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Preface

 

he book’s title is 

 

Derivatives: Markets, Valuation, and Risk Management

 

. In a
nutshell, that is what it intends to provide—an understanding of derivatives

markets, derivatives valuation, and risk management using derivative contracts.
The first part of the book—

 

Markets

 

—sketches the landscape. What are deriva-
tive contracts? Where do they trade? Why do they exist? While a seemingly end-
less number of derivative contract structures will appear as we proceed through
the chapters of the book, do not be misled. Only two basic contract structures
exist—a forward and an option. All other product structures are nothing more
than portfolios of forwards and options. Similarly, derivative products are
offered by an almost endless number of firms and institutions in the market-
place—brokerages houses, banks, investment houses, commodity producers,
importers, exporters, and so on. Again, do not be misled. Fundamentally there
are only two types of derivatives markets—exchange-traded markets and over-
the-counter (OTC) markets. Exchanges facilitate trading in standardized con-
tracts. They offer deep and liquid markets, and the financial integrity of trades is
guaranteed by the exchange’s clearinghouse. OTC markets, on the other hand,
can tailor contracts to meet customer needs, however, counterparties are left to
their own devices to arrange protection from counterparty default. Finally, why
do derivatives markets flourish, considering that they are 

 

redundant securities

 

,
that is, they derive their value from the price of the underlying security? The
answer is plain and simple. They are generally less expensive to trade, or, in
many instances, circumvent trading restrictions that impede trading in the
underlying security market. Because derivative contracts are redundant means
that they are effective risk management tools. Because they are cheaper to trade
and may circumvent trading restrictions means that they are cost-effective.

The last two terms in the title—

 

Valuation

 

 and

 

 Risk Management

 

—are the
other main focuses of the book. As we amply demonstrate throughout the book,
derivative contracts are incredibly powerful tools for managing expected return
and risk. In order to take full advantage of the opportunities they afford, we
need to have a thorough understanding of how derivative contracts are valued.
Without an understanding the economic factors that drive valuation, we cannot
measure risk accurately, and, if we cannot measure risk accurately, we certainly
cannot manage it effectively.

With this background in mind, we now outline the contents of the book.
The sections of the book, and the chapters that comprise each section, are listed
in Table 1. Here we provide a brief description of the each section’s contents. As
noted earlier, Part One sketches the derivatives landscape. Part Two, together

T
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TABLE 1  Section outline for Derivatives: Markets, Valuation, Risk Management

I. DERIVATIVE MARKETS
1. Derivative contracts and markets

II. FUNDAMENTALS OF VALUATION
2. Assumptions and interest rate mechanics
3. Relation between expected return and risk

III. FORWARD/FUTURES/SWAP VALUATION
4. No-arbitrage price relations: Forwards, futures, swaps
5. Risk management strategies: Futures

IV. OPTION VALUATION
6. No-arbitrage price relations: Options
7. Valuing standard option analytically
8. Valuing nonstandard option analytically
9. Valuing options numerically

10. Risk management strategies: Options
V. STOCK DERIVATIVES

11. Stock products
12. Corporate securities
13. Compensation agreements

VI. STOCK INDEX DERIVATIVES
14. Stock index products: Futures and options
15. Stock index products: Strategy based

VII. CURRENCY DERIVATIVES
16. Currency products

VIII. INTEREST RATE DERIVATIVES
17. Interest rate products: Futures and options
18. Interest rate products: Swaps
19. Credit products
20. Valuing interest rate products numerically

IX. COMMODITY DERIVATIVES
21. Commodity products

X. LESSONS LEARNED
22. Lessons and guidelines
APPENDICES
A. Elementary statistics
B. Regression analysis
C. Statistical tables
D. Glossary
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with Appendixes A and B, review the basic principles of security valuation. The
purpose of this section is to ensure that everyone is on the same page as we enter
the discussions of derivative contract valuation and risk measurement. Parts
Three and Four focus exclusively on derivatives valuation and risk measure-
ment. These principles are developed in an environment in which the underlying
asset is generic. We do this to emphasize the fact that the valuation and risk
measurement principles are generally not asset-specific—the valuation equa-
tions/methods and risk management strategies for foreign currency derivatives
are no different than those used for stock derivatives, stock index derivatives,
interest rate derivatives, and commodity derivatives. With the general valuation/
risk measurement framework in hand, we then focus in Parts Five through Nine
on derivative contracts in specific asset categories. Aside from pointing out any
asset market idiosyncrasies that may affect valuation, specific risk management
strategies/practices, as they apply to the particular asset market, are discussed.
Part Ten summarizes the key lessons contained in the chapters of the book and
offers some general guidelines on derivatives use. 

 

DERIVATIVE MARKETS

 

The first section of the book is devoted to providing a broad overview of deriva-
tive contracts and the markets within which they trade. We start by describing
and illustrating the basic types of derivative contracts—a forward and an
option. With these generic contract designs in mind, we then discuss the funda-
mental issues regarding derivatives markets—why they exist, how they origi-
nated, how they work, and how they are regulated.

 

FUNDAMENTALS OF VALUATION

 

The second section of the book together with the two supporting end-of-book
appendices—Appendix A: Elementary Statistics, and Appendix B: Regression
Analysis—are not specific to derivative contract valuation. They focus on secu-
rity valuation in general. The reason is simple. The problem is risk management.
What risks? You name it. Corporations, institutions, governments, and govern-
mental agencies incur all sorts of risks in their day-to-day operations. For cor-
porate producers such as oil refiners, managing price risk of input costs (i.e.,
crude oil) as well as output prices (i.e., heating oil and unleaded gasoline) are
relevant. For end-users such as airlines, managing its exposure to jet fuel prices
is important. Depending upon user, some risks may be acceptable, while others
may not. A gold company, for example, may have a thorough understanding of
the world’s supply and demand for gold production and, consequently, may be
better able to predict gold price movements in the short- and long-run. On the
other hand, it may have little or no awareness of probable movements in
exchange rates. For this company to accept the gold price risk exposure and, at
the same time, to hedge foreign currency risk exposure of sales commitments in
a different currency is perfectly sensible.
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All of this is to say, we must begin at a more basic level. The key elements in
financial decision making are the risk, return, and timing of cash flows. A secu-
rity’s value is driven by all three factors. A fundamental assumption that we will
maintain throughout the book is the 

 

absence of costless arbitrage opportunities

 

. If
we identify two investments whose risk, return, and timing of cash flow properties
are exactly the same, they must have the same price in the marketplace. Other-
wise, market participants can make free money by simultaneously selling the more
expensive one and buying the cheaper one. This economic premise was introduced
nearly fifty years ago in the Nobel Prize-winning work of Modigliani and Miller
(1958, 1961). We apply this premise again and again throughout the book in a
context called 

 

valuation-by-replication.

 

 Suppose we are faced with the problem of
valuing and measuring the risk of a seemingly complex security or derivative con-
tract. If we can identify a set of securities/derivatives whose cash flow stream
maps identically to the cash flow stream of the complex security, that security’s
value must be equal to the sum of the values of the constituent securities/deriva-
tives. Then, since we know how to value the instrument, we can measure its risk.

After reviewing the no-arbitrage principles, we turn to reviewing the use of
interest rate mechanics in moving expected future cash flows through time. To re-
enforce the relation between valuation and risk measurement, we examine simple
security valuation problems such as bond valuation. After deriving the bond valu-
ation formula, we show how to measure its risk. A bond’s interest-rate price risk
is called duration. We show how to measure it, and, then, how to hedge it.

Where Chapter 2 deals with projection of expected future cash flows and
moving them back to the present at a specified rate of interest, Chapter 3 deals
with the motivation for and the measurement of risk-adjusted rates of interest. In
financial economics, the capital asset pricing model (CAPM) provides the struc-
tural relation between expected return and risk. Like the work of Modigliani and
Miller, the precepts are not new. They begin with the work of Markowitz (1952,
1959) who demonstrates how risk-averse individuals should go about allocating
their wealth among risky securities on a single-period model. Tobin (1958)
extends the model to include risk-free borrowing and lending extends an individ-
ual’s set of return/risk opportunities. Finally, Sharpe (1964) and Lintner (1965)
show how individuals’ security demands can be aggregated and identify the equi-
librium expected return/risk relation for the marketplace. The continuous-time
version of the CAPM, which we use repeatedly throughout the book, was derived
by Merton (1973a). The central role that the CAPM plays in financial economics
in general is attested to by the fact that five of the key players in its development—
Harry Markowitz, James Tobin, William Sharpe, John Lintner, and Robert C.
Merton—have received Nobel Prizes in Economics.

The expected return/risk relation is central to the understanding risk manage-
ment using derivative contracts. Consider Figure 1. The vertical axis is expected
return and the horizontal axis is risk. What derivatives risk management deals
with is moving along the line by entering particular derivative contract positions.
Point C on the figure might represent, for example, a farmer’s current unhedged,
expected return/risk profile. The coordinates of point C are determined by his
assessment of the mean and the variance of the wheat price distribution. His deci-
sion about what to do depends on his risk preferences. He can engage in a risk-
reducing strategy by committing to deliver part of his anticipated harvest of wheat
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at a price that is fixed today. This short forward commitment would bring his
return/risk profile toward the risk-free rate of return, say to point B, and would be
referred to as 

 

hedging

 

. On the other hand, if he is confident that wheat prices are
going to be high as a result of poor weather during the summer and low yield in
the fall, he may not hedge, keeping his risk profile at C, or he may attempt to
profit from his directional view regarding wheat price movements and buy for-
ward to increase his risk profile from C to, say, point D. All of this is to say that
this book deals with moving along this line. There will be different types of risk to
be managed, and we will handle each of them in turn. We should be clear, how-
ever, that risk management is synonymous with expected return/risk management.
In equilibrium, we cannot move one without moving the other. 

Appendices A and B to the book are intended to review the basic principles
of elementary statistics and ordinary least squares regression. These are pro-
vided so as “… to leave no stone unturned.” Having a basic understanding of
statistics and regression analysis is a prerequisite for financial management. The
implementation of the capital asset pricing model, for example, requires esti-
mates of expected return, standard deviation of return, and covariance of
returns of pairs of risky assets. 

 

FORWARD/FUTURES/SWAP VALUATION

 

The third section of the book focuses on the valuation of forward contracts, and
the fourth section focuses on the valuation of option contracts. In both cases, the
underlying asset is generic and is characterized only by its net cost of carry rate.
Section three has two parts. Chapter 4 focuses on the valuation of forward con-
tracts. Futures and swaps are also mentioned in the section heading because they
are simply different types of forward commitments. In Chapter 4, we demonstrate

FIGURE 1 Expected return/risk tradeoff.
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that the price of a futures contract is identical to the price of a forward contract in
an environment in which short-term interest rates are known. In addition, we dem-
onstrate that a swap contract is nothing more than a portfolio of forward con-
tracts. Hence, if we can value a forward, we can value a swap. We show that the
forward price and the underlying spot price are inextricably linked by the 

 

net cost
of carry relation

 

. The intuition underlying this relation is straightforward. Suppose
we need 5,000 bushels of wheat on hand in three months. To lock in the purchase
price of the wheat today, we can buy it in the marketplace, store it, and then use it
in three months. Under this action, we forego the opportunity cost of the funds
that we used to buy the wheat and pay storage costs such as warehouse rent and
insurance. Collectively, these items are called 

 

carry costs

 

. A second strategy is to
buy wheat forward at the price agreed upon today. Since both alternatives provide
wheat in three months at a price known today, the costs of the two strategies must
be the same. Otherwise, someone can earn a 

 

costless

 

 arbitrage profit.
Assuming individuals are constantly monitoring the marketplace for free

money opportunities, we can depend on the net cost of carry relation between a
forward contract and the spot price to hold at any point in time, which implies
that the price movements of the forward and the underlying asset are perfectly
positively correlated. The correlation between forward and spot price move-
ments is at the heart of the risk management strategies discussed in Chapter 5.
We simply rework the mechanics of the CAPM to handle the problem. We show
that we can alter the expected return/risk attributes of any commodity or finan-
cial asset position by entering forward positions. It is only a matter of deciding
what exposures to hedge and what exposures to retain. If we have the ability to
pick underpriced stocks but have no ability to pick the direction of the market,
for example, an appropriate risk management strategy is to buy the under-
priced stocks and sell stock index futures. In this way, we accept the stock’s idio-
syncratic risk about which we are expert and lay off the market risk about
which we have little knowledge. 

 

OPTION VALUATION

 

Section four is the longest of the book’s ten sections.

 

1

 

 But, it is arguably the
most interesting and important. The ideas in this section have spawned an entire
industry, which, as of December 2003, had more than USD 230 trillion in
notional amount of contracts outstanding. Chapter 6 is the options counterpart
to the no-arbitrage price relations for forward contracts provided in Chapter 4.
The no-arbitrage price relations for options fall into one of three categories.
First, because options are contingent claims (i.e., we have the right but not the
obligation to engage in a future transaction), we can only develop lower bounds
on call and put prices. Second, if we consider the call and put prices simulta-
neously, we can create a forward contract and, therefore, develop a net cost of
carry relation for options. Called 

 

put-call parity

 

, this relation resurfaces on
many occasions throughout the chapters of the book. Finally, in countries such

 

1 

 

Much of the material for these chapters is drawn from Whaley (2003).
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as the United States, options on assets as well as options on the futures written
on those same assets are sometimes traded. When this happens, certain no-arbi-
trage price relations will govern prices in the adjacent markets.

Chapter 7 contains the development of the Black-Scholes (1973)/Merton
(1973b) (hereafter, BSM) model. From the valuation of employee stock options
to the dynamic risk management of securities/derivatives portfolios, this model
plays a critical role in the valuation and risk management of hundreds of billions
of dollars of derivatives transactions each day. A standard option contract, like
any security, can be valued as the present value of its expected cash flows. For a
European-style call option, the expected cash flow is at the option’s expiration
and equals the expected difference between the underlying asset price and the
exercise price conditional upon the asset price being greater than the exercise
price. Thus, the call’s expected cash flow depends on, among other things, the
expected risk-adjusted rate of price appreciation on the underlying asset between
now and expiration. Once the call’s expected terminal value is established, it
must be discounted to the present. The discount rate applied to the expected ter-
minal option value is the expected risk-adjusted rate of return for the option. The
problem with this traditional approach to option valuation, provided by Samuel-
son (1965) eight years before BSM,

 

2

 

 is that it is difficult, if not impossible, to
estimate reliably the expected risk-adjusted return parameters.

A major theoretical breakthrough occurred in 1973 with the publication of
research papers by Black and Scholes (1973) and Merton (1973b). They showed
that, if a risk-free hedge between an option and its underlying asset can be
formed, option valuation does not depend on individual risk preferences and
therefore need not depend on estimating expected risk-adjusted returns.

 

3

 

 Indeed,
if option valuation does not depend on risk preferences, we are free to choose
any type of individual risk behavior in valuing an option. An obvious choice is to
assume individuals are risk-neutral. In a risk-neutral world, all assets are
expected to have a rate of return equal to their risk-free rate of interest. Conse-
quently, the need to estimate risk-adjusted rates of return is eliminated.

Chapter 7 begins by building the intuition underlying risk-neutral valuation
using a simple, one-period binomial model. We show that BSM option values
are the same as those obtained using risk-neutral individuals and risk-averse
individuals. With the irrelevance of risk preferences established, we then turn to
risk-neutral option valuation. The BSM model assumes that the price of the
asset underlying the option is log-normally distributed. We develop the expres-
sions for the expected value of the asset price given estimates of the mean and
the variance of the normally distributed return distribution. With the expected
terminal price of the option in hand, we present the valuation formulas for
European-style call and put options. We then use the formulas to derive expres-
sions to assess the option’s risk characteristics. 

Chapter 8 uses the BSM option valuation framework to value unusual or
nonstandard types of option contracts. Many of these contracts emerged in the
late 1980s and 1990s when the OTC markets were focused on designing new

 

2 

 

Interestingly enough, Paul Samuelson was also awarded the Nobel Prize in economics.

 

3 

 

If a risk-free hedge can be formed between two risky securities, the securities are 

 

redundant

 

, 
and each can be priced in relation to the other as investors are risk neutral.
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and ever more elaborate option contracts with wide-ranging payoff contingen-
cies. For some contracts, the potential hedging properties are immediately obvi-
ous. For others, the contracts seem cleverly designed forms of speculation.
Regardless of the purpose, all of the contracts discussed in this chapter have
analytical valuation equations, that is, all of them are formulaic (rather than
numerical) solutions to option valuation problems.

Where Chapter 7 and 8 focus on valuing options analytically, Chapter 9
focuses on numerical techniques that can be used to approximate the values of
options with no analytical valuation equation. Here, the early contributors were
Cox, Ross, and Rubinstein (1979) and Rendleman and Bartter (1979). What
made the option valuation problem in Chapter 7 tractable is that we assumed
the options were European style with only one exercise opportunity. For other
types of options, the valuation problem is not so simple. With American-style
options, for example, there are an infinite number of early exercise opportuni-
ties between now and the expiration date, and the decision to exercise early
depends on a number of factors including all subsequent exercise opportunities.
An analytical solution for the American-style option valuation problem (i.e., a
valuation formula) has not been found. The same is true for many Asian-style
options (e.g., options written on an arithmetic average) and many European-
style options with multiple sources of underlying price risk (e.g., spread
options). In such cases, options must be valued numerically. Moreover, even in
instances where analytical solutions to option contract values are possible (e.g.,
accrual options), numerical methods are often easier to apply.

The numerical methods for valuing options described in Chapter 9 employ
the BSM valuation assumptions. The underlying asset’s price is assumed to follow
a geometric Brownian motion (i.e., to be log-normally distributed at any future
instant in time), and a risk-free hedge between the option and its underlying
asset(s) is possible. Three of the methods involve replacing the continuous Brown-
ian diffusion with a process that involves discrete jumps. The 

 

binomial method,

 

for example, assumes that the asset price moves to one of two levels over the next
increment in time. The size of the move and its likelihood are chosen in a manner
so as to be consistent with the log-normal asset price distribution. In a similar
fashion, the 

 

trinomial method

 

 allows the asset price to move to one of three levels
over the next increment in time. The 

 

Monte Carlo simulation

 

 technique uses a dis-
cretized version of geometric Brownian motion to enumerate every possible path
that the asset’s price may take over the life of the option. A fourth method, called
the 

 

quadratic approximation method

 

, addresses the value of early exercise by
modifying the BSM partial differential equation. As important as valuation, how-
ever, is risk measurement. The chapter concludes with a description of how the
risk characteristics of options can be computed numerically.

Chapters 7 through 9 deal with option valuation. Knowing how to value
options, in turn, provides a means for measuring risk. Chapter 10 focuses on
option risk management strategies. Two major categories exist—dynamic strate-
gies and passive strategies. Dynamic expected return/risk management, for
example, attempts to manage changes in portfolio value caused by unexpected
changes in the asset price, volatility, and interest rates, as well as the natural
erosion of option’s time value as it approaches expiration. These strategies are
of particular importance to exchange-traded option market makers or OTC
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option dealers who, in the normal course of business, acquire option positions
whose risks need to be managed on a day-to-day (minute-to-minute) basis. 

Passive strategies, on the other hand, are those that involve holding an
option over some discrete interval of time such as a week, a month, or even held
to expiration. In this instance, the rates of return of the option and the asset are
not perfectly correlated and the mechanics for analyzing the position are some-
what different. Specifically, we assess the expected return/risk characteristics of
portfolios that are entered into and held to expiration. We discuss how to com-
pute expected profits, expected returns, and risks under the assumption that the
underlying asset price is log-normally distributed at the options’ expiration.
Finally, we show how to simulate the performance of option trading strategies
using Monte Carlo simulation.

 

STOCK DERIVATIVES

 

The remaining sections of the book are arranged by the nature of the asset
underlying the derivatives contract—stocks first, then stock indexes, currencies,
interest rates or bonds, and, finally, commodities. In each section, we provide a
flavor for the history of each derivatives market as well as any market idiosyn-
crasies that may affect the valuation principles developed in earlier chapters.

We begin with stock derivatives. Three chapters are warranted. Chapter 11
is focused on stock products. Options on common stocks have been traded in
the United States since the 1790s. Originally, trading took place in the over-the-
counter market. Put/call dealers would advertise their prices in the financial
press, and interested buyers would call a dealer. These contracts were not stan-
dardized with respect to exercise prices or expiration dates. Without standard-
ization, option positions were often difficult to unwind prior to expiration. An
investor wanting to reverse his option position was forced to negotiate with the
dealer with whom the original trade was made. 

On April 26, 1973, the Chicago Board Options Exchange (CBOE) became
the world’s first organized secondary market for standardized stock options.
The beginnings were modest. The “exchange” was in a small smokers’ lounge
off the main floor of the Chicago Board of Trade. The only options traded were
calls, and calls were available only on 16 New York Stock Exchange stocks.
Today, the CBOE, together with the American Stock Exchange, the Philadelphia
Stock Exchange, the Pacific Coast Exchange, and the International Securities
Exchange, list call and put options on over 2,200 hundred different stocks in the
United States alone. Worldwide, stock options trade on over 50 exchanges in 38
different countries. Futures contracts on individual stocks also trade on a hand-
ful of exchanges worldwide, but their popularity pales by comparison. 

Chapter 12 deals with the valuation of corporate securities, which can also be
viewed as stock derivatives. Firms issue different types of securities to finance the
assets of the firm—common stock preferred stock, discount bonds, coupon bonds,
convertible bonds, warrants, convertible bonds, and so on. Some are issued to the
public and are actively traded in the secondary markets. Others are placed pub-
licly, but trade infrequently. Yet others are privately placed, and trade seldom if at
all. The purpose of this chapter is to show how all of the firm’s securities out-
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standing can be valued using only information regarding the firm’s common stock
price and volatility rate. This is possible because all of the firm’s securities have
the same source of uncertainty—the overall market value of the firm’s assets. To
develop the corporate security valuation framework, we rely of the BSM option
valuation results from Chapter 7. The underlying source of uncertainty is the
firm’s overall market value, which we assume is log-normally distributed in the
future. We also assume that a risk-free hedge may be formed between each of the
firm’s securities and the firm’s overall value. As a practical matter, the firm’s over-
all value (i.e., the sum of the market values of all of the firm’s constituent securi-
ties) does not trade as a single asset, however, small changes in the value of the
firm are perfectly correlated with the changes in the value of its stock. This means
that, as long as the firm’s common stock is actively traded, we can apply the risk-
neutral valuation principles with no loss in generality. We value bonds with vary-
ing degrees of seniority, rights and warrants, and convertible bonds.

Chapter 13 deals with the valuation of options awarded by the firm to its
employees. By providing employees with the shares of the firm, or claims on the
shares of the firm, management aligns the interests of employees with those of
owners (i.e., the shareholders). Two common contracts are an 

 

employee stock
option

 

 (ESO) and an 

 

employee stock purchase plan

 

 (ESPP). Like a warrant, an
ESO is a call option contract issued by the firm. Typically, ESOs are at-the-
money at the time of issuance (i.e., the exercise price is set equal to the stock
price) and have terms to expiration of ten years. Over the first few (usually
three) years, the options cannot be exercised. This is called the 

 

vesting period

 

. If
the employee leaves the firm during the vesting period, the options are forfeit.
After the vesting date, the options can be exercised at any time but are 

 

non-
transferable

 

. Because they are nontransferable, the only way for the employee to
capitalize on its value is to exercise the option. An ESPP allows the employee to
buy the company’s stock at a discount, usually 15%, within a certain period of
time, typically six months. Some the ESPP includes a lookback provision that
allows its holder to apply the discount to either the end-of-period or the begin-
ning-of-period stock price, whichever is less. Our standard approach to stock
option valuation is modified to handle all of these special considerations.

 

STOCK INDEX DERIVATIVES

 

Arguably the most exciting financial innovation of the 1980s was the develop-
ment of stock index derivative contracts. Although derivatives on the Dow were
contemplated by the Chicago Board of Trade as early as the late 1960s, it was not
until April 1982 that the Chicago Mercantile Exchange (CME) launched trading
of the S&P 500 index futures contract. Options followed about a year later.
Within a few years, stock index products appeared in most major financial centers
worldwide. Included, for example, were contracts on the All Ordinaries index in
Sydney, the FT-SE 100 index in London, and the Hang Seng index in Hong Kong.
In spite of their relatively short history, billions of dollars in equities change hands
every day through index derivatives trading in nearly 30 different countries. 

Chapter 14 contains discussions of index derivatives markets and valuation.
The primary focus is futures and option contracts. A return/risk management
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strategy discussed in detail in this chapter is the use of stock index futures to tai-
lor the expected return-risk characteristics of a stock portfolio. This strategy is
frequently in practice for purposes of market timing and asset allocation.
Exchange-traded contracts are also used for structuring new and different prod-
ucts. Protected equity notes are one example. These notes allow individuals to
protect the principal value of their investment, while, at the same time, share in
the upside of a market index. We value protected equity notes using the valua-
tion-by-replication principle and show that they are nothing more than a combi-
nation of risk-free bonds and a stock index call options. 

A number of stock index products are based on trading strategies. These are
the focus of Chapter 15. One such product is portfolio insurance. We examine
several competing methods by which the value of stock portfolios may be
insured against decline. These include passive insurance provided by index puts
as well as dynamic insurance possible through continuous rebalancing of stocks
and risk-free bonds, stocks and index futures, and index futures and risk-free
bonds. Another product is funds based on particular option trading strategies.
With options included in the mix, the properties of the return distribution can
be dramatically altered, undermining conventional methods of portfolio perfor-
mance. We examine this problem using the realized return/risk attributes of the
BXM index—an index created from buying the S&P 500 index portfolio and
selling one-month, at-the-money call options. The third set of products focus on
stock market volatility. Two types exist—contracts on realized volatility and
contracts on volatility implied by index option prices. We describe volatility
contract specifications, valuation, and selected risk management strategies.

 

CURRENCY DERIVATIVES

 

Chapter 16 deals with currency products. Futures on foreign exchange (FX) rates
were the first financial futures contract introduced by an exchange. On May 16,
1972, the Chicago Mercantile Exchange launched trading futures on three cur-
rencies—the British pound, the Deutschemark, and the Japanese yen. Before that
time there was little need for derivatives markets on currencies. Exchange rates
were essentially fixed as a result of the Bretton Woods Agreement, which required
each country to fix the price of its currency in relation to gold. With the failure of
the Bretton Woods Agreement and the removal of the gold standard in 1971,
exchange rates began to fluctuate more freely, motivating a need for exchange
rate risk management tools. Chapter 16 illustrates a number important currency
risk management strategies. We show, for example, how to redenominate fixed-
rate debt in one currency into another using a currency swap or a strip of cur-
rency forwards. We also show how forward/option contracts can be used to man-
age the price risks of single and multiple transactions and balance sheet risk.

 

INTEREST RATE DERIVATIVES

 

Where equity derivative products have the largest presence in exchange-traded
markets, interest rate derivative products have the largest presence in the OTC
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market. Indeed, interest rate derivatives account for 72% of the USD 197.2 tril-
lion in notional amount of OTC derivatives outstanding at the end of 2003. The
popularity of these contracts is easy to imagine. Interest rate risk management is
an important concern for most participants in the marketplace—corporations,
agencies, municipalities, governments, and even individuals. 

The interest rate derivatives section is divided into four chapters. Chapter
17 focuses on the interest rate derivative contracts traded on exchanges. For the
most part, the principles and valuation methods of Chapters 4 through 10 can
be applied directly to interest rate futures and options, with two notable excep-
tions. First, certain of the interest rate futures contracts have embedded delivery
options that allow the short futures to deliver any one of a number of eligible
bond issues. This “cheapest-to-deliver” option has value and affects the net cost
of carry relation. Second, for options on short-term debt instruments, the log-
normal price distribution assumption is inappropriate since the debt instrument
cannot have a price that exceeds its par value. Consequently, we are required to
develop a new methodology for valuing interest rate options. To do so, we
invoke the assumption that the short-term interest rate is log-normally distrib-
uted, and then modify the valuation methods of Chapters 7 through 9. We then
focus on some important interest rate risk management problems.

Chapter 18 focuses on interest rate swaps. The first interest rate swaps were
consummated in the early 1980s. An early example occurred in 1982 when Sal-
lie Mae swapped the interest payments on intermediate-term fixed rate debt for
floating-rate payments indexed to the three-month T-bill yield. In the same year,
a USD 300 million seven-year Deutsche Bank bond issue was swapped into USD
LIBOR. While we discussed swaps on other types of assets in earlier chapters,
interest rate swaps are far and away the largest asset category. As of year-end
2003, interest rate derivatives accounted for 72% of the notional amount of all
OTC derivatives outstanding. Of this amount, more than 78% of interest rate
derivatives were swaps. While plain vanilla swaps is certainly the largest cate-
gory within this group, there are also a variety of other multiple-cash flow
instruments including caps, collars, floors, and swaptions. We will address each
in turn. A critical ingredient in the valuation of each of these contracts is the
zero-coupon yield curve. The chapter, therefore, begins with a lengthy discus-
sion of the zero-coupon yield curve and how it is estimated. 

The first two interest rate derivatives chapters focus almost exclusively on
interest-rate risk. Chapter 19 introduces a second source of risk often present in
interest rate instruments—credit risk. For corporate bonds, credit risk is some-
times called default risk; for foreign bonds, it is called sovereign risk. Under
either label, it refers to the fact that receiving the bond’s promised interest pay-
ments and repayment of principal is uncertain. Credit derivatives come in a vari-
ety forms. We discuss three—credit default swaps, total return swaps, and
credit-linked notes. In a credit default swap, the protection seller agrees, for an
upfront fee or a continuing premium, to compensate the protection buyer upon
a defined credit event. Since the buyer retains ownership of the underlying asset,
a credit default swap isolates the credit risk inherent in the asset (e.g., the
default risk of a corporate bond) from market risk (e.g., the interest rate risk of
a corporate bond). With total return swaps, however, the buyer transfers all of
the risks of the asset (e.g., the market risk and default risk of a corporate bond)
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to the seller in return for a risk-free interest payment. A credit-linked note is a
corporate bond-like security structured by a bank to behave like a particular
corporate or sovereign bond. This is done by buying risk-free bonds and selling
credit default options. The success of this market is driven by the fact that the
corporate bond is illiquid, at least relative to the stock market, and that many
firms and institutions do not have authorization to trade derivative contracts or
to engage in off-balance sheet transactions.

Chapter 20 focuses on the no-arbitrage valuation of interest rate options.
The modeling is more intricate than it is the case for other asset categories for
two reasons. The first is, as noted earlier, while an asset such as a stock price, an
exchange rate or a commodity price can roam freely through time without con-
straint, fixed income security prices must converge to their par values as the
security approaches its maturity. Second, in the fixed income markets, there is
often a wide range of securities available on the 

 

same

 

 underlying source of
uncertainty. The U.S. Treasury, for example, has T-bills, T-notes and T-bonds
with a wide range of maturities. In modeling interest rate dynamics, care must
be taken to ensure that all of these securities are simultaneously valued at levels
consistent with observed market prices. Chapter 20 develops a binomial proce-
dure for valuing interest rate derivative contracts where the short-term interest
rate (“short rate”) is the single underlying source of interest rate uncertainty
and zero-coupon bond values are consistent with observed market prices. With
the mechanics of no-arbitrage pricing in hand, we then turn to valuing coupon-
bearing bonds, callable bonds, putable bonds, and bond options. Be fore-
warned, however. While the valuation framework provided in this chapter is
intuitive and commonly applied in practice, it only begins to scratch the surface
of the literature focused on no-arbitrage interest rate models. This literature is
deep in multifactor theoretical models of interest rate movements and sophisti-
cated numerical procedures for calibrating the models to observed market
prices. Such technical discussions, however, are beyond the scope of this book. 

 

COMMODITY DERIVATIVES 

 

Commodities are physical assets. Examples include precious metals, base met-
als, energy stores (e.g., crude oil and natural gas), refined products (e.g., heating
oil and gasoline), and food (e.g., wheat, and livestock). Commodity derivatives
have been traded in over-the-counter markets for centuries. The first modern-
day commodity futures exchange began operation in 1865, when the Chicago
Board of Trade launched trading of standardized futures contracts calling for
the delivery of grain. With the passage of time, nonagricultural commodities
were introduced—precious metal (silver) futures in 1933, livestock in 1961,
petroleum and petroleum products in the late 1970s and early 1980s, liquefied
propane in 1987, natural gas in 1990, and electricity in 1996. Chapter 21
focuses on derivatives contracts written on commodities. This chapter is orga-
nized by underlying commodity. The reason is that the price relations of com-
modity derivatives are influenced by idiosyncrasies in the underlying commodity
market. Understanding commodity derivatives price behavior, therefore,
involves understanding the factors that influence commodity price behavior. We
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discuss the fundamental differences between pricing commodity derivatives and
pricing financial derivatives. Commodity derivatives require that we consider
the storage costs such as warehouse rent and insurance as well as the conve-
nience of having an inventory of the commodity on hand. Neither of these fac-
tors played an important role in the pricing of stock, stock index, currency, and
interest rate derivatives products. We focus on the three major commodity cate-
gories—energy, agricultural, and metals—and on common types of commodity
price risk management problems.

 

LESSONS LEARNED

 

Chapter 22 summarizes the key lessons contained in the book. In spite of the
book’s length, the lessons are few. 

 

1.

 

Derivatives markets exist because of high trading costs and/or trading restric-
tions/regulations in the underlying asset market. 

 

2.

 

The expected return/risk relation for derivative contracts, like risky assets, is 
governed by the capital asset pricing model. 

 

3.

 

The absence of costless arbitrage opportunities (i.e., the law of one price) 
ensures that derivative contract price is inextricably linked to the prices of the 
underlying asset and risk-free bonds. 

 

4.

 

The no-arbitrage price relation between a derivative contract and its underlying 
asset ensures that derivative contracts are effective risk management tools. 

 

5.

 

The key insight into derivative contract valuation is that a risk-free hedge can 
be formed between a derivatives contract and its underlying asset. 

 

6.

 

Only two basic types of derivatives exist—a forward and an option.

 

7.

 

Valuing and measuring the risk of complex derivatives is made possible by valu-
ation by replication.

 

8.

 

Derivatives valuation and risk measurement principles are not asset-specific. 

 

9.

 

Accurate parameter estimation is critical in applying derivative contract valua-
tion models.

 

10.

 

So-called “derivative disasters” reported in the financial press did not arise 
from a failing in the performance of a derivative contract or the market in 
which it traded.

 

OPTVAL™

 

The book makes extensive use of OPTVAL™, a library of Microsoft Excel Visual
Basic Add-Ins design to perform a wide range of valuation, risk measurement, and
statistical computations. The logic in doing so is simple. By facilitating the com-
putation of value/risk, the OPTVAL functions allow the reader to focus on the
economic understanding of solving the valuation and risk management problems
rather than the computational mechanics of valuation and risk measurement.

More specifically, accurate and reliable valuation/risk measurement has two
important computational steps. The first is performing all of the computations
that go into generating a model value conditional on knowing the values of the
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model’s parameters. In some instances such as valuing a simple forward or
futures contract, the numbers of intermediate computations are hundreds, per-
haps, thousands. In other instances such as valuing an option on a dividend-
paying stock, they are many. The second is estimating model parameters. All
valuation models are function analytical or numerical functions of a set of
parameters. Reliably estimating many of these parameters such as expected
future return volatility involves collecting histories of price data and then apply-
ing statistical techniques. OPTVAL also contains a host of statistical functions
to supplement what is already available in Microsoft Excel.

The add-in functions contained in OPTVAL are introduced and applied in each
chapter’s illustrations. In the early chapters of the book, the illustrations show all
of the intermediate computations involved in addressing the valuation/risk mea-
surement problem at hand as well as the OPTVAL function that allows the reader
to find the solution without seeing the intermediate computations. This two-step
procedure is designed to allow the reader to develop confidence that OPTVAL
functions are not merely a “black box” but rather a set of computational routines
that the reader can verify, if he or she chooses to do so. As the chapters progress,
less emphasis is placed on showing intermediate steps and more emphasis is placed
on addressing important, everyday valuation/risk management problems.
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CHAPTER

 

1

 

Derivative Contracts and
Markets

 

derivative contract

 

 is a contractual agreement to execute an exchange at
some future date. The term “derivative” arises from the fact that the agree-

ment “derives” its value from the price of an underlying asset such as a stock,
bond, currency, or commodity. A stock index futures derives its value from an
underlying stock index, a foreign currency option derives its value from an
underlying exchange rate, and so on. The key feature of the transaction specified
in a derivative contract is that it will be executed in the future rather than today.

One can easily become overwhelmed by the apparently countless types of
derivative contracts traded in the marketplace. The pages of the 

 

Wall Street
Journal

 

 (

 

WSJ

 

) list the prices of tens of thousands of standardized, exchange-
traded futures, options, and futures option contracts on hundreds of different
underlying assets. And this only begins to scratch the surface. The 

 

WSJ

 

 reports
only trading summaries for U.S. derivatives exchanges. Other exchanges world-
wide have derivatives trading volume roughly equal to that in the United States.
Moreover, the notional amount of exchange-traded derivatives worldwide rep-
resents only about 16% of all derivatives outstanding (i.e., USD 233.9 trillion as
of December 2003). About 84% of derivatives are private contracts arranged
with banks and various other financial houses. Many of these contracts are
plain-vanilla forwards, swaps, caps, collars, or floors, but you will also hear of
inverse floaters, protected equity notes, ratio swaps, time swaps, knockout
options, spread locks, wedding-band swaps, and the like. 

 Do not be misled, however. Derivatives are not nearly as mystifying as they
may seem. Fundamentally, there are only two different types of contracts—a
forward and an option. A 

 

forward

 

 is a contract to buy or sell an underlying
asset at some prespecified future date at a price agreed upon today. No money
changes hands until the expiration date, at which time the buyer pays the
amount of cash specified in the contract and the seller delivers the underlying
asset. An 

 

option

 

 is also a contract to buy or sell an underlying asset at some pre-
specified future date at a price agreed upon today. Unlike a forward, however,
the buyer of the option has the right but not the obligation to buy or sell the
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underlying asset at the option’s expiration. The seller’s obligation depends on
whether or not the buyer chooses to exercise the option. 

 The purpose of this chapter is to provide a general understanding of deriva-
tive contracts and derivative-contract market operation. We begin by describing
and illustrating the nature of forward and option contracts. With these generic
contract designs in mind, we then discuss fundamental issues such as why deriv-
ative contracts exist, how they originated, and where and how they trade.

 

FORWARDS

 

A 

 

cash

 

 (or 

 

spot

 

) 

 

transaction

 

 refers to an exchange of an asset that takes place

 

today

 

. The buyer pays the seller an agreed-upon price in cash and the seller
delivers the asset. A 

 

forward transaction

 

, on the other hand, is an agreement to
an exchange that will take place in the future (i.e., at some time “forward”). No
money changes hands today. The buyer and seller simply agree upon the terms
of the exchange. The terms are formalized in a contract called a 

 

forward

 

. The
terms include (a) the price per unit of the asset that the buyer will pay the seller
of the asset; (b) the number of units of the asset that will be delivered; and (c)
the date on which the delivery will take place.

 

1

 

 On the delivery date, the seller is
contractually obliged to deliver the underlying asset to the buyer, and the buyer
is obliged to pay the seller the prespecified price in cash. 

To illustrate the mechanics of a forward transaction, suppose it is March
and the price of a 180-day forward contract on 5,000 bushels of wheat is $3.00
a bushel.

 

2

 

 If you buy this contract, you are agreeing to take delivery of 5,000
bushels of wheat in 180 days at a cost of $3.00 a bushel. You pay nothing today.
You pay $15,000 in 180 days. 

What motivates such a transaction? One possibility is 

 

speculation

 

. Suppose
that a meteorologist has, through his study of weather patterns over the past few
months, become convinced that the summer will be very dry, and the Midwest
will experience drought conditions. Under such conditions, he speculates that
the size of the wheat harvest in the fall will be abnormally low and the price of
wheat high. Indeed, he predicts that the price will be $5.00 a bushel in Septem-
ber. If, when September arrives, the price of wheat is $5.00 a bushel, he posts a

 

speculative gain

 

. While he pays $3.00 a bushel, or $15,000 in total, to take
delivery of the wheat, he can turn around and sell it for $5.00 a bushel, thereby
posting a $10,000 profit. But, if he makes $10,000, who loses? The answer is the
person who sold him the forward contract (i.e., his 

 

counterparty

 

). His counter-
party gets paid $3.00 a bushel for delivering wheat now worth $5.00 a bushel in
the spot market and thereby loses $10,000. Derivative contracts are a 

 

zero-sum

 

game. What the buyer gains, the seller loses, and vice versa. 

 

1 

 

Forward contracts also contain other terms such as the location of delivery or the method of
settlement. These are not germane to the illustration at hand, however, and are therefore omit-
ted.

 

2 

 

The fact that the intermediate gains (losses) of the futures position can (must) be invested
(financed) leads to a small difference in the terminal values of a forward and a futures position.
We discuss this matter in greater detail in Chapter 3.
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Speculation is not the only motive for buying the wheat forward contract,
however. The other motive is 

 

hedging

 

. Often manufacturers commit to forward
transactions with customers. Suppose a breakfast cereal producer commits to
deliver 1,000 cases of a particular product at $25 a case to a grocery chain cus-
tomer in September. Processing the wheat into cereal takes one day. To lock in
the cost of the wheat for September production, the cereal producer can buy a
forward contract expiring in September. Is he speculating? No, just the opposite.
It is because the price of wheat in six months is uncertain that he buys the for-
ward. Indeed, if he does not buy the forward, he is speculating that the price of
wheat will fall. Buying a forward contract to lock in the price at which the asset
will be acquired is known as an 

 

anticipatory hedge

 

. The breakfast cereal pro-
ducer is said to be a long hedger because he is buying (i.e., 

 

going long

 

) the for-
ward to hedge the price risk.

Someone’s motive in buying the forward contract on wheat may be to spec-
ulate or to hedge, but what about the motive of his counterparty’s motive? Is she
speculating or hedging? The answer is one or the other. Suppose she is a farmer
in the Midwest and has just seeded her land with wheat for September harvest.
Standing in March, she faces two types of risk. She knows neither how plentiful
her harvest will be nor the price per bushel at which she will be able to sell her
crop. To hedge her price risk, she may want to sell a September wheat forward
contract. If she does, she is said to be a 

 

short hedger

 

, that is, she is selling (i.e.,

 

going short

 

) the forward to lock in the price at which she can sell her crop. Is
she speculating? No, again, just the opposite. She does not want to bet on the
price at which she can sell her crop in September, so she sells the wheat forward.
On the other hand, suppose your counterparty is involved in international grain
trade and understands that there has been a significant increase in wheat pro-
duction in virtually every grain-producing nation. Based on her knowledge
about world oversupply, she predicts that the market price of wheat will be
$2.00 a bushel in September. To act on her prediction, she may sell a forward
contract on wheat for September delivery. If she does so, she is speculating. In
September, she must buy 5,000 bushels of wheat in the cash market and then
will deliver it to fulfill her obligation on the forward. If she is correct in her pre-
diction, she will buy the wheat at $2.00 a bushel and then sell it at $3.00,
thereby posting a $5,000 speculative gain.

The wheat forward contract described above has 

 

delivery settlement

 

, that is,
when the forward contract expires, the seller must deliver and the buyer must
take delivery of the underlying asset. The forward contract will specify the loca-
tion of delivery. For physical commodities such as wheat, the delivery process
can be cumbersome and costly. The woman in the last example was speculating
that the price of wheat would fall, and, when it fell as she predicted, she posted
a 

 

gross

 

 speculative gain of $5,000. But, to realize her gain, she has to buy the
wheat in the spot market for $2.00 a bushel and then transport it to the location
specified in her forward contract. If such freight costs amount to, say, $1,000,
her net gain from speculation is only $4,000. 

To circumvent such costs, some derivative contracts specify 

 

cash settlement

 

rather than delivery settlement. When the forward contract expires, the differ-
ence between the spot price and the forward price is paid in cash. If the spot
price at the time of expiration exceeds the forward price, the short pays the dif-
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ference in cash to the long. If the long is hedging and requires the delivery of the
wheat, he will take his original commitment price (i.e., the forward price at
inception) plus the profit on the forward trade to buy the commodity in the
local spot market (thereby avoiding the transportation costs that may be associ-
ated with taking delivery at a different geographical location). Conversely, if the
spot price at expiration is less than the forward price, the long pays the differ-
ence to the short. With cash settlement, the woman in the above illustration
receives $5,000 in cash, thereby circumventing the cost (and the annoyance) of
dealing with the delivery process. All derivative contracts including forwards
specify whether settlement is 

 

through delivery

 

 or 

 

in cash

 

. Absent significant
delivery costs, the method of settlement is moot.

 

Futures

 

A 

 

futures contract

 

 is virtually identical to a forward contract. The only differ-
ence is that the gains and/or losses on a futures position are posted each day.
Suppose that you see that the price of a wheat futures contract with two days to
expiration and a denomination of 5,000 bushels is $3.00 a bushel. If you buy
this contract, you are in effect agreeing to buy 5,000 bushels of wheat in two
days at $3.00 a bushel. The payment is made in stages, however. Suppose that
after one day the price of the futures (now with one day remaining to expira-
tion) has risen to $3.50 a bushel. With a futures contract, you are immediately
entitled to the $.50 per bushel gain and will receive a deposit of $2,500 in your
trading account. This process is known as 

 

marking-to-market

 

 and occurs at the
end of each trading day. Who pays? The answer is the person on the other side
of your trade. He is marked-to-market with a $.50 a bushel loss.

Suppose that at the end of the second day the price of wheat is $4.50 a
bushel. The marking-to-market process provides you a gain of $1.00 a bushel or
$5,000. Since your futures contract has expired, you are required to buy 5,000
bushels of wheat at the market price of $4.50 a bushel, for a total cost of
$22,500. But, you have already pocketed $7,500 in cash, so your net outlay is
$15,000, or $3.00 a bushel. At the end of the second day, you are in the same
position had you been if you had purchased a two-day forward contract at
$3.00 a bushel. In most risk management applications, forwards and futures
contracts can be used interchangeably.

 

Open Interest

 

Figure 1.1 illustrates a concept called 

 

open interest

 

. Suppose you consider all of
the open positions in a given futures contract (e.g., the September wheat futures
contract traded on the Chicago Board of Trade) on a given day. At any given
time, by virtue of the fact that derivatives markets are a zero-sum game, the
total number of contracts outstanding as long positions 

 

must equal

 

 the total
number of contracts outstanding as short positions, as illustrated in Figure 1.1.
The total number of contracts outstanding (long or short) is called 

 

open interest

 

.
The total number of long contracts can be broken down into two groups—hedg-
ers who trade to lock in the price at which the asset can be purchased (i.e, long
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hedgers) and speculators who trade to benefit from an anticipated price
increase. The total number of short contracts can also be broken down into two
groups—hedgers who trade to lock in the price at which the asset can be sold
(i.e., short hedgers) and speculators who trade to benefit from an anticipated
price drop. The breakdown of the long and short positions in outstanding con-
tracts between hedgers and speculators varies by underlying commodity and
through time. 

 

OPTIONS

 

An option contract is the other fundamental type of derivative. Like a forward,
an option is an agreement to exchange an underlying asset at a fixed price
(called the option’s 

 

exercise price

 

 or 

 

striking price

 

) on some future date. Unlike
a forward, however, an option provides the 

 

right

 

, but not the 

 

obligation

 

, to buy
or sell the underlying asset.

 

3

 

 The right to buy the underlying asset at a specified
price on or before some specified future date is called a 

 

call option

 

; the right to
sell the underlying asset is called a 

 

put option

 

. The amount that the option
buyer pays the seller for the right is called the 

 

option premium

 

. 
To illustrate the mechanics of an option, suppose it is July and you predict

that back-to-school software sales will drive Microsoft’s share price from its cur-
rent level of $25 a share to over $30 a share within three months. One way to act
on your prediction is to buy a call option on the shares of Microsoft. You peruse
the

 

 Wall Street Journal

 

 and find a Microsoft call that expires in October, has an
exercise price of $30, has a contract denomination of 100 shares, and has a pre-

 

3 

 

Since an option is a right rather than an obligation, it is often referred to as a 

 

contingent
claim

 

.

FIGURE 1.1 Breakdown of open interest between hedgers and speculators.  
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mium of $2 a share. If you buy this call at $2.00 per share (i.e., a total option
premium of $200), you have the right to buy 100 shares of Microsoft at $30 a
share between now and October. If Microsoft’s share price is above $30 when the
contract expires, you will exercise your call by paying the option seller $3,000.
The option seller, in turn, will deliver to you 100 shares of Microsoft, which you
can sell at the prevailing market price. If the share price is $40 at expiration,
your profit will be $1,000

 

4

 

 less the original option premium, or $800. 
Microsoft options, like all derivative contracts, are zero-sum games. The

counterparty to your long call position is the seller of the option. The option
seller received your original $200 premium payment. If the share price is $40 at
expiration, he has to deliver shares worth $4,000 for $3,000 in cash. The option
seller’s (also called 

 

option writer’s

 

) loss is $800, exactly the amount you earned.
If Microsoft’s share price is less than $30 at the call’s expiration, you will not
exercise the call

 

5

 

 (i.e., you will let it expire worthless). Under this scenario, your
loss is $200, and the option seller’s gain is $200.

Options are written on virtually every type of underlying asset, including
stocks, bonds, currencies, and commodities. The nature of the underlying asset
is usually used as a descriptor on the word “option.” Options on stocks are
called 

 

stock options

 

, options on bonds 

 

bond options

 

, options on currencies 

 

cur-
rency options

 

, and so on. Options are also written on forward and futures con-
tracts. The forward and futures contracts, in turn, are written on specific types
of underlying assets. An option written on a stock index futures is called a 

 

stock
index futures option

 

, and an option written on a foreign currency forward con-
tract is called a 

 

currency forward option

 

.

 

WHY DO DERIVATIVES MARKETS EXIST?

 

With a basic understanding of forward and option contracts in hand, we now
turn to a critically important question—why do derivative contract markets
exist? The answer is surprisingly simple. Derivative contracts exist because of
trading costs or trading restrictions/regulations in the underlying asset market. 

 

Trading Costs

 

Trading costs are just that—costs incurred in a trade. Depending upon the type
of market and the nature of the asset or derivative contract, trading costs vary.
In general, however, the trading costs for derivative contracts are less than the
trading costs for the underlying asset, holding the dollar value of the transaction
constant. Consequently, cost-conscious risk managers prefer to trade derivatives
rather than the underlying asset.

 

4 

 

Like forwards, options can be settled by delivery or in cash. In general, stock options traded
on exchanges are delivery contracts. Stock index options, on the other hand, are generally cash
settled.

 

5 

 

If you exercised the call, you would pay more than the current market price for the shares of
Microsoft.
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In securities markets, trading costs are incurred on transactions executed in
both the primary and secondary markets. The 

 

primary market

 

 refers to the mar-
ket in which securities are traded for the first time. These include 

 

brand new
issues

 

 such as 

 

initial public offerings

 

 (or IPOs) of stocks, in which privately
owned companies sell shares to the public for the first time or new bond offer-
ings in which the firm floats new issue of debt, and 

 

seasoned new issues

 

 in which
more units of an existing publicly traded security are issued. In either case, the
firm enlists the help of an investment banker who 

 

underwrites

 

 the issue. For this
service, he charges an underwriting fee. In most cases, this underwriting fee is a
fairly significant proportion of the issue proceeds.

To illustrate the trading cost savings afforded by derivatives markets, consider
a firm that has a significant amount of floating rate debt in its capital structure.
The firm’s chief financial officer fears that interest rates are about to rise and that
the firm’s earnings after interest will fall. Consequently, he decides to explore dif-
ferent hedging alternatives. One alternative is, of course, to retire the floating rate
debt with a fixed rate bond issue. Issuing bonds, however, is expensive. The com-
mission paid to the investment banker, together with the legal, auditing and print-
ing costs associated with putting together a prospectus, average about 2.2% of
issue proceeds.

 

6

 

 Such costs can be avoided almost entirely by entering a 

 

plain-
vanilla interest rate swap

 

 in which the firm agrees to receive a periodic floating rate
and pay a periodic fixed rate. The market for interest rate swaps is very liquid, and
trading costs can be as little as 4 basis points (0.04%).

 

7

 

 From the firm’s perspec-
tive, the risk management properties of the two strategies are virtually perfect sub-
stitutes. The costs of the two alternatives, however, differ by a factor of 55.

The 

 

secondary market

 

 refers to the market in which existing securities are
traded. Securities exchanges, for example, are secondary markets. If you decide
to buy or sell a security, you will incur at least two forms of trading costs: (a) a
commission paid to the broker for executing the trade; and (b) the bid/ask
spread charged by the market maker for providing immediacy of exchange. To
execute a trade, you call your broker or sign in to your online brokerage service
and place an order. The broker then turns around and communicates your order
to the appropriate market maker. The market maker stands ready to buy at his
quoted bid price and sell at his quoted ask price. The difference between the two
prices is called the 

 

quoted bid/ask spread

 

 and represents the revenue the market
maker earns for providing immediate exchange.

 

8

 

 Once the order is consum-
mated, the broker is informed, and he, in turn, informs you. 

To illustrate the potential savings of the derivatives market in this case, sup-
pose that you manage a portfolio of U.S. stocks and that you believe that the
stock market will fall over the next month. After careful consideration, you
decide that you want to eliminate entirely your stock market price risk expo-
sure. One way to hedge the stock market risk is to sell all of your stocks and buy
short-term money market instruments. Then, after you are convinced that the
worst is over, you can liquidate your money market holdings and buy back your

 

6 

 

See Lee, Lochhead, Ritter, and Zhao (1996, p. 62, table 1).

 

7 

 

A basis point is 1/100 of 1%. Sample interest rate swap rates are reported in Table 1.8.

 

8 

 

In many electronic markets, buy and sell orders are matched automatically in the computer
system of the exchange without the intermediation of market makers.
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stocks. Another way to hedge this market risk exposure is to sell stock index
futures contracts. This action, too, negates your market risk. When the worst is
over, you unwind the hedge by buying an equivalent number of index futures.
While these two strategies are equivalent in terms of their ability to hedge mar-
ket risk, the second hedging strategy is much cheaper. In U.S. markets, the trad-
ing costs associated with the futures hedge are less than 1/20th of those incurred
in liquidating and then buying back shares of stock.

 

Trading Restrictions

 

Trading restrictions come in a variety of forms. Some arise because it is infeasi-
ble to trade the underlying asset. A farmer seeding his land in the spring for har-
vest in the fall, for example, has no means of selling his crop until it is
harvested. Others arise from regulation. In Australia and Hong Kong, short-sell-
ing is permitted for only designated securities. In situations such as these, deriv-
ative contracts have been introduced to circumvent trading restrictions.

 

Hedging by Selling an Unharvested Crop

 

Suppose that you are a farmer in the Midwest
and have just seeded your land with wheat for a September harvest. Standing in
March, you face 

 

yield risk

 

 (i.e., the number of bushels per acre your land will pro-
duce) and 

 

price risk

 

 (i.e., the price per bushel at which you will be able to sell your
crop). Without derivative contracts, you have no means of offsetting either risk.
With actively traded futures contracts traded on wheat, you can sell wheat futures
and reduce the uncertainty of the revenue that you will earn at the time of harvest. 

 

Speculating by Circumventing Trading Restriction/Regulation

 

Suppose that you live in
Australia and have noticed a frightening decline in beer consumption. Figuring
that this decline will soon have an adverse effect on the earnings of Foster Brew-
ing, you begin considering alternatives ways to profit from your belief. If you can-
not short sell the shares of Foster Brewing on the Australian Stock Exchange, you
cannot profit by trading in the stock market directly. It should not be surprising,
therefore, to learn that the Sydney Futures Exchange was one of the first futures
exchanges worldwide to launch trading in stock futures contracts. Selling stock
futures enables individual investors to effectively short-sell stocks.

 

Summary

 

Derivative contracts exist and, indeed, flourish because of trading costs
and trading restrictions in the underlying asset market. Trading takes place for
only two reasons—hedging or speculating. Hedging reduces risk and hence
reduces expected return; speculation increases risk and hence increases expected
return. Managing risk and return can be accomplished in only two ways—by
changing the amount of the asset being held or by taking a position in derivative
contracts written on the underlying asset. When both strategies are feasible, trad-
ing activity will tend to be concentrated in the lowest cost market, and the lowest
cost market is usually the derivatives market. Sometimes, however, both strategies
are not feasible. If an asset cannot be traded or if regulation limits the types of
trades that can be placed, derivative contracts can serve as an effective substitute.
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EVOLUTION OF DERIVATIVES MARKETS

 

Derivatives, while seemingly new financial instruments, have actually been
around for thousands of years. The earliest written example is contained in the
Code of Hammurabi, a body of laws written by Hammurabi who reigned as
king of Babylon from 1795 to 1750 

 

BCE

 

. Hammurabi’s laws regulated all
aspects of society. One law dealt with the relationship of farmers with their
mortgage-holders, that is,

48. If any one owe a debt for a loan, and a storm prostrates the
grain, or the harvest fail, or the grain does not grow for lack of
water; in that year he need not give his creditor any grain, he
washes his debt-tablet in water and pays no rent for the year.

 

9

 

 

What this says, it seems, is that a typical farmer at the time carried a mortgage
on his property and was required to make annual interest payments in the form
of grain. In the event of crop failure, the farmer had the right to pay nothing
and the mortgagor had no alternative but to forgive the interest. This decree by
the king gave grain farmers an asset-or-nothing put option.

 

10

 

 If the harvest was
plentiful and the farmer had enough grain to pay his mortgage interest, the put
option would expire worthless. If his harvest fell short, however, he would exer-
cise his right to walk away from making the payment. 

Another example of early derivatives use appears in Aristotle’s 

 

Politics

 

 (350

 

BCE

 

). Aristotle tells the story of Thales, a philosopher (and reasonably good meteo-
rologist) who, based on studying the winter sky, predicted an unusually large olive
harvest.

 

11

 

 He was so confident of his prediction that he bought rights to rent all of
the olive presses in the region for the following fall. The fall arrived, and the harvest
was unusually plentiful. The demand and price for the use of olive presses soared. 

These anecdotes serve to show that, while derivatives are sometimes thought
of as being recent innovations, they have been used throughout recorded history.
Hammurabi’s put and Thales’ call are examples of 

 

over-the-counter

 

 (OTC) deriv-
atives. OTC derivatives are private contracts negotiated between parties. In the
first example, the farmer bought, and the mortgagor sold, the asset-or-nothing
put. The put premium was presumably embedded in the amount of the mortgage
payment negotiated between the buyer and the seller. In the second example,
Thales bought, and the olive press owners sold, call options. The prices of the
options were negotiated, and Thales paid for them in the form of cash deposits.
The chief advantage of OTC derivatives markets is the limitless flexibility in con-
tract design. The underlying asset can be anything, the size of the contract can be
any amount, and the delivery can be made at any time and in any location. All
that an OTC contract requires is a willing buyer and a willing seller. 

Among the disadvantages of OTC markets, however, is that willing buyers and
sellers must spend time identifying each other. Thousands of years ago, before the

 

9 

 

The Avalon Project at the Yale Law School has made the Code of Hammurabi available on
the website http://www.yale.edu/lawweb/avalon/hamcode.htm.

 

10 

 

All-or-nothing options are discussed in detail in Chapters 5 and 6.

 

11 

 

See 

 

Politics

 

 by Aristotle (1885, Book 1, Part XI).
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advent of high-speed communication and computer technology, such searches were
costly. Consequently, centralized markets evolved. The Romans organized com-
modity markets with specific locations and fixed times for trading. Medieval fairs
in England and France during the 12th and 13th centuries served the same pur-
pose. While centralized commodity markets were originally developed to facilitate
immediate cash transactions, the practice of contracting for future delivery (i.e.,
forward transactions) was also introduced. So, while the contracts remained over-
the-counter, there was at least some agreement about where the “counters” were.

Another disadvantage of OTC derivatives is credit risk, that is, the risk that a
counterparty will renege on his contractual obligation. Perhaps the most colorful
example of this type of risk involves forward and option contracts on tulip bulbs.
In what can be characterized as a speculative bubble, rare and beautiful tulips
became collectors’ items for the upper class in Holland in the early 17th century.
Prices soared to incredible levels.12 Homes, jewels, livestock—nothing was too
precious that it could not be sacrificed for the purchase of tulip bulbs. In an
attempt to cash in on this craze, it was not uncommon for tulip bulb dealers to
sell bulbs for future delivery. They did so based on call options provided by tulip
bulb growers. In this way, if bulb prices rose significantly prior to delivery, the
dealers would simply exercise their options and acquire the bulbs to be delivered
on the forward commitments at a fixed (lower) price. The tulip bulb growers also
engaged in risk management by buying put options from the dealers. In this way,
if prices fell, the growers could exercise their puts and sell their bulbs at a price
higher than that prevailing in the market. In retrospect, both the tulip bulb deal-
ers and growers were managing the risk of their positions quite sensibly. 

Everything could have worked out just fine, except that the bubble burst in the
winter of 1637 when a gathering of bulb merchants could not get the usual inflated
prices for their bulbs. Panic ensued. Prices sank to levels of 1/100th of what they
had once been. This set off an unfortunate chain of events. Individuals who had
agreed to buy bulbs from dealers did not do so. Consequently, dealers did not have
the cash necessary to buy the bulbs when the growers attempted to exercise their
puts. Some legal attempts were made to enforce the contracts, but the bottom line
was that it was “as difficult to get blood out of a tulip bulb as out of a turnip.”13

These contract defaults left an indelible mark on OTC derivatives trading.
By the 1800s, the pendulum had swung from undisciplined derivatives trad-

ing in OTC markets toward more structured and secured trading on organized
exchanges. The first derivatives exchange in the United States was the Chicago
Board of Trade (CBT), as is noted in Table 1.1. While the CBT was originally
formed in 1848 as a centralized marketplace for exchanging grain, forward con-
tracts were also negotiated. The earliest recorded forward contract trade was
made on March 13, 1851 and called for 3,000 bushels of corn to be delivered in
June at a price of one cent per bushel below the March 13 spot price.14 Forward
contracts had their drawbacks, however. They were not standardized according
to quality or delivery time. In addition, as in the case of the tulip bulb fiasco,
merchants and traders often did not fulfill their forward commitments. 

12 Garber (2000) provides a detailed account of tulip bulb prices during this period.
13 Gastineau (1988, ch. 3, p.14).
14 See Chicago Board of Trade (1994, ch.1, p.14).
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TABLE 1.1  Milestones in the history of derivative contract markets (with emphasis on U.S. 
markets)

1750 BCE

■ Options to default on interest payments are described in the Code of Hammurabi.

350 BCE

■ Options to rent olive presses are described in Aristotle’s Politics.

1600 CE

■ Forward and option contracts on tulip bulbs flourish in Holland. Tulip bulb prices collapse in the winter of 1637,
causing significant contract default.

1848 CE

■ Chicago Board of Trade (CBT) is formed to provide a centralized marketplace for cash and forward transactions
in grains.

1865 CE

■ CBT revamps forward markets by introducing futures contracts on agricultural commodities. These new con-
tracts were standardized contracts in terms of quality, quantity, and time and place of delivery, and involved the
use of a clearinghouse and a system of margining.

1870 CE

■ New York Cotton Exchange (NYCE) is formed to trade futures on cotton.

1874 CE

■ Chicago Produce Exchange (CPE) is formed to trade futures on butter, eggs, poultry, and other perishable prod-
ucts.

1878 CE

■ London Corn Trade Association introduces the first futures contract in the United Kingdom.

1882 CE

■ Coffee Exchange (CE) is formed by a group of coffee merchants to trade futures on coffee.

1898 CE

■ Butter and egg dealers withdraw from the CPE to form the Chicago Butter and Egg Board (CBEB).

1904 CE

■ Winnipeg Commodity Exchange (WCE) introduces first commodity (oat) futures contracts in Canada.

1919 CE

■ São Paulo Commodities Exchange (BMSP) introduces first commodity futures in Brazil.

■ CBEB becomes the Chicago Mercantile Exchange (CME).

1933 CE

■ Commodity Exchange (COMEX) is formed and introduces first futures contract on a non-agricultural commod-
ity—silver.

1952 CE

■ October: London Metal Exchange (LME) lists the first metal (lead) futures contract in the United Kingdom.

1960 CE

■ Sydney Futures Exchange (SFE), originally called the Greasy Wool Futures Exchange, is formed to trade greasy
wool futures.
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TABLE 1.1     (Continued)  

1961 CE

■ September: CME introduces first futures contract on livestock—frozen pork bellies.

1972 CE

■ February: CME introduces first futures contract written on a financial instrument—foreign currencies.

1973 CE

■ April: CBT organizes the Chicago Board Options Exchange (CBOE) for the purpose of trading call options on 16
New York Stock Exchange (NYSE) common stocks. Trading begins in a small smokers’ lounge overlooking the
futures exchange.

1975 CE

■ CBT introduces first interest rate futures contracts—Government National Mortgage Association (GNMA) futures.

■ Montreal Exchange (ME) launches stock options in Canada.

■ January: American Stock Exchange (AMEX) launches call options on stocks.

■ June: Philadelphia Stock Exchange (PHLX) launches call options on stocks.

1976 CE

■ Pacific Stock Exchange (PSE) launches stock options.

■ Australian Options Market (AOA) is formed in Australia to list stock options.

■ January: CME launches T-bill futures contracts.

■ March: Toronto Stock Exchange (TSE) lists stock options in Canada.

1977 CE

■ June: Put options on common stocks are listed for the first time in the United States on the CBOE, AMEX,
PHLX, and PSE.

■ August: CBT launches T-bond futures contracts.

1978 CE

■ London Traded Options Market (LTOM) is formed and launches stock options.

■ European Options Exchange (EOE), formed in November 1977, launches stock options in The Netherlands.

■ November: New York Mercantile Exchange (NYMEX) introduces first energy futures—heating oil.

1980 CE

■ International Petroleum Exchange (IPE) is formed in the United Kingdom to list futures on petroleum and petro-
leum products.

■ First over-the-counter (OTC) Treasury bond option takes place.

■ September: Toronto Futures Exchange (TFE) is formed to list futures contracts on financial assets in Canada.

1981 CE

■ First over-the-counter (OTC) interest rate swap transaction takes place.

■ December: CME introduces the first cash settlement futures contract—the Eurodollar futures.

1982 CE

■ London International Financial Futures Exchange (LIFFE) is formed in the United Kingdom to trade futures on
financial instruments.

■ February: Kansas City Board of Trade (KCBT) introduces first futures on a stock index (the Value Line stock index).
■ April: CME launches S&P 500 index futures.
■ October: First options listed on instruments other than common stocks.
■ CBOE and AMEX launch options on Treasury bonds, notes, and bills.
■ CBT launches options on T-bond futures. 
■ Coffee, Sugar, and Cocoa (CSCE) launches options on sugar futures.
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TABLE 1.1     (Continued)

In 1865, the CBT made three important changes to the structure of its grain
trading market. First, it introduced the use of standardized contracts called
futures contracts. Unlike forward contracts in which the parties are free to choose
the terms of the contract, the terms of futures contracts are set by the exchange
and are standardized with respect to quality, quantity, and time and place of deliv-
ery for the underlying commodity. By concentrating hedging and speculative
demands on fewer contracts, the depth and liquidity of the market are enhanced.
This facilitates position unwinding. If a party to a trade wants to exit his position
prior to the delivery date of the contract, he need only execute an opposite trade
(i.e., reverse his trade) in the same contract. There is no need to seek out the coun-
terparty of the original trade and attempt to negotiate the contract’s termination. 

The second and third changes were made in an effort to promote market
integrity. The second was the introduction of a clearinghouse to stand between

1982 CE

■ COMEX launches options on gold futures.

■ December: PHLX launch options on currencies.

1983 CE

■ January: CME and New York Futures Exchange (NYFE) launch options on stock index futures.

■ February: SFE launches futures on the All Ordinaries Share Price Index in Australia.

■ March: CBOE launches options on stock indexes, and NYMEX launches crude oil futures.

1984 CE

■ Singapore International Monetary Exchange (SIMEX) is inaugurated as the first financial futures exchange in
Asia.

■ May: LIFFE launches futures on the FT-SE index in the United Kingdom.

■ December: NYMEX launches futures on unleaded gasoline.

1986 CE

■ May: Hong Kong Futures Exchange launches futures on the Hang Seng Index.

■ September: SIMEX launches futures on the Nikkei 225 Stock Average.

1987 CE

■ August: NYMEX launches futures on liquefied propane.

1991 CE

■ Notional amount of OTC derivatives trading surpasses exchange-traded derivatives.

1992 CE

■ Credit derivative contracts begin trading in OTC market.

1996 CE

■ March: NYMEX launches futures on electricity.

2004 CE

■ March: CBOE  launches futures contract written on CBOE Market Volatility Index (VIX).

■ May: CBOE  launches futures contract written on three-month S&P 500 realized variance.
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the buyer and the seller and guarantee the performance of each party. This cru-
cial step eliminated the counterparty risk that had plagued OTC trading. In the
event a buyer defaults, the clearinghouse “makes good” on the seller’s position,
and then holds the buyer’s clearing firm liable for the consequences. The buyer’s
clearing firm, in turn, passes the liability onto the buyer’s broker, and ultimately
the buyer. Note that, at any point in time, the clearinghouse has no net position
since there are as many long contracts outstanding as there are short. The third
change was the introduction of a margining system. When the buyer and seller
enter a futures position, they are both required to deposit good-faith collateral
designed to show that they can fulfill the terms of the contract.

From the late 1800s through the early 1980s, the lion’s share of derivatives
trading took place on exchanges. Over most of this period, the dominant form of
derivatives trading was with futures contracts, and the futures contracts were writ-
ten primarily on agricultural commodities. The CBT began trading corn, oat, and
wheat contracts in 1865. In 1870, the New York Cotton Exchange was formed by
a group of cotton brokers and merchants to trade futures on cotton; in 1874, the
Chicago Produce Exchange was formed by a group of agricultural dealers to trade
futures on butter, eggs, and other perishable agricultural commodities; and, in
1882, the Coffee Exchange was formed by a group of coffee merchants who
wished to avoid the risk of a cash market collapse by organizing a market for trad-
ing coffee futures. The first commodity futures contract in the United Kingdom
was listed by the London Corn Trade Association in 1878, and the first contract in
Canada was listed by the Winnipeg Commodity Exchange in 1904.

The move to nonagricultural commodities was slow. Indeed, more than 50
years elapsed before the Commodity Exchange (COMEX) in New York was
formed in July 1933 to trade the first metals contract—silver futures. The London
Metal Exchange (LME) launched lead futures in the United Kingdom in October
1952. The New York Mercantile Exchange (NYMEX) followed in the United
States with platinum futures in December 1956 and palladium futures in January
1968. The introduction of futures on livestock occurred in the 1960s. The Chi-
cago Mercantile Exchange (CME) launched pork belly futures in September
1961, live cattle futures in November 1964, and live hog futures in February
1966. Futures contracts on energy products did not emerge until November
1978, at which time the NYMEX introduced the heating oil futures contract. The
International Petroleum Exchange (IPE) was formed in 1980 to make markets in
futures on petroleum and petroleum products in the United Kingdom.

The pace of innovation in derivatives markets increased remarkably in the
1970s. Many of the important events occurring during this decade, as well as
the next, are summarized in Table 1.1. The first major innovation occurred in
February 1972, when the CME began trading futures on currencies in its Inter-
national Monetary Market (IMM) division. This marked the first time a futures
contract was written on anything other than a physical commodity. The second
was in April 1973, when the CBT formed the Chicago Board Options Exchange
(CBOE) to trade options on common stocks.15 This marked the first time an
option was traded on an exchange. The American Stock Exchange (AMEX) and

15 Initially, only call options were listed in the United States. Put option trading were not listed
until June 1977, and, even then, only on an experimental basis.
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the Philadelphia Stock Exchange (PHLX) followed suit by listing options on
U.S. stocks in 1975, and the Pacific Stock Exchange (PSE) in 1976. Other coun-
tries entered the picture around the same time. Options on the shares of Cana-
dian stocks were listed by the Montreal Exchange in 1975 and the Toronto
Stock Exchange in 1976. The Australian Options Market began listing stock
options in 1976, and, in 1978, the London Traded Option Market (LTOM) was
formed to list stock options in the United Kingdom. The third major innovation
occurred in October 1975, when the CBT introduced the first futures contract
on an interest rate instrument—Government National Mortgage Association
futures. In January 1976, the CME launched Treasury bill futures, and, in
August 1977, the CBT launched Treasury bond futures.

The 1980s brought yet another round of important innovations. The first was
the use of cash settlement. In December 1981, the IMM launched the first cash set-
tlement contracts, the 3-month Eurodollar futures. At expiration, the Eurodollar
futures is settled in cash based on the interest rate prevailing for a 3-month Euro-
dollar time deposit.16 Cash settlement made feasible the introduction of deriva-
tives on stock index futures, the second major innovation of the 1980s. In
February 1982, the Kansas City Board of Trade (KCBT) listed futures on the Value
Line Composite stock index, and, in April 1982, the CME listed futures on the
S&P 500. These contract introductions marked the first time that futures contracts
were written on stock indexes. Other countries quickly followed suit. The Sydney
Futures Exchange (SFE) listed futures on the All Ordinaries Share Price Index in
February 1983, the London International Financial Futures and Options Exchange
(LIFFE) listed futures on the FT-SE 100 in May 1984, the Hong Kong Futures
Exchange (HKFE) listed futures on the Hang Seng Index in May 1986, and the
Singapore International Monetary Exchange (SIMEX) listed futures on the Nikkei
225 Stock Average in September 1986. The third major innovation of the 1980s
was the introduction of exchange-traded option contracts written on underlyings17

other than individual common stocks.18 The CBOE and AMEX listed interest rate
options in October 1982 and the Philadelphia Stock Exchange (PHLX) listed cur-
rency options in December 1982. In the same year, options on futures appeared for
the first time. In October 1982, the CBT began to list Treasury bond futures
options, and the Coffee, Sugar, and Cocoa Exchange (CSCE) began to list options
on sugar and gold futures. In January 1983, the CME and the New York Futures
Exchange (NYFE) began to list options directly on stock index futures, and, in
March 1983, the CBOE began to list options on stock indexes.

These two decades of innovation have had an enormous impact on the bal-
ance of derivatives trading activity on exchanges worldwide. While derivatives
exchanges were originally developed to help market participants manage com-

16 A Eurodollar time deposit is a U.S. dollar deposit in a London bank, and the interest rate
quoted on such deposits is called the London Interbank Offer Rate (LIBOR). Since different
banks may offer different rates on deposits of the same maturity, the settlement rate is based
on an average of rates across banks.
17 From this point forward, the term “underlying” refers to the asset or instrument that under-
lies the derivative contract.
18 For a comprehensive review of these new option introductions and their economic purposes,
see Stoll and Whaley (1985).
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modity price risk, most of the trading activity today is concentrated in the risks
of financial assets such as stocks, bonds, and currencies. Table 1.2 summarizes
exchange-traded derivatives contract volume worldwide for the year 2003.
Commodity futures accounted for about 17% of total futures volume world-
wide, and commodity options accounted for less than 1%. At the same time,
futures contracts on different interest rate instruments accounted for more than
55% of total futures volume and options on stocks/stock indexes accounted for
more than 93% of total option volume. Thirty years ago, there were no
exchange-traded derivatives on any financial asset at all. 

The 1980s also saw the reemergence of OTC derivatives trading. With the
derivatives on financial assets coming to the forefront, investment banks began to
think of new ways to tailor contracts to meet customers’ needs. Some ideas were
standard forward and option contracts on financial instruments or indexes. In
1980, for example, the first OTC Treasury bond option was traded. Other con-
tracts were seemingly new and different. Most fall under the generic heading,
“swaps.” A swap contract is a contract to exchange (or swap) a series of periodic
future cash flows, where the terms of the contract are usually set such that the
up-front payment is zero. The first interest rate swap was in 1981, when the Stu-
dent Loan Marketing Association (Sallie Mae) swapped interest payments on
intermediate-term, fixed rate debt for floating rate payments indexed to the
three-month Treasury bill rate. The cash flows of the two legs of a swap can be
linked to virtually any reference rate, asset price, or index level. A basis rate
swap, for example, is an exchange of floating rate payments where the two float-
ing rates are linked to, say, a three-month Treasury bill rate and a three-month
Eurodollar time deposit rate, respectively. A currency swap is an exchange of
interest payments (either fixed or floating) in one currency for payments (either
fixed or floating) in another.19 An equity swap involves the exchange of an inter-

19 Currency swaps are unusual to the extent that the principal amounts are also usually ex-
changed at the beginning and the end of the swap. The principal amounts are typically chosen
to be approximately equivalent at the prevailing spot rate when the contract is entered.

TABLE 1.2  Exchange-traded and over-the-counter derivatives activity during 2003.

Source: This table was constructed from information provided in the Bank of International
Settlements (www.bis.org), BIS Quarterly Review, June 2004.

Exchange-Traded Markets:
Millions of Contracts Traded in 2003 OTC Markets:

Notional Amount in Billions
 as of December 2003Underlying Futures Options

Currencies      59     2.06%      14     0.28%   24,484   12.42%
Interest rates 1,577   55.37%    302     5.80% 141,991   72.01%
Equities    726   25.48% 4,843   92.94%     3,787     1.92%
Commodities    486   17.08%      51     0.98%     1,406     0.71%
Other       25,510   12.94%

Total 2,848 100%     5,210 100%     197,178 100%     
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est rate payment and a payment based on the performance of a stock index,
while an equity basis swap involves an exchange of payments on two different
indexes. While swap agreements appear different from standard forward and
option contracts, they are not new in the sense that each can be decomposed into
a portfolio of forwards and options, as we discuss in great detail in subsequent
chapters. What makes the swap attractive to the customer, however, is that one
transaction can replace several. 

Table 1.2 shows the notional amount of OTC derivatives outstanding at the
end of 2003 by asset category. Clearly, the introduction of derivatives on finan-
cial assets has been crucial to the success of modern-day OTC derivatives mar-
kets. Interest rate derivatives accounted for about 72% of the USD 197.2
trillion of contracts outstanding at the end of 2003, and currency derivatives
accounted for another 12.5%. In addition to using financial assets as the under-
lying, the “package” nature of swap agreements has met with widespread mar-
ket approval. According to the Bank for International Settlements, the total
notional amount of single-currency, interest rate derivatives outstanding world-
wide as of December 2003 was USD 141.99 trillion with swaps being 78.32%,
options 14.09%, and forwards 7.58%.

Another way to view the success of modern-day OTC derivatives markets is
to compare the notional amount outstanding against exchange-traded deriva-
tives.20 At the beginning of 1980, virtually all derivatives traded were on
exchanges. By 1991, the notional amount of derivatives traded in the OTC mar-
ket was about equal to that of exchange-traded markets. According to the Bank
for International Settlements, the total notional amount of derivatives outstand-
ing worldwide as of December 2003 was USD 233.9 trillion, 15.7% being
exchange-traded and 83.3% over-the-counter.

Does this enormous rate of growth in OTC markets imply the demise of
exchange-traded derivative contract markets? Not necessarily. In many ways,
the markets are complementary. In standing on the other side of customer trans-
actions, investment banks wind up with large portfolios (i.e., “books”) of OTC
agreements. Some of the risks of the individual contracts in the dealer’s book
offset each other, however, at any point in time, the dealer’s book is likely to
have significant net exposures to equity, interest rate, currency, and/or commod-
ity price risks. These exposures can be laid off conveniently and inexpensively
using the standardized contracts that exchanges provide. 

ATTRIBUTES OF EXCHANGE-TRADED DERIVATIVE MARKETS

Exchange-traded derivatives arose in response to controversies such as the tulip
bulb fiasco. The key ingredients to the success of exchange-traded derivative
markets are: (1) standardized contracts, (2) a clearinghouse, (3) a system of
margining, and (4) market transparency. After discussions of these attributes,
we describe regulations governing exchanges in the United States and provide
some examples of exchange-traded derivative contracts.

20 The figures, compiled and reported by the Bank for International Settlements (BIS) may be
somewhat misleading, as we discuss later in the chapter.
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Standardized Contracts

Exchange-traded contracts are standardized by underlying asset, time and location
of delivery, method of settlement, and other factors. By concentrating trading activ-
ity in fewer types of contracts, the exchange promotes market depth and liquidity.
Deep and liquid markets are desirable for two reasons. First, it permits secondary
market trading “in size” with little impact on price. An OTC dealer with a large
exposure to U.S. stock market risk, for example, can lay off that risk quickly and
inexpensively using the CME’s S&P 500 futures contracts. In addition, it permits
easy unwinding of existing positions. If a farmer hedges his price risk by selling a
September wheat futures contract on the CBT in the spring but later decides he
wants to unwind his futures position before harvest, he can simply buy the same
futures contract to offset (or reverse) his short position. In contrast, if the farmer
sold a forward contract with the same terms in the OTC market, he would be faced
with the prospect of calling the OTC derivatives dealer and negotiating his way out
of the agreement. This places the farmer at a competitive disadvantage.21 

The second reason that deep and liquid markets are important is that they
limit the prospect of corners and short-squeezes. These are attempts to profit
from futures trading by manipulating price. A corner refers to an individual or
firm gaining control of the entire deliverable supply of the commodity underly-
ing the futures. If this individual also simultaneously buys futures contracts, he
may be attempting a short-squeeze. To understand how a short-squeeze works,
recall that those who are short futures at the contract expiration must liquidate
by either (a) delivering the underlying commodity or (b) buying an offsetting
number of futures. In a short-squeeze, both actions are encumbered. The indi-
vidual attempting the short-squeeze refuses to sell either the commodity or the
futures. As the shorts22 scramble to buy futures and cover their positions, the
futures price rises. When the price rises high enough in the eyes of those squeez-
ing the market, they sell their futures and realize their gains.

A telltale sign of an attempted short-squeeze is that the futures price in the
delivery month rises relative to the prices of more distant contracts and to the
underlying commodity price. Exchanges and the CFTC monitor futures markets
for such signs in an attempt to guard against possible short-squeeze activity. If such
activity is suspected, the person or firm undertaking the squeeze may be required
to liquidate the long futures positions. The most recent example of a near short-
squeeze was the attempt by an Italian grain-trading firm, Ferruzzi Finanziaria
S.p.A., to corner the July 1989 soybean contract.23 The July contract expired on
July 19. At the beginning of July, Ferruzzi held more than half of the net long July
futures positions, which was double the deliverable supply, and owned 85% of the

21 OTC positions could also be offset by taking an opposite position with another OTC deriv-
atives dealer. In this way, you can “shop around” to find the best terms. In contrast to ex-
change-traded derivatives where “two-sided” markets are quoted at all times, you will have
to identify to the OTC dealer whether you plan to be a buyer or a seller before he quotes you
the terms of the agreement.
22 A “short” is someone who is currently short a futures or option contract. Conversely, a
“long” is someone who is currently long.
23 See Chicago Board of Trade (1990). Daily price and open interest data for the soybean futures
contracts traded during the period are contained in the Excel file, Soybean Data (Ferruzzi).xls.
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soybeans in deliverable position. The shorts would have had to move massive
amounts of soybeans to the approved delivery points (in Chicago and Toledo) in
order to make delivery of their futures contracts, an impossible task in the short
time remaining to expiration. In reaction to the potential corner, the Chicago
Board of Trade ordered those holding futures positions in excess of 3 million bush-
els to liquidate. This meant that Ferruzzi had to sell much of its long position to
the shorts, thereby avoiding a short-squeeze. July soybean futures prices, which
had risen in reaction to the developing short-squeeze, fell back to normal levels. A
more detailed account of the events is included in Appendix 1 of this chapter.

The Clearinghouse

A second attribute that distinguishes an exchange from a OTC market is the
clearinghouse. The role of a clearinghouse is to stand between the buyer and the
seller and guarantee the transaction of each party. Figure 1.2 illustrates the pro-
cess. The buyer and the seller agree to the price of the contract. Historically, this
agreement has taken place on a trading floor, however, with the advent of com-
puters and high-speed communication, most exchanges are now moving toward
electronic trading. Regardless of where the agreement takes place, the buyer’s
and the seller’s brokers then report the trade to their respective clearing firms.
Some brokers are clearing firms. Those that are not simply clear their trades
through firms that are. The clearing firms then report the trade to the clearing-
house. By interposing itself between the buyer and the seller, the clearinghouse
acts as a guarantor by, in effect, becoming the party to whom delivery is made
and from whom delivery is taken. In the event the buyer defaults, the clearing-
house “makes good” on the seller’s position, and then holds the buyer’s clearing
firm liable for the consequences.24 The buyer’s clearing firm, in turn, passes the

24 The efficacy of clearinghouse operations depends critically on the solvency of the clearing
members. To protect the integrity of operations, clearinghouses impose minimum capital re-
quirements and position limits on clearing members, and exchanges set price limits on most
contracts.

FIGURE 1.2 Derivatives trading on exchanges. 
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liability onto the buyer’s broker, and ultimately the buyer. Note that the clear-
inghouse has no net position. At any point in time, there are as many long con-
tracts outstanding as there are short. Note also that the exchange or
clearinghouse’s netting process is what allows customers to easily offset existing
contract positions. If you buy (or sell) and then later sell (or buy) the same con-
tract, your net position will be zero, and the position will disappear from your
account statement. Any long option positions exercised during their life or at
expiration will be randomly assigned to someone who has a short option posi-
tion. Any deliveries made on open short futures positions during the delivery
month will be either randomly assigned to open long positions or to the long
position which has had the longest duration, depending on the contract. In the
United States, all options exchanges use the same clearinghouse, that is, the
Options Clearing Corporation (OCC). Historically, each U.S. futures exchange
has had its own clearinghouse, although recently certain exchanges have agreed
to a common clearing mechanism.25 

Margins

A third attribute that distinguishes an exchange from a OTC market is the
imposition of margins. Margin is essentially a performance bond designed to
show that you can fulfill your financial obligations resulting from your trade in
the event that the market moves against you. Margins are of two types—initial
margin and maintenance margin. The initial margin is the per contract amount
deposited when you open a position. If the market moves against you on the
opening day, your position is marked-to-market with a loss. The loss reduces the
amount of your original deposit. If the balance in your account at the end of the
day falls below a level called the maintenance margin, you will receive a margin
call and will be required to bring the total amount of the margin back up to the
initial margin level (as opposed to the maintenance margin level) by the opening
of trading on the following morning. If you do not, your broker will reverse
your position at the open of trading, and you will be held liable for the conse-
quences. The incremental funds deposited to bring your account back to the ini-
tial level are called variation margin.

Initial and maintenance margins on the same underlying asset can vary
depending on the nature of your position. With futures contract markets, for
example, there may be separate initial and maintenance margin levels for (1)
outright positions, (2) hedge positions, (3) intracommodity spreads, and (4)
intercommodity spreads. Outright positions refer to buying or selling a futures
with no other position in the underlying asset or in a related futures. In general,
these margins are referred to as speculative margins and are the highest of the
four positions listed. Hedge positions refer to selling (buying) the futures when
you hold a long (short) position in the underlying asset. Since the riskiness of
the individual legs of the hedge tend to offset each, hedge margins are lower

25 In April 2003, for example, the CME signed an agreement with the CBT to provide clearing
services for all CBT products. The clearing firm is now known as “The Clearing Corpora-
tion.” In addition, The Clearing Corporation and the Options Clearing Corporation have a
joint system for the clearing of stock futures.
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than speculative margins. If a farmer can document the fact that he is in the
business of growing wheat, his broker will likely require only hedge margin
when the farmer sells wheat futures.26 Intracommodity (or calendar) spreads
refer to buying a futures and selling a futures on the same underlying asset but
with different contract maturities. Since the trader is both long and short the
same underlying, the risk of the position is negligible. Hence, the margin levels
on intracommodity spreads are quite low. Finally, intercommodity spreads refer
to buying a futures and selling a futures with the same maturity month but with
a different (albeit related) asset. Buying a crack spread, for example, means buy-
ing a heating oil futures and selling a crude oil futures of the same maturity. The
margin levels of such intercommodity spreads are generally lower than outright
positions, but are considerably higher than intracommodity spreads.  

It is important to recognize that cash balances held in your margin account
should not be considered costly. Since you are allowed to post margin in the
form of Treasury bills or, alternatively, since your broker may simply pay you a
money market interest rate on your cash balance, your money is earning a fair
rate of return.27 Margin deposits are only costly when your broker does not
allow Treasury bill deposits or is unwilling to pay a market interest rate on your
cash deposit.  

ILLUSTRATION 1.1 Compute the margin balances in a futures account.

Compute the margin account balances at the end of each day assuming that you sold out-
right 10 Canadian dollar futures on the CME at a price of USD 0.6760/CDN midday on
June 1, 1999. The CME’s contract denomination is CDN 100,000, and their initial and
maintenance margin requirements on this contract are USD 675 and USD 500, respectively.
Assume your broker pays 5% simple interest on your margin account balance. The subse-
quent prices of the futures over the next nine trading days are given in the table below.

On June 1, 1999, you sold 10 contracts midday at a price of USD 0.6760/CDN. By
the end of the day, the market has moved against your position and the settlement price is
0.6770. This means you will be marked-to-market with a USD 1,000 loss, that is, 0.001
per contract times 10 contracts times the CDN 100,000 contract denomination. This
amount is netted from your initial margin deposit, leaving you with an ending balance on
June 1 of USD 5,750. 

On June 2, the futures price settles at 0.6787. Over the day, you earned USD 0.79
interest on your margin account balance, that is, USD 5,750 times 0.05 times 1/365. The
futures price, again, moved adversely to your position, causing a mark-to-market loss of
USD 1,700. Adding your previous end-of-day balance, your earned interest, and your
mark-to-market adjustment, you have USD 4,050.79 in your margin account when the
minimum required maintenance level is USD 5,000 (i.e., USD 500 per contract times 10
contracts). The exchange issues you a margin call, whereupon you must deposit enough
extra funds (i.e., variation margin) to bring your account balance back up to the initial
margin level. The variation margin payment is USD 2,699.21.

26 A wheat farmer who buys wheat futures is said to be Texas hedging. In this case, the farmer
would pay the speculative margin levels.
27 In the third chapter, we review the mechanics of the capital asset pricing model (CAPM).
The CAPM specifies the “fair” rate of return on an asset given its risk. The fair rate of return
on a risk-free asset is the rate of return on a default-free security such as the Treasury bill rate.
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On June 3, the futures settles at 0.6802. You have earned USD 0.92 interest and are
marked-to-market with a USD 1,500 loss. Your account balance remains above USD
5,000 so no additional variation margin is necessary. You are not so lucky on June 4,
when the futures settles at 0.6831. You earn USD 0.72 interest and are marked-to-market
with a USD 2,900 loss. Your account balance, USD 4,398.36, is now below the mainte-
nance margin level and you are required to bring the balance back up to the initial level
of USD 6,750.

The remaining entries in the table are computed in a similar fashion. Larger amounts
of interest are earned on June 7 and June 14 resulting from the 3 days of interest earned
over the weekend.

The amounts of the initial and maintenance margin levels are set by the exchange and
are different for different futures contracts.28 Since the margin is designed only to protect
the integrity of the market over a single day, the margin must be large enough to cover a
reasonable range of price movements over a single day. Exchanges commonly set the initial
margin to cover the mean absolute daily price change of the contract plus 3 standard devi-
ations.29 The mean absolute daily price change of the Canadian dollar futures contract dur-
ing the month of June 1999 was 0.0019 and the standard deviation was 0.0017. This rule
implies, therefore, that the initial speculative margin should be (0.0019 + 3 × 0.0017) ×
100,000 or $700 per contract, which is very close to the actual level of $675. Note how
both price volatility and contract size figure into the computation of the initial margin.
Note also that with a pronounced change in price volatility, an exchange may elect to
change the contract’s margin levels.

Transparency

A fourth important attribute of exchange-traded derivatives markets is that they
are transparent—you can see what goes on. During the trading day, the price

USD Margin Balances in Futures Account

End of
Day

Settlement
Price

Interest
Earned

Mark-to-
Market

Maintenance
Check

Cash
Deposit

Ending
Balance

6/1/1999 0.6770 –1,000.00 6,750.00 5,750.00
6/2/1999 0.6787 0.79 –1,700.00 4,050.79 2,699.21 6,750.00
6/3/1999 0.6802 0.92 –1,500.00 5,250.92        0.00 5,250.92
6/4/1999 0.6831 0.72 –2,900.00 2,351.64 4,398.36 6,750.00
6/7/1999 0.6837 2.77    –600.00 6,152.77        0.00 6,152.77
6/8/1999 0.6827 0.84   1,000.00 7,153.62        0.00 7,153.62
6/9/1999 0.6818 0.98      900.00 8,054.60        0.00 8,054.60
6/10/1999 0.6867 1.10 –4,900.00 3,155.70 3,594.30 6,750.00
6/11/1999 0.6873 0.92    –600.00 6,150.92        0.00 6,150.92
6/14/1999 0.6879 2.53    –600.00 5,553.45        0.00 5,553.45

28 The margin levels set by the exchanges apply to the deposits made by clearing firms with the
clearinghouse. The margin levels charged by brokers (and/or the clearing firms) to customers
often exceed the exchange-mandated levels.
29 See Edwards and Ma (1992, p.39).
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quotes and trade prices/volumes stream across the screens of various on line
data services. Then, at the end of the day, many financial publications such as
the Wall Street Journal summarize each derivatives exchange’s trading activity.
An important figure provided to the financial press by the exchange’s clearing-
house is the open interest in each contract. Open interest is a figure that
expresses the amount of delivery that would take place if the contract was liqui-
dated immediately.30 To understand its computation each day, consider Table
1.3, which takes you through a hypothetical sequence of trades over five days.
During the first day, A buys 30 contracts—10 from B, 5 from C, and 15 from D.
The total trading volume over the day is 30 contracts.31 The open interest is also
30 contracts. The total number of contracts outstanding is 30, which can be
obtained by summing across all the open long positions (i.e., the total demand
for delivery) or by summing across all the open short positions (i.e., the total
supply promised).

30 That is not to say that delivery will be made immediately. Open interest merely reflects the
aggregate hedging and speculative demand in a particular commodity contract.
31 Occasionally you will see the total trading volume reported by an exchange on such a day
as 60 contracts. The rationale for such computation is that 30 contracts were purchased and
30 contracts were sold. For our purposes, we ignore this practice.

TABLE 1.3  Illustration of the computation of trading volume and open interest. 

Number of
Contracts

End of Days

Day Buyer Seller Contract Volume Open Interest

1 A B 10
A C   5
A D 15

30 30
2 A E 15

B A 10
B D 20

45 55
3 D F 40

F G 30
F A 15

85 50
4 A G 20

D B 30
E C 25

75 90
5 C A 40

G B 15
C D 10

65 60
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On the second day, A buys 15 more contracts but sells 10. Thus, his open
long positions have increased from 30 to 35 contracts. B, on the other hand,
entered the day short 10 contracts. He then proceeded to close his short position
by buying 10 contracts and by buying 20 more contracts to enter a long posi-
tion. At the end of the day, A is long 35 contracts and B is long 20 contracts, so
the total open interest at the end of the second day is 55 contracts. Note that we
could also arrive at the same open interest figure by considering only open short
positions. At the end of the first day, B is short 10 contracts, C is short 5, and D
is short 15. During day 2, B closes his short position, C does nothing, D sells 20
more contracts bringing his total to 25, and E establishes a new short position
of 15 contracts. Summing across all open short positions, you have open interest
of 5 + 35 + 15 or 55 contracts.

It is important to recognize that there is no direct linkage between trading
volume and open interest. While open interest cannot change without trading
volume, trading volume may increase, decrease or have no effect on the level of
open interest prior to expiration. As a practical matter, open interest in delivery
contracts such as grain futures tends to disappear prior to the delivery month.
This reflects contract buyers and sellers reversing and closing their positions to
avoid the transportation costs associated with accepting or making delivery of
the underlying commodity. Open interest in cash settlement contracts, on the
other hand, tends to carried into the delivery month and may even be quite large
on the day before expiration. On the expiration day, all open positions are set-
tled in cash and the open interest disappears.

Regulation

In the United States, two regulatory bodies oversee derivatives traded on
exchanges. The Securities and Exchange Commission (SEC) governs the markets
for options on securities and the Commodity Futures Trading Commission
(CFTC) governs futures and futures options. Option exchanges list options on
stocks, bonds, and currencies, hence fall under the regulatory jurisdiction of the
SEC. Futures and futures options exchanges fall under the jurisdiction of the
CFTC. These regulatory authorities are both a blessing and a curse. On one
hand, having the operation of exchanges monitored by a federal agency further
enhances market integrity. The CFTC, for example, establishes position limits
on the maximum number of contracts that a single trader may have at any one
time. This safeguards against illicit activities such as short squeezes. On the
other hand, these regulatory authorities may slow the pace of financial innova-
tion. Each time an exchange considers introducing a new type of derivative con-
tract, it must apply to the appropriate regulatory authority, specifying all terms
and conditions of the contract, as well as explaining how its presence in the
marketplace will benefit society. Such contract applications may go through sev-
eral rounds of revision and take months (and sometimes years) to get approved.
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Examples of Exchange-Traded Derivatives

All derivatives exchanges summarize the trading activity of all of the contracts
they list on a daily basis, and most make the summaries available on their inter-
net websites. To provide a flavor for this type of information, we discuss three
examples—stock options, U.S. Treasury-bond futures, and corn futures options.
Many other examples appear in later chapters.

Stock Options The first example is options listed on the shares of Dell. Viewed in
whole, exchange-traded options written on the same underlying asset are called
an option class. Table 1.4A reports the prices of Dell stock options as of 1:53 PM

(CST) on Tuesday, January 6, 2004 on the Chicago Board Options Exchange’s
website, www.cboe.com. At the time, Dell’s shares had a quoted bid/ask spread
of 35.05/35.06. The expiration month and the exercise price are reported in the
columns headed “Calls” and “Puts.” The first row in the table is for the January
2004 call and put with an exercise price of 5, as indicated by the prefix “04 Jan
5.00.” By convention, all stock options traded in the United States expire on the
Saturday following the third Friday of the contract month. The first five charac-
ters of the term in parenthesis is the option series ticker symbol. The call’s ticker
symbol, for example, is “DLYAA.” Note that each ticker symbol in the table is
unique. This is its identifier for trading purposes. Each ticker represents an
option series, where an option series is identified by a unique triplet of
attributes: (1) call or put, (2) exercise price, and (3) expiration day. 

The table shows that neither the call nor the put traded on January 6, at
least as of the time the prices were downloaded (i.e., their volumes of trading
are 0). Both options have traded at some time in the past, however, since the call
has open interest of 580 and the put has open interest of 245. The call has a bid/
ask price quote of 30.00/30.10. The last trade price, 28.60, lies outside the
option’s prevailing bid/ask quotes. This merely indicates that the market price of
the option has moved since the time of the last trade. When the last trade
occurred cannot be inferred from the information in the table. All that can be
inferred is that the trade did not occur on January 6, 2004. By exchange conven-
tion, each option contract is written on 100 shares of stock, although the option
premiums are reported on a per share basis. The January 2004 call with an exer-
cise price of 5, for example, has a quoted ask price of $30.10. If you were to buy
this option, you would pay $3,010 for the right to buy 100 shares of Dell at $5
a share. All stock options traded in the United States are American-style, mean-
ing that the buyer can exercised at any time up to and including the expiration
day.32 

Table 1.4A reveals two interesting characteristics about stock option mar-
kets. First, at-the-money options tend to be the most active. The table shows
that more than 99 percent of call option trading volume and 85 percent of put
option trading volume on January 6, 2004 was in option series with exercise
prices between 32.50 and 37.50 (i.e., at-the-money options). Second, the total

32 Many other styles of options exist. A European-style option, perhaps the most common, can
be exercised only on the expiration date. A Bermuda-style option can be exercised on prespec-
ified dates during the option’s life.
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open interest for calls, 552,764, exceeds that of puts, 319,669. In stock option
markets, there seems to be greater interest in speculating that the stock price
will rise rather than fall. Table 1.4B has the same columns as Table 1.4A. The
only difference is that Table 1.4B contains “Leaps” written on Dell’s stock. In
the 1980s, the CBOE, in response to investor demand, began trading “Long-
term Equity Anticipation Securities,” or Leaps. Where stock options have times
to expiration up to nine months, Leaps have times to expiration up to three
years. As of January 6, 2004, Dell had leaps expiring in January 2005 and Janu-
ary 2006. When Dell’s January 2004 stock options expire on January 17, 2004,
leaps with a January 2007 expiration will be introduced. Note that there is sig-
nificant open interest in long-term options. Apparently a large number of trad-
ers have long-term directional views on Dell’s stock price.

S&P 500 Futures Table 1.5 reports a summary of the daily trading activity of the
Chicago Mercantile Exchange’s (CME’s) S&P 500 futures contract on Friday,
July 20, 2004. The data were downloaded from the CME’s website,
www.cme.com. The reporting conventions are different than those used for
stock options. Futures exchanges provide daily summaries, showing the open,
high, low and last trade prices as well as the settlement price of each futures/
futures option contract. Some of the prices that appear have a suffix “B” or
“A.” Such prices are not trades but are quotes. If a bid price quote exceeds the
highest trade price in a given day, it appears as the “high.” Conversely, if the
lowest ask price quote is beneath the lowest trade price as for the day, it appears
as the low. The last trade and settlement prices may differ because of market
movements between the time of the last trade and the market close. The settle-
ment price is used for the marking-to-market of futures positions. 

The leftmost column contains the contract month. The S&P 500 futures is
on a quarterly contract expiration cycle and expire at the open on the third Fri-
day of the contract month. Elsewhere on the exchange’s website are the specifi-
cations of the contract. The S&P 500 futures has a multiplier of 250, which
means that the September 2004 futures contract settled at a dollar value of
1,093.40 × $250 = $273,425 on July 20, 2004. With an estimated contract vol-
ume of 44,681, this means that approximately $12.2 billion of stocks traded
hands through this contract on this day. Futures exchanges disseminate their
daily summaries shortly after the market closes each day. At that time, precise
figures on the trading volume and current open interest are not known. Conse-
quently, the exchanges report an estimate volume as well as the actual volume
and open interest for the previous day, as is shown in Table 1.5. The open inter-
est (i.e., number of contracts outstanding) for the September 2004 futures is
579,019. Since each contract has a face value of $273,425, this means that the
aggregate hedging and speculative demand for the S&P 500 index portfolio, as
reflected by the September 2004 futures contract, exceeds $158 billion.

Eurodollar Futures Options Table 1.6 contains a market summary for the CME’s
Eurodollar futures option contracts traded on Friday, July 20, 2004. The table
includes only activity for September 2004 call options and was downloaded
from www.cme.com. Other call option contract expirations as well as put
options are also available of the exchange’s website. Options on futures are like
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options on assets except that when a futures option is exercised, a futures posi-
tion rather than an asset is delivered.33 The options are American-style, and
expire together with the underlying futures on the second London business day
before the third Wednesday of the contract month. Exercising a Eurodollar
option before expiration results in the delivery of the underlying futures, with
each futures contract having a denomination of 1 million dollars.34 

The leftmost column of Table 1.6 contains the option’s exercise price. The
first row shows a value of 9625. This means that the call provides its holder to
buy the underlying futures contract at an index level of 96.25.35 To identify the
rate of interest on the underlying Eurodollar time deposit, the index level is sub-
tracted from 100. Thus, buying the September 2004 futures call option with an
exercise price of 9800, means acquiring the right to lend your money at 100.00
– 98.00 = 2.00 beginning in September 2004, where the amount of your deposit
is 1 million dollars. The cost of acquiring this right (using the last trade price for
illustrative purposes) is 0.09% of par or 0.0009 cents per dollar of deposit times
the 1 million dollar contract denomination of $900.

ATTRIBUTES OF OTC DERIVATIVE MARKETS

Early derivatives use was in the form of OTC contracts. Markets lacked depth
and liquidity, which meant that early unwinding of a contract involved negotiat-
ing with your counterparty, frequently at unfavorable terms. In addition, con-
tract defaults were commonplace, undermining the integrity of the market.
Gradually, exchange-traded derivatives markets took over. Having a centralized
market with standardized contracts and transparency provided needed depth and
liquidity. Having a clearinghouse with a system of margining provided needed
assurance that the terms of contracts would be honored. Exchange-traded mar-
kets continued to dominate, reaching market dominance in 1970s and 1980s—a
period of major financial innovation. Exchanges introduced derivatives on finan-
cial assets such as stocks, stock indexes, bonds, and currencies. In addition, con-
tract designs were streamlined with the use of cash settlement. The banking
community was quick to realize that they, too, could design such structures for
customers. Indeed, they could design any type of contract the customer wanted
without the encumbrance of obtaining regulatory approval. We now turn to
describing the key attributes of OTC derivative contract markets: contract flexi-
bility and the regulatory environment within which OTC derivatives markets

33 The Eurodollar futures contract has a denomination of USD 1,000,000 and is cash-settled
to the interest rate on a USD 1,000,000 Eurodollar deposit with three months to maturity. Its
price is quoted as an index level and is created by subtracting the Eurodollar rate from 100. A
price of 94.50 therefore means that the contract buyer is willing to lend USD 1,000,000 at
5.50 percent for a three-month period beginning on the date the futures contract expires.
34 As a rule of thumb, futures options will expire in the month before the underlying futures
if the futures is settled by delivery. If the underlying futures is cash settled, the futures options
and the futures will both be cash settled in the contract month.
35 Available space in the financial is limited, so various abbreviations are used. One abbrevia-
tion is that decimal points are excluded from the strike price. Another is that only two places
to the right of the decimal are reported. The strike price of 9787 is actually 97.875.
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operate. Discussions of the transparency and credit risk issues follow, along with
descriptions to two actively traded OTC derivative contract designs.

Contract Flexibility

The chief virtue of OTC markets is contract flexibility. A customer can virtually
be assured that he can find someone who is willing to tailor a derivatives con-
tract to meet his needs. You might go to your local wine merchant, for example,
and negotiate a contract for the future delivery of Penfolds Bin 389 Cabernet
Shiraz from South Australia though the grapes have not yet been harvested. As
noted earlier in the chapter, however, the primary interest is not in commodities
but rather in financial assets. As the OTC markets grew in the early 1980s, it
quickly became apparent more structure was needed to help avoid the contro-
versies of the past. A global trade association called the International Swaps and
Derivatives Association (ISDA) was chartered in 1985,36 and today ISDA has
over 450 members (largely banks who make markets in OTC derivatives) in 37
countries on five continents. Its primary purpose is to encourage the prudent
and efficient development of the privately negotiated derivatives business by,
among other things, promoting practices conducive to the efficient conduct of
the business, including the development and maintenance of derivatives docu-
mentation.

The ISDA derivatives documentation comes in two forms. Documents such
as 2000 ISDA Definitions and Annex to the 2000 ISDA Definitions37 lay out the
industry’s “language” for communicating the terms of derivatives transactions.
Other documents such as the ISDA Master Agreement (Local Currency – Single
Jurisdiction) and the ISDA Master Agreement (Multicurrency – Cross Border)
provide the text for actual contracts. If two parties are about to enter their first
OTC derivative transaction with each other, they will first sign a general agree-
ment called the ISDA Master Agreement. The purpose of this agreement is to
specify the general (nontransaction specific) conditions under which all transac-
tions between the two parties will be carried out. With the definitions and mas-
ter agreement in hand, individual trades can be negotiated between parties and
confirmed in writing within minutes. The faxed confirmation will contain refer-
ences to the ISDA documents such as:

The definitions and provisions contained in the 1991 ISDA Defini-
tions (as published by the International Swaps and Derivatives
Association, Inc.) are incorporated into this Confirmation.

and
The Confirmation supplements, forms part of, and is subject to,
the following ISDA Master Agreement:

36 Originally the association was called the International Swap Dealers Association.
37 See International Swap Dealers Association (2000a, 2000b). ISDA’s website can be viewed
at www.isda.org.
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The rest of the confirmation will include the specific terms of the trade. Prior to
reviewing the terms of specific types of OTC trades, however, it is worth dis-
cussing some other important attributes of the OTC market. 

Regulation

Aside from the self-imposed working standards of ISDA, OTC markets are
unregulated. For OTC markets, the arguments regarding transparency are the
opposite of what they were for exchanges. On one hand, trading participants in
OTC derivatives markets do not have the extra layer of protection provided by
a federal agency overseeing trading, making sure that everyone is operating
according to the same set of rules and safeguarding against manipulative prac-
tices. On the other, OTC markets can introduce new types of derivative con-
tracts at the drop of a hat—an important competitive advantage over exchanges
that must seek governmental approval. All that an OTC transaction requires is a
willing buyer and a willing seller.

Transparency

Market transparency refers to the amount of information provided about the
derivatives being traded. Exchange markets are transparent in the sense that
information about trade prices, volumes, and open interest figures are publicly
disseminated. OTC markets, on the other hand, are privately negotiated trans-
actions. At any point in time, it is virtually impossible to predicted the amount
of interest in a particular underlying commodity. Prior to the collapse of the
tulip bulb derivatives trading in Holland, for example, no one could have
gauged the full repercussions of the precipitous price decline. In an attempt to
provide at least some transparency, both ISDA and the Bank for International
Settlements (BIS) perform semiannual surveys of banks, asking that they itemize
the notional amounts of outstanding derivatives positions by underlying asset
and type of contract. Indeed, the OTC figures shown earlier in the chapter were
drawn from the latest BIS survey. But surveys such as these are not comprehen-
sive, take a long time to complete, and are reported with a considerable lag. In
addition, notional amount is a misleading figure. The notional amount of an
interest rate swap agreement, for example, is simply the principal amount upon
which interest payments are computed. The market value of the agreement pales
by comparison. Moreover, the aggregate notional amount (and even aggregate
market value) are overstated since more than one bank may be reporting the
same contract (i.e., the banks may be counterparties on the same trade). None-
theless, looking at changes in notional amount through time, as well as the lev-
els across asset categories, countries, and types of markets, is informative.

Dated as of: July 28, 2000
Between: Counterparty A
And: Counterparty B
Master agreement number: 12345



Derivative Contracts and Markets 37

FIGURE 1.3 OTC derivatives trading.  

Credit Risk

Unlike contracts in exchange markets, contracts in the OTC market have credit
risk, that is, risk that your counterparty will default. We discussed some exam-
ples earlier in the chapter. The tulip bulb fiasco was caused by put option writers
reneging on their obligation to buy bulbs from the growers. Similarly, futures
markets evolved because traders and merchants sometimes did not fulfill prom-
ised deliveries on forward contracts. With OTC contracts, the parties are forced
to deal with credit on their own. The counterparties to an OTC derivatives
transaction (see Figure 1.3) are usually dealer versus user (i.e., a bank versus a
firm) or dealer versus dealer (i.e., a bank versus a bank). Hence, the issue of
creditworthiness is asymmetric. While large banks may be extremely creditwor-
thy, some firms or smaller banks may not be.

One possible way to deal with credit risk is to trade only with creditworthy
counterparties. A bank with such a credit risk policy may not be acting in the
best interests of its shareholders, however, since there is probably a good deal of
profitable trading that can be conducted with less creditworthy customers.
Another way to handle credit risk is by asking the customer to provide a guar-
antor. Under such an arrangement, the firm will pay a premium (e.g., a fixed
percentage of the notional amount) to a third party who acts as guarantor. Yet
another way to handle the credit risk is to embed the expected cost of default by
adjusting the terms of the contract.38 

Examples of OTC Derivative Contracts

Without standardized contracts and a central marketplace, finding information on
OTC derivative contract specifications involves talking directly with OTC dealers.
The terms of some generic types of instruments are well known. Below we
describe two—plain-vanilla interest rates swaps and currency forward contracts.

Plain-Vanilla Interest Rate Swap The terms of a particular swap agreement are usu-
ally negotiated over the phone. Once an oral agreement is reached, the OTC
derivatives dealer will fax a confirmation to the customer. Table 1.7 illustrates
selected terms from the confirmation of a plain-vanilla, fixed-for-floating inter-

38 Credit risk and credit risk derivatives are discussed in Chapter 19.

Counterparty A Counterparty B
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est rate swap. The sheet is divided into three panels of information. The first
panel provides the calculation amount, trade date, and termination date. The
calculation amount is the notional amount upon which interest payments are
computed. The trade date is the day on which the parties enter into the agree-
ment, the effective date is the first day of the term of the agreement, and the ter-
mination date is the last day of the agreement.

The second and third panels of information specify obligations of the fixed
rate and floating rate payers, respectively. The fixed rate payer, in this case, is
BANK A, which promises to make semiannual, fixed interest payments at a rate
of 7.036 percent. The “30/360” fixed rate, day-count fraction implies that each
month (year) is assumed to have 30 (360) days. Thus, BANK A is obliged to pay
COMPANY B an amount equal to

TABLE 1.7  Selected terms from the confirmation of an OTC interest rate swap.

The terms of the particular swap transaction to which this confirmation relates are as fol-
lows:

Calculation amount USD  30,000,000.00
Trade date July 28, 2000
Effective date August 1, 2000
Termination date August 1, 2005

The fixed rate payer pays on each payment date an amount determined in accordance with 
the following:

Fixed rate payer BANK A
Payment dates Commencing on February 1, 2001 and semiannually 

thereafter on the first calendar day of each calendar 
day of February and August up to and including the 
termination date.

Fixed rate 7.036%
Fixed rate, day-count fraction 30/360

The floating rate payer pays on each payment date an amount determined in accordance 
with the following:

Floating rate payer COMPANY B
Payment dates Commencing on February 1, 2001 and semiannually 

thereafter on the first calendar day of each calendar 
day of February and August up to and including the 
termination date.

Floating rate option USD-LIBOR-LIBO
Designated maturity 6 months
Reset dates The first day of the relevant calculation period
Rounding factor One hundred-thousandth of one percent
Floating rate, day-count fraction Actual/360

$30,000,000 0.07036
180
360
----------×× $1,055,400=
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every six months for five years, with the first payment commencing on February
1, 2001. 

At the same time, the floating rate payer, COMPANY B, is obliged to make
semiannual interest payments on the same dates. The floating rate option is
specified to be “USD-LIBOR-LIBO” and the designated maturity is 6 months.
The term, USD-LIBOR-LIBO, is defined in the Annex to the 2000 ISDA Defini-
tions39 and means the offered rate on U.S. dollar deposits for the period of the
designated maturity as they appear on the Reuters Screen LIBO Page. Since the
reset date is the first day of the calculation period, the first floating rate payment
becomes known as of the effective date of the swap. If the rate is 6.8125 percent
on August 1, 2000, the floating rate interest payment on February 1, 2001 will
be computed as follows. First, you compute the actual number of days between
August 1, 2000 and February 1, 2001. The actual number of days is 184. Next,
we compute the semiannual interest rate by taking the annual interest rate,
6.8125 percent, and multiplying by the floating rate, day-count fraction,

to get percent, which gets rounded to 3.48194 percent by virtue of the stated
rounding factor. The floating rate payment that COMPANY B is obliged to
make on February 1, 2001 is $1,044,582. The fixed rate and floating rate pay-
ments are then netted so that only one party pays on a particular payment date.
In our illustration, this means BANK A will pay COMPANY B $10,818 on Feb-
ruary 1, 2001. Who pays and the amount of subsequent payments will depend
on the level of the floating rates on the remaining reset dates.

We called the interest rate swap illustrated in Table 1.7 a fixed-for-floating
swap. It also goes by other names including a fixed-to-floating swap, a fixed-
against-floating swap, and a coupon swap. In order to distinguish the counter-
parties to a fixed-for-floating swap, one is termed the payer and the other, the
receiver. The paying and receiving refer to the fixed interest payment. Thus,
BANK A is the payer of the interest swap illustrated in Table 1.7, and COM-
PANY B is the receiver. Sometimes, the terms buyer and seller are used to
describe swap counterparties. Since these terms are not intuitively obvious, their
use in the swap market is discouraged. With fixed-for-floating swaps, however,
the terms refer to the obligation to pay fixed. Thus, a swap buyer pays fixed and
receives the floating interest stream. A swap seller receives fixed and pays float-
ing. Thus, in our illustration, BANK A is the buyer of the interest rate swap and
COMPANY B is the seller.

In general, terms of OTC derivative contracts are not available in financial
publications such as the Wall Street Journal. Indeed, since OTC derivatives are
privately negotiated and have wide-ranging terms, there are no means to system-
atically collect and report such information. One way to obtain indicative prices
or rates of certain “generic” OTC derivatives deals is to subscribe to a service
such as Bloomberg, Reuters, and Telerate that provides such quotes on a real-

39 See International Swaps and Derivatives Association (2000b, p.41).

184
360
----------
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time basis. Essentially, what these services provide is access to a number of
pages (computer screens), each page containing the current market quotes of
generic types of trades. The rates shown in Table 1.8, for example, are fixed-for-
floating swap rates provided on one of Bloomberg’s screens at 3:50 PM (EST) on
Monday, August 7, 2000. While interest rate swaps can have a wide variety of
terms, the terms of these swaps are “standardized.” The periodic payments of
all these swaps are made semiannually, with the first payment occurring in 6
months. All of the rates are set in such a manner that the swaps have a zero
upfront payment. The floating rate interest payment is indexed to the 6-month
LIBOR rate with an “actual/360” day-count fraction convention, and the fixed
rate interest payment is based on the quotes appearing in the table and is calcu-
lated using a “30/360” day-count fraction convention. So, given these standard
practices, the terms of the entire swap are summarized by the term and by the
fixed rate. Bid and ask rates appear in the table (on the Bloomberg screen).
These represent the highest bid rate and the lowest ask rate of all OTC dealers
supplying Bloomberg with intraday quotes. If you buy the swap, you will pay
the ask rate and receive LIBOR. If you sell the swap, you will receive the bid
rate and pay LIBOR. The difference between the bid and ask rates is the dealer’s
spread. As the table shows, spreads in the plain-vanilla interest rate market are
incredibly small, averaging about 4 basis points. 

Currency Forwards
Currency forward prices are also reported on a real-time basis by a number of
data vendors. The prices reported in Table 1.9, for example, were drawn from
Bloomberg. The table contains U.S. dollar (USD) bid and ask price quotes of
one Great Britain pound (GBP) in the spot and forward markets as of 2:25 PM

(EST) on March 27, 2006. To buy one pound in the spot market costs USD
1.7478. To buy one pound in one week (i.e., a 1-week forward contract) costs
USD 1.7479, and so on. Forward rates are quoted with terms to maturity as

TABLE 1.8  Fixed-for-floating interest rate swap quotes from Bloomberg at 3:50 PM (EST) 
on Monday, August 7, 2000.

Term Bid Ask

2 yr 6.983 7.024
3 yr 6.985 7.026
4 yr 7.013 7.053
5 yr 7.036 7.077
6 yr 7.059 7.100
7 yr 7.079 7.120
8 yr 7.084 7.125
9 yr 7.100 7.141
10 yr 7.112 7.153
15 yr 7.139 7.180
20 yr 7.123 7.164
30 yr 7.083 7.123
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long as five years. Note that as the time to maturity increases, the spread
between the bid and ask rates increases. This is a reflection of the fact that the
markets for longer term forward contracts are less liquid.

SUMMARY

This chapter provides a broad-ranging overview of derivative contract markets.
The first lesson of the chapter is that there exist only two types of derivative
contracts—a forward and an option. Buying a forward means that you are
obliged to buy the asset specified in the contract at some future date at a price
agreed upon today. Buying an option means that you have the right, but not the
obligation, to buy (in the case of a call) or sell (in the case of a put) the underly-
ing asset at some future date at a price agreed upon today. So, although current
day markets appear to have different types of derivative contracts trading, do
not be overwhelmed. Each and every one can be decomposed into a portfolio of
forwards and options. 

The second lesson is that derivatives markets exist because it is either expen-
sive to trade the underlying asset, or trading in the underlying asset is restricted
in some way. Derivative contract trading is merely an inexpensive and effective
means of trading the underlying asset. 

The third lesson involves developing an understanding of the evolution of
derivatives markets. Derivative contracts have been around thousands of years.
The first recorded use dates back to 18th century BCE in ancient Babylon. Early
derivative contracts resulted from private (or “over-the-counter”) negotiations,

TABLE 1.9  USD/GBP spot and forward exchange rate quotes drawn from Bloomberg at 2:25 
PM (EST), March 27, 2006. 

USD/GBP

Term Bid Rate Ask Rate Bid/Ask Spread

Spot 1.7475 1.7478 0.0003
1 week 1.7476 1.7479 0.0003
1 month 1.7480 1.7483 0.0003
2 month 1.7487 1.7490 0.0003
3 month 1.7494 1.7497 0.0003
4 month 1.7503 1.7506 0.0003
5 month 1.7510 1.7514 0.0004
6 month 1.7519 1.7522 0.0003
9 month 1.7543 1.7547 0.0004
1 year 1.7562 1.7567 0.0005
2 year 1.7602 1.7615 0.0013
3 year 1.7645 1.7688 0.0043
4 year 1.7685 1.7763 0.0078
5 year 1.7760 1.7853 0.0093
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hence trading was relatively undisciplined, and contract defaults were not
uncommon. By the mid-1860s, it became clear that centralized markets with
standardized contracts and a clearinghouse would add structure to the market,
improving market depth and liquidity, and would eliminate the undesirable con-
sequences of contract default. Hence, the birth of the first futures exchange—the
Chicago Board of Trade in 1985. From the late 1800s through the 1960s, futures
contracts written on physical commodities were the dominant form of derivatives
trading. While grains were the first to be introduced, physical commodities such
as metals and livestock were added during this period. In addition, many more
futures exchanges were introduced in the United States as well as other countries
worldwide including Canada, Brazil, the United Kingdom, and Australia.

Beginning in the early 1970s, derivatives markets have gone through some
dramatic changes. The 1970s saw the introduction of exchange-traded futures on
financial assets such as currencies and interest rates as well as exchange-traded
options on common stocks. The 1980s saw even more interesting and important
innovations in exchange-traded derivatives market—cash settlement of derivative
contracts, stock index futures, and options on underlyings including currencies,
interest rates, and stock indexes. The 1980s also saw the rebirth of OTC deriva-
tives markets. The newfound interest in derivatives on financial assets, together
with the OTC markets’ flexibility in contract design, spawned the development of
contracts tailor-made to meet the risk management needs of customers. Where the
notional amount of OTC contracts was negligible in the early 1980s, it matched
exchange-traded derivatives by 1991 and is nearly seven times larger today.
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APPENDIX 1: SQUEEZING THE SOYBEAN MARKET40

In the spring of 1989, an Italian grain-trading firm by the name of Ferruzzi
Finanziaria S.p.A. began acquiring soybean futures contracts. Simultaneously,
the firm purchased a significant percentage of the cash-market soybeans avail-
able for delivery against these contracts. Whether the firm’s intentions were to
squeeze markets it is impossible to say.    Regardless of the Ferruzzi’s intentions,
however, on July 12, 1989, the size of the firm’s holdings compelled the Chicago
Board of Traded (CBT) to order all market participants to liquidate soybean
futures positions in excess of the speculative trading limit. Exchanges rarely
actively interfere with markets and news of the CBT’s directive made headlines
worldwide. This appendix describes the events and the aftermath of the CBT’s
decision to take emergency action.

Soybean Markets in the Spring of 1989

Soybean markets were in peril as early as 1988. The worst drought in nearly half
a century was devastating farmers in the United States and rapidly shrinking
soybean reserves. The U.S. Department of Agriculture forecast that by the end of
August 1989 there would be only 125 million bushels of soybeans remaining in
silos: a mere three-week supply! The scarcity of domestic reserves stood to sig-
nificantly increase the probability that market participants with short positions
in soybean futures markets would default. Market defaults are borne by clear-
inghouses and impede normal exchange activity. Consequently, the grim state of
soybean markets had regulators on edge. It was apparent that soybean markets
would only maintain their integrity “if all market participants conducted their
business in an economic and responsible manner.” Any deviation from this stan-
dard had the potential to instigate a disastrous string of events.

A Crisis Develops

Hedgers holding long futures contracts unwind positions if and when an under-
lying commodity can be purchased cheaply enough on the cash market to cover
costs of carry. Upon purchase of the underlying commodity, futures contracts
become redundant. After all, there is no need to lock in the price of an asset
already owned.

For this reason, given the current state of soybean markets, regulators grew
anxious as an international grain-trading organization named Ferruzzi Finan-
ziaria purchased soybean futures and soybean stocks simultaneously. If the com-
pany’s intention was to hedge against increases in the price of soybeans (as
company spokespeople claimed), this behavior was illogical. Indeed, at the same
time Ferruzzi was aggressively buying soybean and soybean future contracts, the

40 I am grateful for the help of Seth James Wechsler in preparing the first draft of this appen-
dix. The dates and details of the emergency actions taken in response to the apparent squeeze
in the soybean market were taken from Chicago Board of Trade (1990). The quotes appearing
in this appendix were also taken from CBT (1990).
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majority of firms hedging soybean prices were unwinding their long positions
and acquiring soybeans on the cash market. If Ferruzzi continued to hold domi-
nant positions in both the futures and cash market, regulators were concerned
that prices might become artificially inflated.

A Crisis Postponed

On May 16, with just three days remaining until the expiration date of the May
futures contract, the Commodity and Futures Trading Commission delivered a
written warning to Ferruzzi:

We are further concerned by the large long position that you hold
in the May future. We believe that because of your holding of
about 16.2 million bushels relative to the amount of soybeans
available for delivery, your further actions can have a substantial
impact on whether or not the price of the May future becomes arti-
ficial relative to commercial values. You are prohibited by law
from causing an artificial price. Price manipulation is a violation of
. . . . the Commodity Exchange Act.41

and

if prices of the May future have been, are now, or should become
artificial during the liquidation due to your action or inaction, we
will consider whether or not to pursue an investigation that could
result in charges of price manipulation.42 

As of May 18, however, Ferruzzi still had not liquidated its position. At this
point, the CTFC took a more aggressive approach. Ferruzzi Finanziaria was
contacted by phone and informed that its hedging exemptions were revoked.43 

Ferruzzi responded by engaging in a number of spread transactions. More
specifically, it sold its May futures contracts and bought July. Markets would
maintain their integrity in May, but the stage was set for a fierce, potentially dis-
ruptive confrontation in July.

A Tightening Fist—Ferruzzi Increases Size of its Holdings

By early June Ferruzzi had acquired a 32-million-bushel net long position in the
July futures contract. This position was almost double the size of the long posi-
tion the firm had been ordered to unwind only three weeks earlier! When asked
to explain the size of its position, Ferruzzi claimed that its futures holdings were

41 CBT (1990, p. 20).
42 CBT (1990, p. 9).
43 A hedging exemption permits a firm to hold contracts in excess of the speculative trading
limit. In the case of soybeans, the speculative trading limit is 3 million bushels. Firms are grant-
ed hedging exemptions routinely, however exchanges can revoke these exemptions at any time
should it be judged that the exemptions are being used for speculative purposes.
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hedges against export sales and the anticipated crushing requirements of Central
Soya, a major U.S. soybean processor and wholly owned subsidiary of Ferruzzi
Finanziaria. Because the expiration date of Ferruzzi’s contracts was two months
away, regulators deemed immediate action to be unnecessary. Ferruzzi Finan-
ziaria’s holdings would be closely monitored and action would be taken (if nec-
essary), as the firm’s contracts reached maturity. 

Would Ferruzzi actually purchase the soybean requirements it claimed to be
hedging? If and when the soybeans were acquired, would Ferruzzi proceed with
an orderly liquidation of its long futures positions? Only time would tell.

Crisis and Confrontation

As July approached, Ferruzzi remained virtually the sole holder of soybean
stocks in approved-for-delivery locations. Assuming Ferruzzi intended to refrain
from price manipulation, this behavior was highly irregular. To appreciate this,
one must examine the differences between futures prices expiring in July and in
August. At the end of May, the July futures contract was priced 7 cents higher
than the August contract. By June, this differential had climbed to 30 cents. As
June drew to a close, the difference was 40 cents! Despite the enormous profits it
could have reaped by selling its futures contracts, Ferruzzi chose to maintain its
prodigious long position. Additionally, Ferruzzi failed to liquidate futures con-
tracts at critical times when soybeans could have been purchased for lower net
costs than those resulting from soybean delivery via the July futures. Taking into
account expenses associated with load-out, weighing and grading, transporta-
tion, and allowance for grade difference, local soybean prices were substantially
below the cost of acquiring soybeans via the futures-delivery mechanism.

The size of Ferruzzi’s holdings measured on a per bushel basis decreased as
the end of July approached, but Ferruzzi’s holdings in terms of the percentage of
the contract’s open interest increased drastically. As of June, the firm owned
18% of the contract’s open interest. By the second week in July, Ferruzzi owned
53% of the contract’s open interest!

As July 19 drew near, regulators felt that Ferruzzi had disregarded normal
hedging practices to such a large extent that interference in markets was once
again necessary. If the CBT or the CFTC did not intervene, a price distortion,
and the market failures that could accompany it, would be nearly unavoidable.

Both the CBT and the CFTC had been in almost daily contact with Ferruzzi
since May:

June 1: CFTC staff urges Ferruzzi to buy cash and liquidate July
futures.

June 5: CBT’s Business Conduct Committee calls in all major mar-
ket participants, long and short, and reminds them of their obliga-
tion to effect orderly liquidation of the next expiring contract.

June 12: CFTC staff urges Ferruzzi to buy cash and liquidate
futures.
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June 13 and June 14: CFTC staff again urges Ferruzzi to buy cash
and liquidate futures.

June 15: Senior staffs of CBT and CFTC meet in Chicago to dis-
cuss concerns about orderly liquidation of July futures.

June 19 and 28: CFTC staff once more urges Ferruzzi to buy cash
and sell futures.

By July it had become apparent that Ferrruzzi would not liquidate its con-
tracts unless forced to do so. On July 5, the CBT’s Business Conduct Committee
summoned representatives of Ferruzzi Finanziaria. These representatives were
informed that unless immediate steps were taken to liquidate July futures con-
tracts the CBT’s Board of Directors would be asked to consider emergency
action. The CFTC relayed a similar message to Ferruzzi representatives on July
6. On July 7, the CBT’s Business Conduct Committee delivered a final warning.
Continued failure to comply by July 10, Ferruzzi was warned, would almost cer-
tainly result in emergency action by the exchange.

Despite these warnings, however, Ferruzzi representatives made it quite
clear that the company had no intention of reducing its holdings.

Emergency Action

Upon concluding that Ferruzzi had little intention of complying with federal and
exchange regulations the CFTC’s reaction was immediate. On July 11, Ferruzzi’s
hedging exemptions were revoked. The chairman of the CBT’s Board of Direc-
tors was notified that emergency action in soybean markets might be necessary.

The Board of Directors met immediately following the close of trading on
July 11. Information concerning Ferruzzi’s holdings was presented to the com-
mittee and the consequences of emergency action were discussed. The board
adopted the following Emergency Resolution by a vote of 16 to 1:

RESOLVED, that the Board of Directors of the Board of Trade of
the City of Chicago hereby determines that an emergency exists
with regard to the July 1989 soybean futures contract traded on
the exchange that requires immediate action and threatens or may
threaten fair and orderly trading in, the liquidation of, and delivery
pursuant to, the July 1989 soybean futures contract, and hereby
adopts the following measure to deal with this emergency.

Effective as of the opening of the market on July 12, 1989, any
person or entity either alone or in conjunction with any other per-
son or entity, who owns or controls a gross long or short position
for any purpose whatsoever in excess of three million bushels in
the July 1989 soybean futures contract traded on the Exchange
must reduce said position and subsequent positions by at least
20% per trading day subject to the following absolute limits . . .



Derivative Contracts and Markets 47

[The limits precluded any person from owning or controlling a July
1989 soybean futures position of more than 3 million bushels on
July 18 or more than 1 million bushels as of the expiration of trad-
ing on July 20]44

The Aftermath—Soybean Market Stability Ensured

Overall, financial institutions were supportive of the CBT’s intervention in soy-
bean markets. There were critiques of the action, however. Critics contended
that Ferruzzi’s liquidation triggered an artificially large decline in futures prices.

July futures prices did decline following the CBT’s announcement that emer-
gency action was to be taken. On the first day of Ferruzzi’s mandated liquida-
tion, futures prices closed 39.5 cents a bushel lower than at the opening bell. As
Ferruzzi continued to carry out its liquidation, however, soybean prices actually
rose. In fact, by the time Ferruzzi had completed unwinding its holdings, futures
prices were actually 1.5 cents higher than they had been at the start of the liqui-
dation. An appraisal of the effects of the emergency action conducted by an
independent government agency later confirmed that the CBT’s intervention had
“no significant effect” on either farm or consumer soybean prices.

As for Ferruzzi Finanziaria, the firm underwent a major reorganization of its
international trading operations. On September 15, 1989, Ferruzzi announced
that its three principal grain and oilseed traders had resigned because of “differ-
ences over trading.” 

44 CBT (1990, p. 20).
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Assumptions and Interest Rate
Mechanics

 

his book deals with risk management using derivatives. Effective risk man-
agement, however, requires accurate risk measurement, and accurate risk

measurement requires a thorough understanding of valuation. The purpose of
this chapter and the next is to review the fundamental principles of security val-
uation. This chapter focuses on the key assumptions that underlie security valu-
ation models and reviews the use of interest rate mechanics in moving expected
future cash flows through time. The next chapter focuses on estimating appro-
priate discount rates for securities given their risk characteristics.

The outline of this chapter is as follows. The first section presents the set of
assumptions that underlie our valuation framework. The second section deals
with the interest rate mechanics that allow us to move cash flows through time.
The third and fourth sections then apply the assumptions and interest rate
mechanics to value fixed income securities—discount bonds and coupon bonds.
The fifth section focuses on the relation between interest rates and term to matu-
rity as well as the meaning and computation of forward rates of interest. The
sixth section describes common stock valuation. The chapter concludes with a
summary. 

 

UNDERLYING ASSUMPTIONS

 

Building valuation models requires making assumptions. Two assumptions that
lay the foundation for security valuation are the absence of costless arbitrage
opportunities and frictionless markets. The first assumption is critical; the second
is made largely for expositional convenience.

 

Absence of Costless Arbitrage Opportunities

 

The absence of costless arbitrage opportunities is driven by a basic tenet of
human behavior—individuals prefer more wealth to less, holding other factors

T
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constant. “Greed is good!”

 

1

 

 If two perfect substitutes are traded in the market-
place and they do not have the same price, someone will immediately step in to
earn a risk-free profit by simultaneously buying the cheaper asset and selling the
more expensive one. Because the asset is both bought and sold simultaneously
(albeit in different markets), there is no risk. This is the single key element of an

 

arbitrage

 

 strategy.

 

2

 

 Because this particular arbitrage involves no cash outlay, it
is a 

 

costless arbitrage

 

. The person enacting the strategy is called an 

 

arbitrageur

 

.
Because the prices of perfect substitutes must be the same in equilibrium, this
principle is also known as the 

 

law of one price

 

.
Arbitrageurs are at work in all markets where perfect substitutes are traded

simultaneously. The shares of IBM, for example, trade on many exchanges in
the U.S., not to mention other countries worldwide. Suppose that we see that
IBM’s stock has a bid price of $120.75 per share on the New York Stock
Exchange (NYSE) and an ask price of $120.25 per share on the Pacific Coast
Exchange (PCE). We can earn a costless arbitrage profit of $0.50 per share by
simultaneously selling IBM on the NYSE and buying it on the PCE. Do not
expect to find such opportunities, however. Market makers on the various
exchanges continuously monitor markets for such anomalies, and act immedi-
ately upon finding any pricing distortion that exceeds trading costs.

 

Frictionless Markets

 

Frictionless markets is an assumption made more for convenience than necessity.
Invoking it permits sharper focus on the economics of the situation at hand, absent
the effects of market idiosyncrasies. Once the economic intuition is developed, the
effects of trading costs, taxes, divergent borrowing and lending rates, and the like
can be added straightforwardly. For now, however, we wipe the slate clean. 

The assumption of frictionless markets requires:

 

 ■ 

 

No trading costs.

 

 ■ 

 

No taxes.

 

 ■ 

 

Unlimited borrowing and lending at the risk-free rate of interest.

 

 ■ 

 

Freedom to sell (short) with full use of any proceeds.

 

 ■ 

 

Can trade at any time.

 

No Trading Costs

 

Trading costs are costs associated with executing a transaction.
These include (1) commissions paid to brokers as well as (2) bid/ask spreads and
(3) market impact costs paid to market makers. The effects of trading costs can
modeled quite easily. Take, for example, the IBM arbitrage illustration provided
earlier in the chapter. Recall that we implicitly incorporated the effect of the bid/

 

1 

 

This is from a speech by Gordon Gekko to Teldar Paper Shareholders in the 1987 movie,

 

Wall Street

 

, directed by Oliver Stone. See www.americanrhetoric.com/Movie Speeches/mov-
iespeechwallstreet.html.

 

2 

 

The term, arbitrage, is frequently misapplied. 

 

Risk arbitrage

 

, for example, refers to a trading
strategy in which the shares of a firm rumored to be on the verge of being acquired are pur-
chased and the shares of the acquiring firm are simultaneously purchased. Since the merger
may or may not take place, this activity is 

 

not

 

 arbitrage.
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ask spread by comparing the bid price (the price at which we can sell immedi-
ately) on the NYSE with the ask price (i.e., the price at which we can buy immedi-
ately) on the PCE. Suppose that, in addition to the market maker’s spread, our
broker charges a commission rate of $0.10 per share. We can still earn a costless
arbitrage profit of $0.40. Beyond commissions and spreads, we may face market
impact costs if you attempt to trade in large quantities. Since exchanges are
obliged to have a minimum market depth at the prevailing market quotes, some
amount of profitable arbitrage can be earned. Going beyond that posted levels of
depth requires estimating the price elasticity of the stock. Thus, in general, we can
account for the effects of trading costs in a logical and coherent fashion because
they are known or can be estimated reasonably precisely. 

 

No Taxes

 

Taxes affects valuation in two ways: first, it reduces the amount of the
gain (loss), and, second, it may affect the gain (loss) differentially depending
upon whether it comes in the form of ordinary income or capital gain. In some
models, the first consideration is unimportant. In the IBM arbitrage illustration,
the after-trading cost gain was $0.40. Assuming the marginal tax rate is less
than 100%, the arbitrage opportunity still exists. The second consideration can
have more far reaching consequences, however. Consider two identical firms,
one that pays a generous cash dividend each quarter (and raises capital for new
investment by issuing new securities) and another that pays no dividends (and
uses the cash for new investment). If our long-term capital gains tax rate is less
than our ordinary income tax rate, we will prefer to hold the shares of the sec-
ond firm, holding other factors constant. Taxes, per se, do not make the security
valuation problem more complicated, just more tedious. Because the marginal
tax rates on the different forms of income are known or can be estimated, incor-
porating them directly in the valuation problem is straightforward.

 

Unlimited Borrowing and Lending at the Risk-Free Interest Rate

 

This assumption has two
important facets. First, it says that the borrowing and lending rates are equal.
Obviously, this is not the case. A bank has a margin between the rate it pays on
demand deposits and the rate it charges on short-term loans. Second, it assumes
that everyone is equally creditworthy. Borrowing and lending rates vary by cus-
tomer, with the largest and most secure customers receiving the most favorable
rates (i.e., the lowest margin). Because rates are known, accountingfor the
effects of divergent borrowing and lending rates within the valuation frame-
work, like trading costs and taxes, is manageable. 

 

Freedom to Sell (Short) with Full Use of Any Proceeds

 

For large institutions, short selling
of securities with full use of proceeds is common. Suppose, for example, that we
believe that the price of IBM will fall from, say, $120 to $100 over the next
month. If we short sell IBM, we will see $120 in cash appear in our account and
will have a liability of one share of IBM. Since we have access to the cash, we
can invest it immediately and earn interest while our short sale position is in
place. When (or if) the price drops to $100, as we predicted, we buy a share of
IBM to cover our short position. Our net gain is $120 plus interest less $100.
For retail customers, short sales are costly in the sense that the broker may not
pay interest on the cash generated from the short sale. Also, for securities in
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short supply, short sales may not be possible. Under the frictionless market
assumption, we have full use of proceeds.

 

Can Trade at Any Time

 

In order to execute arbitrage, the markets for the perfect sub-
stitutes must be open at the same time. Suppose that in late morning London time
we see that IBM’s shares are quoted at $121.00 (bid) and $121.25 (ask) on the
London Stock Exchange, while IBM’s shares closed at $120.75 (bid) and
$120.875 (ask) at the NYSE on the previous day. Does that mean a costless arbi-
trage opportunity is available? Obviously not! The NYSE is not open, so we can-
not simultaneously sell in London and buy in New York. Under the frictionless
markets assumption, the markets for all securities are open all of the time. 

 

INTEREST RATE MECHANICS

 

The next step in preparing to value securities is to review interest rate mechan-
ics, that is, how to move expected cash flows through time. Throughout this
book, we use 

 

continuously compounded

 

 interest rates. Continuous rates are
realistic, convenient, and consistent with the practice of dynamic risk manage-
ment. Other types of interest rates are mentioned periodically in the discussion,
but only when it is necessary to unravel the mystery of the pricing conventions
used in a particular market.

 

Continuously Compounded Interest Rates

 

Interest rates follow a number of conventions. The first and, perhaps, simplest
convention is that interest rates are quoted on an 

 

annualized

 

 basis. This is done
to facilitate comparisons across different investment alternatives. If one invest-
ment promises a 40% return over five years and another promises a 23% return
over three years, it is not immediately obvious which investment we prefer. On
the other hand, if we are told that the first investment promises 6.96% annually
and the second investment 7.14% annually, the choice is obvious. We are com-
paring apples with apples.

A second convention is that rates are usually quoted as 

 

nominal rates

 

. If a
bank advertises that it pays 6% 

 

compounded

 

 semiannually, they nominally pay
6% per year (recall the first convention). What they actually pay is, however,
3% each 6 months (i.e., the nominal interest rate divided by the number of com-
pounding intervals in a year). Because interest on interest is earned in the second
6-month period, the effective annual interest rate is (1 + 0.06/2)

 

2

 

 = 6.09%. In
general, given a nominal rate of interest 

 

r

 

 and 

 

m

 

 compounding intervals a year,
the 

 

effective

 

 interest rate is determined by

(2.1)

Holding the nominal interest rate constant, the effective interest rate rises with
the number of compounding intervals. As 

 

m

 

 approaches infinity, the effective
interest rate becomes

Effective rate 1 r m⁄+( )m 1–=
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(2.2)

In (2.2), 

 

r

 

 is referred to as a 

 

continuously compounded

 

 nominal rate of interest. 
On first appearance, continuous interest rates may seem unrealistic, but just

the opposite is true. Suppose we are interested in modeling the growth of a tree. A
tree does not grow by a discrete amount each few months throughout the year. It
grows continuously. If the current height of the tree is 50 feet and it grows at a rate
of 5% a year, the height of the tree in 6 months will be 50

 

e

 

0.05(0.5)

 

 = 51.266 feet. 
The prices of financial instruments grow in exactly the same way. For risky

securities such as stocks, prices evolve through time as new information arrives
in the marketplace. Growth is continuous in the sense that the movement of the
stock price is smooth through the day, however, the rate of movement changes.
For risk-free securities, the rate of price movement is constant. Assuming a zero-
coupon bond grows at a rate of 

 

r

 

 percent annually, an investment of 

 

B

 

 will have
a value of 

 

F

 

 at time 

 

T

 

, where 

 

F

 

 is given by the formula,

 

F

 

 = 

 

Be

 

rT

 

(2.3)

If the growth rate is 6% and the bond’s price is $100, its price will be 

 

F

 

 = 100

 

e

 

0.06(3/12)

 

= 101.511 in three months, 

 

F

 

 = 100

 

e

 

0.06(6/12)

 

 = 103.045 in six months, and so on.

 

DISCOUNT BONDS

 

With the continuously compounded interest rate mechanics in hand, we now
turn to the valuation of bonds or so-called 

 

fixed income securities

 

. Bonds are of
two types—

 

zero-coupon

 

 (or 

 

discount bonds

 

) and 

 

coupon-bearing bonds

 

. This
section focuses on the discount bonds. Coupon-bearing bonds follow in the
next. We begin by describing discount bond valuation, and then use the valua-
tion formula as a means of measuring interest rate risk exposure. We follow
with a description of the discount instruments issued by the U.S. Treasury. 

 

Valuation

 

A 

 

discount bond

 

 or 

 

zero-coupon bond

 

 is a debt security with a 

 

single

 

 future
cash payment, 

 

F

 

. 

 

F

 

 is usually called the 

 

par amount

 

 or 

 

face value

 

 of the bond. If
the discount bond has an annualized yield of 

 

r

 

 percent and a time to maturity of

 

T

 

 years, it is

 

B

 

 = 

 

Fe

 

–

 

rT

 

(2.4)

The term, 

 

e

 

–

 

rT

 

, is called a 

 

discount factor

 

. It is the current price of $1
received at time 

 

T

 

. Figure 2.1 shows the discount factors as a function of yield to
maturity. Note that the yield and the discount factor are inversely related. The
higher the yield, the lower the discount factor. Note also that the function is
convex. As yield increases, the bond’s value decreases at a decreasing rate. Rear-
ranging (2.4), we can compute the rate of return on a discount bond given its
current price, par amount, and term to maturity, that is,

Effective rate er 1–=
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(2.5)

 

ILLUSTRATION 2.1

 

Compute implied yield of discount bond.

 

In the early 1980s, a number of banks marketed discount bonds to retail customers as a
long-term savings vehicle for future expenditures such as their children’s college tuition.
Interest rates were so high at the time that it was not uncommon to see advertisements
saying that a four cent investment today will provide one dollar in 25 years. What is the
implied annualized rate of return on this investment? 

 

The annualized rate of return or yield on this investment is 

This value may be computed using the OPTVAL function,

OV_IR_DISCB_YIELD(

 

price

 

, 

 

face

 

, 

 

term

 

)

where 

 

price

 

 is the current price of the bond, 

 

face

 

 is its face value, and 

 

term

 

 is its term to
maturity. Using the parameters of the problem,

FIGURE 2.1 Discount factor as a function of yield to maturity. 
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Risk Measurement

 

In holding a fixed income security such as a discount bond, we are often con-
cerned with knowing what will happen to the value of our bond if interest rates
change. Such risk measures are easy to develop once we know how to value the
bond. One approach is to simply change the yield in the valuation formula (2.4)
from its current level to see what happens to bond value. Indeed, this was the
procedure used to generate Figure 2.1. Unfortunately, different bonds react to
changes in interest rates in very different ways. To isolate the essential interest
rate risk characteristics of a bond, we approximate the shape of the bond valua-
tion function using a polynomial function. Specifically, we expand the bond val-
uation function (2.4) into a Taylor series about the current yield 

 

r

 

0

 

,

 

3

 

 that is,

(2.6)

What (2.6) says is that the change in the bond valuation function (2.4) for a
given change in yield equals a polynomial function with an infinite number of
terms. As we proceed through the terms on the right-hand side of (2.6), how-
ever, they become progressively smaller in size. Interest rate risk management
usually involves only the first or, perhaps, the first and the second terms of the
series. Higher-order terms are usually ignored. 

Let us begin with a first-order approximation. It goes by a variety of names
including 

 

DV01

 

 and duration. Ignoring second- and higher-order terms on the
right-hand side of (2.6), the approximate change in bond value for a given
change in yield in given by

(2.7)

where the derivative dB/dr is determined from the valuation equation (2.4), that is,

(2.8)

DV01 The acronym, DV01, stands for the dollar value of one basis point (i.e.,
0.01 of 1%). To create the appropriate formula for DV01, we substitute (2.8)
into (2.7) and replace r – r0 with 0.0001 and get

(2.9)

3 A Taylor series expansion can be used to approximate any smooth nonlinear function such
as the bond valuation equation. For more details regarding this application, see Appendix 2A.
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Duration Duration is the percent change in bond value for a given change in
yield,4 and is also commonly used as a measure of interest rate risk exposure. To
understand its origin, divide (2.7) by the current bond price, that is,

(2.10)

Since duration is defined as minus the percent change in bond price with respect
to a change in yield,

we have 

(2.11)

The duration of a discount bond equals the negative of its years to maturity,
and, given the value of duration, the percent change in a discount bond value
for a given change in interest rates can be approximated using

(2.12)

In other words, if a bond has T years to maturity, a one basis point increase in
the bond’s yield will cause its value to fall approximately 0.01 × T%. Note that
the DV01 measure (2.9) gives the same result after we divide through by the
bond value.  

ILLUSTRATION 2.2 Use duration to approximate discount bond price change.

Suppose that 25 years ago you bought $4,000 worth of the discount bonds in Illustration
2.1. What would have happened to the value of the bonds if interest rates would have
immediately jumped by 100 basis points? Compute the actual change in price using the
bond formula (2.4), and then the approximate change using duration (2.10).

At a yield of 12.876%, the value of your investment at inception was $4,000. If the
interest rate jumps to 13.876%, your investment value will fall to 

This can be verified using the OPTVAL Library function 

OV_IR_DISCB(face, rate, term, vdc)

4 The concept of duration was first introduced in Macaulay (1938). Other treatments are pro-
vided in Reddington (1952) and Samuelson (1945).
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where face is the face value of the discount bond, rate and term are its yield and term to
maturity, respectively. The indicator variable vdc instructs the function to return the
bond’s value (“v” or “V”), duration (“d” or “D”), or convexity (“c” or “C”). The bond’s
value is illustrated below. With a 100 basis point increase in the interest rate, the bond
value falls by $884.20.

The duration-based approximation is given by (2.10). Multiplying (2.10) by the
bond price provides an estimate of the change in bond value. Since the duration of your
bond is 25, an increase of 100 basis points implies that the value of your bond will fall by
approximately 25% or $1,000, that is,

The price discrepancy arises from the fact that the bond valuation function is convex.
(See Figure 2.1.) First-order approximations such as duration are accurate for only small
changes in yield. As yield changes become large, the degree of error using the duration
approximation becomes large.

Convexity DV01 and duration first-order approximations of the bond valuation
function that are based on the slope of a straight line that is tangent to the bond
valuation function at the current yield, r0, as shown is Figure 2.2. For small
changes in yield, a first-order approximation will be reasonably accurate, how-
ever, the approximation error grows large with the size of the yield change. To
improve the degree of accuracy in the approximation, we can also incorporate
the second-order term of the Taylor series expansion (2.6). Using percent
changes, the approximation is now

(2.13)

The second term in parentheses on the right-hand side of (2.13) is called con-
vexity. Since the second derivative of the bond valuation function is

dB B T r r0–( )××–≈ 4,000 25 0.01××– 1,000–= =

dB B⁄
dB B⁄

dr
---------------⎝ ⎠

⎛ ⎞ r r0–( )
1
2
---

d2B B⁄

dr2
------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

r r0–( )2
+≈
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(2.14)

the definition of convexity of a discount bond is

(2.15)

ILLUSTRATION 2.3 Use duration and convexity to approximate discount bond price change.

Reconsider Illustration 2.2 using duration and convexity to approximate the change in
price of the discount bond.

At a yield of 12.876%, the value of your investment at inception was $4,000. If the
interest rate immediately increases to 13.876%, your investment value would fall to
$3,115.20 or by $884.80. The predicted value change using duration and convexity is

Note that the degree of approximation error has fallen from $115.20 or 13.0% to –$9.80
or –1.1%.

FIGURE 2.2 Slope of bond valuation formula.  
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Discount Bonds Traded in the Marketplace

The focus now turns to discount bonds traded in the marketplace. Since we need
a proxy for the zero-coupon risk-free rate of interest in subsequent chapters, we
focus here on only U.S. Treasury securities. For terms to maturity of one year or
less, we use Treasury bills. For terms to maturity greater than one year, we use
Treasury strip bonds.

Treasury Bills A number of different zero-coupon or discount bonds trade in the
U.S. Perhaps the most commonly known are U.S. Treasury bills or, simply, T-
bills. To finance the operations of the government, the U.S. Treasury auctions
new 28-day, 91-day, and 182-day bills every Thursday. The prices of T-bills fol-
low certain reporting conventions. It is important to understand these reporting
conventions since the interest rate on T-bills is an excellent proxy for the risk-free
rate of interest—a rate applied throughout the applications of this book. Table
2.1 contains a panel of T-bill price quotes obtained from Bloomberg on March
29, 2006. The first column contains the maturity date of each T-bill, and the sec-
ond contains the number of days to maturity. The number of days to maturity
equals the actual number of days from the close on March 29, 2006 to the matu-
rity date less one business day since T-bills have one-business day delayed settle-
ment. The columns headed “Bid” and “Ask” are bank discounts or simply
discounts. They are neither prices nor interest rates. A bank discount is defined as

(2.16)

where n is the number of days to maturity and 360 is the number of days in a
“banker’s year.” To deduce the actual bid and ask prices for the T-bill, we must
invert (2.16) and use

T-bill price = 100 – Bank discount(n/360) (2.17)

If we again consider the T-bill with maturity date of 6/29/06, we see that the bid
and ask discounts are 4.52 and 4.51, respectively. This means that if we bought
this T-bill, you would pay

T-bill price = 100 – 4.51(91/360) = 98.6000% of par

If the T-bill has a par value of $1 million, you would pay $986,000.
At this juncture, it is important to digress and link the price to the continu-

ously compounded rate of return on this T-bill. If you pay 98.83275% of par
for the T-bill that matures in 69 days, the T-bill rate price promises to grow at
an annualized rate of 

Note that 365 days rather than 360 days are used in the computation. This is
because time should be measured in actual years rather than banker’s years.

Bank discount 360 n⁄( ) 100 T-bill price–( )=

r
100 98.6000⁄( )ln

91 365⁄
---------------------------------------------- 4.599%= =
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TABLE 2.1  U.S. Treasury bill discounts drawn from Bloomberg on March 29, 2006.  

The last column is the bond equivalent yield based on the ask price. It repre-
sents an attempt to make the yield on a T-bill comparable to the yield on other
Treasury securities whose yields are based on a 365-day, as opposed to 360-day,
calendar year. Note that the reported bond equivalent yield for the 6/29/06 T-bill
is 4.63%. This rate is computed by solving

(2.18)

Alternatively, the bond equivalent yield may be computed directly from the T-
bill’s discount:

(2.19)

Maturity Days to Maturity Bid Ask Ask Yield

4/6/06     7 4.46 4.45 4.52
4/13/06   14 4.60 4.56 4.63
4/20/06   21 4.59 4.55 4.63
4/27/06   28 4.61 4.60 4.68
5/4/06   35 4.54 4.51 4.59
5/11/06   42 4.52 4.51 4.60
5/18/06   49 4.54 4.53 4.62
5/25/06   56 4.50 4.49 4.58
6/1/06   63 4.55 4.53 4.63
6/8/06   70 4.53 4.52 4.62
6/16/06   78 4.53 4.52 4.63
6/22/06   84 4.53 4.52 4.63
6/29/06   91 4.52 4.51 4.63
7/6/06   98 4.55 4.53 4.65
7/13/06 105 4.56 4.53 4.65
7/20/06 112 4.54 4.53 4.66
7/27/06 119 4.60 4.58 4.71
8/3/06 126 4.57 4.56 4.70
8/10/06 133 4.60 4.59 4.73
8/17/06 140 4.60 4.59 4.74
8/24/06 147 4.62 4.61 4.76
8/31/06 154 4.63 4.62 4.78
9/7/06 161 4.64 4.63 4.79
9/14/06 168 4.65 4.64 4.81
9/21/06 175 4.65 4.64 4.81
9/28/06 182 4.65 4.64 4.82

T-bill price 1 Bond equivalent yield
n

365
----------⎝ ⎠

⎛ ⎞+× 100=

Bond equivalent yield
365 Bank discount×

360 Bank discount n×–
--------------------------------------------------------------=
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Either way, the number is, at best, an approximation for the rate of return on
the T-bill. The actual rate of return (growth) of the T-bill over its life is the con-
tinuously compounded interest rate, 4.599%.

Stripped Treasury Bonds and Notes U.S. Treasury strips5 are also discount bonds. The
U.S. Treasury does not issue these instruments directly. Instead, they issue only
coupon-bearing bonds and notes with maturities as long as 30 years. What hap-
pens is that the original issue coupon bonds are “stripped,” with each coupon as
well as the principal amount sold as a separate unit. In the absence of costless
arbitrage opportunities, the sum of the prices of the discount bonds stripped
from the original coupon issue must be equal to the price of the coupon bond. 

Table 2.2 contains the ask price quotes for STRIPS of different maturities.
The price data were drawn from Bloomberg on March 29, 2006. The last col-

5 The U.S. Treasury created a program called Separate Trading of Registered Interest and Prin-
cipal of Securities (STRIPS) in February 1985 to promote liquidity in the zero-coupon bond
market. For more information regarding STRIPS, see Fabozzi and Fleming (2005).

TABLE 2.2  Selected U.S. Treasury STRIP prices drawn from Bloomberg on March 29, 2006.  

Maturity Ask Price Years to Maturity Continuous Yield

6/15/06 99.04   0.21 4.51%
9/30/06 97.68   0.51 4.63%
3/15/07 95.55   0.96 4.73%
3/15/08 91.05   1.96 4.77%
3/15/09 86.72   2.96 4.81%
3/15/10 82.91   3.96 4.73%
2/15/11 79.48   4.89 4.70%
2/15/12 75.62   5.89 4.75%
2/15/13 71.85   6.89 4.80%
2/15/14 68.30   7.89 4.83%
2/15/15 65.11   8.89 4.83%
2/15/16 61.88   9.89 4.85%
2/15/17 58.66 10.89 4.90%
2/15/18 55.54 11.89 4.94%
2/15/19 52.71 12.89 4.97%
2/15/20 49.91 13.89 5.00%
2/15/21 47.45 14.90 5.00%
2/15/22 45.23 15.90 4.99%
2/15/23 42.98 16.90 5.00%
2/15/24 40.89 17.90 5.00%
2/15/25 38.87 18.90 5.00%
2/15/26 37.09 19.90 4.98%
2/15/27 35.43 20.90 4.96%
2/15/28 33.86 21.90 4.95%
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umn in the table contains the continuously compounded yield to maturity com-
puted using equation (2.5) based on the reported ask price. The column shows
that the zero-coupon yield curve (i.e., the relation between yield and term to
maturity) is upward sloping for maturities up to about 12 years and then flat-
tens at a level of about 5%.

COUPON-BEARING BONDS

This section focuses on coupon-bearing bonds. A coupon-bearing bond or, simply,
a coupon bond pays a stated rate of interest periodically throughout the bond’s
life, ending with an interest payment and repayment of the bond’s par value.
While the valuation and risk measurement of a coupon-bearing bond is seemingly
more complicated than a discount bond, it is important and useful to recognize
that a coupon bond is nothing more than a portfolio of discount bonds.6 

Valuation

The value of a coupon bond, Bc, is the sum of the values of its constituent dis-
count bonds, that is, 

(2.20)

where the subscript i denotes the ith discount bond and the value of ith discount
bond is now denoted, Bd,i. CFi is the amount of the cash flow received at the matu-
rity of the ith discount bond, ri is the zero-coupon discount rate used to bring the
cash flow to the present, and Ti is the time until the cash flow i occurs. Prior to
maturity, the cash flow equals the coupon interest payment, CFi = COUP, as is
shown in Figure 2.3. The amount of the interest payment, COUP, is the stated cou-
pon interest rate times the par value of the bond, Fn. At maturity, the cash flow
equals the coupon interest payment plus the repayment of the face value, CFi =
COUP + Fn. The number of coupon payments is denoted n. Note that equation
(2.20) uses maturity-specific discount rates for each cash flow. The relation between
zero-coupon yields and their terms to maturity is called the term structure of inter-
est rates or the zero-coupon yield curve. We discuss the yield curve shortly.

FIGURE 2.3 Cash flows of a coupon-bearing bond.     

6 This valuation principle is called valuation by replication and is key to understanding deriv-
ative contract valuation and risk management.

Bc Bd i,
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ILLUSTRATION 2.4 Compute value of coupon-bearing bond given zero-coupon yield curve.

Assume that the current zero-coupon yield curve is given by the function,

where Ti is measured in years. Compute the value of a five-year semiannual coupon-bear-
ing bond with a 7% coupon interest rate. 

To value the bond, you need the zero-coupon interest rates corresponding to each
cash flow. To do so, you apply the given term structure formula. The zero-coupon yield
rate corresponding to the first constituent discount bond maturity in 0.5 years, for exam-
ple, is ri = 0.04 + 0.01 ln(1 + 0.5) = 4.405%. The cash flow promised in 0.5 years is 0.07/
2 × 100 = 3.50, so the value of the first discount bond is 3.50e–0.04405(0.5) = 3.4237.
Applying this procedure recursively (i.e., coupon bond valuation formula (2.20)), the
value of the five-year, 7% coupon bond is 105.0902, the individual discount bonds of
which are summarized in the table below.

This value may be confirmed using the OPTVAL function, 

OV_IR_FIXED_ZC(coup, freq, face, tb, ncoupr, term, rate, vdc)

where coup is the coupon interest rate expressed in decimal form (i.e., 0.07), freq is the
frequency of coupons per year (i.e., two), face is the face value of the bond (i.e., 100), tb
is the time until the first coupon payment expressed in years (i.e., 0.5), ncoupr is the
number of coupons remaining (i.e., 10), term is the vector of times to maturity of the dis-
count bonds (i.e., the numbers in the first column in the above table), and rate is the vec-
tor containing the corresponding zero-coupon rates (i.e., the numbers in the second
column in the above table). The indicator variable vdc instructs the function to return the
bond’s value (“v” or “V”), duration (“d” or “D”), or convexity (“c” or “C”). The bond’s
value, for example, is

Years to Maturity Zero-Coupon Yield Cash Flow PV of Cash Flow

0.5 4.405%     3.50     3.4237
1.0 4.693%     3.50     3.3395
1.5 4.916%     3.50     3.2512
2.0 5.099%     3.50     3.1607
2.5 5.253%     3.50     3.0693
3.0 5.386%     3.50     2.9778
3.5 5.504%     3.50     2.8867
4.0 5.609%     3.50     2.7965
4.5 5.705%     3.50     2.7076
5.0 5.792% 103.50   77.4772

Total value 105.0902

ri 0.04 0.01 1 Ti+( )ln+=
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Risk Measurement

Like in the case of discount bonds, the two most commonly used interest rate
risk measures for coupon bonds are duration and convexity. In both cases, they
are weighted averages of the durations and convexities of the constituent dis-
count bonds where the weights are the proportion of coupon bond value attrib-
utable to the ith discount bond. Letting wi represent the weight attributable to
the ith discount bond, we have

(2.21)

Duration The duration of a coupon bond is 

(2.22)

where the duration of the discount bond is given by (2.11), that is, DURd,i = Ti.
Expression (2.22) shows that the duration of a coupon bond is a weighted aver-
age term to maturity of a coupon bond. Equation (2.22) also offers some impor-
tant insights regarding the price risk or interest rate risk of a coupon bond.
First, the longer the term to maturity of a bond, the greater the proportion of
coupon bond value attributable to distant cash flows, the greater the duration,
and, hence, the greater the interest rate risk. Second, the higher the coupon
interest rate of a bond, the greater the proportion of the bond’s value received
earlier in the bond’s life, the lower the duration, and, hence, the lower the inter-
est rate risk. Third, the higher the level of interest rates, the lower importance of
distant cash flows in the determination of bond value, the shorter the duration,
and the lower the interest rate risk. 

Convexity The convexity of a coupon bond is 

wi
i 1=

n

∑
Bd i,

i 1=

n

∑
Bc

-------------------- 1= =

DURc wiDURd i,
i 1=

n

∑– wiTi
i 1=

n

∑–= =
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(2.23)

Like in the case of duration, the convexity of a coupon bond (2.23) is a weighted
average of the convexities of the constituent discount bonds where the weights are
the proportion of coupon bond value attributable to the ith discount bond, and
the convexity of a discount bond is given by (2.15), that is, . It is
important to recognize that the duration and convexity measures (2.22) and
(2.23) make the implicit assumption that the zero-coupon yield curve shifts in a
parallel manner (e.g., all yields shift upward or downward by the same amount).7

ILLUSTRATION 2.5 Compute duration and duration/convexity approximations for a coupon 
bond.

Compute the actual percent change in the value of a five-year semiannual coupon-bearing
bond with a 7% coupon interest rate assuming the zero-coupon yield curve changes from

to

Compare the actual percent value change with the value changes based on the duration
and duration/convexity approximations. 

The first step is to compute the duration and the convexity of this coupon-bearing
bond. The table below details the calculations. The present value of the cash flow repre-
sented in the first row constitutes 3.258% of the total value of the coupon bond, that is,

The duration of this discount bond is 0.5, so its contribution to the duration of the cou-
pon bond is 0.03258(0.5) = 0.01629. The convexity of this discount bond is 0.52 = 0.25,
so its contribution to the convexity of the coupon bond is 0.03258(0.25) = 0.00814.
Repeating the computations for each row, and then summing shows that the duration of
the coupon bond is 4.3714 and the convexity is 20.3825.

7 It is, of course, possible to allow the yield curve to shift in other ways. Chapter 18 focuses
on the valuation of fixed income securities under different assumptions regarding the move-
ment of interest rates through time.
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These values may be confirmed using the OPTVAL function, 

OV_IR_FIXED,ZC(coup, freq, face, tb, ncoupr, term, rate)

whose parameters are defined above. The duration function is invoked in the spreadsheet
below.

Next, compute the anticipated percentage changes in bond value based on the dura-
tion and duration/convexity approximations. Based solely on duration, the anticipated
change is

–4.3174 × 0.01 = –4.3174%

while, based on duration and convexity, the anticipated change is

If you simply shift the zero-coupon yield curve up by 100 basis points, you will find that
the bond’s value has changed from 105.0902 to 100.6585—an actual percent change of
–4.2171%. Thus, you have measured the degree of approximation error for each
method. The approximation based solely on duration overstates the percent movement
by 0.1003%, and the approximation based on duration/convexity understates the per-
cent movement by 0.0016%.

Years to
Maturity

Zero-Coupon
Yield

Cash 
Flow

PV of
Cash Flow

Proportion
of Total

Components of

Duration Convexity

0.5 4.405%     3.50     3.4237 0.03258 0.01629   0.00814
1.0 4.693%     3.50     3.3395 0.03178 0.03178   0.03178
1.5 4.916%     3.50     3.2512 0.03094 0.04641   0.06961
2.0 5.099%     3.50     3.1607 0.03008 0.06015   0.12030
2.5 5.253%     3.50     3.0693 0.02921 0.07302   0.18254
3.0 5.386%     3.50     2.9778 0.02834 0.08501   0.25502
3.5 5.504%     3.50     2.8867 0.02747 0.09614   0.33649
4.0 5.609%     3.50     2.7965 0.02661 0.10644   0.42577
4.5 5.705%     3.50     2.7076 0.02576 0.11594   0.52172
5.0 5.792% 103.50   77.4772 0.73724 3.68622 18.43111

Total 105.0902 1.0000  4.3174  20.3825  

4.3174 0.01( )–
1
2
--- 20.3825( ) 0.0001( )+ 4.2155%–=
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Coupon Bond Conventions

As noted earlier, the duration and convexity measures (2.22) and (2.23) make the
implicit assumption that the zero-coupon yield curve shifts in a parallel manner
(e.g., all yields shift by the same amount). To simplify matters, it is not uncommon
in practice to see a single discount rate called the yield to maturity used to dis-
count all cash flows of a coupon bond.

Yield to Maturity Yield to maturity is a summary statistic that describes the bond’s
promised rate of return. The yield to maturity is computed by setting the current
bond price equal to the present value of the cash flows and solving for y, that is,

(2.24)

Under the assumption that there is a single discount rate, the duration of a cou-
pon bond is given by 

(2.25)

and its convexity is given by

(2.26)

Note that the duration and convexity computed using (2.25) and (2.26) are only
approximations of the correct values (2.22) and (2.23). The present value of the
ith cash flow is not equal to the price of the ith discount bond, that is,

The OPTVAL Function library contains a function for computing the value, the
duration, and the convexity of a fixed rate bond given its yield to maturity:

OV_IR_FIXED_YLD(coup, freq, face, tb, ncoupr, yld, vdc)

where coup is the coupon interest rate expressed in decimal form, freq is the fre-
quency of coupons per year, face is the face value of the bond, tb is the time
until the first coupon payment expressed in years, ncoupr is the number of cou-
pons remaining, and yld is the bond’s promised yield to maturity. The indicator
variable vdc instructs the function to return the bond’s value (“v” or “V”),
duration (“d” or “D”), or convexity (“c” or “C”).
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ILLUSTRATION 2.6 Compute yield to maturity of coupon-bearing bond given the yield curve.

Assume that the current zero-coupon term structure of spot rates is given by the curve,

where Ti is measured is years. Compute the value and the yield to maturity of a five-year
semiannual coupon-bearing bond with a 7% coupon interest rate. If this coupon-bearing
bond can be purchased for $104, can you earn a costless arbitrage profit, and, if so, how? 

You know from Illustration 2.4 that the five-year, 7% bond is 105.0902. The yield to
maturity of this bond is computed by setting the bond price equal to the present value of
the cash flows and solving for a single discount rate. The discount rate that satisfies

is 5.729% as is shown in the table below. The syntax for the OPTVAL function is

OV_IR_FIXED_YLD_YIELD(coup, freq, face, tb, ncoupr, bprce)

where all parameters are defined as above and bprce is the bond’s price including accrued
interest.

Note that this yield to maturity of the coupon bond is below the zero-coupon rate on a
five-year zero-coupon bond, 5.792%, in Illustration 2.5. This is because a five-year cou-
pon-bearing bond does not have five years to maturity from an economic standpoint. The
intermediate payments made during the bond’s life effectively shorten its overall maturity.

Assuming the coupon-bearing bond can be purchased for $104, a costless arbitrage
profit can be earned. To do so, you would buy the coupon bond and then sell zero-cou-
pon bonds in the amount and maturity of each cash flow, that is, sell 3.50 in par value of
zero-coupon bonds maturing in six months, and 3.50 in par value of zero-coupon bonds
maturing in one year, and so on. In this way, the interest receipts of the coupon-bearing
bond exactly match the payments you need to make to cover your short sale obligations.
Since you know that you can buy the coupon bond for $104 and sell the zero-coupon
bond portfolio (using the zero-coupon yield curve) for $105.0902, the present value of
the costless arbitrage profit of $1.0902.

ILLUSTRATION 2.7 Compute duration and convexity of coupon bond using yield to maturity.

Again, assume that the current zero-coupon yield curve is given by the function,

ri 0.04 0.01 1 Ti+( )ln+=

105.0902 3.50e
yTi–

103.50e
yT10–

+
i 1=

9

∑=

ri 0.04 0.01 1 Ti+( )ln+=
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where Ti is measured is years. Compute the duration and convexity of a five-year semian-
nual coupon-bearing bond with a 7% coupon interest rate using the single yield to matu-
rity, 5.729%, from Illustration 2.6.

The table below summarizes the computations from basic principles. First, you com-
pute the present values of the cash flows using a constant yield to maturity. Naturally, the
total of the values of the discount bonds computed using yield to maturity is 105.0902.
Recall from Illustration 2.6, this is exactly how the yield to maturity was defined. Next,
you compute the proportion of total coupon bond value that is attributable to each dis-
count bond. The first row of the table shows 

Finally, compute the contributions of each discount bond to the duration and con-
vexity of the coupon bond and sum as you did in Illustration 2.4. The yield-based dura-
tion is 4.3240, compared with 4.3174 using the zero-coupon yield curve approach, and
the yield-based convexity is 20.4273, compared 20.3825 using the zero-coupon yield
curve approach. While these differences are small in the illustration at hand, they will
vary depending on factors such as the coupon rate of the bond, its term to maturity, and
the slope of the yield curve.

Risk Management

Risk management is the general theme of this book. Although the purpose of
this chapter is to lay the foundation for risk management using derivatives, it is
instructive to introduce the concept of hedging at this juncture to reinforce the
use of the bond risk management tools of duration and convexity.

Risk has a number of definitions. For now, assume that risk refers to unan-
ticipated changes in the value of an asset that we hold. Hedging refers to reduc-
ing the risk of our position by buying or selling other assets whose collective
value changes by the same amount as the value of the asset we hold. In the con-
text of bonds and interest rate risk measurement, a perfect hedge is one whose
value changes in an equal and opposite direction, that is,

Years to
Maturity

Cash
Flow

PV of 
Cash Flow

Proportion
of Total

Components of

Duration Convexity

0.5     3.50     3.4012 0.03236 0.01618   0.00809
1.0     3.50     3.3051 0.03145 0.03145   0.03145
1.5     3.50     3.2118 0.03056 0.04584   0.06876
2.0     3.50     3.1211 0.02970 0.05940   0.11880
2.5     3.50     3.0329 0.02886 0.07215   0.18038
3.0     3.50     2.9473 0.02805 0.08414   0.25241
3.5     3.50     2.8640 0.02725 0.09539   0.33385
4.0     3.50     2.7832 0.02648 0.10593   0.42374
4.5     3.50     2.7046 0.02574 0.11581   0.52115
5.0 103.50   77.7191 0.73955 3.69773 18.48867

Total 105.0902 1.0000  4.3240  20.4273  

3.4012e 0.05729 0.5( )– 105.0902⁄ 0.01618=
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(2.27)

Duration and convexity provide the means for measuring the value changes
of your portfolio and the hedge instruments should interest rates change. To
completely hedge interest rate risk exposure means finding the number of units
of the hedge instrument to buy or sell such that the value of the overall hedged
portfolio does not change if interest rates change, that is,

(2.28)

where BP is the value of your bond position and BH is the value of one unit of
the hedge instrument, where the expression dr has been dropped because it is
common to both sides of the equation. Duration-based hedging means approxi-
mating the changes of value with the product of duration and bond value. The
number of units of the hedge instrument to buy or sell is therefore determined
by solving 

(2.29)

where DURP(DURH) is the duration of the unhedged bond portfolio (hedge
instrument) and BP(BH) is the market value of the unhedged bond portfolio
(market value of the hedge instrument). Rearranging (2.29) to solve for the
number of hedge bonds nH, we get

   (2.30)

ILLUSTRATION 2.8 Hedge interest rate risk of bond portfolio using duration.

Suppose you own $30 million in par value of a 10% coupon-bearing bond with 10 years
to maturity. Its current yield to maturity is 8%. Suppose also that you expect that inter-
est rates may increase over the next few days and want to hedge your interest rate risk
exposure. Unfortunately, the bond you hold does not have a liquid market and selling
quickly is impossible. You have the opportunity to sell a more liquid bond, however. Its
coupon rate is 9%, term to maturity is 12 years, par value is $100,000, and yield to
maturity is 7%. How many bonds should you sell? Assume both bonds pay coupons
semiannually with the first coupon being paid in exactly six months. Show how effective
the hedge is by plotting the changes in the hedged portfolio value over a range of yield
changes from –5% to +10%.

The first step is to compute the value and the duration of the bonds. Since you have
no information about the zero-coupon yield curve, you can use the yield-based computa-
tions (2.24) and (2.25). And, rather than go through the algebra, use the OPTVAL func-
tions. The value and durations of the unhedged bond position and the hedge instrument
are as follows:

dValue of unhedged position
dr

---------------------------------------------------------------------------
dValue of hedge instruments

dr
--------------------------------------------------------------------------=

dBP nHdBH+ 0=

DURPBP nHDURHBH+ 0=

nH

DURPBP

DURHBH
-------------------------–=
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The number of the hedge bonds to sell to immunize your portfolio from interest rate
movements is therefore

To test the effectiveness of the hedge, compute (a) the change in value of the
unhedged bond portfolio, and (b) the change in value of the hedged portfolio using a
range of yield changes from –5% to +10%. These changes in value are shown in the figure
below. As the figure shows, a yield increase produces a significant decline in the unhedged
portfolio value. A yield increase of 200 basis points reduces bond portfolio value by more
than $4,000,000. After the hedge is in place, however, a yield increase causes the hedged
portfolio value to fall by about $63,000 (which cannot be detected on the figure because
of the scale). The fact that the hedged portfolio value changes are not 0 across all levels of
yield change means that the hedge is not fully effective. Recall that the duration-based
hedge fails to account for the convexity of the bond valuation formula. Accounting for
both duration and convexity will improve the hedging effectiveness.  

Hedging effectiveness can be improved by incorporating both duration and
convexity components of bond value change. In order to do so, however, two
hedge instruments will be required. To identify the appropriate number of hedge
bonds to buy or sell, you will need to match the duration and the convexity of
the bond portfolio that you want to hedge with the duration and convexity of
the hedge instruments. To negate the duration risk of the portfolio, you must
satisfy the duration constraint

nH
6.7539 33,719,782.77( )

7.8916 114,965.65( )
-------------------------------------------------------------– 251.019–= =
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(2.31)

Equation (2.31) is the counterpart to (2.29) in which only duration risk was
considered. The constraint merely says that you do not have any duration risk
exposure after setting nH,1 and nH,2. Simultaneously, you must also satisfy the
convexity constraint, 

(2.32)

where CVX refers to convexity of the different instruments and the subscripts 1
and 2 refer to the first and second hedge instruments. Since there are two equa-
tions (i.e., (2.31) and (2.32)) and two unknowns (nH,1 and nH,2), we can solve
uniquely. The solution can be found algebraically or computationally using a
iterative technique such as Microsoft Excel’s SOLVER.

ILLUSTRATION 2.9 Hedge interest rate risk of bond portfolio using duration/convexity.

Use the same problem information as in Illustration 2.8. In addition, assume that a second
hedge bond is available. Its coupon rate is 5%, term to maturity is 20 years, par value is
$100,000, and yield to maturity is 7.5%. How many of each hedge bonds should you sell
if you want to hedge both the duration and convexity risk of your portfolio? Show how
effective the duration/convexity hedge is relative to the duration-only hedge by plotting the
changes in the hedged portfolio value over a range of yield changes from –5% to +10%.

The first step is to compute the value, and convexity of the bonds. The information
is summarized below. 

The system of equations (2.31) and (2.32) are:

and 

DURPBP nH 1, DURH 1, BH 1, nH 2, DURH 2, BH 2,+ + 0=

CVXPBP nH 1, CVXH 1, BH 1, nH 2, CVXH 2, BH 2,+ + 0=

6.7539 33,719,782.77( ) nH 1, 7.8916( ) 114,965.65( )+

nH 2, 11.5501( ) 73,139.32( )+ 0=

57.4665 33,719,782.77( ) nH 1, 79.6506( ) 114,965.65( )+

nH 2, 185.5095( ) 73,139.32( )+ 0=
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The solution for the risk-free hedge is nH,1 = –317.661 and nH,2 = 71.572. The effective-
ness of the duration/convexity hedge vis-à-vis the duration-only hedge is shown in the fig-
ure below. For small changes in yield, the hedges perform about the same. For large
changes in yield, however, the duration/convexity hedge clearly outperforms. 

Coupon Bonds Traded in the Marketplace

Probably the most widely known coupon bonds are the T-bonds and T-notes
issued by the U.S. Treasury. Both are coupon bonds—the difference between
them is that T-notes are originally issued with two to 10 years to maturity and T-
bonds are originally issued with maturities longer than 10 years. On August
2001, the U.S. Treasury suspended the periodic auctioning of the 30-year bond.
In August 2005, the Treasury announced its reintroduction. The first auction
after the reintroduction was held on February 9, 2006. This issue is the 4¹�₂ Feb
2036 that appear in Table 2.3.

Table 2.3 contains U.S. Treasury bond and note prices on March 29, 2006. A
number of reporting conventions appear. First, coupon bond prices are reported
with a dash rather than a decimal. This is because the digits to the right of the
dash represent the number of 32nds rather than the number of 100ths. A price of
99-16 implies 99.50% of par. Where the price has the suffix “+,” an additional
one-half 32nds is added to the price. A price of 99-16+ is, therefore, 99³³�₆₄ or
99.515625% of par.

A second convention, although not stated in the panel of prices reported in
the table, is that coupon payments are semiannual (i.e., occur each 6 months).
The “6¹�₄s of May 2030,” for example, pay coupon interest of 3.125% of par on
November 15 and May 15 each year through the bond’s life. The last coupon
and the face value are paid on May 15, 2030.

A third convention is that the reported or quoted price of the T-bond or T-
note excludes accrued interest during the current coupon period. Accrued interest
equals the amount of the semiannual coupon payment times the proportion of the
current coupon period that has elapsed since the last coupon payment, that is,

(2.33)
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TABLE 2.3  Selected U.S. Treasury bond and note prices drawn from Bloomberg on March 
29, 2006.  

The quoted bond price is reported as its current price less accrued interest.
Thus, if we purchase the bond today, we pay the reported price plus accrued
interest. This practice seems silly. It is! But, it was instituted many decades ago,
and traditions are sometimes hard to break. In the parlance of bond traders, the
price excluding accrued interest is called the “clean price,” and the price includ-
ing accrued interest is called the “dirty price,” “gross price,” or “full price.”8,9

A fourth convention is that Treasury bonds with hyphenated maturity dates
are callable. Table 2.3 has two such issues. The notation “13⁷⁄₈ May 2006-14”
means that the U.S. Treasury has the right to call all bonds back at any of the
coupon dates between May 15, 2006 and May 15, 2011. Given the high coupon
of this issue, it should not be surprising to learn that, on January 13, 2006, the
U.S. Treasury called for redemption of this issue at par on May 15, 2006. Con-
sequently, it is being priced as if its term to maturity is about two months. Com-
pare its promised yield to, say, the 2³�₄ Jun 2006 issue as opposed to the 4⁷⁄₈ Feb

Rate Maturity Bid Ask Ask Yield Notes

2³�₄ Jun 2006     99-16+ 99-17 4.58
2⁷�₈ Nov 2006 98-22   98-22+ 4.86
3³�₄ Mar 2007     98-28+   98-29+ 4.86
4⁵�₈ Mar 2008   99-20   99-20+ 4.82 2-year
4¹�₂ Feb 2009   99-05   99-05+ 4.81 3-year
4¹�₂ Feb 2011     98-21+ 98-22 4.80 5-year
13⁷�₈ May 2006-11   101-03+ 101       4.49 callable
4⁷�₈ Feb 2012 100-09 100-10  4.81
11³�₄ Nov 2009-14 122-20 122-28  8.02 callable
4¹�₄ Nov 2014   95-25 95-26 4.85
4¹�₄ Aug 2015     95-19+   95-20+ 4.83
4¹�₂ Nov 2015     97-12+ 97-14 4.84
4¹�₂ Feb 2016   97-20   97-20+ 4.80 10-year
9¹�₈ May 2018 137-20 137-22+ 4.95
8¹�₈ Aug 2021   132-27+ 132-28+ 5.03
7⁵�₈ Feb 2025 131-14 131-15+ 5.02
6¹�₈ Nov 2027 114-15 114-17  5.02
6¹�₄ May 2030 118-00 118-01+ 4.96
5³�₈ Feb 2031 106-11 106-13+ 4.92
4¹�₂ Feb 2036     94-31+ 95-00 4.82 30-year

8 This “actual/actual” definition of accrued interest applies only to Treasury notes and bonds.
Accrued interest for corporate and municipal bonds is based on a 360-day year, with each
month having 30 days, and is referred to as being on a “30/360” basis. 
9 Like Treasury bills, Treasury notes and bonds have a one business day settlement convention.
Corporate bonds, on the other hand, generally have three-day settlement.
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2012 issue. The 11¹�₂ Nov 2009-14 issue is also callable. Since this call option
has value to the Treasury, its price (yield) will be less (greater) than comparable
issues with no call feature. Note that the 11¹�₂ Nov 2009-14 have a higher prom-
ised yield to maturity than comparable maturity bonds in the table.

Finally, it is worth noting that, while the market for Treasuries is extremely
active, the most recent issues, called on-the-run securities, have the highest trading
volume. This can be seen in Table 2.3. The bonds and notes denoted by “n-year” in
the last column are on-the-run issues. Note that the spreads between the bid and ask
price quotes are smaller for these issues than for the off-the-run issues. Holding
other factors constant, the higher the trading volume, the lower the bid/ask spread.

ILLUSTRATION 2.10 Deduce price of coupon-stream.  

In Table 2.2, the strip bond maturing in February 2016 has a reported ask price of 61.88.
In Table 2.3, the 4¹�₂ Feb 2016 issue has a reported ask price of 97.20+. Deduce the price
of the coupons of the 4¹�₂ Feb 2016 without using the bond valuation formula. 

First, we need to compute the decimal price of the 4¹�₂ Feb 2016 coupon-bearing
bond. The reported ask price in Table 2.3 is 97-20+, which translates to 97⁴¹�₆₄ or
97.6406% of par. The number of days that have elapsed in the current coupon period as
of March 29, 2006 is 42, and the total number of days in the current coupon period is
184. The accrued interest is, therefore,

(4.50/2) × (42/181) = 0.5221

and the full price of the bond is 97.6406 + 0.5221 = 98.1627. Second, by the law of one
price, the present value of the principal of the coupon-bearing bond is 61.88% of par.
Consequently, the price of the coupon stream is 36.2827. To summarize,

ILLUSTRATION 2.11 Compute price of call feature in coupon-bearing bond.

Suppose that you observe the following U.S. Treasury bond prices (quoted in 32nds):

Price

In 32nds In Decimal

Coupon-bearing bond

Quoted bond price: 97.205 97.6406
Accrued interest:   0.5221

Market price of bond: 98.1627

Strip bond
Quoted bond price: 61.8800

PV of coupon payments: 36.2827

Coupon Rate Maturity Price

8¹�₄% May 15, 2010-15 103-19
12% May 15, 2015 133-13
0% May 15, 2015 47-14
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The 8¹�₄% bond is callable at par on any May 15 in the years 2010 through 2015. Based
on the reported prices, compute the value of the embedded call feature.

The value of the call feature can be deduced by using the valuation by replication
principle. From the problem information, you can create an 8¹�₄% coupon-bearing, non-
callable bond from the 12% coupon-bearing bond and the zero-coupon bond. To repro-
duce the 8¹�₄% coupon payments, you need to buy 

of the 12% bond. While this purchase creates the desired coupon stream, the repayment of
the principal in May 2015 will amount to only 68.75. To make up for the difference, 100 –
68.75 = 31.25, you need to buy 0.3125 units of the zero-coupon bond. Thus, in the absence
of costless arbitrage opportunities, the price of an 8¹�₄% coupon-bearing noncallable bond is

0.6875 × 133.40625 + 0.3125 × 47.43750 = 106.5410

The value of the call feature is, therefore, 106.5410 – 103.59375 = 2.9473.

Bond Equivalent Yield The continuously compounded yield to maturity of the 6¹�₄s
of May 2030 can be computed using equation (2.24) and is 5.5847%.10 In Table
2.2, however, the yield to maturity of the 6¹�₄s of May 2030 is reported as
5.66%. The reported rate is called a bond equivalent yield. While bond equiva-
lents yield are not used is any of the subsequent chapters, it is useful to know
the conventions that bond markets have adopted, if only to be able to reconcile
market reporting with actual economic values.

The bond equivalent yield, ys, is a nominal yield. It is determined by equat-
ing the market price of a bond to the present value of its cash flows and solving
for ys, that is,

(2.34)

where ndr is the number of days remaining in the current coupon period, and
ndcp is the total number of days in the current coupon period.11 In essence, what
the right-hand side of (2.34) does is have you go forward until the date of the
next coupon payment and value the bond, and then discount the value at the
time of the next coupon using a discount factor that depends on the fraction of
the current coupon period remaining. Note that when you compute the value of
the bond at the time of the next coupon, the first coupon in the summation does
not get discounted since it is being paid immediately. It is also worth noting that
the reported bond equivalent yield is based on the ask price (rather than the bid

10 The continuously compounded yield to maturity may be computed using OV_IR_FIXED_
YIELD(cdat, lcpn, ncpn, coup, mdat, bprce), where cdat is the current date, lcpn is the last
coupon date, ncpn is the next coupon date, coup is the coupon rate expressed in decimal, mdat
is the maturity date of the bond, and bprce is the bond price including accrued interest.
11 Again, this convention applies to Treasury bonds and notes only. Corporate and municipal
bonds have a different day count convention.

8.25
12

----------- 0.6875 units=

Bc 1 ys 2⁄+( )
ndr– ndcp⁄

CFi 1 ys 2⁄+( )
Ti

i 0=

n 1–

∑=
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price). The rationale is that, if you bought the bond, the bond equivalent yield is
the approximate rate of return you would earn if you held it to maturity. The
bond equivalent yield of the 6¹�₄s of May 2030, for example, is determined by

where CFi equals the coupon interest payment, 3.125, in each period but the last
and is the coupon interest payment plus the repayment of principal at maturity,
103.125.

TERM STRUCTURE OF INTEREST RATES

The rates reported for the discount bonds in Tables 2.1 and 2.2 reveal that the
zero-coupon interest rate (or spot rate of interest12) varies with term to matu-
rity. The relation between spot rates and term to maturity is called (interchange-
ably) the term structure of interest rates, the term structure of spot rates, and
the zero-coupon yield curve. Depending on the economic environment, the
nature of the relation may change.13 Note that it is important that all bonds
used in examining the term structure of interest rates must have a common
degree of default risk. We do not want the relation between yield and term to
maturity to be obfuscated by the fact that yields also vary with risk. In practice,
the shape of the zero-coupon yield curve is determined using the rates from U.S.
Treasury instruments like those reported in Tables 2.1 and 2.2. Treasury securi-
ties are all viewed as being free from default risk.

In applying the coupon bond valuation formula (2.20), it is necessary to know
the zero-coupon rate for each cash flow. The cash flows of a coupon bond, however,
may fall between the maturities of the zero-coupon rates observed in the market-
place. Suppose, for example, that the bond you are valuing has a cash flow occur-
ring in four months, and you can find only zero-coupon rates with three months
and six months to maturity. Somehow, you have to come up with a four-month
zero-coupon rate. One method is linear interpolation. You would simply take a
time-weighted average of the three-month and six-months rates, weighting the
three-month rate with 2/3 and the six-month rate with 1/3. Another approach is to
smooth the entire set of zero-coupon rates at once using techniques such as ordinary
least squares regression or cubic spline interpolation. Such techniques are described
in detail in Chapter 18. 

For illustrative purposes, we assume that the entire term structure of
observed rates has been smoothed and can be represented by a mathematical
relation such as 

(2.35)

12 It is called the spot rate of interest because it applies to a loan that begins today.
13 Typically, the curve is upward sloping because lenders of funds prefer short maturities while
borrowers prefer long.

110.2092 1 ys 2⁄+( ) 76– 184⁄ CFi 1 ys 2⁄+( )
Ti

i 0=

60 1–

∑=

ri 0.04 0.01 1 Ti+( )ln+=
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where ri is the continuously compounded rate on a loan maturing in Ti years.
Where Ti is 0, the rate is 4%. This is the rate of interest on an overnight loan.
Where Ti is 5, the rate of interest is 5.792%. Figure 2.1 shows the rates pro-
duced by (2.35) for different terms to maturity. As the figure shows, the term
structure is upward sloping, with the rate of increase diminishing with term to
maturity. Also plotted in Figure 2.1 are the discount factors corresponding to
each zero-coupon rate. Many practitioners prefer working with discount factors
rather than discount rates. Recall that a discount factor is today’s price of $1
received at future time Ti, that is,

Implied Forward Rates of Interest

The zero-coupon yield curve represents the spot rates interest on loans of vary-
ing maturities. The loans begin today and extend until the end of the bond’s life,
T. The zero-coupon yield curve also embeds information about the rates of
interest that may be earned on loans in the future. Such rates are called forward
rates of interest. To deduce the forward rate on a loan that will begin at time T1
and run until time T2, we first go to the zero-coupon yield curve and find the
spot rates corresponding to each maturity, that is, r1 and r2. Next, assume that
we want to invest $1 for a period of time equal to T2. One way we can do this is
to buy a zero-coupon bond with maturity T2. Another way is to buy a zero-cou-
pon bond with maturity T1, and then reinvest the terminal proceeds in a zero-
coupon bond with maturity T2 – T1. The forward rate of interest from T1 to T2
can be deduced by equating the terminal values of the two investment alterna-
tives, that is, 

(2.36)

Taking the natural logarithm of both sides of (2.36), replacing subscript 1 with
the notation i and 2 with j, and rearranging to isolate fi,j, the implied forward
rate of interest on a loan beginning at time Ti and ending at time Tj is

(2.37)

The zero-coupon yield curve can also be used to deduce forward discount
factors. From (2.36), we know

(2.38)

where DFi is the discount factor of the ith zero-coupon bond currently observed
in the marketplace and FDFi,j is the implied forward discount factor beginning

DFi e
ri– Ti=

e
r2T2 e

r1T1e
f1 2, T2 T1–( )
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at time Ti and ending at time Tj. Rearranging (2.38), we see that, in general,
implied forward discount factors may be computed as 

(2.39)

Consequently, implied forward rates may also be computed as

   (2.40)

ILLUSTRATION 2.12 Compute forward rates and forward discount factors from zero-coupon 
yield curve.

Assume that the current zero-coupon term structure of spot rates is given by the curve,

Compute the spot rates and discount factors on loans beginning now and ending in years 1
through 10, by increments of one year. Also, compute the one-year forward rates and one-
year forward discount factors beginning at the end of years 1 through 9 by increments of
one year.

To compute the zero-coupon spot rates, apply the given term structure formula. The
one-year spot rate, for example, is r1 = 0.04 + 0.01 ln(1 + 1) = 4.693%. The one-year dis-
count factor is DF1 = e–0.04693(1) = 0.9542. The complete set of results is shown in the
table below. To compute the forward rates and forward discount factors based on the
zero-coupon spot rates, you apply the formula (2.37) and (2.39). The implied forward
rate on a one-year loan beginning in 1 year is

The implied price of a one-year discount bond paying $1 in year 2 is

Note also the relation between the implied forward rate and the implied discount factor,
that is,

The OPTVAL Function library includes a routine for computing implied forward rates:

OV_IR_TS_FORWARD_RATE(r1, r2, t1, t2)

where r1 and r2 are the spot rates maturing at the beginning and at the end of the for-
ward rate period, and t1 and t2 are the times to maturity of the respective rates. An
application of the function is shown in the spreadsheet below.

FDFi j,

DFj

DFi
----------=
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DFi DFj⁄( )ln

Tj Ti–
----------------------------------=

ri 0.04 0.01 1 Ti+( )ln+=
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2 1–
------------------------------------------------------------------ 5.504= =
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Note that the implied one-year forward rate starting at time 0 equals the one-year
spot rate. This stands to reason since a forward rate loan beginning at time 0 is simply a
spot rate loan. Note also that the implied forward rates can be significantly higher than
the spot rates. The spot rates on 9-year and 10-year loans are 6.303% and 6.398%,
respectively, and yet the implied one-year forward rate for a loan beginning at the end of
year 9 is 7.256%.

ILLUSTRATION 2.13 Lock-in interest rate on forward loan.

Suppose that you go to your local bank and tell the manager that you want to borrow
$50,000 in three months and want to repay the loan with a single balloon payment nine
months later. Because you believe interest rates will rise over the next three months, you
further request that the interest be locked-in today. The manager says that your credit
risk is no problem, but that he cannot lock-in the interest rate because he has no idea
what it will be in three months. You then ask about the current borrowing and lending
rates at the bank, and he gives you the following table.

Based on these quoted rates, what forward rate can you lock in today on a nine-month
loan beginning in three months? Show how to structure the forward loan. What rate can
you lock in today? (Assume all interest rates are continuously compounded.)

In order to compute the forward rate, you must identify the two spot rates that
straddle the forward period, that is, the spot rates that mature at the beginning and end
of the forward loan period—three months and one year. Because you want to borrow
money in the forward period, the longer term spot rate needs to be a borrowing rate,
5.00%. Since you do not need the loan over the first three months of the year, the shorter
term spot rate is the lending rate, 3.00%. Thus, the implied forward rate of interest on a
nine-month loan beginning loan beginning in three months is

Term Lending Rate Borrowing Rate

3 months 3.00% 3.50%
6 months 3.50% 4.00%
9 months 4.00% 4.50%
1 year 4.50% 5.00%



Assumptions and Interest Rate Mechanics 83

In order to structure the forward loan, you must figure out how much to borrow.
Recall that you need to borrow $50,000 in three months and want to repay the loan nine
months later. To provide for the $50,000 cash inflow, you need to lend the present value
of the $50,000 in three months. The rate that you will earn on such a deposit is 3.00%.
The present value of $50,000 received at the end of three months is 

But where do you get the needed deposit of $49,626.40? The answer is that you borrow that
amount for a year. By borrowing $49,626.40 for one year and lending that same amount for
three months, you have synthetically structured a nine-month forward loan beginning in
three months. The net cash flows of the agreement are certain and are as follows:

The rate on the forward loan is ln(52,170.80/50,000)/0.75 = 5.667%.

STOCK VALUATION

Shares of stock are pieces of the ownership of a corporation. Shareholders
derive value in two ways, through periodic cash dividend payments and through
any price appreciation (or depreciation) that may occur while holding the stock.
Valuing a stock is like valuing a coupon-bearing bond in the sense that both are
present values of expected future cash flow streams. Unlike a bond, however, the
expected periodic cash flows (i.e., dividend payments) are not specified in a con-
tract. Moreover, absent bankruptcy, the life of a stock is infinite.

In the stock valuation problem, the expected future cash flows are cash divi-
dends. We denote Di as the ith future cash dividend, where the dividend stream
continues indefinitely, that is, D1, D2, D3, . . . . The time from now until the ith
dividend is received is denoted ti. The current dividend, D0, is assumed to have
just been paid. The present value of all expected future cash dividends is

(2.41)

where k is the required rate of return on the stock.14 
Equation (2.41) is a stock valuation formula. On first appearance, it may seem

appropriate only for those individuals who plan to hold the stock indefinitely, but

Action Today 3 Months 1 Year

Borrow   49,626.40 –52,170.80
Lend –49,626.40 50,000.00

14 For expositional convenience, the rate of return k is assumed to be the same for each cash
dividend payment. There is no reason in principle, however, that the discount rate cannot be
a function of time.
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that is not the case. Even if our anticipated holding period is much shorter, (2.41)
remains an appropriate model. To see this, consider the value that we would
assign the stock if we anticipated selling it after the nth dividend is paid, that is,

(2.42)

where Sn is the expected share price at time tn. To develop an expectation of the
expected share price at time tn, assume that we sell the stock to someone who
plans to hold it indefinitely. The trade price will be 

(2.43)

Substituting (2.43) into (2.42) and simplifying, we are back to (2.41).

Constant Dividend Growth

As a practical matter, the valuation equation (2.41) is difficult to implement since it
requires that we estimate the cash dividend amounts from next period through
infinity. What is more common in practice is to estimate next period’s cash divi-
dend, D1, and then assume that subsequent dividends grow at a constant rate.
Assuming dividends grow at a continuous constant rate, g, we can rewrite (2.41) as

(2.44)

As it turns out, (2.44) is the sum of an infinite geometric progression whose
value is easily computed, as is demonstrated in Appendix 2B. The common
ratio, b, in Appendix 2B is b = e–(k – g), so 1/b = ek – g and the per share value of
the common stock15 is

(2.45)

ILLUSTRATION 2.14 Value common stock with constant dividend growth.

Suppose you are considering buying a particular stock at its current price of $15 a share. The
stock just paid a dividend of $2 a share. Based upon your historical dividend analysis, you
expect the stock’s dividend to grow at a constant continuous rate of 1% a year indefinitely,

Dt = 2e0.01t,  for t = 1, 2, 3, . . .

15 This is one variation of what is often referred to as the Gordon (1962) constant growth
model.
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where the dividends are paid annually. Based on your risk analysis, you believe the
required rate of return for the stock is 12%. Should you buy the stock?

Based on the parameters you have estimated, the stock’s value is

Consequently, the stock is under-priced and should be purchased.

SUMMARY

Effective risk management requires precise risk measurement, and precise risk
measurement requires a thorough understanding of security valuation. This
chapter provides the foundations of security valuation. The first section dis-
cussed the two key assumptions underlying valuation—the absence of costless
arbitrage opportunities and frictionless markets. The first assumption is predi-
cated on the notion that individuals prefer more wealth to less. It is essential.
The second assumption is one of convenience. It allows security valuation mod-
els to be developed in an unencumbered fashion. We relax this assumption in
various ways as we proceed through the remaining chapters in the book. 

The next five sections focus on the time value of money and its implications for
security valuation. The mechanics of continuously compounded interest rates is
provided first, and then the mechanics are applied to security valuation. The third
section focuses on the valuation of, perhaps, the simplest type of security—a dis-
count bond. The value of a discount bond is simply the present value of its prom-
ised payment at maturity. The fourth section focuses on coupon bonds and shows
that they are simply portfolios of discount bonds. In both sections, the valuation
formulas are used to develop the interest rate risk measures of duration and con-
vexity. Since coupon bonds have multiple cash flows through time, the fifth section
addresses the issue of maturity-specific interest rates. Zero-coupon interest rates
are shown to imply forward rates of interest. Finally, the interest rate mechanics
are applied to common stock valuation. The value of a share of stock is shown to
be the present value of an infinite series of expected dividend payments.
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APPENDIX 2A: TAYLOR SERIES EXPANSION OF BOND VALUE

In using the duration and convexity to predict bond price movements, we
implicitly used a Taylor series expansion of the bond valuation formula. From
calculus, we know that most smooth functions f(x) can be expanded in a Taylor
series about the point x0,16 that is,

(2A.1)

In (2A.1), replace x with the yield to maturity of the bond, r, and f(x) with the
bond valuation function, B(r). 

APPENDIX 2B: SUM OF A GEOMETRIC PROGRESSION

A geometric progression is a sequence of numbers, ai, i = 1, . . ., n, whose adja-
cent terms satisfy the property that

where b is called the common ratio. The sum of an n element geometric series
whose first element is 1 is 

(2B.1)

While this sum may seem tedious to compute, it may be simplified considerably.
First, multiply (2B.1) by b. 

(2B.2)

Now, subtract (2B.2) from (2B.1). 

16 For the special case where x0 = 0, (A.1) is sometimes called the Maclaurin series of f(x).
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or

(2B.3)

Where the number of elements in the series is infinite (i.e., n = ∞) and b < 1, the
sum of the geometric progression is

(2B.4)

If the infinite series begins with b, the sum is

(2B.5)
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CHAPTER

 

3

 

Relation between Return and Risk

 

n important facet of valuation not yet discussed is the relation between
expected return and risk. In the bond and stock valuation models discussed

in Chapter 2, risk enters into the valuation formulas through the interest rate
used to discount the expected cash flows to the present. In financial economics,
the 

 

capital asset pricing model

 

 (CAPM)

 

1

 

 provides the structural relation
between expected return and risk. It relies on the assumption that individuals
prefer more wealth to less wealth, but at a decreasing rate. Such individuals are
risk averse, and risk aversion is the focus of the utility theory discussion in the
first section. In the second section, we extend the discussion to show how such
individuals allocate their wealth among securities. In the third section, we aggre-
gate security demands across all individuals in the marketplace and identify the
equilibrium expected return/risk relations for individual securities and security
portfolios. Finally, in the fourth section, we apply the CAPM relations to evalu-
ate portfolio performance.

 

UTILITY THEORY

 

In most financial economic models, individuals are assumed to be 

 

risk averse

 

.
Investors do not like risk but are willing to bear it if paid an adequate risk pre-
mium. Risk premiums arise from the nature of how an individual’s satisfaction
varies with wealth. Called a 

 

utility of wealth function

 

, 

 

U

 

(

 

w

 

) is the level of satis-
faction (measured in units of utility) realized from having a level of wealth, 

 

w

 

.
An individual’s marginal utility of wealth is assumed to be positive (i.e., 

 

dU

 

(

 

w

 

)/

 

dw

 

 > 0)—the more wealth, the more satisfaction. Indeed, this property is the
driving force behind the absence of costless arbitrage opportunities in a ratio-
nally functioning marketplace. As wealth increases, however, the rate at which
satisfaction increases falls (i.e., 

 

d

 

2

 

U

 

(

 

w

 

)/

 

dw

 

2

 

 > 0). The next dollar earned is not
quite as satisfying as the last dollar earned.

 

1 

 

The central role that the CAPM plays in financial economics is attested to by the fact that
five of the key players in its development—Harry Markowitz, James Tobin, William Sharpe,
John Lintner, and Robert C. Merton—have received Nobel Prizes in Economics.

A
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Figure 3.1 illustrates the shape of the utility function for an individual with
diminishing positive marginal utility of wealth. Note that, as wealth increases,
utility increases, but at a decreasing rate. To show that this individual is a risk
averter, consider his behavior when presented with a fair bet. A 

 

fair bet

 

 is any
bet whose expected outcome is 0. A 50-50 chance of winning or losing 

 

X

 

, for
example, constitutes a fair bet. Accepting a fair bet implies that there is no
change in the individual’s expected wealth level. If the individual’s certain
wealth level before the bet is 

 

w

 

0

 

, his expected wealth level upon accepting the
bet remains at 

 

w

 

0

 

, that is, 

But, because the individual’s expected wealth does not change, that does not
mean he is indifferent about whether or not to accept the bet. He will not. The
reason is that, after accepting the bet, his expected satisfaction level is

Because his utility function is concave from below, as shown in Figure 3.2, the
expected utility of wealth after taking the bet rests below the utility that he had
to begin with, . Because taking a fair bet reduces the individ-
ual’s expected utility, an individual with diminishing positive marginal utility of
wealth is said to be a 

 

risk averter

 

.

 

FIGURE 3.1

 

Utility function of a risk averse individual. 
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FIGURE 3.2

 

Utility function of a risk averse individual when evaluating a fair bet. 

 

Utility theory is useful not only in demonstrating general behavioral princi-
ples but also in evaluating specific investment opportunities. In order to make spe-
cific decisions, however, the mathematical character of the utility function needs
to be more precisely defined.

 

2

 

 A logarithmic utility of wealth function, 

 

U

 

(

 

w

 

) =
ln

 

w

 

, mimics the behavior of a risk-averter—
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 > 0 and 
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 < 0. So does a square root utility of wealth function, , since
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 > 0 and 

 

d
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)/

 

dw

 

2

 

 = –0.25

 

w

 

–1.5

 

 < 0. We use these utility of
wealth functions in the illustrations that follow.

Aside from knowing the specific character of the utility function, a handful
of definitions are also important. In the illustrations that follow, we assume that
the individual holds two assets—a risk-free asset whose value is 

 

R

 

 and a risky
asset whose value in one period is either  or , with probabilities 

 

p

 

 and 1 –

 

p

 

, respectively. Assuming the risk-free interest rate is zero, the individual’s

 

expected utility of terminal wealth

 

 is 

(3.1)

Now, suppose someone approaches this individual and asks him to sell his risky
asset. What is the least amount that the individual will take? To answer this
question, we must first identify the cash equivalent of the individual’s overall

 

2 

 

The four most commonly used utility of wealth functions used in financial economics are: (a)
the logarithmic utility function 

 

U
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) = ln
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, (b) the quadratic utility function 
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 > 0, (c) the exponential utility function 
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 > 0, and
(d) the power utility function 

 

U

 

(

 

w

 

) = 

 

w

 

a

 

 where 0 < 
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 < 1.
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position. The cash equivalent is that certain amount of cash, C, that the individ-
ual is willing to take for his entire position and is computed by setting the utility
of the cash amount equal to the expected utility of terminal wealth, that is,

(3.2)

With the amount of the cash equivalent, C, known, the minimum selling price of
the risky asset equals C – R.

ILLUSTRATION 3.1 Identify maximum insurance premium.

Consider two individuals—A with a logarithmic utility function and B with a square root
utility function. Both individuals have $100,000 in cash and face the prospect of losing
$50,000, with a 5% probability. What is the maximum amount that each individual
would be willing to pay for insurance?

Individual A currently enjoys an expected satisfaction level,

Holding expected utility constant, this implies that A is indifferent between staying in his
current position (i.e., holding $100,000 in cash and having the prospect of losing
$50,000) and having a certain amount of cash C as determined by  

Solving for C, you find C = e11.478 = 96,593.63. In other words, A is indifferent between
having (a) $100,000 in cash and running a 5% chance of losing $50,000, and (b)
$96,593.63 in cash. Thus, the maximum amount A is willing to pay for insurance against
loss is $100,000 – 96,593.63 or $3,406.37.

Individual B currently enjoys a satisfaction level,

Individual B’s cash equivalent wealth level is determined by  

Solving for C, C = 311.5972 = 97,092.51, which means B is willing to pay up to
$2,907.49 for insurance against loss. Apparently an individual with logarithmic utility is
more risk averse than an individual with square root utility.

ILLUSTRATION 3.2 Are options really a zero-sum game?

In Chapter 1, derivative trades are described as zero-sum games—what the buyer gains,
the seller loses, and vice versa. This does not imply, however, that both the buyer and the
seller cannot gain from trading. Assume Individual A has $50 in cash and one share of a
common stock. The stock, he believes, has a 60% chance of falling in price to $80 and a
40% chance of increasing in price to $120. Individual B has $100 in cash and no other
holdings. B, however, follows the stock held by A and is much more optimistic regarding
its prospects. Specifically, B assigns only a 30% chance of the stock of falling in price to
$80 and a 70% chance of it increasing to $120. Demonstrate that both A and B can both
be made better of by trading a put option written on the stock. Assume the put has an

U C( ) E Ũ w( )[ ]=

E ŨA w( )[ ] 0.05 100,000 50,000–( )ln 0.95 100,000( )ln+ 11.478= =
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exercise price of $100 and costs $10. Assume both individuals have square root utility
functions. Ignore the time value of money.

Assume Individual A wants to buy the put, considering his pessimistic outlook
regarding the stock’s prospects. A’s current expected utility level is

where the terminal wealth levels are 130 or 170, depending on the performance of the
stock. On the other hand, if he buys the put, his terminal wealth level is 130 less the put
price plus the payoff on the put if the stock price falls and is 170 less the put price is the
stock price rises. Thus, if he buys the put, his expected utility is

Thus, from an expected utility of terminal wealth standpoint, A is made better off by buy-
ing the put. 

Individual B, on the other hand, is more optimistic regarding the stock’s prospects
and is considering selling the put. B currently enjoys a utility of wealth equal to 

If he sells the put, his terminal wealth will be either 100 plus the put price less the put
payoff (that goes to A) if the stock price falls and 100 plus the put price if the stock price
rises. Thus, after selling the put, his expected utility of wealth is

Since selling the put provides B a portfolio with higher expected utility of wealth, B, too,
is made better off by the trade. 

The fact that both A and B are made better off by trading with each other does not
negate the fact that the trade, in itself, is zero-sum. It is. If the stock price falls, A’s net pay-
off equals the option payoff less the put price, that is, (100 – 80) – 10 = +10, and B’s net
payoff is the put price less the exercise proceeds 10 – (100 – 80) = –10. If the stock price
rises, the put expires worthless, which means that A’s net loss on the put, 10, is B’s net gain. 

PORTFOLIO THEORY

The expected utility framework is useful in a number of decision-making contexts.
A weakness of the framework, however, is that the individual’s utility function
must be specified. Exactly how one goes about identifying the mathematical struc-
ture of an individual’s utility function is unclear. Fortunately, for the individual’s
portfolio allocation decision, a specific structure is not necessary. The reason is that
Tobin (1958) shows that individuals with diminishing positive marginal utility
have expected return (E)/risk (σ) indifference curves shaped like those shown in
Figure 3.3,3 where risk is measured by the standard deviation of return. Along each

3 Technically speaking, Tobin (1958) proved this result in two general cases: (a) individuals
have quadratic utility of wealth; and (b) the distribution of security returns is multivariate nor-
mal.
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indifference curve, expected utility is held constant. The curves have the properties
dE/dσ > 0 and d2E/dσ2 > 0. The first derivative says that an individual will demand
a more return as risk increases. The second derivative says that the rate at which
the individual demands more return grows faster and faster as risk increases. In
Figure 3.3, note also that the higher the indifference curve, the greater the expected
utility. That means individuals choose portfolios that have the highest expected
return for a given level of risk and/or portfolios that have the lowest risk for a
given level of expected return. Such portfolios are called efficient portfolios.

Prior to formulating the individual’s portfolio allocation decision, it is
worthwhile to note that how a risk-averter’s indifference curves differ from those
of an individual who is risk-neutral. Figure 3.4 illustrates the indifference curves
of a risk-neutral individual. The fact that the curves are horizontal means that a
risk-neutral individual does not care about risk. Such an individual chooses a
portfolio that maximizes expected return. At the other behavioral extreme are
indifference curves that are vertical, as shown in Figure 3.5. This individual is a
risk minimizer and will choose a portfolio that minimizes portfolio risk.

Portfolio Allocation with n Risky Securities

The focus now turns to identifying efficient portfolios, that is, portfolios with the
highest expected return for a given level of risk and/or with the lowest risk for a
given level of expected return. To do so, an individual must gather a considerable
amount of information. Assuming n risky securities exist in the marketplace, an

FIGURE 3.3 Indifference curves of a risk-averse individual. 
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FIGURE 3.4 Indifference curves of a risk-neutral individual.  

FIGURE 3.5 Indifference curves of a risk minimizer. 
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individual must estimate: (a) the expected return of each risky security, Ei, i = 1, . . .,
n, (b) the standard deviation of return of each risky security, σi, i = 1, . . ., n and (c)
the correlation of returns for each pair of securities in the marketplace, ρij, i = 1, . . .,
n and j = 1, . . ., n. At first blush, there seems to be a need to estimate n2 different
correlation coefficients. With respect to these correlations, however, we know that
ρij = +1 where i = j and that ρij = ρji. This reduces the number of necessary esti-
mates to n(n – 1)/2. For expositional convenience, covariances are used below. The
covariance between the returns of securities i and j is defined as σij = ρijσiσj.  

