimental induction of NT-3 has been shown to stabi-
lize calcium concentrations and reduce apoptosis due to excitotoxic insults in the 
brain [ 183 ]. In the spinal cord, NT- 3   is associated with promoting survival of endog-
enous neurons. For example, NT- 3   signifi cantly enhanced the survival of anterior 
horn neurons in mouse compression SCI models and signifi cantly improved cell 
survival and reduced cell atrophy in both in vitro and in vivo models of SCI [ 184 –
 186 ]. Signifi cant data has also been collected associating NT-3 with increased plas-
ticity, axonal growth, and augmented myelination post-injury [ 187 – 192 ]. As such, 
researchers have primarily investigated the pro-growth effects that NT-3 has on 
axons in the regenerating spinal cord. Early studies suggested that acute, sustained 
delivery of NT-3 promoted the growth of axons post-cortical lesion injury [ 187 , 
 188 ,  193 ]; however, this growth did not continue beyond the lesion site [ 187 ]. 
Taylor et al. found that this barrier can be overcome by creating an NT-3 gradient 
that leads out of the lesion site [ 188 ], but growth for long distances was not attain-
able simply using a neurotrophic signal. A recent study performed by Hou et al. 
corroborates the data found by Taylor et al., and further suggests that continuous 
expression of NT-3 is essential for sustaining the viability and continued growth of 
new axons post- spinal lesion [ 189 ]. Further, there is some evidence to suggest that 
NT- 3   can promote re-myelination when expressed by transplanted NPSCs [ 194 ]. 

 Similarly, multiple studies have shown that BDNF promotes sustained  axonal 
growth and sprouting   [ 195 – 198 ]. Blesch et al. found that transient BDNF  deliv-
ery   is suffi cient to sustain regenerated axons in spinal cord injury sites [ 196 ]. 
Sasaki et al. corroborated this fi nding in a rat model of SCI, where transplanting 
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 human mesenchymal stem cells (MSCs)   genetically modifi ed to overexpress 
BDNF augmented neuroprotection and axonal sprouting [ 198 ]. BDNF is also 
correlated with increased axonal growth and sprouting from transplanted cells in 
dorsal column lesions [ 195 ]. Further, both Nakajima et al. and Koda et al. found 
that in rat contusion models of SCI, treatment with exogenous BDNF was directly 
correlated with the survival and rescue of endogenous neurons [ 182 ,  199 ] and 
oligodendrocytes [ 182 ,  200 ]. 

 In the brain, BDNF has been associated with enhancement of  mesencephalic 
dopaminergic neurons   and modulation of cognitive processes [ 201 ,  202 ]. Several 
studies have also demonstrated the importance of  BDNF   in promoting NPSC dif-
ferentiation in vitro and in vivo after brain injury [ 172 ,  203 ]. Despite its wide-
spread benefi ts in the brain, BDNF is not capable of crossing the  BBB  , rendering 
it ineffective when administered intravenously [ 204 ,  205 ]. Recently, a technique 
was proposed to circumvent this barrier by conjugating  BDNF   to a molecular 
Trojan horse [ 204 ]. The technique was successful in facilitating movement across 
the BBB and resulted in decreased infarct volume in a rodent model of stroke 
[ 204 ]. Similarly, modifi ed NPSCs overexpressing BDNF have demonstrated 
promise as a delivery option, increasing local BDNF mRNA expression in a CCI 
model of TBI [ 206 ]. 

 Together, these data suggest that BDNF and NT- 3      are essential molecules for 
promoting sprouting and sustained axonal regrowth of both endogenous and trans-
planted cells. As such, various researchers have administered the molecules in com-
bination with promising results. Simultaneous viral-mediated transfection of NT-3 
and  BDNF      showed modest improvement over either growth factor individually in 
both in vitro and in vivo murine models of SCI [ 207 ]. Further, intrathecal infusion 
of  NT-3      and BDNF together for 8 weeks was suffi cient to promote a robust regen-
eration of spinal cord neurons into a nerve graft [ 184 ]. Several other studies found 
that direct delivery of BDNF and NT-3 signifi cantly augmented axonal regenera-
tion, myelination, and growth into semipermeable guidance channels in vivo [ 208 –
 210 ]. Nonetheless, these  molecules   are short-lived within the injury site, and 
methods of prolonging bioactivity must be implemented in order to consider clini-
cal translation.  

7.5.3     Basic Fibroblast Growth Factor- 2   

 FGF 2   has mitogenic effects on neural progenitor cells within the subventricular 
zone (SVZ) and neurotrophic effects on dopaminergic neurons in the postnatal 
and adult brain [ 211 – 213 ]. In the non-injured postnatal and adult mouse brain, 
intraventricular administration of FGF2 enhances proliferation of neural pro-
genitor cells and increases oligodendrocyte precursor (OPC) generation in the 
SVZ [ 211 ]. FGF-2 has, therefore, been considered as a therapeutic treatment in 
studies of Parkinson’s disease and other age-related neurodegenerative dis-
eases. In a rodent model of Parkinson’s disease (PD), researchers observed 
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increased OPC generation, enhanced survival of dopaminergic neuronal cul-
tures, and protection from toxicity [ 213 ]. In stroke models, delayed administra-
tion of FGF-2 has been shown to decrease infarct volume and increase functional 
recovery in rats [ 37 ,  38 ]. Despite its benefits, FGF2 administration poses in vivo 
limitations. For example, while  FGF-2      induced axon myelination in periven-
tricular white matter, it also resulted in significant loss of oligodendrocytes at 
later time points in both healthy and PD brain models [ 211 ,  214 ]. Further, a 
significant decrease of myelination in the caudal anterior medullary velum has 
been reported as an effect of  FGF-2   delivery to rat pups [ 43 ]. These data sug-
gest that FGF2 has a dual effect on neural  environment     , both providing neuro-
protection to endogenous cells and potentially limiting remyelination and 
oligodendrocyte survival. Therefore, investigations into parameters that may 
modulate FGF2 efficacy could inform the design of more precise FGF2 delivery 
paradigms.   

7.6     Biomaterials to Enhance  Neuroregeneration   

 In order to circumvent the barriers of therapeutic administration (e.g. BBB/BSCB 
permeability) and minimize invasive therapeutic delivery paradigms, researchers 
have turned to engineered biomaterials constructed from synthetic or natural mate-
rials. These techniques benefi t the CNS immensely by providing increasingly effi -
cient avenues for delivery of therapeutics for brain and spinal injury/disease 
pathologies. 

 There are three major requirements that a  biomaterial   must meet in order to be 
suitable in this regard. First, the mechanical properties of the biomaterial must be 
robust enough to sustain local fi xation (specifi cally in the spinal cord), yet com-
pliant enough so as not to compress the local tissue [ 215 – 217 ]. Second, the bio-
material must be suffi ciently biocompatible so as to integrate with the local 
environment (i.e. appropriate porosity, permeability, and surface nanotopogra-
phy) [ 216 ,  218 ]. Third, the material must degrade at a suitable rate, similar to that 
of the ingrowth of support tissue and the extension of extending axonal processes 
[ 216 ,  219 ]. Many different types of materials have been used to develop scaffolds 
for neuroregeneration including natural materials like hyaluronic acid (HA), col-
lagen, chitosan, agarose, alginate, and more; synthetic materials, such as nitrocel-
lulose membranes, synthetic polymers, and biodegradable synthetic polymers; 
and biological grafts, such as fetal tissue (brain and spinal cord) and peripheral 
nerve implants [ 215 ,  219 – 222 ]. 