Certain definitions are required to set up the portfolio allocation problem.
The expected return on portfolio S is 

(3.3)

where Xi is the proportion on the individual’s wealth invested in security i. Nat-
urally the sum of the proportions equals 1, that is,

This is sometimes called the wealth constraint. The standard deviation of the
portfolio return is

(3.4)

Now, to identify the individual’s optimal allocation among the n risky secu-
rities, we minimize portfolio risk,

(3.5)

subject to

(3.5a)

and

(3.5b)
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Constraint (3.5a) requires that the weights produce an expected portfolio return
equal to the target level, ES, and constraint (3.5b) requires that all risky security
wealth is fully allocated. The objective function (3.5), together with the constraints
(3.5a) and (3.5b), constitute a nonlinear programming problem. Some such prob-
lems can be solved analytically; other numerically. For current purposes, however,
it is sufficient to know that, as long as no two risky securities have returns that are
perfectly correlated, the solution to the problem is a unique set of allocations, ,
i = 1, . . ., n, that produce a minimum variance portfolio. If we solve this portfolio
allocation problem for a range of levels of target expected portfolio return, ES, we
can trace out the minimum variance (or minimum risk) frontier shown in Figure
3.6. This frontier is sometimes referred to as the Markowitz (1952) efficiency fron-
tier, in honor of Nobel laureate, Harry Markowitz, who originally developed the
framework more than 50 years ago.

FIGURE 3.6 Minimum variance (or Markowitz efficiency) frontier. 

ILLUSTRATION 3.3 Identify efficient portfolios comprised of two risky securities.

Describe the range of efficient portfolio allocations when only two risky securities are
available in the marketplace. The expected returns and standard deviations of returns of
the two securities are shown below. Assume the correlation between the returns of secu-
rity 1 and security 2 is 0.25.

Security Expected Return Standard Deviation

1 18% 20%
2 12% 16%

Xi
*

Expected return

Minimum risk frontier

Risky assets

Risk
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In order to identify the set of efficient portfolios that can be generated by allocating
your wealth between securities 1 and 2, you first need to identify what portfolios are fea-
sible. The expected return and standard deviation of return of portfolios created by allo-
cating wealth between security 1 and security 2 are given by (3.3) and (3.4), where the
number of securities n equals 2. Thus, the expected portfolio return is

and the standard deviation of portfolio return is 

Note that since there are only two securities, the proportion of wealth invested in secu-
rity 2 is X2 = 1 – X1. The rest of the exercise is a matter of computing ES and σS for dif-
ferent levels of X1. This can be easily accomplished in Microsoft Excel. The table below
summarizes the results.

The table shows that the expected portfolio return falls from 18% to 12% as the
proportion of wealth invested in security 1 goes from 1 to 0. The standard deviation of
portfolio return, on the other hand, initially falls as X1 is reduced, but then begins to rise
again after X1 passes the level 0.40 on its way to zero. The figure below summarizes the
results. Exactly what allocation produces the minimum risk portfolio can be determined
by taking the derivative of the portfolio standard deviation and setting it equal to 0. For
the two-security portfolio, the minimum risk allocation is 

(3.6)

Substituting the problem parameters, we find that the risk-minimizing portfolio is created by
allocating 0.355 of wealth to security 1 and 0.645 to security 2. This portfolio has an

Proportion of Wealth
Invested in Security Portfolio Attributes

1 2 Expected Return Standard Deviation

1.0 0.0 18.00% 20.00%
0.9 0.1 17.40% 18.47%
0.8 0.2 16.80% 17.08%
0.7 0.3 16.20% 15.89%
0.6 0.4 15.60% 14.95%
0.5 0.5 15.00% 14.28%
0.4 0.6 14.40% 13.95%
0.3 0.7 13.80% 13.97%
0.2 0.8 13.20% 14.33%
0.1 0.9 12.60% 15.03%
0.0 1.0 12.00% 16.00%
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expected return equal to 14.13% and a standard deviation of return equal to 13.91%. Thus,
while the above table shows the range of feasible portfolios that can be created by allocating
one’s wealth between security 1 and security 2, no risk-averse individual will hold a portfolio
with less (more) than 0.355 (0.645) of his wealth allocated to security 1 (2). The range of
allocations that produces efficient portfolios is 0.355 ≤ X1 ≤ 1.4

A short digression is important here. While we have identified the range of alloca-
tions that produces efficient portfolios, one efficient portfolio—the minimum risk portfo-
lio—will never be held by a risk averter. The reason is that the slope of the expected
return/risk frontier at the minimum risk portfolio is infinite. An individual whose indif-
ference curves have the properties  dE/dσ > 0 and d2E/dσ2 > 0 is not allowed to choose
such a portfolio. Consequently, the range of portfolios from which a risk averter chooses
his optimal portfolio is defined by 0.355 < X1 ≤ 1.5

It is also worthwhile to note the Microsoft Excel has a powerful tool called Solver that
is useful in nonlinear optimization problems such as this. You will find it in the Tool menu:

The Excel file, Two-asset portfolio.xls, contains the expected return/risk and correlation
attributes of the two securities used in this illustration. It shows how Solver can be used to
identify the risk-minimizing portfolio numerically. Note that in the worksheet below, the port-
folio risk appears in cell C16. At the top of the Solver Parameters box, you tell Solver to find a
minimum value for C16 by changing the cells C11 and C12. Just below, you tell Solver that
the sum of the allocations to the risky securities, C13, must equal one. Click “Solve” and you
are done. This solution, computed using a numerical search procedure, is equal to the risk-
minimizing allocations that you solved for analytically using (3.6):

4 Technically speaking, the range of efficient portfolios continues on to the right of security 1
since short sales of security 2 are permitted.
5 This distinction becomes very important in the risk management strategies of Chapter 5.
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To trace out the entire risky asset efficient frontier, you need to modify the instruc-
tions to the Solver tool. Instead of solving for the portfolio weights that unconditionally
minimize the risk of the portfolio, suppose you minimize portfolio risk subject to the
constraint that the “target” expected return on the portfolio equals, say, 15%. The mod-
ified instructions are as follows:

Note that you need to impose the additional constraint that the expected return of the
portfolio, C16, equals the target rate of return C15. The risk-minimizing portfolio with
an expected return of 15% has equal allocations of wealth in assets 1 and 2.

ILLUSTRATION 3.4 Identify efficient portfolios comprised of four risky securities.

Assume you have four risky securities available for investment. Their expected returns,
risks, and correlations are presented in the shaded areas of the table below. With four
risky securities, the number of required parameter estimates is 14: (a) four expected secu-
rity returns, (b) four standard deviations of security returns, and (c) n(n – 1)/2 = 4(4 – 1)/
2 = 6 correlations between pairs of security returns. Find the risk-minimizing portfolio
with a target expected return of 19%. Do so first allowing short sales, and then disallow-
ing short sales.

Security Attributes

Security 1 2 3 4

Expected return 10% 15% 18% 20%
Risk 20% 30% 25% 35%
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Solving this problem analytically is possible but cumbersome. Consequently, you
may want to rely on Solver. The expressions for the expected return and risk of the four-
asset portfolio are given by (3.3) and (3.4). These are programmed into cells B16 and
B17 of the Excel file, Four-asset portfolio.xls. Verify that the computations are consistent
with the formulas. To find the risk-minimizing portfolio with a target expected return of
19%, use Solver. The optimal allocations among the four risky securities are:

Note that the problem setup is identical to the two-asset case—we minimize portfolio risk
subject to the constraints that the portfolio has a particular expected return and that the
portfolio weights sum to one. The risk-minimizing portfolio has a risk level of 19.92%.
The security weights in the risk-minimizing portfolio are –0.136, 0.243, 0.575, and 0.319
for securities 1 through 4, respectively. The negative weight on security 1 implies that it is
sold short. The proceeds from the short sale, together with initial wealth, are invested in
securities 2 through 4. The sum across all weights equals 1. 

In many real-world portfolio allocation decisions, short sales of particular securities
are not possible. To find the risk-minimizing portfolio with no short sales permitted, we
impose four additional constraints in the risk-minimization problem. The Solver instruc-
tions are shown below. The risk-minimizing portfolio now consists of only two securi-
ties—50% in security 3 and 50% in security 4. No money is invested in securities 1 and
2. Note that the portfolio risk level is now 22.01%, well above the 19.92% when short
sales were allowed. This stands to reason. The more the portfolio allocation decision is
constrained, the less effective it becomes at reducing risk.

Security Attributes

Correlations 1 2 3 4

1 1 0.20 0.30 0.10
2 0.20 1 0.05 0.10
3 0.30 0.05 1 0.05
4 0.10 0.10 0.05 1
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Portfolio Allocation with n Risky Securities and a Risk-Free Security

Tobin (1958) extended the Markowitz framework by introducing a risk-free
security. To keep things simple at the outset, consider what happens when an
individual created a two-security portfolio where one of the two securities is the
risk-free security. The expected return on this portfolio is 

(3.7)

and the standard deviation of the portfolio return is 

(3.8)

Isolating X1 in (3.8) and substituting into (3.7), we can generate any portfolio
along the line 

(3.9)

But since the individual can combine the risk-free security with any risky secu-
rity or any risky security portfolio S, he will choose a portfolio that maximizes
the slope of the line emanating from the risk-free rate in Figure 3.7, that is, he
will borrow or lend with the risky security portfolio S that is tangent to the
Markowitz efficiency frontier. Note that all other portfolios below the line have
lower expected returns for a given level of risk. This line,

(3.10)

now represents the individual’s set of efficient portfolios. The individual’s opti-
mal portfolio is identified by mapping the individual’s indifference curves on
Figure 3.7. If his highest indifference curve is tangent to the left of S, his final
portfolio will be a lending portfolio—some wealth invested in risky security
portfolio S and some in the risk-free security. If it is tangent to the right of S, the
individual not only has all of his wealth in S, but has also borrows additional
funds, which are also invested in S. 

ILLUSTRATION 3.5 Identify composition of tangency risky-security portfolio.

Using the problem information from Illustration 3.4, find the composition of risky asset
tangency portfolio. Then find the compositions of (a) the risk-minimizing portfolio with
a target return of 24%, and (b) the expected return-maximizing portfolio with a risk tol-
erance of 15%.

The risky asset tangency portfolio is denoted S in Figure 3.7 and consists only of
risky assets. To identify its composition, you must modify the objective function from
Illustration 3.4. In place of minimizing portfolio risk subject to a given level of expected
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return, you maximize the ratio of the expected excess portfolio return to the standard
deviation of portfolio return, that is,

The necessary modifications are shown in the following illustration. The tangency port-
folio has an expected return equal to 17.73% and a standard deviation of return equal to
17.90%. The weights invested in each of the risky assets are 0.017, 0.226, 0.487, and
0.270, and sum to one.

The next step in the portfolio allocation decision is compute the allocation between
the risk-free asset and the risky asset portfolio, S. You can achieve this by specifying a
target expected rate of return or a risk tolerance level. For a target expected return of
24%, for example, equation (3.7) says that

of your wealth should be allocated to risky portfolio S. In order to do this, of course, you
must borrow 49.3% of your wealth at the risk-free rate of interest. Risk tolerance is usu-
ally defined as the maximum risk that you are willing to undertake and is specified as a
standard deviation of return. For a risk tolerance of 15%, equation (3.8) says that

of your wealth should be allocated to risky portfolio S and 1 – 0.838 = 0.162 to risk-free
bonds.

The figure that follows summarizes the results. All portfolios that lie on the straight
line emanating from the risk-free rate of interest are efficient (i.e., maximize expected
return for a given level of risk and/or minimize risk for a given level of expected return.
All points on the line to the left of the point of tangency are lending portfolios in the
sense that a positive amount is invested in risk-free bonds and a positive amount in risky
portfolio S. The dot on the line immediately to the left of the tangency portfolio is the
portfolio with a risk tolerance of 15%. All points on the line to the right of the tangency
portfolio are borrowing portfolios in the sense that all initial wealth together with some
risk-free borrowings is invested in the tangency portfolio S. The dot immediately to the
right is the efficient portfolio with a target return of 24%. 
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FIGURE 3.7 Minimum variance frontier with risk-free borrowing and lending. 

CAPITAL ASSET PRICING MODEL

The capital asset pricing model (CAPM) specifies the formal relation between
the expected rate of a security and its risk. Sharpe (1964) and Lintner (1965)
independently developed this model by imposing two final assumptions on the
Markowitz (1952)/Tobin (1958) framework,6 that is, individuals share beliefs
about the expected returns, standard deviations (variances), and correlations
(covariances) of security returns, and individuals can all borrow and lend at the

6 Jack L. Treynor independently developed the CAPM in a working paper dated 1962. Unfor-
tunately, his paper was never published.
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same risk-free rate of interest. The CAPM has three main results: (1) the capital
market line, (2) the composition of the market portfolio, and (3) the security
market line. We develop each in turn.

Capital Market Line

The capital market line represents the relation between expected return and risk
for efficient portfolios. With common expectations regarding the expected
returns, standard deviations, and correlations for risky assets and with all indi-
viduals being able to borrow and lend at the same risk-free interest rate, all indi-
viduals have the same tangency portfolio S in the Tobin framework. Since S
must contain all risky assets in the economy, we relabel it M and call it the mar-
ket portfolio. According to the model, all individuals will hold the market port-
folio in combination with the risk-free asset. The relation between expected
return and risk for these efficient portfolios is

(3.11)

and is illustrated in Figure 3.8. An individual’s allocation between the market
portfolio and the risk-free asset will depend on his degree of risk aversion. A
risk minimizer will invest all of his wealth in the risk-free asset. A risk-averse
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individual will choose a portfolio that lies along the capital market line (3.11).
If his highest indifference curve is tangent to the left of M, the final portfolio
will be a lending portfolio—some wealth invested in M and some in the risk-free
asset. If it is tangent to the right of M, the individual not only has all of his
wealth in M, but has also borrows additional funds to invest in M.

Composition of the Market Portfolio

The allocation among risky securities in creating M can be established in a fairly
intuitive fashion. We know that, if the market is in equilibrium, the total
demand by individuals for risky asset i must equal total supply of asset i, that is, 

(3.12)

where k represents the kth individual, m represents the number of individuals in
the market,  is the proportion of k’s risky asset wealth, wk, invested in asset
i, and Vi is the market value of asset i. We also know that, in equilibrium, total
demand by individuals for risky assets must equal total supply, that is,

(3.13)

where n is the number of risky assets in the market, and VM is the market value
of all risky assets. Finally, we know from the work of Markowitz that the allo-
cation among risky securities in creating M (or any portfolio along the Markow-
itz efficiency frontier) is unique, that is, all investors allocate their risky asset
wealth in the same proportions, that is,  for all k. Thus, from (3.12)
and (3.13), we find that

(3.14)

for all risky assets. In other words, the optimal proportion of risky asset wealth
invested in risky asset i equals the market value of risky asset i divided by the
market value of all risky assets.

Security Market Line

The security market line represents the equilibrium expected return/risk relation
for risky assets. To identify this relation, we must identify asset i’s contribution
to the expected excess return and risk of the market portfolio. The market port-
folio expected excess return and risk are defined as
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(3.15)

and

(3.16)

The marginal contribution of asset i to the expected excess return of the market
portfolio is

(3.17)

and the marginal contribution of asset i to the risk of the market portfolio is

(3.18)

In equilibrium, all risky assets must have the same expected excess return/risk
tradeoff, therefore

(3.19)

The term on the right-hand side of (3.19) is often referred to as the market price
of risk.7 Rearranging, 

(3.20)

Equation (3.20) is called the security market line (SML). The SML represents
the equilibrium expected return/risk relation for all risky securities in the mar-
ketplace. This includes stocks, bonds, currencies, and commodities, as well as,
we shall see later, all types of derivative contracts. The three key results of the
CAPM are summarized in Table 3.1.

7 In a later chapter, we will rely on the concept of the market price of risk when we value op-
tions whose underlying asset is not actively traded.
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TABLE 3.1  Summary of three key results from the Sharpe (1964)/Lintner (1965) capital asset 
pricing model. 

ILLUSTRATION 3.6 Estimate total risk and relative systematic risk of individual stock.

Estimate the total risk and relative systematic risk of IBM’s stock using monthly stock
returns. The historical data are provided in the Excel file, IBM.xls. The file contains 60
months of returns for IBM, a value-weighted stock market index (i.e., a market portfolio
proxy), and one-month Eurodollar time deposits (i.e., the money market rate used as a
proxy for the risk-free rate of interest) over the past 60 months. Estimate the total risk
and relative systematic risk of the excess returns of IBM and the market portfolio over
the period January 2000 through December 2004.

To estimate total risk, we simply compute the standard deviations of the different
return series. This can be accomplished using the AVERAGE() and STDEV() functions in
Microsoft Excel as shown below. The total risk of IBM over the estimation period is
10.38%, compared with 4.92% for the market portfolio. These values are usually
reported on an annualized basis, which means we must multiply each by . On an
annualized basis, the values are 35.95% and 17.06%, respectively. Note that the stan-
dard deviations of the excess returns (i.e., monthly return less the money market rate) are
approximately the same at 10.37% and 4.95%, respectively. This result is expected since
the standard deviation (i.e., total risk) of the money market rate is near 0.

Capital market line (CML):

The CML is the relation between expected return and risk for efficient portfolios, that is, port-
folios with the highest level of expected return for a given level of risk or the lowest level of
risk for a given level of expected return.

 (3.11)

where r is the risk-free rate of return, EP and EM are the expected returns on efficient portfolio
P and the market portfolio M, respectively, and σP and σM are the standard deviation of the
rate of return of efficient portfolio P and the market portfolio M, respectively.

Composition of market portfolio:

 for all i (3.14)

where Xi is the proportion of risky security wealth invested in the market portfolio, and Vi
and VM are the market values of risky security i and the market portfolio, respectively.

Security market line (SML):

The SML is the relation between expected return and risk for all risky securities in the market.

(3.20)

where r is the risk-free rate of return, Ei and EM are the expected returns of risky security i
and the market portfolio M, respectively, and βi is the relative systematic risk (i.e., “beta”) of
risky security i.
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To estimate beta, we perform the regression,

where RIBM,t and RMarket,t are the daily returns for IBM and the market index. (Recall a
review of ordinary least squares (OLS) regression is provided in Appendix B of the
book.) To do so, we can use the OPTVAL function, 

OV_STAT_OLS_SIMPLE(y, x, intercept, out)

where y is dependent variable (i.e., the vector of IBM returns), x is the independent vari-
able, intercept is an indicator variable set equal to “Y” or “y” if the regression includes an
intercept and “N” or “n” if the regression does not include an intercept, and out is an
indicator variable set equal to “H” or “h” if the output array is to be returns horizontally
and “V” or “v” if the output array is to be returned vertically. To use the function, we
need to highlight five adjacent cells either horizontally or vertically, insert the function, fill
in the menu information, and then press the <Shift><Ctrl><Enter> keys simultaneously.
The output array contains five elements: the estimated intercept term, its t-ratio for the
null hypothesis that the intercept is 0, the estimated slope term (i.e., the “beta”), its t-ratio
for the null hypothesis that the slope is 0, and the R-squared of the regression. As shown
below, the estimated beta is 1.4421. The R-squared is 46.81%, which means that about
46.81% of IBM’s total risk is market-related and that about 53.19% is diversifiable.

The second line of the regression results corresponds to the regression using excess
returns, that is,

The estimated beta coefficient is virtually identical to the returns regression. This second
regression is preferred since, according to the security market line of the  CAPM, the
expected value of the intercept term equals 0. Thus, an intercept term significantly differ-
ent from 0 implies that the stock performed significantly better (worse) the expected
according to the CAPM. For the excess return regression the estimated intercept is
0.0049 and its t-ratio is 0.4950. That means that IBM performed better than expected
(0.0049 is positive), but that it is not significantly different than what was expected.

RIBM t, α βRMarket t, εt+ +=
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PORTFOLIO PERFORMANCE MEASUREMENT

One of the many useful applications of the CAPM is portfolio performance
measurement, that is, evaluating the historical performance of security portfo-
lios on a risk-adjusted basis. Sometimes this is done in the context of assessing
the performance of a fund manager. At other times, the measures are used to
choose among available funds. Whatever the application, the most commonly-
applied measures are shown in Table 3.2 and include the Sharpe (1966) ratio,
the Modigliani and Modigliani (1997) M-squared, the Treynor (1965) ratio, and
the Jensen (1968) alpha. In this section, we explain each in turn, showing that
each assumes that the market behaves as it should with the CAPM. We also
introduce a risk measure called semistandard deviation. 

Total Risk Performance Measures

Two of the four performance measures—the Sharpe ratio and the M2—are based
on the total risk of the portfolio being evaluated. To understand the linkage
between these measures and the CAPM, recall that, under the assumptions of
the CAPM, all individuals hold efficient portfolios (i.e., portfolios that have the
highest expected return for a given level of total risk). Recall also that all effi-
cient portfolios lie along the capital market line (3.11). 

The formula for computing the Sharpe ratio is given in Table 3.2. The nota-
tion on the right-hand side of the Sharpe ratio is different from the CAPM
because to measure performance we rely on realized (ex post) returns rather
than expected (ex ante) returns. Typically, monthly realized returns over the per-
formance evaluation period are used. The length of the evaluation period ranges
from as little as two years to more than a decade. It depends upon the objective.
The parameters in the formulas are estimated from historical returns over the
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evaluation period: , , and  are the mean monthly returns of a “risk-
free” money market instrument, the market, and the portfolio under consider-
ation over the evaluation period, and  and  are the standard deviations of
the returns (“total risk”) of the market and the portfolio. Now assume that the
portfolio P behaved exactly as predicted over the evaluation period (i.e., expec-
tations are realized). Under this assumption, the Sharpe ratio may be written

(3.21)

But according to the CML (3.11), the expected excess return per unit of total
risk for efficient portfolio P equals the expected excess return per unit of total
risk for the market portfolio M, and, with expectations being realized,

(3.22)

In other words, the benchmark realized return/total risk ratio is that of the mar-
ket portfolio, that is, the rightmost term in (3.22). If portfolio being evaluated
performed as expected under the CAPM, its realized return/total risk ratio
should be the same as the market portfolio,

TABLE 3.2  Summary of CAPM-based portfolio performance measures.  , , and  
are the mean returns of a “risk-free” money market instrument, the market, and the 
portfolio under consideration over the evaluation period,  and  are the standard 
deviations of the returns (“total risk”) of the market and the portfolio, and  is the 
portfolio’s systematic risk (“beta”).
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(3.23)

If, on the other hand, we were able to identify underpriced securities in the
selection of our portfolio and our portfolio outperformed the market, the port-
folio’s Sharpe ratio would exceed that of the market. 

The M2 measure of performance levers portfolio P in such a way that its
total risk equals that of the market portfolio, and then examines the difference
between the excess returns of the portfolio and the market. The term, ,
in the M2 formula shown in Table 3.2 is the degree of leverage. If the portfolio’s
total risk was below (above) the market’s during the evaluation period, the ratio
will exceed (be below) one and the excess return of the portfolios will be levered
up (down) in order to match the total risk of the market, that is,

With equal risk levels, we can compare the levered portfolio’s return with the
market return directly. Assuming the portfolio behaved as expected under the
CAPM and expectations were realized, the realized abnormal performance of
the portfolio, as measured by M2, is

(3.24)

Where M2 > 0, portfolio P outperformed the market on a risk-adjusted basis,
and vice versa.

Systematic Risk Performance Measures

The remaining two performance measures—the Treynor ratio and the Jensen
alpha—are based on systematic risk and are the counterparts to the Sharpe ratio
and M2, respectively. To understand the linkage between the systematic risk per-
formance measures, recall that, under the assumptions of the CAPM, all risky
securities lie along the security market line (3.20). Since a portfolio is nothing
more than a weighted combination of securities, it is also the case that portfo-
lios lie along the SML, that is, 

(3.25)

The formula for the Treynor ratio is given in Table 3.2. The portfolio’s real-
ized systematic risk or beta,  is estimated by an ordinary least squares, time-
series regression of the excess returns of the portfolio on the excess returns of
the market, that is,
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(3.26)

Like in the case of the Sharpe ratio, the realized excess return per unit of risk for
the portfolio should, in equilibrium, be equal to the excess return of the market
portfolio, however, since βM = 1, 

(3.27)

If a portfolio outperformed the market on a risk-adjusted basis, its Treynor ratio
will exceed the realized excess return of the market.

Jensen’s alpha is essentially the intercept term in a regression of the excess
returns of the portfolio on the excess returns of the market (3.26). If the market
behaves according to the CAPM and expectation are realized, 

(3.28)

If the estimated value of Jensen’s alpha, , is greater than zero, the portfolio
outperformed the market on a risk-adjusted basis.

Alternative Risk Measures

The performance measures in Table 3.2 are occasionally criticized because the
Sharpe (1964)/Lintner (1965) mean/variance capital asset pricing model assumes
investors measure total portfolio risk by the standard deviation of returns.
Among other things, this implies that investors view an unexpectedly large posi-
tive return with the same distaste as an unexpectedly large negative return. Com-
mon sense dictates otherwise. Investors are willing to pay for the chance of a
large positive return (i.e., positive skewness) holding other factors constant, but
will want to be paid for taking on negative skewness. Since the standard perfor-
mance measures do not recognize these premiums/discounts, portfolios with pos-
itive skewness will appear to underperform the market on a risk-adjusted basis,
and portfolios with negative skewness will appear to overperform.

Ironically, while the Sharpe/Linter CAPM is based on the mean/variance
portfolio theory of Markowitz (1952), it was Markowitz (1959) who first noted
that using standard deviation to measure risk is too conservative since it regards
all extreme returns, positive or negative, as undesirable. Markowitz (1959, Ch.
9) advocates the use of semivariance or semistandard deviation as a total risk
measure.8 To understand the relation between standard deviation and semistan-
dard deviation, begin with total risk as measured traditionally using the standard
deviation of excess returns, that is,

8 Indeed, in his Nobel Prize acceptance speech, the Markowitz (1991) continues to argue semi-
variance seems more plausible than variance as a measure of risk.
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(3.29)

where k is the mean realized excess return.9 With no loss of generality, we can
write (3.29) as

(3.30)

Under the square root sign, we now have two terms. The first is the sum of the
squared deviations when the excess return is below k and the second is the sum of
the squared deviations when the excess return is above k.  Suppose we are willing to
conjecture that individuals care about risk only to the extent that their risky asset
portfolio does not produce a rate of return as high as the risk-free rate of return. To
create such a risk measure, we set k = 0 and drop the second term under the square
root sign. In the context of performance measurement, semistandard deviation can
be defined as the square root of the average of the squared deviations from the risk-
free rate of interest, where positive deviations are set equal to zero, that is,

(3.31)

where i = M,P. Returns on risky assets, when they exceed the risk-free rate of
interest, do not affect risk. To account for possible asymmetry of the portfolio
return distribution, we recompute the total risk portfolio performance measures
(1) and (2) using the estimated semideviations of the returns of the market and
the portfolio are inserted for  and .10 

The systematic risk-based portfolio performance measures (3) and (4) also
have theoretical counterparts in a semivariance framework. The only difference
lies in the estimate of systematic risk. To estimate the beta, a time-series regres-
sion through the origin is performed using the excess return series of the market
and the portfolio. Where excess returns are positive, they are replaced with a
zero value. The time-series regression specification is

   (3.32)

9  Technically speaking, the denominator should be T – 1 since we use up a degree of freedom
when we estimate the mean excess return.
10  The ratio of realized excess return relative to the semistandard deviation of return is com-
monly referred to as the Sortino ratio. See Sortino and Van der Meer (1991).
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ILLUSTRATION 3.7 Estimate performance of CBOE’s buy-write index portfolio (BXM).

The Excel file, Performance measurement.xls, contains monthly returns of the CBOE’s
BXM index, the S&P 500 index (i.e., the “market” index), and a 30-day money market
instrument (i.e., 30-day Eurodollar time deposits) for the period January 1996 through
December 2004. Based on the monthly returns, compute the performance of the BXM
portfolio, and comment on the results.

The usual way to compute the performance measures is to compute the mean and
standard deviation (and semistandard deviation) of the monthly (excess) return series as
well as each series “beta” and then substitute the estimated parameters in the formulas
reported in Table 3.2.

The first step is to compute the means and standard deviations of the return vari-
ables. The second step is to estimate the beta of the BXM using OLS regression. The
results are as follows:

The results are interesting in a number of respects. First, note that the mean monthly
returns of the BXM and the S&P 500 are virtually identical—0.872% versus 0.873%—
while the standard deviation of return for the BXM is about 2/3 of the S&P 500—3.311%
versus 4.703%. This is the first indication that the BXM outperformed the market during
the evaluation period. Second, note that the return regression produces virtually the same
beta as the excess regression. This is, again, a reflection of the fact that the variance of the
money market rate (i.e., the proxy for the risk-free rate) is small in relation to the variances
of the BXM and the S&P 500 returns. Finally, all four performance measures indicate that
the BXM outperformed the market on a risk-adjusted basis during the evaluation period,
January 1996 through December 2004. The Sharpe ratio of the BXM is computed as the
realized excess return on the BXM divided by its standard deviation. To evaluate perfor-
mance, we must also compute the Sharpe ratio for the market portfolio. Since 0.16002
exceeds 0.11293, the BXM outperformed the market. The M2 is 0.221%, which means that
the BXM outperformed the market portfolio by 0.221% or 22 basis points per month. For
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this measure, as well as the Jensen alpha, no benchmark measure is necessary since they
market performance is implicitly incorporated. The Treynor ratio as well as Jensen’s alpha
also show that the BXM produced a higher than expected return on a risk-adjusted basis.

Preprogrammed functions for the performance measures are also included in the
OPTVAL Function Library. The syntax for the Sharpe Ratio function call, for example, is

OV_PERF_SR(RetP, RetF, Measure)

where RetP is the vector of portfolio returns whose performance is to be evaluated, RetF is
the vector of money market rates, and Measure is an indicator variable whose value is 0 for
total risk measured using the standard deviation of return and 1 for total risk measured as
semistandard deviation. The panel below illustrates. The remaining function calls are:

OV_PERF_M2(RetP, RetM, RetF, Measure)
OV_PERF_TR(RetP ,RetM, RetF, Measure)
OV_PERF_JA(RetP, RetM, RetF, Measure) 

where RetM is the vector of market returns and the remaining terms are defined as
before.

The performance results for the BXM and S&P 500 portfolios computed using the
appropriate OPTVAL functions are as shown above. The numerical values under the col-
umn heading “Mean-stddev” are exactly the same as those computed by hand. The val-
ues under the column heading “Mean-semi-stddev” also show that the BXM performed
better than the market on a risk-adjusted basis, however, the performance is not as high
under the mean/semistandard deviation framework as the CAPM’s mean/standard devia-
tion framework. The reason is simple. The returns of the BXM (the lighter shaded bars)
are more negatively skewed than those of the market (the darker shaded bars). Since the
semistandard deviation focuses only on returns below the risk-free interest rate, the neg-
ative skewness relative to the market results in lower performance measures. A histogram
of the BXM and S&P 500 returns over the evaluation period are shown below. But even
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after extracting a penalty for negative skewness, the BXM strategy appears to outper-
form the market (as proxied by the S&P 500 index portfolio).

SUMMARY

Effective risk management requires a thorough understanding of the tradeoff
between expected return and risk. This chapter reviews expected return/risk
mechanics. A risky security is characterized by its expected return, standard
deviations of return, and the correlations of its returns with all other securities
in the marketplace. Given this characterization, we show how a risk-averse indi-
vidual allocates his wealth among securities under a variety of scenarios and
constraints. Individual security demands are then aggregated across all individu-
als in the marketplace to create a market portfolio. The marginal contribution
of each security to the expected excess return and risk of the market portfolio
identifies the equilibrium expected return/risk relation for risky securities. The
expected return/risk relations, known collectively as the capital asset pricing
model, will be used again and again throughout the chapters of this book, as it
guides us in analyzing and designing risk management strategies. We apply the
relations in this chapter to examine historical portfolio performance. 
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CHAPTER

 

4

 

No-Arbitrage Price Relations:
Forwards, Futures, Swaps

 

n Chapter 1, we described the nature of exchange-traded and OTC derivatives
contracts traded worldwide. Of these, the lion’s share is plain-vanilla forwards,

futures, and swaps. The purpose of this chapter is to develop no-arbitrage price
relations for forward, futures, and swap contracts. In doing so, we rely only on
the assumption that two perfect substitutes 

 

must

 

 have the same price. The two
substitutes, in this case, are a forward/futures contract and a levered position in
the underlying asset. The key to understanding the forward/futures valuation lies
in identifying the net cost of carrying (i.e., “buying and holding”) an asset. We
begin therefore with a discussion of carry costs/benefits. We then proceed by
developing a number of important no-arbitrage relations governing forward and
futures prices. Finally, we show that, since a swap contract is an exchange of
future payments at a price agreed upon today, it can be valued as a portfolio of
forward contracts. The chapter concludes with a brief summary. 

 

UNDERSTANDING CARRY COSTS/BENEFITS

 

Derivative contracts are written on four types of assets—stocks, bonds, foreign
currencies and commodities. The derivatives literature contains seemingly inde-
pendent developments of derivative valuation principles for each type of asset.
Generally speaking, however, the valuation principles are not asset-specific. The
only distinction among assets is how carry costs/benefits are modeled.

 The 

 

net cost of carry

 

 refers to the difference between the costs and the bene-
fits of holding an asset. Suppose a breakfast cereal producer needs 5,000 bushels
of wheat for processing in two months. To lock in the price of the wheat today,
he can buy it and carry it for two months. One carry cost common to all assets is
the opportunity cost of funds. To come up with the purchase price, he must
either borrow money or liquidate existing interest-bearing assets. In either case,
an interest cost is incurred. We assume this cost is incurred at the risk-free rate of
interest. Beyond interest cost, however, carry costs vary depending upon the
nature of the asset. For a 

 

physical asset

 

 or 

 

commodity

 

 such as wheat, we incur

I
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storage costs (e.g., rent and insurance). At the same time, certain benefits may
accrue. By storing wheat we may avoid some costs of possible running out of our
regular inventory before two months are up and having to pay extra for emer-
gency deliveries. This is called 

 

convenience yield

 

. Thus, the net cost of carry for a
commodity equals interest cost plus storage costs less convenience yield, that is,

Net carry cost = Cost of funds + Storage cost – Convenience yield (4.1a)

For a 

 

financial asset

 

 or 

 

security

 

 such as a stock or a bond, the carry costs/bene-
fits are different. While borrowing costs remain, securities do not require stor-
age costs and do not have convenience yields. What they do have, however, is
income (yield) that accrues in the form of quarterly cash dividends or semian-
nual coupon payments. Thus, the net cost of carry for a security is 

Net carry cost = Cost of funds – Income (4.1b)

Carry costs and benefits are modeled either as continuous rates or as discrete
flows. Some costs/benefits such as the cost of funds (i.e., the risk-free interest rate)
are best modeled as continuous rates. The dividend yield on a broadly based stock
portfolio, the interest income on a foreign currency deposit, and the lease rate on
gold also fall into this category. Other costs/benefits such as warehouse rent pay-
ments for holding an inventory of grain, quarterly cash dividends on individual
common stocks, and semiannual coupon receipts on a bond are best modeled as
discrete cash flows. Below we provide the continuous rate and discrete flow cost
of carry assumptions. For ease of exposition, we first introduce some notation.
The current price of the asset is denoted 

 

S

 

. Its price at future time 

 

T

 

 is , where
the tilde denotes the future asset price is uncertain. The opportunity cost of funds
(i.e., the risk-free rate of interest) is assumed to be a constant, continuous rate and
is denoted 

 

r

 

. If we borrow to buy the asset today, we will owe 

 

Se

 

rT

 

 at time 

 

T

 

. 

 

Continuous Rates

 

The types of assets whose carry costs are typically modeled as constant, continu-
ous rates include broadly based stock index portfolios, foreign currencies, and
gold. Assume that we borrow at the risk-free rate of interest to buy a stock index
portfolio that pays cash dividends at a constant continuous rate 

 

i

 

. If we buy one
unit of the index today and reinvest all dividends immediately as they are
received in more shares of the index portfolio, the number of units of the index
portfolio will grow to exactly 

 

e

 

iT

 

 units at time 

 

T

 

. Alternatively, if we want exactly
one unit of the index on hand at time 

 

T

 

, we buy only 

 

e

 

–

 

iT

 

 units today at a cost of

 

Se

 

–

 

iT

 

. The terminal value of our investment in the index portfolio at time 

 

T

 

 will be
.

 

1

 

 The loan value has accrued from 

 

Se

 

–

 

iT

 

 to 

 

Se

 

–

 

iT

 

e

 

rT

 

 = 

 

Se

 

(

 

r 

 

– 

 

i

 

)

 

T

 

. After repaying the
loan, the terminal portfolio value will be . Within this continuous rate
framework, the net cost of carry rate of an index portfolio equals the difference
between the risk-free rate of interest 

 

r

 

 and the dividend yield rate 

 

i

 

. The situation
for a foreign currency is identical. If we borrow at the domestic risk-free rate,
buy a foreign currency, and then invest the currency at the prevailing foreign
risk-free rate, the net cost of carry rate equals the difference between the domes-

S̃T

S̃T
S̃T Se r i–( )T

–
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tic interest rate 

 

r

 

 and the foreign interest rate 

 

i

 

. Similarly, if we borrow at the
risk-free rate, buy gold, and then lend it in the marketplace, the net cost of carry
rate equals the difference between the interest rate 

 

r

 

 and the lease rate on gold 

 

i

 

.
Within this framework, the total cost of carry paid at time 

 

T

 

 is

(4.2)

 

ILLUSTRATION 4.1

 

Lock in number of units of stock index portfolio in future.

 

Assume that the S&P 500 index is currently at a level of 1,100 and pays dividends at the
continuous rate of 3% annually. Assume also that “shares” of the S&P 500 index can be
purchased and sold at the index level (i.e., one share currently costs $1,100). Suppose
that you want exactly 3,000 shares of the S&P 500 index on hand in five days. How
many shares of the S&P 500 index must you buy today if all dividends paid are rein-
vested in more shares of the index portfolio? Demonstrate that you will have exactly
3,000 shares at the end of five days, assuming that the S&P 500 index levels are 1,100,
1,160, 1,154, 1,145, 1,170, and 1,175 on days 0 through 5, respectively. Compute the
total amount of dividends paid and reinvested.

 

If you want 3,000 shares of the index on hand at in five days, you need to buy
3,000

 

e

 

–0.03(5/365)

 

 = 2,998.77 shares today. Over the first day, your number of shares will
grow by a factor 

 

e

 

0.03(1/365)

 

 due to the reinvestment of dividends, bringing the number of
shares to 2,998.77

 

e

 

0.03(1/365)

 

 = 2,999.01. Over the second day, your number of shares will
again grow by a factor 

 

e

 

0.03(1/365)

 

 due to the reinvestment of dividends, bringing the num-
ber of shares to 2,999.26. Since the dividends are being paid at a constant, continuous rate,
we know the original number of shares purchased will grow to exactly 3,000 shares by the
end of day 5 (i.e., 3,000

 

e

 

0.03(5/365)

 

e

 

–0.03(5)(1/365)

 

 = 3,000), as is shown in the table below. 

 

Discrete Flows

 

For most other types of assets including stocks with quarterly cash dividends and
bonds with semiannual coupon payments, noninterest carry costs/benefits are best
modeled as discrete flows. Suppose a stock promises to pay 

 

n

 

 known cash dividends

 

1 

 

This result is demonstrated numerically using simulation in the Excel file, 

 

Telescoping asset
position.xls

 

. In the file’s worksheet, the (random) price path of an asset over a 10-day period
is considered. If the position starts with 

 

e

 

–

 

iT

 

 units on day 0 and increases by a factor of 

 

e

 

i

 

 each
day due to reinvestment of income, exactly one unit will be on hand at the end of day 10.
Pressing the F9 key generates a new asset price path. As you will see, independent of the price
path, the number of units on day 10, is 1.

 

Day Index Level Units of Index Value of Index Position

 

0 1,100.00 2,998.77 3,298,644
1 1,160.00 2,999.01 3,478,856
2 1,154.00 2,999.26 3,461,146
3 1,145.00 2,999.51 3,434,435
4 1,170.00 2,999.75 3,509,712
5 1,175.00 3,000.00 3,525,000

Net carry costT S e r i–( )T 1–[ ]=
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in the amount 

 

I

 

i

 

 at time 

 

t

 

i

 

, 

 

i

 

 = 1, . . ., 

 

n

 

 between now and future time 

 

T

 

. If we borrow

 

S

 

 to cover the purchase price of the stock and reinvest all cash dividends as they are
received at the risk-free rate of interest, the terminal value of our position will be

In this instance, the net cost of carry at time 

 

T

 

 is 

(4.3)

For coupon-bearing bonds, the expressions are the same, however 

 

S

 

 denotes the
bond price and 

 

I

 

i

 

 at time 

 

t

 

i

 

, 

 

i

 

 = 1, . . ., 

 

n

 

 denote coupon payments.

 

ILLUSTRATION 4.2

 

Compute future value of asset that pays discrete cash flow.

 

Suppose that you buy 10,000 shares of ABC Corporation and carry your position for 90
days. ABC’s current share price is $50, and the stock promises to pay a $4 dividend in
exactly 30 days. What will be the value of your portfolio when you unwind in 90 days?
Assume the risk-free rate of interest is 5%. 

 

As the table below shows, the initial investment in 10,000 shares of ABC costs
$500,000. You financed the entire purchase price with risk-free borrowings, hence your ini-
tial investment is $0. In 90 days, you have three components to your portfolio. First, you
own 10,000 shares valued at  a share. Next, you must repay the $500,000 in risk-free
borrowings plus interest at a cost of $506,202.54. Finally, you received cash dividends of $4
a share or $40,000 on day 30, which you invested immediately in risk-free discount bonds.
Dividends plus accrued interest amount to $40,330.12 on day 

 

T

 

. Thus, the total value of the
portfolio in 90 days is 10,000  – 506,202.54 + 40,330.12.

 

Summary and Some Guidelines

 

Carry costs/benefits are the known costs/benefits associated with holding an
asset over a fixed period of time. In general, they consist of two components—
(1) interest and (2) income (in the case of a financial asset) or storage (in the

 

Trade
Initial

Investment Value on Day 

 

T

 

Buy stock  –50(10,000)  
Borrow funds 500,000 –500,000

 

e

 

0.05(90/365)

 

 = –506,202.54
Receive cash dividends on day 

 

t

 

, 
and reinvest at risk-free rate 
until day 

 

T

 

 40,000

 

e

 

0.05(60/365)

 

 = 40,330.12

Value of position 0  

S̃T Iie
r T ti–( )

SerT
–

i 1=

n

∑+

Net carry costT S erT 1–( ) Iie
r T ti–( )

i 1=

n

∑–=

S̃T

S̃T

10,000S̃T

10,000S̃T 506,202.54 40,330.12+–
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case of a physical asset). The interest component is always expressed as a rate. If
we buy an asset today with borrowed funds, we will owe erT per unit of the asset
on day T. Income and noninterest costs are expressed either as a continuous pro-
portion of the asset price or as discrete cash flows, depending upon the nature of
the underlying asset. Firms potentially have four different sources of price risk—
equity risk, interest rate risk, foreign exchange risk, and commodity price risk.
Table 4.1 presents terminal values of leveraged asset positions using the net cost
of carry assumption appropriate to each asset category.

VALUING FORWARDS

With the concept of net cost of carry in hand, we now turn to valuing forward
contracts. A forward is a contract that requires its seller to deliver the underly-
ing asset on future day T at price agreed upon today. We denote today’s forward
price as f. Its price on day T is denoted . A forward with no time remaining to
expiration must have the same price as the underlying asset, that is,  as
shown in Figure 4.1. Otherwise, a costless arbitrage profit is possible by buying
the asset and selling the forward, or vice versa. The purpose of this section is to
derive the value of a forward contract relative to its underlying asset price prior
to time T under the continuous and discrete net carry cost assumptions.

Continuous Rates

To establish the price of a forward today, consider a U.S. corporation that needs to
make a EUR 1,000,000 payment in T days and wants to lock in the U.S. dollar
value of this payment today. The firm can accomplish this goal in two ways. First, it

f̃ T
f̃T S̃T=

FIGURE 4.1 Price paths of forward contract and its underlying asset through time. Price con-
vergence occurs at expiration. 

Price

0 Time

Forward

Asset

Convergence at expiration, fT = ST
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can borrow U.S. dollars and buy euros today at the spot exchange rate S, and then
carry the position for T days. To have one euro on hand in T days, they need to buy
e–iT units today where i is the risk-free interest rate in Europe. To finance the entire
purchase today, they need to borrow Se–iT. The repayment of the loan will occur in
T days, and the principal plus interest will amount to Se–iTerT per euro where r is
the U.S. risk-free interest rate. Second, it can negotiate the price of a T-day forward
contract with its bank. Under the terms of the forward contract, the firm will buy
1,000,000 euros in T days at a cost of f per euro. No money changes hands today.
In making its decision about which strategy to take, the firm will compare the for-
ward price with the future value had the euros been purchased today and carried
until day T. If f exceeds Se(r – i)T, the firm will buy the euros in the spot market and
carry them. If f is less than Se(r – i)T, the firm will buy the forward contract. Both
alternatives provide the firm with EUR 1,000,000 in T days at a price locked in
today. Since they are perfect substitutes, they must have the same price. The value
of a forward in a constant continuous net cost of carry framework is

(4.4)

The relation (4.4) is sometimes called the net cost of carry relation. When the
prices of the forward and the asset are such that (4.4) holds exactly, the forward
market is said to be at full carry. Unless costless arbitrage is somehow impeded,
we can be assured that the forward market will always be at full carry. Suppose,
for an instant in time, f > Se(r – i)T. Such a condition implies that there is a costless
arbitrage opportunity. We should immediately sell the forward and buy the asset,
financing the purchase of the asset with risk-free borrowing. Table 4.2 shows the
outcome. With no investment today, we earn a certain outcome of f – Se(r – i)T > 0
on day T. Naturally, the market cannot be in equilibrium. The costless arbitrage
activity would continue until the selling pressure on the forward price and the
buying pressure on the asset price makes the arbitrage profit equal to 0. Where
no arbitrage opportunity exists, the cost of carry relation (4.4) holds.

The net cost of carry relation (4.4) is written in future value form, since
both sides of the equation are values on day T, as shown in Table 4.2. The rela-
tion can also be expressed in present value form. Multiplying both sides of (4.4)
by the discount factor e–rT, we get 

fe–rT = Se–iT (4.5)

What (4.5) says is that the prepaid forward contract, fe–rT, equals the initial cost
of the asset position, Se–iT.

TABLE 4.2  Costless arbitrage trades where f > Se(r – i)T.

Trades Initial Investment Value on Day T

Buy e–iT units of asset  –Se–iT  
Borrow (sell risk-free bonds)   Se–iT  –Se(r – i)T

Sell forward contract  

Net portfolio value 0  f – Se(r – i)T

f Se r i–( )T
=

S̃T

S̃T f–( )–
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Discrete Flows 

In the event that income or noninterest carry costs are more appropriately mod-
eled as discrete cash flows, the net cost of carry relation is 

(4.6)

where FVI is the future value of the promised income receipts. If the underlying asset
is a physical asset, the future value of the income, FVI, may be negative as a result of
storage cost payments. The relation can also be written in its present value form,

(4.7)

where PVI is the present value of the promised income receipts, that is, PVI =
FVIe–rT. The prepaid forward price equals S – PVI, where the underlying asset
distributes discrete known cash flows through time.

ILLUSTRATION 4.3 Compute value of forward contract on dividend-paying stock.

Compute the value of a six-month forward contract on 3,000 shares of HAL Company
assuming that the current share price is $120 and that a $3 cash dividend will be paid in
two months and then again in five months. Assume the risk-free rate of interest is 5%. 

Since the cash dividend payments are discrete cash inflows, the cost of carry relation
(4.2) is the most appropriate. The future value of the first dividend payment is 3e0.05(4/12)

and the future value of the second dividend is 3e0.05(1/12). The future value of all income
received during the forward contract’s life is therefore 

FVI = 3e0.05(4/12) + 3e0.05(1/12) = 6.06

The value of the forward contract is therefore

f = 120e0.05(6/12) – 6.06 = 116.97 per share

or $350,910 in total. This computation can be verified using the OPTVAL function, 

OV_FORWARD_VALUE_DISCRETE(s, r, t, income, term, fp)

where s is the asset price, r is the risk-free rate of interest, t is the time to expiration of
the forward, income is a vector of cash income receipts received during the life of the for-
ward, term is a vector of the times to receipt of each of the income receipts, and fp is a
indicator variable instructing the function to return the forward/futures price (“f” or
“F”) or the prepaid forward/futures price (“p” or “P”). The worksheet below illustrates.

f SerT FVI–=

fe rT– S PVI–=
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TABLE 4.3  Hedging a stock portfolio using a forward contract.

Hedging with Forwards

Before turning to futures contract valuation, it is worth considering the no-arbi-
trage portfolio in Table 4.2 more closely. It contains important intuition regard-
ing hedging risk. Suppose that we hold a stock portfolio and fear that the
market will decline over the next few months. To avoid the risk of a stock mar-
ket decline, we can sell our stocks and buy risk-free bonds. Alternatively, we can
sell a forward contract on our stock portfolio. These alternatives are perfect
substitutes.

To see this, assume that our portfolio is sufficiently broad-based that it is
reasonable to assume that the dividend yield is a constant continuous rate, i. If
all dividend income is invested in more units of the stock portfolio, one unit in
the stock portfolio today will grow to eiT units on day T, as we discussed earlier
and illustrated in Table 4.3. To hedge the price risk exposure of eiT units of the
stock portfolio on day T, we need to sell eiT forward contracts today. The value of this
forward position will be  on day T. Once the positions are netted, the
terminal value of the portfolio is feiT. Note that the value is certain. The forward
price, the dividend yield rate, and the hedge period horizon (i.e., the life of the
forward contract) are all known on day 0. To see that the return on the hedged
portfolio equals the risk-free return, substitute the net cost of carry relation, f =
Se(r – i)T, in the expression for the terminal value of the portfolio in Table 4.3.
The net terminal value is feiT = Se(r – i)TeiT = SerT, exactly the amount we would
have had if the stock portfolio had been liquidated and invested in risk-free
bonds at the outset. 

Summary

A long forward position is a perfect substitute for buying the asset using risk-
free borrowings. Consequently, the price of a forward equals the price of the
asset plus net carry costs. But, this is only one possible combination of positions
in the asset, the forward, and risk-free bonds. Table 4.4 shows all possible pair-
ings. Using the net cost of carry relation, we can demonstrate why Position 1 is a
perfect substitute for Position 2 in all six rows of the table. A full understanding
of each relation will prove invaluable in understanding the valuation and risk
management problems that are addressed in subsequent chapters of the book.

Trades Initial Investment Value on Day T

Own stock portfolio. Reinvest all dividend income 
into more shares of stocks.

 –S  

Sell e–iT forward contract   0  

Net portfolio value   0  feiT

S̃TeiT

S̃T f–( )– eiT

S̃T f–( )– eiT
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TABLE 4.4  Perfect substitutes implied by the net cost of carry relation.  

TABLE 4.5  Cash flows of long futures positions through time. 

VALUING FUTURES 

Futures contracts are like forward contracts, except that price movements are
marked-to-market each day rather than waiting until contract expiration and
having a single, once-and-for-all settlement. If the marking-to-market produces
a gain during the futures contract’s life, the gain can be reinvested in interest-
bearing securities. Conversely, if the marking-to-market produces a loss, the loss
must be covered with either existing interest-bearing assets or borrowing at the
risk-free interest rate. 

To distinguish between buying a forward and buying a futures, consider the
futures position cash flows shown in Table 4.5. As we discussed earlier, a for-
ward contract purchased today has a value  on day T. In contrast, a
futures contract is marked to market each day, and the daily gains/losses gather
interest. If risk-free rate of interest is 0%, the terminal value of the futures posi-
tion (i.e., the sum of the mark-to-market gain/loss column) is the same as the
terminal value of the forward position. If risk-free rate of interest is greater than
0%, however, the value of the futures position on day T may be greater or less

Position 1 Position 2

Buy asset/sell forward = Buy risk-free bonds (lend)
Buy risk-free bonds (lend)/buy forward = Buy asset
Buy asset/sell risk-free bonds (borrow) = Buy forward

Sell asset/buy forward = Sell risk-free bonds (borrow)
Sell risk-free bonds (borrow)/sell forward = Sell asset
Sell asset/buy risk-free bonds (lend) = Sell forward

Day t
Futures
Price

Mark-to-Market
Gain/Loss on Day t

Value of Gain/Loss
on Day T

0 F
1
2
… …
t

… …
T – 1

T 

Total

F̃1 F̃1 F– F̃1 F–( )er T 1–( )

F̃2 F̃2 F̃1– F̃2 F̃1–( )er T 2–( )

F̃t F̃t F̃t 1–– F̃t F̃t 1––( )er T t–( )

F̃T 1– F̃T 1– F̃T 2–– F̃T 1– F̃T 2––( )er

F̃T F̃T F̃T 1–– F̃T F̃T 1––

F̃2 F̃1–
F̃t F̃t 1––( )er T t–( )

t 1=

T

∑

S̃T f–
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than the terminal value of the forward position, depending on the path that
futures prices follow over the life of the contract.

ILLUSTRATION 4.4 Compare terminal values of long forward and long futures positions.

Suppose that you need £1,000,000 in three days and want to lock in the price today. Suppose
also that a three-day forward contract on British pounds is priced at $1.60 per pound and
that a British pound futures contract with three days remaining to expiration also has a price
of $1.60. Compare the terminal values of a long forward position with a long futures posi-
tion at the end of three days assuming the domestic risk-free rate is 5%. Assume that the
futures prices over the next three days are $1.71, $1.67, and $1.70, respectively. 

The terminal value of a long forward position is simply the exchange rate on day 3,
$1.70, less the forward price, $1.60, times one million, $100,000, exactly equal to the sum of
the mark-to-market gains/losses on the long futures position. The terminal value of the long
futures position when the mark-to-market gains/losses are invested/financed at the risk-free
rate of interest, however, is $100,024.66, as is shown in the table below. In general, the ter-
minal value of a long forward and a long futures will be different.

The reason that the terminal values are different is that the terminal value of the futures
position depends on how the futures price evolves through time. Other futures price paths will
produce different terminal values. If, for example, the futures price had been $1.51 on day 1
rather than $1.71, the terminal value of the futures position would have been $99,997.26,
below (not above) the $100,000 terminal value of the long forward.

Telescoping Futures Position

Interestingly, the fact that a long forward position does not have the same termi-
nal value of a long futures position does not imply that the forward and futures
prices are different. Indeed, as we will show shortly, they are equal. We can con-
trol the effect of the reinvestment of the mark-to-market proceeds by creating a
“telescoping futures position.” 

A telescoping futures position is created as follows. We begin, on day 0, with
e–rT futures contracts. Since we enter the position at the close of day 0, the
marked-to-market gain for the day is 0. In preparation for day 1, we increase the
size of the futures position by a factor er. At the end of day 1, the futures position
is marked-to-market, generating proceeds of e–r(T – 1) . If this gain/loss is
carried forward at the risk-free interest rate until day T, the terminal gain/loss will
be e–r(T – 1) er(T – 1) = , as shown in Table 4.6. On day 2, the position
is again increased by a factor er and is marked-to-market at e–r(T – 2) . Car-

Day t
Futures
Price

Mark-to-Market
Gain/Loss on day t

Value of Gain/Loss 
on Day T

0 1.60
1 1.71 110,000.00 110,030.14
2 1.67 –40,000.00 –40,005.48
3 1.70   30,000.00   30,000.00

Total 100,000.00 100,024.66

F̃1 F–( )

F̃1 F–( ) F̃1 F–
F̃2 F̃1–( )
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rying this amount forward to day T, we have e–r(T – 2) er(T – 2) = ,
and so on. Because the number of futures is chosen to exactly offset the accumu-
lated interest factor on the daily mark-to-market gain/loss, there will be exactly
one futures contract on hand on day T, and the value of the futures position will
be ST – F. Assuming that the futures and forward contracts expire at the same
time, the telescoping futures position will have exactly the same terminal value as
the long forward position.2 

ILLUSTRATION 4.5 Compare terminal values of long forward and long telescoping futures 
positions.

Suppose that you need £1,000,000 in three days and want to lock in the price today. Sup-
pose also that a three-day forward contract on British pounds is priced at $1.60 per
pound and that a British pound futures contract with three days remaining to expiration
also has a price of $1.60. Compare the terminal values of a long forward position with a
long telescoping futures position at the end of three days assuming the domestic risk-free
interest rate is 5%. Assume that the futures prices over the next three days are $1.71,
$1.67, and $1.70, respectively. 

As in the case of Illustration 4.4, the terminal value of a long forward position is the
exchange rate on day 3, $1.70 less the forward price, $1.60, times on million, or
$100,000. Because the initial futures position has less than 1 million units, the total of
the mark-to-market gains/losses column is less than $100,000. The terminal value of the

2 This result is demonstrated numerically using simulation in the Excel file, Telescoping futures
position.xls. In the file’s worksheet, 10-day forward and futures positions are considered.
Pressing the F9 key generates new price paths for the asset and forward/futures over the life of
the contracts. Independent of the price path, the gain/loss on the forward position over the 10-
day life of the contract is identically equal to the gain/loss on telescoping futures position.

TABLE 4.6  Cash flows of telescoping futures position providing same terminal value as 
forward position on day T. 

Day t
Futures
Price

No. of Futures
Contracts

Mark-to-Market
Gain/Loss on Day t

Value of Gain/Loss 
on Day T

0 F e–rT

1 e–r(T – 1)

2 e–r(T – 2)

… …
t e–r(T – t)

… …
T – 1 e–r

T 1

Total

F̃1 e r– T 1–( ) F̃1 F–( ) e r– T 1–( ) F̃1 F–( )er T 1–( )

F̃1 F–( )=

F̃2 e r– T 2–( ) F̃2 F̃1–( ) F̃2 F̃1–

F̃t e r– T t–( ) F̃t F̃t 1––( ) F̃t F̃t 1––

F̃T 1– e r– F̃T 1– F̃T 2––( ) F̃T 1– F̃T 2––

F̃T F̃T F̃T 1–– F̃T F̃T 1––

F̃T F– S̃T F–=

F̃2 F̃1–( ) F̃2 F̃1–( )



No-Arbitrage Price Relations: Forwards, Futures, Swaps 133

telescoping futures position when the mark-to-market gains/losses are invested/financed
at the risk-free rate of interest is exactly $100,000, as is shown in the table below. The
dynamic rebalancing of the futures position within the telescoping strategy assures that
the outcome is exactly the same as a long forward position.

Equivalence of Forward and Futures Prices

The fact that a long telescoping futures position has a terminal value of 
and that a long forward position has a terminal value of  implies that the
futures price and forward price must be equal to each other.3 If they are not, a
costless arbitrage profit would be possible by selling the forward and entering a
long telescoping position in the futures (if f > F) or by buying the forward and
entering a short telescoping position in the futures (if f < F). Given the equiva-
lence of forward and futures prices, the valuation equations for a futures con-
tract are the same as those of the forward, that is,

(4.8)

if all carry costs are constant continuous rates, and 

(4.9)

if noninterest carry costs are discrete. 

ILLUSTRATION 4.6  Short sell stock synthetically using stock futures.

Retail investors in the U.S. often find it costly to short sell shares of common stock. Con-
sequently, stocks futures were recently launched. Assume that you want to short sell a
particular stock over the next T days. Its current share price is S, and a cash dividend of
D has been declared and will be paid in t days. Prove that selling a telescoping position in
share futures is equivalent to short selling the stock.

Day
Futures
Price

Number
of Units

Mark-to-Market
Gain/Loss on Day t

Value of Gain/Loss
on Day T

0 1.60
1 1.71    999,726.06 109,969.87 110,000.00
2 1.67    999,863.02 –39,994.52 –40,000.00
3 1.70 1,000,000.00   30,000.00   30,000.00

Total   99,975.35 100,000.00

3 Cox, Ingersoll, and Ross (1981) use no-arbitrage arguments to demonstrate the equivalence
of forward and futures prices when future interest rates are known. They go on to show, how-
ever, that if interest rates are uncertain, the futures price will be greater than or less than the
forward price, depending upon whether the correlation between futures price changes and in-
terest rate changes is negative or positive. See also Jarrow and Oldfield (1981).

S̃T F–
S̃T F–

F f Se r i–( )T
= =

F f SerT FVI–= =
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First, you need to identify the value in T days of a short position in the stock. Short
selling a share of the stock generates proceeds of S. You take the proceeds and invest them
at the risk-free rate of interest. In addition, the stock pays a cash dividend of D on day t.
Because you shorted the stock, you are responsible for paying the cash dividend. On day T,
the value of each security position in your portfolio is as reported in the table below. The
net portfolio value on day T is .

From the discussion above, you know that selling a telescoping position in the share
futures has a terminal value of . But, from valuation equation (4.9), you know that,
in the absence of costless arbitrage opportunities, F = SerT – Der(T – t). Substituting, you find
that the value of the short futures position on day T is , an amount
identical to that of the short stock position.

Hedging with Futures

The telescoping futures position has implications in terms of hedging with
futures contracts. For the hedge to be completely effective, the number of
futures must equal the number of units of the underlying asset on day T. Under
the continuous carry cost assumption, we know that one unit of the asset grows
to eiT units on day T. We also know that telescoping futures positions that starts
with e–rT futures contracts today has a single contract at time T. Consequently,
to hedge the long asset position in Table 4.3, our futures hedge would start off
with being short e–(r – i)T futures contract on day 0, and would scale up by a fac-
tor of er contracts per day over the life of the hedge. Assuming the futures
expires on day T, the terminal value of the short telescoping position would be

 and the net terminal value of the hedged portfolio would be FeiT.
Substituting the net cost of carry relation (4.8), the net terminal value of the
hedged portfolio may be written SerT, which shows that hedging using a short
telescoping futures position is equivalent to liquidating the asset position and
buying risk-free bonds. The day-to-day increase in the size of the futures posi-
tion by the interest factor er undoes the effects of interest on the daily marking
to market of the futures gains/losses. In practice, this dynamic, day-to-day
adjustment is called tailing the hedge. 

Summary

Futures contracts are like forward contracts except that price movements are
marked to market daily. Because these daily gains/losses are allowed to accrue
interest until the end of the contract’s life, a long futures position will not in
general have the same terminal value as a long forward position. The effects of
the interest accrual on the mark-to-market gains/losses can be undone, however,

Trades
Initial

Investment
Value on
Day T

Short sell stock. Must pay cash dividends, if any.   S  
Buy risk-free bonds –S  SerT

Net portfolio value   0  

SerT Der T t–( ) S̃T––

S̃T– Der T t–( )
–

SerT Der T t–( ) S̃T––

F S̃T–

SerT Der T t–( ) S̃T––

S̃T F–( )eiT
–
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using a telescoping futures position. Each day t, the number of futures is set
equal to e–r(T – t) for each unit of the underlying asset at the end of the hedging
interval. Set in this way, the terminal value of a long telescoping position in the
futures equals the terminal value of a long forward. From a costless arbitrage
perspective, therefore, the following are perfect substitutes:

Long telescoping futures position = Long forward position

Short telescoping futures position = Short forward position

The telescoping futures strategy also has implications for hedging. To undo
the effects of interest on the daily marking to market of the futures gains/losses
when the life of the futures matches the hedging horizon T, the size of a futures
hedge starts at a level equal to the present value of the number of terminal units
of that asset, that is, e–rT for each unit of the asset and increases in size by a fac-
tor of er each day. 

IMPLYING FORWARD NET CARRY RATES

Thus far, we have examined forward/futures contracts with a single maturity. A
casual examination of the financial pages, however, shows multiple maturities
for the same underlying asset. In these situations, we can use the net cost of
carry relation (4.4) to deduce implied forward cost of carry rates. 

ILLUSTRATION 4.7  Compute implied forward interest rate in Britain.

Suppose that the current USD/GBP exchange rate is 1.6830, and that the three-month and
six-month forward exchange rates are 1.6755 and 1.6683, respectively.4 If the three-month
and six-month U.S. risk-free rates of interest are 5.163% and 5.103%, respectively, compute
the implied forward risk-free rate of interest in Britain on a three-month loan beginning in
three months.
 

Based on the above information, your first job is to compute the three-month and six-
month risk-free rates in Britain, rf,3 and rf,6, respectively. This can be done by solving for
the foreign interest rates in the following two applications of the net cost of carry relation:

and

The three-month risk-free rate in Britain is 6.950% and the six-month rate is 6.858%.
These values can be computed using the OPTVAL function,

OV_FORWARD_II(s, f, r, t)

where s is the asset price, f is the forward price, r is the domestic risk-free interest rate,
and t is the time to expiration of the forward. The panel below illustrates how the func-
tion can be used in the current illustration.

4 For foreign currencies, the income rate equals the rate of interest on a foreign risk-free bond.

1.6755 1.6830e
0.05163 rf 3,–( )0.25

=

1.6683 1.6830e
0.05103 rf 6,–( )0.5

=
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Next, you know from the discussion of implied forward interest rates in the last
chapter that

or, alternatively,

0.06858(0.5) = 0.06950(0.25) + f3(0.25)

Rearranging to isolate the forward rate, you get

The implied three-month risk-free rate of interest in Britain on a loan beginning is three
months is 6.766%.

VALUING SWAPS

A swap contract is an agreement to exchange a set of future cash flows. A plain-
vanilla swap is usually regarded to be an exchange of a fixed payment for a float-
ing payment, where the floating payment is tied to some reference rate, index
level, or price. Like a forward contract, the underlying asset can be anything from
a financial asset such as a stock or a bond to a physical asset such as crude oil or
gold. Also, like a forward contract, a swap involves no upfront payment. 

The key information needed to value a swap contract is the forward curve
of the underlying asset and the zero-coupon yield curve for risk-free bonds. The
forward curve refers to the relation between the price of a forward contract on
the underlying asset and its time to expiration or settlement. Where the time to
expiration is 0, the forward price equals the prevailing spot price. Figure 4.2
shows two possible forward curve relations. Where the curve is upward sloping,
the market is said to be in contango, and, where the curve is downward sloping,
the market is said to be in backwardation. For financial assets, the slope will
depend on the net difference between the risk-free rate and the income received

e0.06858 6 12⁄( ) e0.06950 3 12⁄( )e
f3 3 12⁄( )

=

f3
0.06858 0.5( ) 0.06950 0.25( )–

0.25
------------------------------------------------------------------------------- 6.766 percent= =
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on the underlying asset. In markets where the interest rate is greater than the
income rate, the market will be in contango, and, where the interest rate is less
than the income rate, the market will be in backwardation. For physical assets
or commodities, the nature of the forward curve depends also on the cost of
storage and convenience yield. The zero-coupon yield curve refers to the rela-
tion between interest rates and term to maturity and was discussed in Chapter 2.

In terms of swap valuation, the nature of the forward curve is irrelevant as
long as the forward prices represent tradable prices. To see this, consider a jew-
eler (i.e., long hedger) who needs 1,000 Troy ounces of gold each quarter over
the next two years and wants to lock in his input cost today. One hedging alter-
native is to buy a strip of forward (or futures) contracts, one corresponding to
each desired delivery date. The cost of the gold each quarter will be locked-in,
however, the cost of the gold will be different each quarter unless the forward
curve is a horizontal line. The gold market, however, is typically in contango, so
the cost, although certain, will escalate through time. A second alternative is to
buy a swap contract that provides for the delivery of 1,000 ounces of gold each
quarter, where there is single fixed price for all deliveries.5 In the absence of
costless arbitrage opportunities, it must be the case that the present value of the

5 As a practical matter, many swap agreements are cash-settled, so, instead of paying the fixed
price per ounce and receiving 1,000 ounces in gold, we will receive in cash 1,000 times the
difference between the prevailing (random) spot price of gold each quarter and the fixed price.
If the spot price is greater than the fixed price, we receive a cash payment from our counter-
party, and vice versa.

FIGURE 4.2 Forward curve: Relation between forward price and its time to expiration. 
Where time to expiration is 0, forward price equals spot price.  
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deliveries using the forward curve must be the same as the present value of the
deliveries using the fixed price of the swap contract, that is,

(4.10)

where n is the number of delivery dates, fi is the price of a forward contract with
time to expiration Ti, ri is the risk-free rate of interest corresponding to time to
expiration Ti,

6 and  is the fixed price in the swap agreement.7 In an instance
where the right-hand side of (4.10) is greater (less) than the left-hand side, an
arbitrageur would buy (sell) the swap and sell (buy) the strip of forward con-
tracts, pocketing the difference. Because such free money opportunities do not
exist, (4.10) must hold as an equality.

Equation (4.10) can be rearranged to isolate the fixed price of the swap
agreement, that is,

(4.11)

Expressed in this fashion, it becomes obvious that the fixed price of a swap is a
weighted average of forward prices, one corresponding to each delivery date. 

ILLUSTRATION 4.8 Compute fixed rate of swap based on forward curve.

Suppose that you produce gold watches and require 1,000 ounces each quarter. Fearing
that the price of gold will rise, you decide to hedge your input costs over the next two years
by buying a commodity swap, specifically a contract that provides a cash payment equal to
the difference between the gold price and the fixed price of the swap on 1,000 ounces of
gold each quarter. The swap dealer is quoting you a price of $401.50 an ounce. Evaluate
the fairness of this price assuming the forward curve is approximated by the function,

and the zero-coupon yield curve for risk-free bonds is given by the function,

Based on the forward curve and the yield curve, you compute prepaid forward prices
for each of the eight delivery dates. You then sum the prepaid forward prices, and divide
by the sum of the discount factors to determine the fixed price. The intermediate compu-
tations are as follows.

6 Note that we are allowing for the fact that the risk-free rate may be term-specific.
7 The delivery quantity is irrelevant since it is the same on both sides of the equation. That is,
equation (4.10) assumes that one unit is delivered on each delivery date.
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Based on the forward curve, the fixed rate on the swap should be 

The difference between the dealer’s quote and your computation of the fair price based
on the forward curve is 49 cents an ounce, or $3,920 across all promised deliveries. The
fairness of the quote depends upon your ability and willingness to buy the strip the for-
ward (or futures) contracts in lieu of the swap. 

Finally, the OPTVAL Function Library contains a function that values a commodity
swap with uniform quantities each period. The function is

OV_SWAP_COMMODITY(t, f, r, vr)

where t is a vector containing the times to each delivery date, f is a vector of forward/
futures prices corresponding to each date, r is a vector of zero-coupon risk-free rates cor-
responding to each delivery date, and vr is an indicator variable instructing the function
to compute (a) the sum of the present values of the prepaid forward contracts (“v” or
“V”), (b) the sum of the discount factors (“d” or “D”), or (c) the breakeven fixed price
of the swap based on the forward curve (“r” or “R”). The worksheet below illustrates.

Time to
Prepayment

Gold Forward
Price

Risk-Free
Rate

Discount
Factor

Prepaid
Forward Price

0.25 400.50 4.22% 0.9895    396.29
0.50 400.71 4.41% 0.9782    391.98
0.75 400.87 4.56% 0.9664    387.39
1.00 401.00 4.69% 0.9542    382.62
1.25 401.12 4.81% 0.9416    377.71
1.50 401.22 4.92% 0.9289    372.70
1.75 401.32 5.01% 0.9160    367.62
2.00 401.41 5.10% 0.9031    362.50

Total 7.5779 3,038.81

f
3,038.81
7.5779

----------------------- 401.01 per ounce= =
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ILLUSTRATION 4.9 Compute unwind price of swap based on forward curve.

Suppose that three months have elapsed and spot price of gold has fallen to $390 an
ounce. As a result, you had to make a net payment of $11.50 an ounce to your counter-
party. Now, fearing a further decline in gold prices, you approach your counterparty and
ask for an “unwind” price, that is, a price at which he is willing to tear up the existing
swap agreement. The forward curve is now 

and the yield curve is

The unwind price will equal the difference between the present value of the remain-
ing fixed payments and the present value of the payments under the current forward
curve. Based on the problem information, we must first generate the gold forward curve
and the zero-coupon risk-free yield curve. Then, based on the curves, we can compute the
present value of each leg of the swap using

OV_SWAP_COMMODITY(t, f, r, vr)

The worksheet below illustrates. Under the current market environment and swap terms,
you have promised to pay the dealer $401.01 per ounce of gold each quarter during the
remaining seven quarters. The present value of the promised payments is $2,689.923 per
ounce. In return, the swap dealer has promised to pay you the spot price of gold each
quarter during the remaining seven quarters. The present value of his obligation is
$2,621.84 per ounce. Thus, the least that the dealer will require for rescinding the agree-
ment is $68,079. 

SUMMARY

This chapter develops the price relations for forwards, futures, and swaps under
a single assumption—two perfect substitutes must have the same price. We
begin by developing the notion of the net cost of carry. The net cost of carry
refers to the cost of holding an asset over a period of time. One component of
the cost of carry for all assets is the opportunity cost of funds. In order to buy

fi 390 0.9 Ti+=

ri 0.035 0.01 1 Ti+( )ln+=
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the asset, we must pay for it. Beyond interest cost, however, carry costs may be
positive or negative, depending upon the nature of the underlying asset. If the
asset is a physical asset or commodity such as grain, the asset holder must pay
storage costs such as warehouse rent and insurance. If the underlying asset is a
financial asset or security such as a stock, a bond, or a currency, on the other
hand, there are no storage costs. Indeed, such assets produce a known income
stream in the form of dividend payments or interest receipts, and this income
can be used to subsidize the cost of borrowing. We model interest cost as a con-
stant continuous rate and the noninterest costs/benefits as either continuous
rates or discrete cash flows, depending on the nature of the underlying asset.

With the assumption and the cost of carry definition in hand, we develop
pricing equations for forward and futures contracts. We show that the price of a
forward equals the price of a futures and that both are equal to the asset price
plus net carry costs. This stands to reason. If we need an asset on hand at some
future date at a price “locked-in” today, we can buy a forward contract, buy a
futures, or buy the underlying asset and carry it. Perfect substitutes must have
the same price. The results in this chapter are general and apply to any underly-
ing asset. In the applications chapters that follow, we rely on these powerful
price relations in developing and analyzing risk management strategies.

Finally, we derive the relation between the forward curve and the fixed price
of a swap. In the absence of costless arbitrage opportunities, the fixed price is a
weighted average of the prices of the corresponding forward contracts, with the
weights equal to discount factor of each flow in relation to the sum of all dis-
count factors. 
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CHAPTER

 

5

 

Risk Management Strategies:
Futures

 

his chapter builds on Chapters 3 and 4. In Chapter 3, we learned the mechan-
ics of expected return and risk. In Chapter 4, we learned about the no-arbi-

trage price relation that links the price of a forward/futures to the price of its
underlying asset. This chapter explores the role of forward/futures contracts in
managing expected return and risk. In moving forward through the chapter, we
will use only the term “futures” rather than “forward and futures” for exposi-
tional convenience. The risk management techniques apply to both contracts
equally well. The decision to use “futures” rather than “forwards” is based on
the fact that historical futures data are more broadly available for estimation
purposes. Since the chapter deals with expected return and risk, the most natural
place to begin is with a demonstration of how futures fit within the capital asset
pricing model (CAPM). We then focus on using futures contracts to manage dif-
ferent types of risks. We begin with price risk and show how an airline can hedge
the cost of jet fuel. Next we focus on revenue risk and show how a farmer can
hedge the sales proceeds of his crop in an environment with both price and
quantity risks. For other corporate risk managers, gross margin (i.e., uncertain
revenue less uncertain costs) risk is often the primary risk management focus.
Oil refiners, for example, are concerned about the difference between the reve-
nue they realize through the sale of heating oil and unleaded gasoline and the
cost of the crude oil they must acquire to produce these products. For fund man-
agers, more than one risk factor may be affecting portfolio value. Someone man-
aging a junk bond portfolio, for example, faces both interest rate and stock
market risk exposures. We show how to incorporate multiple risk factors in set-
ting the optimal hedge. The chapter concludes with a brief summary.

 

EXPECTED RETURN AND RISK

 

Like other risky financial instruments, futures contracts have expected returns
and risks that can be modeled within the CAPM. The key to understanding

T
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exactly how lies in the relation between the rate of price change of a futures and
the rate of return of its underlying asset.

To begin, we recall the net cost of carry relation,

(5.1)

where the subscript 

 

t

 

 has been added to denote a particular point in time prior
to the contract’s expiration. Taking the natural logarithm of both sides of (5.1)
provides

(5.2)

Now consider the transformed net cost of carry relation (5.2) an instant earlier
in time at 

 

t

 

 + 1, that is, 

(5.3)

Subtracting (5.3) from (5.2), we find that the continuous rate price change of
the futures is

(5.4)

In equation (5.4), 

 

R

 

F

 

 denotes the rate of return on a futures contract and 

 

RA

 

F

 

 is
its rate of price appreciation. We make this distinction to underscore the fact
that the only income arising from holding a futures contract is price change.

 

1

 

The rate of return from investment in the underlying asset, 

 

R

 

S

 

, on the other
hand, is the sum of two components—the continuous rate of price appreciation

 

RA

 

S

 

 

 

≡

 

 ln(

 

S

 

t

 

/

 

S

 

t

 

–1

 

) and the income rate 

 

i

 

. The relation between the random returns
of the futures and its underlying asset is therefore

(5.5)

where tildes have been added to distinguish between what is uncertain (i.e., the
returns on the futures and its underlying asset) from what is certain (i.e., the
risk-free rate of interest).

 

Expected Return-Risk Relation

 

With the return relation (5.5) in hand, the role of futures contracts within the
CAPM is easily uncovered. To do so, first note the expected return on a futures
contract equals the expected return on the underlying asset less the risk-free rate
of interest, that is,

 

1 

 

The distinction also serves to combat the criticism that, since the futures involves no net in-
vestment, the rate of return on a futures is undefined.
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(5.6)

Next, note that total risk (as measured by return variance or its square root,
standard deviation) and market risk (as measured by beta) of the futures contract
equal the total risk and the market risk of the underlying asset. The variance of
futures return equals the variance of the asset return,

 

2

 

(5.7)

and the beta of the futures contract equals the beta of the underlying asset, 

(5.8)

Hence, while the risks of the futures contract are the same as those of the under-
lying asset, the expected return of the futures is below the expected return of the
underlying asset by an amount equal to the risk-free rate of interest. 

Now let us move to the CAPM. In Chapter 3, we showed that the expected
return of the asset is

(5.9)

Substituting (5.6) and (5.8) into (5.9), we find that the expected return on the
futures is

(5.10)

While on first appearance the relation (5.10) may seem perplexing, it makes a good
deal sense intuitively. In buying the asset, we actually buy two things—the risk-free
asset and a risk premium. We are entitled to the rate of return on the risk-free
asset, 

 

r

 

, because we have funds tied up in the asset, independent of its risk level. In
addition, we are entitled to the risk premium associated with holding the asset,
(

 

E

 

M

 

 – 

 

r

 

)

 

β

 

S

 

, because we have put our investment at risk. In buying the futures, we
have accepted only the risk and, therefore, are entitled to receive only the risk pre-
mium, (

 

E

 

M

 

 – 

 

r

 

)

 

β

 

S

 

. With no funds tied up, we have no right to any risk-free return. 

 

Relation to Net Cost of Carry

 

In Chapter 4, we discussed the net cost of carry relation and its implications. We
showed that being long the asset and short a futures meant that we were implic-
itly long risk-free bonds. Equations (5.9) and (5.10) confirm this result. Being

 

2 

 

The rules of expectation operators are provided in Appendix A: Elementary Statistics at the
end of the book.
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long the asset means that we expect rate of return ES and being short the futures
means that we expect rate of return EF . Thus the net portfolio return from
being long the asset and short the futures equals the risk-free rate of interest, 

(5.11)

The risk premium associated with buying the asset is exactly offset by the risk
premium associated with selling the futures.

Just as in Chapter 4, we can pair up any two instruments to create the other.
Suppose, for example, we buy risk-free bonds and buy a futures. The expected
portfolio return is exactly equal to that of the underlying asset, that is,

(5.12)

Table 5.1 summarizes all possible pairings, and is the counterpart to Table 4.5
in Chapter 4. The intuition is simple. Buying or selling a futures is the same as
buying or selling a risk premium. Buying and selling an asset, on the other hand,
means buying and selling a portfolio that consists of the risk-free asset and a
risk premium. Note that, if the risk premium of the asset happens to equal zero,
the expected rate of price change in the futures is zero.

Futures as Predictor of Expected Asset Price

The relation between expected return and risk of the asset and the futures also
provides us with insight regarding the relation between the current futures price
and the expected asset price when the futures expires at time T. To see this, con-
sider committing to buy the asset at time T. The present value of the expected
asset price is

where ES is the asset’s expected risk-adjusted rate of return.3 On the other hand,
consider committing to buy the asset at time T by buying a futures contract

3 Recall that in Chapter 3 we used the CAPM to arrive at this value.

TABLE 5.1  Perfect substitutes implied by the capital asset pricing model.

Position 1 Position 2

Buy asset/sell forward = Buy risk-free bonds (lend)
Buy risk-free bonds (lend)/buy forward = Buy asset
Buy asset/sell risk-free bonds (borrow) = Buy forward
Sell asset/buy forward = Sell risk-free bonds (borrow)
Sell risk-free bonds (borrow)/sell forward = Sell asset
Sell asset/buy risk-free bonds (lend) = Sell forward

ES EF– r EM r–( )βS EM r–( )βS–+ r= =

r EF+ r EM r–( )βS+ ES= =

S E S̃T( )e
ES– T
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today at price F. Since F is paid at time T and is certain, the present value of this
obligation is Fe–rT. Since both quantities represent the same thing—the present
value of one unit of the commodity at time T—they should be equal in value.
Thus, the current futures price may be written

(5.13)

The structure of (5.13) says that the difference between the futures price and
the expected asset price is nonzero. This means that the futures price is a biased
predictor of the expected asset price. If the risk premium is positive, as is usually
the case, the futures price is a downward biased predictor. The only instance in
which the futures price is an unbiased predictor of the expected future asset
price is where the risk premium of the asset equals 0. 

Hedging Assets Using Futures Contracts

With the CAPM framework in hand, we can now turn to the exercise of manag-
ing the expected return and risk of a position in the asset underlying the futures
contract. To do so, consider a portfolio that consists of one unit of the asset and
futures contracts. Its expected rate of return is equal to 

(5.14)

To find its total risk, recognize that the rate of return relation (5.5) implies
that the futures return and the asset return are perfectly positively correlated,
that is, ρSF = +1. This means that a portfolio that consists of one unit of the
asset and nF futures contracts has a standard deviation (i.e., total risk) equal to

(5.15)

Managing expected return and risk of the portfolio therefore amounts to select-
ing a value for nF .

Figure 5.1 summarizes some obvious choices of nF . To make matters as a
clear as possible, we use numerical values for the expected return and risk
parameters. Specifically, we assume that the expected return and risk of the asset
are 12% and 20%, respectively, and the risk-free rate of interest is 4%. This
means that the expected return and risk of the futures contract are 8% and
20%. Where nF = 0, the portfolio is unhedged. We hold only the asset, and the
portfolio has an expected return of 12% and a risk of 20%. Selling futures against
the long position in the asset reduces expected return and risk. At nF = –0.5, we
are implicitly selling one futures contract for every two units of the asset we
hold. The risk level of this portfolio is below the risk level of the asset so we
have “hedged.” This particular hedge portfolio has an expected return of 0.5ES
+ 0.5r or 8% and a risk of 0.5σS or 10%. Where we set nF = –1, the hedge port-
folio has an expected return of 4% and no risk. Since this is the lowest risk level
possible, this particular hedge portfolio is called the “risk-minimizing hedge.”

F E S̃T( )e
ES r–( )– T

=

EH ES nFEF– 1 nF+( )ES nFr–= =

σH σS nFσF+ 1 nF+( )σS= =
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Note that, as we continue to sell more futures (i.e., nF < –1), risk starts to
increase, but, as long as σH < σS, we are hedging. Where nF < –2, we are specu-
lating in that the portfolio risk level exceeds the risk level of the asset held in
isolation. The same applies where we buy futures (i.e., nF > 0) rather than sell.
Thus in Figure 5.1, where –2 < nF < 0, we hold a hedged portfolio, and, where
nF < –2 and nF > 0, we hold a speculative portfolio.

HEDGING PRICE RISK

In general, identifying the set of viable hedge opportunities is more complicated
than Figure 5.1 suggests. The reason is basis risk. Basis risk refers to the fact
that the futures price movements and asset price movements are not perfectly
correlated. To understand why, it is useful to think of basis risk as being the sum
of two components, that is, 

Basis risk = Time basis risk + Grade basis risk (5.16)

Time basis risk refers to uncertainty in the difference between the futures price
and the underlying asset price. In the first section, the time basis risk was equal
to zero because we assumed the net cost of carry relation holds at all points in
time. In order to arrive at that relation we assumed that markets are frictionless
and that the risk-free rate of interest, r, and the income rate on the asset, i, are
constant through time. As a practical matter, arbitrageurs incur trading costs,
and short-term interest and income rates may have a modest amount of uncer-
tainty. This means that the futures price movements and asset price movements
will not be perfectly correlated, except in the special case where the length of the
hedge horizon exactly matches the time to expiration of the futures and the con-
vergence of the futures and asset prices is assured.

FIGURE 5.1 Relation between expected return and risk for portfolio consisting of one unit of 
asset and nF futures contracts.
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FIGURE 5.2 Evolution of time and grade basis over the life of futures contract. 

The second component is grade basis risk. Often we find situations in which
futures contracts are not written on the asset whose price risk we want to man-
age. Many airlines, for example, want to hedge their jet fuel costs, however jet
fuel futures contracts are not available. Fortunately, jet fuel and heating oil are
very close substitutes, and heating oil futures can be used to cross-hedge. In this
case, grade basis risk refers to the uncertainty in the difference between the price
of heating oil and the price of jet fuel.4 Figure 5.2 shows the evolution of time
and grade basis over the life of the futures contract. The top line represents the
heating oil futures prices, the middle line heating oil, and the bottom line jet
fuel. The difference between the prices of the heating oil futures and heating oil
is the time basis. As time passes, the time basis narrows. At expiration, the
futures price equals the spot price of heating oil, and the time basis is zero. If the
length of the hedging horizon is less than the life of the futures, a futures hedge
must be unwound prior to expiration and time basis risk is incurred. The differ-
ence between the heating oil price and the jet fuel price (the lowest line) is the
grade basis. It too varies through time. In this instance, however, convergence is
not assured. Thus, in using heating oil futures to hedge the price of jet fuel, both
time basis risk and grade basis risk are incurred. We now develop a framework
for handling such a price risk management problem.

Minimize Price Risk

To make the development of a price risk-minimizing hedge as an intuitive as
possible, let us use the example of an airline that wants to minimize the price
risk of jet fuel that it needs at time T. Assume, for the sake of simplicity, that the

4 The term “grade” arose in the agricultural futures market. The wheat futures contract traded
on the Chicago Board of Trade, for example, allows the short futures to deliver different
“grades” of wheat.
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airline has no ability to store jet fuel—it buys jet fuel as it is needed at the mar-
ket price. Assume also that we are considering a single refueling at time T. The
jet fuel price at time T is denoted . The current heating oil futures price is
denoted F, and its price at time T is denoted . Assuming the airline buys nF
futures contracts, its net cost of jet fuel at time T is

(5.17)

Naturally, where nF = 0, the airline pays the market price for fuel at time T. 
To find the risk-minimizing hedge, use (5.17) to help write the variance of

the hedged cost of fuel, that is,

(5.18)

where  and  are the variances of the asset and futures prices,
respectively, and  is the covariance of the asset and futures prices.
To find the number of futures contracts necessary to minimize , , we
take the derivative of (5.18) with respect to nF , and set it equal to zero, that is, 

(5.19)

Rearranging, we find that the risk-minimizing hedge is

(5.20)

where  or, simply ρ, is the correlation between the asset and futures prices. 
The “optimal” hedge, , as shown by the expression (5.20), is interesting

in a number of respects. First, and foremost,  is negative since the variances
are positive by definition and the correlation between the asset and futures
prices is, presumably, positive. This means that, if the hedger is long the asset,
he needs to sell futures, and vice versa. Second, if the futures is written on the
specific asset being hedged, and the futures expires at the end of the hedge
period, the end-of-period prices must be equal . This implies that the
variances of the asset and futures prices are equal, , and that
the correlation between the asset and futures prices is one, ρ = +1. The risk-min-
imizing futures hedge is therefore a one-to-one hedge against the asset, that is,
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Third, the effectiveness of the hedge depends upon the correlation between the asset
and futures prices. If ρ = +1, the hedge is perfect, and the optimal hedge is to sell
one futures contract. If ρ = –1, the hedge is also perfect, and the optimal hedge is to
buy one futures contract. If –1 < ρ < +1, the hedge will not be fully effective, with
the effectiveness decreasing as the correlation approaches 0. At ρ = 0, the asset and
futures prices are independent, so there is no point in taking a futures position. 

Estimating Variance/Covariance

Before applying the risk-minimizing hedge framework, we need to discuss how
to estimate the variance and covariance expressions in (5.20). In deriving the
risk-minimizing hedge, we formulated the problem as a one-period hedge, from
time 0 to time T. The length of the hedge period is arbitrary. For the sake of illus-
tration, assume its T days. Now let us consider the variance of the asset price,

. Over the hedge horizon, we will observe a sequence of asset prices
. To see how  can be expressed in terms of the price

sequence, note that

(5.21)

where . Assuming that price changes are independent and identi-
cally distributed (i.i.d.), the variance of the end-of-period asset price is simply T
times the daily variance of the asset price change, that is,

(5.22)

By the same logic, the variance the end-of-period futures price is

(5.23)

and the covariance of the end-of-period asset price and futures price is

(5.24)

Thus, the risk-minimizing hedge over the interval from 0 to T (5.20) can be
rewritten in terms of daily price changes 

(5.25)

In the hedge illustrations developed through this chapter, we take advantage of
this property.
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Setting Risk-Minimizing Hedge
We now show how to apply the risk-minimizing hedge framework. Assume that
the airline needs 150,000 gallons of jet fuel in exactly 30 days and that it wants to
minimize the variance of the cost of acquiring the fuel. Assume also that the air-
line has no ability to store jet fuel. Setting a risk-minimizing hedge has four steps.

Step 1: Identify Appropriate Futures Contract Choosing the appropriate futures con-
tract involves at least two factors. First, the higher is the correlation between the
futures price and the fuel price, the more effective is the hedge. Ideally this means
using a jet fuel futures contract to hedge, if one is available. In this way, only
time basis risk is incurred. As noted earlier, however, futures contracts on jet fuel
are not traded. The closest substitute is heating oil futures. Second, given heating
oil futures listed on the New York Mercantile Exchange (NYMEX)5 have 18 dif-
ferent contract maturities, how do we choose among available contracts? The
tradeoff here is contract liquidity versus the cost of “rolling” the futures posi-
tion. In general, nearby contracts are the most liquid and, hence, have the lowest
trading costs. Unfortunately, however, the nearest available contract may expire
before the hedge horizon is complete, in which case we must roll into the next
available maturity (i.e., the nearby futures position is closed and a second nearby
futures position is entered). Given that the hedge horizon is only 30 days in our
illustration, using the heating oil futures contract that expires just after the hedge
horizon is compete probably makes the most sense.

Step 2: Collect Historical Prices With the futures contract selected, we must now
estimate the standard deviations and correlation of the daily price changes on
the right-hand side of (5.25). Note that, within the hedge framework, these val-
ues are expected future standard deviations and correlation. Since we have no
means of observing these parameters, we usually rely on historical time-series
data to develop estimates. For the problem at hand, we will have to collect his-
torical time series data for the jet fuel and the heating oil futures contract. These
data are provided in the Excel file, Jet fuel.xls.

Step 3: Estimate Standard Deviation and Correlation Parameters With the data in hand,
we now compute the standard deviation of the jet fuel price change, the stan-
dard deviation of the heating oil futures contract price change, and the correla-
tion between the price changes of jet fuel and the heating oil futures. The
estimator of the standard deviation of the historical asset price change series is

(5.26)

where the symbol “^” indicates a specific estimate based on a sample of prices
and T is the number of historical prices in the time series (t = 1, . . ., T).6 The

5 The NYMEX is the dominant exchange in the U.S. listing futures contracts on petroleum and
petroleum products.
6 These formulas are taken from the review of elementary statistics provided in Appendix A of
this book.
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standard deviation of the historical future price change series is similar. The esti-
mator of the correlation between two historical price change series of the asset
and the futures is

(5.27)

The estimates are:  = 0.0422,  = 0.0357, and  = 0.9320.

Step 4: Compute the Risk-Minimizing Hedge The fourth and final step is to compute the
optimal number of futures, which is done using (5.25), that is,

The negative sign implies that we sell futures to create the risk-minimizing
hedge. The optimal number of futures to sell is –1.0997 gallons for each gallon
of jet fuel. Figure 5.3 shows the effect that changing the number of futures has
on the standard deviation of cost per gallon.

Once the optimal hedge ratio is determined, finding the number of futures
contracts to use is a matter of multiplying the hedge ratio by the quantity
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FIGURE 5.3 Relation between the number of futures contracts held (+ long; – short) and the 
risk (standard deviation) of hedged jet fuel cost. (Parameters:  = 0.0422,  = 0.0357, 
and ρ∆S,∆F = 0.9320.)  
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demanded and dividing by the futures contract denomination. A single heating
oil futures has a 42,000 gallon denomination, so the number of futures to sell is

In practice, we would also “tail the hedge” by multiplying 3.928 by the discount
factor e–r(30/365). One each subsequent day, the number of contracts would be
increased a a factor of er(1/365). For expositional convenience, we ignore this
practice of tailing the hedge through the remainder of the chapter.

Relation to OLS Regression

Ordinary least squares (OLS) regression offers a convenient direct means of esti-
mating the risk-minimizing hedge. Once the necessary time-series price data (t =
1, . . ., T) are collected, run the regression,

(5.28)

As it turns out, the value of the regression coefficient α1 under OLS regres-
sion is defined as7

(5.29)

Thus the risk-minimizing number of futures contracts may be written as a func-
tion of the estimated slope coefficient, that is, 

(5.30)

Aside from eliminating the need to estimate directly the individual standard devi-
ations and correlation in (5.25), the OLS regression’s adjusted R-squared provides
a measure of hedging effectiveness. The risk of the unhedged asset price risk is

. Of this amount, selling α1 futures explains . The adjusted R-
squared therefore tells us the percent of the total unhedged asset price change risk
that is hedgable risk,

(5.31)

7 See OLS regression review is Appendix B of this book.
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An adjusted R-squared of 100% means that the asset price risk is fully hedgable,
while an adjusted R-squared of 0% says that there is no point in hedging.

To verify that the ordinary least squares regression approach produces the
same risk-minimizing hedge, apply the OPTVAL Library function, 

OV_STAT_OLS_SIMPLE(y, x, intercept, out)

where y is the vector of jet fuel prices, x is the vector of heating oil futures
prices, intercept is an indicator variable whose value is “Y” is the regression
includes an intercept term and is “N” is the intercept term is being suppressed,
and out is an indicator variable instructing the function to display the results
horizontally (“H” or “h”) or vertically (“V” or “v”). This function returns a
horizontal array of output of length 5. The array contains the estimate of the
intercept terms, its standard error, the estimate of the slope coefficient, its stan-
dard error, and the adjusted R-squared. When calling this function, we must
highlight five contiguous cells, enter the relevant data, and then press the Shift,
Ctrl, and Enter keys simultaneously. The panel below demonstrates.

The estimated slope coefficient is 1.0997, exactly as before.

Criterion

Minimize price risk 0.0017 0.0021 1.0997 0.0593 0.8686

α̂0 s α̂0( ) α̂1 s α̂1( ) R
2
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The focus on price changes (and returns) rather than prices in risk manage-
ment becomes the norm from this point forward. Where the underlying asset is a
physical asset or commodity like grain, we assume that price changes are inde-
pendent and identically distributed (i.i.d.) through time. The reason is that most
commodity prices tend to be mean-reverting. The reason is simple. If the price of
a commodity becomes too low, producers of the commodity will slow or stop
production, inventories will become depleted, and prices will rise. If the price of
a commodity becomes too high, consumers will cut back on demand, and prices
will fall. The prices of financial assets, however, are different. Consider a com-
mon stock. The company engages in a particular type of business activity and
generates cash flow. This cash flow is used to expand operations, and the
expanded operations generate proportionately more cash. For such an asset,
price, it is more reasonable to assume that price is expected to grow at a con-
stant rate and to have a constant variance rate. To model such behavior, it is
most common to assume that the difference in the natural logarithm of asset
prices or continuous returns (i.e., ln(St) – ln(St–1) = ln(St/St–1) = Rt) are indepen-
dent and identically distributed (i.i.d.) through time. 

HEDGING REVENUE RISK 

The apparatus for managing price risk is the same independent of whether we
are managing the risk of costs or income. A corn farmer, for example, may want
to hedge the price at which he will sell his crop when he harvests in the fall. To
identify the risk-minimizing hedge, he can run a regression of the price per
bushel of the grade of corn that he has planted on the price per bushel of a corn
futures contract.8 He would then multiply the estimated slope coefficient (i.e.,
the risk-minimizing hedge per bushel) by his planned harvest size and divide by
the futures contracts size (i.e., 5,000 bushels) to determine the number of con-
tracts to sell. 

This oversimplifies the farmer’s problem, however. When he seeds his fields
in the spring, both the price of corn, , and the yield per acre, , at the time
of harvest in the fall are unknown. What is more germane to the farmer is reve-
nue. In all likelihood, he is more interested in minimizing the revenue risk (i.e.,
the product of price and quantity),

(5.32)

rather than price risk alone. It is interesting to note that the relation price
between and yield provide, to some degree, a natural hedge. If weather condi-
tions are poor during the summer months, the harvest size will be small and the
price per bushel will likely to be high. On the other hand, the fall brings a

8 The corn futures contract traded at the Chicago Board of Trade calls for the delivery of No.
2 yellow corn at par, No. 1 yellow corn at 1¹�₂ cents per bushel over the contract price, or No.
3 yellow at 1¹�₂ cents per bushel under the contract price. Assuming the farmer has planted yet
a different grade, he incurs both time and grade basis risk.
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bumper crop, prices are likely to be low. The negative correlation between price
and quantity tends to reduce the level of revenue risk, holding other factors con-
stant.

Whether the correlation is negative or positive is irrelevant in estimating the
revenue risk-minimizing hedge. To find the revenue risk-minimizing hedge, we
simply replace the dependent variable in regression (5.28). In place of using the
price change of corn, we use the change in revenue per acre.

ILLUSTRATION 5.1 Hedging price risk versus revenue risk.

Consider the case of a farmer who has just planted his 10,000 acres of land with wheat. Com-
pare the number of futures contracts to sell if he decides to minimize revenue risk rather than
price risk. The Excel file, Wheat.xls, contains historical data over the past 30 years. For the
price risk-minimizing hedge, assume the farmer anticipates harvesting 60 bushels per acre. 

The first step is to summarize the data, and compute revenue per acre. The figures
are shown in the table below. The average wheat price at harvest over the past 30 years
was $3.00 per bushel, and the average yield per acre was 60 bushels. The “Revenue per
acre” column with the subheading “Constant yield” is simply the harvest price times 60
bushels per acre (e.g., 2.469 × 60 = 148.15 per acre), and the “Revenue per acre” column
with the subheading “Varying” is the harvest price times yield per acre in that year (e.g.,
2.469 × 68.39 = 168.86 per acre).

To find the price risk-minimizing hedge, we regress the “Change in revenue per
acre—Constant yield” column on the “Futures price change” column, and, to find the
revenue risk-minimizing hedge we regress the “Change in revenue per acre—Varying
yield” column on the “Futures price change” column. The estimated slope coefficients,

, in the regressions are the number of bushels of wheat that need to be sold using the
futures contract. The regression results are as follows:

Revenue per Acre
Change in

Revenue per Acre
Futures
Price

ChangeMonth
Spot
Price

Futures
Price Yield

Constant
Yield

Varying
Yield

Constant
Yield

Varying
Yield

  1 2.469 2.448 68.39 148.15 168.86
  2 2.664 2.638 64.76 159.82 172.50   11.67     3.64   0.191
  3 2.176 2.123 70.32 130.56 153.02 –29.26 –19.48 –0.515
  4 2.481 2.501 69.08 148.88 171.41   18.32   18.40   0.378
  5 2.737 2.686 65.20 164.24 178.47   15.36     7.06   0.185
… … … … … … … … …
26 3.493 3.667 57.66 209.61 201.42     0.93   41.24 –0.260
27 3.700 3.620 50.52 222.00 186.91   12.40 –14.51 –0.047
28 4.065 4.054 45.29 243.88 184.11   21.88   –2.80   0.434
29 3.833 4.054 50.68 230.00 194.26 –13.88   10.15   0.000
30 3.298 3.722 53.68 197.88 177.02 –32.12 –17.23 –0.332

Mean 3.000 3.017 60.00 180.00 176.61     1.71     0.28
StDev 0.480 0.557 7.887   28.77   11.00   17.70   15.20

α̂1
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The regression results reveal that the two hedges are quite different from each other.
If the farmer chooses to minimize price risk, he needs to sell 45.3321 bushels in futures
per acre of land. With 10,000 acres, this means a total of 453,321 bushels. The wheat
futures contracts traded on the Chicago Board of Trade have a denomination of 5,000
bushels, so a total of 90.664 contracts should be sold. On the other hand, if the farmer
chooses to minimize revenue risk, he needs to sell only 3.5806 bushels per acre, or 7.161
futures contracts. Fewer contracts are required in the revenue risk-minimizing hedge
because price and yield per care are inversely related. This negative correlation manifests
itself in risk exposure. In the above table, the standard deviation of the revenue change
with the fixed 60 bushels per acre (i.e., price risk) is 17.70, while the standard deviation
of revenue change with varying yield (i.e., revenue risk) is 15.20. Because price and quan-
tity are inversely related, the amount of risk that needs to be managed is less.

HEDGING MARGIN RISK 

Another type of risk that may be faced by a processor or producer is gross pro-
cessing margin risk. Gross processing margin refers to the difference between
total revenue from production and the total costs of production, that is,

 (5.33)

where nO,T is the quantity demanded at time T when output price is SO,T per
unit, nI is the number of input units required for production, and  is input
cost per unit.9 Consider an oil refiner, for example. In the normal course of pro-
duction, he buys crude oil, distills it, and sells heating oil and unleaded gasoline.
If he is planning for production that will occur at time T, he faces both revenue
and price risk. The revenue risk arises because the refiner knows neither the
market price per gallon of product (e.g., unleaded gasoline) at time T nor the
number of gallons that will be demanded. The price risk arises because the price
per barrel of crude oil at time T will depend on supply and demand conditions
at that time. Thus the refiner’s risk management problem may be to minimize
the variance of his margin risk, 

(5.34)

Like in the previous examples, this can be accomplished by regressing the change in
the gross processing margin on the futures price change. The slope coefficient esti-
mate realized from the regression in the risk-minimizing number of futures. It is

Criterion

Minimize price risk –0.2765 1.7110 45.3321 5.1264 0.7433
Minimize revenue risk   0.1242 2.8909   3.5806 8.6616 0.0063

9 We assume that production takes place instantaneously (i.e., products are produced as quick-
ly as the inputs are acquired), and that unsold production cannot be carried over from one
period to the next. Naturally, both of these assumptions can be relaxed.

α̂0 s α̂0( ) α̂1 s α̂1( ) R
2
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important to recognize that, like a revenue hedge, a margin hedge implicitly
accounts for the fact that input costs and output prices may be strongly correlated.
Such a natural hedge reduces the number of necessary futures contracts.

ILLUSTRATION 5.2 Hedging margin risk.

Consider the case of a gold watch manufacturing firm. Over the past 67 months, they
have produced and sold an average of 6,274 gold watches per month at an average sales
price of $3,727. Month-by-month sales statistics are included in Watch manufacturer.xls.
The key input cost of each watch is gold, and its price is uncertain from month to month.
All the firm knows is that it takes four Troy ounces of gold to manufacture each watch.
Their fixed monthly costs are $5,000,000. Find the optimal number of futures contract to
enter to minimize the variance of the firm’s end-of-month profit margin. Also, compute
the minimum revenue risk and minimum cost risk hedges. The denomination of the gold
futures contract is 100 Troy ounces. 

The data file contains a history of sales prices and quantity sold together with prices
of gold and gold futures over a 67-month period. The format is as follows: 

The column headings are largely self-explanatory. Revenue equals the watch price times
the quantity of watches sold. The cost of the gold used in each watch is the spot price of
gold per ounce times four ounces times the quantity of watches produced. The margin
equals the revenue less the variable costs less the $5,000,000 in fixed costs. The final four
columns are the monthly changes in each of the variables.

Based on the information in the file, you regress (a) revenue change on the futures
price change, (b) cost change on the futures price change, and (c) margin change on the
futures price change. The results are summarized in the table below. The estimated slope
coefficients, , are the number of ounces of futures contracts that you should sell to
hedge the effects of the gold price. Recall that the gold futures contract denomination is
100 ounces, so these figures need to be divided by 100.

Gold Watch Production

Month Gold Price Quantity Revenue Gold Cost Margin

19990101 287.75 3,444.45 6,534 22,504,718 –7,520,201   9,984,517
19990201 287.65 3,467.84 6,511 22,578,920 –7,491,500 10,087,419
19990301 285.85 3,455.90 6,546 22,623,962 –7,485,246 10,138,716
19990401 280.45 3,381.07 6,600 22,316,724 –7,404,423   9,912,301

… … … … … … …

Changes in

Month Gold Revenue Gold Cost Margin Futures

19990101 287.75
19990201 287.65     74,202 28,701 102,903 –2.21
19990301 285.85     45,042   6,255   51,297 –3.45
19990401 280.45 –307,238 80,823 –226,416 –4.93

… … … … … …

α̂1
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To minimize the effect that gold price uncertainty has on revenue, you should sell
244.62 gold futures contracts. To minimize the effect that gold price uncertainty has on
input costs, you should buy 86.17 contracts. Finally, to minimize the effect that gold
price uncertainty has on profit margin, you should sell 158.45 gold futures. Note that the
revenue risk hedge less the price risk hedge equals the margin hedge, 24,462 – 8,617 =
15,845. Apparently, the firm is able to pass along some the change in gold input cost by
changing the price of its watches.

HEDGING PORTFOLIO VALUE

Up to this point in the chapter, we have looked at expected return/risk manage-
ment of commodity price risk exposures embedded within operating costs, reve-
nue, and gross margin. The next series of applications focus on managing the
risk of financial assets. Suppose that we hold a portfolio of AAA-rated corpo-
rate bonds, for example, and know that there will be a major announcement by
the Federal Reserve next week. Given the impending announcement, we would
like to hedge our long-term interest rate risk exposure. One possible action is to
liquidate our bond position. This action may be expensive, however, because the
bond markets are not particularly liquid and trading costs are high. Another is
to hedge the portfolio value using long-term interest rate futures contracts. Such
markets are very liquid and trading costs are low. This section examines the
expected return/risk management of a portfolio of securities where security
value has only one source of underlying financial uncertainty (e.g., long-term
interest rate risk, stock market risk, or currency risk).

To begin, we assume that the fund manager’s objective function is to mini-
mize the variance of the value of his portfolio over a single period ending at time
T. The expression that we use for portfolio value risk is 

(5.35)

where VT is the sum of the market values of all securities in the portfolio at time
T, and FT is the price of the futures contract most closely tied to the portfolio’s
underlying source of risk (e.g., if VT is a well-diversified portfolio of stocks, FT
would be a stock index futures contract).

Like in the previous risk-management problems of this chapter, we will focus
initially on determining the risk-minimizing hedge. This approach to solving the
problem needs to be modified slightly. The reason is that financial assets, unlike
commodities, tend to grow in value through time. Consider a stock index portfo-
lio, for example. Contributing to the growth in the value of this portfolio is the
fact that not only do the individual stocks in the portfolio have prices that are

Criterion

Minimize revenue risk 19,314 28,729 24,462 2,028 0.6944
Minimize price risk –5,705   9,484 –8,617    670 0.7213
Minimize margin risk 13,609 22,173 15,845 1,565 0.6155

α̂0 s α̂0( ) α̂1 s α̂1( ) R
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expected to grow through time, but also any stocks that pay dividends will have
those dividends reinvested in more shares of the stock portfolio. To manage this
rate growth over the hedge horizon, we focus the natural logarithm of the portfolio
value instead of the value itself. The sequence of the values over the hedge horizon
is . Note that the end-of-hedge-period  can be
expressed in terms of the day to day values through time, that is,

(5.36)

where  is the continuously compounded return on the port-
folio. Assuming that returns are independent and identically distributed (i.i.d.),
the variance of the end-of-period portfolio value is simply T times the daily vari-
ance of the asset price change, that is,

(5.37)

By the same logic, the variance the end-of-period futures price is

(5.38)

and the covariance of the end-of-period asset price and futures price is

(5.39)

Thus the risk-minimizing hedge over the interval from 0 to T (5.20) can be re-
written in terms of daily price changes 

(5.40)

where σV and σF are the standard deviations of the continuously compounded
returns of the portfolio and the futures, and ρV,F is the correlation between the
rates of return of the portfolio and the futures.

Just as was the case in the earlier risk-minimizing hedge problems, the num-
ber of futures contracts to sell can be determined by OLS regression. Consider
the relation between the portfolio value and the futures at the end of the hedge
period standing today, that is,
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(5.41)

The slope coefficient in this relation, α1, is a price elasticity. It gives us the per-
centage change in the value of the portfolio for a given percentage change in the
futures price. To hedge, however, we need to know dV/dF, that is, the change in
the dollar value of the portfolio associated with a change in the futures price. In
this way, we can sell exactly dV/dF futures contracts so that, if something unex-
pected happens and the value of the portfolio (and futures price) changes, the
overall portfolio value change is zero, that is,

(5.42)

But the regression relation (5.41) provides only

How can we get dV/dF? The answer in the chain rule: 

(5.43)

We simply scale the regression coefficient α1 by the ratio of the portfolio value
to the value of a single futures contract.

To estimate α1, we rely on the differenced form of (5.41), that is, the regression,

(5.44)

where  and . We do this because the
returns of the portfolio and the futures,  and , as well as the error term
in the regression, , are assumed to be i.i.d. While the intercept term in (5.44)
is not the same as the intercept term in (5.41), the slope coefficient (and, hence,
the hedge ratio) is identical.

ILLUSTRATION 5.3 Hedging value.

Consider the case of a life insurance company that holds a large portfolio of AAA-rated
corporate bonds. Its daily values for the period January 1, 2004 through February 16,
2005 are reported in Life insurance.xls. Based on these values, the natural logarithm of
value and portfolio return are computed. Also included in the file are the continuously-
compounded returns of the Chicago Board of Trade’s (CBT’s) Treasury bond futures con-
tract. The current (2/16/05) T-bond futures price is 1.1525 per dollar of face value, and
the T-bond futures contract denomination is $100,000. Find the risk-minimizing hedge
for the bond portfolio.
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The data included in the file are as follows:

Based on the data, we regress the portfolio return on the futures return. This can be handled
using the OPTVAL function, OV_STAT_OLS_SIMPLE. The results are as follows:

The slope coefficient estimate, 0.8935, implies that, for a one percentage change in
the futures price, the portfolio value will change by 0.8935%. To determine the hedge
that minimizes the dollar value change of the portfolio, we must account for the current
value of the portfolio as well as the price of the futures. Earlier in this illustration, we
reported that the current portfolio value is $32,671,455, and that the current futures
price is 1.1525 times its $100,000 denomination. Thus, the value risk-minimizing hedge
is to sell 253.30 futures contracts:

With an adjusted R-squared of nearly 98%, you have good reason to believe that the
futures hedge will be very effective.

HEDGING MULTIPLE SOURCES OF RISK 

Aside from its convenience, the regression approach to setting a risk-minimizing
hedge is easily generalized to handle asset portfolios whose values are influenced
by a number of risk factors. Suppose we are managing a fund that invests primarily
in stocks from the oil refining industry. Since the portfolio is not well diversified
due to its concentration in oil stocks, its value is vulnerable not only to unexpected
stock market movements but also to unexpected changes in the price of oil. Sup-
pose that, given the political situation in Iraq, we come to the conclusion that there
is a substantial risk that the price of crude oil will spike upward in the near future.
This places us in a conundrum. While an increase in the crude oil price will likely

Date
AAA Portfolio

Value
Natural Log

of Value
Portfolio
Return

Futures
Return

20040101 29,004,133 17.183
20040102 28,677,998 17.172 –0.0113 –0.01295
20040105 28,679,125 17.172   0.0000 –0.00029
20040106 28,931,665 17.180   0.0088   0.01066
20040107 29,006,580 17.183   0.0026   0.00343

… … … … …
20050210 32,858,283 17.308 –0.0116 –0.01018
20050211 32,802,473 17.306 –0.0017 –0.00189
20050214 32,955,513 17.311   0.0047   0.00350
20050215 32,821,210 17.307 –0.0041 –0.00323
20050216 32,671,455 17.302 –0.0046 –0.00514

Criterion

Minimize value risk 0.0001 0.0000 0.8935 0.0075 0.9797

α̂0 s α̂0( ) α̂1 s α̂1( ) R
2

nF 0.8935
32,671,455

1.1525 100,000×
----------------------------------------------⎝ ⎠

⎛ ⎞– 253.30–= =
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cause the stock market level to fall, it may well have a positive influence on the
prices of the oil stocks in our portfolio. Thus selling the stocks and buying risk-free
bonds is not an appropriate strategy since it would eliminate both the stock market
and crude oil price risk exposures. Our objective is to negate the stock market risk
of our portfolio without negating the crude oil price risk.

A straightforward approach to handling this risk management problem is to
use the multiple regression model,

(5.45)

where all futures contracts whose returns are thought to influence the value of
our portfolio are used. With respect to the illustration at hand, we might include
only two risk factors: the S&P 500 futures contract to proxy for stock market
risk, and an oil futures contract to proxy for the effects of oil price risk. Once
the regression is estimated, we can hedge any of the risk exposures using the
estimated slope coefficients.

ILLUSTRATION 5.4 Hedging with two risk factors.

Suppose you manage a fund that invests primarily in oil refining stocks. As such, you are
exposed to both movements in oil prices and in the stock market. Given the current uneasi-
ness in the stock market, you find yourself in a dilemma. On one hand, you believe that there
is a strong chance that the market will fall over the next couple of weeks due to a rise in the
price of crude oil, but, on the other, that your particular portfolio of oil stocks will appreci-
ate in value relative to the stock market due to the rising price of crude. Consequently, you
want to hedge your market risk exposure, but not your oil risk exposure. Compute the stock
market risk-minimizing hedge using the return data provided in Oil hedge.xls. Use the S&P
500 futures contract traded on the Chicago Mercantile Exchange to represent the equity risk
factor and the crude oil futures contract traded on the New York Mercantile Exchange to
represent the oil risk factor. The contract denomination of the S&P 500 futures is 250 times
the index level, and the denomination of the crude oil futures is 1,000 barrels.

An important first step in an analysis of the hedge involving multiple risk factors is to
understand the correlation among the returns series. The raw data in the file appears as follows:

Date

Oil 
Stock

Portfolio
Value

Mar. 2005
S&P 500
Futures
Price

Mar. 2005
Crude
Futures
Price

Oil
Stock

Portfolio
Return

Mar. 2005
S&P 500
Futures
Return

Mar. 2005
Crude
Futures
Return

20040701 44,590,000 1128.50 37.00
20040702 44,720,000 1127.30 36.64   0.00291 –0.00106 –0.00978
20040706 45,100,000 1116.70 37.63   0.00846 –0.00945   0.02666
20040707 45,370,000 1119.70 37.11   0.00597   0.00268 –0.01392

… … … … … … …
20050216 58,480,000 1210.50 48.33   0.02704 –0.00017   0.02239
20050217 58,130,000 1201.00 47.54 –0.00600 –0.00788 –0.01648
20050218 59,410,000 1202.30 48.35   0.02178   0.00108   0.01689
20050222 58,250,000 1184.70 51.15 –0.01972 –0.01475   0.05630

RV α0 α1RF 1, α2RF 2, … αnRF n, ε̃+ + + + +=
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In Excel, go to the “Tools” menu, choose “Data analysis,” and then “Correlation.” This
tool will allow you to generate the following matrix of correlations.

The portfolio returns are strongly positively correlated with both the S&P 500 index,
0.4641, and the return of crude oil, 0.2738. At the same time, the S&P 500 return is
inversely correlated with the return of crude oil, –0.2060. In other words, where the
stocks, in general, fall as the price of crude oil rises, your particular portfolio of oil
stocks tends to rise as crude oil rises. 

Your objective is to hedge the stock market risk of your portfolio over the short-
term. In order to estimate the appropriate hedge, you need to regress your portfolio
returns on the returns of all known risk factors—in this case, the S&P 500 return and the
crude oil return. The estimation results are as follows: 

The regression results, indeed, confirm that the value of your portfolio increases
with the stock market and crude oil. The estimated coefficient on the S&P 500 is 0.8252,
which means that for a 1% change in the price of the S&P 500 futures contract, your
portfolio increases in value by 0.8252%, holding the effects of crude oil constant.10 The
number of S&P 500 futures to sell is determined by using the estimated slope coefficient,
the market value of the portfolio, the market price of the futures, and the futures con-
tract denomination is the following way:

Portfolio S&P 500 Crude

Portfolio 1
S&P 500 0.4641 1
Crude 0.2738 –0.2060 1

Regression Statistics

Multiple R 0.5982
R-square 0.3579
Adjusted R-square 0.3498
Standard error 0.0080
Observations 162

Coefficients Std. Error t Stat

Intercept 0.0010 0.0006 1.6483
S&P 500 0.8252 0.0986 8.3697
Crude oil 0.1792 0.0302 5.9395

10 This is precisely why it is important to include all possible risk factors. Otherwise, it is im-
possible to disentangle the effects of the different factors, except in the unusual case where the
risk factors are independent of one another. In OLS regression, this problem is referred to as
omitting relevant explanatory variables, and its consequences are discussed in Appendix B to
this book.

nF 0.8252
58,250,000

1184.70 250×
--------------------------------------⎝ ⎠

⎛ ⎞– 162.30–= =
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Finally, in the interest of completeness, suppose we set the stock market risk-mini-
mizing hedge using the estimated slope coefficient from a simply regression of portfolio
return on stock index futures return. The regression results are: 

With the estimated slope coefficient being 0.7046, the number of S&P 500 futures con-
tracts to sell is now

Selling this “risk-minimizing” number of futures is wrong. This number of contracts is
downward biased because we failed to account for the fact that the crude oil return and
the S&P 500 return are negatively correlated. Without the crude oil return in the regres-
sion, the S&P 500 return is proxying for two factors—the stock market and crude oil.
Since the crude oil and the stock market are negatively correlated, this means that the
slope coefficient in the simple regression on the S&P 500 futures return is downward
biased. If the correlation had been positive, the slope coefficient in the simple regression
would have been upward biased. 

Finally, with multiple risk factors, measuring the effectiveness of the hedge becomes
slightly more complicated. The R-squared in the first regression, 0.3579, says that
35.79% of the variance of the return of the oil stock portfolio can be explained by the
returns of the S&P 500 futures and the crude oil futures. But, what percentage of this
risk remains after the S&P 500 futures hedge is in place?

To answer this question, we compute the standard deviation of the unhedged portfo-
lio return, , as well as the standard deviation of the hedged portfolio return,

. They are 0.00993 and 0.00540, respectively. Thus the pro-
portion of the unhedged portfolio return variance that remains after the hedge is put in
place is

Regression Statistics

Multiple R 0.4641
R-square 0.2154
Adjusted R-square 0.2105
Standard error 0.0088
Observations 162

Coefficients Std. Error t Stat

Intercept 0.0014 0.0007 2.0722
S&P 500 0.7046 0.1063 6.6272

nF 0.7046
58,250,000

1184.70 250×
--------------------------------------⎝ ⎠

⎛ ⎞– 138.57–= =

σ R̃P( )
σ R̃V 0.8252 R̃S&P500×–( )

0.008832

0.009932
------------------------ 79.09%=
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ESTIMATION ISSUES

There are some subtle regression estimation issues that worth noting at this
juncture. An important one is the proper selection of the frequency of the price
observations used in generating price changes or returns. The regression can be
performed on daily, weekly, or monthly price changes or returns—given that
price changes/returns are i.i.d., it should not matter. From a purely statistical
standpoint, however, the higher is the frequency, the better. The greater is the
number of observations for a given historical time period, the greater the
amount of information that gets impounded in the estimate. From a practical
perspective, however, there is a tradeoff. While greater frequency means more
information, it also means more measurement error.

Measurement errors arise from a variety of sources. We will discuss three—
bid/ask price bounce, nonsimultaneous price observations, and infrequent trad-
ing. Before addressing the effects of these potential sources of error, it is useful
to think conceptually about the use of regression analysis for setting hedge
ratios. Implicitly or explicitly, we made a number of assumptions. A critically
important one was that the relation between asset returns (price changes) and
futures returns (price changes) was stationary through time. Among other
things, this allowed us to project expected future variances and covariances that
go into setting the hedge ratio from past price data. Other assumptions are also
critical. In using historical price data, we implicitly assume that we are measur-
ing “true” prices11 and that the asset and futures prices at a given time t are
observed at exactly the same instant in time. Both of these assumptions are nor-
mally violated. Indeed the magnitude of the errors induced by these consider-
ations may be quite large.

Bid/Ask Price Bounce

The problem here emanates from the fact that the daily prices recorded in his-
torical data bases are usually last trade prices. A last trade price is the price
recorded at the time of the last transaction of the day. In general, the last trade
price will not be the security’s true price. One reason for this is that, in all likeli-
hood, the trade took place on one side of the market. If the last trade was seller-
motivated, the trade was probably consummated at the prevailing bid price,
and, if the trade was buyer-motivated, it probably took place at the ask. (See
Figure 5.4.) A better proxy for the end-of-day true price is the midpoint of the
prevailing bid/ask price quotes at the end of the day, however, histories of daily
price quotes are not generally available. 

Now consider how prices are used in the regression of asset return on
futures return. For the asset, return is measure from close to close. The com-
puted asset return, therefore, has two measurement errors, one for each price.
The same is true for the futures. Thus, the number of measurement errors
included in a regression using T days of returns is 4 × (T + 1). This errors-in-the-

11 Here we are considering the “true” price of the security to be its price in a frictionless mar-
ket.
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variables problem tends to bias the estimated slope coefficient downward.12

Note that, if the spreads between the bid and ask prices in the asset and futures
markets is zero, this problem disappears. Conversely, in markets that are not
particularly liquid, bid/ask spreads will be high and the effects of this problem
will be large. Note also that we can control for the bias induced by bid/ask price
bounce somewhat by lengthening the period over which returns are measured.
The reason is that we are reducing the sheer number of errors. In regressions
based on true prices, daily data are expected to produce the same slope coeffi-
cient as weekly or monthly data. A regression involving weekly returns based on
last trade prices, however, will have proportionately fewer errors than a daily
return regression (with five trading days per week, about five times fewer errors),
and, hence, will produce a slope coefficient that is less downward biased. 

Nonsimultaneous Price Observations

Another source of measurement error is that the price observations that are used
in generating returns for the asset and the futures may not be simultaneous.
Consider regressing the daily returns of a stock portfolio on the returns of the
S&P 500 futures contract. If we use closing prices for each market, we have
another errors-in the-variables problem because the stock market closes at 4:00
PM (EST), while the S&P 500 index futures market closes at 4:15 PM. This tim-
ing mismatch causes that the slope coefficient in the regression to be downward
biased. Part of the observed futures return will not be reflected in the stock port-
folio return until the following day.13

Infrequent Trading

Yet another problem arises when the asset that we are trying to hedge is an
amalgam of other asset prices that have varying degrees of trading frequency.
Consider the closing index level of the S&P 500 portfolio each day, for exam-
ple. The “true” S&P 500 index level at the close should be based on a
weighted-average of the “true” prices of all 500 index stocks, where each and

12 For a discussion of the errors-in-the-variables problem, see Appendix B of this book.
13 In principle, this problem could be handled by including a lagged futures return in the re-
gression model. The procedures for doing so are somewhat inexact, however.

FIGURE 5.4 Relation between last trade price of the day and true price.
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every stock traded at exactly the close. But each stock did not trade at the close.
While in a typical trading day stocks like General Electric and IBM trade almost
continuously right up until the close, others trade fairly much less frequently.
Indeed some stocks may not to have been traded during the last few hours of
the day. For these stocks, the last trade price is a poor indicator of the true end-
of-day price. Indeed, because the index is computed on the basis of last trade
prices of the constituent stocks, the “observed” index will always lag its true
level. Among other things, this means the observed index returns will be posi-
tively serially correlated, thereby violating the regression assumption that
returns are i.i.d.

ILLUSTRATION 5.5 Testing for robustness.

The file High yield.xls contains the daily returns of the Merrill Lynch high-yield B bond
index, the CBT’s T-bond futures, and the CME’s S&P 500 futures. Bonds rated below
BBB are sometimes called “junk” bonds. Junk bond prices are usually sensitive to both
long-term interest rate and stock market movements. Regress the daily return of the bond
portfolio on the returns of the T-bond futures and S&P 500 futures as if you were
attempting to hedge the bond portfolio risk factors. Now create Wednesday to Wednes-
day returns by summing the daily returns over the week, and run the same regression on
weekly returns. Compare and comment on the regression results.

The table below summarizes the regression results. The daily regression results indi-
cate that the bond portfolio value is relatively insensitive to movements in the T-bond
futures price (long-term interest rates) and in the S&P 500 index. For a 1% change in the
T-bond futures price, the bond portfolio value changes by 0.0693%, and a 1% change in
the S&P 500 futures price causes the bond portfolio value to change by 0.0138%. The
hedging effectiveness appears to be very low, at 11.93%.

The weekly results are quite different. The coefficient estimate on the T-bond futures
return is 0.1625 and on the S&P 500 futures return is 0.0440, both more than twice as
high as in the daily regression. In addition, the hedging effectiveness is more than twice
what it appeared in the daily regression. The biweekly results improve matters even further.

These results reveal the danger in blindly applying regression analysis. The nature of
the data used in the regression needs to be carefully considered before the regression is per-
formed. In this particular instance, the most likely culprit is the bond index. Corporate
bonds with a high degree of credit risk trade infrequently. Indeed, it is not uncommon for
some corporate bonds to be traded shortly after issuance and then never again. Conse-
quently, it is highly likely that the bond index suffers from infrequent trading effects. 

α0 α1 α2 R2

Daily Coefficient 0.0003 0.0693 0.0444 0.1193
Std. error 0.0001 0.0138 0.0118

Weekly Coefficient 0.0014 0.1625 0.1401 0.2668
Std. error 0.0006 0.0440 0.0416

Biweekly Coefficient 0.0026 0.1758 0.1725 0.3546
Std. error 0.0012 0.0590 0.0563
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One way to test this possibility is to examine the autocorrelation function of the
bond portfolio returns. This can be done using the OPTVAL Library function

OV_STAT_AUTOCORREL(k, x, out)

where k is the maximum number of lags, x is the time series vector, and out is an indictor
variable controlling the output vector (0 = horizontal, and 1 = vertical).14 With 294 daily
returns in the time series, the standard error is .

As the results show, we can reject the hypothesis that the first-order autocorrelation of
the daily bond portfolio returns is zero. At the same time, we cannot reject the hypothe-
ses that the T-bond futures returns and the S&P 500 futures returns are uncorrelated. 

Like the bid/ask price effects, the effects of infrequent trading begin to disappear as
the distance between adjacent price observations used in the computation of returns
becomes larger. The autocorrelation functions for the weekly and biweekly bond returns
are as follows:

where the standard error for the weekly correlations is 0.130, and the standard error for
the biweekly correlations is 0.183. What the results indicate is that the first-order auto-
correlation remains significant in the weekly returns but disappears for biweekly returns.
Based on this analysis, it is safer to use the regression results from the biweekly regres-
sion in setting the risk-minimizing hedge.

SUMMARY

This chapter explores the role of forward/futures contracts in managing
expected return and risk. We begin by showing how futures contracts fit within
the CAPM and develop the concept of hedging. We then focus on using futures
to manage different types of risks. We start with price risk and consider the case
in which an airline wants to hedge the cost of jet fuel. We then focus on revenue
risk and show how a farmer can hedge the sales proceeds of his crop in an envi-
ronment with both price and quantity risks. Next we consider gross margin (i.e.,
uncertain revenue less uncertain costs) risk. Oil refiners, for example, are con-
cerned about the difference between the revenue they realize through the sale of
heating oil and unleaded gasoline and the cost of the crude oil they must acquire

14 The use of the autocorrelation function is described in greater detail in Appendix A of this
book.

Lag 1 2 3 4 5

Bond portfolio 0.5578   0.3684   0.3232   0.2175 0.1772
T-bond futures 0.0206 –0.0941   0.0492   0.0202 0.0201
S&P 500 futures 0.0287 –0.0542 –0.0147 –0.0556 0.0349

Lag 1 2 3 4 5

Weekly 0.3148 –0.0804 0.0177 –0.0411 –0.1000
Biweekly 0.1219 –0.1179 0.0759   0.0245 –0.0528

1 294⁄ 0.58=
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to produce these products. Finally, we consider risk management when the asset
or portfolio has multiple risk factors. Someone managing a junk bond portfolio,
for example, faces both interest rate and stock market risk exposures. For the
most part, the illustrations discussed in this chapter are confined to risk-mini-
mizing hedges. The principles can easily be extended to include the tradeoff
between expected return and risk. For setting risk-minimizing hedges, OLS
regression winds up being an indispensable tool. As important as the regression
technique, however, is a thorough understanding of the data being used in the
regression estimation.
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No-Arbitrage Price Relations: Options

 

he purpose of this chapter is to develop no-arbitrage price relations for
option contracts. Unlike forwards and futures, options provide the right, but

not the obligation, to buy or sell the underlying asset at a specified price. The
right to buy is a 

 

call

 

 option, the right to sell is a 

 

put

 

. The price at which the
underlying asset is bought (in the case of a call) or sold (in the case of a put) is
called the 

 

exercise

 

 price or 

 

strike

 

 price of the option.
In this chapter, the assumption that two perfect substitutes have the same

price is again applied. In the absence of costless arbitrage opportunities, options
have three types of no-arbitrage price relations—lower bounds, put-call parity
relations, and intermarket relations.

 

1

 

 Each type of relation is developed in turn,
for both European- and American-style options

 

2

 

 and under both the continuous
rate and discrete flow net cost of carry assumptions. Before deriving the no-arbi-
trage price relations for options, however, we focus on clearly distinguishing
between the characteristics of option and forward contracts.

 

OPTIONS AND FORWARDS

 

Options differ from forwards in two key respects. First, the net cost of carry of
a forward contract is zero since it involves no investment outlay. An option, on
the other hand, involves investment. An option buyer pays the option premium
for the right to buy or sell the underlying asset, and, like the buyer of any other
asset, faces carry costs. For an option, however, the only carry cost is interest.
Holding an option neither produces income like a dividend-paying stock nor
requires storage costs like a commodity (i.e., a physical asset).

The effects of carry costs on the terminal profit functions of forward and
option contracts are shown in Figures 6.1 through 6.3. The profit from a long
forward position at expiration is

 

1 

 

Much of the material used in this chapter was drawn from Stoll and Whaley (1986).

 

2 

 

European-style

 

 options can be exercised only on expiration day, while 

 

American-style

 

 op-
tions can be exercised at any time up to and including the expiration day. Both types of options
are traded on exchanges and in OTC markets.

T
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FIGURE 6.1

 

Terminal profit of long and short forward positions. 

 

FIGURE 6.2

 

Terminal profit of long and short call positions. 

 

FIGURE 6.3

 

Terminal profit of long and short put positions. 

 

(6.1)

On the other hand, the profit from a long call position is
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(6.2)

and from a long put position is 

(6.3)

All notation used in (6.1) through (6.3) is as defined in Chapter 4, except 

 

c

 

 and

 

p

 

, which are the prices of a European-style call and put, respectively, and 

 

X

 

,
which is the exercise price or strike price of the option. Note that the profit
functions for the long call and the long put (6.2) and (6.3) reflect the fact that
the initial option premiums, 

 

c

 

 and 

 

p

 

, are carried forward until the option’s expi-
ration at the risk-free interest rate. We have lost the opportunity cost of the
funds we tied up in buying the option. Conversely, short call and short put posi-
tions (i.e., 

 

π

 

short call,

 

T

 

 = –

 

π

 

long call,

 

T

 

 and 

 

π

 

short put,

 

T

 

 = –

 

π

 

long put,

 

T

 

) reflect the fact
that the option seller receives the premium payment and invests the cash at the
risk-free interest rate. The profit function of a long forward position (6.1) has
no interest component since the forward price is a promised payment on day 

 

T

 

rather than a cash outlay today. 
The second key difference between forwards and options is that the buyer of

a forward is obliged to buy the underlying asset at expiration, independent of
whether or not the terminal asset price is greater than or less than the initial for-
ward price. The buyer of an option, on the other hand, is not obliged to buy or
sell the underlying asset, but will do so only when it is profitable. The profit
function for the long call position (6.2), for example, shows that the option is
exercised only when 
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X

 

. If 

 

S

 

T

 

 < 

 

X

 

, the call option buyer chooses not to exer-
cise, forfeiting only his original investment plus carry costs, 

 

ce

 

rT

 

. The limited lia-
bility feature of the long call and long put positions are illustrated in Figures
6.2a and 6.3a, respectively. In the interest of completeness, the short positions
in the respective instruments are illustrated in Figures 6.1b through 6.3b. 

The profit functions of the call and the put show a certain complementarity
to the profit function of a forward. Suppose we buy a call and sell a put at the
same exercise price. The profit function for the overall position is

πlong call T,

ST X– cerT
– , if ST X≥

cerT
– ,             if ST X<

⎩
⎪
⎨
⎪
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=

πlong put T,
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Now, suppose that we chose the exercise price of the options such that 

 

X

 

 = 

 

f

 

 – 

 

ce

 

rT

 

+ 

 

pe

 

rT

 

. The profit functions of the option portfolio and the long forward posi-
tion will be exactly the same. If we buy the option portfolio and sell the forward
contract, the terminal value of the overall position must 0. In the absence of
costless arbitrage opportunities, the current value of the position must also be
equal to 0, and, therefore, the call and put prices must be equal. Buying the call
and selling the put (with the exercise price defined as above) is a perfect substi-
tute for buying a forward. Viewed in this way, we can see that we were slightly
imprecise in Chapter 1 when we said that there are only 

 

two

 

 basic types of
derivatives—a forward and an option. Fact of the matter is that we can con-
struct virtually any derivatives contract from any of the following pairs of basic
instruments (1) a forward and a call, (2) a forward and a put, and (3) a call and
a put.

 

CONTINUOUS RATES

 

In Chapter 4, the modeling of net carry costs was described in detail. Under the
continuous rate assumption, both interest cost and noninterest costs/benefits are
modeled as continuous rates. Under the discrete flow assumption, interest cost is
modeled as a continuous rate but noninterest costs/benefits are modeled as dis-
crete cash flows. This section relies on the continuous rate assumption. The
interest carry cost rate is represented by the notation 

 

r

 

, and the noninterest carry
benefit/cost rate is 

 

i.

 

 If the asset holder receives income from holding the asset
such as the dividend yield on a stock portfolio or interest on a foreign currency
investment, the income rate is positive (i.e., 

 

i

 

 > 0). If the asset holder pays costs
in addition to interest in order to hold the asset (e.g., storage costs of holding a
physical commodity), the income rate is negative (i.e., 

 

i

 

 < 0). Where 

 

i

 

 = 0, the
only cost of carry is interest. As noted earlier in this section, the net cost of carry
of an option is simply the interest rate.

 

Lower Price Bound of European-Style Call

 

Under the continuous rate assumption, the lower price bound of a European-
style call option is

(6.4)

The reason that the call price must be greater or equal to 0 is obvious—we do
not have to be paid to take on a privilege. The reason the call price must exceed
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 – 

 

Xe

 

–

 

rT

 

 is less obvious and is derived by means of an arbitrage portfolio.
Suppose we form a portfolio by selling 

 

e

 

–

 

iT

 

 units of the underlying asset

 

3

 

 and

 

3 

 

Recall that under the continuous cost of carry rate assumption, the continuously paid in-
come received from holding the asset is immediately reinvested in more units of the asset, so
that 

 

e

 

–

 

iT

 

 units on day 0 grows to one unit on day 

 

T

 

. For a short asset position, the reverse
applies in the sense that our liability (in terms of number of units owed) grows at rate i. 

c max 0 Se iT– Xe rT–
–,( )≥
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buying a European-style call. In addition, to make sure that we have enough
cash on hand to exercise the call at expiration, we buy Xe–rT in risk-free bonds.
The initial investment and terminal values of these positions are shown in Table
6.1. On day T, the net terminal value of the portfolio depends on whether the
asset price is above or below the exercise price. If the asset price is less than the
exercise price (i.e., ST < X), we let the call expire worthless. We then use the
risk-free bonds to buy one unit of the asset to cover the short sale obligation.
What remains is , which we know is greater than 0. If the asset price is
greater than or equal to the exercise price (i.e., ST ≥ X), we exercise the call.
This requires a cash payment of X. Fortunately we have exactly that amount on
hand in the form of risk-free bonds. The unit of the asset that we receive upon
exercising the call is used to retire the short sale obligation. In this case, the net
terminal value is certain to be 0. 

What are the implications of this strategy? Well, we have formed a portfolio
that is certain to have a terminal value of at least 0. In the absence of costless
arbitrage opportunities, this implies that the greatest initial value is 0. More
simply, we cannot reasonably expect to collect money at the outset without risk
of loss. In the absence of costless arbitrage opportunities, Se–iT – Xe–rT – c ≤ 0.
Hence, a lower price bound for the European-style call is c ≥ Se–iT – Xe–rT.4

In general, the lower price bound of an option is called its intrinsic value,
and the difference between the option’s market value (price)5 and its intrinsic
value is called its time value. Thus a European-style call has an intrinsic value of
max(0,Se–iT – Xe–rT) and a time value of c – max(0,Se–iT – Xe–rT). This chapter
deals with identifying intrinsic values by virtue of no-arbitrage arguments. The
next chapter uncovers the determinants of time value.

TABLE 6.1  Arbitrage portfolio trades supporting lower price bound of European-style call 
option where the underlying asset has a continuous net carry rate, c ≥ Se–iT – Xe–rT.

4 It is also worthwhile to note that the lower price bound of the call can be reexpressed relative
to the forward/futures prices. In Chapter 4, we developed the net cost of carry relation, fe–rT

= Se–iT (see equation (4.5)). Substituting the cost of carry relation into (6.4), c ≥ max(0,fe–rt –
Xe–rT).
5 The distinction between value and price is subtle, but important. A price is what we observe
for the security in the marketplace; a value is what we believe a security is worth. If the value
exceeds the price, the security is underpriced, and, if the value is less than the price, the security
is overpriced.

Value on Day T

Trades Initial Investment ST < X ST ≥ X

Sell asset  Se–iT

Buy call option  –c   0
Buy risk-free bonds  –Xe–rT  X  X

Net portfolio value Se–iT – Xe–rT – c   0

X S̃T–

S̃T– S̃T–

S̃T X–

X S̃T–
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ILLUSTRATION 6.1 Examine lower price bound of European-style call option.

Suppose a three-month European-style call option written on a stock index portfolio has
an exercise price of 70 and a market price of 4.25. Suppose also the current index level is
75, the portfolio’s dividend yield rate is 4%, and the risk-free rate of interest is 5%. Is a
costless arbitrage profit possible? 

To test for the possibility of a costless arbitrage profit, substitute the problem param-
eters into the lower price bound (6.4), that is,

Since the lower bound relation is violated, a costless arbitrage profit of at least 5.12 – 4.25
= 0.87 is possible. Since the violation may result from either the call being underpriced or
the asset being overpriced, the arbitrage requires buying the call and selling the asset.6 The
appropriate arbitrage trades are provided in Table 6.1. Substituting the prices and rates,

In examining the net portfolio value, note that you (a) earn an immediate profit of 0.87,
and (b) have the potential of earning even more if the index level is below 70 at the
option’s expiration. If prices in the market were actually configured at such levels, you
should expect that buying pressure on the call and selling pressure on the index portfolio
would very quickly return the market to equilibrium. In the absence of costless arbitrage
opportunities, 

Lower Price Bound of American-Style Call 

American-style options are like European-style options except that they can be
exercised at any time up to and including the expiration day. Since this addi-
tional right cannot have a negative value, the relation between the prices of
American-style and European-style call options is

C ≥ c (6.5)

where the upper case C represents the price of an American-style call option
with the same exercise price and time to expiration and on the same underlying

6 Note that we are not making any judgment on whether the call price is too high or too low
per se. We are saying only that the call is incorrectly priced (in this case it is priced too low)
relative to the price of the underlying asset. To execute the arbitrage, we must trade both the
call and the underlying asset, so that we make money when their prices come back into line
relative to each other. In this example, the prices come back into line with each other for cer-
tain at the option’s expiration.

Value at Time T

Trades Initial Investment ST < 70 ST ≥ 70

Sell index portfolio   74.25
Buy call option   –4.25   0
Buy risk-free bonds –69.13 70 70

Net portfolio value     0.87   0

4.25 max 0 75e 0.04 3 12⁄( )– 70e 0.05 3 12⁄( )–
–,[ ]< 5.12=

S̃T– S̃T–

S̃T 70–

70 S̃T–

c Se iT– Xe rT– .–≥



No-Arbitrage Price Relations: Options 181

asset as the European-style call. The lower price bound of an American-style call
option is

(6.6)

This is the same as the lower price bound of the European-style call (6.4), except
that the term S – X is added within the maximum value operator on the right-
hand side. The reason is, of course, that the American-style call cannot sell for
less than its immediate early exercise proceeds, S – X. If C < S – X, a costless
arbitrage profit of S – X – C can be earned by simultaneously buying the call
(and exercising it) and selling the asset.

ILLUSTRATION 6.2 Examine lower price bound of American-style call option.

Suppose a three-month American-style call option written on a stock index portfolio has
an exercise price of 70 and a market price of 4.25. Suppose also the current index level is
75, the portfolio’s dividend yield rate is 4%, and the risk-free rate of interest is 5%. Is a
costless arbitrage profit possible? 

To test for the possibility of a costless arbitrage profit, substitute the problem infor-
mation into (6.6), that is,

At the current call price of 4.25, two types of arbitrage are possible. A costless arbitrage
profit of 5.00 – 4.25 = 0.75 is possible simply by buying the call, exercising it, and selling
the asset. The amount of this arbitrage profit, however, is less than the arbitrage profit of
at least 5.12 – 4.25 = 0.87 that can be earned by buying the call, selling the asset, buying
risk-free bonds, and holding the portfolio until the call’s expiration, as was shown in the
arbitrage table of Illustration 6.1. Under this second alternative, you earn an immediate
profit of 0.87, and have the potential of earning even more if the asset price is below 70
at the option’s expiration. 

Early Exercise of American-Style Call Options

The structure of the lower price bound of the American-style call (6.6) can used
to provide important insight regarding the possibility of early exercise. The sec-
ond term in the squared brackets, Se–iT – Xe–rT, is the minimum price at which
the call can be sold in the marketplace.7 The third term is the value of the Amer-
ican-style if it is exercised immediately. If the value of the second term is greater
than the third term (for a certain set of call options), the call’s price in the mar-
ketplace will be always exceed its exercise proceeds so it will never be optimal
to exercise the call early.

7 To exit a long position in an American-style call option, we have three alternatives. First, we
can hold it to expiration, at which time we will (a) let it expire worthless if it is out of the mon-
ey or (b) exercise it if it is in the money. Second, we can exercise it immediately, receiving the
difference between the current asset price and the exercise price. Third, we can sell it in the
marketplace. There is, after all, an active secondary market for standard calls and puts.

C max 0 Se iT– Xe rT–
– S X–, ,( )≥

4.25 max 0 75e 0.04 3 12⁄( )– 70e 0.05 3 12⁄( )–
– 75 70–, ,[ ]< max 0 5.12 5, ,( ) 5.12= =
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To identify this set of calls, we must examine the conditions under which the
relation

holds. The job is easier if we rearrange the relation to read

(6.7)

Since the risk-free interest rate is positive, the expression of the right-hand side
is negative. If the left-hand side is positive or zero, the call option holder can
always get more by selling his option in the marketplace than by exercising it; so
early exercise will never be optimal and the value of the American-style call is
equal to the value of the European-style call, C = c. This condition is met for
calls whose underlying asset has a negative or zero noninterest carry rate, i ≤ 0. 

The intuition for this result can be broken down into two components—
interest cost, r, and noninterest benefit (i.e., i > 0) or cost (i.e., i < 0). With
respect to interest cost, recognize that exercising the call today requires that we
pay X today. If we defer exercise until the call’s expiration, on the other hand,
we have the opportunity to earn interest (i.e., our liability is only the present
value of the exercise cost, Xe–rT). So, holding other factors constant, we always
have an incentive to defer exercise.8 With respect to the noninterest costs, recall
that assets with i < 0 are typically physical assets that require storage. If we
exercise a call written on such an asset, we must take delivery, whereupon we
immediately begin to incur storage costs. If we defer exercise, on the other hand,
and continue to hold the claim on the asset rather than the asset itself, we avoid
paying storage costs. Thus, where i < 0, there are two reasons not to exercise
early. But even if storage costs are zero (i.e., with i = 0), condition (6.7) holds
since the interest cost incentive remains. 

For American-style call options on assets with i > 0 (e.g., stock index portfo-
lio with a nonzero dividend yield and foreign currencies with a nonzero foreign
interest rate), on the other hand, early exercise may be optimal. The intuition is
that, while there remains the incentive to defer exercise and earn interest on the
exercise price, deferring exercise means forfeiting the income on the underlying
asset (e.g., the dividend yield on a stock index portfolio). The only way to cap-
ture this income is by exercising the call and taking delivery of the asset. For
American-style call options on assets with i > 0, early exercise may be optimal
and, therefore, C > c.

Lower Price Bound of European-Style Put

The lower price bound of a European-style put option is

8 This point was first demonstrated by Merton (1973) for call options on nondividend-paying
stocks. He refers to such options are being worth more “alive” than “dead.”

Se iT– Xe rT–
– S X–>

S e iT– 1–( ) X 1 e rT–
–( )–>
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TABLE 6.2  Arbitrage portfolio trades supporting lower price bound of European-style put 
option where the underlying asset has a continuous net carry rate, p ≥ Xe–rT – Se–iT.

(6.8)

Again, the reason that the option price must be greater or equal to 0 is obvious—
we do not have to be paid to take on a privilege. The reason the put price must
exceed the bound, , is given by the arbitrage trade portfolio in Table
6.2. If we buy e–iT units of the asset and a put, and sell Xe–rT risk-free bonds, the net
terminal value of the portfolio is certain to be greater than or equal to 0. If the asset
price is less than or equal to the exercise price at the option’s expiration (i.e., ST ≤
X), we will exercise the put, delivering the asset and receiving X in cash. We will
then use the exercise proceeds X to cover our risk-free borrowing obligation. In the
event the asset price is greater than the exercise price (i.e., ST ≤ X), we will consider
the put expire worthless. We still need to cover our risk-free borrowing, which we
do by selling the asset. After repaying our debt, we have  remaining.

ILLUSTRATION 6.3 Examine lower price bound of European-style put option.

Suppose a three-month European-style put option written on a stock index portfolio has
an exercise price of 70 and a market price of 8.80. Suppose also the current index level is
61, the portfolio’s dividend yield rate is 4%, and the risk-free rate of interest is 5%. Is a
costless arbitrage profit possible? 

To test for the possibility of a costless arbitrage profit, substitute the problem param-
eters into the lower price bound (6.8),

At the current price of 8.80, the no-arbitrage condition (6.8) holds, so no costless arbi-
trage opportunity exists. 

Lower Price Bound for American-Style Put

An American-style put has an early exercise privilege, which means that the
relation between the prices of American-style and European-style put options is

P ≥ p (6.9)

Value on Day T

Trades Initial Investment ST < X ST ≥ X

Buy asset –Se–iT

Buy call option  –p 0
Sell risk-free bonds  Xe–rT  –X  –X

Net portfolio value  Xe–rT – Se–iT – p  0

S̃T S̃T

X S̃T–

S̃T X–

p max 0 Xe rT– Se iT–
–,( )≥

Xe rT– Se iT–
–

S̃T X–

8.80 max 0 70e 0.05 3 12⁄( )– 61e 0.04 3 12⁄( )–
–,[ ]> 8.74=
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where upper case P represents the price of an American-style put option with
the same exercise price, time to expiration and underlying asset as the Euro-
pean-style put. The lower price bound of an American-style put option is

(6.10)

This is the same as the lower price bound of the European-style put (6.8), except
that, because the American-style put may be exercised at any time including now,
the exercise proceeds, X – S, is added within the maximum value operator on the
right-hand side. If P < X – S, a costless arbitrage profit of X – S – P can be earned
by simultaneously buying the put (and exercising it) and buying the asset.

ILLUSTRATION 6.4 Examine lower price bound of American-style put option.

Suppose a three-month American-style put option written on a stock index portfolio has
an exercise price of 70 and a market price of 8.80. Suppose also the current index level is
61, the portfolio’s dividend yield rate is 4%, and the risk-free rate of interest is 5%. Is a
costless arbitrage profit possible? 

To test for the possibility of a costless arbitrage profit, substitute the problem informa-
tion into (6.10), that is,

At the current price of 8.80, the no-arbitrage relation (6.10) is violated, indicating the
presence of a costless arbitrage opportunity. Since it is the early exercise condition (third
term) on the right-hand-side that is violated, you should buy the put (and exercise it) and
buy the index portfolio. You would pay 8.80 for the put and 61 for the index portfolio,
and receive 70 when you deliver the index portfolio upon exercising the put. The amount
of the arbitrage profit is 0.20 and is earned immediately.

Early Exercise of American-Style Put Options

In the case of an American-style call, we found that if the underlying asset had
carry costs or and above interest (e.g., storage), the call option holder would
never (rationally) exercise early. In the case of an American-style put, no compa-
rable condition exists.9 There is always some prospect of early exercise, so the
American-style put is always worth more than the European-style put, that is, P
> p. The intuition is straightforward. Suppose, for whatever reason, the asset
price falls to 0. The put option holder should exercise immediately. There is no
chance that the asset price will fall further, so delaying exercise means forfeiting
the interest income that can be earned on the exercise proceeds of the put, X.
The interest-induced, early-exercise incentive works in exactly the opposite way
for the put than it did for the call. For the put, we want to exercise early to get
the cash and let it begin to earn interest. For the call, we want to defer exercise
and let the cash continue to earn interest.

9 In the expression on the right-hand side of (6.10), the third term is greater than the second
term over some range for S, independent of the level of i.

p max 0 Xe rT– Se iT–
– X S–, ,( )≥

8.80 max 0 70e 0.05 3 12⁄( )– 61e 0.04 3 12⁄( )–
– 70 61–, ,[ ]< max 0 8.74 9.00, ,( ) 9.00= =
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Put-Call Parity for European-Style Options

Perhaps the most important no-arbitrage price relation for options is put-call
parity.10 The put-call parity price relation arises from the simultaneous trades in
the call, the put, and the asset. Put-call parity for European-style options is
given by

(6.11)

The composition of the put-call parity arbitrage portfolio is given in Table 6.3.
A portfolio that consists of a long position of e–iT units of the asset, a long put,
a short call, and a short position of Xe–rT in risk-free bonds is certain to have a
net terminal value of 0. If the terminal asset price is less than or equal to the
exercise price of the options (i.e., ST ≤ X), we exercise the put and deliver the
asset. The cash proceeds from exercise are used to repay our debt. The call
option is out-of-the-money, so the call option holder will let it expire worthless.
On the other hand, if the terminal asset price exceeds the exercise price (i.e., ST
> X), we will let our put expire worthless. The call option holder will exercise,
requiring that we deliver a unit of the asset, which we just happen to have.11

The call option holder pays us X, which we use to retire our risk-free borrow-
ings. Since the net terminal portfolio value is zero, the cost of entering into such
a portfolio today must also be 0, otherwise costless arbitrage would be possible.
If the initial investment is 0, the put-call parity relation (6.11) holds. 

The set of arbitrage trades spelled out in Table 6.3 (i.e., buy the asset, buy
the put, sell the call, and sell risk-free bonds) is called a conversion. If all of the
trades are reversed (i.e., sell the asset, sell the put, buy the call, and buy risk-free
bonds), it is called a reverse conversion. These names arise from the fact that we
can create any position in the asset, options, or risk-free bonds by trading (or
converting) the remaining securities, in the same manner we used a call and a

10 The term, “put-call parity,” was first coined by Stoll (1969) in the first academic study to
develop and test the relation.
11 If we buy a put option, we pay the premium today for the right to sell the underlying asset
at the exercise price. If we sell the put, we collect the premium today but have the obligation
to deliver the asset and receive the exercise price if the put option buyer chooses to exercise.

c p– Se iT– Xe rT–
–=

TABLE 6.3  Arbitrage portfolio trades for European-style put-call parity where the 
underlying asset has a continuous net carry rate, c – p = Se–iT – Xe–rT.

Value at Time T

Trades Initial Investment ST < X ST ≥ X

Buy asset –Se–iT

Buy put option –p     0
Sell call option c     0
Sell risk-free bonds Xe–rT –X –X

Net portfolio value Xe–rT – Se–iT – p + c     0     0

S̃T S̃T

X S̃T–

S̃T X–( )–
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put to create a forward contract at the beginning of the chapter. Table 6.4 pro-
vides a complete list of the conversions that are possible using the put-call parity
relation for European-style options. The first row says that buying the asset,
buying a put, and selling a call is equivalent to buying risk-free bonds. We can
check this by creating an arbitrage trade table, or by simply working through it
mentally. If the asset price is less than the exercise price at expiration, we will
exercise our put and sell the asset. If the asset price is greater than the exercise
price, the call option holder will exercise, requiring that we deliver the asset. In
both cases, we are certain to have X in cash when all is said and done. This is
the same as the amount we would have had if we bought risk-free bonds. 

ILLUSTRATION 6.5 Examine put-call parity for European-style options.

Suppose that a three-month call and put with an exercise price of 70 have prices of 5.00
and 4.50, respectively. Suppose also that the current level of the index portfolio underly-
ing the options is 70, the index portfolio has a dividend yield rate of 3%, and the risk-
free rate of interest is 5%. Is a costless arbitrage profit possible? 

To test for the possibility of a costless arbitrage profit, substitute the problem param-
eters into the put-call parity relation (6.11), 

5.00 – 4.50 = 0.50 > 70e–0.03(3/12) – 70e–0.05(3/12) = 0.34

Since the equation does not hold, a costless arbitrage profit is possible. Since the viola-
tion may result from either the call being overpriced, the put being underpriced, or the
asset being underpriced, the arbitrage will require all three trades: selling the call, buying
the put, and buying the asset. Using the trades as set out in Table 6.3, you get:

Value at Time T

Trades Initial Investment ST < 70 ST ≥ 70

Buy asset –69.48
Buy put option   –4.50 0
Sell call option     5.00 0
Sell risk-free bonds   69.13 –70 –70

Net portfolio value     0.16 0 0

TABLE 6.4  Perfect substitutes implied by European-style put-call parity.

Position 1 Position 2

Buy asset/buy put/sell call = Buy risk-free bonds (lend)
Buy asset/buy put/sell risk-free bonds = Buy call
Sell asset/buy call/buy risk-free bonds = Buy put
Sell put/buy call/buy risk-free bonds = Buy asset

Sell asset/sell put/buy call = Sell risk-free bonds (borrow)
Sell asset/sell put/buy risk-free bonds = Sell call
Buy asset/sell call/sell risk-free bonds = Sell put
Buy put/sell call/sell risk-free bonds = Sell asset

S̃T S̃T

S̃T 70–

S̃T 70–( )–
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By forming this portfolio, you generate a costless arbitrage profit of 0.16. The buying
pressure on the index portfolio and the put will cause their prices to rise, and the selling
pressure on the call will cause its price to fall. The arbitrage trading will stop when the
initial value investment column sums to zero (i.e., the costless arbitrage opportunity
ceases to exist), or where c – p = Se–iT – Xe–rT.

ILLUSTRATION 6.6 A “Sage” entrepreneur.

Russell Sage, one of the great railroad speculators of the 1800s, understood the concept
of put-call parity all too well. He used it to circumvent usury laws in the United States.12

Among other ventures, Sage was in the business of making loans. The structure of his
“loans” had three key features. First, Sage required that the borrower post stock as col-
lateral for the loan, with the maximum loan amount being equal to the prevailing stock
price. Second, in order to protect himself from a drop in the stock price, Sage demanded
that the borrower provide a written guarantee stating that Sage could sell the stock back
to the borrower at the original stock price. Third, Sage insisted that the borrower pay a
cash premium for the right to buy back the stock at its original price. On face appear-
ance, the borrower has an interest-free loan (i.e., he borrows S and repays S). But, such is
not the case. The call option that the borrower is required to buy embeds the interest
cost. Conveniently for Sage, usury laws did not apply to implicit interest rates.

Impressed by Sage’s clever scheme, you decide to engage in the same line of business.
A borrower approaches you and asks for a six-month loan based on 50,000 shares of
ABC, Inc. ABC currently trades at $120 a share, so you are willing to provide up to $6
million, conditional upon the borrower giving you temporary ownership of the shares.
Also under the terms of the agreement, you have the right to sell back the shares to the
borrower at the end of 6 months at the original share price of $120. This protects you in
the event the share price falls. Finally, you insist that the borrower pay you for the right
to buy back the shares at $120. Indeed, it must be the borrower’s expectation that the
share price will be above $120 at the end of 6 months, otherwise he would simply have
sold the shares at the outset. For this privilege, you charge the borrower $10 a share.
Compute the embedded interest rate on this loan arrangement.

At the outset, you are out-of-pocket $110 a share (i.e., the share price less the call pre-
mium) on 50,000 shares or $5,500,000. At the end of the loan’s life, the agreement’s con-
tingencies depend on whether the share price is less than or greater than $120. If it is less
than $120, you will exercise your right to “put” the stock back to the borrower at $120 a
share. The borrower pays $6,000,000, and you return the shares. If the share price is
greater than $120, the borrower will exercise his call option. You deliver the 50,000 shares
and receive exercise proceeds in the amount of $6,000,000. Either way, you get $6,000,000
in 6 months on an investment of $5,500,000 today. Your implied, continuously-com-
pounded rate of return on investment is

or 17.40%.

12 This anecdote was drawn from Gastineau (1988, p.15).

6,000,000 5,500,000⁄( )ln

0.5
-------------------------------------------------------------------
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Put-Call Parity for American-Style Options

The early exercise feature of American-style options complicates the put-call
parity relation. The nature of the relation depends on the level of noninterest
costs/benefits, i. Specifically, the put-call parity relations are

(6.12a)

and

(6.12b)

Each inequality in (6.12a) and in (6.12b) has a separate set of arbitrage trades.
To illustrate, consider (6.12b), the case in which the asset pays some form of
income, say, a stock index portfolio with a constant dividend yield rate, or a for-
eign currency with a constant foreign risk-free rate of interest. To establish the
left-hand side inequality of (6.12b), consider the arbitrage portfolio trades in
Table 6.5. To generate the table entries, assume the left-hand side inequality of
(6.12b) is reversed. This means the asset price is overpriced, the put is over-
priced, and/or the call is underpriced. Thus, the arbitrage portfolio must account
for all three possibilities. We should sell the asset, sell the put, buy the call, and
buy some risk-free bonds. At the options’ expiration, the portfolio is certain to
have positive value X(erT – 1). If ST < X, the put option holder exercises, requir-
ing that we pay X in return for a unit of the underlying asset. We pay the exercise
price using a portion of our risk-free bonds, and use the delivered asset to cover
our short position. On the other hand, if ST ≥ X, we exercise the call and receive
the asset. The asset delivered on the call is used to cover the short position. We
use some of the risk-free bonds to pay for the exercise price of the call.

The early exercise feature of the American-style options requires that we
consider one other contingency within the arbitrage table, that is, what happens
if the put option holder decides to exercise early at some arbitrary time t
between now and expiration. Looking at Table 6.5, we see that our obligation

S X– C P– Se iT– Xe rT–
–≤ ≤   if i 0≤

Se iT– X– C P– S Xe rT–
–   if i 0>≤ ≤

TABLE 6.5  Arbitrage portfolio trades supporting American-style put-call parity where the 
underlying asset has a continuous net carry rate, Se–iT – X < C – P.

Initial 
Investment

Early Exercise
at t

Value on Day T

Trades  ST < X  ST ≥ X

Sell asset  Se–iT    
Sell put option  P   0
Buy call option –C  0  
Buy risk-free bonds –X  XerT  XerT  XerT

Net portfolio value Se–iT + P – C – X   X(erT – 1)  X(erT – 1)

S̃te
i T t–( )–

– S̃T– S̃T–

X S̃t–( )– X S̃T–( )–

C̃t S̃T X–

S̃t 1 e i T t–( )–
–[ ] C̃t+

X erT 1–( )+
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should the put be exercised early is . But since we have Xert in risk-free
bonds, we have more than enough to cover the payment of X to the put option
holder. In return, we receive , which is more than enough to cover our short
asset position in the asset that has value . In addition, we have a long
position in the call with value . Because the net portfolio value is positive at
expiration and also in the event the put is exercised early, the initial investment
must be negative (since if it were zero or positive, there would be a certain arbi-
trage). And, if , then .

To establish the right-hand side inequality of (6.12b), consider the arbitrage
portfolio trades in Table 6.6. To generate the table entries, again assume the
right-hand side inequality of (6.9b) is reversed. This means the asset price is
underpriced, the put is underpriced, and/or the call is overpriced. The arbitrage
portfolio trades must account for all possibilities. We should buy the asset, buy
the put, sell the call, and sell some risk-free bonds. At the options’ expiration,
the portfolio is certain to have positive value . If ST < X, we exercise
the put and sell the asset. The long asset position has a value , which is
more than enough to pay for the unit of the asset owed on the put. The cash
received from exercising the put is used to cover our risk-free bond obligation.
On the other hand, if ST ≥ X, the call option holder exercises, implying that we
receive X in return for delivering one unit of the asset. We use the call received
from the call option holder to retire the risk-free bond position. The value of
our asset position, , is more than we need to deliver on the put.

The early exercise feature of the American-style call must also be consid-
ered, that is, what happens if the call option holder decides to exercise early on
day t? Looking at Table 6.6, we see that the call exercise obligation is .
But, if we receive X, that is more than enough to cover the balance of –Xe–r(T–t)

in risk-free bonds. We must pay , but we have more than one unit of the asset,
that is, . In addition, we have a long position in the put with value .
Since the net portfolio value is positive at expiration and in the event the call is
exercised early, the initial investment must be negative. And, if –S + Xe–rT + C –
P < 0, C – P < S – Xe–rT.

TABLE 6.6  Arbitrage portfolio trades supporting American-style put-call parity where the 
underlying asset has a continuous net carry rate, C – P < S – Xe–rT.

Initial
Investment

Early
Exercise at t

Value on Day T

Trades  ST < X  ST ≥ X

Buy asset –S

Buy put option –P 0
Sell call option C 0
Sell risk-free bonds XerT –Xe–r(T–t) –X –X

Net portfolio value –S – P + XerT + C

X S̃t–( )–

S̃t
S̃t– e i T t–( )–

C̃t

Se iT– X C–– P+ 0< Se iT– X– C P+<

S̃T eiT 1–( )
S̃TeiT

S̃TeiT

S̃t X–( )–

S̃t
S̃te

i T t–( ) P̃t

S̃te
it S̃TeiT S̃TeiT

P̃t X S̃T–

S̃t X–( )– S̃T X–( )–

S̃t eit 1–( ) P̃t+

X 1 e r T t–( )–
–[ ]+

S̃T eiT 1–( ) S̃T eiT 1–( )
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TABLE 6.7  No-arbitrage price relations for European- and American-style options where the 
underlying asset has a continuous net carry rate.

Summary

This completes the derivations of no-arbitrage price relations for European-style
and American-style options on assets with a continuous net carry rate. For con-
venience, a summary of the no-arbitrage relations is provided in Table 6.7.

DISCRETE FLOWS

With the no-arbitrage price relations for an underlying asset with a continuous
carry cost rate in hand, the focus now turns to developing the same set of rela-
tions for an asset that has interest cost modeled as a continuous rate but nonin-
terest costs/benefits modeled as a discrete flow. If the noninterest flow is income
such as in the case of a cash dividend payment on a share of stock or a coupon
payment on a bond, the income is represented as a positive value, that is, It > 0.
If the flow is a cost such as, say, warehouse rent from storing an inventory of
wheat, the income is represented as a negative value, that is, It < 0. Again, since
this book deals primarily with financial assets, most of the illustrations will have
It discussed as being a positive value. Although It represents a cash payment on
any type of asset, we will call It a dividend payment throughout this section for
expositional convenience.

Lower Price Bound of European-Style Call

The lower price bound of a European-style call option on an asset that makes a
single, discrete cash dividend payment during the option’s life is

(6.13)

In this relation, Ite
–rt is the present value of the promised dividend to be received

at time t, where t < T. The arbitrage trading strategy that supports (6.13) is: sell
the asset, buy a call, and buy risk-free bonds. The initial investment and termi-
nal values are shown in Table 6.8. The first row in the table represents the short
asset position. Today, we collect S, and, at the option’s expiration, the short
position must be covered at a cost of . Shorting an asset, however, requires
that we pay any dividends on the underlying asset. If we are short a stock and

Description European-Style Options American-Style Options

Lower price bound for call c ≥ max(0,Se–iT – Xe–rT) C ≥ max(0,Se–iT – Xe–rT, S – X)
Lower price bound for put p ≥ max(0,Xe–rT – Se–iT) P ≥ max[0,Xe–rT – Se–iT, X – S]
Put-call parity relation c – p = Se–iT – Xe–rT S – X < C – P < Se–iT – Xe–rT if i ≤ 0

Se–iT – X < C – P < S – Xe–rT if i > 0

c max 0 S Ite
rt–

– Xe rT–
–,( )≥

S̃t
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the stock pays a dividend, for example, we are obliged to pay the dividend out
of our own pocket. Since the dividend is made during the option’s life (i.e., t <
T), the first row has a cash outflow of –It paid on day t. The second row shows
the long call position. On day t, the call is worth nothing if ST < X and  if
ST ≥ X. Finally, we buy some risk-free bonds. The amount necessary must be
sufficient to cover the payment of the exercise price, X, on day T and the pay-
ment of the cash dividend, It, on day t, that is, –Xe–rT – Ite

–rt. Since the portfolio
is certain to have a nonnegative net value on day t, the net portfolio value today
must be less than or equal to 0, which implies c ≥ S – Ite

–rt – Xe–rT.

Lower Price Bound of American-Style Call 

A discrete cash dividend payment on the underlying asset affects the early exer-
cise behavior of American-style call options differently than in the continuous
carry rate case. In the case of an American-style call written on a stock, it may
be optimal to exercise either just prior to the ex-dividend date (when the stock
price falls by It) or at expiration. Early exercise between today and the ex-divi-
dend instant and between the ex-dividend instant and expiration are not opti-
mal because the call is worth more alive than dead.13 The lower price bound of
an American-style call is therefore the lower bound of a call expiring at the ex-
dividend instant, max(0,S – Xe–rt), and the lower bound of the call expiring at
expiration, max(0,S – Ite

–rt – Xe–rT). Combining these two results, 

c ≥ max(0,S – Xe–rt,S – Ite
–rt – Xe–rT) (6.14)

Early Exercise of American-Style Call Options

The last two terms on the right-hand side of (6.14) provide important guidance
in deciding whether to exercise the American call option early, just prior to the

13 By not exercising in the period prior to ex-dividend, the call option holder enjoys the bene-
fits of implicitly earning interest on the dividend and the exercise price of the call. By not ex-
ercising after the ex-dividend date but before expiration, the call option holder enjoys the
benefit of implicitly earning interest on the exercise price of the call.

TABLE 6.8  Arbitrage portfolio trades supporting lower price bound of European-style call 
option where the underlying asset pays a discrete cash dividend, C – P < S – Xe–rT. 

Initial
Investment

Cash Flow
at t

Value on Day T

Trades ST < X ST ≥ X

Sell asset S –It   
Buy call option –c 0
Buy risk-free bonds –Xe–rT – Ite

–rt   It X X

Net portfolio value S – Ite
–rt – Xe–rT – c  0 0

S̃T– S̃T–

S̃T X–

X S̃T–

S̃T X–
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ex-date. The second term in the parentheses is the present value of the early pro-
ceeds of the call. If this amount is less than the lower price bound of the call that
expires normally, that is, if

S – Xe–rt < S – Ite
–rt – Xe–rT

an American-style call will not be exercised early. To understand why, rewrite
the expression as

It < X[1 – e–r(T–t)] (6.15)

The American-style call will not be exercised early if the cash flow (e.g., dividend
or coupon payment) captured by exercising prior to the ex-date is less than the
interest implicitly earned by deferring exercise from the ex-date until expiration.

The logic underlying the relation (6.15) also applies to the case where there
are multiple known dividends paid during the call option’s life. Take a stock
option, for example. If the ith dividend is less than the present value of the inter-
est income that can be implicitly earned as a result of deferring the payment of
the exercise price until the next dividend payment, that is, if

(6.16)

exercising just prior to the ith dividend payment will not be optimal. This rela-
tion proves useful for simplifying the valuation of long-term stock options, as
will be shown in Chapter 13. The following example shows that dividend-
induced early exercise on a long-term American-style call is most likely to occur
just prior to the last dividend payment during the option’s life.

ILLUSTRATION 6.7 Identify prospect of early exercise for American-style calls on dividend-
paying stocks.

Identify whether an American-style call option with an exercise price of 50 and one year
remaining to expiration may be exercised early just prior to any of the dividend pay-
ments. Assume that the stock pays a quarterly dividend of 0.50 in 70 days, 161 days, 252
days, and 343 days. Assume the risk-free rate of interest is 5%.

Whether or not the call may be exercised early depends on the amount of the dividend
payment in relation to the present value of the interest income implicitly received by
deferring the payment of the exercise price. For the first dividend, compute the values in
expression (6.16) and find

Hence, the call will not optimally be exercised just prior to the first dividend payment.
The same is true for the second and third dividend payments, as shown in the table
below.

Ii X 1 e
r ti 1+ ti–( )–

–[ ]<

0.50 50 1 e 0.05 161 365⁄ 70 365⁄–( )–
–[ ]< 0.6194=
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For the last dividend payment in 353 days, condition (6.13) is violated, that is,

This implies that exercise just prior to the last dividend payment during this option’s life
may be optimal.

Lower Price Bound of European-Style Put

The lower price bound for the European-style put option is

(6.17)

Again, the asset price is reduced by the present value of the promised cash divi-
dend on the asset. Unlike the call, however, the dividend payment increases the
lower price bound of the European-style put. Because the put option is the right
to sell the underlying asset at a fixed price, a discrete drop in the asset price such
as one induced by the payment of a dividend on a stock serves to increase the
value of the option. The arbitrage trades driving this relation are buy a put, buy
a share of stock, and sell Ite

–rt + Xe–rT risk-free bonds.

Lower Price Bound of American-Style Put

The lower price bound of the American-style put is

(6.18)

The second term on the right-hand side is the present value of the exercise pro-
ceeds if the put is exercised just after the dividend payment. This lower price
bound is supported by the arbitrage trades listed above for the European-style put.
The third term on the right is the exercise proceeds if the put is exercised immedi-
ately. If P < X – S, a costless arbitrage profit can be earned by buying the put and
the asset, and then exercising the put. The arbitrage profit is X – S – P > 0.

Early Exercise of American-Style Put Options

The early exercise behavior induced by the discrete cash dividend on the asset is
different for the American-style put that it was for the call. If the third term

Quarter
Cash

Dividend
Days to Dividend

Payment
Years to Dividend

Payment
PV of Interest

Income

1 0.50 70 0.1918 0.6194
2 0.50 161 0.4411 0.6194
3 0.50 252 0.6904 0.6194
4 0.50 343 0.9397 0.1505

0.50 50 1 e 0.05 365 343–( )– 365⁄
–[ ]> 0.1505=

p max 0 Xe rT– S– Ite
rt–

+,( )≥

P max 0 Xe rt– S– Ite
rt–

+ X S–, ,( )≥
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exceeds the second in (6.18), the put will not be exercised early prior to the pay-
ment date. In that period the interest earned on the exercise proceeds of the
option is less than the drop in the stock price from the payment of the dividend.
For the third term to be larger than the second, that is,

it must be the case that 

(6.19)

In other words, if the amount of the dividend amount exceeds the interest
income that will accrue on the cash received if the put is exercised immediately,
the put will not optimally be exercised early.

As in the case of the call, this argument can be generalized to handle the
multiple dividends during the life of an American-style put. Again, consider a
stock option. If the ith dividend is greater than the interest that will accrue over
the period, 

(6.20)

the put will not be exercised before the dividend payment, as the illustration
below shows.

ILLUSTRATION 6.8 Identify prospect of early exercise for American-style puts on dividend-
paying stocks.

Identify whether an American-style put option with an exercise price of 50 and one year
remaining to expiration may be exercised early just after any of the dividend payments.
Assume that the stock pays a quarterly dividend of 0.50 in 70 days, 161 days, 252 days,
and 343 days. Assume the risk-free rate of interest is 5%.

Whether or not the put may be exercised early depends on the amount of the divi-
dend payment in relation to the interest income that could be earned if the put were exer-
cised immediately. For the first dividend, compute the values in expression (6.20), that is,

This implies that the put will not be exercised before the first dividend payment in 70
days.

The computation for the second dividend is 

This implies that the put may be exercised in the period between the first and second div-
idends. The same is true between the second and third dividends, and the third and
fourth dividends, as indicated below. Early exercise after the fourth dividend is paid may
also be optimal since no more dividends are paid during the option’s life.

Xe rt– S– Ite
rt–

+ X S–>

It X ert 1–( )>

Ii X e
r ti ti 1––( )

1–[ ]>

0.50 50 e0.05 70 365⁄( ) 1–[ ]> 0.4818=

0.50 50 e0.05 161 365⁄ 70 365⁄–( ) 1–[ ]> 0.6272=
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Put-Call Parity for European-Style Options

Put-call parity for European-style options on assets with discrete noninterest
cash flows is 

(6.21)

To see this, assume the left-hand side of (6.21) is less than the right-hand side. If
such is the case, an arbitrage profit can be made by selling the asset, selling the
put, buying the call, and buying some risk-free bonds. The arbitrage is shown in
Table 6.9. On day t, the net portfolio value is certain to be 0. The same is true on
day t, when the cash dividend is made. Thus the value at time 0, S – Ite

–rt – Xe–rT

+ p – c, represents the arbitrage profit and is positive if the left-hand side of (6.21)
is less than the right-hand side. Since the market cannot be in equilibrium, arbi-
trage will continue until the net portfolio value goes to 0. When it does, the mar-
ket is in equilibrium and (6.21) holds.

Put-Call Parity for American-Style Options 

The put-call parity for American-style options on assets with discrete cash dividends is 

(6.22)

To understand why, we consider each inequality in (6.22) in turn. The inequality
on the left can be derived by considering the values of a portfolio that consists

Quarter
Cash

Dividend
Days to

Dividend Payment
Years to

Dividend Payment
Accrued
Interest

1 0.50   70 0.1918 0.4818
2 0.50 161 0.4411 0.6272
3 0.50 252 0.6904 0.6272
4 0.50 343 0.9397 0.6272

c p– S Ite
rt–

– Xe rT–
–=

S Ite
rt–

– X– C P– S Ite
rt–

– Xe rT–
–≤ ≤

TABLE 6.9  Arbitrage portfolio trades supporting European-style put-call parity where the 
underlying asset pays a discrete cash dividend, c – p = S – Ite

–rt – Xe–rT. 

Initial
Investment

Cash Flow
at t

Value on day T

Trades  ST < X  ST ≥ X

Sell asset S –It   

Sell put option p 0
Buy call option –c 0
Buy risk-free bonds –Xe–rT – Ite

–rt It X X

Net portfolio value S – Ite
–rt – Xe–rT + p – c 0 0 0

S̃T– S̃T–

X S̃T–( )–

S̃T X–
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of buying a call, selling a put, selling the stock, and buying X + Ite
–rt in risk-free

bonds. Table 6.10 contains these trades as well as the net portfolio value.
In Table 6.10, we see that, if all positions stay open until expiration, the net

portfolio value is positive independent of whether the terminal asset price is
above or below the exercise price of the options. If the terminal asset price is
above the exercise price, the call option is exercised, and the asset acquired at
exercise price X is used to deliver, in part, against the short asset position. If the
terminal asset price is below the exercise price, the put is exercised. The asset
received in the exercise of the put is used to cover the short stock position. In
the event the put is exercised early at time τ, the investment in the risk-free
bonds is more than sufficient to cover the payment of the exercise price, and the
asset received upon delivery can be used to cover the short asset position. In
addition, the call position remains open and has a nonnegative value. In other
words, the combination of securities described in Table 6.10 will never have a
negative future value. And, if the future value is certain to be nonnegative, the
sum of the initial investment column must be nonpositive. In the absence of
costless arbitrage opportunities, the left-hand inequality of (6.22) must hold.

The right inequality of (6.19) may be derived using the same portfolio used
to prove European-style put-call parity. Table 6.11 contains the arbitrage portfo-
lio trades. In this case, the net portfolio value at expiration is certain to be 0
should the option positions stay open until that time. In the event the American
call option holder decides to exercise early, the portfolio holder delivers his share
of stock, receives cash in the amount of the exercise price, and then used the cash
to retire his outstanding debt. After these actions are taken, the portfolio holder
still has an open long put position and cash in the amount of X[1 – e–r(T–τ)]. Since
the portfolio is certain to have non-negative outcomes, the initial value must be
negative or the right-hand inequality of (6.22) must hold.

Summary

This completes our derivations of arbitrage relations for European-style and
American-style options on assets with discrete cash dividends. Options on divi-

TABLE 6.10  Arbitrage trades supporting American-style put-call parity where the 
underlying asset pays a discrete cash dividend, S – Ite

–rt – X < C – P. 

Trades
Initial
Value

Ex-Day
Value (t)

Put Exercised
Early,

Intermediate
Value (ττττ)

Put Exercised Normally,
Terminal Value (T)

Buy call –C 0
Sell put P 0
Sell asset S –It

Buy risk-free bonds –Ite
–rt – X It Xerτ XerT XerT

Net portfolio value –C + P + S 
– Ite

–rt – X
0 X(erT – 1) X(erT – 1)

S̃T X≤ S̃T X>

C̃τ S̃T X–

X S̃τ–( )– X S̃T–( )–

S̃τ– S̃T– S̃T–

C̃τ X erτ 1–( )+
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dend-paying stocks and on coupon-bearing bonds fall into this category. Before
proceeding with a discussion of arbitrage relations for futures options, we sum-
marize our results in Table 6.12.

NO-ARBITRAGE FUTURES OPTIONS RELATIONS

A futures option is like an asset option, except that if the option is exercised, a
futures position is entered. Exercising a call option on a futures contract, for
example, means that the holder will receive a long position in the futures at a
price equal to the exercise price of the call.

Developing the lower bounds and put-call parity for European- and Ameri-
can-style futures options follows directly from the previous discussions. All we
need to do is recall the prepaid version of the net cost of carry relations for futures:
Fe–rT = Se–iT where noninterest costs are modeled as a continuous rate (i.e., equa-
tion (4.5) in Chapter 4), and Fe–rT = S – Ie–it where noninterest costs are modeled
as a discrete flow (i.e., equation (4.7) in Chapter 4). Substituting Fe–rT = Se–iT into
the no-arbitrage price relations summarized in Table 6.7 or Fe–rT = S – Ie–it in the
relations summarized in Table 6.12 produces the no-arbitrage price relations for
futures options summarized in Table 6.13. The arbitrage portfolios supporting
each of these relations are the same as those used to derive the relations for the
asset throughout the chapter.

TABLE 6.11  Arbitrage trades supporting American-style put-call parity where the underlying 
asset pays a discrete cash dividend, C – P < S – Ite

–rt – Xe–rT. 

TABLE 6.12  No-arbitrage price relations for European- and American-style options on assets 
where the underlying asset pays a discrete cash dividend.

Trades
Initial
Value

Ex-Day
Value (t)

Call Exercised
Early,

Intermediate
Value (ττττ)

Call Exercised 
Normally,

Terminal Value (T)

Sell call C 0
Buy put –P 0
Buy stock –S It

Sell risk-free bonds Ite
–rt + Xe–rT –It –Xe–r(T–τ) –X –X

Net portfolio value C – P – S 
+ Ite

–rt + X
0 0 0

Description European-Style Options American-Style Options

Lower price bound for call c ≥ max(0,S – Ite
–rt – Xe–rT) c ≥ max[0,S – Xe–rt,S – Ite

–rt – X]
Lower price bound for put p ≥ max(0,Xe–rT – S + Ite

–rt) P ≥ max(0,X – S,Xe–rt – S + Ite
–rt)

Put-call parity relation c – p = S – Ite
–rt – Xe–rT S – Ite

–rt – X ≤ C – P 
≤ S – Ite

–rt – Xe–rT

S̃T X≤ S̃T X>

S̃τ X–( )– S̃T X–( )–

P̃τ X S̃τ–

S̃τ S̃T S̃T

P̃τ X 1 er T τ–( )
–( )+
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TABLE 6.13  No-arbitrage price relations for European- and American-style options on 
futures contracts.

NO-ARBITRAGE INTER-MARKET RELATIONS

In many cases, both asset options and futures options trade concurrently. The
Chicago Board Options Exchange, for example, lists options on the S&P 500
index, while the Chicago Mercantile Exchanges lists options on the S&P 500
futures (which, in turn, is written on the S&P 500 index). The prices of asset
options are inextricably linked to the prices of futures options. Under the
assumption that the futures and options expire simultaneously and that the
exercise prices of the asset and futures options are the same, a number of no-
arbitrage price relations may be derived. Next we present such relations for
European-style and American-style options.

European-Style Options 

The price of a European-style asset option is equal to the price of the corre-
sponding futures option, that is,

c(S) = c(F) (6.23a)

and 

p(S) = p(F) (6.23b)

The reason is that at expiration the payoffs of the asset option and the futures
option are identical. Suppose, for the sake of illustration, that the price of a call on
a futures exceeds the price of a call on an asset. In such a situation, costless arbi-
trage profits may be earned by buying the asset call and selling the futures call, as is
shown in Table 6.14 below. The long asset option position pays nothing at expira-
tion if the terminal asset price is less than the exercise price and pays  if the
terminal asset price exceeds the exercise price. At the same time, the short futures
option position expires worthless at expiration if the terminal futures (asset) price
is less than the exercise price and costs  if the terminal futures (asset)
price exceeds the exercise price. But, since , the net portfolio value is cer-
tain to be zero. A portfolio that is certain to pay nothing on day T must cost noth-
ing. Hence, in the absence of costless arbitrage opportunities, European-style asset
options and European-style futures options have the same price.

Description European-Style Options American-Style Options

Lower price bound for call c ≥ max[0,e–rT(F – X)] C ≥ max(0,F – X)
Lower price bound for put p ≥ max[0,e–rT(X – F)] P ≥ max(0,X – F)
Put-call parity relation c – p = e–rT(F – X) Fe–rT – X < C – P < F – Xe–rT

S̃T X–

F̃T X–( )–
F̃T S̃T=
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TABLE 6.14  Arbitrage portfolio trades demonstrating the equivalence of prices of European-
style call options on an asset and a futures, c(F) = c(S).

TABLE 6.15  No-arbitrage relations between the prices of asset options and futures options.

American-Style Options 

The relation between the price of an American-style asset option and the price
of the corresponding futures option depends on whether the futures price is
greater than the asset price or not. If F > S, 

C(S) < C(F) (6.24a)

and 

P(S) > P(F) (6.24b)

To see this, consider the American-style call options. Since both the call on the
futures and the call on the asset may be exercised early, we can compare the
early exercise proceeds to establish which has greater value. The call on the
asset has immediate early exercise proceeds of S – X and the call on the futures
has early exercise proceeds of F – X > S – X. Thus as long as there is some
chance of early exercise, the call on the futures is worth more than the call on
the asset and the put on the asset is worth more than the put on the futures.

For cases where futures price is less than the asset price, the opposite results
hold, that is,

C(S) > C(F) (6.25a)

and 

P(S) < P(F) (6.25b)

The above arbitrage argument is merely reversed. Table 6.15 summarizes the
results.

Value on Day T

Trades Initial Investment ST < X ST ≥ X

Buy call option on asset –c(S) 0
Sell call option on futures c(F) 0

Net portfolio value c(F) – c(S) 0 0

Description European-Style Options American-Style Options

Call  c(S) = c(F) C(S) < C(F) if F > S
C(S) > C(F) if F < S

Put  p(S) = p(F) P(S) > P(F) if F > S
P(S) < P(F) if F < S

S̃T X–

F̃T X–( )– S̃T X–( )–=
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SUMMARY

This chapter develops no-arbitrage price relations for European- and American-
style options under the assumption that no costless arbitrage (i.e., free money)
opportunities available in the marketplace. The net cost of carry of the underly-
ing asset again plays an important role. Consequently, we model interest cost as
a constant continuous rate and the noninterest cost as a continuous rate or as a
discrete flow, depending on the nature of the underlying asset. For options on
stock indexes, currencies, and some commodities, the continuous rate assump-
tion is most appropriate. For options on stocks, bonds, and other commodities,
the discrete flow assumption is preferred. With the assumptions and net cost of
carry definitions in hand, lower price bounds, put-call parity price relations, and
intermarket price relations are derived for both European-style and American-
style options on an asset and on a forward/futures. The results in this chapter
are general and apply to any underlying asset. These price relations will prove to
be important in the risk management strategies of later chapters.
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CHAPTER

 

7

 

Valuing Standard Options Analytically

 

n Chapter 6, we developed option price relations in the absence of costless
arbitrage opportunities. While the no-arbitrage price relations have useful

applications, they provide only bounds on prices, not exact option values. In
this chapter, we develop valuation equations for European-style options and
show how the equations can be used for risk measurement. We also describe
how to estimate of the parameters of the valuation equation.

An option, like any other security, can be valued as the present value of its
expected cash flows. For a European-style call option, the expected cash flow is
at the option’s expiration and equals the expected difference between the under-
lying asset price and the exercise price conditional upon the asset price being
greater than the exercise price. Thus the call’s expected cash flow depends on,
among other things, the expected risk-adjusted rate of price appreciation on the
underlying asset between now and expiration. Once the call’s expected terminal
value is established, it must be discounted to the present. The discount rate
applied to the expected terminal option value is the expected risk-adjusted rate
of return for the option. The problem with this “traditional” approach to valu-
ation is that it is difficult, if not impossible, to estimate precisely the expected
risk-adjusted return parameters.

A major theoretical breakthrough occurred in 1973, with the publication of
research papers by Black and Scholes (1973) and Merton (1973) (hereafter,
BSM). They showed that if we can form a risk-free hedge between an option and
its underlying asset, option valuation will not depend on individual risk prefer-
ences and need not depend on estimating expected risk-adjusted returns.

 

1

 

Indeed, if option valuation does not depend on risk preferences, we are free to
choose any type of individual risk behavior in valuing an option. An obvious
choice is to assume individuals are risk-neutral. In a risk-neutral world, all assets
are expected to have a rate of return equal to their risk-free rate of interest. Con-
sequently, the need to estimate risk-adjusted rates of return is eliminated.

This chapter has five sections. The first section builds the intuition underlying
risk-neutral valuation using a simple, one-period binomial model. We show that

 

1 

 

If a risk-free hedge can be formed between two risky securities, the securities are 

 

redundant

 

,
and each can be priced in relation to the other as investors are risk-neutral.

I
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BSM option values are the same as those obtained using risk-neutral individuals
and risk-averse individuals. With the irrelevance of risk preferences established, we
turn to risk-neutral option valuation. The BSM model assumes that the price of the
asset underlying the option is log-normally distributed. In the second section, we
develop the expressions for the expected value of the asset price given estimates of
the mean and the variance of the normally distributed return distribution. With the
expected terminal price of the option in hand, we present the valuation equation of
a European-style call option in the third section and a European-style put option in
the fourth. The fifth section shows how the option valuation formulas can be used
to measure an option’s risk characteristics. The final section contains a summary. 

 

INTUITION OF RISK-NEUTRAL VALUATION

 

The key insight of the BSM option valuation model is that, if a risk-free hedge
may be formed between the option and its underlying asset, an option can be
valued without knowing anything about individual risk preferences. To develop
the intuition for the risk-free hedge, we use a simple, one-period binomial model
and value a European-style call option. We then show the value of the call is the
same for individuals who are risk-neutral and risk-averse.

 

Risk-Free Hedge Portfolio Using a Binomial Model

 

To illustrate the nature of the risk-free hedge portfolio, consider a European-
style call option that allows its holder to buy one unit of an asset in three
months at an exercise price of 40. Suppose that the asset’s current price is 40
and that at the end of three months the asset price will be either 45 or 35. These
asset prices are shown in Figure 7.1. Depending on whether the asset price is 45
or 35, a call will have a value of 5 or 0. 

 

FIGURE 7.1

 

Binomial lattice showing terminal asset prices and call option values. 

Today

c
40

5
45

0
35

3 months

[= max(0,45 – 40)]

[= max(0,35 – 40)]
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Now, consider buying one unit of the asset and selling 

 

n

 

 call options. The
terminal value of the portfolio will be 45 – 5

 

n

 

 if the price of the asset rises and
35 if it falls. Now, if we set 

 

n

 

 such that 

45 – 5

 

n

 

 = 35

we find that selling two call options (i.e., 

 

n

 

 = 2) eliminates all portfolio risk. In
other words, if we buy one unit of the asset and sell two calls, the terminal value
of the portfolio is certain to be 35—we have created a 

 

risk-free hedge portfolio

 

.
The fact that the portfolio is risk-free means that in the absence of costless

arbitrage opportunities the cost of forming this risk-free hedge portfolio today,
40 – 2

 

c

 

, must be equal to the present value of the certain terminal value, 35,
where the discount rate is the risk-free rate of interest. If the risk-free rate of
interest is 2%, the call option can be valued by solving

The value of the European-style call is 2.84. 

 

Costless Arbitrage Opportunity

 

To check that the value of the call is 2.84 for all
individuals, independent of their attitudes toward risk, assume the call price is
3. What should we do? The answer is “Sell the call, buy a half unit of the asset,
and borrow 17.16” (i.e., the present value of half of 35), as is shown in Table
7.1. This portfolio generates 3 – 0.5(40) + 17.16 = 0.16 in cash. At the option’s
expiration in three months, the value of the portfolio is 

–(45 – 40) + 0.5(35) – 17.50 = 0

if the asset price rises to 45, and is 

0 + 0.5(35) – 17.50 = 0

if the asset price falls to 35. In other words, with this portfolio, we collect 16 cents
up front and have no further obligation or risk. We have earned a 

 

costless arbitrage
profit

 

. Since everyone can engage in costless arbitrage if an opportunity arises,

40 2c–
35

1.02
-----------=

TABLE 7.1  Arbitrage portfolio trades. 

Value in 3 Months

Trades Initial Investment  ST = 35 ST = 45

Sell call 3  0 –(45 – 40)
Buy asset –20      0.5(35) = 17.50 0.5(45) = 22.50
Sell risk-free bonds 17.16 –17.50 –17.50

Net portfolio value   0.16 0 0



 

204

 

OPTION VALUATION

 

option valuation will not depend on individual risk preferences. In the absence of
costless arbitrage opportunities (as should be the case in a rationally functioning
marketplace), all individuals will agree that the fair value of the option is 2.84. 

 

Risk-Neutral Valuation Using a Binomial Model

 

In order to value the European-style call under the assumption that individuals
are risk-neutral, we need to find the “risk-neutral” probabilities of an up-step
and a down-step in our binomial model. Under risk-neutrality, the expected ter-
minal price of the asset equals its current price times one plus the risk-free rate
of interest, that is, 40(1.02). But the expected terminal asset price is also, by def-
inition, equal to 45

 

p

 

 + 35(1 – 

 

p

 

), where 

 

p

 

 is the probability of an up-step and 1
– 

 

p

 

 is the probability of a down-step. Equating these terms, 

40(1.02) = 45

 

p

 

 + 35(1 – 

 

p

 

)

and solving, the risk-neutral probability of an up-step, 

 

p,

 

 equals 58%. 
With the probabilities identified, the expected terminal value of the call may

be computed as

Expected terminal call value = 5(0.58) + 0(0.42) = 2.90

The current value of the call is the present value of the expected terminal value.
Normally, this would be the expected risk-adjusted rate of return on the call.
Under the assumption of risk-neutrality, however, the expected rate of return on
all risky assets is the risk-free rate of interest. The current call value is therefore

exactly the value computed using the risk-free hedge portfolio approach. 

 

Risk-Averse Valuation Using a Binomial Model

 

In the interest of completeness, we will now value the European-style call in our
illustration by assuming that individuals are risk-averse. This means we have to
identify the expected risk-adjusted rate of return on the underlying asset in
order to project the asset’s expected terminal price, and the expected risk-
adjusted rate of return on the call in order to discount the expected terminal
value of the call to the present.

 

2

 

 

 

2 

 

Recall that this was the state of the option valuation literature before the publication of the
BSM model in 1973. Samuelson (1965) identified a formula for valuing a European-style call
option eight years before Black-Scholes and Merton. His formula required the expected risk-
adjusted rates of return for the call and the underlying asset. For a historical perspective on
the development of modern-day option valuation theory, see Whaley (2003).

c
2.90
1.02
----------- 2.84= =
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To identify the “risk-averse” probabilities of an up-step and a down-step,
assume that the asset’s expected rate of price appreciation over the three-month
period is 4%—a 2% risk-free return plus a 2% premium arising from individual
demands for bearing risk. Since the current asset price is 40 and its expected
return is 4%, the “risk-averse” probabilities of an up-step, 

 

p

 

′

 

, and of a down-
step, 1 – 

 

p

 

′

 

, must be

40(1.04) = 45

 

p

 

′

 

 + 35(1 – 

 

p

 

′

 

)

The risk-averse probability of an up-step, 

 

p

 

′

 

, is 66%. The up-step probability
for a risk-averse individual is higher than it was for a risk-neutral individual
(assuming that the terminal asset prices in the binomial model are the same)
because the higher expected asset return in the risk-averse world must be
reflected through a higher up-step probability given that the terminal asset
prices are being held constant. With the probabilities in hand, we find the
expected terminal value of the call, that is, 

To determine the current value of the call, we now need to identify the
expected risk-adjusted rate of return for the call. In a risk-neutral world, indi-
viduals are indifferent toward risk and therefore demand the risk-free rate of
return on all assets—risky or risk-free. In a risk-averse world, however, individ-
uals are averse to risk and demand proportionally higher expected rates of
return as asset risk increases. Recall that we developed the relation between
expected return and risk tradeoff in Chapter 3. It is called the capital asset pric-
ing model (CAPM) and states that the expected rate of return of an asset is 

 

E

 

S

 

 = 

 

r

 

 + (

 

E

 

M

 

 – 

 

r

 

)

 

β

 

S

 

(7.1)

where 

 

E

 

S

 

 and 

 

E

 

M

 

 are the expected rates of return for the asset and the market
portfolio, respectively, 

 

r

 

 is the risk-free of return, and 

 

β

 

S

 

 is the asset’s “beta” risk. 
In the expected return/risk tradeoff expressed in (7.1), the asset’s beta, 

 

β

 

S

 

, is
the percent change in asset price with respect to a percent change in the level of
the market. Since the CAPM applies to all risky assets including call options, the
expected return for the call may be expressed as 

 

E

 

c

 

 = 

 

r

 

 + (

 

E

 

M

 

 – 

 

r

 

)

 

β

 

c

 

(7.2)

where the call’s beta, 

 

β

 

c

 

, is the percent change in call price with respect to a per-
cent change in the level of the market. Recognizing that we can multiply 

 

β

 

S

 

 by
the percent change in call price with respect to the asset price to compute the
call’s beta, that is,

E c̃T( ) 5 0.66( ) 0 0.34( )+ 3.30= =

βc βS
dc c⁄
dS S⁄
-------------⎝ ⎠

⎛ ⎞=
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hence, the expected risk-adjusted rate of return of the call is 

(7.3)

Substituting the parameters from our illustration, 

0.04 = 0.02 + (

 

E

 

M

 

 – 0.02)

 

β

 

S

 

This means that the “market risk premium” for the asset is 

(

 

E

 

M

 

 – 0.02)

 

β

 

S

 

 = 0.02

We can also compute the percentage change in option price with respect to a
percent change in asset price using the prices from our binomial model, that is,

Substituting 0.02 for (

 

E

 

M

 

 – 0.02)

 

β

 

 and

 for 

in (7.3), we get

Thus the present value of the expected terminal value of the call, 

is

or 

 

c

 

 = 2.84. Even risk-averse individuals agree that the call price should be 2.84.

Ec r EM r–( )βS
dc c⁄
dS S⁄
-------------⎝ ⎠

⎛ ⎞+=

dc c⁄
dS S⁄
-------------

dc

dS
------

S

c
---×

5 0–

45 35–
-------------------

40
c

------×
20
c

------= = =

20
c

------
dc c⁄
dS S⁄
-------------

Ec 0.02 0.02
20
c

------⎝ ⎠
⎛ ⎞+=

c
E c̃T( )
1 Ec+
---------------=

c
3.30

1 0.02
0.40

c
-----------+ +

---------------------------------------=
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LOG-NORMAL PRICE DISTRIBUTION

The purpose of the illustration in the last section was to show the equivalence of
valuing an option using a risk-free hedge, a risk-neutral world, and a risk-averse
world. Since individual risk preferences are irrelevant, we are free to choose any
type of risk preference structure we want without losing generality. We will pro-
ceed under the assumption that all individuals are risk-neutral. This simplifies
matters considerably since all assets in a risk-neutral world are expected to have
a rate of return equal to the risk-free rate. 

The next major step in deriving an analytical model for valuing options is to
introduce a more realistic distribution for the asset price at the option’s expira-
tion. In the last section we assumed that the asset price had one of two levels at
the end of the option’s life. In this section, we assume that the terminal asset
price has a continuous distribution—specifically, a continuous log-normal distri-
bution. This distribution follows from the BSM assumption that asset prices fol-
low geometric Brownian motion.

Geometric Brownian Motion

The BSM model assumes that the price of the asset underlying the option fol-
lows a geometric Brownian motion,3 

dS = αSdt + σSdz (7.4)

What (7.4) says is that, over the next infinitesimally small interval of time dt,
the change in asset price, dS, equals an expected price increment (i.e., the prod-
uct of the instantaneous expected rate of change in asset price, α, times the cur-
rent asset price, S, times the length of the interval) plus a random increment
proportional to the instantaneous standard deviation of the rate of change in
asset price, σ, times the asset price. The term, dz, denotes an increment to a
Wiener process. For expositional convenience, we temporarily assume that the
asset pays no income. In this way, we can refer to α as the expected return
rather than the expected rate of price appreciation. At the end of this section,
we generalize the results by allowing the asset to pay a known constant continu-
ous income rate i, as we did in Chapters 4 and 6.

To gather more intuition about the assumed return process, rewrite the geo-
metric Brownian motion (7.4) in discretized form, that is,

(7.5)

where ∆t is a small discrete step in time and ε is a random drawing from a nor-
mal distribution with a mean of zero and a standard deviation equal to one.
Now, divide through by S:

3 This assumption was first introduced by Boness (1964) and Samuelson (1965) and was later
adopted in the work of Black-Scholes (1973) and Merton (1973).

S∆ αS t∆ σS t∆ ε+=



208 OPTION VALUATION

(7.6)

What (7.6) says is that, over a discrete interval of time, the asset’s return is nor-
mally distributed with mean α∆t and standard deviation .

A problem with working with (7.6) is that asset returns, so defined, do not
aggregate correctly through time. Suppose, for example, that we set ∆t equal to
one month. Suppose that in the first month the asset price moves from its cur-
rent level of 50 to 100, and then, in the second month, reverts back to 50. The
rate of return over the first month is 100% and the second is –50%. The total
return over the two-month period is therefore 50%. Obviously this is not true.
Common sense dictates that the actual return on the asset over the 2-month
interval is 0% (i.e., we started at 50 and ended at 50).

To circumvent this problem, we work with the logarithm of asset prices. If
asset prices follow (7.4), it can be shown by Ito’s lemma (see Appendix 7A of
this chapter) that the logarithm of asset price follows

d lnS = µdt + σdz (7.7)

or, in its discretized form,

(7.8)

Now test the time aggregation property. The change in lnS (i.e., the continu-
ously compounded rate of return) in the first month is

and the return in the second month is

Over the two-month period, the continuously compounded return is the sum of
the two monthly returns or 0%, exactly the correct amount. The relation
between α, the continuously compounded mean return, and µ, the mean contin-
uously compounded return, is

(See Appendix 7B of this chapter.)
To flesh out this concept, consider a sequence of equally spaced asset prices

beginning today and continuing through the option’s expiration at time T, that is,

S∆
S

------ α t∆ σ t∆ ε+=

σ t∆

∆ Sln µ∆t σε t∆+=

100ln 50ln–
100
50

----------⎝ ⎠
⎛ ⎞ln 69.31%= =

50ln 100ln–
50
100
----------⎝ ⎠

⎛ ⎞ln 69.31– %= =

µ α
σ2

2
------–=
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There could be daily closing prices for the asset, for example. By (7.8), we know
that the continuously compounded daily return, , is normally distrib-
uted with mean µ and standard deviation σ, that is,

where we have defined ∆t = t – (t – 1) = 1. The definitions of µ and σ2 are  

and

respectively. The virtue of using continuously compounded returns, as discussed
in Chapter 2 and illustrated in the numerical example above, is that T-day
return is the sum of the T different daily returns, that is, 

Assuming that the mean and variance are constant through time (and that the
daily returns are independent), the mean and the variance of the returns over the
interval from 0 to T are 

(7.9)

and 

(7.10)

Log-Normal Asset Price Distribution 

Thus far, we have established that, under the BSM assumption that asset prices
follow geometric Brownian motion, the logarithmic asset return over the life of
the option is normally distributed with mean µT and standard deviation ,
that is,

S0 S̃1 S̃2 … S̃T, , , ,

S̃t S̃t 1–⁄( )ln

S̃t S̃t 1–⁄( )ln φ µ σ,( )∼

µ E S̃t S̃t 1–⁄( )ln[ ]=

σ2 Var S̃t S̃t 1–⁄( )ln[ ]=

S̃T S0⁄( )ln S̃t S̃t 1–⁄( )ln
t 1=

T

∑=

E S̃T S0⁄( )ln[ ] E S̃t S̃t 1–⁄( )ln[ ]
t 1=

T

∑ µT= =

Var S̃T S0⁄( )ln[ ] Var S̃t S̃t 1–⁄( )ln[ ]
t 1=

T

∑ σ2T= =

σ T
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(7.11)

Thus, the logarithm of the terminal asset price is normally distributed with
mean lnS + µT and standard deviation , that is,

(7.12)

Since  is normally distributed, it can be shown that  is log-normally dis-
tributed with mean

(7.13)

and variance, 

(7.14)

where α is the continuously compounded expected return of the asset.
Figure 7.2 illustrates the normal distribution of the continuously com-

pounded returns, ln(ST/S). The mean of the distribution is µT and its standard
deviation is . The returns range from –∞ to +∞ and are symmetric around
the mean. Figure 7.3 illustrates the log-normal distribution of the terminal asset
price, ST. The mean of the distribution is SeαT and its standard deviation is

FIGURE 7.2 Normal distribution of continuous asset returns.  

S̃T S⁄( )ln S̃Tln S φ µT σ T,( )∼ln–=

σ T

S̃T φ S µ+ln T σ T,( )∼ln

S̃Tln S̃T

E S̃T( ) SeαT
=

Var S̃T( ) S2e2αT eσ2T 1–( )=

σ T

S2e2αT eσ2T 1–( )

–∞ +∞
Continuous return, ln(ST /S)

Mean: 
Standard deviation: 

Tµ
σ T



Valuing Standard Options Analytically 211

FIGURE 7.3 Log-normal distribution of asset prices. 

The log-normal price distribution is bounded from below by 0. This is an
appealing characteristic since asset prices are always positive.4 At the other end
of the distribution, we see that asset prices can rise without limit. Finally, the
relation between µ and σ is sometimes confusing. To clearly distinguish between
the two concepts, note that the former is the mean of the continuously com-
pounded return,

while the latter is the continuously compounded mean return,

The relation between the two quantities is µ = α – σ2/2, as noted earlier. The
only circumstance under which µ and α are equal is when the continuously com-
pounded asset returns are the same each period, that is, there is no rate of return
variability.  

4 In contrast, if we had assumed asset prices were normally distributed, there would be some
chance that the asset price would go below zero.

0 +∞Terminal asset price: ST

Mean: 
Standard Deviation: 

S Tα

S e eT T2 22 1
2α σ( )−

µ
E S̃T S⁄( )ln[ ]

T
--------------------------------=

α
E S̃T S⁄( )[ ]ln

T
--------------------------------=
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ILLUSTRATION 7.1 Compute expected asset price, variance of the asset price, and  95% confi-
dence interval5 on asset price in three months, given current asset price and mean and 
variance of the continuously compounded asset returns.

Suppose that the current asset price is 50, and the mean and the standard deviation of the
continuously compounded asset returns are 16% and 20%, respectively, on an annual-
ized basis. Compute the expected asset price, , in three months. Also, compute a
95% confidence interval of the terminal asset price in three months.

To compute the expected asset price, first compute the continuously compounded
expected return of the asset. This is done as follows:

Next, we take the continuously compounded expected rate of return and the current
asset price to find the expected asset price in three months, that is,

The variance of the asset price is computed as follows:

Turning to the confidence interval, since the continuously compounded asset return
is normally distributed, a 95% interval translates to plus or minus 1.96 standard devia-
tions from the mean. The lower and upper bounds on the  are

Substituting the problem parameters,

or

In turn, this is equivalent to

Note that the 95% confidence interval is not symmetric around the expected terminal
asset price, 52.301. Since asset return is normally distributed, asset price is log-normally
distributed.

Computing Probabilities Given Threshold Asset Prices 
With the relations between the parameters of the normally distributed continu-
ously compounded asset returns and the log-normally distributed asset prices in
hand, we now turn to applying the relations to answer important questions
regarding terminal asset prices. Suppose, for example, we are interested in deter-
mining the probability that the asset price will exceed (or be below) a threshold

5 Confidence intervals are discussed at length in Appendix A, “Elementary Statistics,” of this
book.

E S̃T( )

α µ σ2
+ 2⁄ 0.16 0.202

+ 2⁄ 0.18= = =

E S̃T( ) SeαT 50e0.18 3 12⁄( ) 52.301= = =

Var S̃T( ) S2e2αT eσ2T 1–( ) 502e2 0.18( ) 3 12⁄( ) e0.202 3 12⁄( ) 1–( ) 27.492= = =

S̃Tln

Sln µT 1.96σ T–+ S̃Tln Sln µT 1.96σ T+ +< <
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level, X, at time T and are given the mean and the standard deviation of the con-
tinuously compounded returns. How can we use the mechanics that we have just
developed to compute this probability?

To answer this question, we begin by rewriting (7.11) as 

(7.15)

where z is normally distributed with mean 0 and variance 1, that is, z ∼ φ(0,1).
We know a great deal about the properties of z,6 including the fact that its den-
sity function is

(7.16)

The probability that a drawing from the unit normal distribution will produce a
value less than the constant, a, may be obtained by integrating over the range of
the density function from –∞ to a, that is,

(7.17)

Given a value of a, the integration can be handled in a number of ways. First, it
is common for statistics books to tabulate values of the probability N(a). Such
tables are provided in Tables C-1a and 1b in Appendix C, Statistical Tables, of
this book. Algorithms have also been devised to approximate N(a) with remark-
able precision. Such an algorithm is provided in Appendix 7C of this chapter
and the algorithm is programmed as function OV_PROB_PRUN in the
OPTVAL Function Library. The function OV_PROB_PRUN_INV returns the
inverse of the cumulative normal density function (i.e., the upper integral limit a
for a given probability.7 These Excel spreadsheets illustrate this:   

6 The properties of the normal distribution are provided in Appendix A, “Elementary Statis-
tics,” of this book.
7 For those expert in Microsoft Excel, the statistical function NORMSDIST can be used to find
N(a) given a, and the function NORMSINV can be used to find a given N(a).
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Note that the function calls are not sensitive to the case of the letters.
Returning now to the problem of evaluating Pr(ST > X), note that, if ST < X, 

since the same transformations are being applied to each side of the inequality.
If we define a as

(7.18)

and recall that the definition of z is given by (7.15), it is apparent that the proba-
bility that the asset price will fall below X at time T, that is, Pr(ST < X) = Pr(z < a)
= N(a).

Unfortunately, we have answered the wrong question. What we wanted to
know is the probability that the asset price will exceed X at time T. Intuitively,
we know the answer must be 1 – N(a). The probability that the asset price will
exceed X must be equal to one minus the probability that the asset price will fall
below X. So, one useful property of the unit normally distributed variable z is
Pr(z ≥ a) = 1 – Pr(z < a). A second is that, since the unit normal distribution is
symmetric around 0, the probability of drawing a value less than a equals one
minus the probability of drawing a value less than –a, that is, 

N(a) = 1 – N(–a) (7.19)

For reasons that will become readily apparent when we turn to call option
valuation, it is more common to use an expression for the integral limit that
captures the Pr(ST > X) in a single step. To accomplish this task, we define the
integral limit d to be

(7.20)

Under this definition, 
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Pr(ST > X) = N(d) (7.21a)

and 

Pr(ST < X) = N(–d) (7.21b)

ILLUSTRATION 7.2 Compute probability that asset price will exceed fixed level at future date.

Suppose that the current asset price is 50, and the mean and the standard deviation of the
continuously compounded asset returns are 16% and 20%, respectively, on an annualized
basis. Compute the probability that the asset price will exceed 60 at the end of three months.  

First, transform the log-normal terminal price to a unit normal variable value using
(7.20), that is, 

Recall that, since the rates are quoted on an annualized basis, time must be measured in
years.

Second, substitute the value of d into the cumulative normal density function, N(d), and
compute the probability. Using the OV_PROB_PRUN function,

Pr(ST ≥ 60) = Pr(z < –1.423) = N(–1.423) = 0.077

In practice, it is more common to use the continuously compounded mean
return, α, in place of the mean of the continuously compounded return, µ, when
working with option valuation concepts. The necessary transformations to the
integral limits when computing probabilities are straightforward. Recall that
earlier in the chapter we showed that µ = α – 0.5σ2. Substituting for µ in equa-
tion (7.20), the upper integral limit becomes

(7.22)

and the probabilities that the asset price will exceed or be below the threshold
level X are

Pr(ST > X) = N(d) (7.23a)

and 

Pr(ST < X) = N(–d) (7.23b)

respectively.

d
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ILLUSTRATION 7.3 Compute probability that asset price will exceed fixed level at future date.

Suppose that an asset price has a current price of 50, an expected rate of return of 18%,
and a volatility rate of 20%. (In practice, an asset’s volatility rate refers to the standard
deviation of the continuously compounded asset returns. Compute the probability that
the asset price will exceed 60 at the end of three months.

First, transform the log-normal terminal price to a unit normal variable value using
(7.22), that is, 

Second, substitute the value of d into the cumulative normal density function, N(d), and
compute the probability. Using the OV_PROB_PRUN function

Pr(ST > 60) = N(z < –1.423) = 0.077

Alternatively, the OPTVAL Library has a function to compute the value of the probabil-
ity directly. Its syntax is 

OV_OPTION_ASSET_PROB(s, x, t, alpha, v, ab)

where s is the asset price, x is the threshold level, t is the time to the threshold level,
alpha is the expected rate of appreciation in the asset price, v is the volatility rate, and ab
is an indicator variable set equal to “a” if the asset price must be above the threshold
price at the end of the period or “b” if the asset price must be below. The function is
called in the following spreadsheet: 

Thus far we have focused on assets whose only form of return is price
appreciation. To generalize the results to handle assets that pay a known con-
stant continuous rate of income i (such as dividend yield), let α be the expected
rate of price appreciation on the asset. Under this definition, the asset’s total
expected return equals α + i. The upper integral limit d remains as defined in

d
SeαT T⁄( ) 0.5σ2T–ln

σ T
--------------------------------------------------------=

50e0.18 0.25( ) 60⁄( ) 0.5 0.202( )0.25–ln

0.20 0.25
--------------------------------------------------------------------------------------------------- 1.423–==
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(7.22). The probability that the asset price will exceed the threshold level X at
time T is (7.23a), and the probability that it will be less is (7.23b).

ILLUSTRATION 7.4 Compute probability that asset price will exceed (be below) fixed level at 
future date where asset generates income at constant rate.

Suppose that an asset has a current price of 50, an expected rate of return of 18%, an
income rate of 4%, and a volatility rate of 20%. Compute the probability that the asset
price will exceed 60 at the end of three months.  

First, note that the expected rate of price appreciation for the asset α equals its expected
total return less the income rate, that is, 18 – 4 = 14%. This implies that the probability is
less than that in Illustration 7.3 since the asset is not appreciating in value quite as quickly.