 While the great number of biomaterials currently in use experimentally seems to 
be individually idiosyncratic, they can be generalized into three categories: hydro-
gels, nanofi bers, and micro/nano particles [ 220 ]. 
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7.6.1     Hydrogels for Neuroregeneration 

 Hydrogels are networks composed of polymeric chains that act to mimic the 
extracellular matrix (ECM). Depending on the origin of the material, hydrogels are 
further stratifi ed into natural, synthetic, and/or composite materials groups.  Natural   
hydrogel systems include HA, collagen, chitosan, agarose, alginate, elastin, fi brino-
gen, laminin, gelatin, and more [ 223 ]. Examples of synthetic hydrogels readily 
employed in biomedical applications for CNS injury include poly(ɛ-caprolactone) 
(PCL), polyethylene glycol (PEG), poly(hydroxyethyl methacrylate) (PHEMA) 
[ 224 ], polyvinyl alcohol (PVA), and poly[N-(2-hydroxypropyl)methacrylamide] 
(PHPMA) [ 225 ]. In general, the  physiochemical and structural characteristics   of a 
hydrogel scaffold greatly infl uence cellular response. The most important character-
istics that should be considered for any hydrogel are the hydrophilic properties, 
stiffness/elasticity, ligand density, and fi ber orientation [ 226 ,  227 ]. Charge is a 
material characteristic that has also been well characterized and found to have sig-
nifi cant effects on neurite extension and cellular morphology. For example, the 
length of neuron extension is directly proportional to the magnitude of the net posi-
tive charge on a scaffold on a certain mathematical domain [ 228 ], the high extreme 
of this domain leading to growth inhibition [ 229 ,  230 ]. Other studies also suggest 
that positively charged hydrogels are capable of sustaining both primary nerve cells 
and the neural support cells that are critical for regeneration [ 231 ]. Further,  cell 
behaviors   are determined by the balance of cell-cell adhesion and cell-substrate 
adhesion, which are a function of the hydrophilic or hydrophobic properties of the 
substrate itself and any bioadhesive domains [ 232 – 236 ]. 

 The elasticity of a substrate infl uences  cellular and axonal infi ltration   and tends 
to have an ideal range depending on cell type and ligand. For example, PC12 neu-
rites, a rat adrenal pheochromocytoma cell line that is induced by NGF into a neu-
ronal phenotype, were found to exhibit branching and outgrowth on fi bronectin-based 
substrates with a shear modulus between 10 Pa and 10 kPa [ 237 ]. While another 
study found that PC12 cells on PEG substrate exhibited enhanced adhesion and 
outgrowth with increasing Young’s modulus (between 75 and 400 kPa) [ 238 ]. 
Regardless of cell type or ligand, the literature is split on the relationship between 
the elastic modulus and extent of axonal infi ltration [ 237 ,  239 ]. Variation in data is 
likely due, in part, to variation in ligand density. Engler et al. showed that cellular 
 proliferation   was greatly enhanced on substrates with higher collagen densities than 
on controls without collagen [ 240 ]. Similarly, Thomas et al. found that spreading 
and motility of  malignant astrocytes   on two-dimensional (2D) polyacrylamide fol-
lowed a normal distribution with respect to both stiffness and concentration of 
bound collagen [ 241 ]. Further, recent studies have highlighted the importance of 
dimensionality in culture maintenance, as 3D matrices [ 239 ,  242 ] have been shown 
to critically affect the metabolic activity, growth, and phenotype of neural cell types 
[ 243 ,  244 ]. Further, cells in 2D  cultures   must reorganize their integrin cell surface 
receptors and cytoskeleton to adapt to the planar presentation of receptor ligands, 
which causes distinct dynamic and spatial differences in the distribution of cell-cell 
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and cell-matrix interactions [ 245 – 247 ]. In general, dimensionality plays a major 
role in neurite extension, retraction, branching, and maturation into axons and den-
drites. Further, neurons cultured in 3D versus 2D environments display distinctly 
different morphologies, as 3D  cultures   give rise to neuritic geometries that are more 
morphologically reminiscent of those that occur in vivo [ 244 ]. 

 Substrate charge, stiffness, and  dimensionality   are also important regulators of 
stem cell phenotypic fate. Environmental stiffness is such a potent controller of cell 
fate that  MSCs   will differentiate into neuronal, muscle, and bone cells as gel stiff-
ness is increased [ 248 ,  249 ]. Interestingly, however, when MSCs migrate from soft 
to stiff substrates, some cells preserve neural markers, suggesting that not just stiff-
ness, but variation in stiffness may also impact cell fate [ 250 ]. Saha et al. observed 
neural progenitor/stem cells (NPSCs) to preferentially differentiate into neurons on 
2D substrates of soft to intermediate  stiffness   and into astrocytes on stiffer sub-
strates [ 251 ]. Likewise, 3D hydrogel systems with mechanical moduli similar to 
that of the brain were found to induce neuronal differentiation of NPSCs [ 252 ]. In 
addition to stiffness and dimensionality, there is some evidence to suggest that sub-
strate charge plays a role in cell fate. For example, mouse embryoid bodies cultured 
on negatively and neutrally charged hydrogel  substrates   were found to differentiate 
into all three germ layers and just mesoderm, respectively [ 236 ]. Further, Hynes 
et al. present data that may indicate that  neuronal differentiation   of NPSCs is due, 
in part, to the charge of PLL hydrogels [ 227 ]. 

 Another promising methodology for hydrogel nanotechnology is  self- assembling 
peptides (SAPs)     . Such self-assembling systems facilitate non-invasive delivery 
directly into an irregular shaped lesion. SAPs aggregate in situ via van der Waals 
forces, hydrogen bonds, and electrostatic forces to form a stable network with mini-
mal secondary damage [ 253 ,  254 ]. Many studies have demonstrated that a wide 
variety of peptides and proteins can be utilized to produce very stable and well- 
ordered nanofi ber structures with exceptional regularity [ 255 – 258 ]. Additionally, 
SAPs will collapse into non-toxic  L -amino acids, which can potentially be used by 
local cells for growth and repair [ 256 ]. The diameter of self-assembled nanofi bers 
ranges from 10 to 100 times smaller than typical electrospun fi bers (discussed in the 
next section), which is of particular relevance to tissue engineering. This property 
suggests that  SAPs   can provide cells with a more realistic 3D microenvironment 
[ 259 ]. Self-assembling nanofi ber scaffolds have also been  observed   as a possible 
treatment to induce axonal growth as well as prevent signifi cant lesioning of the 
brain in experimental brain injury [ 260 ,  261 ]. As such, a number of in vitro and 
in vivo studies have been performed to investigate the effi cacy of SAPs in the con-
text of neuroregenerative medicine. 