Second, transform the log-normal terminal price to a unit normal variable value
using (7.21a), that is, 

Finally, substitute the value of d into the cumulative normal density function, N(d),
and compute the probability. Using the OV_PROB_PRUN function,

Pr(ST > 60) = N(z < –1.523) = 0.064

As expected, the probability that the asset price will exceed 60 by the end of three
months is reduced from 7.7% in Illustration 7.3 to 6.4% in this illustration. The follow-
ing spreadsheet verifies the computations.

Value-at-Risk Finally, in many finance applications, we are interested in deter-
mining a critical asset price for a given probability. One such application is
Value-at-Risk or simply VAR. VAR measures the maximum dollar loss we can
expect to incur over the given period of time at a particular confidence level.8

VAR has two forms. The most common form is VAR is maximum dollar loss rel-
ative to the mean; that is, we want to compute the maximum dollar loss assum-

8 Value-at-risk is discussed in greater detail in Appendix A, “Elementary Statistics,” of this
book.

d
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ing the asset will appreciate at its expected rate. A less used, albeit informative,
measure of VAR is compute maximum absolute dollar loss relative to the cur-
rent asset value (i.e., relative to a mean appreciation rate of 0). 

Assuming the asset or portfolio of assets has a log-normal price distribution,
the mechanics of this section can be easily adapted to handle both of these VAR com-
putations. The only subtlety is that in place of using OV_OPTION_ASSET_PROB
to compute the probability that the asset price will be below a critical price at the
end of a given period, we use OV_OPTION_ASSET_PROB_INV to compute a
critical price below end-of-period asset price has a fixed probability of occurrence.

ILLUSTRATION 7.5 Compute maximum dollar loss expected over given period of time at par-
ticular confidence level.

Suppose you hold $10 million worth of a security. It has a current price of 50, an
expected rate of return of 18%, an income rate of 4%, and a volatility rate of 20%.
Compute the value-at-risk over the week at the 5% level.

To compute this value by hand, start by computing the inverse of the standard normal
probability using OV_PROB_PRUN_INV and a probability of 0.05. Its value is –1.645. 

Next, compute the level of X that satisfies equation (7.21b), that is,

The level of X that satisfies the equation is X = 47.881. Thus, we are 95% confident that
the asset price will be above 47.881 at the end of a week or, equivalently, the value of
your portfolio holding will be above $9,576,122. The VAR relative to the mean over a
week at the 5% probability level is $423,878.

The VAR relative to 0 is computed in a similar fashion, except that we set the
expected rate of price appreciation to 0, that is, α = 0. The value of X that satisfies

is 47.752 and the maximum absolute dollar loss over a week at the 5% probability level
is $449,625.

The OPTVAL Library has a function to compute the critical asset price given a level
of probability. Its syntax is 

OV_OPTION_ASSET_PROB_INV(s, t, alpha, v, ab, prob)

where s is the asset price, t is the time to the threshold level, alpha is the expected rate of
appreciation in the asset price, v is the volatility rate, ab is an indicator variable set equal to
“a” if the asset price must be above the threshold price at the end of the period or “b” if
the asset price must be below, and prob is the assigned probability level. The function illus-
trated in the spreadsheet below computes the VAR relative to the mean. To compute VAR
relative to 0, we simply set the expected return and the income rates equal to 0.

1.645–
SeαT X⁄( ) 0.5σ2T–ln
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---------------------------------------------------------–=
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Computing Conditional Expected Asset Prices

The relations between the parameters of the normally distributed continuously
compounded returns and the log-normally distributed asset prices also allow us to
develop some convenient expressions for conditional expected asset prices. From
(7.13), we know that the unconditional expected price of the asset at time T is

But suppose that we are interested in knowing the expected asset price condi-
tional upon the asset price being greater than a threshold level X.

Under the assumption that asset price is log-normally distributed at time T,
it can be shown that the expected asset price conditional on the asset price being
greater than the threshold level at time T is

(7.24)

where

(7.24a)

and 

E S̃T( ) SeαT
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E S̃T ST X>( ) SeαTN d1( )

N d2( )
----------------=
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9 (7.24b)

The expected asset price conditional on the asset price being less than the
threshold level at time T is

(7.25)

Finally, to reconcile that the difference between the conditional expected asset
prices,  and , and the unconditional expected asset
price, , recognize that, when evaluating the conditional expected values, the
relevant probability distributions are the areas under the log-normal distribution
above and below the threshold asset price, whereas, when evaluating an uncondi-
tional expected value, the relevant probability distribution is the entire area under
the log-normal distribution. To compute the unconditional expected asset price
from the conditional expected price expressions, we must weight each conditional
expected price by the probability of its occurrence, that is,

(7.26)

Each expected conditional asset price weighted by its probability is called the
partial expectation of the asset price being above or below X.

ILLUSTRATION 7.6 Compute expected asset conditional on asset price being above or below 
threshold price at future date.

Suppose that an asset has a current price of 50, an expected rate of return of 18%, and
an income rate of 4%. Also, continue to assume that the standard deviation of the con-
tinuously compounded asset returns is 20%. Compute (1) the expected asset price at the
end of three months; (2) the expected asset price conditional on the asset price exceed 60
at the end of three months; and (3) the expected asset price conditional on the asset price
being below 60 at the end of three months. Using the probabilities computed in Illustra-
tion 7.4, show the numerical relation between the unconditional and conditional
expected terminal asset prices.

The expected asset price in three months can be computed straightforwardly:

9 Note that there is a subtle difference in the definitions of d1 and d2. Note also that d2 is the
same as d in (7.23a). Thus, N(d2) = Pr(ST > X).
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The expected asset price conditional on the asset price exceeding 60 in three months is

where 

and 

and the expected asset price conditional on the asset price being below 60 in three
months is

These computations can be verified using the OPTVAL function, 

OV_OPTION_ASSET_EV(s, x, t, alpha, v, ab),

where s is the asset price, x is the threshold level, t is the time to the threshold level,
alpha is the expected rate of appreciation in the asset price, v is the volatility rate, and ab
is an indicator variable set equal to “a” if the asset price must be above the threshold
price at the end of the period or “b” if the asset price must be below. The function is
called in the following spreadsheet: 
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The relation between the unconditional and conditional expected terminal asset
prices is

Conditional Value-at-Risk Conditional asset prices are often used in assessing the
risk profiles of assets and portfolios of assets. Conditional value-at-risk (CVAR)
or tail VAR is the expected loss conditional10 on a particular level of asset price.
In computing VAR, for example, we computed the critical price below which
there was a 5% chance that the asset price at time T was below the critical price.
Suppose we ask the question, “Assuming the asset price is below the critical
price at time T, what is the expected loss?” This is the definition of CVAR and,
assuming the asset price is log-normally distributed, we can compute its value
straightforwardly using (7.25) or (7.26). 

ILLUSTRATION 7.7 Compute tail value-at-risk of security position over planned horizon.

Suppose you hold $10 million worth of a security. It has a current price of 50, an
expected rate of return of 18%, an income rate of 4%, and a volatility rate of 20%.
Compute the 5% tail VAR (CVAR) of your portfolio over the next week.

The first step in computing the tail VAR or CVAR is to compute the critical asset
price. We did this in Illustration 7.5. At the 5% probability level, the maximum loss
expected over the next at the 5% level is $47.881.

Next, we compute the expected asset price conditional on the asset price being
below 47.881 in a week. From (7.25), we know

where 

and

These computations can be verified using the OPTVAL function, 

OV_OPTION_ASSET_EV(s, x, t, alpha, v, ab)

The 5% tail VAR is computed as

10 Conditional value-at-risk is also called mean excess loss and mean shortfall.
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Summary

This section contains the mechanics for working with an asset price distribution
that is log-normally distributed at some future time T. The required parameters
in the computation of the probabilities, unconditional and conditional expected
values, and confidence intervals are the current asset price, the expected rate of
asset price appreciation, and the standard deviation of the continuously com-
pounded asset returns. Table 7.2 contains a summary of the important relations
developed in this section. The two panels in the table correspond to risk-averse
and risk-neutral investors. Depending upon the application in the remaining
part of this chapter or a later chapter, we use one set of results or the other.
Note that the structural form of the expressions for the different investors is the
same, except for the rate of price appreciation. In a risk-averse world, the
expected rate of price appreciation is α, and the asset’s total expected return is α
+ i. In a risk-neutral world, the expected rate of price appreciation is b, and the
asset’s total expected return is b + i = r – i + i = r or the risk-free interest rate.

TABLE 7.2  Summary of expressions for evaluating probabilities and conditional expected 
values.

Risk-Averse (or “Real World”) Investors
 (αααα is expected rate of price appreciation on asseta)

Unconditional expected asset price  

Probability of asset price being 
above or below threshold level X

Pr(ST > X) = N(d2)  and  Pr(ST < X) = N(–d2)

Expected asset price conditional 
on threshold price X

and 

95% confidence interval for termi-
nal asset price  

Integral limits

and 

Unconditional expected asset price

Probability of asset price being above 
or below threshold level X

Pr(ST > X) = N(d2)  and  Pr(ST < X) = N(–d2)
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TABLE 7.2     (Continued)

a Note that all of the expressions in the table depend upon the asset expected rate of price ap-
preciation not its expected return. If the asset pays a known constant income rate i, the asset’s
expected return is α + i in a risk-averse world and b + i = r – i + i = r in a risk-neutral world.

VALUING A EUROPEAN-STYLE CALL OPTION

We now turn to valuing European-style call options. The valuation approach is
“traditional” in the sense that we compute the theoretical value of the call by
taking the present value of its expected terminal value.11 The first order of busi-
ness is to value a call option under the assumption that investors are risk-averse.
The resulting valuation equation, called the “Samuelson (1965) formula,” proves
to be tractable analytically but difficult to implement. Next we value the call
under the assumption that investors are risk-neutral. The risk-neutral option val-
uation formula manages to circumvent the estimation problems of the Samuelson
formula and has been dubbed the “Black-Scholes (1973)/Merton(1973) for-
mula.” It is general in its nature and contains a host of special cases.

The Samuelson Formula

In a world with risk-averse investors, the value of a European-style call option is
simply 

(7.27)

Risk-Neutral Investors
 (b is expected rate of price appreciation on asseta)

Expected asset price conditional on 
threshold price X

and 

95% confidence interval for terminal 
asset price  

Integral limits

and 

11 Appendix 7D of this chapter contains the continuous-time, risk-free hedge development of the
BSM model.
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where c is the value of the call, αc is the expected risk-adjusted rate of return on
the call over its life, and  is the expected terminal value of the call. To esti-
mate , consider the call’s terminal price distribution, that is, 

(7.28)

Expression (7.28) shows that the terminal call price distribution is truncated
from below. Based on this truncated distribution, the expected value of  may
be written 

(7.29)

Since the call expires worthless if the asset price is below the exercise price at
expiration, the region of the asset price distribution in which the asset price is
below the exercise price has no influence in the determination of . Instead,
the expected terminal call value depends only on the product of the expected
difference between the asset price and the exercise price conditional on the asset
price exceeding the exercise price at the option’s expiration, ,
and the probability that the asset price will exceed the exercise price at expira-
tion, Pr(ST ≥ X). 

Expression (7.29) is useful to the extent that it clearly identifies what drives
the expected terminal value of the call. As it stands, however, it cannot be imple-
mented. In order to develop a formula or valuation methodology for computing

, we must invoke an assumption regarding the shape of the price distribu-
tion for the asset underlying the options. Here is where we insert the assumption
that the asset price is log-normally distributed at the option’s expiration. Substi-
tuting (7.24) and (7.23a) from the previous section into (7.29),

(7.30)

where

(7.30a)
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(7.30b)

and the subscript “S” has been added to the expected rate of price appreciation
of the underlying asset to clearly distinguish it from the expected rate of return
on the call, αc. Substituting (7.30) into (7.27), the current value of a European-
style call option is

(7.31)

Presented in this way, the intuition underlying the structure of the Euro-
pean-style call option formula is straightforward. The term

is the present value of the expected benefit of exercising the call option at expi-
ration conditional on the terminal asset price being greater than the exercise
price at the option’s expiration times the probability that the option will be in
the money. The term, N(d2), is the probability that the asset price will be greater
than the exercise price at expiration. Therefore the term

is the present value of the cost of exercising the call times the probability the
option will be in the money.

As simple and elegant as the Samuelson formula (7.31) appears, it is not
very useful. To implement the formula requires estimates of the risk-adjusted
rates of price appreciation for both the asset and the call option. The estimation
of these values is difficult. In the case of the call, estimation is particularly trou-
blesome because the expected return of the call depends not only on the
expected rate of price appreciation of the asset but also the passage of time.

The Black-Scholes/Merton Formula

In the first section of this chapter, we showed that, because a risk-free hedge can
be formed between an option and its underlying asset, the value of an option
does not depend on risk preferences. An risk-averse investor will value an option
at the same level as a risk-neutral investor. In a risk-neutral world, the expected
return of all assets and options is the risk-free rate of interest. The expected rate
of price appreciation on an asset that pays income at rate i is therefore α = b(= r
– i), and the expected rate of return on the call is αc = r. Making these substitu-
tions into (7.31), we find that the value of a European-style call is 
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(7.32)

where

(7.32a)

and

(7.32b)

This formula is commonly referred to as the BSM formula. Its terms may be
interpreted in the same way as the terms of the Samuelson formula. We must be
carefully to distinguish the nature of the probabilities, however. In the Samuel-
son formula, “risk-averse” (or so-called “real-world”) probabilities are used. In
the BSM, “risk-neutral” probabilities are used. It is also worthwhile to note
that, because b ≡ r – i, the BSM formula is often written

(7.33)

where

(7.33a)

and

(7.33b)

The European-style call formula (7.32), as we have presented it, is a general-
ized version of the BSM formula. It covers call option valuation for a broad
range of underlying asset including nondividend-paying stocks, stock indexes,
foreign currencies, and futures. The distinction between the different valuation
problems rests only in the asset’s risk-neutral price appreciation parameter, b.

Nondividend-Paying Stock Options The most well-known option valuation problem is
that of valuing options on nondividend-paying stocks. This is, in fact, the valua-
tion problem addressed by Black and Scholes (1973). With no dividends paid on
the underlying stock, the expected risk-neutral rate of price appreciation of the
stock equals the risk-free rate of interest (i.e., b = r) and the call option valua-
tion equation becomes the familiar “Black/Scholes formula,”

c e r– T SebTN d1( ) XN d2( )–[ ]=

Se b r–( )TN d1( ) Xe r– TN d2( )–=

d1
SebT X⁄( ) 0.5σ2T+ln

σ T
---------------------------------------------------------=

d2 d1 σ T–=

c Se iT– N d1( ) Xe rT– N d2( )–=

d1
Se r i–( )T X⁄( ) 0.5σ2T+ln

σ T
-----------------------------------------------------------------=

d2 d1 σ T–=
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(7.34)

where

 and 

Constant-Dividend-Yield Stock Options Merton (1973) generalizes stock option valua-
tion by assuming that the underlying stock or stock index pays dividends at a con-
stant, continuous rate, δ. In such a case, the expected risk-neutral rate of price
appreciation of the stock equals the risk-free rate of interest less the dividend yield
rate (i.e., b = r – δ ). Substituting into (7.32), we get the “Merton model:”

c = Se–δTN(d1) – Xe–rTN(d2) (7.35)

where

 and 

Foreign Currency Options Garman and Kohlhagen (1983) and Biger and Hull (1983)
value European-style options on a foreign currency. The expected risk-neutral rate
of price appreciation for a currency equals the domestic rate of interest less the for-
eign rate of interest (i.e., b = rd – rf). The valuation formula for a European-style
call on a foreign currency is therefore

(7.36)

where

 and 

Futures Options Black (1976) values options on futures. In a risk-neutral world,
the expected rate of price appreciation on a futures contract is zero. Substituting
b = 0 and F = S, we get what is commonly known in the futures industry as the
“Black model.”

c = e–rT[FN(d1) – XN(d2)] (7.37)

where
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 and 

Futures-Style Futures Options Following the work of Black, Asay (1982) values
futures-style futures options. Such options trade on a number of exchanges
including London International Financial Futures Exchange (LIFFE) and the
Sydney Futures Exchange (SFE) and have the distinguishing feature that the
option premium is not paid up front. Instead, the option position is marked-to-
market in the same manner as the underlying futures. To value this option in a
risk-neutral world, we not only set b = 0 inside the squared brackets to reflect
the zero expected rate of price appreciation on the futures but also set r = 0 out-
side the squared brackets because an option requiring zero investment up-front
must have a zero expected rate of return. The resulting formula is called the
“Asay model,”

c = FN(d1) – XN(d2) (7.38)

where

 and 

Equivalence of Alternative Expressions for d1 and d2 In the valuation equations starting
at the BSM formula (7.32) and ending with the Asay formula (7.38), there
appear to be different expressions for the integral limits d1 and d2. While these
expressions appear different, they are not; they are exactly the same. We simply
use different notation in each problem to emphasize the economic determinants
of each different option valuation problem. The general expressions are

 and 

where M is the degree to which the option is expected to be in or out of the
money at expiration (i.e., the option’s so-called moneyness). Thus M equals the
ratio of the forward price of the asset to the option’s exercise price. But the for-
ward price may, in turn, be expressed in terms of the asset price using net cost of
carry relation, F = SebT. Thus we have

lnM = ln(F/X) = ln(SebT/X)

In the above expression, the terms in parentheses are values at time T, when the
option expires. It probably makes the most sense to use these expressions to
remind ourselves that the option valuation probabilities are assess the likelihood
that the asset price is above or below X at time T. Nonetheless many people
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choose to write the option’s moneyness in terms of present values. Since both F
and X are terms known today, we can discount these future values to the present
at the risk-free rate of interest. Thus we can add two more expressions for mon-
eyness to the list—all of them equivalent,

lnM = ln(F/X) = ln(SebT/X) = ln(Fe–rT/Xe–rT) = ln(Se(b–r)T/Xe–rT)

It is also worthwhile to note that expression for d1 is also sometimes written,

This expression, too, is equivalent to the others. Note that we can rearrange
terms in the numerator in the following manner:

While all of these equivalent expressions may seem confusing, our discussion
here is motivated by the fact that there appears to be no standard expressions
across research publications and books on derivatives securities. Through the
remainder of the book, we use either

 or 

depending of which expression provides the fewest numerical computations in
valuing an option.

ILLUSTRATION 7.8 Find value of European-style call written on stock index.

Compute the value of a European-style call option written on a stock index, where the call
has an exercise price of 50 and a time to expiration of three months. Assume the index has
a level of 49, a dividend yield of 2%, and a volatility rate of 20%. The risk-free rate is 5%.
Also compute the European-style call assuming that it is written on a futures contract on
the stock index, and that the futures has three months remaining to expiration. 

To value the call on the index, let us use the prepaid version of moneyness in the
computation of d1 and d2. First, compute the prepaid values of the forward and the exer-
cise price, that is, 

Fe–rT = Se–iT = 49e–0.02(0.25) = 48.756 and Xe–rT = 50e–0.05(0.25) = 49.379

Next, substitute these values into the expressions for the integral limits,
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Next, compute the cumulative normal probabilities using the OV_PROB_PRUN function
from the OPTVAL Function Library. The risk-neutral probabilities are 

N(–0.0770) = 0.4693 and N(–0.1770) = 0.4297

Finally, substitute into the call option valuation formula (7.35) and compute the
option value,

c = 48.756(0.4693) – 49.379(0.4297) = 1.661

The OPTVAL Function Library contains a number of functions that can assist you
with the European-style option valuation computations. To compute the integral limits,
d1 and d2, for example, you can use

OV_OPTION_D(s, x, t, r, i, v, n)

where s is the underlying asset prices, x is the exercise price of option, t is the option’s
time remaining to expiration, r is the risk-free interest rate, i is the income rate, v is the
volatility rate, and n is “1” or “2”, depending on whether you want the value of d1 or d2,
respectively. Substituting the problem parameters, you get

OV_OPTION_D(49, 50, 0.25, 0.05, 0.02, 0.20, 1) = –0.0770

and

OV_OPTION_D(49, 50, 0.25, 0.05, 0.02, 0.20, 2) = –0.1770

The Library also contains functions to perform the probability computations, that is,

OV_OPTION_ND(49, 50, 0.25, 0.05, 0.02, 0.20, 1) = 0.4693

and

OV_OPTION_ND(49, 50, 0.25, 0.05, 0.02, 0.20, 2) = 0.4297

Finally, the option value can be computed directly using 

OV_OPTION_VALUE(s, x, t, r, i, v, cp, ae)

where all notation is defined above, except for cp, which is set “c” for call and “p” for
put, and ae, which is set “a” for American-style option and “e” for European-style
option. Thus

OV_OPTION_VALUE(49, 50, 0.25, 0.05, 0.02, 0.20, “c”, “e”) = 1.661

To compute the value of the call option written on the stock index futures, we follow
the same steps. 

To value the call on the index, let us use the forward price version of moneyness in
the computation of d1 and d2. First, compute the forward price, that is, 

F = Se(r–i)T = 49e(0.05–0.02)0.25 = 49.369

Substitute these values into the expressions for the integral limits, d1 and d2, that is,

d1
48.756 49.379⁄( )ln 0.5 0.202( )0.25+

0.20 0.25
------------------------------------------------------------------------------------------------- 0.0770–= =

d2 0.0770– 0.20 0.25– 0.1770–= =

d1
49.369 50⁄( )ln 0.5 0.202( )0.25+

0.20 0.25
-------------------------------------------------------------------------------------- 0.0770–= =
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Because the integral limits are the same, so are the probabilities: 

N(–0.0770) = 0.4693 and N(–0.1770) = 0.4297

Finally, substitute into the call option valuation formula (7.37) and compute the option
value,

The OPTVAL Function Library contains parallel functions for the valuation of futures
options. The value of the call option, for example, is

OV_FOPTION_VALUE(49, 50, 0.25, 0.05, 0.20, “c”, “e”) = 1.661

All-or-Nothing Options Interestingly, even through a standard European-style call
option is considered to be the simplest of all options, it can be viewed as a port-
folio of two more basic options—long an asset-or-nothing call option and short
a cash-or-nothing call option. An asset-or-nothing call pays the asset price at
time T if the asset price exceeds some predefined level, call it X.12 A cash-or-
nothing call pays a fixed amount of cash, CASH, if the asset price exceeds X.
Under the assumptions of risk-neutral individuals and log-normally distributed
asset prices, the value of an asset-or-nothing call is 

(7.39)

that is, the first term on the right-hand side of (7.33). Assuming CASH = X , the
value of a cash-or-nothing call is 

cCON = Xe–rTN(d2) (7.40)

that is, the second term on the right-hand side of (7.33). Therefore a standard
European-style call is nothing more than a portfolio that consists of buying an
asset-or-nothing call and selling a cash-or-nothing call.

VALUING A EUROPEAN-STYLE PUT OPTION

Valuing a European-style put under risk-neutrality follows straightforwardly
from valuing the call. In the absence of costless arbitrage opportunities in the
marketplace, we know that

12  Asset-or-nothing and cash-or-nothing options are commonly referred to as “binary” or
“digital” options and, in spite of their simplicity, are generally categorized under the heading
“nonstandard options.” Nonstandard options are the primary focus of Chapter 8.
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c – p = Se–iT – Xe–rT (7.41)

by virtue of put-call parity price relation from Chapter 6. If we isolate p and
substitute the call option formula (7.33), we get

(7.42)

As in the case of the European-style call formula, the structure of the Euro-
pean-style put formula lends itself to straightforward interpretation. The term,
Xe–rTN(–d2), is the present value of the expected benefit of exercising the put
option at expiration conditional upon the terminal asset price being less than
the exercise price times the risk-neutral probability that the option will be in the
money at expiration. Recall the put option provides the right to sell the asset so
the benefit from holding the option is the cash we receive when we exercise the
option, that is, X. N(–d2) is the risk-neutral probability that the asset price will
be less than the exercise price at expiration. Note that it is the complement of
N(d2), the risk-neutral probability that the terminal asset price will exceed the
exercise price. The present value of the expected cost of exercising the put
option conditional upon the put option being in-the-money at expiration is Se–

iTN(–d1). If we exercise the put, we must forfeit the asset as fulfillment of your
obligation, so the present value of the expected terminal asset price conditional
upon exercise times the probability that the option expires in the money is your
cost today.

Also, as in the case of the standard European-style call, the value of a stan-
dard put may be considered to be the value of a portfolio of more basic options.
This time the portfolio consists of buying a cash-or-nothing put and selling an
asset-or-nothing put. A cash-or-nothing put pays a fixed amount of cash, CASH,
if the asset price is below the pre-specified level X. Under the assumptions of
risk-neutral individuals and log-normally distributed asset prices, the value of a
cash-or-nothing put where CASH = X is

pCON = Xe–rTN(–d2) (7.43)

The value of an asset-or-nothing put is 

pAON = Se–iTN(–d1) (7.44)

Taking the difference in values, we get the put formula (7.42).

ILLUSTRATION 7.9 Find value of European-style put written on stock index.

Compute the value of a three-month European-style stock index put option with an exer-
cise price of 50. Assume the index has a level of 49, a dividend yield of 2%, and a volatil-
ity rate of 20%. The risk-free rate is 5%.

p Xe rT– Se iT–
– c+=

Xe rT– Se iT– Se iT– N d1( ) Xe rT– N d2( )–+–=

Xe rT– N d2–( ) Se iT– N d1–( )–=



234 OPTION VALUATION

First, note that d1 and d2 are the same as in Illustration 7.4; d1 = –0.0770, and d2 =
–0.1770. Second, compute the cumulative normal probabilities, 

N(0.0770) = 0.5307 and N(0.1770) = 0.5703

Finally, gather the terms and compute the option value.

p = 50e–0.05(0.25)(0.5703) – 49e–0.02(0.25)(0.5307) = 2.284

All computations can be verified using appropriate OPTVAL functions. The function call
for the valuation of the index put, for example, is illustrated below.

MEASURING RISK OF EUROPEAN-STYLE OPTIONS

“Greeks” is a term used in industry to characterize the risks of an option, that
is, the option value’s sensitivity to unexpected movements in its underlying
determinants. The primary purpose of the Greeks is for dynamic risk manage-
ment. Before examining some dynamic risk management problems, however, we
develop formulas for the different risk measures.13

From the last section, we know that the European-style call and put formu-
las are

(7.33)

and

(7.42)

where 

13 Appendix 7E of this chapter derives the Greeks from basic principles. Only the final expres-
sion is shown in the text of this chapter.
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 and 

On the right-hand side of the valuation equations are six underlying determinants
(i.e., S, X, r, i, s, and T). The exercise price is constant. We are interested in know-
ing how the option value changes as each of the remaining five determinants
changes. Because the European-style call and put values are expressed as formu-
las, we can take partial derivatives of the formulas to determine the Greeks. After
showing the expression for each partial derivative, we give a numerical example. 

All of the examples are for hypothetical stock index options. The current
index level is 49, its dividend yield of 2%, and its volatility rate of 20%. The
call and put option share a common exercise price, 50, and a common time to
expiration, three months. The risk-free rate of interest is 5%.

Delta: Change in Asset Price

The change in the call option value with respect to a change in the asset price is
called the option’s delta. The delta of a European-style call option is 

(7.45a)

The call’s delta is positive in sign since both the discount factor and the proba-
bility are positive. The implication of the delta being positive is that an increase
in asset price will cause the call price to rise. This makes sense since the call
option is the right to buy the underlying asset at a fixed price. The higher the
asset price, the higher the call value.

 Figure 7.4 shows the change in European-style call value (i.e., the call’s
delta) as a function of the asset price. Notice that when the call option is out-of-
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FIGURE 7.4 Delta as a function of asset price. 
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the-money, its slope is fairly flat. Out-of-the-money call options have very low
delta values; that is, the call value does not respond very quickly to changes in
the asset price. As the call moves into the money, the slope becomes steeper.
Where the call is deep in-the-money, the delta value is nearly one, that is, the
call value changes almost dollar for dollar with the asset price. Where the
underlying asset distributes no cash (i.e., i = 0), the change is exactly one-to-one.

For the index call option, the delta is 0.467 for the parameters of the valua-
tion problem. This means that, if the index level rises by one dollar from its
level of 49, the call value will increase by about 46.7 cents. Knowing this quan-
tity can be very useful in controlling asset price risk exposure. Suppose that we
own the index call. If the index falls by a dollar, our option falls in value by 46.7
cents. To control this risk, we might want to sell 0.467 units of the index. If the
index falls by a dollar, we lose 46.7 cents on the option but gain 46.7 cents on
the index. On the other hand, if the index rises by a dollar, we gain 46.7 cents
on the option but lose 46.7 cents on the short position in the index. This is
called a “delta-neutral” hedge portfolio. 

The delta of a European-style put is 

(7.45b)

The delta of a put is negative—an increase in asset price reduces the put value. Fig-
ure 7.4 also shows the put’s delta as a function of the asset price. At low levels of
asset price, the put is deep in-the-money and has a delta near –1. As the asset price
rises, the delta becomes smaller. A deep out-of-the-money put has a delta near zero. 

Eta: Percent Change in Asset Price

The option’s eta is the percentage change in the option value with respect to the
percentage change in the asset price. Although eta is generally not used directly
for risk management purposes, it is a useful metric for measuring an option’s
risk relative to the risk of the underlying asset. The call’s eta is

(7.46)

The call’s eta is always greater than 1. To see this, substitute the call option for-
mula for c in the expression for eta. Since c > 0 and Xe–rTN(d2) > 0, 

The value of the eta can be quite large, as Figure 7.5 demonstrates. At an asset
price level of 49, the call’s eta is 13.78. This means that if the underlying asset
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price rose by 1%, the call value would rise by about 13.78%. As the figure shows,
the eta grows larger as the asset price falls and the call becomes out-of-the-money.

The eta of the put is

(7.47b)

The put’s eta is negative and will always have a value less than –1.
The values of eta are useful in the assessment of option risk within a capital

asset pricing model framework. As we saw earlier in the chapter, the “beta” of
an option equals the beta of the underlying asset times the option’s eta, that is,
βc = ηcβS and βp = ηpβS. Options, being levered instruments, are much riskier in
a rate of return sense than the underlying asset. In return for the additional risk,
individuals can expect to get a higher return. 

Gamma: Change in Delta from a Change in Asset Price

An option’s gamma is the change in delta as the asset price changes. The expres-
sions for gamma for the European-style call and the European-style put are the
same, 

(7.47)

where, as noted earlier in the chapter, n(d1) is the univariate normal density at
d1, that is, 

FIGURE 7.5 Eta as a function of asset price. 
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FIGURE 7.6 Gamma as a function of asset price. 

The gamma tells us how quickly the delta changes as the asset price changes.
Figure 7.6 shows gamma as a function of the underlying asset price. At an index
level of 49, the gamma of the call is 0.081. Recall that the delta for this option is
0.467. The level of gamma tells us that if the index level rises by a dollar, the
delta will increase from 0.467 to a level of about 0.541. The highest level of
gamma occurs when the option is at the money. This means that at-the-money
options are hardest to hedge.  It also means that if we believe that the asset price
is about move in one direction or another an at-the-money spread will maximize
the portfolio’s dollar response to underlying asset price movements. 

Rhor : Change in Interest Rate

The change in the call value with respect to a change in the risk-free rate of
interest is called the option’s rhor and is expressed as 

(7.48a)

The sign of the partial derivative indicates that call value increases as the inter-
est rate increases. The reason is that the present value of the exercise price falls.
The value of rhor in our illustration is 5.305. If the interest rate increases by 100
basis points, the call value will increase in value by about 5.3 cents. 

The partial derivative of the put option price with respect to the risk-free
rate of interest is
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FIGURE 7.7 Rho – r as a function of asset price. 

(7.48b)

For the put, the value of rhor is negative. As the risk-free rate of interest rises, the
present value of the exercise price received upon exercising the option falls. The
value of rhor  for the put option in the illustration –7.040, implying that an
increase in the interest rate of 100 basis points reduces the option value by about 7
cents. The levels of rhor  for different levels asset price are illustrated in Figure 7.7.  

Rhoi: Change in Income Rate

The change in the call option price with respect to a change in the asset’s income
rate is called rhoi. The partial derivative of the call value with respect to a
change in the income rate is

(7.49a)

As the income rate increases, the call value falls, holding constant the asset price
and the other variables. The higher the income rate of the asset, the lower the
expected rate of price appreciation and the lower the call option value. The
magnitude of the derivative is small, however. For the stock index call option in
our illustration, the rhoi value is –5.720. In other words, if the income rate on
the index increases by 100 basis points, the call price will fall by approximately
6 cents. The call’s rhoi falls as the asset price increases, as is illustrated in Figure
7.8. The more the call is in the money, the greater is the effect that an increase in
rhoi  will have on the option value. 
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FIGURE 7.8 Rho – i as a function of asset price. 

The partial derivative of the put option price with respect to the asset’s
income rate is 

(7.49b)

As the income rate increases, the expected rate of appreciation in the asset price
falls and hence the value of the put option rises. The numerical value of rhoi for
the put option in our illustration is 6.469.

Vega: Change in Volatility Rate

The change in the option price with respect to a change in the volatility is called
“vega.”14 The vega of a European-style call option is 

(7.50a)

The sign of the derivative is positive, indicating that as the volatility of the
underlying asset return increases, the call option value increases. The intuition
for this result is that an increase in the volatility rate increases the probability of
large upward movements in the underlying asset price. The probability of large
downward asset price movements also increases, however, it is of no conse-
quence since the call option holder has limited liability.

14 The fact that vega is not a Greek letter shows what happens when industry participants are
allowed to assign names to concepts.
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FIGURE 7.9 Vega as a function of asset price. 

Figure 7.9 shows the option’s vega as a function of the asset price. This pat-
tern is very similar to that of the option gamma. The vega is highest where the
option is approximately at-the-money, and falls as the call goes deeper in (out of)
the money. The numerical value of the call option’s vega implies that the option’s
price is more sensitive to volatility than it is to either the cost of carry rate or the
interest rate.  The call vega for the option in our illustration is 9.696.  An increase
in volatility of 100 basis points increases the call’s value by nearly ten cents.  

The put option’s vega is the same as that of the call, that is, 

(7.50b)

The put option value also increases with an increase in volatility since the prob-
ability of a large asset price decrease increases. The vega of the put is also 9.696.

Theta: Change in Time to Expiration

The partial derivative of the option price with respect to the time to expiration
parameter is called the option’s theta. The theta of the European-style call is

(7.51a)

The expression for theta makes it difficult to determine whether the call value will
increase or decrease as the time to expiration falls. The theta is the sum of three
components. The first term on the right-hand side is positive and reflects the
increase in call value from an increase in the time to expiration increases the proba-
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bility of upward price movements in the asset price and increases the value of the
option. The second term may be positive or negative depending on whether the
income rate i is greater than or less than 0. If i < 0, the term is positive since as the
time to expiration increases the present value of the expected terminal asset price
grows large (recall that the underlying asset price grows at rate r – i while the dis-
count rate of the terminal value of the option is r). Finally, the third term is positive.
As time to expiration increases, the present value of the exercise price grows small.
Note that the only case where the overall value of theta is positive is where i ≤ 0.

Figure 7.10 shows how the theta of the call changes as a function of the
asset price. The theta takes its highest value for at-the-money calls. The theta
for the call in our illustration, for example, is near-the-money and is 4.482. This
means that if the option’s time to expiration is reduced by one day (i.e., 1/365th
of a year), the call will fall in value by about 1.2 cents. Over seven days, the
expected time decay is 8.6 cents.

The theta of the European-style put option is

(7.51b)

Like in the case of the call, the sign of the put’s theta is ambiguous. The inter-
pretation of the terms in the expression of the put option’s theta parallels that of
the call option. The first term is the increase in put value resulting from the
prospect of larger asset price movements when the time to expiration is large.
The second term is negative if i ≤ 0. In the case of the put, option value increases
where the cost of carry rate is below the interest rate. The third term is negative.
It reflects the fact that an increase in the time to expiration delays the receipt of
the exercise price and hence reduces the put option value.  The value of the theta
for the put option in our illustration is 2.988.
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FIGURE 7.10 Theta as a function of asset price. 
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FIGURE 7.11 Time decay of one-year out-of-the-money call option. 

Time Decay An option is a wasting asset in the sense that its value generally falls
as time passes. This must always be true for out-of-the-money options, for
example, since their value at expiration is 0. It is worth noting the rate of time
decay, however. Figure 7.11 shows the value of the index call in our illustration
with times to expiration ranging from 365 days down to 1 day. For options with
long times to expiration, option value decays at a reasonably steady daily rate.
Once the option gets close to expiration, however, the rate of decrease increases. 

Summary

This section contains analytical expressions for measuring the risk characteris-
tics of European-style options. In industry, these measures are called the
“Greeks,” because of the Greek letters to denoting each of the risk measure-
ment. All the expressions are derived by taking the partial derivative of the
option valuation formulas with respect to the parameter of interest. Table 7.3
summarizes the valuation equations as well as the formulas for the Greeks.

The summary in Table 7.3 can also be used for European-style options
whose noninterest carry costs are best modeled as discrete flows. Only two
minor adjustments are necessary. First, we must deflate the current asset price by
the present value of promised income during the option’s life, that is, set the
asset price in all the expressions of Table 7.1 equal to S – PVI. Second, we must
set the continuous income rate i equal to 0.

Likewise Table 7.4 can be used for European-style futures options. Here, we
must set the income rate equal to the risk-free rate so that the embedded cost of
carry rate of the futures equals 0. For your convenience, Table 7.4 summarizes
the valuation equations as well as the formulas for the Greeks for European-
style futures options. Note that since the futures does not have an income rate,
rhoi does not appear.
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TABLE 7.3  Summary of valuation equations and risk measures for European-style options 
where the underlying asset has a continuous income rate i.a

a For the case where the asset pays income as discrete flows rather than as a continuous rate,
two adjustments to the expressions in this table are necessary. First, set the income rate i equal
to 0. Second, wherever the asset price appears in an expression, substitute the asset price less
the present value of the discrete income flows that are paid during the option’s life, that is, S
– PVI.

TABLE 7.4  Summary of valuation equations and risk measures for European-style futures 
options.      

Call Option Put Option

Value c = Se–iTN(d1) – Xe–rTN(d2) p = Xe–rTN(–d2) – Se–iTN(–d1)

Delta

Eta

Gamma

Rhor

Rhoi

Vega

Theta

Call Option Put Option

Value c = e–rT[FN(d1) – XN(d2)] p = e–rT[XN(–d2) – FN(–d1)]
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TABLE 7.4     (Continued)

ILLUSTRATION 7.10 Compute values of European-style call and European-style put written on 
a futures contract. Also report their “Greeks.”

Compute the values of a one-month European-style call and a one-month European-style
put written on a wheat futures contract assuming the options have an exercise price of
500 cents per bushel. Also report the options’ Greeks. Assume the underlying wheat
futures has a price of 495 cents per bushel and a 12% volatility rate. Assume also that
the risk-free rate of interest is 5%. The contract denomination is 5,000 bushels.

The option values and Greeks can be computed straightforwardly using the formulas
summarized in Table 7.3. The values and risk measures are:

The values may also be computed using the OPTVAL functions with the prefix
OV_FOPTION_Greek¸ where Greek is DELTA, ETA, GAMMA, and so on.

The pair of columns on the left is in cents per bushel. The pair on the right are total
dollar values. The total dollar value is computed by multiplying by the contract size,
5,000 bushels, and dividing by 100 to convert from cents to dollars. The eta is not trans-
formed in the same manner as the others because it is an elasticity, that is, a percent
change in the option value with respect to a percent change in the underlying asset price.
The value of the vega for the call is 1,957.44. This means that if the volatility rate
increases from, say, 12 to 13%, the call option value will increases by approximately
1,957.44 × 0.01 = 19.57 dollars.

Call Option Put Option

Gamma

Rhor

Vega

Theta

In Cents per Bushel In Dollars per Contract

Call Put Call Put

Value   4.6429     9.6221 232.1453 481.11
Delta   0.3909   –0.6050 19.5434 –30.2487
Eta 41.6722 –31.1222 41.6722 –31.1222
Gamma   0.0223     0.0223 1.1161 1.1161
Rho – r 15.7364 –25.7570 786.82 –1,287.85
Vega 54.6958   54.6958 2,734.79 2,734.79
Theta 39.1488   38.8999 1,957.44 1,944.99
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ILLUSTRATION 7.11 Compute realized volatility and compare with volatility “implied” by 
option price.

The Excel file, RIMM.xls, contains a history of daily closing stock prices for Research in
Motion Limited (ticker symbol RIMM), manufacturer of the infamous “Blackberry” for
the calendar year 2004. As of the close on December 31, 2004, RIMM’s share price was
82.42. At the same time, a call option with an exercise price of 85 and an expiration date
of June 18, 2005 had a closing price of 10.10. Determine whether this call option was
fairly priced on December 31, 2004, assuming that the risk-free interest rate was 2.72%.
RIMM is not expected to pay cash dividends over the next year.

In order to determine whether the option is fairly priced, we must determine its the-
oretical value. The BSM call option pricing formula requires six parameters, five of
which are known.15 The stock price is 82.42, and the stock pays no cash dividends. The
option’s exercise price is 85, and its time to expiration is 169 days or 0.4630 years. The
risk-free rate of interest is 2.72%. What remains to be estimated is futures volatility rate
of the stock’s return. 

One way to develop an estimate of the future volatility rate is to estimate historical
volatility. Based upon the daily price series in the Excel file, compute the standard devia-
tion of the daily continuously compounded rates of return, Rt = ln(St/St–1). If it is reason-
able to assume that RIMM’s immediate volatility will persist into the future, the
historical estimate is a reasonable proxy for future volatility. Based upon the daily
returns, the historical volatility is 3.10% per day. To annualize this volatility, we multiply
by the square root of the number of trading days in the year (i.e., ). The annual vol-
atility rate, based on daily returns, is 49.17%.  

Before proceeding to the next step of valuing the call option, it is useful to remind
yourself of any implicit assumptions you are making in your estimation. You used daily
rates of return in computing your estimate of volatility, for example. But, the rates of
return may be for any length period—a day, a week, or a month. As a general rule in sta-
tistics, the more information (i.e., number of observations) that you use in estimation,
the more accurate will be your estimator. Weekly returns will therefore provide a more
reliable estimate than monthly returns, holding the overall length of the estimation
period constant (in this case, one year).

Following the same logic, it would seem daily returns will provide a more reliable
estimate than weekly returns. Unfortunately, this may not be the case. The reason is that
each return is based on daily closing prices, and each daily closing price has error. What
you want to measure at the close each day is the “true” price of the stock. What you have
is the stock price at the time of the last trade. The last trade price did not occur at the
true price, but rather at the bid price if the trade was seller-motivated or at the ask price
if the trade was buyer-motivated. Since the true price is presumably in between, each
day’s return is computed with error. The observed volatility that you computed, therefore
3.10% per day, is the sum of two components—the true volatility of the stock and vola-
tility of the error in measurement. Without knowing whether each trade was a buy or a
sell, you cannot unwind the effects of this error in the daily prices.

What you can do instead is increase the length of time between price observations
from, say, daily to weekly. In place of having 252 “errors” in your estimate, you will now
have only 52. The Excel file, RIMM.xls, also contains a spreadsheet with weekly prices.
Note that the prices are for Wednesday each week. As a practical matter, fewer holidays

15 Even though exchange-traded stock options are American-style, we can use the BSM Euro-
pean-style option formula because, as we showed in Chapter 6, American-style options on
nondividend-paying stocks will not optimally be exercised early.
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fall on Wednesdays so that the time between observations is usually exactly seven days.
Based on weekly returns, the volatility rate is 6.17% per week. To annualize this figure,
we multiply by the square root of 52. Hence, based on weekly returns, the annualized
volatility rate is 44.46%, well below the 49.17% computed based on daily returns. Based
on these results, it is probably most sensible to use 44.46% as the estimate of expected
future volatility. 

Having all of the necessary parameters in hand, we can now compute call option
value. Substituting the parameters in to the option valuation function, we get

OV_OPTION_VALUE(82.42, 85, 0.463, 0.0272, 0.0, 0.4446, “c”, “e”) = 9.26

The closing option price was 10.10, however, indicating that the call is overpriced by 84
cents. 

Often traders prefer to talk about “implied volatilities” rather than prices when talk-
ing about different option series. An implied volatility is the level of expected future vol-
atility that equates the price of the option to its theoretical value. You can do this using
Excel’s SOLVER. Simply find the level of volatility, v, that satisfies the constraint that 

OV_OPTION_VALUE(82.42, 85, 0.463, 0.0272, 0.0, v, “c”, “e”) = 10.10

Given the observed option price of 10.10, the implied volatility is 48.23%. One interpre-
tation of this volatility is as a “market consensus” estimate in the sense that both a buyer
and a seller are presumably in the market and willing to trade at 10.10. For ease of com-
putation, the OPTVAL Function Library contains an implied volatility function. To ver-
ify the SOLVER solution, 

OV_OPTION_ISD(82.42, 85, 0.463, 0.0272, 0.0, 10.10, “c”, “e”) = 0.4823

SUMMARY

This chapter focuses on valuing European-style options under the assumptions
that individuals are risk-neutral and that asset prices are log-normally distrib-
uted at the option’s expiration. At the outset, we establish that option values are
the same regardless of whether individuals are risk-neutral or risk-averse. With
the irrelevance of risk preferences established, we adopt a risk-neutral valuation
framework. Assuming that the underlying asset price is log-normally distributed
at the option’s expiration, we value a European-style option by taking the
present value of its expected future value. With an analytical expression of
option value in hand, we examine the option’s sensitivity of option value to
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changes in its underlying parameters. These risk measures are popularly referred
to as the “Greeks.” They will be used extensively in the risk management appli-
cations examined in later chapters of the book. 
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APPENDIX 7A: APPLICATIONS OF ITO’S LEMMA

Ito’s lemma is an important mathematical result16 that has found many applica-
tions in finance, particularly in the area of derivatives valuation. This appendix
provides Ito’s lemma, and then applies it in several ways.

Ito’s Lemma

A statement of Ito’s lemma begins with the definition of an Ito process. A variable
x is said to follow an Ito process if it dynamics can be described in the form,

(7A.1)

where dz is an increment to a Wiener process, z(t), and a and b are functions of x
and t. In (7A.1), the variable x drifts at a rate of a and has a variance rate of b2.

16 See Ito (1951).

dx a x t,( )dt b x t,( )dz+=
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Now suppose there exists a function f that depends on x and t. Under Ito’s
lemma, this function also follows an Ito process with a drift rate and variance
rate as shown below,17

(7A.2)

where the dz is the same Wiener process as in (7A.1). 

Application 1: Derivatives Price Movements

The Black-Scholes/Merton (BSM) option valuation framework assumes that the
asset prices follows the Geometric Brownian,

dS = αSdt + σSdz (7A.3)

where α and σ are constant. Comparing (7A.3) to (7A.1), we see that a(x,t) = αS
and b(x,t) = σS. It therefore follows that the price movements of a derivative
contract written on the asset depends on S and t, that is, f(S,t), follows the
dynamics,

(7A.4)

Application 2: Forward Price Movements

Equation (7A.4) applies Ito’s lemma to find the dynamics of derivatives prices
given the dynamics of asset prices. We now turn to a specific derivative contract
to further illustrate our results. From Chapter 3, we know the net cost of carry
for a forward contract is

f = Seb(T–t) (7A.5)

where t represents the evolution of time (i.e., the time to expiration of the for-
ward contract rows short as time passes). Using (7A.5) to find the derivatives in
(7A.4), we get

,   ,   and   

The forward price, therefore, follows the dynamics 

17 The drift rate equals the term in the parentheses. The variance rate is .
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(7A.6)

where dz is the same Wiener process as in (7A.3). In other words, the forward price,
like the asset price, follows geometric Brownian motion, however, the drift rate of
the forward is lower than the drift rate of the asset by the cost of carry rate, b.

Application 3: Modeling the Logarithm of Asset Price

As noted in the text of the chapter, it is sometimes convenient to work with the log-
arithm of asset prices rather than asset prices directly. Since lnS qualifies as a func-
tion of S and t, we can apply Ito’s lemma to find the dynamics of lnS. If f = lnS, then

,   ,   and   

Thus, the movements in the logarithm of stock price follow the geometric Brown-
ian motion, 

(7A.7)

where µ is the drift rate in the logarithm of asset price, as distinct from α, which
is the drift rate in asset price itself. 

APPENDIX 7B: RELATION BETWEEN THE CONTINUOUSLY 
COMPOUNDED MEAN RETURN AND THE MEAN CONTINUOUSLY 
COMPOUNDED RETURN

The continuously compounded mean return of the asset over the interval 0 to T
is defined as

(7B.1)

where  is the normally distributed, continuously compounded rate of return
from 0 to T. The rate of return, , can be reexpressed in terms of a standardized
unit normally distributed variable, , that is,
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where µ and σ are the mean and and the standard deviation of the continuously
compounded rate of return on the asset. We can write the rate of price apprecia-
tion of the asset as

(7B.2)

and the mean expected rate of price appreciation as

(7B.3)

Since z is unit normally distributed, we may write (7B.3) as

(7B.4)

where

is the normal density function. Now add and subtract an amount σ2T/2 in the
exponent on the right-hand side of (7B.4). We get 

(7B.5)

Since integral expression on the right-hand side of (7B.5) is the area under the
unit normal density function and equals one. Thus

(7B.6)

Substituting into (7B.3), we get
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(7B.7)

or more simply

(7B.8)

APPENDIX 7C: APPROXIMATION OF THE UNIVARIATE NORMAL
PROBABILITY

The probability that a random drawing from a unit normally distributed vari-
able will be below d is 

The following polynomial provides an approximation of this probability that
has a maximum absolute error of 0.000000075.

where

, 

a0 = 0.3989423, a1 = 0.319381530, a2 = –0.356563782, 
a3 = 1.781477937, a4 = –1.821255978, and a5 = 1.330274429

The value of a must be greater than 0. To obtain the probability for a negative
value of a, compute the probability for –a, N1(–a), and then subtract from one,
that is, N1(a) = 1 – N1(–a). This approximation appears as the function
OV_PROB_PRUN in the OPTVAL Function Library. An illustration follows:
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APPENDIX 7D: DERIVATION OF BLACK-SCHOLES/MERTON OPTION 
VALUATION FORMULA

The derivation of the Black-Scholes (1973)/Merton (1973) (BSM) formula fol-
lows directly from the Ito mechanics described in Appendix 7A. If the asset price
movements follow the geometric Brownian motion,  

dS = αSdt + σSdz (7D.1)

derivatives written on this asset have price movements described by 

(7D.2)

where the underlying source of uncertainty, dz, in (7D.1) and (7D.2) is the same. 
The key insight of Black-Scholes and Merton option valuation model is that,

if the underlying source of risk is the same for both the asset and derivative con-
tracts written on the asset, it should be possible to create a risk-free hedge port-
folio by buying the asset and selling the derivative contract or vice versa. To see
this, suppose we sell one derivative contract and buy ∂f/∂S units of the underly-
ing asset. The value of our portfolio will be

(7D.3)

Over the next instant in time, the portfolio value changes in response to changes
in the prices of the derivative contract and the asset, as well as a result of col-
lecting income on the asset at the constant, continuous rate, i. Algebraically, 

(7D.4)

Substituting (7D.2) and (7D.1) for df and dS, 

Note that by constructing the portfolio in this manner, the only source of risk,
dz, has been eliminated. Since the portfolio is risk-free and perfect substitutes
must have the same price, holding this portfolio is equivalent to holding an
equal dollar investment in risk-free bonds, that is,

df
∂f

∂S
------αS

∂f

∂t
-----

1
2
---

∂2f

∂S2
---------σ2S2

+ +
⎝ ⎠
⎜ ⎟
⎛ ⎞

dt
∂f

∂S
------σSdz+=
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∂f
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∂f

∂S
------ αSSdt σSdz+( )

∂f

∂S
------iSdt+ +=
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1
2
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∂S2
---------σ2S2 ∂f

∂S
------iS–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

– dt=
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(7D.5)

By rearranging (7D.5), the BSM partial differential equation is identified,

(7D.6)

Equation (7D.6) is the Black-Scholes/Merton model, and should not be con-
fused with the Black-Scholes/Merton formula. The latter is a special case of the
model to be discussed shortly. The BSM model (7D.6) applies to all derivatives
written on S including calls, puts, European-style options, American-style
options, caps, floors, and collars—any derivative contract for which it is appro-
priate to assume the asset price dynamics follow geometric Brownian motion.18

What distinguishes each derivative is the set of boundary equations applied to
(7D.6). For a European-style call option, the boundary condition is f = max(0,S
– X) at time T. For a European-style put option, the boundary condition is f =
max(0,X – S) at time T. For American-style calls and puts, the respective bound-
ary conditions apply at all times between the current time 0 and the expiration
date T. Sometimes the partial differential equation subject to a boundary condi-
tion has a solution that can be expressed as an analytical formula. This is true
for European-style options, for example. At other times, no analytical formula
is possible and approximation methods must be used. Methods for approximat-
ing the value of derivatives contracts are the focus of Chapter 9.

To test whether the BSM call option formula, f = Se–iTN(d1) – Xe–rTN(d2),
satisfies (7D.6), substitute the formula as well as its partial derivatives, 

,

,   and  

into the differential equation (7D.6) and get

18 This eliminates many derivatives contracts written on interest rate instruments whose un-
derlying asset price cannot rise above a certain level (e.g., an option on a Treasury bill). In
these instances, it is more common to let the underlying source of uncertainty be the short-
term interest rate.
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Sσ T
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A little algebra shows that all terms cancel, implying that the BSM option valuation
formula satisfies the BSM model (i.e., the partial differential equation (7D.6)).

APPENDIX 7E: DERIVATION OF THE “GREEKS”

The “Greeks” for the BSM formula are provided in the chapter. Each of them is
derived below by taking the partial derivative of the option with respect to each
of its determinants.

The BSM formulas are:

where

 and 

Useful Relations

To begin, it is useful to note the following relations. First, note that the partial
derivatives of d1 and d2 with respect to S are

(7E.1)

Next, from the relation between d1 and d2, 

we can develop the relation between  and , that is,

(7E.2)
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2 2 Se r i–( )T X⁄[ ]ln–=
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From the definition of the normal density function,

the relation between n(d1) and n(d2) can be derived,

(7E.3a)

It follows that

(7E.3b)

Delta

Delta of call, ∆c:
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Delta of put, ∆p:
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(7E.4b)

Eta

Eta of call, ηc:

(7E.5a)

Eta of put, ηp:

(7E.5b)

Gamma

Gamma of call, γc:

(7E.6a)

Gamma of put, γp:

(7E.6b)

Partial Derivative with Respect to Exercise Price

(7E.7a)

(7E.7b)
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Rhor

Rhor of call, :

(7E.8a)

Rhor of call, :

(7E.8b)

Rhoi

Rhoi of call, :

(7E.9a)

Rhoi of put, :

(7E.9b)
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(7E.10a)

Vega of put, Vegap:

(7E.10b)

where

Theta

Theta of call, θc:
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Theta of put, θp:
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(7E.11b)
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CHAPTER

 

8

 

Valuing Nonstandard Options
Analytically

 

n Chapter 7, we valued standard European-style options analytically with the
Black-Scholes (1973)/Merton (1973) option valuation framework. This chap-

ter continues to focus on options that can be valued analytically within the BSM
framework, however, the types of options that we examine are unusual or non-
standard.

 

1

 

 While we discuss eleven different types of contracts, do not be mis-
led. There are a virtually limitless number of variations of derivative contracts
that have or can be structured. Some can be valued analytically. These are the
focus of this chapter. Some require the use of numerical methods. These are the
focus of the next chapter. As we proceed through this chapter describing the dif-
ferent types of contracts and their analytical valuation equations, it is important
to try to imagine possible applications. In many instances, the contracts have
sensible return/risk management properties. In other instances, the contracts
seem only to be a cleverly structured bet. 

 

ALL-OR-NOTHING OPTIONS

 

In Chapter 5, we showed that the valuation equations for asset-or-nothing and
cash-or-nothing call and put options were impounded within the BSM call and
put formulas. Recall that an asset-or-nothing call that pays one unit of the asset
at time 

 

T 

 

if the asset price exceeds the exercise price 

 

X

 

. The terminal profit from
buying an asset-or-nothing call option is shown in Figure 8.1. Note that, for ter-
minal asset prices below 

 

X

 

, the option holder forfeits the premium that he paid
for the option at the outset. For terminal prices above 

 

X, 

 

the option holder
receives one unit of the asset, which at least partially covers the original cost of
the option. Under the BSM assumptions, the value of a European-style asset-or-
nothing option is

(8.1)

 

1 

 

The label “exotic” has often been applied to nonstandard options.

I

cAON X T,( ) e iT– N d1( )=
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FIGURE 8.1

 

Terminal profit from buying an asset-or-nothing call option.

 

where

 

2

 

 

and

The terminal profit from buying a cash-or-nothing call option is shown in Figure
8.2. For terminal asset prices below 

 

X

 

, the option holder forfeits the original
cash-or-nothing option premium. For terminal prices above 

 

X, 

 

the option holder
receives one dollar. Under the BSM assumptions, the value of a European-style
cash-or-nothing option is

(8.2)

where the fixed cash amount equals one dollar.
A standard European-style call option provides the right to buy the underly-

ing asset whose current price is 

 

S 

 

for amount of cash equal to 

 

X 

 

at time 

 

T

 

. To
construct a standard call option, we buy 

 

S 

 

units of an asset-or-nothing call and
sell 

 

X 

 

units of a cash-or-nothing call. Thus the valuation-by-replication princi-
ple says that the value of a standard European-style call option is

 

2 

 

As noted in Chapter 7, there are a number of different, albeit equivalent, expressions for 

 

d

 

1

 

in European-style option valuation problems. The prepaid forward version is used here to
minimize the number of redundant computations.
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d1
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---------------------------------------------------------------------=

d2 d1 σ T–=
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FIGURE 8.2

 

Terminal profit from buying a cash-or-nothing call option.

 

(8.3)

In the interest of completeness, an asset-or-nothing put option pays one unit
of the asset at time 

 

T

 

 if the asset price is below the exercise price and is valued as

(8.4)

A cash-or-nothing put pays one dollar in cash at time 

 

T

 

 if the asset price is
below the exercise price and is valued as

(8.5)

A standard European-style put option provides the right to sell the underlying
asset 

 

S 

 

for amount of cash equal to 

 

X 

 

at time 

 

T

 

. To construct a standard put
option, we sell 

 

S 

 

units of an asset-or-nothing put and buy 

 

X 

 

units of a cash-or-
nothing put. Thus, the value of a standard European-style put option is

(8.6)

 

ILLUSTRATION 8.1

 

Value cash-or-nothing call option.

 

Suppose your uncle tells you that he will give you $100 if XYZ’s stock price is greater
than $100 in six months time. XYZ’s current stock price is $90 a share, its dividend yield
rate is 1%, and its volatility rate is 20%. The risk-free interest rate is 3%. What is the
value of his gift to you?
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First, compute the prepaid forward prices for the underlying asset and risk-free bonds, that
is, 

 

Se

 

–

 

iT

 

 = 90

 

e

 

–0.01(0.5)

 

 = 89.551 and 

 

Xe

 

–

 

rT

 

 = 100

 

e

 

–0.03(0.5)

 

 = 98.511. Next, compute the inte-
gral limit 

Finally, plug the information into formula (8.2), that is,

The values of asset-or-nothing and cash-or-nothing options where the underlying
asset has a current price of one dollar can be computed using the OPTVAL library func-
tion

OV_NS_ALL_OR_NOTHING_OPTION(

 

s, x, t, r, i, v, cp, ac

 

)

where 

 

s

 

 is the asset price, 

 

x

 

 is the exercise price, 

 

t

 

 is the time to expiration expressed in
years, 

 

r

 

 is the risk-free interest rate, 

 

i

 

 is the income rate of the asset, 

 

v

 

 is the asset return
volatility rate, 

 

cp

 

 is a (c)all/(p)ut indicator, and 

 

ac

 

 is an (a)sset/(c)ash indicator. The value
of the option in this illustration is

OV_NS_ALL_OR_NOTHING_OPTION(90,100,0.5,0.04,0.01,0.20, “c”, “c”) = 0.24453

 

Measuring Risk of All-or-Nothing Options

 

All-or-nothing options are useful more as a pedagogic device than they are in
practice. The reason is that they are expensive and difficult to hedge, particu-
larly for short times to expiration. To address the hedging issue, let us consider
the risk characteristics (i.e., the Greeks) of all-or-nothing options. Since we have
analytical valuation formulas, we can compute analytically the Greeks of all-or-
nothing options by taking the partial derivatives of the formulas with respect to
each of the option formula’s determinants (e.g., 

 

S,

 

 the asset price, 

 

σ

 

, the volatil-
ity rate, and so on). But doing so necessarily involves developing more expres-
sions in a chapter that will have no shortage of formulas.

 

3

 

Instead, in this chapter, we measure risk characteristics numerically. The
procedure is straightforward. Recall that the delta of an option is the change in
option value with respect to a change in asset price. To obtain the delta of an
option numerically, we can perturb the current asset price 

 

S 

 

by a small amount 

 

φ

 

in either direction, that is, 

 

S

 

 + 

 

φ

 

 and 

 

S

 

 – 

 

φ

 

, and value the option at each asset
price, 

 

OV

 

(

 

S

 

 + 

 

φ

 

) and 

 

OV

 

(

 

S

 

 – 

 

φ

 

). Figure 8.3 illustrates. The valuation function

 

OV(.) can be any of the valuation methodologies discussed in this chapter, the
last chapter, or the next. The values generated in Figure 8.3 were generated
using the BSM formula for a European-style put. While what we would like to

3 It is also important to recognize that many OTC derivative contracts that we will discuss in
later chapters have American-style option features or multiple, interrelated contingencies. In
many, if not the majority, of these cases, analytical valuation is not possible and numerical
methods must be applied. With no analytical formulas, the risk characteristics of these agree-
ments must, necessarily, be computed numerically.

d2
89.551 98.511⁄( )ln 0.5 0.202( )0.5+

0.20 0.5
---------------------------------------------------------------------------------------------- 0.7450–= =

cCON e 0.03 0.5( )– N 0.7450–( ) 100×=

24.453=
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measure is the slope of the OV function at the asset price S, we approximate the
slope of the function by taking the ratio of the difference between the computed
option values to the difference between the perturbed asset prices, that is,

In general, all of the Greeks for options can be measured using the expression,

(8.7)

where OV represents any valuation method that we use in this book, k is the
option determinant of interest (e.g., S for delta risk, σ for vega risk, and so on), and
φ is a small positive constant selected by the user. The gamma, that is, the change in
the delta with respect to a change in the asset price, can be computed using

(8.8)

ILLUSTRATION 8.2 Assess accuracy of risk measures computed numerically.

Consider a six-month European-style put option whose exercise price is 50. Assume the
underlying asset has a price of 49, a dividend yield of 1%, and a volatility rate of 20%,
compute the delta, gamma, and vega of the put analytically and then numerically.
Assume the risk-free rate of interest is 3%.

FIGURE 8.3 Numerical approximation for the delta of a put option. 
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First, compute the delta value of the European-style put analytically. From Chapter
5, we know that the delta value of the put is 

where 

and

N(0.00143) = 0.5006

Next compute the delta value of the put numerically by perturbing the asset price by,
say, 0.1. Using the BSM put formula (8.6) for the function OV in (8.8), the numerical
value of delta is 

In other words, the numerical (approximate) delta value of the put is accurate to four
decimal places. The accuracy of the approximation is affected by the size of the perturba-
tion parameter. To judge the appropriate size, experiment with an option whose Greeks
are analytically tractable. Below is a summary of the results for delta, gamma, and vega
of the put computed using (8.7) and (8.8). All of them are accurate to four decimal places
for the perturbation amounts shown.

Returning to risk characteristics of all-or-nothing options that are the focus
of this section, consider in Figure 8.4, which shows the distribution of delta val-
ues of asset-or-nothing call options with three months, one month, and one day
to expiration as a function of the underlying asset price. These values were com-
puted numerically using one dollar increments in the asset price. Several obser-
vations about Figure 8.4 are noteworthy. First, note that for deep out-of-the-
money options, the deltas are near zero. The reason is simple. With virtually no
chance of ever being in the money at expiration, the asset-or-nothing option is
insensitive to movements in asset price. Second, note that deep in-the-money
options have deltas near one. With virtually no chance of ever being out of the
money, the option price behaves just like the asset price. Third, and perhaps
most importantly, the delta value of at-the-money, asset-or-nothing call options
(unlike standard call options) can be well in excess of one and increases as the

Greek
Analytical

Value of Greek
Perturbation
Amount, φφφφ

Numerical
Value of Greek

Delta –0.4981 0.1     –0.4981
Gamma   0.0573 0.5       0.0573
Vega 13.7537 1.00% 13.7537
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------------------------------------------------------------------------------------------------------------------------------ 0.00143–= =
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time to expiration grows short. The maximum delta value is, or course, equal to
the asset price. With only a few minutes to expiration, an asset price movement
from slightly out of the money to slightly in the money will cause the asset-or-
nothing option value to go from 0 to S.

GAP OPTIONS

A gap option is an option whose payoff is determined by the exercise price X1,
but another constant X2 determines whether or not the payoff is made. Con-
sider a gap call option for example. Suppose X1 = 45 and X2 = 50. Figure 8.5
shows the call’s payoff at expiration. Note that, over the asset price interval
between 45 and 50, the call’s payoff is 0. This is because the trigger price X2 =
50 has not been reached. Once the asset price goes beyond the trigger price, the
call’s payoff is the difference between the asset price and X1.

With the asset-or-nothing and cash-or-nothing valuation equations in hand,
valuing a gap call option is a straightforward task.4 Consider a portfolio is long
an asset-or-nothing call with exercise (trigger) price X2 and is short X1 cash-or-
nothing calls with exercise (trigger) price X2. This portfolio has payoffs identi-
cal to those shown in Figure 8.5. In the absence of costless arbitrage opportuni-
ties, therefore, the value of a gap call option can be identified using (8.1) and
(8.2), that is,

(8.9)

4 The construction of the gap option valuation formula from all-or-nothing options was first
shown in Rubinstein and Reiner (1991b).

FIGURE 8.4 Delta values of asset-or-nothing call options with three months, one month, and 
one day to expiration. (X = 50, r = 0.05, i = 0.00, σ = 0.50).  
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where

and . The value of a gap put option is

(8.10)

It is important to note that there is no restriction on whether the trigger
price X2 is greater than or less than the exercise price X1. Figure 8.5 shows the
payoffs of a gap call under the condition X1 < X2. Where X1 > X2, however, we
get the unusual payoff structure shown in Figure 8.6. Because the trigger price is
reached before the exercise price, the call option holder is forced to exercise
even though it is not profitable to do so. In the asset price interval between 50
and 55, the option holder pays S – 55. Indeed, there is exercise price at which
the gap call option premium (8.6) will be equal to 0.

ILLUSTRATION 8.3 Value gap call option.

Compute the value of a six-month European-style gap call option whose exercise price is
55 and whose trigger price is 50. Assume the underlying index has a level of 49, a divi-
dend yield of 1%, and a volatility rate of 20%. The risk-free rate of interest is 3%.

The values of the prepaid forward and exercise prices in the gap call option formula are: 

FIGURE 8.5 Terminal payoff of a gap call option with X1 = 45 and X2 = 50. 
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Se iT– X2e rT–⁄( ) 0.5σ2T+ln

σ T
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pgap X1 X2,( ) X1e rT– N d2–( ) Se iT– N d1–( )–=
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The values of d1 and d2 are

and d2 = –0.1429. The value of the gap call is therefore

cgap(55,50) = 48.756N(–0.0014) – 54.181N(54.181) = 0.3367

This value can also be obtained using the OPTVAL function

OV_NS_GAP_OPTION(s, x1, x2, t, r, i, v, cp)

where x1 is the exercise price of the option and determines the payoff, x2 is the price that
triggers exercise, and all other function notation is as defined earlier in the chapter. Thus

OV_NS_GAP_OPTION(49, 55, 50, 0.5, 0.03, 0.01, 0.20, “c”) = 0.3367

One final aspect of gap options is worthwhile noting. As the difference (i.e., gap) between
the exercise price and the trigger price grows large, the gap call (put) option value
decreases (increases). Indeed, where the exercise price is 55.77 rather than 55 in this
illustration, the gap call value is 0. Figure 8.7 shows gap call and put option values for a
range of exercise prices where all other parameter values are as described above.

FIGURE 8.6 Terminal payoff of a gap call option with X1 = 55 and X2 = 50. 

CONTINGENT PAY OPTIONS

A contingent pay option is an option whose premium is set today but is paid at
expiration contingent upon the option being in the money.5 Naturally, such an
option will be more expensive that a standard European-style option, however,
you will pay for the option only in the event the option is in the money at expira-

5 Contingent pay options are also referred to as pay-later options or collect-on-delivery op-
tions.
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tion. Again, identifying the appropriate replicating portfolio is the key to solving
for option value. To value a European-style contingent pay call option, consider
the payoffs of a portfolio formed by buying a standard call option and selling a
cash-or-nothing call with the cash amount being equal to the current value of the
contingent pay option, ccontingent pay. At time T, the portfolio has a terminal value
equal to (1) 0 if ST < X and (2) ST – X – ccontingent pay if ST ≥ X, exactly the required
payoffs. The value of the portfolio at time 0 is cBSM – e–rTN(d2)ccontingent pay, how-
ever, since this contract by its nature has no upfront premium, we must set the ini-
tial portfolio value equal to zero and solve for the contingent pay option premium.
The value of a European-style contingent pay call option is

(8.11)

where

and . A similar derivation shows that the value of a European-
style contingent pay put option is

(8.12)

FIGURE 8.7 Gap option values as a function of exercise price. Option parameters are: S = 49, 
X2 = 50, T = 0.5, r = 0.03, i = 0.01, and σ = 0.20. 

Call exercise price Put exercise price

15.000

10.00

5.000

0.000

–5.000

–10.000

G
ap

 o
pt

io
n 

va
lu

e

Exercise price

30 35 40 45 50 55 60

ccontingent pay

cBSM

e rT– N d2( )
---------------------------
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ILLUSTRATION 8.4 Value contingent pay put option.

Compute the value of a three-month European-style contingent pay stock index put
option with an exercise price of 50. Assume the index has a level of 49, a dividend yield
of 2%, and a volatility rate of 20%. The risk-free rate is 5%.

First, the values of the prepaid forward and exercise prices in the contingent pay put
option are

compute the values of d1 and d2,

and identify the cumulative normal probabilities, 

N(0.0770) = 0.5307   and   N(0.1770) = 0.5703

Gather the terms and compute the standard European-style put option value, that is,

p = 49.379(0.5703) – 48.756(0.5307) = 2.284

The value of the contingent pay put option is

The values of contingent pay calls and puts can be solved using the OPTVAL function, 

OV_NS_CONTINGENT_PAY_OPTION(s, x, t, r, i, v, cp)

where all function parameter notation is as defined earlier. Thus

OV_NS_CONTINGENT_PAY_OPTION(49, 50, 0.25, 0.05, 0.02, 0.25, “c”) = 3.913

and

OV_NS_CONTINGENT_PAY_OPTION(49, 50, 0.25, 0.05, 0.02, 0.25, “p”) = 4.056

FORWARD-START OPTIONS

A forward-start option is like a standard option with exercise price X and time
to expiration T, except that the option’s life begins only after prespecified period
t. Figure 8.8 illustrates. Buying a standard option means paying for the option
today and having its life begin. Buying a forward-start option means paying for
the option today but having its life begin at time t. Thus, at time 0, the forward-
start option’s time to expiration is T, and, at time t, it is T – t. Another distinc-
tion is that a forward-start option’s exercise price is set at time t. By convention,
the exercise price is set equal to some positive constant times α the prevailing

Se iT– 49e 0.02 0.25( )– 48.756= =

Xe rT– 50e 0.05 0.25( )– 49.379= =

d1
48.756 49.379⁄( ) 0.5 0.20( )2 0.25( )+ln

0.20 0.25
------------------------------------------------------------------------------------------------------ 0.0770–= =

d2 0.0770– 0.20 0.25– 0.1770–= =

pcontingent pay
2.284

e 0.05 0.25( )– 0.5703( )
--------------------------------------------------- 4.056= =
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asset price at time t. Where α = 1, the option will be at-the-money at time t.
Where α > 1, the call will be out of the money and the put will be in the money,
and, where α < 1, the call will be in the money and the put will be out of the
money.

To value a forward-start option, we must account for the fact that the under-
lying asset price continues to appreciate over the time between now and when
the option’s life begins.6 In a risk-neutral world, the expected asset price at time t
equals the forward price of the asset, that is, . The expected
exercise price of the forward-start option is therefore . To
value a forward-start call option, we replace the asset price S and exercise price
X in the BSM call option formula (8.3) with the prepaid forward price Se–it and
prepaid exercise price αSe–it. The value of a European-style forward-start call
option is

(8.13)

where

and . The value of a forward-start put option is

(8.14)

6 Valuation equations for forward-start options are developed in Rubinstein (1991a).

FIGURE 8.8 Comparison of standard and forward-start option lives.
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ILLUSTRATION 8.5 Value forward-start call option.

Compute the value of a nine-month European-style call option that is 10% out-of-the-
money and compare it to the value of a nine-month European-style call option that
begins in three months. Assume the underlying asset has a price of 60, a dividend yield of
1%, and a volatility rate of 30%. The risk-free rate is 4%.

The value of the forward-start call option may be computed as follows:

where

, N(d1) = 0.3926, and N(d2) = 0.3140.
Its value can be confirmed using the OPTVAL function

OV_NS_FORWARD_START_OPTION(s, alpha, td, t, r, i, v, cp)

where alpha is a positive constant that sets the exercise price of the option relative to the
asset price at the beginning of the forward-start period, td is the time until the beginning
of the forward-start period, and all other function notation is as defined earlier. For the
forward-start call in this illustration,

OV_ NS_FORWARD_START_OPTION (60, 1.1, 0.25, 0.75, 0.04, 0.01, 0.30, “c”) 
= 3.120

The value of an ordinary European-style call option with nine months to expiration is

where

N(d1) = 0.4402, and N(d2) = 0.3408. The forward-start European-style call has lower
value because, although the underlying asset price is expected to be the same at the end
of nine months, the range of possible option prices in nine months is smaller for the for-
ward start call than the standard call.

RATCHET OPTIONS

A ratchet option (also called a cliquet option) is a sequence of forward-start
options. At the end of each option’s life a new option is written at a strike price
equal to the prevailing asset times the preset constant, α. A one-year ratchet
option with monthly payments will normally have 12 payments (exercise dates)
equal to the maximum of the asset price less the exercise price or zero. The exer-

cforward-start 60e 0.01 0.25( )– e 0.01 0.5( )– N d1( ) 1.1e 0.04 0.5( )– N d2( )–[ ] 3.120= =

d1
60e 0.01 0.5( )– 60 1.1( )e 0.04 0.5( )–⁄( )ln 0.5 0.302( )0.5+

0.30 0.5
--------------------------------------------------------------------------------------------------------------------------------------- 0.2725–= =

d2 0.2725– 0.30 0.5– 0.4847–= =

c 60 e 0.01 0.75( )– N d1( ) 1.1e 0.04 0.75( )– N d2( )–[ ] 4.386= =

d1
e 0.01 0.75( )– 1.1e 0.04 0.75( )–⁄( )ln 0.5 0.302( )0.75+

0.30 0.75
----------------------------------------------------------------------------------------------------------------------------- 0.1503–= =

d2 0.1503– 0.30 0.75– 0.4102–= =
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cise price of each one month option is usually set at the beginning of each
period. Thus the exercise price of the first option is known today and equals αS.
The overall value of the ratchet call option is the sum of the values of its for-
ward-start call options, that is,

(8.15)

where n is the number of settlements, ti is the time to the forward start of the i-
th option when the exercise price is fixed, and Ti is the time to maturity of the i-
th. The upper integral limits are

and . The value of a ratchet put option is

 (8.16)

ILLUSTRATION 8.6 Value ratchet call option.

Compute the value of a 12-month European-style ratchet call option with monthly settle-
ments. Assume the exercise price of each option is set at the beginning of the month.
Assume the call is written on the S&P 500 index. The level of the index is 1,150, its div-
idend yield rate is 1%, and its volatility rate is 20%. The risk-free rate is 4%.

The value of the first forward-start call in the series is

where

, N(d1) = 0.5288, and N(d2) = 0.5058. This can be
confirmed using the OPTVAL function, 

OV_NS_FORWARD_START_OPTION(1150, 1, 0, 1/12, 0.04, 0.01, 0.20, “c”) 
= 27.888

The value of the second forward-start call in the series is

or

cratchet Se
iti–

e
i Ti ti–( )–

N d1 i,( ) αe
r Ti ti–( )–

N d2 i,( )–[ ]
i 1=

n

∑=

d1 i,

e
iTi–

αe
rTi–

⁄( ) 0.5σ2 Ti ti–( )+ln

α Ti ti–
----------------------------------------------------------------------------------=

d2 i, d1 i, α Ti ti––=

pratchet Se
iti–

αe
r Ti ti–( )–

N d2( ) e
i Ti ti–( )–

N d1( )–[ ]
i 1=

n

∑=

c1 1,150e 0.01 1 12⁄( )– e 0.01 1 12⁄( )– N d1( ) e 0.04 1 12⁄( )– N d2( )–[ ] 27.888= =

d1
e 0.001 1 12⁄( )– e 0.04 1 12⁄( )–⁄( ) 0.5 0.202( ) 1 12⁄( )+ln

0.20 1 12⁄
--------------------------------------------------------------------------------------------------------------------------------- 0.0722= =

d2 0.0722 0.20 1 12⁄– 0.0144= =

c2 1,150e 0.01 1 12⁄( )– e 0.01 1 12⁄( )– N d1( ) e 0.04 1 12⁄( )– N d2( )–[ ] 27.865= =
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OV_NS_FORWARD_START_OPTION(1150, 1, 1/12, 2/12, 0.04, 0.01, 0.20, “c”) 
= 27.865

and so on. The value of the ratchet option in total can easily be computed in using Excel and
the forward-start option valuation function as is illustrated in the table below.

The value of the ratchet option can also be computed using

OV_NS_RATCHET_OPTION(s, alpha, td, tb, n, r, i, v, cp),

where s is the current asset price, alpha is the exercise price expressed as a proportion of
the prevailing asset price, td is the time until the first option expires, tb is the time
between reset dates, n is the number of reset dates, r is the risk-free rate of interest, i is
the income rate on the asset, v is the asset’s volatility rates, and cp is a call/put indicator
variable. Thus

OV_NS_RATCHET_OPTION(1150, 1, 1/12, 1/12, 12, 0.04, 0.01, ,20, “c”) = 333.132

CHOOSER OPTIONS

A chooser option is an option that gives its holder the right to choose whether
the option is to be a standard call or put after time t, where the call and the put
have the same exercise price X and time to maturity T.7 Figure 8.9 compares the
chooser option’s life with that of a standard option. In buying a standard
option, the option buyer makes an irrevocable decision to buy a call or a put. In
buying a chooser option, the option buyer is allowed the additional privilege of
being able to decide between the call and the put at prespecified date during the
option’s life. 

Month ti Ti Forward Start Option

  1 0.00000 0.08333   27.888
  2 0.08333 0.16667   27.865
  3 0.16667 0.25000   27.842
  4 0.25000 0.33333   27.819
  5 0.33333 0.41667   27.796
  6 0.41667 0.50000   27.772
  7 0.50000 0.58333   27.749
  8 0.58333 0.66667   27.726
  9 0.66667 0.75000   27.703
10 0.75000 0.83333   27.680
11 0.83333 0.91667   27.657
12 0.91667 1.00000   27.634

Value of ratchet option 333.132

7 The valuation equation of a European-style chooser option first appeared in Rubinstein
(1991b). Rubinstein also values a complex chooser option that provides its holder with the
choice between a call and a put at time t, however, the call and put have different exercise pric-
es and time to expiration.
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FIGURE 8.9 Comparison of standard and chooser option lives.

To value the chooser option, it is best to first focus on the value of the
chooser option at time t, that is, 

(8.17)

where cBSM(S,X,T – t) and pBSM(St,X,T – t) are the BSM call and put valuation
equations evaluated at time t with uncertain asset price St. Note that, by virtue
of put-call parity, expression (8.17) may be rewritten as

(8.18)

To value a chooser option, consider the value at time t of a replicating portfolio
that involves buying a standard European-style call with exercise price X and time
to expiration T, cBSM(S,X,T – t), and a standard European-style put option with
an exercise price of Xe–r(T–t) and a time to expiration of t whose underlying asset
price is Se–i(T–t), pBSM(Se–i(T–t),Xe–r(T–t),t). At time t, the call option has a value of
cBSM(S,X,T – t), and the put option has a value of (a) 0 if Se–i(T–t) ≥ Xe–r(T–t), and
(b) Xe–r(T–t) – Se–i(T–t) if Se–i(T–t) < Xe–r(T–t). Thus, we have mimicked the payoffs in
(8.18). The value of a European-style chooser option is therefore

(8.19)

where

, 
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d1
Se iT– Xe rT–⁄( )ln 0.5σ2T+
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---------------------------------------------------------------------= d2 d1 σ T t––=
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, 

Note that, where t = T, the chooser has the same value as a European-style strad-
dle (i.e., equals the sum of the values of a standard European-style call and put
with exercise price X and time to expiration T). Note also that as t → 0, the val-
ues of  and  approach 0 or 1, depending upon whether Se–iT is
greater than or less than Xe–rT. If Se–iT > Xe–rT,  and  are 0, in
which case the last two terms in (8.19) disappear and the lower price bound of the
chooser is the standard European-style call option value. If Se–iT < Xe–rT, 
and  are 1, in which case the last two terms in (8.19) become –Se–iT + Xe–rT,
and the lower price bound of the chooser is the standard European-style put
option value, that is,

ILLUSTRATION 8.7 Value chooser option.

Compute the value of a one-year European-style chooser option that allows you to
choose whether the option is a call or a put at the end of three months. Assume the
option is written on the S&P 500 index portfolio, and that the S&P 500 index has a cur-
rent level of 1,100, a dividend yield rate of 1%, and a volatility rate of 15%. Assume that
the exercise price of the chooser is 1,150 and that risk-free rate of interest is 4%.

First, compute the prepaid forward price of the stock index and the prepaid exercise
price.

and

Second, compute the upper integral limits.

Third, compute the respective risk-neutral probabilities.

d1′
Se iT– Xe rT–⁄( )ln 0.5σ2t+

σ t
------------------------------------------------------------------= d2′ d1′ σ T t––=

N d1′–( ) N d2′–( )
N d1′–( ) N d2′–( )

N d1′–( )
N d2′–( )

cchooser S X t T, , ,( ) Se iT– N d1( ) Xe rT– N d2( )– Se iT– Xe rT–
+–≥

Xe rT– N d2–( ) Se iT– N d1–( )–=

Se iT– 1,100e 0.01 1( )– 1,089.05= =

Xe rT– 1,150e 0.04 1( )– 1,104.91= =

d1
1,089.05 1,104.91⁄( )ln 0.5 0.152( ) 1( )+

0.15 1
-------------------------------------------------------------------------------------------------------- 0.0213–= =

d2 0.0213– 0.15 1– 0.1713–= =

d1′
1,089.05 1,104.91⁄( )ln 0.5 0.152( ) 0.25( )+

0.15 0.25
---------------------------------------------------------------------------------------------------------------- 0.1552–= =

d2′ 0.1552– 0.15 0.25– 0.2302–= =
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N(d1) = 0.4915, N(d2) = 0.4320, N(–d1) = 0.5617, and N(–d2) = 0.5910

Finally, compute the chooser option value.

To verify the computation, use the OPTVAL function

OV_NS_CHOOSER_OPTION(s, x, td, t, r, i, v)

where td is the time until the choice between the call and the put must be made, and all
other notation has been defined. Thus

OV_NS_CHOOSER_OPTION(1100, 1150, 0.25, 1., 0.04, 0.01, 0.15) = 99.3086

Note that the values of standard call and put options with one year to expiration are
57.9604 and 73.8134, respectively. The chooser option is more valuable since it allows
the holder to choose between the call and put after three months of asset price movement
has elapsed rather than now. Since the put has the highest value of the standard options
today, it serves as the lower value bound of the chooser option. When the time until the
choose date is 0, cchooser = 73.8134. When the time until the choose date equals one year,
the chooser value equals the value of a straddle, that is, the sum of the standard call and
put values, 131.7737. The value of the chooser option rises at a decreasing rate as the
time until the choose date approached the option’s time to expiration, as is shown in the
following figure. 

EXCHANGE OPTIONS

An exchange option8 is the right to exchange one asset for another. The value of
the right to exchange asset 2 for asset 1 (i.e., a call option to buy conveying the
right to buy asset 1 by paying asset 2 is

8 The exchange option formula for the two-asset case where both assets have a cost of carry
rate equal to the risk-free rate of interest was derived by Margrabe (1978). The formula pre-
sented here generalizes the Margrabe result to allow the assets to have different income rates.
The n-asset exchange option was later developed by Margrabe (1982).
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(8.20)

where 

, , 

S1 and S2 are the underlying asset prices, T is the time between now and the
expiration date, i1 and i2 are the income rates (e.g., dividend yields) of asset 1
and asset 2, σ1 and σ2 are the expected future volatility rates of assets 1 and 2,
and ρ is the expected correlation between the returns of assets 1 and 2. The term
N(d2) is the risk-neutral probability that the price of asset 1 will exceed the
price of asset 2 at expiration. As noted in Chapter 3, the terms,

 and 

are the prices of prepaid forward contracts on assets 1 and 2, respectively. 
The exchange option formula (8.20) is interesting in a number of respects.

First, it contains the BSM call option formula as a special case. In the BSM
model, the prepaid forward price on the asset 2 is the present value of the exer-
cise price, that is, 

The expression for d1 can be rearranged to yield the more familiar

And, since asset 2 is risk-free, the volatility rate becomes

Another interesting aspect of (8.20) is that the value of a call option to
“buy” asset 1 with asset 2, cexchange(S1,S2), equals the value of a put option to
“sell” asset 2 for asset 1, pexchange(S2,S1). In the case of the call, the option is
exercised at expiration if the price of asset 1 exceeds the price of asset 2; other-
wise, it expires worthless. In the case of the put, the option is exercised at expi-
ration if the price of asset 2 is less than the price of asset 1; otherwise it expires

cexchange S1 S2,( ) S1e
i1– T

N1 d1( ) S2e
i2– T

N1 d2( )–=

d1

S1e
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S2e
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⁄( ) 0.5σ2T+ln
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σ σ1
2 σ2
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Xe r– T
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i1T–

Xe rT–⁄( ) 0.5σ2T+ln
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-------------------------------------------------------------------------=
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2 2ρσ1σ2–+ σ1= =
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worthless. Since the payoffs of these two options are identical, the value of the
options must be the same, that is,

cexchange(S1,S2) = pexchange(S2,S1)

The value of a put option to “sell” asset 1 for asset 2, on the other hand, is

(8.21)

where d1 and d2 are as defined below equation (8.20). It is equivalent in value to
a call option to exchange asset 1 for asset 2.

Exchange options are traded primarily in the OTC market. The underlying
assets can be virtually any financial or commodity. Exchange options are also
often embedded in other financial contracts. The CBT’s corn futures contract,
for example, calls for the delivery of No. 2 yellow corn at par, but also permits
the delivery of No. 3 yellow at a 1¹⁄₂ cent discount below the contract price.
Thus, standing prior to the delivery day, an individual who is short the corn
futures contract and holds No. 2 yellow has the right to deliver No. 3 yellow
and will do so if the price difference between No. 2 yellow and No. 3 yellow is
greater than 1¹⁄₂ cents. We will discuss this particular application in Chapter 20.

ILLUSTRATION 8.8 Value exchange call option.

Compute the value of a three-year European-style exchange call option that allows you
to exchange one unit of the DJIA index level for ten units of the S&P 500 index level.
Assume the S&P 500 portfolio has a current level of 1,150, a dividend yield rate of 1%,
and a volatility rate of 20%. Assume the DJIA has a current level of 10,500, a dividend
yield rate of 2%, and a volatility rate of 18%. Finally, assume the correlation between
the returns of the two indexes is .85. Also, compute the value of a three-year European-
style put option that allows you to sell 10 units of the S&P 500 index and receive one
unit of the DJIA. Comment on the difference between the two option values.

The values of the prepaid forwards that appear in the exchange option formula are 

and

Since the first prepaid forward has a higher value than the second, the call is currently in
the money. The value of the exchange call option is 

where 

, 

pexchange S2 S1,( ) S2e
i2– T

N1 d2–( ) S1e
i1– T

N1 d1–( )–=

S1e
i1T–

10 1,150× e 0.01 3( )–× 11,160.12= =

S2e
i2T–

10,500 e 0.02 3( )–× 9,888.53= =

cexchange S1 S2,( ) 11,160.12N1 d1( ) 9,888.53N1 d2( )– 1,565.19= =

d1
11,160.12 9,888.53⁄( ) 0.5σ2 3( )+ln

σ 3
----------------------------------------------------------------------------------------------= d2 d1 σ 3–=



Valuing Nonstandard Options Analytically 281

Its value may be computed using the OPTVAL function

OV_NS_EXCHANGE_OPTION(s1, s2, t, i1, i2, v1, v2, rho, cp)

where s1 and s2 are the prices of assets 1 and 2, t is the time to expiration, i1 and i2 are the
income rates of assets 1 and 2, v1 and v2 are the volatility rates of assets 1 and 2, rho is the
correlation between the returns of assets 1 and 2, and cp is a (c)all/(p)ut indicator. Thus

OV_NS_EXCHANGE_OPTION(11500, 10500, 0.01, 0.02, 0.20, 0.18, 0.85, “c”)
= 1,565.19

The value of the corresponding European-style exchange put option can be computed in
the same manner:

 OV_NS_EXCHANGE_OPTION(11500, 10500, 0.01, 0.02, 0.20, 0.18, 0.85, “p”)
= 293.59

The difference between the prices is 1,565.19 – 293.59 = 1,271.60. Note that this is also
the difference between the two prepaid forward contract prices, 11,160.12 – 9,888.53 =
1,271.60. The reason is, of course, put-call parity. For exchange options,

OPTIONS ON THE MAXIMUM AND THE MINIMUM

Options on the maximum and minimum of two or more risky assets are closely
related to exchange options.9 In place of exchanging one asset for another, how-
ever, the option holder gets to choose between the two risky assets. A call option
on the maximum of two risky assets, for example, provides its holder with the
right to buy the more expensive of asset 1 and asset 2 for exercise price X at the
option’s expiration date, T. In this section, we provide and interpret the valua-
tion equations for (1) a call on the maximum of two risky assets; (2) a call on
the minimum of two risky assets; (3) a put on the maximum of two risky asset;
and (4) a put of the minimum of two risky assets.

Call on Maximum

The payoff contingencies of a European-style call on the maximum are:

(8.22)

9 Other names for the option on the maximum are “the better of two assets” or “outperfor-
mance options.” The models presented here are on the maximum or the minimum of two risky
assets, and the valuation equations are based on Stulz (1982). To generalize these models to
consider three or more risky assets, see Johnson (1987).

σ 0.202 0.182 2 0.85( ) 0.20( ) 0.18( )–+ 0.106= =
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i1– T

S2e
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S1 T, X– ,   if S1 T, S2 T,≥  and S1 T, X≥

S2 T, X– ,   if S2 T, S1 T,≥  and S2 T, X≥

0,              if S1 T, X<  and S2 T, X<⎩
⎪
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⎪
⎧

=
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The valuation equation for a call option on the maximum is

(8.23)

where

, 

, 

, 

, and 

In equation (8.23), the term, N2(–d12,–d22;ρ12) is the compound risk-neutral
probability that both asset 1 and asset 2 will have prices below the exercise
price at the option’s expiration. It is called a compound probability because
there are two sources of uncertainty. We want to know the probability that asset
1’s price will be below the exercise and that asset 2’s price will be below the
exercise price. Recall N(a) is the probability that a random drawing x from a
univariate normal distribution have a value below a, that is, Pr(x ≤ a) = N(a).
Here, N2(a,b;ρ) is the probability that random drawings x and y from a bivari-
ate normal distribution will have values below a and b, respectively, that is, Pr(x
≤ a, y ≤ b) = N2(a,b;ρ), where ρ is the correlation between the random variables
x and y. Where we have used the OPTVAL function OV_PROB_PRUN(a) to
compute N(a), we use OV_PROB_PRBN(a,b,rho) to N2(a,b;ρ). An algorithm
for computing the bivariate normal probability is provided in Appendix 8.A. If
N2(–d12,–d22;ρ12) is the compound risk-neutral probability that both asset 1 and
asset 2 will have prices below the exercise price at the option’s expiration, then [1
– N2(–d12,–d22;ρ12)] must be the risk-neutral probability that one of the two asset
prices will exceed the exercise price X at time T, and Xe–rT[1 – N2(–d12,–d22;ρ12)]
is the present value of the cost of exercising the option times the risk-neutral
probability that the option will be exercised.

The two remaining terms on the right-hand side of (8.23) also have eco-
nomic interpretations. The term
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is the present value of the expected price of asset 1 at the option’s expiration con-
ditional upon asset 1 having a price greater than asset 2 and greater than the exer-
cise price times the risk-neutral probability that the terminal price of asset 1 will
exceed the terminal price of asset 2 and will exceed the exercise price. The term

has a similar interpretation but for asset 2.

ILLUSTRATION 8.9 Value call on maximum.

Consider a call option that provides its holder the right to buy $100,000 worth of the
S&P 500 index portfolio at an exercise price of $1,200 or $100,000 worth of a particu-
lar T-bond at an exercise price of $100, whichever is worth more at the end of three
months. The S&P 500 index is currently priced at $1,080, pays dividends at a rate of 1%
annually and has a return volatility of 20%. The T-bond is currently priced at $98, pays
a coupon yield of 6% and has a return volatility of 15%. The correlation between the
rates of return of the S&P 500 and the T-bond is 0.5. The risk-free rate of interest is 4%.
Compute the value of this call option on the maximum.

Before applying the option on the maximum formula, it is important to recognize that
there are two exercise prices in this problem: 1,200 for the S&P index portfolio and 100
for the T-bond. What this implies is that we can buy 100,000/1,200 = 83.333 units of the
index portfolio or 100,000/100 = 1,000 units of T-bonds at the end of three months,
depending on which is worth more. At this juncture, we must decide whether to work with
the valuation equation (8.23) in units of the S&P 500 index portfolio, in which case we
multiply the current T-bond price and its exercise price by 12 and then multiply the com-
puted option price by 83.333, or to work with the valuation equation (8.20) in units of the
T-bond, in which case we divide the current S&P 500 price and the option’s S&P 500 exer-
cise price by 12 and then multiply the computed option price by 1,000.10

Given the choice between methods is arbitrary and produces the same option value,
we will proceed with the problem solution working in units of the S&P 500 index portfo-
lio. We begin, therefore by adjusting the T-bond prices. The current T-bond price is
assumed to be 1,176 and the T-bond exercise price is 1,200. With the units of the two
underlying assets comparable, we now compute the prepaid forward prices of assets 1
and 2 as well as the prepaid exercise price, that is,

and 

10 These types of adjustments can be made freely because the option price is linearly homoge-
neous in both the asset price and the exercise price. See Merton (1973).

S1e
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N2 d21 d2′, ; ρ2′( )

S1e
i1T–

1,080e 0.01 0.25( )– 1,077.30= =

S2e
i2T–

1,176e 0.06 0.25( )– 1,158.49= =
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Substituting the problem parameters into equation (8.23), we get

where

and

The risk-neutral probabilities are , , and
. The computed option value is 27.239. This can be con-

firmed using the OPTVAL function

OV_NS_MAXMIN_OPTION(s1, s2, x, t, r, i1, i2, v1, v2, rho, cp, mm),

where s1 and s2 are the prices of assets 1 and 2, x is the exercise price of the option, t is the
time to expiration, i1 and i2 are the income rates of assets 1 and 2, v1 and v2 are the volatil-
ity rates of assets 1 and 2, rho is the correlation between the returns of assets 1 and 2, cp is a
(c)all/(p)ut indicator, and mm is a ma(x)imum/mi(n)imum indicator. Thus

OV_NS_MAXMIN_OPTION(1080, 1176, 1200, 0.25, 0.04, 0.01, 0.06, 0.20, 0.15, 0.5, 
“c”, “x”) = 27.239

which implies the total value of the option contract is 27.239 × 83.333 = 2,269.90. The
probability that either or both the components of the option are in-the-money at expira-
tion is [1 – N2(1.0286,0.3735;0.5)] = 0.4042 or 40.42%. 

Before turning to the call on the minimum, it is worthwhile to note that the for-
mula for the call on the maximum becomes the exchange option formula when the
exercise price of the option is zero. Where X = 0, equation (8.23) may be written
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which is the exchange option formula (8.20) presented earlier.

Call on Minimum

The payoff contingencies of a European-style call on the minimum are:

(8.24)

Under the BSM assumptions, the value of a European-style call on the minimum
is

(8.25)

where all notation is as previously defined. Note that, unlike the call on the
maximum of two risky assets, the risk-neutral probability in (8.25), N2(d12, d22;
ρ12), requires that both asset prices exceed the exercise price X at time T. If one
of the terminal asset prices is below X at time T, the call on the minimum
expires worthless. It is also worthwhile to note that the sum of the payoffs of a
call on the maximum and a call on the minimum are 

In absence of costless arbitrage opportunities, this means that the sum of the
values a call on the maximum and a call on the minimum is equal to the sum of
the values of standard call options written on the individual assets, that is,

(8.26)

ILLUSTRATION 8.10 Value call options on maximum and minimum.

Consider call options on the minimum and the maximum of one share of ABC and DEF
shares. The options’ exercise prices are 50, and their time to expiration is six months.
ABC is currently priced at 51, pays dividends at a rate of 1% annually, and has a return
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volatility of 35%. DEF is currently priced at 49, pays a dividend yield of 3% and has a
return volatility of 32%. The correlation between the rates of return of ABC and DEF is
0.75. The risk-free rate of interest is 4%. Compute the value of the call option on the
minimum. Also, compute the value of a call option on the maximum, and the values of
standard call options on the individual shares.

Given that we showed all the underpinnings of an option on the minimum/maximum
in Illustration 8.9, we will simply apply the appropriate OPTVAL functions to value the
options. The call option on the minimum has a value,

OV_NS_MAXMIN_OPTION(51, 49, 50, 0.5, 0.04, 0.01, 0.03, 0.35, 0.32, .5, “c”, “n”) 
= 2.932,

and the call option on the maximum is

OV_NS_MAXMIN_OPTION(51, 49, 50, 0.5, 0.04, 0.01, 0.03, 0.35, 0.32, 0.5, “c”, “n”)
= 6.917.

The sum of the values is 2.932 + 6.917 = 9.850. The values of standard call options writ-
ten on the shares of ABC and DEF are

OV_OPTION_VALUE (51, 50, 0.5, 0.04, 0.01, 0.35, “c”, “e”) = 5.828

and

OV_OPTION_VALUE (49, 50, 0.5, 0.04, 0.03, 0.32, “c”, “e”) = 4.022

The sum of the values of the standard call options is also 9.850, verifying the no-arbi-
trage condition (8.26).

Put on Maximum

The value of a European-style put on the maximum is

(8.27)

Similar to the situation with the call on the minimum, N2(d12,d22;ρ12) is the
risk-neutral probability that both asset prices are below the exercise price X at
time T. If one of the terminal asset prices is above X at time T, the put on the
maximum expires worthless.

Put on Minimum

The value of a European-style put on the minimum is

(8.28)
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where all notation is as previously defined. In (8.28), the term, [1 – N2(d12,d22;ρ12)],
is the risk-neutral probability that one of the two asset prices will be below the
exercise price X at time T or, alternatively, one minus the probability that both
asset prices will exceed the exercise price at the option’s expiration. Like in the
case of the call, the sum of the values of a put on the maximum and a put on the
minimum equals the sum of the values of standard put options written on the
individual assets, that is,

(8.29)

COMPOUND OPTIONS

A compound option is an option on an option. It is like a standard option in the
sense that it conveys the right to buy or sell an underlying asset at the contract’s
expiration. The only difference is that the underlying asset happens to be an
option. Compound options are traded in the OTC market. The most common
forms include calls on calls, puts on calls, calls on puts, and puts on puts. We
will address each in turn.11 

Call on Call

A call on a call conveys the right to buy an underlying call option with exercise
price X and time to expiration T. The call on the call (i.e., the compound
option) has exercise price c* and time to expiration t. Its value is denoted ccall.
Under risk-neutral valuation, a call on a call may be written

(8.30)

where ct is the value of the underlying call at time t,

(8.31)

11 The formulas in this section are based on Geske (1979). Interestingly, he derived the formu-
las under the BSM assumptions before the instruments ever traded in the OTC market. His
application arose from the observation that the equity of a firm can be viewed as a call option
on the value of the firm with the exercise being equal to the value of the firm’s bonds. Conse-
quently, exchange-traded call and put options on the shares of the firm are actually a call on
a call and a put on a call.
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The first step in valuing a call on a call is determining the critical asset price at
time t above which you will exercise the compound option at time t. It can be
determined by iteratively searching for the asset price  that makes the value
of the underlying call equal to the exercise price of the compound call, that is,

(8.32)

With  known, the value of a European-style call on a call is

(8.33)

where

, 

, , 

and N1(.) and N2(.) are the cumulative univariate and bivariate unit normal
density functions. 

Notice the similarity between the structure of (8.33) and the structure of the
BSM call option formula (8.3). The first two terms of the right-hand side of
(8.33) correspond to the BSM formula. Instead of getting the underlying asset
upon exercising a standard call, you get a call option. The last term on the right-
side is the present value of the exercise price of the compound option, e–rtc*,
times the risk-neutral probability that the asset price will exceed the critical asset
price at time t, N1(b2), or the expected cost of exercising the compound call con-
ditional upon it being in the money at time t. The term, N2(a2,b2;ρ), is the risk-
neutral compound probability that the asset price will exceed  at time t and
will exceed the exercise price X at time T. The asset price must jump both hurdles
to be in-the-money at time T. The sign of correlation coefficient, ρ, reflects
whether asset price should move in the same or opposite direction in the interval
between time 0 and time t as in the interval between time t and time T in order
for the underlying option to be in-the-money at time T. For a call on a call, the
sign is positive because you want the asset price to increase in both intervals. For
a put on a call, the sign will be negative because you want the asset price to be
low enough for the compound option to be exercised at time t and yet be high
enough to exceed the exercise price of the underlying call at time T.

Put on Call

A put on a call conveys the right to sell an underlying call option with exercise
price X and time to expiration T. The put has exercise price c* and time to expira-
tion t. The simplest way to derive the valuation equation for a put on a call is to
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begin with a compound option version of put-call parity. From Chapter 5, we
know that, for a nonincome producing asset,12 the call price less the put price
equals the asset price less the present value of the exercise price. The equivalent
condition here is that the call on a call price, ccall(c*,t), less the put on a call price,
pcall(c*,t), equals the underlying European-style call option price, Se–iTN1(a1) –
Xe–rTN1(a2), less the present value of the exercise price, e–rtc*, that is,

(8.34)

To value a put on a call, we isolate the value of the put on the call and get

(8.35)

where all notation is defined above.13 In (8.35), N1(–b2) is the risk-neutral prob-
ability that the asset price will be below the critical asset price at time t, . In
this region, the compound option will be exercised. The underlying call value,
however, increases with the asset price. The correlation in the compound proba-
bility then is negative, and the term, N2(a2,–b2;–ρ), is the risk-neutral com-
pound probability that the asset price will be below  at time t and will exceed
the exercise price X at time T.

Put on Put

A put on a put conveys the right to sell an underlying put option with exercise
price X and time to expiration T. The put has exercise price of p* and time to
expiration t. Under risk-neutral valuation, the value of a put on a put is 

(8.36)

where pt is the value of the underlying put at time t, 

(8.37)

12 Recall that in Chapter 5 we discussed the fact that the cost of carry rate for an option is the
risk-free rate of interest.
13 In deriving (8.32), we use some properties of the cumulative univariate and bivariate normal
distributions. Specifically, 1–N1(b) = N1(–b) and N1(a) – N2(a,b;–ρ). See Abramowitz and
Stegum (1972, p. 936).
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The first step in valuing a put on a put is determining the critical asset price at
time t above which you will exercise your option to sell the underlying put. It
can be determined by iteratively searching for the value  that satisfies 

(8.38)

With  known, the value of a European-style put on a put is

(8.39)

where all notation is defined above. The term, N1(b2), is the risk-neutral proba-
bility that the asset price will be above the critical asset price at time t,  (i.e.,
the put will be exercised), and the term, N2(–a2,b2;–ρ), is the risk-neutral prob-
ability that the asset price will be above  at time t and will be below the exer-
cise price X at time T.

Call on Put

A call on a put conveys the right to buy an underlying put option with exercise
price X and time to expiration T. The call has exercise price p* and time to expi-
ration t. Again, put-call parity can be used to arrive at the valuation formula.
For a nonincome producing asset, the call price less the put price equals the
asset price less the present value of the exercise price. The equivalent condition
here is that the call on a put price, cput(p*,t), less the put on a put price,
pput(p*,t), equals the underlying European-style put option price, Xe–rTN1(–a2)
– Se–iTN1(–a1), less the present value of the exercise price, e–rTp*, that is,

(8.40)

Rearranging to isolate the value of a European-style call on a put and simplify-
ing,

(8.41)

where all other notation is as previously defined. The term, N1(–b2), is the risk-
neutral probability that the asset price will be above the critical asset price at
time t,  (i.e., the put will be exercised), and the term, N2(–a2,–b2;ρ), is the
risk-neutral probability that the asset price will be below  at time t and will
be below the exercise price X at time T.

ILLUSTRATION 8.11 Value call on put.

Consider a call option that provides its holder with the right to buy a put option on the
S&P 500 index portfolio. The put that underlies the call has an exercise price of 1,200
and a time to expiration of nine months. The call has an exercise price of 40 and a time
to expiration of three months. The S&P 500 index is currently at 1,150, pays dividends
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at a constant rate of 1% annually, and has a volatility rate of 15%. The risk-free rate of
interest is 3%.

The first step is to compute the critical asset price below which the call will be exercised at
time t to take delivery of the put. This is done by solving . The critical
index level,  is 1,210.72. The next step is to apply the valuation formula. Here, we get 

where

The risk-neutral probability that the asset price will be below the critical asset price at time t,
N1(0.6568) is 74.44%. The risk-neutral probability that the asset price will be below  at
time t and below the exercise price X at time T, N2(0.2771,0.6568;0.5774) is 53.16%. The
value of a put on a put with the same terms as the call on the put is 4.0866.

The OPTVAL Function Library contains the compound option valuation function

OV_NS_COMPOUND_OPTION(s, cp1, x1, tim1, cp2, x2, tim2, r, i, v)

where cp1 is (c)all/(p)ut indicator for the initial option, x1 is the exercise price of the ini-
tial option, tim1 is the time to expiration of the initial option, cp2, x2, and tim2 have the
same definitions as before except apply to the option delivered if the initial option is
exercised, and all other notation is as defined earlier. Thus

 OV_NS_COMPOUND_OPTION(1150, “c”, 40, 0.25, “p”, 1200, 0.75, 0.03, 0.01, 0.15) = 
41.6110

LOOKBACK OPTIONS

Aside from compound options and options on the maximum and the minimum,
many other exotic options trade in OTC markets. Some of the options are back-
ward looking. A lookback call option, for example, provides its holder with set-
tlement proceeds equal to the difference between the terminal asset price and the
lowest asset price observed during the life of the option, as is shown in Figure
8.10. A lookback put option provides its holder with settlement proceeds equal
to the difference between the highest asset price during the life of the option and
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the terminal asset price.14 It should come as no surprise, therefore, that these
options are sometimes referred to as “no-regret options.”

In a sense, lookback options are like American-style options because the
option holder is guaranteed the most advantageous exercise price. Unlike Amer-
ican-style options, however, lookback options can be valued analytically using
the BSM risk-neutral valuation mechanics. The reason for this is that it never
pays to exercise a lookback option prior to expiration. Independent of how low
the exercise price (asset price) has been set thus far during the call option’s life,
there is always some positive probability that it will fall further. For this reason,
the call option holder will always defer early exercise in the hope of recognizing
higher exercise proceeds in the future.

Under the assumptions of risk-neutral valuation and lognormally distrib-
uted future asset prices, the value of a lookback call may be written as

(8.42)

where Smin is the current minimum asset price observed during the option’s life,

14 Many variations of lookback options exist. For a partial summary, see Haug (1998, pp. 61–
69). The lookback options discussed in this section have a floating exercise price and were
originally valued by Goldman, Sosin, and Gatto (1979). Other lookback options have a fixed
exercise and have a terminal payoff equal to the difference between the maximum observed
asset price during the option’s life and the exercise price in the case of a call and the difference
between the exercise price and the minimum observed asset price in the case of a put. These
are valued in Conze and Viswanathan (1991).

FIGURE 8.10 Terminal payoff of lookback call option with a floating exercise price. 
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, 

, and 

Note that the first two terms of the option are the value of a European-style call
option whose exercise price is the current minimum value of the underlying
asset. This is the least the lookback call can be worth since the asset price may
fall below X, thereby driving the exercise price down further.

ILLUSTRATION 8.12 Value lookback call.

Compute the value at inception of a lookback call option that provides its holder with
the right to buy the S&P 500 index at any time during the next three months. The S&P
500 index is currently at a level of 1,050, pays dividends at a constant rate of 1% annu-
ally, and has a volatility rate of 20%. The risk-free rate of interest is 3%.

The value of the lookback call is therefore

where

, 

, and

Note that the price of the lookback call is considerably higher than an at-the-money
index call option. The value of a European-style call (i.e., the sum of the first two terms
in the valuation equation) is only 44.327. The value of a lookback call option can be
computed with the OPTVAL function

OV_NS_LOOKBACK_OPTION(s, sm, t, r, i, v, cp)

where sm is the current minimum asset price for a call (or current maximum price for a
put), and the other notation is as defined as before. Thus

OV_NS_LOOKBACK_OPTION(1050, 1050, 0.25, 0.03, 0.01, 0.20, “c”) = 84.430
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The value of a lookback put option is

(8.43)

where all notation is as defined for the lookback call except that Smax, the cur-
rent maximum asset price observed during the option’s life, replaces Smin in the
expression

Note that a European-style put option is the lower bound for the price of the
lookback put option. The third term is necessarily positive. Using the same
parameters as in Illustration 8.12, the value of a lookback put option is 83.430,
with the underlying standard European-style put being valued at 39.103.

Other backward-looking options are also traded. Average price or Asian
options are based on the average (either arithmetic or geometric) asset price dur-
ing the option’s life. The average asset price may be used as the exercise price of
the option, in which case the settlement value of the call will be the terminal
asset price less the average price, or it may be used as the terminal asset price, in
which case the settlement value will be the average price less the exercise price.
Unfortunately, most traded Asian options do not have closed-form valuation
equations, and valuation requires the use of numerical methods. Valuing options
numerically is the focus of the next chapter.

BARRIER OPTIONS

Barrier options are options that come into existence or terminate automatically
when underlying asset price touches a prespecified level.15 A down-and-out call,
for example, is a call that expires if the asset price falls below a prespecified
“out” barrier, H. At that time, the option buyer may receive a cash rebate, R. A
down-and-in call is a call that comes into existence if the asset price falls below
the “in” barrier, H, at any time during the option’s life. For such options, the
rebate is received if the option has not knocked in during its lifetime. Figure
8.11 shows a random price path of an asset over a 180-day. If the option has an
exercise price of 100 and a barrier of 90, a down-and-out call would cease to
exist and a down-and-in call would come into existence on day 39 when the
asset price touches 90. Note that if we buy a down-and-out call and a down-
and-in call with the same barrier price, H, exercise price, X, and time to expira-

15 Double barrier options have an upper and lower barrier on the asset price. Their valuation
is addressed in in Ikeda and Kunitoma (1992) and Geman and Yor (1996).
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tion, T, and no rebate, the portfolio has the same payoff contingencies as a stan-
dard call option. 

The valuation of barrier options is made tedious by the shear number of
possible contract specifications.16 For options with “out” barriers, there are
both down-and-out calls and puts. While on face appearance, this would seem
to indicate that the number of valuation equations is four. Unfortunately, the
number is actually eight since there are two equations for each “out” option,
depending on whether the barrier price, H, is above or below the exercise price,
X. For options with “in” barriers, the same situation arises, so the total number
of equations is 16. To make the presentation of these results as palatable as pos-
sible, we adopt the mechanics used in Rubinstein and Reiner (1991). Table 8.1
defines a number of expressions that are used in the valuation equations. Table
8.2 then assembles the valuation equation for each of the 16 different valuation
problems. 

To illustrate the mechanics, we will value a down-and-out call option whose
barrier price, H, is less than the exercise price. As Table 8.2 shows, such an
option has a value equal to the first equation in Table 8.1 less the third equation
plus the sixth equation (i.e., [1] – [3] + [6]). Piecing things together, we get

(8.44)

16 A number of authors have focused on barrier options. Merton (1973), for example, values
a down-and-out call. Perhaps the most comprehensive treatment is in Rubinstein and Reiner
(1991a). This section is based largely of their work. Haug (1998, pp. 65–85) provides valua-
tion procedures for a variety of more complex barrier options.

FIGURE 8.11 Underlying asset price path for 180-day barrier option with an exercise price of 
100 and a barrier of 90. 
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TABLE 8.1  Definitions required for valuing European-style barrier options. Option notation: 
X is the exercise price, T is the time to expiration, H is the barrier level, and R is the amount 
of the cash rebate. Asset notation: S is the asset price, i is the asset’s income rate, and σ is the 
asset’s return volatility rate. Other notation: r is the risk-free rate of interest.

where H is the barrier asset price below which the call option life ends,

, 

, 
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[2] 
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[4] 
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, 

and 

Note that the sum of the first two terms on the right-hand side, (i.e., [1]), is a stan-
dard European-style call option. The value of the standard call is deflated then
due to the fact that the option expires automatically when the barrier is touched
(i.e., [3]). The last term reflects the potential of receiving a cash rebate (i.e., [6]).

ILLUSTRATION 8.13 Value down-and-out call.

Consider a down-and-out call option with an exercise price of 100, a barrier of 90, no
rebate, and a time to expiration of six months. The option’s underlying stock has a price
of 100, a dividend yield rate of 2%, and a volatility rate of 35%. Compute the value of
the down-and-out call assuming the risk-free interest rate is 4%.

From Table 8.2, we know the value of the down-and-out call with no rebate is [1] –
[3] and can be written

where

,

and 

This value can be verified using the OPTVAL function,

OV_NS_BARRIER_OPTION(s, x, h, t, rebate, r, i, v, TypeFlag)

where s is the asset price, x is the exercise price, h is the barrier level, t is the time to expi-
ration, r is the risk-free rate of interest, i is the income rate, and v is the volatility rate.
The TypeFlag consists of three contiguous lower case letters. The first is a (c)all/(p)ut
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indicator, the second is a (d)own/(u) indicator, and the third is a (i)n/(o)ut indicator. For a
down-and-out call, TypeFlag is “cdo.” Hence, the value of a down-and-out call is

OV_NS_BARRIER_OPTION(100, 100, 90, 0.5, 0, 0.04, 0.02, 0.35, “cdo”) = 7.4378

Hence, the value of a down-and-in call is

OV_NS_BARRIER_OPTION(100, 100, 90, 0.5, 0, 0.04, 0.02, 0.35, “cdi”) = 2.7643

The sum of the values of the down-and-out call and the down-and-in call (with no
rebate) equals the value of a standard European-style call option, that is,

OV_OPTION_VALUE (100, 100, 0.5, 0.04, 0.02, 0.35, “c”, “e”) = 10.2021

SUMMARY

This chapter focuses on the valuation of some nonstandard option contracts
traded in the OTC market. One characteristic shared by all of these options are
that they are valued under the BSM risk-neutral, lognormal asset price distribu-
tion framework. Another is that they have analytical valuation equations. As
such, the options included in this chapter are European-style. (The valuation of
American-style nonstandard options requires the use of numerical methods,
which is the focus of the next chapter.) Interestingly, most of the options can be
valued using valuation-by-replication and the valuation results derived in Chap-
ter 5. The options valued in this chapter include:

 ■ All-or-nothing options
 ■ Gap options
 ■ Contingent pay options
 ■ Forward-start options
 ■ Ratchet options
 ■ Chooser options
 ■ Exchange options
 ■ Options on the maximum and the minimum
 ■ Compound options
 ■ Lookback options
 ■ Barrier options

While this list seems to cover a wide range of nonstandard option contracts, do
not be misled—we have only discussed eleven of a countless number of option
contract designs that exist in the OTC markets. Others will be discussed as the
chapters progress in the chapters that follow. Whether an option is valued analyt-
ically or numerically is of no consequence to risk measurement. The risk charac-
teristics of options can be measured numerically with a high degree of accuracy.
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APPENDIX 8A: APPROXIMATION OF THE BIVARIATE NORMAL
PROBABILITY

The joint probability that x is less than a and y is less than b is 

where x and y are random variables with unit normal distributions (i.e., mean 0
and variance 1) with correlation, ρ. The approximation method provided here relies
on Gaussian quadratures,17 and has a maximum absolute error of 0.00000055.

First, program a routine that evaluates the term φ(a,b;ρ).

Pr x a≤ y b<,( )
1

2π 1 ρ2
–

-------------------------- exp
x2 2ρxy y2

+–

2 1 ρ2
–( )

--------------------------------------– xd yd

∞–

b

∫
∞–

a

∫=

N2 a b ρ, ,( )=
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where

the pairs of weights (w) and the corresponding abscissa values (x) are:

and the coefficients are computed using 

   and   

Next, compute the product, abρ = a × b × ρ. If abρ ≤ 0, compute the bivari-
ate normal probability by applying one of the following rules:

where N1(d) is the cumulative univariate normal probability. (Recall that Appendix
7C in the previous chapter contains the approximation algorithm for the cumula-
tive univariate normal probability N1(d). It is also available as the function
OV_PROB_PRUN(a) in the OPTVAL Function Library.) If abρ > 0, compute the
bivariate normal probability as

where the values of N2(⋅) on the right-hand side are computed using the rules for
abρ ≤ 0, 

17 The Gaussian quadrature method for approximating the bivariate normal probability is
from Drezner (1978).

i,j w x

1 0.24840615  0.10024215
2 0.39233107  0.48281397
3 0.21141819  1.0609498  
4 0.03324666  1.7797294  
5 0.000824853 2.6697604  

If Then

a ≤ 0 b ≤ 0 ρ ≤ 0 N2(a,b;ρ) = φ(a,b;ρ)
a ≤ 0 b ≥ 0 ρ ≥ 0 N2(a,b;ρ) = N1(a) – φ(a,–b;–ρ)
a ≥ 0 b ≤ 0 ρ ≥ 0 N2(a,b;ρ) = N1(b) – φ(–a,b;ρ)
a ≥ 0 b ≥ 0 ρ ≤ 0 N2(a,b;ρ) = N1(a) + N1(b) – 1 + φ(–a,–b;ρ)

φ a b;ρ,( ) 0.31830989 1 ρ2
– wiwjf xi xj,( )

j 1=

5

∑
i 1=

5

∑≈

f xi xj,( ) exp a1 2xi a1–( ) b1 2xj b1–( ) 2ρ xi a1–( ) xj b1–( )+ +[ ]=

a1
a

2 1 ρ2
–( )

----------------------------= b1
b

2 1 ρ2
–( )

----------------------------=

N2 a b;ρ,( ) N2 a 0;ρab,( ) N2 b 0;ρba,( ) δ–+=



302 OPTION VALUATION

,   

, and

Applying this procedure provides the following probabilities:

To check these values, you may use OV_PROB_PRBN from the OPTVAL Func-
tion Library.

a b ρ N2(a,b;ρ)

–1 –1 –0.5 0.00378
–1   1 –0.5 0.09614
  1 –1 –0.5 0.09614
  1   1 –0.5 0.68647
–1 –1   0.5 0.06251
–1   1   0.5 0.15487
  1 –1   0.5 0.15487
  1   1   0.5 0.74520
  0   0   0.5 0.33333
  0   0 0 0.25000
  0   0 –0.5 0.16667

ρab
ρa b–( )Sgn a( )

a2 2ρab b2
+–

------------------------------------------= ρba
ρb a–( )Sgn b( )

a2 2ρab b2
+–

------------------------------------------=

δ
1 Sgn a( ) Sgn b( )×–

4
---------------------------------------------------=

Sgn x( )
1     if x 0≥
1   if x 0<–⎩

⎨
⎧

=
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CHAPTER

 

9

 

Valuing Options Numerically

 

he last two chapters focused on valuing options analytically. Analytical valu-
ation equations were possible because, in general, the options were Euro-

pean-style with only one exercise opportunity. For other types of options, the
valuation problem is not so simple. With American-style options, for example,
there are an infinite number of early exercise opportunities between now and the
expiration date, and the decision to exercise early depends on a number of fac-
tors including all subsequent exercise opportunities. An analytical solution for
the American-style option valuation problem (i.e., a valuation equation) has not
been found.

 

1

 

 The same is true for many Asian-style options (e.g., options writ-
ten on an arithmetic average) and many European-style options with multiple
sources of underlying price risk (e.g., spread options). In such cases, options
must be valued numerically. Moreover, even in instances where analytical solu-
tions to option contract values are possible (e.g., accrual options), numerical
methods are often easier to apply.

The purpose of this chapter is to discuss numerical methods for valuing
options. All of them are developed within the Black-Scholes/Merton (BSM)
option valuation framework. The underlying asset’s price is assumed to follow a
geometric Brownian motion (i.e., to be log-normally distributed at any future
instant in time), and a risk-free hedge between the option and its underlying
asset(s) is possible. Three of the methods involve replacing the continuous
Brownian diffusion with a process that involves discrete jumps. The 

 

binomial
method,

 

 for example, assumes that the asset price moves to one of two levels
over the next increment in time. The size of the move and its likelihood are cho-
sen in a manner so as to be consistent with the log-normal asset price distribu-
tion. In a similar fashion, the 

 

trinomial method,

 

 described in the second section,
allows the asset price to move to one of three levels over the next increment in
time. The third section describes a 

 

Monte Carlo simulation

 

 technique, which uses
a discretized version of geometric Brownian motion to enumerate every possible
path that the asset’s price may take over the life of the option. The 

 

quadratic
approximation method

 

, discussed in the fourth section, addresses the value of
early exercise by modifying the BSM partial differential equation.

 

2

 

 As important

 

1 

 

The exception is American-style call options on assets with zero or negative income rates.

T
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as valuation, however, is risk measurement. The fifth section of the chapter
describes how to compute the risk characteristics (i.e., the Greeks) of options
using numerical methods. Finally, the sixth section contains a brief summary.

 

BINOMIAL METHOD

 

The binomial method is the most popular approximation for valuing American-
style options. It is easy to implement and flexible enough to handle a wide range
of option valuation problems. Under the binomial method, the option’s life is
divided into fixed-length time steps, and, in each time step, the asset price is
allowed to jump up or down. Defining 

 

n

 

 as the number of time steps, each time
increment has length 

 

∆

 

t

 

 = 

 

T

 

/

 

n

 

, where 

 

T

 

 is the time remaining to expiration of
the option.

The binomial distribution is characterized by the size of its price steps and
their probabilities. We must choose the parameters in such a way that the mean
and the variance of the discrete binomial distribution are consistent with the
mean and the variance of the continuous log-normal distribution underlying the
BSM model. To make matters simple as possible, we will focus on the logarithm
of the asset price at the end of the time increment 

 

∆

 

t

 

, which, under the BSM
assumptions is normally distributed with mean ln

 

S

 

 + 

 

µ

 

∆

 

t

 

 and variance 

 

σ

 

2

 

∆

 

t

 

.
First, we set the mean of the binomial distribution equal to the mean of the log-
arithm of asset price distribution, that is,

(9.1)

In (9.1), 

 

p

 

 is the probability that the logarithm of asset price changes by 

 

v

 

, and 1 – 

 

p

 

is the probability that the logarithm of asset price changes by 

 

w

 

. Note that we have
made no assumption yet regarding the sizes of 

 

v 

 

and 

 

w

 

, although we will do so
shortly. The ln 

 

S

 

 terms fall out of (9.1), and we are left with the mean constraint,

(9.2)

Next we set the variance of the binomial distribution equal to the variance
of the logarithm of asset price distribution, that is,

(9.3)

The ln

 

S

 

 terms are again irrelevant, and, with a little additional algebra, equation
(9.3) becomes the variance constraint,

(9.4a)

Equation (9.4a) is a little unusual in the sense that it has a term that includes the
time increment squared, 

 

∆

 

t

 

2

 

. In applying the binomial method to value options,

 

2 

 

Recall Appendix 7D in Chapter 7.

p S v+ln( ) 1 p–( ) S w+ln( )+ S µ∆t+ln=

pv 1 p–( )w+ µ∆t=

p S v S µ∆t+ln( )–+ln( )2 1 p–( ) S w S µ∆t+ln( )–+ln( )2
+ σ2 t∆=

pv2 1 p–( )w2
+ σ2 t∆ µ2 t2∆+=
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however, a large number of time steps is usually used, so 

 

∆

 

t

 

 is very small and
terms with higher order values of 

 

∆

 

t

 

 can safely be ignored. Ignoring the higher
order term, the variance constraint is

(9.4b)

Note that the terms on the right-hand side of (9.2) and (9.4), 

 

µ

 

 and 

 

σ

 

2

 

, are
known parameters of the normal distribution of the logarithm of asset prices. Our
objective is to find the values of 

 

v

 

, 

 

w

 

, and 

 

p 

 

that make the mean and variance of
the binomial distribution consistent with the mean and the variance of the normal
distribution of the logarithm of asset prices. With two equations (i.e., (9.2) and
either (9.4a) or (9.4b)) and three unknowns, we cannot solve for the parameters 

 

v

 

,

 

w

 

, and 

 

p

 

 uniquely, so another constraint must be imposed. Below, we discuss the
constraints used in two well-known implementations of the binomial method.

 

Cox-Ross-Rubinstein (1979) Parameters

 

Cox, Ross and Rubinstein (1979) (hereafter CRR) impose the symmetry con-
straint, 

 

w

 

 = –

 

v

 

, where 

 

v

 

 is a positive increment. This implies that, over the next
increment in time 

 

∆

 

t

 

, the asset price will either rise to level, ln

 

S

 

 + 

 

v

 

, or fall to
level, ln

 

S

 

 – 

 

v

 

. CRR use (9.4b) to tie the variance of the binomial distribution to
the variance of the logarithm of asset prices. The value of 

 

v

 

 that satisfies (9.4b) is

(9.5)

With 

 

v 

 

and 

 

w

 

 known, we turn to finding the level of probability, 

 

p

 

. Substituting
(9.5) into the mean condition (9.2) and rearranging to isolate 

 

p

 

, the probability
of an up-step is 

(9.6)

As in Chapter 7, we adopt the practice of using the continuously compounded
mean rate of price appreciation, 

 

α

 

, rather than the mean continuously com-
pounded rate, 

 

µ

 

. Substituting 

 

µ

 

 = 

 

α

 

 – 0.5

 

σ

 

2

 

 into (9.6), we get

(9.7)

Also recall that under the BSM option valuation framework, a risk-free hedge
can be formed between the option and its underlying asset. This implies that
option valuation is not sensitive to the risk preferences of an individual, so in
the interest of mathematical tractability, we assume risk-neutrality, in which
case the continuously compounded mean rate of price appreciation, 

 

α

 

, becomes
the asset’s cost of carry rate (i.e., 

 

α

 

 = 

 

b

 

) and the probability of an up-step is

pv2 1 p–( )w2
+ σ2 t∆=

v σ t∆=

p
1
2
---

1
2
---

µ
σ
---⎝ ⎠

⎛ ⎞ t∆+=

p
1
2
---

1
2
---

α 0.5σ2
–

σ
------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

t∆+=
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(9.8)

Jarrow-Rudd (1983) Parameters

In another well-known implementation of the binomial method, Jarrow and
Rudd (1983) (hereafter JR) impose the constraint that the up-step and down-
step probabilities are both equal to p = 1/2. This means that the constraint that
matches the mean of the binomial distribution with the mean of the change in
the logarithm of prices (9.2) may be written

(9.9)

To express the variance constraint, JR use (9.4a). With p = 1/2, the variance
constraint can be rewritten as

(9.10)

Substituting the square of (9.9) into the parentheses on the right-hand side of
(9.10), rearranging, factoring, taking the square root and then simplifying, we get

(9.11)

Equations (9.9) and (9.11) can now be used to identify u and v. With the proba-
bility set equal to 1/2, the up-step coefficient is 

(9.12a)

and the down-step coefficient is 

(9.12b)

In going from the middle term to the last term in (9.12a) and (9.12b), we are, of
course, invoking an assumption of risk-neutrality.

Applying the Binomial Method

With the binomial distribution parameters now defined, we turn to applying the
model. Applying the binomial method has three steps. To illustrate each step, we
value a two-year American-style put option with an exercise price of 55.
The’umed to be a foreign currency (FX rate) whose current price is 50 and
whose volatility rate is 20%. The domestic rate of interest is assumed to be 5%,
and the foreign rate of interest, 2%. The expected risk-neutral rate of price

p
1
2
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1
2
---

b 0.5σ2
–

σ
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⎝ ⎠
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t∆+=

v w+ 2µ t∆=

v2 w2
+ 2σ2 t∆

1
2
--- 4µ2 t2∆( )+=

v w– 2σ t∆=

v µ t∆ σ t∆+ b 0.5σ2
–( ) t∆ σ t∆+= =

w µ t∆ σ t∆– b 0.5σ2
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appreciation of the currency is therefore 3%. We apply the binomial method
first using the CRR parameters and then, in the interest of comparison, using the
JR parameters.

Step 1: Create the Asset Price Lattice The first step in the binomial method is to use
the computed parameters of the binomial process to trace out every conceivable
path that the asset price may take between now and the option’s expiration.
Thus far we have focused on movements in the logarithm of asset price. To gen-
erate a lattice for lnS, we must set the number of time steps, n. The greater the
number of time steps, the higher the accuracy of the approximation, but the
higher the computational cost. The time increment is ∆t = T/n, where T is the
time to expiration of the option. We set the number of time steps in our illustra-
tion to 2. The time increment ∆t is therefore one year.

Figure 9.1 shows the possible paths that the logarithm of asset price may take
during the option’s life. Four paths are possible: (1) up, up, (2) up, down, (3)
down, up, and (4) down, down. Note that if the asset price goes up in the first year
and down in the second (or vice versa), the logarithm of asset price is back where
it started. This is the symmetry condition imposed by CRR. The size of the jump
in the logarithm of asset price from period to period, v, is given by (9.5). From the
problem information, we can compute the price increment, .
The logarithm of the current asset price is ln50 = 3.912. Applying the price incre-
ment to identify the values of the nodes of the lattice in year 1 and year 2, we can
trace out all of the possible movements of the logarithm of asset prices over the
life of the option. These movements are shown in Figure 9.2. 

FIGURE 9.1 Two-period lattice showing the logarithm of asset price at different times during 
the option’s life.

FIGURE 9.2 Two-period lattice showing numerical values for the logarithm of asset price at 
different times during the option’s life.

Year 0 1 2

lnS + 2v

lnS + v
 lnS lnS

lnS – v
lnS – 2v

Time 0 1 2

4.312
4.112

3.912 3.912
3.712

3.512

v 0.20 1 0.20= =
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FIGURE 9.3 Two-period lattice showing the asset price at different times during the option’s 
life.

In general, individuals who apply the binomial method prefer to see the lat-
tice expressed in asset price rather than the logarithm of asset price. To create
such a lattice, we can raise the logarithm of the asset price shown in Figure 9.2
to the power of e. Alternatively, we can redefine the problem from one which
uses absolute price changes to one which uses relative price changes. To do so,
recognize that an additive jump of v in the logarithm of asset price S, (i.e., lnS +
v), is equivalent to a multiplicative jump of u in the asset price S, (i.e., Su), where

and an additive jump of –v in the logarithm of asset price S, (i.e., lnS – v), is
equivalent to a multiplicative jump of d in the asset price S (i.e., Sd), where d =
e–v = 1/u. Like before, successive up and down steps return the asset to its origi-
nal price, as shown in Figure 9.3. At the end of one year, the possible asset
prices are uS and dS. At the end of year 2, the possibilities are that the asset
price moves from uS to uuS or S and from dS to S or ddS. In this two-period
problem, all possible paths that the asset price may follow between and the
option’s expiration are shown in Figure 9.3. Since the volatility rate is 20% and
the time increment is one year, the values of u and d are

   and   

Applying these coefficients to the current asset price of 50 produces Figure 9.4,
and computing the numerical values in each cell of Figure 9.4 produces Figure
9.5. Note that the node values in Figure 9.5 are simply the values in Figure 9.2
raised to the power of e.

Step 2: Value Option at Expiration With all of the asset price nodes at the option’s
expiration computed, we turn to valuing the option. At this stage of the numeri-
cal procedure, the only option values that we can compute are those on the
expiration date. The value of the option at expiration equals the maximum of its
exercisable value and 0. The terminal values of the put in our illustration are
shown in boldface in Figure 9.6.

Year 0 1 2

uuS

uS

S S

dS

ddS

u ev eσ t∆
= =

u e0.20 1 1.2214= = d
1
u
---

1
1.2214
------------------ 0.8187= = =
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FIGURE 9.4 Two-period lattice showing numerical values for the asset price at different times 
during the option’s life.

FIGURE 9.5 Two-period lattice showing numerical values for the asset price using the Cox-
Ross-Rubinstein parameters.

FIGURE 9.6 Two-period lattice showing the terminal values of put option written on asset 
using the Cox-Ross-Rubinstein parameters.

Step 3: Value Option at Earlier Nodes by Taking the Present Value of the 
Expected Future Value The next step is to value the option at earlier nodes. This is
done recursively move one step back in time and valuing the option at each ver-
tical node by taking the present value of the expected future value of the option
based on the two nodes lying immediately to its right. This means that, in order
to identify the value of the option at the upper node in year 1 of Figure 9.6, we
need to know the probability that the asset price will move from 61.07 to 74.59
and the probability that the asset price will move from 61.07 to 50.

Time 0 1 2

1.22142(50)
1.2214(50)

50 1.2214(0.8187)50
0.8187(50)

0.81872(50)

Time 0 1 2

74.59
61.07

50 50.00
40.94

33.52

Time 0 1 2

max(0,55 – 74.59) =   0.00
74.59

61.07

50
max(0,55 – 50) =   5.00

50.00
40.94

max(0,55 – 33.52) = 21.48
33.52
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The expression used for computing the probability of an up-step in the CRR
procedure is (9.8). Evaluating the probability,3 we get

The probability of a down-step in asset price is the complement of the probabil-
ity of an up-step, that is, 1 – 0.525 = 0.475.

With the probabilities in hand, we can compute the expected future value of
the put conditional upon being in year 1 with an asset price level 61.09. The
expected future value (EFV) is 

EFV = 0.525(0) + 0.475(5) = 2.375

Under risk-neutrality, the present value of the expected future value (PVEFV) is 

Thus we have identified the value of the put in year 1 conditional upon the asset
price being 61.07, as shown in Figure 9.9. The year 1 value of the put condi-
tional upon the asset price being 40.94 is obtained using the same procedure
and equals 12.20. Taking the present value of the expected future value in year
0 reveals that the current value of the put is 6.64.

The computations supporting the option values shown in Figure 9.7 indicate
that the current value of the put is 6.64. But what is the style of the put option we
have valued? The answer is European-style. In computing the current value, we did
not account for the prospect of early exercise. In applying the binomial method to
value American-style options, we must check whether the put should have been
exercised early at the beginning and any of the intermediate nodes of the lattice.

FIGURE 9.7 Current and intermediate values of European-style put option written on asset 

using the Cox-Ross-Rubinstein parameters.

3 Occasionally, the probability for the CRR method is approximated using p = (eb∆t – t)/(u – d).
We refer to this practice as the simple method.
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Step 3a: Check for Optimal Early Exercise In our two-period illustration, the only oppor-
tunities for early exercise occur in year 0 and year 1. The early exercise checks are
made, starting in year 1, each time a new present value is computed. Consider the
year 1 node in which the asset price is 61.07. The present value of the expected
future value is 2.26 and represents the value of the option if left alive. The early
exercise proceeds at this node are max(0,55 – 61.07) = max(0,–6.07) = 0. Clearly
the put is worth more alive than dead. Now, consider the year 1 node where the
asset price is 40.94. The put if left alive is 12.20, while the early exercise proceeds
are max(0,55 – 40.94) = 14.06. Obviously, we are better off exercising. At such
nodes, we replace the value of the option left alive with the early exercise proceeds.
Applying this procedure each time a present value in computed in year 1, and then
again in year 0, we find that the current value of the American-style put option is
7.48. The American-style put option values at each node are shown in Figure 9.8.
Note that the European-style put option value in Figure 9.7 is 6.64, and the Ameri-
can-style option value in Figure 9.8 is 7.48. The value of the privilege of being able
to exercise this option early (i.e., the early exercise premium) appears to be about
84 cents.

We now use the JR parameters to determine the value of the put and isolate
any differences. The up-step and down-step coefficients are given by (9.12a) and
(9.12b). Substituting the problem information and raising the values to the
exponent of e, we get the up-step and down-step coefficients of the asset price,
that is, 

and

FIGURE 9.8 Valuing an American-style put option using the Cox-Ross-Rubinstein parame-
ters.
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  0.00
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FIGURE 9.9 Valuing an American-style put option using the Jarrow-Rudd parameters.

Applying these coefficients to the current price of 50 generates the asset price
lattice shown in Figure 9.9. Note that when the asset has an up-step followed by
a down-step, it does not return to its original level. This is because JR set the up-
step and down-step probabilities equal to 1/2. Consequently, any expected drift
in the asset price through time must be handled through a lattice that drifts
upward or downward. In contrast, the CRR procedure had an up-step followed
by a down-step that returned the asset to its original price. Thus, the expected
drift in asset price must be handled through the up-step and down-step proba-
bilities. Recall that (9.8) shows that the probability of an up-step is greater than
1/2 as long as the asset price is expected to drift upward. 

Figure 9.9 also contains the American-style put option values. They are
computed using the same three-step procedure that we applied earlier. The only
difference, as already noted, is in the definition of the values of u, d, and p. Note
that the current value of the put is 7.40, where its value under the CRR parame-
ters is 7.48. The difference is attributable to approximation error, and will tend
to disappear as the number of time steps is increased.

The steps in the binomial method are summarized in Table 9.1. The main
intuition underlying the procedure is that we can construct a discrete binomial
asset price distribution whose jump sizes (u and d) and probabilities (p and 1 – p)
generate a mean and a variance equal to the mean and variance of the BSM con-
tinuous log-normal asset price distribution over the time increment, ∆t. The com-
binations of jump sizes and probabilities are not unique. Table 9.1 also contains
three different, commonly used parameter possibilities.4

Valuing a Barrier Option

The binomial method not only is straightforward to apply but also is very flexi-
ble in terms of the numbers and types of options that it can value. In Chapter 6,
we introduced barrier options. Barrier options are of two types—“knock-out”
and “knock-in.” A knockout option is like a standard option except that the

Year 0 1 2

  0.00
76.10

  1.90
61.68

  7.40
50.00

  3.99
51.01

13.65
41.35

20.81
34.19

4 Yet another possibility is given in Rendleman and Bartter (1979).
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option terminates if the asset price goes below or above some prespecified
knock-out level. A knock-in option, on the other hand, is like a standard option
except that it becomes “alive” only if the asset price goes below or above the
knock-in barrier. 

To illustrate the valuation of a barrier option, we modify the terms of the
American-style FX put. Instead of assuming that the option is a standard Amer-
ican-style put, we assume that it is an up-and-out American-style put with a
knock-out barrier of 60. In other words, this put terminates (i.e., expires worth-
less) if the asset price rises above 60 at any time during the option’s life.

The steps of the binomial valuation are exactly as outlined above, except for
Step 3(a). In addition to checking each node in year 1 for early exercise, we
check if the knock-out condition applies. The upper node in year 1 has an asset
price of 61.07, so the put is “knocked out” and its value is set equal to 0, as

TABLE 9.1  Three steps in applying the binomial approximation method.

1. Create asset price lattice. Divide the option’s time to expiration T into n increments of
length ∆t, that is, ∆t = T/n. Start at the current level of asset price, S, and generate an asset
price lattice by allowing the asset price jump up (down) by proportion u(d). At the end
of the first time increment, there will be two asset price nodes, Su and Sd. At the end of
two time increments, there will be three asset price nodes, and so on. The final column
in the lattice will have n + 1 nodes. The lattice is meant to capture all possible paths that
the asset price may travel through the life of the option. The number of paths increases
with n.

2. Value option at expiration. Value the option at expiration for each asset price node. The
option value is 0 or the exercise proceeds, whichever is greater.

3. Value option at earlier nodes by taking the present value of the expected future value.
Work your way back through time, one increment ∆t at a time, by taking the present val-
ue of the expected future value of the option based on the two option nodes directly to
the right of the valuation node. The expected values are computed using p, the probabil-
ity of an up-step, and 1 – p, the probability of a down-step. With each present value com-
putation, check for any “boundary” violations (e.g., the early exercise boundary of an
American-style option). When the recursive procedure is arrives back at time 0, the cur-
rent value of the option is found.

The application of the binomial method requires values for the parameters u, d, and p. These
are found by equating the mean and the variance of the discrete binomial distribution to the
mean and the variance of the continuous log-normal distribution. Many combinations of pa-
rameters are possible. Three possibilities follow: 

Method u d p

Cox-Ross-Rubinstein
(1979)  

Jarrow-Rudd (1983)
1/2
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shown in Figure 9.10. The lower node in year 1 has an asset price of 40.94, so
the knock-out condition does not apply. Taking the present value of the
expected future value standing in year 0 then tells us that the value of this Amer-
ican-style, knock-out put is 6.34. Note that adding the knock-out feature
reduces the value of the put by 1.13. This may help explain their popularity. If
you are completely entirely convinced that the currency price will not rise, why
pay for the extra insurance?

Assessing the Degree of Accuracy

The decision to use two time steps in the above illustrations was made only for
expositional convenience. Fact of the matter is that such a crude grid provides a
poor approximation of the option value. The procedure as outlined above, how-
ever, is perfectly general. We can set the number of time steps equal to any num-
ber we like. As the number of time steps is increased, the asset price lattice
becomes more dense, with exponentially more price paths being considered. The
number of price paths in the binomial model is 2n. At two time steps, it was easy
to see that the number of asset price paths over the life of the option is four. At
20 time steps, the number of paths is well over a million. 

The decision regarding the appropriate number of time steps to use in the
binomial method is therefore a cost/benefit analysis. The cost is computational
time; the benefit is increased precision in valuation and risk measurement.5 To
gauge the degree of approximation error in the binomial method for a particular
application, we can compare its results to the results of an option valuation prob-
lem whose valuation equation is known. Assume, for example, that the FX put

5 The need for frequent time steps is particularly acute in the valuation of American-style bar-
rier options. If the barrier price does not happen to coincide with nodes in the asset lattice, the
monitoring of the barrier and, hence, option valuation will be inaccurate. Boyle and Lau
(1994) show how to adjust the number of time steps in the binomial method so that the barrier
price falls exactly on or very close to node values.

FIGURE 9.10 Valuing an American-style “knock-out” FX put option using the binomial 
method.

Time 0 1 2

  0.00
74.59

  0.00
61.07

  6.35
50.00

  5.00
50.00

14.06
40.94

21.48
33.52
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option in our illustration is European-style. Its value using the BSM option valu-
ation formula (5.32) is 6.41. This is the true value and serves as our benchmark.
Now, we apply the binomial method again and again increasing the number of
time steps from 1 to, say, 100. At one time step, the value is 7.28, which repre-
sents a valuation error of 87 cents—13.67% of the true option value. At two
time steps, the value is 6.64, as we established earlier in the chapter. This repre-
sents a valuation error of 23 cents6—3.70% of the true option value. As we
increase the number of time steps, valuation precision increases albeit not mono-
tonically. Figure 9.11 shows the pattern. The valuation error is –6 cents (–1.10%)
at five time steps, 12 cents (1.89%) at 10 time steps, and so on. By 50 time steps,
the absolute relative valuation error generally stays below 0.25%.7 

The cost of increasing the number of time steps is computational time. From
the description of the computational procedure, which is summarized in Table
9.1, it is fairly obvious that computational cost increases in direct proportion to
the number of nodes in the lattice (i.e., the same set of computations is per-
formed at each node prior to the option’s expiration date). The number of nodes

6 The reader can verify these figures using the OPTVAL Excel Function Library—
OV_OPTION_VALUE provides the BSM model values and OV_APPROX_STD_OPT_BIN,
provides the CRR and JR binomial method values.
7 The fact that the valuation error oscillates from even to odd numbers of times steps is useful
in designing more computationally efficient valuation procedures. With 30 time steps, for ex-
ample, the number of nodes is 496 and the valuation error is –0.38%, and, with 31 time steps,
the number of nodes is 528 and the valuation error is 0.58%. Thus, in this illustration, it is
computationally cheaper and more accurate to average the values of the option obtained using
30 and 31 time steps (i.e., valuation error of 0.10%) than to use 50 times steps, where the
number of nodes is 1,326 and the valuation error is about 0.25%. 

FIGURE 9.11 Percent valuation error of the CRR binomial method as a function of the num-
ber of time steps. 
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in the lattice, on the other hand, increases at an increasing rate with the number
of time steps, that is,

With two time steps, the number of nodes is six, with three time steps 10, with
four time steps 15, and so on, as is illustrated in Figure 9.11. The question is
where to set n. At 20 time steps, for example, the number of nodes is 231 and
the relative pricing error falls in the range of ±0.5%. At 50 time steps, the num-
ber of nodes is 1,326 and the relative pricing error falls in the range of ±0.25%.
Thus, to achieve increased relative valuation precision of 0.25%, we incurred
5.75 times the computational cost. Was it worth it?

There is no one answer to the question. It depends on the nature of the
available computational resources and the importance of accuracy. The cost
issue has become less important through time thanks to Moore’s law. In April
1965, Gordon Moore, an engineer and cofounder of Intel, predicted that inte-
grated circuit complexity would double every two years. His prediction has been
surprisingly accurate. Today, the processing speed of a typical PC is more than
1,000 times faster than 20 years ago, while the cost of the PC is about a third.
The accuracy issue is largely one of contract size. In terms of our European-style
put illustration, a 0.25% valuation error amounts to less than 2 pennies (i.e.,
6.41 × 0.0025 = 0.0160), hardly an amount worthy of concern. But, if the num-
ber of units of the underlying currency in the contract is 100 million rather than
1 (which has been implicitly assumed all along), however, the error is $1.6 mil-
lion, an amount large enough to buy a supercomputer.

ILLUSTRATION 9.1 Assess degree of accuracy of competing valuation methods.

Consider a two-year European-style put option with an exercise price of 55. The under-
lying asset is assumed to be a foreign currency whose current price is 50 and whose vola-
tility rate is 20%. The domestic rate of interest is assumed to be 5%, and the foreign rate
of interest is 2%. Compare the performance of the binomial method using the CRR
parameters with the binomial method using the JR parameters. Which is more accurate,
holding the number of time steps constant, and why?

To make this assessment, we will first value the put analytically using the BSM formula.
From the OPTVAL Library, we know

OV_OPTION_VALUE(50, 55, 2, 0.05, 0.02, 0.20, “p”, “e”) = 6.41

Because the put is European-style, we know that the analytical value is correct.
To assess the degree of accuracy of the competing binomial methods, we will use the

OPTVAL function,

OV _APPROX_STD_OPT_BIN(50, 55, 2, 0.05, 0.02, 0.20, n, “p”,”e”, mthd)

In using the function, we will vary the number of time steps n from 1 to 100. The bino-
mial method algorithm uses the CRR parameters where mthd is set equal to 1 and the JR
parameters where mthd is set equal to 2. The percent valuation error (relative to the ana-
lytical value) is then computed and plotted as a function of the number of time steps. The

Number of nodes
n 1+( ) n 2+( )

2
------------------------------------=
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results are as shown below. The JR parameters appear to perform better than the CRR
parameters. The oscillations in the percent valuation error are smaller, particularly for
small numbers of time steps, and disappear almost completely for high numbers of time
steps. The reason that the JR parameters produce a more accurate value is that they are
based on the correct variance constraint in linking the means and the variances of the
binomial distribution with the normal distribution of the logarithm of asset prices, that
is, equation (9.4a). The CRR method uses only an approximation (9.4b). The valuation
difference disappears as the number of time steps is increased (i.e., ∆t → 0). 

Incorporating Discrete Flows

Thus far, we have addressed American-style option valuation when all of the carry
costs of the asset underlying the option can be modeled as continuous rates.
Recall that this assumption is most appropriate for foreign currencies and widely
diversified stock portfolios. For common stock options or bond options, however,
the dividend and coupon payments are best modeled as discrete cash flows. In
such cases, the binomial method must be modified to account for these costs. The
changes to the methodology are relatively minor, however. The intuition is that, if
the amount and the timing of the discrete cash flows are known, the uncertainty
regarding asset price is the uncertainty of the asset price net of the present value of
the known cash flows. The steps in the binomial method are modified as follows.

In Step 1, create a lattice in terms of the asset price net of the present value
of the income payments, that is, . This entails replacing the cur-
rent asset price S0 with , since all subsequent values of the asset price are
determined by applying the factors u and d to the current price. Note that the
up-step and down-step coefficient u and d are computed using b = r, since the
only continuous carry cost is the interest rate.

Step 2 remains unaltered. At time T, all of the income payments on the
underlying asset made during the option’s life have been made, and the lattice
prices represent actual asset prices.
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In Step 3, we compute the present value of the expected future values as before.
The only distinction here is that we must adjust the early exercise bound to reflect
the present value of any dividends paid between the valuation date at which we
stand and the expiration date. For an American-style call, the early exercise pro-
ceeds are , where  is the lattice price at node (i,j), that
is, at time i and asset price j, and PVDi is the present value of all income payments
between time i and expiration at time T. Note that at time 0, the early exercise pro-
ceeds of the call for the single remaining node are , where

 equals the current asset price S by the way we constructed the lattice. 

ILLUSTRATION 9.2 Value American-style call option on dividend-paying stock.

Suppose that you own an American-style call option on a dividend-paying-stock. The call
has 14 days remaining to expiration and an exercise price of $55. The current stock price
is $60, and the volatility rate is 40%. The stock promises to pay a $1 cash dividend in
seven days. The risk-free rate of interest is 5%. Compute the value of the call using the
binomial method with CRR parameters. Use two time steps.

First, identify the parameters of the binomial method implementation. The up-step and
down-step coefficients are 

   and   

the up-step probability is

and the down-step probability is 0.5052. 
Second, compute the stock price net of the present value of the promised dividend, and cre-

ate the stock price grid. The stock price net of the present value of the dividend is 60 – 1e–0.05(7/

365) = 59.001. The stock price after two up-steps, for example, is 59.001(1.0570)2 = 65.913.
Third, compute the European-style call price by recursively taking the present value

of the expected future value. The value of the European-style call is 4.66, as demon-
strated in the lattice below. To illustrate the recursive computations, the value of the call
at the upper node on day 7 is computed as

Days 0 7 14

10.913
65.913

  7.414
62.361

  4.663
59.001

  4.001
59.001

  1.978
55.822

  0.000
52.813
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Finally, to compute the value of the American-style call option, we must consider the
effects of possible early exercise at the upper and lower nodes on day 7. At the upper
node, compare the computed value, 7.414, with the value if exercised, 62.361 + 1 – 55 =
8.361. Since the early exercise proceeds are higher, replace the computed option value at
this node with the early exercise proceeds.8 At the lower node the, computed value,
1.978, exceeds the early exercise proceeds, 55.822 + 1 – 55 = 1.822, so no replacement is
made. The value of the American-style call is as shown below. The value of the Ameri-
can-style call is 5.132, hence the value of the early exercise premium is 0.469.

Two Underlying Sources of Risk

The binomial method can also be extended to handle multiple sources of risk.
As discussed in Chapter 6, options on the minimum and the maximum of two
risky assets qualify. A call option on the maximum, for example, has a payoff

 at the option’s expiration. Stulz (1982) shows that
if options on the minimum and maximum of two risky assets are European-
style, they can be valued analytically.9 If they are American-style, however, they
must be valued numerically. Similarly, both European- and American-style
spread options must be valued numerically. A European-style call option on a
spread, for example, has a payoff  at the option’s expira-
tion. Since asset prices are log-normally distributed under the BSM assumptions,
the price difference, , is not log-normally distributed and, hence, the
usual BSM valuation mechanics cannot be applied. 

Boyle, Evnine, and Gibbs (1989) modify the CRR binomial method to han-
dle multiple sources of risk. We consider only the two-asset case. Like in the
CRR framework, each asset’s price is allowed to jump up or down. Hence, at
any given instant, four jumps are possible—up-up, up-down, down-up and
down-down, where the first move in each pair of movements is for asset 1 and
the second is for asset 2. The probabilities of each pair of movements are p1
through p4, respectively. The proportionate jumps in asset price are the same as
those for the CRR formulation, that is,

8 The motivation for early exercise is being driven by the fact, if the call option holder waits
until expiration to exercise, he will have forfeit the opportunity to receive the dividend.

Days 0 7 14

10.913
65.913

  8.361
62.361

  5.132
59.001

  4.001
59.001

  1.978
55.822

  0.000
52.813

9 Johnson (1987) shows how the Stulz (1982) results can be extended to the case of multiple
underlying assets. 
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 and , for i = 1, 2 (9.13)

The probabilities of the different pairings are

(9.14a)

(9.14b)

(9.14c)

and

(9.14d)

Under the assumption of risk-neutrality, the mean continuously compounded
rate of price appreciation equals the asset’s risk-neutral cost of carry rate, that
is, , for i = 1, 2.

ILLUSTRATION 9.3 Value spread option using binomial method.

Compute the value of a American-style call option on the “crack” spread between the
prices of an unleaded gasoline futures and a crude oil futures10 using the binomial
method. Assume the gasoline futures has a price of $22 per barrel and a volatility rate of
30% annually, and the crude oil futures has a price of $20 per barrel and a volatility rate
of 20%. The correlation between the rates of price appreciation for the two futures con-
tracts is 0.85. The option has an exercise price of $2 and a time to expiration of three
months. The risk-free rate of interest is 5%.

The three steps of the binomial method are summarized in Table 9.1. Since the
mechanics of setting up a two-dimensional price lattice are cumbersome, we will simply
apply the appropriate valuation approximation from the OPTVAL function library. The
syntax of the function call is

OV_APPROX_SPRD_OPT_BIN(s1, s2, x, t, r, i1, i2, v1, v2, rho, n, cp, ae),

where s1 and s2 are the underlying asset prices (with the spread defined as s1 – s2), x is the
exercise price of option, t is the option’s time remaining to expiration, r is the risk-free inter-
est rate, i1 and i2 are the income rates of assets 1 and 2, v1 and v2 are the volatility rates of

10 Crack spread futures options trade on the New York Mercantile Exchange (NYMEX). The
parameters for this illustration are drawn from Whaley (1996).
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assets 1 and 2, rho is the correlation between asset returns, n is the number of time steps, cp
is a call/put indicator (“C” or “c” for call and “P” or “p” for put), and ae is an American-
or European-style option indicator (“A” or “a” for American-style and “E” or “e” for
European-style). Using 25 time steps, the value of the call is

OV_APPROX_SPRD_OPT_BIN(22, 20, 2, 0.25, 0.05, 0.05, 0.05, 0.30, 0.20, 0.85, 25, 
“c”,”e”) = 0.7519.

Note that the risk-free interest rate is used as the income rate for both assets. We tricked the
valuation algorithm into thinking the underlying assets are futures contracts by implicitly set-
ting the net cost of carry rate to zero.11 Like in the univariate case, the accuracy of the bivariate
binomial method improves with the number of times steps. For the valuation parameters in
this illustration, little variation in value remains after 20 time steps.

TRINOMIAL METHOD

The trinomial method has the same three steps as the binomial method. The
only difference is that in place of allowing the asset price to go only up or down
from its current price, the asset price can go up, down, or stay the same. The
definitions of the up-step and down-step coefficients change, as do the defini-
tions of the probabilities. 

Under the trinomial method, we set the mean and the variance of a discrete
trinomial distribution for the logarithm of asset price equal to the correspond-
ing mean and variance of the continuous normal distribution of the logarithm of
asset price. The mean constraint is

(9.15)

where pu is the probability of an up-step, and pd is the probability of a down-step.
Condition (9.15) is the trinomial method’s counterpart to the mean constraint
(9.2) in the development of the binomial method. Note that we are assuming that

11 Recall that the Black (1976) futures option valuation formula in Chapter 7 was a special
cash of the BSM formula (7.32) where the cost of carry rate b was set equal to zero.
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the absolute size of the up-step and the down-step are the same. In this sense, we
have imposed the CRR symmetry restriction. The probability of no change in the
asset price is pm = 1 – pu – pd and does not enter (9.15) since the price change is
zero. In our implementation of the trinomial method, the variance constraint is 

(9.16)

This is the counterpart to the binomial method’s variance constraint (9.4b) in
which the higher order terms of ∆t are ignored. While ignoring higher order
terms simplifies matters, a further restriction on the parameters is necessary in
order to make the model usable since we have three unknowns—pu, pd, and v,
and only two equations—(9.15) and (9.16).

The final restriction is drawn from the work of Boyle (1988a) and Kamrad
and Ritchken (1991) (hereafter, “KR”). They assume the up-step coefficient has
the functional form, , where λ ≥ 1. Substituting into (9.16), we find
that the sum of the probabilities of an up-step and a down-step is

(9.17)

The probability of no change in price is therefore

(9.18a)

Isolating the probability of a down-step in (9.17) and then substituting into
(9.15), shows that

(9.18b)

and therefore

(9.18c)

Where λ = 1, note that the trinomial model collapses to the CRR binomial
model. The probability of a zero price change is 0, so the middle node drops
out. The up-step coefficient in asset price is
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exactly as in CRR, and the probability of an up-step within the trinomial frame-
work (9.18b) equals the probability of an up-step in the binomial framework
(9.6).12 

The choice of an appropriate value of λ is left to the user. The higher the
value of λ, the greater is the probability that the asset price will move sideways
rather than up or down. In the application below, we set λ equal to the square
root of 2. At , the probability of the middle step is pm = 1 – 1/λ2 = 1/2.

Applying the Trinomial Method

Applying the trinomial method has the same three steps as the binomial method.
To illustrate its use, we will value a two-year, American-style FX put option
with an exercise price of 55. The current exchange rate is 50, and its volatility
rate is 20%. The domestic rate of interest is assumed to be 5%, and the foreign
rate of interest, 2%. The expected risk-neutral rate of price appreciation of the
currency is 3%.

Step 1: Create the Asset Price Lattice Like in the case of the binomial method, the
first step in the trinomial method is to set up the asset price lattice. If the current
asset price is S, the asset price may jump only up to a level of uS (where u > 1),
down to a level of dS (where d < 1), or horizontally to the level S. The CRR
restriction ud = 1 has been assumed. Setting , the value of u is

and the value of d is d = 1/u = 0.7536. Applying these coefficients to the current
asset price generates the two-period lattice shown in Figure 9.12. Note that the
tree is denser than the binomial tree. This stands to reason since the number of
branches from each node is three instead of two. The range of terminal asset
prices at the option’s expiration is also greater.

FIGURE 9.12 Two-period trinomial asset price lattice for valuing an option.

12 Rubinstein (2000) discusses the relation between the binomial and trinomial option pricing
models.
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λ 2=

u eσ 2 t∆ e0.20 2 1.3269= = =
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FIGURE 9.13 Valuing an American-style put option using a two-period trinomial method.

Step 2: Value the Option at Expiration The second step also parallels the binomial
method, that is, we value the option at expiration. At expiration (i.e., where i =
T), the value of the option at node j is max(0,X – Si,j). The numerical values of
the put at expiration are shown in Figure 9.13.

Step 3: Value Option at Earlier Nodes by Taking the Present Value of the 
Expected Future Value The next step is again similar to the binomial method in that
we take the present value of the expected future value in an iterative fashion. The
probability of the middle step is 1/2, as was noted earlier. The probabilities of an
up-step and a down-step are computed using (9.18b) and (9.18c), that is, 

and

We now compute the present value of the expected future value at each node in
the tree. Consider the asset price at the highest node in year 1, 66.34. The
present value of the expected future value of the put is

Before proceeding to the next node, we check the early exercise condition. Since
the put is out of the money at this node, we leave it alive. At the year 1 asset
price node of 50, 

Year 0 1 2

  0.00
88.03

  1.10
66.34

  0.00
66.34

  7.06
50.00

  6.21
50.00

  5.00
50.00

17.32
37.68

17.32
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26.60
28.40
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⎛ ⎞
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2
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⎝ ⎠
⎜ ⎟
⎛ ⎞

– 0.2323= =

PVEFV e 0.05 1– 0.2677 0.00( ) 0.5000 0.00( ) 0.2323 5.00( )+ +[ ] 1.10= =
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At an asset price of 50, the put has exercise proceeds of 5. Since its value if left
alive is 6.21, early exercise is not optimal and we do not replace the PVEFV
with the exercise proceeds. At the year 1 asset price node of 37.68, 

Here, the put has exercise proceeds of 17.32, which exceed the value of the put
if left alive. Thus, we replace the present value, 15.39, with the exercise pro-
ceeds, 17.32, and move to the next time step. The value of the American-style
put option using the trinomial lattice with two time steps is 7.06. The value of
the European-style put is 6.63. 

Assessing the Degree of Accuracy

Like the binomial method, the accuracy of the trinomial method improves with
the number of time steps. Indeed, it does so at a much quicker rate, as Figure
9.14 shows. At ten time steps, the trinomial method appears to produce option
values as accurate as the binomial method at 20. This should not be surprising.
Recall that the binomial method produces (n + 1)(n + 2)/2 nodes and considers

PVEFV e 0.05 1– 0.2677 0.00( ) 0.5000 5.00( ) 0.2323 17.32( )+ +[ ] 6.21= =

PVEFV e 0.05 1– 0.2677 5.00( ) 0.5000 17.32( ) 0.2323 26.60( )+ +[ ] 15.39= =

FIGURE 9.14 Approximation error of the binomial and trinomial approximation methods as 
a function of the number of time steps. 
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2n asset price paths over the life of the option. For the same number of time
steps, the trinomial method produces (n + 1)2 nodes and considers 3″ price
paths. At 10 time steps, the binomial method has 66 nodes and incorporates
1,024 possible asset price paths. The trinomial method, on the other hand, has
121 nodes and incorporates 59,049 price paths. But the increased accuracy of
the trinomial method comes at a cost. Recall that computational cost varies
directly with the number of nodes computed. For the 10-time step example, the
trinomial method costs roughly double the binomial method.

MONTE CARLO SIMULATION

Monte Carlo simulation techniques are also used to value derivative contracts.13

Like the lattice-based procedures, the technique involves simulating possible paths
that the asset price may take over the life of the option. Unlike the lattice-based
procedures that trace out all possible asset price paths at the outset, the Monte
Carlo technique produces a price path adding up a series of randomly drawn price
increments over the life of the option. Each drawing corresponds to the time
increment ∆t, and a series of n drawings produces a simulation run (i.e., an asset
price path). The Monte Carlo technique involves repeated simulation runs or tri-
als. To value a European-style put option, for example, each trial produces a ter-
minal asset price, which, in turn, is used to determine the terminal option value.
After, say, 10,000 trials, the terminal options values are averaged arithmetically to
obtain the expected terminal option value, , and then the expected value is
discounted to the present at the risk-free interest rate, .

Geometric Brownian Motion

What remains is the description of how each asset price path is generated. Under
the BSM model, the asset price follows a continuous Brownian diffusion process.
Like in the case of the lattice-based procedures, we must replace this continuous
process with movements over discrete intervals. By setting the number of time
intervals during the life of the option, n, the time increment becomes ∆t = T/n. To
generate a movement over the interval, we draw a random number, ε, from a unit
normal distribution.14 This number is used to update the asset price at the begin-
ning on the time interval. Recall that under the BSM assumptions, the change in
the logarithm of asset price is normally distributed with mean, (b – σ2/2)∆t, and

13 Boyle (1988b) was the first to apply Monte Carlo simulation techniques to option valuation.
14 Methods for generating univariate normal deviates (i.e., random numbers drawn from a nor-
mal distribution with mean 0 and variance 1) are available in most computer programming lan-
guages. In Excel, the task can be accomplished using the command, =NORMSINV(RAND()).
The logic is as follows. NORMSINV is the inverse of the function NORMSDIST. Recall that we
used NORMSDIST in Chapter 7 to measure the probability that a random number drawn from
a unit normal distribution has a value below d. Thus if we have a random number drawn from
a uniform distribution over the range from zero to one, we can insert it into the NORMSINV
function to generate a random drawing from a unit normal distribution. The function, RAND()
generates a random number from a uniform distribution whose range is zero to one.

E p̃T( )
p e rT– E p̃T( )=
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standard deviation, .15 To update the logarithm of asset price, therefore, we
(a) scale the random drawing ε (which has a standard deviation of 1) by the stan-
dard deviation of the logarithm of asset price change, , (b) add it to the
expected movement, (b – σ2/2)∆t, and (c) add the sum to the beginning of period
logarithm of asset price, lnSt, that is,

(9.19)

Like in the case of the lattice-based procedures, individuals working with the
Monte Carlo technique may prefer to see the sequence of asset prices in the sim-
ulation run rather than the sequence of the logarithm of asset prices. In this
case, the updating is accomplished using an equation created by raising both
sides of (9.19) to the power of e, that is,

(9.20)

Equation (9.20) transforms the unit normally distributed random variable ε into
a log-normally distributed asset price.

Table 9.2 uses the parameters of our two-year put option illustration to show
some of the computations performed in the first simulation run. We arbitrarily set
the number of time steps to be equal to the number of days to expiration, 730.
The first drawing from the unit normal distribution produced a value of –0.8369.
Substituting into (9.20), we find that the asset price at the end of the first day is 

15 Under the BSM assumptions, the change in the log of asset price, , is normally
distributed with mean (b – σ2/2)∆t and standard deviation, . Thus it follows that

has a unit normal distribution. 

σ t∆

St t∆+ln Stln–
σ t∆

ε
St t∆+ln Stln–( ) b σ2 2⁄–( ) t∆–

σ t∆
---------------------------------------------------------------------------------=

σ t∆

St t∆+ln Stln b σ2 2⁄–( ) t∆ σ t∆ ε+ +=
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b σ2

– 2⁄( ) t∆ σ t∆ ε+
=

TABLE 9.2  First simulation run in valuing a two-year European-style put option written on 
a currency price using Monte Carlo simulation.

Number of
Time Step

Random Drawing from a
Unit Normal Distribution, εεεε

Asset Price,
St+∆∆∆∆t

    0 50.0000
    1 –0.8369 49.5652
    2 –0.1723 49.4773
    3   0.1871 49.5757
… … …

728 –0.9772 66.5649
729   0.1087 66.6425
730 –0.1798 66.5190
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The drawing on the second day, –0.1723, produces an asset price of

as so on. After the 730th drawing in the simulation run, the asset price is
66.5190. Since the put option has an exercise price of 55, the put finishes out-
of-the-money and has a terminal value of 0. This completes the first trial.

The simulation run procedure is repeated 9,999 more times. Each time, the
terminal value of the put is recorded. Table 9.3 summarizes the results across
the 10,000 runs. The average terminal asset price is 53.1144. This closely corre-
sponds, but is not exactly equal, to the expected terminal asset price computed
based on the cost of carry rate, that is, 50e0.03(1) = 53.0918. The difference is
attributable to sampling error in the simulation. Across the 10,000 trials, the
terminal asset price ranged from 18.2019 to 139.7387, and the standard devia-
tion of the terminal asset price was 15.4352. To measure the degree of potential
error, we can compute the standard error of the estimate as

TABLE 9.3  Terminal asset price and terminal put option value in each of the 10,000 
simulation runs performed for the European-style put option written on a currency price 
using Monte Carlo simulation.

Simulation Run Terminal Asset Price Terminal Put Value

         1 66.5190   0.0000
         2 40.8806 14.1194
         3 59.5425   0.0000

… … …
  9,998 50.4133   4.5867
  9,999 30.7052 24.2948
10,000 51.8364   3.1636

Summary statistics

Average 53.1144   7.1274
Std. deviation 15.4352   8.1269
Std. error   0.1544   1.1288
Minimum 18.2019   0.0000
Maximum 139.7387  36.7981

95% confidence interval

Lower bound 52.8119   4.9150
Upper bound 53.4169   9.3398

Current values

Present value of expected value 50.0213   6.4492

S1 50e 0.03 0.202 2⁄–( ) 1 730⁄( ) 0.20 1 730⁄ 0.8369–( )+ 49.5652= =

S2 49.5652e 0.03 0.202 2⁄–( ) 1 730⁄( ) 0.20 1 730⁄ 0.1723–( )+ 49.4773= =
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(9.21)

Thus, the 95% confidence interval for the estimate is

Although the Monte Carlo procedure is imprecise, we are 95% confident that
the terminal asset price will lie between 52.8119 and 53.4169.

The average terminal value of our European-style put is 7.1274, and its
95% confidence interval is 4.9157 to 9.3406. This range of terminal put option
values is quite large. While increasing the number of trials increases the preci-
sion of the estimate of option value, the increased precision increases only with
the square root of the number of trials, as is shown in the formula for the stan-
dard error of the estimate (9.21). Note that the current value of the option using
10,000 Monte Carlo simulation runs, 6.4492, is reasonably close to the value of
the BSM European-style put option valuation equation, that is, 6.41.

A key advantage of the Monte Carlo method is that we can measure the
degree of valuation error directly using the standard error of the estimate.
Another advantage of the Monte Carlo technique is its flexibility. Since the path
of the asset price beginning at time 0 and continuing through the life of the
option is observed, the technique is well suited for handling a variety of non-
standard options whose payoff contingencies are well defined through time
(e.g., European barrier options, and accrual options) and for simulating the per-
formance of possible trading strategies. Yet another advantage is that it can be
adapted easily to handle multiple sources of price uncertainty. The Monte Carlo
technique’s chief disadvantage is that it can be applied only when the option
payout does not depend on the option’s value at future points in time. This elim-
inates the possibility of valuing American-style options since the decision to
exercise early depends on the value of the option that will be forfeit.

ILLUSTRATION 9.4 Using Monte Carlo simulation to capture effects of dynamic hedging.

Suppose that you own 2 million shares of ABC’s stock and have just entered a costless
collar agreement on your shares with an OTC options dealer. In the collar agreement,
you are long a European-style put with an exercise price of $30 a share, and you are
short a European-style call with an exercise price of $60 a share. Both of the options
have one-year to expiration, and the agreement was consummated with no upfront pay-
ment. Compute the amount of the fee embedded in this OTC agreement, and use Monte
Carlo simulation to demonstrate how the OTC dealer earns the fee. Set the time step
equal to one month. Assume the risk-free rate of interest is 5%. Also assume that ABC’s
stock has an expected rate of return of 15%, a share price of $45, a volatility rate is
40%, and no expected cash dividends.

Standard error of estimate
Standard deviation of terminal values

Number of trials
-------------------------------------------------------------------------------------------------=

15.4352

10,000
----------------------=

0.1544=

53.1144 1.96 0.1544( )– 52.8119 ST 53.4156≤ ≤ 53.1144 1.96 0.1544( )+= =
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The embedded cost of the collar may be computed using the European-style option
valuation formulas from Chapter 7. Using the problem parameters, the values of the call
and put are $3.415 and $0.899, respectively. Since you are short the call and long the
put, you have implicitly paid a fee of $2.516 per share on 2 million shares or $5,032,042
in total. Assuming this amount is invested at the risk-free rate of interest, its value at the
end of one year is $5,290,040.

Under a costless collar agreement, no money changes hands at the outset. But, as
your computations show, you have paid an implicit fee of $5,032,042. Your counter-
party, the OTC options dealer, has received this fee in the form of a long call/short put
position valued at $5,032,042. To lock-in this gain (i.e., to “monetize” the value of this
trade), the dealer must dynamically hedge his option position. Since holding a long call
and a short put is equivalent to holding the underlying stock, the dealer can hedge by
shorting stocks so that any change in the value of the option position is offset by the
change in the short stock position. The number of shares to short is determined by the
collar’s delta. The delta of the put is –0.0903 and the delta of the call is 0.3467. Thus, the
dealer needs to sell 0.4371 shares of stock for each share in the agreement. The total
number of shares that he will sell to hedge the collar agreement is 874,110. This gener-
ates $39,334,962 in cash, which he promptly puts in risk-free bonds. The value of these
bonds at the end of the year is $41,351,708. 

As you are aware, the initial hedge is risk-free only for the next instant in time and
for infinitesimal movements in the stock price. Rebalancing continuously, however, is not
practical since trading costs would be infinite. Here, we assume rebalancing takes place
on a monthly basis. At the end of the first month, the dealer will rebalance his position to
again make it delta-neutral. To simulate the value/risk of his position, he draws a unit
normally distributed random variable and computes an end-of-month stock price.

He then computes the new deltas for the call and the put. Because the net delta of the
position has fallen, he now needs fewer shares to hedge. He buys back 118,481 shares in
the market at the prevailing price of $41.0941, which costs $4,868,864. He then carries
that cost for 11 months, producing a terminal cash outflow of $5,097,213. 

Collar Valuation

Stock pricce 45.00
Put exercise price 30.00
Call exercise price 60.00
Time to expiration in years   1.00
Interest rate      5.00%
Expected stock return    15.00%
Volatility rate    40.00%

Put value     0.899
Call value     3.415
Call less put value     2.516
Number of shares 2,000,000
PV of embedded fee 5,032,042
FV of embedded fee 5,290,040

S1 45e 0.15 0.202 2⁄–( ) 1 12⁄( ) 0.40 1 12⁄ 0.836854–( )+ 41.0941= =
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At the end of the second month, he will rebalance his portfolio yet once again. To
simulate the value/risk of his position, he draws another random variable, –0.172280,
and updates the stock price,

He again computes the new deltas, and he finds that he needs yet fewer shares in his
delta-hedge. He buys back another 56,512 shares at the prevailing market price of
$40.5204. The cost is $2,289,905 at the end of month two, or $2,387,334 at the end of
the options’ lives.

The simulation is repeated again and again through month 12, and a summary is pro-
vided below. Note that at expiration, the amount of money in the cash account is
$125,617,428. But, the market maker has 2 million shares shorted, which he has to cover. He
buys the shares at the prevailing market price, $70.0197, which costs $140,039,368 in total.
He then exercises his calls. Each call is in-the-money by $10.0197, so he earns $20,039,368
in total. The net terminal value across all of these values is $5,617,428. Based on the prices
when the position was entered, the terminal value was expected to be $5,290,040. The differ-
ence, $327,388, is attributable to the fact that we performed only a single simulation run.
The Excel file, Delta hedge.xls, contains the worksheet used to generate the table below. You
will not get exactly the same values because your set of random drawings will be different.
Nonetheless, it will help to reinforce the mechanics of the computations. Note that this
spreadsheet may perform very slowly given the number of trials being executed:  

To determine the effectiveness of delta-hedging on a monthly basis on average, the
simulation experiment as outlined above would be run again and again. In the table

Period
Random

Draw
Closing

Price

Years
to

Expiration
Put

Delta
Call
Delta

Net
Delta

Aggregate
Delta

Change
in

Delta
Shares
Sold

Cash
Paid/

Received

Terminal
Value of

Cash

  0 45.0000 1.0000 –0.0903 0.3467 0.4371    874,110    –874,110 39,334,962 41,351,708

  1 –0.836854 41.0941 0.9167 –0.1286 0.2492 0.3778    755,629 –118,481      118,481 –4,868,864 –5,097,213

  2 –0.172280 40.5204 0.8333 –0.1314 0.2182 0.3496    699,117   –56,512        56,512 –2,289,905 –2,387,334

  3   0.187117 41.6476 0.7500 –0.1096 0.2199 0.3295    659,100   –40,017       40,017 –1,666,620 –1,730,304

  4   1.615440 50.4818 0.6667 –0.0315 0.3961 0.4276    855,205   196,105    –196,105 9,899,729 10,235,281

  5 –0.176774 49.7512 0.5833 –0.0285 0.3576 0.3861    772,104   –83,100        83,100 –4,134,343 –4,256,703

  6   0.653145 53.9623 0.5000 –0.0106 0.4423 0.4529    905,720   133,616    –133,616 7,210,216 7,392,744

  7 –0.546364 50.9595 0.4167 –0.0119 0.3362 0.3481    696,203 –209,517     209,517 –10,676,871 –10,901,639

  8   0.194146 52.4197 0.3333 –0.0046 0.3456 0.3502    700,428       4,225        –4,225 221,481 225,204

  9   0.925709 58.6746 0.2500 –0.0002 0.5203 0.5205 1,040,961   340,533    –340,533 19,980,621 20,231,947

10   1.204321 67.8231 0.1667   0.0000 0.8114 0.8114 1,622,870   581,908    –581,908 39,466,841 39,797,106

11   1.530555 81.4077 0.0833   0.0000 0.9969 0.9969 1,993,786   370,917    –370,917 30,195,459 30,321,536

12 –1.355560 70.0197 0.0000 0.000 1.000  1.0000 2,000,000       6,214        –6,214 435,096 435,096

Totals –2,000,000 125,617,428

Shares
Outstanding

Share
Price Change

Terminal
Value

Terminal value of cash account   125,617,428

Cover remaining shares outstanding –2,000,000 70.020 –140,039,368

Bank exercises call option     20,039,368

Customer exercises put option                     0

Net proceeds from selling collar       5,617,428

S2 41.0941e 0.15 0.202 2⁄–( ) 1 12⁄( ) 0.40 1 12⁄ 0.172280–( )+ 40.5204= =
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below, the simulation results are reported. With 1,000 simulation runs, the average termi-
nal value is $5,191,907, much close to the expected terminal value of $5,290,040. The
range of terminal values is incredibly large, however, from –$10,008,845 to $26,521,463.
In all likelihood, the OTC dealer would find this level of risk unacceptable, and would
rebalance more frequently: 

With weekly rebalancing, the average terminal value across the 1,000 simulation
runs is $5,343,014, even closer to the expected value of $5,290,040. Note also that the
standard deviation of the terminal values across the 1,000 runs for weekly rebalancing is
less than half the standard deviation for monthly rebalancing. With the monthly rebal-
ancing, the average number of shares traded to hedge the collar over its life was
3,135,707. With weekly rebalancing, the average number was 5,192,995. Assuming trad-
ing costs of $.10 a share, the expected profit for weekly rebalancing remains higher. To
gauge the performance on a risk-adjusted basis, expected after-trading cost value can be
divided by the standard deviation of terminal value. The ratio for monthly rebalancing is
1.187 and the ratio for weekly rebalancing is 2.408, indicating the dominance of the
weekly strategy. 

The table also includes daily rebalancing as well as hourly rebalancing (assuming 6,
12 and 24 hours in the day). The more frequent the rebalancing, the lower the standard
deviation of terminal values, however, the greater the trading costs. The maximum ratio
of expected after-trading cost profit to risk is 8.263 and occurs for the simulation in
which the hedge is rebalanced six times a day. Any risk reduction benefit from rebalanc-
ing more frequently is offset by incremental trading costs. Indeed, rebalancing each hour,
24 hours a day, produces an expected after-trading cost of –$185,089.

ILLUSTRATION 9.5 Value average rate option.

An average rate option (sometimes referred to as an Asian-style option) is an option
whose payoff is based on an arithmetic average16 of the underlying asset price during the
option’s life. In some instances, the exercise price is fixed, and the average asset price is
used as the terminal asset price. In other instances, the average asset price is used as the
exercise price and is compared to the terminal asset price to determine the option’s pay-
off.17 Monte Carlo simulation is a useful tool in valuing these path dependent options.

Mean
Standard
Deviation Minimum Maximum

Average
Number
of Shares
Traded

After
Trading

Cost
Profit

Profit
per Unit
of Risk

Monthly 5,191,907 4,108,591 –10,008,845 26,521,463   3,135,707 4,878,336   1.187

Weekly 5,343,014 2,002,836      –631,657 13,943,237   5,192,995 4,823,714   2.408

Daily 5,285,976    786,634     2,174,783   8,786,527 12,085,420 4,077,434   5.183

Hourly (6) 5,290,299    301,906     4,316,409   6,852,635 27,957,722 2,494,527   8.263

Hourly (12) 5,296,894    214,420     4,418,705   6,416,575 38,567,903 1,440,104   6.716

Hourly (24) 5,304,550    151,603     4,646,940   6,116,745 54,896,398  –185,089 –1.221

16 Less frequently, Asian options are based on a geometric average. While using a geometric
average makes the valuation problem more tractable (see Kemna and Vorst (1990)), the op-
tion payoffs are less effective from a hedging standpoint.
17 Asian options are particularly useful when the underlying is thinly traded and subject to ma-
nipulation. The markets for commodities and some currencies qualify. They have lower pre-
miums than standard European-style options and offer general protection in situations where
regular cash flows need to be hedged. Occasionally, the average rate period applies for a short
period at the end of the option’s life. This period is referred to as the Asian tail.
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Compute the value of an average rate call option with one year to expiration and an
exercise price of $50. Assume that the average is computed using end-of-month asset
prices, the asset’s current price is $50, its income rate is 1%, and its volatility rate is
40%. The risk-free interest rate is 5%.

The steps of the Monte Carlo simulation, as applied to the valuation of average rate
options, are pre-programmed in the OPTVAL function,

OV_APPROX_ASIAN_OPT_MC(s, x, t, r, i, v, n, ntrial, cp, sx, ag)

The first six parameters are already known. The parameter n is the number of observations
used in computing the average. If the option’s life is one year and n is set equal to 12, the
average is computed based on monthly asset prices. The parameter ntrial is the number of
simulation runs. The parameter cp is either “C” or “P,” depending upon whether you are
valuing a call or a put. The parameter sx is either “S” or “X,” depending upon whether
you are averaging the asset price to replace the asset price or the exercise price of the aver-
age rate option. Finally, the parameter ag is either “A” or “G,” depending upon whether
the average rate of the option is arithmetic or geometric. For the illustration at hand,

OV_APPROX_ASIAN_OPT_MC(50, 50, 1, 0.05, 0.01, 0.40, 12, 10000, “C”, “S”, “A”) = 
5.2812

In applying the OPTVAL function, you will not get exactly the same answer since the
random drawings from the normal distribution will not be exactly the same. It is also
worthwhile to note that if quarter observations are used in the computation of the aver-
age, the value of the option increases, that is,

OV_APPROX_ASIAN_OPT_MC (50, 50, 1, 0.05, 0.01, 0.40, 4, 10000, “C”, “S”, “A”) = 
5.9598

The reason is, of course, that variance of the average asset price and the option’s value shrink
as the number of observations increases. In the extreme case where the number of observa-
tions going into the computation of the average is one, the average rate option value is 

OV_APPROX_ASIAN_OPT_MC (50, 50, 1, 0.05, 0.01, 0.40, 1, 10000, “C”, “S”, “A”) = 
8.7833

and should be identically equal to the BSM value of a European-style option,

OV_OPTION_VALUE(50, 50, 1, 0.05, 0.01, 0.40, “C”, “E”) = 8.7017

The small difference arises because Monte Carlo simulation is an approximation method.

Two Underlying Sources of Risk

The Monte Carlo simulation can be extended to handle multiple sources of risk.
Consider a European-style put option on the minimum, for example. Since the
option is written on the minimum of two risky assets, the option has two under-
lying sources of price risk. At expiration, the option holder receives 

If both asset prices follow geometric Brownian motions, the option can be val-
ued analytically, as was noted earlier in the chapter. Nonetheless, we will value

max X min S̃1 T, S̃2 T,,( )–[ ]
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the option numerically using Monte Carlo simulation. In order to do so, we
must explicitly account for the fact that movements in the asset prices are likely
to be correlated with one another.

To handle the correlation between movements in asset prices, we make one
small change to the Monte Carlo simulation procedure. First, we draw a unit
normal random deviate for asset 1. Label it ε1. Next, we draw a second unit
normal random deviate for asset 2. Label it ε2. Naturally ε1 is uncorrelated with
ε2 since they are independent drawings. To induce correlation between the devi-
ates, we apply the following transformation to the second deviate, 

(9.22)

where ρ is the correlation between the variables in the bivariate distribution.
Note that this new variable  remains unit normal. Its mean is

and its variance is 

Note also that the covariance (correlation) between ε1 and  is

We then generate prices for asset 1 and asset 2 using  and 

(9.23)

and 

(9.24)

With the prices at each time step identified, we value the option.

ILLUSTRATION 9.6 Find value of European-style call on maximum of two risky assets.

Consider a call option that provides its holder the right to buy $100,000 worth of the
S&P 500 index portfolio at an exercise price of $1000 or $100,000 worth of a particular
T-bond at an exercise price of $100, whichever is worth more at the end of three months.
The S&P 500 index is currently priced at $1075, pays dividends at a rate of 1% annually
and has a return volatility of 18%. The T-bond is currently priced at $105, pays a cou-
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pon yield of 6% and has a return volatility of 8%. The correlation between the rates of
return of the S&P 500 and the T-bond is 0.5. The risk-free rate of interest is 3%.

Before applying the Monte Carlo simulation technique, it is important to recognize
that there are two exercise prices in this problem: $1,000 for the S&P index portfolio
and $100 for the T-bond. What this implies is that we can buy 100,000/1,000 = 100 units
of the index portfolio or 100,000/100 = 1,000 units of T-bonds at the end of three
months, depending on which is worth more. At this juncture, we must decide whether to
value the call option on the maximum in units of the S&P 500 index portfolio, in which
case we multiply the current T-bond price and its exercise price by 10 and then multiply
the computed option price by 100, or to value the option in units of the T-bond, in which
case we divide the current S&P 500 price and the option’s S&P 500 exercise price by 10
and then multiply the computed option price by 1,000.18 We choose to work in units of
the S&P 500 index portfolio, so we adjust the T-bond prices: the current T-bond price is
assumed to be 10,500 and the T-bond exercise price is 1,000. With the units of the two
underlying assets comparable, we apply the OPTVAL function,

OV_APPROX_MAXMIN_OPT_MC(s1,s2,x,t,r,i1,i2,v1,v2,rho,n,ntrial,cp,mm)

to find

OV_APPROX_MAXMIN_OPT_MC(1100,980,1000,0.25,0.03,0.01,0.06,0.18,0.08,0.5,10,
10000,“C”, “X”) = 98.671

The computed option value is 98.671 per $1,000 or $98.671 × 1,000 = $9,867.10 in total.

Mean Reversion

Another advantage in using Monte Carlo simulation is that other processes for
asset price movements can be introduced seamlessly. While an assumption geo-
metric Brownian motion may be sensible for movements in the price of underly-
ing assets such as stocks and stock indexes which tend to grow through time,
the prices of assets such as gold and oil as well as interest rates on bonds tend to
revert back to mean levels.19 A simple mean reversion process is

(9.25)

where κ is the continuous-time speed of mean reversion or pull rate, θ is the
mean reversion level, and σ is the continuous-time standard deviation of the
price changes.20 Under this assumption, discrete movements in asset price
through time are described by

18 These types of adjustments can be made freely because the option price is linearly homoge-
neous in both the asset price and the exercise price. See Merton (1973).
19 Schwartz and Smith (1999), for example, model the short-term movements of commodity
prices as a mean-reverting process and model movements in the long-term equilibrium price
as a Brownian motion. asicek (1977) models movements in short-term interest rate as a mean-
reverting process.
20 This process is commonly referred to as an Ornstein-Uhlenbeck process or, alternatively, a
Gauss-Markov process.

dS κ θ S–( )dt σdz+=



336 OPTION VALUATION

(9.26)

where  is the discrete-time reversion rate over the interval ∆t,

is the discrete-time volatility, and where ε is a drawing from a unit normal dis-
tribution. Figure 9.15, Panels A and B, show simulated price movements of an

St t∆+ St– θk kSt σ t∆ ε+–=

k 1 e κ t∆–
–=

σ t∆
1 e 2κ t∆–

–

2κ t∆
------------------------σ=

FIGURE 9.15 Simulated asset price path for mean reversion process.
Panel A: Mean reversion rate of 0.05.  

Panel B: Mean reversion rate of 0.20. 
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asset that follows a mean reversion process. The processes include 1,000 time
steps, with each time step ∆t = 1. The mean reversion level is 10, and the contin-
uous-time volatility rate is 0.10 (i.e., discrete-time volatility rate of 0.09755).
Panel A has a continuous-time reversion rate of 0.05 (i.e., a discrete-time rever-
sion rate of 0.04877), while Panel B has a reversion rate of 0.20 (i.e., a discrete-
time reversion rate of 0.018127). As the figures show, the higher the rate of
mean reversion, the quicker price is pulled back toward the mean, and the less
the variation in price. To value options on an asset whose price is mean-revert-
ing, we simply generate the asset price path using (9.26) rather than (9.20). All
other steps in the Monte Carlo valuation procedure are the same.21

QUADRATIC APPROXIMATION

The quadratic approximation, developed by MacMillan (1986) and Barone-
Adesi and Whaley (1987),22 is based on the simple notion that an American-
style option can be thought of as the sum of an otherwise similar European-style
option and an early exercise premium, that is,

(9.27)

and

(9.28)

where εC and εP are the early exercise premiums on the American-style call and
put, respectively. The virtue in doing so is that the European-style options have
analytical valuation equations. In the last chapter, the European-style option
valuation formulas were presented as

(9.29)

and

(9.30)

where 

, and 

21 In order to apply the risk-neutral option valuation principles, we must adjust the rate of drift
by the market price of risk—a discussion which we defer to a later chapter.
22 The quadratic approximation is also applied to futures options in Whaley (1986).

C c εC+=
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The term N(d) is the cumulative normal density function, as defined in the last
chapter.

Under the quadratic approximation, the value of an American-style call on
an asset with a constant, continuous carry rate is 

(9.31)

where

, ,

, , 

c is the value of the corresponding European-style call option using (9.29), and
S* is the critical asset price above which the American-style call should be exer-
cised immediately and is the solution to

(9.32)

Figure 9.16, Panels A and B, provide some intuition for how the quadratic
approximation works. Before valuing the call option using (9.31), it is necessary
to identify the critical asset price above which the call will be exercised immedi-
ately. This is done using (9.32). The critical price, S*, is that unique asset price
at which (9.32) holds as an equality and does not depend on the current asset
price. Panel A shows where this price lies. Below S*, the call is valued using the
first line on the right-hand side of (9.31). Above S*, the call value is simply the
difference between the asset price and the exercise price (i.e., the second line on
the right-hand side of (9.31)). With S* in hand, we can then generate call option
values over a range of asset prices. This is done in Panel B of Figure 9.16. Note
that the early exercise premium—the difference between the American-style and
the European-style call option values—grows large as the asset price rises.

The quadratic approximation for an American-style put on an asset with a
constant, continuous carry rate is 

(9.33)

where
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FIGURE 9.16 Illustration of the components of the quadratic approximation method.
Panel A: Determination of critical asset price, S*. 

Panel B: Early exercise premium. 

p is the value of the corresponding European-style put option using (9.32), and
S** is the critical asset price below which the American-style put should be
exercised immediately and is the solution to

(9.34)
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ILLUSTRATION 9.7 Compute value of American-style option using quadratic method.

Compute the value of a two-year American-style put option with an exercise price of 55.
Use the quadratic approximation. Assume the underlying asset is a foreign currency
whose current price is 50 and whose volatility rate is 20%. Assume the domestic rate of
interest is 5%, and the foreign rate of interest, 2%. Use the quadratic approximation,
and show intermediate computations.

To begin, use the domestic and foreign interest rates to identify the expected rate of
price appreciation of the currency, that is,

Next compute the values of n and k. Using the problem parameters, these are

and

With the values of n and k, can compute the value of q1, that is,

Now the critical asset price below which you would exercise the American-style put
immediately, S**, must be identified by solving

The value S** of that satisfies the equation is 41.1776. This means the value of A1 is

With all of the parameters identified, put valuation becomes a matter of applying

where p is the value of a European-style put with the same parameters. At the currency of
50, the value of the European-style put is 6.41, and the value of the American-style put is
7.16. This implies that the early exercise premium has a value of approximately 75 cents.
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The quadratic approximation technique is not as flexible as lattice-based
methods for valuing options with nonstandard features. For standard options
on assets with a constant continuous carry rate (e.g., foreign currency options,
stock index options, futures options), however, the quadratic approximation is
faster and more accurate than competing methods.

MEASURING RISK NUMERICALLY

Just as the options studied in this chapter must valued numerically, the risk charac-
teristics of these options must be computed numerically. The procedure is straight-
forward. Recall that the delta of an option is the change in option value with
respect to a change in asset price. To obtain the delta of an option numerically, per-
turb the current asset price S by a small amount φ in either direction, that is, S + φ
and S – φ, and value the option at each asset price, OV(S + φ) and OV(S – φ). Figure
9.17 illustrates. The valuation function OV(.) can be any of the valuation method-
ologies discussed in this chapter. In the figure, the quadratic approximation was
used to generate the values of an American-style FX put option for different levels
of the exchange rate. Ideally, we would like to know the slope of the OV function at
the current exchange rate S. We cannot do so by taking the partial derivative of OV
with respect to S because we do not have an analytical expression for OV. To
approximate the delta, therefore, we take the ratio of the difference between the
computed option values to the difference between the perturbed asset prices, that is,

∆p
OV S φ+( ) OV S φ–( )–

S φ+( ) S φ–( )–
------------------------------------------------------------=

FIGURE 9.17 Numerical approximation for the delta of a FX put option.
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To assess the accuracy of this numerical procedure, consider the two-year put
option that we have used as an illustration throughout the chapter, but assume,
for the moment, that put is European-style. The analytical option value is 6.406
and, using the formula from the last chapter, its analytical delta is –0.474. Now
suppose that there is no formula for computing the delta, and, instead, it must
be computed using the numerically. First, perturb the asset price up by, say, 25
cents to a level of 50.25, and compute the put value. Using the BSM formula,
the put value is 6.288. Next perturb the asset price downward by the same
amount. The put option value at an asset price of 49.75 is 6.525. The numerical
delta for this put is therefore

Not surprisingly, the analytical delta and the numerical delta values are very
close. At three decimal places the difference is not apparent. At six decimal
places, the analytical delta is –0.474039 and the numerical delta is –0.474038.

In general, all of the Greeks for options can be measured using the expression

(9.35)

where OV represents one of the numerical valuation methods that we described
earlier in the chapter (e.g., the binomial method, the trinomial method, Monte
Carlo simulation, and the quadratic approximation), k is the option determi-
nant of interest (e.g., S for delta risk, σ for vega risk, and so on), and φ is a small
positive constant selected by the user. The gamma, that is, the change in the
delta with respect to a change in the asset price, may be computed using

(9.36)

It is also worth noting that, if the delta and theta of the option have already
been computed, the gamma can be solved for analytically.23 Recall that the
Black-Scholes/Merton partial differential equation for valuing options (i.e.,
equation (7D.6) from Appendix 7D in Chapter 7) may be written

(9.37)

where OV is the option value. Rearranging to isolate gamma, 

23 This idea was first suggested by Carr (2001).
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(9.38)

The formulas (9.35) and (9.36) provide the means for calculating the Greeks
numerically and can be applied to obtain any risk measures detailed in Table
9.4. The numerical values of the Greeks for the American-style put illustration
maintained throughout the chapter are reported in Table 9.5. The quadratic
approximation is used to value the put. The values reported in the table are
identical to those that would be obtained by using the OV_OPTION_VALUE
function from the OPTVAL Library. Note that condition (9.38) is satisfied.

SUMMARY

Numerical methods are an indispensable tool in option valuation and risk mea-
surement. The reasons are that numerical methods: (1) are required in instances
where the option valuation problem is intractable from a mathematical stand-
point (i.e., American-style options); (2) are more convenient than analytical meth-
ods in situations where the option valuation problem has large numbers of

γ
rOV θ bS∆–+

0.5σ2S2
--------------------------------------=

TABLE 9.4  Details of formula use for evaluating option risk measures numerically. 

TABLE 9.5  Summary of risk characteristics of the American-style put written on a currency 
evaluated numerically using the quadratic approximation.

Change in option value with respect to a change in: Determinant, k Greeky Symbol

Asset price S Delta ∆
Interest rate r Rhor ρr

Income rate i Rhoi ρi

Volatility rate σ Vega Vega
Time to expiration T Theta θ

Change in delta with respect to a change in:
Asset price S Gamma γ

Partial Derivative
with Respect to

Greek
Symbol

Perturbation
Amount, φφφφ

Numerical Value
of Greek

S  ∆ 0.25      –0.555
∆  γ 0.25        0.037
r  ρr 0.05% –35.384
i  ρi 0.05%   30.416
σ Vega 0.05%   25.736
T  θ 0.01        0.706
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contingencies (e.g., accrual options); and (3) can be extremely accurate if applied
properly. This chapter examines three different numerical methods—the binomial
method, the trinomial, method and Monte Carlo simulation. All three methods
involve replacing the BSM assumption that the underlying asset price has continu-
ous geometric Brownian diffusion with an assumption that underlying asset price
jumps over small discrete time intervals during the option’s life. The binomial
method, for example, assumes that the asset price moves to one of two levels over
the next increment in time. The size of the move and its likelihood are chosen in a
manner so as to be consistent with the log-normal asset price distribution. In a
similar fashion, the trinomial method allows the asset price to move to one of
three levels over the next increment in time, and Monte Carlo simulation uses a
discretized version of geometric Brownian motion to enumerate every possible
path that the asset’s price may take over the life of the option. Each of these three
numerical methods is illustrated using a variety of derivatives contracts including
standard American-style options, spread options, Asian-style options, and options
on the minimum and maximum. For valuing standard American-style options, the
quadratic approximation method is also discussed. It addresses the value of early
exercise by modifying the BSM partial differential equation. 
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CHAPTER

 

10

 

Risk Management Strategies: Options

 

hapters 7 through 9 deal with option valuation. Knowing how to value
options, in turn, provides a means for measuring risk. The focus now turns

to option trading strategies. Two major categories exist—dynamic strategies and
passive strategies. Dynamic strategies are those that focus on value changes over
the next instant in time. Dynamic expected return/risk management, for exam-
ple, attempts to manage changes in portfolio value caused by unexpected
changes in the asset price, volatility, and interest rates, as well as the natural
erosion of option’s time value as it approaches expiration. These strategies are
of particular importance to exchange-traded option market makers or OTC
option dealers who, in the normal course of business, acquire option positions
with risks that need to be managed on a day-to-day (minute-to-minute) basis.
The first two sections of the chapter are devoted to dynamic strategies. In the
first, we tie the expected return/risk characteristics of options and option portfo-
lios to the CAPM. In the second, we consider the dynamic risk management
problem faced by an option market maker. 

Passive strategies, on the other hand, are those that involve holding an
option over some discrete interval of time such as a week, a month, or even held
to expiration. In this instance, the rates of return of the option and the asset are
not perfectly correlated and the mechanics for analyzing the position are some-
what different. The third section of the chapter is devoted to analyzing passive
strategies. Specifically, we assess the expected return/risk characteristics of port-
folios that are entered and then held to expiration. We begin first with a review
of the profit functions for basic option/futures/asset positions. Next, we discuss
how to compute expected profits and expected returns under the assumption
that the underlying asset price is log-normally distributed at the options’ expira-
tion.

 

1

 

 In particular, we show how to compute the probability that a particular
option trading strategy will be profitable at the options’ expiration as well as the
level of its expected profit. Finally, we simulate the performance of trading strat-
egies using Monte Carlo simulation.

 

1 

 

Recall that this assumption was first introduced in Chapter 7.
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EXPECTED RETURN AND RISK

 

Individual Options

 

The key to understanding how options fit within the mean-variance CAPM is in
the recognition of how an option’s expected return and risk are tied to the
expected return and risk of the underlying asset.

 

2

 

 The CAPM states that the
expected rate of return on the asset is 

(10.1a)

where 
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S

 

 and 
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 are the expected rates of return for the asset and the market
portfolio, respectively, 

 

r

 

 is the risk-free of return, and 

 

β

 

S

 

 is the asset’s beta risk.
Since the CAPM applies to all risky assets, its also applies to options. The
expected rate of return of a call option written on the asset, for example, may be
written 

(10.1b)

Since a risk-free hedge can be formed between the call and the asset, the rates of
return of the call and the asset are perfectly positively correlated. Consequently,
the variance of the call return is Var(
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) = Var(
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), where 
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 is the call
option’s eta or price elasticity.
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 Total risk, which we have defined as the stan-
dard deviation of return, is therefore 

(10.2a)

and 

(10.2b)

for the call and the put, respectively, and the absolute value operator has been
applied to ensure that the standard deviation is positive. Similarly, the option’s
beta is defined as the covariance of the option’s return with the market return
divided by the variance of the market return. Thus the relation between the beta
for an option and the beta for the underlying asset is 

(10.3a)

 

2 

 

It is important to recognize that in this section we are focusing on dynamic risk management
and instantaneous rates of return in the manner of Merton (1973). Over discrete intervals of
time, the rates of return for the option and its underlying asset will not be perfectly correlated
(as we discuss later in this chapter).
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Recall the elasticity of option price with respect to the asset price is 

 

η

 

c

 

 = 

 

∆

 

c

 

(

 

S

 

/

 

c

 

) and 

 

η

 

p

 

 = 

 

∆

 

p

 

(

 

S

 

/

 

p

 

), where 

 

∆

 

 is the option’s delta.

ES r EM r–( )βS+=

Ec r EM r–( )βc+=

ηc
2

σc ηc σc=

σp ηp σS=

βc

Cov Rc RM,( )

Var RM( )
----------------------------------

ηcCov RS RM,( )

Var RM( )
---------------------------------------- ηcβS= = =



 

Risk Management Strategies: Options

 

349

 

and 

(10.3b)

Note that, since 

 

η

 

p

 

 < 0, the beta for a put option is negative. The value of the
put falls as the market rises, and vice versa.

To better understand the expected return/risk characteristics of options,
consider the following stock option illustration. Assume that the current stock
price is 50, the expected stock return is 16%, the stock’s beta is 1.20, the vola-
tility of the stock return is 40%, and the stock pays no dividends. Also assume
that there exist three-month European-style call and put options with exercise
prices of 45, 50, and 55, and that all of these options have prices equal to their
European-style formula values from Chapter 5. The risk-free interest rate is
assumed to be 4%. Using the risk relations (10.2) and (10.3) as well as the secu-
rity market relation,
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from Chapter 3, the expected returns and risks of the different options can be com-
puted and are summarized in Table 10.1. Note that we can use the security market
line relation (10.4) to find the implied expected return on the market, assuming the
capital market is in equilibrium, that is, 0.16 = 0.04 + (

 

E

 

M

 

 – 0.04)1.20, or 

 

E

 

M

 

 = 14%.
The results in Table 10.1 are interesting in variety of respects. First, note the

startling high values of the risk measures. The in-the-money call, for example,
has a beta equal to 6.347 and a total volatility rate of 211.58%. This should not
be surprising in the sense that calls are nothing more than leveraged positions in
the underlying asset. The implicit degree of leverage is given by the call’s eta.
Owning the 45-call is like borrowing 428.95% of your current wealth, and
investing all of your wealth as well as the borrowings in stock (i.e., 528.95% of

βp

Cov Rp RM,( )

Var RM( )
----------------------------------

ηpCov RS RM,( )

Var RM( )
----------------------------------------- ηpβS= = =

TABLE 10.1  Expected returns and risks of European-style options written on a stock. Stock 
price is 50, expected stock return is 16%, stock beta is 1.20, volatility rate is 40%, and 
dividend yield is zero. Interest rate is 4%, and expected return on market is 14%. Options 
have three months remaining to expiration.

Money-
ness

Exercise
Price

(C)all/
(P)ut Value Delta Eta

Expected
Return Beta

Total
Risk

ITM 45 c 7.0965   0.7507   5.2895   67.47%   6.347 211.58%
ATM 50 c 4.2167   0.5596   6.6358   83.63%   7.963 265.43%
OTM 55 c 2.3051   0.3720   8.0693 100.83%   9.683 322.77%

OTM 45 p 1.6487 –0.2493 –7.5594 –86.71% –9.071 302.38%
ATM 50 p 3.7192 –0.4404 –5.9205 –67.05% –7.105 236.82%
ITM 55 p 6.7578 –0.6280 –4.6465 –51.76% –5.576 185.86%
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your wealth is invested in the stock). As we go from in-the-money calls to out-
of-the-money calls, the degree of leverage increases and the risk measures go up.
Figure 10.1 illustrates the expected return/beta tradeoff. Figure 10.2 shows the
relation between expected return and volatility.

A second noteworthy observation about the values reported in Table 10.2 (as
well as Figures 10.1 and 10.2) is that put options have large negative expected
returns. These, too, are leveraged positions, but this time the leverage goes the
other way, that is, we are implicitly short selling stocks and placing the proceeds
in the risk-free asset. The out-of-the-money put in Table 10.1, for example, has
an eta equal to –7.5594. This means that short selling an amount of stock equal
to 755.94% of your wealth and using the proceeds, together with your initial
wealth, to buy the risk-free asset has an expected return equal to the expected
return of the OTM put, 

–7.5594(0.16) + 8.5594(0.04) = –86.71%

 

Option Portfolios

 

The CAPM expected return/risk mechanics can also be applied to portfolios in
order to analyze different trading strategies. A covered call strategy involves
selling a call option for each unit of the underlying asset held. A protective put
strategy involves buying a put for each unit of the asset held. To analyze these
portfolios, expressions for the expected return and risks of the portfolio are

FIGURE 10.1 Expected return/beta relation of European-style options written on a stock. 
Stock price is 50, expected stock return is 16%, stock beta is 1.20, volatility rate is 40%, and 
dividend yield is zero. Interest rate is 4%, and expected return on market is 14%. Options 
have three months remaining to expiration. 
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needed. For portfolio consisting of the asset and an option, the expected portfo-
lio return is

(10.5)

the beta of the portfolio is

(10.6)

FIGURE 10.2 Expected return/volatility relation of European-style options written on a stock. 
Stock price is 50, expected stock return is 16%, stock beta is 1.20, volatility rate is 40%, and 
dividend yield is zero. Interest rate is 4%, and expected return on market is 14%. Options 
have three months remaining to expiration. 

TABLE 10.2  Expected returns and risks of covered call and protective put trading strategies. 
Stock price is 50, expected stock return is 16%, stock beta is 1.20, volatility rate is 40%, and 
dividend yield is zero. Interest rate is 4%, and expected return on market is 14%. Options 
have three months remaining to expiration.

Moneyness
Exercise

Price
(C)all/
(P)ut X

Expected
Return Beta

Total
Risk

ITM 45 c 1.165   7.49% 0.349 11.62%
ATM 50 c 1.092   9.77% 0.577 19.24%
OTM 55 c 1.048 11.90% 0.790 26.33%

OTM 45 p 0.968 12.72% 0.872 29.07%
ATM 50 p 0.931 10.25% 0.625 20.83%
ITM 55 p 0.881   7.93% 0.393 13.11%
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and the volatility of the portfolio is

(10.7a)

for calls, and 

(10.7b)

for puts.

 

4

 

 The proportion of wealth invested in the asset for the covered call
strategy is 

(10.8)

Note that in the denominator of (10.8) the proceeds from writing the call are
assumed to be used to subsidize the cost of buying the asset. The proportion of
wealth invested in the asset for the protective put strategy is 

(10.9)

Since both the put and the asset are purchased, the sum of the prices appears in
the denominator as the cost of the portfolio. 

The first panel of Table 10.2 contains the expected return/risk properties of
the covered call strategies created from the call options listed in the first panel of
Table 10.1. To illustrate the computations, consider the ITM call. The expected
return of the covered call strategy using the 45-call is

The beta of the covered call is

and the volatility rate is

 

4 

 

The expressions for portfolio for the call and put are different because, while both the returns
of the call and put are perfectly correlated with the asset, the call returns are positively corre-
lated and the put returns are negatively correlated.
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FIGURE 10.3 Expected return/volatility relation of covered call strategies. Stock price is 50, 
expected stock return is 16%, stock beta is 1.20, volatility rate is 40%, and dividend yield is 
zero. Interest rate is 4%, and expected return on market is 14%. Options have three months 
remaining to expiration. 

In other words, writing a call option against a long position is a hedge. The fur-
ther the call is in-the-money, the greater is the risk reduction, and the lower is
this strategy’s expected return. Figure 10.3 shows the expected return/risk coor-
dinates of the covered call portfolios using each of the calls in Table 10.1.

The second panel of Table 10.2 summarizes the expected return/risk proper-
ties of the protective put trading strategies. Like writing calls against the stock,
buying puts hedges the long stock position. The higher the put’s exercise price,
the greater the risk reduction, and the lower the expected return. Figure 10.4
shows the expected return/risk attributes of the protective put strategies using
each of the puts in the second panel of Table 10.1.

MANAGING UNEXPECTED CHANGES

This section deals with the dynamic risk management of a portfolio of options.
The most natural way to think about this process is to consider an option market
maker on an exchange floor or an OTC option dealer at a desk in a bank who, in
the course of business, winds up with a portfolio of different option positions.
While these positions are open, they may change in value with unexpected changes
in asset price, the volatility rate, and/or the interest rate. To immunize the value of
the overall position from these risks, the market maker uses dynamic hedging tech-
niques. This section deals with the dynamic risk management problem. 

The General Framework

In general, an options dealer may have as many as four types of instruments in
his portfolio—options, the underlying asset, futures, and cash (bonds). The
value of his portfolio is
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FIGURE 10.4 Expected return/volatility relation of protective put strategies. Stock price is 50, 
expected stock return is 16%, stock beta is 1.20, volatility rate is 40%, and dividend yield is 
zero. Interest rate is 4%, and expected return on market is 14%. Options have three months 
remaining to expiration. 

(10.10)

where Oi is the price of option i, where there are N option series in his portfo-
lio,5 S is the current asset price, and B is the value of the risk-free bonds. Note
that, while futures contracts are in the portfolio, they involve no investment
and, hence, do not contribute to the initial value of your portfolio.

To identify the change in value of the portfolio if risk attribute k changes ,6

take the partial derivative of (10.10) with respect to k, that is,

(10.11)

where the futures price now appears because it may affect the change in the value
of the portfolio. To find the change in portfolio value resulting from a change in
risk attribute k, compute how each option value changes from a change in k, mul-
tiply by the number of contracts, and sum across all option positions. The asset
price, the futures price and risk-free bond may also be affected by a change in k.
Where k is the asset price, the delta of the portfolio is being measured. In this
case, all of the deltas on the right-hand side of (10.11) are nonzero except for ∂B/
∂S. The asset’s delta is ∂S/∂S = ∆S = 1, and the futures delta is ∂F/∂S = ∆F = e(r–i)T.
The value of risk-free bonds is not a function of the asset price so its delta is zero.

5 Recall an option series has three identifying characteristics: (a) exercise price, (b) expiration
date, and (c) call or put.
6 The risk attribute k of an option portfolio refers to the change in portfolio value resulting
from a change in the asset price, the interest rate, the income rate, or the volatility rate.
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Where k is the risk-free rate of interest, the rho of the portfolio is being measured
and all derivatives are nonzero. Where k is the volatility rate, the portfolio vega is
being computed, and all partial derivatives on the right-hand side of (10.11)
except ∂Oi /∂σ are assumed to be equal to zero.7 Finally, equation (10.11) can be
used to measure how the portfolio value will change as time passes. Chapter 7
contains expressions for the thetas of European-style call and put options. The
prices of the futures and the risk-free bonds also change as time passes. 

Often second-order effects like gamma are also actively managed through
time. The second derivative of (10.10) with respect to risk attribute k is, like-
wise, a weighted average of the individual components, that is,

(10.12)

Where k is the asset price, the portfolio’s gamma is being measured. The gam-
mas of the asset and the futures are zero since their deltas are not a function of
the asset price. Likewise, the gamma of a risk-free bond is also zero.

Once the risk measurements have been made, setting up a dynamic, risk-
minimizing hedge is straightforward—decide which risk attributes of the
unhedged portfolio should be negated and then identify a portfolio of hedge
instruments (called the hedge portfolio) that has exactly the opposite risk
attributes.8 When the two portfolios are combined, the hedged portfolio is risk-
neutral. In general, one hedge security will be needed for each risk attribute.
Hedging delta and gamma, for example, requires two hedge instruments. Hedg-
ing delta, gamma, and vega requires three.

ILLUSTRATION 10.1 Hedge asset price risk.

Suppose a market maker in S&P 500 index options, as a result of accommodating cus-
tomer orders to buy and sell, ends the day with the following positions: 

7 This assumption is made largely for convenience. In principal, a change in the volatility rate
will affect the asset price and also the futures price. The mechanism for identifying the vegas
of the asset price and the futures is the CAPM.
8 Hedging need not involve completely negating the risk exposure. Depending on his appetite
for risk, the market maker may want to retain some proportion of the exposure depending
upon his directional view about the potential movement in the risk attribute. 

Option Series No. of Contracts
(+ long/– short)Exercise Price (C)all/(P)ut Days to Expiration

  900 c   30 –100
  950 c   30 –200
1000 c   90 –150
  900 p   90     50
  950 p 360 –100
1000 p 720 –200
1100 c 720 –100
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Suppose also that, before the market closes, the market maker wants to completely hedge
the delta risk of his position. He is considering two alternatives—buying S&P 500
futures and buying 975-call options. The S&P 500 futures has 90 days to expiration, is
currently priced at full carry, 1004.94, and has a delta of 1.0049.9 The 975-call has 90
days to expiration and is currently priced at 55.432 and its delta is 0.635. Identify the
number of contracts to sell in each case. Assume also that the S&P 500 index level is cur-
rently at 1,000, its dividend yield is 2%, and its volatility rate is 20%. The risk-free inter-
est rate is 4%.

The first step is to compute the overall risk characteristics of the portfolio. We confine
ourselves to delta, gamma, vega, and rho. The OPTVAL Function Library contains the nec-
essary functions for computing the Greeks of each futures and option series. Equations
(10.11) and (10.12) are used to determine the aggregate exposures. The results are:

The value of the portfolio is $58,170.73. The aggregate delta is –288.41, which
means that for every point increase in the S&P 500 index, the portfolio will fall in value
by 288.41. The aggregate gamma is –2.07, which means that, if the S&P 500 index
moves up by one point, the delta of the option portfolio will fall by about 2.07. The
aggregate vega is –233,136.93, which means that the market maker is short volatility.10

If the volatility rate moves up by 100 basis points, the portfolio value will fall by
2,331.37. The aggregate rho is 104,818.32.

To hedge the delta exposure, futures can be purchased. Each futures has a delta of
1.0049, so the number of futures needed to eliminate the delta risk is 

As the table below shows, the hedged portfolio delta is now equal to 0. Note that the
value of the portfolio does not change because the futures requires no cash outlay. Like-
wise, neither the gamma- or vega-risk attributes change. The futures price is sensitive to
movements in the interest rate, that is,

9 Recall that the futures delta is ∆F = e(r – i)T. Since the futures delta is not a function of asset
price, the futures gamma is equal to zero, γF = 0, and, since the futures price is not a function
of the underlying asset’s return volatility, the futures vega is zero, xegaF = 0. Finally, the fu-
tures price is a function of the risk-free rate of interest, and .

Option Series No. of 
Contracts
(+ long/
– short) Value Delta Gamma Vega Rho

Exercise
Price

(C)all/
(P)ut

Days to
Expiration

  900 c   30 –100 10,196.59   –96.94 –0.1154     –1,896.45   –7,129.19

  950 c   30 –200 11,367.74 –165.61 –0.8831   –14,516.94 –12,677.73

1000 c   90 –150   6,271.21   –80.54 –0.5966   –29,423.39 –18,311.65

  900 p   90     50    –313.98     –6.12   0.1020       5,028.22   –1,586.17

  950 p 360 –100    4,601.73     31.76 –0.1774   –34,996.41   35,859.39

1000 p 720 –200 17,546.70     74.87 –0.2625 –103,560.06 182,293.85

1100 c 720 –100   8,500.74   –45.83 –0.1363   –53,771.90 –73,630.18

Portfolio value/risk exposures 58,170.73 –288.41 –2.07    –233,136.93 104,818.32

10 In practice, it is commonplace to find market makers short volatility because the trading
public tends to prefer to buy, rather than sell, options. 
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The interest rate risk exposure has therefore increased to a level of 175,932.54. An unex-
pected increase in the interest rate of 10 basis points, the portfolio value will rise by about

A different delta hedge is possible using the 975-call with 90 days to expiration. Its
delta is 0.635, so the hedge will require 

After the hedge is in place, the hedged portfolio delta is again 0, as is shown below. Note
that using the 975-calls to hedge requires a payment of $25,165.31 to buy the options. In
addition, buying the calls has affected the portfolio’s other risk attributes. Specifically,
gamma and vega have fallen, and rho has increased.

To understand how effective these hedges will be, consider the figure below, which
shows the change in the value of the unhedged and hedged portfolios as the asset price
moves in one direction of the other. The unhedged portfolio obviously has a negative
delta. As the index level increase, portfolio value falls. For the hedged portfolios, this is
not the case. As the index level moves by a small amount in either direction from its cur-
rent level of 1,000, portfolio value does not change. For large moves, however, the value
of the portfolio falls. This is the effect of the negative gamma of both hedged portfolio
positions. The fact that the hedged portfolio value changes by less using the 975-calls to
hedge rather than the futures is due to the fact that the 975-calls incidently reduced the
portfolio’s gamma exposure.

Option Series No. of
Contracts
(+ long/
– short) Value Delta Gamma Vega Rho

Exercise
Price

(C)all/
(P)ut

Days to
Expiration

Unhedged portfolio 58,170.73 –288.41 –2.07 –233,136.93 104,818.32

Hedge instruments:

F 90 286.99          0.00   288.41   0.00              0.00   71,114.22

Hedged portfolio 58,170.73       0.00 –2.07 –233,136.93 175,932.54

Option Series No. of
Contracts
(+ long/
– short) Value Delta Gamma Vega Rho

Exercise
Price

(C)all/
(P)ut

Days to
Expiration

Unhedged portfolio   58,170.73 –288.41 –2.07      –233,136.93 104,818.32

Hedge instruments:

975 c 90 453.98 –25,165.31   288.41 1.7043     84,049.44   64,909.08

Hedged portfolio   33,005.43       0.00 –0.37      –149,087.49 169,727.40

ρF
r TSe r i–( )T 90 365⁄( )1,000e 0.04 0.02–( ) 90 365⁄( ) 247.79= = =

175,932.54 0.001× 175.93=

n975 call
288.41
0.635

------------------ 453.98 contracts= =
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ILLUSTRATION 10.2 Hedge delta and vega risk.

Suppose the market maker’s end-of-day position is as described in Illustration 10.1, and
that, before the market closes he wants to hedge completely both the delta and vega risks
of his position. To do so, he will use the S&P 500 futures and the 975-call options. Iden-
tify the number of each contract to buy or sell.

The optimal numbers of contracts to enter is identified by setting the number of con-
tracts in the hedge portfolio in such a way that it has risk attributes equal in magnitude
but opposite in sign as the unhedged portfolio. This means solving simultaneously the
follow system of equations:

Since the vega of the futures is assumed to be 0, only the call can be used to negate the
unhedged portfolio’s vega-risk. The optimal number of calls to buy is

The number of futures is then determined by

The hedged portfolio risk exposures are now

Unhedged portfolio Hedged using futures Hedged using 975-calls
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To understand how the delta- and vega-risk of the portfolio have changed, consider
the figures below. In the first, the gains/losses of the unhedged portfolio are shown. The
unhedged portfolio is short the index and net short volatility. As the index level and vol-
atility rate rise, the unhedged portfolio value falls. The effectiveness of the hedge instru-
ments at controlling for delta and vega risk is shown in the second figure. For small
changes in the index and/or the volatility rate, the hedged portfolio value does not
change. Interestingly, portfolio value increases for large moves in the index in one direc-
tion or the other. The large position in the 975-calls has given the hedged portfolio posi-
tive gamma. Note also that, with large index moves, the hedged portfolio again becomes
sensitive to vega risk, that is, it gains a short volatility exposure.

Unhedged portfolio

Option services No. of
Contracts
(+ long/
– short) Value Delta Gamma Vega Rho

Exercise
Price

(C)all/
(P)ut

Days to
Expiration

Unhedged portfolio   58,170.73 –288.41 –2.07    –233,136.93   104,818.32

Hedge instruments

F 90  –509.06            0.00 –511.58 0.00               0.00 –126,142.89

975 c 90 1,259.27 –69,803.70   799.99   4.7275   233,136.93   180,045.24

Hedged portfolio –11,632.97       0.00 2.66               0.00   158,720.67

40,000

30,000

20,000

10,000

0

–10,000

–20,000

–30,000

–40,000

–50,000

–60,000

C
ha

ng
es

 in
 v

al
ue

10
%

14
%

18
%

22
%

26
%

30
%

Volatility

900

960

1080

1020
Index level



360 OPTION VALUATION

Hedged portfolio

Practical Considerations

Normally the market maker will have a variety of hedge instruments from which
to choose. Presumably, in setting the hedge, he will want to minimize costs. One
cost will be the trading costs associated with buying/selling the hedge instru-
ments. Trading costs in exchange-traded futures and options markets are usually
incurred on a per contract basis. Another cost is the opportunity cost of the funds
tied up in the hedge instruments. In Illustration 10.2, for example, the 975-call
options were purchased, which means that interest must be paid on the option
premiums. Finally, options in the hedge portfolio erode in value as time passes.11

Depending on whether the market maker is short or long options, this may be a
benefit or a cost. All of these benefits/costs can be measured, and the composition
of the “least-cost,” risk-minimizing hedge portfolio can be identified. 

ILLUSTRATION 10.3 Hedge delta and vega risk for one day.

Reconsider the market maker’s problem in Illustration 10.2. Suppose that the available
hedge instruments are as follows: 

11 Options in the unhedged portfolio also erode in value, but that cost is sunk.

Potential Hedge Instruments

Exercise Price (F)utures/(C)all/(P)ut Days to Expiration Price

F 90 1,004.94
  975 c 90      25.78
  975 p 90      55.43
1025 c 90      50.52
1025 p 90      30.66
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Assume the market maker pays a $5 per contract in trading costs and his borrowing/
lending rate is 4%. Identify the least-cost, risk-minimizing hedge portfolio assuming his
hedging horizon is one day. First, use as many hedge instruments as you would like, and
then use only two.

The market faces three costs over the hedge horizon. If trading costs were the only
consideration, the market maker would simply find the delta/vega-neutral portfolio that
minimized the number of contract. But here, he also needs to consider the opportunity
cost of the funds in the portfolio as well as the erosion in time premium.

To begin, we need to identify the cost structure for each potential hedge instrument.
The total commissions are simple—number of contracts times the $5 commission per
contract. The interest cost is also straightforward. If options are sold, the market maker
collects interest, and, if they are purchased, interest is paid. To adjust for the interest
income/expense, the option premiums (i.e., the number of contracts times the option
price) are multiplied by erT – 1 = e0.04(1/365) – 1. Finally, to adjust for the time erosion in
option premiums, we compute the thetas of each hedge instrument.12 Since the interpre-
tation of theta is the change in price as time to expiration increases, we must affix a
minus sign in front. Also, since the rates are on annualized basis, we multiply the theta
by 1/365 to determine the erosion in option value over a single day.

The table below identifies the set of hedge instruments that minimizes the market
maker’s costs while negating his delta and vega risk exposures. The use of Excel’s
SOLVER greatly facilitates finding the solution quickly. The minimum cost hedge portfo-
lio appears to contain only three instruments— the 975-call, the 1025-call, and the 1025-
put. Virtually no futures or 975-puts appear. Note that, since the option positions in the
hedge portfolio are all long positions, interest is paid on the hedge portfolio value, and
the hedge portfolio value decays with time. The total cost of the hedge for one day
appears to be approximately $6,265.89.

The SOLVER solution is imprecise, however. We asked it to perform an incredibly
difficult search procedure, and eventually many minutes it produced the above results.
We could have imposed more information about the structure of the problem, however.
Since we are interested in hedging only two risk factors, the minimum cost hedge portfo-
lio will consist of only two hedge instruments, that is, there is only one pair of the five
hedge instruments that will produce the minimum cost portfolio. To be certain which
two, total costs should be computed for the 10 different pairings of the five instruments.
Since it is unlikely that the futures or the 975-options are included in the least-cost port-

12 Recall that the theta of the futures is θF = (r – i)Se(r – i)T.

Option Series No. of
Contracts
(+ long/
– short) Value Delta Vega Theta

Trading
Costs

Interest
Cost

Time
Erosion

Exercise
Price

(C)all/
(P)ut

Days to
Expiration

Unhedged portfolio 58,170.73 –288.41 –233,136.93        122.82

Hedge instruments:

F 90     2.32            0.00       2.33            0.00          46.60      –11.59       0.13

  975 c 90     0.00            0.00       0.00            0.00            0.00          0.00   0.00       0.00

  975 p 90     0.00            0.00       0.00            0.01            0.00          0.00   0.00       0.00

1025 c 90 956.44 –29,321.68   419.38 186,448.92 –82,830.17 –4,782.21 –3.21 –226.93

1025 p 90 239.50 –12,098.66 –133.30   46,688.00 –15,784.53 –1,197.50 –1.33   –43.25

Hedged portfolio   16,750.39       0.00            0.00 –98,445.29 –5,991.30 –4.54 –270.05

Total costs 6,265.89
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folio, we them from the set of feasible hedge instruments and rerun SOLVER. The mini-
mum costs hedge has total hedge costs are about $10 less than the previous solution.

PROFIT FUNCTIONS

To analyze the profitability of option portfolios, we need to define the profit
function for each type of security/derivatives position. There are eight profit
functions that will serve as the basis for our analysis: long and short the asset
underlying the derivatives contracts, long and short the futures, long and short a
call option, and long and short a put option.

Asset

The profit function for a long asset position is 

(10.13a)

and is shown in Figure 10.5, Panel A. As the figure shows, the terminal profit on
a long position in the asset varies directly with the level of the asset price at time
T. Setting (10.13a) equal to 0, the breakeven terminal asset price is identified as

. In the event the terminal asset price exceeds the sum of the initial
asset price and carry costs, the position makes money. As the asset price rises
without limit, the profit from this position does also. If the terminal asset price
is below the initial asset price plus carry costs, the position loses money. The
maximum possible loss is the initial asset price plus carry costs.

A short asset position has the opposite profit function of the long asset position,

(10.13b)

and is shown in Figure 10.5, Panel B. The largest potential profit Se(r – i)T is
where the terminal asset price is 0. In this instance, e–iT units of the asset were
sold short at time 0, and the proceeds were invested in risk-free bonds. If the
terminal asset price is 0, the short seller of the asset covers his short sale obliga-
tion at no cost and keeps the proceeds from the short sale. Figure 10.5, Panel B
also shows the potential liability of this strategy. As the terminal asset price
rises, profit falls. Indeed, assuming the asset price can rise without limit, the
potential loss from a short asset position is unlimited.

Option Series No. of
Contracts
(+ long/
– short) Value Delta Vega Theta

Trading
Costs

Interest
Cost

Time
Erosion

Exercise
Price

(C)all/
(P)ut

Days to
Expiration

Unhedged portfolio   58,170.73 –288.41 –233,136.93        122.82

Hedge instruments

1025 c 90 958.78 –29,393.47   420.41   186,905.42 –83,032.98 –4,793.92 –3.22 –227.49

1025 p 90 237.16 –11,980.36 –132.00     46,231.51 –15,630.20 –1,185.79 –1.31   –42.82

Hedged portfolio   16,796.90       0.00              0.00 –98,540.36 –5,979.70 –4.53 –270.31

Total costs   6,254.55

πlong asset T, ST Se r i–( )T
–=

ST
* Se r i–( )T

=

πshort asset T, ST Se r i–( )T
–[ ]–=
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FIGURE 10.5 Terminal profit diagrams for long and short asset positions. 
Panel A. Long asset 

Panel B. Short asset 
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Futures

The profit functions for a long and a short futures position are virtually identi-
cal to a long and a short asset position, respectively. The only difference in the
profit functions is that the initial asset price plus carry costs is replaced by the
futures price. This should not be surprising considering that in Chapter 3 we
demonstrated that F = Se(r – i)T in the absence of costless arbitrage opportunities.
The profit function of a long futures position is

(10.14a)

and is shown in Figure 10.6, Panel A. Given the zero-sum nature of derivatives
contracts, a short futures position has the profit function,

(10.14b)

and is shown in Figure 10.6, Panel B. The breakeven terminal asset price is where
.

Call Option

The profit function of a long call position is 

(10.15a)

FIGURE 10.6 Terminal profit diagrams for long and short futures positions. 
Panel A. Long futures 

πlong futures T, ST F–=

πshort futures T, ST F–( )–=

ST
* F=

πlong call T,

ST X– cerT
–    if ST X>

cerT
–                if ST X≤

⎩
⎪
⎨
⎪
⎧

=

Pr
of

it

Terminal asset price
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FIGURE 10.6     (Continued)
Panel B. Short asset 

and is shown in Figure 10.7, Panel A. Note that the profit function depends on
whether the asset price exceeds the exercise price at the option’s expiration. If it
does not, the call option buyer forfeits his initial investment (i.e., the call price)
plus carry costs (i.e., the cost of financing the call option position over the inter-
val from 0 to T). If the asset price exceeds the exercise price, the call will be
exercised. If the asset price exceeds the breakeven price , where  = X +
cerT, the call option buyer makes money. The potential gain is unlimited.

The profit function for a short call position is 

(10.15b)

and is shown in Figure 10.7, Panel B. The call option seller’s potential profit is
limited to the option premium c collected at time 0 plus the interest income that
accrues on c from time 0 to time T, and occurs in the event the call finishes out
of the money. In the event the call is in the money at expiration, the option seller
is obliged to deliver the underlying asset for a cash payment of X. If the asset
price exceeds the breakeven price , the seller loses money. The potential lia-
bility of the option seller rises without limit as the asset price rises.

Pr
of

it

Terminal asset price

ST
* ST

*

πshort call T,

ST X– cerT
–( )–    if ST X>

cerT                      if ST X≤
⎩
⎪
⎨
⎪
⎧

=

ST
*
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FIGURE 10.7 Terminal profit diagrams for long and short call positions. 
Panel A. Long call 

Panel B. Short call 
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Put Option

The profit function for a long put position is

(10.16a)

and is shown in Figure 10.8, Panel A. The put option buyer forfeits the put plus
carry costs if the asset price exceeds the option’s exercise price at expiration. If
the asset price is below the exercise price, the put option holder will exercise her
right to sell the underlying asset for a cash price X. Where the amount by which
the asset price is below the exercise price exceeds the initial value of the put plus
financing costs (i.e., the asset price is below the breakeven price ),
the put option holder makes money. 

The profit function for a short put position is 

(10.16b)

FIGURE 10.8 Terminal profit diagrams for long and short put positions. 
Panel A. Long put 

πlong put T,

perT               if – ST X>

X ST– perT
–    if ST X≤

⎩
⎪
⎨
⎪
⎧

=

ST
* X perT

–=

πshort put T,

perT                     if ST X>

X ST– perT
–( )–    if ST X≤

⎩
⎪
⎨
⎪
⎧
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FIGURE 10.8     (Continued)
Panel B. Short put 

and is shown in Figure 10.8, Panel B. The maximum gain from selling a put is
perT, and is received when the put expires out of the money (i.e., ST > X). If the
terminal asset price is below the breakeven asset price , the put
option seller begins to lose money. The maximum loss on a short put position, –
(X – perT), occurs when the terminal asset price falls to zero, in which case the
put option buyer exercises his right to sell the underlying asset at X. Since the
asset is worthless, the put option seller pays the buyer X, and, in return, receives
a worthless unit of the asset. The payment of X by the put option seller is offset,
in some degree, by the proceeds from the sale of the put option at time 0 plus
accumulated interest, perT.

Portfolio Profit Functions

With the eight different profit functions listed above, a limitless number of
option portfolios can be analyzed. To compute the profit function of a particular
strategy, we simply sum the profit functions of the individual positions within
the portfolio. One popular option strategy is the buy-write or covered call. This
strategy consists of buying the asset and selling a call option. The profit function
for this strategy is 

Terminal asset price

Pr
of

it

ST
* X perT

–=
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(10.17)

and is shown in Figure 10.9. As the figure shows, selling a call option against a
long position creates a profit function that is identical to selling a put. If the ter-
minal asset price exceeds the exercise price, the gain on the buy-write position is
X – Se(r – i)T + cerT. By virtue of the put-call parity relation developed in Chapter
4, this value equals perT. As the terminal asset price falls below the exercise price,
the buy-write strategy begins to lose money. The maximum loss is –Se(r – i)T + cerT.
Not surprisingly, by virtue of put-call parity, this is also the maximum loss on a
short put position, that is, –Se(r – i)T + cerT = –X + perT.

Another popular option trading strategy is called a protective put. In this
strategy, the investor is long the underlying asset and buys a put to insure
against downward movements in the asset price. The profit function for this
strategy is

πbuy-write T, πlong asset T, πshort call T,+=

ST Se r i–( )T
– cerT                   if ST X<+

ST Se r i–( )T
– ST X–( )– cerT   if ST X≥+

⎩
⎪
⎨
⎪
⎧

=

ST Se r i–( )T
– cerT                   if ST X<+

X Se r i–( )T
– cerT                    if ST X≥+

⎩
⎪
⎨
⎪
⎧

=

FIGURE 10.9 Terminal profit diagram of a buy-write or covered call strategy (i.e., long the 
asset and short a call option). 
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(10.18)

as is illustrated in Figure 10.10. The protective put strategy appears to be noth-
ing more that a synthetic long call position. As (10.18) shows, the lowest profit
from holding the protective put position is X – Se(r – i)T – perT. By put-call parity,
this amount equals –cerT. If the terminal asset price exceeds the exercise price,
the profit is ST – Se(r – i)T – perT. Substituting the put-call parity relation, we see
that, when the terminal asset price exceeds the exercise price, the profit from the
protective put strategy equals the profit from a long call position, ST – X – cerT.

In general, we do not add up the profit functions analytically as we did in
(10.17) and (10.18). It is much simpler to handle them numerically. The func-
tions OV_PROFIT_ASSET and OV_PROFIT_OPTION in the OPTVAL Func-
tion Library were designed to facilitate such analyses. These functions compute
the terminal profit of the eight asset/futures and option positions described by
(10.13a) through (10.16b). OV_PROFIT_ASSET handles long and short asset
and futures positions, and OV_PROFIT_OPTION handles long and short call
and put option positions.

FIGURE 10.10 Terminal profit diagrams of a protective put strategy (i.e., long the asset and 
long a put option). 

πprotective put T, πlong asset T, πlong put T,+=

ST Se r i–( )T
– X ST–( ) perT   if ST X<–+

ST Se r i–( )T
– perT

–                     if ST X≥
⎩
⎪
⎨
⎪
⎧

=

X Se r i–( )T
– perT

–                      if ST X<

ST Se r i–( )T
– perT
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ILLUSTRATION 10.4 Plot profit function of straddle.

Assume that the current asset price is 50 and that the prices of at-the-money, three-
month options are 4.196 for the call and 3.701 for the put. Assume that the risk-free rate
of interest is 6%, and the asset has an income rate of 2%. Plot the profit functions for (1)
a portfolio that consists of one long call and one long put, and (2) two long calls and two
long puts. Keep the axes on the same scale so that you can compare the results.

A portfolio that consists of a long call and a long put at the same exercise price is
called a straddle or a volatility spread. The profit function of a straddle that consists of
nc calls and np puts is 

To see the terminal profit diagram for this strategy, we simply set up a terminal asset price
column in a spreadsheet in Excel. For expositional convenience, let the grid run from 0 to
100 by increments of 10.13 Next, compute the terminal values of the call and the put condi-
tional on each terminal asset price. The syntax of the OV_PROFIT_OPTION function is

OV_PROFIT_OPTION(st, op, x, t, r, np, cp)

where st is the terminal asset price, op is the current option price, x is the exercise price
of the option, t is its time to expiration, r is the risk-free interest rate, np is the number of
option contracts (positive for a long position and negative for a short), and a call/put
indicator cp (“C” or “c” for call, and “P” or “p” for put). Finally, sum the call and put
values for each level of asset price. The profit diagram for the first volatility spread is

Next, repeat the procedure, except increase the number of option contracts in the
function call from 1 to 2. This new volatility spread has a profit function that appears as

13 In practice, a finer increment should be used. Our purpose here is only to illustrate the tech-
nique.

πstraddle T, ncπlong call T, npπlong put T,+=
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Comparing the two figures, we see that the breakeven prices are the same. The cost of the
second strategy is double the first. The rate at which profits are realized should the asset
price rise or fall also doubles.

BREAKEVEN PROBABILITIES

Computing the probability that a particular strategy will be profitable at expira-
tion depends upon the assumption regarding the distribution of asset price at
time T. Assuming the distribution is lognormal, the mechanics were furnished in
Chapter 7. Prior to applying those mechanics, however, it is necessary to com-
pute the breakeven asset prices for the strategy at hand. Sometimes, the
breakeven asset prices are most easily computed analytically. At other times, it is
simpler to search numerically for the points at which the terminal portfolio
profit is 0. Below we illustrate the former approach. 

ILLUSTRATION 10.5 Compute risk-neutral and risk-averse probabilities of straddle being prof-
itable.

Assume that the current asset price is 50 and that the prices of at-the-money, 3-month
options are 4.196 for the call and 3.701 for the put. Assume that the risk-free rate of
interest is 6%, and that the asset has an expected rate of return of 8% and an income
rate of 2%. Compute the risk-neutral and risk-averse probabilities of the straddle being
profitable at expiration. 

The first step is to compute the breakeven asset prices. For a long straddle position,
for example, two breakeven points exist. One breakeven point exists where the terminal
asset price ST equals the value BEl = X – (c + p)erT, and the other where ST equals the
value BEu = X + (c + p)erT. This long straddle position makes money where ST < BEl and
where ST > BEu. For the problem at hand, the lower breakeven asset price is BEl = 50 –
(4.196 + 3.701)e0.06(0.25) = 41.984 and the upper breakeven asset price is BEu = 50 +
(4.196 + 3.701)e0.06(0.25) = 58.016.

Pr
of

it
50

40

30

20

10

0

–10

–20

–30

–40

–50
Terminal asset price

0 20 40 60 80 100

Long call

Long put

Straddle



Risk Management Strategies: Options 373

Assuming that the asset price is log-normally distributed at the options’ expiration,
the risk-neutral probability that the straddle will be profitable at expiration can be found
by using the cumulative standard normal distribution function, that is, 

where

and

The problem information appears incomplete, however, in that we know all of the parame-
ters in dl and du except σ. Since we know the initial option prices, this problem is not insur-
mountable. We simply set the option prices equal to the BSM option valuation formula and
solve for the implied volatility. The OPTVAL Library function OV_OPTION_ISD may
prove useful here. The implied volatility of both the call and the put is 40%.

With the volatility parameter in hand, the rest is computation. Here the OPTVAL
Library function OV_OPTION_ASSET_PROB may prove useful. The syntax of the func-
tion is

OV_OPTION_ASSET_PROB(s, x, t, alpha, v, ab)

where s is the current asset price, x is the breakeven price, t is the time to expiration,
alpha is the asset’s expected rate of price appreciation (equals the risk-free rate less the
income rate in a risk-neutral world and the expected rate of return less the income rate is
a risk-averse world), v is the asset’s return volatility rate, and ab is an indicator variable
(“A” or “a” for the probability that the asset price will be above the break-even price x
and “B” or “b” for the probability that the asset price will be below the break-even
price, x). Using this function, the risk-neutral probabilities are

Pr(ST < 41.984) = 20.51%   and   Pr(ST > 58.016) = 21.38%

for a total probability of 41.88%. The risk-averse probabilities are

Pr(ST < 41.984) = 19.80%   and   Pr(ST > 58.016) = 22.11%

for a total of 41.92%. The difference between the risk-averse and risk-neutral probabili-
ties is driven by the fact that in a risk-averse world the asset is expected to appreciate at
a rate of 6%, while in a risk-neutral world the expected rate of price appreciation is 4%.

EXPECTED TERMINAL PROFIT/RETURN

Computing the expected profit/return for an option trading strategy is difficult
to do analytically. The reason is that option profit is a nonlinear function of the
underlying asset price. The expected terminal value of the call is simply the
expected terminal value of the asset less the exercise price. To get a handle on
these issues, Monte Carlo simulation is often used. 

Pr ST BEl or ST BEu><( ) N d1–( ) N du( )+=

dl

SebT BEl⁄( ) 0.5σ2T–ln

σ T
--------------------------------------------------------------=

du

SebT BEu⁄( ) 0.5σ2T–ln

σ T
---------------------------------------------------------------=
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To understand how to use Monte Carlo simulation in this context, recall
that, in Chapter 9, we showed that under the BSM assumptions the evolution of
the asset price through time can be modeled as 

(10.19)

where α is the expected rate of price appreciation on the underlying asset, σ is
the standard deviation of the asset’s return, ∆t is a fixed interval of time (e.g., a
day, a week, or a month), and ε is a normally distributed random variable with
zero mean and unit standard deviation. In this initial discussion, we assume that
∆t is the life of the option T. Thus, for clarity, we write (10.20) as

(10.20)

where S is the current asset price. Generating a distribution of terminal asset
distribution is a matter of drawing numbers from a univariate standard normal
distribution (as we did in Chapter 9) and running them through (10.21), record-
ing each terminal asset price as it is generated. Then, for each terminal asset
price, we compute the option portfolio profit using the profit functions provided
earlier in the chapter. We then average across all terminal portfolio profits to get
an estimate of the expected terminal profit. 

The main problem with using the Monte Carlo simulation is that a great
number of runs are necessary. Even with as many as 10,000 drawings, the results
can be quite misleading. An alternative, yet surprisingly accurate, means of com-
puting the expected profit of a trading strategy numerically involves replacing the
continuous lognormal asset price distribution with a discrete log of asset price
distribution. Specifically, we (1) divide the continuous log of asset price distribu-
tion into bins; (2) identify the expected terminal log of asset price within each
bin; (3) compute the expected strategy profit for each bin based on the expected
terminal asset price; (4) compute the probability that the terminal asset price falls
in each bin; and (5) sum the products of the expected profit and probability
within each bin to get the expected terminal profit of the trading strategy.

To be more specific regarding how the procedure works, start by setting up
the bins. Define the range of possible future asset prices as, say, four standard
deviations from the expected asset price, SeαT. Under the BSM assumptions, this
should account for 99.994% of the asset price distribution. To set up the grid in
asset price, work initially with the natural logarithm of asset price. We know
that ln(ST/S0) is normally distributed with mean (α – 0.5σ2)T and standard devi-
ation . Thus, define the range of the logarithm of asset price to go from 

(10.21)

to 

(10.22)

St t∆+ Ste
α σ2

– 2⁄( ) t∆ σ t∆ ε+
=

ST Se α σ2
– 2⁄( ) t∆ σ Tε+

=

σ T

Smin( )ln S0( ) α 0.5σ2
–( )T 4σ T–+ln=

Smax( )ln S0( ) α 0.5σ2
–( )T 4σ T+ +ln=
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Next divide the range into n equal sized increments. The increment width is
defined as 

(10.23)

Define the first terminal asset price bin to be lnSmin – 0.5lnSinc to lnSmin + 0.5lnSinc.
For that bin, assume the terminal asset price is the average of the lower and upper
bounds to the bin, that is, set the asset price to lnSmin. Proceed through the range of
terminal asset prices. In general, the asset price is assumed to be lnSi over the ith
interval, which has range lnSi ± 0.5lnSinc, where

lnSi = lnSmin + (i – 1)lnSinc (10.24)

The probability that the terminal asset price will fall in this range is

Pr(Sl,i < ST < Su,i) = N(–du,i) – N(–dl,i) (10.25)

where 

(10.25a)

and 

(10.25b)

The expected terminal asset price may, therefore, be computed as

(10.26)

The continuously compounded expected rate of price appreciation on the asset is

(10.27)

(The expected rate of return on the asset equals the expected rate of price appre-
ciation plus the income rate, α + i.) Figure 10.11 illustrates the nature of the dis-
crete log of asset price distribution. In Panel A, only 11 intervals are used, while
in Panel B 101 intervals are used. Obviously, the degree of precision depends on
the number of intervals n—the higher is n, the more precise is the approxima-
tion. The cost is, of course, computational time.

Sincln
Smaxln Sminln–

n 1–
---------------------------------------≡

du i,

SeαT Su i,⁄( ) 0.5σ2T–ln

σ T
-------------------------------------------------------------=

dl i,

SeαT Sl i,⁄( ) 0.5σ2T–ln

σ T
------------------------------------------------------------=

E ST( ) N du i,–( ) N dl i,–( )–[ ]Si T,
i 1=

n

∑=

α
E ST( ) S⁄[ ]ln

T
--------------------------------=
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ILLUSTRATION 10.6 Compute expected asset price.

Compute the expected asset price in three months, assuming the current asset price is 50,
its expected return is 8%, its income rate is 2%, and its volatility rate is 40%. The risk-
free rate of interest is 5%. Compute the expected terminal asset price and the expected
asset return under the assumption of risk-neutrality. Recompute the expected terminal
profit/return assuming investors are risk averse.

The first step is to compute the range of asset prices in three months. The expected
rate of price appreciation under risk-neutrality is 0.05 – 0.02 = 0.03. The minimum of
the asset price range is determined by

and the maximum is

For illustrative purposes, the number of intervals is set equal to 11, so that the width of
each interval is 

The values of lnSi are shown in the table below.

The lower and upper bounds of the interval are shown in the columns to the right of
lnSi. The values reported in the first row are 3.100 – 0.5(0.16) and 3.100 + 0.5(0.16).
The probability of being between these two levels of lnSi is essentially zero.14 The asset
price for this interval is e3.100 = 22.187.

Multiplying the probability and asset price in each row and then summing across
rows produces a value of 50.4294. This is the expected terminal asset price under the
assumption that investors are risk neutral. According to the parameters of the problem,

Log of Asset Price Asset Price
Prob.

in
Interval

Asset
Price
Si,T

Prob.
Times
Hi,T

Price
Interval lnSi

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

  1 3.100 3.020 3.180   20.482   24.035 0.00015   22.187   0.0034

  2 3.260 3.180 3.340   24.035   28.206 0.00240   26.037   0.0624

  3 3.420 3.340 3.500   28.206   33.100 0.02019   30.555   0.6171

  4 3.580 3.500 3.660   33.100   38.843 0.09232   35.856   3.3103

  5 3.740 3.660 3.820   38.843   45.582 0.22951   42.078   9.6572

  6 3.900 3.820 3.980   45.582   53.492 0.31084   49.379 15.3491

  7 4.060 3.980 4.140   53.492   62.773 0.22951   57.947 13.2993

  8 4.220 4.140 4.300   62.773   73.665 0.09232   68.001   6.2778

  9 4.380 4.300 4.460   73.665   86.446 0.02019   79.800   1.6115

10 4.540 4.460 4.620   86.446 101.446 0.00240   93.646   0.2244

11 4.700 4.620 4.780 101.446 119.048 0.00015 109.895   0.0169

E(ST) 50.4294

14 Note that the probabilities are symmetric about the middle row in the table. This is because
the logarithm of asset prices is normally distributed.

Smin( )ln 50( )ln 0.03 0.5 0.402( )–( ) 0.25( ) 4 0.40( ) 0.25–+ 3.100= =

Smax( )ln 50( )ln 0.03 0.5 0.402( )–( ) 0.25( ) 4 0.40( ) 0.25+ + 4.700= =

Sincln
4.700 3.100–

10
------------------------------------ 0.160= =
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however, the expected terminal asset price is E(ST) = SebT = 50e0.03(0.25) = 50.3764. The
difference of 0.0529 is approximation error. This difference will disappear as the number
of intervals is increased. With 101 intervals, expected terminal price is 50.3733, a differ-
ence of only –0.0031. The asset’s expected rate of price appreciation is

very close to the 3% used in the construction of the illustration.15 The expected rate of
return of the asset using this computational procedure is 0.02975 + 0.02 = 4.975%.

The expected profit is greater than zero in a world where investors are risk-averse.
They demand a risk premium for holding risky assets. Repeating our computations in the
table above, but setting the expected rate of price appreciation to 6% instead of 3%, the
expected terminal asset price in our example is 50.8090. With 101 intervals, it is
50.7525. Its value based on the expected rate of price appreciation is 50e0.06(0.25) =
50.7557. The expected rate of price appreciation is

The expected rate of return on the asset using this computational procedure is 7.975%,
very close to the 8% assumed in this illustration.

FIGURE 10.11 Discrete asset price distributions based on continuous log-normal asset price 
distribution. Panel A contains 11 intervals, and Panel B contains 101 intervals.
Panel A. 11 intervals

15 Computing the expected terminal price and expected rate of price appreciation for the asset
in this illustration is, of course, superfluous. We engage in these computations only to gauge
the degree of error that is present in our computational procedure.  

α
50.3733 50⁄( )ln

0.25
------------------------------------------ 2.975%= =

α
50.7557 50⁄( )ln

0.25
------------------------------------------ 5.975%= =
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FIGURE 10.11     (Continued)
Panel B. 101 intervals

With the asset price bins and probabilities computed, computing the profit
from an option trading strategy is straightforward. In each bin, we compute the
profit based on the asset price in the bin and multiply by the probability of being
in the bin. Then, sum across all bins, that is,

(10.28)

where πi,T is the strategy profit in bin i conditional on asset price Si,T

ILLUSTRATION 10.7 Compute expected profit from straddle.

Assume that the asset in Illustration 10.6 has a call and a put written on it. Both options
have an exercise price of 50 and three months remaining to expiration. The price of the call
is 4.1368 and the price of the put is 3.7650. (Note that the option values were computed
using the BSM formula.) Compute the expected profit/return from a straddle formed using
these options. Assume investors are risk-neutral, and then assume they are risk-averse.

Illustration 10.6 takes you through the steps of setting up the asset price intervals. The
only step that remains is computing the straddle’s profit in each of the bins. The column
labeled “Straddle Profit” contains the profit in each bin conditional on the terminal asset
price for that bin. Each profit entry is multiplied by its respective probability to generate
the last column. The last column is summed to find the expected profit from the strategy. In
a risk-neutral world, the expected profit should be equal to zero. Using 11 intervals, the
expected profit in our illustration is –0.0284. This profit would go to zero as the number of
intervals in the procedure is increased. At 101 intervals, the expected profit is 0.0002.

E πT( ) N du i,–( ) N dl i,–( )–[ ]πi T,
i 1=

n

∑=
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Like in the case of the underlying asset, the expected rate of return on this strategy
may be computed by taking the expected terminal value of the position, dividing it by the
initial value, and annualizing. The initial value of the portfolio is 4.1368 + 3.7650 =
7.9018. The expected terminal value equals the initial value carried until time T at the
risk-free rate, 7.9018e0.05(0.25) = 8.0012, plus the expected profit, 0.0002, or 8.0014. The
expected rate of return on the strategy is

almost exactly equal to the risk-free rate of interest, as it should be in a risk-neutral world.
The expected profit is greater than zero in a world where investors are risk-averse. They

demand a risk premium for holding risky assets. Repeating our computations in the table
above, but setting the expected rate of price appreciation to 6% instead of 3%, the expected
profit with 11 intervals is –0.0854. This result is driven by the fact that too few intervals were
used. At 101 intervals, the expected profit becomes 0.0484. The expected terminal value
equals the initial value carried until time T at the risk-free rate, 7.9018e0.05(0.25) = 8.0012,
plus the expected profit, 0.0484, or 8.0496. The expected rate of return on the strategy is

SUMMARY

This chapter focuses on the two main categories of option trading strategies—
dynamic and passive. Dynamic strategies are those that focus on expected
return/risk management over the next short interval of time. For these strate-
gies, we show the expected return/risk tradeoff and develop a set of dynamic
risk management tools. These tools account for unexpected short-term move-
ments in the asset price, volatility, and interest rates, as well as the natural ero-
sion of option’s time value as it approaches expiration. Passive strategies involve
buying or selling a portfolio that includes options, and then holding the position

Price
Interval ln Si

Log of Asset Price Asset Price Prob.
in 

Interval

Asset
Price
Si,T

Straddle
Profit
πιιιι,T

Prob.
Times

πi,T
Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

  1 3.107 3.027 3.187   20.636   24.216 0.00015   22.354 19.644   0.0030

  2 3.267 3.187 3.347   24.216   28.418 0.00240   26.233 15.766   0.0378

  3 3.427 3.347 3.507   28.418   33.349 0.02019   30.785 11.214   0.2265

  4 3.587 3.507 3.667   33.349   39.135 0.09232   36.126   5.872   0.5421

  5 3.747 3.667 3.827   39.135   45.926 0.22951   42.395 –0.396 –0.0909

  6 3.907 3.827 3.987   45.926   53.894 0.31084   49.751 –7.752 –2.4096

  7 4.067 3.987 4.147   53.894   63.245 0.22951   58.383   0.382   0.0876

  8 4.227 4.147 4.307   63.245   74.219 0.09232   68.513 10.512   0.9704

  9 4.387 4.307 4.467   74.219   87.097 0.02019   80.401 22.400   0.4524

10 4.547 4.467 4.627   87.097 102.209 0.00240   94.351 36.350   0.0871

11 4.707 4.627 4.787 102.209 119.944 0.00015 110.722 52.721   0.0081

E(πT) –0.0854

8.0014 7.9018⁄( )ln

0.25
--------------------------------------------------- 5.008%=

8.0496 7.9018⁄( )ln

0.25
--------------------------------------------------- 7.412%=
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unchanged over a discrete interval such as the option’s time remaining until
expiration. To analyze these strategies, we develop terminal profit functions for
each of the eight basic security positions (i.e., long or short the asset, the
futures, and call and the put), and then show how to combine these functions to
analyze the terminal profits of a particular trading strategy. The lognormal asset
price mechanics introduced in Chapter 5 is brought back into the discussion to
allow us to make probabilistic statements regarding the trading strategy profit-
ability as well as expected profitability and expected rate of return. 
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11

 

 Stock Products

 

ptions on common stocks have been traded in the United States since the
1790s. Originally, trading took place in the over-the-counter market. Put/call

dealers would advertise their prices in the financial press, and interested buyers
would call a dealer. These contracts were not standardized with respect to exer-
cise prices or expiration dates. Without standardization, option positions were
often difficult to unwind prior to expiration. An investor wanting to reverse his
option position was forced to negotiate with the dealer with whom the original
trade was made. 

On April 26, 1973, the Chicago Board Options Exchange (CBOE) became
the world’s first organized secondary market for stock options. The beginnings
were modest. The “exchange” was in a small smokers’ lounge off the main floor
of the Chicago Board of Trade. The only options traded were calls,

 

1

 

 and calls
were available only on 16 New York Stock Exchange (NYSE) stocks. The mar-
ket was an immediate success. By 1975, the American Stock Exchange (AMEX)
and the Philadelphia Stock Exchange (PHLX) began listing stock options, fol-
lowed shortly thereafter by the Pacific Coast Exchange (PCE) and the NYSE.
Today, calls and puts trade in the United States on over 2,200 hundred different
stocks and on five exchanges. Worldwide, stock options trade on over 50
exchanges in 38 different countries. Futures contracts on individual stocks also
trade on a handful of exchanges worldwide, but their popularity pales by com-
parison. Due to a regulatory dispute, stock futures did not begin trading in the
United States until November 2002.

 

2

 

This chapter has three sections. In the first section, the trading activity of the
major stock derivatives markets worldwide is presented. U.S. stock option mar-

 

1 

 

The decision by the CBT to apply to the SEC for the trading of calls rather than calls and
puts was a political one. At the time, short selling of stocks was regarded with suspicion.
Rather than jeopardize its chances of having 

 

any

 

 stock option trading approved, the CBT’s
application was confined to options whose value increased as the stock price goes up. 

 

2 

 

Until late 2000, trading in single stock futures was prohibited in the United States by virtue
of the Johnson-Shad Accord (1984). In December 2000, Congress passed the Commodity Fu-
tures Modernization Act that, among other things, repealed the ban on single-stock futures,
clearing the path for trading in the U.S. stock futures began trading in the OneChicago and
NQLX markets on November 8, 2002.

O
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kets are discussed in detail. Stock option contract specifications are also provided.
In the second section, valuation principles based on the materials of Chapters 3
through 7 are summarized. For derivatives on common stocks, the discrete flow
valuation framework is most appropriate. In the United States, cash dividend pay-
ments are made quarterly. The third section contains a discussion of stock option
trading and risk management strategies. Dividend spread strategies, stock price
collars, and variable prepaid forward contracts are considered. Also considered
are strategies involving corporations buying and selling exchange-traded and
OTC options on their own shares. The chapter concludes with a brief summary.

 

MARKETS

 

Derivative contracts on individual common stocks trade both on exchanges and in
the OTC market. Of the two contract markets, the stock option market is by far
the most active in the United States. For the calendar year 2003, stock options
accounted for 99.7% of all single stock futures and option trading.

 

3

 

 
Stock futures trade on two exchanges in the United States—the OneChicago

Exchange (ONE) and NQLX.

 

4

 

 Both exchanges are fully electronic. OneChicago
is a joint venture of the Chicago Board Options Exchange, the Chicago Mercan-
tile Exchange, and the Chicago Board of Trade. During 2003, it had trading vol-
ume surpassing 1.6 million contracts. The NQLX is a wholly-owned company of
Euronext.liffe, which, in turn, is a wholly-owned subsidiary of Euronext NV. Its
trading volume during 2003 was approximately 60% of that of OneChicago.

Stock options trade on five exchanges in the United States—the Chicago Board
Options Exchange (CBOE), the American Stock Exchange (AMEX), the Pacific
Exchange (PCE), the Philadelphia Exchange (PHLX), and the International Securi-
ties Exchange (ISE).

 

5

 

 The ISE is fully electronic. Figure 11.1 provides a breakdown
of contract volume by exchange for the year 2003. The ISE had the greatest trading
volume with 30% of all U.S. stock option trading volume. The CBOE was next
with 26%. The AMEX had 21%, the PHLX 13%, and the PCX 10%.

As of December 2003, 2,227 stocks had options listed on exchanges in the
United States. The decision about whether to list options on a particular stock
rests only with the exchange. The firm/stock must satisfy certain listing criteria.
The CBOE, for example, requires that the firm has:

 

3 

 

Historical statistics for single stock futures and options trading in the United States are avail-
able on the website of the Options Clearing Corporation (www.optionsclearing.com).

 

4 

 

U.S. stock futures and stock option trades clear through the Option Clearing Corporation or
OCC. Founded in 1973, the OCC is the largest clearing organization in the world for single
stock options and futures and was the first clearing house to receive an AAA credit rating from
Standard & Poor's Corporation. Operating under the jurisdiction of the Securities and Ex-
change Commission and the Commodity Futures Trading Commission, OCC is jointly owned
by the American Stock Exchange, Chicago Board Options Exchange, International Securities
Exchange, Pacific Exchange and Philadelphia Stock Exchange.

 

5 

 

The New York Stock Exchange (NYSE) made markets in stock options until April 1997
when it sold its market to the CBOE and reduced the number of U.S. markets from five to
four. With the ISE launching trading of stock options on May 26, 2000, the number of ex-
changes returned to five.
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FIGURE 11.1

 

Share of total U.S. stock option trading volume accounted for by each option 
exchange during the calendar year 2003. 

 

Source: 

 

www.optionsclearing.com.

 

1.

 

A minimum of seven million shares outstanding not including those held by
insiders.

 

2.

 

A minimum of 2,000 shareholders.

In addition, it requires that stock be:

 

3.

 

Traded at least 2,400,000 shares in the last 12 months.

 

4.

 

Closed at a market price of at least $7.50 per share for the majority of the busi-
ness days during the last three months.

 

6

 

To identify new stock options, the CBOE monitors the trading activity of all
stocks satisfying the listing criteria. Among the factors considered in gauging the
market’s potential interest are the stock’s trading volume and return volatility.

 

7

 

The higher the trading volume and the greater the volatility, the greater the
potential interest. Once the CBOE decides list options on a particular stock, it
registers with the SEC. Trading begins a few days later. As a matter of courtesy,
the CBOE sends a letter informing the firm of its decision.

 

Stock Futures

 

Stock futures trade in a number of countries worldwide, with the U.S. markets
being the most active. Table 11.1 provides the specifications of the single-stock
futures contracts traded on the OneChicago Exchange. Each futures is written
on 100 shares of stock, with prices quoted in pennies per share. They trade from
8:15AM to 3PM CST. Futures contracts on a particular stock are on the quar-
terly expiration cycles Mar/Jun/Sep/Dec. At any time the next two quarterly

 

6 

 

Chicago Board Options Exchange 

 

Constitution and Rules

 

 (May 2002), Paragraph 2113.

 

7 

 

Mayhew and Mihov (2004) provide empirical support for the proposition that volume and
volatility in the underlying stock market are important in a stock option exchange’s listing de-
cision.

PHLX
13%

PCX
10%

ISE
30%

CBOE
26%

AMEX
21%
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expirations as well as the next two monthly serial expirations are listed. The
contracts expire on the third Friday on the contract month. Physical delivery of
the underlying shares takes places three business days after contract expiration. 

 

TABLE 11.1  

 

Selected terms of single stock futures contract traded on OneChicago Exchange.

Contract size 100 shares of underlying stock
Minimum price fluctuation (tick size) $0.01 

 

×

 

 100 shares = $1.00
Regular trading hours 9:15 

 

AM

 

–4:02 

 

PM

 

 Eastern Time
Position limits None prior to the last five trading days prior to 

expiration. During the last five trading days, 
either 13,500 net contracts or 22,500 net con-
tracts (long or short) as per CFTC require-
ments.

Daily price limits None
Reportable position limit 200 contracts
Contract months Two quarterly expirations and two serial 

months trade at all times for a total of four 
expirations per product class. OneChicago 
follows the quarterly cycle of March (H), June 
(M), September (U), and December (Z). The 
serial months traded are the two nearby non-
quarterly contract months.

Expiration date/last trading day Third Friday of contract month or, if such Fri-
day is not a business day, the immediately pre-
ceding business day.

Settlement/delivery Physical delivery of underlying security on third 
business day following the last trading day.

 

Additional Information

 

Margin requirements Initial and maintenance margin requirement of 
20% of the cash value of the contract. Certain 
offsets may apply.

Short sale advantages No uptick required to initiate a short position. 
No stock borrowing costs or risks.

Clearing and settlement Trades executed at OneChicago are cleared and 
settled by the Options Clearing Corporation 
(OCC) or by Chicago Mercantile Exchange 
Inc. (CME).

U.S. Government regulator OneChicago is jointly regulated by the Com-
modity Futures Trading Commission (CFTC) 
and the Securities and Exchange Commission 
(SEC). 
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Stock Options

 

The stock options traded in the United States are also, for the most part, stan-
dardized products. Each stock option contract is written on 100 shares of stock,
has its price reported in pennies per share,

 

8

 

 expires on the Saturday after the
third Friday of the contract month, and is American-style. For stocks with a
share price in excess of $25, exercise price increments are usually in $5 incre-
ments, and, for share prices less than $25, exercise prices are in $2.50 incre-
ments. Options on a particular stock are on one of three quarterly expiration
cycles (Jan/Apr/Jul/Oct, Feb/May/Aug/Nov, or Mar/Jun/Sep/Dec), and the two
nearest contract months on the quarterly cycle are listed at any time. In addi-
tion, there will be options listed on the two nearby months, and, in the event
that one of the two nearest months is on the quarterly cycle, the next quarterly
expiration will also be traded. Dell’s options, for example, are on the Feb/May/
Aug/Nov cycle. This means that, if we are standing at the end of December
(after the December options have expired), January, February, May, and August
option expirations will be traded. Under these rules, stock options are short-
term, with times to expiration less than nine months. That is not to say that
longer term options do not exist. In the 1980s, the CBOE, in response to inves-
tor demand, began trading “Long-term Equity Anticipation Securities,” more
popularly known as “Leaps.” Leaps, by convention, expire in the month of Jan-
uary, and have times to expiration up to three years. 

Stock options are normally “unprotected” from cash dividend payments on
the underlying stock. Dividend payments during the option’s life reduce the price
of the stock and hence reduce (increase) the value of the call (put). In the event of
extraordinarily large cash dividend distributions (i.e., 5% of the prevailing stock
price); however, the Options Clearing Corporation (OCC) “protects” the value
of option contracts by adjusting the exercise prices of outstanding option series
downward by the amount of the cash dividend payment.

 

9

 

 Such an adjustment
largely preserves the value of the option. Stock options are “protected” from the
effects of stock splits and stock dividends. When a firm splits its shares or pays a
stock dividend, the option’s exercise price and open interest are adjusted accord-
ingly. A 5-for-4 stock split (or a 25% stock dividend), for example, reduces a $50
exercise price to $40 and increases the number of options outstanding by 25%.
In the event of the stock split/stock dividend produces a non-integer exercise
price, the exercise price is rounded to the nearest 1/8.

The terms of stock option contracts are also adjusted in the event of a cor-
porate restructuring or acquisition. On April 30, 2004, for example, Abbott
Laboratories (“ABT”) distributed the shares of Hospira, Inc. (“HSP”) to ABT
shareholders. The underlying deliverable security for outstanding ABT option

 

8 

 

Under current exchange rules, the minimum tick size for options trading up to $3 is five cents
and for options trading above $3 is 10 cents.

 

9 

 

On July 20, 2004, Microsoft Corporation (“MSFT”) announced a special cash dividend of
$3 per share. At the time, the MSFT share price closed at $28.32, so the distribution amounted
to 10.6% of the prevailing share price. On November 9, 2004, Microsoft shareholders ap-
proved a $3 special cash dividend payable on December 2, 2004, to shareholders of record on
November 17, 2004. Therefore, as of November 15, 2004 (i.e., the ex-dividend date of Mi-
crosoft’s shares), the exercise prices of all MSFT option series were reduced by $3.
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series became 100 shares of ABT and 10 shares of HSP. For mergers and acqui-
sitions, the shares of the target firm are adjusted, with the nature of the adjust-
ment depending on how the bidding firm pays for the shares of the target firm. If
the bidding firm acquires the shares of the target using its own shares to pay for
the shares of the target firm, an adjustment is made to the number of deliverable
shares. On April 26, 2004, for example, AngloGold Limited acquired Ashanti
Goldfields Company Limited, paying 0.29 shares of the newly formed Angl-
oGold Ashanti Limited (AU). Hence, the deliverable security on outstanding
Ashanti option series became 29 shares of AU. If the bidding firm pays cash for
the target firm, the adjustment is severe in the sense that the target firm’s share
price becomes the cash offer price. On March 29, 2004, for example, Henkel
KGaA acquired the shares of Dial Corporation (DL) for $28.75 in cash. The
deliverable security on outstanding DL option series therefore became $28.75 in
cash. While the outstanding option contracts expire at their normal time, in-the-
money options should be exercised immediately since there is no prospect of
earning more money (i.e., the security price is fixed). Out-of-the-money option
prices immediately go to 0. These three adjustments are only examples of what
may occur. Many restructurings and acquisitions have more complicated terms,
and, consequently, the revisions to the terms of stock option contracts become
more complicated. A panel from the OCC’s Securities Committee

 

10

 

 attempts to
make each of these adjustments in an equitable fashion for all parties concerned.
Details of all contract adjustments can be found on the OCC’s website,
www.optionsclearing.com.

Table 11.2A (11.2B) contains a summary of trading of Dell stock options
(leaps) midday on Tuesday, January 2004. The row in Table 11.2A is for the
January 2004 call and put with an exercise price of 5. The expiration month and
the exercise price are reported in the columns headed “Calls” and “Puts.” Dell
has four expiration months listed—January 2004, February 2004, May 2004,
and August 2004. Dell’s options are on the Feb/May/Aug/Nov quarterly expira-
tion cycle. According to the rules described earlier, this means the January, Feb-
ruary, May, and August options should be traded. The first five characters of the
term in parenthesis is the option series ticker symbol. The call’s ticker symbol,
for example, is “DLYAA.” Note that each ticker symbol in the table is unique.
This is its identifier for trading purposes. The table shows that neither the call
nor the put traded on January 6, at least as of the time the prices were down-
loaded (i.e., their volumes of trading are 0). Both options have traded at some
time in the past, however, since the call has open interest of 580 and the put has
open interest of 245. The call has a bid/ask price quote of 30.00/30.10. Since
the current stock price quotes are 35.05/35.06, there is no arbitrage price viola-
tion. The last trade price, 28.60, lies outside the option’s prevailing bid/ask
quotes. This merely indicates that the market price of the option has moved
since the time of the last trade. When the last trade occurred cannot be inferred
from the information in the table. All that can be inferred is that the trade did
not occur on January 6, 2004.

 

10 

 

The panel consists of two representatives from the exchanges on which the affected option
is traded.



 

Stock Products

 

389

 

TABLE 11.2A  

 

Summary of price, volume, and open interest information for Dell stock 
options drawn from www.cboe.com at 1:53 

 

PM

 

 on January 6, 2004. Underlying stock has 
contemporaneous bid (ask) price of 35.05 (35.06).

 

Calls Last Sale Bid Ask Vol Open Int

 

04 Jan 5.00 (DLY AA-E) 28.60 30.00 30.10        0        580
04 Jan 7.50 (DLY AU-E) 27.40 27.50 27.60        0        935
04 Jan 10.00 (DLY AB-E) 25.60 25.00 25.10        0     2,554
04 Jan 12.50 (DLY AV-E) 22.30 22.50 22.60        0     1,872
04 Jan 15.00 (DLY AC-E) 19.90 20.00 20.10        0     2,886
04 Jan 17.50 (DLY AW-E) 17.30 17.50 17.60        0     2,554
04 Jan 20.00 (DLY AD-E) 14.50 15.00 15.10        0   10,362
04 Jan 22.50 (DLQ AX-E) 11.70 12.50 12.60        0     4,120
04 Jan 25.00 (DLQ AE-E) 10.20 10.00 10.10        2   22,611
04 Jan 27.50 (DLQ AY-E)   7.70   7.50   7.60        0   32,333
04 Jan 30.00 (DLQ AF-E)   5.10   5.00   5.10        2   42,340
04 Jan 32.50 (DLQ AZ-E)   2.65   2.55   2.65    140   47,599
04 Jan 35.00 (DLQ AG-E)   0.55   0.55   0.65 1,490 126,530
04 Jan 37.50 (DLQ AT-E)   0.05   0.00   0.05        0   49,257
04 Jan 40.00 (DLQ AH-E)   0.05   0.00   0.05        0   42,460
04 Jan 42.50 (DLQ AS-E)   0.05   0.00   0.05        0        255
04 Jan 45.00 (DLQ AI-E)   0.05   0.00   0.05        0     8,573
04 Jan 50.00 (DLQ AJ-E)   0.10   0.00   0.05        0     9,076
04 Feb 20.00 (DLY BD-E) 14.90 15.00 15.20        0     1,313
04 Feb 22.50 (DLQ BX-E) 12.30 12.50 12.70        0     1,165
04 Feb 25.00 (DLQ BE-E)   8.50 10.00 10.20        0     1,954
04 Feb 27.50 (DLQ BY-E)   6.80   7.60   7.70        0     1,657
04 Feb 30.00 (DLQ BF-E)   5.40   5.20   5.30        0     2,477
04 Feb 32.50 (DLQ BZ-E)   3.20   3.00   3.10    438   15,854
04 Feb 35.00 (DLQ BG-E)   1.45   1.30   1.40      88   32,620
04 Feb 37.50 (DLQ BT-E)   0.40   0.35   0.45 3,784   23,799
04 Feb 40.00 (DLQ BH-E)   0.10   0.05   0.10        0     8,146
04 Feb 42.50 (DLQ BS-E)   0.05   0.00   0.05        0     1,285
04 Feb 45.00 (DLQ BI-E)   0.05   0.00   0.05        0     1,318
04 May 20.00 (DLY ED-E) 15.00 15.10 15.20        0     2,194
04 May 22.50 (DLQ EX-E) 12.40 12.60 12.80        0     1,066
04 May 25.00 (DLQ EE-E)   9.50 10.20 10.40        0        862
04 May 27.50 (DLQ EY-E)   7.40   7.90   8.00        0        695
04 May 30.00 (DLQ EF-E)   5.30   5.70   5.80        0     1,981
04 May 32.50 (DLQ EZ-E)   3.90   3.70   3.90        0     2,664
04 May 35.00 (DLQ EG-E)   2.25   2.20   2.30      84   16,581
04 May 37.50 (DLQ ET-E)   1.15   1.15   1.20      54   11,003
04 May 40.00 (DLQ EH-E)   0.55   0.50   0.60        8   11,819
04 May 42.50 (DLQ ES-E)   0.15   0.20   0.25        0     3,187
04 May 45.00 (DLQ EI-E)   0.10   0.05   0.10        0        183
04 Aug 20.00 (DLY HD-E)   0.00 15.20 15.30        0            0
04 Aug 22.50 (DLQ HX-E)   0.00 12.80 12.90        0          10
04 Aug 25.00 (DLQ HE-E) 10.10 10.40 10.60        0          18
04 Aug 27.50 (DLQ HY-E)   7.60   8.20   8.30        0        110
04 Aug 30.00 (DLQ HF-E)   6.30   6.20   6.30        0          71
04 Aug 32.50 (DLQ HZ-E)   4.40   4.40   4.50        0        221
04 Aug 35.00 (DLQ HG-E)   2.95   2.90   3.00        8        823
04 Aug 37.50 (DLQ HT-E)   1.70   1.75   1.85    104        365
04 Aug 40.00 (DLQ HH-E)   1.00   1.00   1.05      38        213
04 Aug 42.50 (DLQ HS-E)   0.00   0.50   0.60        0        207
04 Aug 45.00 (DLQ HI-E)   0.00   0.25   0.30        0            6

Total 6,240 552,764
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TABLE 11.2A

 

     (Continued)

 

Puts Last Sale Bid Ask Vol Open Int

 

04 Jan 5.00 (DLY MA-E)   0.05   0.00   0.05        0        245
04 Jan 7.50 (DLY MU-E)   0.45   0.00   0.05        0     1,012
04 Jan 10.00 (DLY MB-E)   0.05   0.00   0.05        0   12,981
04 Jan 12.50 (DLY MV-E)   0.05   0.00   0.05        0     1,209
04 Jan 15.00 (DLY MC-E)   0.05   0.00   0.05        0     7,190
04 Jan 17.50 (DLY MW-E)   0.10   0.00   0.05        0     9,807
04 Jan 20.00 (DLY MD-E)   0.05   0.00   0.05        0   27,524
04 Jan 22.50 (DLQ MX-E)   0.05   0.00   0.05        0     7,753
04 Jan 25.00 (DLQ ME-E)   0.05   0.00   0.05        0   23,350
04 Jan 27.50 (DLQ MY-E)   0.05   0.00   0.05        0   21,488
04 Jan 30.00 (DLQ MF-E)   0.05   0.00   0.05        0   39,133
04 Jan 32.50 (DLQ MZ-E)   0.05   0.00   0.10      70   34,591
04 Jan 35.00 (DLQ MG-E)   0.55   0.45   0.55    485   39,290
04 Jan 37.50 (DLQ MT-E)   2.55   2.40   2.50      10     4,404
04 Jan 40.00 (DLQ MH-E)   5.10   4.90   5.00        0     6,914
04 Jan 42.50 (DLQ MS-E)   0.00   7.40   7.50        0        147
04 Jan 45.00 (DLQ MI-E) 10.50   9.90 10.00        0        149
04 Jan 50.00 (DLQ MJ-E) 14.20 14.90 15.00        0        168
04 Feb 20.00 (DLY ND-E)   0.05   0.00   0.05        0          45
04 Feb 22.50 (DLQ NX-E)   0.05   0.00   0.05        0        620
04 Feb 25.00 (DLQ NE-E)   0.05   0.00   0.05        0     3,275
04 Feb 27.50 (DLQ NY-E)   0.10   0.05   0.10        0     3,721
04 Feb 30.00 (DLQ NF-E)   0.15   0.10   0.20    200     7,054
04 Feb 32.50 (DLQ NZ-E)   0.50   0.40   0.45      15   18,014
04 Feb 35.00 (DLQ NG-E)   1.25   1.20   1.30    265   10,863
04 Feb 37.50 (DLQ NT-E)   3.00   2.75   2.85      20     2,117
04 Feb 40.00 (DLQ NH-E)   5.80   4.90   5.10        0     1,051
04 Feb 42.50 (DLQ NS-E)   7.90   7.40   7.50        0          32
04 Feb 45.00 (DLQ NI-E) 10.50   9.90 10.00        0          97
04 May 20.00 (DLY QD-E)   0.00   0.00   0.05        0            0
04 May 22.50 (DLQ QX-E)   0.15   0.05   0.10        0        670
04 May 25.00 (DLQ QE-E)   0.20   0.10   0.15        0     1,252
04 May 27.50 (DLQ QY-E)   0.35   0.25   0.30        0     1,959
04 May 30.00 (DLQ QF-E)   0.55   0.50   0.60        0   11,585
04 May 32.50 (DLQ QZ-E)   1.10   1.05   1.15      50     7,858
04 May 35.00 (DLQ QG-E)   2.10   2.00   2.05        0     6,313
04 May 37.50 (DLQ QT-E)   3.20   3.40   3.50      40        893
04 May 40.00 (DLQ QH-E)   5.70   5.30   5.40        0        910
04 May 42.50 (DLQ QS-E)   0.00   7.50   7.60        0     1,155
04 May 45.00 (DLQ QI-E)   0.00   9.90 10.00        0        380
04 Aug 20.00 (DLY TD-E)   0.00   0.05   0.10        0            0
04 Aug 22.50 (DLQ TX-E)   0.00   0.10   0.20        0            0
04 Aug 25.00  (DLQ TE-E)   0.00   0.25   0.35        0          29
04 Aug 27.50 (DLQ TY-E)   0.65   0.50   0.60        0          55
04 Aug 30.00 (DLQ TF-E)   1.00   0.90   1.05        0        339
04 Aug 32.50 (DLQ TZ-E)   1.60   1.60   1.70    100        611
04 Aug 35.00 (DLQ TG-E)   2.70   2.60   2.70        0     1,153
04 Aug 37.50 (DLQ TT-E)   4.20   4.00   4.10    110        141
04 Aug 40.00 (DLQ TH-E)   0.00   5.70   5.80        0        121
04 Aug 42.50 (DLQ TS-E)   0.00   7.70   7.90        0            1
04 Aug 45.00 (DLQ TI-E)   0.00 10.00 10.10        0            0

Total 1,365 319,669
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STOCK DERIVATIVES

 

In Table 11.2A, Dell stock options have exercise prices ranging up to 45. As
a matter of policy, the exchange lists options with at least two exercise prices on
each side of the current stock price. With the current stock price about $35, this
means that exercise prices of 25, 30, 40 and 45 should appear, and they do.
Where a wider range of exercise prices appear (such as in the case for Dell
options on January 6, 2004), it may be (1) a reflection of a large stock price
move during the life of the option or (2) that a specific exercise price was
requested by a customer. 

Table 11.2A reveals two interesting characteristics about stock option mar-
kets. First, at-the-money options tend to be the most active. Table 11.2A shows
that more than 99% of call option trading volume and 85% of put option trad-
ing volume on January 6, 2004 was in option series with exercise prices between
32.50 and 37.50 (i.e., at-the-money options). Second, the total open interest for
calls, 552,764, exceeds that of puts, 319,669. In stock option markets, there
seems to be greater interest in speculating that the stock price will rise rather
than fall. In the next chapter, we find the opposite pattern for stock index
options. In that market, the demand for portfolio interest causes the open inter-
est of puts to be significantly greater than for calls.

Table 11.2B has the same columns as Table 11.2A. The only difference is
that Table 11.2B contains leaps written on Dell’s stock. As noted earlier, leaps
have January expirations. As of January 6, 2004, Dell had leaps expiring in Jan-
uary 2005 and January 2006. When Dell’s January 2004 stock options expire on
January 17, 2004, leaps with a January 2007 expiration will be introduced.
Note that there is significant open interest in long-term options. Apparently a
large number of traders have long-term directional views on Dell’s stock price.

 

Equity FLEX Options

 

The stock option exchanges also facilitate trading of stock
options with nonstandard terms. Called “FLEX options,” these contracts are
tailor-made to suit a customer’s needs. The contract can be a call or a put,
American-style or European-style, and as long as three years to expiration. For
puts, exercise prices may be set in 1/8 increments. For calls, exercise prices are
limited to the minimum strike price intervals that are available for the non-
FLEX stock options. Like standard stock options, FLEX options call for the
delivery of the underlying stocks on expiration day. 

 

VALUATION 

 

Valuing derivatives contracts written on common stocks follows the principles
developed for the case where the underlying asset has discrete cash disburse-
ments (i.e., cash dividends) during the life of the contract. All of the valuation
principles are summarized in Table 11.3. Before applying these principles, how-
ever, the procedural aspects of cash dividend payments for U.S. firms are dis-
cussed. In addition, we provide a general sense for the number of U.S. firms that
pay dividends vis-à-vis the firms that do not.



 

Stock Products
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TABLE 11.3  

 

Summary of arbitrage price relations and valuation equations/methods for 
derivatives on common stocks.

 

Discrete Cash Dividend Payments

 

Cash dividends on U.S. stocks are generally paid on a quarterly basis. A firm’s
board of directors meets each quarter and makes the announcement. The
announcement date is called the 

 

dividend declaration date

 

. The announcement
identifies: (1) who will get the dividend; (2) how much the dividend will be; and
(3) when the dividend will be paid (i.e., the 

 

dividend payment date

 

). The share-
holders to receive the dividend are those holding shares on a particular date
called the 

 

shareholder record date

 

. Because stocks have delayed settlement, you
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Valuation Equations/Methods

European-Style: Options Futures Options

Call value c = SxN(d1) – Xe–rTN(d2) c = e–rT[FN(d1) – XN(d2)]
Put value p = Xe–rTN(–d2) – SxN(–d1) p = e–rT[XN(–d2) – FN(–d1)]

where Sx = S – PVD where

and and 

American-Style: Options Futures Options

Call and put values Numerical valuation: binomial and 
trinomial methods

Numerical valuation: qua-
dratic approximation, bino-
mial method, and trinomial 
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must buy the stock prior to the record date in order to receive the dividend. Set-
tlement is three business days. The ex-dividend date is the day the stock first
begins trading without the escrowed dividend embedded in its price. If you buy
the stock on the ex-dividend date or later, you will not be a shareholder of
record by the shareholder record date and hence will not receive dividend.

The number of days between these dates varies across stocks. Figure 11.2
gives a sense of what might be typical. The figure contains the median number
of days between (1) the declaration date and the ex-dividend date, (2) the ex-
dividend date and the shareholder record date, and (3) the shareholder record
date and the dividend payment date for all NYSE/AMEX and NASDAQ stocks
paying quarterly dividends in the years 1996 through 2000. The stocks included
are only those that had options listed on the CBOE during that period. As the
figure shows, the amount of the cash dividend and the dividend payment date
are typically known at least 32 days beforehand. For the valuation of short-term
term stock options, this means that assuming that the amount and the timing of
the dividend payment are known is literally true. 

For longer-term options with multiple expected dividends paid during the
option’s life, cash dividend estimation becomes necessary. A casual inspection of
cash dividend histories, however, will show that firms tend to: (1) pay the same
cash dividend each quarter throughout the year; (2) pay the quarterly dividends
at the same times each year; and (3) increase the annual total cash dividends at a
constant rate through time. Even in the case of valuing longer-term stock
options, therefore, using an assumption that the amount and timing of cash div-
idend payments are known is reasonable. The amount of the ith cash dividend
will be denoted Di and the time to the payment of the ith dividend is ti, where
the relevant dividends for option valuation purposes are those prior to the
option’s expiration, ti < T for all i. We drop the subscript i for cases in which
only one dividend is paid during the option’s life.

Finally, it is useful to have some general understanding of the number of
stocks that pay dividends. Table 11.4 summarizes the number of U.S. stocks that
pay dividends vis-à-vis those that do not. The numbers were generated from a
listing of all stocks that had options listed on the CBOE during the five-year
period 1996 through 2000. The total number of stocks is 2,387. Of these, less
than 25% pay dividends. NYSE/AMEX stocks have a higher rate of dividend
payment (about 47% of all stocks) than NASDAQ (less than 6% of all stocks).
In other words, for the vast majority of stocks with options traded on a U.S.
exchange, the underlying stock pays no dividends.

FIGURE 11.2 Median number of calendar days between quarterly dividend dates for NYSE/
AMEX and NASDAQ stocks during the calendar year 2003. 
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TABLE 11.4  Number of dividend-paying/nondividend-paying stocks with listed options 
during calendar year 2003.

Forwards/Futures

The net cost of carry relation for a futures contract written on a common stock is 

F = SerT – FVD (11.1a)

or 

Fe–rT = S – PVD (11.1b)

where

is the future value of the cash dividends paid during the futures life and 

is the present value of the cash dividends. The relation arises from the absence
of costless arbitrage opportunities in the marketplace. The intuition for this
relation is that there are two ways to have the stock on hand at time T at a price
known today. The first, represented by the left-hand side of (11.1a), is to buy a
futures contract with maturity T. At time T, you pay F and receive the stock. The
second, represented by the right-hand side of (11.1a), is to borrow at a rate r to
buy the stock today, and then carry it until T has elapsed. At time T, you must

Number of Stocks

NYSE/AMEX NASDAQ Both

Pays dividends    693    104    797
No dividends    717    981 1,698

Total 1,410 1,085 2,495

Proportion of Total

NYSE/AMEX NASDAQ Both

Pays dividends 27.8%   4.2%   31.9%
No dividends 28.7% 39.3%   68.1%

Total 56.5% 43.5% 100.0%
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repay your borrowings plus interest, SerT, which is partially offset by the quar-
terly cash dividends (plus accrued interest) you received while holding the stock,
FVD. Since you are indifferent between the two alternatives, the two sides of
(11.1a) must be equal.

ILLUSTRATION 11.1 Value of stock futures contract.

Futures contracts on Australian stocks are listed on the Sydney Futures Exchange (SFE).
Compute the value of a four-month futures contract on the shares of Foster Brewing.
Assume the current share price is AD 27, the risk-free rate of interest is 5.75%, and the
Foster’s will pay a cash dividend of AD 0.25/share in exactly three months. The denomi-
nation of the SFE stock futures is 1,000 shares.

Substituting into the cost of carry relation, you get

The value of the futures contract is AD 27.271.

Options: No-Arbitrage Price Relations

The arbitrage relations for common stock options are also summarized in the
first panel of Table 11.3. For the options written directly on the stock (rather
than on a stock futures), the relation usually involves reducing the current stock
price, S, by the present value of the dividends paid during the option’s life, PVD.
The arbitrage transactions supporting each of these relations were described in
detail in Chapter 4. Consequently, they are not rederived here. Instead, two of
the relations are illustrated numerically.

ILLUSTRATION 11.2 Compute lower price bound of leap.

Compute the lower price bound of a three-year, European-style call option with an exer-
cise price of 100. The current share price is 90. The stock is expected to pay quarterly
cash dividend of $.50 per share in three months, with each subsequent dividend growing
at a continuous rate of 2% annually. The risk-free rate of interest on a three-year dis-
count bond is 5.90%. The denomination of the leap contract is 100 shares.

The present value of the cash dividends paid during the option’s life is

The easiest way to compute this value is to use a spreadsheet such as that shown below.
The lower price bound of the call is therefore

S – PVD – Xe–rT = 90 – 5.6066 – 83.7780 = 0.6154

so the lower price bound on the leap contract is $61.54.

F 27e 0.0575( ) 4 12⁄( ) 0.25e0.0575 4 12⁄ 3 12⁄–( )
– 27.271= =

PVD 0.50e 0.0590 i 4⁄( )– e0.02 i 1–( ) 4⁄

i 1=

12

∑ 5.6066= =
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Options: Valuation Equations/Methods

The valuation equations/methods for common stock options are summarized in
the second panel of Table 11.3. Below are two illustrations, one for European-
style option valuation and one for American-style option valuation.

European-Style Option Valuation As was noted earlier in the chapter, all exchange-
traded stock options listed in the United States are American-style. Where the
underlying stock pays no dividends during the option’s life, the American-style
call will not optimally be exercised prior to expiration, and, hence, can be val-
ued using the European-style valuation equation. 

ILLUSTRATION 11.3 Compute implied volatilities from call option prices.

Compute the implied volatilities of the Feb-04 Dell call options with exercise prices
32.50, 35, and 37.50 using the bid and ask price quotes reported in Table 11.2a. Assume
Dell’s share price is $35.055. Dell does not pay cash dividends, and the risk-free interest
rate is 0.82%. 

To compute the implied volatilities, you need all terms of the option valuation for-
mula except σ. The stock price midpoint is 35.055, the exercise prices are given in the
table, and the risk-free rate is 0.82%. The option contract month is February 2004. Stock
options, by convention, expire the Saturday after the third Friday of the contract month,
so, looking at a calendar, this means that the effective expiration date is the close of trad-
ing on Friday, February 20, 2004 (the option market is not open on Saturday). The times
to expiration of the Feb-04 options are, therefore, 45 days.

Using the bid price quote, the implied volatility for the call with an exercise price of
32.50 may be computed by solving

3.00 = 35.055N(d1) – 32.50e–0.0082(45/365)N(d2)

Lower Price Bound for European-Style Call on a Common Stock

Quarterly Dividends

Stock Price (S) 90 i ti Di PV(Di)

Interest rate (r)  5.90%   1 0.25 0.5000 0.4927
Current dividend (D)   0.5000   2 0.50 0.5025 0.4879
Dividend growth (g)  2.00%   3 0.75 0.5050 0.4832

  4 1.00 0.5076 0.4785
Exercise price (X) 100              5 1.25 0.5101 0.4738
Years to expiration (T) 3.00    6 1.50 0.5127 0.4692
Denomination (N) 100              7 1.75 0.5152 0.4647

  8 2.00 0.5178 0.4602
PVD   5.6066   9 2.25 0.5204 0.4557
Xe–rT 83.7780 10 2.50 0.5230 0.4513
S – PVD – Xe–rT   0.6154 11 2.75 0.5256 0.4469
(S – PVD – Xe–rT)N 61.54    12 3.00 0.5283 0.4426
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where

and .
The solution is found iteratively and is 27.99%.11 For the remaining calls and price

quotes, the implied volatilities are:

Note that the bid/ask spread, when translated into an implied volatility spread is
quite large. For the call option with the 32.50 exercise price, for example, the spread is
2.79%. Also, note that the implied volatilities at the bid (or at the ask) are not the same
across exercise prices. There may be a variety of reasons for this. First, price quotes are
rounded to the nearest $.05. As already noted, small differences in price translate into
large differences in implied volatility. Second, computing implied volatilities using the
BSM model presumes that Dell’s share price is log-normally distributed at the options’
expiration. To the extent that it is not, you can expect to see systematic variation in
implied volatilities. Third, to the extent that traders focus on particular option series,
prices (and hence implied volatilities) may be affected by supply/demand imbalances. In
order to bring the implied volatilities into alignment, a dynamic hedge would be neces-
sary. The costs of such a hedge over the life of the option may exceed the profit from an
apparent arbitrage opportunity. 

American-Style Option Valuation Table 11.3 summarizes the recommended methods
for valuing American-style stock options. For options written on stock futures,
all of the techniques described in Chapter 9 work well. For options written on
dividend-paying stocks directly, however, using a lattice-based procedure is best.
This section uses modifying the binomial method to value both American-style
calls and puts on stocks with multiple known dividends during the option’s life.

Generally speaking, the most expedient methods for valuing American-style
options on dividend-paying stocks are the binomial and trinomial methods. The

11 The function, OV_OPTION_ISD, from the OPTVAL Function Library can be used to com-
pute implied volatility.

DELL Call Option-Implied Volatilities

Valuation date 1/6/2004
Expiration date 2/20/2004
Days to expiration 45
Interest rate 0.820%
Stock price midpoint 35.055

Exercise Price

Quotes Implied Volatilities

Bid Ask Bid Ask

32.50 3.00 3.10 27.99% 30.78%
35.00 1.30 1.40 25.59% 27.63%
37.50 0.35 0.45 23.33% 25.98%

d1
35.055e0.0082 45 365⁄( ) 32.50⁄( ) 0.5σ2 45 365⁄( )+ln

σ 45 365⁄
-------------------------------------------------------------------------------------------------------------------------------------=

d2 d1 σ 45 365⁄–=
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mechanics of these procedures are contained in Chapter 9. There are two excep-
tions, however. The first is where the stock’s dividends are “small.” If all the
anticipated dividends paid during the call’s life satisfy (6.16) in Chapter 6, for
example, there is no chance that the American-style call will be exercised early,
so the value of the call can be computed exactly using the European-style call
formula. The second is where only a single dividend is paid during the call’s life.
In this case, an analytical valuation formula exists,12 and it is provided in
Appendix 11.A to this chapter. This formula can also be extended to cases
where two or more dividends are paid during the option’s life, however, the for-
mula becomes cumbersome and difficult to evaluate, and the lattice-based meth-
ods wind up being more computationally efficient.13

ILLUSTRATION 11.4 Compute value of American-style put option.

Compute the value of an American-style put option with an exercise price of $50 and a
time to expiration of 90 days. Assume that the risk-free rate of interest is 5% annually,
that the stock price is $50, that the volatility rate of the stock is 36% per year, and that
the stock pays a dividend of $2 in exactly 75 days.  

For pedagogic reasons, perform three different valuations. 

1. Compute the European-style put option value using the analytical valuation equation in 
Table 11.3. 

2. Compute the European-style put option value using the JR binomial method outlined in 
Chapter 9.

3. Compute the American-style put option value using the JR binomial method. 

By doing so, you not only value the American-style put option but also identify the
degree of error that we might expect in our binomial approximation.

1. In applying the European-style put formula, it is first necessary to compute the current
stock price net of the present value of the promised dividend, that is, 

Sx = 50 – 2e–0.05(75/365) = 48.020

With the adjusted stock price in hand, we apply the valuation formula from Table
11.3, that is,

p = 50e–0.05(90/365)N(–d2) – 48.020N(–d1)

where 

The probabilities N(0.0677) and N(0.2464) are 0.5270 and 0.5973, respectively, so
the European-style put value is 

p = 49.387(0.5973) – 48.020(0.5270) = 4.195

12 See Roll (1977), Geske (1979), and Whaley (1981).
13 See Stephan and Whaley (1990).

d1
48.020e0.05 90 365⁄( ) 50⁄( ) 0.5 0.362( ) 90 365⁄( )+ln

0.36 90 365⁄
------------------------------------------------------------------------------------------------------------------------------------ 0.0677–= =
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This computation can be verified using the OPTVAL function

OV_ OPTION_VALUE (48.020, 50,90/365, 0.05, 0.36, “C”, “E”) = 4.195

2. The value of the European-style put is also computed using the binomial method. Apply
the three-step procedure outlined in Chapter 9. The number of time steps is set equal to
90, so the time increment ∆t is one day or 0.00274 years. Under the JR binomial
method, the values of the up-step and down-step coefficients are computed as 

and

and there are equal probabilities of an up-step and a down-step.14 Applying the up-
step and down-step coefficients to the current stock price net of the present value of
the escrowed dividend provides a range of stock prices at the option’s expiration
from 8.776 to 260.828. Applying the binomial procedure without checking the early
exercise bounds produces an option value of 4.195, the same as the value obtained
using the analytical formula. Apparently, the binomial method works well at 90
times step. 

The OPTVAL Function Library contains binomial and trinomial routines for
valuing European- and American-style options on dividend-paying stocks. The syn-
tax of the function call for the binomial method is

OV_STOCK_OPTION_VALUE_BIN(s, x, t, r, v, n, cp, ae, mthd, dvd, tdvd)

where s is the current stock price, x is the exercise price, t is the time to expiration, r
is the risk-free interest rate, v is the stock’s volatility rate, cp is a (c)all/(p)ut indica-
tor, ae is an (A)merican/(E)uropean-style option indicator, mthd is the choice of
binomial coefficients (2 is JR coefficients),15 dvd is a cash dividend vector, and tdvd
is a vector containing the time to the dividend payments. For the information in the
problem: 

14 In this application, the risk-neutral net cost of carry rate, b, in (9.12a) and (9.12a) of Chap-
ter 9 equals the risk-free rate of interest.
15 Chapter 9 contains a description of three sets of coefficients that may be used in the bino-
mial method.

u e b 0.5σ2–( ) t∆ 0.36 t∆+ e 0.05 0.5 0.36( )2–( ) 1 365⁄( ) 0.36 1 365⁄+ 1.01898= = =

d e 0.05 0.5 0.36( )2–( ) 1 365⁄( ) 0.36 1 365⁄– 0.98129= =



Stock Products 401

3. The binomial procedure applied to value the European-style put is reapplied, this time
checking the early exercise bounds at each node within the lattice. The value of the
American-style put is computed to be 4.234. Hence the value of the early exercise fea-
ture of this American-style put is 4.234 – 4.195 or about 3.9 cents. The previous table
summarizes the results.

Options: Implied Volatilities in Days Surrounding Merger Events

Implied volatilities were introduced in Chapter 7. By setting an option’s
observed price equal to its model value, we can deduce the market’s perception
of expected future volatility in the same manner as setting a bond’s price equal
to its formula value allows us to deduce the expected yield to maturity. In the
context of the stock option valuation models described earlier in this section,
the implied volatilities of options on a particular stock should be approximately
the same across exercise prices and constant through time. In certain instances,
however, such is not the case. One such instance is when a firm becomes a target
in a takeover attempt. Below we describe the behavior of stock prices, trading
volumes, and volatilities in the days surrounding Lucent Technologies’ acquisi-
tion of Octel Communications in 1997.

Just before the market open on Thursday, July 17, 1997, Lucent Technolo-
gies, Inc. (LU) announced that it would acquire Octel Communications Corp.
(OCTL) in order to strengthen its voice mail, fax, and messaging technology busi-
ness. Under the terms of the offer, Lucent agreed to pay $31 per share in cash. The
LU/OCTL merger was less complicated than most in the sense that it was a cash
deal, with both boards approving the deal before its announcement.16 To examine
the market’s reaction to the news of the merger, we focus on share price, trading
volume, and BSM implied volatility behavior in the 60 days before the announce-
ment and the 60 days after the announcement became effective. 

Share Price Behavior Figure 11.3 shows the share prices of LU and OCTL in the
days surrounding the merger. The prices of both stocks meandered in an upward
direction in the days leading up to the announcement day (with the vertical bar
representing the announcement day). An explanation for this behavior is that
the firms’ merger negotiations were being conducted during June 1997, and the
market was beginning to anticipate the news. On July 16, 1997, the day before
the announcement, OCTL closed at 26.75, a 14.1% gain from the previous
day’s close, 23.4375. The strength of the gain suggests that some traders were
confident about the terms of the potential acquisition and its likelihood of suc-
cess and were willing to take a directional bet by buying the shares of OCTL.
The merger announcement was made just before the market open on July 17,
and the price of OCTL’s shares reacted accordingly. OCTL’s shares closed at
30.125, a gain of another 12.6%. Subsequent to the announcement, OCTL
shares hovered at slightly below the offer price of $31 per share. The lack of
variability in OCTL’s share price during this period suggests that the market
believed that the merger would be consummated at the $31 level. The slight
drop in OCTL’s share price on September 11, 1997 was as a result of an

16 See “Lucent to buy Octel for $1.8 billion,” Reuters News, 17 July 1997.
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announcement that the antitrust division of U.S. Justice Department requested
more information about the terms of the merger from Lucent. Included with this
announcement, however, was language indicating that both companies were
confident that the acquisition would be completed, as it indeed was.17 The last
day of public trading for OCTL’s shares was September 26, 1997.

Abnormal Share Price Behavior The share price behavior in Figure 11.3 can be
somewhat misleading to the extent that the stock prices have different scales,
and the movement of the market during the period is ignored. Consequently, we
standardize both price series to a beginning level of 100, and then update each
price series by the daily relative stock price movement net of the corresponding
market movement, using the S&P 500 index as a proxy for the market. Figure
11.4 shows the results. Relative to the S&P 500, both stocks performed well rel-
ative to the S&P 500 in the pre-announcement period, with each an posting
abnormal gain of 25% or so in the 60 trading days leading up to the announce-
ment. Again, this may have been as a result of information leakage regarding the
merger negotiations. But, these abnormal gains were small relative to those
experienced on the day before and the day of the announcement, 13.0% and
13.1%, respectively. Immediately after the announcement, the shares of LU or
OCTL behaved similarly to the market, with both declining in the aftermath.
The declines, however, were as a result of the S&P 500 index rising rather than
share prices falling. (See Figure 11.3.)

17 See “Lucent Extends Octel Tender Offer,” Newsbytes News Network, 11 September 1997.

FIGURE 11.3 Daily stock price behavior of Lucent Technologies, Inc. (LU) and Octel Com-
munications, Inc. (OCTL) from April 23 (60 days before merger announcement date) to 
December 22, 1997 (60 days after merger effective date). Merger announcement date was 
July 17, 1997, and merger effective date was September 26, 1997. 
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FIGURE 11.4 Abnormal stock price behavior of Lucent Technologies, Inc. (LU) and Octel 
Communications, Inc. (OCTL) from April 23 (60 days before merger announcement date) to 
December 22, 1997 (60 days after merger effective date). Daily abnormal stock price move-
ments are computed by subtracting the movement of the S&P 500 index each day, and both 
stock price series are normalized to a level of 100 on April 23, 1997. 

Trading Volume The market reaction of LU and OCTL shares to the news of the
merger is also shown in trading volume. Figure 11.5 shows that in the period
before the announcement, daily trading volume was about two million shares a
day for LU and one million shares for OCTL. In the days leading up to the
announcement, OCTL’s share volume appears to have a slight increase, however,
on the day before the announcement, 2.7 million shares traded, and, on the day
of the announcement, a whopping 16.3 million shares traded. Similarly, LU
experienced trading volume of 4.7 million shares on the day before the
announcement and 4.2 million shares on the announcement day. Trading vol-
umes remained above normal for both firms for a few days after the announce-
ment, and then returned to preannouncement levels or below. Like price, trading
volume confirms abnormal market behavior on the day before and the day of
the announcement.

Implied Volatility Perhaps, the most intriguing information regarding the potential
acquisition appeared in the stock option market. To do so, we examine the
implied volatilities18 of LU and OCTL stock options in the 60 days before the
merger announcement and the 60 days after the merger became effective. We
begin by examining OCTL volatilities. Figure 11.6 shows that, prior to July
1997, the implied volatility of two-month, at-the-money options on OCTL’s
stock averaged about 48%, only twice crossing the 50% level. On June 27,
however, it crossed the 50% level, and then rose as high as 70% on the day

18 The implied volatility in this case is for a hypothetical 60-day, at-the-money option. This
implied volatility is computed on the basis of eight option series—the nearby and second near-
by options (calls and puts) whose exercise prices are just in- and out-of-the-money. 
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before the announcement. On the announcement day, OCTL volatility plum-
meted from its high to a level of 13.8%. OCTL’s implied volatility bottomed out
in the days following, hovering around 10%. But on September 3, eight days
before the announcement that more information had been requested, OCTL’s
implied volatility rose to 12.3%. By the close on September 11, the implied vol-
atility rose to 20.3%, and, by the close on September 15, 23.6%. 

FIGURE 11.5 Daily trading volume is shares of Lucent Technologies, Inc. (LU) and Octel 
Communications, Inc. (OCTL) from April 23 (60 days before merger announcement date) to 
December 22, 1997 (60 days after merger effective date).  

FIGURE 11.6 Average BSM implied volatilities of stock options on Lucent Technologies, Inc. 
(LU) and Octel Communications, Inc. (OCTL) from April 23 (60 days before merger 
announcement date) to December 22, 1997 (60 days after merger effective date). 
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Taken together, this evidence suggests that the stock option market antici-
pated news about OCTL and its impending merger before the stock market.
First, almost two weeks before the announcement day, OCTL’s implied volatility
began to increase monotonically, reaching levels nearly 46% higher (70% versus
48%) than had been observed in the recent past.19 This is in contrast to OCTL’s
stock price behavior, which seemed to indicate that, at best, the information
leaked out the day before the announcement. Second, in the postannouncement
period, OCTL’s implied volatility began to rise inexplicably eight days before
the announcement that the antitrust department had requested more informa-
tion regarding the impending merger. The stock market did not appear to react
until the day of the announcement, September 11. 

On first appearance, the dramatic drop in OCTL’s implied volatility on the
announcement day may seem perplexing. Upon further reflection, the mystery is
resolved. The OCTL option prices in the days after the announcement can be
thought of as an amalgam of two prices—one if the merger falls through and
one if the merger is successful, that is,

Oobserved = (1 – p)Ofall + pOsuccess (11.2)

where p is the probability that the merger will succeed. The option price condi-
tional on failure, Ofall, may be computed using the BSM model. The option price
conditional on success, Osuccess, equals the floor value of the option since, as
noted earlier, the options will be settled in cash and should be exercised immedi-
ately when the merger is consummated. The dramatic reduction in OCTL’s
implied volatility (based on the observed option price) is therefore merely a reflec-
tion that the market anticipated that the probability of the merger succeeding was
very high. It is also interesting to note that the probability that the merger will fail
never completely disappears. Even on the day before the merger becoming effec-
tive, the OCTL implied volatility is nearly 8%, which implies that p < 1 in (11.2).

The behavior of the implied volatility of LU’s shares is also intriguing. Up
until a week before the merger announcement, its level was about 32%. On July
10, it began to rise, and, on July 17, it appears to have reached a new steady level
of about 40%. These results are interesting in at least two respects. First, again
the stock option market appears to have anticipated the news about the merger
before the stock market—implied volatilities move before stock prices. One pos-
sibility is that “informed” investors choose the option market rather than the
stock market to place directional bets. Another is the number of informed traders
in each market before the announcement is the same, but, since the stock option
market is less liquid, the same size stock equivalent trade has greater price impact
(and is more detectible) in the option market than the stock market. Second, the
market appears to digest the news about the merger very quickly in that the
implied volatility embedded in LU’s options rises to its new steady-state level on
the announcement day. In other words, the option market incorporated the effect

19 It is important to recognize that the implied volatility is based on call and put prices. An
increase in implied volatility is not based on the call price rising faster than the stock price (i.e.,
the stock price being too low) but rather on the prices of the call and put rising relative to the
stock price.
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of the change LU’s asset structure (replacing $1.8 billion in cash with OCTL’s
assets) on LU’s return volatility well before the merger became effective.

TRADING AND RISK MANAGEMENT STRATEGIES

Stock derivatives contracts can be used in a variety of trading/risk management
strategies, many of which were discussed in Chapter 10. The purpose of this sec-
tion is to describe the motivation for and execution of four commonly used
strategies involving stock derivatives. The first strategy is a speculative trading
strategy called a dividend spread and is designed to capture abnormal profit
when American-style call option holders do not exercise early when it is in their
best interests to do so. The second and third are risk management strategies
used by individuals with concentrated positions in particular stocks. We exam-
ine both stock price collars and variable prepaid forward contracts. The fourth
and final strategy, used by corporations, involves writing puts (and selling calls)
to subsidize the cost of stock buyback programs. 

Dividend Spreads

In spite of the fact that it is straightforward to decide if and when an American-
style option should be exercised early, many are not. In markets where such
behavior is observed, it is possible to design a speculative trading strategy that
captures the lost exercise proceeds. One such case is with an exchange-traded,
American-style call option written on a stock that pays a dividend during its life.

The so-called dividend capture or dividend spread strategy involves identifying
an in-the-money call option that should be exercised just prior to ex-dividend day.
This is done by computing the call option value using the stock price net of the div-
idend amount (i.e., the ex-dividend stock price) and comparing it with the immedi-
ate exercise proceeds, St – X, where t represents the time just prior to ex-dividend. If
the computed value is less than the call’s immediate exercise proceeds, we sell the
call just prior to the market close and simultaneously buy the underlying stock. The
net cost of the position is the stock price less the call option price, that is, St – Ct. 

Two things can occur at the open on the following morning. First, we may find
that the call option holder has exercised his option, in which case we must deliver
underlying stock. We receive the exercise price in cash, and deliver the stock. Our
profit equals the exercise price less the net cost of the strategy on the day before
the stock goes ex-dividend, that is, X – (St – Ct). Since the call must have been
trading at its floor value before the dividend was paid, that is, Ct = St – X, our
profit equals zero. Second, we may find that the call option holder has forgotten
to exercise his call or simply failed to recognize that it was optimal to do so. In
this situation, we immediately buy back the call at its price after the dividend is
paid, Ct+ε, and sell the stock at its ex-dividend price, St+ε ≡ St – D.20 Since we
were long the stock at the ex-dividend instant, we receive the dividend payment,
D. Our profit, therefore, equals the dividend plus the proceeds from the liquida-

20 At the ex-dividend instant, the stock price is assumed to fall by an amount exactly equal to
the dividend payment.
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tion of the position, D + (St+ε – Ct+ε), less the net cost at inception, St – Ct, or,
equivalently, the drop in the call option value resulting from the dividend pay-
ment, that is, πt = D + (St+ε – Ct+ε) – (St – Ct) = Ct – Ct+ε. Some refer to this
strategy as a dividend capture strategy, although only part of the dividend is
being captured. A more appropriate name is a dividend spread. 

ILLUSTRATION 11.5 Identify and engage in dividend spread opportunity.

Consider a call option on a stock on the day prior to a stock going ex-dividend. The call
has an exercise price of 25 and three months remaining to expiration. Its current price is
4. The stock price is 29, its volatility rate is 25% annually, and the amount of the cash
dividend is 2. The risk-free rate of interest is 5%. Identify whether a dividend spread
opportunity exists, and, if so, how to profit.

First compute the proceeds from exercising the option immediately. They are equal
to the stock price less the exercise price, that is, 29 – 25 = 4. The fact that the call price is
trading at or near its immediate exercise proceeds is the first indication that a dividend
spread strategy may be profitable.

Next compute the value of the call immediately after the stock goes ex-dividend.
Assuming no more dividends are paid during the call’s life, the value of the call after the
stock goes ex-dividend is

where

What this means is that it is optimal for the call option holder to exercise immediately,
prior to the ex-dividend date. In doing so, he will receive exercise proceeds of 4. If he
fails to do so, his option will decline in value to 2.76 after the dividend is paid. By choos-
ing not to exercise, he implicitly loses 1.24.

Given that you know that early exercise is optimal and that not all call option hold-
ers exercise when they should, you can engage in a dividend spread by selling the call and
buying the stock just prior to the dividend payment. This costs 25 (i.e., 29 – 4). If, on the
following morning, you find that the call option holder has exercised, you deliver your
stock against the call and receive 25 (i.e., the payment of the exercise price). Ignoring
trading costs, you have neither made nor lost money. If, for some reason, the call option
holder did not exercise, you should buy the call and sell the stock. The net proceeds are
or 24.24. In addition, you receive the dividend from holding the stock, 2, bringing total
proceeds to 26.24. Hence your profit is 1.24.

The profitability of engaging dividend spreads depends on the likelihood
that the call option holder will exercise when he should. Naturally, trading costs
should be factored into the decision about whether to engage in this type of
speculative strategy.

c 29 2–( )N d1( ) 25e 0.05 0.25( )– N d2( )– 2.76= =

d1
27e0.05 0.25( ) 25⁄( ) 0.5 0.252( )0.25+ln

0.25 0.25
--------------------------------------------------------------------------------------------------- 0.7782= =

d2 0.7782 0.25 0.25– 0.6532= =

N 0.7782( ) 0.7818, and=

N 0.6532( ) 0.7432=
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Collar Agreements

Individuals such as chief executive officers of a firm often find themselves in a
position in which a significant portion of their wealth is tied to the firm’s share
price. Such an undiversified (and, sometimes, illiquid) position is risky. One
alternative is to sell the shares or, at least, a large portion of their shares. This
strategy is usually not viable, however, because shareholders and analysts gener-
ally regard the liquidation of shares by corporate insiders as bad news about the
prospects of the firm. Moreover, the gains from selling shares would be recog-
nized immediately for tax purposes.21

To circumvent these problems, many CEOs use stock price collars. Specifi-
cally, they buy out-of-the-money puts, financing their purchase with the sale of
out-of-the-money calls. The puts eliminate some of the downside price risk of
the stock. At the same time, they continue to hold the stock, thereby participat-
ing in its upside, collecting its dividends, preserving its voting rights, and defer-
ring taxes. The cost is, of course, that if the share price rises above the exercise
price on the call, the shares may be called away. Alternatively, the executive can
choose to cash settle the contract, in which case they continue to retain owner-
ship of the stock and defer tax payment.

Collar agreements are generally consummated in the OTC market. The rea-
son is that the put and call options tend to be long-term and deep out-of-the-
money. Such options are thinly traded on exchanges, and, indeed, may not trade
at all. In addition, OTC agreements allow the exercise prices to be adjusted so
that the collar has no upfront cost. 

ILLUSTRATION 11.6 Structure collar agreement.

Suppose the CEO of ABC Corporation has approached an OTC derivatives firm about
structuring a collar on his shares. The CEO wants to be protected against the share price
being below $36 per share in three years time. To pay for the insurance, he is willing to
forfeit any share price gains beyond $X per share in three years. What is the maximum
value of X that the OTC derivatives dealer will allow assuming the stock currently has a
share price of $45 and a volatility rate of 35% annually, and pays no dividends? The
risk-free rate of interest is 6%. 

The CEO wants to be protected against “… the share price being below 36 in three
years time …”, so we need to determine the fair value of a European-style put. Using the
function, OV_OPTION_VALUE, from the OPTVAL Function Library, the value of the
three-year European-style put is 3.294.

The next step is to find the exercise price of a three-year call option whose price is
3.294 so that the collar is costless. The exercise price must be solved for iteratively using
a routine such as SOLVER in Excel. As this table shows, a call option with an exercise
price of 95.187 has a value of 3.294:

21 Prior to the Taxpayer Relief Act of 1997, individuals could borrow against a large stock
position and defer taxes by “shorting-against-the-box.” By short selling shares, the individual
could lock in the price of the underlying stock and borrow up to 95% of the locked-in value
for reinvestment. The Taxpayer Relief Act of 1997 targeted such trades and earmarked them
as “constructive sales;” that is, transactions considered to be sales for tax purposes, even if no
shares are exchanged. 
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In computing the maximum value of X, we assumed that the OTC firm charges noth-
ing for its service. Instead, suppose that it embeds a one dollar per share fee to compensate
for its costs of structuring and managing the risk of the assumed option position. What
exercise price for the call will create a collar agreement with an upfront cost equal to zero? 

The objective is now to find the exercise price of a three-year call option whose price
is 4.294 (i.e. 3.294 goes to paying for the put; 1 towards the OTC firm’s embedded fee).
A call with an exercise price of 81.373 has a value of 4.294, as the following table shows.

Variable Prepaid Forward Contracts

Variable prepaid forward (VPF) contracts are relatively new stock products.
They arose from the fact that, while individuals can borrow against collared
stock positions, banks will limit the amount that they can borrow to 50% of the
market value of the stock if the individuals plan on investing in other equities.22

VPFs circumvent this problem. A VPF is not regarded as a loan but rather as a

Without Market Maker Fee

Stock

Price (S) 45.00
Volatility rate (s)    35.00%
Interest rate (r)      6.00%

Put Option Call Option

Exercise price (X) 36         Exercise price (X) 95.187
Years to expiration (T)   3         Years to expiration (T) 3     
Value (P) 3.294 Value (C)   3.294
Difference in premiums 0.000

With Market Maker Fee

Stock

Price (S) 45.00
Volatility rate (s)    35.00%
Interest rate (r)      6.00%

Put Option Call Option

Exercise price (X) 36         Exercise price (X) 85.551
Years to expiration (T)   3         Years to expiration (T) 3     
Value (P) 3.294 Value (C)   4.294
Difference in premiums 1.000

22 For a lucid description of variable prepaid forwards, see “Having You Cake and Eating It,
Too,” Bloomberg Wealth Manager, April 2001, pp. 59–66.
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sale of a contingent number of shares, which will be delivered at some future
date, in exchange for a cash advance today. Since the number of shares, and thus
their exact cash value, is not determined until maturity (based on the stock’s
price at the time), a VPF does not trip the constructive sale rule. It allows the
individual to delay paying taxes while, at the same time, to hedge his stock price
risk exposure and free up capital to invest in other securities. 

The key elements of a VPF are as follows:

1. Minimum share price. The minimum share price is the least amount that the
buyer of the VPF will receive for his shares to be delivered at time T. The mini-
mum share price can be as much as 100% of the current price of the shares, but
is often less.

2. Cash advance. At inception, the buyer of the VPF will receive a cash advance
against the minimum share value, and the amount of the cash advance is the
present value of the minimum share price. Thus the difference between the min-
imum share price and the cash advance is sometimes considered to be the
implied financing cost of the trade. 

3. Maximum share price. The maximum share price is the largest amount that the
buyer will receive for his shares delivered at time T. The difference between the
maximum and minimum shares prices will be at least 20 percentage points to
avoid the constructive sale rule23 and potential tax liability.

4. Shares are pledged as collateral. The shares are pledged as collateral with the
seller of the contract.

5. Optional sharing rule. Some, but not all, VPFs have a sharing rule whereby the
stock price appreciation above the maximum share price is shared by the buyer
and seller of the contract (e.g., the buyer receives 10% while the seller receives
90%). 

6. Optional cash settlement. The buyer, as his discretion can elect to settle the con-
tract is cash rather than by delivery.

Perhaps the easiest way to understand the valuation of a variable prepaid
forward is to examine its construction using the valuation-by-replication princi-
ple. Table 11.5 contains the four basic securities that comprise the VPF. First,
the individual who buys the VPF is long stock, which he posts as collateral on
the agreement. This trade is represented in the first row of the table. Ignoring
dividends, the value of each share of stock at time T is . The second row
shows the cash advance. The VPF buyer is guaranteed a minimum share price of
Xp at time T. The cash advance is received today and equals the present value of
the minimum share price of the agreement, Xpe–rT. By receiving the cash
advance, the buyer has an implicit obligation to repay Xp at time T. To provide
for this repayment, he buys a European-style put option with exercise price Xp.
The cost of the put is p(Xp) today. At time T, it pays  if the put is in the
money and 0 otherwise. Finally, to subsidize the cost of the put, the VPF buyer
forfeits all share price gains above the maximum share price. Thus, he is also
implicitly short a European-style call option whose exercise price equals the

23 If the minimum and maximum share prices are equal, the VPF is tantamount to short selling
the stock.

S̃T

Xp S̃T–
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maximum share price, denoted Xc. The value of the call today is c(Xc). Its value
at expiration is  if the call is in the money and is 0 otherwise. Thus,
the value of a VPF may be written

(11.3)

Alternatively, the terminal values in Table 11.5 can be generated by buying a
call with exercise price Xp and selling a call with exercise price Xc. Thus, in the
absence costless arbitrage opportunities, it must also be the case that

(11.4)

With the valuation tools in hand, let us examine the terms of a specific con-
tract. On July 25, 2003, a living trust created by Mr. Roy E. Disney bought a
VPF for 7,500,000 shares of Walt Disney common stock from Credit Suisse First
Boston Capital LLC.24 The settlement date of the contract was August 18, 2008
(or has a time to expiration of 5.0712 years). On that date, Mr. Disney, on
behalf of the trust, nominally agreed to sell the 7.5 million shares of Disney for
$27.510 per share (i.e., 100% of the prevailing stock price at the time was
entered). 

At the time the VPF was entered, the trust received a cash advance of
$124,959.495 or $16.66127 per share. At settlement, the trust is required to
deliver a number of shares (or cash equivalent) as follows: 

(a) all 7,500,000 shares if ST < 21.571, 

(b)  if 21.571 ≤ ST ≤ 32.6265, and 

(c)  shares if ST > 32.6265, 

where ST is the settlement price of the contract.25 Note that the number of
shares delivered depends on the stock price at time T, hence the use of the term
“variable” in the security’s name. Indeed, it is this feature that allows the con-
tract buyer to avoid the constructive sale rule. 

Now, consider the key elements of this VPF. The difference between the min-
imum share price 27.510 and the cash advance 16.66127 is usually labeled the

24 The terms of this contract were drawn from the SEC Form 4, Statement of Changes in Ben-
eficial Ownership filed by Mr. Roy E. Disney on August 20, 2003. Such documents are a mat-
ter of public record and can be obtained from the SEC’s website, www.sec.gov, under Filings
and Forms (EDGAR).
25 For simplicity, you may want to consider the settlement price of the contract to be the clos-
ing price on the settlement date. For this particular contract, however, the settlement price is
actually the volume-weighted average of the common stock for the 20 trading days preceding
and including the settlement date.

S̃T Xc–( )–

VPF S– Xpe rT– p Xp( ) c Xc( )+–+=

VPF c Xp( ) c Xc( )+–=

21.571
ST

------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

7,500,000 shares×

1
10.8755

ST
---------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

7,500,000 shares×
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implied financing cost.26 The implied interest rate may be computed by solving
16.66127er(5.0712) = 21.571 and is 5.0927%. Thus if the settlement price is
below 21.571 at expiration, Mr. Disney can deliver the shares, in which case he
has no further obligation. Alternatively, he can pay Credit Suisse the cash equiv-
alent of the shares, ST times 7.5 million. 

The remaining contingencies are as follows. Under contingency (b), Mr. Dis-
ney receives all gains on the shares above 21.571 but below 32.6265. To provide
Credit Suisse with its implicit loan repayment, Mr. Disney can deliver

 

shares of stock. Note that the number of shares is variable and depends on the
share price. Recall that this is a requirement in order to avoid the constructive
sale rule. Mr. Disney need not deliver the shares, however. Instead, he can pay
the cash equivalent of the shares, that is,

 

or $163,132,500. Under contingency (c), Mr. Disney must deliver 

shares of stock if the stock price exceeds 32.6265 at the contract’s expiration.
Again, note that the number of shares depends on the prevailing share. The cash
equivalent in this range is

In summary, by entering a VPF contract rather than selling the shares of
Disney outright, Mr. Disney generated more money up front than he would in
after-tax proceeds of a sale, deferred the payment of the capital gains tax for at
least the life of the contract, and did not lock himself into the sell decision,
because at maturity he can make a cash settlement and keep his shares, or, alter-
natively, roll them into a new contract. 

26 Others refer to this discount as the haircut on the VPF.

21.571
ST

------------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

7,500,000×
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------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

7,500,000××
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Option Trading by Corporations

During the mid-1990s, a number of U.S. corporations, particularly high-tech
firms, bought and sold options on their own stock. Typically, the trading
involved either selling at-the-money puts in isolation or selling at-the-money
puts and buying at-the-money calls (i.e., an option collar). The corporate option
trading was usually linked to share-buyback programs, however, many firms
were simply using options to profit from expected stock price increases.

Under the put writing strategy, the firm collects the put premium. In a rising
market such as that experienced in the bull market of the mid-1990s, the strat-
egy can be quite profitable since the puts expire out of the money and the firm
gets to keep the cash. This cash can be used to buy back shares or held in
reserve.27 If the share price falls, however, the firm must buy back its shares at
an above-market price. The bear market in the late 1990s proved disastrous,
particularly for high tech stocks such as Microsoft and Dell. 

For buyback programs, “cashless” collars can be more effective. A cashless
collar involves buying a call of the firm’s shares and selling a put in such a way
that no money changes hands at inception. It differs from the put writing strat-
egy in that the proceeds of the put are used to buy a call rather than generate a
cash premium. Consequently, if the firm’s share price rises, the firm has the
opportunity to buy back its shares at a predetermined below-market price by
exercising its call. Under the put strategy, the shares are bought back at the pre-
vailing market price and are subsidized only by the cash premium collected at
the outset. If the share price falls, however, the firm must buy back its shares at
an above-market price, just as it did in the put writing-only strategy.

SUMMARY

This chapter focuses on derivative contracts written on common stocks.
Although markets for both stock futures and stock options are active, stock
option markets are the most active, with by far the largest amount of trading
taking place in the United States. Cash dividends paid on the stock during the
option’s life may have an important impact on option value. The stock futures
and option valuation results are summarized in Table 11.3.

Four stock option trading/risk management strategies are discussed. The first
is a dividend spread and is speculative in nature. It is a trading strategy that is
designed to profit from the fact that not all call option holders exercise when it is
optimal to do so. The strategy involves selling an in-the-money call and buying
the underlying stock just prior to the stock going ex-dividend. The second and
third strategies are tailored to an individual with a large concentration in the
shares of a single stock. A stock price collar, for example, is an OTC agreement
that provides “costless” (or, perhaps more appropriately, “cashless”) insurance
against a stock price decline. The insurance is created by buying an out-of-the-
money put and provides the individual with a guaranteed minimum price for the

27 The cash is not taxable since a company does not recognize a gain or a loss when it deals in
its own stock.
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stock in the event of a price decline. Rather than paying for the put directly, how-
ever, the individual sells an out-of-the-money call. In the event of a large stock
price increase, the individual forfeits gains above the call’s exercise price. A vari-
able prepaid forward strategy is similar to a stock option collar except that the
hedger receives a cash advance in the amount of the present value of the put’s
exercise price upon entering the contract. The fourth and final strategy examines
the practice of many firms to sell puts and/or buy calls on their own shares. 
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APPENDIX 11A: EXACT VALUATION OF AMERICAN-STYLE CALL 
OPTION ON A DIVIDEND-PAYING STOCK

An American-style call option on a dividend-paying stock can be valued exactly.
This is possible because there are only a finite number of rational exercise
opportunities—one prior to each dividend payment and one at expiration. This
appendix provides the valuation equation for an American-style call option
whose underlying stock pays one dividend during the option’s life. A compound
option valuation approach is used.28

As discussed in earlier in this chapter, an American-style call option may be
exercised just prior to when the stock goes ex-dividend because the stock price
will fall by the amount of the dividend. Assuming that future stock price net of
the present value of the promised dividend is log-normally distributed, the value
of an American-style call option on a dividend-paying stock is

28 Recall that European-style compound options were valued in Chapter 8.
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where

, 

, 

N1(b) is the cumulative univariate normal density function with upper integral
limit b29 and N2(a,b;ρ) is the cumulative bivariate normal density function with
upper integral limits, a and b, and correlation coefficient, ρ.30 As before, S is the
current stock price, and σ is the stock’s volatility rate. The stock is assumed to
pay a dividend in the amount D at time t. The exercise price of the call is
denoted X, and T is its time remaining to expiration. Sx = S – De–rt is the stock
price net of the present value of the escrowed dividend.  is the ex-dividend
stock price that satisfies

The valuation equation shows that the American-style call option formula is
the sum of the present values of two conditional expected values—the present
value of the expected call value conditional on early exercise, SxN1(b1) – (X –
D)e–rtN1(b2), and the present value of the expected terminal call conditional on
no early exercise,

The term N1(b2) is the risk-neutral probability that the call will be exercised
early and the term  is the risk-neutral probability that the
call will not be exercised early and will be in-the-money at expiration.

Note that as the amount of the dividend approaches the present value of the
interest income that would be earned by deferring exercise until expiration, the
value of the critical ex-dividend stock price,  approaches positive infinity, the
values of N1(b1) and N1(b2) approach 0, the values of  and

 approach N1(a1) and N1(a2), respectively, and the Ameri-

29 We have added a subscript so as to distinguish the univariate normal from the bivariate nor-
mal.
30 Details regarding the computation of the bivariate normal probability are contained in Ap-
pendix 8A of Chapter 8.
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c St
* T t– ; X,( ) St

* D X–+=
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can call option formula  becomes the dividend-adjusted BSM European-style
call option formula shown in Table 11.5.

ILLUSTRATION 11A.1     Compute value of American-style call.

Compute the value of an American-style call option with an exercise price of 50 and a
time to expiration of 90 days. Assume the stock is currently priced at $50 a share, has a
volatility rate of 36%, and pays a $2 per share cash dividend in exactly 75 days.

First, check if the dividend is so small that early exercise will never be optimal. This
is done using (3.16) from Chapter 3.

Since early exercise is possible, you must now proceed with determining the critical ex-
dividend stock price by solving

The critical stock price is 49.060. 
Next, compute the stock price net of the present value of the promised dividend.

Sx = 50 – 2e–0.05(75/365) = 48.020

The value of the American call is now computed as

where

t = 75/365, T = 90/365

The bivariate normal probabilities are

 = 0.0520 

and

 = 0.0484

and the univariate normal probabilities N1(b1) = 0.5053 and N1(b2) = 0.4405. The value
of the American-style call is 3.445. The value of this call computed using the binomial

2 50 1 e 0.05 90 365⁄ 75 365⁄–( )–
–[ ]> 0.103=

c St
* T t– ; 50,( ) St

* 2 50–+=

C 48.020 N1 b1( ) N2 a1 b1– ; t T⁄–,( )+[ ]=

50e 0.05 90 365⁄( )– N1 b2( ) N2 a2 b2– ; t T⁄–,( )+[ ] 2e rt– N1 b2( )+–

t T⁄ 0.9129=

a1
48.020 50e0.05T⁄( )ln 0.5 0.36( )2T+

0.36 T
---------------------------------------------------------------------------------------------- 0.0676–= =

a2 0.0676– 0.36 T– 0.2464–= =

b1
48.020e0.05t 49.059⁄( )ln 0.5 0.36( )2t+

0.36 t
------------------------------------------------------------------------------------------------------ 0.0134= =

b2 0.0134 0.36 t– 0.1498–= =

N2 a1 b1– ; t T⁄–,( )
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method outlined in this chapter is 3.433. In other words, the binomial method has a 1.2 cent
valuation error. The valuation computations for this illustration were performed using the
OV_OPTION_VALUE_SO and OV_STOCK_OPTION_VALUE_BIN functions from the
OPTVAL Function Library. A summary is shown here: 

Stock Option Valuation Using Analytical Method

Stock Intermediate Computations

Price (S) 50 Years to expiration (T)   0.2466
Volatility rate (s)    36.00% Time to ex-dividend in years (t)   0.2055
Dividend (D) 2.00 PVD   1.980
Time to ex-dividend in days 75 S – PVD 48.020

X[1 – e–r(T–t)]   0.103

Call Option Call Option Valuation (C)

Exercise price (X) 50 European 2.828
Days to expiration 90 American (analytical) 3.445

American (binomial) 3.434
Market      No. of time steps 90         

Interest rate (r)      5.00%



 

419

 

CHAPTER

 

12

 

Corporate Securities

 

irms issue different types of securities to finance the assets of the firm—common
stock preferred stock, discount bonds, coupon bonds, convertible bonds, war-

rants, convertible bonds, and so on. Some are issued to the public and are actively
traded in the secondary markets. Others are placed publicly, but trade infrequently.
Yet others are privately placed, and trade seldom if at all. The purpose of this
chapter is to show how all of the firm’s securities outstanding can be valued using
only information regarding the firm’s common stock price and volatility rate. This
is possible because all of the firm’s securities have the same source of uncertainty—
the overall market value of the firm’s assets. Consequently, all of the firm’s securi-
ties have price movements that are perfectly correlated with one another over short
periods of time. With such being the case, all corporate securities can be valued
using information about the price and volatility rate of any 

 

one

 

 of the firm’s out-
standing securities. We choose to use the common stock of the firm because, of all
the firm’s securities, it has the deepest and most active secondary market. In this
sense, all corporate securities may be considered common stock derivatives.

To develop the corporate security valuation framework, we rely on the BSM
option valuation results from Chapter 7. The underlying source of uncertainty is
the firm’s overall market value, which we assume is log-normally distributed in
the future. We also assume that a risk-free hedge may be formed between each
of the firm’s securities and the firm’s overall value. As a practical matter, the
firm’s overall value (i.e., the sum of the market values of all of the firm’s constit-
uent securities) does not trade as a single asset, however, small changes in the
value of the firm are perfectly correlated with the changes in the value of its
stock. This means that, as long as the firm’s common stock is actively traded, we
can apply risk-neutral valuation with no loss in generality.

The chapter proceeds as follows. First, we address the valuation of corpo-
rate bonds assuming that the firm that has two securities outstanding—zero-
coupon bonds and common stock. Second, we extend the framework to include
multiple bond issues with varying degrees of seniority. Third, we value rights
and warrants. Rights and warrants are call option-like securities written by the
firm on its own stock. But because the firm issues these securities, option exer-
cise implies that the value of existing shareholder equity is diluted, and the
effects of dilution can have significant value. The same is true of convertible

F
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bonds, which are a hybrid security with bond and warrant-like features. Con-
vertible bonds are the focus of the last section of the chapter.

 

VALUING CORPORATE BONDS

 

1

 

The first security that we consider is a corporate bond. Unlike bonds issued by
the U.S. Treasury, corporate bonds have default risk. There is always some pos-
sibility, however remote, that a firm will be unable to make a promised payment
to bondholders. The effect of default risk on corporate bond valuation is shown
in three different ways. First, the bond value is modeled as the value of the firm
less the value of the stock, where the stock is modeled as a call option on the
value of the firm. Next we use put-call parity to reformulate the value of a cor-
porate bond as the difference between the value of a risk-free bond and the
value of a put option that allows the managers of the firm to put the firm’s assets
to bondholders if the firm value is less than the bond’s face value when they
mature. Finally, we show that the value of a corporate bond is equivalent to the
value of a portfolio that consists of a long position in the risk-free bonds and a
long position in the firm’s stock. As was noted in the introduction, all corporate
securities may be formulated in this way.

 

Stock as Call Option on Firm

 

The bond valuation model assumes that the firm has two securities outstand-
ing—a zero-coupon bond and stock. The bond’s current value is denoted 

 

B

 

,

 

 

 

its
face value is 

 

F, 

 

and its term to maturity is 

 

T

 

. The market value of the firm’s stock
is denoted 

 

S

 

, and the market value of the firm is 

 

V

 

 

 

≡

 

 

 

S

 

 + 

 

B

 

. Since the bond has no
coupons, bond default can be triggered only at bond maturity, when the value of
the firm’s assets is less than the face value of the bond.

 

2

 

 
Under the above assumptions, the value of the firm’s bond equals the total

value of the firm less the value of the firm’s stock, that is,

 

B

 

 = 

 

V

 

 – 

 

S

 

(12.1)

The firm’s stock, in turn, can be thought of as a call option on the value of the firm.
In the event that the market value of the firm is greater than the face value of the
bond at the bond’s expiration, the shareholders receive the value of the firm less the
payment of the face value to bondholders; otherwise, they receive nothing, that is, 

(12.2)

Assuming the firm’s value is log-normally distributed at the end of the bond’s
life, the current value of the firm’s stock is given by the BSM call option valua-
tion formula, 

 

1 

 

The model developed in this section is frequently referred to as the “Merton model.” Merton
(1974) was the first to use the BSM framework to value corporate securities.

 

2 

 

With coupon-bearing bonds, default may also occur when the firm cannot meet a coupon
interest payment.

S̃T max ṼT F– 0,( )=
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(12.3)

where

, 

and the volatility rate is the volatility rate of the firm rather than the stock.
From (12.1) and (12.3), the value of the risky bond may be written

(12.4)

The stock valuation equation (12.3) and the bond valuation equation (12.4)
are useful in developing intuition regarding the relative values of the claims held
by shareholders and bondholders. Suppose that the firm experiences an unex-
pected labor strike and now believes its earnings will be significantly below nor-
mal during the next few quarters. Naturally, the firm’s value drops immediately.
At first blush, one might think the shareholders of the firm are the only security
holders to suffer since they are the residual claimants of the firm. The valuation
equations (12.3) and (12.4) tell us otherwise, however. The stock’s delta, that is,
the change in stock value with respect to a change in firm value, may be derived
from (12.3)

 

3

 

 and has the form,

(12.5)

The bond’s delta may be derived from (12.4) and is

(12.6)

Thus an unexpected drop in the firm value is split between the shareholders and
the bondholders. The shareholders absorb 

 

∆

 

S

 

 per dollar of firm value change,
and the bondholders absorb 

 

∆

 

B

 

. Naturally, the sum of the changes in value is
one, that is, 

 

∆

 

S

 

 + 

 

∆

 

B

 

 = 1. The only instance in which the shareholders absorb the
full amount of the change is when the value of the firm is considerably greater
than the face value of the bonds, making the bonds are essentially default-free. 

 

ILLUSTRATION 12.1

 

Value corporate bond as firm value less call option.

 

Assume that the firm has a current value of 25, and its annual volatility rate is 20%. The firm
has two securities outstanding—a zero-coupon bond and common stock. The bond matures
in five years and has a face value of 20. The stock pays no dividends, and the risk-free rate of
interest is 5%. Compute the values and volatility rates of the firm’s stock and bonds. 

 

3 

 

The partial derivatives of the BSM call option formula with respect to changes in the formu-
la’s determinants are given in Chapter 7, Appendix 7E.
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To compute the value of the stock, we use the BSM call option valuation formula
(12.3), that is,

 

S

 

 = 25

 

N

 

(

 

d

 

1

 

) – 20

 

e

 

–0.05(5

 

)

 

N

 

(

 

d

 

2

 

)

where

 and 

The risk-neutral probabilities are 

 

N

 

(

 

d

 

1

 

) = 0.9000 and 

 

N

 

(

 

d

 

2

 

) = 0.7980, and the call
option value is 10.071. 

The OPTVAL function library contains a number of valuation routines for corporate
securities. They all have the prefix OV_CORP_. The valuation function for the firm’s
stock given the value of the firm is

OV_CORP_STOCK_FIRM(

 

firm, face, t, r, vf, vind

 

)

where 

 

firm

 

 is the value of the firm, 

 

face

 

 is the face value of the firm’s zero-coupon bonds,

 

t 

 

is the term to maturity of the bond’s in years, 

 

r

 

 is the risk-free interest rate, and 

 

vf

 

 is the
volatility rate of the firm. The term, 

 

vind

 

, is an indicator variable whose value is set equal
to 1 if the function is to return the stock’s value and 2 if the function is to return the vol-
atility rate. For the illustration at hand,

 

S = 

 

OV_CORP_STOCK_FIRM(25, 20, 5, 0.05, 0.20, 1) = 10.071

To compute the stock’s rate of return volatility, we use the elasticity (eta) of the stock
value with respect to the firm value. Recall from the early discussion on dynamic strate-
gies in Chapter 10 that, because the option’s (stock’s) rate of return is perfectly correlated
with the asset’s (firm’s) rate of return, the stock’s volatility rate may be written as a func-
tion of the firm’s volatility rate, that is, 

where 

 

η

 

S

 

 is the elasticity (eta) of the value with respect to the firm value. The eta, in turn, is

where 

 

∆

 

S

 

 is the stock’s delta. From the above results, we know 

 

∆

 

S

 

 = 

 

N

 

(

 

d

 

1

 

) = 0.9000, so
the stock’s rate of return volatility is

This value can be verified using the OPTVAL function

OV_CORP_STOCK_FIRM(

 

firm, face, t, r, vf, vind

 

)

The function value is

 

σ

 

S

 

 = 

 

OV_CORP_STOCK_FIRM(25, 20, 5, 0.05, 0.20, 2) = 44.68%

With the stock value known, the bond value can be computed using (12.4), that is,

 

B

 

 = 25 – 10.071 = 14.929

Since the stock’s delta is 0.9000, the bond’s delta is 0.1000 (i.e., the delta of the firm is
1), the bond’s eta is 

d1
25e0.05 5( ) 20⁄( ) 0.5 0.202( )5+ln
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------------------------------------------------------------------------------------- 1.2816= = d2 1.2816 0.20 5– 0.8344= =
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and the bond’s rate of return volatility is σB = 0.1674(0.20) = 3.35%. These values can
be verified using the functions

B = OV_CORP_BOND_FIRM(25, 20, 5, 0.05, 0.20, 1) = 14.929

and 

σS = OV_CORP_BOND_FIRM(25, 20, 5, 0.05, 0.20, 2) = 3.35%

Note that since both the rate of return of the bond and the rate of return of the stock are
perfectly correlated, the volatility rate of the firm is a market value-weighted average of
the volatility rates of the bond and the stock, that is,

Under the assumptions of the model, all corporate securities can be written is this way,
albeit with different weights.

Figure 12.1 helps us develop the intuition for corporate bond valuation. It
illustrates the tradeoff between shareholder and bondholder values as the value
of the overall firm changes. All other parameters in the valuation equations are
held constant. At very low levels of firm value, the probability of default is
extremely high. Since the shareholders are unlikely to receive anything after
bondholders are paid, the value of the bonds is simply the firm value. As firm
value rises, the probability of default falls. Bond value rises, but at a decreasing
rate, since the bondholders never receive more than the face value of their
bonds. Share value, however, increases at an increasing rate. Once the bond-
holders are paid off, all of the firm’s value goes to shareholders.

FIGURE 12.1 Values of bond and stock as a function of the value of the firm. 
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FIGURE 12.2 Values of bond and stock as a function of the firm’s volatility rate. 

Another interesting feature of (12.3) is that the value of the firm’s stock
increases with an increase in the firm’s volatility rate, as is shown in Figure 12.2.
The intuition for this result is that, the higher the volatility, the greater the chance
that the firm’s value exceeds the face value of the bonds by a large amount at the
bond’s maturity. Higher volatility also increases the chance that the firm’s value is
below the bond’s face value by a large amount. Since the shareholders do not face
any liability from this shortfall, however, the value of stock is unaffected.

The bondholder, on the other hand, is affected by the shortfall. Recall that,
in the bond valuation formula (12.4), the bondholder owns the firm but is short
a call option. With an increase in the firm’s volatility rate, the value of the call
rises. Holding other factors constant, the bondholders suffer. Figure 12.2 also
shows the zero-sum nature of the effects of volatility rate changes on the values
of the bonds and the stock of the firm. As firm’s volatility rate rises, the value of
the bonds falls and the value of stock rises.

Risky Bond Equals Risk-Free Bond Less Present Value of Expected Loss
Valuing a corporate bond as the difference between the firm value and the value
of a call option provides several useful economic insights. But, this is only one
possible formulation. By applying put-call parity to (12.4), we can derive an alter-
nate specification that further enhances our understanding of bond valuation. In
the context of valuing corporate securities, put-call parity4 may be written

V – c = Fe–rT – p (12.7)

where c is the value of a call option written on the firm, that is, c ≡ VN(d1) – Fe–rTN(d2),
and p is the value of the corresponding put option, that is, p ≡ Fe–rTN(–d2) –
VN(–d1). Thus, the corporate bond value may also be written 

4 The European-style put-call parity was developed in Chapter 6.
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B = Fe–rT – [Fe–rTN(–d2) – VN(–d1)] (12.8)

Equation (12.8) says that the value of a corporate bond equals the differ-
ence between the value of a risk-free zero-coupon bond with face value F and
the value of a put that allows the managers of the firm to put the firm’s assets to
the bondholders if firm value falls below the bonds’ face value at maturity. To
understand the economic intuition underlying the put, recall that in Chapter 7
we show that the value of a put option may be written

(12.9)

In (12.9), the term,

is the expected firm value at time T conditional on the value of the firm being
less than the face value of the bonds, that is, . From a corporate
bond perspective, this is called the bond’s expected recovery value—what bond-
holders expect to receive in the event of default. If we subtract the expected
recovery value conditional upon default from the bond’s face value, we get the
expected loss of the bond at time T conditional upon default, that is,

, which may be calculated using the term in squared brackets
of (12.9). The full expression (12.9) is, therefore, the present value of the
expected loss on the bond conditional on the value of the firm being less than
the bond’s face value at time T times the probability of default, Pr(VT < F) = N(–
d2). Hence, equation (12.9) provides another perspective on why bond value
falls as the volatility rate rises (see Figure 12.2). As volatility rises, the expected
loss conditional on default rises as does the probability of default.   

ILLUSTRATION 12.2 Compute present value of expected loss on corporate bond.

Assume that the firm has a current value of 25, and its annual volatility rate is 20%. The
firm has two securities outstanding—zero-coupon bonds and common stock. The bonds
mature in five years and have a face value of 20. The stock pays no dividends, and the
risk-free rate of interest is 5%. Compute the risk-neutral probability of default, the
present value of the expected loss conditional upon default, the value of the firm’s bonds,
and the value of the firm’s stock. 

The value of a risk-free bond with five years remaining to maturity is

Fe–0.05(5) = 20e–0.05(5) = 15.576

The risk-neutral probability of default is 

N(–d2) = 1 – N(d2) = 1 – 0.7980 = 0.2020

which can be verified using the OPTVAL function,

e rT– F VerTN d1–( )

N d2–( )
-------------------– N d2–( )
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N d2–( )
-------------------
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OV_CORP_PROB_DEFAULT(firm, face, t, alpha, vf)

where firm is the value of the firm, face is the face value of the firm’s zero-coupon bonds,
t is the term to maturity of the bond’s in years, alpha is the expected rate of appreciation
in the value of the firm, and vf is the volatility rate of the firm. In a risk-neutral world,
alpha is set equal to the risk-free rate of interest:

Pr(VT < F) = OV_CORP_PROB_DEFAULT(25, 20, 5, 0.05, 0.20) = 0.2020

The expected recovery value conditional upon default is

and may be computed using

OV_CORP_RECOVERY_VALUE(firm, face, t, alpha, vf)

where all of the function arguments are as defined above. Substituting the problem
parameters, we find

OV_CORP_RECOVERY_VALUE (25, 20, 5, 0.05, 0.20) = 15.888

The expected loss conditional upon default is. Alternatively, we can use the function

OV_CORP_EXPECTED_LOSS (25, 20, 5, 0.05, 0.20) = 4.112

The present value of the expected loss conditional upon default times the probability
default is 

e–0.05(5)(4.112)(0.2020) = 0.6475

The value of the corporate bond is therefore

B = 15.576 – 0.647 = 14.929

and the value of the common stock is

S = V – B = 25 – 14.929 = 10.071

Note that the bond and stock values are consistent with Illustration 12.1.

Risky Bond as Portfolio of Risk-Free Bond and Stock

The bond valuation (12.8), in turn, can be rearranged to provide further economic
insight. To see this, first gather terms on Fe–rT and substitute S + B for V, that is,

B = Fe–rTN(d2) + (S + B)N(–d1) (12.10)

Next rearrange terms to isolate B and then divide through by N(d1). The result-
ing equation for the corporate bond value is

(12.11)

5 To check this computation, compute the value of the put option on the right-hand side of
(12.8) using OV_OPTION_VALUE(25, 20, 5, 0.05, 0.0, 0.20, “p”, “e”) = 0.647. 
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Equation (12.11) says that any corporate bond may be written as a portfolio
consisting of a long position in risk-free bonds and a long position in the firm’s
stock. The number of units of the risk-free bond is

and the number of units of the firm’s stock is

6 

ILLUSTRATION 12.3 Write firm’s bond value as portfolio consisting of risk-free bonds and 
stock.

Assume that the firm has a current value of 25, and its annual volatility rate is 20%. The
firm has two securities outstanding—a zero-coupon bond and common stock. The bond
matures in five years and has a face value of 20. The stock pays no dividends, and the
risk-free rate of interest is 5%. Write the value of the bond as a portfolio consisting of a
risk-free bond and the firm’s stock. 

From Illustration 12.1, we know that the stock’s value is 10.071, N(d1) = 0.9000,
and N(d2) = 0.7980. From Illustration 12.2, we know that the value of the risk-free bond
is 20e–0.02(5) = 15.576, and N(–d1) = 0.1000. The value of the firm’s bond is therefore

The number of units of risk-free bonds and stock may also be computed using the
OPTVAL function

OV_CORP_RFBOND_STOCK_SPLIT(firm, face, t, r, vf, sind)

where sind is an indicator variable whose value is set equal to 1 to find the number of
units of risk-free bonds, and 2 to find the number of units of stock. All other function
arguments are as defined above. For example, 

OV_CORP_RFBOND_STOCK_SPLIT(25, 20, 5, 0.05, 0.20, 1) = 0.887

and

OV_CORP_RFBOND_STOCK_SPLIT(25, 20, 5, 0.05, 0.20, 2) = 0.111.

Figures 12.3A and 12.3B illustrate the dynamics of increased leverage on the
values of the firm’s bonds and stock as well as on the numbers of units of risk-
free bonds and stock to hold in order to synthetically create a corporate bond.

6 Note that the weights do not sum to one. There is no reason that they should.
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All of the parameters are the same as in the previous illustrations except that the
face value of the bonds (F) is allowed to vary from 1 to 85. In Panel A, the bond
and stock values are plotted. As the face value of the bonds increases, the value
of the bonds rises and the value of the stock falls. This stands to reason. As the
face value of the bonds increases, the present value of the face amount (i.e., the
first term in (12.8)) increases proportionately, however, the value of the put
option (i.e., the second term in (12.8)) increases at an increasing rate. Even
though the face value of the value of the bonds is allowed to rise beyond the
value of the firm (i.e., V = 25), the market value of the bonds converges to the

FIGURE 12.3 Replication of corporate bond value using risk-free bonds and common stock. 
Parameters:  V = 25, T = 5, r = 0.05, and σV = 0.20. The face value of the corporate bonds 
(F) varies from 1 to 85.

Panel A: Security value as a function of face value of bonds 
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value of the firm since the bondholders’ claim cannot exceed the value of the
firm’s assets. In Panel B, the horizontal axis is the probability of default, which
can be computed using N(–d2). The vertical axis is the numbers of units of risk-
free bonds and stock that are necessary to replicate the bond value. At a default
probability of zero, the portfolio consists almost entirely of risk-free bonds.
This stands to reason since the firm’s bonds are essentially risk-free. As the
default probability increases, less units of risk-free bonds are held and more
money is invested in stock. At high levels of default, the number of units of
stock is high, however, the value of the stock is negligible. 

Estimating Bond Value Using Stock Price Information

The bond valuation formulas, (12.4), (12.8), and (12.10), are useful in developing
economic intuition about the relation between bond value and the value of the
firm. From a practical standpoint, however, these bond valuation formulas are not
particularly useful. One reason is that we do not know the value of the firm. For
most U.S. corporations, the only corporate security that is actively traded is the
common stock. Corporate bonds trade largely in the over-the-counter market.7

Because such trades are private negotiations, there is no mandated reporting of
trade prices and quantities. Without knowing the price of the bonds, we cannot
compute the value of the firm.8 Another reason is that we have no means of esti-
mating the firm’s expected future volatility rate from historical data. Corporate
bonds trade relatively infrequently, and the time between trades may vary from
minutes apart to months apart. Indeed, it not uncommon for newly-issued corpo-
rate bonds to trade only in the first few days following issuance and never again.
Thus, even if the current price of the bond can be observed, the lack of historical
bond price data undermines our ability to compute historical firm prices and,
hence, the firm’s historical volatility rate. In sum, the bond valuation formulas,
(12.4), (12.8), and (12.10), are difficult to implement because we cannot reliably
identify the firm’s current value, V, or its expected future volatility rate, σV. 

As it turns out, both of these problems can be circumvented. To understand
how, consider the bond valuation equation (12.4), and assume, for the moment,
that we know the firm’s volatility rate σV. Since all parameters on the right
hand-side of the valuation equation (12.4) are known, except for V, we can
solve for V iteratively using a numerical search procedure such as Microsoft
Excel’s SOLVER function. With the firm value known, we compute the bond
value as B = V – S.

Unfortunately, we do not know σV, so we are left with one equation and two
unknowns. One way to solve for this somewhat perplexing problem is to find a
second equation that is also a function of σV and V, and then to solve for σV and
V simultaneously. Since stock return volatility can be estimated using an avail-
able stock price history, a reasonable starting point is to look for some relation
between stock return volatility σS and firm return volatility σV. In Illustration

7 This assumes, of course, that the bonds were publicly issued. Many bond issues are private
placements.
8 One possibility for estimating the value of the firm is to use the value of the firm’s assets. The
book value of assets, however, is seldom a good proxy for the firm’s market value.
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12.1, we relied upon the mechanics of Chapter 10 to demonstrate that, since the
stock return and the firm return are perfectly correlated, the relation between
stock return volatility and firm return volatility of the firm may be expressed as
σS = ηSσV, where ηS is the elasticity of the stock value with respect to the firm
value. The elasticity measure, in turn, equals the stock’s delta times the ratio of
the firm’s value to the value of the stock, that is, 

(12.12)

Isolating the known from the unknown parameters, we get

SσS = N(d1)VσV (12.13)

Since we can observe the value of the stock S and can estimate the stock return
volatility σS from historical price data, we have two equations, (12.3) and
(12.13), and two unknowns—the value of the firm, V, and the volatility rate of
the firm, σV. Thus we can solve for the unknown parameters uniquely. With V
identified, the value of the corporate bond may be computed as B = V – S.

ILLUSTRATION 12.4 Value corporate bond form stock price information.

Assume that the firm’s stock pays no dividends, has a value of 8, and has a volatility rate
of 50%. Also assume the firm has a single zero-coupon bond. The bond promises to be
redeemed at its face value of 20 at the end of five years. Finally, the five-year, zero-cou-
pon, risk-free interest rate is 5%. Compute the value of the bond. 

To compute the value of the bond, insert the problem information into equations
(12.3) and (12.13), that is,

8 = VN(d1) – 20e–0.05(5)N(d2)

and

8(0.50) = 4 = N(d1)VσV

where

 and 

With two equations and two unknowns, we can solve uniquely for V and σV using
Excel’s SOLVER function. The firm value is 22.503, and the firm’s volatility rate is
21.02%. The bond value is B = 22.503 – 8 = 14.503. 

The OPTVAL library contains a function that solves for the firm’s value and volatil-
ity rate given information about the stock, that is, 

OV_CORP_FIRM_STOCK(stock, face, t, r, vs, vind)

where stock is the value of the stock, face is the face value of the bonds, t is the bonds’
term to maturity in years, and vs is the volatility rate of the stock. The argument vind is
an indicator variable whose value is set equal to 1 if the function is to return the firm’s

σS N d1( )
V

S
----σV=
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---------------------------------------------------------------------------= d2 d1 σV 5–=
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value and 2 if the function is to return the firm’s volatility rate. Applying the function,
the value of the firm is

V = OV_CORP_FIRM_STOCK(8, 20, 5, 0.05, 0.50, 1) = 22.503

and the firm’s volatility rate is

σV = OV_CORP_FIRM_STOCK(8, 20, 5, 0.05, 0.50, 2) = 21.02%

Estimating Bond Value Using Stock and Stock Option Price Information

Estimating the stock’s volatility rate using historical price data presents a subtle the-
oretical inconsistency. If we assume the firm’s volatility rate is constant, the stock’s
volatility rate is not and will change as the firm’s value moves and time passes. This
means that estimating the stock return volatility from a time-series of stock price
data is error-prone. An alternative means of estimating stock return volatility is to
compute implied volatility based on exchange-traded option prices. We cannot use
the BSM model to compute implied volatility of the stock return, however, since the
BSM model assumes that stock price (not the firm’s value) is log-normal. 

Again, these problems can be circumvented. An exchange-traded call option
written on the firm’s stock is a call on a call since the firm’s stock is a call on the
firm’s value. Similarly, an exchange-traded put option written on the firm’s stock
is a put on a call. In other words, we can now apply the compound option valu-
ation mechanics from Chapter 8 to the corporate security valuation problem at
hand. Specifically, we use exchange-traded option prices to infer the value of the
firm and its volatility rate. First, we model the value of a call option, and then
we turn to the put option value.

To value a call on the firm’s stock, first recall the valuation equation that we
developed for the equity of the firm (12.3), that is, 

(12.3)

where

, and 

The exchange-traded call on the firm’s stock is assumed to have an exercise price
of X and a time to expiration of t, where t < T. In this corporate finance context,
a European-style call on a call formula may be written

c = VN2(d1,a1;ρ) – Fe–rTN2(d2,a1;ρ) – Xe–rtN1(a2) (12.14)

where

, , and 
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Like in Chapter 8, we adopt the subscript “1” to indicate the univariate normal
probability N1(d) and “2” to indicate the bivariate normal probability, N2(a,b;ρ). 

The first step in valuing the call using (12.14) is to determine the critical
value of the firm at time t above which the call will be exercised. It can be deter-
mined by iteratively searching for the firm value V* that makes the value of the
stock (i.e., the underlying call) equal to the exercise price of the call, that is,

(12.15)

With V* known, the call option value can be computed using (12.14).
Notice the similarity between the structure of (12.14) and the structure of

(12.3). The first two terms of the right-hand side of (12.14) correspond to the for-
mula (12.3). Upon exercising the call, we receive the stock, which can be valued
using the BSM formula. The last term on the right-side is the present value of the
call’s exercise price, e–rtX, times the risk-neutral probability that the firm value
will exceed the critical firm value at time t, N1(a2). This is the expected cost of
exercising the compound call conditional upon it being in the money at time t.
The term, N2(d2,a2;ρ), is the risk-neutral compound probability that the asset
price exceeds  at time t and exceeds the face value of the bonds F at time T. In
other words, the firm value must jump both hurdles for the stock to be in the
money at time T. The sign of the correlation coefficient reflects whether the firm
value should move in the same or opposite direction in the interval between time
0 and time t as in the interval between time t and time T in order for the stock to
be in-the-money at time T. For a call on a call, the sign is positive because the firm
value must increase in both intervals. For a put on a call, the sign is negative
because the firm value must be low enough for the compound option to be exer-
cised at time t and yet high enough to exceed the face value of the bonds at time T.

A European-style put option on the shares of the firm has a similar valua-
tion equation. The value of the put is 

p = Fe–rTN2(d2,–a1;–ρ) – VN2(d1,–a1;–ρ) + Xe–rtN1(–a2) (12.16)

where all notation is defined above. In (12.16), N1(–a2) is the risk-neutral prob-
ability that the asset price is below the critical firm value at time t, V*. In this
region, the compound option is exercised. The stock (i.e., underlying call) value,
however, increases with the value of the firm. The correlation in the compound
probability that is negative and the term, N2(d2,–a2;–ρ), is the risk-neutral com-
pound probability that the firm value is below V* at time t and exceeds the face
value of the bonds F at time T.

ILLUSTRATION 12.5 Value corporate bond using stock and stock option price information.

Assume that the firm’s stock pays no dividends, has a price of 8, and has a volatility rate
of 50%. Assume also there exists a six-month call option written on the stock, with an
exercise price of 10 and a market price of 0.5312. The firm has a single issue of zero-cou-
pon bonds outstanding. The face value of the bonds is 20, and their term to maturity is
five years. Finally, the five-year zero-coupon interest rate on risk-free debt is 5%. Com-
pute the value of the bonds. 
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To compute the value of the bonds, we need to identify the value of the firm and the
firm’s volatility rate. To do so, we use information regarding the stock’s price and its vol-
atility rate with valuation equation (10.3) and the call’s price with valuation equation
(10.14). Our two equations are

8 = VN(d1) – 20e–0.05(5)N(d2)

where

 and 

and

0.5312 = VN2(d1,a1;ρ) – 20e–0.05(5)N2(d2,a1;ρ) – 10e–0.05(5)N1(a2)

where

, , and 

Rather than compute these formula values by hand, we will use the OPTVAL functions

OV_CORP_STOCK_FIRM(firm, face, t, r, vf, vind)

which solves for the value of the firm’s stock, and 

OV_CORP_OPTION_FIRM(firm, face, t, r, vf, cp, x, topt)

which solves for the value of an option written on the firm’s stock. The parameters of the
functions are as before: firm is the value of the firm, face is the face value of the firm’s zero-
coupon bonds, t is the term to maturity of the bond’s in years, r is the risk-free interest rate,
and vf is the volatility rate of the firm. The term, vind, is an indicator variable whose value is
set equal to 1 if the function is to return the stock’s value and 2 if the function is to return the
volatility rate. The additional parameters of the option valuation function are as follows: cp
is a call/put indicator variable (“c” or “p”), x is option’s exercise price, and topt is the time to
expiration of the option. Using the problem information, the appropriate function calls are

8 = OV_CORP_STOCK_FIRM(firm, 20, 5, 0.05, vf,1)

and 

0.5312 = OV_CORP_OPTION_FIRM(firm, 20, 5, 0.05, vf, “c”,10, 0.5)

The Excel function SOLVER can be used to identify the values of firm and vf that allow
the above expressions to hold exactly. The solution values for the value of the firm and
its volatility rate are 22.503 and 21.02%. The value of the bonds is therefore 22.503 –
8.00 or 14.503.

Computing Expected Returns on Corporate Securities 

The mechanics used to value corporate securities can also be used to determine
the relation between the expected rate of return and risk of different corporate
securities. From Chapter 10, we know that if a risk-free hedge can be formed
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between each of the securities of the firm and the underlying value of the firm,
the expected rate of return of security i may be expressed as 

Ei = r + (EV – r)ηi (12.17)

where Ei is the expected rate of return of security i, EV is the expected rate of
return of the firm, r is the risk-free rate of interest, and ηi is the security i’s eta
(i.e., its price elasticity with respect to the firm value). As noted earlier in the
chapter, the eta may be expressed as a function of delta, that is,

(12.18)

where Vi is the value of security i, and

where n is the number of securities of the firm. In the above illustrations, n = 2
since the firm has only two types of corporate securities—a zero-coupon bond
and common stock.

ILLUSTRATION 12.6 Compute expected returns for corporate bond and stock.

Assume that the firm has a current value of 25, an expected rate of return of 12%, and a
volatility rate of 20%. It has two securities outstanding—a zero-coupon bond and com-
mon stock. The bond matures in five years and has a face value of 20. The stock pays no
dividends, and the risk-free rate of interest is 5%. Compute the expected rates of return
and the volatility rates of the firm’s bond and stock, and plot them in a figure showing
expected return on the vertical axis and return volatility on the horizontal axis.

The volatility rates of the bond and the stock may be computed using the OPTVAL
functions

σB = OV_CORP_BOND_FIRM(25, 20, 5, 0.05, 0.20, 2) = 3.35%

and

σS = OV_CORP_STOCK_FIRM(25, 20, 5, 0.05, 0.20, 2) = 44.68%

which were introduced earlier in the chapter. The OPTVAL Function Library also con-
tains functions for computing the deltas and etas of the bond and the stock. The syntax
of the functions are

OV_CORP_BONDDELTA_FIRM(firm, face, t, r, vf, gind)

and

OV_CORP_STOCKDELTA_FIRM(firm, face, t, r, vf, gind),

where firm is the value of the firm, face is the face value of the firm’s zero-coupon bonds,
t is the term to maturity of the bond’s in years, r is the risk-free interest rate, and vf is the
volatility rate of the firm. The term, gind, is an indicator variable whose value is set equal
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to “d” or “D” if the function is to return the delta and “e” or “E” if the function is to
return the volatility rate. For the illustration at hand,

ηB = OV_CORP_BONDDELTA_FIRM(25, 20, 5, 0.05, 0.20, “e”) = 16.74%

and

ηS = OV_CORP_STOCKDELTA_FIRM(25, 20, 5, 0.05, 0.20, “e”) = 223.41%

The expected returns for the bond and the stock are, therefore,

EB = 0.05 + (0.12 – 0.05)0.1674 = 6.17%

and 

ES = 0.05 + (0.12 – 0.05)2.2341 = 44.68%

For the problem parameters, the expected return/risk attributes of the firm’s securities
fall on a straight line emanating from the risk-free interest rate:  

VALUING SUBORDINATED DEBT

Subordinated debt refers to bonds of different seniority. Interest payments to
bondholders follow a pecking order. The most senior bondholders are paid first,
followed by the next most senior, and so on. In the event of bankruptcy, some
tranches may be paid while others may not.

To value subordinated bond issues, we again begin with a framework in
which we know the firm’s value and volatility rate. Three bond issues are con-
sidered. They are labeled 1 through 3 in descending order of seniority. Their
market values are denoted B1, B2, and B3, and their respective face values are
F1, F2, and F3. All bonds are zero-coupon bonds and mature at time T. The
notation c(V,F) denotes the BSM call option formula value where the underlying
asset price is V and the option has an exercise price of F. To value each of the
bond issues, we apply the valuation-by-replication technique.

The value of the most senior bond issue can be obtained using (12.4), that is,

B1 = V – c(V,F1) (12.19)
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In spirit, the most senior bondholders hold a portfolio in which they are long
the value of the firm and short a call option whose exercise price equals the face
value of the bonds. In other words, the senior bondholders own the firm but are
not entitled to any firm value that goes beyond the face value of their bonds.
The residual value goes to the remaining stakeholders of the firm. 

Now, consider the bondholders with intermediate seniority. Again, bond val-
uation equation (12.4) applies in spirit. The intermediate bondholders are the
firm value net of the value of the senior bonds, V – B1, and are short a call option
whose exercise price equals the sum of the face values of the senior and interme-
diate claims, c(V,F1 + F2). The value of the intermediate bonds is therefore

B2 = V – B1 – c(V,F1 + F2) (12.20)

The call option value in (12.20) represents the aggregate value of the remaining
stakeholders of the firm—junior bondholders as well as the stockholders.

Finally, consider the most junior bondholders. The junior bondholders are
long the firm value net of the senior and intermediate bondholder values, V – B1
– B2, and are short a call option whose exercise price equals the sum of the face
amounts of all bond issues, F1 + F2 + F3. This call is the value of the sharehold-
ers’ claim since they receive the value of the firm’s assets at the bonds’ maturity
net of the bondholder claims. The value of the junior bonds may be written

B3 = V – B1 – B2 – c(V, F1 + F2 + F3) (12.21)

ILLUSTRATION 12.7 Value subordinated bonds.

Assume that the firm’s value is 90, its expected return is 12%, and its volatility rate is
30%. Assume also that there are three issues of five-year, zero-coupon bonds outstand-
ing. In decreasing order of seniority, they have face values of 50, 30, and 20. The risk-
free interest rate is 4%. Compute the value of each bond issue, its expected rate of
return, and its volatility rate.

To value the bond issues, we begin with the most senior bonds and apply the valua-
tion-by-replication principle. Holding the senior bonds is like being long the firm and
short a call option with an exercise price of 50 and a time to expiration of five years.
Using the BSM call option valuation formula, the call value is

OV_CORP_STOCK_FIRM(90, 50, 5, 0.04, 0.30, 1) = 51.382

Applying (12.19), the value of the most senior bond issue is 90 – 51.382 = 38.618. As
noted earlier in the chapter, the expected rate of return of security i, is

where Vi is the value of security i, and
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where n is the number of securities of the firm. In this illustration, n = 4 since there are
three bonds issues plus the common stock. The delta value for the most senior bonds
equals one less the delta of a call on the firm with an exercise price of 50. The delta of the
call may be computed using

OV_CORP_STOCKDELTA_FIRM(90, 50, 5, 0.04, 0.30, “D”) = 0.9344

The delta of the senior bonds is, therefore, 1 – 0.9344 = 0.0656, and the expected rate of
return of the senior bonds is

Finally, since the senior bond’s eta equals

the volatility rate of the senior bond is .
To value the second most senior tranche, we apply the valuation-by-replication tech-

nique yet once again. Holding the intermediate bond is like being long the residual value
of the firm after the most senior bondholders have been paid and being short a call
option with an exercise price of 80 (i.e., the sum of the face values of the senior and
intermediate bonds). Again, the BSM call option valuation formula can be applied. The
call option value is 

OV_CORP_STOCK_FIRM(90, 80, 5, 0.04, 0.30, 1) = 34.818

Thus the value of the intermediate bonds is 51.382 – 34.818 or 16.563. The combined
delta of the senior and intermediate bonds equals one less the delta of a call on the firm
with an exercise price of 80. The delta of the call may be computed using

OV_CORP_STOCKDELTA_FIRM(90, 80, 5, 0.04, 0.30, “D”) = 0.7908

The delta of the intermediate bonds is therefore 1 – 0.7908 – 0.0636 = 0.1437. Conse-
quently, its expected rate of return is

Finally, since the intermediate bond’s eta equals

the volatility rate of the bond is .
Finally, holding the most junior bonds is like being long the residual value of the firm

after the senior and intermediate bondholders have been paid and being short a call
option with an exercise price of 100 and a time to expiration of 100. The BSM value of
the call is 

EB1
r EV r–( )∆B1

V

B1
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

0.04 0.12 0.04–( ) 0.0656( )
90

36.618
------------------⎝ ⎠

⎛ ⎞+ 5.222%==

ηB1
0.0656

90
36.618
------------------⎝ ⎠

⎛ ⎞ 15.277%= =

σB1
ηB1

σV 0.15277 0.30( ) 4.583%= = =

EB2
r EV r–( )∆B2

V

B2
------

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

0.04 0.12 0.04–( ) 0.1437( )
90

16.563
------------------⎝ ⎠

⎛ ⎞+ 10.245%==

ηB1
0.0656

90
36.618
------------------⎝ ⎠

⎛ ⎞ 15.277%= =

σB2
0.78065 0.30( ) 23.419%= =



438 STOCK DERIVATIVES

OV_CORP_STOCK_FIRM(90, 100, 5, 0.04, 0.30, 1) = 26.853

With only the junior bonds included with the stock, the value of the stock is 26.853. The
value of the junior bonds, therefore, is the residual value less the stock value, 34.818 –
26.853, or 7.965. Similarly, the stock’s delta is 

OV_CORP_STOCKDELTA_FIRM(90, 100, 5, 0.04, 0.30, “D”) = 0.6831

so the junior bond’s delta must be 1 – 0.0656 – 0.1437 – 0.6831 = 0.1076. The junior
bond’s eta is 121.631%, its expected return is 13.371%, and its volatility rate is
36.489%.

As noted above, holding the stock of a firm is like holding a call option on the firm’s
value with the exercise price being equal to the sum of the face values of all bond issues.
In this illustration, the stock value is 26.853, its delta is 0.6831, and its eta is 228.955%.
Its expected rate of return is 22.316%, and its volatility rate is 68.687%. The table
below summarizes all of the computations:

Note that a market-value, weighted averages of the expected rates of return and volatility
rates of the individual corporate securities equals the assumed expected rate of return of
the firm, 12%, and the assumed volatility rate of the firm, 30%. The following figure sum-
marizes the expected return/risk relation for the bonds and the stock in this illustration. 

Bond
Issues

Face
Value

Firm 
Value
Before
Claim

Call
Value

Bond
Value

Market
Weight Delta Eta

Expected
Return

Volatility
Rate

Senior 50 90.000 51.382 38.618 0.4291 0.0656 15.277% 5.222% 4.583%

Intermediate 30 51.382 34.818 16.563 0.1840 0.1437 78.065% 10.245% 23.419%

Junior 20 34.818 26.853 7.965 0.0885 0.1076 121.631% 13.731% 36.489%

Total bonds 63.147 0.7016 0.3169

Stock 26.853 26.853 0.2984 0.6831 228.955% 22.316% 68.687%

Total 90.000 1.000 1.000

Market value weighted average 12.000% 30.000%
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As was the case for the corporate bond discussed in the first section, the val-
ues of the securities other than the common stock are usually unknown. Conse-
quently, the value of the firm, V, is unknown. In addition, since the price
histories of the bonds are generally not available, it is impossible to develop a
historical estimate the volatility rate of the firm, σV. Assuming the value of the
stock and its volatility are known, we can solve for V and σV based on S and σS
using the same iterative procedure as we used earlier. Assuming the value of the
stock is observed in the marketplace is 26.583 and the stock’s historical volatil-
ity rate is (coincidently)

(i.e., the assumed parameters in Illustration 12.7), the value of the firm is

OV_CORP_FIRM_STOCK(26.583, 100, 5, 0.04, 0.6869, 1) = 90

and the firm’s volatility rate is

OV_CORP_FIRM_STOCK(26.583, 100, 5, 0.04, 0.6869, 2) = 0.30

Note that the exercise price in the above computations is the sum of the face
values of all three bond issues in Illustration 12.7 (i.e., we treat all three bond
issues as if they were one issue). Thus, we can perform the valuation of all three
bond issues in Illustration 12.7 based on only on the knowledge of the current
stock value and its volatility rate.

VALUING WARRANTS

Rights and warrants are option-like securities issued by the firm. Usually they
are attached to bond or preferred stock offerings by the firm in order to entice
the buyers of the securities to accept lower coupon interest or dividend pay-
ments. Rights tend to be short-term and at-the-money when they are issued, and
warrants tend to be long-term and out-of-the-money. Since there is little distinc-
tion between rights and warrants from a valuation standpoint, only the term,
“warrants” is used in the remainder of this section.

Like call options, warrants provide holders with the right to buy the under-
lying stock at a predetermined price within a specified period of time. Unlike
call options, however, warrants are issued by the firm. Since the exercise of the
warrants creates more shareholders and the firm has a fixed amount of assets,
exercising an in-the-money warrant dilutes the value of existing shares. This sec-
tion focuses on warrant valuation in a manner that explicitly considers the
effects of dilution induced by the prospect of warrant exercise.9 

9 The approach used here is based on Smith (1976).

0.6831
90

26.583
------------------⎝ ⎠

⎛ ⎞ 0.30( ) 68.69%=
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To understand the effects of dilution on warrant (and stock) valuation, the
BSM option valuation framework developed in Chapter 7 is again applied. The
notation is as follows. The aggregate market value of the shares of the common
stock currently outstanding is denoted S, and nS is the number of shares out-
standing. The current share price is therefore S/nS. Similarly, W is the aggregate
market value of the warrants currently outstanding, nW is the number of shares
of stock sold to warrant holders if the warrants are exercised (for simplicity, one
warrant is assumed to provide the right to buy one share), and W/nW is the cur-
rent warrant price per share. The firm is assumed to have only two sources of
financing, stock and warrants, so the aggregate market value of the firm is V = S
+ B. The total market value of the firm is assumed to be log-normally distrib-
uted at the warrants’ expiration. The rate of return of the firm, , is
therefore normally distributed and its variance is denoted . The stock is
assumed to pay no dividends during the warrant’s life. Finally, the warrant con-
tract parameters are T, the time to expiration of warrants, and X, the aggregate
exercise price of the warrants. The exercise price per share of stock is X/nW. The
proportion of the firm owned by warrant holders if they exercise their warrants
is called the dilution factor and is denoted

As usual, r is the risk-free rate of interest. 
To understand how to value warrants, first consider their value at expira-

tion. At time T, the value of the firm’s existing assets is . If the warrants are
in-the-money, the warrant holders will exercise, paying the firm X is cash and
driving the firm value to . In return for paying X, the warrant holders
receive proportion γ of the value of the overall firm, that is, . Thus the
terminal value of the warrants may be written 

(12.22)

Separating known from unknown values in (12.22),

(12.23)

Note the structure of the warrant value at expiration (12.23) is similar to the
terminal value of a European-style call. The underlying asset price at expiration
is , which is log-normally distributed by assumption, and the exercise price
is (1 – γ)X. It follows, therefore, that the current value of the warrants is

W = γVN(d1) – e–rT(1 – γ)XN(d2) (12.24)

where

ṼT V⁄( )ln
σV

2

γ
nW

nS nW+
--------------------=

ṼT
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 and 

The market value per warrant is simply W from (12.24) divided by nW.
Like in the case of corporate bond valuation, the warrant valuation equa-

tion (12.24) seems somewhat circular in the sense that the warrant value, W,
appears on both sides of the equation—directly on the left-hand side of (12.24)
and indirectly through V (i.e., W is embedded in V) on the right-hand side. This
does not undermine the use of the formula, however. With all of the other valu-
ation parameters known, we can find the value of W that satisfies the equation
using a numerical search procedure such as SOLVER in Excel. A pre-pro-
grammed function for valuing warrants, OV_CORP_WARRANT_STOCK, is
also provided in the OPTVAL Function Library. 

ILLUSTRATION 12.8 Value warrant.

Suppose that you have been hired by an internet firm to determine the worth of warrants
written on the firm. In an initial public offering a few months ago, the firm sold 5 million
shares of stock in the marketplace, while giving the employees of the firm 7 million
shares with seven-year European-style warrants with an exercise price of $35 per share
on 7 million additional shares.10 Compute the value of each warrant assuming the cur-
rent stock price is $40 per share, and the stock pays no dividends. The stock and the war-
rants are the firm’s only two sources of financing. One warrant entitles its holder to one
share of common stock. Assume that the risk-free rate of interest is 4%, and that the
standard deviation of the rate of return of the firm is 30%. In the interest of complete-
ness, compute the expected returns and volatility rates of the firm’s stock and warrants
assuming that the firm’s expected return is 12%.

In the event the warrants are exercised, the dilution factor is 

That is, the warrant holders receive 36.84% of the firm value. The remaining sharehold-
ers are the investment public, with 26.32%, and the employees, with 36.84%. Prior to
the exercise of the warrants, the investment public held 41.67% and the employees held
58.33%. The aggregate exercise proceeds from the exercise of the warrants are

X = 7,000,000 × 35 = 245,000,000

and the current market value of the firm is

V = 12,000,000 × 40 + W = 480,000,000 + W

The aggregate market value of the warrants is computed by solving

10  Warrants are sometimes issued to provide incentives. For example, warrants may be issued
to employees as an incentive to work hard. In doing so, they gather a greater share of the firm
if it becomes successful.
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W = 0.3684VN(d1) – e–0.04(7)0.6316(245,000,000)N(d2)

where

 and 

The solution to this problem can be obtained using SOLVER in Excel. The aggregate war-
rant value is $118,066,271 or $16.867 per share. The intermediate computations for the
final solution value are: d1 = 1.1949, d2 = 0.4012, N(1.1949) = 0.8839, and N(0.4012) =
0.6559. Alternatively, the warrant value can be computed using the OPTVAL function

OV_CORP_WARRANT_STOCK(s, ns, nw, x, t, r, v, vfs, vind)

where s is the current stock price, ns is the number of shares outstanding, nw is the num-
ber of warrants outstanding, x is the exercise price per share, t is the warrant’s time to
expiration in years, r is the risk-free interest rate, v is the volatility rate, vfs is either “V”
or “S,” depending upon whether the volatility rate is the volatility rate of the firm or of
the stock, respectively, and vind is an indicator variable whose value is set equal to 1 if
the function is to return the firm’s value and 2 if the function is to return the firm’s vola-
tility rate. For the problem information at hand, the warrant value per share is

OV_CORP_WARRANT_STOCK(40, 12000000, 7000000, 35, 7, 0.04, 0.30, “V”, 1)
= 16.867

and its volatility rate is

OV_CORP_WARRANT_STOCK(40, 12000000, 7000000, 35, 7, 0.04, 0.30, “V”, 2)
= 0.4949

In order to compute the warrant’s expected return, we need its eta. The warrant’s delta is 

OV_CORP_WARRANTDELTA_STOCK(40, 12000000, 7000000, 35, 7, 0.04, 0.30, “V”, 1)
= 0.326

which means its eta is 

and its expected return is

EW = 0.04 + (0.12 – 0.04)1.6497 = 17.20%

Since the warrant’s delta is 0.326, the stock’s delta is 0.674. The stock’s eta is therefore,

its expected return is

ES = 0.04 + (0.12 – 0.04)0.8402 = 10.72%

and its volatility rate is

σS = 0.8402(0.30) = 25.21%

d1

0.3684Ve0.04 7( )

0.6316 245,000,000( )
-------------------------------------------------------- 0.5 0.302( ) 7( )+ln

0.30 7
---------------------------------------------------------------------------------------------------------------= d2 d1 0.30 7–=

0.326
598,066,271
118,066,271
---------------------------------⎝ ⎠

⎛ ⎞ 164.97%=
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598,066,271
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---------------------------------⎝ ⎠
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The expected return/volatility rate for each security is plotted in the figure below. The fig-
ure is unusual to the extent that the stock’s return/risk parameters are below that of the
firm. This arises because the firm has no securities more junior than stock. 

Illustration 12.8 assumes we can estimate the volatility rate of the firm, σV.
Like corporate bonds, warrants are not actively traded. Without historical price
series for both the stock and the warrant, we cannot obtain a history of firm val-
ues from which to estimate the historical rate of return volatility, σV. Fortunately,
if we know the current value of the stock and the stock’s volatility rate, we can
solve for V and σV based on S and σS using the same iterative procedure as we
used earlier. In Illustration 12.8, we know the current value of the stock is $40
per share. Suppose we collect a history of stock prices and find that σS = 25.21%.
From discussions earlier in the chapter, we know that the return volatility of the
stock may be expressed as a function of the return volatility of the firm, that is,

(12.25)

Equation (12.25), together with (12.24), can be used to solve for V and σV
uniquely. The OPTVAL function that performs this computation is

OV_CORP_WARRANT_STOCK(40, 12000000, 7000000, 35, 7, 0.04, 0.2521, 
“S”, 1) = 16.867

Again, like in the case of corporate bonds, we can value warrants in a manner so
as to incorporate the effects of dilution based on only on the knowledge of the
current stock value and its volatility rate. 

Before proceeding with the valuation of convertible bonds, it is worthwhile
to assess the approximate magnitude of the effects of dilution. As noted earlier,
it is not uncommon for individuals to value warrants using the BSM call option
valuation formula with no adjustment for the effects of dilution. This practice
overstates the warrant. The degree of bias is related to a number of the war-

20%

15%

10%

5%

0%

E
xp

ec
te

d 
re

tu
rn

Stock
Firm

Warrant

0% 10% 20% 30% 40% 50%

Volatility

60%

σS N d1( )
V

S
----⎝ ⎠

⎛ ⎞ σV=



444 STOCK DERIVATIVES

rant’s underlying parameters, particularly the dilution factor. For Illustration
12.8, the BSM value is

OV_OPTION_VALUE(40, 35, 7, 0.04, 0.00, 0.2521, “c”, “e”) = 16.983

which means that using the BSM formula overstates value by 11.6 cents. Table
12.1 shows the effects of the dilution factor on warrant valuation in more
detail. For the assumed warrant valuation parameters, the degree of bias is only
0.161% when the dilution factor is 5%, however, the degree of bias is more
than 2.5% when the dilution factor is 50%.

VALUING CONVERTIBLE BONDS

A convertible bond is a hybrid security with bond-like and option-like features.
Like a corporate bond, it promises to make periodic coupon interest payments
throughout its life and then to repay the principal at some fixed maturity date.
Also, like a corporate bond, there is a risk of default if the firm fails to make an
interest payment or repay the principal at maturity. Aside from the bond fea-
tures, however, a convertible bond allows its holder to exchange the bond for
shares of the firm’s stock. On first appearance, it may seem to be the case that a
convertible bond may be valued by replication as the sum of the values of a cor-
porate bond and a warrant, both of which we have already valued. Unfortu-
nately, this is not the case because the bond must be forfeit in order to receive

TABLE 12.1  Assessing the effects of potential dilution on warrant valuation for at-the-
money warrants.

Market/Warrant Parameters
Dilution
Factor

Warrant
Value

Call Option
Value

Percent
Difference

Stock

Price 40.00   5.00% 23.028 23.065 0.161%
No. of shares 10,000,000 10.00% 22.987 23.065 0.338%
Volatility type S 15.00% 22.943 23.065 0.533%
Volatility rate 40.00% 20.00% 22.894 23.065 0.748%

25.00% 22.840 23.065 0.986%
Warrant 30.00% 22.780 23.065 1.251%
Exercise price 40.00 35.00% 22.713 23.065 1.548%
Years to expiration 10 40.00% 22.639 23.065 1.882%

45.00% 22.555 23.065 2.263%
Market 50.00% 22.461 23.065 2.691%
Interest rate (r) 4.00% 55.00% 22.352 23.065 3.188%

60.00% 22.227 23.065 3.768%
65.00% 22.082 23.065 4.454%
70.00% 21.908 23.065 5.281%
75.00% 21.697 23.065 6.304%
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the shares. In this sense, it is like an exchange option of one risky asset for
another.11 

To value convertible bonds, we use the same approach that we used for cor-
porate bonds and warrants. We assume that the firm has two sources of financ-
ing—common stock and convertible bonds. The market value of all shares
outstanding is S, and the market value of the convertible bonds is CV. Thus, the
value of the firm is V = S + CV. For convenience, the convertible bonds are
assumed to be discount bonds. The market value of the overall firm is assumed
to be log-normally distributed when the bond’s mature. The number of shares
outstanding is nS, the number of shares underlying the convertible bonds nCV,
and F is the face value of the bonds. The firm’s volatility rate is σV, and r is the
risk-free rate of interest.

The bondholder’s decision to convert at the bond’s expiration depends on
whether the per share market value of the stock exceeds the implicit exercise
price of the embedded option, that is,

(12.26)

The first term on the left hand-side is the per share value of the stock if the con-
vertibility option is exercised. The second term on the left-hand side is the exer-
cise price per share being paid by the bond holder if he chooses to exercise. This
is not a cash exercise price; the bond holder merely forfeits the face value (prin-
cipal repayment) of the bond in return for shares of higher value.

To express things at an aggregate level, multiply the left-hand side of
(12.26) by nCV and substitute the dilution factor,

Like in the case of warrants, the exercise of in-the-money convertible bonds
dilutes the value of the existing shareholders’ equity. The convertibility option
has a terminal value of max(γVT – X,0) at time T, that is, the convertible bond-
holder will elect to exchange his bond for stock if it is profitable to do so.
Applying the BSM call option valuation formula, we find that the value of the
convertibility option is 

c(γV,F) = γVN(d1) – Fe–rTN(d2) (12.27)

where

11 Recall that exchange options were valued in Chapter 8. That framework is not directly ap-
plicable here since there is only one source of uncertainty (i.e., the firm’s value) and dilution
must be considered.
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 and 

Applying the corporate bond valuation equation (12.8), the current value of the
convertible bonds is therefore 

CV = Fe–rT – p(V,F) + c(γV,F) (12.28)

where p(V,F) is the BSM put option value for a put written on V with exercise
price F. In other words, the value of the convertible bonds equals the value of
risk-free bond with the same face amount and maturity date as the convertible
bond less the value of the put option providing the firm with the right to put the
assets of the firm to the bondholders in the event of default plus the value of the
option to convert the bond into shares if it profitable to do so.

ILLUSTRATION 12.9 Value convertible bonds.

Assume that the firm’s value is 12,000 and its volatility rate is 30%. Assume also that the
stock pays no dividends, and there are currently 400 shares outstanding. The firm’s con-
vertible bond has a face value of 4,000, has five years to maturity, and may be exchanged
into 100 shares of stock. The risk-free rate of interest is 4%. Compute the convertible
bond value, the share price, and the aggregate value of stocks and bonds outstanding.
Also, compute and plot the expected rates of return and volatility rates of all securities.

First, compute the value of the risk-free bonds, that is,

Fe–rT = 4,000e–0.04(5) = 3,274.92

Next compute the value of the firm’s put option to default. Since the face value of the
bonds is 4,000 and the value of the firm is 12,000, the bonds are close to risk-free and
the put option is worth only 40.52, and the value of the corporate bond without the con-
vertibility feature is 3,274.92 – 40.52 = 3,234.41. This computation can be performed
using the OPTVAL function

OV_CORP_BOND_FIRM(12000, 4000, 5, 0.04, 0.30, 1) = 3,234.41

Finally, we compute the value of the option to convert. The dilution factor is

The aggregate value of the call option to convert is 382.85; therefore the current value of
the convertible bond is

3,274.92 – 40.52 + 382.85 = 3,617.26

A convertible bond valuation function is included in the OPTVAL library. The function is

OV_CORP_CVBOND_FIRM(firm, ns, ncb, face, t, r, vf, vind)

where firm is the firm value, ns is the number of shares of stock outstanding, ncb is the
number of shares underlying the convertible bonds, face is the face value of the convert-
ible bonds, t is the term to maturity of the bonds in years, r is the risk-free interest rate,

d1

γVerT F⁄[ ] 0.5σV
2 T+ln

σV T
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and vf is the volatility rate of the firm. The term vind is an indicator variable. A value of
1 returns the convertible bond value and 2 returns the convertible bond volatility rate.
For the problem at hand,

OV_CORP_CVBOND_FIRM(12000, 400, 100, 4000, 5, 0.04, 0.30, 1) = 3,617.26

With the convertible bond value being 3,617.26, the value of the firm’s common stock is 

S = V – B = 12,000 – 3,617.26 = 8,382.74

and the firm’s share price is 

The expected rate of return and volatility rate for each of the firm’s securities can be com-
puted in the same manner as previous illustrations. For convenience, the expected return
and volatility rate of a straight bond with the same face value and maturity as the con-
vertible bond are also computed. The results are as follows:

The figure below shows that all securities fall on a line emanating from the risk-free rate
of interest. The straight bond is nearly risk-free and lies at the extreme left of the figure.
The convertible bond, on the other hand, is more risky than the stock given its embedded
option. For the parameters of this problem, the expected return/risk characteristics of the
stock are below those of the firm. 

Security Expected Return Volatility

Risk-free   4.00%   0.00%
Bond   4.34%   1.29%
Stock 10.18% 23.16%
Firm 12.00% 30.00%
Convertible bond 16.23% 45.85%

8,382.74
400

----------------------- 20.96=
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Illustration 12.9 is intended only to illustrate the convertible bond valuation
mechanics. Like in the previous valuation problems of this chapter, it is gener-
ally the case that the value of the firm, V, and the volatility rate of the firm, σV,
are not known. But again we can circumvent the problem by using the value of
the stock, S, and the volatility rate of the stock, σS. To understand how to do
this, note that equation (12.28) is incomplete. If we know the value of the stock,
we can write the value of the firm as the sum of the values of the stock and the
convertible bonds, that is,

V = S + Fe–rT – p(V,F) + c(γV,F) (12.29)

We also know that the relation between the volatility of the stock and the vola-
tility of the firm is 

σS = ηSσV (12.30)

Assuming the value of the stock S and its volatility σS are known, we can solve
uniquely for V and σV. For the sake of illustration, assume that the current value
of the common shares of the firm is 8,382.74. Also, assume that a history of
stock prices was collected and that the estimate of the historical stock return
volatility is 23.16% (which just happens to equal the

in Illustration 12.9. With two equations, (12.29) and (12.30), and two
unknowns, we can solve uniquely for V and σV using Excel’s SOLVER function.
Alternatively, OPTVAL includes the function

OV_CORP_CV_FIRM_STOCK(stock, ns, ncb, face, t, r, vs, vind)

where stock is the value of the stock, ns is the number of shares of stock, ncb is
the number of shares underlying the convertible bonds, face, is the face value of
the bonds, t is the term to maturity of the bonds in years, r is the risk-free inter-
est rate, and vs is the volatility rate of the stock. The argument vind is an indica-
tor telling the function to return the firm value 1 or the firm volatility rate 2.
Applying the function

OV_CORP_CV_FIRM_STOCK(8382.74, 400, 100, 4000, 5, 0.04, 0.2316, 1) = 12,000

and

OV_CORP_CV_FIRM_STOCK(8382.74, 400, 100, 4000, 5, 0.04, 0.2316, 2) = 0.50

We can then value the convertible bonds of the firm using market information for
only the common shares, that is, the current stock value and its volatility rate.

0.5393
12,000

8,382.74
-----------------------⎝ ⎠

⎛ ⎞ 0.30( ) 0.2316=
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SUMMARY

In this chapter, we show how to value an array of different types of corporate secu-
rities using only information about the firm’s common stock price and the stock’s
volatility rate. This is possible because we assume that there is a single source of
uncertainty—the firm’s value. With a single source of uncertainty, all of the firm’s
securities have price movements that are perfectly correlated with one another over
short periods of time. Thus, under the BSM assumptions, all corporate securities
can be valued using information about the price and volatility rate of any one of
the firm’s outstanding securities. We use the firm’s common stock because, of all
the firm’s securities, it has the deepest and most active secondary market. 

In the model’s development, we simplify the firm’s securities in order to focus
on the economic intuition underlying valuation. Initially, we assume that the firm
has two sources of financing—common stock and bonds. The common stock pays
no dividends, and bonds pay no coupons. Under these assumptions, the firm’s
common stock is a European-style call option written on the value of the firm,
where the exercise price and time to expiration of the option equal the face value
and term to maturity of the firm’s zero-coupon bonds, respectively. The firm’s
bond value, in turn, equals the firm value less the value of the stock. Due to Euro-
pean-style put-call parity, it also equals the value of a risk-free bond less the value
of a European-style put option that allows the managers of the firm to put the
firm’s assets to the bondholders if asset value falls below the face value of the
bonds. While the model becomes more complicated when bonds pay coupons and
stocks pay dividends and valuation requires using the lattice-based procedures
such as those described in Chapter 9, the economic intuition remains intact.

We then extend the model to include other types of corporate securities such
as warrants and convertible bonds. For expositional convenience, we assume
that the (embedded) options in these securities are European-style. In this way,
we can apply the BSM formula directly and use it to develop the economic intu-
ition regarding the valuation problem. In practice, both warrants and convert-
ible bonds may be exercised at any time during the option’s life, and convertible
bonds are often callable by the firm. These valuation considerations can be han-
dled using lattice-based procedures (as opposed to analytical formulas). 

Finally, while it is beyond the scope of the chapter, the model can be gener-
alized to handle multiple sources of uncertainty. Corporate bond prices, for
example, may change for reasons other than firm value changes (e.g., changes in
the level of interest rates). Again, numerical methods are used to address such
valuation problems. The lattice-based procedures (e.g., the binomial and trino-
mial methods) and Monte Carlo simulation techniques described in Chapter 9
can be modified to handle multiple sources of underlying risk.
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CHAPTER

 

13

 

Compensation Agreements

 

irms often struggle with identifying appropriate compensation packages for
their employees. One important ingredient in designing such a package is

stock ownership. By providing employees with the shares of the firm, or claims
on the shares of the firm, management aligns the interests of employees with
those of owners (i.e., the shareholders). Two common contracts used in this con-
text are an 

 

employee stock option

 

 (ESO) and an 

 

employee stock purchase plan

 

(ESPP). Like a warrant, an ESO is a call option contract issued by the firm. Typ-
ically, ESOs are at-the-money at the time of issuance (i.e., the exercise price is
set equal to the stock price) and have terms to expiration of ten years. Over the
first few (usually three) years, the options cannot be exercised. This is called the

 

vesting period

 

. If the employee leaves the firm during the vesting period, the
options are forfeit. After the vesting date, the options can be exercised at any
time but are 

 

nontransferable

 

. Because they are nontransferable, the only way for
the employee to capitalize on its value is to exercise the option. An ESPP allows
the employee to buy the company’s stock at a discount, usually 15%, within a
certain period of time, typically six months. Some the ESPP includes a lookback
provision that allows its holder to apply the discount to either the end-of-period
or the beginning-of-period stock price, whichever is less. 

The purpose of this chapter is to describe how to value some of the different
types of stock compensation contracts that exist in practice. The first section
shows that standard ESOs can be valued as call options, even though they have
longer terms to expiration, greater dividend uncertainty, and vesting consider-
ations. The second section addresses the valuation effects of the vesting period.
As it turns out, unless the employee leaves the firm before the vesting period is
up, being precluded from exercising the option has little effect on ESO value.
The third section examines the consequences of the practice of using a constant
dividend yield model to value ESOs. The resulting valuation errors may be quite
large. The fourth section focuses on ESO valuation in circumstances where
employees are known to exercise their options early, even though it is subopti-
mal to do so. We then turn to valuing two important, albeit more specialized,
employee stock options—ESOs with indexed exercise prices in the fifth section
and ESOs with reload features in the sixth. The last section of the chapter
focuses on the valuation of ESPPs. 

F
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STANDARD EMPLOYEE STOCK OPTIONS

 

Like warrants and convertible bonds, the exercise of employee stock options
(ESOs) dilutes the value of existing shares. For most employee stock option
plans, however, the existing shareholder base is so large that the dilution factor
and the effect on ESO valuation are small. Consequently, the BSM call option
valuation equations/ methods that we applied to exchanged-traded stock options
in Chapter 11 can also be applied here. All that is needed are estimates of the
interest rate, the expected dividend stream, and the expected volatility rate. 

Given the long-term nature of ESOs, we need to be especially careful in esti-
mating the parameters that go into determining option value. Small changes in
the parameter values can produce large changes in value. Probably the best esti-
mate for the risk-free interest rate is the continuously compounded yield on a
U.S. Treasury strip bond with the same maturity date as the ESO. Recall from
Chapter 2 that this rate is computed using the transformation,

where 

 

B

 

 is the price of the strip bond as a percentage of par, and 

 

T

 

 is the term to
maturity of the bond expressed in years. The expected dividend stream for the
underlying stock should account for the discrete nature of quarterly cash divi-
dend payments. In Chapter 11, we discussed dividend payment practices by U.S.
firms. In that discussion, we noted that firms tend to (1) pay the same cash divi-
dend each quarter throughout the year; (2) pay the quarterly dividends at the
same times each year; and (3) increase the annual total cash dividends at a con-
stant rate through time. Consequently, projecting the amount and timing of
quarterly cash dividends over the ESO’s life is not as difficult as it might seem at
first blush.

 

1

 

 Finally, to estimate the volatility parameter, historical return data
should be used.

 

2

 

 It is probably a good idea to use weekly returns rather than
daily returns to mitigate the effects of measurement errors in prices.

 

3

 

 The length
of the return history needs to be at least as long as the ESO’s life to so that we
can be comfortable that we are seeing the firm’s share price across of the range
of business cycles that it might face over such a long period. Where the firm is
newly-listed and does not have a long price history, all available price data
should be used. Then, it would then be wise to compare the estimate against the
historical volatility estimates of the stocks in the firm’s peer group. 

 

1 

 

Naturally, more thought must be given to situations in which the firm does not currently pay
dividends but may do so during the life of the option. One potentially useful source of infor-
mation is the dividend yield levels of firms in a comparable peer group.

 

2 

 

The best estimate of volatility is the implied volatility from exchange-traded options on the
firm’s stock. But, this is true only if the exchange-traded options have the same time to expi-
ration as the ESOs. In general, this is not the case—exchange-traded stock options have much
shorter times to expiration than ESOs. Consequently, implied volatility from short-term op-
tions is a very noisy predictor of expected long-term volatility.

 

3 

 

Recall that the effects of measurement errors were discussed at the end of Chapter 7.

r
100 B⁄( )ln

T
----------------------------=
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In valuing employee stock options, the effects of discrete cash dividend pay-
ments need to be recognized explicitly. Using a constant dividend yield assump-
tion can produce significant errors, as we will show later in the chapter. Discrete
dividends have a distinctly different effect on early exercise than continuous div-
idends. Recall that, in Chapter 6, it was shown that an American-style call will
not optimally be exercised just prior to a dividend payment if the amount of the
dividend is less than the present value of the interest that can be earned implic-
itly on the exercise price by holding the option,

 

4

 

 that is,

(13.1)

A quick check of the projected cash dividends will tell us if early exercise is likely
or not. Suppose that we are valuing a 10-year, at-the-money stock option. The
stock price is 100, and the stock’s volatility rate is 36%. The firm’s next quarterly
dividend is to be paid in 20 days and will be 1.00 per share. The same dividend is
expected to be paid for the next three quarters. The quarterly dividends (the
same each quarter) are expected to grow by 5% annually. The quarterly divi-
dends in the second year, therefore, are projected to be 1.0513 (= 1.00

 

e

 

0.05

 

). In
the final year, the quarterly dividends are 1.568. Now, compare these dividend
amounts to the present value of the interest income that will be earned implicitly
by deferring exercise. The amount for all quarters except for the last is

as is shown in Table 13.1. Comparing each quarterly dividend with this amount
shows that early exercise will not be optimal until the very last quarter of the
option’s life, if at all. In the last quarter, the present value of the interest income is 

which means that early exercise just prior to the last dividend payment 

 

may

 

 be
optimal. The maximum amount of the early exercise premium, however, is
small. The maximum gain from exercising just prior to the last dividend is 1.568
– 1.541 = 0.027. The maximum gain is the present value of this amount or
0.014, as indicated in the table. Indeed, the actual early exercise premium is
trivial. The OPTVAL Function Library contains binomial and trinomial routines
for valuing European- and American-style options on dividend-paying stocks.
The syntax of the function call for the binomial method is

OV_STOCK_OPTION_VALUE_BIN(

 

s, x, t, r, v, n, cp, ae, mthd, dvd, tdvd

 

)

where 

 

s

 

 is the current stock price, 

 

x

 

 is the exercise price, 

 

t

 

 is the time to expira-
tion, 

 

r

 

 is the risk-free interest rate, 

 

v

 

 is the stock’s volatility rate, 

 

cp

 

 is a (c)all/
(p)ut indicator, 

 

ae

 

 is an (A)merican/(E)uropean-style option indicator, 

 

mthd

 

 is

 

4 

 

This was condition (6.16) in Chapter 6.

Di X 1 e
r ti 1+ ti–( )–

–( )<

PVInti X 1 e
r ti 1+ ti–( )–

–( ) 100 1 e 0.07 91 365⁄( )–
–( ) 1.730= = =

PVInt40 100 1 e 0.07 81 365⁄( )–
–( ) 1.541= =
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TABLE 13.1  Evaluating the optimality of early exercise for a long-term employee stock 
option.

Stock Quarterly Dividends

Price (S) 100 i Days ti Di PVInti PV(Di)

Current dividend (D1) 1.0000   1      20 0.0548 1.0000 1.730 0.9962

Dividend growth (g) 5.00%   2    111 0.3041 1.0000 1.730 0.9789

No. of days to 1st divd. 20   3    202 0.5534 1.0000 1.730 0.9620

Volatility rate (σ) 36.00%   4    293 0.8027 1.0000 1.730 0.9454

Market
  5    384 1.0521 1.0513 1.730 0.9766

  6    475 1.3014 1.0513 1.730 0.9597

Interest rate (r) 7.00%   7    566 1.5507 1.0513 1.730 0.9431

Option parameters
  8    657 1.8000 1.0513 1.730 0.9268

  9    748 2.0493 1.1052 1.730 0.9575

Exercise price (X) 100 10    839 2.2986 1.1052 1.730 0.9409

Years to expiration (T) 10.00 11    930 2.5479 1.1052 1.730 0.9246

Discrete dividend assumption:
12 1,021 2.7973 1.1052 1.730 0.9086

13 1,112 3.0466 1.1618 1.730 0.9387

PVD 35.571 14 1,203 3.2959 1.1618 1.730 0.9225

S-PVD 64.429 15 1,294 3.5452 1.1618 1.730 0.9065

Call option value 16 1,385 3.7945 1.1618 1.730 0.8908

    European-style, analytical (c) 32.529 17 1,476 4.0438 1.2214 1.730 0.9203

    European-style, binomial (c) 32.523 18 1,567 4.2932 1.2214 1.730 0.9044

    American-style, binomial (C) 32.523 19 1,658 4.5425 1.2214 1.730 0.8887

20 1,749 4.7918 1.2214 1.730 0.8733

Final dividend 1.568 21 1,840 5.0411 1.2840 1.730 0.9022

Days remaining 81 22 1,931 5.2904 1.2840 1.730 0.8866

Present value of interest 1.541 23 2,022 5.5397 1.2840 1.730 0.8713

Maximum gain from exercise 0.027 24 2,113 5.7890 1.2840 1.730 0.8562

Maximum exercise premium 0.014 25 2,204 6.0384 1.3499 1.730 0.8845

Continuous dividend yield assumption:
26 2,295 6.2877 1.3499 1.730 0.8692

27 2,386 6.5370 1.3499 1.730 0.8542

Implied dividend yield 4.396% 28 2,477 6.7863 1.3499 1.730 0.8394

Call option value (yield) 29 2,568 7.0356 1.4191 1.730 0.8672

    European-style, analytical (c) 32.529 30 2,659 7.2849 1.4191 1.730 0.8522

    European-style, binomial (c) 32.522 31 2,750 7.5342 1.4191 1.730 0.8374

    American-style, binomial (C) 37.271 32 2,841 7.7836 1.4191 1.730 0.8230

    Difference 4.748 33 2,932 8.0329 1.4918 1.730 0.8502

    Percent error 14.60% 34 3,023 8.2822 1.4918 1.730 0.8355

35 3,114 8.5315 1.4918 1.730 0.8210

No. of time steps 1,000 36 3,205 8.7808 1.4918 1.730 0.8068

Method 2 37 3,296 9.0301 1.5683 1.730 0.8335

38 3,387 9.2795 1.5683 1.730 0.8191

39 3,478 9.5288 1.5683 1.730 0.8049

40 3,569 9.7781 1.5683 1.541 0.7910
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the choice of binomial coefficients (2 is JR coefficients),

 

5

 

 

 

dvd

 

 is a cash dividend
vector, and 

 

tdvd

 

 is a vector containing the time to the dividend payments. Using
this function, the values of European-style and American-style calls are both
32.523. In other words, the early exercise premium is less than 1/10 of one
penny. It is also worth noting that the values obtained using the binomial model
are slightly less than that obtained using the BSM European-style option valua-
tion formula. This amount, less than a penny, is approximation error.

One last caveat—by most accounts, the assumed dividend payment stream is
extremely generous. The implicit dividend yield exceeds 4% annually. This is
high by U.S. standards. With smaller dividends, the probability of early exercise
becomes even smaller. What this means is that little is lost by valuing the Amer-
ican-style employee stock option using the European-style valuation equation.
Simply subtract the present value of the promised dividends over the option’s
life from the current stock price and apply the BSM formula. The formula value,
32.529, is also reported in Table 13.1.

 

VESTING PERIOD

 

Most employee stock options have a vesting period just after they are issued
during which time option exercise is prohibited. Typically, the vesting period
runs three years. While, intuitively, one might think that prohibiting the exercise
of the ESO during the vesting period reduces the ESO value, it does not. In the
ESO valuation problem shown in Table 13.1 and discussed above, we demon-
strated that early exercise is seldom optimal. Indeed, using the binomial
method, the value of the American-style call was identically equal to the value
of the European-style call, so the early exercise premium was, for all practical
purposes, valueless. Thus, for the valuation problem at hand, prohibiting exer-
cise during the vesting period, or at any time during the ESO’s life for that mat-
ter, has no economic value holding other factors constant. If early exercise may
be optimal, the effects of vesting can be handled within the binomial framework
by not checking the early exercise boundaries during the vesting period.

 

EARLY EXERCISE

 

Based on the discussion in the preceding sections, using a cash-dividend-
adjusted version of the BSM call option valuation formula seems entirely appro-
priate for valuing ESOs. Some argue that this practice overstates the true value
of the ESO because its assumes that the option holder will never exercise early
since it is not optimal to do so. As a practical matter, this is not the case. If an
employee voluntarily or involuntarily leaves the firm in the postvesting period,
he must exercise the ESO since it is not transferable. This makes the BSM value
using the stated expiration of the ESO too high. A quick-and-dirty fix to this

 

5 

 

Chapter 9 contains a description of three sets of coefficients that may be used in the binomial
method.
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problem is to replace the stated time for expiration with an expected time to
expiration based on the historical employment records of the firm.

 

6

 

Perhaps, more important, however, is that, for many ESO holders, the value
of the options represents a significant portion of their wealth. Exercising early
offers the employee the opportunity to cash-in and diversify a relatively undiver-
sified portfolio. On this matter, there is empirical evidence to suggest that
employees tend to exercise ESOs when the stock price reaches certain multiples
of the option’s exercise price. As it turns out, this type of behavior can be
accommodated easily with lattice-based valuation procedures like the binomial
method. We simply impose a barrier on the stock price lattice, and, where the
stock price at a particular node in the lattice exceeds the barrier, we replace the
option value at that node with the option’s exercise proceeds.

 

ILLUSTRATION 13.1

 

Value ESO with maximum stock price.

 

Compute the value of a 10-year, at-the-money ESO where the holder plans to exercise
when the stock price is twice as high as the option’s exercise price. Assume that the
underlying stock has a price of 50, a volatility rate of 40%, and pays no dividends. The
risk-free rate of interest is 7%. Use the binomial method with the CRR coefficients and
two time steps.

 

The first step in the binomial method is to compute the stock price lattice. To do so,
we compute the up-step and down-step coefficients, 

 

u

 

 and 

 

d

 

, for the CRR method out-
lined in Chapter 9. Using the problem parameters, the numerical values are

   and   

Starting at time 0 with a stock price of 50, the stock price lattice becomes

The second step in the binomial method is to value the option at expiration at each
stock price node. For a call, the value is the maximum of 0 and the difference between
the stock price and the exercise price, max(0,

 

S

 

i

 

,

 

j

 

 – 

 

X

 

). The bold values at time 2 in the
table below are the terminal option values.
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This adjustment is inexact because the BSM option value is a nonlinear function to time to
expiration. 

 

Stock Price Lattice

Time 0 1 2

 

299.130
122.297

50.000   50.000
  20.442

    8.358

u e0.40 5 2.4459= = d
1
u
---

1
2.4459
------------------ 0.4088= = =
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The third step is to value the option at earlier nodes by taking the present value of the
expected future value at each node. To compute the expected value, it is necessary to
know the probabilities of an up-step and a down-step. The probability of an up-step is
given by (9.8) in Chapter 9. The numerical value for the problem at hand is

The complementary probability of a down-step is 0.5280. The present value of the
expected future value at the top stock price node at time 1 is therefore

 

e

 

–0.07(5)

 

[0.4720(249.13) + 0.5280(0)] = 82.872

Similar computations can be performed to fill in the remaining option value nodes. Using
two time steps, the value of a European-style call option is 27.567.

To incorporate the effects of the option holder’s desire to exercise the option should
the stock price exceed the exercise price by a factor of two, you need to impose boundary
restrictions. Each time the stock price exceeds 100 in the lattice, you need to replace the
computed option value with the option’s immediate exercise proceeds. If you impose this
constraint on the option values in the lattice, you obtain the following lattice:

 

Option/Stock Price Lattice for European-Style Option

Time 0 1 2

249.130

 

299.130

 

  82.872

 

122.297

 

27.567
50.000

    0.000
  50.000

    0.000
  20.442

    0.000
    8.358

Option/Stock Price Lattice for ESO with Early Exercise Constraint

Time 0 1 2

  50.000
299.130

  50.000
122.297

16.632
50.000

    0.000
  50.000

    0.000
  20.442

    0.000
    8.358

p
1
2
---

1
2
---

0.07 0.5 0.402( )–

0.40
---------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

5+ 0.4720= =
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In other words, if we impose the constraint that the ESO will be exercised if the stock
price exceeds 100, the ESO value drops from 27.567 to 16.632. The cost of exercising
early can be quite significant. At 1,000 time steps, the value of the ESO with no early
exercise constraint is 32.464, while the ESO value with the early exercise constraint is
22.375. Thus the value of transferability is 10.089.

CONSTANT DIVIDEND YIELD MODELS

Employee stock options are often valued under the assumption that the common
stock pays a constant dividend yield over the life of the option. The only reason
for doing this is convenience. Estimating the amount and timing of quarterly
dividend payments is cumbersome. Assuming a single dividend yield for the
underlying stock is easy. Unfortunately, although valuing options under a con-
stant dividend yield assumption is easy, it is also prone to make serious errors.

Under the constant dividend yield assumption, the firm pays out dividends
as a constant, continuous proportion of stock price. This means that dividends
are paid continuously (not quarterly). It also means that, if the stock price goes
up, dividend income goes up, and, if the stock price goes down, dividend income
goes down. Clearly these attributes are inconsistent with actual dividend pay-
ment behavior. But more seriously, when this assumption is used for ESO valua-
tion, the results can be misleading.

To illustrate, use the example summarized in Table 13.1. To apply the con-
stant dividend yield model, we are first faced with the problem of estimating the
constant dividend yield. How should this be done? The answer is not simple.
The problem is that with the constant dividend yield model you do not know
the dollar amount of dividends earned. While the dividend rate is constant, the
dividend payments are random. Since we know the value of the European-style
call under the assumption of discrete dividends, 32.529, we can set it equal to
the formula for European-style call under a continuous dividend yield assump-
tion and solve for dividend yield. Using the parameters from the above example,

32.5286 = 100e–i(10)N(d1) – 100e–0.07(10)N(d2)

where

   and   

and the implied dividend yield is 4.396% annually. 
Now recall that the objective is to value the ESO and the ESO is American-

style. If we use the binomial method for valuing the call under the assumption of
a 4.396% dividend yield and the use of 1,000 time steps, the ESO value is
37.271—nearly 15% greater than the value you obtained by addressing the
problem more realistically. The constant dividend yield approach says that the
value of the early exercise premium in this ESO is about 4.742, when it is, in fact

d1
100e 0.07 i–( )10 100⁄( ) 0.5 0.362( )10+ln

0.36 10
------------------------------------------------------------------------------------------------------= d2 d1 0.36 10–=
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worthless. Using a constant dividend yield assumption in valuing American-style
options on discrete dividend-paying stocks is a practice that should be avoided.

ESOs WITH INDEXED EXERCISE PRICES

Some employee options have exercise prices that vary with an index of stock
prices of firms within the same industry. This type of contract makes a good deal
of sense from the firm’s perspective. With standard employee stock options,
option values increase as the market rises even if the firm is not doing as well as
its competitors. With an indexed exercise price, employees benefit based on
stock price performance. If the stock price rises relative to the index, option
value increases, independent of whether the market rises or falls.

Valuing options with an indexed exercise price can be handled using stan-
dard techniques, as we saw in Chapter 8. An exchange option is like a standard
option except in place of paying (receiving) the exercise price in cash at expira-
tion, we pay (receive) a second risky asset. For an indexed ESO, the second asset
is the index. The value of the ESO with an indexed exercise price is

(13.2)

where

   and   

In the valuation formula (13.7),  is the current share price net of the present
value of dividends paid during the option’s life and  is the index level net of
dividends.7 The volatility rate, σ, is defined as 

where σ1 and σ2 are the return volatilities of the stock and the index, respec-
tively, and ρ12 is the correlation between the return of the stock and the return
of the index.  

ILLUSTRATION 13.2 Value indexed employee stock option.

(1) Suppose that a firm decides to award employee stock options based on performance.
More specifically, assume, that instead of awarding standard 10-year, at-the-money stock
options, they award 10-year, at-the-money indexed stock options, where the index is cre-
ated as a value-weighted average of the firm’s competitors’ stock prices standardized to the
firm’s current stock price. The firm’s current stock price is 50 per share, it pays no divi-

7 Another way to think of  and  is as the prices of prepaid forward contracts on assets 1
and 2.

c S1
xN d1( ) S2
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dends, and its volatility rate is 40%. The index’s current value is 50, it pays no dividends,
and its volatility rate is 25%. Assume also that the correlation between the firm’s returns
and the index returns is 0.75. Compute the values of standard employee stock options and
indexed stock options assuming both are European-style. Assume the interest rate is 7%.

The value of the standard employee stock option can be computed using the BSM model.

OV_OPTION_VALUE(50, 50, 10, .07, 0.00, 0.40, “c”, “e”) = 32.476

The value of the indexed employee stock option is

OV_NS_EXCHANGE_OPTION(50, 50, 10, 0.00, 0.00, 0.40, 0.25, 0.75) = 16.485 

(2) Suppose that at the end of the first year, the market has fallen—the firm’s share price
is now at 45, and the index level is at 35. Compute the rate of return on the standard
employee stock options vis-à-vis the indexed options. Assume that all other problem
information remains the same.

The new option values are as follows:

OV_OPTION_VALUE(45, 50, 9, .07, .00, .40, “c”, “e”) = 26.665

and

OV_NS_EXCHANGE_OPTION(45, 35, 9, .00, .00, .40, .25, .75) = 18.115

The decline in stock price caused the standard ESO to drop in value by 17.89%. The indexed
ESO, on the other hand, increased in value by 9.89%. Even though stock prices fell, the firm
did well relative to the index, and the indexed options rewarded the employees accordingly.

(3) Alternatively, suppose that at the end of the first year, the market has risen—the firm’s
share price is now at 55, and the index level is at 60. Compute the rate of return on the
standard employee stock options vis-à-vis the indexed options. Assume that all other
problem information remains the same.

The new option values are as follows:

OV_OPTION_VALUE(55, 60, 9, 0.07, 0.00, 0.40, “c”, “e”) = 35.356

and

OV_NS_EXCHANGE_OPTION(55, 60, 9, 0.00, 0.00, 0.40, 0.25, 0.75) = 15.637 

The rise in stock price caused the standard ESO to rise in value by 8.87%. The indexed
ESO, on the other hand, fell by 5.14%. Again, the indexed option provided an appropri-
ate reward. Even though the stock price rose, the firm did relatively less well than the
index, and the indexed options rewarded the employees accordingly.

ESOs WITH RELOAD FEATURES

Reload options are like standard employee stock options, except that the holder
has the right to exercise the option periodically, locking in the exercise proceeds
from the original option issue and receiving new at-the-money stock options in
their place. More specifically, upon the exercise of a reload option, the holder
receives (1) cash proceeds equal to the difference between the stock price and
the exercise price, S – X, for each original option owned, plus (2) X/S new at-
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the-money options with the same expiration date as the original options.8 This
reload feature adds significant value to a standard ESO.

To value a reload option, a binomial lattice framework can be used. To sim-
plify the problem, assume the stock pays no dividends and that the option holder
has a single opportunity to “reload” his option. With no dividends, the value of a
standard employee stock option (with no reload feature) can be computed using
the BSM formula from Table 13.3. To value the ESO with a reload feature, com-
pute the stock price lattice for the binomial method in the usual fashion. With
the computed stock price lattice in hand, start at the end of the option’s life and
work backward to the present. At the end of the option’s life, the option value at
each stock price node is the maximum of 0 and the exercise proceeds. With the
expiration values computed, the procedure steps back one time increment, ∆t, to
time n – 1 and values the option at each node by taking the present value of the
expected future value. Then, for each node, in place of checking for early exer-
cise, we check whether any of the computed option values are less than the
reload proceeds, Si,j – X + (X/Si,j)ci,j, where Si,j is the stock price at node j and
time i, ci,j is the value of a European-style call, and X/Si,j is the new number of
calls, as per the contract design. If so, replace the computed option value with
the reload proceeds. The procedure is repeatedly recursively until time 0. 

ILLUSTRATION 13.3 Value employee stock option with reload feature.

Compute the value of a ten-year, at-the-money employee stock option with a single
opportunity to reload. Assume that the underlying stock has a price of 50, a volatility
rate of 40%, and pays no dividends. The risk-free rate of interest is 7%. Use two time
steps and the CRR method.

The first step in the binomial method is the same as in Illustration 11.1. Starting at
time 0 with a stock price of 50, the stock price lattice becomes

8 Presumably, the reason that fewer options (i.e., X/S) are awarded at the time of reload is that
the option has “cashed-in” a value of S – X for each option. If the option had no time remain-
ing to expiration, the option holder would receive S – X for each underlying share and the X/
S new, at-the-money options would be valueless. This would leave the shareholders of the firm
indifferent about the reload feature. But, if the options have any time remaining to expiration,
the option holder receives a windfall gain (and the shareholders a windfall loss) equal to the
time value (i.e., the option value less its intrinsic value) of the newly issued options. The opti-
mal reload exercise behavior for the option holder is therefore to exercise at every available
opportunity should the option be in the money. Indeed, it may be beneficial to exercise when
the option is slightly out of the money, particularly, if the time to expiration is long.

Stock Price Lattice Underlying Reload Option

Time 0 1 2

299.130
122.297

50.000   50.000
  20.442

    8.358
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The second step in the binomial method is to value the option at expiration at each stock
price node. For a call, the value is the maximum of 0 and the difference between the
stock price and the exercise price, max(0,Si,j – X). The bold values at time 2 in the fol-
lowing table are the terminal option values:

The third step is to value the option at earlier nodes by taking the present value of
the expected future value at each node. Using two time steps, the value of a European-
style call option with no reload feature is 27.567.

To incorporate the reload feature, you need to check for the possibility of reloading at
each node. Again, illustrating by focusing on the top node at time 1, you know that the
value of the option in the absence of reloading is 82.872. If the option is reloaded, how-
ever, the holder receives cash proceeds equal to the difference between the stock price and
the exercise price, Si,j – X plus X/Si,j new, at-the-money call options with no remaining
opportunity to reload. The numerical value is therefore

122.297 – 50 + (50/122.297)56.562 = 95.422

where 56.562 is the value of an at-the-money European-style call with an exercise price
of 122.297 and a five-year time to expiration. Similar checks are performed for the
remaining nodes. The value of the ESO with the reload feature is 31.742, compared with
the value of the ESO with no reload feature, 27.567. The opportunity to reload can have
significant value: 

Option/Stock Price Lattice with No Reload

Time 0 1 2

249.130
299.130

  82.872
122.297

27.567
50.000

    0.000
  50.000

    0.000
  20.442

    0.000
    8.358

Option/Stock Price Lattice with Reload

Time 0 1 2

249.130
299.130

  95.422
122.297

31.742
50.000

    0.000
  50.000

    0.000
  20.442

    0.000
    8.358
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From Chapter 9, you know that the binomial method is not particularly accurate
with only two time steps. To increase the precision, you need to increase the number of
time steps and revalue the ESO. The table below reports the results where the number of
time steps is 200. Even with 200 time steps, however, the binomial method remains
imprecise. With no reloads, the ESO value can be computed using the BSM formula. Its
value is 32.476. The binomial method with 200 time steps produces a value of 32.417—
about a six-cent error. Second, the value of the reload feature is 2.265 or about 6.5% of
the ESO value. For the problem at hand, the reload feature is quite valuable:

EMPLOYEE STOCK PURCHASE PLANS

A typical employee stock purchase plan (ESPP) allows its holder to buy the com-
pany’s stock at a discount within a certain period of time. The discount is usu-
ally 15%, and the investment period is typically six months. Many ESPPs also
have an embedded lookback option that allows the holder to apply the discount
to either the end-of-period stock price or the beginning-of-period price, which-
ever is less. To see how to value an ESPP, consider its value upon expiration.
Assume that k is the discount, expressed as a proportion of the stock price (e.g.,
k = 15%) and that the investment period ends at time T. The terminal value of
the ESPP may be expressed as 

(13.3)

If the end-of-period stock price ST exceeds the beginning-of-period price S, the
employee will choose to buy the shares at (1 – k) times the beginning-of-period
price, and, if the end-of-period stock price ST is less than the beginning-of-
period price S, the employee will choose to buy the shares at (1 – k) times the
end-of-period price. 

Valuation of Employee Stock Options with Reload Feature

Stock Binomial parameters

Price (S) 50 No. of time steps 200
Volatility rate 40.00% Method 1

Option Option valuation

Exercise price (X) 50 Analytical with no reload 32.476
Years to expitation (T) 10 Binomial with no reload 32.417

Binomial with one reload 34.682
Market Reload value 2.265

Interest rate (r) 7.00%

ESPPT

S̃T 1 k–( )S–       if ST S>

S̃T 1 k–( )S̃T–     if ST S≤⎩
⎪
⎨
⎪
⎧

=
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With the payoff contingencies in hand, we will value the ESPP using valua-
tion-by-replication. Recall that valuation-by-replication involves finding a port-
folio of securities whose values we know has payoff contingencies identical to
those of the instrument we wish to value. In the absence of costless arbitrage
opportunities, the value of the instrument must equal the value of the portfolio.
Consider a portfolio in which we (a) buy the stock, (b) borrow (1 – k)Se–rT, and
(c) buy (1 – k) put options with an exercise price of S and a time until expiration
of T. The terminal value of this portfolio is 

(13.4)

With a little simplification, it becomes obvious that (13.4) is the same as (13.3).
The value of  the ESPP, therefore, must equal the sum of the values of the securi-
ties in the portfolio, that is,

(13.5)

where

   and   

Interestingly enough, the reworking of equation (13.5) has produced
another possible replicating portfolio. The value of an ESPP equals the value of
a portfolio that consists of k shares of stock and (1 – k) at-the-money call
options.9 To verify this conclusion, write the terminal value contingencies for
this replicating portfolio:

(13.6)

A little algebra shows (13.6) is the same as (13.4). The intuition is that the ESPP
provides its holder with an award of k percent of the stock price at the end of

9 To verify this assertion, write the payoff contingencies of this two-security portfolio.

PortfolioT

S̃T 1 k–( )S– 0+                          if ST S>

S̃T 1 k–( )S– 1 k–( ) S S̃T–( )+     if ST S≤⎩
⎪
⎨
⎪
⎧

=

ESPP S 1 k–( )Se rT– 1 k–( ) Se rT– N d2–( ) SN d1–( )–[ ]+–=

S 1 k–( )Se rT– 1 k–( )Se rT– N d2–( ) 1 k–( )SN d1–( )–+–=

S 1 k–( )S 1 N d1( )–[ ] 1 k–( )Se rT– N d2( )––=

kS 1 k–( ) SN d1( ) Se rT– N d2( )–[ ]+=

d1
SerT S⁄( ) 0.5σ2 T+ln

σ T
----------------------------------------------------------= d2 d1 σ T–=

PortfolioT

kS̃T 1 k–( ) S̃T S–( )–    if ST S>

kS̃T 0+                         if ST S≤⎩
⎪
⎨
⎪
⎧

=
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the investment period plus a “kicker” equal to (1 – k) times the difference
between the beginning- and ending-of-period stock prices if ST > S (i.e., the
ESPP holder buys at the lower of S and ST).

ILLUSTRATION 13.4 Value ESPP.

Suppose your employer provides gives you an ESPP that allows you to buy 10,000 shares
of the firm’s stock at a 15% discount at today’s price or at the market price in six
months. The current stock price is 50, the stock’s volatility rate is 40%, and the risk-free
interest rate is 5%. What is the value of the ESPP?

To determine the value of the ESPP, you can simply apply (13.3). Substituting the
problem parameters, you get

ESPP = 0.15(50) + (1 – 0.15)[50N(d1) – 50e–0.05(0.5)N(d2)] = 12.764

where

   and   

This value can also be computed using the OPTVAL Library function, 

OV_STOCK_OPTION_ESPP(s, k, t, r, v)

where s is the stock price, k is the discount rate, t is the length of the investment period, r
is the risk-free rate of interest, and v is the volatility rate.

SUMMARY

Designing appropriate employee compensation schemes is no easy task. One
important ingredient in the mixture, however, is tying compensation to stock
price performance. Employee stock options (ESOs) and employee stock purchase
plans (EESPs) are such devices. This chapter examines the valuation of ESOs and
ESPPs. The effects of vesting, early exercise, and discrete and continuous cash
dividends are considered. In addition, two important new types of ESOs—ESOs
with indexed exercise prices and ESOs with reload features—are valued.
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Stock Index Products: Futures and
Options

 

rguably the most exciting financial innovation of the 1980s was the develop-
ment of stock index derivative contracts. Although derivatives on the Dow

were contemplated by the Chicago Board of Trade (CBT) as early as the late
1960s, it was not until the early 1980s that index derivatives began trading. The
Kansas City Board of Trade (KCBT) was the first by introducing the Value Line
index futures in February 1982, and the Chicago Mercantile Exchange (CME)
followed two months later with the S&P 500 index futures. On the options side,
the CME launched trading in S&P 500 index futures options in January 1983,
and the Chicago Board Options Exchange (CBOE) in S&P 100 index options in
March 1983. Within a few years, stock index products began to appear on other
major exchanges worldwide. The Sydney Futures Exchange (SFE) introduced
the All Ordinaries index futures (options) in February 1983 (June 1985), the
London International Financial Futures Exchange (LIFFE) the FT-SE 100 index
futures (options) in May 1984 (October 1992), and the Hong Kong Futures
Exchange (HKFE) introduced Hang Seng index futures (options) in May 1986
(March 1993). In spite of their relatively short history, the contracts have been a
phenomonal success. Billions of dollars in equities change hands every day
through index derivatives trading in nearly 30 different countries. 