  SAP   scaffolds can be chemically designed to incorporate specifi c functional 
ligands, such as integrin-binding epitopes, to enhance endogenous repair mechanisms. 
Of particular interest are the laminin epitope, IKVAV; the ionic self- complementary 
RADA epitope; and modifi cations thereof. SAPs containing IKVAV sequences have 
been found to suppress astrocytic differentiation from NPSCs and to promote neurite 
outgrowth from cultured neurons [ 262 ]. In vivo injections of IKVAV functionalized 
SAPs into a spinal cord compression model reduced astrogliosis and cell death at the 
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injury site, increased the neuronal differentiation of NPSCs, and enhanced neurite 
outgrowth [ 262 ]. In a separate study, IKVAVA  SAPs   were demonstrated to inhibit glial 
scar formation and promote axon elongation in a murine model of SCI [ 263 ].  SAPs   
were administered 24 h after dorsoventral compression, and signifi cant reductions in 
astrogliosis were observed in IKVAVA treated groups as compared to non-bioactive 
molecule treated groups [ 263 ]. Tysseling et al. observed that IKVAV peptide amphi-
phile (PA) injection promoted plasticity in serotonergic fi bers, axon growth, and 
reduced the glial scar in rat contusion and mouse compression  models   of spinal cord 
injury [ 263 ,  264 ]. These fi ndings may be due to the extremely high density of the 
IKVAV epitope within the scaffold (almost 10 3  greater than laminin) and differences 
in IKVAV versus laminin signaling mechanisms, though these suggestions require 
continued investigation to fully elucidate [ 262 ,  264 ]. Another study investigating 
RADA16-I functionalized SAPs found that not only did RADA16-I groups support 
attachment and differentiation of NPSCs  in vitro and in vivo  , but also served to bridge 
the injured spinal cord of rats after in vivo transplantation [ 265 ].  

7.6.2     Nanofi bers for Neuroregeneration 

  Nanofi bers   are porous networked fi ber structures with individual fi ber diameter of 
less than 1 μm that mimic the architecture of the ECM. The high surface area to 
volume ratio and extraordinary mechanical strength make nanofi bers excellent 
materials for neuroregeneration applications. Compared to traditional biomaterials, 
nanofi bers have the advantages of  topography and porosity   that mimic the naturally 
occurring extracellular matrix. Additionally, they exhibit excellent biocompatibility 
with low immunogenicity and are endowed with properties that help to bridge the 
lesion gap in transection injuries. Therefore, nanofi bers serve as effective delivery 
systems for cellular grafts and/or therapeutic drugs. The major  processing tech-
niques   available to produce nanofi bers are electrospinning [ 266 ], molecular self- 
assembly [ 267 ], drawing out [ 268 ], and catalytic synthesis [ 269 ]. Electrospinning 
and self-assembling nanofi bers are the most studied techniques for developing scaf-
folds for neural tissue engineering. 

 One of the major benefi ts of  electrospinning   is the ability to control fi ber align-
ment, which has been shown to signifi cantly impact neurite outgrowth, cellular 
proliferation, and cell fate. Parallel-aligned nanofi bers have yielded increased rates 
of NPSC differentiation and neurite outgrowth along the direction of fi ber orienta-
tion as compared to randomly orientated fi bers from both MSCs and human embry-
onic stem cell (hESC)-derived NPSCs [ 270 – 272 ]. Similar studies demonstrated 
oriented neurite outgrowth and glial migration from dorsal root ganglia explants on 
a collagen/poly-ɛ-caprolactone blend and on poly- L -lactate electrospun scaffolds 
[ 270 ,  273 ]. Topographic alignment also affects cell phenotype. Specifi cally, 
Mahairaki et al. observed a signifi cant increase in neuronal differentiation and neu-
rite outgrowth in mouse embryonic stem cells [ 274 ]. In addition to spatial orienta-
tion, other physical properties of nanofi bers, like nanofi ber diameter and patterns, 
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can be controlled in the production process and have been shown to have signifi cant 
impacts on cell fate [ 275 – 277 ]. For example, one study found that compared to 
microfi ber polylactic acid (PLA) scaffolds, nanofi ber PLA scaffolds signifi cantly 
increased  neuronal differentiation   of NPSCs [ 278 ]. Further studies demonstrated 
that NPSCs will selectively  differentiate   into oligodendrocytes on ~300 nm fi bers, 
while displaying neuronal phenotypes on ~750 nm fi bers [ 279 ]. Moreover, pattern-
ing, such as grooved substrates, increased cell alignment and neuronal differentia-
tion of rat hippocampal progenitor cells as compared to randomly oriented scaffolds 
[ 271 ]. Consistent with these fi ndings, it was later shown that nanoscale ridge/
groove pattern arrays can effectively induce differentiation of hESCs and NPSCs 
into neuronal phenotypes without the addition of any biochemical or biological 
agents [ 278 ,  280 ]. 

 Electrospun polymer nanofi bers have also been shown to be useful in drug deliv-
ery applications [ 281 ]. Many therapeutic  compounds   can be easily incorporated 
into the electrospun polymers via the electrospinning process, which unlike com-
mon encapsulation techniques (discussed in the next section) does not require a 
complex preparation. There are two attractive properties of the electrospinning 
 technique with respect to drug/bioactive material loading: (1) the molecular struc-
ture and bioactivity of the incorporated drugs/bioactive molecules are well main-
tained due to the mild processing conditions and (2) the burst release of drugs 
in vitro is greatly reduced. The drug release profi le can be tailored to be rapid, 
immediate, delayed, or modifi ed  dissolution   by changing the polymer carrier used 
[ 282 ]. Release systems are designed via two electrospinning methods. The fi rst 
method for encapsulating drugs is via electrospinning core-shell structures: two 
miscible or immiscible components can be spun into a composite fi ber with a core 
layer encapsulated inside a shell [ 283 ]. Drugs or bioactive materials encapsulated 
using this technique show steady release characteristics, sustaining relatively con-
stant release up to 140 h with tunable initial release profi les [ 284 ,  285 ]. One in vitro 
release study indicated that threads made from the core-shell fi bers could suppress 
the initial burst release and provide a sustained drug release profi le that would be 
useful for administering growth factor or other therapeutic drugs [ 284 ]. Another 
group used emulsion electrospinning to develop a core-shell structure from ultrafi ne 
fi bers of bovine serum albumin and poly(DL)-lactide that allowed for control over 
burst release profi les of bioactive protein, extending release to 3 months [ 286 ]. 

 The second method is to mix both the drug(s) and polymer(s)    together and per-
form the electrospinning process as normal, such that the drugs are embedded 
within the entanglement of fi bers themselves. Using this method, drugs can be eas-
ily located on the surface of the fi bers, resulting in a burst effect in the initial stage 
of drug release [ 287 ,  288 ]. To control drug release profi les, properties such as fi ber 
diameter and drug loading can be modulated to yield either longer or shorter periods 
of specifi c release profi les. For example, increasing fi ber diameter results in longer 
periods of zero order release, and higher amounts of encapsulated drug will result in 
a more signifi cant burst release profi le [ 289 ]. Chew et al. successfully stabilized 
human β-nerve growth factor (NGF) in an electrospun copolymer of g-caprolactone 
and ethyl ethylene phosphate with BSA as a carrier protein [ 286 ]. They reported 
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that bioactive NGF sustained release for 3 months from the matrix, using a PC12 
neurite outgrowth assay to confi rm bioactivity of NGF [ 286 ]. Based on these data 
and others [ 284 – 286 ,  290 ], these electrospun nanomaterials may be ideal for growth 
factor and therapeutic drug localization. 

 The  degradation   of nanofi ber matrices and subsequent release profi les have also 
been investigated as a function of local pathological pH environments. This 
approach allows for development of stimuli-responsive nanofi bers, which, in turn, 
broadens their clinical relevance. In vitro studies on the release profi le of pH-
responsive electrospun nanofi bers demonstrated that total amount of drug release 
was accelerated due to both the pH-induced structural and morphological changes 
of the drug- fi ber   complex and to degradation of the matrix polymers themselves 
[ 291 ,  292 ]. Additionally, modulating concentration of acid-labile polymer seg-
ments allows for further control over the burst release profi le. Yuan et al. designed 
and produced an acid-responsive ibuprofen-loaded PLA fi brous scaffold doped 
with sodium bicarbonate to ameliorate the infl ammatory response and promote 
regeneration. They reported reductions in gene expression of IL-6 and TNFα and 
increased expression of VEGF in a muscle wound. Given the critical roles of IL-6, 
TNFα, and VEGF in CNS injury pathology, the development of a similar system to 
treat CNS injury would be of interest to the fi eld of neuroregeneration [ 293 ]. 
Further, results showed that the ibuprofen-loaded  PLA   fi brous scaffold attenuated 
the infl ammatory response more effectively than no-drug and non-acid responsive 
controls [ 293 ].  

7.6.3     Microparticles and Nanoparticles for Neuroregeneration 

 Nanoparticles ( NPs)   and microparticles (MPs) are colloidal submicron to micron 
sized polymeric particles, often with a therapeutic agent of interest encapsulated 
within the polymeric matrix or adsorbed or conjugated onto the surface of the struc-
ture [ 294 ,  295 ]. Traditionally, both NPs and MPs have been synthesized using tech-
niques like emulsifi cation, electrospraying, and  microfl uidics   [ 296 ]. Although some 
authors reserve the term “nanoparticle” for specifi c size cut offs, for the purpose of 
this review, the terms “nanoparticle” and “microparticle” refer to particles where 
the dimensions of the particle are measured in nanometers and micrometers, 
respectively. 

 There have been a number of studies validating the effi cacy of drug or bioactive 
molecule delivery in both the brain and spinal cord using biodegradable NPs (e.g. 
poly(lactide-co-glycolide) (PLGA and PLAs)    and liposomes. PLGA and PLA are 
polyesters, which undergo hydrolysis upon implantation into the body, forming 
biologically compatible and easily metabolized moieties [ 297 ,  298 ]. Drug 
entrapped in  PLGA and PLA   is released at a sustained rate via diffusion of the drug 
in the polymer matrix and by degradation of the matrix itself [ 297 ]. In these sys-
tems, the rate of degradation can be modulated by either changing block co-poly-
mer composition or molecular weight, which alters the release of encapsulated 
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agent from days to months [ 299 ]. Already, this technology has been employed for 
innovation upon and advancement of current clinical technologies, such as the 
delivery of methylprednisolone. 

  Methylprednisolone (MPS)      is used clinically to render neuroprotection by 
suppressing primary infl ammation and lipid peroxidation when administered at 
high doses in the acute phase of SCI ranging from moderate to severe [ 300 ]. 
However, the use of MPS is controversial as there is evidence that systemic admin-
istration of high doses of  MPS   may cause pneumonia, sepsis, and death [ 301 ]. 
MPS-loaded NPs have been studied extensively to improve drug effi cacy while 
neutralizing some of the detrimental side effects associated with systemic high 
doses. In hemi- section SCI models, both PLGA- NPs   and carboxymethylchitosan/
polyamidoamine dendrimers loaded with MPS demonstrate signifi cantly improved 
outcomes including reduction in lesion size, suppression of microglial and astro-
cytic responses, and improved axon regeneration [ 302 ,  303 ]. It is likely that the 
low-dose (approximately 20x less than clinically relevant systemic doses) and 
reduction of freely circulating bioactive  MPS      are responsible for these improved 
capabilities and may potentially augment the safety of clinical MPS use. Others 
have investigated loading minocycline into polymeric polycaprolactone NPs [ 304 ]. 
Administration of  minocycline- loaded NPs reduced the proliferation of microglia/
macrophages and modulated their morphology from activated to resting in vitro 
[ 304 ]. Similarly, Racke et al. performed an in vitro comparison of treatment with 
minocycline-loaded PEGylated  liposomes   with daily minocycline injections for the 
treatment of CNS autoimmune diseases, fi nding that infrequent injections of  PEG-
minocylcline liposomes   are an effective alternative pharmacotherapy to daily injec-
tions [ 305 ]. In addition to drugs,  neurotrophic factors   have been loaded into NPs 
and delivered to spinal cord lesion sites. YC Wang et al. performed intraspinal injec-
tions of glial cell-derived neurotrophic factor (GDNF) loaded PLGA-NPs in a rat 
contusion SCI model [ 306 ]. The group reported increased neuronal survival as a 
result of successful release of drug into the lesion site [ 306 ]. 

 Given the innate drug delivery capabilities of NPs, particularly sustained intra-
cellular retention, it has been postulated that NPs may provide practical vehicles for 
sustained  gene transfer  . While there has been a signifi cant amount of research per-
formed in other systems of the body, there is currently little work regarding NPs as 
gene transfer vehicles in the CNS. Lu et al. performed a study investigating 
liposome- mediated GDNF gene transfer to augment corticospinal tract recovery 
after SCI lesion [ 307 ]. The group found that in vivo transfer of GDNF cDNA pro-
moted axonal regeneration and enhanced functional recovery, suggesting that lipo-
somal-mediated delivery of cDNA may be a practical  gene transfer method  . The 
therapeutic effi cacy imparted from NPs in this application is likely due to their 
ability to buffer therapeutic agents from degradation by lysosomal enzymes [ 308 ]. 
Hedley et al. demonstrated that DNA encapsulated in PLGA microspheres were 
protected from nuclease activity in vitro compared to non-encapsulated DNA [ 308 ]. 