This chapter and the next focus on stock index derivatives product markets
and portfolio return/risk management strategies. In this chapter, the primary focus
is exchange-traded derivatives. We begin by describing the U.S. markets for stock
index futures and options as well as providing the specifications of some popular
index contracts. The second section focuses on the construction of stock indexes.
In most cases, the underlying index is a market value-weighted combination of
stocks, with the notable exception being the price-weighted Dow Jones Industrial
Average (DJIA). The third section summarizes the no-arbitrage price relations and
valuation principles for index derivatives. For the most part, these are the same as
those of individual stocks since stock indexes are nothing more than portfolios of
stocks. Occasionally, however, traders choose to model the dividend income on the
index portfolio as a continuous rate rather than discrete flows. For completeness,
we provide the no-arbitrage prices relations and valuation principles for deriva-
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tives written on an index with a continuous dividend yield rate. The fourth section
contains two important return/risk management strategies using index derivatives.
First, stock index futures are used to tailor the expected return-risk characteristics
of a stock portfolio for purposes of market timing and asset allocation. Second,
protected equity notes are analyzed. A protected equity note is an investment that
allows individuals to protect the principal value of their investment, while, at the
same time, share in the upside of a market index. Although these products are
traded primarily in the OTC market, they can be created synthetically using risk-
free bonds and exchange-traded index call options. Chapter 15 follows with
descriptions of some advanced strategies/products including passive and dynamic
portfolio insurance, buy-write ETFs, and market volatility derivatives.

 

MARKETS

 

Like stock derivatives, stock index derivatives trade both on exchanges and in
the OTC market. Index futures and options have traded on exchanges for more
than two decades. In addition, exchange-traded funds (ETFs) have recently
attracted significant trading volume. ETFs are an effective, albeit indirect, means
of trading stock portfolios. Each ETF is a basket of securities but trades like a
single security. Forwards, options, and a wide variety of structured products are
offered in the OTC market. The purpose of this section is to provide a broad
overview of stock index products. We begin first with a brief history of the evo-
lution of index products. 

 

Evolution of Index Products

 

The idea of trading stock index derivatives contracts was contemplated as early
as 1968. At the time, grain surpluses had driven grain prices down to govern-
mental support levels. Without price volatility, trading activity in the futures
market was substantially reduced. Rather than wait for the situation to recover,
members of the CBT began to explore the possibility of creating futures con-
tracts on assets other than physical commodities—assets with less cyclical price
behavior. Their original notion was a cash-settled futures contract on the DJIA.
Fears of running afoul with the SEC and the Illinois State gambling laws, how-
ever, caused the CBT to abandon the idea in favor of creating a market for stock
options.

 

1

 

 Subsequently, the idea of trading a stock index futures contract lay
dormant for more than a decade. It was not until February 1982 (14 years later)
that the first futures contract on a stock index was launched—the Kansas City
Board of Trade’s ill-fated Value Line Composite Index futures contract. 

A brief digression on the “first-mover” advantage is probably worthwhile, as
it pertains to the failure of the Value Line futures contract. As a rule of thumb,
history has shown that the first exchange to launch futures trading in a new asset
category captures the lion’s share of trading volume, holding other factors con-
stant. Similar products introduced later by other exchanges have difficulty gather-
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For a historical recount of the events surrounding the CBT’s decision, see Falloon (1998).
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ing market share because the primary means of exchanges competing is the size of
market makers’ bid/ask spread. In a competitive environment such as an
exchange’s futures pit, bid/ask spreads vary inversely with trading volume. The
higher the volume, the lower the market maker’s fixed cost per trade. Since the
first-mover initially monopolizes trading activity, any new product offered by a
competing exchange must either provide lower trading costs (i.e., lower bid/ask
spreads) or change the contract specifications in such a way that attracts new mar-
ket participants. In the case of the Value Index futures contract, the KCBT was the
first-mover. The product was aimed at the institutional need to hedge stock mar-
ket risk. The index underlying the futures contract could have been the level of
any broad-based, well-diversified stock portfolio. From the discussion of the
CAPM in Chapter 3, we know that well-diversified stock portfolios have returns
that are highly correlated with one another. All futures contracts written on well-
diversified portfolios will therefore be very close substitutes. But therein lies the
reason for the failure of the Value Line futures contract market. While the Value
Line index had in excess of 1,500 stocks and, by all accounts, should have been
well-diversified, its construction was atypical in that it did not represent the value
of a stock portfolio. Instead of taking a value-weighted arithmetic sum of the con-
stituent stock prices (like the value of any well-diversified portfolio), the Value
Line index was calculated by taking an equal-weighted geometric product of stock
prices.

 

2

 

 This has two unfortunate consequences. First, it means that the Value
Line index returns will not be highly correlated with the returns of a well-diversi-
fied stock portfolio. Second, it means that it is impossible for the Value Line
futures price and the Value Line index level to be linked by arbitrage because the
index, itself, cannot be traded.
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 Without strong correlation between the returns of
the futures and the underlying index and strong correlation between the returns of
the index and well-diversified portfolios, the Value Line futures was an ineffective
means of hedging stock market risk

 

4

 

 and contract volume waned. Eventually, the
index was redesigned as a value-weighted arithmetic sum, but, unfortunately it
was too late. The first-mover advantage had been relinquished to the CME.

The first viable futures contract on a broad-based (arithmetic) index portfo-
lio was the S&P 500 futures, launched by Chicago Mercantile Exchange in April
1982. Consistent with the first-mover principle, it remains by far the most active
index futures contract today. Table 14.1 summarizes the trading volume of the
eight most active index futures contracts on U.S. exchanges during the calendar
year 2003. While a total of 35 index futures traded across U.S. exchanges, the
eight most active accounted for 92.43% of total contract volume.
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 Measuring

 

2 

 

More specifically, the Value Index was computed by taking the product of the price of all of
the stocks in the index and adjusting by a divisor.

 

3 

 

This is true only for the Value Line index. In general, the movements in a stock index can be
replicated by trading the basket of underlying stocks. Because the Value Line index is generally
weighted, replication is not possible.
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For an early evaluation of the properties of the Value Line Index futures, see Modest and
Sundaresan (1983).
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Contract volumes for the calendar year 2003 were drawn from 

 

Futures Industry Association
Monthly Report

 

 (December 2003). The total trading volume across all stock index futures list-
ed on U.S. exchanges during 2003 was 296,694,711 contracts.
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the importance of trading activity in terms of numbers of contracts can be mis-
leading, however, since different contracts have different contract multipliers
and index levels. To accurately measure the economic significance of the trading
volume for each contract, dollar contract volume (i.e., number of contracts
traded times the contract multiplier times the index level) was computed and is
reported in the last column of Table 14.1. The CME’s S&P 500 contracts
accounted for about 79% of the dollar contract volume in 2003. 

To further elaborate on the evolution of exchange-traded stock index deriv-
atives and the first-mover advantage, consider Table 14.2, which reports the
correlation coefficients computed from the daily returns of the major stock mar-
ket indexes in the U.S. during the calendar years 2002 and 2003. By way of his-
tory, the New York Futures Exchange (NYSE) was created in 1982 by the New
York Stock Exchange (NYSE) for the exclusive purpose of trading futures con-
tracts on the NYSE Composite index. In May 1982, a month after the launch of
S&P 500 futures trading, the NYSE Composite index futures began trading.
Other than having a different well-diversified portfolio serving as the underlying
index, the contract specifications (e.g., contract size and expiration cycle) were
very much like those of the S&P 500 index futures. Table 14.2 shows that the
correlation between the returns of the S&P 500 and NYSE Composite indexes is
0.979. With virtually perfect correlation between the returns of the two indexes,
futures contracts written on these indexes are nearly perfect substitutes.
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 It
should not be surprising, therefore, to find that, while the NYSE Composite
futures continues to trade, its contract volume is less than one percent of the
S&P 500 contract volume. In a similar vein, the correlation between the S&P
500 and the S&P 100 is 0.994, again indicating that having futures contracts
written on both indexes is redundant. Anecdotally, the CME launched S&P 100
futures contracts in the mid-1980s. The contract failed to attract significant
trading volume and was delisted shortly thereafter.

The Chicago Board of Trade was late to step into the stock index futures
market competition. The CBT’s plans were to create index futures on the Dow
Jones Industrial Average. At the same time, the American Exchange (AMEX)
was planning to launch trading in index option contracts on the Dow. Unfortu-
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This presumes that there is the same amount of basis risk between each futures and its un-
derlying index.

TABLE 14.2  Correlation between daily index returns of major U.S. stock market indexes 
using data from the calendar years 2002 and 2003.

Index DJIA S&P500 NYSE S&P 100 S&P 400 NASD 100

S&P 500 0.980
NYSE 0.966 0.979
S&P 100 0.980 0.994 0.969
S&P 400 0.892 0.925 0.925 0.897
NASD 100 0.857 0.905 0.853 0.894 0.883
Russell 2000 0.809 0.854 0.850 0.825 0.946 0.861



 

474

 

STOCK INDEX DERIVATIVES

 

nately, Dow Jones refused to allow either exchange to proceed. In a retaliatory
move, the AMEX created the Major Market Index (MMI)—an index designed
to look like the DJIA. It was a price-weighted index (like the DJIA) and con-
sisted of 20 “blue chip” stocks, 15 of which happened to be in the DJIA at the
time. The CBT licensed the rights for trading futures and futures option con-
tracts on the MMI from AMEX and began trading MMI futures in July 1984.
The contract floundered and was later delisted. 

In a reversal of its longstanding policy not to allow derivatives traded on its
indexes, Dow Jones began to consider proposals to license its DJIA to serve as
the index underlying index derivatives contracts in 1997. The CBT and the
CME competed for the right to trade futures and futures option contracts, and
the AMEX and the CBOE competed for the right to trade options. Dow Jones
awarded the license for futures and futures option contracts to the CBT and the
option contracts to the CBOE. On October 6, 1997, Dow options began trading
on the CBOE and Dow futures and futures options on the CBT. The success of
the Dow derivatives contracts, however, has been modest. In part, this is attrib-
utable to the high degree of correlation between the DJIA and the S&P 500
index. Table 14.2 shows that the correlation between the two indexes is 0.980.
To maximize the probability of success, however, the CBT, in discussions with
Dow Jones, attempted to differentiate the Dow contract from other index
futures by making it considerably smaller. In this way, they aspired to attract
retail (i.e., small investor) rather institutional (i.e., large investor) business.
Unfortunately, the CME was quick to respond to this initiative. When Dow
Jones awarded the license for DJIA futures contracts to the CBT, the CME
immediately countered by creating a miniaturized version of its successful S&P
500 futures. The “E-mini S&P 500” contract is 1/5 the size of its big brother
(and about half the size of the Dow contract) and began trading on September 9,
1997, about a month before the CBT was able to unveil the Dow futures. Judg-
ing by the contract volume figures reported in Table 14.1, there was pent up
demand for a smaller index futures contract. Indeed, the E-mini S&P 500
futures contract now has greater dollar volume than its big brother. The E-mini
S&P 500 futures also appears to have had a first-mover advantage in the sense
that its dollar contract volume in 2003 was nearly ten times higher than the two
futures contracts list on the DJIA.

Table 14.1 also shows that the NASDAQ 100 futures contracts have been
quite successful, with trading volume in excess of 1.6 billion contracts in 2003.
One reason for their success may be given in Table 14.2. The correlation
between the returns of the S&P 500 index and the NASDAQ 100 index is only
0.905. Thus the S&P 500 index and NASDAQ 100 index are not perfect substi-
tutes. Another reason may be that the NASDAQ contracts are about half the
size of their S&P 500 counterparts and may be attracting more retail business.
These cannot be the only reasons, however, since the Russell 2000 index has
even lower correlation with the S&P 500 index, and the E-mini Russell 2000
futures is a very small contract. The remaining reason is that index arbitrage is
more easily and cheaply executed using an index portfolio of 100 highly liquid
stocks than with an index portfolio with 2,000 stock with varying degress of
liquidity. The greater the arbitrage activity between the futures and its underly-
ing index, the higher the correlation between the return of the futures and its
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underlying index and the more effective the futures is as a return/risk manage-
ment tool.

The trading volumes of index options and index futures options traded on
U.S. exchanges during the calendar year 2003 are reported in Table 14.3. Under
the stock index options panel, the contract volume is greatest for exchange-
traded funds. But this is aggregate trading volume across a number of different
ETF option classes. By far the most active index option class is the S&P 500
index options traded on the CBOE. Excluding options on ETFs, S&P 500
options account for 47.6% of all index option trading. The second most active
contract is the S&P 100 index options.

 

TABLE 14.3  

 

Contract volume for stock index option and stock index futures option 
contracts in the United States during the calendar year 2003.  

 

Source: 

 

Data compiled from 

 

Futures Industry Association Monthly Report

 

 (December
2003).

 

Contract Exchange
Contract
Volume

Percent
of

Total

Percent
of Total
(excl.)

Stock index options:

 

Exchange Traded Funds CBOE   41,146,233 34.8%
S&P 500 Index Options (SPX) CBOE   36,754,720 31.1% 47.6%
S&P 100 Index Options (OEX) CBOE   14,343,992 12.1% 18.6%
Dow Jones Industrial Index (DJX) CBOE   10,193,708   8.6% 13.2%
NASDAQ 100 Mini (MNX) CBOE     4,034,201   3.4%   5.2%
Mini NASDAQ Non-Financial 

100 Index (MNX)
AMEX     2,436,756   2.1%   3.2%

S&P 100 European Exercise (XEO) CBOE     1,933,355   1.6%   2.5%
NASDAQ 100 (NDXCBO) CBOE     1,622,687   1.4%   2.1%
Gold/Silver Index (XA U) PHLX     1,130,430   1.0%   1.5%
Oil Service Sector (OSX) PHLX     1,006,718   0.9%   1.3%
Other     3,713,816   3.1%   4.8%
TOTAL 118,316,616

TOTAL (excluding ETFs)   77,170,383

 

Stock index futures options:

 

S&P 500 Index CME     4,986,456 90.1%
Dow Jones Industrial Index CBT        263,629   4.8%
E-Mini S&P 500 CME        112,864   2.0%
Russell 1000 NYBOT          61,264   1.1%
NASDAQ 100 Index CME          50,439   0.9%
NYSE Composite Index NYBOT          25,320   0.5%
Revised NYSE Composite NYBOT          18,912   0.3%
Other          16,062   0.3%

TOTAL     5,534,946
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Interestingly, the first options on a stock index were the CME’s S&P 500
futures options, which began trading in January 1983. Compared with other
futures options activity, the S&P 500 contracts account for 90.1% of total index
futures option trading volume in 2003. Compared with the S&P 500 index
options traded on the CBOE, however, their volume is about 12.1%. Adjusting
for contract size, the relative trading volume is 30.3%. One reason for the dom-
inance of index options over index futures options is that many institutional
investors can trade in securities markets but not futures markets. Another is that
longer-term contracts are available in the index option market. 

Security and futures exchanges tend to develop reputations as leaders in
particular styles of contracts based on their relative trading volumes. Table 14.4
summarizes trading volume by U.S. exchange for the calendar year 2003. In
terms of the reputation, the CME is the market leader in the stock index futures
and the stock index futures options markets in the U.S. Table 14.5 shows that
they account for 94.6% of stock index futures trading and 93.3% of stock
index futures options trading in the U.S. The CBOE is the leader in index
options trading, with 93.7% of the total index option contracts traded.

 

TABLE 14.4  

 

Number of contracts listed and contract volume for stock index products traded 
on U.S. exchanges during the calendar year 2003.  

 

Source: 

 

Data compiled from 

 

Futures Industry Association Monthly Report

 

 (December
2003).

 

Exchange Symbol
No. of

Contracts
Contract
Volume

Percent
of Total

Stock index futures:

 

Chicago Mercantile Exchange CME 22 280,649,663 94.6%
Chicago Board of Trade CBT   3   15,319,313   5.2%
New York Board of Trade NYBOT   7        720,147   0.2%
OneChicago ONE   1            3,197   0.0%
Kansas City Board of Trade KCBT   1            2,391   0.0%

TOTAL 34 296,694,711

 

Stock index options:

 

Chicago Board Options Exchange CBOE 15 110,822,092 93.7%
American Exchange AMEX 25     4,272,740   3.6%
Philadelphia Exchange PHLX 16     3,221,784   2.7%

TOTAL 56 118,316,616

 

Stock index futures options:

 

Chicago Mercantile Exchange CME   6     5,163,151 93.3%
Chicago Board of Trade CBT   1        263,629   4.8%
New York Board of Trade NYBOT   6        108,166   2.0%

TOTAL 13     5,534,946
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TABLE 14.5  

 

Selected terms of S&P 500 index futures contract.

 

Stock Index Futures

 

Index futures are standardized contracts, with a number of conventions regard-
ing denomination, expiration, and method of settlement. Table 14.1, for exam-
ple, shows the contract multiplier of the eight most active index futures traded in
the U.S. The contract multiplier for the S&P 500 contract is 250 times the index
futures price. A futures price of 1,110 implies that trading a single contract is
like trading $275,000 in the S&P 500 index portfolio. The 250-multiplier has
not been in effect for too long. From inception on April 21, 1982 through Octo-
ber 31, 1997, the multiplier was 500. The redenomination of the contract was
an attempt by the CME to make the contract more accessible for investors.

 

7

 

The contract specifications of the S&P 500 futures are presented in Table
14.5. As noted earlier, the contract multiplier is $250. Since the tick size is 0.10
index points, the minimum price movement in the contract is $25 (i.e., 0.10 

 

×

 

$250). The S&P 500 futures contract is on the March quarterly expiration
cycle, which means that March, June, September, and December contracts are
available. On any given date, eight contract months are listed. Hence, as of
April 2004, June 2004 through March 2006 contract months are available. The
last trading day of the S&P 500 futures contract is the third Thursday of the
contract month. Cash settlement of the contract takes place at a special settle-
ment quotation based on opening prices of the index stocks on Friday. 

The S&P 500 futures trades on the floor of the exchange during regular
trading hours as well electronically during the rest of the day. The floor trading

 

Exchange Chicago Mercantile Exchange (CME)
Contract unit $250 times S&P 500 index
Tick size 0.10
Tick value $25
Contract months Nearest eight months in the March quarterly expiration cycle 

(i.e., Mar./Jun./Sep./Dec.).
Trading hours FLOOR trading: 8:30 

 

AM

 

 to 3:15 

 

PM

 

 CST. All contract months 
are traded.

GLOBEX trading: 3:30 

 

PM

 

 to 8:15 

 

AM

 

 (the following morning) 
Monday through Thursday, and 5:30 

 

PM

 

 to 8:15 

 

AM

 

 (the fol-
lowing morning) Sundays and holidays. Shutdown period from 
4:30 

 

PM

 

 to 5:00 

 

PM

 

 nightly. Only nearby contract month is 
traded.

Expiration day Third Friday of the contract month.
Last day of trading Business day immediately preceding the day of the determination 

of the final settlement price.
Final settlement price Cash-settled at a special quotation of the index based on the 

opening prices of the index stocks on the expiration day.

 

7 

 

For an analysis of the effect of the CME’s re-denomination of the S&P 500 futures contract,
see Bollen, Smith, and Whaley (2003).
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hours of the S&P 500 futures are from 8:30 

 

AM

 

 to 3:15 

 

PM

 

 Central Standard
Time (CST) Monday through Friday. All eight contract months are traded. Note
that the hours of trading for the index futures are usually chosen to coincide
with trading in the stock market, with the possibility of a short window before
or after the stock market is opened or closed. For the S&P 500 futures, regular
trading extends fifteen minutes beyond the close of the market, that is, trading
on the NYSE is from 9:30 

 

AM

 

 to 4:00 

 

PM

 

 Eastern Standard Time (EST). Outside
the floor trading hours, the nearby S&P 500 futures contract trades electroni-
cally on GLOBEX.

 

8

 

 The electronic trading hours are from 3:30 

 

PM

 

 (CST) until
8:15 

 

AM

 

 (CST) the following morning Monday through Thursday, and 5:00 

 

PM

 

(CST) until 8:15 

 

AM

 

 (CST) the following morning on Sundays and holidays. 
The contract specifications of the E-mini S&P 500 futures are virtually iden-

tical to those of the S&P 500 futures. The only notable exception is that the
contract multiplier is 50 instead of 250. The E-mini S&P 500 futures trades
electronically virtually twenty-four hours a day—from 3:30 

 

PM

 

 to 3:15 

 

PM

 

 CST
(on the following day) on Monday through Thursday and from 5:30 

 

PM

 

 to 5:15

 

PM

 

 CST (on the following day) on Sunday and holidays Only the two nearby
contract months are traded.

 

Stock Index Options

 

Stock index options are written on both stock index futures and the stock index.
There are subtle differences in the contract designs, as discussed below.

 

Index Futures Options

 

The first stock index futures option contracts to trade in the
U.S. were the Chicago Mercantile Exchange’s S&P 500 and the New York
Futures Exchange’s NYSE Composite futures option contracts. They began
trading on January 28, 1983. Trading in index futures options is less active than
index futures. Indeed, for the U.S. index futures contracts listed in Table 14.3,
the only futures option contract to have trading volume greater than 500,000
contracts during 2003 was the S&P 500 futures option.

Table 14.6 contains the product specifications of the S&P 500 futures
option contract. Each futures option is written on a single S&P 500 futures con-
tract. Tick size, tick value, and trading hours conventions are the same as those
of the underlying futures. S&P 500 futures options, like all futures options
traded in the United States, are American-style. In the event of early exercise,
the underlying futures contract is delivered. Exercising a long call position, for
example, means that a long position in the underlying futures is delivered. A
seller of the call, selected randomly from the outstanding short positions, would
receive the offsetting short futures position. Both futures positions are marked-
to-market at the exercise price of the call at the end of day.

 

8 

 

GLOBEX is an electronic trading system developed by the CME (and Reuters) and began live
trading June 25, 1992. On the first day of operation, 2,063 futures and futures option con-
tracts on Deutsche marks and Japanese yen were traded. Today nearly all CME products are
traded on GLOBEX, and trading activity averages more than one million contracts per day—
a staggering 44% of total CME volume!
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TABLE 14.6  

 

Selected terms of S&P 500 index futures option contract. 

 

To illustrate the mechanics of exercising an American-style futures option,
suppose you hold the June 2004 call with an exercise price 1050 listed in Table
14.7. On the morning of April 14, 2004, you decide to exercise the option. To
do so, you must call your broker and tell him that you want to exercise your
call. At the end of the day, what would appear in your futures account would
include a long position in the June 2004 futures plus mark-to-market cash pro-
ceeds in the amount of $19,925 (i.e., the futures settlement price, 1,129.70, less
the exercise price, 1050, times the contract denomination, $250). 

Note that in the above illustration the exercise proceeds equal the difference
between the settlement price and the exercise price at the end of the day even
though you tendered exercise early in the day. Locking in the exercise proceeds
earlier in the day is also possible. Suppose, for example, that the price of the June
2004 futures was at 1150 in the morning of April 14. To lock in the exercise pro-
ceeds at that futures price level, you call your broker and instruct him to (1) exer-
cise the call and (2) sell the futures. Assuming the futures order is executed at
1150, your end-of-day settlement would include a mark-to-market gain of 1150 –
1129.70 times $250 on your short futures position, and a mark-to-market gain of
1129.70 – 1050 times $250 on the long futures position obtained when exercising
the call. The total gain is $25,000, and the futures position is closed.

Table 14.6 describes both quarterly and nonquarterly expiration cycles. The
quarterly expiration cycle patterns the futures—March, June, September, and
December. The S&P 500 futures options with these contract months are written

 

Exchange Chicago Mercantile Exchange (CME)
Contract unit One S&P 500 futures contract
Tick size 0.10
Tick value $25
Contract months Four expirations on the quarterly cycle Mar./Jun./Sep./Dec. Also, 

two nearby contract months such that a total of six contract 
months are listed.

Trading hours FLOOR trading: 8:30 

 

AM

 

 to 3:15 

 

PM

 

 CST. All contract months are 
traded.

GLOBEX trading: 3:30 

 

PM

 

 to 8:15 

 

AM

 

 (the following morning) 
Monday through Thursday, and 5:30 

 

PM

 

 to 8:15 

 

AM

 

 (the follow-
ing morning) Sundays and holidays. Shutdown period from 4:30 

 

PM

 

 to 5:00 

 

PM

 

 nightly. Only nearby contract month is traded.
Exercise style American
Expiration day Third Friday of the contract month.
Last day of trading The same date and time as the underlying futures contract for the 

quarterly cycle and on the third Friday of the contract month for 
the other months.

Final settlement price Quarterly expirations are cash-settled at a special quotation of the 
index based on the opening prices of the index stocks on the expi-
ration day. Nonquarterly expirations call for the delivery of the 
underlying futures contract.
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on the corresponding futures. Table 14.7, however, shows April and May contract
months, where no April and May S&P 500 futures are traded. These are called
serial months and are written on the June 2004 futures. Upon exercising a serial
option, the option holder receives a position in the nearby futures contract, in this
case the June 2004 futures, and is marked-to-market at the exercise price. If serial
options are carried to their expiration on the third Friday of the contract month,
they are automatically exercised if in the money. On the other hand, S&P 500
futures options expiring on the quarterly cycle are cash-settled at expiration—the
June 2004 futures option expires at the same instant as the June 2000 futures. 

 

Index Options

 

The first stock index option contract to trade in the United States
was the Chicago Board Options Exchange’s S&P 100 index option.

 

9

 

 They began
trading on March 11, 1983. The CBOE launched trading in S&P 500 index
options on July 1, 1983. Since the early 1980s, options on a number of nar-
rowly-based industry indexes have also been introduced. Few have managed to
generate significant trading volume. Nonetheless, options on more than fifty dif-
ferent stock indexes trade in the U.S. alone.

 

9 

 

Although the S&P 100 index is less well-known than the S&P 500 index, S&P 100 options
had the greatest trading volume until only recently. By way of history, when the CBOE was
initially considering introducing an index option contract in the early 1980’s, it decided upon
a value-weighted index of the one hundred largest stocks for which CBOE listed stock options.
Originally, the index was called the “CBOE 100.”  Later, the CBOE reached an agreement for
Standard & Poors’ to track the portfolio composition, at which time, the index was renamed
the S&P 100.

TABLE 14.7  Settlement prices of selected S&P 500 index futures options drawn from 
www.cme.com on April 14, 2004. Settlement price of June 2004 S&P 500 futures was 
1129.70.

Exercise
Price

Call Options Put Options

Apr/04 May/04 Jun/04 Apr/04 May/04 Jun/04

1000 134.20   1.70     4.90
1025 104.70 107.10 111.20     0.05   2.60     6.80
1050   79.80   83.80   89.10     0.10   4.20     9.60
1075   54.90   61.40   68.00     0.20   6.80   13.50
1100   30.20   41.00   48.90     0.55 11.40   19.30
1125     8.10   23.70   32.40     3.40 19.00   27.70
1150     0.30   11.10   19.20   20.60 31.40   39.40
1175     0.05     4.00   10.10   45.30 49.20   55.30
1200     1.00     4.60   70.30 71.20   74.70
1225     0.30     1.90   95.30   97.00
1250     0.15     0.80 120.30 120.80
1275     0.05     0.30
1300     0.20 170.30
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Table 14.3 summarized the trading volume of index options in the calendar
year 2003. Most of their volume is concentrated in the broad-based indexes.
The S&P 500 contract, for example, has 47.6% of the total non-ETF index
option volume, and the S&P 100 contract has 18.6%. The only narrow-based
index option to have significant volume is the Dow Jones index options, with
13.2% of total volume. To some degree, this is surprising considering that the
market was launched on October 6, 1997—less than eight years ago. Part of this
phenomenon, however, may be attributable to the fact that the Dow options
have a smaller contract denomination. Finally, NASDAQ 100 index options
account for about 7.3% of total trading volume. 

All active index option contracts, except those on the S&P 100, are Euro-
pean-style. The S&P 100 index options are American-style. If an S&P 100 index
option buyer exercises early, he or she receives the difference between the clos-
ing index level on that day and the exercise price of the option. The offsetting
option seller, who is obliged to make the cash payment to the buyer, is randomly
chosen from all of the open short positions in that option. 

Table 14.8 contains selected terms of the S&P 500 option contract. In many
ways, the terms of stock index options parallel those of stock options. The con-
tract unit is $100 times the index level, mimicking the fact the stock options are
written on 100 shares of stock. The tick size convention is also consistent with
stock options. Option premiums at $3 and below have a minimum tick size of
$.05 while options with premiums above $3 have a minimum tick size of $.10

 

.

 

The available contract months include the three near-term months followed by
three additional months from the quarterly expiration cycle.

 

10

 

 Leaps extending
out three years are also offered. Also like stock options, the contracts expire on
the Saturday after the third Friday of the contract month. Unlike stock options,
however, stock index options are cash settlement rather than delivery contracts.

 

10 

 

On October 28, 2005, the CBOE launched trading in one-week options on the S&P 500.
The so-called “weeklys” are listed each Friday, and expire the following Friday.

TABLE 14.8  Selected terms of S&P 100 index option contract. 

Exchange Chicago Board Options Exchange (CBOE)
Ticker symbol SPX
Contract unit $100 times the S&P 500 index 
Tick size 0.05 point up to $3 premiums; 0.10 point over $3
Tick value $5; $10
Contract months Three near-term months followed by three additional months 

from the March quarterly cycle.
Trading hours 8:30 to 3:15 PM CST 
Exercise style American
Expiration day Saturday following the third Friday of the contract month
Last day of trading Business day (usually a Thursday) preceding the day on which 

the final settlement price is computed.
Final settlement price Cash-settled at a special quotation of the index based on the 

opening prices of the index stocks on the expiration day.
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Like the S&P 500 index futures, the S&P 500 index option is settled on the
expiration day at a special morning settlement quotation based on opening
prices of the index stocks on Friday.

 

11

 

Exchange Traded Funds

 

12

 

An 

 

exchange traded fund

 

 (ETF) is a hybrid security that behaves like an index
portfolio but trades like a stock. To understand the popularity of ETFs, a brief
review of the history of fund indexing is useful. The origin of fund indexing
rests in the Sharpe (1964)/Lintner (1965) capital asset pricing model (CAPM),
The CAPM says that investors should hold well-diversified portfolios that con-
sist of all risky securities in the marketplace, with the proportion of wealth
invested in each security equal to that security’s market value relative to the
total market value of all risky securities. Active portfolio management is unnec-
essary. Cash dividends are simply reinvested in the proportions dictated by the
current market value weights. Other than that, investors “buy-and-hold.” 

Out of what seemed an esoteric theory in the early 1960s grew the practice
of fund indexing. Early on, the most widely known, market value weighted
index in the United States was the S&P 500.

 

13

 

 Consequently, index funds began
pegging their holdings to the S&P 500 portfolio, and the practice was born. The
growth in the S&P 500 funds has been incredible. Perhaps the most well-known
S&P 500 fund is the 

 

Vanguard Index Trust—500 Portfolio

 

. The net asset value
of the 

 

500 Portfolio

 

 was $14 million in 1976. At the end of December 2003, the
amount was $64,368 million—an increase of nearly 460,000%! But this is only
a single fund pegged to the S&P 500 portfolio. The total wealth invested in the
S&P 500 index portfolio must account for Vanguard’s other S&P 500 funds,
other publicly traded S&P 500 funds managed by other investment companies,
and privately held funds pegged to the S&P 500. In its 2003 

 

U.S. Indexed Assets
Survey

 

, Standard & Poor’s reported that assets tied to the S&P 500 exceeded the
$1 trillion market, nearly 10% of the total market capitalization of the index.

Aside from the built-in diversification, index funds offer significant cost sav-
ings. Because the portfolio is passive, excessive trading costs (e.g., brokerage com-
missions and bid/ask spreads) associated with frequent turnover in actively
managed portfolios are avoided. In addition, management fees are small. Since the
portfolio composition is dictated by some third party (e.g., Standard and Poor’s),
index fund management 

 

per se 

 

is only a matter of taking new cash inflows (e.g.,
cash dividends) and allocating them across the index’s constituent stocks. The
only real disadvantage of traditional index funds is that they cannot be bought
and sold on a real-time basis. Purchases and sales of the index fund occur only at

 

11 

 

For the quarterly expiration cycle, the settlement quotation is the same for S&P 500 futures,
S&P 500 futures options, and S&P 500 index options. The financial press sometimes refers to
this as a “triple-witching” hour.

 

12 

 

For a lucid review of all aspects of exchange traded funds, see Gastineau (2002). The mate-
rials in this section are drawn from the source, as well as information and data from the Amer-
ican Stock Exchange.

 

13 

 

The earliest public advocate of fund indexing was John Bogle of the Vanguard Group. For
his reflections of fund indexing and the mutual fund industry, see Bogle (1994).
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end-of-day closing values. In addition, many important trading strategies require
a short position in the market. Short selling index funds is not possible. 

The basic idea underlying an ETF is trading an entire portfolio as if it were
a stock. The first foray into this arena was in 1989 when the Philadelphia Stock
Exchange (PHLX) and the American Stock Exchange (AMEX) launched the
Index Participation Shares (IPS). While IPS on a number of indexes were avail-
able, the IPS on the S&P 500 were by far the most popular. The market showed
significant promise, however, not without controversy. The Chicago Mercantile
Exchange (CME) and the Commodity Futures and Trading Commission (CFTC)
filed a lawsuit charging that IPS were futures contracts and must be traded on a
futures exchange, not a securities exchange.

 

14

 

 IPS were cleared by the Options
Clearing Corporation and fell under the regulatory jurisdiction of the Securities
and Exchange Commission (SEC). Unfortunately, from the securities exchanges’
perspective, the IPS were like futures contracts in the sense that there was a zero
net supply. For every long, there was a short, and vice versa. A federal court in
Chicago ruled that the IPS were illegal futures contracts, and PHLX and AMEX
were required to close down IPS trading.

The next significant event in the history of ETFs in the United States was
AMEX’s launch of Standard and Poor’s Depository Receipts (SPDRs) on Janu-
ary 29, 1993. These receipts represent an interest in the S&P 500 index stocks
held by a unit investment trust, and trade like shares of a common stock. They
can be bought on margin, and can be sold short, even on a downtick. The key
features that earmark SPDRs as a security rather than a futures are (1) they are
both created from the securities of an underlying portfolio; and (2) they can be
redeemed into the securities of an underlying portfolio during any trading day.

 

15

 

Because of the substitutability of SPDRs with S&P 500 index stocks, price dis-
crepancies will be few.

 

16

 

 Otherwise, arbitrageurs will quickly move in to
profit.

 

17

 

 ETF holders are eligible to receive their pro rata share of dividends, if
any, accumulated on the stocks held in the portfolio.

Figure 14.1 shows the annual trading volume of the AMEX SPDRs since
inception. While the initial pace of trading was modest, with less than an aver-
age of 100 million shares traded annually in the period 1993 through 1995, vol-
ume has grown to over 10.3 billion shares in 2003—a phenomenal success by
most standards. The wealth invested in SPDRs now exceeds all S&P 500 index
funds other than the Vanguard Group’s Index Trust—500 Portfolio. The dollar
trading volume of SPDRs still lags behind S&P 500 futures. The dollar value of

14 Recall the discussion of competing regulatory authorities in Chapter 1.
15 The AMEX was not the first securities exchange to adopt a unit trust style of ETF. Toronto
Stock Exchange Index Participations or TIPS had introduced such an ETF in Canada a number
of years earlier.
16 AMEX has a webpage (that can be accessed from www.amex.com) for calculating summary
statistics of the size of the premium/discount over the recent past. As of April 19, 2004, the
mean (standard deviation) of the premium of the bid/ask midpoint over the net asset value of
the fund over all trading days during the most recent 12 months was –0.01 (0.04). The mini-
mum value observed over the period was –0.27, and the maximum was 0.14.
17 ETF creations and redemptions are restricted to large transactions, typically in multiples of
50,000 shares but ranging from 25,000 to 600,000 shares, usually transacted by large inves-
tors and institutions.
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the SPDRs traded in 2003 was $1.15 trillion, compared to $14.57 trillion for
the S&P 500 futures (about 7.91%). But SPDRs are aimed at a retail customer
market. S&P 500 futures are largely used by institutional customers.

SPDRs are not the only successful ETF. Table 14.9 shows that the daily dollar
volume of the most ETFs traded on the AMEX as of the close on April 13, 2004.
Although the trading volume of the SPDRs was nearly double that of the NASDAQ
100 QQQQs, the so-called “quadruple Qs” volume was respectable at $3.66 bil-
lion. Indeed, the dollar value of shares outstanding in the form of unit trusts is
greater for the QQQs than the SPDRs. The table also shows that the AMEX now
has 122 ETFs on a variety of indexes including broad-based stock portfolios, stock
industry sectors, international stock portfolio, and bond indexes. The DIAMONDS
are shares of the Dow Jones Industrial Average (DJIA). The iShares are a family of
ETFs based created by Barclay Global Investors on a variety of different indexes.

COMPOSITION OF STOCK INDEXES

Before discussing no-arbitrage price relations and valuation equations for stock
index derivatives, it is important to have a clear understanding of index con-
struction and its implications for modeling dividend income. Generally speak-
ing, stock indexes underlying derivative contracts are either (1) value-weighted
or (2) price-weighted. With a value-weighted index, each stock is weighted by
its market capitalization, while, with a price-weighted index, each stock is
weighted by its price. In this section, the details of index construction are pro-
vided. Value-weighted indexes are discussed first, followed by price-weighted
indexes. The section also examines the daily cash dividend payments of the S&P
500 and Dow Jones Industrial Average indexes in order to ascertain the most

FIGURE 14.1 Number of shares traded and dollar value of shares traded by year for AMEX 
SPDRs during the period January 1993 through December 2003. 
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realistic way to model the dividend income of the index portfolio (i.e., as a dis-
crete flow or as a continuous rate).

Value-Weighted Indexes18

The “value” of the common stocks in a value-weighted index refers to the total
market capitalization of the firm’s outstanding shares, that is, the number of
shares outstanding, ni,t, times the current price per share, pi,t. The total market
value of the index at time t is therefore 

(14.1)

where N is the number of stocks in the index. This market value is then scaled
by a divisor so that the index in period t is 

(14.2)

The divisor represents what the stocks currently in the index would have been
worth in the base period. In the base period the divisor is the market value of
the stocks in the index, 

(14.3)

Note that stock splits and stock dividends have no effect on the index level
because the increase in shares outstanding is proportionately offset by a reduc-
tion in share price.

Over time, the numerator of (14.2) changes because stocks enter or leave
the index or because certain corporate actions such as restructurings, spinoffs,
share issuance or repurchase affect the market value of a stock and hence the
value of the index. Because such changes do not reflect market movements, an
adjustment to the divisor is made on the day that a change occurs.19 The new
divisor on day t is just the old divisor on day t adjusted by the ratio of the mar-
ket value of the new index composition on day t divided by the market value of
the old index composition on day t, 

18 A value-weighted index is an inherently better measure of market performance. When
the market is in equilibrium, the supply of stocks equals demand. The contribution of
stock i to the performance of the market, therefore, equals the performance of stock i
times the market value of all of i’s shares outstanding as a proportion of the total market
value of all stocks.

Total market value of indext ni t, pi t,
i 1=

N

∑=

St

ni t, pi t,
i 1=

N

∑
Divisort

---------------------------=

Divisort ni 0, pi 0,
i 1=

N

∑=



Stock Index Products: Futures and Options 487

(14.4)

The best known value-weighted index in the United States is the S&P 500.
The S&P 500 consists of 500 common stocks, 423 of which traded on the NYSE
as of March 1, 2004 and 77 of which traded NASDAQ. The index was designed
by Standard & Poors’ to contain stocks from a broad variety of industry group-
ings. The market value for the base period of the S&P 500 is the average market
values of the component stocks during the years 1941 through 1943. At that
time, the index was set equal to 10. The S&P 500 index level at the close of
trading on March 1, 2004 was 1,155.96. This is based on a total S&P 500 index
market capitalization of $10,715,550,195,285 and a divisor of $9,269,805,842. 

Value-weighted indexes can be heavily swayed by only a few stocks. Table
14.10 contains a list of the largest 50 stocks in the S&P 500 index as of the
close of trading on March 1, 2004. Note that the largest 50 stocks account for
nearly 52% of the total market capitalization of the index. The largest 10 stocks
account for over 23%. To see the effect that a single large stock may have, con-
sider the shares of General Electric, which accounted for 3.07% of the index on
March 1, 2004. Using the information in Table 14.10 together with the above
information about the total market capitalization and the divisor of the index, it
is possible to show that a $1 move in the share price of General Electric will
move the S&P 500 index by 1.08 points. 

It is also worth noting that the stock indexes underlying derivatives contracts
traded in non-U.S. countries are, in general, value-weighted indexes. These include
Germany’s DAX-30, France’s CAC-40, the U.K.’s FT-SE 100, Australia’s All Ordi-
naries Share Price index, Hong Kong’s Hang Seng index, and Canada’s TSE-35. 

Price-Weighted Indexes
A price-weighted index is like a value-weighted index, except that the number of
shares outstanding does not play a role. The price-weighted index is computed as

(14.5)

19 An interesting phenomenon in its own right is the behavior of the price of the stock when it
is added to or deleted from the S&P 500 index. Because about 10% of the market capitaliza-
tion of the S&P 500 index portfolio is held as passive index mutual funds (e.g., The Vanguard
Group’s 500 Portfolio) or exchange-traded funds (e.g., AMEX’s SPDRs), an addition to (de-
letion from) implies that 10% of a stock’s outstanding shares must be purchased (sold) on the
day of the change. Such order imbalances generate abnormal price movements in the stock
market. The early evidence indicated abnormal returns on order of two percent, See, for ex-
ample, Harris and Gurel (1986) and Shliefer (1986). Because of substantial growth in indexing
to the S&P 500 in recent years, the effect has become much larger. See, for example, Beneish
and Whaley (1997, 2002).

New divisort

Market value of new indext

Market value of old indext
----------------------------------------------------------------------- Old divisort×=

St

pi t,
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N
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TABLE 14.10  Fifty highest market value stocks in the S&P 500 index portfolio as of the 
close of trading on March 1, 2004.

Ticker Company
Closing

Price
No. of
Shares

Market
Value

Relative
Weight

Cumulative
Weight

GE General Electric   32.79 10,041 329,240 3.07%   3.07%

MSFT Microsoft Corp. v26.70 10,812 288,693 2.69%   5.77%

PFE Pfizer, Inc.   36.90   7,632 281,603 2.63%   8.39%

XOM Exxon Mobil Corp.   42.52   6,610 281,049 2.62% 11.02%

WMT Wal-Mart Stores   60.45   4,328 261,614 2.44% 13.46%

C Citigroup Inc.   50.46   5,159 260,307 2.43% 15.89%

INTC Intel Corp.   29.72   6,532 194,131 1.81% 17.70%

AIG American Int’l. Group   74.09   2,608 193,223 1.80% 19.50%

IBM International Bus. Machines   97.04   1,720 166,950 1.56% 21.06%

CSCO Cisco Systems   23.54   6,903 162,505 1.52% 22.58%

JNJ Johnson & Johnson   53.76   2,968 159,567 1.49% 24.07%

PG Procter & Gamble 103.86   1,297 134,678 1.26% 25.32%

BAC Bank of America Corp.   82.13   1,486 122,029 1.14% 26.46%

KO Coca Cola Co.   49.62   2,452 121,644 1.14% 27.60%

MO Altria Group, Inc.   58.18   2,031 118,174 1.10% 28.70%

MRK Merck & Co.   48.45   2,225 107,801 1.01% 29.71%

VZ Verizon Communications   38.70   2,762 106,872 1.00% 30.70%

WFC Wells Fargo   57.63   1,692   97,512 0.91% 31.61%

CVX ChevronTexaco Corp.   90.27   1,069   96,495 0.90% 32.51%

PEP PepsiCo Inc.   52.16   1,717   89,546 0.84% 33.35%

DELL Dell Inc.   33.52   2,560   85,825 0.80% 34.15%

JPM J.P. Morgan Chase & Co.   41.53   2,040   84,732 0.79% 34.94%

HD Home Depot   36.84   2,275   83,819 0.78% 35.72%

AMGN Amgen   64.19   1,290   82,802 0.77% 36.50%

LLY Lilly (Eli) & Co.   73.44   1,123   82,466 0.77% 37.27%

SBC SBC Communications Inc.   24.25   3,311   80,284 0.75% 38.02%

UPS United Parcel Service   69.85   1,124   78,528 0.73% 38.75%

TWX Time Warner Inc.   17.23   4,522   77,910 0.73% 39.48%

FNM Fannie Mae   77.25      972   75,061 0.70% 40.18%

HPQ Hewlett-Packard   23.00   3,049   70,130 0.65% 40.83%

AXP American Express   53.65   1,286   69,009 0.64% 41.47%

ORCL Oracle Corp.   13.07   5,227   68,312 0.64% 42.11%

CMCSA Comcast Corp.   30.33   2,251   68,271 0.64% 42.75%

ABT Abbott Labs   43.40   1,563   67,850 0.63% 43.38%

VIA.B Viacom Inc.   38.74   1,749   67,766 0.63% 44.01%

MWD Morgan Stanley   60.75   1,083   65,795 0.61% 44.63%

WB Wachovia Corp. (New)   48.66   1,324   64,414 0.60% 45.23%

MMM 3M Company   78.78      785   61,833 0.58% 45.81%

ONE Bank One Corp.   54.44   1,118   60,860 0.57% 46.37%

MER Merrill Lynch   62.29      945   58,883 0.55% 46.92%

TYC Tyco International   29.11   1,999   58,194 0.54% 47.47%

MDT Medtronic Inc.   47.25   1,212   57,270 0.53% 48.00%

USB U.S. Bancorp   28.71   1,929   55,374 0.52% 48.52%

DIS Walt Disney Co.   26.87   2,045   54,959 0.51% 49.03%

BMY Bristol-Myers Squibb   28.24   1,939   54,765 0.51% 49.54%

TXN Texas Instruments   31.02   1,731   53,684 0.50% 50.04%

WYE Wyeth   39.64   1,332   52,793 0.49% 50.54%

BLS BellSouth   27.68   1,848   51,156 0.48% 51.01%

GS Goldman Sachs Group 107.35      473   50,827 0.47% 51.49%

QCOM QUALCOMM Inc.   62.75      800   50,204 0.47% 51.96%
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In a price-weighted index, the divisor in the base period equals the sum of the
prices of the stocks in the base period, that is,

(14.6)

Like a value-weighted index, the divisor of a price-weighted index is adjusted to
reflect changes in composition, stock splits, stock dividends and spin-offs so that
the index level remains unchanged. Unlike the value-weighted index, however,
the divisor of the price-weighted index is not adjusted for new stock issues or
share repurchases. 

The best known price-weighted is the Dow Jones Industrial Average or DJIA
or, simply, the Dow, in honor of Charles H. Dow who unveiled this average of
industrial stock prices on May 26, 1896. The mechanics of the index had to be
simple since, at the time, the index had to be computed by hand. The index was
therefore a simple average of the prices of the constituent stocks. At inception,
the Dow had only 12 stocks and a level of 40.94. In 1916, the number of stocks
was increased to 20, and, in 1928, to 30, where it remains today. It was in 1928
that the Dow initiated the use of a divisor to handle changes in composition and
corporate actions including stock splits, stock dividends, restructurings and
spin-offs. Its level as of March 1, 2004 was 10,678.14. Of the 30 stocks in the
Dow, 28 trade on the NYSE and 2 trade on NASDAQ.

The composition of the DJIA on March 1, 2004 is given in Table 14.11.
Only one of the original 12 Dow stocks remains, General Electric. Note the
implied weights of the stocks in the Dow. Proctor & Gamble has the most
weight, followed by IBM. The last three columns of Table 14.11 construct the
weights for each Dow stock if the index was value-weighted. Proctor & Gamble
constitutes only 4.13% of the value-weighted Dow, considerably less than its
7.20% price-weight. General Electric’s value-weighted contribution, on the
other hand, is 10.11%, considerably more than its price-weighted contribution
of 2.27%. Overall, the correlation between the price-weights and value-weights
is only 0.41. The market value of the Dow is $3.258 trillion, about 30% of the
market value of the S&P 500. 

To illustrate the computation of the DJIA, consider the values reported at
the bottom on Table 14.11. The sum of the prices of the Dow stocks on March
1, 2004 was $1,441.58. On the same day, the divisor was 0.13500289. The
closing level of the Dow on March 1, 2004 was therefore 10,678.14. 

Discrete or Continuous Dividend Income?

The decision about whether to model the dividend income of an index portfolio
as discrete cash payments or as a continuous dividend yield must be based on an
analysis of the actual dividend payments. Here, such an analysis is conducted
for the S&P 500 and DJIA indexes, as they have two of the most active deriva-
tive contract markets. 

Divisor0 pi 0,
i 1=

N

∑=



490 STOCK INDEX DERIVATIVES

In Chapter 8, cash dividends of individual U.S. stocks were shown to be
paid on a quarterly cycle. Since a stock index is nothing more than a portfolio of
stocks, the dividend income of a value-weighted index is simply the sum of the
value-weighted dividends of the index stocks, that is,

(14.7)

TABLE 14.11  Thirty Dow Jones Industrial Average stocks as of the close of trading on 
March 1, 2004.

Ticker Company
Closing

Price
Price

Weight
No. of
Shares

Market
Value

Value
Weight

PG Procter & Gamble Co.    103.86     7.20%   1,297    134,678     4.13%

IBM International Business Machines Corp.      97.04     6.73%   1,720    166,950     5.12%

UTX United Technologies Corp.      92.20     6.40%      515      47,517     1.46%

MMM 3M Co.      78.78     5.46%      785      61,833     1.90%

CAT Caterpillar Inc.      76.84     5.33%      347      26,682     0.82%

WMT Wal-Mart Stores Inc.      60.45     4.19%   4,328    261,614     8.03%

MO Altria Group Inc.      58.18     4.04%   2,031    118,174     3.63%

JNJ Johnson & Johnson      53.76     3.73%   2,968    159,567     4.90%

AXP American Express Co.      53.65     3.72%   1,286      69,009     2.12%

C Citigroup Inc.      50.46     3.50%   5,159    260,307     7.99%

KO Coca-Cola Co.      49.62     3.44%   2,452    121,644     3.73%

GM General Motors Corp.      48.65     3.37%      561      27,281     0.84%

MRK Merck & Co. Inc.      48.45     3.36%   2,225    107,801     3.31%

DD E.I. DuPont de Nemours & Co.      45.63     3.17%      997       45,483     1.40%

IP International Paper Co.      44.50     3.09%      480      21,381     0.66%

BA Boeing Co.      43.77     3.04%      841      36,821     1.13%

XOM Exxon Mobil Corp.      42.52     2.95%   6,610    281,049     8.63%

JPM J.P. Morgan Chase & Co.      41.53     2.88%   2,040      84,732     2.60%

AA Alcoa Inc.      38.40     2.66%      865      33,230     1.02%

HD Home Depot Inc.      36.84     2.56%   2,275      83,819     2.57%

HON Honeywell International Inc.      35.31     2.45%      862      30,439     0.93%

GE General Electric Co.      32.79     2.27% 10,041    329,240   10.11%

INTC Intel Corp.      29.72     2.06%   6,532    194,131     5.96%

EK Eastman Kodak Co.      29.03     2.01%      287        8,319     0.26%

MCD McDonald’s Corp.      28.41     1.97%   1,269      36,057     1.11%

DIS Walt Disney Co.      26.87     1.86%   2,045      54,959     1.69%

MSFT Microsoft Corp.      26.70     1.85% 10,812    288,693     8.86%

SBC SBC Communications Inc.      24.25     1.68%   3,311      80,284     2.46%

HPQ Hewlett-Packard Co.      23.00     1.60%   3,049      70,130     2.15%

T AT&T Corp.      20.37     1.41%      790      16,090     0.49%

Sum across closing prices on 3/1/4 1,441.58 100.00% 3,257,913 100.00%

Divisor on 3/1/4 0.13500289

Closing DJIA 3/1/4 10,678.14

dVW t,
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and the dividend income of a price-weighted index is the sum of the equal-
weighted dividends of the index stocks, that is,

(14.8)

If the quarterly dividend payment cycles of the stocks comprising the index are
randomly distributed throughout the year and if the number of stocks in the
index is large, the dividend stream of the index will be reasonably smooth, and
modeling the index dividends as a continuous yield would be appropriate. On
the other hand, if the cash dividend payment cycles tend to cluster at different
times during the year or if the number of stocks is small, modeling the index
dividends as discrete cash payments is better.

S&P 500 Dividends Figure 14.2 shows the average daily cash dividends of the S&P
500 index by calendar month during the period 1989 through 2003. Note the
prominence of the cash dividends in the Feb./May/Aug./Nov. cycle. The amount
of the dividends paid during these four months is nearly as much as the other
eight months combined. This seasonal pattern induces considerable variation in
the index’s dividend yield rate. Based on Figure 14.2, the dividend yield rate in
the month of January is about half that of February. Depending on which calen-
dar months the life of the derivatives contract spans, the dividend yield rate on
the S&P 500 index will vary. This is not very comforting if you want to apply
the constant dividend yield valuation framework. 

FIGURE 14.2 Average daily cash dividends of the S&P 500 index by month of year during the 
period January 1989 through December 2003. 

dPW t,

di t,
i 1=

N

∑
Divisort
--------------------=

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00D
ol

la
rs

 p
er

 u
ni

t 
of

 S
&

P 
50

0 
in

de
x

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Month of year



492 STOCK INDEX DERIVATIVES

FIGURE 14.3 Average daily cash dividends of the S&P 500 index by day of week during the 
period January 1989 through December 2003. 

The quarterly payment cycle is not the only pattern that appears in the S&P
500 index cash dividends. Figure 14.3 shows the average daily cash dividends of
the S&P 500 index by day of week. More dividends are paid on Mondays and
Wednesdays than other days of the week. For short-term derivative contracts,
this variation in dividend payments can have a pronounced effect on valuation.
Put differently, the dividend yield rate of the index will vary during the deriva-
tive contract’s life. Taken together, the evidence showing monthly and daily vari-
ation in cash dividends supports the application of the discrete flow cost of
carry framework.

One final note regarding the S&P 500 cash dividends is warranted. Over the
period 1989 through 2003, the total cash dividends paid on the S&P 500 index
has grown by about 58%, as is shown in Figure 14.4. The growth in the index
itself, however, has been about 285%. Consequently, the annual dividend yield
rate has fallen dramatically over the period, from 3.89% annually in 1989 to only
1.96% in 2003.20 The smaller are the dividends relative to the index level, the less
important modeling dividends accurately becomes. Hence, using the constant div-
idend yield model to value S&P 500 derivatives is not completely without merit.

DJIA Dividends Figure 14.5 shows the average daily cash dividends of the DJIA by
calendar month during the period 1963 through 2003. For the DJIA, the cash
dividends in the Feb./May/Aug./Nov. cycle are even more pronounced than they
were for the S&P 500. The amount of the dividends paid during these four
months easily exceeds the other eight months combined. Figure 14.6 shows the
average daily cash dividends of the DJIA by day of week. Considerably more

20 The reported dividend yield of the S&P 500 is a continuous rate computed as ln[(S +
DVDS)/S], where DVDS is the sum of the cash dividends paid during the year and S is the
closing level of the index on the last day of trading of the previous year.
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dividends are paid on Mondays than other days of the week. For the DJIA, it is
clearly inappropriate to apply a valuation framework that assumes the dividend
yield rate is constant through time. The evidence clearly supports the applica-
tion of the discrete flow valuation results.

FIGURE 14.4 Total cash dividends and dividend yield of the S&P 500 index by year during 
the period January 1989 through December 2003. 

FIGURE 14.5 Average daily cash dividends of the DJIA index by month of year during the 
period January 1963 through December 2002. 
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FIGURE 14.6 Average daily cash dividends of the DJIA index by day of week during the 
period January 1963 through December 2002. 

NO-ARBITRAGE RELATIONS AND VALUATION

Under the assumption of discrete dividend payments on the underlying index,
the no-arbitrage price relations and valuation methods for stock index deriva-
tives are summarized in Table 14.12. For completeness, the valuation results for
an index with a continuous dividend yield rate are provided in Table 14.13.
Below, the focus is primarily on the former.

Stock Index Futures

Index Arbitrage The cost of carry relation between the stock index futures price
and the level of the underlying index under the assumption of known discrete
dividends in future value form is

F = SerT – FVD (14.9)

and, expressed as a prepaid forward contract, is

Fe–rT = S – PVD (14.10)

where

is the future value of the cash dividends paid during the futures life and
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is the present value of the cash dividends. The relation arises from the absence of
costless arbitrage opportunities in the marketplace. The intuition for this relation
is that we have two ways to have a stock portfolio on hand at time T at a price
we know today. The first, represented by the left-hand side of (14.8), is to buy a
futures contract with maturity T. At time T, we pay F and receive the stock port-
folio. The second, represented by the right-hand side of (14.8), is to borrow at a
rate r to buy the stock portfolio today at S, and then carry it until T has elapsed.
At time T, we must repay our borrowings plus interest, SerT, which is partially
offset by the accumulated cash dividends (plus accrued interest) received while
holding the stock portfolio, FVD. Since the two alternatives are perfect substi-
tutes, the two sides of (14.8) must be equal. The second formulation (14.9) is the
same as (14.8), except that it is expressed in present value terms.

Fair Value The term fair value is often used in conjunction with stock index arbi-
trage. Unfortunately, it is not always used in a consistent manner, and this often
leads to confusion. To some, the definition of fair value is the theoretical futures
price given the current index level, the cash dividends promised during the
futures’ life, and the risk-free rate of interest. In the interest of clarity, we will
call this definition the fair value of the futures. By virtue of the cost of carry
relation (14.8), we know that

Fair value of futures = SerT – FVD (14.11)

To others, fair value is the theoretical futures price less the current index level.
We will call this definition the fair value of the basis. Subtracting the current
index level from (14.10), we get

Fair value of basis = S(erT – 1) – FVD (14.12)

It is important to recognize that fair values are theoretical values and may
not correspond to actual prices reported in the marketplace. The premium (or
spread) refers to the difference between the current prices of the futures and the
index assuming both markets are open. Thus, if the premium is above the fair
value of the basis, index arbitrageurs will sell futures and buy the underlying
stocks, driving the price of the futures down and the prices of stocks up. The
arbitrage will continue until where the premium equals fair value. On the other
hand, if the premium is below fair value, index arbitrageurs will buy the futures
and sell the underlying stocks, driving the price of the futures up and the prices
of stocks down.

Figure 14.7 shows the difference between the premium and the fair value (i.e.,
the basis mispricing) for the S&P 500 index and index futures on a minute-to-
minute basis throughout the trading day on August 29, 2003. The vertical axis is
in index points. The solid horizontal lines at 1.5 and –1.5 represent trading cost

PVD FVDe rT– Die
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bands. Index arbitrageurs look for differences between the premium and fair
value of at least 1.5 index points in order to cover the trading costs of index arbi-
trage. Note that the premium seldom violated the trading costs bands during the
day. This should not be surprising in the sense that a number of index arbi-
trageurs monitor the basis mispricing continuously throughout the day and trade
quickly each time there is a profitable arbitrage opportunity appears. The large
deviations that appear at the beginning of the day are illusory. The S&P 500 index
is based on last trade prices, and, when the index begins getting computed each
morning (9:30 AM EST), it is based largely on the closing prices of the previous
trading day. A few minutes after the open, when all stocks have traded (and incor-
porated overnight news), the premium is back near fair value.

Program Trading Stock index arbitrage is unlike typical basis arbitrage in the
sense that buying and selling the underlying asset means buying and selling a
precisely weighted portfolio of common stocks. Engaging in index arbitrage
with the S&P 500 index, for example, requires a mechanism for buying or sell-
ing quickly and simultaneously all 500 stocks in the S&P 500 index portfolio.
Since the simultaneous purchase or sale of the stocks in a precisely weighted and
timely fashion is cumbersome, computers and computer programs are usually
used to place transaction orders as well as to assist in the execution of those
orders. For this reason, trading of portfolios of stocks is called program trading. 

Pre-Open Stock Market Predictions Financial news programs such as Squawk Box on
CNBC use the fair value of the basis to generate predictions regarding the level
at which the stock will open (relative to the previous day’s close) based on the
fair value of the basis. The arithmetic is simple. They report two numbers. The
first is the change in the futures price expected due to the fact that the stock

FIGURE 14.7 Intraday basis mispricing of the September 2003 S&P 500 futures on August 
29, 2003.  
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market and the futures market close at different times during the day (4:00 ver-
sus 4:15 PM EST). This gets reported with the caption “Fair value.” For the sake
of illustration, suppose that what appears on the screen is “Fair value �5.00.”
The second is the change in the futures price from its previous day’s close at
4:15 PM EST. The index futures contract trades electronically virtually 24 hours
a day. Suppose that as of 8:30 AM EST (one hour before the stock market
opens), the futures price change is reported as “Futures �2.00.” Based of these
two values reported on the screen, the commentator might say, “Even with the
futures up 2, they are well below fair value and are a negative for the opening.
We need to get to plus 5 in order to be at fair value.” The implicit arithmetic is
simply the difference between the second number and the first, that is, 2.00 –
5.00 = –3.00. The stock market is expected to open 3 points lower.

The mechanics of their computation is this. First, they compute the fair value
of the basis using (14.9b), where T is the time to expiration (expressed in years) of
the futures contract and the index level is the previous day’s close, S4:00 PM.21

Assume, for the sake of argument, fair value is 6.00. Next they compute the dif-
ference between the closing futures price and the closing index level. When both
markets are open, we would expect the difference between the two prices to hover
around fair value due the presence of index arbitrageurs in the marketplace (e.g.,
see Figure 14.7). The stock market closes at 4:00 PM EST, however, and the index
futures market closes at 4:15 PM EST. The futures price may move up or down
during this 15-minute interval of time as new market information arrives, and the
closing premium may be quite different from fair value. Suppose, for the sake of
argument, the futures price closes at a 1.00 premium to the closing index while
fair value is 6.00. What would appear on the television screen is “Fair value
�5.00,” which means, based on the closing index level and the computed fair
value, the futures price should be five points higher. If the early morning futures
price is only 2.00 points higher than its close (“Futures �2.00”), the stock mar-
ket is expected to open 3.00 points lower than the previous day’s close. If the
futures price is 9.00 points higher (“Futures �9.00”), the stock market is
expected to open 4.00 points higher, and, if the futures price is 7.00 points lower
(“Futures �7.00”), the stock market is expected to open 12.00 points lower.

Special Settlement Quotation

S&P 500 index products use a special cash settlement quotation based on the
opening prices of index stocks. As this number plays a key role in the profitabil-
ity and risk of stock index arbitrage strategies, some discussion of the settlement
procedure is warranted. 

Probably the first question that arises in considering the settlement of the
index derivatives contracts is why use the opening price rather than the closing
price? After all, stock option contracts had expired at the close since they began
trading a decade before index products were introduced.22 The answer to the

21 By this definition the fair value of the basis will be constant throughout the trading day.
22 There is the subtle, but important, distinction that stock options settle through the delivery
of the underlying stock, however.
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question is that exchange-traded index products were, indeed, cash settled at the
close when they were first introduced in the early 1980s. After about four years
of closing settlements, the financial press and other market commentators
uncovered the fact that stock indexes moved “abnormally” during the last hour
of trading on the quarterly expiration of index futures, index futures options,
and index options (the notorious “triple-witching hour”). Regulators quickly
jumped into the fray, charging that index derivatives had become a destabilizing
influence on the stock market and should be banned.

The key to understanding the controversy lies in the mechanics of index arbi-
trage and the cash settlement of index derivatives. Consider stock index futures
arbitrage, for example. During the life of the futures contract, arbitrageurs tend to
build up large positions in index futures and the stocks of the underlying index
portfolio. If the premium tended to be above the fair value on average during the
futures contract’s life, arbitrageurs are likely be short index futures and long the
index portfolio’s stocks going into contract expiration, and vice versa. (Keep in
mind that all index arbitrageurs see the same set of signals during the futures con-
tract’s life and are therefore likely to have similar positions.) Now consider the
actions of the arbitrageurs at contract expiration. Because the index futures is
cash-settled at the closing index level, arbitrageurs must unwind their stock port-
folios at the same prices that go into the closing index level computation. To
accomplish this, they place market-on-close orders.23 If arbitrageurs are long
stocks, they place market-on-close orders to sell and the excess selling pressure
causes stock prices to fall at the close. If arbitrageurs are short stocks, the excess
buying pressure causes stock prices to rise. Since the net positions of index arbi-
trageurs on the expiration day are not known, the direction of the price move-
ment is not predictable. It is these uncertain price movements on the quarterly
expiration cycle that are at the center of the triple-witching hour controversy.

Claims that index derivatives contract expirations destabilize the stock mar-
ket have been refuted, however.24 Stoll and Whaley (1987) examined move-
ments in the S&P 500 index on the ten quarterly expirations (September 1983
through December 1985) and found they are roughly the same size as one would
expect given trading costs in the marketplace. Indeed most of the observed
index movement in the last hour of trading is not a real movement in stock
prices. Consider the nature of the reported index level at any point in time dur-
ing the day. The S&P 500 index, for example, is based on the last trade prices
for each of the stocks within the index portfolio. The last trade price of a stock,
in turn, may be at the bid or at the ask, depending on whether the trader sold or
bought. Assuming the last trades of the 500 stocks in the index are approxi-
mately evenly balanced between buys and sells, the reported index level at any
point in time can be thought of as being at a midpoint between the bid and ask

23 A market-on-close (MOC) order is an order that is executed at the closing price of the day.
Under current NYSE rules, a MOC order is assured of execution at the closing price if it is
entered by a certain time during the trading day. There is no such mechanism to provide such
assurance for NASDAQ trades, however.
24 In this discussion, we focus primarily on U.S. stock markets, however, expiration-day effects
have been analyzed empirically for Japan (see Karolyi (1996)), Australia (see Stoll and Whaley
(1997)), and Hong Kong (see Bollen and Whaley (1999)). 
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levels of its constituent stocks. Now consider what happens when index arbi-
trageurs unwind their positions at the close on expiration day. Assuming they
are long (short) stocks, they place MOC order to sell (buy). With all 500 stocks
traded at bid (ask) prices, the reported index level moves, not because of selling
pressure moving prices but only because the reported index level at this one
instant in time is based entirely on bid (ask) prices. 

Even though the evidence indicated that the price movements during the tri-
ple-witching hour were not abnormal, the Chicago Mercantile Exchange (CME)
adopted a suggestion by the Securities and Exchange Commission (SEC) to
move its S&P 500 futures and futures options expiration from the close of the
trading day to the open beginning with the June 1987 contract expiration. The
rationale was that at the open the NYSE specialists have the opportunity to dis-
seminate information about large order imbalances to off-floor market partici-
pants, thereby minimizing price impact. The Chicago Board Options Exchange
(CBOE) continued to settle its index options at the close. Put differently, as of
June 1987, the triple-witching hour at the close of trading on the quarterly con-
tract expiration cycle ceased to exist, and was replaced with a double-witching
hour at the open and a single witching hour at the close.

Stoll and Whaley (1991) assessed the effect of the change in procedure and
found that the absolute size of the price movement at the open was slightly
smaller than it was under the previous regime. One possible explanation for this
result is that expiration-day trading was split between the open and the close.
Another is that the change in settlement procedure accomplished its goal of
reducing price impact. Over time, a consensus seemed to develop that the open-
ing settlement worked best, and the CBOE adopted the practice for its S&P 500
index options. Now all contracts are settled at the special opening quotation, and
the triple-witching hour has reemerged, albeit at the open of the trading day.

Index arbitrageurs do not care whether they have close or open settlement.
As long as they can liquidate their stocks at the same prices that are used to
compute the settlement index level of the futures, they can exit their arbitrage
positions risklessly. But the special opening settlement quotation has introduced
an interesting anomaly. Since the settlement quotation is computed on the basis
of the opening trade prices and opening trades occur at different times in the
morning, the settlement quotation may be quite different from any reported
index level during the trading day. Figure 14.8 shows the reported levels of the
S&P 500 index on September 21, 2001—the expiration day of the September
2001 S&P 500 futures, futures options, and index options. The special settle-
ment quotation for the S&P 500 contracts, based on the opening trade prices of
the index stocks, was 939.57. During the trading day, however, the reported
S&P 500 index level, based on last trade prices, never fell below 944.75, 5.18
points higher than the settlement quotation. Imagine the confusion of someone
holding a September 2001 call with an exercise price of 940!

Stock Index Options

The valuation equations/methods for index options are also provided in Tables
14.11 and 14.12. Most index options traded in the United States are European-
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style. The most notable exception is the S&P 100 index options, which are Amer-
ican-style. All of the index futures options traded in the U.S. are American-style. 

ILLUSTRATION 14.1 Compute implied volatilities from at-the-money S&P 500 index option 
prices.

Assume that the S&P 500 index level is 1,100, the three-month S&P 500 futures price is
1,103, and the three-month S&P 500 at-the-money call and puts options have prices of
48.50 and 45.60, respectively. The risk-free rate of interest is 2.5%. Compute the mar-
ket’s perception of expected stock market volatility over the next three months.

The valuation formulas for European-style call and put options are given in Table
14.11. Since the present value of the cash dividends promised during the options’ lives is
not provided, you must find a way to deduce the amount. Since you are given the futures
price, you can use the cost of carry relation (14.8a) to compute the future value of the
dividends paid during the options’ lives as

FVD = SerT – F = 1,100e0.025(3/12) – 1,103 = 3.897

Based on the value of FVD, PVD = 3.897e0.025(3/12) = 3.872. 
With the present value of dividends computed, you can compute the index level net

of the present value of the dividends paid during the options’ life, that is, Sx = 1,100 –
3.872 = 1,096.128. Now you have all the information you need to solve for the implied
standard deviations of the call and the put. Using the OV_OPTION_ISD function from
the OPTVAL Library, the implied volatility of the call is 21.53% and the implied volatil-
ity of the put is 21.57%. Given put-call parity, the implied volatility figures should be
exactly equal to one another. Their values are slightly different because reported prices
are discrete (option prices above $3 are reported in dimes). To mitigate part of this error,
you may want to average the call and put implied volatilities to arrive at your estimate of
expected future volatility, 21.55%.

FIGURE 14.8 Reported intraday S&P 500 index levels on September 21, 2001 in relation to pre-
vious day’s close and the special opening quotation for the S&P 500 index (SET). 
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ILLUSTRATION 14.2 Plot relation between implied volatility and exercise price.

Under the BSM assumptions, the prices of all options written on the same underlying asset
or futures should have the same implied volatility. In practice, however, they are not.
Based on the settlement prices of the S&P 500 futures options reported in Table 14.7,
compute the implied volatilities for all June 2004 put options and plot them as a function
of exercise price. The closing Jun/04 S&P 500 futures prices was 1129.70, and the risk-
free rate of interest was 0.8879%. The options have 65 days remaining to expiration.

Futures options traded in the U.S. are American-style. To compute the implied vola-
tilities for each option series, we use the OPTVAL function OV_FOPTION_ISD. Setting
the option style argument in the function to “A” (for American-style) means that option
valuation occurs using the quadratic approximation. The implied volatilities of the Jun/
04 put option series are as shown:    

Exercise Price Jun/04 Put Prices Implied Volatility

1000     4.90 22.71%
1025     6.80 21.24%
1050     9.60 19.85%
1075   13.50 18.39%
1100   19.30 17.06%
1125   27.70 15.83%
1150   39.40 14.67%
1175   55.30 13.85%
1200   74.70 13.12%
1225   97.00 12.72%
1250 120.80 12.38%
1300 170.30 12.70%

25%

20%

15%

10%

5%

0%

V
ol

at
ili

ty

1000 1050 1100 1150 1200 1250 1300

Exercise price



504 STOCK INDEX DERIVATIVES

Implied Volatility Function (IVF) The relation between implied volatility and exercise
price for index options shown in the above illustration is popularly referred to
as the implied volatility “smile” or “sneer.” Where this relation should be a hor-
izontal line under the assumptions of the BSM model, implied volatility of S&P
500 futures options declines monotonically as exercise price rises. Most
attempts to explain the shape of the IVF focus on relaxing the BSM assumption
of constant volatility by allowing the local volatility rate of underlying security
returns to evolve either deterministically or stochastically through time. Eman-
uel and MacBeth (1982) examine the power of the deterministic Cox and Ross
(1976) constant elasticity of variance (CEV) model to explain the cross-sectional
distribution of stock option prices. With its additional degree of freedom, the
CEV model (necessarily) fits the observed structure of option prices better than
the BSM constant volatility model. Out of sample, however, Emanuel and Mac-
Beth conclude that the CEV model does no better than the BSM model. Simi-
larly, the implied binomial tree framework of Dupire (1994), Derman and Kani
(1994), and Rubinstein (1994) offers a deterministic local volatility structure so
flexible that, in sample, it can describe the cross-section of options prices exactly
at any point in time. Empirical tests by Dumas, Fleming, and Whaley (1998),
however, show that a model based on a simple deterministic volatility structure
has parameters that are highly unstable through time. Taken together, this evi-
dence suggests that deterministic volatility models cannot explain the time-series
variation in option prices or, equivalently, in the shape of the IVF.

Option valuation models based on stochastic volatility assumptions also
have the potential to explain the shape of the IVF. In particular, a stochastic vol-
atility model can generate the observed downward sloping IVF if innovations to
volatility are negatively correlated with underlying asset returns. A negative
relation between volatility and returns has been documented empirically by
Black (1976) for individual stocks and Nelson (1991) for the index. Chernov et
al. (2003) study a two-factor stochastic volatility model and find that it achieves
a good fit to daily Dow Jones Industrial Average returns. Studies by Jorion
(1989) and Anderson, Benzoni, and Lund (2002) report that randomly arriving
jumps in security price in addition to stochastic volatility are required to capture
the time-series dynamics of index returns. 

Recent examinations of the performance of stochastic volatility option valu-
ation models indicate that, at best, they can provide only a partial explanation
of the shape of the index IVF. Bakshi, Cao, and Chen (1997), for example, advo-
cate the use of a stochastic volatility model with jumps for valuing S&P 500
index options. While their model appears to perform better than the BSM for-
mula, some of the implied parameter estimates, including the volatility of vola-
tility coefficient, differ significantly from the ones estimated directly from
returns. Similarly, Bates (2000) examines the ability of a stochastic volatility
model, with and without jumps, to generate the negative skewness consistent
with a steep IVF. He finds that the inclusion of a jump process can improve the
model’s ability to generate IVFs consistent with market prices, but in order to
do so parameters must be set to unreasonable values. Along a similar line, Jack-
werth attempts to recover risk aversion functions from S&P 500 index option
prices and concludes that they are “irreconcilable with a representative inves-
tor” (2000, p. 450). 
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Another avenue of investigation that seems to lead to a better understanding
of the IVF is the study of option market participants’ supply and demand for dif-
ferent option series in different option markets. One way to think of the IVF is as
a series of market clearing option prices quoted in terms of BSM implied volatili-
ties. Under dynamic replication, the supply curve for each option series is a hori-
zontal line. No matter how large the demand for buying a particular option, its
price and implied volatility are unaffected. In reality, however, there are limits to
arbitrage. Shleifer and Vishny (1997) describe how the ability of professional
arbitrageurs to exploit mis-priced securities is limited by the responsiveness of
investors to intermediate losses. Liu and Longstaff (2000) show that it is often
optimal for a risk-averse investor to take a smaller position in a profitable arbi-
trage than his margin constraints allow, since intermediate mark-to-market losses
may force liquidation of his position prior to convergence. In the same way, a
market maker will not stand ready to sell an unlimited number of contracts in a
particular option series. As his position grows large and imbalanced, his hedging
costs and/or volatility risk exposure also increase, and he is forced to charge a
higher price. With an upward sloping supply curve, differently shaped IVFs in
different markets can be expected. The result of these limits to arbitrage is that
market prices can diverge from model values, and that the divergence can persist.
In effect, the no-arbitrage band within which prices can fluctuate can be quite
wide, allowing price to be affected by supply and demand considerations.

Interacting with the market maker’s willingness to supply options is investor
demand. The level of implied volatility will be higher or lower depending upon
whether net public demand for a particular option series is to buy or to sell. In
the S&P 500 index option market, for example, it is well known that institu-
tional investors buy index puts as portfolio insurance. Unfortunately, there are
no natural counterparties to these trades, and market makers must step in to
absorb the imbalance. With an upward sloping supply curve, implied volatility
will exceed actual return volatility, with the difference being the market maker’s
compensation for hedging costs and/or exposure to volatility risk.25 If institu-
tional demand tends to be focused in a particular option series, such as out-of-
the-money puts, the IVF will be downward sloping. 

Bollen and Whaley (2004) investigate the role of supply and demand in the
options market by exploring the possibility that market makers set option prices
with a model not radically different from BSM and that the shape of the IVF is
attributable to the buying pressure of specific option series and a limited ability of
arbitrageurs to bring prices back into alignment. In particular, they document that
daily changes in the implied volatility of an option series are significantly related
to net buying pressure and that the changes are transitory, as market makers are
gradually able to rebalance their portfolios. Buying pressure on index put options
appears to drive the permanently downward sloping shape of the S&P 500 index
option IVF, consistent with hedgers seeking portfolio insurance. In contrast, buy-
ing pressure on call options appears to drive the shape of stock option IVFs. A
simulated trading strategy that sells options, and then delta-hedges the positions
using the underlying security, generates significant paper profits for the index but

25 In contrast, the ability to dynamically replicate option positions in the idealized (frictionless)
BSM world ensures that the market maker earns the risk-free rate of return.
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not for individual stocks. For index options, they find that profits are highest for
the category of options that contain the OTM puts, which corresponds to the
institutional demand for portfolio insurance. While the prices of these options are
considerably higher than is suggested by the BSM formula and the actual level of
volatility in the marketplace, they do not represent profitable arbitrage opportuni-
ties for the market maker once the costs of hedging volatility risk are considered.

RISK MANAGEMENT LESSONS: BARINGS BANK PLC

The collapse of Barings Bank PLC in 1995 has been described as one of the worst
“derivatives disasters” in history.26 Disaster to be sure. Unsanctioned index
futures and options trading bankrupted Britain’s oldest, most venerable, bank—a
bank that had financed both the Louisiana Purchase in 1803 and the Napoleonic
Wars. But, is it fair to characterize Barings Bank as a derivatives disaster? Not
really. The exchange-traded futures and options contracts/markets behaved
exactly as they should. The main problem was that senior management of Barings
Bank allowed a single trader, Nick Leeson, to place huge, unauthorized bets on
the direction of the Japanese stock market over a period of more than two years.
By the time that Barings’ senior management came to grips with the illicit trading
activity, the bank had lost $1.2 billion and was essentially worthless.

The key player in the Barings Bank controversy was Nicholas William Lee-
son, a man of humble beginnings. He was born in Watford, Hertfordshire in
England, the son of a self-employed plasterer. Upon completing high school,
Leeson opted for finance career and took a job as a bank clerk at Coutts & Co.
In June 1987, about two years later, he moved on to Morgan Stanley as a
futures and options settlement clerk. In June 1989, he joined the settlements
department of Barings Securities at an annual salary of £12,000. 

Leeson’s big break came in 1990 when he was assigned to the back-office
operations27 of the Indonesian branch of Barings Securities to sort out a large
number of unreconciled stock trades that had stacked up in the bank’s error
account (the infamous “88888 account”). The bank’s use of an error account
was not uncommon. By isolating trade discrepancies, a bank can proceed with
its remaining back office activities in an unencumbered and timely fashion.
What was uncommon, however, is that the trade discrepancies were not recon-
ciled and closed out within a day. In spite of its own internal guidelines, Barings
allowed them to accumulate through time.

Over a period of many months, Leeson managed to clean up the back-office
problems in Jakarta. Indeed, he was so successful in executing his duties that, in

26 The story of Nick Leeson and the demise of Barings Bank has been reported in a number of
venues including the HBO movie, Rogue Trader. Two particularly insightful recounts are Raw-
nsley (1995) and Marthinsen (2005, Ch. 7). Brown and Steenbeek (2001) analyze Leeson’s
trading strategy. Many of the details provided in this section are drawn from these sources.
27 The back office handles the administrative functions of the bank such as trade confirmation,
settlement, regulatory compliance, reconciling, and clearing. The front office, on the other
hand, handles brokerage business (i.e., direct interface with customers and the execution of
their orders) and proprietary trading (i.e., trading for the bank’s own accounts).
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April 1992, he was promoted and assigned to Barings Futures (Singapore) (hereaf-
ter BFS), a new indirect subsidiary of Barings Securities Limited, to set up
accounting and settlement functions. Only July 1, 1992, BFS started trading on
the SIMEX, with Leeson in charge of operations, including both the trading (front
office) and the accounting and settlement (back office) activities. Apparently, the
bank believed that it was unnecessary to separate the front-office and back-office
operations because Leeson’s trading was merely executing orders on behalf of cli-
ents. In the ensuing months, the brokerage business waned as Japanese clients
began set up their own trading operations. To compensate for the loss in line of
business, Barings turned to proprietary trading. By early 1993, Leeson was
actively involved in stock index arbitrage—not between the futures and the under-
lying basket of stocks but rather between the Nikkei 225 futures contracts traded
simultaneously on the Singapore International Monetary Exchange (SIMEX) and
the Osaka Stock Exchange (OSE). Since the contract specifications are virtually
identical, arbitraging between the two markets means profiting from (minor) con-
tract price discrepancies between the two markets, selling the more expensive and
buying cheaper. Being long and short the same contract, this trading activity is vir-
tually riskless.28 Curiously, Leeson quickly began reporting extraordinary profits.
So large were the reported profits during 1993, BFS accounted for 20% of Bar-
ings’ worldwide profits. His bonus for the year was £130,000.

The extraordinary profits reported by Leeson should have set off alarms.
The strategy is relatively mindless and can be executed mechanically using a PC,
real-time pricing information, and electronic links to the trading floors. Since
the barriers to entry for engaging in this strategy are small, competition would
quickly drive the revenue from this strategy down to a level at which it equals
marginal costs of trading. Common sense dictates that reported abnormal prof-
its from this strategy should have been a “red herring.”

In truth, Leeson had been placing directional bets all along. The bets were
relatively modest at the outset. Some paid off, others did not. As it turns out,
Leeson had created the ability to hide losses early. On July 2, 1992, just a day
after BFS commenced trading on SIMEX, Leeson gave specific instructions to
change the back-office software to exclude the 88888 account from all market
activity reports. Its only use was to be for determining futures/options margins.
By reporting winning trades to management and hiding losing trades in the
88888 account, Leeson was able to convince the bank’s management that he
was a brilliant trader. His credibility became beyond reproach. Senior manage-
ment (from his direct supervisor through the board of directors) turned a “blind
eye” to virtually all of his activities. During the first half of 1994, Leeson’s
reported profits accounted for about 50% of Barings’ worldwide profit. All the
while, Leeson was doubling29 his bets trying to recover the mounting losses. The
charade continued through 1994. At yearend, his reported profits were 500%
greater than expected, and his bonus for the year was £450,000. Hidden in the
background, however, were accumulated losses of $835 million.

28 The only risk is “legging into” the transactions. You must buy and sell the contracts in dif-
ferent markets at exactly the same time.
29 Doubling refers to the gambling strategy of doubling the bet each time there is a loss. See
Brown and Steenbeek (2001).
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Leeson’s fundamental bet was that the Japanese stock market would rise.
From mid-1994 through the end of the year, the Nikkei 225 was on a steady path
downward, as shown in Figure 14.9. The futures contracts were, of course,
marked-to-market each day, requiring that variation margin be paid. Leeson
requested funding from Barings Securities London and, to his surprise, they wired
the money. They apparently beleived his stories that the transfers were needed
mostly to meet the needs of BFS customers who operated in different time zones
and had difficulty in clearing checks in time and that large margin calls were to be
expected in his index arbitrage trading activity. Neither story was, in fact, true.
The funding from Barings was not adequate to cover margin calls. Consequently,
Leeson decided to write Nikkei 225 option straddles to generate additional cash.30

At the same time, he also began to record fictitious trades and falsified internal
transfer records to lower the size of margin calls by lowering his exposures.

In the first two weeks of January 1995, as the market declined, Leeson began
to bet more and more heavily that the Nikkei 225 would not fall below a level of
19,000. Unfortunately, the Kobe earthquake hit on January 17, 1995, disrupting
markets throughout Japan. The market fell through the 19,000 level on Friday,
January 20. In an attempt to bid up the stock market to restore the profitability
of his short straddles and long futures positions, Leeson bought more and more
index futures. But, to no avail. Over the weekend, the Nikkei 225 dropped by
more than 1,000 points, substantially worsening Leeson’s plight. Although he
had managed to recover his losses since the earthquake by January 30, he bought
even more futures because of his belief that the market would recover further. In
the early days of February, the market, again, turned against him. The stress
became too much. On Thursday, February 23, Leeson attended work as usual,

joined colleagues for drinks at a local bar after the market close, went home,

30 From Chapter 10, we know that straddles generate cash and are profitable as long as the
market does not move dramatically in one direction or the other.

FIGURE 14.9 Nikkei 225 during the Barings Bank scandal. 
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packed his bags, and flew to Borneo for a vacation with his wife. At the time of
his departure, his open long index futures position alone was 61,039 contracts. 

To illustrate the scope of the risk of the position that Leeson had amassed as of
the close of trading on February 23, we can compute the 5% value-at-risk (VAR)
and conditional value-at-risk (CVAR) measures over one day.31 The historical vola-
tility rate of the Nikkei 255 over the most recent 30 days leading up to and includ-
ing February 23 was 23.3% on an annualized basis. At an assumed index futures
price of 17,830.02 and an assumed futures price appreciation rate of 0%, the criti-
cal level below which the index level may be within one day at 5% probability is

OV_OPTION_ASSET_PROB_INV(17830.02,1/365,0,0.233,“b”,0.05) = 
17,474.61

The futures contract denomination is JPY 2,500, and the size of the SIMEX
position was 61,039 contracts. Hence the 5% VAR over one day was 

(17,830.02 – 17,474.61) × JPY 2,500 × 61,039 = JPY 54.2 billion

or USD 560.9 million.32 In other words, standing at the close on February 23,
1995, there was a 5% chance that the open index futures position could lose
about USD 561 million by the close the next day. The 5% tail VAR or CVAR
was USD 700.7 million. That is, conditional upon a loss in the 5% tail, the
expected loss is about USD 701 million.

In retrospect, Leeson was a rogue trader whose massive, unauthorized, spec-
ulation in the futures and options went unmonitored by his employer, Britain’s
oldest and most venerable bank. Could the situation have been avoided? Abso-
lutely! Like in most derivatives fiascos, the main culprits were:

1. Rogue trader. Leeson became addicted to his own fame. In order to protect his
reputation as a brilliant trader and keep reporting extraordinary profits for the
bank (and earning extraordinary bonuses for himself), he accelerated his trad-
ing activity. Since the bank had placed him in a position in which he was
responsible for trading and compliance, alarms did not go off early in 1993
when they should have. If the trading had stopped at that time, losses would
have been miniscule by comparison.

2. Lack of understanding by senior management. The fact that the index arbitrage 
activity was producing extraordinary profits in early 1993 should have alarmed 
Barings’ senior management, from Leeson’s direct supervisor through the board 
of directors. Apparently, they did not have a basic understanding of the law of 
one price—two perfect substitutes must have the same price.33 Simultaneously 
buying and selling the same futures contract on different exchanges is a virtu-
ally riskless activity. At best, the strategy should produce only small returns.  

31 Recall the these measures were developed in Chapter 7 under the assumption that the un-
derlying security has a lognormal price distribution. See Illustrations 7.5 and 7.7.
32 The exchange rate at the time was JPY 96.7/USD.
33 Recall that this assumption was introduced in Chapter 2 and is the foundational assumption
of derivatives valuation and risk management. 
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3. Lack of meaningful supervision by senior management. Judging by their
actions, Barings’ senior management did not supervise Leeson’s trading activi-
ties in any meaningful way. Indeed, because they had continued to allow Leeson
to be responsible for proprietary trading and compliance, they were “allowing
the fox to guard the henhouse.” Effective risk management demands a clear
separation of these two activities for obvious reasons. 

From Borneo, Leeson then traveled to Frankfurt, where he had hoped to find
safe haven. He was apprehended and extradited back to Singapore, where he
pleaded guilty to fraud and spent three and a half years of a six and a half year sen-
tence in a Singapore jail. Upon completing his sentence, he returned to England.

RETURN/RISK MANAGEMENT STRATEGIES

Exchange-traded stock index derivatives can be used in a variety of important
trading strategies including market timing, asset allocation, and protected
equity notes. The purpose of this section is to elaborate on each of these strate-
gies, showing precisely what trades need to be executed.

Alter Market Risk of a Stock Portfolio Using Index Futures

The key to effective market timing and asset allocation is the ability to modify
the expected return/risk characteristics of your portfolio quickly and efficiently.
Stock index futures are ideally suited for this purpose. To understand exactly
how to use them, we need to recall some of the principles from earlier chapters.
First, in Chapter 5, we demonstrated that a stock portfolio’s beta can be used to
determine the optimal number of index futures to sell in order to minimize port-
folio risk. The optimal hedge was

(14.13)

where βP and P are the beta and the market value of the stock portfolio, and S is
the market value of an index unit (i.e., the index level times the denomination of
the futures). Second, in Chapter 4, we learned that the net cost of carry relation
implies the return of the futures equals the return on the underlying index port-
folio less the risk-free rate of interest, that is, 

RF = RS – r (14.14)

Third, by virtue of the CAPM, we know that the expected return of a risky asset
(e.g., your portfolio P) equals the risk-free rate of return plus a market risk pre-
mium equal to the product of the difference between the expected rate of return
on the market and the risk-free rate and the asset’s beta, that is,

EP = r + (ES – r)βP (14.15)

nF βP–
P

S
---⎝ ⎠

⎛ ⎞=
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With these tools in hand, we can now address the market timing/asset allocation
problem.

First use (14.13) and (14.14) to verify that the optimal hedge ratio (14.12) is
correct. You want to set the hedge so that the expected return on your hedge
portfolio equals the risk-free rate of return, that is,

EP + nFEF = r (14.16)

But from (14.14) and (14.13) you know that EP = r + (ES – r)βP = r + EFβP , so
the left hand side of expected return of the hedge portfolio (14.15) becomes

r + βPEF + nFEF = r (14.17)

We immediately see that the optimal number of futures is nF = –βP, which we
then scale by the ratio of the market value of our portfolio relative to the market
value of a unit of the index portfolio underlying the futures to arrive at (14.12).
Thus we have verified a result from an earlier chapter using a different, albeit
equivalent, approach.

Next, rather than set the expected return on your hedged portfolio equal to
the risk-free rate as we did in (14.15), we set it equal to the expected return on a
portfolio with our desired risk level, β*, that is,

(14.18)

Substituting (14.13) and simplifying, we find that the number of futures con-
tracts to buy or sell in order to adjust our market risk exposure to β* is

. Adjusting for the difference in size of our portfolio relative to an
index portfolio unit, the general result is 

(14.19)

If our desired risk level is 0, we get the minimum variance hedge (14.12). If we
want to increase our risk exposure (i.e., β* > βP), we buy futures rather than sell.

ILLUSTRATION 14.3 Alter risk of stock portfolio.

Suppose you manage a $30 million stock portfolio with a beta of 1.50. The current level
of the S&P 500 is 1,200, and the three-month S&P 500 futures price is 1,218.14. The
risk-free interest rate is 6%. Find the appropriate number of the index futures to buy to
bring the portfolio’s risk exposure up to a level of β* = 2.50. 

To find the number of index futures to buy today, substitute the problem informa-
tion into (14.18), that is, 

r ES r–( )βP nF
*EF+ + r ES r–( )β*+=

nF
* β* βP–=

nF
* β* βP–( )

P

S
---⎝ ⎠

⎛ ⎞=

nF 2.50 1.50–( )
30,000,000
1,200 250( )
------------------------------⎝ ⎠

⎛ ⎞ 100= =
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Creating Protected Equity Notes

A protected equity note (PEN) is a discount bond-like contract structured to
provide a guaranteed rate of return on the principal invested plus a fraction of
the any upside relative price appreciation (or total return) on an underlying
equity security such as a stock index. PENs were introduced by the over-the-
counter market in the late 1980s, and are known by a variety of other names
including principal-protected notes, capital-guarantee notes, safe-return certifi-
cates, equity-linked notes, and index-linked bonds.

To value a PEN, we, again, apply the valuation by replication. We begin by
describing the notation. Let V be the principal amount of the PEN, g be its guar-
anteed investment return, k be the proportion of price appreciation earned if the
market rises (i.e., the “participation rate”), and T be the time remaining to expi-
ration. Let the underlying index have a current price of S, a dividend yield rate
of δ, and a volatility rate of σ. For the sake of convenience, we initially assume S
= V.34 The risk-free interest rate is denoted r.

Under the assumed notation, the terminal value of the PEN may be expressed as 

(14.20)

As (14.34) shows, the protected equity note guarantees a minimum terminal
value of VegT. The only way to guarantee this minimum future value is to
include risk-free bonds in the replicating portfolio. To provide a floor level of
VegT at time T, we need to buy Ve–(r–g)T in risk-free bonds. Next, in the event the
equity index appreciates more than rate g over the life of the PEN, the protected
equity note also pays k percent of any excess appreciation, ST – VegT. Obviously,
this is nothing more than a European-style call option with an exercise price of
VegT and a time to expiration of T. Using the BSM model, the value of the call is 

(14.21)

where

(14.21a)

and

(14.21b)

34 We relax this assumption in the illustrations that follow.

PENT

VegT k S̃T VegT
–( )+    if ST VegT>

VegT                           if ST VegT≤
⎩
⎪
⎨
⎪
⎧

=

c Se δT– N d1( ) Ve g r–( )TN d2( )–=

d1
Se δT– Ve g r–( )T⁄( ) 0.5σ2T+ln

σ T
-----------------------------------------------------------------------------=

d2 d1 σ T–=
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Since the replicating portfolio has terminal value contingencies exactly equal to
those of the PEN, the value of the PEN must be

(14.22)

In the event that the PEN is linked to the total return of the index rather than its
price appreciation, we set the dividend yield rate equal to 0 in (14.20) even
though the index, itself, may pay dividends. Naturally, such call will be more
expensive and, hence, we can expect to receive a lower participation rate on the
PEN, other factors being held constant. 

ILLUSTRATION 14.4 Value protected equity note.

Suppose your bank offers protected equity notes to its customers. Under the terms of the
agreement, you invest $100,000 for one year. At the end of the year, you receive a guar-
anteed return of 2% and 30% of any price appreciation of the S&P 500 index over and
above the guaranteed return. Value the PEN assuming that the S&P has a current level of
1,250, a dividend yield rate of 1.5%, and a volatility rate of 16%. Assume the risk-free
rate of interest is 6%.

First, compute the guaranteed floor value of the investment at the end of one year,
that is,

VegT = 100,000e0.02(1) = 102,020.13

The present value of the risk-free bonds necessary to provide a guaranteed return of 2%
(i.e., the first term on the right hand-side of (14.36)) is

Ve–(r–g)T = e–0.06(1)(102,020.13) = 96,078.94

Second, recognize that the principal amount of the PEN and the index are at differ-
ent levels—100,000 versus 1,250. This problem is overcome simply by scaling the cur-
rent level of the index by a factor of 80. Now, compute the value of the call option
embedded in the agreement. Using the BSM formula, the call value is

c = 100,000e–0.015(1)N(d1) – 100,000e(0.02–0.06)1N(d2) = 7,495.32

where

,

N(d1) = 0.5934, and N(d2) = 0.5304

Finally, compute the value of the PEN as the sum of the value of the risk-free bonds
and k times the value of the call option, that is,

PEN = 96,078.94 + 0.30 × 7,495.32 = 98,327.54

Had the PEN be written on the total return of the index, the call option value is 8,405.68
and the value of the PEN is 98,600.65. 

The computations can be verified using the OPTVAL Function Library. The function
(and its syntax) that values a protected equity note is 

PEN Ve r g–( )– T kc+=

d1
100,000e 0.015 1( )– 102,020.13e 0.06 1( )–⁄( ) 0.162 1( )+ln

0.16 1
--------------------------------------------------------------------------------------------------------------------------------------------- 0.2363= =

d2 d1 0.16 1– 0.0763= =
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OV_NS_PROTECTED_EQUITY_NOTE(princ, g, k, t, r, i, v, rp$)

where princ is the amount of principal of the PEN, g is the minimum guaranteed rate of
return, k is the participation rate, t is the time to expiration, r is the risk-free interest
rate, i is income rate of the underlying index, v is the index’s volatility rate, and rp$ is a
(r)eturn/(p)rice indicator. If the PEN provides a share of the total return on the index, rp$
= “r”, and, the PEN provides a share of the price appreciation of the index, rp$ = “p”.
An example of the function call is provided here:

Financial institutions that offer products such as PENs demand a fee for the
contract that they are structuring for you. To deduce the size of the fee, you simply
compare the principal of the note, V, with its economic value as determined by
(14.36). In order to do so, you will have to estimate the dividend yield rate and
volatility rate of the index and identify the risk-free interest rate on a discount
bond of comparable. But these are tasks about which we are familiar. It is also
important to note that the reason is that these products are popular is that many
individuals are unfamiliar with index option markets and do not understand that
they can form a portfolio with exactly the same payoff contingencies on their own.

SUMMARY

This chapter discusses exchange-traded stock index products. The first section is
devoted to describing stock index derivatives markets worldwide. Contract spec-
ifications of selected index products are provided. The framework for valuing
index derivatives depends critically on how the cash dividends of the index port-
folio are paid through time. In the second section, the dividend payment patterns
of the S&P 500 and DJIA stocks indexes are presented. The patterns indicate
that accurate modeling of stock index derivatives requires using a discrete cash
dividend framework. The third section provides the valuation principles under
the discrete dividend (as well as the continuous dividend yield rate) frameworks. 
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The fourth section discusses two important index derivatives trading strate-
gies. The first is tailoring the expected return/risk characteristics of a stock portfo-
lio using index futures. Such adjustments can be made using the stock portfolio’s
current beta in relation to the desired level of risk exposure. Where the desired
exposure is 0, the optimal number of futures to sell matches that of the minimum
variance hedge developed in Chapter 2. Increasing the risk exposure of the portfo-
lio in response to a prediction of a bull market (i.e., a market timing strategy) or
to a desire to have more of the portfolio wealth invested in stocks (i.e., an asset
allocation strategy) means buying rather than selling index futures contracts. The
second return/risk management strategy discussion focuses on a structured prod-
uct called a protected equity note in which the buyer is provided a guaranteed
minimum rate of return on investment plus a share of the return (or price appreci-
ation) in an index portfolio. Valuation by replication is used to demonstrate that
this instrument is nothing more than risk-free bonds plus an index call option.
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CHAPTER

 

15

 

Stock Index Products:
Strategy Based

 

any stock index products are inextricably linked to particular index deriva-
tive trading strategies. This chapter focuses on such products. The first is

portfolio insurance. Portfolio insurance is a means of protecting a stock portfo-
lio against the prospect of declining prices. Like any insurance policy, the face
amount of the insurance is prespecified as is the life of the policy. The insurance
is purchased by buying a put, either directly or synthetically, with an exercise
price equal to the face amount of the insurance and a time to expiration equal to
the term of the policy. Buying the put directly is called 

 

passive portfolio insur-
ance

 

; creating it synthetically, 

 

dynamic portfolio insurance

 

. The first section
describes a variety of portfolio insurance trading strategies.

The second group of products are funds based on an index/option trading
strategy. The first such product to appear in the marketplace was based on the
CBOE’s Buy-Write Index (BXM). The BXM buy-write strategy involves buying
the S&P 500 index portfolio and selling one-month, at-the-money call options.
While such a strategy should theoretically perform the same as the S&P 500
portfolio on a risk-adjusted basis (as we demonstrated in Chapter 10), it has
performed better over the last 16 years. The reason is that index options appear
to have been overpriced (i.e., their implied volatility has been too high relative
to realized volatility) and converge to their correct values over time. The second
section describes the BXM trading strategy in detail and shows its historical per-
formance.

The final group of index products that we discuss is market volatility deriv-
atives. Essentially two types exist—contracts on realized volatility and contracts
on volatility implied by index option prices. In the third section, we describe dif-
ferent volatility contract specifications and show how the CBOE’s Market Vola-
tility Index (VIX) can be constructed from a portfolio of S&P 500 index
options. We then illustrate how volatility derivatives can be used as an alterna-
tive investment in an asset allocation framework.

M
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INSURING STOCK PORTFOLIOS

 

Portfolio insurance is a means of protecting your portfolio against the prospect
of declining prices. Like any insurance policy, the face amount of the insurance
as well as the term of the policy are specified. The insurance is created by buying
a put, either directly or synthetically. The put’s exercise price is the face amount
of the policy and its time to expiration is the term. Buying the put directly is
called 

 

passive portfolio insurance

 

; creating it synthetically, 

 

dynamic portfolio
insurance

 

.
The history of portfolio insurance in the United States is an interesting story in

financial innovation.

 

1

 

 It began in the mid-1970s when Hayne Leland, a Berkeley
finance professor, dreamed up the concept of dynamic portfolio insurance. The eas-
iest way to create portfolio insurance is to buy a put option written on the stocks in
the portfolio, but, at the time, neither put options in general nor index put options
in particular were traded. Leland’s idea, further refined with Mark Rubinstein, was
to mimic the payoffs of an insured portfolio by continuously rebalancing a portfo-
lio of stock and T-bills or a portfolio of stocks. As the market rose, risk-free bonds
would be liquidated and more stocks purchased. As the market fell, stocks would
be sold and risk-free bonds purchased. The two academics enlisted the help of a
professional marketer named John O’Brien, formed an advisory firm called
“Leland-O’Brien-Rubinstein” (LOR) and began marketing portfolio insurance.
Their service was to provide clients with instructions on how to rebalance their
portfolios as the market moved. They landed their first client in the fall of 1980. 

An early problem in implementing the strategy was that it was difficult and
costly for many clients to buy and sell simultaneously the stocks in their portfo-
lio. Program trading was in its infancy. Another problem was that active portfo-
lio managers did not take kindly to outsiders giving them orders to buy or sell
stocks in their portfolio with little or no warning. Consequently, the birth of
S&P 500 index futures in March 1982 was a godsend. Index futures allowed
managers to tailor their market risk exposures quickly and inexpensively, with-
out touching the stocks in their portfolios. The market for portfolio insurance
flourished. By 1987, more than $60 billion in stock portfolios were covered by
dynamic portfolio insurance.

The end came with the market crash on Monday, October 19, 1987. On Fri-
day, October 16, 1987, there was a nervousness in the market. The S&P 500
index fell by more than 5% during the trading day. Figure 15.1 shows that the
December 1987 futures price was at a discount relative to the index several
times during the day including at the close. The nervousness grew over the
weekend, and, by Monday morning, there was outright panic. The December
1987 futures price opened about 19 points lower than its Friday close and at an
18 point discount to the index. See Figure 15.2. With the decline in the market,
dynamic portfolio insurances triggers were hit, and futures contracts were sold.
But, the success of LOR dynamic portfolio insurance depends on the futures
price being at its theoretical level, and the futures contract stays at its theoreti-
cal level only when index arbitrageurs are at work. On the morning of October
19, the trading of stocks on the NYSE was hopelessly congested. And, without

 

1 

 

See Bernstein (1996, pp. 316–320).
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the ability to sell shares, index arbitrageurs were unwilling to buy the futures.
Consequently, the futures price went into a freefall, reaching levels as high as 30
points below the reported index level. 

The failure of dynamic portfolio insurance during the October 1987 crash
spurred interest in passive portfolio insurance. While index put options had
been launched by the CBOE in March 1983, their trading volume was modest.
After the crash, trading volume exploded. With such strong demand, the OTC
markets took notice. Since exchange-traded products are standardized, portfolio
managers have limited degrees of freedom in setting floor values and insurance

FIGURE 15.1 Intraday prices for the December 1987 S&P 500 futures and S&P 500 index on 
Friday, October 16, 1987.   

FIGURE 15.2 Intraday prices for the December 1987 S&P 500 futures and S&P 500 index on 
Monday, October 19, 1987.  
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horizons. In addition, OTC option dealers have the flexibility to write puts on
any basket of stocks that the customer wants as opposed to the handful of
indexes offered by the exchanges.

 

2

 

This section focuses first on the passive portfolio insurance created by buying
index puts. It then uses the mechanics of a passively insured portfolio and the Black-
Scholes/Merton (BSM) option valuation formula to develop many of the dynamic
portfolio insurance trading strategies that have been used in the marketplace.

 

Passive Portfolio Insurance

 

Passive portfolio insurance involves buying an index put option. To start, assume
that the underlying stock portfolio is an index like the S&P 500 and that the put
is written directly on the index. The level of the S&P 500 index is denoted 

 

S,

 

 

 

δ

 

 is
its dividend yield rate,

 

3

 

 and 

 

σ

 

 is its volatility rate. The price of a European-style
index put with exercise price 

 

X

 

 and time to expiration 

 

T

 

 is 

 

p.

 

 To insure the value
of the index portfolio, we buy one put for each 

 

e

 

–

 

δ

 

T

 

 units in the index portfolio.

 

4

 

Since the continuous dividend yield assumption involves immediately reinvesting
all dividends in the index portfolio, 

 

e

 

–

 

δ

 

T

 

 units grow to exactly 1 unit at expira-
tion. The initial and terminal values of this portfolio are shown in Table 15.1. If
the index level at expiration closes below the floor value of the insurance, gains
on the put will offset exactly any losses on the stocks. If the index level closes
above the floor value, the investor earns the gains.

 

TABLE 15.1  

 

Insuring an index portfolio using an index put.  

 

ILLUSTRATION 15.1

 

Create static portfolio insurance by buying index puts.

 

Suppose you are an index fund manager with a $50 million position in the S&P 500 port-
folio, and want to buy insurance that the portfolio value will not fall below a level of $50
million by the end of next year. The current level of the S&P 500 is 1,500, its dividend
yield rate is 1.5%, and its volatility rate is 20%. The current risk-free interest rate is 6%.

 

2 

 

Responding to customer demand for more flexible contracts, the CBOE introduced FLEX
options in which the customer is allowed to choose the exercise price, expiration date, the style
of option, and the means of settlement. The underlying index, however, must be the same as
the index options already trading at the CBOE.

 

3 

 

The constant dividend yield rate assumption is the more difficult case. Adjusting for discrete
dividend payments means only subtracting the present value of the promised portfolio divi-
dends from the value of the portfolio being insured.

 

4 

 

If the stock portfolio is not the index but rather a stock portfolio with risk level 

 

β

 

P

 

 relative
to the index, we scale the number of puts by a factor of 

 

β

 

P

 

.

 

Position
Initial 
Value

Terminal Value (

 

T

 

)

 

S

 

T

 

 

 

≤

 

 

 

X S

 

T
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Buy index portfolio
Buy index put –
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0
Net portfolio value X
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Find the appropriate number (and exercise price) of the index puts needed to provide for
the $50 million floor value in one year. Show the initial and terminal values of the insured
portfolio for a range of index levels between 500 and 2,500 in increments of 100. The
denomination of the S&P 500 index option is 100 times the index level.

 

Compute number of puts and exercise price

 

To find the number of index puts to buy today, you need to find the number of units of
the index portfolio that we will have in one year. With $50 million in the index portfolio
and each unit worth 1,500, you currently have 

units, where the 100 in the denominator is the contract multiplier of the S&P 500 index
option contract. As a result of the S&P 500 index paying dividends, however, the number of
index units will grow to 

 

n

 

 = 333.33

 

e

 

0.015(1)

 

 = 338.371 by the end of one year. The required
number of index puts is therefore 338.371. With the number of index puts computed, you
now must compute the exercise price of each put. With the floor value of the portfolio set at
$50 million in one year, the exercise price of each put should be 

 

Compute terminal values

 

At an exercise price of 1,477.67, each put costs $76.3363 (according to the BSM for-
mula), that is,

OV_OPTION_VALUE(1500,1477.67,1,0.06,0.015,0.20,“P”,“E”) = 76.3363

The total cost of the portfolio insurance is therefore

$76.3363 

 

×

 

 100 

 

×

 

 338.371 = $2,583,000

With this level of insurance, the values of the insured portfolio in one year for index lev-
els ranging between 500 and 2,500 are as follows: 

 

Terminal Values

Index
Level

Stock
Portfolio Value

Value
of Puts

Insured
Portfolio Value

 

   500 16,918,551 33,081,449 50,000,000
   600 20,302,261 29,697,739 50,000,000
   700 23,685,972 26,314,028 50,000,000
   800 27,069,682 22,930,318 50,000,000
   900 30,453,392 19,546,608 50,000,000
1,000 33,837,102 16,162,898 50,000,000
1,100 37,220,812 12,779,188 50,000,000
1,200 40,604,523   9,395,477 50,000,000
1,300 43,988,233   6,011,767 50,000,000
1,400 47,371,943   2,628,057 50,000,000
1,500 50,755,653                 0 50,755,653

n
50,000,000
1,500 100( )
------------------------------ 333.333= =

X
50,000,000

338.371 100( )
------------------------------------ 1,477.67= =
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Compute initial values

 

The tables that follow show the initial values of the portfolio assuming you purchased the
required number of puts and the index level immediately changes to a different level. Note
that, before the put’s expiration, the portfolio value may be substantially less than the floor
value of $50 million. At an index level of 500, for example, the insured portfolio value is
only $47,088,238, well short of the $50 million required. The reason is, of course, that
you bought European-style puts, that is, you bought an insurance policy to guarantee at
least $50 million in one year. The portfolio value, $47,088,238, is simply the present value
of the $50 million, that is, $47,088,238 = $50,000,000

 

e

 

–0.06(1)

 

. In one year, if the index
level remains at 500, the stock portfolio value will have grown to $16,918,551 due to the
re-investment of dividends (i.e., $16,666,667

 

e

 

0.015(1)

 

 = $16,918,551) and the terminal
value of the puts is their exercise value, $30,081,449 (i.e., 338.371(100)(1,477.67 – 500)).

 

Terminal Values

Index
Level

Stock
Portfolio Value

Value
of Puts

Insured
Portfolio Value

 

1,600 54,139,363                 0 54,139,363
1,700 57,523,074                 0 57,523,074
1,800 60,906,784                 0 60,906,784
1,900 64,290,494                 0 64,290,494
2,000 67,674,204                 0 67,674,204
2,100 71,057,915                 0 71,057,915
2,200 74,441,625                 0 74,441,625
2,300 77,825,335                 0 77,825,335
2,400 81,209,045                 0 81,209,045
2,500 84,592,755                 0 84,592,755

 

Portfolio Values with One Year to Expiration

Index
Level

Stock
Portfolio Value

Value
of Puts

Insured
Portfolio Value

 

   500 16,666,667 30,421,560 47,088,227
   600 20,000,000 27,088,239 47,088,239
   700 23,333,333 23,755,263 47,088,596
   800 26,666,667 20,426,203 47,092,869
   900 30,000,000 17,119,553 47,119,553
1,000 33,333,333 13,889,916 47,223,250
1,100 36,666,667 10,839,846 47,506,513
1,200 40,000,000   8,100,014 48,100,014
1,300 43,333,333   5,783,980 49,117,313
1,400 46,666,667   3,948,601 50,615,267
1,500 50,000,000   2,583,000 52,583,000
1,600 53,333,333   1,624,612 54,957,946
1,700 56,666,667      986,331 57,652,998
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Dynamic Insurance Using Stocks and Risk-Free Bonds

 

Dynamic portfolio insurance does the same thing as the passive portfolio insur-
ance, except that a put option is not purchased directly.  Instead the fund man-
ager dynamically rebalances a portfolio consisting of stocks and risk-free bonds
(or a portfolio of stocks and stock index futures or a portfolio of stocks, index
futures and risk-free bonds) in such a way that the payoff contingencies of the
portfolio exactly match the payoff contingencies of the passively insured portfo-
lio.  Dynamic portfolio insurance using a mix of the stock portfolio and risk-
free bonds is discussed first, followed by dynamic insurance using the stock
portfolio and stock index futures and then by the stock portfolio together with
index futures and risk-free bonds. Recall that this is the order that LOR fol-
lowed in providing their portfolio insurance advisory service.

To create a dynamic portfolio insurance portfolio, you need to create a port-
folio of stocks and risk-free bonds in such a way that the portfolio has (1) the
same value as the passive portfolio insurance portfolio; and (2) the same change
in value as the passive portfolio insurance portfolio with respect to a change in
the level of the index 

 

S

 

. The 

 

value constraint

 

 is

(15.1)

where 

 

w

 

S

 

 is the number of units of the index portfolio, 

 

w

 

B

 

 is the number of risk-
free bonds, and 

 

X

 

 is the floor value of the portfolio insurance at time 

 

T

 

 (i.e., the
exercise price of the dynamically created put option). To identify the 

 

delta con-
straint

 

, first substitute the European-style put option valuation equation from
Table 14.13 in Chapter 14 into equation (15.1) and then take the partial deriva-
tive of (15.1) with respect to a change in the index level 

 

S

 

, that

 

 

 

is,

(15.2)

 

Portfolio Values with One Year to Expiration

Index
Level

Stock
Portfolio Value

Value
of Puts

Insured
Portfolio Value

 

1,800 60,000,000      580,381 60,580,381
1,900 63,333,333      332,300 63,665,633
2,000 66,666,667      185,807 66,852,474
2,100 70,000,000      101,801 70,101,801
2,200 73,333,333        54,814 73,388,147
2,300 76,666,667        29,082 76,695,749
2,400 80,000,000        15,240 80,015,240
2,500 83,333,333          7,904 83,341,237
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Note that since the value of the risk-free bonds with respect to a change in the
index level is 0, the appropriate number of units of the stock portfolio to buy
can be identified by factoring e–δT from (15.2), that is,

(15.3)

Substituting (15.3) back into the value constraint (15.1), the appropriate number
of bonds can be identified by solving

(15.4)

Since , the appropriate number of bonds to
sell is 

wB = N(–d2) (15.5)

Asset-or-Nothing and Cash-or-Nothing Options Before returning to the illustration, it is
worthwhile to note that you can identify the appropriate number of index port-
folio units and bond portfolio units by using the values of two more primitive
options. The payoffs of portfolio insurance can be replicated by buying an asset-
or-nothing call and a cash-or-nothing put with the same exercise price. The
asset-or-nothing call provides the upside. If the index portfolio value rises, you
will exercise the call and take delivery of the stock portfolio. If the index portfo-
lio value falls, you will exercise the put and take delivery of the cash. Summing
the option values, you get . Note how the probabil-
ity terms in this expression correspond to the values of wS and wB, respectively.

ILLUSTRATION 15.2 Create dynamic portfolio insurance using stock portfolio and risk-free 
bonds.

Assume that you face the same insurance situation as in Illustration 15.1, except that you
want to use a dynamic portfolio insurance strategy with stocks and risk-free bonds. Find
the appropriate weights of the index portfolio and risk-free bonds. Show the initial val-
ues of the insured portfolio for a range of index levels between 500 and 2,500 in incre-
ments of 100.

Compute portfolio weights
The values of wS and wB are obtained using (15.3) and (15.5). At the current index level
of 1,500, the weights are 0.6554 and 0.4207, respectively. Multiplying each weight by
the value of the stock and bond portfolios and then summing, you get $52,583,000,
exactly the figure you started with using passive portfolio insurance. 

Compute initial values
The table below shows the portfolio weights for different levels of the index. As the
index level rises, you sell bonds and buy more stocks according to the new values of wS
and wB. Conversely, as the index falls, you sell stocks and buy bonds. The insured port-
folio behaves exactly like the passively insured portfolio described earlier. Assuming the
index level falls to 500, for example, you will be entirely in bonds. If the index level stays

wS 1 N d1–( )– N d1( )= =

Se δT– Xe rT– N d2–( ) Se δT– N d1–( )–+ Se δT– N d1( ) wBXe rT–
+=

Se δT– Se δT– N d1–( ) Se δT– N d1( )+=

Se δT– N d1( ) Xe rT– N d2–( )+



Stock Index Products: Strategy Based 525

at that level for the entire year, the terminal value of the bonds will be $50 million (i.e.,
the current value plus risk-free interest, $47,088,238e0.06(1)), exactly the desired result.

Dynamic Insurance Using Stocks and Index Futures

Rebalancing the portfolio that consists of stocks and risk-free bonds is not the
only means of dynamically insuring a stock portfolio. In practice, dynamic port-
folio insurance can also be created with a trading strategy that involves a port-
folio of stocks and stock index futures. To identify the appropriate number of
units of the stock portfolio and the index futures to use in creating an insured
portfolio, use the value and delta constraints. Starting with the value constraint,

(15.6)

Note that since the futures involves no initial outlay, the number of units of the
stock portfolio to buy is simply

Portfolio Values with One Year to Expiration

Index
Level

Stock
Portfolio Value

Value
Bonds wS wB

Insured
Portfolio Value

   500 16,666,667 47,088,227 0.0000 1.0000 47,088,227
   600 20,000,000 47,088,227 0.0000 1.0000 47,088,239
   700 23,333,333 47,088,227 0.0003 0.9998 47,088,596
   800 26,666,667 47,088,227 0.0030 0.9984 47,092,869
   900 30,000,000 47,088,227 0.0156 0.9907 47,119,553
1,000 33,333,333 47,088,227 0.0518 0.9662 47,223,250
1,100 36,666,667 47,088,227 0.1249 0.9116 47,506,513
1,200 40,000,000 47,088,227 0.2371 0.8201 48,100,014
1,300 43,333,333 47,088,227 0.3762 0.6969 49,117,313
1,400 46,666,667 47,088,227 0.5219 0.5576 50,615,267
1,500 50,000,000 47,088,227 0.6554 0.4207 52,583,000
1,600 53,333,333 47,088,227 0.7651 0.3006 54,957,946
1,700 56,666,667 47,088,227 0.8475 0.2045 57,652,998
1,800 60,000,000 47,088,227 0.9052 0.1332 60,580,381
1,900 63,333,333 47,088,227 0.9432 0.0835 63,665,633
2,000 66,666,667 47,088,227 0.9670 0.0507 66,852,474
2,100 70,000,000 47,088,227 0.9813 0.0299 70,101,801
2,200 73,333,333 47,088,227 0.9897 0.0172 73,388,147
2,300 76,666,667 47,088,227 0.9944 0.0097 76,695,749
2,400 80,000,000 47,088,227 0.9970 0.0054 80,015,240
2,500 83,333,333 47,088,227 0.9984 0.0029 83,341,237

V Se δT– p+ wSSe δT– wFF+ wSSe δT–
= = =
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(15.7)

Substituting the European-style put option valuation equation from Table 14.13
in Chapter 14 into equation (15.6) and then taking the partial derivative of
(15.6) with respect to a change in the index level S, the delta constraint is

(15.8)

The cost of carry relation is F = Se(r–δ )T, which implies

Substituting into (15.8), 

(15.9)

Factoring e–δ T and rearranging, 

wF = e–rT[N(d1) – wS] (15.10)

ILLUSTRATION 15.3 Create dynamic portfolio insurance using stock portfolio and stock index 
futures.

Assume that you face the same insurance that you did in Illustration 15.1, except that
you want to use a dynamic portfolio insurance strategy with stocks and index futures.
Find the appropriate weights of the index portfolio and index futures. Show the initial
values of the insured portfolio for a range of index levels between 500 and 2,500 in
increments of 100.

Compute portfolio weights
The values of wS and wF are obtained using (15.7) and (15.10). At the current index level
of 1,500, the weights are 1.0517 and –0.3732, respectively. Multiplying wS by the value
of the stock portfolio (i.e., the futures position has no value), you get $52,583,000,
exactly the figure you started with using passive portfolio insurance. Note that you have
more units of the stock than before since you took the money needed to buy the put
under the passive insurance scheme and invested it in stocks.
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Dynamic Insurance Using Stock Portfolio and Dynamic Adjustment of 
Index Futures and Risk-Free Bonds

As was noted earlier, stock portfolio managers may be reluctant to change the com-
position of their stock holdings as the market moves. In addition, transaction costs
in the stock market are generally higher than in the index futures and risk-free bond
markets. Consequently, we now focus on a dynamic portfolio insurance strategy
that allows the stock portfolio manager to leave his equity holdings untouched. 

Again start with the portfolio value constraint. In this case, it is written

(15.11)

Since the futures involves no initial outlay, the number of units of risk-free
bonds equals

(15.12)

Portfolio Values with One Year to Expiration

Index
Level

Futures
Price

Stock
Portfolio Value wS

Insured
Portfolio Value wF

   500   523.01 16,666,667 2.8253 47,088,227 –2.6608
   600   627.62 20,000,000 2.3544 47,088,239 –2.2173
   700   732.22 23,333,333 2.0181 47,088,596 –1.9003
   800   836.82 26,666,667 1.7660 47,092,869 –1.6603
   900   941.43 30,000,000 1.5707 47,119,553 –1.4645
1,000 1046.03 33,333,333 1.4167 47,223,250 –1.2854
1,100 1150.63 36,666,667 1.2956 47,506,513 –1.1025
1,200 1255.23 40,000,000 1.2025 48,100,014 –0.9092
1,300 1359.84 43,333,333 1.1335 49,117,313 –0.7132
1,400 1464.44 46,666,667 1.0846 50,615,267 –0.5299
1,500 1569.04 50,000,000 1.0517 52,583,000 –0.3732
1,600 1673.64 53,333,333 1.0305 54,957,946 –0.2499
1,700 1778.25 56,666,667 1.0174 57,652,998 –0.1600
1,800 1882.85 60,000,000 1.0097 60,580,381 –0.0984
1,900 1987.45 63,333,333 1.0052 63,665,633 –0.0585
2,000 2092.06 66,666,667 1.0028 66,852,474 –0.0337
2,100 2196.66 70,000,000 1.0015 70,101,801 –0.0189
2,200 2301.26 73,333,333 1.0007 73,388,147 –0.0104
2,300 2405.86 76,666,667 1.0004 76,695,749 –0.0056
2,400 2510.47 80,000,000 1.0002 80,015,240 –0.0030
2,500 2615.07 83,333,333 1.0001 83,341,237 –0.0016
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Substituting the European-style put option valuation equation from Table 14.13
in Chapter 14 into equation (15.11) and then taking the partial derivative of
(15.11) with respect to a change in the index level S, the delta constraint is

(15.13)

The cost of carry relation is F = Se(r–δ)T, which implies

Substituting into (15.13), 

(15.14)

Factoring e–δT and rearranging, 

 (15.15)

ILLUSTRATION 15.4 Create dynamic portfolio insurance using stock portfolio and dynamic 
adjustment of stock index futures and risk-free bonds.

Assume that you want the same insurance as in Illustration 15.1. In this instance, how-
ever, leave the number of units in the stock portfolio untouched and dynamically insure
your portfolio using stock index futures and risk-free bonds. Determine the appropriate
number of risk-free bonds and index futures to execute this strategy. Show the initial val-
ues of the insured portfolio for a range of index levels between 500 and 2,500 in incre-
ments of 100.

Compute portfolio weights
The values of wB and wF are obtained using (15.12) and (15.13). At the current index
level of 1,500, the number of risk-free bonds is 0.0549 and the number of index futures
is –0.3245. Multiplying wB by the value of the risk-free bond, and adding the value of
the stock portfolio the stock portfolio, you get $52,583,000, exactly the figure you
started with using passive portfolio insurance (recall the futures position has no initial
value). 

Note that, under this scheme, the dynamic adjustment has to do with risk-free bonds
and index futures. As the market falls, the short futures position generates cash, which is
used, in turn, to buy more units of risk-free bonds. As the market rises, the sale of risk-
free bonds is used to cover the losses on the short position in the index futures. All the
while, the number of units invested in the stock portfolio remains intact, and the insured
portfolio values are the same as under the previous alternatives.
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Practical Considerations in Choosing Between Passive and Dynamic 
Portfolio Insurance

The mechanics of the above illustrations show that dynamic portfolio insurance
must be more expensive than passive portfolio insurance. As the market moves
and time passes, the portfolio manager is left readjusting his portfolio weights,
incurring transaction costs with each adjustment. For this reason, portfolio man-
agers often set trigger levels whereby portfolio adjustments are not made until
the market moves by, say, 5%. The effect of not making continuous and instanta-
neous adjustments is that the insurance scheme will have a lower floor value and
less upside potential. One may question the reason for the existence of dynamic
portfolio. The reason, as alluded to earlier, is that index put options did not exist
when portfolio insurance was first introduced into the marketplace. 

Another distinction between passive and dynamic portfolio insurance is
worthy of note. When a portfolio manager buys an index put, he locks in the
amount he will pay for expected future volatility (i.e., the price he pays for the
put implies the level of volatility). If subsequently realized volatility is lower
than expected, the passive portfolio insurer will have overpaid for insurance.

Portfolio Values with One Year to Expiration

 
Index
Level

 
Futures
Price

Stock
Portfolio

Value

 
Bond 
Value wB wF

Insured
Portfolio

Value

   500   523.01 16,666,667 47,088,227 0.6461 –0.9418 47,088,227
   600   627.62 20,000,000 47,088,227 0.5753 –0.9418 47,088,239
   700   732.22 23,333,333 47,088,227 0.5045 –0.9415 47,088,596
   800   836.82 26,666,667 47,088,227 0.4338 –0.9389 47,092,869
   900   941.43 30,000,000 47,088,227 0.3636 –0.9271 47,119,553
1,000 1046.03 33,333,333 47,088,227 0.2950 –0.8929 47,223,250
1,100 1150.63 36,666,667 47,088,227 0.2302 –0.8241 47,506,513
1,200 1255.23 40,000,000 47,088,227 0.1720 –0.7185 48,100,014
1,300 1359.84 43,333,333 47,088,227 0.1228 –0.5875 49,117,313
1,400 1464.44 46,666,667 47,088,227 0.0839 –0.4502 50,615,267
1,500 1569.04 50,000,000 47,088,227 0.0549 –0.3245 52,583,000
1,600 1673.64 53,333,333 47,088,227 0.0345 –0.2213 54,957,946
1,700 1778.25 56,666,667 47,088,227 0.0209 –0.1436 57,652,998
1,800 1882.85 60,000,000 47,088,227 0.0123 –0.0893 60,580,381
1,900 1987.45 63,333,333 47,088,227 0.0071 –0.0535 63,665,633
2,000 2092.06 66,666,667 47,088,227 0.0039 –0.0311 66,852,474
2,100 2196.66 70,000,000 47,088,227 0.0022 –0.0176 70,101,801
2,200 2301.26 73,333,333 47,088,227 0.0012 –0.0097 73,388,147
2,300 2405.86 76,666,667 47,088,227 0.0006 –0.0053 76,695,749
2,400 2510.47 80,000,000 47,088,227 0.0003 –0.0028 80,015,240
2,500 2615.07 83,333,333 47,088,227 0.0002 –0.0015 83,341,237
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Under the dynamic scheme, this would not have been the case. On the other
hand, if subsequently realized volatility is higher than expected, the dynamic
portfolio insurer will pay more for insurance, akin to buying fire insurance on
your home after the fire has started. 

INDEX OPTION BUY-WRITE STRATEGIES

Option trading strategies are becoming an increasingly important part of the
investment landscape. Indeed, since mid-2004, more than 42 new buy-write
investment products (closed-end funds or structured products) alone have been
launched with more than $18 billion in assets. Many of these are index prod-
ucts, and, currently, the most popular buy-write index is the Chicago Board
Options Exchange’s Buy-Write Index (BXM).

The BXM is based on a buy-write trading strategy using the S&P 500 index
portfolio and index call options. In Chapter 10, we defined a buy-write strategy
as buying an asset and selling a call option against it. Such a strategy contributes
incremental return over and above the asset return conditional on the underly-
ing asset price staying with in a tight range during the life of the call. Uncondi-
tionally, however, the buy-write strategy is risk-reducing (relative to holding the
asset alone) and, hence, should lead to lower returns. In this section, we describe
the BXM trading strategy, and examine and discuss its historical performance. 

Buy-Write Return Distributions and the Central Limit Theorem

Evaluating the performance of trading strategies involving options can be diffi-
cult because the nonlinear payoff structure of an option can dramatically affect
the skewness of the return distibution. Recall, from Chapter 3, commonly used
portfolio performance evaluation techniques assume the portfolio’s return disti-
bution is normal or, at least, symmetric. To analyze this problem, we focus on
the BXM index. 

The BXM index is a total return index based on writing the nearby, just out-
of-the-money S&P 500 call option against the S&P 500 index portfolio each
month on the day the previous nearby contract expires, which is usually the
third Friday of the month.5 Assuming for the moment that the S&P 500 portfo-
lio pays no dividends, its continuously compounded return over the one-month
holding period is 

(15.16)

5 Since expirations occur monthly and there are 52 weeks in the calendar year, some “one-
month” options have 28 days to expiration at the time they are written and others have 35
days.
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where S0 and ST are the index levels on adjacent option expiration days. Over
the same period, the continuously compounded return on the BXM buy-write
strategy over the month is

(15.17)

where C0 is price of the call when it is sold and max(ST – X,0) is the price of the
call when it expires. Note that the the buy-write return over the month has a
truncated distribution, that is,

(15.18)

In other words, when the call expires in the money, the buy-write return is
capped at

When the call finishes out of the money, the buy-write return is higher than
index return as a result of the sales proceeds of the call.

To illustrate the implications of (15.18) with respect to the shape of the buy-
write return distibution, we perform a Monte Carlo simulation.6 In the simula-
tion, the continuously compounded index returns are assumed to be normally
distributed with a mean (µ) of 12% and a volatility rate (σ) of 20% annually. In
each simulation run, a single monthly index return is generated. Based on this
index return, the monthly return of a buy-write strategy is computed using
(15.18). The price of the one-month, at-the-money call at the beginning of the
month is set equal to its BSM value. The assumed risk-free rate of interest is
6%. The call’s price at the end of the month is set equal to its exercise proceeds.
The simulation is repeated 1,000 times. Figure 15.3 shows a histogram the
results. In the figure, the lighter bars represent index returns. Not surprisingly,
the returns appear symmetrically distributed around the mean monthly return of
1%. This merely tells us that the simulation procedure is working. The darker
bars represent the reutrns of the buy-write index. Note the large spike at about
3%.7 More than 50% of the time, the call option finishes in the-money and the
buy-write strategy realizes its maximum monthly return. This makes sense

6 The Monte Carlo simulation procedure is described at length in Chapter 9.
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because the index is expected to appreciate in value (i.e., µ > 0), and a call
option that is currently at the money is therefore expected to be in the money at
expiration. Note that if the call option finishes out of the money, the probability
of a particular negative buy-write return is less then the probability of the index
return. This is merely another way of saying that, if the option finishes out of
the money, the buy-write return will exceed the index return. The negative
skewness of the buy-write strategy implies that the portfolio performance mea-
sures in Chapter 3.

The histogram in Figure 15.3 represents the return distibution of the buy-
write strategy if it is used only once. A buy-write strategy program, however,
involves selling call options again and again over a long period of time, say, 10
or 20 years. In Appendix A: Elementary Statistics, we discussed the Central
Limit Theorem. In the context of the buy-write strategy, the Central Limit Theo-
rem says that even though the monthly return distribution is highly negatively
skewed, the distribution of the mean of monthly returns over time becomes
approximately normal with mean µ and variance σ2/n, where n is the number of
months over which the buy-write strategy is repeated. Figures 15.4 and 15.5
show the shape of the return distibutions if the monthly buy-write strategy is
repeated over a 10-year and 20-year horizons, respectively. For the 10-year hori-
zon the buy-write return distribution remains negatively skewed, however, the
degress of skewness is trivial in relation to Figure 15.3. For the 20-year horizon,
the buy-write strategy has approximately a normal distribution. Indeed, if we
apply the Jarque-Bera test of normality (see Appendix A at the end of the book),
the null hypothesis that the buy-write return distibution is normal is not
rejected. In other words, depending on the trading strategy and the number of
times the strategy is repeated in the trading program, it may or may not be

7 Given the simulation parameters, the maximum monthly return of the buy-write strategy is
2.59%.

FIGURE 15.3 Return distributions from Monte Carlo simulation of index portfolio versus at-
the-money buy-write strategy over one-month holding period. (Assumed parameters: µ = 
0.12 and σ = 0.20. Number of trials is 1,000.) 
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appropriate to apply the mean-variance portfolio perfromance measures from
Chapter 3. Before applying any of these techniques, it is a good idea to examine
the return distibution, compute its skewness, and, perhaps, perform a test for
normality. In the event that skewness is a problem, applying performance mea-
sures based on mean/semivariance may provide a more accurate assessment.8

8 While using semivariance as a risk measure is intuitively appealing, it is somewhat ad hoc in
nature. Stutzer (2000) offers an alternative approach that is more rigorous from a theoretical
standpoint.

FIGURE 15.4 Return distributions from Monte Carlo simulation of index portfolio versus at-
the-money buy-write strategy over 120-month holding period. (Assumed parameters: µ = 
0.12 and σ = 0.20. Number of trials is 1,000.) 

FIGURE 15.5 Return distributions from Monte Carlo simulation of index portfolio versus at-
the-money buy-write strategy over 240-month holding period. (Assumed parameters: µ = 
0.12 and σ = 0.20. Number of trials is 1,000.) 
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Historical Performance of BXM

In this section, we examine the hsitorical performance of the BXM over the 211-
month period June 1988 through December 2005. The data history is available
on the CBOE’s website9 and is contained in the Excel file BXM history.xls. The
first two series in the file are the total return index levels of the BXM and the
S&P 500 (SPTR), and the second two are continuously compounded monthly
returns. The monthly money market rates in the final column are the continu-
ously compounded rates of return of a 30-day Eurodollar time deposit whose
number of days to maturity matches the number of days in the month. The
Eurodollar rates were downloaded from Datastream.

Table 15.2 shows that the average monthly return of the one-month money
market instruments over the 211-month period was 0.398%. Over the same
period, the S&P 500 index portfolio generated an average monthly return of
0.920%, while the BXM generated an average monthly return of 0.926%. Sur-
prisingly, the monthly average monthly return of the BXM was 0.6 basis points
higher than the S&P 500 even though the BXM risk, as measured by the stan-
dard deviation of return, was substantially lower. For the BXM, the standard
deviation of monthly returns was 2.747%, while, for the S&P 500, the standard
deviation was 4.071%. In other words, BXM produced a monthly return
approximately equal to the S&P 500 index portfolio, but at about 67% of the
S&P 500’s risk (i.e., 2.747% versus 4.071%), where risk is measured in the
usual way.

The realized returns and risks of the BXM, the S&P 500, and the 30-day
money market instrument are summarized in Figure 15.6. For purposes of com-
parison, we assume a 100 investment in each instrument on June 1, 1988, and
then watch how the investment value moves through time. As the figure shows,
the BXM tracked the S&P 500 index closely at the outset. Then, starting in
1992, the BXM began to rise faster than the S&P 500, but, by mid-1995, the
level of the S&P 500 total return index surpassed the BXM. Beginning in 1997,
the S&P 500 index charged upward in a fast but volatile fashion. The BXM

9 The CBOE’s BXM webpage is at http://www.cboe.com/micro/bxm/introduction.aspx.

TABLE 15.2  Summary statistics for monthly returns of CBOE’s BXM index, the S&P 500 
index, and money market deposits during the period June 1988 through December 2005.

BXM SPTR MM

No. of months 211 211 211
Mean        0.926%      0.920%      0.407%
Median        1.236%      1.280%      0.443%
Standard deviation        2.747%      4.071%      0.191%
Skewness   –1.420 –0.597   0.133
Excess kurtosis     5.006   1.120 –0.576
Jarque-Bera test statistic 291.187 23.583   3.543
Probability or normal     0.000   0.000   0.170
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lagged behind, as should be expected. When the market reversed in mid-2000,
the BXM again moved ahead of the S&P 500. The steadier path taken by the
BXM reflects the fact that it has lower risk than the S&P 500. 

Table 15.2 also reports the skewness and excess kurtosis of the monthly
return distributions as well as the Jarque-Bera statistic for testing the hypothesis
that the return distribution is normal. It is interesting to note that both the S&P
500 portfolio and the BXM have negative skewness. For the BXM, negative
skewness should not be surprising in the sense that a buy-write strategy truncates
the upper end of the index return distribution. But, the Jarque-Bera statistic
rejects the hypothesis that returns are normal for the BXM and S&P 500 but not
for the money market rates. The negative skewness for the BXM and S&P 500
does not appear to be severe, however. Figure 15.5 shows the standardized
monthly returns of the S&P 500 and BXM in relation to the normal distribution.
The S&P 500 and BXM return distributions appear more negatively skewed than
the normal, but only slightly. What stands out in the figure is that both the S&P
500 and the BXM return distributions have greater kurtosis than the normal dis-
tribution. This is reassuring in the sense that most portfolio performance mea-
sures work well for symmetric distributions but not asymmetric ones.

To evaluate the historical performance of the BXM, we use the Sharpe ratio
and M-squared performance measures from Chapter 3. Risk is measured using
the standard deviation and the semi-standard deviation of portfolio returns. To
the extent that BXM returns are skewed, the measures derived from the two dif-
ferent models will differ. Since the standardized BXM return distribution show
slight negative skewness, the performance measures based on semi-standard
deviation should be less than their standard deviation counterparts, but not by
much. The portfolio performance results over the period June 1988 through
December are reported in Table 15.3.

FIGURE 15.6 Month-end total return indexes for BXM index, S&P 500 total return index 
(SPTR), and 30-day money market index (MM) for the period June 1988 through December 
2005.  

BXM SPTR MM

800

700

600

500

400

300

200

100

In
de

x 
le

ve
l

6/1/88
Time

2/26/91 11/22/93 8/18/96 5/15/99 2/8/02 11/4/04



536 STOCK INDEX DERIVATIVES

The results of Table 15.3 support two main conclusions. First, the BXM has
outperformed the S&P 500 index on a risk-adjusted basis over the BXM’s his-
tory. Both the Sharpe ratio and M-squared performance measures support this
conclusion, independent of whether total risk is measured using standard devia-
tion or semistandard deviation. The outperformance using standard deviation as
the total risk measure, for example, is 25.7 basis points per month. Second, the
performance measures using mean/semistandard deviation are slightly lower
than their counterparts using mean/standard deviation. The reason is, of course,
that the BXM returns are negatively skewed, as was indicated in Table 15.2 and
Figure 15.6. The effect of skewness is impounded through the risk measure. The
skewness “penalty” is about 3.3 basis points per month.

In an efficiently functioning capital market, the risk-adjusted return of a
buy-write strategy using S&P 500 index options should be no different than the
S&P 500 portfolio. Yet, the BXM has provided an abnormally high return rela-
tive to the S&P 500 index portfolio over the period June 1988 through Decem-
ber 2005. What could cause such an aberration? One possible explanation,
suggested by Stux and Fanelli (1990), Schneeweis and Spurgin (2001), and oth-
ers, is that the volatilities implied by option prices are too high relative to real-
ized volatility. Indeed, Bollen and Whaley (2004) argue that there is excess
buying pressure on S&P 500 index puts by portfolio insurers. Since there are no
natural counterparties to these trades, market makers must step in to absorb the
imbalance. As the market maker’s inventory becomes large, implied volatility
will rise relative to actual return volatility, with the difference being the market
maker’s compensation for hedging costs and/or exposure to volatility risk.10 The
implied volatilities of the corresponding calls also rise from the reverse conver-
sion arbitrage supporting put-call parity.

To examine whether this explanation is consistent with the observed perfor-
mance of the BXM, Whaley (2004) compares the average implied volatility11 of
the calls written in the BXM strategy to the average realized volatility over the
call’s life. Figure 15.8 shows that the difference has not been constant through
time, perhaps indicating variation in the demand for portfolio insurance. The

10 Bollen and Whaley (2004) also show that the same phenomenon does not exist for options
on high market capitalization stocks whose empirical return distributions are shaped similarly
to the S&P 500 returns.
11 The implied volatility was computed by setting the observed call price equal to the Black-
Scholes (1973)/Merton (1973) call option formula.

TABLE 15.3  Estimated performance measures based on monthly returns of CBOE’s BXM 
index and the S&P 500 index during the period June 1988 through December 2005.

Performance Measure Total Risk Measure BXM SPTR

Sharpe ratio Standard deviation 0.18901 0.12596
Semistandard deviation 0.26144 0.18203

M-squared Standard deviation 0.257%
Semistandard deviation 0.224%
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difference is persistently positive, however, with the mean (median) difference
between the ATM call implied volatility and realized volatility being about 167
(234) basis points on average.12 

FIGURE 15.7 Distribution of standardized monthly returns for the BXM index and S&P 500 
total return index (SPTR) indexes during the period June 1988 through December 2005. 
Normally distributed standard returns are also included. 

FIGURE 15.8 Average implied and realized volatility for S&P 500 index options in each year 
1988 through 2001.  

12 Indeed, Whaley (2004) recreates the BXM where the one-month calls are traded at their
BSM values using the standard deviation of the returns actually earned over the option’s life
rather that at their bid/ask quotes for the calls observed in the marketplace as the volatility
parameter, and finds that the buy-write strategy performs no differently than the S&P 500 in-
dex portfolio on a risk-adjusted basis.
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VOLATILITY DERIVATIVES

Another relatively new stock index product are volatility derivatives. Although
such instruments had been contemplated since the early 1990s,13 it was not until
the Long-Term Capital Management (LTCM) fiasco in late 1998 that the market
finally began to recognize the value of trading stock market volatility as a sepa-
rate asset class. LTCM lost $1.3 billion from being short implied stock index
volatility through the sale of long-term index call and put options on stock mar-
ket indexes in the United States and Europe.14 Assuming the aggregate delta val-
ues of the calls and puts were approximately equal, the overall position would
be relatively immune to movements in the underlying indexes. Unfortunately,
however, being short index options implies having significant vega-risk. Indeed,
LTCM had written so many index options with volatilities in the range of 19%
that their net vega exposure was –$40 million in the U.S. alone. Market volatil-
ity rose significantly during the last months before LTCM’s collapse—to a level
of nearly 45% by mid-September 1998 as Figure 15.9 shows. With these option
positions being marked-to-market on a daily basis, the cash drain was enor-
mous. It is exactly this type of risk exposure that volatility derivatives are
intended to address.

FIGURE 15.9 Implied volatility of S&P 500 index options prior to the collapse of Long-Term 
Capital Management. 

13 The Chicago Board Options Exchange (CBOE) contemplated launching trading volatility
options as early as 1993. See Whaley (1993). On January 19, 1998, the Deutsche Terminborse
(DTB) became the first exchange in the world to list volatility futures. The CBOE launched
trading of VIX futures on its CBOE Futures Exchange on March 26, 2004, with contracts on
three-month realized variance being launched on May 18, 2004. The CBOE launched VIX op-
tions on February 24, 2006.
14 Lowenstein (2000) provides a brief account of LTCM’s trading strategies. The sale of stock
index options accounted for nearly 30% of the $4.5 billion in firm losses.
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Today volatility derivative contracts are written not only on stock indexes,
but also interest rates, currencies, and commodities like crude oil. Prior to the
advent of volatility derivatives, stock market volatility risk was managed using
options written on the underlying index. The problem with doing so is that it is
expensive. Options have two sources of price risk—risk associated with move-
ments in the underlying index level and risk associated with movements in the
market’s perception of expected future volatility rate. The only way to isolate
the volatility exposure is by trading the options and delta-hedging using the
underlying index, index futures, and other index options.

This section describes volatility derivative contracts and their uses. We focus
primarily on stock market volatility since stock market volatility contracts are the
most actively traded. The discussion has two parts. First, we discuss realized volatil-
ity contracts and their applications, and then we turn to implied volatility contracts.

Realized Volatility Derivative Contracts

At the outset, we need to correct a misnomer. Industry has come to refer to real-
ized volatility contracts as volatility swaps. A volatility swap is not a swap; it is
a forward contract. They have traded in OTC markets for more than five years,
and are now also exchange-traded. A volatility forward (or swap) is written on
the realized future volatility of an asset (say, the S&P 500 index). At expiration,
its payoff is based on the statistical formula for the annualized standard devia-
tion of index return, that is,

(15.19)

where nT is the number of price observations used in the computation,15 and St
is the index level. Volatility forwards are usually based on daily closing prices,
however, since they are traded primarily in the OTC market, any frequency
(e.g., hourly, weekly) is possible. The contract also specifies the source from
which for the prices will be obtained. Volatility forwards are sometimes based
on squared returns, and sometimes on squared deviations. Formula (15.19)
shows squared deviations. The formula for squared returns is the special case
where the mean term in the squared brackets of (15.19) is set equal to zero and
the adjustment in the numerator is increased to nT – 1. Finally, the volatility is
annualized. For daily prices, the last term on the right-hand side is usually

, that is, the square root of the typical number of business days in a year.
For weekly prices, the last term is .

The value represented by formula (15.19) is the price of the asset underlying
the forward contract at expiration. The only difference is the underlying asset is

15 Note that nT prices produce nT – 1 returns. Since we lose one degree of freedom from esti-
mating the mean (see Appendix A, “Elementary Statistics,” of this book), the appropriate di-
visor is nT – 2.
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not tradable; it is simply a computation of realized volatility. At inception, the
buyer and seller agree to a fixed delivery price (quoted as an annualized volatility),
σX, on the expiration date, T. As expiration approaches, the forward’s settlement
price becomes more and more certain because some of the prices used in (15.19)
have been realized already. On the last day before expiration, only the index level
on expiration day remains unknown. Upon settlement, the buyer receives

Notional × (σrealized – σX) (15.20)

that is, the notional amount of the swap times the difference between the real-
ized and contracted volatility. The seller receives the opposite amount. Some-
times the volatility derivatives are written on the square of volatility, or
variance. The buyer of a variance swap receives the payoff,

 (15.21)

ILLUSTRATION 15.5 Compute settlement price of realized volatility swap.

Suppose that on Friday, August 1, 2003, you bought a 13-week volatility forward from
an OTC derivatives dealer. Its price was 0.12, and its notional amount was $100 million.
Compute the settlement price and the settlement proceeds using squared weekly returns.
Recompute the values using squared deviations. Comment on the difference. The Friday
closing index levels over the period were as follows:

The first step is to compute the weekly returns. Next compute the mean weekly return,
and the squared returns and deviations. Compute the sum of squares and the annualized vola-
tility. To annualize weekly returns, use the factor, . The cash settlement proceeds are
$1.27 million for the squared returns contract and $.65 million for squared deviations. The
difference is unusually large because the S&P 500 index level rose abnormally during this 13-
week period, at least relative to historical standards. The rate of return of the S&P 500 index
was about 7.2%—nearly 30% on an annualized basis.

Friday Close S&P 500 Index

20030801   980.15
20030808   977.59
20030815   990.67
20030822   993.06
20030829 1008.01
20030905 1021.39
20030912 1018.63
20030919 1036.30
20030926   996.85
20031003 1029.85
20031010 1038.06
20031017 1039.32
20031024 1028.91
20031031 1050.71

Notional σrealized
2 σX

2
–( )×

52
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The CBOE Futures Exchange (CFE) launched its three-month realized vola-
tility futures contract on May 18, 2004. The CFE is an all-electronic exchange
that was created by the Chicago Board Options Exchange (CBOE) in March
2004. The CFE’s realized volatility contract is based on S&P 500 return vari-
ance rather than return standard deviation, and its product specifications are
provided in Table 15.4. The contract denomination is $50 per variance point. A
price quotation of 633.50, for example, means the contract value is $31,675. Up
to four contracts may trade simultaneously. The contracts are on the March
quarterly expiration cycle (March, June, September, December). The final settle-
ment date is the third Friday of the contract month. Trading stops at the close
on the preceding business day. 

The final settlement price is a variance number and assumes the mean return
is zero. Hence, the realized volatility formula (15.19) becomes 

(15.22)

Friday
Close

S&P 500
Index

S&P 500
Return

Squared
Returns

Squared
Deviations

20030801   980.15
20030808   977.59 –0.00262 0.00000684 0.00006340
20030815   990.67   0.01329 0.00017665 0.00006310
20030822   993.06   0.00241 0.00000581 0.00000863
20030829 1008.01   0.01494 0.00022327 0.00009206
20030905 1021.39   0.01319 0.00017388 0.00006145
20030912 1018.63 –0.00271 0.00000732 0.00006485
20030919 1036.30   0.01720 0.00029577 0.00014044
20030926   996.85 –0.03881 0.00150634 0.00195002
20031003 1029.85   0.03257 0.00106068 0.00074097
20031010 1038.06   0.00794 0.00006305 0.00000672
20031017 1039.32   0.00121 0.00000147 0.00001709
20031024 1028.91 –0.01007 0.00010134 0.00023759
20031031 1050.71   0.02097 0.00043958 0.00024395

Mean 0.00535
Total 0.00033850 0.00030752
Annualized volatility 0.13267      0.12646      
Notional amount 100,000,000 100,000,000
Forward price 0.120          0.120          
Cash settlement value     1,267,275        645,649

σrealized
2
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TABLE 15.4  Selected terms of S&P 500 three-month variance futures contract.

where na is the actual number of trading days in the three-month interval, and
ne is the expected number of days in the three-month interval. Normally, na and
ne are equal. In the event of a market disruption during the contract’s life, how-
ever, na will be less than ne. Generally speaking, a “market disruption event,” as
determined by the CFE, occurs when trading on the primary exchanges of a sig-
nificant number of S&P 500 stocks is suspended or limited in some way or when
the primary exchange on which index stocks unexpectedly closes early (or does
not open) on a particular day. For each market disruption event, the value of na
is reduced by one.

Volatility versus Variance Contracts Industry has come to define volatility as the
standard deviation of the natural logarithm of the price ratios.16 If the forward
is defined in terms of variance (i.e., volatility squared) rather than volatility, the
payoff structure is quite different. Consider Figures 15.10 and 15.11, which plot
the payoffs of a volatility forward contract versus a variance forward contract
for long and short positions. Since the horizontal axis is defined in terms of vol-
atility, its terminal payoffs are a linear function of volatility. The variance for-
ward, on the other hand, is nonlinear. The long variance position (the dotted
line in Figure 15.10) has convexity. As volatility falls, the terminal payoff of the
long variance position decreases, but at a decreasing rate. At the same time, as
volatility increases, the terminal payoff of the long variance forward increases at
an increasing rate. Indeed, the variance payoffs loosely resemble a long call
position, while the variance payoffs of the short variance futures resemble a
short call position. 

Exchange CBOE Futures Exchange (CFE)
Ticker symbol VT
Contract unit $50 per variance point
Tick size 0.5 of one variance point
Tick value $25
Trading hours 8:30 AM to 3:15 PM CST
Contract months Up to four contract months on the March cycle (Mar., Jun., Sep.,

Dec.)
Last day of trading Close of trading on business day before final settlement date.
Final settlement date Third Friday of contract month.
Final settlement price Final settlement price is based on the standardized calculation of

the realized variance of the S&P 500. This calculation uses
continuously compounded daily returns for a three-month
period assuming a mean daily return of zero. The calculated
variance is then annualized assuming 252 business days per
year. The final settlement price is this annualized, calculated
variance multiplied by 10,000.

16 Recall that this is consistent with the BSM model’s use of continuously compounded re-
turns.
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Expected Return/Risk Management Applications At first blush, the volatility forward
contract seems to be purely a speculative instrument. Traders who believe future
volatility will be high relative to the forward price will go long the swap, and
those who believe that the market will be very calm will go short. But, the hedg-
ing possibilities using realized volatility forwards are many. In the normal
course of operation, for example, some market participants become inherently
short volatility. Consider LTCM’s ill-fated index option strategy. Because index
option implied volatilities were as high as they had been anytime since the Octo-
ber 1987 market crash, LTCM sold both index calls and puts with the belief

FIGURE 15.10 Payoff structure of volatility and variance forward contracts: Long positions.

FIGURE 15.11 Payoff structure of volatility and variance forward contracts: Short positions.
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that implied volatility would return to normal levels. Unfortunately, a problem
arose when implied volatility continued to rise and their positions were marked-
to-market. The cash drain was enormous. Buying realized volatility forwards
would have hedged this exposure, at least in part. The same is true for index
option market makers who are short market volatility as a result of selling index
puts to portfolio insurers.17 

Another hedging possibility is for risk arbitrageurs. Immediately after a
merger is announced, risk arbitrageurs step in and buy shares of a target firm and
sell the shares of bidder. Because the probability that the merger will be success-
ful is not known, the prices of the target and the bidder will not fully reflect the
terms of the offer. If the merger is successful, the spread between the prices will
converge. Before the deal is consummated, however, market volatility may
increase, making the merger less likely, thereby causing the spread to widen. Buy-
ing a realized volatility forward contract can hedge this type of risk exposure. 

Yet another application is for individuals or portfolio managers who
attempt to track some sort of benchmark index. During periods of high volatil-
ity, the portfolio may require more frequent rebalancing and greater transaction
cost expenses. Again, buying a realized forward contract on volatility can hedge
this exposure.

Implied Volatility Derivatives Contracts

The CFE also lists a futures contract written on the implied return volatility of
the S&P 500 index. The CBOE Market Volatility Index or VIX is constructed in
such a way that it represents the implied volatility of an at-the-money S&P 500
index option with exactly thirty calendar days to expiration. It is sometimes
called the “investor fear gauge” because it is set by investors and expresses their
consensus view about expected future stock market  volatility. The specific
details of its construction are contained in Appendix 15A of this chapter. What
is interesting about its construction is that the index can be created using a static
portfolio of SPX options. This is important since arbitrage between the VIX
futures and the underlying VIX index promotes liquidity in both markets. 

The relation between the movements of the VIX and the movements of the
S&P 500 index are important to understand. Figure 15.12 shows the daily levels
of the S&P 500 index and the VIX during the period January 1990 through
December 2004. A number of interesting patterns appear. First, note that the
VIX level (i.e., the dark line) is more jagged than the S&P 500 index level. What
this means is that the volatility of the volatility of the S&P 500 index is greater
than the volatility of the index itself.18 Second, there tends to be an inverse rela-

17 On a typical day, S&P 500 put option volume (and open interest) is nearly double that of
S&P 500 calls.
18 Time-series variation in the expected volatility of stock indexes has been documented in a
number of studies. Day and Lewis (1992), for example, demonstrate that the expected vari-
ance of the S&P 100 index follows a mean-reverting process. They also show that implied vol-
atilities from S&P 100 index options (OEX) explain a significant amount of the changes in
expected variance. In a related paper, Fleming (1998) finds that OEX implied volatilities are
good (but not perfect) forecasts of future volatility.
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tion between the level of VIX and the level of the S&P 500 index—as the stock
market goes up, volatility tends to fall. During 2003 and 2004, for example, the
S&P 500 is systematically increasing while the level of VIX falls. Third, the
inverse correlation is not perfect. During 1996 and 1997, for example, the level
of market volatility is increasing while the stock market is also increasing. All of
these phenomenon contribute to making futures contracts on the VIX a poten-
tially new and useful expected return/risk management tool, as we will see in the
illustration that follows.

The CFE VIX futures contract has, as its underlying, the VIX. The futures
contract specifications are given in Table 15.5. Its denomination is $100 times
the increased-value VIX. The “increased-value VIX” (ticker symbol VBI) is sim-
ply the level observed in the marketplace times ten (VBI = VIX × 10). The tick
size of the contract is 0.1 of one VBI point or $10. The available contract
months include the two near-term contract months plus two contract months on
the February quarterly cycle (February, May, August, and November). The expi-
ration day is the third Friday of the contract month, although trading stops on
the preceding Tuesday. The contract is cash-settled on the Wednesday preceding
the third Friday, at a special opening quotation (SOQ). 

To understand the distinction between the VIX and the VIX futures, consider
Figure 15.13. The figure assumes that we traded the February 2005 VIX futures
on June 21, 2004. At the close on June 21, the VIX level was 15.26, and the Feb/
05 VIX was at 200.50. Recall that the futures is scaled by 10, so the futures price
represents a volatility rate of 20.05%. As the figure illustrates, the level of VIX
reflects the market’s expected future volatility over the next thirty calendar days
(from June 21 to July 21, 2004), while the VIX futures reflects the expected future
market volatility during a 30-calendar day period beginning when the Feb/05
futures contract expires and ending thirty calendar days later (February 15 to
March 17, 2005). In other words, the VIX futures is a one-month forward volatil-

FIGURE 15.12 Daily levels of the S&P 500 index and the VIX during the period January 
1990 through December 2004. 
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ity rate that begins some time in the future. As it turns out, on February 15, 2005,
the Feb/05 VIX was cash settled in the morning at ten times the spot level of VIX,
112.93. By the end of the day, the level of VIX had fallen to 11.10.

The convergence of the Feb/05 VIX futures to the VIX index over the period
June 21, 2004 through February 15, 2005 is shown in Figure 15.14. The VIX is
multiplied by 10 to put it on the same scale as the futures price. Where the two
prices were about 50 points apart in June 2004, they slowly and steadily con-
verged to the same level at expiration. Figure 15.15 shows the open interest of
the Feb/05 VIX futures contract. In June 2004, the Feb/05 futures was a distant
contract maturity and did not have much open interest. Through time, as the
shorter contract maturities expired, the open interest in the Feb/05 contract
rose, reaching a peak above 6,000 contracts in January 2005. Like most cash-
settled futures, open interest remained high until contract settlement.19 

19 Recall that, in Chapter 1, we discussed the fact that futures contracts with physical delivery
are generally unwound before contract maturity to avoid the costs of transportation. With
cash settlement, no such costs exist.

TABLE 15.5  Selected terms of Market Volatility Index (VIX) futures contract.

a Increased-Value VIX (VBI) is 10 times the VIX index level.

FIGURE 15.13 VIX index and February 2005 VIX futures assuming futures was traded on 
June 21, 2004. 

Exchange CBOE Futures Exchange (CFE)
Ticker symbol VX
Contract unit $100 times Increased-Value VIXa

Tick size 0.1 of one VBI point
Tick value $10
Trading hours 8:30 AM to 3:15 PM CST
Contract months Two near-term contract months plus two contract months on the

February quarterly cycle (Feb., May, Aug., and Nov.)
Expiration day Third Friday of the contract month.
Last day of trading Tuesday prior to the third Friday of the expiring month.
Final settlement date Wednesday prior to the third Friday of the expiring month.
Final settlement price Cash settled. Final settlement price for VIX futures shall be 10

times a Special Opening Quotation (SOQ) of VIX calculated from
the options used to calculate the index on the settlement date. The
opening price for any series in which there is no trade shall be the
average of that option’s bid price and ask price as determined at
the opening of trading. The final settlement price will be rounded
to the nearest 0.10.

June 21,  2004
(trade date)

July 21, 2004
(30 days after trade date)

VIX spot: 15.26
VIX futures: 200.50

February 15, 2005
(Feb/05 futures expires)

VIX spot: 11.10
VIX futures settlement: 112.93

March 17, 2005
(30 days after futures expiry)
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FIGURE 15.14 Convergence of February 2005 VIX futures price to VIX spot price (10 times 
observed VIX) over the period June 21, 2004 through February 16, 2005. 

FIGURE 15.15 Open interest of February 2005 VIX futures over its life (June 21, 2004 
through February 16, 2005). 

To get a sense for how VIX futures contracts are priced, let us assume that
we are considering the variance of S&P 500 index returns over the next 60 cal-
endar days (i.e., two months). If the returns of the index are independent
through time, we can write

(15.23)

In (15.23),  and  can be considered spot rates of variance, that is, the
expected variance rates over the next 30 calendar days and 60 calendar days,
respectively. The term,
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however, is a forward variance, that is, the average variance rate that we can
expect to observe over a 30-day period beginning 30 days from now. To deter-
mine the forward volatility rate, we can rearrange (5.23) to yield

(15.24)

Equation (15.24) provides us with the insight we need in understanding
how to value the VIX futures. The rate on the left-hand side of (15.24) can be
thought of as the VIX futures price. In order to estimate its value, we need to
know the two variance rates in the numerator on the right-hand side. One way
to get these values is to request quotes on  30-day and a 60-day variance for-
wards from an OTC swap dealer. Another is to use S&P 500 index options to
imply the variance rates of 30- and 60-day intervals.20 Note that, in this partic-
ular instance, the rate  is also the current level of the VIX because the for-
ward period begins in exactly 30 calendar days. Whether the forward price
exceeds the current spot price, as it did for the Feb/05 VIX futures, depends
upon whether the term structure of realized variance swaps is upward- or down-
ward-sloping. In an upward-sloping environment, the forward price will exceed
the spot price, and vice versa. Given that volatility tends to follow a mean-
reverting process, the forward rate will be equal to the spot rate on average.

ILLUSTRATION 15.6 Estimate VIX futures price.

Suppose that you are given the assignment of determining the fair value of the VIX
futures where the contract expires in exactly 15 days. You have contacted an OTC deriv-
atives dealer, and he quoted you rates of 400 and 420 on 15-day and 45-day realized
variance swaps.

The quoted realized variance swap rates straddle the forward period corresponding to
the VIX futures. Hence, the fair value of the VIX futures can be determined by

expressed in VIX points, or 207.40 expressed in VBI points.

20 The procedure in Appendix 15A of this chapter can be adapted to handle this exercise.
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Expected Return/Risk Management Applications Exchange-traded futures on volatility
also offer a number of new expected return/risk management strategies. In the
illustration below, we show that VIX futures can be regarded as a new asset
class and can potentially improve the expected return/risk opportunity set.
Indeed, because the returns of the S&P 500 portfolio and the returns of the VIX
are inversely correlated, the diversification effects can well surpass other strate-
gies such as diversifying across countries.21 VIX futures can also be used to
manage individual stock volatility. Individual stock volatility can be thought of
as the sum of two components: stock market volatility and firm-specific volatil-
ity. Market volatility products allow investors to hedge the stock market volatil-
ity component to develop selected exposures in the idiosyncratic risk of
individual stocks.22 

One caveat is necessary, however. Many stock market volatility hedging
needs are long-term. The VIX futures contract, on the other hand, is on the
stock market volatility rate in a thirty-day forward period. Consequently, in
order to effectively hedge a short volatility position over a long period of time, it
may be necessary to buy a strip of VIX futures so that the volatility rate over the
entire hedge interval may be captured.

ILLUSTRATION 15.7 Using VIX futures as alternative investment.

Suppose that you are a pension fund manager and have just finished your stock portfolio
allocation decisions for the year. The expected return of the stock portfolio is 12%, and
its standard deviation of return is 16%. The risk-free interest rate is 4%. Since the pen-
sion fund has a stated risk tolerance level of 14%, you place 12.5% of the portfolio’s
funds in risk-free bonds and 87.5% in the stock portfolio. The expected overall portfolio
return is therefore

EP = 0.125(0.04) + 0.875(0.12) = 0.04 + (0.12 – 0.04)(0.14/0.16) = 11%23

Now suppose that you have just become aware of VIX futures contract. Since stock mar-
ket volatility tends to follow a mean-reverting process, you believe that the expected rate
of price appreciation in the VIX futures is 0%. After some statistical analysis, you assess
the volatility of the rate of price appreciation in the VIX futures to be 80%, and the cor-
relation between the VIX futures return and your stock portfolio return to be –0.6. Can
you benefit by buying or selling VIX futures?

To answer the question, you need to recall from Chapter 5 that the expected return
and risk of a portfolio that consists of a long position in the asset and nF futures con-
tracts may be written

EP = ES + nFEF

and

21 Stock returns in different countries tend to be positively correlated. A major economic shock
in one market is usually felt across markets.
22 Whaley (1993) demonstrates that, for large market capitalization firms, nearly 50% of move-
ment in individual stock volatility rate is explained by movements in the market volatility rate.
23 The expected return/risk mechanics is drawn directly from Chapter 3. Risk tolerance is the
maximum return volatility (expressed in standard deviation of return) that the portfolio is
willing to sustain.
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where E is expected rate of return, σ is the standard deviation of return, and ρ is the cor-
relation between rates of return. With the current allocation, the expected excess return-
to-risk ratio (i.e., the Sharpe ratio) is 

Can you arrive at a higher Sharpe ratio by buying/selling VIX futures?
To answer this question, you can use Excel’s SOLVER to find the value of nF that

maximizes

where, because the expected return on the VIX futures is zero, it does not appear in the
numerator of the portfolio’s excess return-to-risk ratio. For the problem information at
hand, the optimal value of nF is 0.12. At nF = 0.12, the expected portfolio return (EP) stays
at 12% (since the expected return on the VIX futures is 0), however, the standard deviation
of portfolio return (σP) is only 12.8% and the expected excess return/risk ratio is 0.625. If
the pension fund does permit borrowing, the final portfolio should consist of only the stock
portfolio and a long position the VIX futures, and no money in risk-free bonds. If the pen-
sion fund allows for borrowing and wants to maintain its stated risk tolerance of 14%, it
must lever up the portfolio by 14/12.8 – 1 = 0.09375. Thus, the optimal allocation is to
borrow 9.375% of the portfolio’s value, invest 109.375% of the portfolio’s value in the
stock portfolio, and buy 1.09375(0.12) VIX futures. The expected return of the overall
portfolio is now 12.75% at a 14% risk tolerance, well above the 11% expected when the
VIX futures are not considered. The figure shown below summarizes the results of this
illustration. Without the VIX futures, the pension fund is expected to reside at point A with
an expected return of 11%. With the VIX futures as part of the portfolio, the fund has a
higher expected return, 12.75%, at the same level of risk and resides at point B.
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TABLE 15.6  Selected terms of Market Volatility Index (VIX) option contract.

The Chicago Board Options Exchange (CBOE) launched VIX option con-
tracts on Friday, February 24, 2006. Like the VIX futures, the CBOE’s VIX
options contract has, as its underlying, the VIX. The option contract specifica-
tions are given in Table 15.6. Its ticker symbol is “VIX,” and its denomination is
$100 times the level of the CBOE’s Market Volatility index. The tick size (value)
of the contract is 0.05 ($5) for option premiums below $3.00 ($300), and 0.10
($100) for premiums greater than $3 ($300). The available contract months
include the two near-term contract months plus two contract months on the Feb-
ruary quarterly cycle (February, May, August, and November). The expiration
day is the Wednesday that is 30 days before the third Friday of the calendar
month following the expiring month. Trading stops on the Tuesday before the
expiration day. The contract is cash-settled on the day after the expiration at at a
special opening quotation (SOQ). The exercise settlement amount equals the dif-
ference between the exercise-settlement value and the exercise price times $100.

SUMMARY

Many stock index products are inextricably linked to particular index derivative
trading strategies. This chapter focuses on such products. The first is portfolio

Exchange Chicago Board Options Exchange (CBOE)
Ticker symbol VIX
Contract unit 100 times CBOE Market Volatility index
Exercise price increments 2-1/2 point increments
Exercise style European
Tick size 0.05 point up to $3 premiums; .10 point over $3
Tick value $5; $10
Trading hours 8:30 AM to 15:15 PM CST
Contract months Two near-term contract months plus two contract months

on the February quaterly cycle (Feb., May, Aug., and Nov.)
Expiration day Wednesday that is 30 days prior to the third Friday of the

calendar month immediately following the expiring month.
Last day of trading Tuesday prior to expiration date each month.
Final settlement price Cash settled. Exercise settlement value shall be a Special

Opening Quotation (SOQ) of VIX calculated from the
sequence of opening prices of options used to calculate the
index on the settlement date. The opening price for any
series in which there is no trade shall be the average of that
option’s bid price and ask price as determined at the open-
ing of trading. Exercise will result in the delivery of cash on
the business day following expiration. The exercise settle-
ment amount is equal to the difference between the exer-
icse-settlement value and the exercise price of the option
times $100.
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insurance. After examining a brief history on how the strategy evolved, a
detailed analysis of passive and dynamic portfolio insurance schemes is pro-
vided. Passive insurance means buying an appropriate number of index puts.
Dynamic insurance implies that the portfolio consists of either stocks and risk-
free bonds or stocks and index futures and is rebalanced continuously through
time and as the market moves in such a way that the portfolio payoffs mimic the
payoffs of an insured portfolio. The second group of products are funds based
on an index/option trading strategy. Including options in an investment portfo-
lio can dramatically affect the shape of the portfolio’s rate of return distribu-
tion, undermining the usefulness of commonly applied portfolio performance
evaluation techniques. We examine this problem using the history of buy-write
returns for the CBOE’s Buy-Write Index (BXM). The final group of index prod-
ucts that we discuss is market volatility derivatives. Essentially two types exist—
contracts on realized volatility and contracts on volatility implied by index
option prices. We describe different volatility contract specifications and show
how the CBOE’s Market Volatility Index (VIX) can be constructed from a port-
folio of S&P 500 index options. We also illustrate how volatility derivatives can
be used as an alternative investment in an asset allocation framework.
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APPENDIX 15A: CONSTRUCTION OF THE CBOE’S MARKET VOLATILITY 
INDEX (VIX)

The purpose of this appendix is to describe the algorithm with which the
CBOE’s Market Volatility Index (VIX) is computed.24 The VIX is the expected
future volatility of the S&P 500 index over the next thirty days. It is an implied
volatility in that it is based on S&P 500 index option prices. Unlike the implied
volatilities from the BSM option valuation model, however, the VIX does not
depend on a particular return distribution.25

To compute the VIX, an eight-step procedure is used. 

Step 1: Collect relevant information. The information needed to compute the VIX is
(1) the bid/ask price quotes of all nearby and second nearby call and put options

24 The procedure for calculating VIX is described in CBOE (2003). The theory underlying the
procedure is based on the Breeden and Litzenberger (1978) result that the probability density
function of asset price can be inferred from the prices of options written on that asset, where
the options have a common expiration date and continuum of exercise prices. Demeterfi, Der-
man, Kamal, and Zou (1999) apply this result in a discretized form to arrive at an equation
for the volatility of asset price.
25 Recall that the BSM model assumes a log-normal asset price distribution at the option’s ex-
piration.
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traded on the S&P 500 index; and (2) the risk-free interest rate corresponding to each
expiration date. For each option series, the bid/ask midpoint is computed. The differ-
ence between the call midpoint and put midpoint at each exercise price is computed. 

Step 2: Compute the time to expiration in minutes and then years from the cur-
rent time until option expiration. The time to expiration in minutes is the sum
of three components.26 First, we must compute the number of minutes from the
current time until midnight on the same day. We next compute the number of
minutes from midnight today until midnight on the day before expiration.
Finally, we must compute the number of minutes from midnight on the day
before expiration until cash settlement at the open on expiration day. The last
number is, of course, a constant. The time of cash settlement is at 8:30 AM on
expiration day. The number of minutes from midnight on the day before expira-
tion until the time of expiration is therefore

8.5 hours × 60 minutes per hour = 510 minutes

The first and second components depend upon the time of day and the number
of days to expiration, respectively.

To illustrate, assume that we are computing the level of VIX at 8:38 AM

(CST) on October 6, 2003. The number of minutes to midnight on October 6 is 

22 minutes + 15 hours × 60 minutes per hour = 922 minutes

On October 6, 2003, the nearby and second expirations of the S&P 500 index
options are the October 17, 2003 and November 21, 2003, respectively, and the
number of days to expiration are 12 and 47 days inclusive of the current date and
the expiration date. The current date and expiration date are already incorpo-
rated, however. The number of minutes until midnight on the current date is 922,
and the number of minutes from midnight on the day before expiration until time
of expiration on the expiration day is 510. Thus we reduce the number of days to
expiration for the nearby and second nearby expirations to 10 and 45 and com-
pute the number of minutes. With 1,440 minutes in each 24-hour day, the number
of minutes for the second component of the nearby contract is 

10 days × 1,440 minutes per day = 14,400

and the number of minutes for the second component of the second nearby con-
tract is 

45 days × 1,440 minutes per day = 64,800

The total numbers of minutes for the two contract expirations are therefore

Nearby contract: 922 + 14,400 + 510 = 15,832

and 

26 Time to expiration is computed in minutes to conform to industry practice.



Stock Index Products: Strategy Based 555

Second nearby contract: 922 + 64,800 + 510 = 66,232

The times to expiration in years are then computed as

T1 = 15,832/525,600 = 0.0301217656

and

T2 = 66,232/525,600 = 0.1260121766

where 525,600 in the number of minutes in a calendar year (i.e., 1,440 minutes
per day times 365 days).

Step 3: Compute the interest accumulation factor for each option expiration.
The interest accumulation factor is defined as the terminal amount that $1 will
accumulate to by the option’s expiration if invested at the risk-free rate of inter-
est. On October 6, 2003, the risk-free rate corresponding to the nearby expira-
tion was 0.920% on an annualized basis, and the risk-free rate corresponding to
the second nearby expiration was 0.850%.27 The accumulation factors for the
nearby and second nearby contracts were

and 

respectively.

Step 4: Identify the at-the-money options for each option expiration. To identify the
at-the-money options for each expiration, we must first compute the bid/ask mid-
points for all calls and puts with the nearby and second nearby contract expira-
tions. This is shown in Tables 15A.1 and 15A.2. For each exercise price for which a
call price and put price are available, compute the absolute difference between the
call price and put price. Note that the calls and puts with zero bid prices are
excluded for consideration. Such options appear in bold face. The exercise price
with the lowest absolute difference is defined as the at-the-money option. On Octo-
ber 6, 2003, the nearby at-the-money exercise price is 1030 (as is shown in Table
15A.1), and the second nearby exercise price is 1035 (as is shown in Table 15A.2). 

Step 5: Compute the forward index level for each contract expiration. With the
identity of the at-the-money options known, we compute the implied forward
index level using the forward value version of put-call parity, that is, 

27 On this particular day, the yield curve of the risk-free rate was inverted at short maturities.

e
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TABLE 15A.1     Nearby S&P 500 index option prices used in the computation of the VIX on
October 6, 2003 at 8:38 AM (CST).

Nearby Contract Expiration: 20031017

Exercise
Price

Call Price Quotes Put Price Quotes
Absolute

DifferenceBid Ask Midpoint Bid Ask Midpoint

  725 304.10 307.10 305.600     0.00     0.50
  750 279.10 282.10 280.600     0.00     0.50
  775 254.10 257.10 255.600     0.00     0.50
  800 229.10 232.10 230.600     0.00     0.40
  825 204.10 207.10 205.600     0.00     0.25
  850 179.10 182.10 180.600     0.05     0.20     0.125 180.475
  875 154.20 157.20 155.700     0.10     0.20     0.150 155.550
  890 139.20 142.20 140.700     0.00     0.50
  900 129.30 132.30 130.800     0.20     0.40     0.300 130.500
  910 119.40 122.40 120.900     0.00     0.50
  915 114.40 117.40 115.900     0.05     0.50     0.275 115.625
  925 104.50 107.50 106.000     0.25     0.60     0.425 105.575
  930 100.00 102.60 101.300     0.30     0.70     0.500 100.800
  935   95.10   97.10   96.100     0.50     0.60     0.550   95.550
  940   90.20   92.20   91.200     0.45     0.90     0.675   90.525
  945   85.30   87.30   86.300     0.40     0.90     0.650   85.650
  950   80.40   82.40   81.400     0.65     1.00     0.825   80.575
  955   75.80   77.80   76.800     0.75     1.10     0.925   75.875
  960   70.90   72.90   71.900     0.80     1.30     1.050   70.850
  970   61.30   63.30   62.300     1.10     1.60     1.350   60.950
  975   56.50   58.50   57.500     1.50     1.90     1.700   55.800
  980   51.80   53.80   52.800     1.70     2.20     1.950   50.850
  985   47.20   49.20   48.200     2.00     2.50     2.250   45.950
  990   42.60   44.60   43.600     2.30     3.10     2.700   40.900
  995   38.20   40.20   39.200     3.00     3.70     3.350   35.850
1005   29.50   31.50   30.500     4.40     5.20     4.800   25.700
1010   25.50   27.50   26.500     5.40     6.40     5.900   20.600
1015   21.80   23.80   22.800     6.60     7.60     7.100   15.700
1020   18.50   19.50   19.000     8.00     9.00     8.500   10.500
1025   16.00   16.90   16.450     9.90   10.90   10.400     6.050
1030   13.00   14.00   13.500   11.60   13.20   12.400     1.100
1035   10.10   11.50   10.800   14.00   15.60   14.800     4.000
1040     8.00     9.00     8.500   16.80   18.40   17.600     9.100
1045     6.10     7.00     6.550   19.90   21.50   20.700   14.150
1050     4.70     5.50     5.100   23.20   25.20   24.200   19.100
1055     3.40     4.20     3.800   26.90   28.90   27.900   24.100
1060     2.50     3.30     2.900   30.90   32.90   31.900   29.000
1065     1.90     2.40     2.150   35.20   37.20   36.200   34.050
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TABLE 15A.1     (Continued) 

TABLE 15A.2     Second nearby S&P 500 index option prices used in the computation of the VIX
on October 6, 2003 at 8:38 AM (CST).

Exercise
Price

Call Price Quotes Put Price Quotes
Absolute

DifferenceBid Ask Midpoint Bid Ask Midpoint

1070   1.30   1.80   1.550   39.60   41.60   40.600   39.050
1075   0.90   1.40   1.150   44.20   46.20   45.200   44.050
1100   0.10   0.20   0.150   68.60   70.60   69.600   69.450
1115   0.00   0.50   83.40   85.40   84.400   84.400
1125   0.00   0.15   93.40   95.40   94.400   94.400
1135   0.00   0.50 102.90 105.90 104.400 104.400
1150   0.00   0.10 117.80 120.80 119.300 119.300
1175   0.00   0.50 142.80 145.80 144.300 144.300
1200   0.00   0.50 167.80 170.80 169.300 169.300
1225   0.00   0.50 192.80 195.80 194.300 194.300
1250   0.00   0.50 217.80 220.80 219.300 219.300
1275   0.00   0.50 242.80 245.80 244.300 244.300
1300   0.00   0.50 267.80 270.80 269.300 269.300
1325   0.00   0.50 292.80 295.80 294.300 294.300
1350   0.00   0.50 317.70 320.70 319.200 319.200
1375   0.00   0.50 342.70 345.70 344.200 344.200

Second Nearby Contract Expiration: 20031121

Exercise
Price

Call Price Quotes Put Price Quotes Absolute
DifferenceBid Ask Midpoint Bid Ask Midpoint

  600 427.70 430.70 429.200     0.00     0.30
  625 402.70 405.70 404.200     0.00     0.50
  650 377.80 380.80 379.300     0.00     0.50
  675 352.80 355.80 354.300     0.00     0.50
  700 327.90 330.90 329.400     0.00     0.50
  725 303.00 306.00 304.500     0.00     0.50
  750 278.10 281.10 279.600     0.00     0.50
  775 253.30 256.30 254.800     0.10     0.60     0.350 254.450
  800 228.50 231.50 230.000     0.30     0.80     0.550 229.450
  825 203.90 206.90 205.400     0.60     1.10     0.850 204.550
  850 179.40 182.40 180.900     1.10     1.60     1.350 179.550
  875 155.00 158.00 156.500     1.70     2.20     1.950 154.550
  895 135.80 138.80 137.300     2.30     3.10     2.700 134.600
  900 131.20 134.20 132.700     2.60     3.30     2.950 129.750
  925 107.70 110.70 109.200     3.90     4.70     4.300 104.900
  950   85.40   87.40   86.400     6.00     7.00     6.500   79.900
  975   64.00   66.00   65.000     9.50   10.50   10.000   55.000
  980   60.00   62.00   61.000   10.20   11.80   11.000   50.000
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TABLE 15A.1     (Continued) 

For the nearby at-the-money options, the forward price is

F1 = 1030 + 1.0002771586449(13.500 – 12.400) = 1031.10

For the second nearby at-the-money options, the forward price is

F2 = 1025 + 1.0010716773370(29.400 – 26.600) = 1029.99

Step 6: Identify the option series used in the computation of the VIX. In com-
puting the VIX, only the prices of out-of-the-money calls and puts are used. To
distinguish between in-the-money and out-of-the-money options, the exercise
price just below the implied forward price (Xi,0) is used. The out-of-the-money
calls are those with exercise prices greater than or equal Xi,0, and the out-of-the-
money puts are those with exercise prices less than or equal to Xi,0. If any of
these option series have a bid price equal to zero, they are eliminated from con-
sideration.28 For the nearby and second nearby option series in the illustration,
the exercise prices just below the forward index levels are X1,0 = 1030 and X2,0

Second Nearby Contract Expiration: 20031121

Exercise
Price

Call Price Quotes Put Price Quotes Absolute
DifferenceBid Ask Midpoint Bid Ask Midpoint

  985   56.00   58.00   57.000   11.20   12.80   12.000   45.000
  990   52.10   54.10   53.100   12.30   13.90   13.100   40.000
  995   48.30   50.30   49.300   13.50   15.10   14.300   35.000
1005   41.20   43.20   42.200   16.80   17.90   17.350   24.850
1010   37.80   39.80   38.800   17.90   19.50   18.700   20.100
1015   34.50   36.50   35.500   19.70   21.30   20.500   15.000
1020   31.40   33.40   32.400   21.30   23.30   22.300   10.100
1025   28.40   30.40   29.400   23.30   25.30   24.300     5.100
1035   22.90   24.90   23.900   27.90   29.90   28.900     5.000
1050   16.20   17.80   17.000   35.90   37.90   36.900   19.900
1060   12.40   14.00   13.200   42.10   44.10   43.100   29.900
1065   10.70   12.30   11.500   45.40   47.40   46.400   34.900
1070     9.50   10.00     9.750   48.90   50.90   49.900   40.150
1075     8.20     9.20     8.700   52.50   54.50   53.500   44.800
1080     7.00     8.00     7.500   56.30   58.30   57.300   49.800
1100     3.50     4.30     3.900   73.00   75.00   74.000   70.100
1125     1.40     1.90     1.650   95.70   97.70   96.700   95.050
1150     0.60     0.90     0.750 119.20 122.20 120.700 119.950
1175     0.00     0.50 143.80 146.80 145.300 145.300
1200     0.00     0.50 168.60 171.60 170.100 170.100
1225     0.00     0.50 193.50 196.50 195.000 195.000
1250     0.00     0.50 218.40 221.40 219.900 219.900
1275     0.00     0.50 243.40 246.40 244.900 244.900
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= 1035. Since this procedure identifies two options (a call and a put) at exercise
price Xi,0, the arithmetic average of the call and put prices is used.

Step 7: Compute the implied variance for each contract expiration. The formula
for computing the implied variance for the nearby contract is

(15A.1)

where T1 is the nearby contract month’s time to expiration expressed in years,
n1 is the number of out-of-the-money option series for the nearby contract
month, X1,i is the exercise price of the i-th option, r1 is the interest rate corre-
sponding to option’s expiration date, F1 is the forward index level implied by
the at-the-money call and put prices, O(X1,i) is the bid/ask price midpoint of the
nearby option with an exercise price of X1,i, and X1,0 is the exercise price just
below the implied nearby forward price. The summation term also includes the
at-the-money options. For the at-the-money options, the average of the call and
put midpoints is used as O(X1,i). Finally, the term ∆X1,i is the average of the
exercise prices that straddle option i’s exercise price. At the highest and lowest
exercise prices, ∆X1,i, is the absolute difference between option i’s exercise price
and the adjacent exercise price. The last term on the right-hand side is called the
displacement factor. 

The same procedure is used to compute the second nearby implied variance,

(15A.2)

To illustrate the mechanics of these computations, first compute the values
of the last term on the right-hand side (i.e., the displacement factors) of the
nearby and second nearby contracts. For the nearby contract,

and, for the second nearby contract, 

28 In the event that the bid prices of two calls (puts) at adjacent exercise prices are equal to
zero, all call (put) option series with higher (lower) exercise prices are eliminated even though
they may have nonzero bid prices.  
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Next take the sum in the first term on the right-hand side. Table 15A.3 shows
the values of each of the n1 terms for the nearby contract, and Table 15A.4
shows the values of each of the n2 terms of the second nearby contract. The first
term in the nearby contract’s summation is 

as is shown in Table 15A.3. Note that the option price used in the expression is
the forward price (i.e., the current price carried forward until the end of the
contract’s life). The sum of the weighted average of the forward option prices is
0.0005943786 for the nearby contract and 0.0025376773 for the second nearby
contract. The variance of the nearby contract is therefore

and the variance of the second nearby contract is

Step 8: Compute the annualized volatility over the next 30 calendar days. The
variances of the nearby and second nearby contracts correspond to times to
expiration of T1 years and T2 years, respectively. VIX, however, maintains a
constant time to expiration of 30 days or 30/365 = 0.0821917808 years. To find
the variance over the 30 calendar-day interval, we must interpolate between the
variances of the nearby and second nearby contracts, that is,

To compute the level of VIX, we annualize the 30-day variance and take the
square root, that is,

This is precisely the level of VIX reported by the CBOE at 8:38 AM (CST) on
October 6, 2003. The Excel file, VIX computation.xls, contains the background
computations used in this illustration.
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TABLE 15A.3     Nearby S&P 500 index option prices contribution to the computation of the
VIX on October 6, 2003 at 8:38 AM (CST).

Nearby Contract Expiration: 10/17/2003

C/P
Exercise

Price
Price

Midpoint ∆∆∆∆Xi Weight
Weight Times Forward

Option Price

P   850   0.125 25 0.0000346021 0.0000043265
P   875   0.150 25 0.0000326531 0.0000048993
P   900   0.300 20 0.0000246914 0.0000074095
P   915   0.275    12.5 0.0000149303 0.0000041070
P   925   0.425      7.5 0.0000087655 0.0000037264
P   930   0.500   5 0.0000057810 0.0000028913
P   935   0.550   5 0.0000057194 0.0000031465
P   940   0.675   5 0.0000056587 0.0000038207
P   945   0.650   5 0.0000055989 0.0000036403
P   950   0.825   5 0.0000055402 0.0000045719
P   955   0.925   5 0.0000054823 0.0000050725
P   960   1.050      7.5 0.0000081380 0.0000085473
P   970   1.350      7.5 0.0000079711 0.0000107640
P   975   1.700   5 0.0000052597 0.0000089440
P   980   1.950   5 0.0000052062 0.0000101548
P   985   2.250   5 0.0000051534 0.0000115985
P   990   2.700   5 0.0000051015 0.0000137779
P   995   3.350      7.5 0.0000075756 0.0000253852
P 1005   4.800      7.5 0.0000074256 0.0000356526
P 1010   5.900   5 0.0000049015 0.0000289267
P 1015   7.100   5 0.0000048533 0.0000344680
P 1020   8.500   5 0.0000048058 0.0000408610
P 1025 10.400   5 0.0000047591 0.0000495081

X0 1030 12.950   5 0.0000047130 0.0000610500
C 1035 10.800   5 0.0000046676 0.0000504235
C 1040   8.500   5 0.0000046228 0.0000393045
C 1045   6.550   5 0.0000045786 0.0000299985
C 1050   5.100   5 0.0000045351 0.0000231357
C 1055   3.800   5 0.0000044923 0.0000170753
C 1060   2.900   5 0.0000044500 0.0000129085
C 1065   2.150   5 0.0000044083 0.0000094805
C 1070   1.550   5 0.0000043672 0.0000067710
C 1075   1.150 15 0.0000129800 0.0000149311
C 1100   0.150 25 0.0000206612 0.0000031000

Sum 0.0005943786
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TABLE 15A.4     Second nearby S&P 500 index option prices contribution to the computation
of the VIX on October 6, 2003 at 8:38 AM (CST).

Second Nearby Contract Expiration: 11/21/2003

C/P
Exercise

Price
Price

Midpoint ∆∆∆∆Xi Weight
Weight Times Forward

Option Price

P   775   0.350 25 0.0000416233 0.0000145838
P   800   0.550 25 0.0000390625 0.0000215074
P   825   0.850 25 0.0000367309 0.0000312548
P   850   1.350 25 0.0000346021 0.0000467629
P   875   1.950    22.5 0.0000293878 0.0000573675
P   895   2.700    12.5 0.0000156050 0.0000421787
P   900   2.950 15 0.0000185185 0.0000546882
P   925   4.300 25 0.0000292184 0.0001257738
P   950   6.500 25 0.0000277008 0.0001802484
P   975 10.000 15 0.0000157791 0.0001579600
P   980 11.000   5 0.0000052062 0.0000573292
P   985 12.000   5 0.0000051534 0.0000619076
P   990 13.100   5 0.0000051015 0.0000669015
P   995 14.300      7.5 0.0000075756 0.0001084467
P 1005 17.350      7.5 0.0000074256 0.0001289715
P 1010 18.700   5 0.0000049015 0.0000917559
P 1015 20.500   5 0.0000048533 0.0000995995
P 1020 22.300   5 0.0000048058 0.0001072852

X0 1025 26.850      7.5 0.0000071386 0.0001918770
C 1035 23.900    12.5 0.0000116689 0.0002791852
C 1050 17.000    12.5 0.0000113379 0.0001929503
C 1060 13.200      7.5 0.0000066750 0.0000882041
C 1065 11.500   5 0.0000044083 0.0000507497
C 1070   9.750   5 0.0000043672 0.0000426258
C 1075   8.700   5 0.0000043267 0.0000376823
C 1080   7.500    12.5 0.0000107167 0.0000804617
C 1100   3.900    22.5 0.0000185950 0.0000725984
C 1125   1.650 25 0.0000197531 0.0000326275
C 1150   0.750 25 0.0000189036 0.0000141929

Sum 0.0025376773
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Currency Products

 

utures on 

 

foreign exchange

 

 (FX) rates were the first financial futures contract
introduced by an exchange. On May 16, 1972, the Chicago Mercantile Exchange

launched trading futures on three currencies—the British pound, the Deutsche-
mark, and the Japanese yen. Before that time there was little need for derivatives
markets on currencies. Exchange rates were essentially fixed as a result of the
Bretton Woods Agreement, which required each country to fix the price of its cur-
rency in relation to gold. With the failure of the Bretton Woods Agreement and
the removal of the gold standard in 1971, exchange rates began to fluctuate more
freely, motivating a need for exchange rate risk management tools. FX options
and futures options did not appear until about 10 years later, being introduced by
the Philadelphia Stock Exchange and the Chicago Mercantile Exchange in 1982.
While exchange-traded derivatives are not nearly as active as stock index and
interest rate derivatives, currency derivatives today account for about 12% of the
notional amount of all OTC derivatives trading worldwide.

 

1

 

This chapter has four sections. In the first section, exchange-traded and
OTC FX derivative markets are discussed. In the second section, arbitrage rela-
tions and valuation methods for FX forward, futures, option, and swap con-
tracts are provided. For currencies, the continuous net cost of carry no-arbitrage
relations and valuation methods apply. The third section illustrates a number of
important currency risk management strategies. Among them are using a cur-
rency swap or a strip of currency forwards to redenominate fixed rate debt in
one currency into another, using forward/options to manage the price risks of
single and multiple transactions, and using forward/options to manage balance
sheet risk.

 

MARKETS

 

By far the largest market in currencies is the 

 

interbank

 

 market. Major banks
around the world trade both spot and forward currencies on a 24-hour basis.
Spot transactions call for delivery and payment within two days. Forward trans-

 

1 

 

Bank for International Settlements

 

 (June 2004).
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actions call for delivery and payment at the time specified in the forward con-
tract. Table 16.1 contains quoted spot and forward currency rates on Monday,
March 27, 2006. These rates are indicative of what might be charged by major
New York banks on large purchases/sales (greater than USD 1 million) of the
various currencies. According to the table, buying U.S. dollars with Canadian
dollars in the spot market costs CAD 1.1696/USD. On the other hand, selling
U.S. dollars for Canadian dollars generates CAD 1.1693/USD. It is also worth
noting that an important inverse relation exists between the purchases and sales
of different currencies. Buying U.S. dollars with Canadian dollars is the same as
selling Canadian dollars for U.S. dollars. For each Canadian dollar sold, we gen-
erate 1/1.1696 or 0.85499 U.S. dollars. Similarly, selling U.S. dollars for Cana-
dian dollars is the same as buying Canadian dollars with U.S. dollars. The
exchange rate in this case is 1/1.1693 or USD 0.85521/CAD. This inverse rela-
tion will prove useful throughout the remaining pages of the chapter.

The forward exchange rates quoted in Table 16.1 have times to expiration
up to five years. These particular standard maturities are reported to give a
sense for the relation between forward exchange rates and their terms to matu-
rity, that is, the 

 

term structure of forward exchange rates

 

. Banks are generally
willing to quote a forward rate on any maturity that a customer requests.
Shorter-term contracts are generally more active and competitively-traded, as is
reflected by the fact that the spread between the quoted bid and ask rates is nar-
rower for short maturities than long maturities. Since the CAD/USD forward
rates are lower than the spot rate, the U.S. dollar is selling at a 

 

forward discount

 

(relative to the Canadian dollar), or, alternatively, the Canadian dollar is said to
be selling at a 

 

forward premium

 

 (relative to the U.S. dollar).

 

TABLE 16.1  

 

Bid and ask spot and forward exchange rates drawn from Bloomberg on 
Monday, March 27, 2006. 

 

USD/GBP CHF/USD CAD/USD USD/EUR JPY/USD

Term
Bid
Rate

Ask
Rate

Bid
Rate

Ask
Rate

Bid
Rate

Ask
Rate

Bid
Rate

Ask
Rate

Bid
Rate

Ask
Rate

 

Spot 1.7475 1.7478 1.3095 1.3097 1.1693 1.1696 1.2009 1.2011 116.67 116.69

1 week 1.7476 1.7479 1.3086 1.3088 1.1690 1.1694 1.2014 1.2016 116.56 116.58

1 month 1.7480 1.7483 1.3055 1.3057 1.1683 1.1686 1.2031 1.2033 116.21 116.23

2 month 1.7487 1.7490 1.3011 1.3014 1.1673 1.1676 1.2054 1.2056 115.71 115.73

3 month 1.7494 1.7497 1.2971 1.2973 1.1662 1.1667 1.2076 1.2078 115.24 115.26

4 month 1.7503 1.7506 1.2928 1.2931 1.1653 1.1657 1.2099 1.2101 114.74 114.76

5 month 1.7510 1.7514 1.2891 1.2895 1.1643 1.1647 1.2118 1.2121 114.29 114.32

6 month 1.7519 1.7522 1.2853 1.2856 1.1633 1.1637 1.2139 1.2142 113.82 113.84

9 month 1.7543 1.7547 1.2746 1.2750 1.1605 1.1610 1.2197 1.2200 112.48 112.51

1 year 1.7562 1.7567 1.2648 1.2654 1.1582 1.1587 1.2249 1.2252 111.23 111.26

2 year 1.7602 1.7615 1.2297 1.2309 1.1495 1.1503 1.2438 1.2444 106.78 106.84

3 year 1.7645 1.7688 1.1981 1.2013 1.1413 1.1436 1.2617 1.2629 103.10 103.21

4 year 1.7685 1.7763 1.1685 1.1737 1.1315 1.1348 1.2785 1.2807   99.87 100.04

5 year 1.7760 1.7853 1.1395 1.1620 1.1272 1.1333 1.2958 1.2989   96.78   97.05
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TABLE 16.2  

 

Conversion rates between euro and national currencies when irrevocably fixed 
on December 31, 1998.

 

Exchange-traded FX futures and options markets are also active worldwide.
In recent years, contract volume has waned. One reason is that, on December
31, 1998, 11 European countries irrevocably fixed their currencies to the Euro.
The countries who are members of the European Union (EU), their former cur-
rencies, and the fixed exchange rates are reported in Table 16.2. With all of
these countries adopting the euro as the common currency, the need to hedge
currency risk across EU countries is eliminated. A second reason is that the OTC
currency derivatives market has usurped some of the trading volume from the
derivatives exchanges. The OTC market is more well suited to tailor FX deriva-
tives contracts to meet customer risk management needs. 

 

Futures

 

In the United States, the most active FX futures contracts are traded on the Chi-
cago Mercantile Exchange’s International Monetary Market division. Figure
16.1 shows the breakdown of the CME’s FX futures by number of contracts
traded during the calendar year 2003. The total contract volume during this
period was 31,873,938 contracts. The euro futures contract is the most active,
with about 36% of the total contract volume. The Japanese yen futures was sec-
ond at 19%, followed by the Canadian dollar futures and the Swiss franc
futures with 13% and 11% of contract volume, respectively. All of the afore-
mentioned contracts are USD denominated (quoted in USD per unit of the
underlying currency). The CME also lists cross-rate futures contracts, however,
the trading volume is slight and is included with less active USD denominated
contracts with the category heading “All others.”

Each of the exchange’s contracts has preset terms. Contract specifications of
the CME’s euro futures are listed in Table 16.3. The contract requires EUR
125,000 to be delivered on the third Wednesday of the contract month. The
price of the euro futures contract is quoted in USD/EUR. The minimum price

 

Country Currency 1 euro =

 

Austria ATS 13.7603
Belgium BEF 40.3399
Finland FIM   5.94573
France FRF   6.55957
Germany DEM 1.95583
Ireland IEP 0.787564
Italy ITL 1936.27
Luxembourg LUF 40.3399
NLG NLG 2.20371
Portugal PTE 200.482
Spain ESP 166.386
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movement (i.e., tick size) is USD 0.0001. Such a movement implies a change in
contract value of USD 12.50. Six contract months on the March quarterly expi-
ration cycle (March, June, September, December) are available on any given
time. The contracts trade virtually 24 hours a day—from 7:20 

 

AM

 

 to 2:00 

 

PM

 

(CST) in an open outcry format in the trading pits of Chicago but from 5:00 

 

PM

 

to 4:00 

 

PM

 

 the following afternoon on GLOBEX.

 

Options

 

In the United States, FX options take two forms: options on FX futures and
options on FX spot currencies. The CME’s futures options are the most active,

FIGURE 16.1 Relative trading volumes of FX futures contracts traded on the Chicago Mercan-
tile Exchange during the calendar year 2003. Total contract volume was 31,873,938 contracts.  

Source: Data compiled from www.cme.com.

TABLE 16.3  Selected terms of euro futures contract.  

Source: www.cme.com.

Exchange Chicago Mercantile Exchange (International Monetary Market 
Division)

Contract unit 125,000 euro
Tick size $0.0001 per euro
Tick value $12.50 per contract
Trading hours 7:20 AM to 2:00 PM (CST)

GLOBEX: Monday through Thursday, 5 PM to 4 PM; Sundays and 
holidays, 5 PM to 4 PM.

Contract months Six months in March quarterly expiration cycle (Mar., Jun., Sep., 
Dec.).

Last day of trading 9:16 AM on second business day immediately preceding third 
Wednesday of contract month.

Final settlement Physical delivery on third Wednesday of contract month.

All others
1%

Austalian dollar
5%

Mexican peso
7%

British pound
8%

Swiss franc
11%

Canadian dollar
13% Japanese yen

19%

Euro
36%
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followed by the Philadelphia Stock Exchange’s (PHLX) spot currency options.
Figure 16.2 shows the breakdown of trading volume for the CME’s FX futures
option contracts by underlying currency during the calendar year 2003. The
total contract volume was 2,142,684, approximately 6.7% of the FX futures
volume. Euro FX futures option contracts were the most active, with 55% of the
total contract volume. The Japanese yen and Canadian dollar contracts fol-
lowed, with 23% and 10% of the total volume, respectively. Like in the case of
currency futures, the USD denominated option contracts are the most active.
Cross-rate futures account for little contract volume.

The CME’s futures options and the PHLX’s spot currency options are very
similar in nature, however, there are some minor distinctions. The contract spec-
ifications of the CME’s EUR futures option contract and the PHLX’s EUR
option contract are provided in Tables 16.4 and 16.5, respectively. The EUR
futures options require the delivery of the underlying futures; so they have a
contract denomination of EUR 125,000. The tick size and tick value are the
same as the underlying futures, as are the trading hours. The CME’s most active
futures options are American-style, although they also offer European-style con-
tracts. The American-style contracts can be exercised at any time to gain a posi-
tion in the underlying futures. When a call is exercised, the option holder
receives a long position in the underlying futures and is marked-to-market at the
difference between the futures price and the exercise price of the option. Avail-
able contract months include the next four months in the March quarterly expi-
ration cycle plus two that are not. Standing on March 30, 2005, this means that
June, September, and December 2005 as well as the March 2006 contracts are
traded as well as April and May 2005. Because the underlying futures are on a
quarterly expiration cycle, the April and May futures options are written on the
June 2005 futures. The futures options expire at the close of trading on the sec-
ond Thursday preceding the third Wednesday of the contract month.

The currency options traded on the PHLX are half the size of the CME’s
futures option, EUR 62,500. The tick size is the same, and a one tick movement
is worth $6.25. The PHLX offers both American-style and European-style

FIGURE 16.2 Relative trading volumes of FX futures option contracts traded on the Chicago 
Mercantile Exchange during the calendar year 2003. Total contract volume was 2,142,684 
contracts.   

Source: Data complied from www.cme.com.
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options for its FX options as well as several expiration months. On any given
date, four contracts on the March quarterly expiration cycle (March, June, Sep-
tember, December) and two near-months are available for trade. The options
expire on the Friday preceding the third Wednesday of the contract month. All
of the PHLX’s FX options require the delivery of the underlying currency.

Interestingly, the most active FX options traded on the PHLX are its 

 

cus-
tomized currency options

 

. These options allow users to set most of the terms of
the option contract including exercise price, expiration date (up to two years),
and premium quotation as either units of the currency or percent of underlying
value. The contract denominations are preset according to the underlying cur-
rency. For more information, go the PHLX’s website at www.phlx.com.

TABLE 16.4  Selected terms of euro futures option contract.  

TABLE 16.5  Selected terms of euro option contract. 

Exchange Chicago Mercantile Exchange (International Monetary Market 
Division)

Contract unit One euro futures contract
Tick size $0.0001 per euro
Tick value $12.50 per contract
Trading hours 7:20 AM to 2:00 PM (CST)

GLOBEX: Monday through Thursday, 5 PM to 4 PM; Sundays and 
holidays, 5 PM to 4 PM.

Exercise style American
Contract months Four contract months in March quarterly cycle and two serial 

months, not in the March quarterly cycle, plus four weekly expi-
rations.

Last day of trading Quarterly and serial options: Close of trading on second Thursday 
preceding third Wednesday of contract month. Weekly options: 
Close of trading on Thursday of contract month that is not also 
termination for quarterly and serial European-style options.

Final settlement Physical delivery of the underlying futures.

Exchange Philadelphia Stock Exchange
Contract unit 62,500 euro
Tick size $0.0001 per euro
Tick value $6.25 per contract
Trading hours 2:30 AM to 2:30 PM (EST) Monday through Friday
Exercise style American- and European-styles available.
Contract months Four months in March quarterly cycle (Mar., Jun., Sep., Dec.) plus 

two-near months.
Last day of trading/

contract expiry
Friday before third Wednesday of expiring month provided it is a 

business day (otherwise day immediately prior).
Final settlement Physical delivery of euro currency on day after expiry.
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VALUATION

 

The values of currency derivatives are best modeled under the continuous net
carry cost assumption. The net cost of carry rate of a foreign currency is the dif-
ference between the domestic and foreign interest rates, that is, 

 

b

 

 = 

 

r

 

d

 

 – 

 

r

 

f

 

. Sub-
stituting this definition into the valuation results of Chapters 4 through 9, we
get the FX valuation principles summarized in Table 16.6. This section focuses
on developing intuition for these results.

 

Forwards/Futures

 

To value foreign currency forwards and futures, we use the net cost of carry
relation, 

(16.1)

Unless otherwise stated, we assume that 

 

F 

 

and 

 

S 

 

are the forward and spot prices
of the currency in USD per unit of foreign currency for ease of exposition. Thus

 

r

 

d

 

 is the domestic (U.S.) risk-free interest rate and 

 

r

 

f

 

 is the risk-free rate of inter-
est in the foreign market. The net cost of carry relation (16.1) arises from the
absence of costless arbitrage opportunities in the marketplace. The intuition
underlying the relation is that we have two ways to have one unit of the foreign
currency on hand at time 

 

T

 

 at a price we know today. The first is represented on
the left-hand side of the net carry relation (16.1), that is, we can buy a forward
contract with maturity 

 

T 

 

today, and pay 

 

F

 

 at time 

 

T

 

. The second is represented
by the right-hand side of (16.1), that is, we can borrow domestically at a rate 

 

r

 

d

 

to buy one unit of the foreign currency today at a cost of 

 

S

 

, and then invest the
currency at the prevailing foreign interest rate 

 

r

 

f

 

 until time, 

 

T

 

. Under this second
arrangement, the terminal cost is

Since the two alternatives are perfect substitutes, the two sides of (16.1) must be equal.

 

ILLUSTRATION 16.1

 

Compute implied risk-free rate in Canada given spot rate, forward rate, 

 

and U.S. risk-free rate.

 

Compute the implied six-month risk-free rate in Canada given a spot exchange rate of
USD 0.85510/CAD, and a six-month forward rate of USD 0.85948/CAD. (Note that
these are the mid-rates implied by the bid/ask quotes from Table 16.1.) The six-month
LIBOR rate is 4.90%.

 

First, you need to compute the continuously-compounded domestic risk-free rate of
interest. The LIBOR rate is a nominal rate over a 180-day period. To transform it to a
continuous six-month rate on an annualized basis, we solve
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to find that rd is 4.908%. Next, substitute the problem information into the net cost of
carry relation, that is,

which can be rearranged to yield

The six-month risk-free rate of interest in Canada is about 102 basis points lower than in
the United States.

This computation can be verified using the forward pricing functions contained in
the OPTVAL Function Library. To compute the implied income rate in the continuous
version of the net cost of carry relation, use the function,

OV_FORWARD_II(s, f, r, t)

where s is the spot price, f is the forward price, r is the risk-free (domestic) interest rate,
and t is time to expiration of the forward contract. 

Interest Rate Parity 

In international finance literature, the relation (16.1) is sometimes called interest
rate parity (IRP). The intuition underlying the IRP relation is developed as fol-
lows. Consider an investor who has one USD to invest. If the money is invested
domestically at the risk-free rate, the value at time T is . On the other hand,
the dollar can be used to buy a foreign currency, and then that currency can be
invested at the foreign risk-free rate. At the same time, we can write a contract
to convert the proceeds of the foreign investment back into dollars at maturity,
using the FX forward market. At time T, the dollar cash proceeds of this hedged
foreign investment are

0.85948 0.85510e
0.04908 rf–( )0.5

=

rf 0.04908 2
0.85948
0.85510
---------------------⎝ ⎠

⎛ ⎞ln– 3.888%= =

erdT

1
S
--- e

rfT F××
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Since both investments provide a risk-free return in the domestic currency, their
terminal values must be equal. Setting  equal to  and rearrang-
ing provides the net cost of carry relation (16.1).

Sometimes interest rate parity is expressed in relative terms, that is, 

(16.2)

The left-hand side of (16.2) goes by a variety of names including the forward
premium or swap rate. The term swap rate comes from the fact that investors
frequently buy a foreign currency and agree to swap it back for dollars at some
future date. The swap rate specifies the percentage gain or loss on such a trans-
action. The right-hand side is the interest differential between the two countries.

Cross Rates and Triangular Arbitrage 

The cross-rate relation is an arbitrage relation that involves three currencies.
Suppose we buy (1) Canadian dollars using U.S. dollars, (2) euros using the
Canadian dollars, and then (3) U.S. dollars using euros. In the absence of trad-
ing costs and costless arbitrage opportunities, we must be back exactly where
we started, that is, 

Another way of thinking about it is the U.S. dollar cost of euros should be the
same if we (1) used U.S. dollars to purchase Canadian dollars and then used the
Canadian dollars to buy euros or (2) used U.S. dollars to buy euros directly, that is,

To illustrate that the market is well aware of this cross-rate relation, con-
sider the cross-rate relations reported in Table 16.7. The USD/EUR rate is
reported as 1.2010. The USD/CAD rate is 0.85510, and the CAD/EUR rate is
1.4045. The product of 0.85510 and 1.4045 is 1.2010, exactly as expected. If
the two methods gave different answers an opportunity for triangular arbitrage
would exist. In the absence of triangular arbitrage opportunities, the following
relation must hold for all triplets of currencies:

(16.3)

where Si,j is the number of units of the i-th currency required to purchase one
unit of the j-th currency.
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TABLE 16.7  Key currency cross rates on Monday, March 27, 2006. 

ILLUSTRATION 16.2 Compute profit from triangular arbitrage opportunity.

Suppose you observe the following exchange rates:

Is a costless arbitrage profit possible?

To examine whether a costless arbitrage opportunity exists, take any two rates, mul-
tiply them appropriately, and see if the product equals the other rate. Given the way the
problem information is presented, it is easiest to check whether

Substituting the problem information, you find that 

1.3500 > (0.82)(1.62) = 1.3284

hence, a costless arbitrage profit is possible. The trades that you need to place are as follows:

(1) Buy Canadian dollars with U.S. dollars at a rate of 0.82.
(2) Buy euros with the Canadian dollars from part (a) at a rate of 1.62.
(3) Sell euros from part (b) for U.S. dollars at a rate of 1.3500.

Assuming a trade size of USD 100,000, your risk-free profit is computed as follows: 

(1) pay USD 100,000 for CDN 121,951.22
(2) pay CDN 121,951.22 for EUR 75,278.53
(3) deliver EUR 75,278.53 for USD 101,626.02.

The risk-free profit is USD 1,626.02 per USD 100,000 of arbitrage activity. 

RISK MANAGEMENT LESSON: AWA LTD. 

Triangular arbitrage was nominally at the heart of the first modern-day deriva-
tives “scandal.” Amalgamated Wireless Australasia Ltd. (now AWA Ltd.) manu-
factured, imported and exported electronic and electrical products. In order to
hedge its foreign currency risk exposure from contracts it had in place for the

 USD JPY EUR CAD CHF GBP

GBP 0.57220 0.0049040 0.68721 0.48929 0.43692
CHF 1.3096 0.0112 1.5728 1.1198 2.2887
CAD 1.1695 0.010023 1.4045 0.89298 2.0438
EUR 0.83264 0.0071361 0.71199 0.63580 1.4552
JPY 116.68 140.13 99.773 89.096 203.92
USD 0.0085704 1.2010 0.85510 0.76359 1.7477

USD/EUR 1.3500

CAD/EUR 1.6200

USD/CAD 0.8200

USD
EUR
------------⎝ ⎠

⎛ ⎞ USD
CAD
-------------⎝ ⎠

⎛ ⎞ CAD
EUR
-------------⎝ ⎠

⎛ ⎞=
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goods it imported, AWA decided in 1985 to buy currency contracts against actual
or anticipated import requirements. At the time, however, the market between
foreign currencies and Australia dollars was thin. Only the AD/USD forward mar-
ket was liquid. To circumvent this problem, the firm decided to execute the hedge
in two legs. In the first leg, AWA would go long in the foreign currency (e.g., Jap-
anese yen) and short U.S. dollars, and, in the second, they would go long U.S. dol-
lars and short Australian dollars. By virtue of the absence of triangular arbitrage
opportunities, the risk management strategy was perfectly sensible. 

So, how did AWA go about losing nearly AD 49.8 million? The answer is
with the help of Andy Koval, a commerce graduate from the University of New
South Wales. In 1984, Koval was hired as a trainee management accountant on
AD 14,000 a year to help set up a money market operation for AWA. At the
time, AWA’s foreign currency (FX) operation was modest and, for the fiscal year
ending June 30, 1985, they reported a pretax gain of only AD 282,000. During
1985, Andy was put in charge of FX operations. Things changed quickly. For
the fiscal year ending June 30, 1986, the pretax FX gains rose to AD 7.5 million.
Indeed, so successful was the program that, by September 1986, the firm had
made its FX operation a profit center of the firm. The next year started off the
same way. For the six-month period ending December 31, 1986, the FX opera-
tion posted a pretax profit of AD 10 million. 

The amazing success of AWA’s hedging program was well publicized. On
March 10, 1987, the Sydney Morning Herald talked about “unprecedented
returns from the foreign exchange operations” for AWA.2 In the article, Mr.
John Hooke, Chairman of AWA is reported as saying that “the forex profit had
risen as the company had begun trading in currency futures, which it initially
had taken out to hedge itself against movements in the Australian dollar against
the yen.” Two days later, the same newspaper featured an article titled “Andy
Koval, AWA’S Forex Whiz-kid.”3 Among other things, the article says that the
“unassuming Andy appears to have discovered trading techniques the rest of the
Forex market is clamouring for.” Andy, himself is quoted as saying, “Our suc-
cess is to remain covered and make money out of a trend, rather than punting.
There is none of this cowboy stuff.” The article goes on to say, “Asked whether
he feels it is somewhat unusual for one so young to be responsible for such a
huge chunk of one of Australia’s larger, albeit somewhat sleepy, public compa-
nies, Andy Kovel says: ‘Yeah, sometimes. It’s a bit funny with the board of direc-
tors. My parents think it’s pretty amazing, too.’”

The public comments made by Hooke and Koval seemed to indicate that AWA
was, in fact, hedging. Hooke’s comment suggests that AWA had taken the hedges
since it imported most of its components from Japan, while Koval clearly indicates
that AWA’s FX exposure “remains covered.” But if hedges are in place, how can
the firm be earning such extraordinary profits if they are hedging? As it turns out,
they were not. The house of cards came tumbling down only a few months later
when the Australian Stock Exchange discovered irregularities in AWA’s reporting
and determined that AWA had sustained substantial losses. After many months of
investigation, a truer picture of Koval’s actual trading activity emerged.