 Due to the larger diameter of  microspheres  , they are more generally used for 
cellular scaffolding and drug and bioactive factor delivery, with many of the 
same properties as NPs. Through the use of biodegradable polymeric MPs and 
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various synthesis  techniques  , delivery characteristics can be fi nely tuned, where: 
(1) delivery increases with protein loading, (2) polymer degradation varies 
inversely with microsphere size, and (3) release profi les can be controlled by 
pore size [ 309 – 311 ]. Demonstrating the effect of protein loading on delivery 
time, Cao et al. delivered NGF from PLGA, PCL, and blended PCL/ PLGA   
microspheres and varied the amount of protein loaded, with PCL encapsulating 
the greatest amount of protein and PLGA encapsulating the least [ 312 ]. They 
report that at the longest, bioactive NGF was detectable at 91 days in the PCL 
group, demonstrating how polymer characteristics can modulate delivery effi -
cacy [ 312 ]. Benoit et al. confi rmed these results in in vitro studies of NGF release 
from PLA and  PLGA   microspheres [ 313 ]. Burdick et al. produced similar results 
with CNTF, BDNF, and NT-3 loaded into PLGA microspheres, reporting neuro-
trophin burst release for the fi rst 1–2 days followed by up to 3 weeks of near-
linear release [ 314 ]. Further, microspheres loaded with neurotrophic or growth 
factors are commonly used to modulate stem cell behavior in experimental set-
tings. For example, Kim et al. investigated both the in vitro and in vivo effects of 
dibutyryl cyclic-AMP (dbcAMP)-loaded  PLGA microspheres   on exogenous  neu-
ral progenitor/stem cells (NPSCs)   in a murine full transection model of SCI 
[ 315 ]. The authors recorded signifi cantly improved NPSC survival in vivo and 
differentiation into neuronal lineages in dbcAMP-MP treated groups versus 
untreated groups [ 315 ]. In an interesting experiment by Ashton et al.,  PLGA 
microspheres   were loaded with alginate lysase, and then administered to alginate 
hydrogels culturing NPSCs [ 316 ]. Alginate hydrogels are commonly used as 3D 
scaffolds for cell culture and transplantation, but can take months to resolve 
within implantation sites as mammals do not produce endogenous alginases 
[ 317 ,  318 ]. By loading  PLGA      MPs with alginate lysase, the authors demonstrate 
a controllable and tunable method for inducing enzymatic degradation of algi-
nate hydrogels in vivo [ 316 ]. Further, the authors reported signifi cantly aug-
mented rates of NPSC expansion in PLGA MP groups as compared to 
non-degrading alginate hydrogels [ 316 ]. A more recent study demonstrated the 
ability of growth factor-loaded microspheres to mediate cellular behavior. Nie 
et al. demonstrated that transforming growth factor-beta1 (TGF-1β) loaded into 
 PLGA microspheres   promoted chondrocyte adhesion and growth on hydrogel 
scaffolds [ 311 ]. The authors also demonstrated tunable release profi les based on 
PLGA-MP pore size [ 311 ]. 

  Microspheres   themselves have also been used as scaffolds for  cellular trans-
plantation  , as encapsulation of cells provides a protective barrier against host 
immune cell interactions after grafting. In two separate murine SCI model stud-
ies, Tobias et al. demonstrated that alginate-encapsulated BDNF-producing 
fi broblasts survived for 1 month in culture, produced bioactive neurotrophins, 
survived transplantation into the spinal cord of immunocompetent animals, and 
provided a permissive environment for local host axon growth [ 319 ]. These data 
build a case for use of  microspheres   as in vivo drug delivery vehicles, cellular 
grafting materials, and modulators of endogenous repair after brain and spinal 
cord injury.   
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7.7     Cellular Approaches 

 There is considerable data regarding the effect of exogenous cellular  transplanta-
tion   in CNS injury. Cell therapies may be delivered to the spinal cord and brain by 
direct injection, intrathecal infusion, polymeric microspheres, or biomaterial scaf-
folds [ 320 ,  321 ].  Cell therapies   primarily aim to replace damaged endogenous 
cells, enhance the regeneration of endogenous tissues, and/or act as vehicles for 
gene delivery and growth and neurotrophic factor delivery [ 319 ,  322 ,  323 ]. Neural 
progenitor/stem cells (NPSCs) and mesenchymal stem cells (MSCs)      , are fre-
quently utilized based on their multipotent nature and capacity to replace neuronal 
lineage cells, enhance axonal regeneration, and restore interneuron communica-
tion [ 324 ]. Somatic cells and tissues such as  olfactory ensheathing cells (OECs)  , 
 Schwann cells  , fetal tissues, and peripheral nerves have been shown to be effective 
in decreasing excitotoxicity via the secretion of various growth and neurotrophic 
factors, producing a more favorable microenvironment for neuroregeneration 
[ 324 ]. While cellular  therapies   show great promise, there are a number of disad-
vantages to consider such as ethical issues, tumorigenicity, and immunological 
rejection [ 325 ]. These concerns vary with cell type, and as such, in this section we 
will discuss the advantages, disadvantages, and relevant applications of each cell 
type mentioned above in detail (see Table  7.2 ).

   Table 7.2     Cell types   associated with their respective effects on the CNS post-injury       
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7.7.1       Neural Progenitor/Stem Cells 

 NPSCs are multipotent, self-renewing precursor cells that give rise to astrocytes, 
oligodendrocytes, and  neurons   in the CNS. In the spinal cord, NPSCs are gener-
ally derived from fetal tissue. However, stem cells derived from fetal tissue 
(embryonic stem cells;  ESCs  )    raise ethical concerns and are prone to tumor 
development experimentally [ 326 ]. In light of this, NPSCs have recently been 
discovered in the fi lum terminale of adult spinal cord tissue [ 327 – 330 ]. NPSCs 
derived from the  adult spinal cord   consistently produce a neuron to glia ratio of 
3:1 [ 331 ,  332 ], and thus provide an attractive alternative to ESCs as a cell source 
capable of neuronal differentiation. NPSCs transplanted into the spinal cord 
after SCI have been reported to persist in the lesion site up to 24 weeks post 
injury [ 333 ] and have widely been shown to promote endogenous recovery after 
SCI lesion [ 334 – 336 ]. For example, Parr et al. demonstrated increased axon 
ensheathing by transplanted NPSCs at the injury site, increased numbers of 
endogenous  oligodendrocytes  , and notable axonal regrowth [ 334 ]. These results 
were further corroborated in non-human primate contusion SCI models per-
formed by Nemati et al., who found that SVZ-derived NPSCs transplanted into 
the spinal cord of macaque monkeys selectively differentiated into neuronal lin-
eages, homed to the injury site, and promoted improved behavioral outcomes 
[ 337 ]. NPSCs also protect against excitotoxicity and secrete neurotrophic  fac-
tors   such as GDNF, NGF, and BDNF [ 338 ,  339 ]. For example, Llado et al. 
observed in vitro data suggesting that murine NPSCs implanted adjacent to spi-
nal cord organotypic sections will induce transplant-directed axonal outgrowth 
due to secretion of GDNF and NGF by transplanted cells [ 338 ]. Further, spinal 
cord explants were protected in the presence of NPSCs against  glutamate induced 
neurotoxicity   [ 339 ]. Similarly, Lu et al. found that NPSCs expressed detectable 
levels of GDNF, NGF, and BDNF both in vitro and in vivo, which facilitated host 
axonal growth when transplanted in a murine SCI model [ 338 ]. 

 The presence of NPSC transplants in the  striatum   after brain injury is of particu-
lar interest, as it has been associated with enhanced motor and proprioceptive 
recovery in neurodegenerative diseases. For instance, both the Anderson and the 
Ebert groups employed amphetamine-induced rotation tasks to demonstrate that 
NPSC transplantation is associated with increased recovery of motor symmetry 
[ 340 ,  341 ]. Further, Shear et al. demonstrated that the presence of exogenous 
NPSCs in the injured  hippocampus   persisted up to 12 months post injury in a 
rodent model of CCI, which was associated with long-term  motor and cognitive 
recovery   compared to vehicle treatment and non-treatment groups [ 342 ]. Other 
experimental TBI studies have demonstrated that transplanted NPSCs decrease 
astroglial activation and activated microglial accumulation post-injury in a model 
of mechanical hippocampal injury [ 343 ]. Finally, no signifi cant differences in effi -
cacy (as determined by histological analysis) have been observed between adult 
and embryonic NPSCs, prompting the necessity for more investigation into trans-
lational applications [ 321 ,  344 ]. 
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 Nonetheless, there are several problems that limit the use of NPSCs in  clinical 
applications  . Generally, NPSCs are less proliferative in culture than other stem 
cell lines, and as such may be more diffi cult to expand into large cultures as 
required for clinical work [ 345 ,  346 ]. Further, there is evidence to suggest that the 
 differentiation potential   of NPSCs decreases with time in culture [ 347 ]. Lastly, 
direct differentiation of NPSCs into neuronal lineages with high purity is diffi -
cult, although progress has been made in increasing phenotypic purity by using 
human NPSCs (hNPSCs) as opposed to murine [ 331 ,  335 ,  347 ,  348 ]. For exam-
ple, Pfeifer et al. demonstrated pre-clinical effi cacy of transplanted adult autolo-
gous NPSCs in murine models of cervical spinal cord lesion [ 335 ]. In this study, 
SVZ-derived NPSCs from a single, small biopsy were transplanted with  autolo-
gous skin fi broblasts  . The authors report that within 8 weeks post-biopsy, over 3 
million NPSCs were generated from the single biopsy, and that the culture exhib-
ited very similar differentiation profi les to that of syngeneic neuronal progenitor 
cell grafts [ 335 ]. Further, NPSCs within autologous fi broblast co- grafts remained 
viable up to 4 weeks post-transplantation and supplanted cystic lesion defects 
[ 335 ]. Since these fi ndings, several clinical trials have been conducted in both the 
spinal cord and the brain. 

  Phase I/II trials   have been conducted to assess the effi cacy of transplanting 
hNPSCs after thoracic SCI [ 344 ]. The study, authorized by SwissMedic regula-
tory authority, enrolled 12 subjects 3–12 months prior to cell transplantation and 
 administered fi xed doses of 20 million cells directly into the thoracic spinal cord 
adjacent to the injury [ 344 ]. The trial reported signifi cant sensory gains in a 
majority of the subjects, with two of the seven patients who were enrolled with 
complete motor and sensory injuries being converted to incomplete injuries after 
the onset of voluntary toe movement [ 344 ]. Further, there is currently a phase I 
trial at Emory University investigating the safety of surgically transplanting spi-
nal cord derived NPSCs for the treatment of ALS [ 349 ]. Although this study is 
still on going, a completed phase I trial at Oregon Health Sciences University 
validated the safety of surgically transplanting hNPSCs into ventricular and 
bilateral subcortical sites to treat neuronal ceroid lipofuscinosis (Batten disease) 
[ 344 ,  350 ]. Subjects of this study received injections of 500 million or 1 billion 
cells and  immunosuppression   for the course of the study. Although some patients 
succumbed to the severity of their disease as evidenced by post-mortem exami-
nations, four year follow-up of surviving patients showed no safety concerns 
[ 344 ,  350 ]. These fi ndings were corroborated in another completed phase  I   open 
label study conducted at the University of California, San Francisco. In this 
study, four subjects with severe connatal Pelizaeus-Merzbacher myelin disorder 
were given injections of 300 million cells in the frontal white matter of each 
hemisphere and received  immunosuppression   for the fi rst 9 months after injec-
tion [ 344 ,  350 ]. MRI assessments did not reveal signs of infl ammation, gliosis, 
ischemia, or cystic changes and diffusion tensor imaging verifi ed donor-tissue 
myelin development in the patients [ 344 ,  350 ]. However, continued testing in 
controlled studies will be required to demonstrate clinical effi cacy of hNPSC 
transplantation.  
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7.7.2     Oligodendrocyte Progenitor Cells 

  Oligodendrocyte progenitor cells (OPCs)   are a subtype of glial cells found in the 
CNS and are particularly prevalent in the hippocampus and neocortex [ 351 ,  352 ]. 
The primary function of OPCs is to maintain oligodendrocyte populations, the 
myelinating glia in the central nervous system [ 347 ]. Because of this, OPCs have 
been used extensively as a method to produce myelin building blocks for repair of 
injured white matter in rodent models of TBI and SCI [ 353 – 356 ]. Some groups have 
found that injection of OPCs in spinal cord transplant experiments increased remy-
elination [ 357 ,  358 ], with one group seeing these results only 7 days post-injury in 
thoracic contusion SCI models [ 359 ]. OPC and oligodendrocyte-conditioned media 
have been shown to increase axonal length and augment tissue sparing in vitro 
[ 360 ]. Lastly, OPCs have been observed to survive, migrate, and differentiate into 
adult oligodendrocytes after transplantation into a complete transection spinal cord 
injury model [ 361 ]. Similarly, in the brain, OPCs transplanted into dysmyelinated 
mouse brains differentiated into oligodendrocytes and signifi cantly increased axo-
nal myelination [ 353 ]. Similar effects were observed with induced pluripotent stem 
cell (iPSC)-derived OPCs transplanted into a hypomyelinated mouse brain [ 362 ]. 
 OPCs      transplanted in a rodent model of periventricular leukomalacia not only sig-
nifi cantly increased myelination, but also increased proliferation of NPSCs and 
decreased neuronal cell loss [ 351 ]. Nonetheless, there is currently no sustainable 
source of  OPCs  , and OPC transplants are diffi cult to maintain at high phenotypic 
purity, thus limiting current clinical translation [ 358 ,  361 ].  

7.7.3      Schwann Cells   

 Schwann cells are the myelinating cells of the peripheral nervous system that sus-
tain peripheral axon regeneration. Nonetheless, there is strong evidence suggesting 
that Schwann cells can facilitate CNS axon regeneration as well. Schwann cells 
have been shown to promote remyelination of CNS axons, reduce lesion cavitation, 
and express various trophic factors when delivered via injection or biomaterial scaf-
fold into SCI lesions [ 210 ,  363 – 365 ]. Further, Schwann cells are easily isolated 
from peripheral nerves and expanded in vitro [ 363 ]. Some groups have found that 
treatment of spinal cord transection with grafted Schwann cells was suffi cient to 
allow damaged axons to extend into implanted grafts and become myelinated; how-
ever, the axons were unable to leave the grafts distally and re-innervate caudally 
located tissues [ 366 – 368 ]. In a contusion SCI model, transplanted  Schwann cells   
signifi cantly reduced cavitation at the injury site and promoted remyelination of 
endogenous axons growing into the graft [ 369 ]. Other studies have corroborated 
fi ndings of reduced cavitation and further suggest that transplantation of Schwann 
cells may promote tissue sparing and form a bridge across the lesion site [ 370 ]. It 
has been postulated that the mechanism by which Schwann cells promote axonal 
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regeneration is associated with the secretion of trophic factors like NGF, FGF-2, 
BDNF, or NT-3 by Schwann cells [ 371 ]. Schwann cells remain biologically active 
in the CNS for long periods of time, and have been shown to survive, integrate, and 
support axonal growth up to 5 weeks after transplantation in rat contusion SCI mod-
els [ 370 ]. In addition, more recent studies have reported cell survival for up to 6 
weeks after transplantation in multichannel scaffolds [ 372 ]. Nonetheless, Schwann 
cells also exhibit limited migration from the graft site as a result of their inability to 
coexist with or migrate beyond astrocytes, resulting in axonal stalls at the graft-host 
interface [ 373 ]. As such, it is unlikely that Schwann cells alone will be suffi cient to 
stimulate neuroregenerative effects in the CNS, but may play integral roles in  com-
binatorial   approaches to repair damage in the brain or spinal cord.  