2 Sydney Morning Herald, 10 March 1987, p. 21.
3 Sydney Morning Herald, 12 March 1987, p. 23.
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1. Koval was not hedging. Apparently, Koval had a strong directional view that
the USD would fall, so he entered only the first leg of the hedge—he bought
Japanese yen and sold U.S. dollars. Unfortunately, he was wrong in his view,
very wrong. As the figure below shows, the JPY depreciated steady in value rel-
ative to the USD during the period Koval managed FX operations, and thereby
had to have incurred significant speculative losses. 

2. Koval disregarded trading limits and took positions well beyond hedging needs.
Even if Koval had executed both legs of the hedge (i.e., buying JPY with USD,
and buying USD with AD), there were other telltale signs that he was speculat-
ing. At the end of December 1986, for example, AWA’s hedge requirement for
Japanese yen over the next year was estimated to be about JPY 10 billion. At
the time, however, AWA records show that actual open positions exceeded JPY
75 billion.

3. Koval entered the second leg of the hedge in reverse. Another telltale sign that
Koval was speculating came on the occasions in which he appeared to execute
the second leg of the hedge. Recall that buying JPY with AD can be accom-
plished by buying JPY with USD, and then buying USD with AD. What
appeared in AWA’s books, however, were trades in which Koval was buying
AD with USD, exactly the reverse of what should be done. In other words,
Koval was betting not only that the USD was going to tank relative to the yen
but also that the USD was going to tank relative to the AD. In both cases, he
was wrong.

Could the situation have been avoided? Absolutely! While the hedge strat-
egy was entirely appropriate for a company needing to manage its foreign cur-
rency risk exposure on the costs of imports whose prices were fixed, no one
monitored whether the strategy was being implemented properly. The primary
factors driving the extraordinary losses were:

1. Lack of meaningful supervision: Koval was permitted by AWA management to
operate without effective control and supervision.

2. Absence of a proper system of books and records and other internal controls.
Koval had generally disclosed only the contracts showing a profit. Loss-making
contracts were disclosed either by rolling them over at historical rates or by
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paying the losses out of what were claimed to be unauthorized borrowings by
Koval from a number of different banks, the existence of these loans were also
concealed from AWA.

3. Managers and boards of directors did not understand risk management strat-
egy. The hedge strategy developed by AWA was perfectly sensible in light of the
liquidity of available hedge instruments. But given the simplicity of this hedge
strategy (i.e., buying forwards/futures to hedge the currency risk exposure of
input costs), extraordinary profits should have been the first sign that some-
thing was amiss. Did they choose to turn a blind eye to the matter of how the
money was being earned? After all, the FX profits were huge in a company that
was not otherwise performing well. Or was the board incapable of understand-
ing the nature of the FX hedge operations? After all, it was the board that
approved a budget which treated FX trading as a major profit center. 

4. Hubris. The quotes in the Sydney Morning Herald in March 1987 support the
view that both Hooke and Koval were almost giddy in their optimism about
future FX trading profits. When asked about the amazing feat of earning nearly
AD 20 million in pretax profits over 18 months, Koval stated that it was “No
fluke.”4 He went on to say “I thought about going out on my own, but am
fairly happy here at the moment.” In the same article, Hooke is reported as say-
ing that FX profits in the first half of 1987 “will be in line” with the AD 10 mil-
lion earned in the last half of 1986.”

In the end, AWA lost slightly less than AD 50 million. As is typical when
such events occur, litigation ensued. What makes this story different is that the
Australian courts held AWA’s auditors liable for 80% of the damages because
“they were negligent in their duties in failing to draw the attention of AWA’s
board and senior management to the absence of sufficient internal controls.”
They also held that “AWA was liable for contributory negligence and Hooke lia-
ble to contribute to the damages.

Swaps 

No-arbitrage price relations for swaps were also developed in Chapter 4. A cur-
rency swap contract is an agreement to exchange a set of future cash flows with
no cash flow occurring at inception. A plain-vanilla currency swap is usually
regarded to be an exchange of a fixed payment for a floating payment, where the
floating payment is tied to an exchange rate. The key information needed to
value a swap contract is the forward curve for the underlying currency and the
zero-coupon yield curve for domestic risk-free bonds. All rates on both curves
are assumed to be tied to the prices of tradable securities. 

To make currency swap valuation as clear as possible, assume that we import
goods from the United Kingdom in a uniform manner throughout the year and sell
them in the United States. At the beginning of each year, we negotiate a fixed price
for each unit we import during the year, and the price is quoted in British pounds.
The goods we import, however, are sold in U.S. dollars. If the British pound appre-

4 Sydney Morning Herald, 12 March 1987.
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ciates in value relative to the dollar during the year and we cannot pass on the cost
increase to our U.S. customers, our profit margin will fall. To manage this risk
exposure, we may want to buy British pounds in the forward market. One alterna-
tive is to buy a strip of forward (or futures) contracts, one corresponding to each
desired delivery date. Unfortunately, while the cost of the monthly delivery will be
locked-in, it will be different each month, except in the special case in which the for-
ward curve happens to be a horizontal line. If our customers’ demands are uniform
throughout the year, this means that our profit margin will vary from month to
month, albeit in a deterministic way. A second alternative is to buy a swap contract
that provides for a fixed delivery amount each month at a single fixed price for all
deliveries. In the absence of costless arbitrage opportunities, the present value of the
deliveries using the forward curve must be the same as the present value of the
deliveries using the fixed price of the swap contract, that is,

(16.4)

where n is the number of delivery dates, fi is the price of a forward contract with
time to expiration Ti, ri is the risk-free rate of interest corresponding to time to
expiration Ti,

5 and  is the fixed price in the swap agreement.6 In an instance
where the right-hand side of (16.4) is greater (less) than the left-hand side, an
arbitrageur would buy (sell) the swap and sell (buy) the strip of forward con-
tracts, pocketing the difference. Because such free money opportunities do not
exist, (16.4) must hold as an equality.

Equation (16.4) can be rearranged to isolate the fixed price of the swap
agreement, that is,

(16.5)

Expressed in this fashion, it becomes obvious that the fixed price of a swap is a
weighted average of forward prices, one corresponding to each delivery date.

ILLUSTRATION 16.3 Compute fixed exchange rate of swap based on forward exchange rate 
curve.

Suppose that you own a chain of Irish pubs in Boston. Your customers’ favorite brew is,
of course, Guinness Irish Stout. Your supplier is a distributor in the United Kingdom,
and you have negotiated a fixed price of £50 per keg, delivered in Boston, for all deliver-
ies during the next year. Based upon consumption over the past few years, you anticipate

5 Note that we are allowing for the fact that the risk-free rate may be term-specific.
6 The delivery quantity is irrelevant since it is the same on both sides of the equation. That is, 
equation (4.10) assumes that one unit is delivered on each delivery date.
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that the average consumption rate will be 10,000 kegs per month. Your customers are
accustomed to paying USD 5.00 per pint. If the British pound appreciates relative to the
USD, you will not be able to pass on the price increase to your customers. They will sim-
ply switch over to a less expensive domestic brand whose margins are much lower. Con-
sequently, you are considering different hedging alternatives. Currently, the forward
curve for the USD/GBP exchange rate is

fi = 1.92 – 0.035ln(1 + Ti)

and the zero-coupon yield curve for risk-free U.S. bonds is

ri = 0.03 + 0.01ln(1 + Ti)

Determine the fixed forward exchange rate on a 12-month currency swap with uniform
monthly deliveries.

Based on the forward curve and the yield curve, you can compute prepaid forward
prices for each of the 12 delivery dates. You then sum the prepaid forward prices, and
divide by the sum of the discount factors to determine the fixed price. The intermediate
computations are as follows.

Based on the forward curve, the fixed rate on the swap should be 

 USD per GBP

The OPTVAL Function Library contains a function that values a currency swap with uni-
form quantities each period. The function is

OV_SWAP_CURRENCY(t, f, r, vr)

where t is a vector containing the times to each delivery date, f is a vector of forward/
futures prices corresponding to each date, r is a vector of zero-coupon risk-free rates cor-
responding to each delivery date, and vr is an indicator variable instructing the function

Time to
Payment

USD/GBP
Forward Rate

Risk-Free
Rate

Discount
Factor

Prepaid
Forward Price

0.0833 1.9171 3.08%   0.9974   1.9122
0.1667 1.9142 3.15%   0.9948   1.9041
0.2500 1.9113 3.22%   0.9920   1.8959
0.3333 1.9083 3.29%   0.9891   1.8875
0.4167 1.9054 3.35%   0.9861   1.8790
0.5000 1.9025 3.41%   0.9831   1.8704
0.5833 1.8996 3.46%   0.9800   1.8616
0.6667 1.8967 3.51%   0.9769   1.8528
0.7500 1.8938 3.56%   0.9737   1.8439
0.8333 1.8908 3.61%   0.9704   1.8349
0.9167 1.8879 3.65%   0.9671   1.8258
1.0000 1.8850 3.69%   0.9637   1.8167

11.7743 22.3847

Fixed price of swap   1.9012

f
22.3847
11.7743
--------------------- 1.9012= =
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to compute (1) the sum of the present values of the prepaid forward contracts (v or V),
(2) the sum of the discount factors (d or D), or (3) the break-even fixed price of the swap
based on the forward curve (r or R). For the illustration at hand,

The swap valuation framework provided above makes the assumption that
the number of units of currency needed each period is the same throughout the
life of the swap. There are many instances in which this is not the case, however.
Suppose we let quantity, Qi, vary from period to period. To determine a single
fixed exchange rate for all periods, we again equate the present value of the
deliveries using the forward curve to the present value of the deliveries using the
fixed price of the swap contract, that is,

(16.6)

Equation (16.6) can be rearranged to isolate the fixed price of the swap agree-
ment, that is,

(16.7)

Expressed in this fashion, it becomes obvious that the fixed price of a swap is based
on a weighted average of forward payments, one corresponding to each delivery
date. Note that the forward payment explicitly accounts for the delivery amount.
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ILLUSTRATION 16.4 Compute fixed exchange rate of swap with time-varying quantities.

Based upon your computations in 16.3, you feel prepared to negotiate with an OTC deriva-
tives dealer with respect to the fixed rate on a currency swap. Based on your computations,
you believe the fair fixed rate is 1.9012 USD/GBP. Nonetheless, you are perfectly prepared
to pay as much as 1.9020 for the convenience of having a single-hedge contract (rather than
a portfolio of contracts). The dealer earns this fee. Considering you need to buy GBP 6 mil-
lion over the next year, the total fee is on order $5,000 (i.e., $0.0008 times GBP 6 million). 

You describe your commitment to buy 120,000 kegs of Guinness over the next year
at £50 a keg and your need to hedge the currency exposure on a monthly basis. The
dealer quotes you a fixed rate of 1.9052 USD/BP for GBP 6 million that you need over
the next year. He says he is giving the swap to you at cost because he is Irish, visits your
pubs frequently, and is impressed by your altruistic spirit in trying to keep the price of a
pint of Guinness stable. You tell him that you were not born yesterday and that he is
demanding five times the fee that you were prepared to pay. He denies your allegations
(at least the second one), and shows you his computations. 

Upon looking at his work, you see that in the third month of the year, the quantity
of Guinness delivered is 54,000 kegs, but is only 6,000 in the remaining months of the
year. You ask why, and he says it should be obvious. Total demand is 120,000 kegs per
year. Everyone knows that as a result of St. Patrick’s Day’s celebrations, consumption of
Guinness is nine times higher in March than any other month of the year. You realize, of
course, that he is absolutely right. Accounting for the quantity delivered each month,
what is the fair fixed rate on the currency swap? 

To answer this question, you must weight the discount factors and prepaid forward
prices by the monthly quantities. The computations are shown below. Based on the for-
ward curve, the fair fixed rate is, indeed, 1.9052 USD/GBP. Note that the OPTVAL Func-
tion library has a quantity weighted swap valuation routine. The vector of monthly
quantities in column G are used as an input to the function. 

Purchasing Power Parity

Another important currency-related arbitrage relation ties together the prices of
a particular commodity in two different countries. Purchasing power parity
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(PPP) says that the prices of a commodity in two different countries must be the
same after adjustment for the exchange rate, that is,

Pricei,d = Sd,fPricei,f (16.8)

where Pricei,d and Pricei,f are the domestic and foreign prices of commodity i,
and Sd,f is the spot exchange rate expressed as number of units of the domestic
currency per unit of the foreign currency. The intuition underlying this relation
is straightforward. In perfect markets, if the USD price of a Sony television in
the United States (i.e., Pricei,USD) is more than the USD price in Japan (i.e.,
USD/JPY × Pricei,JPY), arbitragers will buy televisions in Japan, and import and
sell them in the United States, earning a costless arbitrage profit.

Naturally, the PPP relation is not expected to hold nearly as tightly as it does
for interest rate parity or, for that matter, parity in the prices of any financial
asset in two countries. The reason is that executing the arbitrage with physical
assets may be cumbersome and costly. Transportation costs can be prohibitive.
Shipping bulking goods such as televisions, for example, is expensive. In addi-
tion, governments may restrict trade to certain countries or impose import
duties. Moreover, services such as labor are simply not traded as assets. The
hourly rate of a car mechanic can only be “traded” by moving the mechanic from
one country to another. Thus, restrictions on international migration may pre-
vent arbitrage of services. 

Nonetheless, PPP can provide important guidance in designing appropriate
risk management strategies. Consider, for example, a U.S. firm that sells widgets in
Ireland. If the U.S. firm fears that the euro will fall relative to the U.S. dollar and
competes, in Ireland, with an Irish firm that also produces widgets, using forward
contracts to hedge exchange rate risk will ensure that the U.S. firm can remain
competitive. On the other hand, if widgets are unavailable elsewhere in Ireland,
the U.S. firm may have the ability to simply increase price in accordance with the
movement in the spot exchange rate to eliminate exchange rate risk exposure
without using derivatives. In both cases, the PPP relation provides guidance.

Options

The arbitrage relations and valuation equations/methods for FX options are
also summarized in Table 16.6. Before applying some of the valuation results, it
is worth noting that there are a certain complementary relations that exist
among FX options. Consider, for example, an individual who holds a call option
to buy 60,000 euros at USD 1.250/EUR. If the spot exchange rate is USD 1.500/
EUR at the option’s expiration, the call option holder earns USD 15,000 (i.e.,
EUR 60,000 times USD 0.25/EUR). At the same time, consider an individual in
a EU member state who holds a put option to sell 75,000 (i.e., USD 1.250/EUR
times EUR 60,000) USD at EUR 0.800/USD. If the spot exchange rate is EUR
0.6667/USD at expiration, the put option holder also earns EUR 10,000 or USD
15,000 (i.e., USD 75,000 times EUR 0.1333/USD times USD 1.500/EUR). Thus,
a call option to buy currency A with currency B is nothing more than a put
option to sell currency B for currency A.
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ILLUSTRATION 16.5 Compute values of European-style USD/GBP and GBP/USD options on 
spot currency and on futures.

Suppose the USD/GBP exchange rate is 1.4912, the six-month USD/GBP futures price is
1.4968, the volatility rate of USD/GBP exchange rate is 10%, and the six-month U.S.
risk-free rate of interest is 5.178%. Now do the following: 

(1) Compute the value of a European-style call to buy British pounds using U.S. dol-
lars, assuming the option’s time to expiration is six months, the option’s exercise
price is USD 1.40/GBP, and the denomination of the option contract is GBP
1,000,000. 

(2) Compute the value of a European-style put to sell U.S. dollars for British
pounds, assuming the option’s time to expiration is six months, the option’s exer-
cise price is GBP 0.7143/USD, and the denomination of the option contract is
USD 1,400,000 (i.e., GBP 1,000,000 times USD 1.40/GBP since the contract
sizes should be the same).

(3) Compute the value of the European-style options in parts (1) and (2) assuming
they are written on the futures price rather than the spot exchange rate.

Part (1): From Table 16.6, the valuation equation for a European-style call on a currency is

where

 and 

The problem information, however, does not include the foreign risk-free rate of interest.
Fortunately, however, you know that six-month USD/GBP futures price is 1.4968. In the
absence of costless arbitrage opportunities, the net cost of carry relation,

holds at all points in time. Substituting the problem information into the cost of carry
relation and rearranging, you find that the risk-free interest rate in Britain is 4.428%,
that is, 

Alternatively, you could have computed the integral limit directly as 

Now that you have the risk-free rate on interest in Britain, you can compute the
value of the call using the formula. Substituting into the formula, you get

where 
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and 

The probability values are 

N(d1) = N(0.9809) = 0.8367   and   N(d2) = N(0.9101) = 0.8186

Thus, the value of the European-style call is

c = 1.4912e–0.04428(0.5)(0.8367) – 1.4000e–0.05178(0.5)(0.8186) = 0.10353 USD/GBP

The contract denomination is GBP 1,000,000, so the value of the overall contract is USD
103,531, as summarized in the table below. The value of the corresponding European-
style put is also provided, that is, USD 9,205.

The option value can be verified using the function OV_OPTION_VALUE from the
OPTVAL Function library, that is,

OV_OPTION_VALUE(1.4912, 1.4000, 0.5, 0.05178, 0.04428, 0.10, “c”, “e”) = 0.10353

Note that, since you know the forward price, you could have also valued this European-
style call as a forward option, that is,

OV_FOPTION_VALUE(1.4968, 1.4000, 0.5, 0.05178, 0.10, “c”, “e”) = 0.10353

Part (2): The valuation equation of a European-style put is given in Table 16.6. Note the
domestic currency is now British pounds and the foreign currency is U.S. dollars. The
value of a European-style put option to sell U.S. dollars for British pounds is

where 

and 

The probabilities are 

N(–d1) = N(0.9101) = 0.8186   and   N(–d2) = N(0.9811) = 0.8367

Thus, the value of the European-style put is

p = 0.7143e–0.04428(0.5)(0.8367) – 0.6706e–0.05178(0.5)(0.8186) = 0.04959 GBP/USD

The OV_OPTION_VALUE function can be used to verify this result, that is,

OV_OPTION_VALUE(0.6706, 0.7143, 0.5, 0.04428, 0.05178,0.10, “p”, “e”) = 0.04959

The contract denomination is USD 1,400,000, so the value of the overall contract is GBP
69,429, as shown in the table below. Converting this value to USD using the current
exchange rate, the USD value of this European-style put to sell British pounds for U.S.

d1
1.4912e 0.04428 0.5( )– 1.4000e 0.05178 0.5( )–⁄( ) 0.5 0.102( )0.5+ln

0.10 0.5
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 0.9809= =
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d1
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---------------------------------------------------------------------------------------------------------------------------------------------------------------- 0.9101–= =
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dollars is USD 103,530 (i.e., USD 1.4912/GBP times GBP 69,429), exactly the same
value as the European-style call to buy British pounds using U.S. dollars. In the interest
of completeness, the value of the corresponding European-style call is USD 9,205,
exactly the same value as the European-style put to buy British pounds for U.S. dollars.

Part (3): The values may again be computed using the formulas in Table 16.6. You
should be able to reproduce the following values:

These values are exactly the same as when the options were written directly on the spot
currency, as we proved in Chapter 6.

The table below summarizes the results of this illustration.   

European-Style Futures Option Values

U.S. Britain

Spot price 1.4912 0.6706
Futures prices 1.4968 0.6681
Volatility rate 10.00% 10.00%
Exercise price 1.4000 0.7143
Time to expiration 0.5000 0.5000

Interest rate 5.178% 4.428%

Value of call 0.10353 0.00441
Value of put 0.00921 0.04959

USD/GBP BP/USD

Spot rate 1.4912 0.6706

6-month forward rate 1.4968 0.6681

Time to expiration 0.5000

USD GBP

Interest rates     5.178% 4.428%

Exercise price   1.4000 0.7143

Volatility rate 10.00%

Buy USD Option to Buy/Sell GBP Buy GBP Option to Buy/Sell USD

Call Put Call Put

Option value (USD/GBP) 0.103531 0.009205 Option value (GBP/USD) 0.004409 0.049592 

Quantity (BP) 1,000,000 1,000,000 Quantity (USD) 1,400,000 1,400,000

Total value (USD)    103,531        9,205 Total value (GBP)        6,173      69,428

Total value (USD)        9,205    103,531

Buy USD Futures Option to Buy/Sell GBP Buy GBP Futures Option to Buy/Sell USD

Call Put Call Put

Option value (USD/GBP) 0.103531 0.009205 Option value (GBP/USD) 0.004409 0.049592 

Quantity (GBP) 1,000,000 1,000,000 Quantity (USD) 1,400,000 1,400,000

Total value (USD)    103,531        9,205 Total value (BP)        6,173      69,428

Total value (USD)        9,205    103,531
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ILLUSTRATION 16.6 Compute values and early exercise premiums of American-style USD/
GBP options on spot and forward exchange rates.

Using the USD/GBP options and their parameters from Illustration 16.5, compute the val-
ues and early exercise premiums of the corresponding American-style options, and explain
why there are differences between the values of the currency options and the futures
options. Use the quadratic approximation method to handle the computations. 

The values of American-style FX options can be computed using the quadratic
approximation method by calling the function OV_OPTION_VALUE from the OPTVAL
function library.7 The value of an American-style call option to buy British pounds using
U.S. dollars is, for example,

OV_OPTION_VALUE(1.4912, 1.4000, 0.5, 0.05178, 0.04428, 0.10, “c”, “a”) = 0.10364

Applying the function for the remaining American-style FX options, we get:

In reviewing these figures, we see that the values of the American-style options
exceed the values of the corresponding European-style options for both the options on
the currency and the options on the futures. This is expected, since the American-style
options have the same terms as the European-style option but provide the additional ben-
efit of early exercise. Interestingly, the American-style call on the currency has a lower
value than the American-style option on the futures. The reason for this is that the
futures price, USD 1.4968/GBP, is above the spot currency rate, USD 1.4912/GBP. If the
futures price is higher than the currency rate, then exercising the call on the futures early
will provide greater proceeds than exercising the call on the spot currency early. The
opposite is true for the put.

RISK MANAGEMENT

Currency derivatives provide an effective means of managing different types of cur-
rency risk exposures. In the previous section, we reviewed the valuation of for-
ward, futures, and options contracts as they apply to currencies. In this section, we

7 A detailed example of all the computations embedded in the quadratic approximation meth-
od was provided in Chapter 6.

European-Style
Value

American-Style
Value

Early Exercise
Premium

USD/BP options on currency

Call 0.10353   0.10364   0.00011
Put 0.00921   0.00937   0.00017

USD/BP options on futures

Call 0.10353   0.10453     0.000995
Put 0.00921   0.00927     0.000068

Difference

Call 0.00000 –0.00089 –0.00089
Put 0.00000   0.00010   0.00010
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illustrate how these valuation/risk measurement tools can be used to manage cur-
rency risk exposures. In the first illustration, we show how to use a currency swap
to redenominate the currency of a bond issue and potentially generate interest sav-
ings. We also show how to compare its cost effectiveness with buying a strip of for-
ward contracts. The second illustration focuses on managing the risk of a large
foreign currency transaction that is known to occur in the future. We compare the
expected return/risk attributes of hedging using forward, options, and money mar-
ket instruments. We also consider the effects when the transaction, itself, is uncer-
tain. The third illustration considers the case where there are multiple transactions
to be hedged. Here we consider not only currency swaps but also a nonstandard
product—an average rate option. The fourth illustration focuses on the risk man-
agement of balance sheet risk, that is, the uncertainty of having certain assets and
liabilities on the balance sheet being denominated in foreign currencies.

Using Currency Swaps to Obtain Foreign Financing

In the first chapter of the book, we described a plain-vanilla interest rate swap
as being a convenient means of “swapping” out of fixed rate debt into floating
rate debt and vice versa. A currency swap is also a convenient means of restruc-
turing debt—in this case swapping out of debt (interest payments and repay-
ment of principal) denominated in one currency into debt denominated in
another. Such swaps may be useful, for example, to a multinational firm that
finds it comparatively less expensive to borrow domestically even though its
financing need is in a foreign country.

To illustrate, suppose Canuck Brewing Inc., a small microbrewery in Can-
ada, is looking to expand internationally by setting up breweries in other coun-
tries. Market research in different regions of the United States indicates that
Canuck’s products will be most popular in the Southeast region of the United
States. Canuck therefore decides to build a new brewery in North Carolina and
requires USD 5 million to acquire the land.

Canuck is currently evaluating different financing proposals. All else being
equal, a USD-denominated loan would be best since the interest payments will
be made from U.S. sales. In this way, Canuck avoids currency risk on the inter-
est payments. The problem is that Canuck is not well known in the U.S. The
lowest available coupon interest rate that it can obtain on a three-year, fixed
rate USD 5 million bond is 7.5%. In Canada, where Canuck’s credit is first rate
and its products are well known, it can issue three-year, fixed rate bonds at
6.0%. Given the current exchange rate of CAD 1.40/USD, the par value of the
Canadian bonds will be CAD 7.0 million.

USD Bonds The two alternative bond issues have different currency exposures.
The first is denominated in U.S. dollars and therefore has no currency risk. The
semiannual cash flows are contained in the following table. The continuously
compounded implied yield to maturity of the loan is 7.36%.8

8 The implied yield to maturity is the continuously compounded discount rate that equates the 
present value of the promised bond payments to the par value of the bond. 
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CAD Bonds Plus Currency Swap The second alternative is denominated in Canadian
dollars. Consequently, Canuck faces currency risk when its U.S. dollar sales are
used to cover the Canadian dollar interest payments and principal repayment.
To undo the currency risk exposure, Canuck considers entering a currency swap.
After some negotiation with an OTC swap dealer in Canada, Canuck finds that
it can enter into a fixed-for-fixed currency swap in which it will receive interest
at a rate of 6% on a CAD 7 million par amount and will pay interest at a rate of
7.25% on USD 5 million par. Payments will be made semiannually. Thus, if
Canuck issues the Canadian bonds and enters the currency swap, it will have
locked in a U.S. dollar denominated loan at a coupon interest rate of 7.25%, 25
basis points lower than it would have had it issued the U.S. bonds directly. The
following table shows the combined cash flows of the Canadian dollar bond and
the currency swap. Note that, unlike a plain-vanilla interest rate swap, the cur-
rency swap requires an exchange of principal. The continuously compounded
implied yield to maturity of this alternative is 7.12%. 

By issuing Canadian bonds and engaging in a currency swap, Canuck has
managed to reduce the effective cost of financing from 7.36% to 7.12%. How
does this saving arise? One possibility is that the terms of the swap were favor-
able to Canuck. To examine this explanation, we need to value the swap at
inception. For simplicity, assume the risk-free term structure of interest rates is

U.S. Bonds Year

Par value (USD)   5,000,000 0 0.5 1 1.5 2 2.5 3

Coupon rate 7.50%   Cash flows 
(USD)

–187,500 –187,500 –187,500 –187,500 –187,500 –5,187,500

PV (cash
flows)

–5,000,000 PV (cash
flows)

–180,723 –174,191 –167,895 –161,826 –155,977 –4,159,388

Implied yield 7.36%   

Canadian Bonds Year

Par value (CAD) 7,000,000
0 0.5 1 1.5 2 2.5 3

Coupon rate 6.00% Cash flows
(CAD)

–210,000 –210,000 –210,000 –210,000 –210,000 –7,210,000

Swap Agreement

Receive leg (CAD)

Par value (CAD) 7,000,000 Cash flows
(CAD)

  210,000   210,000   210,000   210,000   210,000   7,210,000

Coupon rate 6.00%

Pay Leg (US)

Par value (USD) 5,000,000 Cash flows
(US)

–181,250 –181,250 –181,250 –181,250 –181,250 –5,181,250

Coupon rate 7.25%

Net Payments (USD) Cash flows
(US)

–181,250 –181,250 –181,250 –181,250 –181,250 –5,181,250

PV (cash flows) –5,000,000 PV (cash
flows)

–174,910 –168,791 –162,886 –157,188 –151,689 –4,184,536

Implied yield 7.12%



590 CURRENCY DERIVATIVES

flat in both Canada and the United States, and the rates are 4.25% and 5.00%,
respectively. Using these risk-free interest rates to discount the flows of each leg
of the swap, we get the following: 

The value of the currency swap at origination from Canuck’s perspective is 

V = Bd – SBf

where Bd is the present value of what Canuck receives (in Canadian dollars), Bf
is the present value of what Canuck pays in U.S. dollars, and S is the CAD/USD
exchange rate. Using the numbers in the table above, the present value of the
receive leg is CAD 7,332,512, and the present value of the pay leg is USD
5,300,836 or CAD 7,421,171. The value of the swap is therefore –CAD 88,659.
The figure represents a trading cost implicitly paid by Canuck to the swap
dealer. Clearly, the terms of the swap are not driving the cost savings.

CAD Bonds Plus Forward Strip Is there an alternative to the currency swap that
Canuck can consider to avoid the swap dealer’s margin? The answer is yes. We
know all swaps can be decomposed into portfolios of forwards and/or options.
The current exchange rate is CAD 1.40/USD, and the Canadian and U.S. risk-free
interest rates are 4.25% and 5.00%, respectively. By interest rate parity, the six-
month forward exchange rate (i.e., CAD/USD) must be 1.4000e(0.0425–0.0500)0.05 =
1.3948, the one-year forward rate 1.4000e(0.0425–0.0500)0.05 = 1.3895, and so on.
These CAD/USD forward rates can be inverted to get USD/CAD forward rates
of 0.7143, 0.7170, and so on. Canuck can buy a strip of USD/CAD forwards,
each with a contracted amount and time to delivery corresponding to the Cana-
dian dollar payments to bondholders. These trades would commit Canuck to a
stream of USD payments beginning with USD 150,564 in six months, USD
151,129 in 1 year, and so on. In return, Canuck would receive Canadian dollar
payments in the amounts it needs to service the Canadian bondholders, as is
shown in the next table. The implied yield to maturity under this arrangement is
only 6.66%.

Risk-Free Rates Year

CAD rate 4.25% 0 0.5 1 1.5 2 2.5 3

USD rate 5.00%

Swap Agreement

Receive leg
(CAD)

Cash flows
(CAD)

  210,000   210,000   210,000   210,000   210,000   7,210,000

PV (receive)   7,332,512 PV (cash
flows)

  205,585   201,262   197,030   192,888   188,832   6,346,916

Pay leg (US) Cash flows
(USD)

–181,250 –181,250 –181,250 –181,250 –181,250 –5,181,250

PV (pay) –5,300,836 PV (cash
flows) (USD)

–176,775 –172,410 –168,154 –164,002 –159,953 –4,459,543

PV (pay) 
(CAD)

–7,421,171

Swap value –88,659
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Using FX Futures and Options to Manage Transaction Risk—
Single Flow

Transaction risk refers to the currency risk of a particular future transaction
denominated in a foreign currency. Suppose, for example, Jetmaker, Inc., a U.S. jet
manufacturer, receives an order for its new X626 plane from Alps Air, Inc., a Swiss
airline. Payment for the new X626 is specified in Swiss francs and is to be made
when the plane is delivered in six months. Jetmaker is exposed to significant cur-
rency risk. The Swiss franc may depreciate relative to the U.S. dollar over the next
six months (i.e., the value of a Swiss franc, USD/SF, may fall), driving the U.S. dol-
lar proceeds from the Swiss franc payment downward. Consider the following
short hedging strategies will allow Jetmaker to reduce its transaction risk exposure.

Short-Hedging Using a Forward Contract9 Suppose the cost of the X626 is SF 750 mil-
lion. Assume also that the current exchange rate is USD 0.66/SF and that the six-
month forward rate is USD 0.66667/SF. If Jetmaker chooses not to hedge, the USD
value of the contract is subject to fluctuations in the exchange rate. If the Swiss franc
depreciates relative to the U.S. dollar and the exchange rate is USD 0.60/SF in six
months, Jetmaker receives USD 450 million (i.e., USD 0.60 times SF 750 million).
On the other hand, if the Swiss franc appreciates to, say, USD 0.70/SF in six months,
the firm receives USD 525 million. Jetmaker wants to eliminate this risk exposure.

 To do so, Jetmaker can hedge by selling the SF 750 million exposure in the
forward market. The current six-month forward rate is USD 0.66667. Selling the
forward implies that Jetmaker will receive exactly USD 500 million in six
months. If the exchange rate falls to USD 0.60/SF, for example, the net proceeds
are USD 500 million—USD 450 million from the sale of the plane plus USD 50

Year

Exchange Rates 0 0.5 1 1.5 2 2.5 3

Spot rate 1.4000 CAD/USD 1.4000 1.3948 1.3895 1.3843 1.3792 1.3740 1.3689

CAD risk-
free rate

4.25% USD/CAD 0.7143 0.7170 0.7197 0.7224 0.7251 0.7278 0.7305

USD risk-
free rate

5.00%

Canadian
bonds

Par value
(CAD)

7,000,000 Coupon
payments
(CAD)

–210,000 –210,000 –210,000 –210,000 –210,000 –7,210,000

Interest 
rate

6.00% Received on
forward
(CAD)

  210,000   210,000   210,000   210,000   210,000   7,210,000

Par value
(USD)

5,000,000 Paid of 
forward
(USD)

–150,564 –151,129 –151,697 –152,267 –152,839 –5,267,188

Implied 
yield

6.66% PV (cash 
flows) (USD)

–145,631 –141,389 –137,271 –133,273 –129,391 –4,313,044

9 Futures contracts could also be used, but the size and maturity of a futures contract may not 
match the hedging need exactly.
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million (i.e., USD 0.06667/SF times SF 750 million) from the short forward posi-
tion. If the exchange rate rises to USD 0.70/SF, the net proceeds remain at USD
500 million—USD 525 million from the sale of the plane and –USD 25 million
(i.e., –USD 0.03333/SF times SF 750 million) from the short forward position.

The following figure summarizes the net proceeds in six months over a
wider range of USD/SF exchange rates. As the Swiss franc appreciates (depreci-
ates) relative to the U.S. dollar, Jetmaker’s unhedged sales proceeds increase
(decrease). The proceeds from the short forward position, however, fall (rise) by
an equal amount. The combination of the unhedged and forward positions,
therefore, creates a certain net proceeds of USD 500 million in six months. 

Short-Hedging in the Money Market By the cost of carry relation (or, in this case,
interest rate parity), an equivalent hedge can be executed in the money market.
Assume the U.S. risk-free rate of interest is 5.25%. The current exchange rate is
USD 0.66/SF and the six-month forward exchange rate is USD 0.66667/SF. By
interest rate parity, therefore, the six-month risk-free rate in Switzerland must
be 3.24%. 

Under a money market hedge, Jetmaker borrows against the SF 750 million
payment that it will receive in six months. The amount of the loan is SF
737,947,886 (i.e., SF 750,000,000e–0.0324(0.5)). Jetmaker then converts the Swiss
franc proceeds into U.S. dollars at the current exchange rate and gets USD
487,045,605 (i.e., USD 0.66/SF times SF 737,947,886). The U.S. dollars are
then invested at the U.S. risk-free rate. In six months, Jetmaker uses the Alps Air
payment of SF 750 million to retire its loan and enjoys a USD 500 million (i.e.,
USD 487,045,768e0.0525(0.5)) balance in its U.S. account.

Short-Hedging Using an Option Yet another alternative is to hedge by buying a Euro-
pean-style USD/SF put option. The benefit of doing so is that, if the Swiss franc
appreciates relative to the U.S. dollar (i.e., USD/SF rises), Jetmaker receives the
gain. On the other hand, if the Swiss franc depreciates relative to the U.S. dollar
(i.e., USD/SF falls), Jetmaker’s reduced sales proceeds are offset by the exercise
proceeds of the put. Nothing is free, however. Jetmaker must pay for the put.

To illustrate, suppose that a six-month put with an exercise price of USD
0.66667/SF and a denomination of SF 750 million costs USD 0.01465/SF or
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USD 10,990,032 in total. The cost of the put carried forward six months is USD
10,990,032e0.0525(0.5), which must be paid regardless of the movement in the
exchange rate. If the spot exchange rate is USD 0.60/SF in six months, Jetmaker
receives USD 450 million from Alps Air and USD 50 million on its put position,
thereby netting USD 488,717,660. On the other hand, if the spot exchange rate
is USD0.70/SF in six months, Jetmaker receives USD 525 million from the sale
of the X626, lets the put expire out of the money, and thereby nets USD
513,717,660, as shown in this table: 

The next figure summarizes the net proceeds from the put option hedge for a
wider range of exchange rates. As the USD/SF exchange rate rises, the net pro-
ceeds from the sale of the jet increase. At the same time, the put option expires
worthless allowing Jetmaker to enjoy the gain (net of the cost of the put). On
the other hand, if the USD/SF rate falls, the unhedged proceeds of the X626 sale
fall, however, they are exactly offset by the exercise proceeds from the put. The
maximum loss is USD 11,282,340—the purchase price of the at-the-money put. 

Long-Hedging Using a Forward Managing the transaction risk befalls Alps Air if the
cost of the plane had been quoted in U.S. dollars. Suppose that all of the parameters
in our illustration remain the same, except the cost of the X626 is USD 500 million
payable in six months at the time of delivery. Alps Air faces the risk that the Swiss
franc will depreciate relative to the U.S. dollar over the next six months, which
means paying more Swiss francs to buy the plane. One long-hedging strategy is to
buy a six-month forward contract on U.S. dollars. Since the current six-month for-
ward rate to buy Swiss francs with U.S dollars is USD 0.66667/SF, the current six-
month forward rate to buy U.S. dollars with Swiss francs must be SF 1.50/USD. By

Spot Rate in 6 Months

0.60000 0.70000

Cost of put carried forward 6 months –11,282,340 –11,282,340
Sales proceeds in USD 450,000,000 525,000,000
Proceeds from exercising put   50,000,000 0
Net proceeds 488,717,660 513,717,660
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buying a forward contract at SF 1.50/USD, the cost of the plane is locked in at
SF 750 million. If the Swiss franc depreciates relative to the U.S. dollar (i.e., USD/SF
falls and SF/USD rises) and the spot exchange rate is, say, SF 1.66667/USD (i.e.,
USD0.60/SF) in six months, Alps Air pays SF 833,333,333 million to buy the plane
but has earned SF 83,333,333 from its long forward position. Alps Air’s net pay-
ment is, of course, SF 750 million. On the other hand, if the Swiss franc appreciates
relative to the U.S. dollar (i.e., USD/SF rises and SF/USD falls) to, say, SF 1.42857/
USD (i.e., USD 0.70/SF) in six months, the firm must pay SF 714,285,714 to buy
the plane and SF 35,714,286 to cover its forward obligation. The net payment is
again SF 750 million. Thus Alps Air can eliminate all of its transaction risk by buy-
ing forward, as is shown in the following figure. By interest rate parity, we know
that risk elimination can also be accomplished using a money market hedge. 

Long-Hedging Using an Option Alps Air can also long hedge by buying a European-
style call option. The benefits are twofold. First, if the U.S. dollar appreciates
relative to the Swiss franc (i.e., the SF/USD rate increases), Alps Air receives a
subsidy in the form of the exercise proceeds on call. Second, if the U.S. dollar
falls, the Swiss franc payment is reduced and the call expires out of the money.
The cost of the hedge is, of course, that the firm must pay for the call.

To illustrate, suppose that a six-month call with an exercise price of SF 1.50/
USD and a denomination of USD 500 million costs SF 0.03330/USD or SF
16,651,563 in total. Carrying this forward six months implies a terminal cost of
the call of SF 16,923,510 (i.e., SF 16,651,563e0.0324(0.5)), as is indicated in the first
row of the table below. If the exchange rate falls to SF 1.42857, the net payment
is SF 731,209,224—the purchase price of USD 500 million times SF 1.42857 or
SF 714,285,714, plus the cost of the call carried forward, SF 16,923,510. The call
expires worthless. On the other hand, if the exchange rate rises to, say, SF
1.66667/USD, the net payment is SF 766,923,510—the cost of the call carried
forward, SF 16,923,510, plus purchase price of SF 833,333,333, less the exercise
proceeds of the call, SF 83,333,333. Note that the exercise proceeds of the call
always reduce the purchase price of the X626 to SF 750 million. The maximum
that Alps Air will pay for the acquisition of the plane is SF 750 million plus the
cost of the call carried forward, SF 16,923,510, as is shown in this next figure. 
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Hedging an Uncertain Transaction The hedging strategies discussed above presume
that the purchase/sale of the plane will take place in six months. Hedging using
a forward contract eliminates all transaction price risk, and hedging using an
option contract, while costly, eliminates the downside transaction price risk and
retains the upside transaction price risk. In many instances, however, the trans-
action may be uncertain. Suppose, for example, Alps Air has the right to cancel
the agreement with Jetmaker at any time during the next six months. Jetmaker
faces the risk that the Swiss franc will depreciate in value (i.e., USD/SF falls and
SF/USD rises), but, if it sells forward to short hedge the foreign exchange risk,
and the agreement is cancelled, it is left with an open currency forward position
that may have to be liquidated at a loss as indicated in the following figure. Jet-
maker’s losses are unlimited as the Swiss franc depreciates without limit. 

Spot Rate in 6 Months

1.42857 1.66667

Cost of call carried forward 6 months     –16,923,510   –16,923,510
Purchase price in SF –714,285,714 –833,333,333
Exercise proceeds from call in SF                     0     83,333,333
Net payment –731,209,224 –766,923,510
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Net payment in SF

1,000,000,000

500,000,000

0

–500,000,000

–1,000,000,000

–1,500,000,000

Pa
ym

en
t 

in
 S

F

1.00

SF/USD exchange rate

1.20 1.40 1.60 1.80 2.00 2.20 2.40

0.40
USD/SF exchange rate

0.50 0.60 0.70 0.80 0.90 1.00

Proceeds from forward position

300,000,000

200,000,000

100,000,000

0

–100,000,000

–200,000,000

–300,000,000

Pr
oc

ee
ds

 in
 U

SD



596 CURRENCY DERIVATIVES

Under put option short-hedging strategy, however, Jetmaker locks in its
maximum exposure at the cost of the put option, USD 11,282,340. If the sale is
consummated, the least that Jetmaker will receive is USD 488,717,660. If the
Swiss franc appreciates in value (i.e., USD/SF rises and SF/USD falls), Jetmaker
receives more. On the other hand, if the sales agreement is cancelled, Jetmaker’s
loss is limited to the cost of the put. In the event that the Swiss franc appreci-
ates, Jetmaker may even gain, as shown in the figure that follows. In effect, Jet-
maker is buying a put option to hedge the cancellation option they have given
Alps Air. Jetmaker has implicitly given Alps Air a put option to sell SF 750 mil-
lion in return for the X626. Jetmaster hedges that risk by buying a put. 

Using FX Futures and Options to Manage Transaction Risk—
Multiple Flows

Multinational firms often wish to create a package of hedges to manage the
price risk of its inputs or outputs. Consider an Australian firm that produces
goods to sell in Australia but imports its raw materials from Japan. Assuming
that the Australian firm has negotiated the sales price of its production over the
next 12 months, it may want to hedge the currency risk of its Japanese input
costs. If its production input needs are predictable, fixed rate swaps and average
rate option contracts may be added to the risk management arsenal. 

ILLUSTRATION 16.7 Comparing option alternatives.

Suppose a U.S. firm wants to hedge its foreign input costs by buying insurance. More spe-
cifically, the firm has entered into a contract to buy 100,000 widgets per month over the
next two years at EUR 0.50 per widget. The current exchange rate is USD 1.20/EUR,
and its volatility rate is 10%. The risk-free rate of interest in the U.S. is 5%, and the rate
in Europe is 6%. Compare the costs of (1) buying a portfolio of at-the-money call
options expiring at the end of each month through the two-year period, (2) buying a sin-
gle two-year at-the-money call option for the contract amount, and (3) buying an arith-
metic average-rate at-the-money call option where the underlying exchange rate is an
average of the month-end exchanges rates over the life of the contract.
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The firm has entered an agreement to buy widgets at a fixed price of EUR 0.50 per
widget and at the rate of 100,000 per month for 24 months. This means that the firm will
make annuity payments of EUR 50,000 each month, or EUR 120,000 in total over the
life of the agreement. To hedge against a depreciating USD, it is considering different call
option alternatives.

The first alternative is to buy a strip of at-the-money call options, one expiring each
month. In the event the exchange rate rises to, say, USD 1.30/EUR by the end of the first
month, for example, the option will pay USD 1.30 – 1.20 = 0.10. The net cost of buying
euros at the end of the first month is therefore USD 1.30 – 0.10 = 1.20/EUR, or 50,000
times USD 1.20 or USD 60,000 in total. The value of the one-month call per euro is

OV_OPTION_VALUE(1.20, 1.20, 1/12, 0.05, 0.06, 0.10, “C”, “E”) = 0.05450

or USD 0.05450/EUR times 50,000 euros or USD 2,725 in total. If we repeat this compu-
tation 23 more times, once for each monthly cash flow, the total value of all option pre-
miums is USD 199,853.

The second alternative is to buy a single 24-month at-the-money call option. The
value of this option per euro is 

OV_OPTION_VALUE(1.20, 1.20, 2, 0.05, 0.06, 0.10, “C”, “E”) = 0.2288

or USD 0.2288/EUR times 1,200,000 euros or USD 274,575 in total. 
The final alternative is to buy an at-the-money average rate call option. The option’s

time to expiration is two years, and the final cash settlement price is the difference
between the arithmetic average month-end exchange rate and the exercise price of the
option, that is,

where St is the USD/EUR exchange rate at the end of each month. To value an at-the-
money, arithmetic average rate option, an approximation method is necessary. In Chap-
ter 7, we showed how Monte Carlo simulation can be used to value so-called “Asian-
style options,” one of which is an option on an average-rate. The OPTVAL function

OV_APPROX_ASIAN_OPT_MC(s, x, t, r, i, v, n, ntrial, cp, sx, ag)

can be used. The first six parameters were defined earlier. The parameter n is the total
number of observations used in computing the average. If the option’s life is two years
and monthly observations are used, n is set equal to 24.10 The parameter ntrial is the
number of simulation runs. The parameter cp is either “C” or “P,” depending upon
whether you are valuing a call or a put. The parameter sx is either “S” or “X,” depend-
ing upon whether you are averaging the asset price to replace the asset price or the exer-
cise price of the average rate option. Finally, the parameter ag is either “A” or “G,”
depending upon whether the average rate of the option is arithmetic or geometric. For
the illustration at hand, 

OV_APPROX_ASIAN_OPT_MC(1.20, 1.20, 2, 0.05, 0.06, 0.10, 24, 10000, “C”, “S”, “A”) 
= 0.1370

This means that the cost of the average-rate option alternative is USD 0.1370/EUR, or
0.1370 times 1,200,000 or USD 164,459 in total. 

10 If n is set equal to one, the value of an average rate option should equal the value of a Eu-
ropean-style option. They will not be exactly the same, however, since the Monte Carlo sim-
ulation is an approximation method.

max
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Using FX Futures and Options to Manage Balance Sheet Risk

In many cases, a firm faces currency risk that is not tied to a particular transac-
tion but rather to a particular asset or liability on the firm’s balance sheet. A
firm exporting to Ireland, for example, is likely to have both significant accounts
receivable and inventory denominated in euros. Indeed, a firm’s balance sheet
may have both assets and liabilities denominated in various foreign currencies. 

Managing balance sheet risk depends on whether the foreign currency obli-
gation is contractual or not. A contractual obligation denominated in a foreign
currency is subject to exchange rate risk because the contract price is set and
cannot be changed. If the value of the currency falls, the foreign currency price
cannot be adjusted. On the other hand, a noncontractual business operation is
less subject to exchange risk because changes in exchange rates may be partially
offset by price changes in the foreign currency. A U.S. widget manufacturer with
an Irish subsidiary, for example, may find it possible to offset declines in the
value of the euro by increasing the price of widgets sold in Ireland.

The nature of the balance sheet hedge depends on the nature of the underlying
asset/liability. In the normal course of operation, a U.S. firm operating an Irish
subsidiary might find it necessary to have a large euro balance in the subsidiary’s
cash account. Worried about a possible decline in the euro, the parent can hedge
the cash position by selling futures. If the USD/EUR exchange rate falls, the
decline in the U.S. dollar value of the cash will be offset by the profit on the short
futures position. This hedge is analogous to the transaction risk hedge in the sense
that both are contractual. This balance sheet hedge will not be as effective, how-
ever. The mismatch in the terms to maturity of the cash balance (term to maturity
= 0) and futures contracts (term to maturity > 0) means that slippage will be
incurred due to basis risk.11 In addition, unlike a fixed transaction price agree-
ment, the cash balance changes day to day from normal business operations.

An example of a balance sheet hedge of a noncontractual asset is hedging fin-
ished goods inventory denominated in euros. This hedge may be more compli-
cated because a decline in the USD/EUR exchange rate will reduce the U.S. dollar
value of the inventory. This, however, might be offset by an increase in the price
of the finished goods in Ireland. Indeed, under purchasing power parity, a full
price adjustment is expected. But the subsidiary may not have the freedom to
change prices in a dramatic way. To illustrate, suppose prices may be increased
by only 50% of the amount they should increase under PPP. Since the ability to
re-price provides a partial (50%) natural hedge of the finished goods inventory,
only half the inventory balance needs to be hedged in the futures market.

SUMMARY

This chapter focuses on the management of currency risk using derivatives con-
tracts. In the first section, currency derivative markets are discussed. The lion’s

11 Deciding the appropriate term to maturity of the futures contract is not straightforward. 
The shorter the term to maturity of the futures, the less the basis risk but the greater the trad-
ing costs associated with frequent rollovers in the futures position.
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share of currency derivatives trading takes place in the OTC market, although
the trading volumes on futures and options exchanges are respectable. In the
second section, the principles of currency derivatives valuation and risk mea-
surement are provided. No-arbitrage price relations and valuation equations/
methods are provided for currency forwards, futures, options, and swaps. All of
them are on the continuous net cost of carry results developed in Chapters 4
through 9. The continuous net cost of carry rate for currencies is the domestic
risk-free interest rate less the foreign risk-free interest rate. The third section
illustrates a number of important currency risk management strategies. Among
them are using a currency swap or a strip of currency forwards to re-denomi-
nate fixed-rate debt in one currency into another, using forward/options to man-
age the price risks of single and multiple transactions, and using forward/
options to manage balance sheet risk.
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nterest rate derivative contracts seem less in the spotlight than are derivatives
on stocks and stock indexes. One reason is that the markets for bonds are less

active than the market for stocks. Do not be misled, however. The bond markets
in the United States are, in fact, larger than stock markets. Of the $34.34 trillion
in market value of stocks and bonds outstanding in the United States at the end
of 2003, about 56% was bonds. It should not be surprising, therefore, that
interest rate risk management is a primary concern for corporations, agencies,
municipalities, and governments. Indeed, more than two-thirds of all OTC
derivatives traded worldwide are written on interest rate instruments.

The first interest rate derivative contract on an exchange appeared 30 years
ago, when the CBT introduced futures contracts on GNMA pass-through certif-
icates. Futures contracts on U.S. Treasury bonds, notes, and bills quickly fol-
lowed. Options on interest rate instruments were launched in late 1982. Even
though many of these markets have become incredibly active by exchange stan-
dards, the greatest success story is the OTC interest rate swap market. The first
interest rate swap was consummated in 1981. Today, about 20 years later, inter-
est rate swaps account for more than half the notional amount of 

 

all

 

 derivatives
outstanding worldwide. The interest rate products discussion is divided into two
chapters. This chapter focuses on futures and options contracts, that is, con-
tracts with a single future cash flow. The next chapter focuses on contracts with
multiple future cash flows. In it, we discuss interest rate swaps, caps, collars,
floors, and swaptions. 

Our discussion of exchange-traded products in this chapter has three sec-
tions. In the first, details of selected exchange-traded contracts and contract
markets are provided. Section two provides the principles of interest rate deriva-
tives valuation. For the most part, the principles and valuation methods of
Chapters 4 through 9 can be applied directly, with two notable exceptions.
First, the no-arbitrage price relation for the CBT’s T-bond futures must be mod-
ified to account for the fact that the seller has an option to deliver any one of a
number of eligible bond issues. Second, for options on short-term debt instru-
ments, the log-normal price distribution assumption is inappropriate. The price

I
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of a T-bill, for example, can never exceed its par value. Consequently, we are
required to develop a new methodology for valuing interest rate options. To do
so, we invoke the assumption that the short-term interest rate is log-normally
distributed, and then modify the valuation methods of Chapters 7 through 9.
Section three illustrates three important interest rate derviatives risk manage-
ment strategies—a short-term long hedge, a long-term short hedge, and asset
allocation. 

 

MARKETS

 

To place the development of interest rate derivatives markets in context, it is use-
ful to get a sense for the underlying asset market. Unlike stocks, bonds are not
actively traded on exchanges. They trade in over-the-counter markets, which do
not have the transparency of stock markets. As a consequence, the public often
perceives the bond market to be smaller and less important than the stock market.
Nothing is further from the truth, however. Figure 17.1 shows the market value
of stocks and bonds traded in the United States as of December 31, 2003. Of the
$34.34 trillion in outstanding securities, 56% are bonds and 44% are stocks.
Corporate bonds are the single largest bond market, accounting for 20% of secu-
rity value. Agencies are the second largest group at 18%, Treasuries account for
12%, and municipalities account for 6%. Below the evolution of interest rate
derivatives is discussed. While exchange-traded interest rate derivatives markets
are active, the trading volume now pales by comparison to the OTC market.

 

Evolution of Interest Rate Derivatives

 

Derivatives contracts on interest rate instruments began trading in the mid-
1970s. The first interest rate futures contract, introduced in the fall of 1975,
was the Chicago Board of Trade’s (CBTs) futures on GNMA Collaterialized

FIGURE 17.1 Market values of bonds and stocks outstanding in the United States as of 
December 31, 2003. Total market value of all securities is $34.34 trillion.    

Source: Information compiled from Flow of Fund Accounts of the United States (fourth quar-
ter 2003), www.federalreserve.gov.
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Despositary Receipts (CDRs). The CDRs are pools of mortgages whose pay-
ments are insured by the Government National Mortgage Association (GNMA),
a U.S. governmental agency. They are sometimes referred to as “pass-through”
certificates because the payments of the mortgage holders passthrough to the
holders of the certificates in the form of coupon interest payments. Prepayments
by mortgagors, and prepayments by insurers in the case of default, also pass-
through. The coupon rates on the certificates are 0.5% below the rate on the
mortgages to cover the 0.44% retained by the servicer who collects and distrib-
utes the mortgage payments and the 0.06% paid to GNMA for insuring the pool
against default. Different pools of mortgages, even ones with the same coupon
rate, behave quite differently from one another due to different rates of prepay-
ment. The futures contract permitted different coupon rates to be delivered, and
had an imperfect system for translating these eligible bonds into an 8% coupon
bond issue. Without a well-defined underlying asset, arbitrage between the
futures and cash market is impeded, and the correlation between the futures and
mortgage-backed securities is low, undermining the contract’s effectiveness as a
hedging vehicle. The contract was delisted in the late 1980s.

 

1

 

The next interest rate futures contracts to be introduced were the Chicago
Mercantile Exchange’s (CMEs) T-bill futures contract in January 1976 and the
CBT’s U.S. Treasury bond futures in August 1977. Spurred by success of these
contract markets, interest rate futures began to appear on other exchanges
worldwide. The Sydney Futures Exchange, for example, introduced futures on
90-day Bank Accepted bills in October 1979, and the London International
Financial Futures Exchange introduced trading on long gilt

 

2

 

 futures in Novem-
ber 1982. Back in the United States, another important innovation occurred in
December 1981 when the CME introduced the Eurodollar futures contract. This
marked the first time an interest rate futures specified cash-settlement rather
than physical delivery. 

Options on interest rate instruments first appeared in late 1982. On October
1, 1982, the CBT and the CME simultaneously launched trading of option con-
tracts on T-bond futures and Eurodollar futures, respectively. The Chicago Board
Options Exchange (CBOE) introduced options on Treasury bonds and the Amer-
ican Stock Exchange (AMEX) introduced options on Treasury notes and bills on
October 22, 1982. Interestingly, options written on interest rates futures are far
more actively traded on exchanges than are options on debt instruments directly.
One possible reason for this phenomenon is that there are just too many debt
issues (for the U.S. Treasury alone) for each to have an actively traded market on
an exchange. OTC option dealers, on the other hand, stand ready and willing to
create an option on any bond issue that a customer wants.

The last noteworthy event in terms of the evolution of interest rate deriva-
tives markets is the development of the swap market in the early 1980s. An 

 

inter-
est rate swap

 

 is an agreement between two parties to exchange or “swap” a
series of periodic interest payments. The most common interest rate swap is to
exchange payments on fixed rate debt for floating rate debt. Such a swap is called

 

1 

 

Johnston and McConnell (1989) provide an interesting retrospective on the rise and fall of
the CBT’s GNMA contract market.

 

2 

 

A 

 

gilt

 

 (or gilt-edged stock) is a bond issued and guaranteed by the British government.
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a 

 

plain-vanilla interest rate swap

 

. An early example occurred in 1982, when Sal-
lie Mae swapped the interest payments on intermediate-term fixed rate debt for
floating rate payments indexed to the three-month T-bill yield. In the same year,
a USD 300 million seven-year Deutsche Bank bond issue was swapped into USD
LIBOR. While today, OTC swaps are written on a number of different types of
underlying assets, interest rate swaps are far and away the largest asset category.
As of yearend 2003, interest rate derivatives accounted for 72% of the notional
amount of all OTC derivatives outstanding. (See Figure 17.2.) Of this amount,
more than 76% of interest rate derivatives were swaps, with the remaining 24%
being between split options (14.7%) and forwards (10.3%). (See Figure 17.3.)
We return to OTC interst rate products in the next chapter.

 

Interest Rate Futures

 

In the case of stock, stock index, and foreign currency products discussed in the last
three chapters, there is a single source of risk underlying the derivatives contracts
(i.e., the price risks of a stock, stock index, or foreign currency). Interest rate deriv-
atives, on the other hand, are more intriguing in the sense that interest rate risk is
often categorized by whether it is short-term, intermediate-term, or long-term, with
the behavior of each interest rate being quite different. By far the most active short-
term interest rate contract is the CME’s three-month Eurodollar futures. The CBT’s
T-bond futures captures most of the trading in the long-term arena, and the CBT’s
10-year and five-year contracts capture the intermediate term. All other interest
rate futures contract trading volumes of the other contracts pale by comparison. 

 

FIGURE 17.2

 

Percentage of total notional amount of derivatives outstanding worldwide on 
December 2003 by underlying asset category. Total notional amount of derivatives is USD 
197.2 trillion. 

 

Source: 

 

Information compiled from Bank for International Settlements (www.bis.org), 

 

BIS 
Quarterly Review

 

, June 2004.
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FIGURE 17.3

 

Percentage of total notional amount of single-currency, interest rate derivatives 
outstanding worldwide on December 2003 by contract type. Total notional amount of inter-
est rate derivatives is USD 141.99 trillion.  

 

Source: 

 

Information compiled from Bank for International Settlements (www.bis.org), 

 

BIS 
Quarterly Review

 

, June 2004.

 

Eurodollar Futures

 

The contract specifications for the CME’s Eurodollar futures are
given in Table 17.1. The underlying instrument is a USD 1,000,000 Eurodollar
deposit with three months to maturity. Its price is quoted as an index level and is
created by subtracting the Eurodollar rate from 100. A price of 94.50, therefore,
means that the contract buyer is willing to lend USD 1,000,000 at 5.50% for a
three-month period beginning on the date the futures contract expires. Unlike
many other interest rate futures, the Eurodollar futures is cash settled at expira-
tion, which is set as the second London business day immediately preceding the
third Wednesday of the contract month. The cash settlement price is the British
Bankers Association (BBA) Interest Settlement Rate. At 11 

 

AM

 

 London time, 16
BBA designated banks provide quotes that reflect their perception of the rate at
which U.S. dollar deposits are generally available in the marketplace. The highest
four and the lowest four are eliminated. The average of the remaining eight quotes
(rounded to the fifth decimal place) is the fixing of the day. 

Table 17.2 contains a summary of Eurodollar futures trading on Thursday,
March 30, 2006. The June 2006 futures has a reported settlement price of
94.975. This means the promised rate on a three-month Eurodollar time deposit
beginning on June 19, 2006 (second London business day immediately preced-
ing the third Wednesday of the contract month) is 5.025%. As noted in Chapter
2, this nominal Eurodollar interest rate is a simple interest rate based on a 360-
day year. To find the continuously compounded rate of return, we must undo the
nominal rates and the 360-day banker’s year converntion. Since 

Forwards
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14%

Swaps
78%
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TABLE 17.1  

 

Selected terms of CME’s Eurodollar futures contract. 

 

the continuous rate is

The function, OV_IR_CONV_ED_YIELD(

 

rate,days

 

), performs this transforma-
tion, where 

 

rate

 

 is the nominal Eurodollar interest rate and 

 

days

 

 is the number
of days to maturity. In the present context,

OV_IR_CONV_ED_YIELD(0.05025,92) = 0.052425

Table 17.2 also shows a phenomenon that is uncommon to most exchange-
traded derivatives, that is, contract months extend out into the future 10 years.
For most exchange-traded derivatives with the March quarterly expiration
(March, June, September, December), the nearby contract has the greatest trading
volume, with the second nearby contract having only a small fraction of that of
the nearby. For the Eurodollar contracts, even the June 2011 futures has 2,002
contracts outstanding. At a contract denomination of USD 1,000,000, this repre-
sents over USD 2 billion. The reason for the activity ranging out so far is that this
is the primary market that OTC market makers use to hedge their floating rate

 

Exchange Chicago Mercantile Exchange
Contract unit $1,000,000 Eurodollar time deposit
Price quote An index created by subtracting the Eurodollar rate from 100.

(e.g., 94.50 implies a 5.50% Eurodollar interest rate.)
Tick size 0.005 (1/2 basis point)
Tick value $12.50 per contract
Trading hours 7:20 

 

AM

 

 to 2:00 

 

PM

 

 (CT) Monday through Friday. 
GLOBEX: Monday through Thursday, 5 

 

PM

 

 to 4 

 

PM

 

; Sundays and
holidays, 5 

 

PM

 

 to 4 

 

PM

 

.
Contract months 40 months on March quarterly cycle (Mar., Jun., Sep., Dec.) plus

four nearest serial months.
Last day of trading Second London bank business day immediately preceding the third

Wednesday of the contract month. If it is a bank holiday in New
York City or Chicago, trading terminates on the first London
bank business day preceding the third Wednesday of the contract
month. If an Exchange holiday, trading terminates on the next
preceding business day common to London banks and the
Exchange.

Settlement Cash settlement price determined by the British Bankers Associa-
tion (BBA) Interest Settlement Rate. At 11 

 

AM

 

 London time, 16 
BBA designated banks provide quotes which reflect their percep-
tion of the rate at which U.S. dollar deposits are generally avail-
able in the market place. The four highest and the four lowest are 
eliminated. The average of the remaining eight quotes (rounded 
out to the fifth decimal place) is the fixing for the day.

r
1 0.05025 92 360⁄( )+( )ln

92 365⁄
------------------------------------------------------------------- 5.2425%= =
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TABLE 17.2  Summary of trading activity of Chicago Mercantile Exchange’s Eurodollar 
futures on March 30, 2006. 

Source: Data drawn from www.cme.com.

Month Open High Low Last Settlement
Point

Change
Estimated
Volume

Open
Interest

Apr-06 94.96  94.96    94.945  94.9475B 94.95    –1.25 5,693 44,588
May-06 94.87  94.96B  94.86A  94.865A  94.86  –2        65 10,112
Jun-06 94.825 94.84    94.79    94.795    94.795 –3   327K 1365K
Jul-06 94.785 94.79    94.765A 94.77A    94.765 –3      748   1,043
Aug-06 — — 94.745A 94.76A    94.745 –3      493
Sep-06 94.77  94.79    94.715  94.72      94.725 –4   467K 1340K
Dec-06 94.785 94.81    94.725  94.74      94.74  –4   431K 1388K
Mar-07 94.845 94.865  94.775  94.785    94.79  –5   382K 1098K
Jun-07 94.885 94.91    94.815  94.83      94.83  –5   322K 898,819
Sep-07 94.905 94.93    94.835  94.85      94.855 –4.5 188K 786,126
Dec-07 94.9    94.925  94.84    94.85      94.855 –4.5 124K 549,025
Mar-08 94.905 94.92    94.83    94.845    94.85  –4.5   78K 356,216
Jun-08 94.88  94.9      94.81    94.835B  94.83  –4.5   27K 253,736
Sep-08 94.86  94.88    94.79    94.815B  94.81  –4.5   21K 213,770
Dec-08 94.81  94.84    94.755A 94.775B  94.77  –4.5   19K 179,193
Mar-09 94.82  94.82    94.74    94.76      94.755 –4.5   13K 129,372
Jun-09 94.79  94.79    94.70A  94.73      94.73  –4.5   10K 116,373
Sep-09 94.765 94.765 94.67A  94.7        94.7    –5   7,654 107,602
Dec-09 94.685 94.72B 94.63A  94.66      94.66  –5   8,744   95,764
Mar-10 94.675 94.71B 94.615A 94.645    94.645 –5.5 6,926   78,810
Jun-10 94.63  94.69B 94.59A  94.625A  94.625 –5.5 5,255   60,504
Sep-10 94.615 94.665B 94.565A 94.6        94.595 –6   3,842   54,679
Dec-10 94.635 94.635  94.52    94.565    94.56  –6   2,859   54,141
Mar-11 94.625 94.625  94.52A  94.555    94.55  –6   3,712   23,939
Jun-11 — — 94.50A  94.525B  94.53  –6   2,002   11,926
Sep-11 — — 94.48A  94.505B  94.505 –6.5    202   16,176
Dec-11 — — 94.45A  94.475B  94.475 –6.5    202   12,631
Mar-12 — — 94.445A 94.47B    94.47  –6.5    202     9,374
Jun-12 94.49  94.49    94.42A  94.44B    94.445 –6.5      12     5,904
Sep-12 94.47  94.47    94.40A  94.42B    94.42  –7        11     7,659
Dec-12 94.44  94.44    94.37A  94.39B    94.39  –7          5     5,927
Mar-13 — — 94.365A 94.385B  94.385 –7          2     2,883
Jun-13 — — 94.34A  94.355B  94.36  –7          2     2,069
Sep-13 — — 94.315A 94.335B  94.335 –7          2     1,336
Dec-13 — — 94.285A 94.30B    94.305 –7          2     1,220
Mar-14 — — 94.28A  94.295B  94.3    –7          2     1,400
Jun-14 — — 94.255A 94.27B    94.275 –7          2        466
Sep-14 — — 94.23A  94.245B  94.25  –7          2        641
Dec-14 — — 94.20A  94.215B  94.22  –7          2     1,198
Mar-15 — — 94.195A 94.21B    94.215 –7          2        392
Jun-15 — — 94.175A 94.19B    94.19  –7.5        2        488
Sep-15 — — 94.155A 94.17A    94.165 –8          2        565
Dec-15 — — 94.125A 94.14A    94.135 –8          2        260
Mar-16 — — 94.12A  94.135A  94.13  –8          2        230
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risk exposure on interest rate swaps. We discuss the linkage between these mar-
kets in the interest rate swap valuation section later in the next chapter.

 

U.S. T-Bond and T-Note Futures

 

The contract specifications of the CBT’s T-bond and
10-year T-note contracts are shown in Tables 17.3 and 17.4, respectively. Both
requires the delivery of a $100,000 U.S. Treasury coupon-bearing instrument,
however, in the case of the T-bond futures it is a T-bond with at least 15 years to
maturity or, if the bond is callable, to first call date,

 

3

 

 and in the case of the 10-year
T-note futures it is a T-note with at least 6

 

¹�₂

 

 years but less than 10 years to matu-
rity. Both contracts follow a quarterly expiration cycle. Delivery may take place at
any time during the delivery month at the discretion of the short. The last day of
trading of the futures contract is the eighth last business day of the contract
month. Table 17.5 shows the prices of the T-bond and T-notes futures as of the
close of trading on March 30, 2006. Note that like their underlying instruments,
T-bond and T-note futures have their prices quoted in 32nds. The June 2006 T-
bond futures settlement price of 109-06 means that the price is 109.1875% of par.

 

3 

 

The U.S. Treasury stopped issuing 30-year bonds in November 2001, an era when the gov-
ernment was running budget surpluses—not deficits—and financing the government's debt
was easier. Consequently, the deliverable supply of long-term U.S. Treasury bonds had been
declining. In August 2005, the U.S. Treasury announced that it would once again issue 30-year
bonds beginning February 2006. 

For decades, the 30-year bond served as a closely followed benchmark for the entire fixed-
income market. But Treasury stopped issuing the long bond in 2001, in an era when the gov-
ernment was finally running budget surpluses—not deficits—and financing the government's
debt was easier.

TABLE 17.3  Selected terms of CBT’s U.S. Treasury bond futures contract.

Exchange Chicago Board of Trade
Contract unit One U.S. T-bond with a face value of $100,000
Deliverable grades Any U.S. T-bond with at least 15 years to maturity or to first call date

from the first day of the delivery month. Invoice price equals settle-
ment price times a conversion factor plus accrued interest. The con-
version factor is the price of the delivered bond to yield 6%.

Price quote Points ($1,000) and 1/32 of a point. E.g., 80-16 equals 80 16/32.
Tick size 1/32 of a point
Tick value $31.25 per contract
Trading hours Open outcry: 7:20 AM to 2:00 PM CT, Monday through Friday

Electronic: 7:00 PM to 4:00 PM CT, Sunday through Friday
Contract months Four contract months on March quarterly expiration cycle (Mar.,

Jun., Sep., Dec.)
Last day of trading Seventh last day preceding the last business day of the delivery

month.
Settlement Physical delivery
First delivery day First day of the contract month
Last delivery day Last day of contract month
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TABLE 17.4  Selected terms of CBT’s 10-year U.S. Treasury note futures contract. 

TABLE 17.5  Summary of trading activity of Chicago Board of Trade’s Treasury bond and 
10-year Treasury note futures on Thursday, March 30, 2006.  

Source: Data drawn from www.cbot.com.

Exchange Chicago Board of Trade
Contract unit One U.S. T-note with a face value of $100,000
Deliverable grades Any U.S. T-note with at least 6-1/2 years but not more than 10 years

to maturity from the first day of the delivery month. Invoice price
equals settlement price times a conversion factor plus accrued inter-
est. The conversion factor is the price of the delivered bond to yield
6%.

Price quote Points ($1,000) and one-half of 1/32 of a point. E.g., 80-165 equals
80 16.5/32.

Tick size One-half of 1/32 of a point
Tick value $15.625 per contract
Trading hours Open outcry: 7:20 AM to 2:00 PM CT, Monday through Friday

Electronic: 7:00 PM to 4:00 PM CT, Sunday through Friday
Contract months Four contract months on March Quarterly expiration cycle (Mar.,

Jun., Sep., Dec.)
Last day of trading Seventh last day preceding the last business day of the delivery month.
Settlement Physical delivery
First delivery day First day of the contract month
Last delivery day Last day of contract month

Contract
month Open High Low Settle Chg

Open
Interest

Treasury Bonds (CBT)

Jun-06 109-19 109-21 108-26 109-06 –16    642,750
Sep-06 109-16 109-16 108-29 109-07 –16        3,429
Dec-06 109-19 –16           588
Mar-07 109-14 –16               1

10-Year Treasury Notes (CBT)

Jun-06 106-200 106-200 106-040 106-100 –0-095 2,045,545
Sep-06 106-210 106-210 106-065 106-110 –0-105    666,465
Dec-06 106-100 –0-115           148
Mar-07 106-100 –0-115               1
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Conversion Factor

 

The CBT’s Treasury contracts call for the delivery of any Trea-
sury instrument satisfying a particular maturity constraint. As noted, above, the
T-bond futures contract calls for the delivery of any $100,000 U.S. Treasury bond
with at least 15 years to maturity or to first call date. Different T-bonds, however,
have different coupons and therefore different prices. If no other restriction is
applied, the individuals who are short the futures would deliver zero-coupon
bonds since, holding other factors constant, they have the lowest value. 

The CBT’s system of conversion is designed to make the short futures indif-
ferent about which one of the eligible bonds to deliver. It does so by converting
every bond to a common hypothetical 6% coupon-bearing bond.

 

4

 

 To illustrate
the principle underlying the CBT’s system of conversion, consider the price of a
6%, semiannual coupon-bearing bond with 15 years to maturity. If the yield to
maturity is 6%, the bond’s price may be written 

where the coupon rate and yield have been halved to account for the semiannual
coupon payment convention. Now consider the price of a 9%, 15-year bond at
a 6% yield to maturity, that is

Since the only difference between these bonds is their coupon payment, it must
be the case that owning the 9% coupon-bearing bond is like owning 1.2940 6%
bonds. Since the futures price is based on a 6% coupon bond, the futures price is
multiplied by a conversion factor of 1.2940 to compute the amount paid (deliv-
ery price) by the long to the short if the short delivers the 9% coupon issue.  

The actual formula for computing the CBT’s conversion factor is more com-
plicated than what is demonstrated in the above example because coupons are
paid on a semiannual basis, and, in general, the next coupon payment is made in
less than six months (i.e., we are part of the way through the current coupon
period).  The actual formula is 

(17.1)

where 

 

CF

 

 is the conversion factor, 

 

C

 

 is the annual coupon rate of the bond in
decimal form, 

 

y

 

 equals 0.06, 

 

n

 

 is the number of whole years to first call if the

 

4 

 

The reason that the CBT allows T-bonds with different coupons to be delivered is to prevent
the possibility of market manipulation.  Each T-bond has limited supply. If the futures con-
tract were written on a single T-bond issue, it would be possible for a single individual or firm
to corner the market in the underlying bond and attempt a short squeeze. See Chapter 1.
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bond is callable or the number of years to maturity if the bond is not callable,
and X is the number of months that the maturity exceeds n, rounded down to
the nearest quarter (e.g., X = 0,3,6,9). Note that if X = 0,3,6, the formula (17.1)
is used directly.  If X = 9, set 2n = 2n + 1, X = 3, and calculate as above. The
CBT and others publish and distribute conversion factor tables like those shown
in Table 17.6.  Note that in Table 17.6 the conversion factor of a 9% bond
maturing in exactly 15 years is 1.2940, just as we computed earlier.

To illustrate the use of the conversion factor system, assume that we are con-
sidering delivering the 9¹�₂s of November 2021 on the June 2006 T-bond futures
contract. This bond is eligible for delivery because, as of June 1, 2006 (i.e., the
first possible delivery date), it has more than 15 years to maturity. In point of fact,
on June 1, 2006, the 9¹�₂s of November 2021 have 15 years and five months to
maturity (i.e., n = 15 and X = 5). When rounded down to the nearest quarter, we
have X = 3. Thus, the CBT deems this bond to have 15 years to maturity for deliv-
ery purposes. Using Table 17.6, we see that the conversion factor of this bond is
1.3464. In other words, in place of delivering the hypothetical 6% bond underly-
ing the June 2006 futures, we can deliver the 9¹�₂s of November 2021, and the
buyer is going to have to pay 1.3464 times the prevailing futures price. The con-
version factor may also be determined using the OPTVAL function, 

OV_IR_CONV_TBOND_CONVFAC(ncoup,nyrs,coup)

where ncoup is nominal (annualized) coupon rate (in decimal) specified by the
exchange, nyrs is the number of years to maturity of the T-bond being delivered, and
coup is the coupon rate (in decimal) of the T-bond being delivered. Consequently,

OV_IR_CONV_TBOND_CONVFAC (0.06,15.41667,0.0950) = 1.3464

Invoice Price On the delivery date, the seller of the T-bond futures delivers an eli-
gible T-bond to the buyer of the T-bond futures contract. In return, the buyer
must pay an amount of money called the invoice price. The amount of the
invoice price equals the sum of the futures price times the conversion factor of
the delivered bond and the accrued interest on the delivered bond. Suppose that
on June 1, 2006 (i.e., the first day of the delivery month), for example, the June
2006 futures is priced at 100-17. Like the underlying bonds, the digits to the
right of the dash represent 32nds, so the futures price is actually 100.53125. If
we sell the futures and then promptly deliver the 9¹�₂s of November 2021 to the
futures contract buyer, we would receive the invoice price, which equals
100.53125 times 1,000 (the denomination of the futures contract) times 1.3464
(the conversion factor of the 9¹�₂s of November 2021 as of June 1, 2006), that is,

100.53125 × $1,000 × 1.3464 = $135,355.28

plus the accrued interest on the 9¹�₂s of November 2021 as of June 1, 2006,5  that is, 

5 As of June 1, 2006, 15 days have elapsed in the current coupon period for the 9¹�₂s of No-
vember 2021 (from May 15 to June 1), where the current coupon period is 184 days in length
(from May 15, 2006 to November 15, 2006).
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(9.50/2) × $1,000 × (15/184) = $387.23

The total invoice price is $135,355.28 + 387.23 = $135,742.51.
The conversion factor mechanics are more tedious than they are difficult to

understand. As noted earlier, the motivation for making a number of different T-
bonds eligible for delivery is to ensure that no single individual or bank can
attempt to corner the market in the bond underlying the futures. The system of
conversion does not work exactly, however, and one of the eligible bonds winds
up being “cheapest-to-deliver” in practice. We will show how to identify this
bond and modify the futures pricing relation in the next section of the chapter.

Interest Rate Options

The most active exchange-traded interest rate options are those written on the
CME’s Eurodollar futures, and the CBT’s five-year T-note, 10-year T-note, and T-
bond futures. All of these contracts are futures options. Although some exchanges
such as the CBOE and the AMEX have tried to develop options on specific bond
issues, none of the markets have been particularly successful. That is not say that
bond option markets are inactive. They are, but not on exchanges. Recall that
Figure 17.3 showed that the notional amount of interest rate options outstanding
in the OTC market was about USD 20 trillion at the end of 2003.

Eurodollar Futures Options The contract specifications of the CME’s Eurodollar
futures options are given in Table 17.7. The options are American-style, and
expire together with the underlying futures on the second London business day
before the third Wednesday of the contract month. Exercise of a Eurodollar
option before expiration results in the delivery of the underlying futures. Thus,
if we hold a June 2006 call option written on a Eurodollar futures and exercise
it, we will receive a long position in the June 2006 Eurodollar futures at the end
of the day and will receive cash proceeds equal to the difference between the
futures settlement price and the exercise price of the call.

Eurodollar futures options follow a quarterly expiration cycle like the
futures. In addition, there are two serial months. If we are standing at the end of
March 2006, for example, the nearby Eurodollar futures will be the June 2006
contract. Eurodollar futures options with April 2006, May 2006, and June 2006
expirations will appear—the April and May contracts being the serial months
and the June contract being the quarterly expiration. In this case, the April and
May options contracts, like the June contract, are written on the June 2006
Eurodollar futures. Unlike the June contract, which, if carried to expiration is
cash-settled, the April and May contracts have delivery settlement.

U.S. T-Bond Futures Options The contract specifications of the CBT’s option contracts
on the T-bond and T-note futures are similar, so we present only the T-bond
futures’ contract specifications in Table 17.8. Like the Eurodollar futures options,
early exercise results in receiving a position in the underlying futures. Exercising a
call, for example, results in a long futures position, and exercising a put results in
a short futures position. Unlike the Eurodollar futures options, however, the last
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day of trading is the first Friday preceding, by at least two business days, the first
notice day for the corresponding T-bond futures contract.  In general, the first
notice day of the futures is the first business day of the contract month. Thus
although the June 2006 option contract is written on the June 2006 futures, it
expires in May 2006, on the first Friday preceding, by at least two business days,
June 1, 2006. The CBT also lists a “front month” contract, if the front month is
not a quarterly expiration. This means that standing at the end of June 2006,
there will be a July 2006 T-bond futures option contract, however, it is written on
the September 2006 T-bond futures.

NO-ARBITRAGE RELATIONS AND VALUATION

Like common stocks and stock indexes, the no-arbitrage price relations and val-
uation methods are best modeled using a discrete flow carry cost assumption.

TABLE 17.7  Selected terms of CME’s Eurodollar futures options contract.

Exchange Chicago Mercantile Exchange
Contract unit $1,000,000 Eurodollar time deposit
Price quote An index created by subtracting the Eurodollar rate from 100. (e.g.,

94.50 implies a 5.50% Eurodollar interest rate.)
Tick size 0.01 (1 basis point)
Tick value $25.00 per contract
Exercise prices At 0.25 intervals for the nearest listed expiration in the quarterly

cycle, and the serial month expirations with the same underlying
futures.

Trading hours 7:20 AM to 2:00 PM (CT), Monday through Friday. GLOBEX: Mon-
day through Thursday 5 PM to 6:50 AM; Sundays and holidays, 5
PM to 6:50 AM.

Contract months Eight months in March quaterly cycle (Mar., Jun., Sep., Dec.) cycle
plus two serial months.

Last day of trading Quarterly: Options trading shall terminate at 11:00 AM (London
Time) 5:00 AM (Chicago Time) on the second London bank busi-
ness day before the third Wednesday of the contract month. Serial
Eurodollar options trading shall terminate on the Friday immedi-
ately preceding the third Wednesday of the contract month. If the
foregoing date for termination is an Exchange holiday, options
trading shall terminate on the immediately preceding business day.

Settlement Cash settlement price determined by the British Bankers Association
(BBA) Interest Settlement Rate. At 11 AM London time, 16 BBA
designated banks provide quotes which reflect their perception of
the rate at which U.S. dollar deposits are generally available.

Style American-style
Settlement The quarterly contracts are cash settled in the same manner as the 

futures. Early exercise or exercise of serial contracts requires the 
delivery of the underlying futures position.



Interest Rate Products: Futures and Options 617

The U.S. Treasury bonds underlying long-term bond futures and options, for
example, pay coupons on a semiannual basis, with the amount of the coupon
interest payment date as well as the payment date known. The debt instruments
underlying short-term bond futures and options (e.g., T-bill and Eurodollar
futures and options) make no intermediate coupon payments, in which case the
only carry cost is the interest rate. 

This section provides a summary of the no-arbitrage price relations and val-
uation equations of exchange-traded interest rate derivatives. Most of the
results are straightforward extensions of the materials developed in Chapters 4
through 9. There are two notable exceptions, however. First, under the no-arbi-
trage price relations discussion, we are forced to consider the implications of the
T-bond futures having eligible for delivery a number of different T-bond issues.
Because the CBT’s system of conversion does not work exactly as it should, one
of the eligible T-bonds winds up being cheapest to deliver, and the cheapest to
deliver bond may change through time. We examine how this contract idiosyn-
cracy affects the structure of the net cost of carry relation. Second, the valuation
results of Chapters 7 through 9 were based on the assumption that the underly-
ing asset price was log-normally distributed at the option’s expiration. While

TABLE 17.8  Selected terms of CBT’s U.S. Treasury bond futures options contract.

Exchange Chicago Board of Trade
Ticker symbol CG for calls/PG for puts
Contract unit One U.S. T-bond futures (of a specified maturity) having a face

value of $100,000
Tick size 1/64 of a point
Tick value $15.625 per contract
Exercise prices

1-point strikes for the nearby contract month in a band consisting
of the at-the-money, 4 above, and 4 below; 2-point strikes are
listed outside this band. Back months are also listed in 2-point
strike price intervals.

Trading hours Open outcry: 7:20 AM to 2:00 PM CT, Monday through Friday
Electronic: 7:02 PM to 4:00 PM CT, Sunday through Friday

Contract months First three consecutive contract months (two serial expirations and
one quarterly expiration) plus the next two months in March
quarterly cycle (Mar., Jun., Sep., Dec.). There will always be five
months available for trading. Monthlies will exercise into the
first nearby quarterly futures contract. Quarterlies will exercise
into futures contracts of the same delivery period.

Last day of trading Options cease trading on the last Friday, preceding by at least two
business days, the last business day of the month preceding the
contract month.

Style American-style. Options that expire in-the-money are automati-
cally exercised.

Settlement Physical delivery of futures position
Trading hours Open outcry: 7:20 AM to 2:00 PM CST, Monday through Friday
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this assumption may be reasonable for options on long-term bonds, it becomes
less and less palatable as the term to maturity of the bond becomes short. A T-
bill, for example, cannot have a price that exceeds its par value at expiration. To
circumvent this problem, we assume interest rates are log-normally distributed
at the option’s expiration.

Net Cost of Carry Relation for CBT’s T-Bond Futures

Table 17.9 summarizes the no-arbitrage price relations for futures and options
written on coupon-bearing bonds. The relations are no different than they were
for derivatives on stocks and stocks indexes. In place of the present value of
cash dividends, we use the present value of coupons paid during the life of the
derivative contract. The cost of carry relation of a bond futures is shown in
Table 17.9 as being 

(17.2)

where F is the futures price, B is the underlying coupon-bearing bond price, r is
the continuously compounded risk-free interest rate, T is the time to expiration
of the futures, and FVC is the future value of the coupons paid on the bond (if
any) during the futures’ life. What (17.2) says is that we should be indifferent
between (1) buying a coupon-bearing bond futures contract for delivery of the
bond at time T, and (2) buying the coupon-bearing bond and carrying it with
short-term, risk-free borrowings to time T. Neither investment alternative
involves a cash outlay today. Yet, both alternatives provide the bond at time T
at a price known today. Note that FVC is subtracted from the future value of the
bond investment on the right-hand side of (17.2) since any coupons paid prior
to T are not included in the value of the bond at time T.

The net cost of carry relation (17.2) assumes that there is a single asset
underlying the futures contract. Such is not the case for the CBT’s T-bond
futures contract—a number of bonds are eligible for delivery. Since the CBT’s T-
bond futures is the most active long-term interest rate futures traded in the
United States, it is important that we develop an understanding of the cost of
carry relation when multiple assets are eligible for delivery.

Before turning to the CBT’s T-bond futures contract, it is helpful to be
reminded about the bond price reporting conventions described in Chapter 2. In
Chapter 2, we define B as the market price of a coupon-bearing bond, that is,
the amount that we would pay if we decided to buy the bond. In market par-
lance, B is called the “gross price,” the “full price,” and/or the “dirty price” of
the bond. What gets reported in the financial pages and displayed on pricing
screens, however, is the “quoted price” or the “clean price,” B–. The quoted
price B– is the full bond price, B, less the accrued interest in the current coupon
period, AI, that is, B– = S – AI. Since we have to reconcile the T-bond futures
pricing relation with observed market prices later in the chapter, it is important
to recognize the reporting conventions upfront.

F BerT FVC–=
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Cheapest-to-Deliver at Futures Expiration To see how the CBT’s system should work,
suppose we are standing on the expiration day of the futures contract T and
consider the profit from selling the futures and buying and delivering eligible
bond i. In the absence of costless arbitrage opportunities, all bonds should have
a realized profit of 0, that is,

(17.3)

for all eligible bonds, where FT(CFi) + AIi,T is the invoice price received from
delivering bond i and  is the price paid for the purchase of bond i. In
practice, however, each bond will have a different value of πi,T because the
CBT’s system of conversion factors for the T-bond futures is not exact. All of the
values of πi,T will be less than or equal to zero. The bond with the highest value
of πi,T is called the “cheapest to deliver,” and its πi,T will be equal to zero. The
other bonds are said to be “more expensive to deliver” because the proceeds
from the sale of the bond, FT(CFi) + AIi,T, are less than the price paid for the
bond that we are delivering, . Instinctively, we might think that an
arbitrage profit is possible by reversing the trades (i.e., buying the futures and
selling the bond) when πi,T < 0. That intuition does not apply here since it is the
individual who is short the futures that has the right to decide which bond to
deliver. The individual who is long the futures contract has no say. None of the
bonds will have πi,T > 0 because that would imply that a costless arbitrage profit
could be earned by buying the bond, selling the futures, and then delivering the
bond on the futures commitment.  

The technical reason why a single T-bond will be cheapest to deliver bond is
that the CBT’s conversion factors are computed assuming the zero-coupon yield
curve is a flat 6% (i.e., y = 0.06 in (17.1)). Such a valuation procedure implicitly
assumes that all coupon payments are reinvested as they are received at 6% yield
until the end of the bond’s life. If the current zero-coupon yield curve implies that
the reinvestment rates for coupon payments are higher than 6%, the CBT’s conver-
sion factor will be too low for high-coupon bonds relative to low coupon bonds,
hence low coupon bonds will be the preferred bonds to deliver. On the other hand,
if the current zero-coupon yield curve implies that the reinvestment rates for coupon
payments are lower than 6%, high-coupon bonds will be delivered.

ILLUSTRATION 17.1 Identify cheapest to deliver bond at futures expiration.

Suppose that three bonds with 15 years to maturity are eligible for delivery on the CBT’s
T-bond futures contract. They have coupon rates of 3%, 6%, and 9%, respectively. The
conversion factors of the bonds are 0.7060, 1.000, and 1.2940, respectively. Identify the
cheapest to deliver bond assuming the zero-coupon yield curve is a flat 6%. Then, assume
the current zero-coupon yield curve is a flat 8% and identify the cheapest to deliver
bond. Explain the results.

6% yield curve. With a 6% yield curve, the value of the 3%, 6% and 9% coupon bonds are

πi T, FT CFi( ) AIi T, Bi T,
–

– AIi T,–+ 0= =

Bi T,
– AIi T,+

Bi T,
– AIi T,+

B3%
1.5

1.03t
-------------

100

1.0330
-----------------+

t 1=

30

∑ 70.60= =
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and

The CBT’s system of conversion attempts to put all of these bonds on an equal footing
with respect to being delivered on its T-bond futures contract. To translate each of these
coupon-bearing bonds to a 6% coupon bond, we divide their values by the CBT’s conver-
sion factors to identify their implied values had they had 6% coupon rates. The results
are shown in the table that follows. At a flat 6% yield to maturity, we are indifferent
about which of the three bonds to deliver. All bonds have implied values equal to 100. In
this case, the CBT’s conversion factors work precisely as they should.

8% yield curve. With an 8% yield curve, the bond values and implied values are shown in
the table below. The 3% coupon-bearing bond, for example, has a value of 56.77, that is,

and an implied value of 80.41, that is,

56.77/0.7060 = 80.41

The implied values of the 6% and 9% coupon bonds are 82.71 and 83.96. Obviously, we
would prefer to deliver the 3% bonds, since they have the lowest value.

The last two columns in the previous table identify the problem. When the yield to
maturity was 6%, the value of the 3% bond relative to the value of the 6% bond was
70.60/100.00 = 0.7060, exactly equal to the CBT’s conversion factor. When the yield
rises to 8%, the values of the bonds change relative to the 6% issue. At an 8% yield,
holding a 3% coupon bond is like holding only 0.6864 6% bonds, and, holding a 9% is
like holding 1.3136 6% bonds. If these “modified conversion factors” were used, all
bonds would again be put on an equal footing for delivery purposes.

Bond
Bond Value

at Yield of 6%
CBT

Conversion Factor
Implied Value
if 6% Coupon

3%   70.60 0.7060 100.00
6% 100.00 1.0000 100.00
9% 129.40 1.2940 100.00

Bond

Bond Value
at Yield
of 6%

CBT
Conversion

Factor

Implied
Value if

6% Coupon

Modified
Conversion

Factor

Modified
Value if

6% Coupon

3%   56.77 0.7060 80.41 0.6864 82.708
6%   82.71 1.0000 82.71 1.0000 82.708
9% 108.65 1.2940 83.96 1.3136 82.708

B6%
3.0

1.03t
-------------

100

1.0330
-----------------+

t 1=

30

∑ 100.00= =

B9%
4.5

1.03t
-------------

100

1.0330
-----------------+

t 1=

30

∑ 129.40= =

B9%
1.5

1.04t
-------------

100

1.0430
-----------------+

t 1=

30

∑ 56.77= =
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Cheapest-to-Deliver Prior to Futures Expiration Before maturity, as at maturity, the
futures price is based on the price of the cheapest to deliver, and the cheapest to
deliver is determined by finding the bond with the highest “cash-and-carry”
portfolio6 profit πi,T,

(17.4)

Note that (17.3) and (17.4) differ in some subtle ways. First, the futures price
has a time subscript 0 to indicate that we are talking about today’s price. The
term F0(CFi) + AIi,T is the invoice price of the bond or the cash proceeds that we
will receive from the sale of bond i when the futures contract expires. The term

 is the price that we paid for the bond at time 0 carried forward
until time T at the risk-free rate of interest r. Finally, assuming a coupon interest
payment was made at time t before the futures expiration (i.e., t < T), we invest
the coupon at the risk-free rate of interest until time T and its contribution to
the cash-and-carry portfolio profit is Ci,te

r(T–t). If no coupon is paid on bond i
before futures expiration, this term disappears. If we calculate the cash-and-
carry profit for all bonds eligible for delivery, we will get an array of values less
than 0. The cheapest-to-deliver bond is the one with the highest cash-and-carry
profit, and its value will be near zero.

Net Cost of Carry Relation The cash-and-carry profit equation (17.4) allows us to
specify the net cost of carry relation for the T-bond futures contract. With a sin-
gle T-bond i eligible for delivery, the relation can be obtained by setting the
cash-and-carry profit equation (17.4) equal to 0 and solving for F0, that is,  

(17.5)

But, many T-bonds are eligible for delivery and (17.4) is less than 0, even for the
T-bond that is currently cheapest to deliver since there is no assurance that this
bond will also be cheapest to deliver when the futures contract expires on day T.
Consequently, the net cost of carry relation for the T-bond futures contract must
be expressed as the inequality,

(17.6)

The net cost of carry relation may also be written in a manner that explicitly
recognizes the value of the quality option. The term “quality option” arose in
the context of grain futures contracts, which allow the individual who is short
the futures to deliver one of a number of different grades of a particular grain.
The CBT’s corn futures contract, for example, calls for the delivery of No. 2 yel-

6 In this context, a cash-and-carry portfolio refers to buying the underlying T-bond, financing
its purchase at the risk-free rate of interest, and selling the T-bond futures contract.
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Bi 0,
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CFi
------------------------------------------------------------------------------------------------=
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low corn at par, but also permits the delivery of No. 1 yellow at a 1¹�₂ cent pre-
mium over the futures contract price, and No. 3 yellow at a 1¹�₂ cent discount
below the contract price. Come delivery day, the individual who is short the
futures will be naturally choose to deliver the grade that is “cheapest.”

The same situation arises with the T-bond futures contract. While the short
may have entered a cash-and-carry position when bond i was cheapest to
deliver, he will deliver bond j at maturity if its conversion price is below bond
i’s, thereby earning a profit equal to the difference between the two prices. Thus
the net cost of carry relation is

(17.7)

where bond i is the current cheapest to deliver.7 

ILLUSTRATION 17.2 Value quality option embedded in T-bond futures.

Suppose that there exist two bonds that are eligible for delivery on the T-bonds futures
contract. Bond A has a 6% coupon rate, one month remaining until the next coupon
payment is made, a full price of 95, a conversion factor of 1.0000, and a volatility rate of
12%. Bond B has an 8% coupon rate, four months remaining until the next coupon pay-
ment is made, a full price of 107, a conversion factor of 1.2311, and a volatility rate of
15%. The correlation between rates of return of the two bonds is 0.9. The T-bond
futures has a time to expiration of three months, and the risk-free interest rate is 4%.
Find the cheapest-to-deliver bond as well as the value of the quality option when the T-
bond futures is priced off the cheapest-to-deliver.   

To identify the cheapest-to-deliver bond, we need to compute the implied futures
price for each bond the first term on the right-hand side of (17.7).  Bond A has an implied
futures price of 

Bond B has an implied futures price of

Since bond B has the lowest implied futures price, it is currently the cheapest to deliver.
The individual who is short the futures contract currently plans to deliver the 8%

coupon bond at the futures’ expiration. There is some possibility, however, that the 6%
coupon bond will become cheapest to deliver by the end of three months. If it does, the
short futures will deliver the 6% bond. This “right-to-switch” or “quality option” can be
valued using the exchange option valuation formula (8.20) from Chapter 8. In this par-
ticular case, the quality option is a put option that allows the short futures to deliver the
first bond instead of the second if its implied futures price is less at the futures expiration.

7 The value of the quality option can be computed using the exchange option valuation frame-
work of Margrabe (1978) model. Recall that we applied the same framework in valuing call
options with an indexed exercise price in Chapter 8.
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To value this option, we need to recognize the fact that the value of a call option to buy
asset 1 with asset 2 equals the value of a put option to sell asset 2 for asset 1. Under the
first case, the option holder exercises the call if the price of asset 1 exceeds asset 2 at
expiration. Under the second case, the option holder exercises the put if the price of asset
2 is below the price of asset 1 at expiration. The value of the quality option is therefore

p = 87.784e–0.04(0.25)N(d1) – 92.935e–0.04(0.25)N(d2) = 0.055

where

, 

This value can be verified using the OPTVAL Library function,

OV_FOPTION_VALUE_EXCHANGE(92.935,87.784,0.25,0.04,0.12,0.15,0.9, “p”) = 0.055

The short futures also has a timing option that gives a choice about when
during the contract month to deliver. The most valuable element in the timing
option is called the wildcard option.  In the delivery month the futures price at
which delivery is made is the settlement price established at 2:00 PM when the
market closes. The short has until 8:00 PM to declare delivery. Obviously, if
news arrives that justifies a decline in bond prices, the short will choose to make
delivery at the already established settlement price. 

Repurchase Agreements8 In discussing the net cost of carry relation for the T-bond
futures contract, we used a risk-free rate of interest r. For T-bonds, it is impor-
tant to digress and describe the most common form of financing the purchase of
T-bonds, that is, a sale repurchase agreement (also known as a repurchase agree-
ment or, simply, a repo).9 A repo agreement is a single transaction with two sep-
arate trade confirmations: the first is the sale of the bond for immediate
settlement, and the second is the repurchase of the bond for settlement at some
future date. The repurchase price is known at the time the agreement is entered,
and the difference between the repurchase price and the sales price is the interest
on the loan. Specifically,

8 More detailed discussions of repurchase and reverse repurchase agreements are provided in
Stigum (1990, pp. 576-79), Fabozzi (1996, 131–135), and Tuckman (2002, pp. 303–10).
9 Originally, just after World War II, repurchase agreements were used only for the purchase
and sale of highly creditworthy and liquid debt securities such as U.S. Treasuries. Over time,
the range of credits expanded to include collateral such as agency bonds and even investment
grade corporate bonds. By the mid- to late 1990s, even speculative corporate bonds were being
reversed out by hedge funds. The practice of reversing out “junk” bonds came to a screeching
halt in the aftermath of the collapse of Long-Term Capital Management and the Asian debt
crisis in 1997.

d1
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(17.8)

where n is the number of days the repo is outstanding.10 Thus the repo rate is
the implicit rate of interest paid by the borrower to the lender. A repo with a
term of one day is called an overnight repo and carries an interest rate called the
overnight repo rate. Repos (rates on repos) with more than one day to maturity
are called term repos (term repo rates). Repo rates are negotiated on a transac-
tion by transaction basis and vary depending on such factors as the term of the
repo and the credit-quality of the underlying collateral. 

Why would a borrower choose to finance the purchase of the bond with a
repo agreement rather than simply borrowing the money from the bank? The
answer is that it is cheaper. From an economic perspective, a repurchase agree-
ment is a collateralized loan.11 The borrower posts his bond to the lender as col-
lateral during the life of the agreement, and, in the event of default, the lender
has the right to immediately sell the bond in the marketplace to cover his losses.
By attaching specific collateral to the loan, the borrower garners a lower rate of
interest. Why would a lender choose to enter a repo agreement rather than buy
T-bills or money market instruments? The answer is that repo rates are generally
higher than comparable term instruments and yet remain highly liquid, secured
investments.12

The repo market carries with it a goodly amount of Wall Street jargon. In
the interest of completeness, we will consider some of it. While the borrower is
said to enter a repurchase agreement, the lender is said to enter a reverse repur-
chase agreement  (also known as a reverse repo or, simply, a reverse). By lending
his securities to provide collateral for the loan, the borrower is said to be revers-
ing out securities or selling collateral. On the other hand, in accepting the collat-
eral on the loan, the lender is said to be reversing in securities or buying
collateral. The borrower is said to repo securities; the lender is said to do a repo. 

Despite the fact that the collateral underlying repo agreements is generally
high quality, repos are carefully structured to reduce credit risk. One way of con-
trolling credit risk is to apply a haircut to the purchase price of the security to

10 Like T-bills and Eurodollar time deposits, repo rate quotes adopt the banker’s convention
of a 360-day year
11 The term collateralized loan is not meant to have any legal interpretation. Indeed, it is un-
clear whether a repo agreement is collateralized borrowing or a sequence of securities trades.
If it were collateralized borrowing, the lender’s right to sell the borrower’s collateral immedi-
ately in the event of default may be restricted to protect the borrower’s other creditors.
12 Municipalities are frequent lenders in the repo market to manage their cash flows. Tax rev-
enue is collected only periodically during the year. At the time of tax collection, the munici-
pality has no immediate need for the cash. Repo agreements offer the municipality the ability
to earn interest at competitive short-term rates with the safety of being secured loans until the
cash needs to be disbursed. In addition, although the Federal Reserve removed interest rate
ceilings on term deposits at commercial banks on March 31, 1986, it maintained the require-
ment that no interest be paid on demand deposits. (For a historical recount of the phase-out
of Regulation Q, see Gilbert (1986).) Overnight repos are a convenient way to earn interest
on what amounts to a demand deposit.

Repurchase price Sales price 1 Repo rate
n

360
----------⎝ ⎠

⎛ ⎞+×=
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protect the lender from adverse market movements. A 5% haircut means that
only 95% of the price of the bond is borrowed, with the bond held as collateral.
The size of the haircut (i.e., the amount of the margin) will depend on the level of
creditworthiness of the borrower, as well as the price risk, default risk, and liquid-
ity of the collateral. Another way to control credit risk for term repos is to mark-
to-market the collateral on a periodic (e.g., daily) basis. Suppose that a bond
dealer has a haircut provision of 5% and securities with a market value of $100
million. By reversing out securities in the repo market, he can effectively borrow
$95 million. Now, suppose that the market value of the securities drops to $99
million on the next day. Clearly, the lender is in a more precarious position given
that the worth of the collateral has fallen. When this happens, the repo agreement
may specify that there will be a margin call, in which case the borrower will be
required to post additional $1 million in market value of collateral to bring the
level back up to $100 million. Alternatively, the repo agreement may reprice the
repo, in which case the principal amount of the repo is reduced from $100 million
to $99 million and the borrower pays the lender $950,000 (i.e., 95% of $1 mil-
lion). For ease of exposition, we ignore haircuts and the marketing-to-market fea-
tures that may appear in repurchase agreements in this section. We also transform
the repo rate to a continuously-compounded rate of interest, that is,

To perform this computation, the OPTVAL library contains the function,

OV_IR_CONV_REPO_YIELD(rate, days)

where rate is the repo rate, and days is the term of the repo agreement in days. 

Duration of the CBT’s T-Bond Futures The duration of a futures contract is closely tied
to the duration of the cheapest-to-deliver T-bond. To develop a formal relation,
assume, for simplicity, that no coupons are paid during the futures’ life and that
the value of the quality option equals zero. Under these simplifying assump-
tions, the net cost-of-carry relation (17.7) may be rewritten as 

(17.9)

where B and CF are the price and the conversion factor of the cheapest-to-
deliver bond. The change in the futures price with respect to a change in the
level of interest rates r is

(17.10)

r
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Dividing the left-hand side by F and the right-hand side by BerT/CF, and simpli-
fying, we get

(17.11)

In other words, the duration of the futures equals the duration of the cheapest-
to-deliver bonds plus the term to maturity of the futures. The futures provides
the underlying bond, but with deferred delivery.

Option Valuation Equations Under Log-Normal Bond Prices

The valuation methods derived in Chapters 7 through 9 assume that the asset
underlying the option has a log-normal price distribution at the option’s expira-
tion. For options on long-term bonds or long-term bond futures, the assumption
is reasonable. Such is the case for many traders in the CBT’s T-bond futures
option pit, who use the BSM model to make markets in options.13 

ILLUSTRATION 17.3 Compute implied volatility from T-bond futures option price.

The CBT’s options on T-bond futures are American-style, and expire the Friday, preced-
ing by at least two business days, the last business day of the month preceding the con-
tract month. (See Table 17.9.) At the close on Friday, October 11, 2002, the December
2002 futures price was 112-10, and the December 2002 options on the December 2002
futures have prices as follows:

The risk-free interest rate is 1.772%. Compute the implied volatility for each reported
option price using the quadratic approximation. Comment on the nature of the “implied
volatility smile.”

The first step is to translate prices to decimal form. The futures price is reported in
(32nds), so 112-10 becomes 112.3125. The option prices are reported in 64ths, so the
values shown in the previous table are:

13 Recall that the BSM formula reduces to the Black (1976) formula for valuating European-
style futures options. A popular way of valuing American-style futures options is the quadratic
approximation provided in Whaley (1986). 

Exercise
Prices

Prices (in 64ths)

Call Put

110 3-26 1-06
111 2-49 1-29
112 2-13 1-57
113 1-46 2-26
114 1-20 3-00
115 0-63 3-43
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The next step is to deduce the number of days to expiration. The last Friday, preceding
by at least two business days the last business day of the month preceding the contract
month is November 22, 2002, and the number of days to expiration is therefore 42.

Finally, we use the OV_OPTION_ISD function to compute the implied volatilities.14

The results are as shown in the following table and figure. Note that the implied volatili-
ties for calls and puts are approximately equal and that implied volatilities decrease mod-
estly with exercise price. 

Exercise
Prices

Prices (in 64ths) Prices (in decimal)

Call Put Call Put

110 3-26 1-06 3.406250 1.093750
111 2-49 1-29 2.765625 1.453125
112 2-13 1-57 2.203125 1.890625
113 1-46 2-26 1.718750 2.406250
114 1-20 3-00 1.312500 3.000000
115 0-63 3-43 0.984375 3.671875

14 OV_OPTION_ISD uses the quadratic approximation for American-style options.

Exercise
Prices

Prices (in 64ths) Prices (in decimal) Implied Volatility

Call Put Call Put Call Put

110 3-26 1-06 3.406250 1.093750 0.1365 0.1362
111 2-49 1-29 2.765625 1.453125 0.1355 0.1354
112 2-13 1-57 2.203125 1.890625 0.1349 0.1348
113 1-46 2-26 1.718750 2.406250 0.1343 0.1344
114 1-20 3-00 1.312500 3.000000 0.1338 0.1340
115 0-63 3-43 0.984375 3.671875 0.1338 0.1341

Call volatility Put volatility
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Option Valuation Equations Under Log-Normal Interest Rates

For most assets, the assumption that the underlying asset has a lognormal price
distribution at the option’s expiration works well. For options on short-term
debt instruments such as T-bill or Eurodollar futures, it does not. The log-nor-
mal price distribution is inappropriate because it allows prices to become infi-
nitely high. T-bills and Eurodollar futures prices cannot exceed 100. To
circumvent this problem, we assume that the yield, rather than the price, of the
short-term debt instrument is log-normally distributed at the option’s expira-
tion.  Under this assumption, the yield can fall to zero, in which case the market
price of the short-term debt instrument becomes its predetermined maturity
value.  On the other hand, if the yield rises without limit, the market price of the
debt instrument converges to zero.

To illustrate this option valuation approach, we focus on the CME’s Euro-
dollar futures options. Although these options are American-style, we will
assume that they are European-style for expositional convenience. Aside from
the assumption that the forward Eurodollar rate is log-normally distributed at
the end of the option’s life, we invoke the same assumptions that we used in
Chapters 7 through 9. In particular, since both the futures and futures options
are actively traded, we adopt risk-neutral valuation. 

Under risk-neutral valuation, the current value of a European-style Eurodol-
lar futures option today is the present value of the expected future terminal
value, that is, 

(17.12)

where the expected terminal value is discounted to the present at the zero-cou-
pon rate corresponding to the expiration of the option. The terminal value of the
option is, in turn, a function of the Eurodollar futures index level, FT, that is, 

(17.13)

If the terminal futures price is log-normally distributed, we would evaluate
 in the same manner as we did in Chapter 7. With the forward Eurodollar

rate, R, being log-normally distributed, however, we must rewrite the option’s
payoff function as 

(17.14)

where we have merely substituted the fact that the Eurodollar futures price is an
index level created by subtracting the Eurodollar rate from 100, that is, F = 100 – R.
But, equation (17.14) looks surprisingly familiar. It is the terminal value function of
a European put option where  has replaced  and where 100 – X has replaced
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X. Since RT is log-normally distributed, the BSM European-style put option for-
mula from Chapter 5 can be applied directly. The expected terminal call price is 

(17.15)

where

 and 

where σR is the standard deviation of the logarithm of the yield ratios, ln(Rt/Rt–1).
Substituting (17.15) into (17.12), we find that the value of a European-style call
option on a Eurodollar futures contract is

(17.16)

By virtue of put-call parity for European-style futures options, the value of a
European-style put option on a Eurodollar futures contract is 

(17.17)

ILLUSTRATION 17.4 Compute implied volatility from Eurodollar futures option price.

The CME’s options on Eurodollar futures are American-style, and expire the second
London business day before the third Wednesday of the contract month. At the close on
Friday, October 11, 2002, the December 2002 futures price was 98.30, and the Decem-
ber 2002 options on the December 2002 futures have prices as follows:

The risk-free interest rate is 1.771%. Compute the implied volatility for each reported
option price using the European-style option valuation formula. Comment on the nature
of the “implied volatility smile.”

The first step in this illustration is to deduce the number of days to expiration. The
second London business day before the third Wednesday of the contract month is Decem-
ber 16, 2002, and the number of days to expiration is therefore 66.

Prices (in decimal)

Exercise Prices Call Put

9775 0.5575 0.0075
9800 0.3175 0.0175
9825 0.1450 0.0950
9850 0.0650 0.2650
9875 0.0250 0.4750
9900 0.0125 0.7100
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Using the OV_OPTION_ISD function to compute the implied volatilities, we find:

As the figure that follows shows, the implied volatilities for calls and puts are approxi-
mately the same even though the options are American-style. At very low exercise prices,
however, there is a slight difference. At these exercise prices, the call is in the money, and
the implied volatility is higher because the early exercise premium of the option is being
ignored. Interestingly, a similar pattern does not appear for puts at high exercise prices. 

RISK MANAGEMENT APPLICATIONS

This section focuses on some straightforward interest rate risk management
problems using exchange-traded interest rate products. Many other interest rate
strategies are discussed in Chapters 18 and 19.

Short-Term, Long Hedge

Interest rate futures can be used to lock in forward interest rates. Suppose, for
example, that on August 31, 2000 a company anticipates a cash inflow of
$5,000,000 the following September 18, 2000. The cash, when it is received will
be placed in a three-month certificate of deposit until December when it will be
used to partially finance a major capital expenditure that the firm plans. Suppose
also that the company’s financial analyst expects short-term three-month CD rates
to fall to a level of 5.5% by December, while the current implied three-month for-

Prices (in decimal) Implied Volatility

Exercise Prices Call Put Call Put

9775 0.5575 0.0075 0.4260 0.4074
9800 0.3175 0.0175 0.3466 0.3409
9825 0.1450 0.0950 0.4065 0.4059
9850 0.0650 0.2650 0.5309 0.5337
9875 0.0250 0.4750 0.6368 0.6479
9900 0.0125 0.7100 0.8200 0.8162
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ward rate of the September 2000 Eurodollar futures based on its reported price of
93.32 is 6.68%. What can the company do to lock in the higher rate of interest?  

Buying and selling Eurodollar futures contracts are a cost-efficient means of
locking-in forward rates of interest. The solution to this problem is to buy five
September 2000 Eurodollar futures at 93.32. To see how we have locked-in the
6.68% rate, consider what happens on September 18 when the Eurodollar
futures expires. If the three-month rate is 5% at that time, the September 2000
futures will be priced at 95.00. That means we will have posted a gain of (9500
– 9332) × $25 = $21,000. We take this gain as well as the $5 million cash pay-
ment and deposit them at the 5% interest rate. At the end of three months, the
terminal value of our deposit is

$5,021,000[1 + 0.05(91/360)] = $5,084,459.86

Thus the simple rate of return on the $5 million cash flow over the three-month
period is

$5,084,459.86/$5,000,000 = 1.6892%

and the nominal interest rate on an annualized basis is

as promised.

Long-Term, Short Hedge

In Chapter 2, we discussed hedging long-term interest rate risk exposure using
duration-based techniques. We now modify these techniques to use futures con-
tracts as the hedge instrument. Hedging means finding the number of futures to
buy or sell such that the value of the overall hedged portfolio does not change if
interest rates change, that is,

∆BP + nF ∆F = 0

where ∆BP and ∆F are the changes in value of your bond position and the
futures resulting from a change in interest rates, ∆y. Duration-based hedging
means approximating the change the changes of value with the product of dura-
tion and bond value, that is,

DPBP + nFDFF = 0

where DP and DF are durations of the bond portfolio and the futures contract,
respectively. The number of units of the hedge instrument to buy or sell is there-
fore given by

1.6892%
360
91

----------⎝ ⎠
⎛ ⎞ 6.68%≈
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ILLUSTRATION 17.5 Short hedge bond portfolio with long-term interest rate risk.

Suppose we currently manage a $50 million bond portfolio with a duration of 10.00. Sup-
pose also that the T-bond futures contract has a duration of 12.50 and a price of 99⁷�₃₂.
Find the futures hedge that completely negates the long-term interest rate risk exposure.

The optimal number of futures contracts to sell is 

Once the hedge is in place, the combination of long bonds and short futures should
behave as if it were $50 million invested in T-bills.

Equivalence of Duration-Based and OLS Regression Approaches The duration-based approach
to hedging formula derived above shows the optimal number of futures to sell
against a long position in bonds is

Yet, in the minimum variance hedging discussion of Chapter 5, we argued that
the optimal hedge ratio is –α1 in an OLS regression of the changes in bond port-
folio value on the changes in the value of the T-bond futures, that is,

∆B = α0 + α1∆F + ε

Can these seemingly disparate results be reconciled?
To understand that these results are essentially the same, rewrite the dura-

tion-based optimal hedge ratio as follows:

where the slope coefficient in the regression is also
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Thus from an analytical perspective, the results are the same. There will be
slight differences in implementation, however, since they use different sources of
information. 

Asset Allocation

The asset allocation decision refers to the allocation of fund wealth among vari-
ous asset categories including stocks, bonds (government and corporate), real
estate, and so on. Deep and liquid futures markets on the different asset catego-
ries provide cost-efficient vehicles for altering temporarily the asset mix or help-
ing unwind or create large asset positions without incurring significant market
impact costs.

ILLUSTRATION 17.6 Adjust asset allocation using futures.

Suppose that we currently manage a $100 million portfolio consisting of $50 million in
stocks and $50 million in long-term government bonds. The stock portfolio is well diver-
sified and has a beta of 1.5. The bond portfolio has a duration of 12. Change the asset
allocation of this portfolio from 50% stocks and 50% bonds to 100% stocks using T-
bond futures and S&P 500 index futures. Assume the T-bond futures has a duration of 9
and a price of 96. Assume that current S&P 500 index level is 1,500.  

First, we neutralize the long-term interest rate risk exposure. To do so, we sell T-
bond futures, the exact number determined by

By selling this number of futures, we eliminate the long-term interest rate risk exposure of
the government bonds. What we have done, in essence, is transform the $50 million long-
term government bond portfolio into $50 million in T-bills. Hence, as of this moment, the
overall portfolio contains $50 million in cash and $50 million in stocks.

The next step is to create $50 million more in stock. We do this using the $50 million
in cash and by buying S&P 500 index futures. The number of futures is given by

where βP, in this context, is the beta of the T-bills, β* is the desired beta of the portfolio
(i.e., 1.5), P is the desired investment in stocks, and S is the market value of one index
unit (i.e., the index level times the futures denomination). The number of futures con-
tracts to buy is therefore

The 200 S&P 500 futures together with the $50 million in T-bills creates a $50 million
stock portfolio with a beta of 1.50. Together with the $50 million invested in a stock
portfolio with a beta of 1.50, we now have $100 million invested in stocks.

hTBF
50,000,000 12.00( )
9 96.00× 1,000×

--------------------------------------------------– 694.44–= =

nF
∗ β* βP–( )

P

S
---⎝ ⎠

⎛ ⎞=

nF
∗ 1.50

50,000,000
1,500 250( )
------------------------------⎝ ⎠

⎛ ⎞ 200= =
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SUMMARY

This chapter discusses exchange-traded interest rate products. Interest rate
derivatives are by far the largest derivatives product category, although it may
not seem so considering that most of the trading is conducted in the OTC mar-
ket. The first section of this chapter reviews key contracts in exchange-traded
markets. The second section deals with valuation. For the most part, the princi-
ples and valuation methods of Chapters 5 through 9 can be applied directly,
with two notable exceptions. First, the no-arbitrage price relation for the CBT’s
T-bond futures must be modified to account for the fact that the seller has an
option to deliver any one of a number of eligible bond issues. Second, for
options on short-term debt instruments, the log-normal price distribution
assumption is clearly inappropriate. The price of a T-bill, for example, can never
exceed its par value. Consequently, a new methodology for valuing interest rate
options is developed. We rely on an assumption that the short-term interest rate
is log-normally distributed. Section three contains three important risk manage-
ment applications using interest rate derivatives—a short-term long hedge, a
long-term short hedge, and asset allocation. 
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Interest Rate Products: Swaps

 

he first interest rate swap market originated in the early 1980s. An 

 

interest
rate swap

 

 is an agreement between two parties to exchange or “swap” a
series of periodic interest payments. The most common interest rate swap, a

 

plain-vanilla interest rate swap

 

, is an agreement to exchange payments on fixed
rate debt for floating rate debt. An early example occurred in 1982 when Sallie
Mae swapped the interest payments on intermediate-term fixed rate debt for
floating rate payments indexed to the three-month T-bill yield. In the same year,
a USD 300 million seven-year Deutsche Bank bond issue was swapped into USD
LIBOR. While we discussed swaps on other types of assets in earlier chapters,
interest rate swaps are far and away the largest asset category. As of yearend
2003, interest rate derivatives accounted for 72% of the notional amount of all
OTC derivatives outstanding. Of this amount, more than 78% of interest rate
derivatives were swaps, with the remaining 22% being split between options
(14%) and forwards (8%) as is shown in Figure 18.1.

 

FIGURE 18.1

 

Percentage of total notional amount of single-currency interest-rate derivatives 
outstanding worldwide on December 2003 by contract type. Total notional amount of inter-
est-rate derivatives is USD 141.99 trillion.  

 

Source: 

 

The table was constructed from information contained in Bank for International Set-
tlements (www.bis.org), 

 

BIS Quarterly Review

 

, June 2004.
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INTEREST RATE DERIVATIVES

 

In general, this chapter deals with OTC interest rate products that have
multiple cash flows through time. While plain-vanilla swaps is certainly the larg-
est category within this group, there are also a variety of other instruments
including caps, collars, floors, and swaptions. We will address each in turn.
Before doing so, however, it is important to develop a thorough understanding
of the zero-coupon yield curve and how it is estimated. This is the focus of the
first section of this chapter. The second section describes the nature of interest
rates swaps and how they are valued. The third and fourth sections focus on
caps, collars, and floors, and swaptions, respectively. 

 

ESTIMATING THE ZERO-COUPON YIELD CURVE

 

In Chapter 2, we defined the term structure of interest rates (or the zero-coupon
yield curve) as the relation between yield and term to maturity for zero-coupon
bonds with a common degree of default risk. At the time, we used U.S. Treasury
bills and strip bonds to illustrate the shape of the term structure. In the illustra-
tions of the chapters that followed, we assumed that we knew the structure of
the zero-coupon yield curve and usually expressed it as some form of mathemat-
ical function such as, for example, 

 

r

 

i

 

 = 0.03 + 0.01ln(1 + 

 

T

 

i

 

). The assumption
was motivated by the need to have a risk-free, zero-coupon interest rate for all
future dates on which there was a cash flow.

 

1

 

 In this section, we face the prob-
lem of determining the zero-coupon yield curve head on. 

Estimating the zero-coupon yield curve has two steps. First, we must collect
prices of instruments with varying times to maturity but the same degree of default
risk. These are usually either U.S. Treasury rates or Eurodollar rates. Within each of
these categories, we must choose among available instruments. For U.S. Treasuries,
for example, the zero-coupon rates can be estimated using any combination of T-
bills, strips, coupon-bearing notes and bonds, and constant maturity Treasury
(CMT) rates. For Eurodollars, time-deposit rates, futures prices, and swap rates can
all be used. The choice depends on the application at hand and the liquidity of the
markets whose rates/prices are being used. From the prices of these instruments, we
determine zero-coupon yields for terms to maturity, as is illustrated in Figure 18.2. 

The second step involves “smoothing the yield curve.” More specifically, we
must decide how to estimate zero-coupon rates for cash flows that occur at
times other than those represented in Figure 18.2. Consider a cash flow that
occurs four years from now. We have only a zero-rate for year three and one for
year five. Based on these rates, or any other rates in the figure, what is the best
guess of the four-year rate? We discuss two possible methods.

 

Identify Zero-Coupon Rates

 

As was noted earlier, zero-coupon yield curves are most commonly constructed
using either U.S. Treasury rates or Eurodollar rates. Below we focus first on esti-
mating the yield curve for Treasuries and then for Eurodollars. 

 

1 

 

Put differently, we need to know today’s prices of one dollar received at all future cash flow
dates. These, of course, are the discount factors implied by the zero-coupon yield curve.
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FIGURE 18.2

 

Zero-coupon rates determined from available interest rate securities and deriva-
tive contracts.

 

Treasury Instruments

 

U.S. Treasury instruments come in a variety of forms. First,
at the short-end, there are T-bills. T-bills are discount instruments and therefore
have no intermediate interest payments. Each week the U.S. Treasury issues 28-
day, 91-day, and 182- T-bills. As noted in Chapter 2, T-bill rates are quoted as a
discount from par and use a 360-day banker’s year. To compute the continuously-
compounded yield to maturity of these discount instruments, we use the formula,

(18.1)

where 

 

B

 

i

 

 is the price of the T-bill, which is determined by taking the bill’s quoted
discount, 

 

D

 

i

 

, and adjusting it by the number of days to maturity, 

 

n

 

i

 

, in the fol-
lowing way,

 

B

 

i

 

 = 100 – 

 

D

 

i

 

(

 

n

 

i

 

/360) (18.2)

and 

 

T

 

i

 

 is the actual number of years to maturity (i.e., 

 

T

 

i

 

 = n

 

i 

 

/365). Thus, based
on quoted T-bill discount rates, we can identify the dots in Figure 18.2 up until
182 days to maturity.

To go beyond six months, however, we have a variety of alternatives. Strip
bonds would be ideal since they have no intermediate coupon payments and
their prices can be transformed to zero-coupon interest rates quite easily using
(18.1), where 

 

B

 

i

 

 represents the strip bond price quote. Unfortunately, the mar-
ket for strip bonds is not particularly active, so the quote prices are sometimes
unreliable. The same is true for most coupon-bearing notes and bonds. Most
Treasuries trade actively for a short period of time just after they are issued
(called 

 

on-the-run

 

 issues), and then infrequently thereafter (

 

off-the-run

 

 issues).
In practice, the zero-coupon yield curve for Treasuries is usually constructed

from “Constant Maturity Treasury” rates, or CMTs. CMT yields are computed
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each day by the U.S. Treasury and are intended to represent the yields to matu-
rity of par bonds

 

2

 

 with 1, 3 and 6 months and 1, 2, 3, 5, 7, 10, and 20 years to
maturity. To estimate these rates, the Treasury gathers the closing market bid
yields on on-the-run Treasury securities. These market yields are calculated from
composites of over-the-counter market quotations obtained by the Federal
Reserve Bank of New York each day. Based on these market yields, the Treasury
then smoothes the relation between yield and term to maturity,

 

3

 

 thereby allowing
it to estimate rates at the standard maturities listed above. Thus a yield for a 10-
year maturity can be computed even if no outstanding security has exactly 10
years remaining to maturity. To generate the zero-coupon yields for all maturi-
ties, we “reverse engineer” the CMTs using a technique called “bootstrapping.”

In estimating the zero-rates from CMT rates, we must first separate CMTs
into two groups—those with maturities of less than a year and those with maturi-
ties one year or greater. The reason is that short-term CMTs have no coupon inter-
est payments while the long-term ones do. The following table shows the rates
observed as of the close of trading on March 17, 2005. They were obtained from
the U.S. Treasury’s website at http://www.ustreas.gov/offices/domestic-finance/
debt-management/interest-rate/yield.html. These rates will serve as the basis for
illustrating the bootstrapping technique as we proceed with its description.

To begin, we find the zero-coupon rates corresponding to the 1, 3, and 6
month CMT rates. As was noted above, these are not coupon bonds. There is
one payment at the end of the bond’s life that includes coupon interest as well as
the repayment of principal. The continuously compounded zero-coupon yield to
maturity for each of these three CMTs can be computed using 

(18.3)

 

2 

 

A par bond is one whose price equals its face value. For such a bond, the coupon interest rate
equals its yield to maturity compounded on a semiannual basis.

 

3 

 

The Treasury uses a cubic spline model to smooth the yield curve.

 

CMT Rates

Type Term Yield

 

Months   1 2.68
  3 2.79
  6 3.08

Years   1 3.29
  2 3.70
  3 3.89
  5 4.14
  7 4.30
10 4.47
20 4.87
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where 

 

y

 

i

 

 is the annualized nominal yield to maturity of CMT

 

i

 

, and 

 

m

 

i

 

 is its num-
ber of months to maturity. For the one-month maturity, for example, the zero-
coupon rate is

The rates for three months and six months, together with the one-month rate,
are summarized as follows: 

Now we turn to the coupon-bearing CMT rates. Matters get slightly more
complicated. For maturities of one year and greater, the CMT rates are yields on
par bonds with semiannual coupon payments. A par bond is one whose price
equals its face value. For such a bond, the coupon interest rate equals its yield to
maturity compounded on a semiannual basis. This means that each CMT bond
may be written as

(18.4)

where 

 

r

 

i

 

 is the zero-coupon rate of a bond maturing at time 

 

T

 

i

 

, 

 

COUP

 

 is the
annualized coupon rate (i.e., the CMT rate) of the bond under consideration,
and 

 

n

 

 is its number of semiannual coupons. What the bootstrapping technique
does is start with the zero-coupon rate at the shortest maturity, and then solve
for each new maturity recursively one at a time. Consider the one-year CMT
rate. A one-year semiannual coupon CMT reported in the panel above has a
yield of 3.29%. Substituting into (18.4), we get

In this expression, the first term on the right-hand side is the present value of the
first semiannual coupon which we can compute because we have already deter-
mined that the six-month continuously compounded zero-rate is 3.057%. Since
we have one equation and one unknown, we can solve for the one-year zero-
coupon rate by rearranging the expression to isolate 

 

r

 

2

 

. Its value is 3.265%. 
The next available CMT rate has two years to maturity. Substituting into

(18.4) we get

 

CMT Rates

Zero-RateType Term Yield

 

Months 1 2.68 2.677%
2 2.79 2.780%
3 3.08 3.057%

ri
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Now we are in a pickle. We have one equation and need to solve for the 1.5-year
and two-year zero-coupon rates. To manage this particular conundrum, we
assume that the 1.5 year rate equals the average of the one-year rate and the
two-year rate, that is,

By imposing this restriction, we can compute 

 

r

 

4

 

 and, hence, 

 

r

 

3

 

. The two-year
zero-rate is 3.676%, and the 1.5-year zero-rate is 3.470%.

From a practical perspective, it is best to go ahead and compute the CMT
rates at half year interval from the outset. With the one-year CMT rate at 3.29%
and the two-year CMT rate at 3.70%, the 1.5-year CMT rate, computed using
linear interpolation, is 3.495%. With the three-year CMT rate at 3.89% and the
five-year CMT rate at 4.14%, the 3.5-year CMT rate, computed using linear
interpolation, is 3.9525%, and so on. Now, the zero-coupon rates at half-year
intervals from one year to 20 years can be determined recursively (i.e., “boot-
strapped”) one at a time using a re-arranged version of equation (18.4), that is, 

(18.5)

The last rate we are able to compute has the same term to maturity as the long-
est CMT rate. 

The bootstrap procedure for deducing zero-coupon rates from CMT rates is
programmed as a function in the OPTVAL Function library. Its syntax is 

OV_IR_TS_ZERO_FROM_CMT(

 

months

 

, 

 

cmtm

 

, 

 

years

 

, 

 

cmty

 

, 

 

rt

 

)

where 

 

months

 

 is the vector of months to maturity of the CMT rates less than a year,

 

cmtm

 

 is the vector of rates of the CMT rates less than a year, 

 

years

 

 is the vector of
years to maturity of the CMT rates one year or greater, cmty is the vector of rates
of the CMT rates one year or greater, and rt is an indicator variable set to r or R if
the function is to return an array of zero-coupon rates or t or T if the function is to
return an array of the years to maturity of the zeros.4 To use the function, we high-
light cells F3:F14, call the function OV_IR_TS_ZERO_FROM_CMT and insert the
necessary inputs, and then press Shift, Ctrl, and Enter simultaneously. The high-

4 The function returns rates/terms corresponding to the maturities of the monthly input rates
and then at half year intervals thereafter.
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lighted region will then fill with the zero-coupon rates. Note that the 1.5-year and
two-year rates correspond to our computations above.

Eurodollars For Eurodollars, zero-coupon rates are usually estimated using
either (1) Eurodollar time-deposit rates for maturities less than one year and
Eurodollar swap rates for one year and beyond; or (2) Eurodollar time-deposit
rates for maturities to three months and Eurodollar futures prices beyond three
months. If a combination of time-deposit and swap rates is used (approach (1)),
the bootstrapping technique described for the CMT rates can be applied once
again. Time-deposit rates are nominal interest rates on short-term deposits
where interest is paid only at maturity, and swaps rates are essentially the cou-
pon rates of semiannual coupon par bonds. On March 17, 2005, Eurodollar
time deposit and swap rates were as follows:

Eurodollar Time Deposits Eurodollar Swap Rates

Months Rate Years Rate

1 2.8281   1 3.6900
3 3.0156   2 4.0800
6 3.2656   3 4.2950

  4 4.4400
  5 4.5550
  6 4.6400
  7 4.7150
  8 4.7850
  9 4.8500
10 4.9050
12 5.0000
15 5.1050
20 5.2000
25 5.2350
30 5.2500
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The bootstrap procedure for deducing zero-coupon rates from Eurodollar time
deposit/swap rates is programmed as a function in the OPTVAL Function
library. Its syntax is 

OV_IR_TS_ZERO_FROM_SWAP(months, spot, years, swap, rt)

where months is the vector of months to maturity of the time-deposit rates with
maturities less than a year, spot is the vector of time-deposit rates, years is the
vector of years to maturity of the swap rates of one year or greater, swap is the
vector of swap rates, and and rt is an indicator variable set to r or R if the func-
tion is to return an array of zero-coupon rates or t or T if the function is to
return an array of the years to maturity of the zeros.5 To use the function, we
highlight cells H3:H14, call the function OV_IR_TS_ZERO_FROM_SWAP and
insert the necessary inputs, and then press Shif, Ctrl, and Enter simultaneously.
The highlighted region will then fill with the zero-coupon rates. 

Note that we have computed continuously-compounded, zero-coupon rates
for Treasuries and Eurodollars with comparable maturities and that the Euro-
dollar rates are uniformly higher. This reason is simple—credit risk. While both
are rates of return on U.S. dollar deposits, Treasury rates are backed by the
resources of the U.S. government. Eurodollar rates, on the other hand, are
banked by the resources of the British bank where the deposit is held. Note also
that the credit risk premium grows larger with term to maturity. This reflects the
fact that the probability of default increases with time. While there may be little
chance that the bank will default during the next year, there may be a signifi-
cantly larger risk that it will default over the next 30 years.

5 This function also returns rates/terms corresponding to the maturities of the monthly input
rates and then at half year intervals thereafter.
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In the Eurodollar market, zero-coupon yields are also often computed using
a combination of Eurodollar time-deposit rates and Eurodollar futures prices.
The procedure is not unlike the bootstrapping procedure using with CMT and
swap rates in the sense that we start with the shortest term to maturity and then
add longer maturities, one at a time.6 First, we identify the rate of interest on a
Eurodollar time deposit that matures when the nearby quarterly Eurodollar
futures contract settles. Standing on March 17, 2005, the nearby quarterly June
futures expires June 15, 2005—in 90 days. The three-month Eurodollar time
deposit rate was given earlier in this section and is 3.1056%. The continuously
compounded, zero-coupon rate for this maturity is therefore 

Next, we use the settlement price of the June 2005 Eurodollar futures contract,
96.1510 to compute the forward rate on a Eurodollar time deposit that begins
on June 15, 2005 and ends when the September 2005 settles on September 21,
2005. The forward rate expressed as a nominal rate is 100 – 96.5150 =
3.4850%. Expressed as a continuously compounded rate, the implied forward
rate on a 98-day time deposit beginning in 90 days is

Zero-Coupon Rates

Years Treasuries Eurodollars Risk Premium

    0.0833 2.677% 2.825% 0.148%
0.25 2.780% 3.004% 0.224%
0.50 3.057% 3.239% 0.183%
1.00 3.265% 3.660% 0.395%
1.50 3.470% 3.854% 0.385%
2.00 3.676% 4.050% 0.374%
2.50 3.771% 4.158% 0.387%
3.00 3.867% 4.267% 0.400%
3.50 3.930% 4.341% 0.410%
4.00 3.994% 4.415% 0.421%
4.50 4.059% 4.474% 0.415%
5.00 4.124% 4.534% 0.410%

6 The procedure described here is intended to be illustrative only. We ignore considerations
such as two-day settlement, three-month time intervals with varying numbers of days, and
convexity.
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The 188-day continuously compounded, zero-coupon rate is therefore determined by

and is 3.2914%. The panel below summarizes the computations out to five
years to maturity. The syntax of the OPTVAL function is 

OV_IR_TS_ZERO_FROM_EDFUT(ndt, srate, nexp, fp, rt)

where ndt is today’s date, srate is the rate of interest on the time deposit matur-
ing when the nearby futures contract settles, nexp is the vector of settlement
dates for the Eurodollar futures, fp is the corresponding vector of futures prices,
and rt is an indicator variable instructing the function to return the term of
maturity, T, or the zero-coupon rate, R.  

Smoothing the Yield Curve

Thus far we have performed the first step in identifying the zero-coupon yield
curve, that is, we have identified a series of zero-coupon spot rates at specific

r188
188
365
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maturities (i.e., we have identified the location of the dots in Figure 18.2). The
next step in building the zero-coupon yield curve involves deciding how to a
zero-coupon rate at a maturity that falls between the dots in Figure 18.2. Sup-
pose, for example, a cash flow that occurs four years from now. We have only a
zero-rate for year three and one for year five. What is the best guess of the four-
year rate? We discuss two possible methods.

Perhaps, the most popular method for handling this problem is called linear
interpolation.7 In essence, it involves drawing a straight line between the two
rates on the term structure that straddle the desired maturity, and then reading
the rate from the line. Algebraically, this amounts to the time-weighted average, 

(18.6)

where i and j are the rates on either side of the desired maturity k, Tm is the time
to maturity of the mth rate (measured in days or years), and Ti ≤ Tk ≤ Tj. Sup-
pose we would like to determine the six-month zero-coupon rate based on the
zero-coupon rates we computed from futures prices. Applying the formula
(18.6), we get

In the event Tk is less (greater than) Ti(Tj), rk is set equal to ri(rj). Linear inter-
polation can be performed using the function,

OV_IR_TS_INTERPOLATE(sterm,term,rate)

where sterm is the term to maturity of the desired rate, term is a vector of the
terms to maturity of the available rates, and rate is the vector of available rates.

Another smoothing technique involves fitting a regression line through the
available zero-coupon points. Suppose, for example, we fit the regression

through the zero-coupon rates deduced from Eurodollar futures prices. The fit-
ted regression line is 

As the figure below show, the regression does reasonably well at smoothing the
points, with a tendency to overestimate very short-term rates and underestimate

7 Other smoothing methods include multivariate regression and cubic splines. For a detailed
description of different curve-fitting methods, see Tuckman (2002, Ch. 4).
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intermediate term rates. The regression estimate for the six-month, zero-coupon
rate is 3.438%.

Using a more elaborate regression model structure would improve matters.
Two simple alternatives are to express the zero-coupon rate as a quadratic or
cubic function of time to maturity. Regardless, however, the regression approach
is somewhat troublesome in the sense that it will generally produces predicted
zero-coupon rates that are different from the rates that are used as inputs in the
regression. Put differently, the line does not go through the points in the figure
below. Under linear interpolation, this would never happen. 

INTEREST RATE SWAPS

The specifications of OTC interest rate swap contracts are much less transparent
than for interest rate futures and options traded on exchanges. The reason is
simple. The contracts are privately negotiated between counterparties, with nei-
ther having any obligation to report the terms publicly. Thanks to trade organzi-
ations such as the International Swaps and Derivatives Association (or ISDA),
certain standard practices have emerged. Documents such as 2000 ISDA Defini-
tions and Annex to the 2000 ISDA Definitions8 lay out the industry’s “lan-
guage” for communicating the terms of derivatives transactions. Other
documents such as the ISDA Master Agreement (Local Currency – Single Juris-
diction) and the ISDA Master Agreement (Multicurrency – Cross Border) pro-
vide the text for actual contracts. 

In this chapter, we focus primarily on plain-vanilla interest rate swaps. In
these swaps, one leg requires the payment of interest based on a fixed rate, and
the other leg requires payment of interest based on a floating rate. These swaps
have become so active that their rates are quoted widely, and the spread between
bid and ask rates is as little as four basis points. Table 18.1 contains midmarket
fixed-for-floating swap rates as of the close of trading on Friday January 28,
2005. These rates are for “generic” interest rate swaps. Specifically, for these
swaps, (1) no money changes hand at inception; (2) no exchange of principal

8 See International Swap and Derivatives Association’s (ISDA’s) website at www.isda.org.
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occurs; (3) interest payments are made semiannually and are netted (i.e., the
party owing the largest payment pays the difference between the amount he owes
and the amount he is supposed to receive); and (4) the floating rate is based on
the six-month LIBOR rate.9 With the contractual terms in mind, we can now
interpret Table 18.1. The table contains the fixed rate on a fixed-for-floating
swap. Thus, for a two-year fixed-for-floating swap, the fixed rate payer pays
3.589/2 or 1.7945% and receives six-month LIBOR rate each six months.

Fixed-for-floating interest rate swaps are just that—one party agrees to pay
a fixed rate of interest and receive a floating rate, and the other party receives a
fixed rate of interest and pays a floating rate. Interest rate swaps are usually
consummated by a confirmation sheet faxed between the counterparties in the
OTC market. Table 18.2 shows selected terms from a confirmation sheet of a
plain-vanilla interest rate swap. The sheet is divided into three panels of infor-
mation. The first panel provides the calculation amount, trade date, and termi-
nation date. The calculation amount is the notional amount upon which interest
payments are computed. The trade date is the day on which the parties enter

9 In some swaps, the interest rate on the floating rate leg gets reset more frequently than the
payments (e.g., the floating-rate gets reset each month based on one-month LIBOR while in-
terest payments are made semiannually). In these instances, the one-month reset rates ob-
served during the payment interval are averaged to determine the floating rate payment. In
general, the swap agreement will specify the method of averaging as “unweighted” or
“weighted.” Unweighted means a simple arithmetic average of all rates during the payment
interval, and weighted means a time-weighted arithmetic average (i.e., each set rate is weighted
by the proportion of the total number of days that the rate prevailed during the payment pe-
riod). If the term sheet does not specify the method of averaging, unweighted averaging is as-
sumed. See International Swaps and Derivatives Association (2000b, p.9).

TABLE 18.1  Fixed-for-floating swap rates reported by Bloomberg on Friday, January 28, 
2005. By convention, the rates represent the fixed rate on a swap with semiannual interest 
payments and a floating rate based on six-month LIBOR. A swap to receive fixed and pay 
floating will be based on the bid rate, and a swap to pay fixed and receive floating will be based 
on the ask rate.

Term in Years Bid Ask

  2 3.557 3.589
  3 3.753 3.784
  4 3.906 3.938
  5 4.052 4.060
  6 4.152 4.186
  7 4.250 4.285
  8 4.341 4.376
  9 4.422 4.458
10 4.493 4.529
15 4.761 4.796
20 4.888 4.926
30 4.961 4.999
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into the agreement, the effective date is the first day of the term of the agree-
ment, and the termination date is the last day of the agreement.

The second and third panels of information specify obligations of the fixed-
rate and floating rate payers, respectively. The fixed rate payer, in this case, is
Bank A, which promises to make semiannual, fixed-interest payments at a rate
of 4.238%. The “30/360” fixed rate, day-count fraction implies that each
month (year) is assumed to have 30 (360) days. Thus Bank A is obliged to pay
Company B an amount equal to

every six months for five years, with the first payment commencing on Decem-
ber 1, 2004. 

TABLE 18.2  Selected terms from the confirmation of an OTC interest rate swap

The terms of the particular swap transaction to which this confirmation relates are as fol-
lows:

Calculation amount USD  30,000,000.00
Trade date May 28, 2004
Effective date June 1, 2004
Termination date June 1, 2009

The fixed rate payer pays on each payment date an amount determined in accordance
with the following:

Fixed rate payer Bank A
Payment dates Commencing on December 1, 2004 and semiannually

thereafter on the first calendar day of each calendar
day of June and December up to and including the
termination date.

Fixed rate 4.238%
Fixed rate, day-count fraction 30/360

The floating rate payer pays on each payment date an amount determined in accordance
with the following:

Floating rate payer Company B
Payment dates Commencing on December 1, 2004 and semiannually

thereafter on the first calendar day of each calendar
day of June and December up to and including the
termination date.

Floating rate option USD-LIBOR-LIBO
Designated maturity 6 months
Reset dates The first day of the relevant calculation period
Rounding factor One hundred-thousandth of 1%
Floating rate, day-count fraction Actual/360

$30,000,000 0.04238
180
360
----------×× $635,700=
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At the same time, the floating rate payer, Company B, is obliged to make
semiannual interest payments on the same dates. The floating rate option is
specified to be “USD-LIBOR-LIBO” and the designated maturity is six months.
The term, USD-LIBOR-LIBO, is defined in the Annex to the 2000 ISDA Defi-
nitions10 and means the offered rate on U.S. dollar deposits for the period of the
designated maturity as they appear on the Reuters Screen LIBO Page. Since the
reset date is the first day of the calculation period, the first floating rate payment
becomes known as of the effective date of the swap. If the rate is 1.5625% on
June 1, 2004, the floating rate interest payment on December 1, 2004 will be
computed as follows. First, you compute the actual number of days between
June 1, 2004 and December 1, 2004. The actual number of days is 183. Next we
compute the semiannual interest rate by taking the annual interest rate, 1.5625,
multiplying it by the floating rate, day-count fraction, 183/360, and rounding it
to 0.79427% (by virtue of the stated rounding factor). The floating rate pay-
ment that Company B is obliged to make on December 1, 2004 is $238,281.
The fixed rate and floating rate payments are then netted so that only one party
pays on a particular payment date. In our illustration, this means Bank A, the
fixed rate payer, will pay Company B, the floating rate payer, $397,419 on
December 1, 2004. Who pays and the amount of subsequent payments will
depend on the level of the floating rates on the remaining reset dates.

In general, the terms of interest rate swaps are not available in financial
publications such as the Wall Street Journal. Indeed, since OTC derivatives are
privately negotiated and have wide-ranging terms, there are no means to system-
atically collect and report such information. One way to obtain indicative prices
or rates of certain “generic” OTC derivatives deals is to subscribe to a service
such as Bloomberg, Reuters, and Telerate that provides such quotes on a real-
time basis. Essentially, what these services provide is access to a number of
pages (computer screens), each page containing the current market quotes of
generic types of trades. The fixed-for-floating swap rates shown in Table 18.1
are bid/ask quotes rates11 from a real-time financial data service called
Bloomberg. While interest rate swaps can have a wide variety of terms, the
terms of these swaps are “standardized.” The periodic payments of all these
swaps are made semiannually, with the first payment occurring in six months.
All of the rates are set in such a manner that the swaps have a zero upfront pay-
ment. The floating rate interest payment is indexed to the six-month LIBOR rate
with an “actual/360” day-count fraction convention, and the fixed rate interest
payment is based on the quotes appearing in the table and is calculated using a
“30/360” day-count fraction convention. So, given these standard practices, the
terms of the entire swap are summarized by the term and by the fixed rate. For
real-time data services such as Bloomberg, bid and ask rates are displayed.
These represent the highest bid rate and the lowest ask rate of all OTC dealers
supplying Bloomberg with intraday quotes. If you buy the swap, you will pay
the ask rate and receive LIBOR. If you sell the swap, you will receive the bid
rate and pay LIBOR. The difference between the bid and ask rates is the dealer’s

10 See International Swaps and Derivatives Association (2000b, p.41).
11 A midmarket rate is the average of the best bid rate and best ask rate prevailing in the mar-
ketplace at a given point in time.
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spread. Competition among interest rate swap dealers has driven spreads in the
plain-vanilla interest rate market to incredibly small levels—less than 4 basis
points on average.

The reasons for entering a fixed-for-floating interest rate swap vary. Because
the term structure of interest rates is usually upward sloping, the interest rate on
long-term debt is usually higher than short-term debt. Assuming a firm has long-
term financing needs, it may want to issue long-term, fixed rate debt so that
there is no uncertainty regarding the level of future interest rate payments. On
the other hand, a firm may decide to issue floating rate debt because it believes
that the average level of interest payments over time will be less than those of a
fixed rate loan. A problem with the floating rate alternative, however, is that,
while there is good reason to believe that short-term rates will provide lower
interest payments on average, it is not guaranteed. An unexpected spike in the
short-term rate can have dramatic consequences, particularly when the firm
finances much its capital expenditures using internally generated funds. Interest
rate swaps are an inexpensive and convenient means of moving back and forth
between the two alternative forms of financing. If a firm has fixed rate debt and
is willing to incur the risk of floating rate debt in hopes of reducing interest pay-
ments, it can enter a fixed-for-floating swap in which it receives fixed rate pay-
ment (to offset in whole or in part its payment obligation to its bondholders)
and pays floating. If a firm has floating-rate debt and wants to gain the certainty
of fixed rate payments, it can enter a fixed-for-floating swap in which it receives
floating (to offset in whole or in part its payment obligation to its bondholders)
and pays fixed.

The terms of generic interest rate swaps are set such that (1) no money
changes hand at inception; (2) no exchange of principal occurs; (3) interest pay-
ments are made semiannually and are netted (i.e., the party owing the largest
payment pays the difference between the amount he owes and the amount he is
supposed to receive); and (4) the floating rate interest payments are based on the
six-month LIBOR rate.

The cash flows of a two-year fixed-for-floating swap are summarized in
Table 18.3. In the table, the party is assumed to pay fixed and receive floating.
The fixed rate is 8%, and is paid semiannually. Note that this implies that 4% of
par is paid each period (six months). The floating leg is also paid each six
months. The rate is based on the six-month LIBOR rate and is set at the begin-

TABLE 18.3  Hypothetical cash flows of an interest rate swap in which the holder pays fixed 
and receives floating.  

Time 0 1 2 3 4

Fixed rate leg Interest –4.00 –4.00 –4.00     –4.00
Principal –100.00

Floating rate leg Interest   3.50   4.00   4.50       5.00
Principal   100.00

Net cash flows Interest –0.50   0.00   0.50       1.00
Principal       0.00
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ning of each payment period. In the table, the six-month LIBOR rate is 7% at
inception, implying that the interest receipt at the end of the first period is
already known. The remaining interest receipts are not known at inception. The
4.00, 4.50, and 5.00 receipts are entered only to show the netting process, that
is, the payments are netted each period, with the party owing the net amount
paying the counterparty. Thus in period 1, the fixed rate payer pays –0.50. In
period 2, no payment is made, and in periods 3 and 4, the fixed rate payer
receives 0.50 and 1.00, respectively. The notional amount of the swap also
appears on the terminal date. The net of the notional amounts is zero, implying
that the notional amount has no bearing on the valuation of the swap. 

ILLUSTRATION 18.1 Transfer risk of floating rate payments.

Suppose that, on July 1, 2004, ABC Company issued $100 million in six-year floating-
rate debt at a rate of 100 basis points over six-month LIBOR. Suppose also that over the
next year short-term interest rates rise precipitously and ABC becomes concerned that
any further increase in short-term rates will take the firm’s cash flows to a level that they
will not be able to sustain their desired growth rate in investment. What alternatives are
available to ABC?

Alternative 1: Take the “Ostrich” strategy. Under this alternative, ABC does nothing. In
leaving its short-term interest rate exposure unhedged, the firm is making a bet that
short-term rates will stay the same or fall. If they rise, the firm is in trouble.

Alternative 2: Issue fixed rate debt. ABC may have the alternative to retire its floating-rate
debt with a fixed rate bond issue. Such an action would lock in interest rate payments and
alleviate the firm’s short-term interest rate exposure. The main problem with this alterna-
tive is that the costs of issuing fixed rate debt may be as high as 250 basis points or more.
This means that for every dollar raised, the underwriting firm takes 2.5%. 

Alternative 3: Enter a fixed-for-floating swap. Under this scenario, ABC enters a five-year
fixed-for-floating swap in which it pays fixed and receives floating (i.e., six-month
LIBOR). It checks the current quotes in the OTC market and finds that five-year plain
vanilla interest rate swaps are quoted at 4.22-4.26%. Since ABC will pay fixed, the ask
rate, 4.26%, is the relevant rate. Assuming it can execute the swap at the prevailing rate,
ABC’s interest cash flows will appear as follows:

Note that ABC’s floating rate interest payment has not disappeared. Its risk, however, has
disappeared since ABC receives LIBOR as part of the swap. ABC’s net cash flow each six-
month payment period is fixed at 2.63%.

Payment

Current interest payment –(LIBOR/2 + 0.50)%
Receive LIBOR (LIBOR/2)%
Pay fixed –(4.26/2)% = –2.13%

Net cash flow 2.63%
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Interest Rate Swap Valuation

As the above description indicates, an interest rate swap is like being long (short)
a fixed rate bond and short (long) a floating rate bond. Applying the valuation-
by-replication technique, the value of an interest rate swap is the difference
between the values of a fixed rate bond and a floating rate bond.

A fixed rate bond is a coupon-bearing bond. It pays a stated rate of interest
periodically throughout the bond’s life, ending with an interest payment and repay-
ment of the bond’s par value or notional amount. To value a fixed rate bond, we
take the present value of the promised fixed rate interest payments, that is, 

(18.7)

where FIXEDi is the amount of the of the fixed rate payment (i.e., the fixed rate
times the notional amount, NOTIONAL), ri is the annualized zero-coupon dis-
count rate used to bring the cash flow to the present, Ti is the number of years
until the cash flow i occurs, and n is the number of interest payments.

Like a fixed rate bond, a floating rate bond pays interest periodically
throughout the bond’s life and then repays the principal at the bond’s maturity.
The difference is that, with a floating rate bond, the periodic interest rate
“floats” from period to period. The interest rate is linked to a short-term refer-
ence rate such as LIBOR, T-bills, prime, and the Fed Funds rate and is set at the
beginning of each payment period (i.e., on the reset date). The tenor of the refer-
ence rate is typically less than a year. Generic interest rate swaps, for example,
are linked to six-month LIBOR. 

Conceptually, valuing a floating rate bond may seem more difficult than val-
uing a fixed rate bond since the amounts of floating rate payments, except for
the first, are unknown. To determine the value of a floating rate bond, we must
first forecast the expected interest payments, E(FLOATi), and then discount the
expected interest payments to the present, that is,

(18.8)

The first payment, FLOAT1, is treated separately to reflect the fact that the amount
of the first interest payment is already set. The remaining interest payments are
estimated using the forward rates implied by the zero-coupon yield curve. 

Fortunately, (18.8) is not the only way to value a floating rate bond. A much
simpler approach is possible. To understand this approach, note first that, on a
reset date, the six-month LIBOR rate determines the amount of the interest pay-
ment in six months. Hence, the value of the floating rate bond in six months is
100(1 + LIBOR). Note also that the six-month LIBOR rate is the discount rate
we would use to bring a future value occurring six months back to the present.
Thus standing on each reset date, the value of a floating rate bond is

PVfixed e
ri– TiFIXEDi e

rn– TnNOTIONAL+
i 1=

n

∑=

PVfloating e
r1– T1FIXED1 e

ri– TiE FLOATi( ) e
rn– TnNOTIONAL+

i 2=

n

∑+=



Interest Rate Products: Swaps 655

The only time the floating rate leg deviates in value from 100 is in the current
period when interest rate payment has been set and the zero-coupon yield curve
changes. On the next reset date, the value of the floating-rate bond again reverts
to 100. Between reset dates, the value of the floating-rate bond is 

(18.9)

With valuation formulas for the fixed rate (18.7) and floating rate (18.9)
legs of the interest rate swap, we can now value the swap itself. The value of an
interest rate swap from the perspective of someone receiving fixed and paying
floating is the difference,

Vswap = PVfixed – PVfloating (18.10)

ILLUSTRATION 18.2 Find value of floating rate bond given zero-coupon yield curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the value of a five-year floating rate bond with semiannual interest rate payments.

Like any other security, the valuation of the floating rate bond of an interest rate
swap is a matter of identifying the amount and the timing of expected future cash flows
and then discounting them to the present. To identify expected future cash flows, we use
the current zero-coupon yield curve to identify forward rates, and then use forward rates
to determine expected interest payments.

Step 1: Find the discount rate (factor) for each cash flow by substituting into the term
structure equation. The spot rates and discount factors are shown in the following table.
Recall the discount factor is today’s price of $1 received at time Ti, that is, .

Years to Maturity Spot Rate Discount Factor Implied Forward Rate

0.00 4.000% 1.00000
0.50 4.405% 0.97821 4.405%
1.00 4.693% 0.95415 4.981%
1.50 4.916% 0.92891 5.363%
2.00 5.099% 0.90305 5.646%
2.50 5.253% 0.87694 5.869%
3.00 5.386% 0.85079 6.054%
3.50 5.504% 0.82478 6.211%
4.00 5.609% 0.79901 6.347%
4.50 5.705% 0.77359 6.467%
5.00 5.792% 0.74857 6.575%

100 1 LIBOR+( )
1 LIBOR+

-------------------------------------------- 100=

PVfloating e
r1– T1 FLOAT1 NOTIONAL+( )=

DFi e
ri– ti=
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Step 2: Find the implied forward rates between adjacent periods. This can be done using
the forward rate formula from Chapter 2, that is, 

where fi,j is the implied forward rate of interest on a loan beginning at time Ti and ending
at time Tj. The implied forward rate on a six-month loan, for example, is 

The discount factors in the above table are also inextricably linked to forward rates. The
price of a six-month discount bond with a par value of one dollar is 0.97821, and the
price of a one-year discount bond is 0.95415. That means that the implied price of a six-
month discount bond in six months is 0.95415/.97821 or 0.97540. Its forward rate of
return is 

on an annualized basis.

Step 3: Find the expected floating rate interest payments. Recall that the floating rate
used to determine the amount of the floating rate payment is the one prevailing at the
beginning of the period. The first floating rate payment is therefore known today and is
100(e0.04405(0.5) – 1) = 2.2272. The amount of the second floating rate payment is an
expected value based on the six-month forward rate starting in six months, that is,
100(e0.04981(0.5) – 1) = 2.5217. The remaining expected floating rate payments are as
shown in the table below.

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Implied Forward
Discount Factor

0.00 4.000% 1.00000
0.50 4.405% 0.97821 4.405% 0.97821
1.00 4.693% 0.95415 4.981% 0.97540
1.50 4.916% 0.92891 5.363% 0.97354
2.00 5.099% 0.90305 5.646% 0.97217
2.50 5.253% 0.87694 5.869% 0.97108
3.00 5.386% 0.85079 6.054% 0.97018
3.50 5.504% 0.82478 6.211% 0.96942
4.00 5.609% 0.79901 6.347% 0.96876
4.50 5.705% 0.77359 6.467% 0.96818
5.00 5.792% 0.74857 6.575% 0.96766

fi j,

rjTj riTi–

Tj Ti–
-------------------------=

f0.5 1,
0.04693 1( ) 0.04405 0.5( )–

1 0.5–
----------------------------------------------------------------------- 4.981%= =

f0.5 1,
0.97540( )ln

0.5
-------------------------------- 4.981%= =
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Step 4: Take the present value of the expected floating rate payments by multiplying each
expected payment by the corresponding discount factor. This table summarizes the
results:

Surprisingly, or perhaps not so surprisingly, the present value of the floating rate bond
equals 100. The intuition for this result is simple. Since the expected floating rate payment
is determined from the forward rates of the zero-coupon yield curve and the zero-coupon
yield curve contains the discount factors used to bring the cash flows back to the present,
their effects outset each other, making the present value of the loan equal to its par value. 

ILLUSTRATION 18.3 Find fixed rate on plain-vanilla interest rate swap given zero-coupon 
yield curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the fixed rate on a five-year, fixed-for-floating, plain-vanilla interest rate swap.

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Expected
Cash Flow

0.00 4.000% 1.00000
0.50 4.405% 0.97821 4.405%     2.2272
1.00 4.693% 0.95415 4.981%     2.5217
1.50 4.916% 0.92891 5.363%     2.7176
2.00 5.099% 0.90305 5.646%     2.8630
2.50 5.253% 0.87694 5.869%     2.9782
3.00 5.386% 0.85079 6.054%     3.0733
3.50 5.504% 0.82478 6.211%     3.1541
4.00 5.609% 0.79901 6.347%     3.2244
4.50 5.705% 0.77359 6.467%     3.2865
5.00 5.792% 0.74857 6.575% 103.3421

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Expected
Cash Flow

PV of Expected
Cash Flow

0.00 4.000% 1.00000
0.50 4.405% 0.97821 4.405%     2.2272   2.1786
1.00 4.693% 0.95415 4.981%     2.5217   2.4061
1.50 4.916% 0.92891 5.363%     2.7176   2.5244
2.00 5.099% 0.90305 5.646%     2.8630   2.5855
2.50 5.253% 0.87694 5.869%     2.9782   2.6117
3.00 5.386% 0.85079 6.054%     3.0733   2.6147
3.50 5.504% 0.82478 6.211%     3.1541   2.6014
4.00 5.609% 0.79901 6.347%     3.2244   2.5763
4.50 5.705% 0.77359 6.467%     3.2865   2.5424
5.00 5.792% 0.74857 6.575% 103.3421 77.3590

Total 100.00      
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At inception, the value of a swap is 0. Since the present value of the floating rate leg is
100 on a reset date, this means that the fixed rate on a fixed-for-floating swap is that rate
that makes the present value of the fixed rate leg equal to 100. This rate cannot be com-
puted directly, and must be determined iteratively using the present value formula (18.7). At
a 7% fixed rate, the present value of the fixed rate is too high, as shown below. 

Since the present value is higher than 100, we must lower the fixed rate. If our next guess is
5.8124%, we will find that the present value of the fixed rate leg is 100. Alternatively, we
can use the Microsoft Excel SOLVER function to assist us in our work.

The OTC swap dealer will set his bid-ask quotes surrounding this fixed rate. Assuming the
bid/ask spread is four basis points, the dealer might quote a bid rate of 5.80% (i.e., the
fixed rate the counterparty would receive while paying floating) and an ask rate of 5.84%
(i.e., the fixed rate the counterparty would pay while receiving floating).

Fixed Rate: 7.0000%

Years to Maturity Spot Rate Promised Cash Flow PV of Promised Cash Flow

0.00 4.000%
0.50 4.405%     3.5000   3.4237
1.00 4.693%     3.5000   3.3395
1.50 4.916%     3.5000   3.2512
2.00 5.099%     3.5000   3.1607
2.50 5.253%     3.5000   3.0693
3.00 5.386%     3.5000   2.9778
3.50 5.504%     3.5000   2.8867
4.00 5.609%     3.5000   2.7965
4.50 5.705%     3.5000   2.7076
5.00 5.792% 103.5000 77.4772

Total 105.0900  
Value of swap   5.0900

Fixed Rate: 5.8214%

Years to Maturity Spot Rate Promised Cash Flow PV of Promised Cash Flow

0.00 4.000%
0.50 4.405%     2.9107   2.8473
1.00 4.693%     2.9107   2.7773
1.50 4.916%     2.9107   2.7038
2.00 5.099%     2.9107   2.6285
2.50 5.253%     2.9107   2.5525
3.00 5.386%     2.9107   2.4764
3.50 5.504%     2.9107   2.4007
4.00 5.609%     2.9107   2.3257
4.50 5.705%     2.9107   2.2517
5.00 5.792% 102.9107 77.0361

Total 100.0000  
Value of swap   0.0000
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ILLUSTRATION 18.4 Value of swap between interest payments.

Suppose that we entered the swap in Illustration 18.3, and are receiving fixed at a rate of
5.8214% and paying floating. Two months has elapsed, and the new zero-coupon yield curve is

ri = 0.05 + 0.01ln(1 + Ti)

Compute the current value of the swap.

The current value of the swap, from our perspective, is the present value of the fixed-
rate payments (i.e., what we receive) less the present value of the floating rate payments (i.e.,
what we pay). The first step is to find the discount rate (factor) for each cash flow by substi-
tuting into the term structure equation. We next take the present value of the fixed rate pay-
ments (equation (18.7)), and, finally, we take the present value of the expected floating rate
payments using equation (18.9). The table that follows summarizes the computations. Note
that the first payment on the floating rate leg, 2.2272, was set two months earlier. 

Fixed Rate Leg

Fixed Rate: 5.8214%

Years to Maturity Spot Rate Promised Cash Flow PV of Promised Cash Flow

0.00

0.33 5.288%     2.9107   2.8599

0.83 5.606%     2.9107   2.7779

1.33 5.847%     2.9107   2.6924

1.83 6.041%     2.9107   2.6055

2.33 6.204%     2.9107   2.5184

2.83 6.344%     2.9107   2.4319

3.33 6.466%     2.9107   2.3463

3.83 6.576%     2.9107   2.2622

4.33 6.674%     2.9107   2.1797

4.83 6.764% 102.9107 74.2142

Total 96.8884

Value of swap -3.5527

Floating Rate Leg

Years to
Maturity

Spot
Rate

Discount
Factor

Implied
Forward Rate

Expected
Cash Flow

PV of Expected
Cash Flow

0.00 5.000% 1.0000

0.33 5.288% 0.9825 5.288%     2.2272     2.1883

0.83 5.606% 0.9544 5.818%     2.9520     2.8172

1.33 5.847% 0.9250 6.249%     3.1739     2.9359

1.83 6.041% 0.8952 6.559%     3.3340     2.9844

2.33 6.204% 0.8652 6.800%     3.4584     2.9923

2.83 6.344% 0.8355 6.996%     3.5599     2.9742

3.33 6.466% 0.8061 7.161%     3.6454     2.9386

3.83 6.576% 0.7772 7.304%     3.7193     2.8906

4.33 6.674% 0.7489 7.429%     3.7842     2.8338

4.83 6.764% 0.7212 7.540% 103.8421   74.8858

Total 100.4411
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Note also that the present value of the floating rate leg was determined using the full set
of computations performed in Illustration 18.3. This was unnecessary, since we have
already shown that the present value of the floating rate leg is simply the present value of
the sum of the next floating rate payment and the notional amount, that is,

PVfloating = e–0.05288(0.333)(2.2272 + 100) = 100.4411

As the table shows, the value of the swap is now –$3.5527, that is,

The fact that the swap has fallen in value from 0 should not be surprising—the duration
of the fixed rate leg is higher than the duration of the floating rate leg. Interest rates rose
over the past two months, hence the fixed rate leg fell in value by more than the floating
rate leg. To unwind the swap, we would have to pay $3.5527.

Valuation of an Inverse Floater

An inverse floater is like a floating rate bond in the sense that its interest pay-
ments are based on a reference (i.e., floating) rate.12 The only difference is that
instead of receiving the prevailing floating rate each period, we receive a constant
fixed rate less the reference rate (e.g., 10% less six-month LIBOR), that is,

Rate on inverse = Fixed rate – Reference rate (18.11)

Occasionally the inverse floater will be leveraged or supercharged, in which case
the reference rate is multiplied by a factor λ, where λ > 1. The rate on a lever-
aged inverse floater is 

Rate on inverse = Fixed rate – λ × Reference rate (18.12)

Occasionally the rate on the inverse will have a cap or a floor too. For ease of expo-
sition, we ignore both of these cases in the valuation and risk measurement discus-
sions below. Since the generic reference rates are either quarterly or semiannual,
generic inverse floaters have either quarterly or semiannual interest payments. 

In order to value an inverse floater, we must first forecast the expected inter-
est payments E(INVFLOATi), and then discount the expected interest payments
to the present. The valuation formula is

(18.13)

12 Inverse floaters first appeared in early 1986, after a period of sustained decreases in interest
rates. Investor floaters are well suited for investors who anticipate interest rates to fall. For a
detailed discussion of inverse floating rate swap structures, see Das (1994, pp. 428–453).

Value of swap PVfixed PVfloating–=

96.8884 100.4411–=

3.5527–=

PVinvfloater e
r1– T1INVFLOAT1=

e
ri– TiE INVFLOATi( ) e

rn– TnNOTIONAL+
i 2=

n

∑+
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where , the first payment, is treated separately to reflect the fact that the amount
of the first interest payment was set at the beginning of the period and is already
known. By definition, the payment on an inverse floater equals a fixed rate less
the reference floating rate, that is,

INVFLOAT = FIXED – FLOAT (18.14)

Thus, given the expected cash flows of a floating rate bond, we can identify the
expected cash flows and value of an inverse floater. 

ILLUSTRATION 18.5 Value of inverse floater given zero-coupon yield curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the value of a five-year, inverse floating rate bond whose payments are 10% less six-
month LIBOR.

The steps in the valuation of the inverse floater parallel those used for the floating
rate bond in Illustration 18.4.

Step 1: Find the discount rate (factor) for each cash flow by substituting into the term
structure equation. 

Step 2: Find the implied forward rates between adjacent periods. This can be done using
the forward rate formula from Chapter 2, that is, 

where fi,j is the implied forward rate of interest on a loan beginning at time Ti and ending
at time Tj.

Step 3: Find the expected floating rate interest payments. Recall that the floating rate used
to determine the amount of the floating rate payment is the one prevailing at the beginning
of the period. The first floating rate payment is therefore known today and is
100(e0.04405(0.5) – 1) = 2.2272. The first inverse floater payment is, therefore, 10/2 – 2.2272
= 2.7728. The expected of the second floating rate payment is an expected value based on
the six-month forward rate starting in six months, that is, 100(e0.04981(0.5) – 1) = 2.5217.
The expected amount of the second inverse floater payment is therefore 10/2 – 2.5217 =
2.4783. The remaining expected floating rate and inverse floating rate payments are as
shown in the following table. Note that the last payment of the floating rate loan,
103.3421, is the sum of the interest payment, 3.3421, and principal, 100. Likewise, the last
payment of the inverse floater, 101.16579, is the sum of interest, 10/2 – 3.3421 = 1.6579,
and principal, 100.

fi j,

rjTj riTi–

Tj Ti–
-------------------------=
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Step 4: Take the present value of the expected floating rate payments by discounting each
expected payment by the corresponding zero-coupon spot rate. The table below summa-
rizes the results.

As before, the present value of the floating rate bond equals 100. Since the expected
floating rate payment is determined from the forward rates of the zero-coupon yield
curve and the zero-coupon yield curve contains the discount factors used to bring the
cash flows back to the present, their effects outset each other, making the present value of
the loan equal to its par value. The present value of the inverse floater’s expected cash
flows is 92.9044, with no obvious interpretation.

Years to
Maturity

Spot
Rate

Implied
Forward Rate

Expected Forward
Discount Factor

Expected Inverse
Floater Payment

0.00 4.000%
0.50 4.405% 4.405%     2.2272     2.7728
1.00 4.693% 4.981%     2.5217     2.4783
1.50 4.916% 5.363%     2.7176     2.2824
2.00 5.099% 5.646%     2.8630     2.1370
2.50 5.253% 5.869%     2.9782     2.0218
3.00 5.386% 6.054%     3.0733     1.9267
3.50 5.504% 6.211%     3.1541     1.8459
4.00 5.609% 6.347%     3.2244     1.7756
4.50 5.705% 6.467%     3.2865     1.7135
5.00 5.792% 6.575% 103.3421 101.6579

Years to
Maturity

Spot
Rate

Implied
Forward

Rate

Expected
Forward
Discount
Factor

Expected
Inverse
Floater

Payment

PV of Expected Cash Flows

Floater
Inverse
Floater

0.00 4.000%
0.50 4.405% 4.405%     2.2272     2.7728     2.1786   2.7124
1.00 4.693% 4.981%     2.5217     2.4783     2.4061   2.3647
1.50 4.916% 5.363%     2.7176     2.2824     2.5244   2.1202
2.00 5.099% 5.646%     2.8630     2.1370     2.5855   1.9298
2.50 5.253% 5.869%     2.9782     2.0218     2.6117   1.7730
3.00 5.386% 6.054%     3.0733     1.9267     2.6147   1.6393
3.50 5.504% 6.211%     3.1541     1.8459     2.6014   1.5224
4.00 5.609% 6.347%     3.2244     1.7756     2.5763   1.4188
4.50 5.705% 6.467%     3.2865     1.7135     2.5424   1.3256
5.00 5.792% 6.575% 103.3421 101.6579   77.3590 76.0983

Total 100.0000 92.9044
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The valuation of an inverse floater can also be addressed in a different man-
ner. Consider the value of the fixed rate bond (18.7) where the fixed rate is one-
half the fixed rate in the inverse floater, that is,

(18.15)

Suppose we buy two of the fixed rate bonds valued using (18.7) and sell a
floating rate bond valued using (18.9). The portfolio value equals the value of
an inverse floater, that is,

(18.16)

Since the floating rate loan can be valued succinctly as (18.9) and the fixed rate
loan can be valued as (18.7), it is simplest to value the inverse floater as

PVinvfloater = 2 × PVfixed/2 – PVfloating (18.17)

ILLUSTRATION 18.6 Value of inverse floater as difference between two fixed rate bonds and 
floating rate bond.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the value of a five-year, inverse floating rate bond whose payments are 10% less six-
month LIBOR.

Consider the steps in the valuation of the inverse floater in Illustration 18.5, but add
the expected cash flows and present value of expected cash flows of the two fixed-rate
bonds with 5% (annualized) interest payments.

PVfixed 2⁄ e
ri– tiFIXED 2⁄ e

rn– tn FIXED 2⁄ NOTIONAL+( )+
i 1=

n 1–

∑=

2 PVfixed 2⁄× PVfloating–

e
ri– tiFIXED e

rn– tn FIXED 2 NOTIONAL×+( )+
i 1=

n 1–

∑=

   e
r1– t1FLOAT1– e

ri– tiE FLOATi( )
i 2=

n

∑ e
rn– tnNOTIONAL––

e
r1– t1 FIXED FLOAT1–( ) e

ri– ti FIXED E FLOATi( )–[ ]
i 2=

n

∑+=

   e
rn– tnNOTIONAL+

e
r1– t1 INVFLOAT1( ) e

ri– ti E INVFLOATi( )[ ]
i 2=

n

∑ e
rn– tnNOTIONAL+ +=

PVinvfloater=
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Note that the difference in the values of the two fixed rate bonds and the floating rate
bond equals the value of the inverse floater, that is,

192.0044 – 100 = 92.0044

The function,

OV_IR_FLOAT_INVERSE(reset, fixed, npaytr, freq, nxtim, face, term, rate, vd)

can be used to value an inverse floater. The arguments of the function are: reset, the
annualized interest rate set at the last reset date (i.e., the rate used at the time of the next
payment); fixed, the fixed rate; ncoupr, the number of coupons remaining; freq, the num-
ber of coupons per year; nxtim, the time to the next coupon payment expressed in years;
face, the notional amount of the inverse floater; term, a vector of times to maturity of
zero-coupon rates; rate, a vector of zero-coupon rates; and, vd, an indicator variable set
equal to v or V to return the value of the inverse floater, or d or D to return the duration
of the inverse floater.

Duration of an Inverse Floater

An unusual feature of an inverse floater is that its value is extremely sensitive to
interest rate movements. To compute the duration of an inverse floater, we rear-
range (18.16) as

2 × PVfixed/2 = PVfloating + PVinvfloat (18.18)

For an additive shift in the zero-coupon yield curve, this means that 

(18.19)

where D is duration or the percentage change in bond value for a given shift in
the yield curve. Rearranging to isolate Dinvfloat, we get

Years
to

Maturity
Spot
Rate

Implied
Forward

Rate

Expected
Floating

Rate
Payment

Expected
Inverse
Floater

Payment

Fixed-
Rate

Payment
5%

PV of Expected Cash Flows

Floater
Inverse
Floater

Fixed 
Rate

0.00 4.000%

0.50 4.405% 4.405%     2.2272     2.7728     5.0000     2.1786   2.7124     4.8911

1.00 4.693% 4.981%     2.5217     2.4783     5.0000     2.4061   2.3647     4.7708

1.50 4.916% 5.363%     2.7176     2.2824     5.0000     2.5244   2.1202     4.6445

2.00 5.099% 5.646%     2.8630     2.1370     5.0000     2.5855   1.9298     4.5153

2.50 5.253% 5.869%     2.9782     2.0218     5.0000     2.6117   1.7730     4.3847

3.00 5.386% 6.054%     3.0733     1.9267     5.0000     2.6147   1.6393     4.2540

3.50 5.504% 6.211%     3.1541     1.8459     5.0000     2.6014   1.5224     4.1239

4.00 5.609% 6.347%     3.2244     1.7756     5.0000     2.5763   1.4188     3.9951

4.50 5.705% 6.467%     3.2865     1.7135     5.0000     2.5424   1.3256     3.8679

5.00 5.792% 6.575% 103.3421 101.6579 205.0000   77.3590 76.0983 153.4572

Total 100.0000 92.9044 192.9044

2 Dfixed 2⁄×
PVfloating

PVfixed 2⁄
-----------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

Dfloating

PVinvfloat

PVfixed 2⁄
-----------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

Dinvfloat+=
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(18.20)

Keeping in mind that the duration of the floating-rate bond is the time until the
next interest payment (i.e., a maximum of six months for the six-month LIBOR
rate), (18.20) shows that the duration of the inverse floater is about four times
the duration of the fixed rate bond (two times the duration of the fixed rate
bond in the numerator divided by a quantity approximately equal to 0.5).

ILLUSTRATION 18.7 Find duration of inverse floater.

Suppose that the current zero-coupon yield curve is 

ri = 0.04 + 0.01ln(1 + Ti)

Find the duration of a five-year inverse floating-rate bond whose payments are 10% less
six-month LIBOR.

First, compute the duration of the two fixed-rate bonds. The individual contribu-
tions of the durations of each of the cash flows are summarized below.

The duration of the inverse floater is therefore

Years
to

Maturity
Spot
Rate

Fixed Rate
Payment 

5%

PV of
Fixed Rate
Payment

Proportion
of 

Total

Contribution
to Total
Duration

0.00 4.000%
0.50 4.405%     5.0000     4.8911 0.02535 0.01268
1.00 4.693%     5.0000     4.7708 0.02473 0.02473
1.50 4.916%     5.0000     4.6445 0.02408 0.03612
2.00 5.099%     5.0000     4.5153 0.02341 0.04681
2.50 5.253%     5.0000     4.3847 0.02273 0.05682
3.00 5.386%     5.0000     4.2540 0.02205 0.06616
3.50 5.504%     5.0000     4.1239 0.02138 0.07482
4.00 5.609%     5.0000     3.9951 0.02071 0.08284
4.50 5.705%     5.0000     3.8679 0.02005 0.09023
5.00 5.792% 205.0000 153.4572 0.79551 3.97755

Total 192.9044 1.0000  4.4688  

Dinvfloat

2 Dfixed 2⁄×
PVfloating

PVfixed 2⁄
-----------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

Dfloating–

PVinvfloat

PVfixed 2⁄
-----------------------

-------------------------------------------------------------------------------------=

Dinvfloat

4.4688
100

192.0044
-------------------------⎝ ⎠

⎛ ⎞ 0.5–

92.0044
192.0044
-------------------------

--------------------------------------------------------------- 8.7411= =
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RISK MANAGEMENT LESSON: ORANGE COUNTY INVESTMENT POOL

The collapse of the Orange County Investment Pool (OCIP) in 1994 has been
described as one of the worst “derivatives disasters” in history. Disaster to be
sure—the taxpayers of Orange County reportedly lost $1.7 billion, about the
same amount as the market capitalization of Bethlehem Steel, a DJIA compo-
nent, at the time.13 But was Orange County a derivatives disaster? No, not
really. It was an enormous bet on interest rates that went awry. 

The key player in the Orange County controversy was Robert L. Citron,
Orange Country’s Treasurer. As Treasurer, he supervised tax collection and the
investment of funds. Like any other municipality, its problem is cash management.
Tax revenue is collected a few times during the year, while cash disbursements are
made over the entire year. To ensure that cash disbursements are unencumbered,
municipalities generally invest tax revenue in highly liquid, short-term money mar-
ket instruments (or, as noted Chapter 17, reverse repurchase agreements). In this
way, funds in the investment pool generate additional revenue but can be with-
drawn quickly and without loss as they are needed. But, Citron’s strategy was dif-
ferent. In place of investing in short-term instruments, he invested in intermediate-
term U.S. Treasuries, agency notes, corporate notes, and certificates of deposit with
average maturities of about four years. From a historical standpoint, the yield
curve is usually upward sloping. This means that the rates of return on intermedi-
ate-term bonds will generally be higher than short-term instruments. If interest
rates do not change, a strategy such as Citron’s will typically produce returns
higher than money-market rates. If interest rates change, however, the situation is
less clear. Since the duration of the intermediate-term bonds is higher than the
duration of money market instruments, an unexpected increase in rates will cause
the prices of the intermediate-term bonds to fall at a much quicker rate than the
short-term rates, and vice versa. This is particularly dangerous for a municipality
whose cash disbursement needs may require that the intermediate-term bonds be
sold at a loss. Thus, at its most basic level, Citron’s strategy was speculative. He
was placing a bet that interest rates would be stable or fall.

The next twist in Citron’s strategy was that he used repo agreements to
increase the leverage (and, hence, duration) of the investment portfolio. In June
1990, for example, the investment pool had a leverage ratio of 1.5. A leverage
ratio of one implies that the pool has no borrowed funds. A leverage ratio of 1.5
means that Citron had entered repurchase agreements with half the notes in the
investment portfolio, and then used the cash proceeds to buy more notes.14

Although OCIP used term repos, their maturities were six months or less so
their effective duration was near zero. Consequently, if the duration of the orig-
inal asset portfolio was 4, the increased leverage through repo agreements

13 For a very readable and entertaining recount of the Orange County disaster and its chief
instigator, County Treasurer Robert L. Citron, see Jorion (1995). Much of the material used
in this vignette was drawn from this source. Miller and Ross (1997) argue that, in December
1994, OCIP was neither insolvent nor illiquid and its financial condition did not mandate
bankruptcy.
14 In industry parlance, the interest rate strategy of borrowing short-term and buying long-
term is called “riding the yield curve.”
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increases the fund’s duration exposure to 6. In a stable or declining interest rate
environment, the strategy could be immensely profitable. And, it was. From the
beginning of June 1990 until the end of December 1993, the Federal Reserve
lowered the fed funds rate15 no less than 18 times, taking it from a level of
8.25% to a level of 3% as shown in the figure below. Six-month money market
rates (Eurodollar time deposits) fell accordingly, from 8.3125% in June 1990 to
3.4375% in December 1993. At the same time, the yield curve steepened (i.e.,
the spread between the five-year swap rate and six-month LIBOR widened).

What was Citron’s response? Increase leverage, of course. If the bet worked
well in the past, why not double up? And, double up he did. By the end of April
1994, the leverage ratio stood at 2.71. Not only had he reversed out of the secu-
rities he owned, but he reversed out of the securities he bought with the cash
proceeds he received from the original repos. Assuming the intermediate-term
bonds in the original portfolio had a duration of 4, the duration of the overall
portfolio now stood at a whopping 10.84! In other words, a 100 basis point
upward shift in the yield curve would cause the overall portfolio value to fall by
nearly 11%.

The table below summarizes the OCIP portfolio as of the end of April 1994.
The data were drawn from Jorion (1995, p. 92, Table 10.2). Note that, while
the total face value of the securities in the portfolio was $19.86 billion, $12.53
billion of the securities were financed using repo agreements, leaving a net port-
folio value of the OCIP of only $7.33 billion. The leverage ratio was $19.86/
$7.33 or 2.71. As noted earlier, the lion’s share of the portfolio was invested in
intermediate-term Treasury notes, agency notes, corporate notes, and certifi-
cates of deposit. The last column contains the average maturity of the securities

15 The fed funds rate is set by the Federal Reserve and is a target for the interest rate at which
banks lend to each other overnight. While the rates on interbank loans are market-determined,
the Fed can influence rates by supplying as much liquidity as there is for demand at the target
rate. As the U.S. short-term benchmark, the Fed funds rate influences market interest rates
throughout the world.

6-month LIBOR Fed funds 5-yr. swap
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in each category. For the fixed rate notes, the average maturity of the securities
in the category is a rough approximation for the category’s duration. For the
floating rate agency issues, however, this is not the case. While floating rate
agency notes have a duration near zero, the face value of the floating rate notes
was less than 10% of the $5.69 billion face value of the “Agency floating rate
notes” category. More than two-thirds consisted of about 40 inverse floaters
with a weighted average time to maturity of about four years and a weighted
average fixed rate of about 11.64% versus six-month LIBOR. Using these aver-
age parameters and the zero-coupon yield curve on April 29, 1994, the duration
of these inverse floaters was approximately 11.1. With $4 billion in inverse
floaters, a one hundred basis point increase in the yield curve would result in a
reduction in value of $444 million. Put simply, by the beginning of 1994, OCIP
had placed an extraordinarily large bet that interest rates would remain steady
or fall.

 Interest rates in 1994 were anything but steady. The Federal Reserve
increased the fed funds rate six times during 1994, as is shown in the figure
below. Money-market rates and intermediate-term bond rates also rose. What
were the consequences? OCIP suffered extraordinary losses from (1) the decline
in value of their leveraged fixed-rate bond position; (2) the decline in value of
their inverse floater position; and (3) increased financing costs on the repos.16 By
December 1994, OCIP had reportedly lost $1.7 billion. The positions in the
highly leveraged intermediate-term bonds were liquidated, and reinvested in
money-market instruments. 

Asset Face Value (in millions) Average Maturity

Treasury notes        582   5
Agency fixed rate notes     8,480   4
Agency floating rate notes     5,693   4
Corporate notes     1,912   4
Mortgage-backed securities        127 10
Certificates of deposit     1,609   4
Mutual funds        421 n/a
Discount notes        686   0
Commerical paper        350   0
Total portfolio value   19,860

Repos –12,529
Net portfolio value     7,331

Leverage 2.71

16 In using short-term borrowings to finance the purchase of long-term, fixed rate bonds, one
faces risk of the short-term rate rising above the fixed coupon rate.
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Clearly, Citron’s investment strategy is not difficult to understand. It was a
leveraged bet that interest rates would remain steady or fall. The strategy had
been profitable in the years prior to 1994 because interest rates fell. When inter-
est rates reversed direction at the beginning of 1994, Citron’s fortunes changed
for the worse. 

Could the situation have been avoided? Absolutely! The investment strategy
was entirely inappropriate for a municipality in managing its cash flows. Like
controversies discussed in earlier chapters, the culprits are:

1. Hubris. Citron’s astonishing performance in early years instilled overconfi-
dence, as reflected by the fact that he dramatically increased the leverage of the
investment pool through the use of repurchase agreements and inverse floaters.
The overconfidence later turned to arrogance when he ignored the warnings of
investment banks such as Goldman Sachs and Merrill Lynch about the possible
consequences of interest rate advances.

2. Lack of meaningful supervision. Nominally, Citron had five elected supervisors.
Unfortunately, by most accounts, none of them had a meaningful understand-
ing of OCIP’s investment strategy and/or how it was being executed. This situa-
tion is particularly egregious for OCIP since no one appeared to question what
led to the abnormal performance of the pool. Municipalities aimed at managing
cash flows should produce small, safe returns using money market instruments.
But Citron’s returns were much higher. This should have been the supervisors’
red flag. Instead they left him alone to conduct his wizardry.  

INTEREST RATE CAPS, FLOORS, AND COLLARS

Interest rate caps and floors are OTC agreements that protect buyers and sellers
of floating rate notes against adverse movements in interest rates. A firm with a
floating rate loan, for example, faces the risk that its periodic interest payment
will jump to a level too high to manage given the firm’s current cash flow. By

6-month LIBOR Fed funds rate 5-yr. swap
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buying an interest rate cap, the firm can eliminate its interest rate risk exposure
above a specified level. Conversely, an individual holding a floating rate note
may want to limit his exposure to rates falling below a certain level. Buying an
interest rate floor protects the floating rate receiver from such movements. 

An interest rate collar involves buying an interest rate cap and selling an
interest rate floor. The purchase of the cap offers protection from unexpected
increases in the floating rate. The sale of the floor subsidizes the cost of the cap
through a willingness to forfeit any interest savings if the floating rate falls.
Interest rate collars are also marketed as OTC agreements. 

There exists a put-call parity relation between the floating rate, a cap, and a
floor. If you borrow at a floating rate, buy an interest rate cap with a cap rate of
RX, and sell an interest rate floor with a floor rate of RX, you have transformed
your floating rate loan into a fixed rate loan at RX.

An important element in valuing caps and floors is contained in the reset
mechanics of floating rate loans. Recall that floating rate loans generally have
the interest rate set at the beginning of the payment period. Suppose you borrow
$100 million for five years at three-month LIBOR. Recall that on such loans, the
interest rate is set at the beginning of the period (i.e., on the reset date) and
interest payment is made at the end. If the current three-month LIBOR rate is
7%, the payment made in three months will be

$100,000,000 × (0.075/4) = $1,875,000

In three months, the interest rate is reset. Suppose, at that time, the three-month
LIBOR rate is 8%. The interest payment in six months will be 

$100,000,000 × (0.08/4) = $2,000,000

Suppose at the time you borrowed the money, you also bought a 7%, five-year inter-
est rate cap based on three-month LIBOR. By convention, there is no protection on
the first interest payment, since its amount is already known. The second payment is
protected, however. On the first reset date in three months, the prevailing three-
month LIBOR rate (8% in this illustration) is compared with the cap rate, 7%, and
the difference in the rates is paid three months later. Thus, although you must make
a $2 million interest payment in six months, you will receive a payment of 

$100,000,000 × [(0.08 – 0.07)/4] = $250,000

on the interest rate cap agreement. The net interest payment of $1,750,000
implies an annualized interest rate of 7%, exactly equal to the cap rate. 

Valuation of Caps, Floors, and Collars

To value an interest rate cap, we use a portfolio of European-style call options,
with each option’s expiration corresponding to a reset date of the underlying float-
ing-rate bond. Assuming the forward three-month LIBOR rate at time i, Fi, is log-
normally distributed and RX is the known interest rate cap (i.e., exercise price), the
value of the first reset option (called a caplet) and RX is the interest rate cap, 
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(18.21)

where

,   

ti represents the time until the reset date, and ti+1 represents the time until the
payment date for the i-th reset. Two different times appear in (18.21) because
the interest rate is set at the beginning of the reset period while the interest pay-
ment is made at the end of the period. Note that the volatility rate, σi, is specific
to the time to the i-th reset date. (We will discuss the term structure of volatility
later in this section.) The overall value of the interest rate cap is the sum of the n
caplets in the interest rate cap agreement, that is,

(18.22)

An interest rate floor agreement can be developed in a similar manner. Since
the interest rate floor provides protection against downward movements in the
floating rate, each floorlet is valued using a put option formula, that is, 

(18.23)

and the overall value of an interest rate floor is 

(18.24)

If you buy a cap and sell a floor with the same terms, the value of each com-
bined caplet and floorlet is 

(18.25)

Summing the values across the n payments produces the value of an interest rate
swap in which you pay fixed at rate RX and receive floating.

As noted earlier, the above valuation procedure uses a separate volatility for
each period. These volatilities are called forward forward volatilities because
they are the expected future volatility of the forward rate of interest. That is,
each volatility rate is the forward volatility of a one-period forward rate that

ci e
ri 1+– ti 1+ FiN d1( ) RXN d2( )–[ ]=

d1

Fi RX⁄( )ln 0.5σi
2ti+

σi ti

----------------------------------------------------= d2 d1 σi ti–=

Cap value ci
i 1=

n

∑=

pi e
ri 1+– ti 1+ RXN d2–( ) FiN d1–( )–[ ]=

Floor value pi
i 1=

n

∑=

ci pi– e
ri 1+– ti 1+ FiN d1( ) RXN d2( )–[ ] e

ri 1+– ti 1+ RXN d2–( ) FiN d1–( )–[ ]–=

e
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will exist in the future. It is not surprising, therefore, that some refer to this
curve as the forward volatility curve. It is more common in practice, however, to
see a single volatility used for all of the caplets (floorlets) in the cap (floor) for
reporting purposes. These are called flat volatilities. If the flat volatilities for
caps or floors for a number of maturities are available, you can deduce the spot
volatility term structure by using a bootstrapping technique. Bootstrapping is
analogous to computing the implied forward rate from the zero-coupon yield
curve. If the one-period and two-period flat volatilities are known, we can infer
the expected one-period volatility in one period. 

ILLUSTRATION 18.8 Value interest rate cap given zero-coupon yield curve and a flat volatility 
rate curve.

Suppose that the current zero-coupon yield curve is 

ri = 0.05 + 0.01ln(1 + Ti)

and that the flat volatility rate on a one-year cap is 30%. Compute the value of a one-
year, 6% interest rate cap where the underlying floating rate loan has quarterly pay-
ments. Assume that the notional amount of the loan is $100,000.

The first step is to generate the zero-coupon yield curve and deduce the implied for-
ward rates. The spot rates in the table below are computed directly from the zero-coupon
yield curve given above. The continuously componded forward rates are computed in the
usual fashion, that is,

where fi,j is the implied forward rate of interest on a loan beginning at time Ti and ending
at time Tj. To convert the continuously compounded forward rate to a quarterly-com-
pounded rate (i.e., the standard manner in which Eurodollar rates are quoted), we use

The three-month forward rate in six months, for example, is

Years to
Maturity

Spot
Rate

Discount
Factor

Implied Forward Rate

Continuous Quarterly

0.00 5.000% 1.00000
0.25 5.223% 0.98703 5.223% 5.257%
0.50 5.405% 0.97333 5.588% 5.627%
0.75 5.560% 0.95916 5.868% 5.911%
1.00 5.693% 0.94466 6.094% 6.140%

fi j,

rjTj riTi–

Tj Ti–
-------------------------=

f i j,
Q e

fi j, Tj Ti–( )
1–

Tj Ti–
----------------------------------=

f i j,
Q e0.05588 0.5 0.25–( ) 1–

0.5 0.25–
----------------------------------------------------- 0.05627= =
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The next step is to value each of the caplets with the cap. Since the interest rate pay-
ment in three months has already been set, there is no caplet corresponding to the inter-
est rate payment in three months. The value of the caplet corresponding to the payment
in six months is

ci = 100,000e–0.05405(0.5)[(0.05257/4)N(d1) – (0.06/4)N(d2)] = 21.285

where

   and   

Note that the forward rate and cap rate have been divided by four because the rates are
annualized and the payments are quarterly. The value of each caplet is multiplied by
100,000 to account for the notional amount of the floating rate loan. For convenience,
the value of each caplet can be computed using the function

OV_TS_VALUE_CAPLET(f,rx,t1,t2,r2,v1)

where f is the forward rate, rx is the cap rate, t1 is the time until the reset date, t2 is the
time until the reset date payment, and v1 is the volatility rate corresponding to time t1. For
the caplet whose payment occurs in six months, the function produces a numerical value of 

OV_TS_VALUE_CAPLET(0.05257/4,0.06/4,0.25,0.5,0.05405,0.30) = 0.00021285

Multiplying by the notional amount of the loan, the caplet value is 21.285.
The remaining caplets are computed in a similar fashion. The value of the cap is

234.675, as is shown in this table:

VALUATION OF SWAPTIONS

A swaption is an option on an interest rate swap. It gives its holder the right to
enter into a certain interest rate swap at a certain time in the future. A firm may
know, for example, that in six months it will need to enter into a five-year float-
ing-rate loan agreement and will want to swap the floating rate interest pay-
ments for fixed rate interest payments. By buying a swaption, the firm receives
the right to receive six-month LIBOR and pay a fixed certain rate for a five-year
period beginning in six months. The specified fixed rate of the swaption is its
exercise price. If the rate on a five-year fixed versus floating interest rate swap is
less than the exercise price in six months, the firm will exercise the swaption. If

Years to
Maturity

Spot
Rate

Discount
Factor

Implied Forward Rate
Value of
CapletContinuous Quarterly

0.00 5.000% 1.00000
0.25 5.223% 0.98703 5.223% 5.257%
0.50 5.405% 0.97333 5.588% 5.627%   21.285
0.75 5.560% 0.95916 5.868% 5.911%   78.359
1.00 5.693% 0.94466 6.094% 6.140% 135.121

Cap value 234.765

d1
0.05257 0.06⁄( )ln 0.5 0.30( )2 0.25( )+

0.30 0.25
---------------------------------------------------------------------------------------------------= d2 d1 0.30 0.25–=
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it is greater, the firm will choose not to exercise and will enter a swap in the
marketplace. Because the firm has the right, but not the obligation, to enter the
swap underlying the swaption, it must pay for the privilege. Naturally, the firm
also has the alternative of entering a forward or deferred swap with no up-front
cost. Like all forward contracts, however, the firm is obligated to enter into the
swap agreement whether or not the terms are favorable relative to the then-pre-
vailing market rates.

An interest rate swap is an agreement to exchange a fixed rate bond for a
floating rate bond. At the start of the swap, the value of a floating rate bond
always equals the principal amount of the swap. A swaption can therefore be
regarded as an option to exchange a fixed rate bond for the principal amount of
the swap. If a swaption gives the holder the right to pay fixed and receive floating,
it is a put option on the fixed rate bond with an exercise price equal to the princi-
pal. If a swaption gives the holder the right to pay floating and receive fixed, it is a
call option on the fixed rate bond with an exercise price equal to the principal.

Valuation of Swaptions

Like in the valuation of caps and floors, the valuation of a swaption assumes that
the underlying forward (swap) rate is distributed log-normally at the option’s
expiration. The volatility of the forward rate, therefore, is the volatility of a for-
ward fixed rate on a fixed-for-floating swap. Suppose that at the swaption’s expi-
ration, the rate on an n-year swap is R. By comparing the cash flows on a swap
where the fixed rate is R to the cash flows on a swap where the fixed rate is RX,
we see that the payoff from the swaption consists of a series of cash flows equal to 

(18.26)

where L is the principal amount of the swap, and both  and  are expressed with
a compounding frequency of m times per year.

The cash flows are received m times per year for the n years of the life of the
swap. Suppose that the payment dates are t1, t2, . . ., tm measured in years. Each
cash flow is the payoff from a call on R with strike price RX. In other words, you
do not need a separate option value for each cash flow as you did for caps and
floors. One will suffice. The value of the cash flow at time ti (where ti = T + i/m) is

(18.27)

where 

,   

L

m
-----max R RX– 0,( )

L

m
-----e

riti–
FN d1( ) RXN d2( )–[ ]

d1

F RX⁄( )ln 0.5σ2T+

σi T
---------------------------------------------------= d2 d1 σi ti–=
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is the forward rate on an n-year swap that begins at time T, and ri is the contin-
uously compounded zero-coupon interest rate for maturity ti. The swaption
value is therefore

(18.28)

Some of you will recognize that this formula is the present value of an annuity,
that is, 

(18.29)

The value of a put option is

(18.30)

Finally, it is worth noting that both caps/floors and swaptions are quoted in
terms of the Black (1976) model in the marketplace even though it is theoreti-
cally inconsistent to do so. The cap/floor market uses the short-term LIBOR rate
as the underlying source of uncertainty, while the swaptions market uses longer-
term forward rates. Since forward swap rates are nearly linear in the individual
forward rates, the log-normality assumption implicit in the Black model cannot
hold simultaneously for both individual forward rates and forward swap rates
(i.e., a linear combination of log-normal variates is not log-normal). Among
other things, this means that direct comparisons between quoted implied volatil-
ities for caps/floors and swaptions are improper. A general, all-encompassing
(albeit more computationally intensive) framework for valuing interest rate
products is provided in the next chapter.

ILLUSTRATION 18.9 Value swaption.

Suppose that the zero-coupon yield curve based on LIBOR is flat at 4% compounded
continuously. Compute the value of a three-year option on a five-year swap assuming the
swaption gives the holder the right to receive 4.2% fixed. Assume payments are made
semiannually and principal is 100. Assume also that the volatility of the forward rate on
five-year swaps in three years is 30%.

The right to receive fixed is a put option. You will exercise only when the fixed rate
on the five-year swap in three years is below 4.2%.

The put option swaption formula is

The sum of the discount factors is

L

m
-----e

riti–
FN d1( ) RXN d2( )–[ ]
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The value of the put in the squared brackets is

The value of the swaption is

SUMMARY 

This chapter deals with OTC interest rate products which have multiple cash flows
through time. A critical component in accurately valuing such derivative contracts
is knowing how to measure the zero-coupon yield curve. The first section describes
some commonly used data sources and estimation procedures. With the zero-cou-
pon curve in hand, we then focus on the valuation of fixed-for-floating interest rate
swaps and how they are used for risk management purposes. We then turn to the
valuation of interest rate caps, collars, and floors, as well as swaptions. 
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Credit Products

 

erhaps the fastest growing area within the derivatives industry is credit deriva-
tives. Simply defined, a 

 

credit derivative

 

 is an agreement that transfers the credit
risk of an asset from one party (the 

 

protection buyer

 

) to another (the 

 

protection
seller

 

). The oldest form of a credit derivative is a guarantee. A 

 

guarantee

 

 is a con-
tract in which the seller accepts responsibility of the buyer’s payment obligation(s)
in the event of default. While guarantees have been arranged for thousands of
years, two new and different classes of credit derivative contracts began to appear
in the early 1990s—credit default products and credit spread products. 

 

Credit
default products

 

 are those whose payoffs are triggered by a “credit event.” A 

 

credit
event

 

 need not be default and can be defined in any way that the two counterpar-
ties agree. Some common credit risk realizations are bankruptcy, failure to pay a
coupon or to repay the full amount of the bond’s principal, an invocation of a
cross-default clause such as a more junior bond issue within the firm defaulting, a
corporate restructuring that leaves bondholders worse off, and credit deterioration
in the form of a downgrade in bond rating.

 

1

 

 In contrast, 

 

credit spread products

 

 are
those whose payoffs are linked to a 

 

credit spread

 

, that is, the difference between
the yield to maturity on a corporate bond and the yield to maturity of a risk-free
bond (e.g., U.S. Treasury bond) with same coupon rate and maturity date. Natu-
rally, credit spreads depend on all credit risk realizations to varying degrees.

The purpose of this chapter is to describe the different types of credit deriva-
tives that are now traded in the OTC market and how they are used.

 

2,3

 

 In the first

 

1 

 

Credit event definitions are contained in International Swaps and Derivatives Association
(2003).

 

2 

 

No exchange-traded credit risk futures and options listed. In November 1998, the Chicago
Mercantile Exchange (CME) launched trading of futures and options on the Quarterly Bank-
ruptcy Index (QBI). The QBI is reported quarterly and is the total number of bankruptcy fil-
ings (in 000s) in U.S. courts over the previous quarter. Since most bankruptcy filings are by
individuals, this contract was intended to be a credit risk management vehicle for those hold-
ing portfolios with a significant amount of consumer debt (e.g., credit card debt). Unfortunate-
ly, the product was a resounding failure. In five years after the product launch, the QBI futures
and options have never traded. The CME’s Board of Directors approved delisting all contract
months on September 3, 2003.

 

3 

 

This chapter is intended to be only a primer on credit derivatives. For more details regarding
the intricacies of the different contracts and their uses, see Tavakoli (1998) and Meissner (2005). 

P
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section, we discuss the evolution, growth and current size of OTC credit deriva-
tives markets. In the second, we discuss one of the first modern-day credit deriva-
tive contracts—a total rate of return swap. In a total return swap, the buyer
transfers all of the risks of the asset (e.g., the market risk and default risk of a
corporate bond) to the seller in return for a risk-free interest payment. We then
turn, in the third section, to credit default products, the most prominent of which
is credit default swaps. In a credit default swap, the protection seller agrees, for
an upfront or a continuing premium, to compensate the protection buyer upon a
defined credit event. Since the buyer retains ownership of the underlying asset, a
credit default swap isolates the credit risk inherent in the asset (e.g., the default
risk of a corporate bond) from market risk (e.g., the interest rate risk of a corpo-
rate bond). Credit default swaps are used in structuring two other types of credit
risk products—credit-linked notes (CLNs) and collateralized debt obligations
(CDOs). A 

 

credit-linked note

 

, described in the fourth section, is a bond-like secu-
rity structured by a bank to behave like a particular corporate or sovereign bond.
This is done by buying a risk-free bond and selling a credit default swap. The suc-
cess of this market is driven by the fact that corporate bond markets are relatively
illiquid and that many firms and institutions do not have authorization to trade
derivative contracts or to engage in off-balance sheet transactions. A synthetic

 

collateralized debt obligation

 

, described in the fifth section, is like a CLN, except
that the CDO sells a portfolio of different credit default swaps and issues bonds
of varying degrees of seniority. Credit spread products are discussed last. These
products have payoff structures that depend on the credit spread. 

 

CREDIT PRODUCT MARKETS

 

Like in most OTC markets, finding detailed information regarding credit deriva-
tive contract specifications and trading activity is difficult. The contracts are pri-
vate negotiations and mandatory reporting is not required. Again, the
International Swaps and Derivatives Association (ISDA) plays a significant role
in the standardization of contract terms. More than 98% of all credit default
swaps traded during 2003, for example, were based on ISDA documentation.

 

4

 

 
Probably the most detailed information regarding the credit derivatives mar-

ket is collected by the British Bankers’ Association (BBA). Each year, the BBA
surveys institutions regarding credit derivatives use. Most of the respondents are
significant players in the international credit derivatives market. For the 2003/
2004 survey, 30 institutions participated. More than a third had outstanding
transactions in excess of USD 100 billion.

One important fact emerging from the 2003/2004 most recent BBA survey is
that the size of the credit derivatives market is growing exponentially. Figure 19.1
shows the notional amount of credit derivatives at yearend during the period 1997
through 2003. Where only USD 180 billion were outstanding in 1997, the number
had grown to 3,548 in 2003, nearly a 20-fold increase. The rate of increase from
2002 to 2003 was over 41% alone! Among the reasons cited for the rapid growth
are increased market liquidity, a wider array of products, improved standardiza-

 

4 

 

See British Bankers’ Association (2004, p. 27).



 

Credit Products

 

681

 

tion, and greater market understanding. While the growth in the credit derivatives
market is unmistakable, with estimates tipping USD 8.2 trillion for the year end-
ing 2006, the market remains small relative to other types of OTC products. The
total notional amount of OTC derivatives outstanding was over USD 197 trillion
for the year ending 2003. Thus, credit derivatives accounted for about 1.8%.

In general, a credit derivative is any financial contract that is designed to
permit someone to change (increase or reduce) credit risk. The BBA’s definition
of credit derivatives, for survey purposes, includes:

Any instrument that enables the trading or management of credit risk in
isolation from other types of risks associated with an underlying asset.
The instruments may include: single-name credit default swaps, credit
spread products, total return products, basket products, credit linked
notes, synthetic CDOs, equity linked credit products, index products and
asset swaps. They include both single-name and portfolio transactions.

 

5

 

Single-name 

 

credit default swaps

 

 (CDSs) are by far the largest category. Figure
19.2 shows that 51% of the notional amount of credit derivatives outstanding
at the end of 2003 was accounted for by single-name CDSs. The descriptor,
“single-name,” in the name arises from the fact that these agreements specify a
single corporate bond or loan, a sovereign bond, or an asset-backed security as
the reference obligation

 

6

 

 in contrast with a portfolio, basket, or index. The sec-
ond largest category is collateralized debt obligations (CDOs) at 16%, followed
by index trades at 11%, and 

 

credit-linked notes

 

 (CLNs) at 6%. Total return

 

5 

 

See British Bankers’ Association (2004, p. 10).

 

6 

 

A 

 

reference entity

 

 (or 

 

reference issuer

 

) is the issuer of the security underlying the credit de-
rivative (e.g., Ford Motor Co.). A 

 

reference obligation

 

 (or 

 

reference asset

 

) is one of the issuer’s
outstanding securities (e.g., a specific Ford Motor Co. bond).  

FIGURE 19.1 Notional amount of global credit derivatives outstanding (excluding asset 
swaps) by year in USD billions.  

Source: The figure is based on information compiled from British Bankers’ Association (2004,
p. 11).
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swaps, basket products, and asset swaps account for 4% each, with the remain-
ing credit products accounting for 4%.

Figures 19.3 and 19.4 give a flavor for who uses credit derivatives. The types
of institutions using credit derivatives to 

 

buy

 

 credit protection are summarized in
Figure 19.3. Like in previous years, banks buying credit protection accounted for
the largest proportion of the total notional amount outstanding at the end of
2003—51%. Similarly, securities houses and insurance companies are large users,

FIGURE 19.2 Proportional of notional value of credit derivatives outstanding at yearend 
2003 accounted for by product category.  

Source: Information compiled from British Bankers’ Association (2004, p. 21).

FIGURE 19.3 Types of institutions using credit derivatives to buy credit protection for the 
year ending December 2003. 

Source: Information compiled from British Bankers’ Association (2004, p. 17).
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accounting for another 23%. Interestingly, hedge funds accounted for 16% of
total, up from 5% for the year ending 2001. The “Other” category includes enti-
ties such corporations, mutual funds, and pension funds. The types of institutions
using credit derivatives to 

 

sell

 

 credit protection are summarized in Figure 19.4.
Again banks are the single largest player, with 38% of total. Insurance companies
are next with 20%. Comparing Figures 19.3 and 19.4, we find that banks are net
buyers of protection, while insurance companies are net sellers.

Another useful source of information about the credit derivatives market is
provided by FitchRatings (2004). Among the most interesting findings contained
in their report are the tables and figures that break down credit derivatives by
reference entity. Figure 19.5, for example, summarizes the FitchRating results
for the end of year 2003 by reference entity type. Nonfinancial corporate expo-
sures account for 65% of the notional amount of contracts outstanding, with
financial corporate exposures accounting for another 17%. Sovereign risk

 

7

 

accounts for 6%, and asset-back securities, 5%. Table 19.1 summarizes the
FitchRating information by gross value of protection sold and gross value pur-
chased. Consistent with Figure 19.5, the most active reference entities are single
names—either corporate or sovereign—with corporates taking the lion’s share.
At the top of the list are automobile and telecom companies, which should not
be surprising considering the turbulent markets for these industries in recent
years. The fact that company names appear in both columns simply reflects the
fact the each agreement needs a counterparty. A little further down the list, sov-
ereign debt begins to appear. Japan is the most used sovereign reference entity
for both protection sales and purchases. 

 

7 

 

Sovereign risk

 

 refers to the risk of default arising from changes in a country’s foreign-ex-
change policies and/or regulations.

FIGURE 19.4 Types of institutions using credit derivatives to sell credit protection for the year 
ending December 2003.  

Source: Information compiled from British Bankers’ Association (2004, p. 18).
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FIGURE 19.5

 

Global credit derivatives exposures by reference entity type for year ending 
December 2003. 

 

Source: 

 

Information drawn from FitchRating (2004, p. 8). 

 

TABLE 19.1  

 

Top 25 reference entities appearing in credit derivative contracts in 2003 by 
gross dollars sold and gross dollars purchased.  

 

Source: 

 

Information drawn from FitchRatings (2004, p. 8).

 

Protection Sold Protection Bought

 

  1 Ford Motor Corp./Ford Motor Credit Co. Ford Motor Corp./Ford Motor Credit Co.
  2 General Motors/GMAC DaimlerChrysler
  3 France Telecom General Motors/GMAC
  4 DaimlerChrysler France Telecom
  5 Deutsche Telekom Deutsche Telekom
  6 General Electric/GECC General Electric/GECC
  7 Altria Group Telecom Italia
  8 Telecom Italia Verizon
  9 Japan Altria Group
10 France Japan
11 Italy Merrill Lynch
12 Portugal Volkswagen
13 Fannie Mae Bayerische Hypo-und Vereinsbank
14 Verizon Bayer
15 Allianz Brazil
16 Merrill Lynch BT
17 Volkswagen Citigroup
18 AIG Credit Suisse First Boston
19 Citigroup JP Morgan Chase
20 Germany Lehman Brothers
21 Spain MBIA
22 BNP Paribas Parmalat
23 Eastman Kodak Repsol
24 Time Warner Time Warner
25 ABN Amro American Express

Asset-backed
securities

5%

Other
7%

Corporates
65%

Financials
17%

Sovereigns
6%



 

Credit Products

 

685

 

FIGURE 19.6

 

Global credit derivatives exposures by bond rating for year ending December 
2003.  

 

Source: 

 

Information drawn from FitchRating (2004, p. 9).

 

Finally, Figure 19.6 summarizes the notional amount of credit derivatives
outstanding by bond rating. Interestingly, the size of the market for protection
does not increase monotonically as the bond rating falls as one might expect—
the lower the bond rating, the greater the credit risk and therefore the greater
the need for credit protection. Noninvestment grade bonds, for example,
account for only 18%, compared with 30% for the lowest-rated investment
grade bonds BBB, and 25% for the second lowest rated investment grade bonds
A. The most likely explanation for this phenomenon is that many institutions
are barred from trading noninvestment grade issues. This has two consequences.
First, it means that the size of the market for noninvestment grade bonds is
smaller than investment grade bonds, hence the absolute demand for credit pro-
tection is lower. Second, it means that the market for protection in the BBB cat-
egory will be highest. A rating downgrade from BBB means that the credit
spread will rise not only from increased default risk but also from increased sell-
ing pressure brought about by institutions liquidating their holdings in bonds
that have become noninvestment grade.

 

TOTAL RETURN SWAP

 

A 

 

total rate of return swap

 

 (TRORS) is frequently lumped into the category of
credit derivatives, although, technically, it is more than that. The total return on
a reference obligation such as a corporate bond is affected by both interest rate
risk (i.e., the risk associated with movements in the level of risk-free interest
rates) and credit risk (i.e., the risk associated with default and/or the spread
between the corporate bond and Treasury bond yields). Figure 19.7 shows the
general nature of a total return swap. The protection buyer A (also called “total
return payer”) owns the reference asset and pays its total return (e.g., coupon
interest and price change) to the protection seller B (also called “total return
receiver”) In return, A receives the risk-free return (e.g., six-month LIBOR plus
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a premium of, say, 30 basis points). In the absence of default, A passes on any
dividends or coupon interest on the reference asset during the life of the agree-
ment on to the TRORS receiver. In addition, A pays B the price change on the
reference asset over the life of the contract. If the reference asset price is $75 at
the beginning of the swap’s life and $100 at the end, for example, A pays B $25.
If the reference asset price is $75 at the beginning of the swap’s life and $60 at
the end, B pays A $15.

In the event of default of the reference obligation before the expiration date
of the swap, B makes A “whole” for both the market risk and the default risk of
the reference asset. Under cash settlement, this means B will pay A the difference
between the reference asset’s price at the beginning of the swap agreement and
its price at the time of default. Occasionally, finding a reliable bond price quote
to use for settlement purposes will be difficult to find due to market illiquidity.
In such cases, B may agree to take delivery of the reference asset from A and pay
A the reference price set at the swap’s inception. Once settlement occurs, the
swap is terminated.

For purposes of illustration, consider the total return swap confirmation that
appears in Table 19.2. The terms of the swap say that A pays B “All cash flows of
the reference obligation on the same day as the cash flows are received.” This
means that, as A receives the semiannual coupon payments on its Northrop
bond, they must be immediately paid to B. In return, A receives from B six-
month LIBOR plus 30 basis points. Finally, at the agreement’s termination, any
unpaid interest by either party is paid. In addition, if the market price of the
Northrop bond is less than its initial price of 100% of par, B pays A the differ-
ence, and vice versa. The credit events are bankruptcy or payment failure.

To understand the benefits of using a total return swap in which the investor
receives the total return and pays floating, compare it “cash-and-carry” T-bond
position discussed in Chapter 17. In essence, the TRORS is nothing more than a
long position in a corporate bond financed by short-term borrowing. It should not
be surprising, therefore, to learn that hedge funds frequently use total returns

FIGURE 19.7 Total rate of return swap.
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Total return

payer

B:
Total return

receiver
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LIBOR + spread

Total rate of return
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swaps as a means of financing credit exposures. In addition, TRORSs are fre-
quently written on indexes. Like the index products discussed in Chapter 14, this
offers the advantage of executing one swap transaction to implicitly buy or sell a
basket of underlying securities. The TRORS is simple, efficient, and cost effective.
Finally, for certain securities, a short sale of the security may be expensive or
impossible to execute. Like selling a forward contract, entering a TRORS in which
we pay the total return and receive floating is equivalent to shorting the security.

 

CREDIT DEFAULT SWAP

 

Single-named credit default swaps are the largest category of credit derivatives,
accounting for more than one-half of the notional amount of all credit deriva-
tives contracts outstanding at the end of 2003. A “single-name” product, as
noted earlier, means that there is one reference obligation underlying the swap.