7.7.4     Mesenchymal Stem Cells 

  MSCs   are adult stem cells obtained from bone marrow, blood, adipose, and dental 
tissues. MSCs are quickly and easily expanded in vitro, are easily isolated, can 
maintain their viability after cryopreservation at −80 °C, are able to self-renew, and 
have been reported to differentiate into essentially all non-hematopoietic lineages 
such as osteoblasts, adipocytes, chondrocytes, myoblasts, and early progenitors of 
neural cells [ 374 ,  375 ]. In fact, MSCs have been demonstrated to adopt neuronal 
phenotypes in in vitro studies and after in vivo transplantation in contusion SCI, 
stroke, TBI, and neurodegenerative disease models [ 376 – 380 ]. As a transplant 
option for neuroregeneration, MSCs are particularly useful due to a lack of antigens 
that trigger detrimental graft-versus-host responses [ 381 ]. Further, MSCs them-
selves secrete a number of anti-infl ammatory, anti-apoptotic, and trophic signaling 
factors that support axonal growth, remyelination, and protection from cellular 
apoptosis [ 380 ,  382 ]. These many positive characteristics make MSCs unique can-
didates for autologous transplantation in the CNS in place of tumorigenic, ethically 
questionable ESCs [ 326 ]. Furthermore, MSC treatment in the mouse  brain   was 
associated with enhanced survival outcomes after observed increases in prolifera-
tion of endogenous neurons and oligodendrocytes after CCI and induced ischemia, 
results of which were correlated with the expression of BDNF, FGF, Bcl2, and NGF 
by MSCs [ 383 – 385 ]. 

 Although, these neurotrophic and anti-infl ammatory effects have primarily been 
observed in the brain, a recent study of MSC grafts after spinal cord compression 
injury found that MSC transplants secrete NGF and promote signifi cant tissue spar-
ing within the lesion area [ 386 ]. Further, results showed that grafted rats exhibit 
signifi cantly greater revascularization than non-grafted rats [ 386 ,  387 ]. Taken 
together, these data illustrate a role for MSC transplants in promoting endogenous 
repair of host tissue. MSC transplants may also serve as a means of molecular deliv-
ery as several research groups have genetically engineered  MSCs      to deliver neuro-
trophic factors, receptor kinases, and HGF in an effort to promote graft survival and 
regeneration of host tissue [ 325 ,  386 ].  
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7.7.5     Olfactory Ensheathing Cells 

  Olfactory ensheathing cells (OECs)   are glial cells found within both the peripheral 
and central nervous systems and are signifi cant contributors to the regenerative 
capacity of olfactory neurons. In the CNS, OECs are found within the outer layers of 
the olfactory bulb, while in the PNS OECs are dispersed within the olfactory epithe-
lium and the olfactory nerve. In either case, OECs form on bundles of olfactory 
sensory neuron axons, which are then able to extend and re-enter the olfactory bulb 
and re-synapse with second-order neurons in the glomerular layer [ 388 ]. The OECs 
interact with resident astrocytes and fi broblasts to facilitate these connections [ 388 ]. 
Further, OECs are capable of preventing axons from recognizing growth inhibitory 
molecules, thereby allowing them to elongate in otherwise inhibitory settings [ 389 , 
 390 ]. As such, researchers have used these cells in various SCI models to promote 
axonal elongation. In a hemi-transection injury model, injected OECs induced axo-
nal elongation into a denervated caudal host tract [ 391 ]. Similarly, in a transected 
adult rat SCI model, OECs signifi cantly enhanced axonal regrowth, allowing axons 
to extend through white matter tracts, gray matter, and glial scars [ 390 ]. Other groups 
have found that using scaffolding techniques can augment OEC-mediated axonal 
growth. In one of the fi rst studies utilizing this method,  OECs      induced axonal growth 
through a Schwann cell-containing channel for distances as long as 2.5 cm and to a 
slightly lesser extent in non Schwann cell seeded channels [ 392 ]. Given these prom-
ising results, there are now two successful clinical trials on record using OECs to 
promote functional recovery in spinal cord injury patients [ 393 ,  394 ].  

7.7.6     Adipose-Derived Stem Cells 

  Adipose-derived stem cells (ADSCs)   are more abundant, safer, and can be obtained in 
a relatively non-invasive manner compared to other common stem cells [ 395 ,  396 ]. 
Both in vivo and in vitro studies demonstrate that the presence of ADSCs supports 
 neurogenesis   and survival of neural stem cells, illustrating their neuroprotective bene-
fi ts in addition to their safety [ 397 – 399 ]. Further, ADSCs appear to be safe for use in 
the spinal cord, as human ADSCs (hADSCs) transplanted into both humans and ani-
mals under various injury models showed no signs of tumorigenicity or adverse effects 
3 months post-transplantation [ 396 ]. ADSCs have been recorded to differentiate into 
endothelial cells [ 400 ] in vitro after induced hypoxia, support axonal sprouting, and 
modify the structure of the glial scar in white matter after full transection [ 401 ]. 
Because ADSCs are so easily harvested and safe for human use, experiments have 
been performed via a number of neurological disorders to assess the therapeutic effi -
cacy of these cells. For instance, research employing a murine model of Alzheimer’s 
disease found that transplanted  ADSCs   both increase neurogenic activity in the SGZ 
and SVZ neurogenic niches and decrease the amount of oxidative stress on the neural 
environment [ 395 ]. Transplantation of these stem cells has also shown promise in 
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treatment of stroke by reducing infarct size and promoting recovery of motor processes 
[ 395 ]. However, the mechanisms behind ADSC- mediated post-injury enhancement of 
motor function have yet to be fully elucidated in injury models of the brain. 

 In the spinal cord, there is evidence to suggest that partial recovery of motor func-
tion after SCI may be due to the stimulation of angiogenesis and  neurogenesis   by 
ADSCs [ 399 ,  402 ]. An in vitro study of ADSCs transplanted into simulated hypoxic 
conditions revealed enhanced neovascular formations, axonal growth, which corre-
lated with signifi cant functional recovery after in vivo transplantation into a rat SCI 
model [ 399 ]. These results were likely due to secretion of VEGF by ADSCs, as 
NPSCs co-transplanted with ADSCs exhibited signifi cantly reduced apoptosis in the 
presence of  ADSCs  , while treatment with anti-VEGF attenuated this effect in a dose-
dependent manner [ 399 ]. Zhou et al. corroborated these fi ndings in rats that under-
went bilateral dorsal laminectomy [ 402 ]. Human ADSCs (hADSCs) themselves 
exhibited elevated expression of VEGF and BDNF as compared to transplanted 
human bone marrow stem cells (hBMSCs) [ 402 ]. This expression was correlated 
with marked increases in angiogenesis and axon preservation and decreases in local 
activation of macrophages/astrocytes and lesion cavity formation in hADSC treated 
rats as compared to hBMSC rats [ 402 ]. Further, ADSC- derived Schwann cells have 
been shown to express a wide range of neurotrophic factors including NGF, BDNF, 
GDNF, and neurotrophin-4 (NT-4) [ 403 ]. Zainy et al. observed ADSC-derived 
Schwann cells modulate the hostile environment in a full transection SCI model to 
support axon regeneration and enhance functional recovery via the secretion of these 
molecules [ 404 ]. Finally, there are successful phase 1 and phase 2 clinical trials 
demonstrating the safety of autologous  ADSC      transplantation in acute spinal cord 
injury to improve functional outcome of treated patients [ 405 ].   

7.8     Combinatorial Techniques to Enhance 
Neuroregeneration 

 Although there are many promising techniques to promote neural and endogenous 
regeneration after central nervous system injury, no specifi c technique has proved to 
be all encompassing in treating the number of factors impeding neuroregeneration 
in the CNS. As such, it is thought that a  multifactorial approach  , utilizing the desir-
able attributes of all the current methodologies and applying them in a simultaneous 
treatment, may be benefi cial. As discussed, biomaterials can serve as excellent 
delivery vehicles for drugs, bioactive factors, and cells while providing physical 
support for grafted cells to ensure retention and distribution at the transplantation 
site. Matrices like these may enhance cell survival post-transplantation and promote 
differentiation into desired phenotypes based on the scaffolds properties. As such, 
many groups have attempted to incorporate combinations of neurotrophic signaling, 
drug delivery, cellular delivery, and hydrogel scaffolding in one treatment approach 
with varying results. Our review found that while modest attempts have been 
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performed to combine various drugs, cells, and biomaterial implants in the brain, 
researchers have attempted many more combinatorial approaches in the spinal cord. 

 The  administration   of VEGF following transplantation of NPSCs in the rodent 
model of  stroke  , for example, has demonstrated signifi cant motor recovery com-
pared to groups that were only treated with VEGF or NPSCs alone [ 406 ]. 
Combinatorial treatment with NPSCs has also been extended to an experimental 
model of  hypoxic-ischemia  , where transplantation of progenitor cells combined 
with chABC signifi cantly decreased infarction size compared to groups without 
combined therapy [ 407 ]. Additionally, growth factors have also been encapsulated 
in hydrogels in attempts to increase migration of neurons and have even been uti-
lized to engineer specialized scaffolds to deliver stem cells [ 408 ,  409 ]. Nonetheless, 
there are limitations to consider when experimenting with the simultaneous treat-
ment of several techniques. For example, VEGF co-delivered with FGF after closed 
head injury had no signifi cant effects compared to groups that received a single 
growth factor alone [ 410 ]. The authors of this study hypothesize that signaling path-
ways may become oversaturated in response to elevated concentrations of various 
signaling factors, which could be potentially problematic for many combinatorial 
approaches [ 410 ]. 

 As a proof of concept for the use of combinatorial treatments in the spinal cord, 
Johnson et al. investigated the effi cacy of NPSCs transplanted in fi brin scaffolds 
impregnated with growth factors to enhance cell survival and promote neuronal  dif-
ferentiation   [ 411 ]. The authors report that the combination of NT-3, PDGF and fi brin 
scaffold supported NPSC activity up to 8 weeks after transplantation and was suc-
cessful in signifi cantly increasing NPSC retention in vivo as compared to bolus and 
growth factor-free scaffold transplant conditions [ 411 ]. Later studies would then 
investigate similar combination treatment methods on the regenerative capabilities 
of the spinal cord in addition to cellular behavior, with varying results. For example, 
Kim et al. loaded PLGA microspheres with dbcAMP and separately cultured NPSCs 
on fi brin scaffolds, which were then both seeded onto chitosan microconduits to 
study the effects of NPSC behavior in vitro and in vivo [ 315 ]. Although it was found 
that transplanted NPSC/microsphere loaded microconduits were successful in pro-
moting NPSC  survival and neuronal differentiation  , the data suggest that pretreat-
ment with dbcAMP, but not microsphere treatment, increased in vivo survival and 
neuronal differentiation, suggesting that dbcAMP alone may be suffi cient to induce 
these effects [ 315 ]. Nonetheless, the full combination strategy of stem cell and 
microsphere loaded chitosan channels was still effective in promoting NPSC sur-
vival and differentiation, and promoted extensive host axonal regeneration and 
improved recovery 6 weeks after full transection of the spinal cord [ 315 ]. In a similar 
study, Wilems et al. modifi ed  fi brin scaffolds   with PLGA microspheres and encapsu-
lated  progenitor motor neurons (pMNs)   in a model of rat sub-acute SCI [ 392 ]. PLGA 
microspheres were designed to sustain delivery of chABC and/or NEP1-40, a small 
myelin-associated inhibitor antagonist, for two weeks. While in vitro experiments 
confi rmed that pMN viability was unaffected when cultured with chABC and/or 
NEP1-40, in vivo experiments with both molecules and encapsulated pMNs yielded 
reduced cell survival and increased macrophage infi ltration. Further, scaffolds loaded 
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only with  pMNs   decreased apoptosis and neuronal differentiation while simultane-
ously promoting axonal elongation and transplant integration into the host tissue 
[ 412 ]. While these studies do show promise for the effectiveness of combinatorial 
methods using only biomaterials, trophic factors, and a single cell type, more work 
is necessary to fi ne-tune the sensitive interactions between carrier, signaling factors, 
and cells. 

 Other groups have provided evidence that multiple neural cell types and 
neurotrophic factors transplanted in biomaterial scaffolds may support cellular 
transplantation. For example, co-transplantation of NPSCs  and Schwann cells   in 
electrospun PLGA scaffolds has been shown to enhance axonal regeneration in sev-
eral studies [ 413 – 415 ]. Xia et al. demonstrated that NPSCs and Schwann cells in 
PLGA scaffolds promote axonal elongation in vivo; however, there was no differen-
tiation of NPSCs into neuronal phenotypes in groups transplanted with Schwann 
cells, and axons were not able to form synaptic connections. Xiong et al. expanded 
on this approach by co-seeding NPSCs and Schwann cells in NT-3 loaded PLGA 
scaffolds in vitro [ 413 ]. The authors reported increased differentiation of NPSCSs 
into neurons and enhanced formation of active synaptic connections and myelina-
tion of neurites by the accompanied Schwann  cells   in vitro [ 413 ]. Taken together, 
this information suggests that while combinatorial techniques may indeed be capa-
ble of addressing current therapeutic limitations, there is still work to be done in 
determining the most effective therapeutic combinations.     
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