TABLE 19.2  Selected terms from the confirmation of a total return swap.

Transaction Total return swap
Trade date January 6, 2005
Effective date January 7, 2005
Termination date March 20, 2008 or the “early redemption date”
Total return payer Party A
Total return receiver Party B
Reference entity Northrop Gruman Corporation
Reference obligation Guarantor: Northrop Gruman Corporation

Maturity: February 15, 2011
Coupon: 7.125%
CUSIP/ISIN: US666807AT91

Calculation amount USD 20,000,000
A pays All cash flows of the reference obligation on the same day as the

cash flows are received.
B pays Six-month LIBOR + 30 basis points
Termination payment On the termination date, any accrued interest payments due A or

B will be paid. In addition, the following termination payment
amount will be made:

Calculation amount × (Initial price – Market value)

If positive, B pays A.
If negative, A pays B.

Initial price 100%
Market value The market value of the reference obligation, including accrued

interest, on the termination date. A dealer panel will determine
the market value using the market bid price.

Credit event(s) The following credit event(s) shall apply to this transaction:
Bankruptcy
Failure to pay
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Basket credit default swaps are less popular (i.e., about 4% in Figure 19.2).
With basket products, the reference obligation is a basket or portfolio of obliga-
tions (e.g., a corporate bond from each of 20 different issuers).  The most
important attribute of a credit default swap (CDS) is that it isolates the credit
risk of the underlying reference asset. The term “swap,” however, is a misno-
mer.  More or less, it is a put option whose premium is paid upfront or amor-
tized over the life of the agreement.

Figure 19.4 shows the general nature of a credit default swap. In the figure,
the default swap buyer, A, is buying protection from the default swap seller, B.
To do so, A pays to B either an upfront or a periodic premium (i.e., fee). For a
standard CDS, the premium is amortized and paid quarterly. For a cash settle-
ment contract, B pays A the difference between the 

 

reference price

 

 set at the
inception of the CDS (typically, the par value of 100) and the 

 

final price

 

 (also
called the 

 

recovery rate

 

) in the event of default (or other credit event).

 

8

 

 With
physical settlement, A delivers the defaulted bond to B, and receives the refer-
ence price. In most default swaps, the buyer has the right to deliver one bond of
a number of prespecified bonds. This protects the protection buyer from getting
squeezed in the event he does not own the reference bond. In the event default
does not occur, the contract terminates with no further payments/obligations.

To further clarify the terms of a CDS, consider Table 19.3, which contains
selected terms from the confirmation of an actual credit default swap.

 

9

 

 The for-
mat is similar to other swaps. At the top are the trade date, effective date, and
termination date, as well as the identities of the two parties to the swap. Next is
the reference entity, Northrop Gruman Corporation. The reference obligation is
the Northrop Gruman Corporation bond with a 7.125% coupon and a Febru-
ary 15, 2011 maturity date. The bond’s CUSIP number is also specified so there
is no ambiguity regarding the identity of the bond. 

In this particular agreement, A is the protection buyer and B is the protec-
tion seller. Each quarter, A pays

 

FIGURE 19.8

 

Credit default swap.

 

8 

 

Since the market for the bond may be illiquid, the settlement price is sometimes determined
by a poll of several bond dealers.

 

9 

 

An ISDA Word document file containing all of the possible terms of a credit default swap
confirmation can be downloaded at www.isda.org.

0.0017
Actual

360
-----------------⎝ ⎠

⎛ ⎞ USD5,000,000××

A:
Default swap

buyer

B:
Default swap

seller

Premium (upfront or periodically)

Payment if reference obligation defaults.
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TABLE 19.3  

 

Selected terms from the confirmation of a credit default swap.

 

where 

 

Actual

 

 is the number of days in the quarter. The sum of the present values
of these payments through time is the cost of the credit event risk insurance. In
other words, the cost of the default risk put option is being paid on an install-
ment plan, with the present value of the quarterly annuity payments being set
equal to the cost of the put. There is an important distinction, however. The pre-
mium payments are suspended if a credit event occurs during the life of the swap. 

Party B, the protection seller, has no obligation unless a credit event occurs.
The events specified in Table 19.3 are bankruptcy, rating downgrade, and failure
to pay. If a credit event occurs, the contract is settled with physical delivery.

 

10

 

Transaction Credit default swap
Trade date January 6, 2005
Effective date January 7, 2005
Termination date March 20, 2008
Fixed rate payer Party A
Floating rate payer Party B
Reference entity Northrop Gruman Corporation
Reference obligation Guarantor: Northrop Gruman Corporation

Maturity: February 15, 2011
Coupon: 7.125%
CUSIP/ISIN: US666807AT91

Reference price 100%

 

Fixed payments

 

Fixed rate, payer calculation amount USD 5,000,000
Fixed rate 0.17%
Fixed rate day-count fraction Actual/360
Fixed rate payer payment dates March 20, 2005, and thereafter the 20th of each

March, June, September, and December

 

Floating payments

 

Floating rate payer calculation amount USD 5,000,000
Credit event(s) The following credit event(s) shall apply to this

transaction:
Bankruptcy
Downgrade
Failure to pay

Default requirement USD 10,000,000 as of occurrence of credit event

 

Settlement terms

 

Settlement method Physical settlement
Deliverable obligation category Bond or loan
Deliverable obligation characteristics Not subordinated

Not contingent
Maximum maturity 30 years

 

10 

 

British Bankers’ Association (2004, p. 25) reports that 86% of credit derivative contracts
have physical settlement.
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The protection buyer A delivers the Northrop bond (or one of a number of eligi-
ble bonds) at par to the protection seller B and receives USD 10,000,000. As the
table shows, eligible deliverable bonds have similar characteristics. The terms of
the agreement say that the deliverable bond cannot be a subordinated issue,
have embedded options, or have a term to maturity greater than 30 years.

The trade confirmation shown in Table 19.3 does not provide any indication
about the motivation for the trade. All we know is that Party A is buying protec-
tion (i.e., going short the credit) and Party B is selling protection (i.e., going long
the credit). Each side in the transaction could be hedging or speculating. Party A
may have initiated the trade to eliminate the credit risk of a Northrop bond held
in inventory. Naturally, A could have simply sold the Northrop bond, however,
corporate bond markets are fairly illiquid and trading costs are high. Buying pro-
tection using a CDS is usually cheaper. In addition, the CDS absorbs the credit
risk, but not the encumbrance of legal ownership, of the reference security. On the
other side of the trade, rather than buy the bond directly incurring significant
trading costs, Party B may have wanted a long position in the Northrop bond.

Quantifying the cost of credit event insurance is difficult, since the number
of credit events is large. In the situation where credit event risk is default risk,
we can use the Merton (1974) model discussed in Chapter 12 can be used as a
starting point. In the Merton framework, we assumed that the firm had a single
issue of debt outstanding—zero-coupon bonds maturing at time 

 

T

 

. We also
assumed that the firm’s value is log-normally distributed at the end of the bond’s
life. Under such assumptions, the firm’s stock can be modeled as a call option on
the value of the firm’s assets with an exercise price equal to face value of the
bonds and a time to expiration equal to their term to maturity. The stock can be
valued using the BSM formula,

(19.1)

where 

, 

 

F

 

 is the face value of the firm’s bonds, 

 

V

 

 is the overall value of
the firm, 

 

σ

 

V

 

 is the volatility rate of the firm, and 

 

r

 

 is the rate of return on a risk-
free bond. With the value of the stock known, the value of the risky bonds is,
therefore, 

 

B

 

 = 

 

V

 

 – 

 

S

 

.
In Chapter 12, we also showed that the value of a zero-coupon corporate

bond equals the difference between (1) the value of a risk-free zero-coupon
bond with face value 

 

F

 

 and (2) the value of a put that allows the managers of the
firm to put the firm’s assets to the bondholders if firm value falls below the
bonds’ face value at maturity, that is, 

(19.2)

S VN d1( ) Fe rT– N d2( )–=
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To understand the economic intuition underlying why the value of the put
equals the default risk premium, note that the expression in squared brackets in
(19.2) may be rewritten as

(19.3)

In (19.3), the term, 

is the expected firm value at time T conditional on the value of the firm being
less than the face value of the bonds, that is, . From a corporate
bond perspective, this is called the bond’s expected recovery value—what bond-
holders expect to receive in the event of default. The expected loss of the bond
at time T conditional upon default is , which may be calcu-
lated using the term in squared brackets of (19.3). The full expression (19.3) is,
therefore, the present value of the expected loss on the bond conditional on the
value of the firm being less than the bond’s face value at time T times the proba-
bility of default, Pr(VT < F) = N(–d2).

ILLUSTRATION 19.1 Compute cost of buying default protection.

Assume that the firm has a current value of 120, and its annual volatility rate is 30%.
The firm has two securities outstanding—zero-coupon bonds and common stock. The
bonds mature in five years and have a face value of 100. The stock pays no dividends,
and the risk-free rate of interest is 5%. Compute the risk-neutral probability of default,
the bond’s credit spread, and the cost of buying default protection on a quarterly basis. 

In the interest of completeness, we begin by computing the value of the firm’s com-
mon stock, that is,

OV_CORP_STOCK_FIRM (120, 100, 5, 0.05, 0.30, 1) = 51.98

The value of the firm’s bonds is therefore

B = 120.00 – 51.98 = 68.02

The value of risk-free bonds is 

Brisk-free = 10e–0.05(5) = 77.88

Consequently, the present value of the expected loss conditional on default times the risk-
neutral probability of default is 77.88 – 68.02 = 9.86. This is the total cost of buying
insurance, which we can amortize in quarterly installments. The promised yield to matu-
rity on the bonds is

consequently, the bond’s credit spread is 2.707%.

e rT– F VerTN d1–( )

N d2–( )
-------------------– N d2–( )

VerTN d1–( )

N d2–( )
-------------------

E ṼT VT F<( )
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y
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5
--------------------------------------- 7.707%= =



692 INTEREST RATE DERIVATIVES

To verify the computation of the insurance premium, we will use equation (19.3). The
risk-neutral probability of default can computed using the OPTVAL function,

OV_CORP_PROB_DEFAULT(firm, face, t, alpha, vf)

where firm is the value of the firm, face is the face value of the firm’s zero-coupon bonds,
t is the term to maturity of the bond’s in years, alpha is the expected rate of appreciation
in the value of the firm, and vf is the volatility rate of the firm. In a risk-neutral world,
the expected rate of appreciation in the value of the firm is set equal to the risk-free inter-
est rate, r. Its value is .3786. The expected recovery value conditional upon default is

and may be computed using

OV_CORP_RECOVERY_VALUE (120, 100, 5, 0.05, 0.30) = 66.56

where all of the function arguments are as defined above. The expected loss conditional
upon default is 100.00 – 66.56 = 33.44. Alternatively, we can use the function

OV_CORP_EXPECTED_LOSS (120, 100, 5, 0.05, 0.30) = 33.44

The present value of the expected loss conditional upon default times the probability
default is 

e–0.05(5)(33.44)(0./3786) = 9.86.11

To determine the quarterly payment, we set this amount equal to the present value of an
annuity of payments, that is, 

The quarterly payment is PAYT = 0.561.

In the model used to value the cost of protection, we made the implicit
assumption that default, if it were to occur, would happen on the bond’s matu-
rity date. In reality, default may occur during the life of the bond when the firm’s
assets deteriorate in value to, say, level H. When it does, default occurs and the
bondholders receive H. While this complicates matters, we provided the solu-
tion to this problem in Chapter 8. Instead of the valuing the firm’s stock as a
standard call option, we value the stock as a knockout or barrier option. Specif-
ically, the firm’s stock is a down-and-out call. When the value of the assets sinks
down of barrier H, the stock’s life ends worthless. The value of such a call is
given by equation (8.44) in Chapter 8.

ILLUSTRATION 19.2 Compute cost of buying credit protection with early default.

Assume that the firm has a current value of 120, and its annual volatility rate is 30%. The
firm has two securities outstanding—zero-coupon bonds and common stock. The bonds
mature in five years and have a face value of 100. The stock pays no dividends, and the risk-

11 To check this computation, compute the value of the put option on the right-hand side of
(19.3) using OV_OPTION_VALUE(120, 10, 5, 0.05, 0.0, 0.30, “p”, “e”) = 9.86. 

120e0.05 5( ) 0.1636
0.3786
------------------⎝ ⎠

⎛ ⎞ 66.56=

9.86 PAYTe 0.05 0.25t( )–

t 1=

20

∑=
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free rate of interest is 5%. Compute the bond’s credit spread and the total cost of buying
default protection assuming the bonds default if the value of the assets drops below 60 during
the bond’s life or if the value of the firm’s assets is below the face value of the bonds at matu-
rity. Explain why the results differ from those in Illustration 19.1.

The value of a down-and-out call option can be computed using the OPTVAL function

OV_NS_BARRIER_OPTION(s, x, h, t, rebate, r, i, v, TypeFlag)

where s is the asset price, x is the exercise price, h is the barrier level, t is the time to expi-
ration, r is the risk-free rate of interest, i is the income rate, and v is the volatility rate.
The TypeFlag consists of three contiguous lower case letters. The first is a (c)all/(p)ut
indicator, the second is a (d)own/(u) indicator, and the third is a (i)n/(o)ut indicator. For a
down-and-out call, TypeFlag is “cdo.” Given the parameters of this illsutration, the value
of a down-and-out call is

  OV_NS_BARRIER_OPTION(120, 100, 60, 5, 0, .05, .00, .30, “cdo”) = 50.972

and the value of a down-and-in call is

  OV_NS_BARRIER_OPTION(120, 100, 60, 5, 0, 0.05, 0.00, 0.30, “cdi”) = 1.007

Note that the sum of the values of the down-and-out call and the down-and-in call (with
no rebate) equals the value of a standard European-style call option, 51.980.
 To find the value of the firm’s bonds, we subtract the value of the down-and-out call
from the value of the firm, that is,

B = 120 – 50.972 = 69.028

The bond’s promised yield to maturity is 7.413%, and its credit spread is 2.413%. The
bond’s value increases (yield decreases) from Illustration 19.1 because we have, in essence,
imposed the constraint that the bond’s value will neven fall below 60. While extremely
unlikely, the bond’s value in Illustration 19.1 can fall as low as 0. 

In some instances, credit default swaps specify that the protection seller
pays a pre-specified amount of cash, CASH, rather than the difference between
the reference price and price in the event of default in the event of default.
Again, assuming that the firm has a single issue of debt outstanding—zero-cou-
pon bonds maturing at time T, we can value the credit default option as a cash-
or-nothing put, that is,

(19.4)

where

ILLUSTRATION 19.3 Value fixed payment credit option.

Value a credit option that pays 50 if default occurs. Assume that the firm’s value is 120
and its volatility rate is 30%. Assume the firm’s debt is a five-year, discount bond issue
with a principal amount of 100, and the risk-free rate of interest is 5%. 

pcon CASHe rT– N d2–( )=
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The value of the fixed payment, put credit option is

pcon = 50e–0.05(5)N(–d2) = 14.744

where

and N(–d2) = 0.3786.

CREDIT-LINKED NOTES

A credit-linked note (CLN) is simply a note (or a bond or a loan) with an embed-
ded credit feature. They come in a wide variety of structures. One of the simplest
is illustrated in Figure 19.9. In the figure, the CLN issuer, B, buys a corporate or
sovereign bond from the issuer, A. The issuer gets paid in cash and is required to
make periodic interest payments of, say, 6%. B does not want to incur the credit
deterioration and default risk of the bond, so he creates a credit-linked note that
he sells to the CLN buyer, C. B receives the cash and promises to pay an 8% cou-
pon if the bond experiences no rating downgrade and a 4% coupon if the bond is
downgraded but the bond issuer does not default. In the event the bond defaults,
B receives the recovery rate from A and passes it along to C. Presumably, the CLN
buyer enters the trade because he believes the probability of a ratings downgrade
(or default) is low and wants to earn the incremental coupon interest of 2%.

Credit-linked notes can also be created synthetically using risk-free bonds
and a credit default swap. To see an example of a synthetic credit-linked note is
structured, consider Figure 19.10. In this figure, a bank, A, owns a corporate or
a sovereign bond (i.e., the reference asset) and wants to hedge its credit risk. It
does so by buying a credit default swap from B. B is a trust whose sole purpose
is to issue a note linked to the credit of the reference asset (i.e., a CLN). C wants
a synthetic exposure to the reference asset, and, therefore, buys the CLN, paying
B in cash. B, in turn, takes the cash, invests it in a risk-free asset. B’s role is only
as an intermediary. B’s profit equals the default premium, x%, plus the risk-free
return, y%, less the coupon interest paid to the CLN holder, z%. 

The success of the credit-linked note markets, like many other derivatives
markets, is driven by three key factors. The first is trading costs. The cash mar-
kets for corporate and sovereign bonds are relatively illiquid and trading costs are

d2–
120 100e 0.05 5( )–⁄( ) 0.5 0.52( )5–ln

0.50 5
------------------------------------------------------------------------------------------ 0.3091–= =

FIGURE 19.9 Credit-linked note.
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• Coupon 6%
• Recovery rate if bond defaults

Contingent payments:
• 8% coupon if no downgrade
• 4% coupon if downgrade
• Recovery rate if bond defaults
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high. Synthetic CLNs can mimic the cash flows of such bonds exactly, but the cost
of trading CLNs is lower. Second, CLNs circumvent trading restrictions. Many
firms and institutions, for example, are not authorized to engage in derivatives
trading or off-balance sheet transactions, and, therefore, are not able to replicate
credit exposures synthetically. For these firms, CLNs, being a cash instrument,
remain part of the investment opportunity set. Third, CLNs may increase the
investment opportunity set for many investors since they can be created on bonds
that are publicly traded but in limited supply or not publicly traded at all.

SYNTHETIC COLLATERALIZED DEBT OBLIGATIONS

In principle, a collateralized debt obligation (CDO) has the same structure as a
CLN.12 An intermediary directly or synthetically buys bonds of various issuers
and then repackages them as credit-linked instruments that it sells to investors.
The key differences between the two products are twofold. First, in place of a
single corporate or sovereign bond, a CDO holds a diversified portfolio of bonds.
Second, in place of a single credit-linked note, a CDO is usually tranched,13 pro-
viding investors with specific return/risk profiles. 

Like CLNs, CDOs involve an intermediary. With CDOs, the types of inter-
mediaries vary. Sometimes it is investment advisory firms. They earn fees based
on the amount of assets they manage. By creating a CDO, they can increase
their income by increasing its assets under management. Such a CDO is usually
called an arbitrage CDO because, presumably, there is a spread between the
yield it earns on assets and the yield it pays on its debt securities. At other times,

12 A comprehensive review of CDOs is contained in Lucas, Goodman, and Fabozzi (2006).
13 Tranche is the French word for slice. In CDO markets, the terms tranche and class are syn-
onymous.

FIGURE 19.10 Synthetic credit-linked note.
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CDOs are created by banks as a way to remove assets from their balance sheets.
These are called balance sheet CDOs. 

Also like CLNs, CDOs come in two basic forms—cash and synthetic. In a
cash CDO, the intermediary purchases the assets directly, as shown in Figure
19.11. The number of assets purchased varies, but can range up to 100 or more.
Some CDOs hold only a single type of bond (e.g., U.S. investment-grade corpo-
rate bonds, high-yield corporate bonds, emerging market bonds, and so on).
Others include more than one type. The collateral manager is usually required
to maintain an average portfolio rating of B or higher.

On the right-hand side of Figure 19.11 are the buyers of the CDO. They are
divided into a number of different tranches, with each tranche having a specific
return/risk profile. Suppose a CDO issues four classes of securities: (1) senior
debt (75% of principal), (2) mezzanine debt (10%), (3) subordinate debt (10%),
and (4) equity (5%). Each class protects the ones senior to it from losses on the
underlying portfolio. In the event of default losses, the equity holders absorb the
first 5% of default losses since they own 5% of the principal of the portfolio.
The subordinate debt-holders have 10% of the principal and, hence, absorb the
next 10% of default losses. The mezzanine debt have 10% and absorb the next
10% of default losses. Finally, the senior debt has the remaining 75% of princi-
pal and absorbs the residual default losses. The sponsor of the CDO usually sets
the size of the senior class so that it can attain a triple-A rating. Likewise, the
sponsor of a CDO generally designs the other classes so that they achieve suc-
cessively lower ratings. The equity tranche is sometimes called “toxic waste”
because it has significant default risk. A default loss of 4% of the principal of
the portfolio, for example, translates into an 80% loss to the equity holders.   

FIGURE 19.11 Cash collateralized debt obligation.
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With a synthetic CDO, the proceeds from the sale of the CDOs are used to
buy risk-free rather than risky bonds. The n different credit risk exposures are
created by selling n different credit default swaps. The default risk premiums
collected from credit protection buyers together with the cash generated from
the sale of the CDOs are placed in risk-free bonds, as shown in Figure 19.12.
The coupon payments generated from the risk-free bonds are then used to make
the coupon payments to the various tranches of CDO holders. If default occurs,
the shortfall is paid from the collateral. The reduction in the amount of collat-
eral is then passed on to the appropriate tranche. 

CREDIT SPREAD FORWARD

A credit default forward is a forward contract whose value at expiration depends
on a credit spread, that is, the difference between the yield to maturity of a cor-
porate bond and the yield to maturity of a U.S. Treasury bond with a similar cou-
pon interest rate and maturity date.14 As credit risk rises, the credit spread grows
wide, and vice versa. For such contracts, it is important to isolate credit risk from
the other factors influencing the bond price. On face appearance, the difference
between the yield of a corporate bond and the yield of a comparable U.S. Trea-
sury seems reasonable since subtracting the Treasury yield negates the effect of

14 Occasionally, the credit spread is erroneously called the credit risk premium. This is some-
what misleading in the sense that the credit risk premium is more frequently thought of as the
difference between the expected rates of return of a corporate and a Treasury with identical
coupons and maturity dates. The credit spread equals the difference between the promised
yields to maturity. 

FIGURE 19.12 Synthetic collateralized debt obligation.
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interest rate risk. But, this assumes that neither the corporate nor Treasury bonds
has any other factor that influences price such a callability, convertibility, extend-
ibility, and so on. If they do, the effects of the option-like features must be mod-
eled. With sovereign bonds, we must control not only for the effects any
embedded options but also for the effects of exchange rate risk since the sover-
eign bond’s payments are in a different currency.

RISK MANAGEMENT LESSON: STATE OF WISCONSIN INVESTMENT 
BOARD

On March 17, 1995, the State of Wisconsin Investment Board (SWIB)
announced that it had incurred a $95 million loss from derivatives trading.15

The losses arose from a dozen or so swaps based on foreign/domestic interest
rate differentials. Specifically, SWIB was betting on the direction of sovereign
risk premium movements. While such speculation may seem an odd activity for
a money-market fund, we will see precisely how SWIB did it using their Mexi-
can par bond swap contracts as an illustration.

By way of introduction, SWIB is a Wisconsin state agency responsible for
investing the assets of the Wisconsin Retirement System, the State Investment
Fund (SIF), and five smaller trust funds established by the state. The derivatives
losses reported in March 1995 were incurred in the SIF. The $6.7 billion SIF con-
tained operating cash for the state, part of its pension fund, and money from some
1,000 Wisconsin municipalities, county governments, and school districts.16 For
funds managing operating cash, preservation of principal and market liquidity are
paramount. SWIB explicitly recognized this fact in its 1994 Annual Report:17

Safety of principal and liquidity in the State Investment Fund are
achieved by adherence to rigorous quality standards, careful attention
to maturity schedules, and emphasis on high market-ability. Enhanced
return is sought through intensive portfolio management, which consid-
ers probable changes in the general structure of interest rates.

With the market for risk-free securities being highly competitive, even an
extremely successful fund manager would not perform much better than generic
money market rates. In the years leading up to the losses, however, SWIB’s per-
formance was substantially better than expected. In the 12 years preceding the
loss, “state officials say that the fund earned almost one percentage point more
than traditional money-market funds.”18 Like in the case of Orange County,
AWA Ltd., Barings Bank, and ABN Amro, this should have been a red flag to
supervisors. Business activities such as cash management (SWIB and Orange
County), minimum-risk foreign currency hedging (AWA Ltd.), stock index
futures arbitrage (Barings Bank), and option market making (ABN Amro) are

15 For details regarding the SWIB controversy, see Chance (1998).
16 Wall Street Journal (March 24, 1995).
17 SWIB 1994 annual report (p. 21).
18 Wall Street Journal (March 24, 1995).
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supposed to be relatively risk-free. If abnormally high returns are earned,
chances are that the trading involved risk-taking.

In January 1994, SWIB began entering a series of derivatives trades based
on foreign/domestic bond yield differentials. Presumably, these bets were
designed to enhance expected return. Some of the contracts were linked to
“Brady bonds.” These bonds were named after former U.S. Treasury Secretary
Nicholas Brady, who in 1989 created a plan to help several countries restructure
their external debt into bonds with U.S. Treasury bonds as collateral. In Febru-
ary 1990, Mexico became the first country to issue Brady bonds.

SWIB’s first Brady bond swap was linked to the 6.25% coupon Mexican par
bond maturing in 2023. The swap was entered on January 27, 1994, and was
called a “Stripped Mexican Par Spread.” The key terms are summarized in Table
19.4. The swap had a notional amount of $10 million and expired on January 31,
1995. Peculiarly, under the terms of the first swap, SWIB both paid and received
six-month LIBOR on a semiannual basis. Naturally, these payments netted to zero
and, consequently, they did not contribute to the agreement’s economic value. Per-
haps, the reason why these periodic payments were included was to give the
agreement the appearance of a swap. The only payment in the agreement with any
economic significance, however, occurs at expiration when SWIB receives 

(19.5)

With only a single payment involved in the structure, the contract is simply a
forward contract, not a swap. 

Regardless of the misnomer, the terminal payment (19.1) depends on the
quantity, 2.95% – MEXSPD. If the quantity is positive, SWIB receives the pay-
ment, and, if the quantity is negative, SWIB pays. The term, MEXSPD, is defined
as the difference between (1) the internal rate of return (IRR) of the 6.25%
Stripped Collateralized Fixed Rate USD Par Bonds due 2023; and (2) the yield to
maturity of the UST 6.25% due 2/15/2003. Here is where the credit risk comes
into play. The Brady bonds are USD-denominated, with the principal repayment
at the end of the bond’s life being guaranteed by the U.S. government.19 Conse-
quently, the value of a Brady bond can be thought of as being the sum of two
components: the present value of a coupon stream discounted at the credit risk-
adjusted Mexican yield (U.S. risk-free rate plus a credit risk premium) and the
present value of the principal amount discounted at the zero-coupon, U.S. risk-
free yield to maturity. Since the second component is nothing but a U.S. strip
bond, the terms of the agreement reduce the Mexican par bond price by the mar-
ket price of a U.S. Treasury strip bond with the same maturity to determine the
price of the so-called “Stripped Collateralized Fixed Rate USD Par Bond.” Set-
ting the present value of the coupon stream equal to the difference between the
Mexican bond price and the UST strip bond price and solving for yield provides
the IRR (i.e., the credit risk-adjusted yield on the Mexican par bond). If we fur-

19 Eighteen months of nearby coupon interest payments were also guaranteed, however, we
ignore this consideration in our discussion.

$10,000,000
2.95% MEXSPD–

2.95%
--------------------------------------------------⎝ ⎠

⎛ ⎞×
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ther subtract the yield to maturity of the UST 6.25% due February 15, 2003, we
isolate the risk-premium of Mexican coupon stream over the next 30 years.20

For SWIB to enter this swap, they must have held the directional view that
the credit risk of Mexico would decline relative to the U.S.21 But, while we have

20 The UST 6.25% due February 15, 2003 is presumably chosen to have the same duration as
the Mexican par bond coupon stream ending March 31, 2023.

TABLE 19.4  Selected terms of the stripped Mexican par spread entered by the State of 
Wisconsin Investment Board on January 24, 1994.

Calculation amount USD  10,000,000.00
Trade date January 24, 1994
Effective date January 31, 1994
Termination date January 31, 1995

First floating rate payer pays

First floating rate payer Bankers Trust Company (“BTCO”)
Payment dates Commencing on July 31, 1994 and semiannually thereafter
Floating rate option USD-LIBOR-BAA
Designated maturity 6 months
Rounding factor One-thousandth of 1%
Floating rate day convention Actual/360
Reset dates The first day of the relevant calculation period

Second floating rate payer

Second floating rate payer State of Wisconsin Investment Board State Investment Fund
Payment dates Commencing on July 31, 1994 and semiannually thereafter
Floating rate option USD-LIBOR-BAA
Designated maturity 6 months
Rounding factor One-thousandth of 1%
Floating rate day convention Actual/360
Reset dates The first day of the relevant calculation period
Final exchange amounts On January 31, 1995, the final exchange amount will be

paid in accordance with the following  formula:

USD 10,000,000.00 × (2.95% – MEXSPD)/2.95%

If MEXSPD > 2.95%, then SWIB will pay BTCO.
If MEXSPD < 2.95%, then BTCO will pay SWIB.

Where: 
“MEXSPD” is the difference, expressed as a percentage,
between the Internal Rate of Return of the Stripped Col-
lateralized 6.25% Fixed Rate USD Par Bonds due 2023
issued by the United Mexican States, (the “Mexican Par
Bond”) and the yield to maturity of the U.S. Treasury
Bond 6.25% due February 15, 2003. 
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discussed how the agreement isolates the credit risk premium expressed as a per-
cent, we have not discussed the scale of the bet that SWIB was putting into
place. Table 19.4 says the notional amount of the swap is $10 million—a small
amount relative to the $6.7 billion in the fund. But this is no plain-vanilla swap.
The expression in parenthesis is a ratio, not an interest rate. It should come as
no surprise, therefore, that such swaps are called ratio swaps. Note the effect of
the ratio. The only economic purpose of the interest rate in the denominator of
the ratio is to increase the notional amount of the swap, that is, we can rear-
range SWIB’s cash receipt (19.5) to read 

$338,983,051 × (2.95% – MEXSPD) (19.6)

The expression in parenthesis is now an interest rate, as is standard in interest
rate swap agreements,22 but the notional amount of this swap is more than 33
times higher than what is stated in the agreement! If the MEXSPD were to move
to a level about 300 basis points above 2.95%, the notional amount stated in
the original term sheet, $10 million, would be completely wiped out. It should
come as no surprise, therefore, that ratio swaps are also called leveraged swaps.
For a money-market fund, the potential of losing more than 100% of principal
is unusual, to say the least.

The contract’s leverage, together with adverse market movements (i.e., being
on the wrong side of a big bet), laid the groundwork for disaster. During the
course of the year, the MEXSPD rose slowly as is shown in the figure below.
SWIB entered the agreement when the MEXSPD was near its lowest level during
1994. Subsequently during the year, the MEXSPD rose to an average level of
about 4%. Then, on December 20, 1994, the Economic Growth and Stability
Pact (PECE)—a joint government, business and labor body in Mexico—decided
to devalue the Mexican peso by 15% to promote economic stability. The credit
risk premium of the Mexican par bonds spiked upward, and continued to rise
further over the next three months. To stem the tide, SWIB restructured its agree-
ment in May 1994 and then again in February 1995, however, both new struc-
tures maintained the directional view that Mexico’s credit risk premium would
fall. SWIB finally attempted to cut its losses. On March 16, 1995, they entered an
off-market, 10-year, fixed-for-floating swap whose value was $35 million in
Bankers Trust’s favor. Essentially, this transformed the $35 million loss into an
annuity of monthly payments over a 10-year period. Coincidently, on March 16,
1995, the MEXSPD reached its highest level in Figure 19.13—17.15%.

CREDIT SPREAD OPTIONS

A credit spread option is a contract whose value at expiration depends on a the
difference between the yield to maturity of a corporate bond and the yield to

21 Alternatively, if SWIB had a long exposure to the credit risk of Mexico, the swap may have
provided a hedge. The composition of the SIF portfolio on June 30, 1994, however, suggests
that no such exposure existed. See Chance (1998, p. 6).
22 Indeed, the payoff is like the inverse floater discussed in Chapter 18.
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maturity of a U.S. Treasury bond with a similar coupon interest rate and matu-
rity date. A credit spread call option, for example, has a payoff of

D max(X – ST ,0) (19.7)

where ST is the level of the credit spread at the option’s expiration, X is the
exercise price, and D is a risk factor used to translate the spread into price. D
can be closely related to the underlying reference bond’s duration. Because the
payoff structure (19.7) is expressed in terms of yield, the contingencies are those
of a put rather than a call. The call’s value increases with an increase in the price
of the underlying asset, or, equivalently, a decrease in the yield spread.

Assuming that the credit spread conditional on no default is log-normally
distributed at expiration, credit spread options can be valued using the Black
(1976) version of the Black-Scholes/Merton (1973) option valuation formulas.
Once the Black formula value is computed, we multiply by the probability of no
default during the life of the option to arrive at the final option value.

ILLUSTRATION 19.4 Value credit spread option.

Compute the value of a three-month European-style credit spread put option with an
exercise price of 12%, a risk factor of 5, and a notional amount of $10 million. Assume
the current credit spread is 10%, and its volatility rate is 40%. Assume also that the
probability of the firm defaulting during the life of the option is 0.1. The three-month
risk-free interest rate is 5%.

Using the Black (1976) call option valuation formula, the value of a put is 

FIGURE 19.13 Daily levels of MEXSPD during the period June 23, 1993 through September 
22, 1993.   
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where

and . This value can be verified using the OPTVAL function

OV_FOPTION_VALUE(0.11, 0.12, 0.25, 0.05, 0.40, “c”, “e”) = 0.004948

The put option value assumes a risk factor of 1 and a $1 notional amount. The next step
is to scale the value to the terms of the contract. With a risk factor of 5 and a $10 million
notional amount, the put option value is

0.004948 × 5 × 10,000,000 = 247,408

Finally, the computed value thus far assumes the firm will not default during the put
option’s life. If it does, the put will expire worthless. Adjusting for the probability of
default/no-default, the put option value is 247,408 × 0.9 = 222,667.

SUMMARY

Credit derivatives are currently the fastest growing area within the derivatives
industry. A credit derivative is an agreement that transfers the credit risk of an
asset from one party (the protection buyer) to another (the protection seller).
While historically credit risk products focused exclusively on default risk, the
payoffs of the products introduced beginning in the early 1990s may be trig-
gered by a variety of credit events including bankruptcy, failure to pay a coupon
or to repay the full amount of the bond’s principal, an invocation of a cross-
default clause such as a more junior bond issue within the firm defaulting, a cor-
porate restructuring that leaves bondholders worse off, and credit deterioration
in the form of a downgrade in bond rating. The purpose of this chapter is to
provide an overview of the different types of credit derivatives that are now
traded in the OTC market and how they are used. We focus on credit default
swaps, which constitute the single largest credit derivative contract. In a credit
default swap, the protection seller agrees, for an upfront fee or a continuing pre-
mium, to compensate the protection buyer upon a defined credit event. Since the
buyer retains ownership of the underlying asset, a credit default swap isolates
the credit risk inherent in the asset (e.g., the default risk of a corporate bond)
from market risk (e.g., the interest rate risk of a corporate bond). We show how
credit default swaps are used, in turn, in structuring two other popular types of
credit risk products—credit-linked notes (CLNs) and synthetic collateralized
debt obligations (CDOs). We also focus on forward and option contracts on
credit spreads. Credit spread contracts are contracts whose payoff is propor-
tionally related to the spread between the yield to maturity on a corporate bond
and the yield to maturity of a risk-free bond (e.g., U.S. Treasury bond) with
same coupon rate and maturity date. The credit spread is a continuous variable
that is sensitive to all credit events including bankruptcy, failure to pay, an invo-
cation of a cross-default clause, a corporate restructuring that leaves bondhold-
ers worse off, and changes in bond rating. 

d1
0.11 0.12⁄( )ln 0.5 0.402( )0.25+

0.40 0.25
------------------------------------------------------------------------------------=

d2 d1 0.40 0.25–=
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CHAPTER
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Valuing Interest Rate Products
Numerically

 

aluing interest rate derivatives written on short-term bonds is trickier than
valuing derivatives on other types of assets for two reasons. First, for an

asset such as a stock, a currency or a commodity, price can roam freely through
time without constraint. For a fixed income security, however, price is often
forced to take a particular level when the security matures. A T-bill, for exam-
ple, has a value of 100 when it matures, and a T-note has a terminal payment
equal to its final coupon interest payment plus the par value. Second, in the
fixed income markets, there is often a wide range of securities available on the

 

same

 

 underlying source of uncertainty. The U.S. Treasury, for example, has T-
bills, T-notes and T-bonds with a wide range of maturities. In modeling interest
rate dynamics, care must be taken to ensure that all of these securities are simul-
taneously valued at levels consistent with observed market prices.

The purpose of this chapter is modest—to develop a binomial procedure for
valuing interest rate derivative contracts where the short-term interest rate
(“short rate”) is the single underlying source of interest rate uncertainty. To
begin, we discuss a number of constant-parameter short rate processes to lay a
foundation for interest rate behavior. While these models are often useful in
developing economic intuition regarding interest rate behavior, they produce
zero-coupon bond values that are different from the observed market prices,
seemingly giving rise to arbitrage opportunities. Consequently, we next turn to
no-arbitrage pricing models. These models adjust the parameters of the interest
rate process in a manner that produces bond (and interest rate derivatives contract)
values equal to observed prices. With the mechanics of no-arbitrage pricing in
hand, we then turn to valuing zero-coupon and coupon-bearing bonds, callable
bonds, putable bonds, and bond options. Be forewarned, however. While the
valuation framework provided in this chapter is intuitive and commonly-applied
in practice, it only begins to scratch the surface of the literature focused on no-
arbitrage interest rate models. This literature is deep in multifactor theoretical
models of interest rate movements and numerical procedures for calibrating the
interest rate models and valuing interest rate derivatives. 
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CONSTANT-PARAMETER MODELS

 

In the Black-Scholes (1973)/Merton (1973) model developed in Chapter 5, the
price of an asset was assumed to follow the geometric Brownian motion (i.e.,
equation (5.4)), that is,

(20.1)

This assumption implies that, over the next infinitesimally small interval of time

 

dt

 

, the change in asset price, 

 

dS

 

, equals an expected price increment (i.e., the
product of the instantaneous expected rate of change in asset price, 

 

α

 

, times the
current asset price, 

 

S

 

, times the length of the interval) plus a random increment
proportional to the instantaneous standard deviation of the rate of change in
asset price, 

 

σ

 

, times the asset price. Note that, in the assumed process (20.1), the
parameters 

 

α

 

 and 

 

σ

 

 are constants (i.e., do not vary through time or with the
level of asset price). In the first part of this section, we develop economic intu-
ition regarding plausible interest rate processes by examining four constant-
parameter interest rate processes. In the second part, we show why constant-
parameter, short rate models are seldom used in practice. 

 

Constant-Parameter, Short Rate Processes

 

The simplest constant-parameter, short rate process that we consider is the
arithmetic Brownian motion assumption,

 

dr

 

 = 

 

adt

 

 + 

 

σ

 

dz

 

(20.2)

where 

 

dr 

 

is the instantaneous change in the short rate, 

 

a

 

 is its instantaneous
mean, and 

 

σ

 

 is its instantaneous standard deviation. The assumption (20.2) says
that the short-rate change over the next increment in time, 

 

∆

 

t

 

, is normally dis-
tributed with mean 

 

r

 

 + 

 

a

 

∆

 

t

 

 and standard deviation .

 

1

 

 If 

 

a

 

 > 0, the short
rate is expected to climb through time, and, if 

 

a

 

 < 0, it is expected to fall. The
size of the random change in the rate increases proportionally with .

In terms of describing interest rate dynamics, the process (20.2) has a num-
ber of weaknesses. First, the process does nothing to guard against the possibil-
ity of the short rate becoming negative. In particular, if 

 

a

 

 < 0, the short rate must
eventually become negative. Similarly, the short rate can become negative in the
stochastic component of the short-rate movement (i.e., the second term on the
right-hand side of (20.2)) has a large negative value. Naturally, in a rationally
functioning marketplace, negative interest rates will not arise. In such an envi-
ronment, individuals would prefer to put cash in their mattresses than hold
Treasury bills.

A second weakness of (20.2) is that, if 

 

a

 

 > 0, the short rate is expected to
rise without limit. While this assumption may be plausible for asset prices,

 

1 

 

For clarity of exposition, think of the short rate 

 

r 

 

as being the continuously compounded in-
terest rate on a one-year U.S. T-bill and the time increment  

 

∆

 

t

 

 as being equal to one year.

dS αSdt σSdz+=
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casual empirical observation suggests that interest rates tend to revert toward
some long-run mean level through time.

 

2

 

 This stands to reason from an eco-
nomic standpoint. When interest rates are high, the demand for borrowed funds
subsides, causing interest rates to fall. Conversely, when interest rates are low,
the demand for borrowed funds rises, causing interest rates to rise. A third
weakness of (20.2) is that the volatility rate is the same, independent of whether
interest rates are high or low. From an empirical standpoint, the volatility of
interest rates tends to rise with as the level of interest rates rises and falls as the
level of interest rates falls.

The next constant-parameter, short-rate process that we consider is the geo-
metric Brownian motion assumption, 

 

dr

 

 = 

 

ardt

 

 + 

 

σ

 

rdz

 

(20.3)

introduced by Rendleman and Bartter (1980). In (20.3), 

 

a

 

 is the instantaneous
expected rate of change in the short rate,

 

 

 

and 

 

σ

 

 is its instantaneous standard
deviation. Note that this specification is identical to the BSM assumption (20.1),
that is, Rendleman and Bartter assume that the short rate behaves as if it were
an asset price. The process (20.3) circumvents two of the weaknesses associated
with (20.2). First, with (20.3), interest rates cannot become negative. One rea-
son is that the expected short rate at the end of the next increment in time is

 

re

 

a

 

∆

 

t

 

. Even if 

 

a

 

 < 0, the expected short rate remains positive. Another is that the
stochastic component of interest rate movements (i.e., the second term on the
right-hand side of (20.3)) approaches zero as interest rates fall. Second, the pro-
cess (20.3) captures the empirical phenomenon that the volatility of interest
rates changes (

 

σ

 

r

 

 in this case) increases with the level of interest rates. The one
weakness that (20.3) does not circumvent, however, is that if 

 

a

 

 > 0 the short rate
is expected to rise without limit. The process fails to account for the empirical
fact (and economic prediction) that interest rates are mean-reverting. 

Next is the short-rate process derived by Vasicek (1977), 

 

dr

 

 = 

 

a

 

(

 

b

 

 – 

 

r

 

)

 

dt

 

 + 

 

σ

 

dz

 

(20.4)

where the parameters 

 

a, b

 

 and 

 

σ

 

 are constants. Like (20.2) and (20.3), the
change in the short rate has an expected and a random component. Unlike the
first terms on the right-hand sides of (20.2) and (20.3) where the short rate is
expected to drift upward or downward, however, the first term on the right-
hand side of the Vasicek model (20.4) captures mean reversion in the short rate.
The long-run mean level of the short rate is 

 

b

 

, so, if the current short rate 

 

r 

 

is
less than 

 

b

 

, the short rate is pulled upward, and, if the current short rate is
above 

 

b

 

, it is pulled downward (assuming, of course, that 

 

a 

 

is positive). The
parameter 

 

a

 

 is called the rate of pull or, simply, pull rate. If the pull rate is 0.5
and the current short rate 

 

r 

 

is 1% below the long-run mean 

 

b

 

, we expect that
the short rate will increase by 0.5% over the next increment in time. If 

 

a

 

 = 0, the
short rate follows arithmetic Brownian motion with a zero mean (i.e., a random
walk). Where 

 

a

 

 = 1, the short rate is expected to immediately return to its long-

 

2 

 

Recall that we first discussed mean reversion in Chapter 9.
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term mean. The last term on the right-hand side accounts for random move-
ments in the short rate. Like (20.2), the random changes in the short rate in
(20.4) are a normally distributed and independent of the level of the short rate.
This means, like (20.2), the short rate in (20.4) has the prospect of becoming
negative and does not account for the fact that the volatility of interest rates
changes tends to increase with the level of interest rates and vice versa.

The fourth and final constant-parameter, short rate process that we consider
was derived by Cox, Ingersoll, and Ross (1977). The CIR model is specified as 

(20.5)

The first term on the right-hand side (20.5) is the mean reversion component
introduced by Vasicek. Unlike the Vasicek model, however, the instantaneous
standard deviation by the factor . This overcomes the remaining two defi-
ciencies of the Vasicek model. Specifically, with the random component of the
interest rate change defined as , (1) the volatility of interest rate movements
is directly related to the level of interest rates; and (2) negative interest rates are
not possible (i.e., where the short rate falls to zero, the second term on the right-
hand side approaches zero, and the short rate is guaranteed to move upward).

 

Applying Constant-Parameter Models

 

All of the constant-parameter models described above can be implemented for
valuing bonds and interest rate derivatives. None of them will produce values
that are completely consistent with prices observed in the marketplace, however.
The reason is that the parameters of the model are constant through time. To see
this, consider applying the Vasicek model to value zero-coupon bonds. We begin
by approximating (20.4) using the binomial distribution,

(20.6)

Note that, by defining the short-rate movements as (20.6), the vertical distance
between the two nodes emanating from 

 

r

 

t

 

 equals . 
One disadvantage of using the binomial method to approximate short-rate

movements within the Vasicek model is that the binomial lattice does not
recombine. To see this, recall the lattice notation from Chapter 9. Specifically,
let 

 

r

 

i

 

,

 

j

 

 be the short rate at time 

 

i 

 

and vertical node 

 

j

 

, where 

 

j

 

 = 1 is the lowest
node at time 

 

i.

 

 Figure 20.1 contains a two-period, short-rate lattice. Note that at
time 2, there are four nodes rather than three since, in general, 

 

r

 

2,3

 

 

 

≠

 

 

 

r

 

2,2

 

. The
only instance in which the nodes will recombine (i.e., 

 

r

 

2,3

 

 = 

 

r

 

2,2

 

) is where 

 

a

 

 = 0,
in which case the short rate follows a simple random walk. The fact that the
binomial lattice does not recombine does not mean that the binomial method
cannot be used in this context. It only means that the computational exercise is
more tedious. With a recombining lattice, the number of possible interest rate
nodes is 

 

n

 

 + 1. With a nonrecombining lattice, the number of nodes is 2

 

n

 

. Where

dr a b r–( )dt σ rdz+=

r

σ r

rt t∆+ rt–
a b rt–( )dt σ rdz+    with probability 1 2⁄=

a b rt–( )dt σ rdz–    with probability 1 2⁄=⎩
⎨
⎧

=

2σ t∆
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the number of time steps is 10 (i.e., n = 10), the number of nodes is 101 for a
recombining lattice and 1,024 for a nonrecombining lattice.

Now, let us consider valuing zero-coupon or discount bonds using (20.6).
Assume that the zero-coupon yield curve is given by

where ri is the continuously compounded, zero-coupon yield rate, and Ti is its
time to maturity measured in years. Also assume that we have obtained a his-
tory of one-year short rates and have estimated the parameters of the Vasicek
model to be a = 0.5, b = 0.06, and σ = 0.01, where b and σ are annualized rates.3

Now, let us compute the one-year short rates using Vasicek’s mean-reverting
process, and then value one-year, two-year, and three-year discount bonds.

3 Recall that in Chapter 9 we showed how to estimate the parameters of a mean-reverting pro-
cess using regression analysis.

FIGURE 20.1 Two-period lattice for Vasicek model. 

where the nodes at time 1 are

and 

and the nodes at time 2 are

Note that, in general, r2,3 ≠ r2,2.

0 1 2

r2,4

r1,2

r2,3

r0,1

r2,2

r1,1

r2,1

r1 2, r0 1, a b r0 1,–( ) t∆ σ t∆+ +=

r1 1, r0 1, a b r0 1,–( ) t∆ σ t∆–+=

r2 4, r1 2, a b r1 2,–( ) t∆ σ t∆+ +=

r2 3, r1 2, a b r1 2,–( ) t∆ σ t∆–+=

r2 2, r1 1, a b r1 1,–( ) t∆ σ t∆+ +=

r2 1, r1 1, a b r1 1,–( ) t∆ σ t∆–+=

ri 0.10 0.05e
0.18 Ti 1–( )

–=
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FIGURE 20.2 Two-period lattice for Vasicek model assuming the current short rate is 5%, the 
pull rate is 0.5, the long-run average short rate is 6%, and the volatility rate is 1%. (r = 0.05, 
a = 0.5, b = 0.06, σ = 0.01).  

Figure 20.2 shows the evolution of the short rate under the assumed param-
eter values. With the current one-year short rate at 5%, the possible one-year
short rates in one year are

and 

The expected one-year short rates in two years are

and

Note that the lattice in Figure 20.2 shows the mechanics of short-rate mean
reversion at work. Each year, the one-year short-rate jumps up or down by 1%
due to the volatility component (i.e., ). Viewed in isolation, this means
than standing at r1,2 = 6.5%, the one-year short rate will jump to 7.5% or 5.5%
with equal probability. But, because the one-year spot rate is above the long-run
mean level of 6%, the subsequent one-year spot rates are pulled toward the
long-run mean by an amount equal to 0.5(0.06 – 0.065)1 = 0.0025 or 0.25%.
Thus, the nodes r2,4 and r2,3 are 7.25% and 5.25%, respectively.

Based on the evolution of one-year spot rates displayed in Figure 20.2, we
can now compute the values of one-year, two-year, and three-year discount

0 1 2

7.250%
6.500%

5.250%
5.000%

6.250%
4.500%

4.250%

r1 2, 0.05 0.5 0.06 0.05–( )1 0.01 1+ + 0.065= =

r1 1, 0.05 0.5 0.06 0.05–( )1 0.01 1–+ 0.045= =

r2 4, 0.065 0.5 0.06 0.065–( )1 0.01 1+ + 0.0725= =

r2 3, 0.065 0.5 0.06 0.065–( )1 0.01 1–+ 0.0525= =

r2 2, 0.045 0.5 0.06 0.045–( )1 0.01 1+ + 0.0625= =

r2 1, 0.045 0.5 0.06 0.045–( )1 0.01 1–+ 0.0425= =

±0.01 1
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bonds. A one-year discount bond pays 1 in one-year. The one-year short rate is
known to be 5%. The value of a one-year discount bond is therefore

DBV1 = e–0.05(1) = 0.95123

A two-year, zero-coupon bond pays 1 in year 2. According to the interest rate
lattice in Figure 20.2, the evolution of the short rate is (1) 5% over the first year
and 6.5% over the second or (2) 5% over the first year and 4.5% over the sec-
ond, with equal probability. The value of a two-year discount bond is therefore

DBV2 = 0.5e–0.05(1)e–0.065(1) + 0.5e–0.05(1)e–0.045(1) = 0.90037

Finally, a three-year discount bond pays 1 in three years. Again, the interest rate
lattice in Figure 20.2 describes the possible paths for the short-rate evolution.
Four paths are possible, each with equal probability: (1) 5%, 6.5%, and 7.25%,
(2) 5%, 6.5%, and 5.25%, (3) 5%, 4.5%, and 6.25%, and (4) 5%, 4.5%, and
4.25%. The value of a three-year discount bond is 

Now, with the Vasicek model discount bond values in hand, recall that at
the outset we assumed the zero-coupon yield curve was given by the relation Rt
= 0.10 – 0.05e0.18(t–1). Such a yield curve implies that the zero-coupon bond
prices at the outset are 

The one-year discount bond price matches its theoretical value because in apply-
ing the Vasicek model we assumed that the one-year short rate was 5%. The
two-year and three-year discount bond prices do not match their theoretical val-
ues (0.89005 versus 0.90037 and 0.82255 versus 0.85015, respectively), how-
ever. The reasons for these apparent arbitrage opportunities are twofold. First,
we used historical estimates of the parameters a, b, and σ, and, while assuming
past parameters are reasonable predictions for the future, they may not be. Sec-
ond, the Vasicek model assumes that the parameters a, b, and σ are constant
through time. Such an assumption will give rise to apparent arbitrage opportu-
nities because the interest rate dynamics modeled by (20.6) are not rich enough
to describe the current term structure of zero-coupon interest rates. 

Years to Maturity Spot Rate Discount Bond Price

1 5.000% 95.123
2 5.824% 89.005
3 6.512% 82.255

DBV3 0.25 e 0.05 1( )– e 0.065 1( )– e 0.0725 1( )–[ ] 0.25 e 0.05 1( )– e 0.065 1( )– e 0.0525 1( )–[ ]+=

0.25 e 0.05 1( )– e 0.045 1( )– e 0.0625 1( )–[ ] 0.25 e 0.05 1( )– e 0.045 1( )– e 0.0425 1( )–[ ]+ +

0.85015 
=
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FIGURE 20.3 Discount bonds values based on Vasicek model assuming the current short rate 
is 5%, the pull rate is 0.5, the long-run average short rate is 6%, and the volatility rate is 1%. 
(r = 0.05, a = 0.5, b = 0.06, σ = 0.01).

One-year discount bond value lattice:

Two-year discount bond value lattice:

Three-year discount bond value lattice:

One possible remedy to this problem is to calibrate the short-rate parame-
ters using market prices.4 More specifically, if we equate the model values of the
discount bonds to their observed prices, we can infer the parameters, a, b, and σ.
In the current illustration, we have two mismatched prices, so we can infer only
two of the three model parameters. Suppose that we are willing to accept the
fact that σ = 0.01. We can now solve for the parameters a and b by insisting that
the two-year and three-year discount bond values equal their market prices. The
parameter values of a = 0.2440 and b = 0.1177 will make the discount bond val-
ues equal their market prices,5 as shown in Figure 20.4. The apparent arbitrage
opportunities have disappeared, however, one is left with the uncomfortable sit-
uation that parameter values may not be reasonable from an economic stand-
point. Such is the tradeoff created by applying no-arbitrage pricing models.

0 1

1
0.95123

1

0 1 2

0.93707 1
0.90037

0.95600 1

0 1 2 3

0.93007 1
0.880334

0.94885 1
0.85015

0.93941 1
0.90715

0.95839 1

4 We used the calibration process in earlier chapters when we computed implied standard de-
viations from option prices.
5 Solving for the parameters a and b can be accomplished using the Microsoft Excel function,
SOLVER.
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FIGURE 20.4 Discount bonds values based on Vasicek model assuming the current short rate 
is 5%, the pull rate is 0.2440, the long-run average short rate is 11.77%, and the volatility 
rate is 1%. (r = 0.05, a = 0.2440, b = 0.1177, σ = 0.01).

One-year discount bond value lattice:

Two-year discount bond value lattice:

Three-year discount bond value lattice:

To emphasize the issue about the plausibility of the parameter estimates, we can
extend the illustration to include four discount bond prices. With three mismatched
prices, we can infer all three parameters of the Vasicek model. The no-arbitrage
parameter values will be a = 0.2494, b = 0.1161, and σ = –0.00009. Although all
discount bond values now match observed market prices, we are in the unpalatable
position of explaining why the estimate of the standard deviation parameter is neg-
ative. Clearly, we have reached the limits of this constant-parameter model. Beyond
four discount bond prices, it is impossible for the Vasicek model to be used within a
no-arbitrage framework. Arbitrage opportunities will appear. The assumed stochas-
tic process is simple not rich enough to capture interest rate movements.

NO-ARBITRAGE MODELS OF INTEREST RATES

As we have just shown, the chief disadvantage of constant-parameter models is
that they cannot, in general, fit today’s term structure of zero-coupon rates. In

0 1

1
0.95123

1

0 1 2

0.92633 1
0.89005

0.94504 1

0 1 2 3

0.90794 1
0.84954

0.92628 1
0.82255

0.92177 1
0.87991

0.94039 1
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order to ensure that the short-rate dynamics are consistent with prices observed
in the marketplace, we allow the parameters of the stochastic process to change
through time. This section focuses on the application on no-arbitrage pricing
models.6 First, we assume that the changes in the short rate are normally distrib-
uted, and then, to prevent the possibility of negative interest rates, we assume
the short rate is log-normally distributed (i.e., the logarithm of the short rate is
normally distributed).

Normal Distribution

Suppose we consider the Vasicek model (20.4) with time-varying parameters,
that is,

dr = a(t)[b(t) – r]dt + σ(t)dz (20.7)

Note that the pull rate a(t), the long-run mean b(t), and the volatility of the
short-rate σ(t) are functions of time. The process (20.7) can again be approxi-
mated by a binomial process, that is,

(20.8)

As before, we can see that the vertical distance between the two nodes emanat-
ing from ri,j in binomial lattice notation is , that is, 

(20.9)

Note that the volatility parameter is the local volatility of the one-period short
rate in one-period. Thus, if ∆t is one year, σ(0) is volatility of the one-year rate
in one year, σ(1) is volatility of the one-year rate in two years, σ(2) is volatility
of the one-year rate in three years, and so on.7 

To make the binomial lattice procedure more tractable, we impose the
restriction that the binomial lattice recombines (i.e., we set r2,3 = r2,2 in Figure
20.1). This means

(20.10)

and 

(20.11)

6 The pioneering work on valuing interest rate derivatives using no-arbitrage pricing models is
Ho and Lee (1986).
7 In this section, we assume that the sequence of volatility estimates is known. In practice, they
can be estimated from the prices of caps and floors.

rt t∆+ rt–
a t( ) b t( ) r–[ ] t∆ σ t( ) t∆+    with probability 1 2⁄=

a t( ) b t( ) r–[ ] t∆ σ t( ) t∆–    with probability 1 2⁄=⎩
⎨
⎧

=

2σ t( ) t∆

ri 1+ j 1+, ri 1 j,+– 2σ i( ) t∆=

r2 3, r1 2, a 1( ) b 1( ) r1 2,–[ ] t∆ σ 1( ) t∆–+=

r2 2, r1 1, a 1( ) b 1( ) r1 1,–[ ] t∆ σ 1( ) t∆+ +=
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Equating (20.10) and (20.11), rearranging, and simplifying, we get

(20.12)

Substituting (20.9) into (20.12), we get

or

(20.13)

Note that because we imposed the restriction that the binomial lattice recom-
bines, the mean reversion parameter a(1) is determined by the ratio of the ratio
of the local volatility rates at adjacent time steps and need not be estimated sep-
arately.

We now turn to the computation of the binomial lattice in a no-arbitrage
pricing framework. The key relation in computing the lattice efficiently is that we
know the distance between adjacent vertical nodes at each time step (20.9). Begin
by considering the possible levels of interest rates at the end of one period. As
Figure 20.5 shows, there are two possibilities—r1,1 and 
with equal probability. Since the volatility parameter and the time increment are
known, identifying the numerical values of each of the two nodes is merely a
matter of finding r1,1. Suppose that the zero-coupon yield curve is described by
the relation

where t is measured in years and that the volatility rate is σ(t) = 0.01 for all t.
Based on the zero-coupon yields, we compute the prices of one-year and two-

r1 2, r1 1,– a 1( ) r1 2, r1 1,–( ) t∆– 2σ 1( ) t∆=

2σ 0( ) t∆ a 1( ) 2σ 0( ) t∆[ ] t∆– 2σ 1( ) t∆=

1 a 1( ) t∆– σ 1( ) σ 0( )⁄=

r1 2, r1 1, 2σ 0( ) t∆+=

ri 0.10 0.05e
0.18 Ti 1–( )–

–=

FIGURE 20.5 One-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed. 

where the nodes at time 1 are

 and

0 1

r0,1

r1,1

r1 2, r1 1, 2σ 0( ) t∆+=

r1 1, r0 1, a 0( ) b 0( ) r0 1,–[ ] t∆ σ 0( ) t∆–+=

r1 2, r0 1, a 0( ) b 0( ) r0 1,–[ ] t∆ σ 0( ) t∆–+=

r1 1, 2σ 0( ) t∆+=
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year discount bonds. The one-year discount bond has a price of DBP1 = e–R(1)1 =
e–0.05(1) = 0.95123 and the two-year discount bond has a price of DBP2 = e–R(2)2

= e–0.05824(2) = 0.89005, as summarized in this table: 

Based on the prices the one-year and two-year discount factors, we can compute
the forward price of a one-year discount bond in one year as FBP1,1 = DBP2/
DBP1 = 0.93569. In the absence of costless arbitrage opportunities, it must be
the case that the forward discount bond price from the zero-coupon yield curve
must equal the expected discount value in the interest rate lattice. The value of
r1,1 can therefore be determined by solving 

The value can be determined iteratively using SOLVER. The value of r1,1 is
5.6523%, and the value of r1,2 is 7.6523%, as is shown in Figure 20.6.

We fill out the remaining lattice short-rate binomial lattice by using the
same computational procedure recursively. Consider Figure 20.7, which shows
the interest rate lattice over two periods. At the end of two periods, we have a

Years to
Maturity

Spot
Rate

Discount
Bond Price

Forward Discount
Bond Price

1 5.000% 0.95123
2 5.824% 0.89005 0.93569

0.93569 0.5e
r1 1,– t∆

0.5e
r1 1,– 2σ 0( ) t∆+( ) t∆

+=

0.5e
r1 1,–

0.5e
r1 1,– 0.02+

+=

FIGURE 20.6 One-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed, the zero-coupon yield curve is  R(t) = 0.10 – 0.05e–0.18(t – 1) 
where t is measured in years, and the volatility rate is σ(t) = 0.01 for all t.

FIGURE 20.7 Two-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed. 

0 1

7.6523%
5.0000%

5.6523%

0 1 2

r0,1

r1,1

r2,1

r2 3, r2 1, 4σ 1( ) t∆+=

r1 2, r1 1, 2σ 0( ) t∆+=

r2 2, r2 1, 2σ 1( ) t∆+=
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single unknown, r2,1, because we know the distance between adjacent vertical
nodes. To solve for its value, we must first compute the forward price of a one-
year discount bond in two years, FDB2,1. The zero-coupon yield curve tells us
its value is 0.92415.

In the absence of costless arbitrage opportunities, the forward discount bond
price from the zero-coupon yield curve must equal the expected discount price
within the interest rate lattice. The value of r2,1 can be determined by solving 

The solution to this equation is r2,1 = 0.058976. The rates at the middle and
upper nodes are therefore 0.078976 and 0.098976, respectively. For year 4, the
lowest minimum rate is identified by solving for 

The solution to this equation is r3,1 = 0.058252. The complete interest rate lat-
tice over four periods is shown in Figure 20.8.

Note that, in the above computations, we need to identify the probabilities
of arriving at binomial lattice node (i,j), where i is the number of the time step,
and j is the number of the vertical node (with j = 1 being the lowest). The gen-
eral formula for computing this probability is 

(20.14)

FIGURE 20.8 Three-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is normally distributed, the zero-coupon yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) where 
t is measured in years, and the volatility rate is σ(t) = 0.01 for all t.

Years to
Maturity

Spot
Rate

Discount
Bond Price

Forward Discount
Bond Price

1 5.000% 0.95123
2 5.824% 0.89005 0.93569
3 6.512% 0.82255 0.92415
4 7.086% 0.75318 0.91567

0 1 2 3

11.8252%
9.8976%

7.6523%   9.8252%
5.0000% 7.8976%

5.6523%   7.8252%
5.8976%

  5.8252%

0.92415 0.25e
r2 1,–

0.5e
r2 1, 0.02+( )–

0.25e
r2 1, 0.04+( )–

+ +=

0.91567 0.125e
r3 1,–

0.375e
r3 1, 0.02+( )–

0.375e
r3 1, 0.04+( )–

0.375e
r3 1, 0.06+( )–

+ + +=

pi j,
1
2
---⎝ ⎠

⎛ ⎞ i i!

j 1–( )! i j– 1+( )!
--------------------------------------------=
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The probabilities of the nodes in the second time step are therefore

and

The no-arbitrage pricing framework described above is interesting in a num-
ber of respects. First, the drift in the short rate is dictated by the zero-coupon
yield curve. Note that at the end of period one, both possible short rates exceed
the short rate a period earlier. This simply reflects the fact that the yield curve is
strongly upward sloping. Second, the entire short-rate lattice can be summarized
using two vectors. In the first, we record the lowest interest rate node for each
time step, ri,1, i = 1, . . ., n. In the second, we record the local volatility rate,
σ(i), i = 0, . . ., n – 1. Third, in computing the interest rate lattice, we required
no specific knowledge of the pull rate a(t) or the long-run mean reversion level
b(t). The long-run mean reversion is subsumed in matching of the forward dis-
count bond price from the zero-coupon yield to the expected discount bond
price procedure. The pull rate a(t) is subsumed by the ratio of the local volatility
rates in adjacent periods (see equation (20.14)).

ILLUSTRATION 20.1 Develop binomial lattice assuming short rate is normally distributed.

Assume the zero-coupon yield curve is

and the local volatility function is . Develop a four-
period short-rate lattice where the short rate is a six-month rate.  

The first step in developing the interest rate lattice is to gather the problem informa-
tion. Based on the zero-coupon yields, we can compute discount bond prices and forward
discount bond prices. The problem information used as inputs in developing the interest
rate lattice is as follows:

Years to
Maturity Spot Rate

Discount
Bond Price

Forward Discount
Bond Rate

Local
Volatility Rate

0.5 5.369% 0.97351 1.099%
1 6.000% 0.94176 0.96739 1.027%

1.5 6.571% 0.90614 0.96217 0.971%
2 7.088% 0.86784 0.95773 0.925%

2.5 7.555% 0.82789 0.95397

p2 1,
1
2
---⎝ ⎠

⎛ ⎞ 2 2!

1 1–( )! 2 1– 1+( )!
------------------------------------------------- 0.25= =

p2 2,
1
2
---⎝ ⎠

⎛ ⎞ 2 2!

2 1–( )! 2 2– 1+( )!
------------------------------------------------- 0.5= =

p2 3,
1
2
---⎝ ⎠

⎛ ⎞ 2 2!

3 1–( )! 2 3– 1+( )!
------------------------------------------------- 0.25= =

ri 0.12 0.06e
0.20 Ti 1–( )–

–=

σ i( ) 0.015 0.00025 1 Ti+( )ln–=
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The next step is to identify the lowest interest rate node at each of the four time
steps. At time 0, the lowest interest rate node is the spot rate 5.369%. At time 1, the low-
est interest rate is determined by solving 

The value of r1,1 is 5.8557%. The vertical distance between adjacent nodes at the end of
period one is , so r1,2 is 7.4094%.

The OPTVAL Library contains a function that determines the minimum short rate at
each time step. The function has the syntax

OV_TS_LATTICE_RMIN(fbp,v,tinc,nstep,nl)

where fbp is the forward discount bond price, v is the local volatility rate, tinc is the
length of each time step in years, nstep is the number of the current time step, and nl is
an indicator variable instructing the function to assume the short rate is normally distrib-
uted (“N” or “n”) or log-normally distributed (“L” or “l”). To perform the above com-
putation, use

OV_TS_LATTICE_RMIN(0.96739,0.01099,.5,1,“n”) = 0.058557

The minimum short rate at each time step is: 

The entire short-rate lattice over the two-year period is: 

Log-Normal Distribution

The main problem with assuming interest rate changes are normally distributed is
that there is some change that interest rates will become negative. A simple rem-

Time
Step

Years
to

Maturity
Spot
Rate

Discount
Bond
Price

Forward
Discount

Bond Price

Local
Volatility

Rate

Minimum
Short
Rate

0 0.5 5.369% 0.97351 1.099% 5.3690%
1 1 6.000% 0.94176 0.96739 1.027% 5.8557%
2 1.5 6.571% 0.90614 0.96217 0.971% 6.2636%
3 2 7.088% 0.86784 0.95773 0.925% 6.5814%
4 2.5 7.555% 0.82789 0.95397 6.8120%
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edy to this problem is to assume that interest rates are log-normally distributed or
put another way that the logarithm of the interest rate lnr is normally distributed.
The modifications to the no-arbitrage pricing procedure are straightforward. The
binomial process is

(20.15)

and the distance between adjacent vertical nodes in the binomial lattice is 

(20.16)

Since we would prefer to have the lattice contain interest rates rather than the
logarithm of interest rates, the log of interest rate spacing in (20.17) can be re-
written in interest rate form

(20.17)

To illustrate the application of this binomial procedure, reconsider the rates
zero-coupon yield curve of the running illustration. Furthermore, assume that
the volatility rate is 20%.8 The interest rates in year 2 are determined by solving 

The solution for the minimum interest rate is 5.3421%. The volatility rate is 0.20,
so the constant proportion between adjacent rates is 1.4918. The interest rate at
the upper node at year 2 is therefore 0.053421 × 1.49182 = 0.079695. The full
interest rate lattice under the log-normal assumption is provided in Figure 20.9.

FIGURE 20.9 Two-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is log-normally distributed. 

8 Note that the volatility rate of the change in the logarithm of the interest rate is dramatically
higher than the volatility rate of the change in interest rate.
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BOND VALUATION

With the mechanics of generating an interest rate lattice in hand, we now turn
to bond valuation. We start with the valuation of zero-coupon bonds, and then
generalize the framework to handle coupon-bearing bonds. We then show how
the framework can be modified to handle bonds with embedded options such as
callable bonds and putable bonds.

Zero-Coupon Bonds

To value options on bonds in a framework with short-term interest risk as the
underlying source of uncertainty requires that we first create a bond price lat-
tice. In order to do so, we extend the interest rate lattice to the end of the bond’s
life (which may be well beyond the option’s life). To illustrate, consider a 4-year
discount bond. In year 4, the bond matures with a payment of principal.
Assume the principal is 100. In year 3, the short-term interest in the uppermost
node is 0.152051. The value of the bond at that interest rate is 100e–0.152051(1) =
85.894. At the second uppermost node, the bond’s value is 100e–0.101923(1) =
90.310, and so on.

To compute the bond’s value in year 2, we must include the probabilities of
upward and downward interest rate movements. The value of the bond at the
uppermost node in year 2 is computed as 

The value of the bond at the second uppermost node is 

The price lattice of the four-year discount bond is shown in Figure 20.10.

FIGURE 20.10 Three-period binomial lattice for no-arbitrage pricing model assuming the short 
rate is log-normally distributed, the zero-coupon yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) 
where t is measured in years, and the volatility rate is σ(t) = 0.20 for all t.

0 1 2 3

15.2051%
11.3447%

7.9695% 10.1923%
5.0000%   7.6046%

5.3421%   6.8321%
  5.0975%

  4.5797%
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FIGURE 20.11 Valuation of a four-year zero-coupon bond using a no-arbitrage pricing model 
that assumes the short rate is log-normally distributed, the zero-coupon yield curve is R(t) = 
0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate is σ(t) = 0.20 for all t.

Coupon-Bearing Bonds

The interest rate lattice can be used to value all sorts of bonds. To illustrate its
generality, assume that we want to value a four-year coupon-bearing bond with
annual coupon payments equal to 6. Again we start at the end of the bond’s life.
In year 4, the bond matures with a coupon payment of 6 and a repayment of
principal of 100. In year 3, the short-term interest in the uppermost node is
0.152051. The value of the bond at that interest rate is 106e–0.152051(1) = 97.048.
At the second uppermost node, the bond’s value is 106e–0.101923(1) = 101.729,
and so on.

As we proceed backward in time, we must add in the coupon payments. The
value of the bond at the uppermost node in year 2 is 

and at the second uppermost node is 

The price lattice of the four-year coupon-bearing bond is provided in Figure 20.12.

Callable Bonds

A callable bond is a coupon-bearing bond that allows its issuer to retire the
bond before its stated maturity. In general, the call dates of the bond are cou-
pon-payment dates, and the amount that bondholders will be paid is the par
value of the bond plus the current coupon. 
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2
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Consider the 6% coupon-bearing bond valued in Figure 20.12. To value the
bond, we began at the end of the bond’s life and worked backwards, taking the
present value of the expected future value of the bond one node at a time. In look-
ing at the values reported at time step 3, note that at the bottom node, the value
of the bond is 107.255. If this bond was callable, the issuer would call the bond at
this node because calling it would cost 106 while waiting one more period would
cost 107.255. Thus in valuing this callable bond, we replace the value at this node
with 106, as shown in Figure 20.13, Panel A. Note that the value of the bond at
the lowest node at time step 2 has changed from 106.853 in Figure 20.12 to
106.257 in Figure 20.13, Panel A, reflecting the call feature of the bond. But if
interest rates evolved in a manner that the firm would find itself at the lowest
node at time step 2, it would call the bond since the present value of its expected
future value exceeds its immediate redemption value, 106. Again we replace the
computed value of the bond, as shown in Figure 20.13, Panel B. Working back-
ward to time 0, we find that the value of the callable bond is 95.707. Comparing
this bond value to the noncallable coupon-bearing bond value, we find that from
the firm’s perspective, the value of the call feature is 0.202.

Putable Bonds

A putable bond permits the bondholder to sell the bond back to the issuer, usu-
ally at the par value of the bond. This put gives the bondholder some protection
from loss of principal due to higher interest rates or credit deterioration of the
issuer. Putable bonds can be valued straightforwardly using our interest rate lat-
tice procedure. Suppose, for example, that the coupon-bearing bond shown in
Figure 20.12 is putable at par by the bondholder. Since the put will be exercised
only when the value of the bond falls below par value, we replace only the
uppermost node at time step 3, as shown in Figure 20.14, Panel A. Moving back
one time step, we see also that the bond will be put back to the issuer at the
uppermost node. Therefore as shown in Figure 20.14, Panel B, we replace the

FIGURE 20.12 Valuation of a four-year 6% coupon-bearing bond using a no-arbitrage pric-
ing model that assumes the short rate is log-normally distributed, the zero-coupon yield 
curve is R(t) = 0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate is σ(t) 
= 0.20 for all t.
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uppermost node with a value of 100. Finally, at the end of time step 1, the bond-
holder will exercise his option at the uppermost node, so, again, we replace the
computed value of the bond with the exercise proceeds of 100. The value of the
putable bond is 97.452. The value of the nonputable coupon-bearing bond is
95.899. The value of the embedded put is therefore 1.447. 

BOND OPTION VALUATION

The interest rate lattice procedure can also be used to value bond options.
Assume, for example, that we want to value a two-year European-style put option
with an exercise price of 100. Also assume that the option expires just after the
coupon is paid in year 2. In year 2, therefore, the put’s value will be depend on the
ex-coupon bond price, which is the price reported in year 2 less 6. Given that the

FIGURE 20.13 Valuation of a four-year 6% coupon-bearing callable bond using a no-arbi-
trage pricing model that assumes the short rate is log-normally distributed, the zero-coupon 
yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate 
is σ(t) = 0.20 for all t.

Panel A:

Panel B:

0 1 2 3 4

106
  97.048

  94.729 106
  96.735 101.729

95.765 101.795 106
104.615 105.000

106.257 106
106.000

106

0 1 2 3 4

106
  97.048

  94.729 106
  96.735 101.729

95.707 101.795 106
104.493 105.000

106.000 106
106.000

106



Valuing Interest Rate Products Numerically 725

FIGURE 20.14 Valuation of a four-year 6% coupon-bearing puttable bond using a no-arbi-
trage pricing model that assumes the short rate is log-normally distributed, the zero-coupon 
yield curve is R(t) = 0.10 – 0.05e–0.18(t–1) where t is measured in years, and the volatility rate is 
σ(t) = 0.20 for all t.
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put is expiring, its values are given by the lower boundary condition max(0,X –
B), where X is the exercise price of the option and B is the bond price.

The value of the option in year 1 is the present value of the expected future
value. At the uppermost node, the computation is 

At the lowermost node, the computation is

The value of the put today is 4.567, as is shown in this figure: 

SUMMARY

The purpose of this chapter is modest—to develop a binomial procedure for val-
uing interest rate derivative contracts where the short-term interest rate (“short
rate”) is the single underlying source of interest rate uncertainty. To begin, we
discuss a number of constant-parameter, short-rate processes to lay a founda-
tion for interest rate behavior. While these models are often useful in developing
economic intuition regarding interest rate behavior, they produce zero-coupon
bond values that are different from the observed market prices, seemingly giving
rise to arbitrage opportunities. Consequently, we next turn to no-arbitrage pric-

Time 0 1 2

max(0,100 – 88.734) =   11.266
  88.734

max(0,100 – 94.798) =     4.202
  95.798

max(0,100 – 100.855) =     0.000
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Time 0 1 2
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ing models. These models adjust the parameters of the interest rate process in a
manner that produces bond (and interest rate derivatives contract) values equal
to observed prices. With the mechanics of no-arbitrage pricing in hand, we then
turn to valuing zero-coupon and coupon-bearing bonds, callable bonds, putable
bonds, and bond options. Be forewarned, however. While the valuation frame-
work provided in this chapter is intuitive and commonly applied in practice, it
only begins to scratch the surface of the literature focused on no-arbitrage inter-
est rate models. This literature is deep in multifactor theoretical models of inter-
est rate movements and numerical procedures for calibrating the interest rate
models and valuing interest rate derivatives.
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ommodities are physical assets. Examples include precious metals, base metals,
energy stores (e.g., crude oil and natural gas), refined products (e.g., heating

oil and gasoline), and food (e.g., wheat, and livestock). Commodity derivatives
have been traded in over-the-counter markets for centuries. The first modern-day
commodity futures exchange began operation in 1865, when the Chicago Board
of Trade launched trading of standardized futures contracts calling for the deliv-
ery of grain. Other futures exchanges were formed shortly thereafter—the New
York Cotton Exchange in 1870 to trade cotton futures, the Chicago Produce
Exchange (a forerunner to today’s Chicago Mercantile Exchange) in 1874 to
trade butter, eggs, and poultry, the London Corn Trade Association in 1878 to
trade corn futures in England, and the Winnipeg Commodity Exchange in 1904
to trade oat futures contracts in Canada. With the passage of time, nonagricul-
tural commodities were introduced—precious metal (silver) futures were
launched by the Commodity Exchange in the United States in 1933, wool futures
by the Sydney Futures Exchange in Australia in 1960, and livestock by the Chi-
cago Mercantile Exchange in 1961. Crude oil and oil products were introduced
next—heating oil by the New York Mercantile Exchange in October 1978, crude
oil in March 1983, and unleaded gasoline in December 1984. Liquefied propane
appeared in August 1987, and electricity in March 1996.

This chapter focuses on derivatives contracts written on commodities. Given
their long history, it may seem odd that we have deferred the discussion of com-
modities derivatives to the end of the book. The reason is that, while their his-
tory is long, their trading volume pales by comparison to financial derivatives.
During 2003, exchange-traded commodity futures accounted for only 17% of
total trading (see Figure 21.1), and exchange-traded commodity options for
only 1% of total (see Figure 21.2). Their presence in OTC markets is even less.
At the end of December 2003, commodity derivatives accounted for only 1% of
the total notional amount outstanding (see Figure 21.3). 

This chapter is organized differently than the other product chapters in that
the sections of this chapter are arranged by underlying commodity. The reason
is that the price relations of commodity derivatives are influenced by idiosyncra-
sies in the underlying commodity market. Understanding commodity derivatives
price behavior therefore involves understanding the factors that influence com-
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modity price behavior. Thus we begin each section with a description of the
underlying commodity market, and then provide descriptions of derivatives con-
tract specifications and discussions of common risk management applications.

The sections of the chapter proceed as follows. In the first section, we discuss
the fundamental differences between pricing commodity derivatives and pricing
financial derivatives. Commodity derivatives require that we consider the storage
costs such as warehouse rent and insurance as well as the convenience of having
an inventory of the commodity on hand. Neither of these factors played an
important role in the pricing of stock, stock index, currency, and interest rate

FIGURE 21.1 Millions of futures contracts traded on exchanges worldwide during 2003 cat-
egorized by type of underlying asset. Total trading volume was 2,848 million contracts.  

Source: Data compiled from Bank for International Settlements (www.bis.org), BIS Quarter-
ly Review, June 2004.

FIGURE 21.2 Millions of options contracts traded on exchanges worldwide during 2003 cat-
egorized by type of underlying asset. Total trading volume was 5,210 million contracts.  

Source: Data compiled from Bank for International Settlements (www.bis.org), BIS Quarter-
ly Review, June 2004.
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derivatives products. The remaining sections are organized by commodity. Figure
21.4 shows commodity futures and futures options trading volume during 2003
by the three major commodity categories—energy, agricultural, and metals. We
illustrate the idiosyncrasies of each commodity using an example—petroleum,
soybeans, and gold, respectively. Figure 21.5 shows the notional amounts of
OTC commodity derivatives outstanding at the end of December 2003. While
the breakdown among commodity categories is not as refined, the relative impor-
tance of precious metal derivative contracts in the OTC market is apparent.

 

NET COST-OF-CARRY RELATION

 

Chapter 4 contained the development of the no-arbitrage price relations for for-
wards, futures, and swaps. In the chapters that followed, we used the price rela-
tions in a variety of risk management strategies, however, the focus was almost
exclusively on financial assets such as stocks and stock portfolios, currencies,
and bonds. This section focuses on commodity price risk management, so we
begin with a review of the net cost of carry pricing principles.

The 

 

net cost of carry

 

 refers to the difference between the costs and the bene-
fits of holding an asset. A breakfast cereal producer who needs 5,000 bushels of
wheat for processing in two months can lock in the price of the wheat today by
buying it and carrying it for two months. If he does so, he incurs the opportu-
nity cost of funds. In addition, he will pay 

 

storage costs

 

 such as warehouse rent
and insurance. At the same time, by storing wheat, he may accrue 

 

convenience
yield

 

, that is, he may avoid some costs of possible running out of inventory
before two months are up and having to pay extra for emergency deliveries or
shutting down the production plant. Thus the net cost of carry for a commodity
equals interest cost plus storage costs less convenience yield, that is,

FIGURE 21.3 Percentage of total notional amount of derivatives outstanding worldwide on 
December 2003 by underlying asset category. Total notional amount of derivatives is USD 
197.2 trillion.  

Source: Data compiled from Bank for International Settlements (www.bis.org), BIS Quarterly 
Review, June 2004.
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FIGURE 21.4

 

Proportion of total commodity futures and futures options trading volume in 
U.S. during 2003 by commodity category. Total futures (futures options) trading volume in 
2003 was 200,551,739 (45,377,075) contracts.  
Panel A. Futures

Panel B. Futures options

 

Source: 

 

Data compiled from Futures Industry Institute, 2005.

 

Net carry costs = Cost of funds + Storage cost – Convenience yield (21.1)

For expositional convenience, we will initially model all costs as constant con-
tinuous rates. The value of a cash-and-carry position at time 
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,
where 

 

r 

 

is the risk-free interest rate, 

 

s 

 

is the storage cost rate, and 

 

y

 

 is the conve-
nience yield rate.

To develop the forward pricing relation for a commodity, we need to con-
sider how commodities are used and the types of traders in the marketplace.
Consider a commodity like crude oil. An oil refiner draws convenience yield
from holding an inventory of crude to avoid the costs associated with shutting
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down the refinery while more crude oil is pumped in.

 

1

 

 Thus the refiner’s net cost
of carry is 

 

r

 

 + 

 

s

 

 – 

 

y

 

. But many market participants do not accrue convenience
yield from holding an inventory of crude. Like the refiner, they would incur stor-
age costs, however, since they do not accrue convenience yield, their net carry
cost is 

 

r

 

 + 

 

s

 

. With these distinctions in mind, we now develop the commodity
forward pricing relation.

Recall that, in Chapter 4, we developed the net cost of carry relation,
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by showing that, if either 
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, someone could earn an arbi-
trage profit. We will use the same approach here to show that the net cost of
carry relation for a commodity is 
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1 

 

Another such cost is lost customer goodwill when deliveries are missed.

FIGURE 21.5 Proportion of total notional amount of commodity derivatives outstanding in 
OTC markets as of December 31, 2003. Total forwards and swaps (options) notional 
amount was USD 574B (USD 831B). 
Panel A. Forwards and swaps

Panel B. Options

Source: Data compiled from Bank for International Settlements (www.bis.org), BIS Quarterly 
Review, June 2004.
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TABLE 21.1  

 

Costless arbitrage trades where .  

 

TABLE 21.2  

 

Arbitrage trades where .

 

Consider the case where 

 

f

 

 > 

 

Se

 

(

 

r

 

 + 
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T

 

, that is, the forward price is too high relative
to the commodity price. To earn an arbitrage profit, we can borrow money at
the risk-free rate, buy the commodity, and sell the forward contract to earn 
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 –
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 > 0. The transactions are shown in Table 21.1. The trading strategy
involves no investment and a terminal value that is certain to be positive. We
would continue to engage in the strategy until 
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Now suppose that 
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 < 
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. The forward price appears to be too low relative
to the commodity price, so it appears that we can earn a costless arbitrage profit by
selling the commodity, buying risk-free bonds, and buying the forward contract. But
therein lies the problem. Unlike financial assets, commodities are frequently in short
supply and are unavailable to borrow and sell short. The only person able to execute
such an arbitrage is someone, like a refiner, who holds an inventory of the commod-
ity. When the forward price falls below 
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, the refiner will find it profit-
able to sell some of his existing inventory and buy a forward contract, as shown in
Table 21.2. The prepaid forward price of the commodity, 
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 is less than
the cost of storing the commodity even after the convenience yield is subtracted.

 

2

 

Commodity Swap Contracts

 

An increasingly popular risk management strategy is a commodity swap. Com-
modity swaps have been around since the mid-1970s, and are an effective means
of locking in input and output prices. In a typical fixed-for-floating commodity
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2 One is tempted to reconsider the first inequality in which we engaged in the arbitrage and
ask why the refiner, who gathers convenience yield from holding does not step in and buy
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swap, one party agrees to pay a fixed price per unit of the underlying commod-
ity each period throughout the life of the agreement. The length of the contract
is negotiable, as is the length of each period during the contract’s life (e.g., one
month). The contract will also specify the amount to be delivered each period,
although the quantity need not be uniform through time. The nature of the set-
tlement each period is also negotiable. Some contracts specify delivery at a par-
ticular location. Others are cash-settled with a net payment equal to the
difference between the prevailing spot price on the settlement date and the fixed
price of the contract times the promised delivery quantity.

ENERGY: PETROLEUM

Within the energy category, derivative contracts on petroleum are the most active. All
exchange-traded contracts in the United States are traded on the New York Mercan-
tile Exchange (NYMEX division). Table 21.3 shows the most active futures and
futures options. The petroleum contracts (i.e., crude oil, heating oil, and gasoline)
constitute about 74 (56)% of total futures (futures options) trading volume during
2003. Natural gas contracts account for 21.7 (42.6)%. The “other” category includes
more than 70 different underlyings including other commodities (e.g., electricity),
spreads (e.g., the crack spread), and swaps. While many of these contracts are innova-
tive and potentially useful, none have gathered much interest from a market stand-
point. The primary focus of this section is on petroleum and petroleum products.

Production and Consumption

Petroleum3 is the generic term applied to oil and oil products. Crude oil is petro-
leum in its natural state—the dark liquid extracted from the ground—and is the
world’s largest cash commodity. This is hardly surprising considering our day-

3 The term petroleum is derived from the Latin words petra, meaning rock, and oleum, mean-
ing oil.

TABLE 21.3  Summary of New York Mercantile Exchange (NYMEX division) energy futures 
and futures options trading volume during 2003.  

Source: Data drawn from Futures Industry Institute, 2005.

Futures Futures Options

Commodity Volume Percent Volume Percent

Crude Oil 45,436,931   49.45% 10,237,121   49.90%
No. 2 Heating Oil, NY 11,581,670   12.60%      668,859     3.26%
Unleaded Reg. Gas., NY 11,172,050   12.16%      616,245     3.00%
Natural Gas 19,037,118   20.72%   8,742,277   42.61%
Other   4,654,332     5.07%      250,305     1.22%

Total 91,882,101 100.00% 20,514,807 100.00%
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to-day reliance on refined products such as heating oil, gasoline, and jet fuel, not
to mention a limitless number of petrochemical-derived products ranging from
ball-point pens to toothbrushes and deodorant to lipstick. 

Generally speaking, the crude oil refining takes place in the areas where the
consumption of petroleum products is highest. One reason for this is that it is
cheaper to move crude oil than petroleum product. Another is that it is easier to
respond to weather-induced spikes in demand and gauge seasonal shifts. To
illustrate this phenomenon, consider Figure 21.6, which shows (1) the produc-
tion of crude oil by world region and (2) the corresponding refining capacity in

FIGURE 21.6 World production of crude oil and refining capacity by region for the calendar 
year 2002. 
Panel A. Production

Panel B. Refining capacity

Source: Underlying data drawn from Energy Information Administration, International En-
ergy Annual 2002.
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2002. While the Middle East and Africa produced 38% of the world’s oil in
2002, their combined refining capacity was 12%. At the same time, while Asia,
North America, and Western Europe account for 40% of production, they have
68% of the world’s refining capacity. 

The cost of the crude constitutes about 85% of total refining costs. The core
refining process is fractional distillation. Crude oil is heated until it boils and
vaporizes. The vapors are captured in a distillation column, and, as they rise in
the column, they cool and condense. Different products condense at different
temperatures. The lighter products—liquid petroleum gases, naphtha, and gaso-
line—are recovered at the lowest temperatures (highest levels within the col-
umn). The middle distillates—jet fuel, kerosene, home heating oil, and diesel
fuel—are next. Finally, at the lowest levels (highest temperatures), the heaviest
products—residuum or residual fuel oil—are recovered. The heavier molecules
have fewer uses so they are often further transformed into lighter-end gasoline
products by a catalytic cracking process. On average, 42 gallons of crude pro-
duces 21 gallons of gasoline, 3 gallons of jet fuel, 9 gallons of heating oil and
diesel fuel, 4 gallons of lubricants, and 3 gallons of heavier residues. 

Derivatives Markets

The trading of petroleum futures and futures options in the United States is con-
ducted exclusively on the New York Mercantile Exchange (NYMEX). The heat-
ing oil futures contract market was launched in December 1978, followed by
crude oil in March 1983 and unleaded gasoline futures in December 1984. Rel-
ative to many other commodities, petroleum derivatives were late to enter the
marketplace. The reason is simple. In the 1960s and 1970s, crude oil prices were
tightly controlled by OPEC together with large globally integrated oil compa-
nies. With little or no commodity price variability, there is no need for produc-
ers and end-users to hedge. By the early 1980s, competition from non-OPEC oil-
producing countries began to undermine OPEC’s influence on oil markets, and
energy prices began to move more freely in response to market conditions. Such
an environment creates a new opportunity for risk management tools.

Table 21.4 summarizes the key features of the petroleum futures contracts
traded on NYMEX. The crude oil contract calls for the delivery of 1,000 barrels
of crude in Cushing, Oklahoma. Several grades of domestic and internationally
traded foreign crudes are eligible for delivery. The contracts are traded in an
open outcry format on the exchange floor during the day, and electronically at
other times. The last day of trading is the third business day prior to the 25th
calendar day of the month preceding the delivery month. 

The heating oil (also called “no. 2 fuel oil”) and gasoline futures contracts
call for the delivery of 42,000 gallons in New York Harbor. Note that size of the
heating oil and gasoline contracts is the same as the crude oil contract (i.e.,
42,000 gallons equals 1,000 barrels). This was done deliberately to facilitate
trading of crack spreads. A crack spread refers to the simultaneous purchase
(sale) of the crude oil futures and sale (purchase) of a heating oil or unleaded
gasoline futures. The last day of trading for the heating oil and gasoline con-
tracts is the last business day of the month preceding the delivery month. 
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Table 21.5 shows futures settlement prices of the petroleum futures on Janu-
ary 25, 2005. For crude oil futures, contract maturities extend out seven years,
although trading volume is quite light in the most distant months. For heating oil
futures, the maximum contract tenure is 18 months, and, for gasoline futures, 12
months. The table shows that all three contract markets are in backwardation.
This is a common characteristic of energy futures prices. Backwardation implies
that there are significant convenience yields on energy products for immediate or
near-term delivery. The prices also reflect the seasonal nature of the demand for
heating oil and gasoline. With heating oil, for example, demand is highest in the
cold winter months. Consequently, we see that the heating oil futures prices
reported in Table 21.5 are higher for the contract months November through Feb-
ruary than they are for other months during the year. Conversely, gasoline futures
prices are highest during the summer months when people travel more.4

The NYMEX launched trading of unleaded gasoline futures options in
December 1984. The options are American-style, and each contract is written
on one underlying futures contract. Exercising a call on the unleaded gasoline
futures, for example, means that a long position in one unleaded gasoline
futures will appear in your trading account at the end of the day, and you will
be marked-to-market at the difference between the futures price and the option’s
exercise price. The last day of trading of the unleaded gasoline futures contract
is the last business day of the month preceding the delivery month of the under-
lying futures. Options on crude oil and heating oil futures were launched in
November 1986 and June 1987, respectively. The terms of the contract are very
similar to the unleaded gasoline futures. For details, see www.nymex.com.

Derivatives Valuation
The valuation of petroleum derivatives follows the principles outlined in the
first section of this chapter. Storage costs play a significant role in pricing and
convenience yield for refined products varies by time of year as demand rises
and falls. In valuing petroleum derivatives and in measuring their risk, the for-
ward curve, as illustrated by the relation between futures prices and their time
of expiration in Table 21.5, plays a critical role.

ILLUSTRATION 21.1 Compute fixed price of commodity swap.

Based on the heating oil futures prices reported in Table 21.5, compute the fixed price on
a heating oil swap that allows you to buy 50,000 gallons of heating oil per week for 26
weeks. Assume that today’s date is January 25, 2005 and that the zero-coupon yield
curve for risk-free bonds is given by 

ri = 0.0178 + 0.01ln(1 + Ti)

The first delivery date is February 7, 2005.

To solve this problem, we assume that the forward curve is given by the structure of
futures prices in Table 21.5. The last day of trading of heating oil futures contract is the
last day of the month preceding the contract month. Thus, the February 2005 contract
expires on January 31, 2005. The points along the forward curve are therefore: 

4 Approximately 75% of gasoline is consumed by individuals.
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The next step is to set up a table that contains the delivery dates, and the corre-
sponding interest rates and forward prices. The forward prices corresponding to each
delivery date can be computed by interpolating between adjacent forward prices. Recall
the OPTVAL function

OV_IR_TS_INTERPOLATE(sterm, term, rate)

where sterm is the time to delivery, term is the vector of times to delivery for the forward
contracts, and rate is the vector of forward prices, performs this operation. With the inter-
est rates and forward prices computed, you compute the discount factor and prepaid for-
ward price for each delivery, and then sum. The results are shown as follows: 

Heating Oil Forward Curve

Contract Month Settlement Price Time to Expiration

Feb-05 1.4248 0.0192
Mar-05 1.4088 0.0959
Apr-05 1.3608 0.1808
May-05 1.3153 0.2658
Jun-05 1.2883 0.3507
Jul-05 1.2823 0.4356
Aug-05 1.2833 0.5205
Sep-05 1.2898 0.6055
Oct-05 1.2983 0.6904
Nov-05 1.3068 0.7753
Dec-05 1.3153 0.8603
Jan-06 1.3203 0.9452
Feb-06 1.3133 1.0301
Mar-06 1.2868 1.1151
Apr-06 1.2478 1.2000
May-06 1.2198 1.2849
Jun-06 1.2013 1.3699
Jul-06 1.1978 1.4548

Delivery
No.

Delivery
Date

Time
to

Delivery
Interest

Rate
Forward

Price
Discount
Factor

Prepaid
Forward

PV of
Fixed

1.3321

  1   2/7/05 0.0356 1.815% 1.4214 0.9994 1.4205 1.3312
  2 2/14/05 0.0548 1.833% 1.4174 0.9990 1.4159 1.3307
  3 2/21/05 0.0740 1.851% 1.4134 0.9986 1.4114 1.3302
  4 2/28/05 0.0932 1.869% 1.4094 0.9983 1.4069 1.3298
  5   3/7/05 0.1123 1.886% 1.3995 0.9979 1.3965 1.3293
  6 3/14/05 0.1315 1.904% 1.3887 0.9975 1.3852 1.3287
  7 3/21/05 0.1507 1.920% 1.3778 0.9971 1.3739 1.3282
  8 3/28/05 0.1699 1.937% 1.3670 0.9967 1.3625 1.3277
  9   4/4/05 0.1890 1.953% 1.3564 0.9963 1.3514 1.3272
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From Chapter 4, you know that the fixed price on a commodity swap with uniform
quantities can be computed by dividing the sum of the prepaid forward prices by the sum
of the discount factors, that is,

Another alternative is to set up an additional column in the table that contains the
present value of the fixed price and let SOLVER find the price that equates the sum of the
present values of the fixed payments to the sum of the prepaid forwards, that is, 34.4366.
Finally, OPTVAL contains a function that computes the fixed price on a commodity swap
with uniform deliveries each period, that is, 

OV_SWAP_COMMODITY(t, f, r, vr) = 1.3321

where t is the vector of times to delivery, f is the vector of forward prices and r is the vector
of risk-free rates corresponding to the delivery times, and vr is an indicator variable that
signals the function to determine the swap’s value “v” or fixed price “r”. The function

OV_SWAP_COMMODITY_QUANTITY(t, f, r, quan, vr)

computes the fixed price of a commodity swap where the quantity delivered each period,
quan, is time-varying. 

Delivery
No.

Delivery
Date

Time
to

Delivery
Interest

Rate
Forward

Price
Discount
Factor

Prepaid
Forward

PV of
Fixed

1.3321

10 4/11/05 0.2082 1.969% 1.3461 0.9959 1.3406 1.3266
11 4/18/05 0.2274 1.985% 1.3358 0.9955 1.3298 1.3261
12 4/25/05 0.2466 2.000% 1.3256 0.9951 1.3191 1.3255
13   5/2/05 0.2658 2.016% 1.3153 0.9947 1.3083 1.3250
14   5/9/05 0.2849 2.031% 1.3092 0.9942 1.3016 1.3244
15 5/16/05 0.3041 2.046% 1.3031 0.9938 1.2950 1.3238
16 5/23/05 0.3233 2.060% 1.2970 0.9934 1.2884 1.3232
17 5/30/05 0.3425 2.075% 1.2909 0.9929 1.2818 1.3226
18   6/6/05 0.3616 2.089% 1.2875 0.9925 1.2778 1.3220
19 6/13/05 0.3808 2.103% 1.2862 0.9920 1.2759 1.3214
20 6/20/05 0.4000 2.116% 1.2848 0.9916 1.2740 1.3208
21 6/27/05 0.4192 2.130% 1.2835 0.9911 1.2721 1.3202
22   7/4/05 0.4384 2.144% 1.2823 0.9906 1.2703 1.3196
23 7/11/05 0.4575 2.157% 1.2826 0.9902 1.2700 1.3190
24 7/18/05 0.4767 2.170% 1.2828 0.9897 1.2696 1.3184
25 7/25/05 0.4959 2.183% 1.2830 0.9892 1.2692 1.3177
26   8/1/05 0.5151 2.195% 1.2832 0.9888 1.2688 1.3171

Totals 25.8519 34.4366 34.4366

f
34.4366
25.8519
--------------------- 1.3321= =
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TABLE 21.5  Summary of trading activity for NYMEX petroleum complex on Tuesday, 
January 25, 2005. 

Source: Information drawn from www.nymex.com.

Crude Oil Heating Oil Unleaded Gasoline

1,000 Barrels
(dollars per barrel)

42,000 Gallons
(cents per gallon)

42,000 Gallons
(cents per gallon)

Contract
Month

Settlement
Price

Total
Volume

Open
Interest

Settlement
Price

Total
Volume

Open
Interest

Settlement
Price

Total
Volume

Open
Interest

Feb-05 1.4248 23,063 26,626 1.3445 23,094 21,704

Mar-05 49.64 72,155 223,551 1.4088 17,538 62,051 1.3594 22,781 56,794

Apr-05 49.80 39,777   68,599 1.3608   6,288 20,270 1.4259   5,923 25,975

May-05 49.70 21,533   30,622 1.3153   1,684   9,249 1.4299   4,531 25,936

Jun-05 49.42   9,650   40,248 1.2883      963 12,267 1.4229   1,079 10,802

Jul-05 49.03   4,911   22,749 1.2823      250   7,923 1.4064        94   5,224

Aug-05 48.63      633   12,674 1.2833          0   3,091 1.3799      713   6,369

Sep-05 48.23   1,422   15,549 1.2898          5   5,895 1.3469   1,054   7,050

Oct-05 47.83      525   11,892 1.2983          0      808 1.3054      972   3,248

Nov-05 47.49      650   15,531 1.3068          7   1,491 1.2819      115      323

Dec-05 47.18   5,154   57,870 1.3153      405   8,253 1.2684          1   1,697

Jan-06 46.82      122   10,804 1.3203          0   1,619 1.2629      873        29

Feb-06 46.46        54     5,242 1.3133          0      737

Mar-06 46.13      156     9,226 1.2868        80   2,355

Apr-06 45.84      225     4,769 1.2478          0      439

May-06 45.56          0     2,690 1.2198          0      410

Jun-06 45.28   1,487   25,683 1.2013          0      567

Jul-06 45.04          0     2,639 1.1978          0      362

Aug-06 44.81          0     1,921

Sep-06 44.58      145     3,823

Oct-06 44.36          2     1,400

Nov-06 44.14      150     1,428

Dec-06 43.92   2,253   39,328

Jan-07 43.74          0     1,711

Feb-07 43.57      100     1,167

Mar-07 43.41          0        743

Apr-07 43.25          0        450

May-07 43.10          0          90

Jun-07 42.95        50   11,537

Dec-07 42.14      415   21,073

Dec-08 41.14      761   23,734

Dec-09 40.49      106   16,842

Dec-10 40.06      394   18,721

Dec-11 39.96      186     2,495
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Spread Contracts One unusual feature of the petroleum complex traded on
NYMEX is that they list futures and futures options on spreads. Earlier we
described the crack spread as being the difference between the price of heating
oil (or gasoline) and crude oil. This spread is a petroleum refiner’s gross margin.
Because both the prices of crude oil and the finished products (e.g., heating oil
and gasoline) vary with supply and demand in each market, refiners are at risk
when, say, the price of crude rises and the product prices remain flat or fall.

To facilitate the risk management needs of refiners, the NYMEX permits
trading of the crack spread directly, that is, both legs of the trade are combined
into a single futures transaction. They also list crack spread options. Upon exer-
cise, the option holder receives two offsetting futures positions. The exercise of
a call option on the heating oil/crude oil crack spread, for example, results in a
long heating oil futures/short crude oil futures position. 

ILLUSTRATION 21.2 Compute value of spread option.

Based on the heating oil and crude oil futures prices reported in Table 21.5, compute the
value of an American-style put option on the September 2005 crack spread between the
heating oil and crude oil futures. Assume that the option’s exercise price is 6, that today’s
date is January 25, 2005 and that the zero-coupon yield curve for risk-free bonds is given by 

ri = 0.0178 + 0.01ln(1 + Ti)

Assume also that the volatility rate of the September 2005 heating oil futures is 43.90%,
that the volatility rate of the September 2005 crude oil futures is 35.27%, and that the
correlation between the heating oil and crude oil returns is 0.85.

According to its contract specifications, the NYMEX crack spread option expires on
the day before the underlying crude oil futures contract.5 The last day of trading for the
crude oil futures contract, in turn, is three business days before the 25th calendar day of
the month preceding the delivery month. The crack spread option therefore expires on
August 19, 2005 and has 206 days to expiration.

Also according to the contract specifications, the option is expressed in dollars per
barrel. Thus the September 2005 heating oil futures price, 1.2898, which is expressed in
dollars per gallon, must be multiplied by 42 gallons per barrel. Thus the September 2005
heating oil futures price is 54.17, and the current level of the crack spread is 54.17 –
48.23 = 5.94, that is, the put is slightly in the money.

No valuation equation exists for the NYMEX crack spread options. The reasons are
twofold. First, if the heating oil and crude oil futures prices are each lognormally distrib-
uted, the difference between the prices (i.e., the crack spread) is not log-normally distributed
and the BSM model cannot be applied. Second, the NYMEX options are American-style.
You can, however, use numerical methods like the binomial method. A discussion of the
procedure is described in Chapter 9. For current purposes, however, you can simply use the
OPTVAL function developed for this valuation problem, that is,

OV_APPROX_SPRD_FOPT_BIN(f1, f2, x, t, r, v1, v2, rho, n, cp, ae)

where f1 and f2 are the heating oil and crude oil futures prices, respectively, x is the exer-
cise price of the crack spread option, t is its time to expiration, v1 and v2 are the volatil-

5 The most reliable way of finding the product specifications of exchange-traded derivatives is
to go directly to the exchange’s website. The crack spread specifications were taken from
www.nymex.com.
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ity rates of heating oil and crude oil, rho is the correlation between the rates of return of
heating oil and crude oil, n is the number of time steps to be used in the binomial valua-
tion, cp is a (c)all/(p)ut indicator variable, and ae is an (A)merican/(E)uropean-style
option type indicator. Using the problem information, we find

 OV_APPROX_SPRD_FOPT_BIN(54.17,48.23,6,0.5644,0.0223,0.4390,0.3527,0.85,
100,“p”,“a”) = 3.8558

An option premium of 3.8558 protects its holder in the event that the crack spread falls
below 6 between now and August 19, 2005.

Risk Management Strategies

The strategies used to manage petroleum price risk depend on the nature of the
problem. In the petroleum derivatives markets, refiners or producers are big
players. They face uncertainty in their input (i.e., crude oil) cost as well as their
output (i.e., heating oil and gasoline) sales price. Another important set of play-
ers are end-users who hedges to lock-in the price at which he can purchase a
commodity. Airlines, for example, frequently hedge to lock in the price of the jet
fuel. Rather than demonstrate the mechanics of a particular strategy once again,
let us consider what particular firms report that they do.

Firms are required to report the nature of their derivatives use in their finan-
cial statements.6 The passage below is drawn from Southwest Airlines 2003
Annual Report:

. . . the Company has hedges in place for over 80 percent of its antici-
pated fuel consumption in 2004 with a combination of derivative instru-
ments that effectively cap prices at about $24 per barrel, including
approximately 82 percent of its anticipated requirements for the first
quarter 2004. . . . The majority of the Company’s near term hedge posi-
tions are in the form of option contracts, which protect the Company in
the event of rising fuel prices and allow the Company to benefit in the
event of declining prices.

Apparently, Southwest’s favored strategy is buying call options on jet fuel. In
order to cap the purchase price at $24 per barrel, they must have purchased call
options with an exercise price of about $24. In the event that the price of jet fuel
exceeds $24, Southwest will buy at the market price and exercise their call
whose value equals the market price less $24. 

American Airlines 2003 Annual Report reveals a similar hedging strategy
but not nearly as aggressive:

As of December 31, 2003, the Company had hedged, with option con-
tracts, approximately 12 percent of its estimated 2004 fuel require-
ments, or approximately 21 percent of its estimated first quarter 2004
fuel requirements, 16 percent of its second quarter 2004 estimated fuel

6 The U.S. accounting rules for derivative instruments and hedging activities are contained in
FASB Statement No. 133.
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requirements and six percent of its estimated fuel requirements through
the remainder of the year. . . . the Company’s credit rating has limited its
ability to enter certain types of fuel hedge contracts. A further deteriora-
tion of its credit rating or liquidity position may negatively affect the
Company’s ability to hedge fuel in the future.

In reading the first sentence of the passage, one may wonder why American Air-
lines hedges so little, at least compared with Southwest Airlines. Can the two
airlines have completely different views about what the cost and variation of jet
fuel prices will be over the next year? Reading a little further into the paragraph
provides a different explanation, however. Apparently American Airlines’s coun-
terparties are growing increasingly concerned about American’s worsening
financial condition and are limiting the degree to which they are willing to enter
new contracts—risk management of yet a different type! 

A couple of other notes regarding the practice of hedging jet fuel costs are
worthwhile. First, average-rate derivatives contracts can be very effective and
cost-efficient. Consider the airline’s risk management problem—it needs a
steady flow of jet fuel day by day throughout the year, where the market price it
pays each day is uncertain. One hedging alternative is to buy a portfolio of 365
call options with a fixed exercise price (i.e., a cap on the price of fuel through-
out the year), with one expiring each day. Assuming the options are cash-settled,
the airline receives a cash payment every day that the market price of jet fuel
exceeds the exercise price of the call and nothing on the other days. A second
hedging alternative is to buy 12 average-rate call options with the same exercise
price, with one expiring each month. At the end of the month, the average price
of jet fuel over the days during the month is computed. If the average price is
above the exercise price of the call, the airline receives the difference in price
times the stated quantity over the entire month. The cost of the second alterna-
tive is considerably less than the first.

Second, cross-hedging is usually less effective but can be more cost effective.
As a practical matter, the market for jet fuel forwards and swaps is not as liquid
as it is for heating oil and gasoline. Consequently, airlines are often willing to
cross hedge using heating oil contracts to save on trading costs. Why use heating
oil rather than gasoline? To answer this question, recall that heating oil and jet
fuel are middle distillates in the refining process. Gasoline, on the other hand, is
a light distillate. Hence, heating oil and jet fuel are closer substitutes than are
gasoline and jet fuel, which means that we expect the heating oil contract to
provide a more effective hedge. To test this proposition, we downloaded the
weekly prices of jet fuel New York Harbor, crude oil Cushing Oklahoma, heat-
ing oil New York Harbor, and unleaded gasoline New Work Harbor from Janu-
ary 1995 though January 2005, compute returns, and estimate cross-
correlations. The higher the correlation, the more effective the prospective
hedge. Table 21.6 reports the results. As expected, the correlation between the
jet fuel and heating oil is 0.844, much higher than the correlation with gasoline,
0.595, or with crude oil, 0.627.  
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TABLE 21.6  Correlation between weekly returns of jet fuel, crude oil, heating oil, and 
gasoline during the period January 1995 through January 2005.

RISK MANAGEMENT LESSONS: MG REFINING & MARKETING 

In December 1991, MG Refining and Marketing (MGR&M), a U.S. subsidiary
of the Germany conglomerate, Metallgesllschaft AG (MG), embarked on a pro-
gram in which they committed to deliver petroleum products at fixed prices over
a period up to 10 years. To hedge these “long-term, fixed-supply contracts,”
they purchased short-dated futures contracts and short-term OTC swap agree-
ments7 with total underlying volume equal to the total commitments, a so-called
“one-to-one stacked hedge.” When the futures approached maturity, they were
“rolled” into new positions by selling the nearby maturing contracts and buying
the second nearby, reducing the size of the position by the amount of product
delivered that month.

In the early days, this combined marketing/hedging program was very suc-
cessful. Among the reasons was that the margin between the fixed price and the
average spot price was about $.08 per gallon on average. To further capitalize
on these seemingly profitable margins, MGR&M expanded the program, taking
on larger and ever larger positions. By December 1993, the company had sold
forward approximately 160 million barrels (6.72 billion gallons) of petroleum
product. Customers included retail gasoline suppliers, large manufacturing
firms, and governmental entities. While many end-users were small, customers
also included the likes of Chrysler and Browning-Ferris Industries.

Along with the program expansion in 1993 was an unusual and steady
decline in petroleum product prices. As Figure 21.7 shows, petroleum product
prices were hovering at about the $0.58 per gallon at the beginning of the year,
but then they fell to levels well below $0.50. Indeed a sharp drop in late 1993
took the price of heating oil (unleaded gasoline) to $0.4172 ($0.3537).8 In and
of itself, the decline in price should not have been of concern. MGR&M was,
after all, hedged. But since MGR&M was long futures and the futures positions
were market-to-market each day, MGR&M was facing a severe cash flow
drain.9 On the other side of the hedge, of course, was the increasing value of
MGR&M’s fixed-supply contracts, however, these gains were not marked-to-
market (realized). The firm needed cash to weather the storm. They turned to
MG, but MG refused to supply the additional funding. Indeed they replaced

Jet fuel Crude oil Heating oil Gasoline

Jet fuel 1
Crude oil 0.627 1
Heating oil 0.844 0.575 1
Gasoline 0.595 0.687 0.547 1

7 Under the terms of these swap agreements, MGR&M received floating and paid fixed, mak-
ing them the economic equivalent of a strip of forward contracts.
8 Both prices reached their lowest levels of the year on December 13, 1993.
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management at MGR&M, closed the futures positions at loss, and rescinded the
fixed supply contracts. After all was said and done, MGR&M reportedly lost
over USD 1.4 billion.

The MGR&M controversy was hotly debated in academic, industry, and
regulatory circles. Most of the points of view and specific details regarding cor-
porate actions are contained in a volume of essays edited by Culp and Miller
(1999). Our purpose here is to review some basic risk management principles in
the context of corporate practice. 

This first principle focuses on what it means to hedge. In Chapter 5, we dis-
cussed risk-minimizing hedges. These are hedges constructed to reduce price risk
to its lowest level independent of any other consideration. But risk minimizing
hedges are not always optimal. For one thing, we discussed, in Chapter 3, the
tradeoff between expected return and risk and how different individuals/entities
will make different decisions depending on their degrees of risk aversion. For
another, a subset of market participants may have a comparative advantage in
understanding prices (and, therefore, expected returns) in a particular market by
having intimate knowledge of supply and demand factors.10 The management of
MGR&M, for example, believed strongly that oil markets should normally be
in backwardation and any change to a contango structure would be fleeting.
Consequently, they tailored their risk management strategy accordingly, by buy-
ing more futures contracts than a risk-minimizing hedge would demand.

The one-to-one stacked hedge employed by MGR&M was not intended to
be a risk-minimizing hedge. The ideal risk-minimizing strategy is to buy a strip

9 For ease of exposition, we talk about the futures contracts as being the only hedge used by
MGR&M. As noted earlier, however, OTC swap contracts were also used. While these posi-
tions were not marked-to-market daily, provisions are often made for losing counterparties to
provide additional collateral when market prices move against them.
10 See Stulz (1996).

FIGURE 21.7 Daily prices of heating oil and unleaded gasoline over the period February 1, 
1993 through January 31, 1994.  
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of heating oil and unleaded gasoline futures contracts matching the quantities
and delivery dates of the long-term fixed-supply contracts. While on its face, this
appears to be a one-to-one hedge ratio, recall that the futures hedges need to be
“tailed” by an appropriate discount factor so that the optimal risk-minimizing
hedge ratio is below one.11 In MGR&M’s case, a strip hedge was not feasible
because, even today, heating oil contracts do not extend beyond eighteen
months and unleaded gasoline contracts extend out only one year.12 In addition,
the trading volume in distant contracts is quite modest (see Table 21.5). A sec-
ond alternative is to cross-hedge using the crude oil futures contracts whose
maturities extend out five years or more. But, this would expose MGR&M to
considerable basis risk, and, like the petroleum product futures, the distant
maturities of the crude futures are not particularly active.

To set a risk-minimizing hedge using only nearby futures contracts requires
the use of the regression technique that we described in Chapter 5. Suppose that
MGR&M had decided that they wanted to hedge their fixed-supply contract
position using only the nearby futures contracts. This practice is not uncommon
because the nearby contracts typically offer greater liquidity and lower trading
costs. An appropriate way to set the hedge ratio would be to run a regression of
the changes in the value of the fixed-supply contracts on the changes in the
nearby futures price. If the prices of all futures contract maturities shifted by an
equal amount each day, the estimated hedge ratio would be near one. In prac-
tice, however, the coefficient estimate will likely be considerably less since the
day-to-day price movement in distant contracts is more muted than nearby con-
tracts. With declining correlation between the nearby and distant futures
decreasing as maturity increases, fewer and fewer contracts are needed to hedge
more distant flows from a risk-minimization standpoint.

In using the one-to-one stacked hedge, MGR&M was clearly banking on a
relatively stable pattern of backwardation in the petroleum product markets. If
such a pattern persisted through time, the rolling of the futures position from
the nearby to second nearby contract would produce an extraordinary gain each
month since the price of the nearby contract is above the second nearby in a
market with backwardation. In other words, MGR&M was posturing its hedge
in such a way that they were willing to accept more risk for the prospect of
greater expected return. It should also be noted that if the market moved to con-
tango, the rolling of the futures position from the nearby to the second nearby
contract would produce an unrecoverable loss.

Was the bet on market backwardation sensible? Who is to say? Different people
hold different views. Figure 21.8 shows the pattern of backwardation in the heating
oil market from December 1984 through December 1993. The vertical axis is in
dollars per gallon. The value plotted is the difference between the average daily
nearby futures contract price and the average daily second nearby futures contract
price during each month. Positives values indicate that the market was in backwar-

11 The mechanics of tailing the futures hedge ratio were discussed in Chapter 4.
12 If strips of heating oil and unleaded gasoline contracts were available at the time, it is un-
likely that MGR&M’s sales program would have been so successful since end-users could cre-
ate “synthetic” fixed supply contracts on their own.
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dation; negative values contango. Across the entire horizon, the average difference
was about ¹�₂ cent. The variation from month to month, however, was considerable.

By comparing Figure 21.7 to Figure 21.8, we can better assess the primary
driver behind MGR&M losses. The petroleum product price declines shown in
Figure 21.7 are on order of 20 cents per gallon and more. Typical levels of con-
tango, conditional on the market being in contango were well below a penny.
Thus, the cumulative effect of the daily marking-to-market of the futures posi-
tion appears to swamp the size of the average rollover cost. Consequently, the
funding crisis appears to have been caused by declining oil prices and the atten-
dant margin calls of the futures market.

Finally, was the situation predictable? Bollen and Whaley (1998) attempt to
make this assessment using simulation analysis based on (1) the behavior of the
NYMEX heating oil and unleaded gasoline futures contract prices during the
period December 1985 through November 1991, the period just before MGR&M
began its sales program; and (2) the structure of the fixed supply contracts in
MGR&M’s book as of December 1993. Their simulation results indicate that,
given the structure and size of the positions, the probability of MGR&M needing
funding in excess of USD 500 million at some time during the contract lives was
in excess of 36%. Understanding and planning for expected funding needs before-
hand is critical to being able to maintain a viable hedging strategy.

AGRICULTURAL: SOYBEANS

Within the agricultural category, derivative contracts on soybeans are the most
active. Table 21.7 contains a summary of U.S. futures and futures options trad-
ing by underlying agricultural commodity for the year 2003. The agricultural

FIGURE 21.8 Average difference between the price of the nearby and second nearby heating 
oil futures prices on a monthly basis from December 1984 through December 1993. (Positive 
value implies backwardation and negative value implies contango.) 
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TABLE 21.7  Summary of agricultural futures and futures options trading volume in the 
United States during 2003.  

Source: Information drawn from Futures Industry Institute, 2005.

Product
Subcategory

Futures Futures Options

Commodity Exchange Volume Percent Volume Percent

Oilseed Soybeans CBT 17,545,714   19.95%   4,885,399   24.53%

Soybean Meal CBT   8,158,445     9.28%      546,267     2.74%

Soybean Oil CBT   7,417,340     8.43%      665,532     3.34%

Mini Soybeans CBT      250,447     0.28%     0.00%

Soybeans MIDAM        97,163     0.11%     0.00%

Total oilseed 33,469,109   38.06%   6,097,198   30.62%

Grain Corn CBT 19,118,715   21.74%   4,515,240   22.67%

Wheat CBT   6,967,416     7.92%   1,788,500     8.98%

Wheat KCBT   2,632,033     2.99%      465,381     2.34%

Spring Wheat MGE   1,066,489     1.21%        39,764     0.20%

Oats CBT      318,898     0.36%        36,163     0.18%

Rice CBT      265,234     0.30%        34,978     0.18%

Mini Corn CBT        53,404     0.06%     0.00%

Corn MIDAM        39,555     0.04%     0.00%

Mini Wheat CBT        22,288     0.03%     0.00%

Hard Red Winter 
Wheat Index

MGE        16,535     0.02%          5,773     0.03%

Wheat MIDAM          5,580     0.01%     0.00%

National Corn Index MGE          3,996     0.00%          1,174     0.01%

Total grain 30,510,143   34.69%   6,886,973   34.58%

Foodstuff Sugar #11 NYBOT   7,140,724     8.12%   1,690,190     8.49%

Coffee "C" NYBOT   3,211,031     3.65%   1,328,081     6.67%

Cocoa NYBOT   2,128,206     2.42%      497,188

Orange Juice, Frozen 
Concentrate

NYBOT      652,715     0.74%      195,541     0.98%

Class III Milk CME 191,351     0.22%        79,901     0.40%

Sugar #14 NYBOT 133,811     0.15%     0.00%

Butter CME 8,544     0.01%             800     0.00%

Mini Coffee NYBOT 332     0.00%     0.00%

Nonfat Dry Milk CME 230     0.00%     0.00%

Class IV Milk CME 137     0.00%               41     0.00%

Total foodstuff 13,467,081   15.31%   3,791,742   19.04%

Livestock Live Cattle CME   4,436,089     5.04%      664,291     3.34%

Lean Hogs CME   2,164,155     2.46%      129,227     0.65%

Feeder Cattle CME 704,852     0.80%      179,347     0.90%

Pork Bellies, Frozen CME 161,329     0.18%          7,991     0.04%

Total livestock   7,466,425     8.49%      980,856     4.93%

Fiber Cotton #2 NYBOT   3,035,992     3.45%   2,157,441   10.83%

Total fiber   3,035,992     3.45%   2,157,441   10.83%

Total agricultural commodities 87,948,750 100.00% 19,914,210 100.00%
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commodities are further subcategorized in order to identify precisely where the
greatest trading interest resides. As the table shows, the greatest trading interest
is in soybeans and soybean products—soybean meal and soybean oil, with 38
(31)% of total agricultural futures (futures options) trading volume during
2003. Like NYMEX and its dominance in the petroleum contract market, the
Chicago Board of Trade (CBT) dominates the exchange-traded soybean contract
market,13 as well as other markets such as wheat and corn. The second largest
interest is in the grain contracts, which account for 35 (35)% of the agricultural
futures (futures options) trading volume.

Production and Consumption 

Soybeans are a relatively new crop in the United States, but not by world stan-
dards. They have been grown in China for more than 5,000 and are used to pro-
duce a wide variety of soy foods. Gradually soybean production spread across
much of the Pacific Basin. Until the early 1930s, however, little soybean produc-
tion took place outside the Orient. At that time, the Western world began to rec-
ognize the value of the soybean as a source of high-protein meal and edible oil.
Large-scale production of soybeans in the United States began in the mid-1930s
as a result of a trade embargo by China that cut off soybean supply and acreage
restrictions placed on cotton, corn, and wheat to curb oversupply.14

More than 150 varieties of soybeans grown in the United States. The domi-
nant class in the commercial market (and the class underlying the CBT’s futures
and futures option contracts) is Yellow soybean. Planting usually takes place in
late May or early June, and harvest usually runs from early September through
October. The soybean is a bushlike plant that grows to heights ranging from 12
inches to six feet. One of the notable features of the plant is that it has an exten-
sive root system that makes it resistant to drought. After flowering, the plant
develops several pods containing beans. Combine machinery is used to harvest
and thresh the soybeans. Threshing refers to the process of separating the beans
from the pods. After threshing, the beans are dried until they reach a suitable
moisture level for storage or processing. 

The processing of soybeans into soybean oil and meal is called crushing.
The first step in the crushing process involves cracking them to remove the hull
and then rolling them into full-flat flakes. The rolling process facilitates the sec-
ond step, solvent extraction of the oil. After the oil has been extracted, the sol-
vent is removed by evaporation and saved for reuse. The flakes are dried,
creating defatted soy flakes. Most of the defatted soy flakes are further pro-
cessed into soybean meal, although they can also be ground to produce other
products such as soy flour. As a rule of thumb, one bushel of soybeans (about 60
pounds) yields 11 pounds of oil, 44 pounds of 48% protein meal, and five

13 The Mid American Exchange was an affiliate of the CBOT when it was decommissioned in
2001. At that time, the CBT converted the most viable MidAm financial contracts into mini-
sized contracts traded exclusively on the CBT’s electronic system. The soybean contract listed
in Table 21.7 as being traded on the MidAm is one such contract.
14 Soybeans seedings were a natural alternative since, like cotton, corn and wheat, soybeans
grow best on fertile, sandy loam.
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pounds of waste.15 The main demand for soybean meal is from the livestock
industry. Nearly 90% of the soybean meal produced is used to satisfy the basic
protein and amino acid requirements of cattle, hogs, and poultry. The major
demand for soybean oil is from the food industry, where it is used to produce a
variety of products including shortening, margarines, salad oils, and cooking
oils. Soybean oil accounts for about 20% of the total world edible oil consump-
tion.

The gross processing margin (GPM) of soybeans has seasonal variation. It is
usually highest in the fall because of the increased supply from the soybean har-
vest and the increased demand for soybean meal in anticipation of colder
weather, lack of grazing, and heavier livestock feeding requirements. Processing
margins tend to decline later in the crop year. As demand for livestock feed
declines, soybean meal prices fall, and, as the crop year progresses, soybean
prices are higher as a result of lower supplies and the accumulation of carry
costs. 

Derivatives Markets

The trading of soybean futures and futures options in the United States is con-
ducted exclusively on the Chicago Board of Trade. The soybean oil futures con-
tract market was launched in October 1936, very shortly after the beginning of
the large-scale production of soybeans in the United States noted earlier. The
soybean oil futures was launched in July 1950, and the soybean meal futures in
August 1951. Table 21.8 summarizes the key features of the soybean futures
contract complex. The soybean contract calls for the delivery of 5,000 bushels
of soybeans. The deliverable grade is No. 2 yellow, however, No. 1 yellow can
be delivered at a premium of six cents per bushel over the contract price, and
No. 3 yellow can be delivered at a six cent per bushel discount.16 The contracts
are traded in an open outcry format on the exchange floor during the day, and
electronically at other times. The last day of trading is the business day prior to
the 15th calendar day of the contract month. 

The soybean meal futures contract calls for the delivery of 100 tons (2,000
lbs) of soybean meal with minimum protein of 48%, and the soybean oil contract
calls for the delivery of 60,000 pounds of oil. Trading the crush spread (called the
Board Crush) means simultaneously selling (buying) the soybean oil and meal
futures contracts and buying (selling) the soybean futures contract. While the
Board Crush can be traded in a 1:1:1 ratio (i.e., one soybean futures, one soybean
meal futures, and one soybean oil futures), a more precise ratio is 10:11:9. To see
this, recall that 60 pounds of soybeans produces 44 pounds of meal and 11
pounds of oil. Thus, 10 soybean futures contracts calls for the delivery of 

10 × 5,000 × 60 = 3,000,000 pounds of soybeans

15 Of the five pounds of waste, four pounds are the soybean hulls and one pound is foreign
matter (dirt, stones, seeds, etc.).  
16 The short futures right to deliver the cheapest of the deliverable grades is called the quality
option.
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Three million pounds of soybeans yields 

of soybean meal, and 

of soybean oil. Eleven soybean meal futures calls for the delivery is 2.2 million
pounds of meal, and nine soybean oil futures calls for the delivery of 540,000
pounds of oil.

Table 21.9 shows futures settlement prices of the CBT’s soybean complex on
Thursday, January 25, 2005. The nearby months have the greatest contract vol-
ume and open interest. The cost of soybeans appears monotonically increasing
from March 2005 through the September 2005 contracts. This arises from the
carry costs on existing soybean inventories (from the fall 2004 harvest) as well
as that the fact supplies are being depleted. The November 2005 also appears

44
60
------ 3,000,000× 2,200,000 pounds=

11
60
------ 3,000,000× 550,000 pounds=

TABLE 21.9  Summary of trading activity for CBT’s soybean complex on Thursday, January 
27, 2005. 

Source: Data drawn from www.cbot.com.

Soybeans Soybean Meal Soybean Oil

5,000 bushels
(cents per bushel)

100 tons
(dollars per ton)

60,000 lbs
(cents per pound)

Contract
Month

Settlement
Price

Total
Volume

Open
Interest

Settlement
Price

Total
Volume

Open
Interest

Settlement
Price

Total
Volume

Open
Interest

Mar-05 515¹�₄ 35,370 132,784 19.43 10,465 76,893 154.90 13,505 54,714

May-05 514   10,234   61,992 19.58   4,119 27,570 154.50   5,948 30,678

Jul-05 518¹�₂   4,366   34,537 19.74   3,501 30,414 156.90   3,556 36,202

Aug-05 521³�₄      179     3,493 19.75      306   5,969 158.10      331 11,261

Sep-05 522¹�₄        23     1,274 19.76      167   5,266 159.50      214   7,995

Oct-05 19.80      253   4,778 160.10      361   7,308

Nov-05 531¹�₄   1,370   19,565

Dec-05 19.80      863 11,963 163.00      439   8,916

Jan-06 537¹�₂        42        204 19.93        65      579 163.50        11      360

Mar-06 540            8        109 20.02          4      560 166.10      102      428

May-06 538            0          64 20.03          0      444 167.50          0        99

Jul-06 20.05          0      250 170.00          0        22

Aug-06 20.05          0        92

Sep-06 20.10          0      120

Oct-06 20.10          0        88

Nov-06 548            1            3
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somewhat active. This is the first contract of the next crop year (the fall 2005
harvest). The December 2005 soybean meal and soybean oil contracts corre-
spond to product prices based on the fall 2005 harvest.  

The figures in the table also allow us to compute the crush spread per
bushel. Consider the March 2005 contract, for example. The cost of soybeans is
$5.1525 per bushel. The price of soybean meal is $154.90 per ton, which means
$0.07745 per pound. With 44 pounds produced per bushel, the price of meal is
$3.40780 per bushel. Finally, the price of soybean oil is 19.43 cents per pound.
With 11 pounds produced per bushel, the price of oil is $2.1373. The price of
the crush spread is therefore $0.3926 per bushel. In other words, the gross pro-
cessing margin of soybeans appears to be on order of 39 cents per bushel.

The CBT also lists options contracts on soybeans, soybean meal, and soy-
bean oil. The soybean option contracts were launched in October 1984, and the
meal and oil contracts were launched in February 1987. All of the option con-
tracts are American-style, and each contract is written on one underlying futures
contract. The last day of trading of all of the contracts is the same—the last Fri-
day preceding the first notice day of the underlying futures contract by at least
five business days. For more details regarding the contract specifications, see
www.cbt.com.

Derivatives Valuation

The valuation of petroleum derivatives follows the principles outlined in the
first section of this chapter. In the soybean market, storage costs play a signifi-
cant role in pricing. Consider the prices of the Jul/05 and Aug/05 soybean
futures reported in Table 21.9, for example. If we insert them into the cost of
carry relation, we get

521.75 = 518.50eb(1/12)

The implied net cost of carry rate is b = 7.50%. Considering that short-term
interest rates are no more than half that rate, we can infer that storage costs are
at least 1.625 cents per bushel per month. The forward curves for soybean meal
and soybean oil are also upward sloping and in excess of what would be
expected given the level of interest rates. Table 21.9 shows little or no evidence
that convenience yield plays a significant role in soybean futures pricing.

Risk Management Strategies

The primary users of soybean contracts are soybean processors. Like other prod-
uct producers, soybean processors are subject to both input and output risks. A
price increase in soybeans increases costs, while declines in soybean oil and meal
prices reduce revenue. Futures contracts on all three commodities allow a proces-
sor either to hedge each of these price risks separately or to use the crush spread
to hedge against an unfavorable change in the gross processing margin. A crush
spread involves simultaneously buying futures contracts on soybeans and selling
soybean meal and soybean oil futures and is usually done at the 10:11:9 ratio
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discussed earlier. The soybean position is carried into the delivery month when
the soybeans need to be purchased. The short soybean meal and oil futures posi-
tions are carried into the months in which the products are sold.

Speculators are also present in the marketplace. Some market participants
follow the crush spread quite closely. Figure 21.9 shows the daily levels of the
crush spread based on the nearby soybean futures contracts during the period
January 2, 2002 through March 22, 2005.17 When the crush spread becomes
less than the actual processing margin, it may be advantageous to put on a
reverse crush spread—sell the soybean futures and simultaneously buy meal and
oil futures. The spread is likely to revert back to a higher level shortly thereafter.
The reason is that, if soybean processors are losing money, they will cut back or
even stop production. This reduces the supply of soybean product in the market-
place and drives product prices higher. At the same time, with production shut
down, processors will demand fewer soybeans, resulting in lower soybean
prices. When markets revert back to normal, the reverse spread position can be
closed at a profit.

METALS: GOLD

Within the metals category, derivatives contracts on gold have the largest presence.
Table 21.10 shows breakdown of exchange-traded futures and futures options by
type of metal. Market interest in precious metals is strongest, with gold being the

17 The spike downward in the crush spread on August 12, 2004 resulted from a market reac-
tion to a USDA announcement that the fall 2004 harvest would fall below the average analysts
forecast. On that day, the August 2004 futures closed up 50.5 cents a bushel from the previous
day’s close. The crush margin closed at 5.5 cents.

FIGURE 21.9 Daily closing levels of the soybean futures crush spread during the period Janu-
ary 2, 2002 through March 22, 2005. Crush spread is computed on the basis of the nearby 
settlement prices of the soybean, soybean meal, and soybean oil futures prices. 
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dominant contract. But even base metals like copper have active markets. Note
that, where the NYMEX division of the New York Mercantile Exchange dominates
the exchange-traded energy contract markets and the Chicago Board of Trade dom-
inates the exchange-traded agricultural contract markets, the COMEX division of
the New York Mercantile Exchange dominates the exchange-traded metals market.
In the OTC market, the dominance of gold can be seen both at the precious metals
category level specifically and the commodities category level more generally. Fig-
ure 21.5, for example, shows that the notional amount of gold forward and swap
contracts accounted for 26.8 (22.9)% of the notional value of all commodity for-
wards and swaps (options) outstanding at the end of 2003. The figure also allows
us to infer that 87.6 (92.3)% of the notional amount of the precious metals for-
wards and swaps (options) were written on gold. With such a large presence in the
metals market, therefore, gold is the focus of discussion in our metals category.

Production

Gold has been mined for thousands of years. The World Gold Council18 reports
that the Egyptians may have produced as much as a metric ton or tonne annu-
ally as early as 2000 BCE.19 Production grew to about five to ten tonnes during
the Roman empire, with the ore coming from Spain, Portugal and Africa. Pro-
duction fell back to about a tonne during the Dark and Middle Ages, with the
ore coming largely from the mountains of central Europe. From the middle of
the 15th century, the Gold Coast of West Africa (now known as Ghana) became
an important source of gold, providing perhaps five to eight tonnes per year. In
the early 16th century, the Spanish conquests of Mexico and Peru opened up a
further source of gold. By the close of the 17th century, 10 to 12 tonnes a year
were provided by the Gold Coast and South America together. Gold was first
discovered in Brazil in the mid-16th century but the significant output did not
emerge until the early 18th century, considerable supplies began to come from
Russia as well, and annual world production was up to 25 tonnes. By 1847, the
year before the Californian gold rush, Russian output accounted for 30 to 35
tonnes of the world total of about 75 tonnes. The gold rushes, and later the
South African discoveries, radically altered the picture but Russian production
continued to rise, reaching around 60 tonnes in 1914.

Today the countries producing gold are many and diverse. South Africa
remains the world’s largest gold producer, accounting for 15% of the 2,593
tonnes mined in 2003. The United States was second at 12 pecent, and Australia
followed with 11%. China had 8%, Russia and Peru were tied at 7%, and Can-
ada followed with 6% of total production. The shares of these and other gold
producing countries are shown in Figure 21.10.

18 The World Gold Council is a nonprofit association of the world’s leading gold producers
dedicated to promote the use of gold. It is headquartered in Geneva, Switzerland and is repre-
sented by a network of offices in major centers of gold demand around the world. Its website,
www.gold.org, contains a wealth of information regarding the history and use of gold as well
as supply and demand statistics. Much of the material in this section is drawn from the myriad
of pages and links contained at its website.
19 One metric ton equals 2,240 pounds.
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FIGURE 21.10 World gold production during 2003 by country. Total world production was 
2,593 metric tons.   

Source: Underlying data drawn from World Gold Council, www.gold.org, 2004.

FIGURE 21.11 Demand for gold by use during 2003. Total demand was 3,223 metric tons. 

Source: Underlying data drawn from World Gold Council, www.gold.org, 2004.

Consumption

The locations of the demand for gold differ significantly from supply. Before
focusing on the location of demand, however, it is useful to understand gold’s
main uses. Figure 21.11 gives a breakdown. Not surprisingly, perhaps, 78% of the
3,223 tonnes of total gold consumption in 2003 was in the manufacture of jew-
elry. About 10% of gold is used in industrial applications. Gold is an excellent
conductor of electricity, is extremely resistant to corrosion, and is one of the most
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chemically stable of the elements, making it ideally suited for applications in elec-
tronic devices such as computers, televisions, DVD players, video cameras, and
mobile phone, even with its prohibitive cost. Another 10% is investment in gold
bars and coins. The price of gold tends to have a counter-cyclical relation to the
level of the stock market, as shown in Figure 21.12. When the stock market falls,
investors tend to reduce stock holdings for the “safe haven” of gold, and vice
versa. Finally, about 2% of gold consumption is for dental applications. 

With nearly 80% of gold consumption being in the form of jewelry, it
should not be surprising to see the location of the demand being influenced by
cultural considerations. Figure 21.13 shows consumption by country/region.
The largest country with the largest consumption of gold is India, accounting
for 23% of total world consumption in 2002. Perhaps no other country has gold
as deeply woven into the fabric of society. It is commonly involved in weddings,
not only adorning the bride, but also constituting a significant value to her
dowry. Gold jewelry is regarded as a woman’s personal property, and is a means
of safeguarding her against financial misfortune and of passing on family wealth
along maternal lines. The U.S. demand is next largest at 16%. In the United
States, the demand is less culturally tied. The demand is largely as a result of
individual wealth and gold’s perceived value. It is also used as a hedge against
stock market decline. The demands by countries in the Middle East, the South
East, Europe, and Greater China follow in size of demand.

Derivatives Markets

Like in the case of petroleum derivatives, gold derivatives are a relatively recent
development. Gold derivatives markets arose in the United States in the 1970s,
in the aftermath of two important events. The first was the suspension of the

FIGURE 21.12 Price of gold bullion and level of S&P 500 index on a monthly basis from Jan-
uary 1975 through January 2005. 

Source: Datastream.
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Bretton Woods Agreement in 1971. The agreement, originally signed in 1944,
fixed all the world’s paper currencies to the U.S. dollar, which, in turn, was tied
to gold. In 1971, President Nixon effectively cancelled the Bretton Woods agree-
ment by ending its convertibility into gold. The second was lifting of the U.S.
ban on private ownership of gold bullion on December 31, 1974. Exchange-
traded futures were launched by the Commodity Exchange in New York on the
very same day. Futures options followed on October 4, 1982.20 

The COMEX division of the New York Mercantile Exchange remains the
world’s largest market for exchange-traded gold contracts. The COMEX futures
contract is written on 100 Troy ounces of gold. The contract calls for delivery,
and the gold delivered must bear a serial number and identifying stamp of a
refiner approved and listed by the exchange. Trading terminates at the close of
business on the third to last business day of the maturing delivery month. The
first delivery day is the first day of the delivery month; the last delivery day is the
last business day of the delivery month.

The COMEX futures option contract is American-style and is written on
one COMEX gold futures contract. Option expiration occurs on the fourth
business day prior to the underlying futures delivery month. The option may be
exercised on any day prior to expiration until one hour after the market close. 

20 In the United States, options on domestic agricultural commodities had been banned by the
Commodity Exchange Act of 1936, and it was not until the 1980s that the Commodity Fu-
tures Trading Commission took steps to rescind this ban. Specifically, under a pilot program
instituted in December 1981, the CFTC approved options for a limited number of futures con-
tracts on commodities other than agricultural commodities. It was under this pilot program
that the COMEX launched gold futures options. Agricultural futures options were introduced
in a second pilot program in March 1984. For further details, see Stoll and Whaley (1985, p.
215).

FIGURE 21.13 World gold consumption during 2002 by country.    

Source: Data drawn from World Gold Council, www.gold.org, 2004.
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The OTC market offers a much broader array of gold derivatives products.
Forwards and swaps, together with call and put options, are the staple products.
But, like with OTC contracts written on other underlying assets, the specific
terms of the generic derivatives have limitless flexibility in setting maturity
dates, contract size, style of option exercise, and option exercise price. Among
the nonstandard forward-style products are spot deferred contracts, participat-
ing forwards, advanced premium forwards, and short-term averaging forwards,
and, among the nonstandard options are caps and collars, barrier options, and
convertible forwards. These contracts are beyond the level of detail appropriate
for this, however, many of the products have unique, albeit idiosyncratic, risk
management properties.21 

Net Cost of Carry Relation

The net cost of carry relation for gold is usually written

f = Se(r – l)T (21.4)

where r is the zero-coupon rate on a risk-free bond maturing at time T, and l is
the gold lease rate at the same maturity. Note that this relation more closely
resembles the carry relation for a stock index or a currency than a commodity.
Neither a storage cost rate nor a convenience yield rate appears in (21.4), as it
did in the generic commodity forward pricing relation earlier in the chapter. Stor-
age costs of gold are excluded because gold trades in certificate form. Gold certif-
icates are a means of holding gold without taking physical delivery. They are
issued by individual banks, particularly in countries like Germany and Switzer-
land, and confirm an individual’s ownership. The bank, however, holds the
metal. In this way, the individual does not incur storage cost or personal security
issues, and yet has the ability to unwind his position in a liquid market. Finally,
convenience yield does not appear because central banks are the largest holder of
gold inventories and accrue no intrinsic benefit from holding the gold.22

What does appear in (21.4) and has not appeared before is the gold lease
rate. As it turns out, over the past two decades, an active gold loan market has
evolved. In a typical gold loan, a mining company borrows gold bullion from a
commercial bank to, say, develop a new mine or expand an existing operation.
The commercial bank, in turn, borrows the bullion from a central bank. The
mining company sells the gold in the spot market, raising the needed cash. In
place of paying an interest rate on a cash loan, the borrower pays a lease rate on
the gold. For each ounce of gold borrowed, the borrower returns elT when the
loan matures. Often the mining company will simultaneously buy a forward
contract at the time the loan is drawn. The net position of the combined gold
loan/forward position is shown in Table 21.11. Note that the gold loan is equiv-
alent to borrowing cash. The amount borrowed is Se–lT, and the amount repaid

21 Cross (2000) provides desciptions of a large number of the gold derivatives contracts traded
in the OTC market.
22 That is not to say that no one accrues convenience yield from holding gold. Anyone produc-
ing a good using gold as a raw material may accrue such a benefit.
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is f at time T. Since repayment amount is fixed, the gold loan at rate l is tanta-
mount to a USD loan at rate r, that is, Se–lT = fe–rT.

In the relation (21.4), the difference between the risk-free interest rate and
the gold lease rate is called the GOFO or gold forward rate, g. In general, the
GOFO rate is positive because the gold market is in contango (i.e., f > S). Unlike
base metals, a backwardation (i.e., f < S) in the gold market is rare. The reason
is simple. Gold is not in short supply. Market participants such as central banks
continue to believe that gold remains an important element of global monetary
reserves and therefore hold large inventories in reserve.23 If the forward price of
gold happens to slip below the spot price at any point in time, they will simply
sell a portion of their inventory in the spot market and enter a forward contract
to buy it back again a short time later, and earn an arbitrage profit. Since such
trades are easy and relatively cheap to execute, the spot and forward prices
would quickly return to the familiar contango structure.

Figure 21.14 shows monthly GOFO, LIBOR, and gold lease rates during the
period January 1998 through January 2005. The data were downloaded from

23 As of September 2002, central banks around the world held about 33,000 tons in reserve.

TABLE 21.11  Mechanics of gold loan by mining company.

FIGURE 21.14 Three-month GOFO, LIBOR, and gold lease rates at the beginning of each 
month during the period January 1998 through January 2005.   

Source: Rates drawn from London Bullion Market Association, www.lbma.org.
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the London Bullion Market Association website, www.lbma.com. The figure
shows that the GOFO rate was positive during the entire period, with an
unusual spike downward in the fall of 1999. To understand the reason for this
spike, first consider Figure 21.14, which shows the price of gold bullion over a
slightly longer interval. What the figure shows is that the price of gold had been
falling at a fairly steady rate since mid-1996. The European central banks, with
significant inventories of gold, became concerned. On Sunday, September 26,
1999 in Washington, D.C., 15 European central banks agreed to limit sales of
gold to 400 tonnes per year over five years as well as limit lending gold to the
market to the extent that they had already done so (i.e., no new gold would be
placed on deposit). The so-called “Washington Agreement” struck fear into the
gold community. From the close of trading on Friday, September 24 to the close
of trading in October 5, the gold price shot up by more than USD60. See Figure
21.12. At the same time, the gold lease rate naturally spiked upward. And, with
a spike in the lease rate and virtually no change in the LIBOR rate, the GOFO
rate spiked downward.

Risk Management Strategies

Important players in the use of gold derivatives contracts are gold refiners. The
process of extracting gold ore from a mine and refining it into gold bullion is
slow. Indeed, it may take years for the gold in a particular mine to be depleted.
Given that the mine’s output and output rate over the next few years is all but
certain, the only significant risk that a refiner faces is price risk. If the refiner
chooses not to hedge, he sells his gold as it is produced at the prevailing spot
price. This leaves his future revenue per ounce of gold uncertain, while his cost
per ounce of gold is fairly stable. Entering into certain types of derivatives
trades can help the refiner manager this gold price risk.

Among the plain-vanilla gold derivatives used by a refiner are forward con-
tracts, call options, and put options. In the gold market, a variety of forward
contracts are traded. The simplest is the standard fixed price forward that is
commonplace in commodities markets. The refiner agrees to sell a fixed amount
of gold at fixed price on a fixed date. Indeed, the refiner may have a strip of
these contracts extending out a number of years. Another risk management
alternative is to buy out-of-the-money put options to insure the minimum price
at which future production will be sold. While this is an effective strategy, it is
expensive in the sense that the put premiums must be paid at the outset. To sub-
sidize this cost, the refiner often simultaneously sells out-of-the-money call
options in the same quantities and with the same maturity dates. The call pre-
mium is used, at least in part, to cover the purchase of the puts. Zero-cost col-
lars are easily designed by tailoring the exercise prices of the options.

ILLUSTRATION 21.3 Determine cap exercise price on collar agreement in competitive 
OTC gold and gold derivatives market.

Suppose that you are a gold refiner and want to hedge the price at which you will sell
your monthly production over the next 12 months. Currently, the zero-coupon yield
curve for risk-free bonds is 
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ri = 0.04 + 0.01ln(1 + Ti)

the term structure of GOFO rates is 

gi = 0.03 + 0.009ln(1 + Ti)

and the term structure of the gold volatility rate is

σi = 0.15 + 0.05ln(1 + Ti)

If the current gold price USD 400 per ounce and you want to sell all 12 deliveries at a
minimum price of USD 390 per ounce, what is the maximum price that you should
expect to receive? Assume the amount of production is uniform from month to month
and all deliveries are at month-end.

The first step is to transform the above three term structures into option valuation
parameters for each maturity option. You use the zero-coupon and GOFO yield curves to
deduce the term structure of forward prices. Recall

Thus based upon the problem information, the term-specific option valuation parameters
are as summarized here: 

The next step is to compute the value of the floor on the sales price of gold. This
value is computed as the sum of 12 European-style put option values, one corresponding
to each monthly delivery. Since you have the forward prices of gold, you can value the
options directly from the forward curve using the OPTVAL function

OV_FOPTION_VALUE(f, x, t, r, v, cp, ae)

where f is the forward price, x is the exercise price, t is the time to expiration, r is the
risk-free rate of interest, v is the volatility rate, cp, is a (c)all/(p)ut indicator, and ae is an
indicator variable for whether the option is (A)merican- or (E)uropean-style . For the first
option in the series, the value of the put is

         OV_FOPTION_VALUE(401.03, 390, 0.08333, 0.0408, 0.1460, “p”, “e”) = 2.5319

Month
Years to

Expiration
Risk-Free

Rate
GOFO
Rate

Forward
Price

Volatility
Rate

  0 0.000000 4.00% 3.00% 400.00 15.00%
  1 0.083333 4.08% 3.07% 401.03 14.60%
  2 0.166667 4.15% 3.14% 402.10 14.23%
  3 0.250000 4.22% 3.20% 403.21 13.88%
  4 0.333333 4.29% 3.26% 404.37 13.56%
  5 0.416667 4.35% 3.31% 405.56 13.26%
  6 0.500000 4.41% 3.36% 406.79 12.97%
  7 0.583333 4.46% 3.41% 408.04 12.70%
  8 0.666667 4.51% 3.46% 409.33 12.45%
  9 0.750000 4.56% 3.50% 410.65 12.20%
10 0.833333 4.61% 3.55% 411.99 11.97%
11 0.916667 4.65% 3.59% 413.37 11.75%
12 1.000000 4.69% 3.62% 414.76 11.53%

fi Se
giTi=
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Repeating the valuation procedure for the remaining 11 put options, you find that the
sum of the put option values is 82.5243. The individual put option values are shown in
the table below.

The final step is to compute the value of the cap on the sales price of gold. Since you
do not have the exercise price of the calls, you must set up your Excel worksheet in a
fashion that relies on a particular cell as containing the exercise price. You then use
SOLVER to identify the call exercise price that makes the sum of the call premiums also
equal to 82.5243. That exercise price is 428.72, as shown: 

OTHER: WINE

OTC markets for wine futures have existed in the United States for decades,
beginning with French wines in the 1970s and including Californian wines in
the late 1980s. Customers execute contracts with wine merchants for the deliv-
ery of fixed number of bottles of vintage wine from a particular château (e.g.,
the 2003 Château Margaux). In essence, the customer buys the wine after it is
made, but before it is bottled. Cask samples of wines are made available for
tasting to wine journalists and the large wholesale buyers in the spring follow-
ing the vintage. The wine is generally bottled and shipped about two years later.

The term wine futures is a misnomer. The contracts are actually prepaid for-
ward contracts. Upon agreeing to terms with a wine merchant, the customer is
required to pay the merchant in full, as much as two years before delivery. Do not
expect significant cost savings. The buyer’s contract with the wine merchant is
only one mark-up in a chain. The wine merchant, in turn, has a futures contract
with the distributor, who in turn has a futures contract with an importer, who has
a futures contract with a broker. Only the broker deals directly with the château.

Exercise Prices

Month
Years to

Expiration
Risk-Free

Rate
GOFO
Rate

Forward
Price

Volatility
Rate

390.00
Put

Value

428.72
Call

Value

  0 0.000000 4.00% 3.00% 400.00 15.00%
  1 0.083333 4.08% 3.07% 401.03 14.60%   2.5319   0.4199
  2 0.166667 4.15% 3.14% 402.10 14.23%   4.3380   1.6318
  3 0.250000 4.22% 3.20% 403.21 13.88%   5.5566   2.9551
  4 0.333333 4.29% 3.26% 404.37 13.56%   6.4268   4.2370
  5 0.416667 4.35% 3.31% 405.56 13.26%   7.0611   5.4529
  6 0.500000 4.41% 3.36% 406.79 12.97%   7.5235   6.6049
  7 0.583333 4.46% 3.41% 408.04 12.70%   7.8545   7.7009
  8 0.666667 4.51% 3.46% 409.33 12.45%   8.0822   8.7492
  9 0.750000 4.56% 3.50% 410.65 12.20%   8.2266   9.7574
10 0.833333 4.61% 3.55% 411.99 11.97%   8.3031 10.7323
11 0.916667 4.65% 3.59% 413.37 11.75%   8.3233 11.6794
12 1.000000 4.69% 3.62% 414.76 11.53%   8.2967 12.6036

Sum of premiums 82.5243 82.5243
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From château to consumer, the total markup in price may be several hundred per-
cent, just as if the customer had purchased the wine off the store shelf.

In a typical year, the wines are released in a sequence of tranches, with each
tranche being priced at a different level depending on how the previous one
sold. In good vintages, the initial release prices are usually the lowest at which
the wines will ever be sold. But what is and what is not a good vintage is not
known until the wine has matured. The 1997 Bordeaux, for example, had an
initial release price that was too high, and its price declined in the following
years. The 2000 Bordeaux, on the other hand, had an initial release price that
was too low. Even those buying in the second and third tranches saw prices
appreciate quickly. Thus buying wine futures is speculation in most cases (no
pun intended), except, of course, if the contract is used as a means of acquiring
a highly allocated, small-production wine that may never see a store shelf. For a
wine producer, selling wine futures may be an effective short hedge in which he
receives cash upfront for a delivery that will not be made for two years.

SUMMARY

This chapter focuses on derivatives contracts written on commodities. It is orga-
nized differently than the other product chapters in that the sections of the
chapter are arranged by underlying commodity. The reason is that the price rela-
tions of commodity derivatives are influenced by idiosyncrasies in the underly-
ing commodity market. Understanding commodity derivatives price behavior,
therefore, involves understanding the factors that influence commodity price
behavior. At the outset, we discuss the fundamental differences between pricing
commodity derivatives and pricing financial derivatives. Commodity derivatives
require that we consider the storage costs such as warehouse rent and insurance
as well as the convenience of having an inventory of the commodity on hand.
Neither of these factors played an important role in the pricing of stock, stock
index, currency, and interest rate derivatives products. We then turn to deriva-
tive contracts written on the three major commodity categories—energy, agri-
cultural, and metals. We illustrate the idiosyncrasies of each commodity using
an example—petroleum, soybeans, and gold, respectively.
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Key Lessons

 

he sheer length of this book may give the impression that derivatives are a
long and complicated subject. If it were a murder mystery, we might expect

hundreds of characters and a complex story line. The irony is that the characters
are few—two main characters, a forward and an option, and two supporting
characters, a risk-free bond and the underlying asset. And the story line is sim-
ple: Two perfect substitutes must have the same price and, therefore, price
dynamics. Consequently, the price risk of one instrument can be managed using
the other.

This book is about risk management using derivative contracts, that is, how
derivatives can be used to effectively manage the different types of risks faced by
individuals, corporations, governments, and governmental agencies in their day-
to-day operations. For corporate producers such as oil refiners, managing price
risk of input costs (i.e., crude oil) as well as output prices (i.e., heating oil and
unleaded gasoline) are relevant. For end-users such as airlines, managing its
exposure to jet fuel prices is important. Depending upon user, some risks may be
acceptable, while others may not. A gold company, for example, may have a
thorough understanding of the world’s supply and demand for gold production
and, consequently, may be better able to predict gold price movements in the
short- and long-run. On the other hand, it may have little or no awareness of
probable movements in exchange rates. For this company to accept the gold
price risk exposure and, at the same time, to hedge foreign currency risk expo-
sure of sales commitments in a different currency is perfectly sensible. 

The key lessons of this book are few:

 

1. Derivatives markets exist because of high trading costs and/or trading restric-
tions/regulations in the underlying asset market.

 

 A firm with floating rate debt
can convert it into fixed rate debt using an interest rate swap at only a small
fraction of the cost of floating a fixed rate bond issue. A wheat farmer can sell
his unharvested crop in the spring even though the underlying grain does not
yet exist by selling wheat futures. A hedge fund can shed the interest rate risk of
a junk bond portfolio by selling interest rate futures. The ability to transfer risk
in a cost-effective manner is derivatives markets’ 

 

raison d’etre

 

.

T
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2. The expected return/risk relation for derivative contracts, like risky assets, is
governed by the capital asset pricing model.

 

 In financial economics, the capital
asset pricing model (CAPM) provides the structural relation between expected
return and risk. This relation is central to the understanding risk management
using derivative contracts. The motives for trading derivatives contracts are
twofold. Hedging refers to reducing risk, and speculation refers to placing a
directional bet. What is critical, however, is that risk management is synony-
mous with expected return/risk management. As the CAPM shows, in equilib-
rium, we cannot move one without moving the other. 

 

3. The absence of costless arbitrage opportunities (i.e., the law of one price)
ensures that derivative contract price is inextricably linked to the prices of the
underlying asset and risk-free bonds.

 

 A cereal producer, for example, may
require wheat for production in two months and wants to lock in its cost today.
He has two possible strategies. First, he can buy the wheat in the spot market
and carry it for two months. Second, he can buy a two-month forward con-
tract. Since both of these strategies provide an inventory of wheat in two
months at a price known today, the cost of the two alternatives must be the
same. Otherwise, costless arbitrage profits are possible. 

 

4. The no-arbitrage price relation between a derivative contract and its underlying
asset ensures that derivative contracts are effective risk-management tools.

 

 If
we know the structure of the price relation between the derivative and its
underlying asset, we can precisely measure the change in the price of the deriva-
tive with respect to a change in the price of the asset (i.e., the derivative con-
tract’s price risk with respect to unexpected movements in the asset price). If we
can measure risk accurately, we can use derivative contracts to manage asset
price risk effectively. 

 

5. The key insight into derivative contract valuation is that a risk-free hedge can
be formed between a derivatives contract and its underlying asset.

 

 If a risk-free
hedge between a derivative contract and its underlying asset can be formed,
derivative contract valuation does not depend on individual risk preferences
and, hence, need not depend on estimating expected risk-adjusted returns.

 

1

 

Consequently, we can approach derivative contract valuation as if all individu-
als are risk-neutral. In a risk-neutral world, all assets are expected to have a rate
of return equal to their risk-free rate of interest, and the need to estimate risk-
adjusted rates of return is eliminated.

 

6. Only two basic types of derivatives exist—a forward and an option.

 

 

 

Even
though a seemingly endless number of derivative product structures trade in the
marketplace, all of them are nothing more than portfolios of basic forward and
option contracts. In some instances, the construction of the portfolio is obvious.
A protected equity note, for example, is a portfolio of risk-free bonds and an
index call. In other instances, the construction is less obvious. An index put
option can be replicated dynamically using a stock index futures contract and
risk-free bonds. 

 

7. Valuing and measuring the risk of complex derivatives is made possible by valu-
ation by replication. 

 

Since the cash flow contingencies of complex derivatives

 

1 

 

If a risk-free hedge can be formed between two risky securities, the securities are 

 

redundant

 

,
and each can be priced in relation to the other as if investors are risk-neutral.



 

Key Lessons

 

775

 

can be replicated using a portfolio of basic forward and option positions, the
law of one price dictates that the value (risk) of such a contract equals the sum
of the values (risks) of the constituent forward and option positions. An impor-
tant corollary to this rule is that, if all of the contingencies of a particular con-
tract cannot be modeled, its value and risk cannot be computed accurately and
the contract should not be avoided. 

 

8. Derivatives valuation and risk measurement principles are not asset-specific.

 

The valuation equations/methods and risk management strategies for foreign
currency derivatives are no different than those used for stock derivatives, stock
index derivatives, interest rate derivatives, and commodity derivatives. The only
distinction between the different underlying assets is the net cost of carry
parameter. The net cost of carry is the cost of holding an asset through time.
One carry cost common to all assets is the opportunity cost of funds. To come
up with the purchase price, we must either borrow money or liquidate existing
interest-bearing assets. The remaining costs/benefits are asset specific. For a
commodity such as wheat, storage costs (e.g., rent and insurance) are incurred.
At the same time, certain benefits may accrue. By storing wheat, we may avoid
some costs of possible running out of our regular inventory before two months
are up and having to pay extra for emergency deliveries, that is, we may accrue
convenience yield

 

.

 

 For a financial asset or security

 

 

 

such as a stock or a bond,
income (yield) may accrue in the form of quarterly cash dividends or semi-
annual coupon payments. Thus, the net cost of carry of an asset equals interest
cost plus (less) any other costs (benefits) that accrue while holding the asset.

 

9. Accurate parameter estimation is critical in applying derivative contract valua-
tion models. 

 

Statistics and regression analysis play important roles in the appli-
cation of derivative contract valuation models. In valuing long-term employee
stock options, for example, it is necessary to estimate the expected future vola-
tility rate over the remaining life of the option. One approach is doing so is to
estimate the parameter using a long time-series of historical return data. Choos-
ing the length of the series, the frequency of the data, and the formula for com-
puting the historical volatility rate are among the statistical decisions that must
be made in arriving at the parameter estimate. The degree of comfort that we
should feel with this estimate can be measured by computing its confidence
interval. Testing the robustness of the estimate across estimation methods can
also provide valuable insights regarding the stationarity of the parameter
through time.

 

10. So-called “derivative disasters” reported in the financial press did not arise
from a failing in the performance of a derivative contract or the market in
which it traded.

 

 In recounting “derivatives disasters” in various chapters of the
book, the main conclusion is that they were largely “management disasters,”
brought about by a lack of meaningful internal controls and/or supervision.
From the money market management activities of Orange County and the State
of Wisconsin Investment Board to the stock index arbitrage activities conducted
by Barings Bank in Singapore, and from the currency hedging activities by AWA
Ltd in Australia to the foreign currency option market making operations of
ABN Amro in New York, one common theme emerges—huge bets can produce
huge losses. With proper internal control and supervision, the bets would never
have been taken.
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APPENDIX

 

A

 

Elementary Statistics

 

he purpose of this appendix is to provide a quick and informative review of
elementary statistics. Statistics is used in almost every facet of every life form

aviation to weather prediction. In the field of finance, one of its primary uses is
to characterize the rate of return distributions of risky securities or portfolios of
securities, although the principles apply to prices changes, earnings, or cash
flows of almost any sort. To clarify the use of the statistical concepts used in this
appendix, numerous illustrations are provided. To make the concepts in the
illustrations as usable as possible, we demonstrate how the computations the
computations can be performed using Microsoft Excel add-ins. 

 

OBJECTIVES

 

After reviewing this Appendix, you should be able to: 

 

1.

 

Understand the difference between a population and a sample.

 

2.

 

Understand the statistical properties of a probability distribution.  

 

3.

 

Understand the properties of expectation operators.

 

4.

 

Estimate properties of population from a sample of observations drawn from
the distribution.

 

5.

 

Understand the properties of important continuous distributions including the
normal distribution, the chi-square distribution, the 

 

t

 

-distribution, and the 

 

F

 

-
distribution.

 

6.

 

Test the hypothesis that a given data series approximates the normal distribu-
tion.

 

7.

 

Test the hypothesis that the mean of a population is zero.

 

8.

 

Test the hypothesis that the means of two samples are equal when the samples
have equal and unequal variances.

 

9.

 

Test the hypothesis that the means in a paired sample are equal.

 

10.

 

Understand the distinction between Type I and Type II errors in statistical infer-
ence.

 

11.

 

Understand 

 

p

 

-values and the power of tests.

 

12.

 

Test the hypothesis that the variance of two samples are equal.

T
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13.

 

Test the hypothesis that a time series is autocorrelated.

 

14.

 

Understand the relevance of the Central Limit Theorem in statistical inference.

 

POPULATION VERSUS SAMPLE

 

The need for statistics stems from a lack of complete information about a partic-
ular process. Statisticians refer to the total collection of observations or mea-
surements from the process as the (finite- 

 

or

 

 infinite-sized) 

 

population

 

. Data
taken from the population via a particular study or experiment make up a
(finite-sized) 

 

sample

 

. 
In practice, Greek letters are commonly used to denote quantities that char-

acterize the population (such as 

 

µ

 

 or 

 

σ

 

). These values are referred to as parame-
ters and are generally considered to be fixed and unknown. Parameter estimates,
denoted here by Greek letters with hats (such as  or ), are statistics calcu-
lated from the sample that are used as a best guess for the true parameter.
Because we may never know the values of the true population parameters, we
associate a value known a 

 

standard error

 

, denoted , with each estimate. Thus
in using statistical methods, we can obtain estimates for the relevant parameters
and also quantify their uncertainty. 

 

Summary of the Statistical Method

 

1.

 

Identify the problem of interest.

 

2.

 

Draw a random sample from the population.

 

3.

 

Perform statistical tests on the sampled data.

 

4.

 

Make inferences about the relevant population.

 

RANDOM VARIABLES

 

A 

 

random variable

 

 is a variable that takes on different values, each with a prob-
ability less than or equal to 1. The process that generates a random variable is
called a 

 

probability distribution

 

. It can be thought of as a list of all possible val-
ues of the variable and the probability that each will occur. A coin toss, for
example, can be interpreted as a random variable generated from a 

 

binomial
probability distribution

 

. 
A 

 

discrete random variable 

 

may take on only a specific number of real val-
ues. Consider the outcomes from rolling a pair of dice. The possible outcomes
range from 2 to 12. If the dice are fair, each side of each die has an equal proba-
bility (i.e., a one in six chance) of appearing. If we enumerate all possible out-
comes, a total of 2 can appear with only one combination—(1,1), a total of 3
can appear with two combinations—(1,2) and (2,1), a total of four can appear
with three combinations—(1,3), (2,2), and (3,1), and so on. Figure A.1, Panel A
shows the 

 

frequency distribution 

 

of possible outcomes. A value of 7 appears
most frequently at 

 

f

 

7

 

 = 6. The total number of possible outcomes is

µ̂ σ̂

sµ̂
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If we rescale the frequencies so they add up to one, that is,

we obtain the 

 

discrete probability density function

 

 (or discrete pdf) shown in
Figure A.1, Panel B.

 

FIGURE A.1

 

Frequency and probability distributions of outcomes from rolling a pair of fair dice.
Panel A. Frequency distribution 

Panel B. Probability distribution 
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Mean

 

A probability distribution is often characterized by its mean and variance.

 

1

 

 The
definitions of mean and variance, in turn, are defined in terms of the 

 

expecta-
tions operator E. 

 

Assume that 

 

X

 

1

 

, 

 

X

 

2

 

, 

 

X

 

3

 

, . . ., 

 

X

 

N

 

 represent the 

 

N

 

 possible out-
comes associated with the random variable 

 

X

 

 (i.e., the 

 

population

 

). The 

 

mean

 

 or

 

expected value

 

 of 

 

X

 

, denoted 

 

µ

 

X

 

, is defined as 

(A.1)

where 

 

p

 

i

 

 is the probability that 

 

X

 

i

 

 occurs, and the sum of the probabilities
equals 1, that is,

Note that the mean is simply a weighted average of the possible outcomes, where
the probabilities serve as outcome weights. Table A.1 shows the individual terms
of the summation (A.1) for the above dice rolling illustration. The mean is 7.
Note that 

 

µ

 

X

 

 is the mean of the population and is distinct from the 

 

sample mean

 

,
which is the average of the outcomes in a sample of size 

 

n 

 

(where 

 

n

 

 < 

 

N

 

) drawn
from the underlying distribution. The sample mean is denoted .

 

TABLE A.1  

 

Mean and variance of outcomes from rolling a pair of fair dice.

 

1 

 

Indeed, under the capital asset pricing model discussed in Chapter 3, risky securities/portfo-
lios are evaluated solely on the basis of these two parameters.

 

Outcome,

 

X

 

i

 

Frequency,

 

f

 

i

 

Probability,

 

p

 

i

 

Expected Value,

 

p

 

i

 

X

 

i

 

Variance,

 

p

 

i

 

[

 

X

 

i

 

 – 

 

E

 

(

 

X

 

)]

 

2

 

  2   1 0.0278 0.0556 0.6944
  3   2 0.0556 0.1667 0.8889
  4   3 0.0833 0.3333 0.7500
  5   4 0.1111 0.5556 0.4444
  6   5 0.1389 0.8333 0.1389
  7   6 0.1667 1.1667 0.0000
  8   5 0.1389 1.1111 0.1389
  9   4 0.1111 1.0000 0.4444
10   3 0.0833 0.8333 0.7500
11   2 0.0556 0.6111 0.8889
12   1 0.0278 0.3333 0.6944

Total 36 1.0000 7.0000 5.8333

µX E X( ) piXi
i 1=

N

∑= =

pi
i 1=

N

∑ 1=

µ̂X
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Variance and Standard Deviation

The variance of a random variable measures the dispersion of the distribution
around the mean. The variance, denoted , is defined as

(A.2)

Like the mean, the variance is a weighted average of the squares of the devia-
tions of the outcomes on X from its expected value, with the probabilities serv-
ing as weights. Table A.1 also shows the individual terms of the summation (A-
2) for the dice rolling illustration. The variance is 5.8333. The (positive) square
root of the variance is called the standard deviation. The standard deviation (or
variance) of a rate of return distribution is a commonly used measure of the
total risk of a security.

Covariance and Correlation

In many applications in this book, we are interested in the joint distribution of
X with a second random variable Y. With a joint distribution, the outcomes are
in terms of both X and Y, and the probabilities are joint probabilities of the X-Y
pair occurring. The covariance of X and Y, denoted σXY, is defined as

(A.3)

where pij represents the joint probability of X and Y occurring. The covariance
is a measure of the linear association between X and Y. Covariance is positive
when both variables are above and below their means at the same time and is
negative when X is above its mean when Y is below its mean. Figure A.2 shows
the association between two variables X and Y when the covariance is positive
and negative.

Note that the covariance depends on the units in which X and Y are mea-
sured. To make the covariance scale-free, the association between X and Y is
often expressed in terms of the correlation coefficient,

(A.4)

The correlation coefficient always lies between –1 and +1. 

σX
2

Var X( ) σX
2 E X E X( )–[ ]2 pi Xi E X( )–[ ]2

i 1=

N

∑= = =

Cov X Y,( ) σXY E X E X( )–( ) Y E Y( )–( )[ ]= =

pij Xi E X( )–( ) Yj E Y( )–( )
j 1=

N

∑
i 1=

N
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ρXY

σXY

σXσY
--------------=
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FIGURE A.2 Positive and negative covariance between two random variables. 
Panel A. Positive covariance

Panel B. Negative covariance

Semivariance and Semi-Standard Deviation

The semivariance of a random variable measures the dispersion of the distribu-
tion around a constant BX for only part of the probability distribution. The
lower semivariance, for example, is

Mean of Y

Y

XMean of X

Mean of Y

Y

XMean of X
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(A.5)

The (positive) square root of the semi-variance is called the semistandard devia-
tion or, sometimes, the semideviation. Lower semistandard deviation of return,
where is set equal to the risk-free rate of interest, is a less commonly-used, but
more intuitively appealing, risk measure.

Semicovariance and Semicorrelation

Like semivariance is to variance, semicovariance is to covariance. The lower
semicovariance of X and Y is defined as

(A.6)

where pij represents the joint probability of X and Y occurring and BX and BY are
the boundaries for variables X and Y. The lower semicorrelation coefficient is

(A.7)

and always lies between –1 and +1. 

Skewness

The skewness of a random variable measures the degree of asymmetry of the
distribution around the mean. The skewness, denoted γ1, is third standardized
moment of the distribution and is defined as

(A.8)

where σ is the standard deviation of the distribution. Generally speaking, a dis-
tribution is positively skewed (right-skewed) if the higher tail is longer and neg-
atively skewed (left-skewed) if the lower tail is longer. 

Kurtosis

The kurtosis of a random variable measures the degree of the “peakedness” of
the distribution around the mean. The kurtosis, denoted γ2, is fourth standard-
ized moment of the distribution and is defined as

Lower semivariance E min X BX– 0,( )2[ ] pi min Xi BX– 0,( )2[ ]
i 1=

N

∑= =

Semicovariance E min X BX– 0,( )min Y BY– 0,( )[ ]=

pijmin Xi BX– 0,( )min Yj BY– 0,( )
j 1=

N

∑
i 1=

N

∑=

Lower semicorrelation
Lower semicovariance

Lower semideviationXLower semideviationY
-------------------------------------------------------------------------------------------------------------------=
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(A.9)

where σ is the standard deviation. In most statistical software, excess kurtosis
rather than kurtosis is reported. Excess kurtosis is defined as γ2 – 3. For a nor-
mal distribution, excess kurtosis equals 0. Positive excess kurtosis implies that
the distribution of X is more peaked in the center than the normal and has fatter
tails. Such a distribution is said to be “leptokurtic.” Negative excess kurtosis
implies that the distribution of X is flatter in the middle and has smaller tails.
Such a distribution is said to be “platykurtic.” Finally, when excess kurtosis
equals zero (like the normal), the distribution is said to be “mesokurtic.” 

PROPERTIES OF EXPECTATION OPERATORS

Many finance applications, particularly those associated with portfolio selec-
tion, involve using expectations of the parameters of future security rate of
return distributions. Since a security portfolio is nothing more than a weighted
sum of its constituent securities, we are interested in understanding how random
security returns aggregate into portfolios. Table A.2 presents some key proper-
ties of expectations operators. In the table, X and Y are assumed to be random
variables, and a and b are assumed to be known constants. In the remainder of
this section, we use these results in examining the properties of the formulas we
use to estimate the parameters of probability distributions. 

ESTIMATION

Means, variances, and covariances are measured with certainty only if we have
the population (i.e., all possible outcomes) at our disposal. More typically, how-
ever, we have a sample from the population and want to make inferences about
the population. In this section, assume we have a sample of n data points from

Kurt X( ) γ2
E X E X( )–[ ]4

σ4
------------------------------------

1

σ4
------ pi Xi E X( )–[ ]4

i 1=

N

∑= = =

TABLE A.2  Key properties of expectations operators. X and Y are random variables, and a 
and b are known constants.

E(aX + b) = aE(X) + b (P-1)
E[(aX)2] = a2E(X2) (P-2)
Var(aX + b) = a2Var(X) (P-3)
E(X + Y) = E(X) + E(Y) (P-4)
Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y) (P-5)

Also, if X and Y are independent,

E(XY) = E(X)E(Y) (P-6)
Cov(X,Y) = 0 (P-7)
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the population. Our objective is to estimate characteristics of the population,
and then attempt to draw conclusions about the population parameters. An esti-
mator is the formula used to estimate a population parameter; an estimate is the
value obtained from an estimator for a particular sample.

Estimator of Mean

An estimator is said to be unbiased if the expected value of the estimator is
equal to the population parameter. The estimator of the sample mean is

(A.10)

This estimator is unbiased since its expected value equals the population mean,
that is,

Estimator of Variance

The unbiased estimator of the variance of a random variable is

(A.11)

The reason n – 1 (rather than n) appears in the denominator is that, in order to
compute the sample variance, the sample mean must first be computed. This
places a constraint on the n data points in the sample. That is, the n observa-
tions must sum to n times the computed mean, . This leaves n – 1 uncon-
strained observations with which to estimate the sample variance.

Estimator of Covariance and Correlation

The unbiased estimator for sample covariance is

(A.12)
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The adjustment to the denominator is made because, in calculating the sum of
the products of the deviations in X and Y, there are n observations on the joint
outcomes of X and Y and thus n independent pieces of information. One piece
of information is used to calculate the means of X and Y, however. The sum of
all n observations is constrained to be equal to n times the means of X and Y,
respectively. As a result, there are  degrees of freedom.

Finally, the sample correlation coefficient between the two variables is

(A.13)

Estimator of Lower Semivariance

An estimator of sample semivariance is

(A.14)

The (positive) square root of the estimate of the semivariance provides our esti-
mate of the semistandard deviation. In applying (A.12) to return distributions,
the most common choices for BX are the risk-free rate of interest and zero. The
choice of the risk-free rate is intuitive in the sense that it says we are only con-
cerned about holding a risky asset to the extent that its return might be below
what can be earned by placing the investment funds in a risk-free asset.

Estimators of Semicovariance and Semicorrelation

An estimator of sample semicovariance is

(A.15)

where BX and BY are the upper boundaries of variables X and Y. The estimator
of the lower semicorrelation coefficient is

(A.16)

and always lies between –1 and +1. 
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Estimator of Skewness

An estimator of sample skewness is

(A.17)

where  is the estimated standard deviation of the distribution.2 Positive
skewness implies that the distribution has a long tail to the right, and negative
skewness implies that it has a long tail to the left. Many financial models incor-
porate the behavioral assumption that investors gain satisfaction from positive
skewness in the rate of return distribution, holding other factors constant.

Estimator of Kurtosis

An estimator of sample excess kurtosis is

(A.18)

Excess kurtosis characterizes the peakedness or flatness of a distribution relative
to the normal distribution. Positive kurtosis indicates a relatively peaked distri-
bution, and negative kurtosis indicates a relatively flat distribution.

ILLUSTRATION A.1 Estimate mean, variance, standard deviation, skewness, and excess kurto-
sis of monthly stock returns for IBM.

The worksheet A1 in the Excel file, A Illustrations.xls, contains 60 months of returns for
IBM and a value-weighted stock market index over the period January 2000 through
December 2004. Estimate the mean, variance, standard deviation, skewness, and kurto-
sis of IBM’s return series. Use the standard Excel statistical functions to perform your
computations. Comment on the levels of skewness and kurtosis.

To begin, examine the contents of the data file illustrated on the following page. The
first column contains the date of the month-end. The next two columns contain the rates
of return of IBM’s stock and a value-weighted stock market index. Note that rows 7
through 60 have been compressed some that the file contents can be displayed on one
page. You can adjust the height to see the contents of the cells if necessary.

2 While it is beyond the scope of this appendix, the 1/(n – 1) allows for the fact that a degree of
freedom has been used in estimating the mean, and n/(n – 2) is a small sample bias adjustment.
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Rather than perform the computations of each estimator, we will rely on Microsoft
Excel add-ins. Some are part of the Excel add-in function library provided by Microsoft.
Others are part of the OPTVAL add-in function library that is part of the CD that accom-
panies this book. The same approach is used to apply the functions from either library.

The first step in applying an add-in function is to click on the “Insert” menu and
select “Function” as shown: 

Clicking on “Function” will cause a menu to appear. The menu contains the different
sub-libraries of add-ins that are available. “All” contains the entire set of add-in func-
tions. It is so lengthy, it is cumbersome to use. In the Insert Function dialog box as
shown, “All” are the functions separated into categories according to their general pur-
pose. For this illustration, we need functions from the “Statistical” category.

Clicking on “Statistical” will provide a list of statistical functions. The “Average”
function is used to compute the estimate of the mean using (A-10). When we click on the
function name, the following form appears. To insert the IBM return series in computing
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the mean, simply place the cursor in the Function Arguments dialog box to the right of
Number1 and highlight the cells B4 through B63 as shown, and then click “OK”: 

The illustration that follows summarizes the results. Note that the contents of cell B67 is
the mean monthly return of IBM, 0.00408. Cell C67 contains the mean return of the
market index and involves the function call “=AVERAGE(C4:C63)”. 

For your convenience, the Excel function names of all of the remaining estimators
are provided in column D. An inspection of the worksheet shows that cells B67 through
B71 have the following function calls:

=AVERAGE(B4:B63)
=VAR(B4:B63) 

=STDEV(B4:B63)
 =SKEW(B4:B63)
 =KURT(B4:B63)

The estimated skewness of IBM’s observed monthly returns is 0.96509. Positive
skewness implies that the return distribution is asymmetric and has a long tail on the
right. The estimated kurtosis is 2.44513. Positive excess kurtosis implies that the return
distribution is more peaked than the normal and has fatter tails. 
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To understand the meaning of the skewness and kurtosis parameter values in rela-
tion to the shape of the return distribution, it is useful to plot a histogram. A histogram
typically divides the distance between the minimum and maximum values of the sample
of observations into equal intervals and then tabulates the number of observations that
fall within each interval. The lowest monthly return for IBM during the sample period is
–22.6%  in September 2002 and the highest is 35.4% in October 2002. The total number
of monthly returns is 60. In the following figure, we display the frequency distribution of
actual monthly returns for IBM during the period (i.e., the light-colored bars). We also
shown the frequency of returns that is expected if IBM’s returns were normally distrib-
uted during the period (i.e. the dark-colored bars).3 Note that the patterns are just as
expected. During the sample period, IBM had more large positive returns and fewer large
negative returns relative to a normal distribution. This represents positive skewness.
Also, during the sample period, IBM had more instances in which the observed monthly
was very close to the mean. The peakedness shown in the histogram represents positive
excess kurtosis.   

ILLUSTRATION A.2 Estimate covariance and correlation between IBM and stock market index 
returns.

Using the monthly returns reported in the A2 worksheet of the Excel file, A Illustra-
tions.xls, estimate the covariance and correlation between the IBM and market return
series. Use the standard Excel statistical functions to perform your computations. 

As noted earlier in this appendix, covariance and correlation measure the association
between two random variables. To get a sense of the relation between two variables, it is
useful to plot the series against one another. The figure below shows us  that, when the
market return is positive, IBM’s return is positive, and, when the market return is nega-
tive, IBM’s return is negative. In other words, the returns of two series are positively cor-
related (have positive covariance). 

3 The mean and the standard deviation of the normal distribution are set equal to the mean
and the standard deviation estimated for the sample, 0.00408 and 0.10378, respectively.
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The Excel functions for computing the covariance (A-12) and correlation (A-13) are
COVAR and CORREL, respectively. Using the information in the worksheet A2, the esti-
mates of covariance and correlation are: 

The estimated correlation is 0.68415, which implies that the returns are strongly posi-
tively correlated.

ILLUSTRATION A.3 Estimate semivariance and semistandard deviation of return distributions. 
Also estimate semicovariance and semicorrelation.

Using the information provided in the worksheet A3 in the Excel file, A Illustrations.xls,
estimate semivariance and semistandard deviation of the return series for IBM and the
market. Also, estimate semicovariance and semicorrelation between IBM and stock mar-
ket index returns. Compare the correlation and semicorrelation estimates and comment
on the difference.

The “Statistical” library in Excel contains the most commonly-used statistical func-
tions in applications from all disciplines. This book focuses exclusively on finance appli-
cations, and certain useful statistical functions are not included in the Excel statistical
library. Consequently, these functions are included in the OPTVAL function library. 
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To use the OPTVAL functions, we click on the “User Defined” option in the Insert
Function menu as shown: 

What will appear is the list of user-defined functions. They are clustered together in the
menu by virtue of the fact that they begin with the prefix “OV_”. The next term in the
function name describes the category. The statistical functions in the OPTVAL library
begin with “OV_STAT_” as shown:  

The remaining part of the name corresponds to the nature of the computation. The
worksheet below illustrates the use of the lower semi-correlation function. The syntax of
the function is

OV_STAT_SEMICOR(bx, x, by, y)
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where bx is the upper bound on the observations of x, x is a vector containing the obser-
vations of x, by is the upper bound on the observations of y, and y is the vector of y
observations. 

A summary of the computations is contained in the illustration that follows. Inter-
estingly, the lower semicorrelation estimate, 0.73313, is greater than the correlation,
0.68415. The fact that both correlations are positive indicates that IBM and the market
tend to move together, however, the fact that the lower semicorrelation is higher means
that the relation is strongest when prices fall. This is type of behavior is not uncommon
in financial markets. A declining market sometimes causes investors to leave a particular
asset class in favor of a safer one (e.g., sells stocks and buy Treasury bills).

PROBABILITY DISTRIBUTIONS

In the remainder of this appendix, we work with four specific continuous den-
sity functions—the normal, chi-squared, t, and F distributions.4 Unlike a dis-
crete density function, a continuous random variable can take on any value
from the real number line from –∞ to +∞. We use the normal distribution to
develop measures of risk. We use the remaining three distributions to help
develop a framework for understanding the role of measurement error in secu-
rity valuation and risk measurement.

Normal Distribution

The normal distribution is important for a number of reasons. First, it is sym-
metric and bell-shaped, and closely approximates many empirical distributions
such as security returns and cash flows. Second, it is fully described by its mean

4 In Chapter 7, we also use the log-normal distribution in describing the distribution of future
security prices.
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and variance, so we need not worry about other properties such as skewness
and kurtosis. Third, if two (or more) random variables are normally distributed
with identical means and variances, any weighted sum of these variables will be
normally distributed. 

The normal distribution is a continuous bell-shaped probability distribution
whose density function is given by

(A.19)

where µX and σX are the mean and standard deviation of X. In the special case
where µX = 0 and σX = 1, the resulting random variable (usually denoted z) has
a standard normal density function, 

(A.20)

Figure A.3, Panel A plots n(z) as a function of z. Note that all normal distribu-
tions can be be transformed into the standard (or unit) normal distribution
using the relation, zi = (Xi – µX)/σX.

To compute the probability that a random drawing from a standard normal
distribution will fall below a level a, we integrate (A.20) over the range from –∞
to a, that is, 

(A.21)

The usual way in which values of N(a) have been available in matrices like
Tables C.1A and 1B in Appendix C of this book. Appendix C contains all of the
statistical tables that we will need in hypothesis testing and building confidence
intervals. In Table C.1A, for example, N(–2.00) = 0.0228. This means that the
chance that a random drawing from a standard normal distribution will have a
value more than two standard deviation below the mean is 2.28%. Since the
standard normal distribution is symmetric and centered on 0, this also means
that the chance that a random drawing from a standard normal distribution will
have a value more than two standard deviation above the mean is 2.28%. To
check this, we can turn to Table C.1B, where we find that N(2.00) = 0.9772,
that is, the chance that a random drawing from a standard normal distribution
will have a value less than two standard deviations above the mean is 97.72%.
The complement of this value is, of course, 2.28%. The chance that a random
drawing from a standard normal distribution will have a value in the range plus
or minus two standard deviations from the mean is 97.72 – 2.28 = 95.44%.
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FIGURE A.3 Standard normal distribution function and cumulative standard normal density 
function. 
Panel A. Standard normal

Panel B. Cumulative standard normal

In recent years, commonly used statistical software packages have begun to
include functions for evaluating the integral (A.21). Microsoft Excel, for exam-
ple, has an add-in function called NORMSDIST that computes the cumulative
standard normal probability, N(a). The following illustration shows how the
function is called as well as sample values. Note that the values correspond to
the values reported in Tables C.1A and 1B. Figure C.1, Panel B shows the cumu-
lative probability N(a) as a function of a.
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Closely related to the NORMSDIST function is the NORMSINV function,
which computes the inverse of the cumulative standard normal density function.
Suppose we are interested in determining the level of a that makes the cumula-
tive probability equal to 5%, that is, 

Using a = 0.05 in the inverse function shows that NORMSINV(0.05) = –1.645.
This imples that the chance of a random drawing from a standard normal distri-
bution producing a value at or below –1.645 standard deviations below the mean
is 5%. Alternatively, it implies that we are 95% confident that a random drawing
from a standard normal distribution will produce a value exceeding –1.645. This
illustration shows sample functions calls and values: 

ILLUSTRATION A.4 Compute maximum possible loss over next month with 95% confidence.

Assume you hold $10 million of IBM’s stock as of December 31, 2004. Based on the returns
that appear in the worksheet A4 in the Excel file, A Illustrations.xls, compute the expected
maximum (or “worst loss”) that we can expect to occur over the next month with 95% con-
fidence. How does the result change if you assume IBM’s returns are normally distributed?

As a risk manager, you will be often placed in situations in which you will need to
quantify the level of risk you face. There are a variety of ways to go about this task, and
we will discuss several in the chapters of the text. The one discussed here is called Value-
at-Risk or simply VAR. What VAR attempts to measure is the maximum dollar loss we
can expect to incur over the given period of time at a particular confidence level.

Empirical Distribution
One way we can go about estimating this quantity is to use the realized empirical distri-
bution, that is, the distribution of returns as they appeared in the recent past. The intu-
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ition is that, unless there is reason to believe otherwise, the next observed return should
be drawn from the same distribution.

The worksheet A4 contains the most recent 60 months of IBM stock returns. Each
return in the series is assumed to have an equal chance of occurring again. Suppose we
order the returns from lowest to highest. With 60 return observations, the number of
intervals between observations is 59. Hence, the probability of falling into a particular
interval is 1/59 or 1.695%. The first few observations in the ordered return series
together with their receptive probabilities are:

Since no return below –22.645% appeared in the 60-month history, the probability that
a drawing from this distribution will have a value below –22.645% is 0.5 The probability
that a drawing from this distribution will have a value below –12.444% is 0.05085. The
cumulative probability function for this empirical distribution is:   

The question is, however, what is the critical return below which there is a 5%
chance of occurrence. Looking at the above table, the critical return  lies somewhere in
the range between –14.773% and –12.444%. To find exactly where, we interpolate using
the cumulative probabilities as weights, that is,

In other words, based on the empirical distribution of IBM’s returns, the chance of expe-
riencing a return of –12.560% or less over the next month is 5%. Alternatively, we are

Monthly holding period returns (2000–2004)

Month IBM return Cumulative probability

20020930 –0.22645 0           
20020430 –0.19462 0.01695
20000929 –0.14773 0.03390
20001031 –0.12444 0.05085
20021231 –0.10838 0.06780
20020131 –0.10805 0.08475

5 The fact that no return below –22.645% has been observed does not mean that no returns
will ever fall below that level. This is a weakness of using the empirical distribution approach
to estimating VAR.
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95% confident that the worst loss we will experience over the next month is –12.560%
of the portfolio value or $1,256,045.

As it turns out, another Excel statistical function can compute this critical return
directly. The syntax of the function is 

PERCENTILE(array,k)

where array is the vector of monthly returns and k is the probability level. In using this
function, there is no need to arrange the monthly return series in ascending order. In the
event that the critical return falls between observed returns (as it does in this illustra-
tion), the function performs the interpolation automatically. To verify this result, con-
sider the following: 

Normal distribution
A second approach to estimating value-at-risk is to assume that security returns have a
parametric distribution. The most common assumption in this regard is that returns are
normal distributed. Consequently, the only parameters we need to characterize the distri-
bution are the mean and the standard deviation. To find these values, we rely the histori-
cal returns, and then work with the mechanics of the normal distribution to do the rest. 

The mean and standard deviation of IBM returns over the sample period were
0.00408 and 0.10378, respectively. From the discussion of the standard normal distribu-
tion earlier, we know that we can use the NORMSINV function to find the critical value
of a* such that n(a*) = 0.05, as shown in the following figure. From an earlier illustra-
tion, we know that the critical value of a* is –1.645. Thus, the critical return (i.e., the
worst loss over the next month with 95% confidence) is

R* = 0.00408 – 1.65(0.10378) = –0.16662

and the VAR under the assumption of normally distributed returns is $1,666,200. This
number exceeds the VAR under the empirical distribution because the empirical distribu-
tion is positively skewed. The normal distribution assigns a greater chance of large nega-
tive returns.
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It is also worth nothing that we need not compute the critical return R* by hand, as we
did above. Excel has add-in functions, NORMDIST and NORMINV,  that allow the user
to prespecify the mean and standard deviation of the normal distribution directly. Thus
where NORMSINV returns the critical value of a* where the mean and standard deviation
are 0 and 1, respectively, NORMINV returns the critical value of R* where the mean and
standard deviation are  and , respectively. Applying the problem parameters, we get: 

Finally, it is worth noting that VAR is generally defined as the dollar loss relative to
the mean. In some instances, however, users prefer to define VAR as the absolute dollar
loss relative to 0, with no reference to expected value. We can easily accommodate this
convention by setting the mean equal to 0 in the above spreadsheet. The absolute dollar
VAR is about $1.7 million.
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Chi-Square Distribution

The chi-square distribution plays a key role in many statistical tests. One impor-
tant application is in the context of answering the question: “Are two sets of data
drawn from the same distribution function?” In Illustration A.4, for example,
can we test whether the sample of IBM stock returns are drawn from a normal
distribution? Below we define the chi-square distribution and its probabilities,
and then apply it in tests for distributional differences.

Formally defined, a variable that is the sum of the squares of n independent
drawings from a standard normal distribution, that is,

(A.22)

is said to have a the chi-square distribution with n degrees of freedom. The
shape of the distribution changes with the number of degrees of freedom, as is
shown in Figure A.4. With few degrees of freedom, the distribution is highly
positively skewed. As the number of degrees of freedom grows large, the distri-
bution becomes more and more symmetric.

Table A.4 reports the probability that the sum of squared of n random stan-
dard normal variables will be greater than the critical value . To interpret the
table, consider the case where the number of degrees of freedom is 10 and the
probability level α is 0.05. The critical χ2 value is 18.31. This means that the
chance of observing a sample  value exceeding 18.31 is less than 5%, or,
alternatively, we are 95% confident that the sample  will be less than 18.31.
Figure A.5 illustrates. The darkened tail to the right contains 5% of the area
under the χ2 distribution. The lower bound of this tail is the critical value 18.31.
It is also worth noting that Excel has a statistical function that computes the
critical value of . Its syntax is

FIGURE A.4 Chi-square (χ2) distribution with various degrees of freedom. 
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FIGURE A.5 Critical chi-square value at 5% probability level and 10 degrees of freedom.   

CHINV(Probability, Deg_freedom)

where Probability is the chosen significance level, and Deg_freedom is the num-
ber of degrees of freedom. CHINV(0.05,10) = 18.31.

Tests for Normality One particularly important application of the chi-square dis-
tribution is in tests of normality. One simple way of distinguishing between the
distributions of two samples is to compute the statistic,

(A.23)

where n is the number of bins, Fi is the number of events observed in the ith bin,
and fi is the expected number under some known distribution such as the nor-
mal.6 In this particular case, the terms in (A.23) are not individually normal,
however, if either the number of bins is large or the number of events in each bin
is large, the chi-square probability function is a good approximation to the dis-
tribution of (A.23). To test the null hypothesis that the sampling distribution is
normal, we compute the  test statistic (A.23) and compare the value against the
critical values reported in Table C.2 in Appendix C.

This is the first of many hypothesis tests that we will perform in this appen-
dix. It is important to note that, before any testing is done, we must preset the
desired level of significance of our test. The choice of the level of significance,
denoted by α, represents the probability of rejecting the null hypothesis when
the null hypothesis is, in fact, true. It is our choice, however, conventional levels
in statistical analyses are 5% or 1%.

6 As a practical matter, any term in (A.19) where ni = 0 is ignored.
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ILLUSTRATION A.5 Test for normality of stock market returns.

The worksheet A5 in the Excel file, A Illustrations.xls, contains 60 months of returns for a
value-weighted stock market index over the period January 2000 through December 2004.
Test the null hypothesis that these returns were drawn from a normal distribution.

The first step in performing such a test using binned data is to create the binned
data. In creating binned data, it is useful to begin with an understanding of the distribu-
tions summary statistics. For the 60-monthly market index returns: 

The range of monthly returns is from –10.250% to 8.390%. 
The choice of bins is arbitrary. Based upon the range of observations, we will define

the bins to be in 2.5% increments and the range to be from –12.5% to 12.5%. With the
bins defined, we then count the number of observations in each bin, that is, identify the
Fi’s, i = 1, . . ., 11 for use in (A.23). 

Next we need to identify the number of observations expected in each bin assuming
the monthly returns are normally distributed. The first bin includes all monthly return
observations below –12.5%. Under a normal distribution with mean 0.018% and stan-
dard deviation 4.924%, the probability of drawing a return below –12.5% is 0.0055.
With 60 total return observations, the expected number to fall in this first category is f1 =
0.330. Note that this value need not be integer. The second bin includes all monthly
return observations between –12.5% and –10.0%. Under a normal distribution with
mean .018% and standard deviation 4.924%, the probability of drawing a return
between –12.5% and –10.0% is 0.0154. With 60 total return observations, the expected
number to fall in this second category is f2 = 0.926. The remaining cells in the column are
computed in the same manner. The frequencies of observed versus expected numbers of
observations in each bin is as follows: 

Finally, we compute the individual terms in (A.23) and sum. The computed chi-
square value is 8.385. Comparing this value to the critical values reported for 11 degrees

Parameter Estimate Excel Function
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of freedom in Table C.2, we find that it lies somewhere between the 10 and 90 percentile
values. In other words, we cannot reject the hypothesis that the value-weighted market
returns were drawn from a normal distribution. Excel also has a function for computing
the chi-square probability. Its syntax is

CHIDIST(x, deg_freedom)

where x is the computed chi-square value and deg_freedom is the number of degrees of
freedom. In the current illustration, CHIDIST(8.385,11) = 0.6784.

Before proceeding further, it is important to digress and discuss the concept
of a p-value, which we have just applied in Illustration A.5 (i.e., the CHIDIST
function computes the p-value for a χ2 distribution). As we have noted, the stan-
dard procedure for reporting the statistical significance of results of hypothesis
testing is to compare the test statistic to the critical value determined at the 5%
or 1% significance level. In recent years, however, it has become more common
to report p-values (probability values). A p-value describes the exact significance
level associated with a particular test statistic. Thus, a p-value of 0.6784 indi-
cates that a coefficient is statistically significant at the 0.6784 level. In the con-
text of a chi-square test with 11 degrees of freedom, this means that 67.84% of
the χ2 distribution lies above 8.385. For purposes of hypothesis testing, we com-
pare the p-value with our demanded level of significance, say, α = 0.05. Since
0.6784 > 0.05, we cannot reject the null hypothesis that the market return dis-
tribution is normal. Rejection requires that the p-value is less than α.

The test statistic (A.23) is useful in demonstrating the intuition underlying
why a chi-square test is useful in distinguishing whether there are meaningful
differences between the underlying distributions of two samples of data. In the
practice, however, we frequently have data that are drawn from continuous dis-
tributions. Arbitrarily grouping data into bins involves loss of information. In
addition, the selection of bins is arbitrary. For this reason, a considerable
amount of energy has been devoted to develop alternative statistics for testing
whether a particular sample is drawn from a normal distribution. One well-
known test for normality is the Jarque-Bera (1980, 1987) statistic:

(A.24)

where n is the number of sample observations and  and  are the sample
skewness (A.17) and excess kurtosis (A.18), respectively. The JB statistic follows a
chi-square distribution with 2 degrees of freedom. If the JB statistic is greater than
the critical value of the chi-square, we reject the null hypothesis of normality. 

ILLUSTRATION A.6 Jarque-Bera test for normality of stock market returns.

The worksheet A6 of the Excel file, A Illustrations.xls, contains 60 months of returns for
a value-weighted stock market index over the period January 2000 through December
2004. Test the null hypothesis that the returns were drawn from a normal distribution
using the Jarque-Bera test statisitic.

JB
n

6
--- γ̂1

2 γ̂2
2 4⁄+[ ]=
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To compute the Jarque-Bera test statistic, we need estimates of the skewness and excess
kurtosis of the return distribution. Using the appropriate Excel functions for computing
(A.17) and (A.18), we find  and . Thus, the JB statistic is 

At 2 degrees of freedom, the sample χ2 lies in the range between the 10 and 90 percentiles,
which means we cannot reject the null hypothesis that the market returns are normally dis-
tributed. This conclusion can be confirmed using the Excel function, CHIDIST(1.8436,2)
= 0.3978.

t-Distribution

The Student t-distribution7 or, simply, t-distribution also plays a key role in sta-
tistical analyses. We know from the discussion thus far in this appendix that, in
general, we are interested in knowing the parameters of a population but we can
neither (a) observe the parameters directly nor (b) observe all of the elements in
the distribution. Consequently, we rely upon a sample of observations and sta-
tistical analysis to infer the population parameters. The sample mean (A-10), for
example, is our “best guess” of the population mean, however, it is a guess. The
t-distribution helps us quantify the accuracy with which the sample mean esti-
mates the population (or “true”) mean. 

The random variable,

(A.25)

is said to have a t-distribution with N degrees of freedom if (a) z is normally distrib-
uted with mean 0 and variance 1, (b) Z is distributed as chi-square with N degrees
of freedom, and (c) X and Z are independent. Like the standard normal distribu-
tion, the t-distribution is symmetric. Unlike the normal distribution, the t-distribu-
tion has fat tails when the number of degrees of freedom is small. Figure A.6
illustrates. Although both are centered at 0, the t-distribution has greater variance.

Table C.3 in Appendix C contains percentiles of the t-distribution. The panel
heading, Probability, is probability that a positive t value will exceed each num-
ber in the table in absolute value and is therefore appropriate in one-tailed test.
See Figure A.7, Panel A. For a one-tailed test with 10 degrees of freedom and a
significance level of α = 0.05, the critical t-value tα is 1.812, that is, the probabil-
ity that the t-value exceeds 1.812 in absolute value is 5%. For a two-tailed test
with 10 degrees of freedom and a significance level of α = 0.05, the critical t-
value tα/2 = 2.228, that is, the probability that the t-value is below –2.228 or
above 2.228 is 5%—2.5% in each tail. See Figure A.7, Panel B. 

7 The t-distribution was derived by William Sealey Gosset in 1908 while he was working at he
Guinness brewery in Dublin. He was not allowed to publish under his own name, so the paper
was written under the pseudonym “Student.” See Student (1908) and http://en.wikipedia.org/
wiki/Student%27s_t-distribution.
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FIGURE A.6 Student t-distribution versus normal distribution. 

FIGURE A.7 Critical values t-distribution at 10 degrees of freedom for one-tailed and two-
tailed tests at the 5% level. 
Panel A. One-tailed test.

Panel B. Two-tailed test.
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To understand how (A.21) helps us, note that the variance of the sample mean is

(A.26)

where n is the sample size. The standard deviation of the sample mean is therefore

(A.27)

Recall that any linear combination of normal distributions is a normal distribu-
tion. If X is normally distributed with mean µX and standard deviation σX, then 

(A.28)

is normally distributed with mean 0 and standard deviation 1. We use (A.28) in
the numerator of (A.25).

Focusing now on the denominator of (A.25), we know that 
follows a chi-square distribution with n – 1 degrees of freedom. Combining
results in (A.25) and simplifying, we find that 

(A.29)

has a t-distribution with n degrees of freedom. Consequently, we can test
whether the mean of a random variable is equal to any particular number using
the rightmost term in (A.29), even when the variance of the random variable is
unknown. The denominator in the expression, , is called the standard error
of the estimate. Note that the standard error becomes small as the sample size
grows large. The intuition for this result is that, the more information you
gather in estimating the mean, the more reliable your estimate will be.

Test for Zero Mean Perhaps the most common use of the t-statistic is in testing the
null hypothesis that the mean of the population is different from zero. Such a
test is a special case of (A.29), that is,
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(A.30)

The (1 – α)% confidence interval for the mean of the population is 

(A.31)

where tα,df is the critical t-value corresponding to df degrees of freedom and a
desired level of probability α (or desired level of confidence, 1 – α).  

ILLUSTRATION A.7 Test hypothesis mean is equal to 0. 

The worksheet A7 of the Excel file, A Illustrations.xls,  contains 60 months of returns for
IBM during the period January 2000 through December 2004. Test the null hypothesis
that these mean monthly return equals 0 at the 5% probability level. Also, compute the
95% confidence interval for the mean monthly return for IBM.

The first test is to compute the mean and standard deviation of the sample of 60
return observations:  and . Next we compute the standard
error of :

Finally, compute the t-statistic: t = 0.00408/0.01340 = 0.305. The OPTVAL library contains
a function for computing a t-test of the mean from a pre-specified constant. Its syntax is

OV_STAT_TCNST(x, cnst, out)

where x is the vector of sample observations, cnst is the prespecified constant, and out is
an indicator variable instructing the output to be aligned horizontally (“h” or “H”) or
vertically (“v” or “V”). The output of the function (the t-ratio and the number of degrees
of freedom) is written to two adjacent cells, and both must be highlighted when entering
the input information. Then press Shift, Ctrl, and Enter simultaneously. 

With 59 degrees of freedom and a 5% probability level, the critical t-value is about
2.00. (The critical t-value reported in Table C.3 is 2.000 at 60 degrees of freedom. No
value is reported for 59 degrees of freedom). Since the absolute value of 0.305 is less than
2.00, we do not reject the hypothesis that the mean monthly return for IBM is 0. Note
that Excel has an add-in function that allows a more accurate value of the critical value.
The syntax of the function is

TINV(probability, deg_freedom)

where probability is the desired level of probability in a two-tailed test and deg_freedom
is the number of degrees of freedom. TINV(0.05, 59) = 2.001, which is very close to our
approximate value obtained from Table C.3. Finally, we can use the computed t-ratio
directly in the Excel add-in, 

TDIST(x, deg_freedom, tails)

where x is the t-ratio, deg_freedom is the number of degrees of freedom, and tails is 1 or 2,
depending upon whether you want to perform a one- or two-tailed test. TDIST(0.30453,

t
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59, 2) = 0.762, which means there is a 76.2% probability that the true difference between
the population mean and 0 lies outside the range –0.30453 and 0.30453.

The 95% confidence interval for the mean of IBM’s monthly returns is closely
related to the test of the null hypothesis that the mean return equals zero. Substituting
the problem parameters into (A.27), we find that 

In other words, based on the 60 months of sample information, we are 95% confident that
the “true” mean monthly return of IBM is somewhere between –2.273% and 3.089%—not a
high degree of precision indeed. Since 0% is contained within the confidence interval, the null
hypothesis that the mean return is 0% cannot be rejected at the 5% level of probability. Sim-
ilarly, the null hypothesis that the mean monthly return of IBM is 3% cannot be rejected
since, it too, falls within the 95% confidence interval.

Test for Equivalence of Means Tests of the equivalence of two means come in two
forms. The distinction is driven by the decision about whether it is reasonable to
assume the two distributions have the same variance. If two distributions are
thought to have the same variance, the appropriate test statistic is

(A.32)

where

µX 0.00408 2.001 0.01340( )±≤ 0.02273 0.03089,–( )=

t
µ̂X µ̂Y–

σ̂D

-------------------=
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(A.33)

We evaluate the significance of this t-value for the Student’s distribution with
nX + nY – 2 degrees of freedom. Note that, if Y is a constant 0, the expression
for the standard error becomes

which is identical to the standard error in (A.30).
Often there is no reason to believe that the variances of a and b are equal. In

this instance, the t-test for the difference in means must be modified. The rele-
vant t-statistic for unequal variance is 

(A.34)

where this statistic is approximately as Student’s t with a number of degrees of
freedom equal to

(A.35)

Note that expression for determining the number of degrees of freedom (A.35)
is, in general, not an integer—there is no reason it has to be.

ILLUSTRATION A.8 Test hypothesis difference in means is 0.

The worksheet A8 of the Excel file, A Illustrations.xls,  contains 60 months of returns for
IBM during the period January 2000 through December 2004. Test the null hypothesis
that the mean during the first 30 months is no different than the mean return in the sec-
ond 60 months. First, assume the variances of the two samples are equal, and then
assume the variances are different.

After computing the mean and variance of each sample, we can perform the compu-
tations by hand using equations (A.32) through (A.35). But both computations can also
be performed using the OPTVAL function

OV_STAT_TMEANS(x, y, ind, out)
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where x and y are the vectors of sample observations for the two samples, ind is an indica-
tor variable instructing the function to assume equal variances (“y” or “Y”) or unequal
variances (“n” or “N”), and out is an indicator variable instructing the function to return
the output horizontally (“h” or “H”) or vertically (“v” or “V”). Again, the output is the t-
ratio and the number of degrees of freedom and so two adjacent cells must be highlighted
when the function is called. The results are shown below.

The results indicate that there is little reason to believe that (1) the mean return for
IBM is different in the two sample periods; and (2) different variances have an important
effect on the testing procedure. Under the assumption that the variances are the same across
samples, the t-ratio for testing the null hypothesis that the means are the same is –0.804.
Since the critical value of the t-distribution corresponding to a two-tailed test and 58
degrees of freedom is t0.05/2,58 = 2.002. Since the absolute value of the t-ratio is less than
2.002, we cannot reject the hypothesis that the means are the same. Alternatively, since
the p-value, 0.425, is greater than the demanded level of significance, 0.05, the null can-
not be rejected.

Test for Equivalence of Means in a Paired Sample Paired comparisons in finance-related
problems are not infrequent. Suppose, for example, two stocks have done par-
ticularly well during a specified period of time, but that, during the same period,
the stock market did particularly well. Is the performance of the two stocks dif-
ferent in a meaningful way?

To answer this question, we can, again, rely on a t-test. The t-ratio is

(A.36)

and is evaluated with degrees of freedom. The definition of the denominator is

t
µ̂X µ̂Y–

σ̂D

-------------------=
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(A.37)

that is, the standard error of the difference in returns of X and Y. A little reflec-
tion will tell you why this is appropriate. Since both a and b may co-vary with
some factor, we need to abstract from that factor. Thus, we reduce the variance
in the numerator of (A.37) by the amount of the covariation in determining
whether the difference is indeed significant.

ILLUSTRATION A.9 Test hypothesis difference between means in paired sample.

The worksheet A9 of the Excel file, A Illustrations.xls, contains 60 months of returns for
IBM and GM during the sample period January 2000 through December 2004. Test the
null hypothesis that the mean of IBM’s returns is different from the mean of GM’s returns. 

Summary statistics for the return series are shown in the table below. Since individ-
ual stock returns tend to covary with the market, they tend to covary with each other. To
check if this is the case, we can compute the correlation between the return series. The
estimated correlation coefficient is 0.294, which indicates that, when testing for a differ-
ence between the mean returns of the two stocks, it is appropriate to use a test statistic
that accounts for the contemporaneous relation between the series.

With the information provided in the summary table, we can compute the t-ratio
using (A.36) and (A.37). The t-ratio is 0.300. Using a two-tailed test with 59 degrees of
freedom and α = 0.05, we cannot reject the hypothesis that the mean returns of IBM and
GM are the same. The OPTVAL library contains a function for computing the t-ratio
directly without us having to perform the intermediate computations. Its syntax is 

OV_STAT_TPMEANS(x, y, out)

where x and y are the vectors containing the pairs of observations vectors, and out is an indica-
tor variable instructing the function to return the output horizontally (“h” or “H”) or vertically
(“v” or “V”) . The output of the function is the t-ratio and the number of degrees of freedom.

Parameter Estimates

No. of obs. 60 60
Mean 0.00408 –0.00078
Standard deviation 0.10378 0.10721
Variance 0.01077 0.01149
Covariance 0.00321

Correlation Matrix IBM GM

IBM 1
GM 0.294 1

Hypothesis Test

t-ratio 0.300
df 59
tinv 2.001
2-tailed probability 0.765
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Type I and Type II Errors and the Power of a Test

With the rules for conducting hypothesis tests and building confidence intervals in
hand, we are in a position to discuss two more subtle statistical issues. The first is
Type I and Type II errors. Recall that, in the illustrations of this appendix, we pre-
set the desired level of significance of the test before the test was performed. The
choice of the level of significance α (usually 5% or 1%) represents the probability
of rejecting the null hypothesis when the null hypothesis is, in fact, true. This type
of mistake is called Type I error. Type II error, on the other hand, refers to the
probability that the null hypothesis is not refuted when it should be. 

To more clearly distinguish between the two types of errors, consider chang-
ing the level of significance in a test from 5% to 1%. Obviously, the probability
of incorrectly rejecting the null hypothesis (Type I error) falls from 5% to 1%.
At the same time, the probability of a Type II error increases. The lower the
value of α, the wider the range of outcomes within the confidence interval, and
the greater our inability to distinguish between values contained within the inter-
val. If the true population parameter is 3 and the confidence interval is (–5,+5), a
significance test will not reject the null hypothesis that the parameter is 0, even
though we know that it is not. Thus, in selecting the level of significance, we
face a trade off. As we lower the probability of Type I error, we increase the
probability of Type II error. The choice between the two types of errors depends
on the particular problem. In finance applications, we usually choose a low level
of significance and, hence, a low probability of Type I error.

Closely related to Type I and Type II errors is the concept of the power of a
test. Suppose that we fail to reject the hypothesis that the population parameter
is 0. Consider the possible reasons for this “failure.” One obvious reason is that
the null hypothesis is true. Another possibility is that the null hypothesis is false,
but the particular data set used for the test happens to be consistent with the
null. The statistical concept that helps us evaluate the importance of the second
explanation is the power of a test. Power is the probability of rejecting the null
hypothesis when it is in fact false and is, therefore, equal to one minus the prob-
ability of a Type II error (i.e., one minus the probability that one will accept the
null hypothesis as true when it is in fact false). Note that power depends not
only on the size of the effect that has been measured, but also on the number of
observations in the sample. Holding other factors constant, the larger the effect
and the larger the sample size, the more powerful the test. When a statistical
analysis with relatively low power fails to show a significant p-value, we should
not be hasty in concluding that there is no effect. We must allow for the fact that
the study may be inconclusive because the data set is not rich enough sufficient
to allow us to distinguish between the null and alternative hypotheses.

F  Distribution

Formally defined, (X/n1)/(Y/n2) is distributed according to an F distribution
with n1 and n2 degrees of freedom if X and Y are independent and distributed as
chi square with n1 and n2 degrees of freedom, respectively. The F-distribution is
skewed to the right, as shown in Figure A.8. The exact shape will depend on the
numbers of degrees of freedom in the numerator and the denominator. The fig-
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ure displays an F-distribution with 5 and 10 degrees of freedom and another
with 10 and 20 degrees of freedom. The latter distribution is less skewed.

Test for Equivalence of Variances The F-distribution is commonly used in tests of the
equality of two variances. The F-statistic is always tabulated with the larger esti-
mate of variance in the numerator and the smaller estimate in the denominator.
Thus assuming

the F-statistic is

(A.38)

with nX – 1 and nY – 1 degrees of freedom. The resulting ratio is always greater
than 1, and provides information about the upper tail of the F-distribution. The
greater the difference between the two variances, the greater the F-statistic.
Thus, a large value of F implies that it is unlikely that the two error variances
are equal. Tables C.4A and C.4B summarize critical F-values under 5% and 1%
probability levels. Note that the tables are arranged with the columns represent-
ing different numbers of degrees of freedom in the numerator and the rows rep-
resenting different numbers of degrees of freedom in the denominator. To
illustrate applying the tables, assume the number of degrees of freedom in the
numerator and the denominator is 10 and that we preset the level of significance

FIGURE A.8 F-distribution with (5,10) and (10,20) degrees of freedom.  
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to α = 0.05. The critical F-value in Table C.4A is 2.98, which means that if the
F-statistic from the test exceeds 2.98, we reject the null hypothesis that the two
variances are equal at the 0.05 probability level. If the F-statistic exceeds 4.85,
we also reject the null hypothesis that the two variances are equal at the 0.01
probability level (see Table C.4B).

ILLUSTRATION A.10 Test for difference in variances of stock return series.

The worksheet A10 of the Excel file, A Illustrations.xls, contains 60 months of returns
for IBM and the market portfolio during the sample period January 2000 through
December 2004. Test the null hypothesis that the variance of IBM’s returns is different
from the variance of the returns of the market at the .05 probability level.

Summary statistics for the return series are shown in the table below. The variance of
IBM returns is considerably larger than the variance of the market returns, so we place
IBM in the numerator. The F-statistic is 

With α = 0.05 and 59 degrees of freedom in both the numerator and the denominator, the
critical value F0.05,59,59 is 1.5400. The closest value in Table C.4A is F0.05,60,60 = 1.53.
The exact value was obtained using the Excel function

 FINV(probability,deg_freedom1,deg_freedom2)

where probability is the preset significance level, and deg_freedom1 and deg_freedom2
are the number of degrees of freedom in the numerator and denominator, respectively.
FINV(0.05,59,59) = 1.5400. Finally, Excel also has a function for computing the p-value
of an F-statistic directly. Its syntax is

FDIST (x,deg_freedom1,deg_freedom2)

where x is the sample F-statistic. As it turns out, FDIST(4.4432,59,59) = 0.0000. The
null hypothesis that the variances of the two series are equal is soundly rejected.

Month IBM Return Market Return

20000131   0.04056 –0.03977
20000229 –0.08356   0.03178
20000331   0.14842   0.05353
20041029   0.04677   0.01780
20041130   0.05203   0.04826
20041231   0.04605   0.03518

Parameter Estimates

No. of obs. 60 60
Mean 0.00408 0.00018
Standard deviation 0.10378 0.04924
Variance 0.01077 0.00242

F
0.01077 60 1–( )⁄
0.00242 60 1–( )⁄
---------------------------------------------- 4.4432= =
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Test for Autocorrelation

In the study of finance, another key property of the returns (besides normality)
is independence—past returns carry no information regarding current and
future returns. The usual way of testing for whether returns are independently
distributed is by calculating the sample autocorrelation function

(A.39)

where T is the number of observations in the time series. If the returns are inde-
pendent, the lag k autocorrelation should be zero. To test whether a particular
value of the autocorrelation function ρk is equal to zero, we use a Bartlett test.
Under the null hypothesis that the time series is white noise, the sample autocor-
relation coefficients are approximately normally distributed with mean zero and
standard deviation . For the S&P 500 monthly returns in our sample, the
autocorrelation function is: 

It is computed using the OPTVAL function

OV_STAT_AUTOCORREL(k, x, out)

where k is the maximum number of lags, x is the time series, and out is an indi-
cator variable set equal to 0 if the output array is to be returned horizontally
and 1 if the array is to be returned vertically. With 163 monthly returns in the
time series, the standard error is . In other words, the abso-
lute magnitude of an autocorrelation coefficient would have to be greater than
0.07833 × 2 = 0.15665 in order to sure that the autocorrelation coefficient is
not zero with 95% confidence. The sample autocorrelation function indicates
that none of the true coefficients are different from zero. Box and Pierce devel-

Hypothesis Test

F-statistic (by hand) 4.4432
df(num,den) 59 59
finv 1.5400
Probability 0.0000

Lag 1 2 3 4 5

Autocorrelation –0.0785 –0.0409 0.0314 –0.0570 –0.0180
Standard deviation   0.0783   0.0783 0.0783   0.0783   0.0783

ρ̂k

Xt X–( ) Xt k+ X–( )
t 1=

T k–

∑

Xt X–( )
2

t 1=

T k–

∑
--------------------------------------------------------------=

1 T⁄

1 163⁄ 0.07833=
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oped a Q statistic for testing the joint hypothesis that all the autocorrelation
coefficients are zero, that is,

(A.40)

where Q is (approximately) distributed as chi-square with K degrees of freedom.
The OPTVAL function

OV_STAT_BOX_PIERCE (k, x, out)

computes the chi-squared statistics for different values of k. The results for the
S&P 500 monthly returns are 

The levels of the Q-statistic are well below their critical levels at the 90% confi-
dence level, so we cannot reject the hypothesis that all the true autocorrelation
coefficients are equal to zero.

Central Limit Theorem

Earlier we stated that the parameters of the distribution are certain if the entire
population is known (i.e., n = N). Intuitively, therefore, this must mean that, as
the sample size grows large, the estimate of the mean should converge on the
population mean. This intuition, which holds for probability distributions with
finite means, can be summed up formally as:

The central limit theorem. If the random variable X has mean µX and
variance , then the sampling distribution of  becomes approxi-
mately normal with mean µX and variance  as n increases.

In other words, for sufficiently large sample sizes, we can rely on the normality
assumption, which greatly simplifies statistical tests. The central limit theorem
will prove useful in assessing the performance of option trading strategies in
Chapter 10.
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1

 

he purpose of this appendix is to provide a quick and informative review of
ordinary least squares (OLS) regression. OLS regression is used in almost

every field imaginable, from anthropology to zoology. In the field of finance, the
most common application of OLS regression is estimating betas for individual
stocks. In the finance subfield of derivatives risk management, OLS regression is
frequently used in identifying risk-minimizing hedge ratios. In this appendix, we
review OLS regression by discussing topics such as regression estimation, test-
ing, and prediction using both simple and multiple regression models. To avoid
unnecessary repetition, the content of Appendix A, “Elementary Statistics,” is
assumed to be background knowledge.

 

OBJECTIVES

 

After reviewing this appendix, you should be able to: 

 

1.

 

State and understand the four OLS regression assumptions. 

 

2.

 

Estimate a simple OLS regression model from summary statistics. 

 

3.

 

Interpret OLS regression and ANOVA results from a statistical software pack-
age. 

 

4.

 

Perform hypothesis tests and construct confidence intervals for individual
regression coefficients.

 

5.

 

Perform hypothesis tests on an entire model. 

 

6.

 

Calculate and interpret the 

 

R

 

-squared and adjusted 

 

R

 

-squared for a model.

 

7.

 

Choose from among a collection of models based on explanatory power and
parsimony.

 

8.

 

Recognize when model assumptions are violated and understand the conse-
quences.

 

1 

 

I am grateful to Jon Stroud for providing assistance in developing this appendix. Nick Bollen,
Emma Rasiel, and Tom Smith also provided valuable comments and suggestions. 

T
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SIMPLE LINEAR REGRESSION 

 

The goal of regression is to learn about a relation between variables. Pay atten-
tion to the adjectives used when describing the word regression. They provide
important information regarding the structure of the model being investigated.
In this section, we focus on simple linear regression. The term 

 

simple

 

 refers to
the fact that we have only 

 

two

 

 variables, 

 

X

 

 and 

 

Y

 

, and the term 

 

linear

 

 refers to
the fact that the relation between the variables will be represented by a 

 

line

 

. In
contrast to simple linear regression, 

 

multiple

 

 regression involves more than two
variables, and 

 

nonlinear

 

 regression involves a relation between 

 

X

 

 and 

 

Y

 

 that is
not a straight line.

In simple linear regression, 

 

X

 

 appears on the right-hand side of the equation
and is called the 

 

independent variable.

 

 Other names for it include 

 

explanatory
variable

 

 and 

 

predictor variable

 

. On the left-hand side is 

 

Y

 

, the 

 

dependent vari-
able

 

 or 

 

response variable

 

. In regression, 

 

X

 

 is assumed to be nonrandom (taking
on values that are fixed by the investigator). 

 

Y

 

 depends linearly on 

 

X

 

 but also
has a random component, 

 

ε

 

. Thus the relation between 

 

X

 

 and 

 

Y

 

 in a simple lin-
ear regression is written

 

Y

 

i

 

 = 

 

β

 

0

 

 + 

 

β

 

1

 

X

 

i

 

 + 

 

ε

 

i

 

(B.1)

where 

 

β

 

0

 

 represents the intercept of the regression line, 

 

β

 

1

 

 represents the slope,
and 

 

i

 

 represents the 

 

i

 

th pair of observations of the variables 

 

X

 

 and 

 

Y

 

. We have
assumed only that the relation between 

 

X

 

 and 

 

Y

 

 is linear and that the values of

 

X 

 

 are nonrandom or fixed.
The remaining regression assumptions pertain to the error term, 

 

ε

 

i

 

. First, the
expected value of 

 

ε

 

i

 

 is 0 and the variance of 

 

ε

 

i

 

 is constant across observations,
that is, 

 

E

 

(

 

ε

 

i

 

) = 0 and 

 

Var

 

(

 

ε

 

i

 

) = 

 

σ

 

2

 

. Note that, if 

 

X

 

 is nonrandom, the error term
will have constant variance if and only if the response variable 

 

Y

 

 has constant
variance. The constant variance assumption is commonly referred to as

 

homoscedasticity

 

 and is the basis for 

 

ordinary

 

 least squares regression estima-
tion. “Ordinary” applies because every observation of 

 

Y

 

i

 

 has equal variance and
is therefore given equal weight in the estimation of the model. In contrast, if the
response variable 

 

Y

 

i

 

 and the error term 

 

ε

 

i

 

 have nonconstant variance (i.e., are

 

heteroscedastic

 

), a 

 

weighted

 

 least squares approach is appropriate. This allows
observations with smaller variances to be given more weight than those with
larger variances.

The second assumption governing the residual error term is that the errors
are independent of one another, that is, Cov(

 

ε

 

i

 

,

 

ε

 

j

 

) = 0 for 

 

i

 

 

 

≠

 

 

 

j

 

. Violation of this
assumption induces 

 

autocorrelation

 

 or 

 

serial correlation,

 

 a problem frequently
encountered in time-series data. Finally, the residual errors are assumed to be
normally distributed. Because the 

 

X’

 

s are nonrandom, this assumption implies
that the response variable 

 

Y

 

 is also normally distributed. 
The OLS regression assumptions are summarized in the following statement:

   (B.2)Yi β0 β1Xi εi+ += εi
iidN 0 σ2,( )∼
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The relation between 

 

X 

 

and 

 

Y

 

 is linear and the values of 

 

X

 

 are fixed. The
expression, , means that the errors are independent and identically
distributed (

 

iid

 

), where 

 

N

 

(0,

 

σ

 

2

 

) signifies the distribution is normal with mean 0
and variance 

 

σ

 

2

 

.

Before moving on to model estimation, it is important to clarify one com-
monly misinterpreted point about linear regression. “Linear” refers to the fact
that the regression equation is linear in the parameters, and not necessarily in
the variables. Consider, for example, a nonlinear model such as

On face appearance, linear regression seems inappropriate. Such a model, how-
ever, is 

 

inherently linear

 

 in the sense that it may be re-specified as the linear model,

Nonlinear models that can be re-specified into a linear form using only a trans-
formation of the 

 

X

 

 or 

 

Y

 

 variables are still considered to be linear.

 

Ordinary Least Squares (OLS) Estimation 

 

Under the condition that our data satisfy the three assumptions of OLS regres-
sion, we can proceed by estimating the model in the following way. First, we
denote the estimated regression line by

where  represents our best guess for the true intercept 

 

β

 

0

 

,  is our best guess
for the population slope 

 

β

 

1, and  is the predicted value of Y that falls along
the regression line. In order to calculate this line, all we need to do is choose val-
ues of  and . This is done here using a method known as ordinary least
square (OLS) estimation. As noted earlier, “ordinary” arises because every
observation is assumed to have equal variance and is therefore given equal
weight in the estimation of the model.2 “Least squares” is used because we will
choose the line that minimizes the squared distances between the observed and

OLS Regression Assumptions
1. The relation between X and Y is linear.
2. The error term ε is independent, identically (normally) distributed with mean

0 and constant variance σ2.

2 The application of regression techniques sometimes requires weighting observations un-
equally. For an explanation of weighted least squares regression, see Pindyck and Rubinfeld
(1998).

εi
iidN 0 σ2,( )∼

Yi e
β0 β1Xi εi+ +

=

Yiln β0 β1Xi εi+ +=

Ŷ β̂0 β̂1X+=

β̂0 β̂1
Ŷ

β̂0 β̂1
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the predicted response variables. Defining the sample residual ei as , the
OLS requirement is explained in the next section.

OLS Requirement

The sum of the squared residuals, 

is minimized.
Among other things, minimizing the sum of squares errors implies that the

sum of the regression errors (and the average error, for that matter) will be
equal to zero. This means that the regression can be re-expressed in deviations
from the mean form. That is, if the mean in the regression model (B.2) is 0, the
mean value of Y is

(B.3)

where  is the mean of X. Taking the difference between the expressions, 

Expressing the deviations from the mean as  and , the
regression equation becomes

yi = β1xi + ei (B.4)

Next, the least squares estimators of β0 and β1 are identified. To do so, write
the sum of squared errors,

as

(B.5)

Yi Yi
ˆ–

ei
2

i 1=

n

∑

Y β0 β1X+=

X

Yi Y– β0 β1Xi ei β0 β1X––+ +=

β1 Xi X–( ) ei+=

yi Yi Y–= xi Xi X–=

ei
2

i 1=

n

∑

ei
2

i 1=

n

∑ yi β1xi–( )2

i 1=

n

∑=

yi
2 β1

2xi
2 2β1xiyi–+( )

i 1=

n

∑=
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Differentiating (B.5) with respect to β1, 

(B.6)

Setting (B.6) equal to 0, simplifying, and rearranging provides the least squares
estimator of the slope coefficient, that is,

(B.7)

Because the mean residual error is zero, the estimator for the intercept follows
from (B.3), that is,

(B.8)

ILLUSTRATION B.1 Estimate beta for common stock.

A common application of simple linear regression in finance is estimating a stock’s beta
coefficient or relative systematic risk.3  A stock’s beta is the slope coefficient in a regres-
sion of a stock’s return on the return of the market portfolio. Suppose you are interested
in the relation between General Electric’s (ticker symbol: GE) stock return and the return
of the S&P 500 portfolio. To learn more about the relation, you collect annual return
data for both series over the period January 1985 through December 2004. The data are
contained in the worksheet B-1 in the Excel file B Illustrations.xls. Find the OLS regres-
sion line and interpret the coefficients  and  where the dependent variable is GE’s
annual return and the independent variable X is the S&P 500 return.

The first step in applying the regression coefficient estimators (B.7) and (B.8) is to
compute the means of X and Y. Next, compute the deviations from the mean for the X
and Y variables. Denote them as x and y. Finally, compute the products of the deviations,
that is, xx, yy, and xy. The results are:

3 The theoretical importance of beta is motivated by the capital asset pricing model discussed
in Chapter 3.

d ei
2

i 1=

n

∑
dβ1

------------------ 2β1xi
2 2xiyi–( )

i 1=

n

∑=

β̂1

xiyi
i 1=

n

∑

xi
2

i 1=

n

∑
-------------------=

β̂0 Y β̂1X–=

β̂0 β̂1
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Based on these results, the estimate of the slope is

and the estimate of the intercept is

Combining results, the estimated OLS regression line is

The actual returns of GE conditional on the returns of the S&P 500 and the returns
predicted by the regression line are summarized in the figure below. The line segment rep-
resents the “best” (i.e., least squares) fit of a line drawn through the pairs of actual
returns. Note that the line segment is drawn only through the range of observed values of
the S&P 500 return. The reason is that regression is only valid over the range of the data,

Annual Returns

Year
Ending

GE
Y

S&P 500
X

Deviations from Mean Products

y x xy yy xx

12/31/1985   0.33066   0.2633   0.1268   0.1470   0.0186 0.0161 0.0216

12/31/1986   0.21803   0.1462   0.0141   0.0298   0.0004 0.0002 0.0009

12/31/1987   0.05246   0.0203 –0.1514 –0.0961   0.0146 0.0229 0.0092

12/30/1988   0.04895   0.1240 –0.1549   0.0076 –0.0012 0.0240 0.0001

12/29/1989   0.48758   0.2725   0.2837   0.1561   0.0443 0.0805 0.0244

12/31/1990 –0.08170 –0.0656 –0.2856 –0.1820   0.0520 0.0816 0.0331

12/31/1991   0.37194   0.2631   0.1680   0.1467   0.0247 0.0282 0.0215

12/31/1992   0.15068   0.0446 –0.0532 –0.0717   0.0038 0.0028 0.0051

12/31/1993   0.26017   0.0705   0.0563 –0.0458 –0.0026 0.0032 0.0021

12/30/1994   0.00252 –0.0154 –0.2014 –0.1318   0.0265 0.0406 0.0174

12/29/1995   0.45125   0.3411   0.2474   0.2247   0.0556 0.0612 0.0505

12/31/1996   0.40347   0.2026   0.1996   0.0862   0.0172 0.0398 0.0074

12/31/1997   0.50937   0.3101   0.3055   0.1937   0.0592 0.0933 0.0375

12/31/1998   0.40974   0.2667   0.2058   0.1503   0.0309 0.0424 0.0226

12/31/1999   0.53542   0.1953   0.3315   0.0789   0.0261 0.1099 0.0062

12/29/2000 –0.06041 –0.1014 –0.2643 –0.2178   0.0576 0.0699 0.0474

12/31/2001 –0.15021 –0.1304 –0.3541 –0.2468   0.0874 0.1254 0.0609

12/31/2002 –0.37653 –0.2336 –0.5804 –0.3500   0.2032 0.3369 0.1225

12/31/2003   0.30742   0.2638   0.1035   0.1474   0.0153 0.0107 0.0217

12/31/2004   0.20708   0.0899   0.0032 –0.0265 –0.0001 0.0000 0.0007

Mean   0.20390   0.1164

Total   0.0000   0.0000   0.7335 1.1895 0.5130

β̂1

xiyi
i 1=

n

∑

xi
2

i 1=

n

∑
-------------------

0.7335
0.5130
------------------ 1.4298= = =

β̂0 Y β̂1X– 0.2039 1.4298 0.1164( )– 0.0375= = =

Ŷi 0.0375 1.4298Xi+=
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that is, S&P 500 returns in the range between the sample’s minimum and maximum
returns (–0.2336,0.3411). The slope coefficient  can be interpreted as follows: for an
increase of 1% in S&P 500 return, the return on GE will change by about 1.4298%.
Stocks like GE with β1 < 1 are called aggressive stocks because they do better than the
market when the market goes up, and worse than the market when the market goes
down. Stocks with  are called defensive stocks for the opposite reasons.

Hypothesis Tests for Individual Regression Parameters

After a model has been fitted, we may wish to test whether the independent vari-
able has a significant effect on the response variable. This can be done by testing
the hypothesis that the parameter β1 equals zero. If the slope of the regression
line is zero, this implies that there is no linear relation between X and Y; in this
case, the “true” regression line is , and we are just as well off using
the sample mean, , to predict future Y’s. A population slope not equal to zero
implies that the variables are somehow linearly correlated. A regression line with
slope greater than zero means that X has a positive effect on Y, and one with a
downward slope implies a negative relation between the two variables. We can
test for any of these relations using the data collected in our sample.

Suppose we are interested in learning about a relation between two vari-
ables. The variables are believed to be linearly related, but it is not known
whether the relation is negative or positive. A two-tailed hypothesis test can be
used to check whether the population slope is equal to or unequal to zero. (If we
had an idea that the slope was either positive or negative, then we would use a
one-tailed test). But before any testing is done, we must preset a desired level of
the test, denoted by α. In our case, α represents the probability of incorrectly
concluding that the two variables are related in some linear manner (β1 ≠ 0),
when in fact they are not (β1 = 0). A researcher can formalize these possibilities
by specifying two different hypotheses: a null hypothesis, denoted H0, and an
alternative hypothesis, denoted H1. The alternative hypothesis usually repre-
sents what the researcher is trying to prove, for example, that the variables are
related; and the null hypothesis usually refers to the status quo, or the accepted

β̂1

0.60
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0.20

0.00

–0.20

–0.40

–0.60

G
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 r
et
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n
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state of the world. So, in our example, we would choose the null hypothesis to
be H0 : β1 = 0 and the alternative as H1 : β1 ≠ 0. Thus once we have stated our
null and alternative hypotheses, specified the level of the test, and collected the
data, we can formally test our beliefs.

Based on our sample, the best guess for the “true” slope of the regression
line is . There is, however, error associated this estimate. This inaccuracy can
be quantified by the standard error of the estimate, , which is defined as 

(B.9)

where 

(B.10)

is an estimate for σ, the standard deviation of the error. Using this measure of
uncertainty, we can standardize our parameter estimate to get the test statistic,

which follows a t-distribution with n – 2 degrees of freedom. If the absolute value
of  is much larger than its standard error, then t will also grow large in abso-
lute value, indicating that β1 is different than zero. A large positive value of the
test statistic is evidence of a positive relation, whereas a large negative value of
the test statistic is a strong indication of a negative relation. Because the test sta-
tistic has a t-distribution, we can set cutoffs, or critical values, for rejecting the
null hypothesis for any specified level of significance. The table that follows gives
the rejection rules for three types of hypothesis tests of the regression line slope.
Given a probability α that a t-distributed random variable (with n – 2 degrees of
freedom) is greater than some critical value tα , the following rules apply:

Common Hypothesis Tests for the Slope of a Regression Line

Null Hypothesis Alternative Hypothesis Rejection Rule

H0: β1 = 0 H1: β1 ≠ 0 Reject H0 if 
H0: β1 = 0 H1: β1 > 0 Reject H0 if t > tα
H0: β1 = 0 H1: β1 < 0 Reject H0 if t < –tα

β̂1
s

β̂1

s
β̂1

s

xi
2

i 1=

n

∑
--------------------=

s

ei
2

i 1=

n

∑
n 2–
---------------=

t β̂1 s
β̂1

⁄=

β̂1

t tα 2⁄>
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Recall the critical t-values for different levels of α were tabulated in Table A.5 of
Appendix A. Note that the first row of the table represents a “two-tailed”
hypothesis test. Since the alternative hypothesis, β1 ≠ 0, does not specify
whether β1 is greater than or less than 0, we compare the absolute value of the t-
statistic with the critical t-value corresponding to a probability α/2, that is, α/2
in each tail of the two tails of the distribution.

We can use a similar procedure to perform hypothesis tests on the intercept.
We specify the null and alternative hypotheses involving β0, select the level of
significance, and calculate  according to the formula given above, and its
standard error using 

(B.11)

Then

is the test statistic for the null hypothesis H0 : β0 = c that the intercept is equal
to some value c. (This is more general than the decision rules for the slope. For
the slope, an investigator usually wants to ascertain whether it is equal to some-
thing other than zero. To avoid confusion, the tests of β1 assume that c is always
equal to zero.)  It should also be noted that, in a simple regression setting,
hypothesis tests for the slope are far more common than for the intercept.

ILLUSTRATION B.2 Test hypothesis that slope and intercept are zero. 

Using the return data from Illustration B.1, perform a hypothesis test of H0 : β1 = 0 ver-
sus H1 : β1 ≠ 0 at the α = 0.05 level of significance. Also test the hypothesis H0 : β0 = 0
versus H1 : β0 > 0 at the α = 0.05 level of significance.

The first step is to calculate the squared errors in the regression. Using the estimated
intercept and the slope coefficients, the errors and squared errors are as follows:

Common Hypothesis Tests for the Intercept of a Regression Line

Null Hypothesis Alternative Hypothesis Rejection Rule

H0: β0 = c H1: β0 ≠ c Reject H0 if 
H0: β0 = c H1: β0 > c Reject H0 if t > tα
H0: β0 = c H1: β0 < c Reject H0 if t < –tα

β̂0

s
β̂0

s
1
n
---

X
2

xi
2

i 1=

n

∑
---------------+=

t β̂0 c–( ) s
β̂0

⁄=

t tα 2⁄>
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Note that the sum of the errors is zero, as expected. The sum of the squared errors is 0.1408.
Next we apply (B.10) to obtain the standard error of the estimate, 

The standard error of the slope coefficient from (B.9) is 

Under the null hypothesis that the slope is zero, the test statistic, t, is

Annual Returns

Year
Ending

GE
Y

S&P 500
X

Predicted
Y e e2

12/31/1985   0.3307   0.2633   0.4140 –0.0833 0.0069
12/31/1986   0.2180   0.1462   0.2465 –0.0285 0.0008
12/31/1987   0.0525   0.0203   0.0665 –0.0140 0.0002
12/30/1988   0.0490   0.1240   0.2148 –0.1659 0.0275
12/29/1989   0.4876   0.2725   0.4271   0.0604 0.0037
12/31/1990 –0.0817 –0.0656 –0.0563 –0.0254 0.0006
12/31/1991   0.3719   0.2631   0.4137 –0.0417 0.0017
12/31/1992   0.1507   0.0446   0.1013   0.0494 0.0024
12/31/1993   0.2602   0.0705   0.1384   0.1218 0.0148
12/30/1994   0.0025 –0.0154   0.0155 –0.0129 0.0002
12/29/1995   0.4512   0.3411   0.5252 –0.0740 0.0055
12/31/1996   0.4035   0.2026   0.3272   0.0763 0.0058
12/31/1997   0.5094   0.3101   0.4809   0.0285 0.0008
12/31/1998   0.4097   0.2667   0.4188 –0.0091 0.0001
12/31/1999   0.5354   0.1953   0.3167   0.2187 0.0479
12/29/2000 –0.0604 –0.1014 –0.1075   0.0471 0.0022
12/31/2001 –0.1502 –0.1304 –0.1490 –0.0012 0.0000
12/31/2002 –0.3765 –0.2336 –0.2966 –0.0799 0.0064
12/31/2003   0.3074   0.2638   0.4147 –0.1073 0.0115
12/31/2004   0.2071   0.0899   0.1661   0.0410 0.0017

Mean   0.2039   0.1164   0.2039   0.0000
Total 0.1408

s

ei
2

i 1=

n

∑
n 2–

---------------
0.1408
20 2–
------------------ 0.0884= = =

s
β̂1

s
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2
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n
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0.0884
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---------------------- 0.1235= = =

t
β̂1

s
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-------
1.4298
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------------------ 11.5799= = =
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Since we are performing a two-tailed test at the 5% probability level, we look up the critical
t-value at a probability level of α/2 or 2.5% and 18 degrees of freedom. From Table C.3 in
Appendix C, we see that the critical value is tα/2 = 2.101. Since our sample t-statistic,
11.5799, exceeds the critical value, we can reject the null hypothesis that β1 = 0. 

The procedure for testing the null hypothesis that β0 = 0 follows a similar procedure.
The standard error of the intercept from (B.11) is

The t-statistic is therefore

Since we are testing the null against the alternative hypothesis that β0 > 0, a one-tailed
test is appropriate. From Table C.3, the critical t-value for a one-tailed test at the 5% sig-
nificance level is tα = 1.734. Since the sample t-statistic, 1.5335, is not greater than
1.734, we cannot reject the null hypothesis that the intercept is zero. 

Confidence Intervals

The idea of constructing confidence intervals is very much related to that of
hypothesis testing. Again we are usually interested in finding out whether the
independent variable in the regression has a significant effect on the dependent
variable. But this time, instead of using a test statistic and critical value, we con-
struct intervals and attempt to “pin down” the true value of a parameter and
base our inferences on that. The tools used in constructing confidence intervals
are identical to those used in hypothesis testing as previously shown.

To calculate a confidence interval for the slope of the regression line, we
need only three things: the point estimate for the parameter, the standard error
of the estimate, and the confidence coefficient that is taken from a t-distribution
with n – 2 degrees of freedom. The interval itself is just the estimate of the
parameter plus or minus some margin, which is related to the standard error of
the estimate and the selected level of confidence.  

The confidence coefficient, α, identical to the critical value used in hypothesis
testing, is based on a t-distribution with n – 2 degrees of freedom and is chosen

Confidence Intervals for the Intercept and Slope of a Regression Line

Parameter Interval Size Confidence Interval

Intercept (1 – α)%

Slope (1 – α)%

s
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by the modeler to give a specified level of confidence. Clearly, a larger interval
will yield a higher level of confidence and vice versa. The most common confi-
dence widths are 90%, 95%, and 99%. 

After the formulas above are used to construct confidence intervals for a
population parameter, one can check to see if a certain value of interest falls in
the interval. If we are testing that the independent variable has an effect on Y,
for example, we should construct a confidence interval for the slope. If zero is
contained in the interval, then the data does not give sufficient evidence that X
has an effect on Y. Conversely, if the interval does not contain zero, then there is
evidence that the two variables are related at the α level of confidence. The con-
clusions obtained from building confidence intervals will give the exact same
results as using hypothesis tests.

ILLUSTRATION B.3 Compute confidence interval for slope. 

Using the return data from Illustration B.1, compute a 95% confidence interval for β1.
Does the interval contain zero?

A 95% confidence interval for β1 is given by . The t-statistic again
comes from a t-distribution with 18 degrees of freedom. The critical t-value is 2.101. The
estimate and the standard error of β1 are as calculated above. Therefore a 95% interval is 

1.4298 ± 2.101(0.1235) = (1.1704,1.6892)

Note that the 95% confidence interval for β1 ranges from 1.1704 to 1.6892 and does not
include 0. We should not be surprised by this result since we had already concluded that
β1 is not equal to zero by virtue of a t-test. By the same logic, we also know that β1 is not
equal to 1 at the 5% probability level.

Prediction

Another reason for using ordinary least squares regression is to predict future
observations. Forecasting sales as a function of marketing expenses is an exam-
ple. Prediction can be summarized in one paragraph in the following way. Once
a linear model has been fitted using previous data, our best guess of Y (call it

) for a specified value of X (call it Xp) is

We can also quantify our uncertainty about the estimate with a prediction inter-
val. A (1 – α)% confidence interval for a new observation Yp is 
where the standard error of the prediction is

(B.12)

β̂1 tα 2⁄ s β̂1( )±
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A warning about prediction, however. The estimates and intervals for new val-
ues of Y are only valid if Xp falls within the range of the X values used in the
regression. Extrapolation must be treated with extreme caution.

ILLUSTRATION B.4 Develop stock return prediction based on market return. 

Using the return data from Illustration B.1, compute the predicted annualized rate of
return for GE assuming the return on the S&P 500 is 30%. Compute the return assum-
ing the S&P 500 return is 40%. Which predicted is more reliable, and why? Show that
your intuition is consistent with the confidence interval of each of the predictions. 

For a 30% S&P 500 return, GE’s predicted return is 

For a 40% S&P 500 return, GE’s predicted return is 

The predicted return for the 30% S&P 500 return is more believable. This is because the
40% S&P 500 return falls well outside the range of our data. The minimum and maxi-
mum S&P 500 returns in the sample are –23.36% and 34.11%, respectively.

The 95% confidence interval for each of our predictions confirms our intuition. For
the 30% S&P 500 return, the standard error of the prediction is

and the 95% confidence interval is

For the 40% S&P 500 return, the confidence interval is 

Note that we are more confident in our prediction of GE stock return (i.e., the range of
the confidence interval is 39.23%) when the S&P 500 return is 30% than we are when
the S&P 500 return is 40% and the range is 40.80%. 

Goodness of Fit

Another important aspect of regression analysis is model testing. This can be
used when trying to assess a model’s predictive power or when choosing
between two or more models. A common way to measure goodness of fit is by
decomposing the sum of squares of the data into the amount explained by the
model and the amount left unexplained. The higher the amount explained by
the model, the better the model. The decomposition is done as follows. For a
single variable Y with n observations, the total sum of squares is given by

Ŷp 0.0375 1.4298 0.30( )+ 46.64%= =

Ŷp 0.0375 1.4298 0.40( )+ 60.94%= =

sp s 1
1
n
---

Xp X–( )
2

xi
2

i 1=

n

∑
-------------------------+ + 0.0884 1

1
20
------

0.30 0.1164–( )
0.5130

----------------------------------------
2

+ + 0.0934= = =

0.4664 2.101 0.0934( )± 0.2703 0.6626,( )=

0.6094 2.101 0.0971( )± 0.4054 0.8134,( )=
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Once we have fitted a model, we obtain the fitted values, , for
each observation of X. The squared distances between these predictions and the
overall mean  give the regression or explained sum of squares,

which is the amount of the SST explained by the model. Finally, the part left
unexplained by the model, called the error or residual sum of squares is just

By Pythagorus’ Theorem, the regression and error sum of squares must add up
to the total sum of squares. This type of decomposition is closely related to
ANOVA, or analysis of variance, and is frequently used to determine how well
an estimated model fits the data. 

To illustrate, consider now a model that perfectly predicts all the data points,
i.e.,  for all i. In this case, the regression sum of squares equals the total
sum of squares and the error sum of squares equals zero—a perfect fit. On the
other hand, a model with an estimated slope  will have no predictive power
at all (because  for all i), and therefore the total sum of squares will equal
the error sum of squares, leaving the variation explained by the model as zero. 

R-Squared A commonly used indicator of regression goodness of fit is the R2 sta-
tistic. It is also referred to as the coefficient of determination and represents the
proportion of the total variation that is explained by the model. In the case of
simple linear regression, R2 is the square of the correlation between X and Y.
The  R2 is simply the ratio of the regression sum of squares (SSR) to the total
sum of squares (SST):

Since the range of SSR is 0 to SST, the range of R2 is from 0 to 1. A perfect model
fit will yield an R2 of 1, and a model with no explanatory power whatsoever gives
R2 = 0. In general, a model with a high R2 is preferred to one with a low one. 
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ILLUSTRATION B.5 Compute sums of squares and R-square. 

Using the return data from Illustration B.1, compute the total sum of squares (SST), the
regression sum of squares (SSR), and the error sum of squares (SSE) for our estimated
return prediction model. Also, compute the regression R-squared.

The table above shows the raw computations of the sums of squared errors. The sum
of the squared deviations of Yi about its mean (SST) is 1.1895, the sum of squared errors
(SSE) is 0.1408, and the regression sum of squares (SSR) is 1.0487. The regression R2 is
therefore

 or 88.17%.

Applying a Regression Program

The purpose of reviewing simple linear regression in such detail is to remove the
mystery of regression analysis.  A summary of all of the simple linear regression
estimation formulas is contained in Table B.1. In practice, all of these formulas
are preprogrammed in a number of different regression software packages.
Microsoft Excel 2003, for example, has linear regression as one of its data anal-
ysis functions. Below we illustrate the application of the regression analysis
function. 

Yi Xi yi ei

  0.3307   0.2633   0.1268 0.0161   0.4140 –0.0833 0.0069   0.2101 0.0441

  0.2180   0.1462   0.0141 0.0002   0.2465 –0.0285 0.0008   0.0426 0.0018

  0.0525   0.0203 –0.1514 0.0229   0.0665 –0.0140 0.0002 –0.1374 0.0189

  0.0490   0.1240 –0.1549 0.0240   0.2148 –0.1659 0.0275   0.0109 0.0001

  0.4876   0.2725   0.2837 0.0805   0.4271   0.0604 0.0037   0.2233 0.0498

–0.0817 –0.0656 –0.2856 0.0816 –0.0563 –0.0254 0.0006 –0.2602 0.0677

  0.3719   0.2631   0.1680 0.0282   0.4137 –0.0417 0.0017   0.2098 0.0440

  0.1507   0.0446 –0.0532 0.0028   0.1013   0.0494 0.0024 –0.1026 0.0105

  0.2602   0.0705   0.0563 0.0032   0.1384   0.1218 0.0148 –0.0655 0.0043

  0.0025 –0.0154 –0.2014 0.0406   0.0155 –0.0129 0.0002 –0.1884 0.0355

  0.4512   0.3411   0.2474 0.0612   0.5252 –0.0740 0.0055   0.3213 0.1032

  0.4035   0.2026   0.1996 0.0398   0.3272   0.0763 0.0058   0.1233 0.0152

  0.5094   0.3101   0.3055 0.0933   0.4809   0.0285 0.0008   0.2770 0.0767

  0.4097   0.2667   0.2058 0.0424   0.4188 –0.0091 0.0001   0.2149 0.0462

  0.5354   0.1953   0.3315 0.1099   0.3167   0.2187 0.0479   0.1128 0.0127

–0.0604 –0.1014 –0.2643 0.0699 –0.1075   0.0471 0.0022 –0.3114 0.0970

–0.1502 –0.1304 –0.3541 0.1254 –0.1490 –0.0012 0.0000 –0.3529 0.1245

–0.3765 –0.2336 –0.5804 0.3369 –0.2966 –0.0799 0.0064 –0.5005 0.2505

  0.3074   0.2638   0.1035 0.0107   0.4147 –0.1073 0.0115   0.2108 0.0444

  0.2071   0.0899   0.0032 0.0000   0.1661   0.0410 0.0017 –0.0378 0.0014

Total   0.0000 1.1895   0.0000 0.1408   0.0000 1.0487

yi
2 Ŷi ei

2 ŷi ŷi
2

R2 SSR

SST
----------

1.0487
1.1895
------------------ 0.8817= = =
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ILLUSTRATION B.6 Estimate simple linear regression using Excel regression routine. 

Estimate the ordinary least squares regression of GE’s stock returns on the returns of the
S&P 500 using the Microsoft Excel regression function. The return data are included in
worksheet B6 of the Excel file, B Illustrations.xls.

The first step is to click Data Analysis in the Tools menu.

From the Data Analysis dialog box, AnalysisTools list, click Regression.

When the Regression dialog box appears, enter the vector of Y observations in the Input
Y Range, and the vector X observations in the Input X Range. Click the Output Range
option button under the Output options, and then enter the location of the cell which
will be the upper left-hand corner of the output panel of results. Click OK.

The following results will appear.
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In the first table of results, note that our computations are consistent with the reported
values R2 and the standard error of the regression. The “multiple R” is simply the square
root of R2. Finally, we have not yet discussed the adjusted R2. We will do so in the multi-
ple regression analysis section that follows. It is an important statistic for deciding
between competing model specifications.

The second table is labeled ANOVA, short for analysis of variance. Like the adjusted R2,
the ANOVA results are most typically used in a multiple regression context. At this juncture,
it is sufficient to recognize only that ANOVA results are based on the sums of squares com-
putations that we discussed earlier. Note that, in our computations in earlier illustrations, we
identified the SSR, SSE, and SST values reported in the column with the heading SS.

The third table contains the parameter estimates, standard errors, and 95% confi-
dence intervals. The reported values are, again, consistent with our computations. The t-
ratios correspond to the null hypothesis that the coefficient is 0. The Excel regression
also reports the p-value of each coefficient under the null hypothesis that the coefficient
equals 0. The p-value is the probability that the sample t-statistic was observed by
chance. The p-value for the intercept term, for example, is 0.1425. This means that the
probability of the sample t-statistic, 1.5335, was observed by chance is 14.25%. Since
conventional hypothesis testing usually involves 5% or 1% cutoff levels, we cannot reject
the hypothesis that the intercept is different from 0. 

OLS REGRESSION THROUGH ORIGIN

On occasion, it is necessary to consider a simple regression whose intercept
term, for economic reasons, equals zero, that is,

Summary Output

Regression Statistics

Multiple R 0.9390
R-Square 0.8817
Adjusted R-Square 0.8751
Standard Error 0.0884
Observations 20

ANOVA

df SS MS F Significance F

Regression   1 1.0487 1.0487 134.10 0.0000
Residual 18 0.1408 0.0078
Total 19 1.1895

Coefficients Std. Error t Stat P-value Lower 95% Upper 95%

Intercept 0.0375 0.0244   1.5335 0.1425 –0.0139 0.0888
X Variable 1 1.4298 0.1235 11.5799 0.0000   1.1704 1.6892
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Yi = β1Xi + εi (B.13)

As before, the error term εi is assumed to be independent, identically (normally)
distributed with mean zero and constant variance. The least squares estimator
of β1 is 

(B.14)

which is similar to (B.7) except the levels of Xi and Yi are used rather than their
deviations from their respective means. The standard error of the estimate,

, is defined as

(B.15)

where 

(B.16)

The standard error of the prediction is

(B.17)

ILLUSTRATION B.7 Estimate simple linear regression through the origin using Excel regression 
routine. 

Estimate the ordinary least squares regression through the origin of GE’s stock returns
on the returns of the S&P 500 using the Microsoft Excel regression function. The return
data are included in worksheet B7 of the Excel file, B Illustrations.xls.
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The steps in applying the Excel regression function are the same as in Illustration
B.6, except that when the regression dialog box appears, Constant is Zero option.

The regressions results are as follows:

As the results show, the intercept term no longer appears. The estimated slope coefficient,
1.5411, is slightly greater than the slope estimated in Illustration B-6, 1.4298, since we
have forced the regression line through 0, as shown in the following figure:
 

Summary Output

Regression Statistics

Multiple R 0.9307
R Square 0.8662
Adjusted R Square 0.8136
Standard Error 0.0915
Observations 20

ANOVA

df SS MS F Significance F

Regression   1 1.0304 1.0304 122.9939 0.0000
Residual 19 0.1592 0.0084
Total 20 1.1895

Coefficients Std. Error t Stat P-value Lower 95% Upper 95%

Intercept 0 #N/A #N/A #N/A #N/A #N/A
X Variable 1 1.5411 0.1034 14.9079 0.0000 1.3248 1.7575
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TABLE B.2  Summary of simple linear regression through the origin estimation formulas.

MULTIPLE LINEAR REGRESSION

Analogous to simple linear regression models, we can fit a model using two or
more explanatory variables of the form  

Yi = β0 + β1X1i + � + βkXki + εi (B.18)

where k denotes the number of independent variables in the model, Y is the
dependent variable, X1, �, Xk are the independent variables, and β0, β1, �, βk
are the k + 1 regression coefficients. This is referred to as a multiple linear
regression model because the equation is linear in the parameters. Note that X2,
�, Xk could all be functions of X1 such as  or ln X1 and this would still be

Estimator for slope:

Standard error:

Prediction: 
Standard error:

Standard error of the estimate: 
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considered a linear model. The idea of multiple regression is that one indepen-
dent variable may not be enough to predict Y effectively, so additional variables
are added to give more explanatory power to the model.

Model Assumptions

The assumptions for multiple linear regression are essentially the same as the
five we used in simple regression model. First, the relation between X and Y is
assumed to be linear except that now there are multiple Xs, as shown in (B.18).
Second, the values of the Xs are nonrandom. In addition, we require that there
is no exact linear relation among any of the independent variables. Finally, the
error term ε is assumed to be independent and identically (normally) distributed
with mean 0 and constant variance σ2.

Estimation

Multiple linear regression models are fitted using ordinary least squares in a
similar manner to their simple regression analogues. Again, the requirement is
that the sum of squared errors (SSE) is minimized. Estimation of the parameters
in the case k > 1 involves using linear algebra and matrix inversion, so the calcu-
lations are nearly impossible to perform by hand. Luckily, most statistical soft-
ware packages have built-in estimation routines so these models can be fitted
quite easily. 

Hypothesis Tests for Individual Parameters

Once we have fit a multiple regression model, we may wish to find out whether
a particular independent variable has a significant effect on Y. We can do this by
testing the hypothesis that the corresponding parameter value is equal to zero.
The procedure for these tests is almost identical to the case of simple regression
models, except that, in a more general sense, the test statistic,

has a t-distribution with n – k – 1 degrees of freedom. Most regression software
packages automatically provide the parameter estimates, standard errors, t-
ratios, and p-values when a linear regression is performed. 

ILLUSTRATION B.8 Test difference between two means using dummy variable. 

The worksheet B8 of the Excel file, B Illustrations.xls,  contains 60 months of returns for
IBM during the period January 2000 through December 2004. In Illustration A.8 of
Appendix A, we used this data to test the null hypothesis that the mean during the first
30 months is no different than the mean return in the second 60 months. Assuming the
variances of the two samples are equal, usea dummy variable regression to perform the
same statistical test.

t β̂i s
β̂i

⁄=
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The test the difference between means using regression analysis, we must create a
dummy (or binary) variable to use as an independent variable. The construction of a
dummy variable is simple—it is set equal to either 0 or 1 depending on a particular crite-
rion. In the current illustration, we set the dummy equal to 0 during the first 30 months
and 1 during the second. We then regress the 60 months of IBM stock returns on the 60
dummy variable observations and find following results:

To interpret these results, recognize that the dummy equals 0 in the first half of the
sample. This means that the average value of the dummy variable in the first half of the
sample must also equal 0, and that the average monthly return equals the intercept term,
–0.00673, that is,

During the second half of the sample, the average value of the dummy variable is 1. Con-
sequently, the average monthly return during the second half is

Note that these values conform exactly to the results shown in Illustration A.8.
To test if there is a significant difference in the means of the two samples, we simply

use the estimated slope coefficient and its standard error. To see this, recognize that the
intercept applies to the returns over the entire 60-month sample and that the slope
applies to only the second half of the sample. This means that the slope can be inter-

Summary Output

Regression Statistics

Multiple R 0.10499
R-Square 0.01102
Adjusted R-Square –0.00603
Standard Error 0.10410
Observations 60

ANOVA

df SS MS F Significance F

Regression   1 0.00701 0.00701 0.64647 0.42466
Residual 58 0.62849 0.01084
Total 59 0.63549

Coefficients Std. Error t Stat P-value Lower 95% Upper 95%

Intercept –0.00673 0.01901 –0.35385 0.72473 –0.04477 0.03132
X Variable 1   0.02161 0.02688   0.80403 0.42466 –0.03219 0.07541

Y β̂0 β̂1X+=

0.00673– 0.02161 0( )+=

0.00673–=

Y β̂0 β̂1X+=

0.00673– 0.02161 1( )+=

0.01488=
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preted as the incremental mean return in the second half of the sample. Hence, the
reported t-ratio for the slope tests the null hypothesis that there is a difference in the
means of the two sub-periods. At t = 0.804, the p-value is 0.425 so we do not reject the
null. Note that these values are, again, identical to those we computed in Illustration A.8.

ILLUSTRATION B.9 Test stationarity of return relation using dummy variable slope-shifter.

In the regression of GE’s returns on the returns of the S&P 500, it is implicitly assumed
that the intercept and slope coefficients are constant through time. Often in such time
series, there is reason to believe that the relation has changed in some way during the
sample period, and you want to test whether it has. Test the null hypothesis that the coef-
ficient β1 is the same during the first half of the sample than the second half of the sam-
ple. The return data are included in worksheet, B9, of the Excel file, B Illustrations.xls.

The worksheet contains the returns of GE and the S&P 500. It also contains an addi-
tional variable called a dummy variable slope-shifter. Note that this variable is 0 during
the first half of the sample period, and is equal to the market return during the second
half. When we run the regression of GE’s returns on the two independent variables, the
“beta” of GE during the first half of the sample is β1 and the beta during the second half
of the sample is β1 + β2. Thus, to test the hypotheses that the slope coefficient has
changed, we perform a t-test on the slope coefficient β2. If the coefficient is not different
from 0 in the statistical sense, the null hypothesis that the relative systematic risk of GE
has not changed from the first half of the period to the second cannot be rejected.

To perform the regression in Microsoft Excel, we follow the same steps as before(see
the Regression dialog box illustrated below). The only distinction is that the in the Input
X Range, we highlight both columns C and D, which contain the two independent vari-
ables in our regression. If we click OK, the multiple regression will be performed. Before
turning to the results, however, the fact that the independent variables must be in adja-
cent columns is a limitation of the regression function in Excel. In multiple regression
problems, it is often the case that the researcher has many more variables than is neces-
sary. Having the flexibility to use, say, the second, fourth, and ninth columns of data as
independent variables without editing the file would be useful. Excel demands that you
rearrange the data so that the independent variables are in adjacent columns. For this
reason, Excel is not frequently used in academic research or other large-scale applica-
tions. For our purposes, however, it is more than adequate.
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The regression results are reported below. Turning immediately to the slope coeffi-
cient for X2, we see that the coefficient estimate is 0.1745, the t-ratio is 0.7935, and the
p-value is 0.4384. Using a 5% significance level (α = 0.05), the null hypothesis that β2 =
0 cannot be rejected. In other words, there is no reason to believe the relation between
GE’s returns and the returns of the S&P 500 has changed through time, at least with
respect to the two halves of the sample.

Confidence Intervals

In a similar vein to hypothesis testing, we can also learn about the effects of
individual explanatory variables by constructing confidence intervals. For each
of the k + 1 parameters in the model, we can obtain interval estimates using the
regression output from software packages in the following manner:

A (1 – α)% confidence interval for βi is: 

To see whether the ith explanatory variable has an effect on Y, we check for the
presence of zero in the confidence interval for βi.

Summary Output

Regression Statistics

Multiple R 0.9412
R Square 0.8859
Adjusted R Square 0.8725
Standard Error 0.0894
Observations 20

ANOVA

df SS MS F Significance F

Regression   2 1.0538 0.5269 65.9832 0.0000
Residual 17 0.1357 0.0080
Total 19 1.1895

Coefficients Std. Error t Stat P-value Lower 95% Upper 95%

Intercept 0.0421 0.0254 1.6594 0.1154 –0.0114 0.0957
X Variable 1 1.2998 0.2060 6.3102 0.0000   0.8652 1.7344
X Variable 2 0.1745 0.2199 0.7935 0.4384 –0.2895 0.6386

βi
ˆ tα 2⁄ s

βi
ˆ±
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Hypothesis Tests for Significant Overall Regression

In addition to testing whether individual explanatory variables have an effect on
Y, we may also want to check whether the model as a whole has significant pre-
dictive power. We can do this using an F-test, where the null hypothesis under
question is that all coefficients are equal to zero: H0: β1 = β2 = � = βk = 0. This
is compared with the alternative hypothesis that at least one of the coefficients is
nonzero. The test statistic here is denoted by F, which can be regarded as a sig-
nal-to-noise ratio. The signal refers to the portion of the variation explained by
the model, and the noise relates to the part left unexplained. The F-test can also
be understood by examining the following generic analysis of variance
(ANOVA) table resulting from a linear regression procedure: 

An analysis of variance table like the one above is standard output from
most software packages when a regression procedure is performed. The first col-
umn shows how the total variation of Y is decomposed: Regression, the part
explained by the model; Error, the part unexplained by the model; and, Total,
both parts put together. In the Sum of Squares column, SSR, SSE, and SST stand
for regression, error, and total sum of squares, respectively. The Degrees of Free-
dom (df) are divided up as follows: total degrees of freedom are the number of
observations minus one (which is lost because the overall mean, , is esti-
mated); degrees of freedom for the regression are equal to the number of explan-
atory variables in the model; and the difference between the two gives the
degrees pf freedom of the error. The error df is also the degrees of freedom on
which t-test for individual parameter significance is based. The Mean-Squared
Error column gives essentially the average sum of squares for each source. Note
that the mean-squared total is the unbiased estimate for the variance of Y. The
F-statistic in column five can be thought of as the signal-to-noise ratio: the
regression mean squared, SSR/k, being the signal, and the error mean squared,
SSE/(n – k – 1), as the noise. If the F-statistic gets very high, this means that the
regression is explaining a large proportion of the variance, and, if it gets quite
low, this indicates that a great deal is left unexplained by the model. Therefore
we reject the null hypothesis of a useless model if F is large enough. And for any
given level of significance, we can find the critical value of F using an F-distribu-
tion with k and n – k – 1 degrees of freedom. Critical values of the F-distribu-
tion are reported in Table C.4 of Appendix C.

ANOVA Table

Source
Sum of
Squares

Degrees of
Freedom

Mean-Squared
Error F-ratio

Regression SSR k SSR/k

Error SSE n – k – 1 SSE/(n – k – 1)

Total SST n – 1 SST/(n – 1)

SSR k⁄
SSE n k– 1–( )⁄
----------------------------------------

Y
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Prediction

For any combination of independent variables lying in the range of the observed
X’s, we can obtain point estimates and predictions intervals by using a formula
similar to the one given for the simple regression case. The only difference is
that in the standard error, which depends on the distance from the prediction
point, Xp and the mean, , we need to incorporate the fact that this should be
measured in k-dimensional space. However, most statistical software packages
provide this output, so again no matrix algebra is necessary.

Model Selection and Goodness of Fit

R-Squared and Adjusted R-Squared Just as for a simple regression, goodness-of-fit analy-
sis for multiple regression is commonly based on the sum of squares decomposition.
The coefficient of determination, R2, is widely used because of its ease of interpreta-
tion. R2 can be quite misleading, however, because it increases monotonically with
k. In other words, as each additional independent variable is added to the model, the
coefficient of determination must either increase or remain the same. This becomes a
problem when extraneous variables are included in the model solely to boost the
value of R2, ignoring scientific or statistical indications that they do not belong. Par-
simony, or economy of explanation, is of great value to an investigator because it
greatly eases the burden of understanding and interpreting the model. Therefore, we
commonly use a related statistic, the adjusted-R2, to take into account the size of the
model when assessing goodness of fit in a multiple regression. 

The adjusted-R2, denoted by , is given by the formula,

(B.19)

where k is the number of independent variables in the model. We can see that the
adjusted-R2 is always less than or equal to R2. (It only equals R2 when the model
has only an intercept.) It is also possible for  to be negative. The advantage of
the adjusted-R2 is that it penalizes the model for including variables that do not
provide information about Y. Note that, for two models with the same R2 but dif-
ferent k, the  will be larger for the smaller model. This is intended to ensure
that the issue of parsimony is addressed in the model selection process.

ILLUSTRATION B.10 Test purchasing power parity.

Purchasing power parity (PPP) is a simple arbitrage relation that says the price of a com-
modity or security in one country equals the price of the same commodity or security in
another after adjusting for the rate of exchange in the currency. Suppose we are consider-
ing the price of a stock index in euros, SEURO, and the price of the same index in USD,
SUSD. The PPP relation is

SEUR,t = SUSD,t × SEURO/USD,t (a)

X

R2

R2 1
Var e( )
Var Y( )
------------------– 1

SSE n k– 1–( )⁄
SST n 1–( )⁄

----------------------------------------– 1 1 R2
–( )

n 1–

n k– 1–
----------------------⎝ ⎠

⎛ ⎞–= = =

R2

R2
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where SEURO/USD is the price in Euros for one USD. Since the equation is nonlinear, we
cannot test it directly using OLS regression. PPP is, however, intrinsically linear. Taking
the natural logarithm of both sides, we get

ln(SEUR,t) = ln(SUSD,t) + ln(SEUR/USD,t) (b)

To avoid issues of nonstationarity (see Chapter 5), the logged PPP relation is usually
tested in differenced form. Since the differenced in logged prices is a continuous return,
for example,

REUR,t ≡ ln(SEUR,t /SEUR,t–1) ≡ ln(SEUR,t) – ln(SEUR,t–1) (c)

we can test PPP by running the OLS regression,

REUR,t = β0 + β1RUSD,t + β2REUR/USD,t + εt (d)

The worksheet B10 in the Excel file B Illustrations.xls contains the monthly returns of the
DAX 30, the S&P 500, and the EUR/USD exchange rate over the period January 2000
through January 2006. The DAX 30 is a diversified portfolio of German stocks, and the
S&P 500 is a diversified portfolio of U.S. stocks. Use the returns on these portfolios to
proxy for the returns on equities in each country. Test the PPP relation.

The regression results are as follows:

These results are interesting in a number of respects. First, note that the adjusted R-
square is 60.59%. This means that the S&P 500 and exchange rate returns explain
60.59% of the variance in the DAX 30 returns. Second, note that both slope coefficients
are significantly different from 0 at the 5% level. Indeed, both coefficients are significant
at the .5%. This means both regressors have a significant effect on the dependent vari-
able. Third, we are reject the joint hypothesis that β1 = 0 and β2 = 0. The F-statistic is

Summary Output

Regression Statistics

Multiple R 0.7855
R-Square 0.6170
Adjusted R-Square 0.6059
Standard Error 0.0452
Observations 72

ANOVA

df SS MS F Significance F

Regression   2 0.22752 0.11376 55.57159 0.00000
Residual 69 0.14125 0.00205
Total 71 0.36879

Coefficients Std. Error t Stat P-value Lower 95% Upper 95%

Intercept –0.00087 0.00535 –0.16196 0.87181 –0.01154 0.00981
X Variable 1   1.29608 0.12626 10.26480 0.00000   1.04419 1.54797
X Variable 2   0.53488 0.18234   2.93332 0.00455   0.17111 0.89864
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55.57, and its p-value is less than 0.000005. Fourth, the intercept term is not signifi-
cantly different from 0. This is not unexpected. Comparing the regression equation (d)
with the logged PPP relation (b), it should be obvious that expected values of the coeffi-
cients are: β0 = 0, and β1 = β2 = 1.

This last observation is somewhat discomforting. Although we have shown that the
slope coefficients are different from 0, a test of PPP requires that we test the null hypoth-
esis that the coefficients β1 and β2 are equal to 1. Performing t-tests on these hypothesis
also rejects these hypotheses, so, technically, the PPP relation is rejected. 

The most likely reason that we reject PPP is that the DAX 30 and S&P 500 stock
indexes are not perfect substitutes. The DAX 30 consists of only 30 high market capital-
ization stocks and is not particularly well-diversified. The S&P 500, on the other hand, is
well-diversified and accounts for more than 70% of the total market value of all stocks
traded in the U.S. What the regression results do show, however, is that the rate of return
on the DAX does systematically covary with U.S. stock return (its beta is 1.66) and with
change in the EUR/USD exchange rate.

Specification Errors

Implicit in the specification of the multiple regression model (B.13) are the
assumptions that we know the identity of all of the k relevant explanatory vari-
ables, and that their relation with the dependent variable is linear. But, since
regression is by its nature exploratory, we need to be concerned about the “cor-
rectness” of our specification. What impact does failing to include a relevant
explanatory variable have on estimation? Along the same line, what is the effect
of including an explanatory variable that does not belong in the regression
model? Finally, what is the effect of estimating a linear relation when the actual
relation is nonlinear? We address each of these issues in turn.

Omitting Relevant Explanatory Variables Failing to include a relevant explanatory vari-
able can have serious implications. To see this, assume that the “true” model is

(B.20)

where the variables are expressed as deviations from their means. Now suppose
that, instead of estimating (B.20), we estimate 

(B.21)

What are the implications?
We know from our discussion of simple linear regression that the estimated

slope in (B.21) is

(B.22)

yi β1x1i β2x2i εi+ +=
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Substituting (B.20) for yi, we obtain

(B.23)

Since X1 is fixed and the expected value of the error is 0, the expected value of
the estimated slope is

(B.24)

This means that, in general, the estimated slope parameter in (B.21) will be
biased. The direction of the bias depends on the product of β2 and the covari-
ance between the independent variables.  If β2 and the covariance are both posi-
tive, the estimated slope will be upward biased.  The intuition for this is that the
estimated slope picks up not only the co-variation of yi with x1i but also some of
the co-variation of yi with x2i. Only in the event that the correlation between
the independent variables is zero will the estimated slope be unbiased.

The standard error of the estimate will also be biased. In the case of estimat-
ing (B.21) when (B.20) is the correct model, the standard error of  will be
less than the standard error of . We thereby run the risk of rejecting the null
hypothesis that the slope parameter is 0 when in reality it is.

ILLUSTRATION B.11 Examine effect of omitted variable in regression specification. 

In Illustration B.10, we estimated a multiple regression model with the return on the DAX
30 as the dependent variable and the returns of the S&P 500 and the EUR/USD exchange
rate as the independent variables. Estimate the simple linear  regression of DAX 30 returns
on S&P 500 returns, and comment on the difference in results.

The regression results are as follows:
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Comparing these results with those of Illustration B.10 shows at least two interesting
facts. First, the adjusted R-square value falls from 60.59% to 56.31%. As noted earlier,
the adjusted R-square value is often used as a criterion for choosing among competing
models with the same dependent variable. Based on the results, the model in Illustration
B.10 is preferred. Second, the estimated slope coefficient is now 1.27685 versus 1.29608
in Illustration B.10. This is the omitted variable bias just discussed. Equation (B.24)
shows the nature of the bias. Since we know β2 is positive, the bias in (B.24) depends on
the sign of the covariance term in the numerator of the last term on the right hand side.
Since the estimated coefficient falls in value from 1.29608 to 1.27685 (i.e., the bias is neg-
ative), we can deduce that the correlation between the returns of the S&P 500 and the
EUR/USD exchange rate is negative. Indeed, if we compute the correlation matrix for the
three return series, we find that:

The correlation between the returns of the S&P 500 and the EUR/USD is negative, as
expected. Its level is only  –0.0519, thus the degree of bias is modest. The higher the cor-
relation, the greater the bias. The only circumstance in which no bias occurs is if the cor-
relation is 0—a highly unlikely event. 

Summary Output

Regression Statistics

Multiple R 0.7545
R Square 0.5692
Adjusted R Square 0.5631
Standard Error 0.0476
Observations 72

ANOVA

df SS MS F Significance F

Regression   1 0.20990 0.20990 92.49113 0.00000
Residual 70 0.15886 0.00227
Total 71 0.36876

Coefficients Std. Error t Stat P-value Lower 95% Upper 95%

Intercept –0.00195 0.00562 –0.34756 0.72921 –0.01317 0.00926
X Variable 1   1.27685 0.13277   9.61723 0.00000   1.01205 1.54164

DAX30 S&P 500  EUR/USD

DAX30 1
S&P 500  0.7545 1
EUR/USD 0.1791 –0.0519 1
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Including Irrelevant Explanatory Variables The effects of including an irrelevant vari-
able are much less serious. The estimated parameters of the relevant explanatory
variables remain unbiased. The only cost, so to speak, is that the standard errors
of the estimates will be larger than they should be, making it more difficult to
reject the null hypothesis of a zero slope parameter. Thus, if you reject the null
in the presence of irrelevant variables, you can be quite confident of your deci-
sion. 

Nonlinearities A separate discussion of the effects of nonlinearity is unwarranted.
Fitting a linear regression to a nonlinear relation is a special case of the omitted
variables discussed above. We can expect bias in the estimated coefficients, and
the standard errors to be smaller than appropriate. 

Multicollinearity

Multicollinearity arises when two or more variables are highly correlated with
each other. While it is possible to obtain least squares estimates of the regression
coefficients, the interpretation of the coefficients is difficult. Recall that the
interpretation of a regression coefficient is the change in Y with respect to a
change in X1, holding other factors constant. The presence of multicollinearity
means that other factors are not being held constant. If X1 and X2 are highly
correlated, a change in X1 implies a change in X2, and vice versa.

A rule of thumb states that multicollinearity is likely to be a problem if a
simple correlation between the two variables is larger than the correlation of
either or both variables with the dependent variable. Such a rule may be reason-
able when there are only two independent variables in the regression. With more
than two independent variables, however, simple correlations will not detect a
more complicated linear relation among variables. Perhaps the simplest way to
detect if multicollinearity is a problem is to examine the standard errors of the
coefficients. If several coefficients have high standard errors, and dropping one
or more variables from the equation lowers the standard errors of the remaining
variables, multicollinearity will usually be the source of the problem.  

Violations of Disturbance Assumption

OLS regression assumes that the relation between dependent and independent
variables is linear and that the error term ε is independent and identically (nor-
mally) distributed with mean 0 and constant variance σ2. These assumptions can
be violated in four ways: (1) the relation is nonlinear, (2) the error variance may
not be constant, (3) the residual errors may be correlated, and (4) the errors may
not be normally distributed. Below we discuss how to detect such violations,
explain the consequences of each violation, and suggest remedies to fix or, at
least mitigate, the effects of the violation.

Nonlinearity Plotting the relation between the Y and X variables is a useful first
step in regression analysis. Among other things, it allows us to uncover poten-
tial nonlinearities in the data. To illustrate, consider the (X,Y) points plotted in
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the figure that follows. The solid line in the figure is the “best fit” obtained from
the simple regression of Y on X, that is,

Obviously, the relation between Y and X is not linear. Where the level of X is
near 0, the level of Y tends to be below its predicted level. For levels of X
between 0 and 150, the levels of Y are above predicted, and, for levels of X
above 200, the levels are below predicted. If the model was “correct,” the (X,Y)
points should be symmetrically distributed around the fitted line. Nonlinearity is
usually revealed  through a “bowed” pattern of residuals such as seen below
(i.e., the model makes systematic errors whenever it is making unusually large
or small predictions). 

To remedy the problem, we may want to consider applying a nonlinear
transformation to the dependent and/or independent variables. In the figure
above, note that all of the values of X are positive and that the pattern of points
looks like a log transformation. We may therefore want to consider applying a
log transformation to the X variable. Another possibility to consider is adding
another regressor which is a nonlinear function of one of the other variables.
Since we have regressed Y on X, we may want to regress Y on both X and X2.
Note that, unlike the log transformation, this transformation can be applied
even when X and/or Y have negative values.

As it turns out, the relation in the above figure is intrinsically linear. The fig-
ure below shows () points as well as the regression line,
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10

8

6

4

2

0

–2

–4

–6
0 50 100 150 200 250 300 350 400

Yi β0 β1 Xiln εi+ +=



854 APPENDIX B

fitted through the pairs of coordinates. Note that the residuals are now symmet-
rically distributed around the fitted line. This gives us comfort that we have
uncovered the “correct” specification.4

Heteroscedasticity Detecting a violation of the constant variance (or homoscedas-
tic) error assumption is also facilitated by a plot of the residuals around the fit-
ted values of Y. If the residuals have a constant variance at different levels of
prediction, the error term is homoscedastic. If the residuals appear fan-shaped,
as shown in the figure on the next page, heteroscedasticity may be a problem. A
popular test for the presence of heteroscedasticity is the Goldfeld-Quandt
(1965) test. The steps are as follows: 

1. Order the data by the Xi observations.
2. Omit the c central observations.5 
3. Fit separate regressions to the first (n – c)/2 and the last (n – c)/2 observations.

Naturally, (n – c)/2 must exceed the number of parameters to be estimated.
4. Compute the ratio R = SSE2/SSE1, where SSE1 and SSE2 are the sum of squared

errors from the first and second regressions, respectively.6 Under the assump-
tion of homoscedasticity, R has an F distribution with (n – c)/2 and (n – c)/2
degrees of freedom in the numerator and the denominator, respectively. If R
exceeds the critical value reported in Table C.4 of Appendix C, we reject the
null hypothesis that the error variance is the same in both subsamples.

4 In financial economics, model specification is usually driven by theoretical considerations.
5 The power of the test depends on the choice of c. The greater the value of c, the lower the
power of the test. On the other hand, the lower the value of c, the greater the power, however,
the more likely the residual variances will move closer together.
6 As discussed in Appendix A, we place the largest SSE in the numerator. That is, the notation
implicitly assumes SSE2 > SSE1.
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With a heteroscedastic error term, ordinary least squares estimation places
greater weight on observations with large error variances than on those with
small error variances. This implicit weighting occurs because the sum of the
squared residuals associated with the large variance error terms is likely to be
substantially greater than the sum of the squared residuals associated with small
error variances. This means that, while the parameter estimates remain unbi-
ased, the standard errors of the parameter estimates will be biased.

Correcting for heteroscedasticity is possible using weighted least squares
estimation. To illustrate, suppose that the error variances in the regression,

(B.25)

vary directly with one of the explanatory variables, say, Xi,1, that is,

where C is a nonzero constant. To correct for heteroscedasticity, we multiply the
terms of the regression by the inverse of X1i, and run the regression,

(B.26)

The error term in the transformed regression model,
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now has constant variance, that is,

(B.27)

Uncovering the form of the heteroscedasticity is sometimes difficult since the
error variance may be a nonlinear function of one of the independent variables,
or it may be a function of some other variables, Z, not included in the regression
model. Standard econometric textbooks offer guidance on appropriate correc-
tion procedures.7 After the structure of the error variance is determined, how-
ever,  variable transformations in a weighted least squares framework rectifies
the problem.

Serial Correlation Violations of the error independence assumption are most often
found in time series data.8 A common method for their detection is the Durbin-
Watson (1951) test. The DW-statistic looks at the sum of squared differences
between subsequent residuals to see if they are, on average, too close together or
too far apart. The DW-statistic tests the null hypothesis of no autocorrelation
among the dependent variable against the alternative of autocorrelated data.
The test statistic is  

(B.28)

where ei is the ith time-ordered residual from the model. Note that the numera-
tor will be small when subsequent errors are similar (positively correlated) and
will be large when they tend to be far apart (negatively correlated). The level of
the DW-statistic is approximately 2(1 – ρ), where ρ is the first-order autocorre-
lation of the residuals. Thus, a DW-statistic close to 2 indicates the residuals are
uncorrelated. 

In using the Durbin-Watson test of the null hypothesis that there is no serial
correlation in the residuals, we must use a table of critical values such as those
reported in Table C.5 of Appendix C for the five percent significance level. The
rules for applying these values are as follows. If we are checking for positive
autocorrelation, the null hypothesis is rejected if DW < dl and is accepted if DW
> du. Between dl and du the results are inconclusive. For a simple linear regres-
sion (k = 2) using 60 observations (n = 60), the critical values are dl = 1.51 and
du = 1.65. Thus, if DW < 1.51, we reject the null hypothesis of no serial correla-

7 See, for example, Pindyck and Rubinfeld (1998, pp. 148–159).
8 Any serial correlation in the errors of a cross-sectional regression can be eliminated by shuf-
fling the order of the data.
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tion in favor of the alternative hypothesis that there exists positive autocorrela-
tion, and, if DW > 1.65, we accept the null. If 1.51 < DW < 1.65, we cannot say
one way or the other. If we are checking for negative autocorrelation, we view
matters from an endpoint of 4 rather than an endpoint of 0. That is, the null
hypothesis is rejected if DW > 4 – dl and is accepted if DW < 4 – du. Between 4
– du and 4 – dl the results are inconclusive. For a simple linear regression (k = 2)
using 60 observations (n = 60), the critical values are 2.35 and 2.49. If DW >
2.49, we reject the null hypothesis of no serial correlation in favor of the alter-
native hypothesis that there exists negative autocorrelation, and, if DW < 2.35,
we accept the null. The results are inconclusive where 2.35 < DW < 2.49.

The presence of serial correlation does not bias the parameter estimates. It
does, however, affect the standard errors of the estimates. In the presence of
positive serial correlation, the standard errors will be smaller than they should
be, potentially causing us to reject the null when we should not. To understand
possible correction procedures, consider the nature of the problem. Under the
assumption the error term is serially correlated, the regression model is

(B.29)

where

(B.30)

ρ is the first-order serial-correlation, and υt is normally distributed with zero
mean and constant variance and is independent of other errors through time.
Since equation (B.29) holds for all time periods, we can write 

(B.31)

Multiplying (B.31) by ρ and subtracting it from (B.29), we get

(B.32)

where the asterisks denote generalized differences. The variable , for exam-
ple, is defined as . Since the error term in (B.32) is indepen-
dent through time, the standard errors of the regression model (B.32) will be
unbiased.

To implement the correction procedure, we need to estimate ρ. One simple
procedure, called the Hildreth-Lu (1960) procedure, is to set ρ to a grid of dif-
ferent values between 0 and 1 (e.g., 0, 0.1, 0.2, …, 1) and estimate (B.32) for
each assumed value. Based upon the regression results, we choose the value of ρ′
that produces the lowest sum of squared errors, and then set up a new, more
refined grid that searches in the neighborhood of ρ′ to find a new value that min-
imizes the sum of squared errors. The procedure is repeated until the desired
degree of accuracy is attained. Another approach, called the Cochrane-Orcutt
(1949), is to estimate ρ from the residuals of (B.29), that is,

Yt β0 β1X1t � βkXkt εt+ + + +=

εt ρεt υt+=

Yt 1– β0 β1X1t 1– � βkXkt 1– εt 1–+ + + +=

Yt
* β0 1 ρ–( ) β1X1t

* � βkXkt
* νt+ + + +=

X1t
*

X1t
* X1t ρX1t 1––=
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(B.33)

and then use the estimated serial correlation in the estimation of the generalized
difference model (B.32). Using the estimated parameters from (B.32), we gener-
ate a new set of residuals from the original regression equation (B.29), re-esti-
mate (B.33) to obtain a new estimate of ρ, and then reestimate (B.32). The
procedure is repeated iteratively until the new estimates of ρ differ from the old
ones by, say, 0.005 or less, or after 10 to 20 iterations.

Nonnormality A violation of the normality assumption is particularly serious. The
reason is simple. Since parameter estimation is based on the minimization of the
sum of squared errors, a few extreme observations can exert a disproportionate
influence on the parameter estimates and their standard errors. One way to test
for normally distributed errors is to use a normal probability plot of the residu-
als. A normal probability plot is a plot of the fractiles of error distribution ver-
sus the fractiles of a normal distribution having the same mean and variance. If
the distribution is normal, the points on this plot should fall close to the diago-
nal line. A “bow-shaped” pattern of deviations from the diagonal indicates that
the residuals have excessive skewness (i.e., they are not symmetrically distrib-
uted, with too many large errors in the same direction). An “S-shaped” pattern
of deviations indicates that the residuals have excessive kurtosis (i.e., there are
either two many or two few large errors in both directions). 

Violations of normality often arise either because (1) the distributions of the
dependent and/or independent variables are nonnormal, and/or (2) the linearity
assumption is violated. In such cases, a nonlinear transformation of variables
might cure both problems. In some cases, the problem with the residual distri-
bution is mainly due to one or two very large errors called outliers. Outliers
should be scrutinized closely. If they are merely errors or if they can be
explained as unique events not likely to be repeated, you may have cause to
remove them. 
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C

 

Statistical Tables

 

he appendix includes statistical tables that are commonly used in testing
hypotheses and building confidence intervals. In order of appearance, the

tables are:

TABLE C.1A: Area under standard normal distribution from minus infinity to

 

a

 

 for values of 

 

a 

 

< 0.

TABLE C.1B: Area under standard normal distribution from minus infinity to

 

a

 

 for values of 

 

a

 

 > 0.

TABLE C.2: Critical values of the chi-square (

 

χ

 

2

 

) distribution for given lev-
els of probability that the 

 

χ

 

2

 

 will exceed table entry. 

TABLE C.3: Critical values of the 

 

t

 

-distribution for given levels of probabil-
ity that the 

 

t

 

-value will exceed table entry. 

TABLE C.4A: Critical values of the 

 

F

 

-distribution for 5% probability level (

 

α

 

= .05) that the 

 

F

 

-statistic will exceed table entry. 

TABLE C.4B: Critical values of the 

 

F

 

-distribution for 1% probability level (

 

α

 

= .01) that the 

 

F

 

-statistic will exceed table entry. 

TABLE C.5: 5% significance points of 

 

d

 

l

 

 and 

 

d

 

u

 

 for Durbin-Watson test sta-
tistic.

T
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TABLE C.1A  

 

Area under standard normal distribution from minus infinity to 

 

a

 

 for values of

 

a 

 

< 0.

 

a

 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 

–3.0 0.0013 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018

–2.9 0.0019 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025

–2.8 0.0026 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034

–2.7 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045

–2.6 0.0047 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060

–2.5 0.0062 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080

–2.4 0.0082 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104

–2.3 0.0107 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136

–2.2 0.0139 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174

–2.1 0.0179 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222

–2.0 0.0228 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281

–1.9 0.0287 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351

–1.8 0.0359 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436

–1.7 0.0446 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537

–1.6 0.0548 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655

–1.5 0.0668 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793

–1.4 0.0808 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951

–1.3 0.0968 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131

–1.2 0.1151 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335

–1.1 0.1357 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562

–1.0 0.1587 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814

–0.9 0.1841 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090

–0.8 0.2119 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389

–0.7 0.2420 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709

–0.6 0.2743 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050

–0.5 0.3085 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409

–0.4 0.3446 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783

–0.3 0.3821 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168

–0.2 0.4207 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562

–0.1 0.4602 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960
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TABLE C.1B

 

Area under standard normal distribution from minus infinity to 

 

a

 

 for values of 

 

a

 

> 0.

 

a

 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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TABLE C.2  

 

Critical values of the chi-square (

 

χ

 

2

 

) distribution for given levels of probability
that the 

 

χ

 

2

 

 will exceed table entry. 

 

Using a significance level of 

 

α

 

 = 0.05,  the critical chi-
square value assuming 10 degrees of freedom  is 18.31, that is, the probability that a
drawing from a chi-square distribution with 10 degrees of freedom will exceed 18.31 is 5%.

 

Degrees
of

Freedom

Probability of a Value at Least as Large as the Table Entry

0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

 

    1   0.0000   0.0002   0.0010   0.0039     0.0158     2.71     3.84     5.02     6.63     7.88

    2   0.0100   0.0201   0.0506   0.1026     0.2107     4.61     5.99     7.38     9.21   10.60

    3   0.0717   0.1150   0.2160   0.3520     0.5840     6.25     7.81     9.35   11.34   12.84

    4   0.2070   0.2970   0.4840   0.7110     1.0600     7.78     9.49   11.14   13.28   14.86

    5   0.4120   0.5540   0.8310   1.1500     1.6100     9.24   11.07   12.83   15.09   16.75

    6   0.6760   0.8720   1.2400   1.6400     2.2000   10.64   12.59   14.45   16.81   18.55

    7   0.9890   1.2400   1.6900   2.1700     2.8300   12.02   14.07   16.01   18.48   20.28

    8   1.3400   1.6500   2.1800   2.7300     3.4900   13.36   15.51   17.53   20.09   21.95

    9   1.7300   2.0900   2.7000   3.3300     4.1700   14.68   16.92   19.02   21.67   23.59

  10   2.1600   2.5600   3.2500   3.9400     4.8700   15.99   18.31   20.48   23.21   25.19

  11   2.6000   3.0500   3.8200   4.5700     5.5800   17.28   19.68   21.92   24.72   26.76

  12   3.0700   3.5700   4.4000   5.2300     6.3000   18.55   21.03   23.34   26.22   28.30

  13   3.5700   4.1100   5.0100   5.8900     7.0400   19.81   22.36   24.74   27.69   29.82

  14   4.0700   4.6600   5.6300   6.5700     7.7900   21.06   23.68   26.12   29.14   31.32

  15   4.6000   5.2300   6.2600   7.2600     8.5500   22.31   25.00   27.49   30.58   32.80

  16   5.1400   5.8100   6.9100   7.9600     9.3100   23.54   26.30   28.85   32.00   34.27

  18   6.2600   7.0100   8.2300   9.3900   10.8600   25.99   28.87   31.53   34.81   37.16

  20   7.4300   8.2600   9.5900 10.8500   12.4400   28.41   31.41   34.17   37.57   40.00

  24   9.8900 10.8600 12.4000 13.8500   15.6600   33.20   36.42   39.36   42.98   45.56

  30 13.7900 14.9500 16.7900 18.4900   20.6000   40.26   43.77   46.98   50.89   53.67

  40 20.7100 22.1600 24.4300 26.5100   29.0500   51.81   55.76   59.34   63.69   66.77

  60 35.5300 37.4800 40.4800 43.1900   46.4600   74.40   79.08   83.30   88.38   91.95

120 83.8500 86.9200 91.5700 95.7000 100.6200 140.23 146.57 152.21 158.95 163.65

χ10
2
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TABLE C.3  

 

Critical values of the 

 

t

 

-distribution for given levels of probability that the 

 

t

 

-value
will exceed table entry. 

 

For a one-tailed test with 10 degrees of freedom and a significance
level of 

 

α

 

 = 0.05, the critical 

 

t

 

-value 

 

t

 

α

 

 is 1.812, that is, the probability that the 

 

t

 

-value
exceeds 1.812 in absolute value is 5%. For a two-tailed test with 10 degrees of freedom and a
significance level of 

 

α

 

 = 0.05, the critical 

 

t

 

-value 

 

t

 

α

 

/2

 

 2.228, that is, the probability that the 

 

t

 

-
value is below –2.228 

 

or

 

 above 2.228 is 5%—2.5% in each tail.

 

Degrees
of

Freedom

Probability of a Value at Least as Large as the Table Entry

0.400 0.200 0.100 0.050 0.025 0.010 0.005

 

    1 0.325 1.376 3.078 6.314 12.706 31.821 63.656
    2 0.289 1.061 1.886 2.920

 

  

 

4.303

 

  

 

6.965

 

  

 

9.925
    3 0.277 0.978 1.638 2.353

 

  

 

3.182

 

  

 

4.541   5.841
    4 0.271 0.941 1.533 2.132

 

  

 

2.776

 

  

 

3.747   4.604
    5 0.267 0.920 1.476 2.015

 

  

 

2.571

 

  

 

3.365   4.032
    6 0.265 0.906 1.440 1.943

 

  

 

2.447

 

  

 

3.143   3.707
    7 0.263 0.896 1.415 1.895

 

  

 

2.365

 

  

 

2.998   3.499
    8 0.262 0.889 1.397 1.860

 

  

 

2.306

 

  

 

2.896   3.355
    9 0.261 0.883 1.383 1.833

 

  

 

2.262

 

  

 

2.821   3.250
  10 0.260 0.879 1.372 1.812

 

  

 

2.228

 

  

 

2.764   3.169
  11 0.260 0.876 1.363 1.796

 

  

 

2.201

 

  

 

2.718   3.106
  12 0.259 0.873 1.356 1.782

 

  

 

2.179

 

  

 

2.681   3.055
  13 0.259 0.870 1.350 1.771

 

  

 

2.160

 

  

 

2.650   3.012
  14 0.258 0.868 1.345 1.761

 

  

 

2.145

 

  

 

2.624   2.977
  15 0.258 0.866 1.341 1.753

 

  

 

2.131

 

  

 

2.602   2.947
  16 0.258 0.865 1.337 1.746

 

  

 

2.120

 

  

 

2.583   2.921
  17 0.257 0.863 1.333 1.740

 

  

 

2.110

 

  

 

2.567   2.898
  18 0.257 0.862 1.330 1.734

 

  

 

2.101

 

  

 

2.552   2.878
  19 0.257 0.861 1.328 1.729

 

  

 

2.093

 

  

 

2.539   2.861
  20 0.257 0.860 1.325 1.725

 

  

 

2.086

 

  

 

2.528   2.845
  21 0.257 0.859 1.323 1.721

 

  

 

2.080

 

  

 

2.518   2.831
  22 0.256 0.858 1.321 1.717

 

  

 

2.074

 

  

 

2.508   2.819
  23 0.256 0.858 1.319 1.714

 

  

 

2.069

 

  

 

2.500   2.807
  24 0.256 0.857 1.318 1.711

 

  

 

2.064

 

  

 

2.492   2.797
  25 0.256 0.856 1.316 1.708

 

  

 

2.060

 

  

 

2.485   2.787
  26 0.256 0.856 1.315 1.706

 

  

 

2.056

 

  

 

2.479   2.779
  27 0.256 0.855 1.314 1.703

 

  

 

2.052

 

  

 

2.473   2.771
  28 0.256 0.855 1.313 1.701

 

  

 

2.048

 

  

 

2.467   2.763
  29 0.256 0.854 1.311 1.699

 

  

 

2.045

 

  

 

2.462   2.756
  30 0.256 0.854 1.310 1.697

 

  

 

2.042

 

  

 

2.457   2.750
  40 0.255 0.851 1.303 1.684

 

  

 

2.021

 

  

 

2.423   2.704
  60 0.254 0.848 1.296 1.671

 

  

 

2.000

 

  

 

2.390   2.660
120 0.254 0.845 1.289 1.658

 

  

 

1.980

 

  

 

2.358   2.617

 

∞

 

0.253 0.842 1.282 1.645

 

  1.960   2.327   7.500
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TABLE C.5  5% significance points of dl and du for Durbin-Watson test statistic.

Note: n is the number of observations, and k is the number of explanatory variables including
the intercept. 
Source: J. Durbin and G.S. Watson, “Testing for Serial Correlation in Least Squares Regres-
sion,” Biometrika 38 (1951), 159–177.

k = 1 k = 2 k = 3 k = 4 k = 5

n dl du dl du dl du dl du dl du

  15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
  16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
  17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
  18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
  19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
  20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
  21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
  22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
  23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
  24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90
  25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
  26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
  27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
  28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
  29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84
  30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
  31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
  32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
  33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
  34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81
  35 1.40 1.52 1.34 1.53 1.28 1.65 1.22 1.73 1.16 1.80
  36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80
  37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
  38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
  39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79
  40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
  45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78
  50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
  55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
  60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77
  65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77
  70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77
  75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
  80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77
  85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77
  90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78
  95 0.10 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78
100 1.65 11.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78
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Glossary of
Derivatives-Related Terms

 

1

 

accrued interest

 

The amount of coupon interest income accumulated on a coupon-
bearing bond since the last coupon payment date.

 

all-or-none (AON) order

 

An order that must be filled in its entirety or not at all.

 

American option

 

See 

 

American-style option

 

.

 

American-style option

 

An option that can be exercised at any time up to and
including the expiration day.

 

amortizing swap

 

A swap whose notional principal decreases through time.

 

anticipatory hedge

 

A hedge placed in anticipation of making a transaction in spot
market on future date (e.g., a breakfast cereal producer may want to lock in the
price of the grain that he needs three months from now). 

 

arbitrage

 

The simultaneous purchase or sale of perfect substitutes at different
prices.

 

arbitrager

 

Someone who engages in arbitrage.

 

arbitrageur

 

Same as arbitrager.

 

Asian option

 

An option whose payoff is determined by the average price of asset
during specified period.

 

ask price

 

The price at which a market maker stands ready to sell.

 

asset allocation

 

The investment decision regarding how to allocate funds across
different asset categories (e.g., stocks, bonds, commodities, real estate).

 

asset-or-nothing option

 

An option whose payoff is the underlying asset contingent
on the underlying asset price being greater than or less than the critical price.

 

assignment

 

The procedure by which option seller is notified of buyer’s intention to
exercise.

 

at-the-money

 

An option whose exercise price is approximately equal to current
underlying asset price.

 

automatic exercise

 

The automatic exercise of an in-the-money option at expira-
tion made by clearinghouse.

 

average option

 

See 

 

Asian option

 

.

 

backwardation

 

A futures market in which the futures prices decline monotoni-
cally from the nearby to the distant contract months. 

 

balance sheet risk

 

The risk from balance sheet entries’ denominations in different
currencies.

 

1 
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bank discounts

 

See 

 

discounts

 

.

 

barrier option

 

An option whose payoff depends upon payoff to an ordinary
option and whether a prespecified barrier has been touched or crossed (e.g.,
down-and-in, down-and-out, up-and-in, and up-and-out options).

 

basis

 

The difference between spot price and futures price.

 

basis mispricing

 

The difference between the actual and theoretical basis.

 

basis point

 

One-hundredth of a percentage point (i.e., 0.01%).

 

basis rate swap

 

An exchange of floating-rate cash flows from two securities.

 

basis risk

 

The uncertainty in the comovements of the spot and future prices.
Equals the sum of the grade and time basis.

 

basis risk, grade

 

The uncertainty about futures prices of roughly comparable
goods.

 

basis risk, time

 

The uncertainty about the difference between the futures price and
the underlying asset’s price.

 

bear market

 

A market in which prices are falling.

 

bear spread

 

An option spread that increases in value as the underlying asset price
falls.

 

Bermuda option

 

An option that can be exercised at a fixed number of points dur-
ing the option’s life (i.e., Bermuda is between Europe and America).

 

beta

 

A measure of the risk of a security or portfolio relative to the market as a
whole.

 

bid price

 

The price at which a market maker is willing to buy immediately.

 

binary option

 

An option whose payoff is one dollar if the option expires in the
money and zero otherwise.

 

binomial model

 

An option pricing model in which the underlying asset moves dis-
cretely through the option’s life. At each point in time, the underlying asset
price moves up or down.

 

Black model

 

A model for valuing European-style forward or futures options.
Assumes that the underlying forward or futures price is lognormally distributed
at the option’s expiration. 

 

Black-Scholes model

 

A model for valuing European-style options on nondividend-
paying stocks. Assumes that the underlying stock price is lognormally distrib-
uted at the option’s expiration.

 

block trade

 

The purchase or sale of at least 10,000 shares of stock in one trade.

 

bond equivalent yield

 

A yield calculation based on a 365-day rather than a 360-
day year to allow comparison between the T-bill and other Treasury securities.

 

bond option

 

An option to buy or sell a bond.

 

borrowing portfolio

 

A portfolio with a positive weight on the risky asset(s) and a
negative weight on the risk-free asset.

 

box

 

A spread involving buying a call and selling a put at one exercise price, and
selling a call and buying a put at another. All four options have the same under-
lying asset and expiration date.

 

brand new issue

 

The first time shares in a privately owned firm are sold to the
public.

 

breakeven asset price

 

The asset price at which a derivatives position has a zero
profit.
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broker

 

A person who executes a transaction on behalf of a customer. The fee
charged by the broker is usually called a commission and is usually quoted on a
per contract basis.

 

Brownian motion

 

A stochastic process whose increments are normally distributed
with zero mean and variance proportional to time.

 

bull spread

 

A spread that increases in value as the underlying asset price rises.

 

butterfly spread

 

An option position consisting of one long call at a particular exer-
cise price, another otherwise identical long call at a different exercise price, and
two otherwise identical short calls at an exercise price between the other two.

 

buy/write

 

Buying the asset and selling a call option written on the asset simulta-
neously.

 

buyer (fixed-for-floating swaps)

 

The party that pays the fixed rate stream in a
fixed-for-floating rate swap.

 

buying collateral

 

Accepting the collateral for a loan in a repo contract.

 

calculation amount

 

The notional amount upon which the interest payment cash
flow is computed.

 

calendar spread

 

An option position that consists of buying an option with a given
expiration date and the sale of an otherwise identical option with a different
expiration date.

 

calibration

 

Empirical adjustment of model parameters to match observed market
prices.

 

call option

 

An option that provides the buyer with the right to purchase the
underlying asset at a fixed price (i.e., the exercise price) within a specified
period of time (i.e., the time remaining to expiration).

 

callable bond

 

A bond whose issuer has the right to redeem the bond prior to its
maturity date.

 

callable swap

 

An interest rate swap in which one party has the right to cancel the
swap at a certain time without any additional costs.

 

cap

 

A contract between a borrower and lender whereby the borrower is assured
that he will not have to pay more than some maximum interest rate on bor-
rowed funds. This type of contract is analogous to a series of European interest
rate call options.

 

capital asset pricing model (CAPM)

 

A model that specifies the expected return on
an asset as a function of the risk-free rate, the expected return on the market,
and the asset’s beta or systematic risk. The CAPM was originally developed by
Sharpe (1964) and Lintner (1965).

 

capital market line

 

The linear relation between expected return and risk for effi-
cient portfolios.

 

caplet

 

An interest rate cap contract for a specific instance of time.

 

cash and carry

 

A trading strategy in which an asset is purchased with borrowed
funds and a futures contract is sold. The position is held to the futures contract
expiration. 

 

cash equivalent

 

The risk-free dollar amount that offers the same level of satisfac-
tion as holding a risky position.

 

cash market

 

See 

 

spot market

 

.

 

cash settlement

 

A settlement procedure whereby derivative contracts are settled in
cash and without physical delivery.
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cash settlement

 

The difference between spot and forward price paid in cash at
expiration. See 

 

delivery settlement

 

.

 

cash-or-nothing option

 

An option whose payoff is a fixed amount of cash contin-
gent on the underlying asset price being greater than or less than the exercise
price.

 

catalytic cracking

 

The splitting of longer hydrocarbon chains into shorter, lighter
gasoline using chemical catalytes.

 

centralized market

 

A market that brings together buyers and sellers with the help
of an intermediary, thereby lowering search costs.

 

chart analysis

 

The use of graphs and charts to analyze historical prices and trading
behavior in an attempt to predict future price movements.

 

cheapest-to-deliver

 

The T-bond or T-note that, if delivered on the CBT’s T-bond or
T-note futures contract, has the smallest difference between the invoice price
and the cost of the bond. 

 

chooser option

 

An option that provides its holder with the right to pick either a
call option or a put option.

 

circuit breaker

 

A trading halt in the stock market or stock index futures market
precipitated by a large price change in the index or futures are large.

 

clearinghouse

 

A firm that guarantees the performance of both parties to a deriva-
tive contract, collects margins, and maintains recorders of the parties to all
transactions.

 

cliquet option

 

See 

 

ratchet option

 

.

 

collar

 

A contract between a borrower and lender whereby the borrower is assured
that he will not have to pay more than some maximum interest rate on bor-
rowed funds and the lender is assured that he will not have to receive less than
some minimum interest rate on lent funds. This type of contract is analogous to
a series of European interest rate call and put options.

 

commission

 

A fee paid to the broker for executing a trade. The commission is usu-
ally quoted on a per contract basis.

 

commission broker

 

A trader who executes transactions for customers. The fee for
his service is the commission rate.

 

commodity

 

A physical asset such as wheat, gold or crude oil.

 

commodity derivative

 

A derivative written on a commodity or physical asset.

 

commodity fund

 

A professionally managed fund that trades commodity futures
and option contracts.

 

commodity futures

 

A futures contract written on a physical commodity (e.g.,
wheat, gold, crude oil). 

 

Commodity Futures Trading Commission (CFTC)

 

The federal agency that regu-
lates futures and futures option trading in the United States.

 

commodity option

 

An option contract written on a physical commodity. Since few
such options exist, the term is most frequently used to describe an option on a
commodity futures.

 

commodity swap

 

A swap in which the cash flows on at least one leg are based on
a commodity price.

 

commodity trading advisor

 

An individual who specializes in offering advice
regarding the trading of futures or futures options.

 

compound option

 

An option on an option.
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compounding

 

The accumulation of value over time as earlier rate payments also
earn the same rate of return as the initial investment.

 

constant yield swap

 

An interest rate swap with two floating rate legs.

 

contango

 

A futures market in which the futures prices rise monotonically from the
nearby to the distant contract months. 

 

contingency order

 

An order that becomes effective only when a certain market
condition is met.

 

contingent-pay option An option in which the premium is paid at expiration and
only if the option being in the money.

continuous compounding A model under which interest accrues continuously,
that is, the compounding periods grow arbitrarily small.

continuous trading A market in which trading takes place continuously in time.
continuously compounded mean return The logarithm of the expected return over

a time period
continuously compounded return, mean of The expectation of the logarithm of

the returns over a time period. Identical to the continuously compounded mean
return if returns are not variable across time.

contractual obligation One whose terms cannot be altered.
convenience value The value of having a commodity in inventory for its use in

production.
convergence The reduction in the futures basis as the spot and futures prices to

come together as a futures contract approaches expiration.
conversion An arbitrage that consists of: (1) selling a call and (2) buying a syn-

thetic call.
conversion factor An adjustment factor applied to the settlement price of the

CBT’s T-bond contract that converts the price of an eligible T-bond into the
price of an 6% nominally required for delivery. Also applies to the CBT’s T-note
futures contract.

convertible bond A corporate bond that provides its holder with the right to con-
vert the bond into shares of the firm at a fixed rate.

convexity A measure of a bond’s price sensitivity to changes in the bond’s yield.
corner A market situation in which a trader or group of traders attempt to acquire

the available supply of an asset.
cost of carry The cost of holding an asset. This includes interest cost plus (less)

any costs (benefits) from holding the asset (e.g., warehouse rent and insurance
for physical assets and dividend income and coupon payments for financial
assets).

costless arbitrage A self-financing arbitrage strategy.
counterparty The opposite party in a derivative contract.
counterparty risk The risk that a counterparty will default.
coupon The periodic (usually semiannual) interest payment on a coupon-bearing

bond.
coupon bond Same as coupon-bearing bond.
coupon rate The stated interest rate on a coupon-bearing bond.
coupon swap See fixed-for-floating rate swap.
coupon-bearing bond A bond that has periodic coupon payments as well as repay-

ment of principal at maturity.
covariance A statistical measure of the association between two random variables.
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covered call Trading strategy that consists (1) buying the underlying asset, and (2)
selling a call option. Also called buy-write.

covered write Same as covered call.
crack spread A spread that consists of: (1) buying (selling) crude oil futures and

(2) selling (buying) heating oil or gasoline futures.
credit derivative An agreement concerning the transfer of credit risk between a

buyer and seller of this protection.
credit event Any event related to a credit risk realization.
credit risk The risk of a loss arising from default or credit downgrade of a coun-

terparty.
credit-linked note A composite security structured to behave like a particular ref-

erence security.
cross-hedging Any hedge where the asset being hedged is not the specific asset

underlying the futures contract.
cross-rate option A foreign currency option where the numeraire is not dollars,

but a foreign currency.
cross-rate relation Same as triangular arbitrage.
crush spread A spread that consists of: (1) buying (selling) soybean futures and (2)

selling (buying) soybean oil or soymeal futures.
crushing Processing soybeans into soybean oil and soy meal.
cubic spline interpolation An interpolation method with a piecewise-defined inter-

polant of polynomials of the third degree.
cum-dividend A stock trading before a cash dividend is paid.
currency option An option to buy currency.
currency swap A swap in which the interest payments on at least one leg are tied

to a foreign currency.
daily price limit An exchange-imposed rule governing the maximum absolute

daily price movement on a futures contract.
daily settlement Same as marking-to-market.
day order An order that is canceled if it is not filled by the end of the trading day.
day trader A trader who closes out all positions by the close of the trading day.
dealer A person or firm who makes a market in a particular asset or derivative

contract.
deep market A market in which large trades can be executed with little impact on

price.
default-free An asset with no risk of default (e.g., U.S. Treasury securities).
deferred swap Same as a forward swap.
delivery Closing a derivative contract position by delivering the asset specified in

the contract (e.g., a trader who is short wheat futures at the futures expiration
must deliver the wheat to the trader who is long the futures contract).

delivery date The date on which the underlying asset is exchanged for cash pay-
ment.

delivery month The calendar month during which delivery on a futures contract
must be made.

delivery settlement The conclusion of a forward contract through the exchange of
physical underlying commodity at set price on expiration.

delta The change in the option’s model value induced by a change in the underly-
ing asset price.
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delta-neutral A portfolio whose value is insensitive to movements in the asset
price.

derivative Same as derivative contract.
derivative contract A financial contract that specifies the terms of a future transac-

tion (or set of transactions) in some underlying asset. The term, “derivative,”
arises because the value of this contract is “derived” from the underlying asset
price.

Designated Order Turnaround (DOT) The NYSE’s system for expediting stock
transactions.

diagonal spread An option spread in which the options on the same underlying
asset differ by both time to expiration and exercise price.

digital option See binary option.
dilution factor The proportion of the firm owned by warrant holders if they exer-

cise their warrants.
discount The method of quoting U.S. Treasury bill prices.
discount bond A zero-coupon bond.
discount factor The present value of one dollar to be received at a future date.
dividend A cash payment made to common stock holder.
dividend capture A strategy of buying the stock before a dividend issue and selling

immediately after, capturing part of the dividend payment.
dividend declaration date The date of a dividend announcement.
dividend payment date The date on which a declared dividend is paid.
dividend protection A feature on an over-the-counter stock option whereby the

exercise price is reduced by the amount of the dividend on an ex-dividend day.
dividend yield The cash dividends paid on a stock or stock index expressed as a

percentage of the stock price or index level.
doubling A gambling strategy to double the amount bet each time a loss occurs.
down-and-in option An option that becomes a standard option only if the price of

the underlying asset falls below the barrier. Otherwise, it expires worthless.
down-and-out option A standard option that becomes worthless if the price of the

underlying asset falls below the barrier. Otherwise, it expires normally.
downtick A price decrease equal to one tick.
dual trading The practice of a floor trader on a futures exchange trading for a cus-

tomer as well as on his or her own account.
duration The weighted average of the maturities of the bond’s cash flows, where

the weights are the fractions of the bond’s price that the cash flows in each time
period represent. Equals the percent change in bond price for an infinitely small
change in yield.

DV01 Equals the change in bond price if the yield changes by one basis point.
dynamic hedge A hedge strategy maintained by dynamically rebalancing portfolio

weights. 
dynamic portfolio insurance Portfolio insurance by synthetically creating a put
early exercise Exercising an American option prior to the expiration date.
early exercise premium The economic value of the right to exercise an American-

style option early. Equals the difference between the value of an American-style
option and an otherwise comparable European-style option.

effective date The first day of the term of a contract made between two parties.
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effective interest rate The annualized rate of interest on an investment that has
multiple compounding periods per year.

efficient portfolio A portfolio that has the lowest risk for a given level of expected
return.

employee stock option A call option on the firm’s stock awarded to an employee.
employee stock purchase plan An award given to employees that provides the

right to buy the firm’s stock at a discount.
end-of-month option The right to deliver any day during the last remaining busi-

ness days of the month after the futures contract has ceased trading.
equity basis swap An exchange of cash flows from two different equity indices.
equity option An option on an individual stock or a stock index.
equity swap A swap in which one leg involves a series of cash flows that are linked

to equity.
errors-in-the-variables problem The effect of measurement errors in the indepen-

dent variables on the t-statistics of an OLS regression.
eta The percentage change in the option’s model value induced by a percentage

change in the underlying asset price.
Eurodollar See Eurodollar time deposit.
Eurodollar contracts Derivative contracts written on Eurodollar time deposits.
Eurodollar futures contract Futures contract written on a Eurodollar time deposit.
Eurodollar time deposit U.S. dollar deposit in a European bank. 
European Currency Unit (ECU) A composite measure of a U.S. dollar exchange

rate based on a weighted-average of European currency rates.
European option See European-style option.
European-style option An option that can be exercised only at expiration.
exchange option The right to exchange one asset for another.
exchange rate The rate at which a unit of one currency is exchanged for another.
ex-dividend date The date on which a stock trades without its current dividend

embedded in price.
exercise Refers to the option holder executing his right. A call option holder, for

example, “exercises” by notifying his broker and paying the exercise price in
cash. In return, he receives the underlying asset.

exercise price The price at which the underlying asset is bought or sold if the
option is exercised.

exotic option An option whose terms are nonstandard.
expectations theory A term structure theory under which forward rates are the

market’s expectation of future spot rates.
expected recovery value The amount a bondholder expects to receive in the event

of default.
expected utility of terminal wealth The “best guess” of an agent’s utility of wealth

after the realization of payoffs.
expected value The “best guess” of the future value of an asset.
expiration The time and date on which the derivative contract expires.
expiration date The date on which the derivative contract expires.
ex-split date The date on which the stock split takes effect.
extendible bond A bond whose holder has an option to extend its term-to-matu-

rity.
face value The principal amount of a bond repaid at the bond’s maturity.
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fair bet A gamble that has an expected outcome of zero.
fair value Same as theoretical value or model value.
feasibility Whether an outcome of an objective function is possible under the

given constraints.
fill-or-kill (FOK) order An order that must be filled immediately and in its entirety.

Failing this, the order is canceled.
financial asset See security.
financial futures A futures contract written on a financial asset (e.g., stocks,

bonds, foreign currencies).
fixed-against-floating swap See fixed-for-floating rate swap.
fixed-for-floating rate swap An exchange of a fixed rate cash flow and a floating

rate between two parties.
fixed income securities A security with prespecified interest payments (e.g., a cou-

pon-bearing bond).
flat volatility A forward volatility curve that is invariant with respect to maturity.
floating rate note A bond that pays interest based on a floating interest rate.
floating rate option An option on a floating rate cash flow such as LIBOR.
floating rate, day-count fraction The fraction of a year equal to a bond’s desig-

nated maturity.
floor A contract between a borrower and lender whereby the lender is assured that

he will not have to receive less than some minimum interest rate on lent funds.
This type of contract is analogous to a series of European interest rate put
options.

floor broker A trader who executes orders on behalf of customers on the floor of
an exchange.

floor trader A member of an exchange who trades on the floor of the exchange.
floorlet An interest rate floor contract for a specific instance in time.
foreign currency derivatives Derivative contracts written on foreign currency spot

exchange rates (e.g., forwards, futures, options, swaps).
forward commitment See forward contract.
forward contract A financial contract that requires its buyer to purchase an under-

lying asset at a fixed price on a fixed future date. No cash flows is paid until the
delivery date.

forward curve The relation between forward prices and maturity.
forward discount factor A discount factor for a cash flow at a future date.
forward exchange rate The value one unit of a currency in terms of another (e.g.,

the U.S. dollar cost of one British pound (the “USD/GBP” exchange rate) might
be 1.60  USD, while the British pound cost of a U.S. dollar (the “GBP/USD”
exchange rate) is 0.625 GBP).

forward market A market in which forward contracts are traded.
forward option An option on a forward contract.
forward premium A positive difference between the forward price and the current

spot price.
forward price The delivery price written in a forward contract.
forward rate of interest An interest rate on a loan that begins at a future date.
forward swap A forward contract to enter into a swap.
forward transaction An exchange agreement to take place in the future. See for-

ward contract.
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forward volatility The volatility of forward interest rates.
forward volatility curve The relation between forward volatilities and maturity.
forward start option An option contract that begins at a future date.
forward start swap An interest rate swap that begins at a future date.
fractional distillation The process of splitting crude oil into various hydrocarbons

such as gasoline by the boiling point properties of each compound.
frictionless markets Markets that operate without trading impediments such as

transaction costs or position limits.
front-running Trading ahead of someone who has private information or an order

size that is likely to move the current market price.
full carry The term used to describe the relation between the futures price and the

spot price when the futures prices equals exactly the spot price plus the costs of
carry.

fundamental analysis Predicting price movements based on the fundamental fac-
tors influencing an asset’s value.

Futures commission merchant A firm in the business of executing futures and/or
futures options transactions for customers.

futures contract An agreement between two parties, a buyer and a seller, to
exchange an asset or currency at a later date at price fixed today. Distinguished
from a forward contract by virtue of the futures exchange’s daily settlement
procedure (i.e., marking to market).

futures option An option to buy or sell a futures contract.
futures price The delivery price written in a futures contract.
futures-style settlement A settlement procedure used by an exchange in which

buying a contract requires no immediate cash outlay. Cash settlement is made
daily based on the change in the contract price.

gamma The change in the option’s delta induced by a change in the asset price.
gamma-neutral A portfolio whose delta is insensitive to movements in the asset

price.
gap option An option under which the payoff amount and the payoff occurrence

are determined by two separate constants.
Garman-Kohlhagen model A model for valuing European-style foreign currency

options.
GLOBEX The CME’s automated trading system in which bids and offers are

entered into a computer and executed electronically.
going long To buy.
going short To sell.
gold forward rate (GOFO) The difference between the risk-free interest rate and

the lease rate on gold.
good-till-cancelled (GTC) order An order that remains in effect until cancelled.

Usually used with stop orders or limit orders.
grade A measure of a commodity’s quality.
Greeks The sensitivities of option values to changes in its input parameters.
gross (processing) margin The difference between the revenue from and costs of

producing.
guarantee A contract in which the seller accepts the responsibility of the buyer’s

payment obligation in case of default.
guts A strangle where both the call and the put are in-the-money.
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haircut Lending a fraction of the collateral’s value in a repo to protect the lender.
hedge A trade that reduces the risk of the individual or firm’s current position.
hedge position Selling (buying) the futures while holding a long (short) position in

the underlying.
hedger A trader who attempts to reduce his risk.
hedging Reduce risk.
historical volatility Volatility estimated using historical return data.
holding period The time period over which a portfolio is held.
horizontal option spread Buying and selling call or put options with the same

exercise price but different expiration dates.
horizontal spread Same as calendar spread.
hybrid A derivatives contract that has characteristics of multiple basic derivatives.
immediate-or-cancel (IOC) order An order that must be filled immediately or it

will be canceled. IOC orders need not be filled in their entirety.
immunization A bond portfolio hedging strategy designed to immunize the bond

portfolio value from changes in the level of interest rates.
implicit volatility See implied volatility.
implied financing cost The difference between the minimum share price and the

cash advance amount in a variable prepaid forward contract.
implied forward discount factor A discount factor implied by two spot discount

factors at different maturities.
implied forward rate A forward rate of interest implied by two spot rates of differ-

ent maturities (e.g., the forward rate on a one-year loan in one year is implied
by the prevailing spot rates on a one-year and a two-year loan).

implied repo rate The cost of financing a cash-and-carry position implied by the
relation between a T-bond and a t-bond futures contract.

implied standard deviation (ISD) See implied volatility.
implied volatility The standard deviation of asset return obtained by setting the

market price of an option equal to the value given by a particular option pricing
model.

index amortized swap An interest rate swap whose notional amount is amortized
over the life of the swap.

index arbitrage The arbitrage between a stock index futures and the portfolio of
stocks that underlie the futures.

index option An option whose underlying asset is an index.
index participations Securities that behave as if they were units in a particular

stock index portfolio.
initial margin The minimum amount of money that a customer must deposit with

his or her futures broker to establish a futures or options position. Margin is
required to guarantee that a customer honor his or her contract obligations and
may be deposited in the form of interest-bearing securities.

institutional customer A customer that is a firm or a fund rather than an individ-
ual investor. See also retail customer.

interbank Business transactions conducted between banks.
interest rate cap An OTC contract that protects a borrower from floating rates

above a certain level.
interest rate collar Buying an interest rate cap and selling an interest rate floor.
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interest rate derivative A derivative security whose value depends on the level of
or the difference between interest rates.

interest rate floor An OTC contract that protects a lender from floating rates
below a certain level.

interest rate futures A futures contract on an interest rate instrument.
interest rate option An option contract on an interest rate instrument.
interest rate parity An arbitrage relation that holds between foreign currency spot

prices and interest rates. 
interest rate parity An arbitrage relation equating the forward premium or dis-

count on an exchange rate to the difference between the short-term interest
rates in the two countries.

interest rate swap A swap in which interest payments are exchanged. 
intermarket spread A spread with derivatives on different, but related, underlying

assets.
internal rate of return The interest rate that equates the present value of the future

cash flows with the market price (e.g., the yield to maturity on a coupon-bear-
ing bond).

in-the-money A call (put) option whose exercise price is less (greater) than the
underlying asset price.

intracommodity spread A spread between two futures contracts written on the
same commodity but with different delivery months.

intrinsic value The amount by which an option is in-the-money or zero, whichever
is greater.

invoice price The actual price that a T-bond futures buyer pays to the seller at
delivery.

Johnson-Shad Agreement The 1982 agreement between CFTC chairman Phillip
McBryde Johnson and SEC chairman John Shad providing trading in stock
futures.

kappa See vega.
lambda See vega.
last trade price The price of the last transaction of the day.
lattice A tree that models the movement of asset prices or interest rates through

time in discrete jumps.
law of one price The economic principle that two identical assets must have the

same price.
lease rate The interest paid on a physical asset borrowed.
leg One side of an arbitrage or spread position.
lending portfolio A portfolio with positive weight on the risk-free asset as well as

the risky asset(s).
leverage Borrowing to finance the purchase of an asset.
leveraged swap A swap whose fluctuations can exceed the notional amount.
limit down Maximum allowable daily price decrease for an exchange-traded con-

tract.
limit move Maximum allowable daily price movement for an exchange-traded

contract. 
limit order An order to be filled at a specified price or better.
limit up Maximum allowable daily price increase for an exchange-traded con-

tract.
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linear interpolation A weighted average of two endpoints as an estimation of
some point in the line segment between them.

liquid market A market in which trades can be executed quickly.
liquidity See liquid market.
liquidity preference theory A term structure theory in which long-term rates

exceed short-term rates because lender preference for short-term loans.
local Another name for a market maker on a futures or futures option exchange.
locked market A market in which trading has been suspended because prices have

reached their limit.
lognormal distribution A probability-distribution for a random variable x such

that the natural logarithm of x has a normal distribution.
London Interbank Offer Rate (LIBOR) The interest rate on a Eurodollar time

deposit.
long A position created by buying.
long hedge A hedge involving a short position in the spot market and a long posi-

tion in the futures.
long-term equity anticipation securities (LEAPS) Options on stocks and stock

indexes with times to expiration of more than one year.
lookback call option An option whose payoff at expiration is the asset price less

the minimum price that the asset has had over the life of the option.
lookback put option An option whose payoff at expiration is the maximum price

that the asset has had over the life of the option less than asset price.
lower bound An arbitrage relation governing the lowest possible price of an

option.
macrohedge A hedge of the firm’s combined risk exposure of all of its assets and

liabilities.
maintenance margin The minimum amount of money that must be kept in a mar-

gin account on any day other than the day of a transaction.
margin Funds deposited in a margin account to ensure contract performance.
margin call A demand for additional margin funds.
margining system The requirement of a good-faith collateral deposit upon enter-

ing a futures position for both parties.
market efficiency A market in which the price of an asset reflects its true economic

value.
market frictions Conditions in the market that restrict trading (e.g., trading costs,

price limits, up-tick rules).
market integrity The safe, fair, and efficient operation of markets to encourage

investor participation.
market maker Someone who stands ready to immediately buy (at the bid price) or

sell (at the ask price). 
market order An order to be filled immediately at the current market price.
market portfolio The portfolio consisting of all risky assets in the market.
market price of risk The premium investors demand to bear risk.
market segmentation theory A term structure theory based on the supply and

demand in long-term and short-term interest rate markets.
market timing A trading strategy based on predicting the directional moves in the

underlying asset price. 
market transparency See transparency.
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market-if-touched (MIT) order An order that becomes a market order if price
touches or crosses a pre-specified level.

market-indexed security A derivative contract that pays a minimum return plus a
given percentage of any change in the market above a certain level.

market-on-close (MOC) order An order to be filled close as possible to the close
of trading.

Markowitz efficiency frontier The set of risk-minimizing portfolios for a range of
return levels.

mark-to-market See daily settlement.
maturity date See expiration date.
microhedge A hedge of an individual asset’s (rather the firm’s overall) risk expo-

sure.
minimum selling price The lowest price the agent would be willing to accept for

his position.
minimum variance hedge See optimal hedge.
money market The market for short-term securities.
money market hedge A hedge by switching currencies.
money spread A spread that consists of: (1) buying one option and (2) selling an

otherwise identical option with a different exercise price.
Monte Carlo simulation A probabilistic simulation of the possible changes in the

price of an asset over a period of time.
multiple listing A security or derivative contract that is traded on more than one

exchange.
naked A long or short position with no offsetting hedge.
naked call See uncovered call.
naked option position An option position with no offsetting hedge.
natural hedge An endogenous negative correlation that reduces revenue risk such

as the relationship between price and quantity.
nearby contract The futures contract with the shortest time to expiration.
net cost of carry The difference between the benefits and costs associated with

holding an asset through time.
net cost of carry relation The comparison between buying the asset in the futures

market and holding it by buying at the spot.
net present value The present value of an investment’s cash flows less the initial

cost of the investment.
netting Aggregating all payments between two counterparties.
no-arbitrage pricing models Models based on the premise that securities with

identical payoffs should have identical values.
nonlinear programming problem The mathematical process of maximizing (mini-

mizing) an objective function bounded by a system of equalities and inequali-
ties.

nonstandard option An exotic option.
normal distribution The standard bell-shaped probability distribution.
notional principal The principal amount a loan or a bond.
obligation to pay fixed The reference for terms “buyer” and “seller” in fixed-for-

floating swaps. See buyer, seller (fixed-for-floating rate swap).
offset See offsetting order.
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offsetting order A liquidating trade that has exactly the opposite terms of an out-
standing position. 

omega Same as vega.
one-cancels-the-other (OCO) order Two orders submitted simultaneously. If

either is filled, the other is canceled.
open interest The number of derivative contracts that have been established and

not yet been offset or exercised.
open outcry Trading in a pit in which bids and offers are indicated by shouting.
optimal hedge The number of derivative contracts that should be bought or sold

in order to minimize the risk of changes in the value of the overall portfolio.
option A contract that provides the right to buy or sell an asset at a specified price

(i.e., the exercise price) over a specified period (i.e., the time remaining to expi-
ration).

option class All of the options of a particular type (call or put) on a given stock,
index, currency, or futures commodity. 

option contract See option.
option on futures See futures option.
option premium The price of an option.
option series One of the options within an option class. Uniquely identified by (1)

the option type (call or put), (2) the exercise price, and (3) the expiration day.
option type An option is designated as either a call or a put.
option writer Someone who sells an option.
options clearing corporation (OCC) The firm that operates as the clearinghouse

for U.S. option exchanges.
order book official (OBO) An exchange official responsible for opening rotation

and maintaining the limit order book.
ordinary least squares An optimization technique to find the best fit line through a

set of points.
OTC derivatives Derivatives traded in the over-the-counter market, that is, nego-

tiated between private parties.
out trade A trade made on an exchange that cannot processed due to conflicting

terms reported by the two parties involved in the trade.
out-of-the-money A call (put) option whose exercise price is greater (less) than the

underlying asset price.
outright position A position involving only the future contract, but not the under-

lying or related securities.
overnight repo A repurchase agreement with a maturity of one night. See also

repo.
overpriced A condition in which the market price of a security or derivative

exceeds its model value.
over-the-counter (OTC) market A market for securities or derivatives not con-

ducted on an organized exchange.
overwrite Sale of call option against an existing asset position.
par bond yield The coupon interest rate that makes the bond price equal its face

value. The yield-to-maturity equals the coupon rate if the bond is selling at par.
par bond yield curve The relation between par bond yields and their terms to

maturity.
par grade The standard grade of the commodity underlying the futures contract.
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par swap rate The fixed rate on a plain vanilla interest rate swap that sets the
value of the swap to zero.

par value See face value.
partial expectation An expectation taken conditionally.
participation percentage The percentage of asset return earned by the holder of

participation derivative.
passive hedge A hedge that consists of buying/selling derivatives and holding them

to expiration.
passive portfolio insurance Portfolio insurance by buying an index put option.
path dependent option An option whose value depends upon the path that the

underlying asset prices takes over over the life of the option.
paylater option See contingent option.
payoff The amount of money received from a transaction at the end of the holding

period.
perfect substitute An asset that is the equivalent of (and can thus be substituted

for) another.
physical asset See commodity.
pit An octagonally or hexagonally shaped, multi-tiered station on a trading floor

where a specific group of contracts trade.
plain vanilla interest rate swap An interest rate swap where one side receives

fixed-rate payments and pays floating rate, and the other side receives the float-
ing rate and pays the fixed rate. 

portfolio A set of securities.
portfolio insurance Index option trading strategy designed to provide a minimum

or floor value of a portfolio at a future date.
portfolio theory The study of how individuals choose to allocate their wealth

among risky assets.
position The composition of a trader’s portfolio.
position limit An exchange rule limiting the maximum number of contracts an

individual can hold.
position trader A trader who typically holds a position for longer than a day.
preferred habitat theory See market segmentation theory.
futures premium The difference between the futures and spot index prices assum-

ing open markets.
option premium The price of an option.
price limit An exchange rule limiting the maximum price increase or decrease on a

particular contract during one trading day.
price risk The risk of not knowing the level of price at some future date.
primary market The market for assets when they are originally issued and not pre-

viously traded among the public. In contrast to secondary market.
profit diagram A figure showing the profit of a derivative position at expiration.
program trading The simultaneous purchase or sale of a portfolio of securities

(usually stocks). Usually requires the use of computers and high-speed commu-
nications lines.

protected equity note A discount bond-like contract providing a guaranteed rate
of return on the principal plus a fraction of upside return on an underlying such
as a stock index. Also known as a principal-protected note, capital guarantee
note, safe return certificate, equity-linked note, or index-linked note.



Glossary of Derivatives-Related Terms 885

protective put An investment strategy involving buying a put to limit possible
declines in the price of the underlying asset.

pure discount bond See discount bond.
put option An option that provides the buyer with the right to sell the underlying

asset at a fixed price (i.e., the exercise price) within a specified period of time
(i.e., the time remaining to expiration).

putable swap An interest rate swap where one side has an opportunity to cancel
the swap.

put-call parity An arbitrage relation linking the prices of a call, a put with the
same exercise price, and the underlying asset.

quadratic approximation A numerical method for approximating the value of
American-style options. See Barone-Adesi and Whaley (1987).

quality option An option that provides the right to deliver any one of a number of
eligible assets.

quantity risk The risk of not knowing the quantity of an asset at some future date.
quoted bid-ask spread The difference between the market maker’s ask and bid

price quotes.
ratchet option A sequence of forward-start options.
rate capped swap An interest rate swap in which the floating rate is capped.
ratio spread A spread in which the number of contracts is chosen in such a way

that the overall position is delta-neutral.
ratio swap A swap contract where the effective interest rate is determined by a

ratio of two other rates.
ratio vertical spread A ratio spread in which more contracts are sold than are pur-

chased, with all contracts having the same underlying and expiration date.
real asset A tangible asset such as real estate or a natural resource.
replicating portfolio A portfolio of assets which replicates the cash flows of a

derivative contract.
repo See repurchase agreement.
repurchase agreement (repo) An agreement between two parties under which one

party agrees to sell and then later buy a security on an agreed-upon date and at
an agreed-upon price. The difference between the original sale price and the
subsequent repurchase price is in effect the interest on a loan, which, when
expressed as an interest rate, is commonly known as the repo rate.

reset date The date on which the floating rate on an interest rate swap is reset.
retail automatic execution system (RAES) A computerized system used by the

CBOE to expedite the filling of public orders.
retail customer A customer that is an individual rather than a firm or a fund. See

also institutional customer.
retractable bond A bond whose holder can choose to redeem prior maturity.
reversal See reverse conversion.
reverse conversion An arbitrage that consists of (1) buying a call and (2) selling a

synthetic call.
reverse crush spread The opposite of a crush spread, selling soybean futures and

buying soy product futures.
reverse repo (reverse) See reverse repurchase agreement.
reverse repurchase agreement The counterparty’s position in a repo transaction,

lending the asset in question.
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reversing in See buying collateral.
reversing out See selling collateral.
rho (carry) The change in the option’s delta induced by a change in the cost-of-

carry rate.
rho (carry)-neutral A portfolio whose delta is insensitive to movements in the

cost-of-carry rate.
rho (interest) The change in the option’s delta induced by a change in the interest

rate.
rho (interest)-neutral A portfolio whose delta is insensitive to movements in the

interest rate.
rights See warrants.
risk aversion The characteristic that, holding other factors constant, individuals

want to avoid risk.
risk preferences An investor’s attitude toward risk.
risk premium The additional return risk-averse investors expect for assuming risk.
risk tolerance The maximum amount of risk measurable in standard deviations

that an investor is willing to take.
risk-free rate A default-free interest rate.
riskless rate A default-free interest rate.
risk-minimizer An investor who minimizes portfolio risk.
risk-neutral investor An investor who is indifferent toward risk.
risk-neutral valuation Computing the value of an asset or derivative contract

under the assumption that investors are risk-neutral.
Roll model An American-style call option model with one known dividend paid

on the underlying stock.
sale-repurchase agreement See repurchase agreement.
scalper An exchange trader who attempts to profit by buying at the bid and selling

at the offer.
scratch trade A zero-profit trade designed to adjust a dealer’s inventory. 
seasoned new issue An additional issue of already publicly traded securities.
seat A term used to refer to a membership on an exchange.
secondary market The market for assets that were issued previously.
Securities Exchange Commission (SEC) The federal agency responsible for regu-

lating securities markets and listed option markets in the United States.
security A certificate of ownership of an investment.
security market line The linear relation between expected return and market risk

for individual securities and derivatives. One of the results of the capital asset
pricing model.

self-financing trading strategy A trading strategy that has no cash inflows or out-
flows prior to its liquidation.

seller (fixed-for-floating swaps) The party that pays the floating interest rate
stream in a fixed-for-floating rate swap.

selling collateral The buyer’s selling of securities to provide collateral for the loan
in a repo.

series See option series.
settlement price The end-of-day price established by the exchange clearinghouse

used in marking-to-market futures contract positions.
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shareholder record date The date at which an individual must have held the stock
in order to receive an announced dividend.

short A position created by selling.
short hedge A hedge involving a long position in the spot market and a short posi-

tion in the futures.
short sale A trading strategy in which an investor borrows a security from a bro-

ker and sells the security. At a later date, the investor buys back the security and
returns it to the broker.

short squeeze A speculative strategy that manipulates prices by making it difficult
for agents with a short futures position to unwind through the purchase of large
amounts of both the underlying commodity and related futures contracts.
Recall that a short futures position may be exited by either delivering the under-
lying, or going long an offsetting number of futures. Once demand for these
securities drives prices up, the party attempting the short squeeze can realize
gains by selling.

short volatility A portfolio with a negative vega that will decrease in value if vola-
tility increases.

simple interest rate An interest rate which does not include compounding.
simple return The income from holding a security divided by its initial cost.
specialist A market maker given exclusive rights by an exchange to make a market

in a specified asset.
speculation A trading position established to profit from a directional move in the

price of an asset.
speculative bubble A rapid increase in price due to a rush of buyers unrelated to

fundamental qualities of a security but hoping to profit from the price trend.
speculative gain A profit made on a strategy that relies on a directional price

move.
speculator A trader who hopes to profit from a directional move in the price of an

asset.
spot exchange rate The current rate of exchange of one unit of a currency for

another.
spot market The market for an asset that involves the immediate sale and delivery

of the asset.
spot price The price on an asset for immediate delivery.
spot rate An interest rate on a loan that begins immediately.
spread A trading strategy that consists of buying one contract and selling another

similar contract.
spreader A trader who engages in spread transactions.
stack hedge A hedge in which short-term futures contracts are used to hedge long-

term commitments.
Standard and Poor’s 500 Index (S&P 500) A market-value weighted stock price

index consisting of 500 NYSE, AMEX, and NASDAQ-traded stocks.
standard deviation A measure of the dispersion of a random variable around its

mean. It is equal to the square root of the variance.
standard option An ordinary call or put option.
static hedge See passive hedge.
stock dividend A dividend paid with additional shares of the stock.
stock index An index created from the prices of a specific portfolio of stocks.
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stock index futures A futures contract written on a stock index.
stock index option An option contract on a stock index.
stock option An option contract on a common stock.
stock price collar Avoiding some of the downside risk of stock ownership by

financing out-of-the-money put purchases with out-of-the-money call sales,
while enjoying other benefits of ownership like voting rights and dividend pay-
ments.

stock split A situation where a company reduces its share price and increases its
number of shares outstanding by issuing additional shares on a pro rata basis to
each existing shareholder. The product of the old share price and the old num-
ber of shares outstanding equals the product of the new share price and the new
number of shares outstanding.

stock valuation formula A formula for determining a present value of the future
cash flows from a stock.

stock-style settlement A settlement procedure used by an exchange in which buy-
ing a contract requires immediate and full payment of the asset price.

stop-limit order Same as stop-loss order.
stop-loss order An order to buy or sell if the price touches or crosses at pre-speci-

fied level.
storage The act of holding a commodity or asset for a period of time.
storage costs The costs to storing a commodity. These include warehouse rent,

insurance, and spoilage.
straddle An option position consisting of a long (short) call and a long (short) put

with the same exercise price and time to expiration. Sometimes called a volatil-
ity spread.

strangle An option position consisting of a long (short) call and a long (short) put
with the same time to expiration but with the call’s exercise price exceeding that
of the put. 

strap A trading strategy that consists of: (1) buying (selling) two calls and (2) buy-
ing (selling) one put, where all options are written on the same underlying asset
and have the same exercise price and expiration date.

strike price See exercise price.
strike spread See money spread.
striking price See exercise price.
strip A trading strategy that consists of: (1) buying (selling) one call and (2) buy-

ing (selling) two puts, where all options are written on the same underlying
asset and have the same exercise price and expiration date.

strip hedge A hedge in which a series of futures contracts of successively longer
expirations are bought or sold.

stripped bond A bond which was originally coupon-bearing but whose coupons
and principal repayment have been separated and are selling as individual dis-
count bonds.

swap contract A derivative contract that involves exchanging cash flow streams.
swap dealer A firm that makes a market in swaps.
swap rate The loss rate for exchanging units of currencies at a future date.
swaption An option on a swap.
switching option See quality option.
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synthetic asset A long (short) call together with a short (long) put where both
options have the same underlying, exercise price, and expiration date.

synthetic derivative A portfolio of traded securities that replicates the cash flows
of a derivative contract.

synthetic long call Generated by buying the underlying asset and buying the put
with the same exercise price. The cost of the position is financed at the short-
term interest rate.

synthetic long put Generated by selling the underlying asset and buying a call put.
The net proceeds from establishing the position are invested at the short-term
interest rate.

synthetic short call Generated by selling the underlying asset and selling a put. The
proceeds from the sale are invested at the short-term interest rate.

synthetic short put Generated by buying the underlying asset and selling a call.
The net cost of establishing the position is financed at the short-term interest
rate.

tailing the hedge Adjusting the hedging ratio to account for the interest paid or
received from the daily settlement of the futures position.

target duration The desired level of interest rate risk (i.e., duration) of a bond
portfolio.

T-bill See Treasury bill.
T-bill futures See Treasury bill futures.
T-bond See Treasury bond.
T-bond futures See Treasury bond futures.
technical analysis Prediction of future price movements based on an analysis of

past prices and trading volumes.
term repo A repurchase agreement with a maturity of more than one day. 
term structure of forward exchange rates Relation between exchange rates and

time to maturity
term structure of interest rates Relation between zero-coupon interest rates and

time to maturity.
term structure of spot rates See term structure of interest rates
termination date The day on which a contract between two parties expires.
theoretical value An option value generated by a theoretical model.
theta The change in the option’s model value induced by a change in time to expi-

ration.
theta-neutral A portfolio whose value is insensitive to movements in time.
tick The minimum permissible price fluctuation.
tick size See tick.
time premium See time value.
time spread See calendar spread.
time value The difference between the option’s price and its value if it were exer-

cised for certain on the expiration date.
time value decay The erosion of an option’s time value through time.
timing option The right to deliver a T-bond on any day during the CBT’s T-bond

futures delivery month.
T-note See Treasury bond.
T-notes futures See Treasury note futures.
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total rate of return swap A swap contract that encompasses both cash flows and
value changes of an asset.

trade date The day on which a contract is made between two parties.
trading halt A temporary suspension of trading when the price of a futures or an

asset has moved by a predetermined amount.
transaction costs The costs of trading. Usually consists of two components: a bro-

ker’s commission and a market maker’s bid/ask spread.
transparency The observability of the pricing information for a contract.
Treasury bill A short-term discount bond issued by the U.S. government. 
Treasury bill futures A futures contract written on Treasury bills.
Treasury bond A coupon-bearing bond issued by the U.S. government. Have

terms to maturity exceeding 10 years.
Treasury bond futures A futures contract written on Treasury bonds.
Treasury note A coupon-bearing bond issued by the U.S. government. Have terms

to maturity between two and 10 years.
Treasury note futures A futures contract written on Treasury notes.
Treasury strips A zero-coupon bond created by “stripping” the interest and prin-

cipal payments from Treasury notes and bonds.
triangular arbitrage The arbitrage relation linking the exchange rates of three cur-

rencies.
trinomial model Similar to the binomial model, the underlying asset moves dis-

cretely through the option’s life. At each point in time, the underlying asset
price moves to one of three levels.

unbiased expectations theory See expectations theory.
uncovered option Writing a call or a put without an offsetting position in the

underlying asset.
underlying The instrument underlying the derivative contract.
underpriced A condition in which the market price of a security or derivative is

below its model value.
underwrite To buy a securities issue from a company and resell it to private inves-

tors at a profit.
unsystematic risk The risk of a security that is not explained by market move-

ments.
unwinding To exit a current position in the market through an offsetting transac-

tion.
up-and-in option For up-and-in options, an upper level (barrier) is specified for

the asset price on which the option is written. For a up-and-in call (put) option
the contract becomes a standard call (put) option if the price of the underlying
asset goes above the barrier. If the price of the underlying asset never goes
above the barrier during the life of the contract, the contract expires worthless.

up-and-out option An option that expires automatically when the asset price on
which the option is written hits a predefined barrier.

uptick A price increase equal to one tick.
uptick rule A rule in the stock market which prohibits short sales except when the

last trade had a price increase.
utility of wealth function A measure of the satisfaction an agent derives from a

level of wealth.
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valuation-by-replication The method of finding a portfolio of known value with
identical payoffs in all states. By the principle of no-arbitrage, the replicated
asset should have the same value.

variable prepaid forward contract A contract for the future sale of a contingent
number of shares for a prepaid sum.

variance A measure of the dispersion of a random variable around its mean.
variation margin The gains or losses on open futures position when it is market-

to-market.
vega The change in the option’s model value induced by a change in volatility.
vega-neutral A portfolio whose value is insensitive to movements in volatility.
vertical bear spread A spread that consists of: (1) buying a call (put) and (2) selling

a call (put) with a lower exercise price. The options have the same expiration
date.

vertical bull spread A spread that consists of: (1) buying a call (put) and (2) selling
a call (put) with a higher exercise price. The options have the same expiration
date.

vertical spread See money spread.
vesting period A time period during which received employee stock options can-

not be exercised.
volatility The standard deviation of return on an annualized basis.
volatility spread See straddle.
volume Number of contracts traded in a particular interval of time.
vulnerable derivative A derivative contract with default risk.
warrant A contract issued by a firm that allows the holder to buy its underlying

stock at a predetermined price within a specified amount of time.
wealth constraint The property that the proportions of an investor’s allocations to

various assets must sum to one. 
wild card option An option that arises in a derivative contract when the settlement

price of the contract is established before the market is closed. For example,
wildcard options are embedded in the CBT’s T-bond futures and the CBOE’s
S&P 100 options.

write an option Sell an option.
yield See yield-to-maturity.
yield curve The relation between the yield-to-maturity and term-to-maturity for

bonds with a comparable degree of default risk (usually U.S. government secu-
rities).

yield risk A producer’s uncertainty about the amount of commodity that will be
produced in the future.

yield-to-maturity The discount rate that equates the present value of the bond’s
cash flow stream to its market price.

zero-coupon bond A bond that makes no interest or coupon payments. Also
called a pure discount bond.

zero-coupon yield curve See term structure of interest rates.
zero-sum game A game in which payoffs to all players sum to zero (i.e., one per-

son’s win comes with another’s loss).
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About the CD-ROM

 

INTRODUCTION

 

This appendix provides you with information on the contents of the CD that
accompanies this book. For the latest and greatest information, please refer to
the ReadMe file located at the root of the CD.

 

SYSTEM REQUIREMENTS

 

 ■ 

 

A computer with an Intel Pentium processor running at 233 MHz or faster 
(Intel Pentium III recommended)

 

 ■ 

 

128 megabytes (MB) of RAM or greater

 

 ■ 

 

Microsoft Windows 2000 with Service Pack 3 (SP3), Windows XP, or later 

 

 ■ 

 

Microsoft Excel 2003

 

 ■ 

 

A CD-ROM drive

 

NOTE:

 

 Older versions of Microsoft Excel may also work, but are not guaran-
teed. Many popular spreadsheet programs are capable of reading Microsoft
Excel files. However, users should be aware that a slight amount of formatting
might be lost when using a program other than Microsoft Word. 

 

USING THE CD WITH WINDOWS

 

To install the items from the CD to your hard drive, follow these steps:

 

1.

 

Insert the CD into your computer’s CD-ROM drive.

 

2.

 

The CD-ROM interface will appear. The interface provides a simple point-and-
click way to explore the contents of the CD.

If the opening screen of the CD-ROM does not appear automatically, follow
these steps to access the CD:

 

1.

 

Click the Start button on the left end of the taskbar and then choose Run from
the menu that pops up.

 

2.

 

In the dialog box that appears, type 

 

d

 

:\setup.exe

 

. (If your CD-ROM drive is not
drive d, fill in the appropriate letter in place of 

 

d

 

.) This brings up the CD Inter-
face described in the preceding set of steps.
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ABOUT THE CD-ROM

 

WHAT’S ON THE CD

 

The CD contains two subdirectories: Content and OPTVAL.

 

Content

 

The Content subdirectory contains end-of-chapter questions and problems as
well as Microsoft Excel files that contain data for use on end-of-chapter prob-
lems. The contents of each of the Excel files are described in the end-of-chapter
problem.

 

OPTVAL

 

TM

 

The accompanying book, as well as the end-of-chapter problems on this CD
ROM, makes extensive use of OPTVAL

 

TM

 

. OPTVAL is a library

 

 

 

of Microsoft
Excel Visual Basic Add-Ins designed to perform a wide range of valuation, risk
measurement, and statistical computations. The logic in doing so is simple. By
facilitating the computation of value/risk, the OPTVAL functions allow the
reader to focus on the economic understanding of solving the valuation and risk
management problems rather than the computational mechanics of valuation
and risk measurement.

More specifically, accurate and reliable valuation/risk measurement has two
important computational steps. The first is performing all of the computations
that go into generating a model value conditional on knowing the values of the
model’s parameters. In some instances such as valuing a simple forward or
futures contract, the numbers of intermediate computations are hundreds, per-
haps, thousands. In other instances such as valuing an option on a dividend-
paying stock, they are many. The second is estimating model parameters. All
valuation models are function analytical or numerical functions of a set of
parameters. Reliably estimating many of these parameters such as expected
future return volatility involves collecting histories of price data and then apply-
ing statistical techniques. OPTVAL also contains a host of statistical functions
to supplement what is already available in Microsoft Excel.

The add-in functions contained in OPTVAL are introduced and applied in
each chapter’s illustrations. In the early chapters of the book, the illustrations
show all of the intermediate computations involved in addressing the valuation/
risk measurement problem at hand as well as the OPTVAL function that allows
the reader to find the solution without seeing the intermediate computations.
This two-step procedure is designed to allow the reader to develop confidence
that OPTVAL functions are not merely a “black box” but rather a set of compu-
tational routines that the reader can verify, if he or she chooses to do so. As the
chapters progress, less emphasis is placed on showing intermediate steps and
more emphasis is placed on addressing important, everyday valuation/risk man-
agement problems.
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Installing Add-Ins on Your Computer 

 

Before you can use an add-in, you must first install it on your computer and
then load it into Excel. Add-ins (*.xla files) are installed by default in one of the
following places:

 

 ■ 

 

The Library folder or one of its subfolders in the Microsoft Office/Office folder.

 

 ■ 

 

The Documents and Settings/<user name>/Application Data/Microsoft/AddIns 
folder.

The administrator for your company's network can designate other locations
for add-in programs. See your administrator for more information.

 

Loading Add-Ins into Excel

 

After installing an add-in, you must load it into Excel. Loading an add-in makes
the feature available in Excel and adds any associated commands to the appro-
priate menus. To load the OPTVAL Function Library in Excel, go to the 

 

Tools

 

menu and select 

 

Add-Ins

 

. Select the OPTVAL Function Library and click 

 

OK

 

.

 

Unloading Add-Ins from Excel 

 

To conserve memory and improve performance, unload add-ins you don't use
often. Unloading an add-in removes its features and commands from Excel, but
the add-in program remains on your computer so you can easily reload it. When
you unload an add-in program, it remains in memory until you restart Excel.

 

CUSTOMER CARE

 

If you have trouble with the CD-ROM, please call the Wiley Product Technical
Support phone number at (800) 762-2974. Outside the United States, call
1(317) 572-3994. You can also contact Wiley Product Technical Support at

 

http://support.wiley.com

 

. John Wiley & Sons will provide technical support
only for installation and other general quality control items. For technical sup-
port on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley
products, please call (877) 762-2974.
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Index

 

30/360 fixed rate day-count fraction, 650
180-day barrier option, asset price path, 295
88888 account, 506

Accrued interest, 75, 869
Active index futures contracts, market value, 472
Adjusted R-squared, 847, 851
After-trading cost gain, 53
Aggregate rho, 356
Aggressive stocks, 827
Agricultural futures

options, introduction, 763
options, trading volume, 752
trading volume, 752

Agriculture, commodity derivatives, 751–758
All-or-nothing (AON) options, 261–267

risk measurement, 264–265
All-or-nothing (AON) order, 869
Alpha. 

 

See

 

 Jensen’s alpha
Alps Air, 595–596
Amalgamated Wireless Australasia Ltd. (AWA Ltd.),

risk management lesson, 575–587
American option. 

 

See

 

 American-style options
American Stock Exchange (AMEX), 16–17, 383, 384

adoption. 

 

See

 

 Exchange-traded funds
ETFs, trading activity, 493
information/data, 482
options, introduction, 605
SPDRs, 484, 487

shares, dollar value, 484
stocks, calendar days (median number), 394
webpage, 483

American-style call
early exercise, prospect identification. 

 

See

 

 Divi-
dend-paying stock

lower price bound, 180–181, 191
value, computation, 417–418

American-style call option
early exercise, 181–182, 191–193
exact valuation. 

 

See

 

 Dividend-paying stock
exception, 303
exercise price, 417
lower price bound, examination, 181
valuation. 

 

See

 

 Dividend-paying stock
writing, 406

American-style futures options, valuation, 627

American-style FX put option, 323
values, 341

American-style knock-out FX put option, valua-
tion (binomial method usage), 314

American-style options, 199, 869
no-arbitrage price relations, 190, 197. 

 

See also

 

Futures contracts
put-call parity, 188–190, 195–196
terms, 587
valuation, 398–399
value computation, quadratic method (usage), 340

American-style put
early exercise, prospect identification. 

 

See

 

 Divi-
dend-paying stock

lower price bound, 183–184, 193
quadratic approximation, 338
risk characteristics, summary, 343

American-style put option
early exercise, 184, 193–194
JR parameters, valuation, 312
lower price bound, examination, 184
valuation

CRR, usage, 311
two-period trinomial method, usage, 324

value, 311
computation, 399–401

American-style put-call parity
arbitrage portfolio trades, 188

support, 189, 196
arbitrage trades, support, 197

American-style USD/GBP options, values/early exer-
cise premiums (computation). 

 

See

 

 Forward
exchange rates; Spot rates

Amortizing swap, 869
Analysis of variance (ANOVA), 834, 845

results, 821, 838
table, 846

Analytical delta values, 342
Annualized basis, 54
Annualized volatility, 540

computation, 560
ANOVA. 

 

See

 

 Analysis of variance
Anticipatory hedge, 5, 869
AON. 

 

See

 

 All-or-nothing
Arbitrage, 869. 

 

See also

 

 Triangular arbitrage
CDO, 695
engagement, inequality, 736
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INDEX

 

Arbitrage (

 

Cont

 

.)
opportunities, 711

absence. 

 

See

 

 Costless arbitrage opportunities
price relations/valuation equations/methods. 

 

See

 

Common stocks
profit, 195
strategy, 52, 736
table, 188
trades, listing, 193
trading strategy, 190

Arbitrage portfolio trades, 203. 

 

See also

 

 American-
style put-call parity; European-style put-
call parity

support. 

 

See

 

 European-style call
usage. 

 

See

 

 Assets; Futures
Arbitrager, 869
Arbitrageur, 52
Arithmetic asset price, 294
Arithmetic Brownian motion, 707
Asay formula, 229
Asian option, 294, 869
Ask price, 501, 869
Ask rate, quality, 651
Asset lattice, nodes, 314
Asset price logarithm

change, 327
distribution, 376
modeling, 250
numerical values, 307
two-period lattice, 307

Asset prices
95% confidence interval, computation, 212
change, 235–238
computation. 

 

See

 

 Conditional expected asset
prices

distribution, 377. 

 

See also

 

 Discrete asset price
distribution; Log-normal asset price distri-
bution

logarithm, mean, 304
eta, function, 237
expected asset conditional, computation, 220–222
fixed level (excess), probability computation,

215–217
gamma, function, 238
increase, 254
lattice, creation, 307–308, 313, 323–324
numerical values, two-period lattice, 307, 309
path. 

 

See

 

 180-day barrier option
percent change, 236–237
probability density function, 553
rho, function, 239, 240
risk, hedging, 355
theta, function, 242
two-period lattice, 308
upper/lower barrier, 294
up-step coefficient, 322–323
variance, computation, 212

vega
function, 241
identification, 355

Asset-backed securities, 683
Asset-or-nothing call, 261

option, 261
delta values, 267
purchase, terminal profit, 262

Asset-or-nothing options, 524, 869
Asset-or-nothing put, 263
Assets

allocation, 634, 869
adjustment, futures (usage), 634

book value, 429
continuous rates, modeling, 122–123
discrete cash dividend payment, 197
discrete cash flow payment, future value com-

putation, 124
European-style call options (price equivalence

demonstration), arbitrage portfolio trades
(usage), 199

hedging, futures contracts (usage), 147–148
income generation, 217
notation, 296
options prices, futures options prices (no-arbi-

trage relations), 199
position

future value. 

 

See

 

 Leveraged asset position
profit function. 

 

See

 

 Long asset position
terminal profit diagrams. 

 

See

 

 Long asset
position; Short asset position

price appreciation, expected rate, 377–378
profit function, 362–363
risk premium, 146
wealth, 106

Assignment, 869
At-the-money, 869
At-the-money option

buy-write strategy (return distributions), Monte
Carlo simulation (usage), 532, 533

identification, 555
implied volatility, 403
value, absence, 461

At-the-money put, purchase price, 593
At-the-money rights, 439
At-the-money S&P500 index option prices, usage.

 

See

 

 Implied volatilities
At-the-money warrants valuation, dilution effects

(assessment), 444
Australian Options Market, 17
Australian Stock Exchange, 10

irregularities, 576
Autocorrelation, test, 817–818
Automatic exercise, 869
Average daily cash dividends. 

 

See

 

 Dow Jones
Industrial Average; Standard & Poor’s 500
index



 

Index
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Average option, 869
Average price option, 294
Average rate option, valuation, 332–333

equality, 597
Average-rate derivatives contracts, 747
AWA Ltd. 

 

See

 

 Amalgamated Wireless Australasia
Ltd.

Back office, function, 506
Backwardation, 136–137, 869

implication, 751
Balance sheet

CDO, 696
risk, 869

management, FX futures/options (usage), 598
Bank discounts, 61
Bank for International Settlements

data, 735
information, 606
semiannual bank surveys, 36

Bankruptcy filings, 679
Barings Bank PLC

demise, 506
risk management lessons, 506–510
scandal, Nikkei 225, 508

Barings Futures (BFS), 507–508
Barrier level, 296, 297
Barrier option, 870
Barrier options, 294–299. 

 

See also

 

 Double barrier
options

focus, 295
valuation, 312–314

Barrier price, coincidence, 314
Basis, 870

fair value, 497, 499
mispricing, 497, 870
point, 870
rate swap, 18, 870
risk, 148, 870

BBA. 

 

See

 

 British Bankers Association
Bear market, 870
Bermuda option, 870
Beta, 870. 

 

See also

 

 Options; Stocks
estimation, 114. 

 

See also

 

 Common stocks
BEY. 

 

See

 

 Bond equivalent yield
BFS. 

 

See

 

 Barings Futures
Bid prices, 501, 870

equality, 559
Bid/ask midpoint, 483
Bid/ask price bounce, 167–168
Bid/ask spot/forward exchange rates, 566
Bid/ask spread, 658
Binary options, 232, 870
Binomial approximation method

application, steps, 313
approximation error, 325

Binomial distribution, mean, 306

Binomial framework, 455
Binomial lattice

computation, 715
development, short rate distribution (assump-

tion), 718–719
node, 717
recombination, 714

Binomial method, 303–321, 325, 342
accuracy, degree (assessment), 314–317
application, steps, 306–312
coefficients, usage, 400, 455
usage. 

 

See

 

 American-style knock-out FX put
option; Spread option

valuation methods (accuracy, degree), assessment,
316–317

Binomial model, 870
usage. 

 

See

 

 Risk-averse valuation; Risk-free hedge
portfolio; Risk-neutral valuation

Binomial option pricing model, trinomial option
pricing model (relationship), 323

Bivariate normal distributions. 

 

See

 

 Cumulative
bivariate normal distributions

Bivariate normal probability
approximation, 300–302
computation, 301, 416

Black futures option valuation formula, 321
Black model, 228, 675, 870
Black/Scholes formula, 227–228
Black-Scholes model, 870
Black-Scholes/Merton (BSM). 

 

See

 

 Frictionless BSM;
Idealized BSM

alternative expressions, equivalence, 229–230
assumptions, 207, 287

usage, 327
average implied volatilities. 

 

See

 

 Lucent Technol-
ogies; Octel Communications, Inc.

call
denotation, 435

call option formula, 536
partial derivatives, 421

European-style put option formula, 630
formula, 224, 226–232, 254

reduction. 

 

See

 

 European-style futures options
special cash, 321
usage, 432

framework, usage, 420
model, 201, 254

presumption, 398
risk-free hedge development, 224
usage. 

 

See

 

 Continuously compounded returns
option valuation, 373

formula, 303, 520, 702
formula, derivation, 253–255
framework, 249

option value, nonlinear function, 456
risk-neutral valuation mechanics, 292

Block trade, 870
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INDEX

 

Bloomberg, 63
Board Crush, 754
Bogle, John, 482
Bond equivalent yield (BEY), 62, 78–79, 870

reported rate, 78
Bond portfolio, interest rate risk hedge

duration, usage, 72–73
duration/convexity, usage, 72–75

Bondholders, face value, 420
Bonds

expected return/risk relation, 438
face value, 55, 69, 425
issues, private placements, 429
log-normally distributed prices, 619
market

illiquidity, 688
values, 604

options, 8, 870
valuation, 724–726

par amount, 55
payments, promises, 588
public issuance, 429
valuation, 721–724

Bonds values, 423, 424
estimation

stock information, usage, 431–433
stock option price information, usage, 431–433
stock price information, usage, 429–430

illustration, 427
Taylor series expansion, 86

Books, 19
Bootstrapping technique, 640
Borrowing portfolio, 870
Box, 870
Brady bond swap, 699
Brand new issue, 870
Breakeven asset price, 372, 870
Breakeven price, 365
Breakeven probabilities, 372–373
Bretton Woods Agreement, 565, 763
Britain, implied forward interest rate (computa-

tion), 135–136
British Bankers Association (BBA), 607, 680–682,

689
Interest Settlement Rate, 607
survey, 680

Brokerage business, handling, 506
Brokers, 871. 

 

See also

 

 Commission
Brownian motion, 871. 

 

See also

 

 Arithmetic Brown-
ian motion; Geometric Brownian motion

BSM. 

 

See

 

 Black-Scholes/Merton
Bull spread, 871
Business cycles, range, 452
Butterfly spread, 871
Buyer swap, 871
Buy/write, 871

Buy-write index portfolio (BXM) (CBOE), perfor-
mance estimate, 115–117

Buy-write return distributions, central limit theo-
rem (relationship), 530–533

Buy-write strategy. 

 

See

 

 Index options
maximum monthly return, 532
terminal profit diagram, 369

BXM. 

 

See

 

 Chicago Board Options Exchange Buy-
Write Index

CAC-40, 487
CAD bonds

currency swap, addition, 589–590
forward strip, addition, 590–591

Calculation amount, 38, 649, 871
Calendar

days, median number. 

 

See

 

 American Stock
Exchange; NASDAQ; New York Stock
Exchange

spread, 23, 871
Calibration, 871

process, usage, 712
Call on call, 287–288
Call on maximum, 281–283

valuation, 283–284
Call on minimum, 285
Call on put, 290

valuation, 290–291
Call options, 871

holder, 319
exercises, 189

prices, inclusion. 

 

See

 

 Implied volatilities
profit function, 364–366
purchase, terminal profit. 

 

See

 

 Asset-or-nothing
call option; Cash-or-nothing call option

series, 559
stocks, impact, 420–421
value, 276

Call options on maximum/minimum, valuation.

 

See

 

 Maximum; Minimum
Callable bonds, 722–723, 871
Callable swaps, 871
Calls

characteristic, 354
feature, price computation. 

 

See

 

 Coupon-bearing
bonds

lower price bound. 

 

See

 

 European-style call
portfolio, expressions, 352
prices, 405

Canada given spot rate, implied risk-free rate (com-
putation), 571, 573

Canadian bonds, value, 589
Capital Asset Pricing Model (CAPM), 89, 104–110,

205, 871
assumptions, 112
CAPM-based portfolio performance measures,

111



 

Index
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Capital Asset Pricing Model (

 

Cont

 

.)
expected return/risk mechanics, 350
futures, fit, 143
mechanism, 355
risky securities/portfolios, evaluation, 782
usage. 

 

See

 

 Perfect substitutes
Capital gain, 53
Capital market line (CML), 105–106, 871

calculations, 108
Capital-guarantee notes, 512
Capitalizations (caps), 871. 

 

See also

 

 Interest rate caps
exercise price, determination. 

 

See

 

 Gold; Over-
the-counter gold

prices, 714
Caplet, 871
CAPM. 

 

See

 

 Capital Asset Pricing Model
Carry costs/benefits

guidelines, 124–125
understanding, 121–125

Cash advance, 410
Cash and carry, 871
Cash CDO, 696
Cash dividends

payments, 128
sum, 492

Cash equivalent, 92, 871
Cash flows, management, 625
Cash generation. 

 

See

 

 Straddle
Cash market, 871
Cash rebate, 297
Cash settlement, 5–6, 554, 871, 872. 

 

See also

 

 Optional
cash settlement

usage, 546
Cash transaction, 4
Cash-and-carry portfolio, 622
Cash-and-carry T-bond position, 686
Cashed-in option, 461
Cash-or-nothing call, 262
Cash-or-nothing call option

purchase, terminal profit, 263
valuation, 263–264

Cash-or-nothing option, 262
Cash-or-nothing options, 524, 872
Cash-or-nothing put, 524
Cash-settled contract, 545
Cash-settled futures, 546
Catalytic cracking, 872
CBOE. 

 

See

 

 Buy-write index portfolio; Chicago Board
Options Exchange

CDRs. 

 

See

 

 Government National Mortgage Asso-
ciation

CDS. 

 

See

 

 Credit default swap
Central limit theorem, 818

relationship. 

 

See

 

 Buy-write return distributions
Centralized market, 12, 872
CEV. 

 

See

 

 Constant elasticity of variance
CFE. 

 

See

 

 Chicago Board Options Exchange

CFTC. 

 

See

 

 Commodity Futures Trading Commission
Chart analysis, 872
Cheapest-to-deliver, 615, 872. 

 

See also

 

 Futures
bonds, 622

identification, 623. 

 

See also

 

 Futures
Chicago Board of Trade (CBT), 469

conversion. 

 

See

 

 Mid American Exchange
factors, 612. 

 

See also

 

 U.S. Treasury bonds
system, 612, 620–621

corn futures contract, 622
decision, 383, 470
derivatives exchange, 12
exchange-traded soybean contract market, domi-

nation, 753
futures, 604
GNMA contract market, rise/fall, 605
soybean

complex, trading activity, 756
futures contracts, trading, 755

T-bond futures
contract, 618
modification, 603

ten-year U.S. Treasury note futures
contract, 611
trading activity, 611

Treasury bond, trading activity, 611
U.S. Treasury bond futures

contract, 610
duration, 626–627
net cost of carry relation, 618–627
options contract, 617

Chicago Board Options Exchange Buy-Write Index
(BXM), 115–117, 383, 469, 530

historical performance, 534–537
index, monthly returns, summary statistics, 534
month-end total return indexes, 535
performance measures (estimation), monthly

returns, 536
standardized monthly returns, distribution, 537

Chicago Board Options Exchange (CBOE), 384
CBOE 100, 480

 

Constitution and Rules,

 

 385
contemplation. 

 

See

 

 Trading
formation, 16–17
Futures Exchange (CFE), 541
launch. 

 

See

 

 Market Volatility Index futures
S&P 100 index option, 480
stock options, listing, 480
trading. 

 

See

 

 One-week options
website, 27

Chicago Mercantile Exchange (CME), 16, 731
Board of Directors, 679
Eurodollar futures

contract, 608
contract specifications, 615
options futures, 616
trading activity, 609
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Chicago Mercantile Exchange (

 

Cont

 

.)
futures trading, 565
FX futures option contracts, relative trading

volume, 569
launch. 

 

See

 

 Quarterly Bankruptcy Index
products, 478
re-denomination effect. 

 

See

 

 Standard & Poor’s
500 futures

T-bill futures contract, 605
three-month Eurodollar futures, 606

Chicago Produce Exchange, 16
CHIDIST, 805
Chi-square distribution, 802–806

critical values, 864
degrees of freedom, 802, 808
normality, test, 803
ten degrees of freedom, 864

Chi-square value (5% probability level/ten degrees
of freedom), 803

Chooser options, 275–278, 872. 

 

See also

 

 Complex
chooser option

lives, comparison. 

 

See

 

 Standard options
valuation, 277–278

equation. 

 

See

 

 European-style chooser options
CIR. 

 

See

 

 Cox Ingersoll and Ross
Circuit breaker, 872
Cirtron, Robert L., 666
Clearinghouse, 15–16, 19, 872

role, 21–22
Cliquet option, 273, 872
CLNs. 

 

See

 

 Credit-linked notes
CML. 

 

See

 

 Capital market line
CMT. 

 

See

 

 Constant maturity Treasury
CNBC, Squawk Box, 498–499
Code of Hammurabi, 11
Coefficient of determination. 

 

See

 

 R-squared
Coefficients, description, 455
Coffee Sugar and Cocoa Exchange (CSCE), 17
Collar agreements, 408. 

 

See also

 

 Structure collar
agreement

cap exercise, determination. 

 

See

 

 Gold; Over-the-
counter gold

Collars, 872. 

 

See also

 

 Stock prices; Zero-cost collars
Collateral

buying, 625, 871
inclusion, 624
selling, 886

Collateralized debt obligation (CDO), 681, 695. 

 

See
also

 

 Arbitrage; Balance sheet; Cash CDO;
Synthetic CDOs

Collateralized Depositary Receipts (CDRs). 

 

See

 

 Gov-
ernment National Mortgage Association

Collateralized loan, 625
Collect-on-delivery options, 269
COMEX. 

 

See

 

 Commodity Exchange
Commercial banks, term deposits, 625
Commission, 872

broker, 872
merchant. 

 

See

 

 Futures
Commodity, 121, 872

fund, 872
futures, 872
options, 872
prices, short-term movements, 335

Commodity derivatives, 731, 872
references/readings, 769–770
risk management lessons, 748–751
total notional amount, proportion, 735

Commodity Exchange Act of 1936, 763
Commodity Exchange (COMEX), 16

division. 

 

See

 

 New York Mercantile Exchange
futures contract, 763

Commodity Futures Modernization Act, 383
Commodity Futures Trading Commission (CFTC),

384, 872
ban. 

 

See

 

 Domestic agricultural commodities options
governance, 26
regulation, 26

Commodity swaps
contracts, 736–737
fixed price, computation, 741–743

Commodity trading advisor (CTA), 872
Common stocks

beta, estimation, 825–827
derivatives, arbitrage price relations/valuation

equations/methods, 393
usage, 428
valuation, constant dividend growth (usage),

84–85
volume-weighted average, 412
weighted portfolios, 498

Compensation agreements, 451
references/readings, 465–466

Complex chooser option, 275
Complex derivatives, risk (valuation/measurement),

774
Compound options, 287–291, 872
Compounding, 873. 

 

See also

 

 Continuous com-
pounding

Conditional expected asset prices, computation,
219–224

Conditional expected values, expressions, 223–224
Conditional value-at-risk, 222
Conditional VAR (CVAR), 222, 509
Confidence interval, 831–832, 845. 

 

See also

 

Regression line
computation. 

 

See

 

 Asset prices; Slope
Confidence level, usage. 

 

See

 

 Maximum dollar loss
Constant dividends

growth, 84
usage. 

 

See

 

 Common stocks
yield models, 458–459
yield rate assumption, 520
yield stock options, 228
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Constant elasticity of variance (CEV), 504
Constant maturity Treasury (CMT)

rates, 638
illustration, 640, 641

reverse engineering, 640
Constant yield, 157

swap, 873
Constant-parameter models, 706–713

application, 708–713
Constant-parameter short rate processes, 706–708
Constructive sales, 408
Contango, 136, 873

negative value, implication, 751
Contingency order, 873
Contingent pay options, 269–271
Contingent pay put options, valuation, 271
Contingent-pay option, 873
Continuous compounding, 873
Continuous dividend income, contrast. 

 

See

 

 Dis-
crete dividend income

Continuous log-normal asset price distribution,
377–378

Continuous rates, 178–190. 

 

See also

 

 Forwards
modeling. 

 

See

 

 Assets
Continuously compounded daily return, 209
Continuously compounded discount rate, 588
Continuously compounded interest rates, 54–55
Continuously compounded mean return, 873

mean continuously compounded return, rela-
tion, 250–252

Continuously compounded rate. 

 

See

 

 Return
Continuously compounded returns, 530

BSM model, usage, 542
mean, 211

Continuously compounded zero-coupon yield rate,
709

Contract expiration, 500
Contractual obligation, 873
Convenience value, 873
Convenience yield, 122, 736
Convergence, 873
Conversion, 185, 873

factor, 612–613, 873
rates. 

 

See

 

 Euro
Convertible bonds, 873

face value/maturity, 447
valuation, 444–448

illustration, 446–447
Convexity, 59–60, 873. 

 

See also

 

 Coupon-bearing
bonds

calculation, 59–60
computation, yield to maturity (usage). 

 

See

 

 Coupon-
bearing bonds

consideration, ignoring, 645
Corner, 20, 873
Corporate bonds

discussion, 439

expected loss
computation, 434–435
present value, computation, 425–426

stock price information, 430–431
valuation, 420–435

call option, exclusion, 421–423
stock information, usage, 432–433
stock option price information, usage, 432–433

value, replication, 428
Corporate securities, 419

expected returns, computation, 433–434
references/readings, 449–450
valuation, 420

framework, development, 419
problem, 431

Corporate stocks, expected returns (computation),
434–435

Correlation, 783–784. 

 

See also

 

 Serial correlation
coefficient, 783
estimation, 792–793
estimator, 787–788
parameters, estimation, 152–153

Cost of carry, 873
Cost of carry rate. 

 

See

 

 Options; Risk-neutral net cost
of carry rate

value, 321
Cost/benefit analysis, 314
Costless arbitrage, 52, 873

opportunities, 89, 203–204, 395
absence, 51–52, 464, 571, 717
absence, impact, 774

trades, 736
Costless arbitrage trades, 127
Counterparty, 4, 873

risk, 16, 873
Counters, 12
COUP, 64
Coupon, 873

bond, 873
weighted average term to maturity, 66

interest rate, equivalence, 640
period, 613
rate, 873
swap, 39, 873

Coupon interest payments
guarantees, 699
meeting, 420

Coupon-bearing bonds (coupon bonds), 55, 64–
79, 722, 873

call feature, price computation, 77–78
conventions, 69–79
convexity, 66–67

computation, yield to maturity (usage), 70–71
duration, 66

approximation, computation, 67–68
computation, yield to maturity (usage), 70–71
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Coupon-bearing bonds (

 

Cont

 

.)
duration/convexity approximation, computation,

67–68
fixed-rate bond, comparison, 654
impact, 420
marketplace trading, 75–79
price lattice, 722
risk management, 71–72
risk measurement, 66–68
valuation, 64–65
value computation, zero-coupon yield curve

(usage), 65–66
yield to maturity (computation), yield curve

(usage), 70
Coupon-bearing callable bond valuation, no-arbi-

trage pricing model (assumption), 724
Coupon-bearing CMT rates, 641
Coupon-stream, price computation, 77
Courts & Co., 506
Covariance, 783–784, 873. 

 

See also

 

 Random vari-
ables; Semicovariance

estimation, 792–793
estimator, 787–788

Covariance, estimation. 

 

See

 

 Variance/covariance
Covered call strategies

expected return/volatility relation, 353
terminal profit diagram, 369

Covered call trading strategies, expected returns/
risks, 351

Covered calls, 874
Covered write, 874
Cox Ingersoll and Ross (CIR) derivation, 708
Cox-Ross-Rubinstein (CRR) binomial method,

valuation error, 315
Cox-Ross-Rubinstein (CRR) imposition, 307
Cox-Ross-Rubinstein (CRR) method, probability,

310
Cox-Ross-Rubinstein (CRR) parameters, 305–306,

318
usage, 309, 310. 

 

See also

 

 American-style put
option

Cox-Ross-Rubinstein (CRR) possibilities, 313
Crack spread, 23, 874

futures options, trading, 320
Credit card debt, 679
Credit default, 679

forward, 697
products, 679

Credit default swap (CDS), 681, 687–691. 

 

See
also

 

 Single-name CDSs
confirmation, 689

Credit derivatives, 679, 874. 

 

See also

 

 Global credit
derivatives

contracts
physical settlements, percentage, 689
reference entities, appearance, 684

institutional usage, 682, 683

outstanding, notional value (proportional), 682
security issuer, 681

Credit event, 679, 874
Credit option, valuation. 

 

See

 

 Fixed payment credit
option

Credit products, 679
markets, 680–685
references/readings, 704
risk management lesson, 698–701

Credit protection
purchase cost, computation, 692–693
sale, 683

Credit risk, 12, 874. 

 

See also

 

 Over-the-counter
derivatives markets

premium, 697
Credit spread, 679

call option, 702
forward, 697–698
options, 701–703

valuation, 702–703
products, 679

Credit Suisse, 413
Credit-linked notes (CLNs), 680, 681, 694–695,

874. 

 

See also

 

 Synthetic CLN
flowchart, 694

Critical value, 828
Cross-hedging, 874

ineffectiveness, 747
Cross-rate option, 874
Cross-rate relation, 574–575, 874
Cross-sectional regression, errors (elimination), 856
CRR. 

 

See

 

 Cox-Ross-Rubinstein
Crude oil

weekly returns, 748
world production, 738

Crush spread, 754, 758, 874. 

 

See also

 

 Reverse
crush spread

Crushing, 874
CSCE. 

 

See

 

 Coffee Sugar and Cocoa Exchange
CTA. 

 

See Commodity trading advisor
Cubic splines

interpolation, 79, 874
model, usage, 640
usage, 647

Cum-dividend, 874
Cumulative bivariate normal distributions, 289
Cumulative standard normal density function, 797
Cumulative univariate normal distributions, 289
Currency forwards, 40–41
Currency options, 8, 874
Currency price, Monte Carlo simulations (usage), 328
Currency products, 565

markets, 565–570
references/readings, 599
risk management, 587–598

lesson, 575–587
valuation, 571–575
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Currency swaps, 18, 874
addition. See CAD bonds
usage. See Foreign financing

Curve-fitting methods, 647
CUSIP number, 688
Customers

direct interface, 506
lost goodwill, 735

Customized currency options, 570
CVAR. See Conditional VAR

Daily price limit, 874
Daily settlement, 874
Datastream, 534
DAX 30, 487

returns, 848–849
Day order, 874
Day trader, 874
Dealers, 874
Debt

securities, creditworthiness/liquidity, 624
Declaration date. See Dividends
Deep market, 874
Deep out-of-the-money put, 236
Default

occurrence, 420
probability, 425

function, 428
protection, purchase cost (computation), 691–

692
Default-free asset, 874
Defensive stocks, 827
Deferred swap, 674, 874
Degree of freedom, 866, 867. See also Chi-square

distribution; One-tailed test; Two-tailed test
usage, 789

Delivery, 874
date, 874
month, 874
settlement, 5, 874

Dell leaps, price/volume/open interest information,
391

Dell stock options, price/volume/open interest infor-
mation, 389–390

Delta, 245, 256–257, 874. See also Futures
change, 237–238
constraint, 523, 525
hedge, 331, 357
hedging, 539
numerical approximation. See FX put option;

Put options
positive value, 235
usage, 235–236
values. See Asset-or nothing

Delta risk
exposure, 361
hedge, 358–360

one-day hedge, 360–362
Delta-neutral, 875

hedge portfolio, 236
Derivatives

continuous dividend yields (inclusion), no-arbi-
trage price relations/valuation equations/
methods. See Stock indexes

disasters, 775
discrete dividends (inclusion), no-arbitrage price

relations/valuation equations/methods. See
Stock indexes

instruments, U.S. accounting rules, 746
lessons, 773–775
price movements, 249
regulation, 26
terms, 869–891
total notional amount, percentage, 606, 733.

See also Interest rate derivatives; Single-
currency interest rate derivatives

types, 774
valuation, 775

foundational assumption, 509
Derivatives contracts, 3, 875. See also Implied vol-

atilities
elimination, 254
expected return/risk relation, 774
trading, 384–392
valuation, 326, 392–406

discussion, 774
Derivatives markets, 3

evolution, 11–19
existence, 773

reasons, 8–10
references/readings, 42

Designated maturity, 39
Designated Order Turnaround (DOT), 875
Deutsche Bank, 606
Deutsche Terminborse (DTB), 538

launch. See Volatility
Diagonal spread, 875
Dial Corporation (DL) shares, 388
Digital options, 232, 875
Dilution factor, 875

substitution, 445
Directional bets, 405
Dirty price, 76
Discount bonds, 54–66, 875

implied yield, computation, 56
marketplace trading, 61–64
price change, approximation

convexity, usage, 60
duration, usage, 58–60

trading, 61
valuation, 55–56
value lattice, 713
values, Vasicek model assumptions, 712

Discount factor, 55, 875. See also Forwards
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Discounts, 61, 875
Discrete asset price distribution, 377
Discrete cash dividend payments, 191, 393–395
Discrete cash flow payment, future value compu-

tation. See Assets
Discrete dividend income, continuous dividend

income (contrast), 489–494
Discrete dividends

assumption, 458
future value form, 494

Discrete flows, 123–124, 190–197. See also For-
wards

incorporation, 317–319
Discrete probability density function (discrete pdf),

781
Discrete-time reversion rate, 336
Disney, Roy E., 412
Distribution, mean, 210
Disturbance assumption

nonlinearity, 852–854
violations, 852–858

Dividend-paying stock
American-style call options

exact valuation, 415–418
valuation, 318–319

American-style calls
early exercise, prospect (identification), 192

American-style puts, early exercise (prospect
identification), 194–195

number, listed options, 395
Dividend-paying stock, forward contract (value

computation), 128
Dividends, 875

capture, 875
declaration date, 393, 875
growth. See Constant dividend growth
index, 491
payment, 399, 452

date, 393, 875
protection, 875
spreads, 406–407

opportunity, identification/engagement, 407
yield, 349, 351, 875. See also Standard & Poor’s

500 index
levels, 452

DJIA. See Dow Jones Industrial Average
DL. See Dial Corporation
Dollar value of one basis point (DV01), 57
Domestic agricultural commodities options, CFTC

ban, 763
DOT. See Designated Order Turnaround
Double barrier options, 294
Doubling, 875

strategy, 507
Dow, Charles H., 489
Dow Jones Industrial Average (DJIA). See Price-

weighted DJIA

cash dividends, 492
computation, 489
dividends, 492–494
futures contract, 474
index

average daily cash dividends, 493
level, 280

returns, 504
stocks, trading, 490

Down-and-in call, 294
Down-and-in option, 875
Down-and-out call, 294, 295, 692

valuation, 298–299
Down-and-out option, 875
Downside price risk, 408
Down-step

coefficient, 317
change, 321

probabilities, 312
Downtick, 875
Downward biased contracts, 166
Downward-sloping environment, 548
Drift rate, 249

adjustment, 337
Dual trading, 875
Dummy variable, 843

slope-shifter, 844
usage. See Means

Dummy variable slope-shifter, usage. See Return
Duration, 57, 875. See also Coupon-bearing bonds;

Target duration
approximation, computation. See Coupon-bearing

bonds
computation, yield to maturity (usage). See Coupon-

bearing bonds
definition, 58
usage. See Bond portfolio; Discount bonds

Duration-based approaches, equivalence, 633–634
Duration-based hedging, 72
Duration-based optional hedge ratio, 633
Durbin-Watson (DW) statistic, 856
Durbin-Watson (DW) test. See Null hypothesis
Durbin-Watson (DW) test statistic, significance

points, 868
DV01, 59, 875
DW. See Durbin-Watson
Dynamic hedge, 875
Dynamic hedging effects (capture), Monte Carlo

simulations (usage), 329–332
Dynamic insurance

index futures
stock portfolio/dynamic adjustment, usage,

527–528
usage, 525–526

risk-free bonds
stock portfolio/dynamic adjustment, usage,

527–528
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Dynamic insurance (Cont.)
usage, 523–525

stocks, usage, 523–525
Dynamic portfolio insurance, 518, 875
Dynamic portfolio insurance, creation

risk-free bonds
usage, 524–525

stock index futures
stock portfolio/dynamic adjustment, usage,

528–529
usage, 526–527

stock portfolio, usage, 524–525, 526–527

Early exercise, 455–458, 875
checking. See Optimal early exercise
motivation, 319
optimality, evaluation. See Long-term ESO
premium, 339, 875
proceeds, 318

ECU. See European Currency Unit
EDGAR. See Electronic Data Gathering Analysis

and Retrieval
Effective date, 38, 650, 875
Effective interest rate, 54, 876
Efficiency frontier, 97
Efficient portfolios, 94, 876

identification, risky securities (usage), 97–101
EFV. See Expected future value
Electronic Data Gathering Analysis and Retrieval

(EDGAR), 412
Elementary statistics, 779

objectives, 779–780
references/readings, 818–819

Embedded lookback option, 463
Embedded quality option, valuation. See U.S.

Treasury bonds
Employee stock options (ESOs), 451–455, 876

early exercise, optimality (evaluation). See Long-
term ESO

indexed exercise prices, inclusion, 459–460
reload features, inclusion, 460–463
valuation. See Indexed ESO

maximum stock price, usage, 456–458
reload features, inclusion, 461–463

value, 459
Employee stock purchase plans (ESPPs), 451, 463–

465, 876
valuation, 465

End-of-month option, 876
End-of-period portfolio value, 161
End-of-period stock price, 463
Energy, commodity derivatives, 737–748
Equity basis swap, 19, 876
Equity FLEX options, 392
Equity index, appreciation, 512
Equity notes. See Protected equity notes
Equity option, 876

Equity swap, 18–19, 876
Equity tranche, toxic waste, 696
Equity-linked notes, 512
Error sum of squares (SSE), 834, 846
Errors-in-the-variables problem, 876
Escrowed dividend, present value, 416
ESOs. See Employee stock options
ESPPs. See Employee stock purchase plans
Estimate, standard error, 808
Estimated slope coefficient, biasing, 168
Estimation, 786–795
Eta, 245, 257, 876

usage, 236–237
ETFs. See Exchange-traded funds
Euro

futures contract, 568
futures option contract, 570
national currencies, conversion rates, 567
option contract, 570

Eurodollar futures, 607–610
contract, 632, 876. See also Chicago Mercantile

Exchange
options, 31–33, 615
three-month Eurodollar futures, 17

Eurodollars, 876
contracts, 876
options, 33
swap rates, 643
time deposits, 625, 643, 876

European Currency Unit (ECU), 876
European option, 876
European-style barrier options, expected returns/

risks, 349
European-style barrier options, valuation

definitions, requirement, 296
equation, 297

European-style call, 177
lower price bound, 178–180, 190–191
terminal value, 440
value, finding. See Stock indexes

European-style call on maximum, valuation, 334–
335. See also Risky assets

European-style call option, 180, 232
lower price bound

arbitrage portfolio trades, support, 179, 191
examination, 180

price equivalence (demonstration), arbitrage port-
folio trades (usage). See Assets; Futures

valuation, 224–232
European-style chooser options, valuation equa-

tion, 275
European-style compound options, valuation, 415
European-style contingent pay call option, 270
European-style Eurodollar futures option, 629
European-style futures options

risk measures, summary, 244–245
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European-style futures options (Cont.)
valuation

Black formula, BSM formula reduction, 627
equations, summary, 244–245

European-style options, 198–199, 337
expected return/beta relation, 350
expected return/volatility relation, 351
no-arbitrage price relations, 190, 197. See also

Futures contracts
put-call parity, 185–187, 195

examination, 186–187
risk, measurement, 234–247
risk measures, summary, 244
valuation, 397–398

equations, summary, 244
problems, 262

European-style put, 177
BSM formula, 264–265
lower price bound, 182, 184, 193
value, finding. See Stocks

European-style put option
current/intermediate values, 310
lower price bound, examination, 183
simulation runs, 328
valuation, 232–234

simulation run, 327
European-style put option, theta, 242
European-style put-call parity

arbitrage portfolio trades, 185
support, 195

development, 424
usage. See Perfect substitutes

European-style USD/GBP values, computation. See
Futures; Spot currency

European-style valuation equation, 455
Excel

regression routine, usage. See Simple linear regres-
sion

SOLVER, 74, 99, 712
solution, imprecision, 361
usage, 716

usage, 98
Excess kurtosis, 786

estimation, 789–792
Exchange call options, valuation, 280–281
Exchange options, 278–281, 876

formula, usage. See Two-asset case
valuation, 445

Exchange rates, 876
values, 591

Exchange rules, 387
Exchange-traded call, 287
Exchange-traded derivatives

contracts, standardization, 20–21
examples, 27–33
markets, attributes, 19–33
transparency, importance, 24–26

Exchange-traded funds (ETFs), 470, 482–484
creations/redemptions, 483
option classes, 475
trading. See New York Mercantile Exchange

activity. See American Stock Exchange
unit trust style, AMEX adoption, 483

Exchange-traded interest rate derivatives, 604
Exchange-traded markets, 33
Exchange-traded stock options, 452
Ex-coupon bond price, 724
Ex-dividend date, 394, 397, 876
Ex-dividend instant, 406
Ex-dividend price, 406
Exercise, 876
Exercise price, 7, 296, 297, 403, 876. See also In-

the-money exercise prices; Options; Out-
of-the-money exercise prices

characteristic, 354
condition, 225
continuum, 553
differences, 275
elimination, 559
number, computation, 521
partial derivative, relation, 257
present value, 290
relationship. See Gap options; Implied volatilities

Exotic nonstandard option, 261
Exotic option, 876
Expectation operators, properties, 786

list, 786
Expectations theory, 876. See also Unbiased expec-

tations theory
Expected asset price, 374

computation, 212
illustration, 376–377

conditional, 219
prediction, futures (usage), 146–147

Expected future standard deviations/correlation, 152
Expected future value (EFV), 310

present value, 309–310, 324–325
Expected future volatility, 529
Expected long-term volatility, predictors, 452
Expected loss, present value, 424–425, 691
Expected profit computation, straddle (impact),

378–379
Expected recovery value, 876
Expected return on market, 351
Expected return rates, 697
Expected return/beta relation. See European-style

options
Expected return/risk management applications, 543–

544, 549
Expected return/risk relation, 438
Expected returns/risks, 143–148, 348–353. See

also Covered call trading strategies; Euro-
pean-style barrier options; Protective put
trading strategies
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Expected returns/risks (Cont.)
individual options, 348–350
relation, 144–145. See also Net cost of carry

Expected return/volatility relation. See Covered
call strategies; European-style options

Expected stock return, 350, 351, 353
percentage, 354

Expected terminal call conditional, 416
Expected terminal price, computation, 377
Expected terminal profit/return, 373–379
Expected utility of terminal wealth. See Terminal

wealth
Expected value, 876
Expiration, 876

cycle, 610
Expiration date, 876

characteristic, 354
usage, 553

Expiration to exercise, 319
Expiration-day effects, analysis, 500
Explained sum of squares, 834
Ex-split date, 876
Extendible bond, 876

F distribution, 814–816
critical values, 866, 867
degrees of freedom, 815

F value, ten degrees of freedom, 866
Face value, 876. See also Bonds
Fair bet, 90, 877
Fair value, 497–498, 668, 877. See also Basis
FASB Statement No. 133, 746
FDIST, 816
Feasibility, 877
Federal funds rate (setting), Federal Reserve (impact),

667
Federal Reserve, impact. See Interest rate ceilings
Federal Reserve Bank of New York, 640
Ferruzzi, soybean holdings (increase), 44–45
Ferruzzi Finanziaria S.p.A., 43–46
Fill-or-kill (FOK) order, 877
Financial asset, 877
Financial futures, 877
FINV, 816
First-mover advantage, 470–471
First-order approximation, 57
Fixed exchange rate computation. See Forward

exchange rate curve
Fixed income securities, 55
Fixed payment credit option, valuation, 693–694
Fixed-against-floating swap, 39, 877
Fixed-for-floating commodity swap, 736–737
Fixed-for-floating interest rate swaps, 37–38
Fixed-for-floating rate swaps, 652, 877
Fixed-for-floating swaps, 39, 871, 886

rates, 649
Flat volatilities, 672

FLEX options, CBOE introduction, 520
Floating exercise price

existence, 292
inclusion. See Lookback call options

Floating rate bond
valuation, zero-coupon yield curve (inclusion),

655–657
value, 655

Floating rate day-count fraction, 39
Floating rate option, 39
Floating rate payments, transfer risk, 653
Floating-rate day-count fraction, 651
Floorlet, 877
Floors, 877. See also Interest rate floors

brokers, 877
prices, 714
traders, 877
trading, 479

FOK. See Fill-or-kill
Foreign currency (FX)

cross rates, 575
derivatives, 877
forwards, valuation, 571
futures, valuation, 571
operation, 576
put option, delta (numerical approximation), 341
spot currencies, options, 568–570

Foreign currency (FX) futures
options, 568–570

contracts, relative trading volumes. See Chi-
cago Mercantile Exchange

usage. See Balance sheet risk; Transactions
Foreign currency (FX) futures contracts

relative trading volumes, 568
trading, 567–568

Foreign currency (FX) options, 228, 583
no-arbitrage price relations, 572
usage. See Balance sheet risk; Transactions
valuation equations, 572

Foreign exchange policies/regulations, 683
Foreign financing (obtaining), currency swaps

(usage), 588–591
Forward exchange rates, 877

American-style USD/GBP options, values/early
exercise premiums (computation), 587

curve, swaps (fixed exchange rate computa-
tion), 579–581

term structure, 566, 889
Forward forward volatilities, 671
Forward index level, computation, 555, 558
Forward loan, interest rate (lock-in), 82–83
Forward net carry rates, implying, 135
Forward price movements, 249–250
Forward rates

computation, zero-coupon yield curve (usage),
81–82

implied risk-free rate, computation, 571
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Forward rates of interest. See Interest
Forward strip, addition. See CAD bonds
Forwards, 3, 4, 121

commitment, 877
continuous rates, 125–127
contract, 877

strip, 579
usage. See Short-hedging

contrast. See Options
curves, 578, 877

basis, fixed rate computation. See Swaps
discount, 566
discount factors, 80, 877

computation, zero-coupon yield curve (usage),
81–82

discrete flows, 128–129
markets, 877
options, 877
premium, 566, 574, 877
prices, 877

futures prices, equivalence, 133
references/readings, 141
start option, 878
start swap, 878
swaps, 674, 877
transaction, 4, 877
usage, 4–7. See also Hedging; Long-hedging
valuation, 125–130, 395–396. See also Foreign

currency
volatility, 878

curve, 672, 878
Forward-start call, 274–275

options, valuation, 273
Forward-start options, 271–273

lives, comparison, 272
valuation equations, 272

Four-year coupon-bearing bond valuation, no-
arbitrage pricing model (usage), 723

Four-year coupon-bearing putable bond valuation,
no-arbitrage pricing model (usage), 725–
726

Fractional distillation, 739, 878
Frequency distribution, 780–781
Frictionless BSM, 505
Frictionless markets, 52–54, 878
Front-running, 878
FT-SE 100, 487

index, 469
Full carry, 878
Full price, 76
Fundamental analysis, 878
Future cash flow dates, 638
Futures, 121

account, margin balances (computation), 23–24
basis risk, 473
commission merchant, 878
delta, 356

European-style call options (price equivalence
demonstration), arbitrage portfolio trades
(usage), 199

European-style USD/GBP values, computation,
583–586

expiration
cheapest-to-deliver, 620, 622
cheapest-to-deliver bond, identification, 620–

621
fair value, 497
GBP/USD options values, computation, 583–

586
hedge ratio, tailing mechanics, 750
log-normally distributed prices, 619
market, CFTC monitoring, 20
position. See Telescoping futures position

cash flows. See Long futures positions
terminal values, comparison. See Long for-

ward positions
premium, 884
prices, 878
profit function, 364
references/readings, 141, 515–516, 635
risk management strategies, 143
series, Greeks computation, 356
term to maturity, shortness, 598
usage. See Expected asset price; Hedging
valuation, 130–135, 395–396. See also Foreign

currency
vega, 356

Futures contracts, 6, 15, 878
American-style options, no-arbitrage price rela-

tions, 198
European-style calls/puts, value computation, 245
European-style options, no-arbitrage price rela-

tions, 198
identification, 152
market value. See Active index futures contracts
physical delivery, 546
size/maturity, 591
strip, 579
trading, 732. See also FX futures contracts
usage, 6, 591

Futures Industry Association Monthly Report, 471,
475

Futures options, 197, 228–229, 878. See also
Eurodollar futures options; Futures-style
futures options; Index futures options

contracts. See Standard & Poor’s 500 index
trading, 478

prices, no-arbitrage relations. See Assets
quadratic approximation, application, 337
trading. See Crack spread

volume, proportion, 734
Futures-style futures options, 229
Futures-style settlement, 878
FX. See Foreign currency
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Gamma, 245, 257, 878
decrease, 357
usage, 237–238

Gamma-neutral, 878
Gap call option

terminal payoff, 269
valuation, 267–269

Gap options, 267–269, 878
construction, all-or-nothing options (usage), 267
values, exercise price (relationship), 270

Garman-Kohlhagen model, 878
Gasoline

consumption, 741
correlation, 748
daily prices. See Unleaded gasoline

Gaussian quadrature method, 301
Gauss-Markov process, 335
GBP/USD options values, computation. See Futures;

Spot currency
Gekko, Gordon, 52
Generalized differences, denotation, 857
Generic interest rate swaps, 652
Geometric asset price, 294
Geometric Brownian motion, 207–209, 706

usage, 326–333
Geometric progression, sum, 86–87
Global credit derivatives

exposures, 684
bond rating, 685

outstanding, notional amount, 681
GLOBEX, 478, 878
GNMA. See Government National Mortgage Asso-

ciation
GOFO. See Gold forward
Going long, 5, 878
Going short, 5, 878
Gold

bullion
level. See Standard & Poor’s 500 index
price, 762. See Standard & Poor’s 500 index

commodity derivatives, 758–768
consumption, 761–762
demand, 761
derivatives markets, 762–764

collar agreement, cap exercise price (determi-
nation), 766–768

trading, number, 764
loan, mechanics, 765
net cost of carry relation, 764–766
production, 760–761
risk management strategies, 766–768
safe haven, 762
three-month lease rates, 765
usage, 760
world consumption, 763
world production, 761

Gold forward (GOFO)
rate, 765–766, 878
three-month rate, 765

Goldfeld-Quandt test, 854
Goodness of fit, 833–835, 847–849
Good-till-cancelled (GTC) order, 878
Gosset, William Sealey, 806
Government debt, financing, 610
Government National Mortgage Association

(GNMA)
Collateralized Depositary Receipts (CDRs), 604
futures, 17
pass-through certificates, 603

GPM. See Gross processing margin
Grade, 878
Grade basis risk, 149
Great Britain pound (GBP), 40
Greeks, 264, 304, 878

computation, 356
derivation, 234, 255–260
relation, 255–256
reporting, 245

Gross price, 76
Gross processing margin (GPM), 158, 754, 878

change, 757
GTC. See Good-till-cancelled
Guarantee, 679, 878
Guts, 878

Haircut, 625, 879. See also Variable prepaid for-
ward

Heating oil
daily prices, 749
futures prices, differences, 751
weekly returns, 748

Hedgable risk, 154
Hedge, 879. See also Long-term short hedge;

Short-term long hedge
computation. See Risk-minimizing hedge
funds, 624
horizon, 171
position, 22–23
setting. See Risk-minimizing hedge
tailing, 134, 154, 889

Hedge portfolio, 355, 511
binomial model, usage. See Risk-free hedge

portfolio
Hedged portfolio, 355

delta, 356
risk exposures, 358

Hedger, 879
Hedging, 5, 71, 879. See also Margins; Portfolio

value; Price risk; Revenue risk; Risk;
Uncertain hedging; Value

effectiveness, 73
forwards, usage, 129. See also Long-hedging
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Hedging (Cont.)
futures

contracts, usage. See Assets
usage, 134

options, usage. See Long-hedging; Short-hedging
risk factors, usage, 164–166
selling, impact, 10

Heteroscedasticity, 854–856
correction, 855

Historical prices, collection, 152
Historical volatility, 879
HKFE. See Hong Kong Futures Exchange
Holding period, 533, 879
Homoscedasticity, 822
Hong Kong Futures Exchange (HKFE), 17, 469
Hooke, John, 576
Horizontal option spread, 879
Horizontal spread, 879
Hybrid, 879
Hypothesis

difference, test. See Means; Paired sample
mean, test, 809–810
test. See Intercept; Multiple linear regression;

Regression; Slope

IBM
arbitrage, 52
market, movement (correlation), 795
monthly stock returns, 789–792
performance, 109
returns, 792
shares, closing, 54
stock, 108

market index returns, 792–793
Idealized BSM, 505
i.i.d. See Independent and identically distributed
IMM. See International Monetary Market
Immediate-or-cancel (IOC) order, 879
Immunization, 879
Implicit volatility, 879
Implied financing cost, 879
Implied forward discount factor, 80–81, 879
Implied forward interest rates, computation. See

Britain
Implied forward rate, 879
Implied repo rate, 879
Implied standard deviation (ISD), 879

computation, 712
Implied variance, computation, 559–560
Implied volatilities, 403–406, 879. See also At-the-

money option; Merger events; Short-term
options

basis, 405
derivatives contracts, 544–548
exercise price, relationship, 503
increase, 405
smile/sneer, 504

Implied volatilities, computation
at-the-money S&P500 index option prices,

usage, 502
call option prices, inclusion, 397–398
Eurodollar futures option price, usage, 630–631
process, 536
T-bond futures option prices, usage, 627–628

Implied volatility function (IVF), 504–506
Implied yield to maturity, 588
In cash settlement, 6
Income gain, 53
Income rate, 303

change, 239–240
Increased-value VIX, 545
Increment convenience yield, 736
Independent and identically distributed (i.i.d.), 156
Index amortized swap, 879
Index arbitrage, 494–497, 879
Index futures

options, 478–480
usage. See Dynamic insurance; Stock portfolios

Index options, 480–482, 879
buy-write strategies, 530–537

Index participants, 879
Index portfolio (return distribution), Monte Carlo

simulation (usage), 532, 533
Index puts

options, 519
purchase. See Static portfolio insurance

Indexed ESO, valuation, 459–460
Indexed exercise prices, inclusion. See Employee

stock options
Index-linked notes, 512
Indices. See Price-weighted indexes; Value-weighted

indexes
portfolios (insuring), index put (usage), 520
products. See Stock indexes
returns, correlation. See U.S. stock market

indexes; U.S. stock markets
Initial margin, 22, 879
Initial public offerings (IPOs), 9
Initial values, computation, 522–523. See also Port-

folios
Institutional customer, 879
Insurance premium, maximum (identification), 92
Interbank, 879
Interbank loans, market-determined rates, 667
Intercept, hypothesis test, 829–831. See also Regres-

sion line
Intercommodity spreads, 23
Interest

accumulation factor, computation, 555
forward rates, 80, 877
implied forward rates, 80–81, 656
payments, swap valuation, 659–660
spot rate, 79
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Interest, risk-free rate, 147, 235, 278, 296
assumption, 531
excess, 114
level, 356, 502
purchase, financing, 622

Interest rate caps, 669–673, 879
valuation, 670–672

flat volatility rate curve, usage, 672–673
zero-coupon yield curve, usage, 672–673

Interest rate ceilings, removal (Federal Reserve
impact), 625

Interest rate collars, 669–673, 879
valuation, 670–672

Interest rate derivatives, 880
evolution, 604–606
total notional amount, percentage. See Single-

currency interest rate derivatives
valuation, no-arbitrage pricing models (usage),

714
Interest rate floors, 669–673, 880

valuation, 670–672
Interest rate parity (IRP), 573–574, 880
Interest rate products, 603, 637

markets, 604–616
numerical valuation, 705

references/readings, 727
references/readings, 635, 676–677
risk management

applications, 631–634
lesson, 666–669

Interest rate swaps, 18, 605, 648–665
cash flows, hypothesis, 652
confirmation. See Over-the-counter interest rate

swaps
valuation, 654–655

Interest rates. See Continuously compounded inter-
est rates

bet, 668
change, 238–239
decreases, 660
equivalence. See Coupon
futures, 606–615, 880
level, 351
lock-in. See Forward loan
logarithm change, volatility rate (impact), 720
mechanics, 51, 54–55

references/readings, 85–86
no-arbitrage models, 713–720
options, 615–616, 880
risk hedge, duration (usage). See Bond portfolio
swap. See Plain-vanilla interest rate swap
term structure, 64, 79–83, 889
unlimited borrowing/lending. See Risk-free inter-

est rate
Intermarket spread, 880
Intermediate coupon payments, 617
Internal rate of return (IRR), 699, 880

International Monetary Market (IMM), 16–17
International Petroleum Exchange (IPE), 16
International Securities Exchange (ISE), 384
International Swap and Derivatives Association

(ISDA), 648–649, 651
2000 ISDA Definitions and Annex to the 2000

ISDA Definitions, 35, 648
Annex to the 2000 ISDA Definitions, 39
contract term standardization role, 680
ISDA Master Agreement, 35, 648
Word document file, usage, 688

In-the-money, 880
In-the-money at expiration, 233, 416
In-the-money exercise prices, 403
In-the-money option, 288
Intracommodity spread, 23, 880
Intraday basis mispricing. See Standard & Poor’s

500 futures
Intraday prices. See Standard & Poor’s 500 futures;

Standard & Poor’s 500 index
Intraday S&P500 index levels, 502
Intrinsic value, 179, 880
Inverse floater, 701

appearance, 660
duration, 664–665

calculation, 665
valuation, 660–661

fixed/floating rate bonds, difference, 663–664
valuation, zero-coupon yield curve (inclusion),

661–662
Inverse floating rate swap structures, 660
Investment alternative, VIX futures (usage), 549–550
Invoice price, 613–615, 880
IOC. See Immediate-or-cancel
IPE. See International Petroleum Exchange
IPOs. See Initial public offerings
IRP. See Interest rate parity
IRR. See Internal rate of return
ISD. See Implied standard deviation
ISDA. See International Swap and Derivatives

Association
Ito’s lemma, applications, 248–250
IVF. See Implied volatility function

Japanese yen (JPY), 577
Jarque-Bera statistic, 535
Jarque-Bera test. See Stock markets
Jarrow-Rudd (JR) parameters, 306

usage. See American-style put option
Jarrow-Rudd (JR) possibilities, 313
Jensen’s alpha, 113
Jet fuel, weekly returns, 748
Jetmaker, 591–592

agreement, 595
Johnson-Shad Accord (1984), 383
Johnson-Shad Agreement, 880
Junior bonds, 437
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Kansas City Board of Trade (KCBT), 17, 470
Kappa, 880
KCBT. See Kansas City Board of Trade
Koval, Andy, 576

hedging, absence, 577
supervision, absence, 577
trading limits, disregard, 577

Kurtosis, 785–786. See also Negative kurtosis;
Positive kurtosis

estimation. See Excess kurtosis
estimator, 789

Lambda, 880
Large market capitalization firms, 549
Last trade price, 880
Lattice, 880
Lattice-based procedures, 326–327
Law of one price, 52, 880
LEAPS. See Long-term equity anticipation securities
Leaps

lower price bound, computation, 396–397
price/volume/open interest information. See Dell

leaps
Lease rate, 764, 880
Least squares estimator, 824
Least-cost risk-minimizing hedge portfolio, identi-

fication, 360–361
Leeson, Nicholas William, 506–509
Legging into, 880. See Transactions
Leland, Hayne, 518
Leland-O’Brien-Rubinstein (LOR), 518, 523
Lemma. See Ito’s lemma
Lending portfolio, 102–103, 106, 880
Leverage, 880

implicit degree, 349
Leveraged asset position

future value, 126
terminal values, 125

Leveraged swap, 880
LIBOR. See London Interbank Offered Rate
LIFFE. See London International Financial Futures

and Options Exchange
Limit down, 880
Limit move, 880
Limit order, 880
Limit up, 880
Linear interpolation, 79, 881
Linear regression. See Simple linear regression
Liquid market, 881
Liquidity, 881

preference theory, 881
LME. See London Metal Exchange
Local, 881
Locked-in value, 408
Log-normal asset price distribution, 209–212
Log-normal bond prices, option valuation equa-

tions, 627–628

Log-normal distribution, 719–720, 881
usage, 795

Log-normal interest rates, option valuation equa-
tions, 629–630

Log-normal price distribution, 207–224, 509
Log-normal terminal price, 215
Log-normally distributed asset prices, 233
London Bullion Market Association, 766
London Corn Trade Association, 16, 731
London Interbank Offered Rate (LIBOR), 881

basis. See One-month LIBOR; Six-month LIBOR
rate, usage. See Short-term LIBOR rate
receipt, 40
six-month rate, 649, 652–654, 665, 685–686

increase, 667
receipt, 673

three-month rate, 670, 765
London International Financial Futures and Options

Exchange (LIFFE), 17, 229, 469
London Metal Exchange (LME), 16
London Traded Option Market (LTOM), 17
Long asset position

profit function, 362–363
terminal profit diagram, 363, 364

Long call position
profit function, 364
terminal profit diagram, 366

Long forward positions
long futures positions, terminal values (compar-

ison), 131
long telescoping futures positions, terminal val-

ues (comparison), 132–133
Long futures position, terminal profit diagram, 364
Long futures positions, cash flows, 130
Long hedge, 881
Long position, 881
Long put position

profit function, 367–368
terminal profit diagrams, 367

Longer-term contracts, 476
Long-hedging

forwards, usage, 593–594
options, usage, 594–595

Long-run average short rate, 710, 712
Long-term American-style call, 192
Long-Term Capital Management (LTCM)

collapse, 538
index option strategy, 543
trading strategies, 538

Long-term equilibrium price, 335
Long-term equity anticipation securities (LEAPS),

31, 387, 881
Long-term ESO (early exercise), optimality (evalu-

ation), 454
Long-term fixed-rate bonds, purchase (financing),

668
Long-term fixed-supply contracts, hedging, 748
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Long-term interest rate risk
exposure, 160
usage. See Short hedge

Long-term short hedge, 632–633
Long-term U.S. Treasury bonds, deliverable supply,

610
Lookback call, valuation, 293
Lookback call options, 881

floating exercise price, inclusion (terminal pay-
off), 292

Lookback options, 291–294
variations, existence, 292

Lookback put option, 291, 881
LOR. See Leland-O’Brien-Rubinstein
Louisiana Purchase, 506
Lower bound, 881
Lower price bound. See American-style call;

American-style put; European-style call;
European-style put

Lower semicorrelation, 785, 788
Lower semicovariance, 788
Lower semivariance, 784

estimator, 788
LTCM. See Long-Term Capital Management
LTOM. See London Traded Option Market
Lucent Technologies (LU)

daily stock price behavior, 402
daily trading volume, 404
stock options, average BSM implied volatilities,

404

Macrohedge, 881
Maintenance margin, 22, 881
Major Market Index (MMI), 474
Managed portfolio, turnover, 482
Margin calls, 626, 881
Margining system, 16, 19, 881
Margins, 881

balances, computation. See Futures
imposition, 22–23
risk, hedging, 158–160

calculation, 159–160
Margrabe model, 623
Marked-to-market, 130

absence, 749
daily basis, 538
gain, 131

Market
disruption event, 542
efficiency, 881
frictions, 881
integrity, 15, 881
interest rates, Fed funds rate (impact), 667
makers, 356, 881

earnings, 505
order, 881
performance, measure, 486

portfolio, 105, 881
portfolio, composition, 106

calculations, 108
price. See Risk
return

stock return prediction, development, 833
risk

alteration, index futures (usage). See Stock
portfolios

premium, 206
segmentation theory, 881
timing, 881
transparency, 19, 36, 881. See also Over-the-

counter derivatives markets
value stocks, ranking. See Standard & Poor’s

500 index
volatility rate, movements, 549

Market capitalization. See Standard & Poor’s 500
index

firms. See Large market capitalization firms
stocks, empirical return distributions, 536

Market maker, inventory, 536
Market Volatility Index (VIX), 544

calculation procedure, 553
computation, S&P500 index option prices

(usage), 556–558, 561–562
construction, 553–562
daily levels, 545
index, 546
option contract, 551
spot price, convergence, 547

Market Volatility Index (VIX) futures
contracts, 546
open interest, 547
price

convergence, 547
estimation, 548

trading, CBOE launch, 538
usage. See Investment alternative

Market-if-touched (MIT) order, 882
Market-indexed security, 882
Market-on-close (MOC) order, 500, 882
Marking-to-market process, 6
Markowitz, Harry, 97
Mark-to-market, 626, 882

gains/losses, 133, 134
Maturity dates, 697, 882
Maximum. See Call on maximum; Put on maxi-

mum
call options, valuation, 285–286
options, 281–287

Maximum dollar loss (computation), time period/
confidence level (usage), 218–219

Maximum possible loss computation (95% confi-
dence), 796–801

Maximum share price, 410
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Mean, 782. See also Normal distribution; Sample
estimation, 789–792
estimator, 787
test. See Hypothesis; Zero mean

Mean continuously compounded return, relation.
See Continuously compounded mean return

Mean reversion, 335–337, 707
price, 336

asset price path, simulation, 336
Mean-reverting process, estimation, 709
Mean-reverting process/model movements, 335
Means

difference (test), dummy variable (usage), 842–844
equivalence, test, 810–811. See also Paired sample
hypothesis difference, test, 811–812

Mean-stddev, 116
Mean-variance portfolio performance measures, 533
Merger events, implied volatilities, 401–406
Merton model, 228, 430
Mesokurtic distribution, 786
Metals

commodity derivatives, 758–768
consumption, 761–762
derivatives markets, 762–764
futures/futures options, trading volume, 759
net cost of carry relation, 764–766
production, 760–761
risk management strategies, 766–768

Mexican coupon stream, risk premium (isolation),
700

Mexican par spread. See Stripped Mexican par
spread

Mexico, credit risk (long exposure), 701
MEXSPD, 701
MG Refining and Marketing (MGR&M), risk

management lessons, 748–751
Microhedge, 882
Microsoft Corporation (MSFT), 397
Mid American Exchange (MidAm)

CBOT affiliate, 753
financial contracts, CBT conversion, 753

Midmarket rate, 651
Minimum. See Call on minimum; Put on minimum

call options, valuation, 285–286
options, 281–287

Minimum selling price, 92, 882
Minimum share price, 410
Minimum variance hedge, 882
MIT. See Market-if-touched
MM. See Thirty-day money market index
MMI. See Major Market Index
MOC. See Market-on-close
Modified conversion factors, 621
Money market, 882

deposits, monthly returns (summary statistics), 534
hedge, 592
short-hedging, 592

Money spread, 882
Monte Carlo simulation, 303, 326–337, 882

approximation method, 597
procedure, 531
usage, 327, 374. See also At-the-money option;

Currency price; Dynamic hedging effects;
Index portfolio

Monte Carlo valuation procedure, 337
Monthly input rates, maturities, 642, 644
Montreal Exchange, 17
Multicollinearity, 852
Multiple flows, 596–597
Multiple linear regression, 841–858

estimation, 842
explanatory variables

inclusion, 852
omission, 849–850

individual parameters, hypothesis tests, 842–845
model, 841

assumptions, 842
selection, 847–849

prediction, 847
specification errors, 849–852

Multiple listing, 882
Multiple regression, 822

model, usage, 164
Multivariate regression, usage, 647
Mutual fund industry, 482

Naked call, 882
Naked option position, 882
Naked position, 882
NASDAQ

100 index, 474, 481
stocks, calendar days (median number), 394
trades, assurance, 500

n-asset exchange option, development, 278
National currencies, conversion rates. See Euro
Natural hedge, 882
NAV. See Net asset value
Nearby contract, 882
Nearby options, 403
Negative kurtosis, 789
Negative value, implication. See Contango
Net asset value (NAV), 483
Net cost of carry, 121, 733, 882

expected return-risk relation, 145–146
relation, 127, 622–623, 733–737, 882. See also

Chicago Board of Trade; Gold; Metals;
Perfect substitutes

rewriting, 626
Net present value (NPV), 882
Netting, 882
New York Coffee Exchange, 16
New York Cotton Exchange, 16, 731
New York Futures Exchange (NYFE), 17, 473
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New York Mercantile Exchange (NYMEX), 16, 731
COMEX division, 760
energy futures/futures options, trading volume,

737
ETF trading, 737
futures, listing, 152
petroleum complex, trading activity, 744–745
trades. See Petroleum
unleaded gasoline, trading, 741

New York Mercantile Exchange (NYMEX), trad-
ing, 320

New York Stock Exchange (NYSE), 473
markets, 384
stocks, calendar days (median number), 394

Nikkei 225. See Barings Bank PLC
futures contracts, trading, 507
option straddles, 508

Nixon, Richard, 763
No-arbitrage futures options relations, 197–198
No-arbitrage inter-market relations, 198–199
No-arbitrage models. See Interest rates
No-arbitrage price relations, 121, 175, 578, 619.

See also American-style options; European-
style options; Stock indexes

development. See Swaps
impact, 774
options, 396
references/readings, 141, 200

No-arbitrage pricing framework, 718
No-arbitrage pricing models, 882

application, 712
assumption. See Coupon-bearing callable bond

valuation
one-period binomial lattice, 715

short rate distribution assumption, 716
three-period binomial lattice, 717

short rate, log-normal distribution (assump-
tion), 721

two-period binomial lattice, 716
short rate, log-normal distribution (assump-

tion), 720
usage. See Four-year coupon-bearing bond val-

uation; Four-year coupon-bearing putable
bond valuation; Four-year zero-coupon
bond; Interest rate derivatives

No-arbitrage relations, 494–506, 565, 616–631
No-arbitrage valuation, 494–506, 616–631
Node values, 314
Nominal rate, 54
Nondividend-paying stock options, 227–228
Nondividend-paying stocks, listed options (num-

ber), 395
Nonlinear programming problem, 97, 882
Nonlinearities, 852. See also Disturbance assump-

tion
Nonnormality, 858
Nonquarterly expiration cycles, 479

Nonrecombining lattice, 708
Nonsimultaneous price observations, 168
Nonstandard options, 232, 882. See also Exotic

nonstandard option
analytical valuation, 261

references/readings, 299–300
Normal distribution, 714–719, 795–801, 882

function. See Standard normal distribution func-
tion

mean, 792
standard deviation, 792

Normal probability plot, 858
Normality, test. See Chi-square distribution; Stock

markets
NORMSDIST, 326, 797, 800–801
NORMSINV, 326, 798, 800–801
Northrop Gruman Corporation, 688
Notional principal, 882
NPV. See Net present value
NQLX markets, 383, 384
Null hypothesis, 830

DW test, 856
Numerical delta, 342
NYFE. See New York Futures Exchange
NYMEX. See New York Mercantile Exchange
NYSE. See New York Stock Exchange

Obligation, 7
Obligation to pay fixed, 39, 882
OBO. See Order book official
O’Brien, John, 518
Observed call price, setting, 536
OCC. See Options Clearing Corporation
OCIP. See Orange County Investment Pool
OCO. See One-cancels-the-other
Octel Communications, Inc. (OCTL)

daily stock price behavior, 402
daily trading volument, 404
implied volatility, 405
stock options, average BSM implied volatilities,

404
volatility, decrease, 404

October 1987 market crash, 543
OEX. See Standard & Poor’s 100 index
Offsetting order, 883
Off-the-run issues, 639
OLS. See Ordinary least squares
Omega, 883
Omitting relevant explanatory variables, 165
One price. See Law of one price
One-cancels-the-other (OCO) order, 883
OneChicago Exchange (ONE), single stock futures

contract (trading), 386
OneChicago markets, 383
One-month LIBOR, basis, 649
One-month options, 530
One-month reset rates, 649
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One-period binomial lattice. See No-arbitrage pric-
ing models

One-period binomial model, 202
One-tailed tests, t-distribution (ten degrees of free-

dom), 807
One-to-one stacked hedge, 750
One-week options, CBOE trading, 481
On-the-run issues, 639
On-the-run securities, 77
OPEC, influence, 739
Open interest, 25, 883

usage, 6–7
Open outcry, 883
Optimal early exercise, checking, 311–312
Optimal hedge, 150, 883
Option at expiration, valuation, 308–309, 313, 324
Option holder, optimal reload exercise behavior,

461
Option seller’s/writer’s loss, 8
Option valuations, 324–325

equations. See Log-normal bond prices; Log-
normal interest rates

equations/methods, 397–401
two-period trinomial asset price lattice, usage, 323

Optional cash settlement, 410
Optional sharing rule, 410
Options, 175, 347, 883. See also FX futures; FX

options; FX spot currencies
alternatives, comparison, 596–597
analytical valuation. See Standard options
beta, 237
class, 27, 883
contracts, 883

trading, 732. See also Futures options
cost of carry rate, 289
exercise price, 175, 387
forwards, contrast, 175–178
hedging, 539
life, 307
nodes, valuation, 309–310
notation, 296
numerical valuation, 303

references/reading, 344–345
parameters, 270
portfolios, 350–353

analysis, 362
dynamic risk management, 353

premium, 883, 884
price

elasticity, 348
linear homogeneity, 283, 335

references/readings, 200, 380, 515–516, 635
risk measures, numerical evaluation, 343
series, 27, 354, 403, 883

Greeks, computation, 356
identification, 558–559

strike price, 175

type, 883
unexpected changes, management, 353–362

considerations, 360–362
framework, 353–360

usage, 7–8. See also Long-hedging; Short-hedging
writer, 883
zero-sum game, question/solution, 92–93

Options Clearing Corporation (OCC), 384, 883
protection, 387
usage, 22

Options on futures. See Futures options
Options trading, 388

corporations, impact, 414
historical statistics, 384
tick size, minimum, 387

OPTVAL
Excel Function Library, usage, 315
function, 109, 234

application, 335
Function Library, 81, 139, 213, 356, 441

usage, 252, 398, 793
Library, 343

Orange County Investment Pool (OCIP)
risk management lesson, 666–669
supervision, absence, 669

Order book official (OBO), 883
Ordinary least squares (OLS), 883

estimation, 823–824
requirement, 824–825

Ordinary least squares (OLS) regression, 79, 822
approaches, equivalence, 633–634
assumptions, 823
line, estimation, 826
origin, usage, 838–841
risk-minimizing hedge, relation, 154–156k
usage, 848

Ormstein-Hulenbeck process, 335
Osaka Stock Exchange (OSE), 507
Out barriers, 295
Out trade, 883
Out-of-the-money, 883
Out-of-the-money exercise prices, 403
Out-of-the-money puts, 505
Outright position, 22, 883
OV_APPROX_ASIAN_OPT_MC, 333, 597
OV_APPROX_MAXMIN_OPT_MC, 335
OV_APPROX_SPRD_FOPT_BIN, 745–746
OV_APPROX_SPRD_OPT_BIN, 320–321
OV_APPROX_STD_OPT_BIN, 315
OV_CORP_BONDDELTA_FIRM, 434
OV_CORP_BOND_FIRM, 446
OV_CORP_CVBOND_FIRM, 446–447
OV_CORP_CV_FIRM_STOCK, 448
OV_CORP_FIRM_STOCK, 430–431, 433, 436–438
OV_CORP_PROB_DEFAULT, 692
OV_CORP_RECOVERY_VALUE, 426, 692
OV_CORP_RFBOND_STOCK_SPLIT, 427
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OV_CORP_STOCKDELTA_FIRM, 434
OV_CORP_STOCK_FIRM, 422–423, 691
OV_CORP_WARRANTDELTA_STOCK, 442
OV_CORP_WARRANT_STOCK, 441–443
Overnight repo, 625, 883

rate, 625
Over-the-counter (OTC) dealer, 332
Over-the-counter (OTC) derivatives, 11, 883

disadvantage, 11–12
notional amount, 19
trading, reemergence, 18

Over-the-counter (OTC) derivatives contracts
American-style option features, 264
examples, 37–41

Over-the-counter (OTC) derivatives markets
attributes, 33–41
contract flexibility, 35–36
credit risk, 37
regulation, absence, 36
transparency, 36–37

Over-the-counter (OTC) gold (collar agreement),
cap exercise price (determination), 766–768

Over-the-counter (OTC) interest rate swap
confirmation, 650
specifications, 648

Over-the-counter (OTC) market, 37, 287, 733, 764
demand, 519–520
disadvantage, 11–12
offerings, 764

Over-the-counter (OTC) option dealer, 353
Over-the-counter (OTC) swaps, 579

contracts, usage, 749
Over-the-counter (OTC) trading, 16
Overwrite, 883
OV_FOPTION, 245
OV_FOPTION_ISD, 503
OV_FOPTION_VALUE, 232, 585, 767
OV_FORWARD, 135, 573
OV_IR_CONV_ED_YIELD, 608
OV_IR_CONV_REPO_YIELD, 626
OV_IR_CONV_TBOND_CONVFAC, 613
OV_IR_FIXED, 65, 69
OV_IR_FLOAT_INVERSE, 664
OV_IR_TS_INTERPOLATE, 647, 742
OV_IR_TS_ZERO_FROM_CMT, 642
OV_IR_TS_ZERO_FROM_EDFUT, 646
OV_IR_TS_ZERO_FROM_SWAP, 644
OV_NS_BARRIER_OPTION, 298–299, 693
OV_NS_COMPOUND_OPTION, 291
OV_NS_EXCHANGE_OPTION, 460
OV_NS_GAP_OPTION, 269
OV_NS_LOOKBACK_OPTION, 293
OV_NS_MAXMIN_OPTION, 284, 286
OV_NS_PROTECTED_EQUITY_NOTE, 514
OV_NS_RATCHET_OPTION, 275
OV_OPTION, 231
OV_OPTION_ASSET_EV, 221

OV_OPTION_ASSET_PROB, 216, 218, 373
OV_OPTION_ASSET_PROB_INV, 218
OV_OPTION_ISD, 398, 502, 628
OV_OPTION_VALUE, 231, 247, 315, 426, 585

usage, 692
OV_PERF, 116
OV_PROB_PRBN, 282
OV_PROB_PRUN, 213, 252, 301
OV_PROB_PRUN_INV, 213
OV_PROFIT_ASSET, 370
OV_PROFIT_OPTION, 370
OV_STAT, 794
OV_STAT_AUTOCORREL, 170, 817
OV_STAT_BOX_PIERCE, 818
OV_STAT_OLS_SIMPLE, 109, 155
OV_STAT_SEMICOR, 794
OV_STAT_TCNST, 809
OV_STOCK_OPTION_VALUE_BIN, 400, 453
OV_SWAP_COMMODITY, 139, 140, 743
OV_SWAP_COMMODITY_QUANTITY, 743
OV_SWAP_CURRENCY, 580
OV_TS_LATTICE_RMIN, 719
OV_TS_VALUE_CAPLET, 673

Pacific Coast Exchange (PCE), 383
Pacific Exchange (PCE), 384
Pacific Stock Exchange (PSE), 17
Paired sample, means

equivalence test, 812–813
hypothesis difference, test, 813

Par amount. See Bonds
Par bonds, 640

yield, 883
curve, 883

Par grade, 883
Par swap rate, 884
Par value, 884
Parameter estimation, importance, 775
Partial derivatives, 254

relation. See Exercise price
Partial expectation, 884
Participation percentage, 884
Participation rate, 512
Passive hedge, 884
Passive portfolio insurance, 518, 520–523, 884

dynamic portfolio insurance, selection (consid-
erations), 529–530

Passively insured portfolio, payoff contingencies,
523

Path dependent option, 884
Pay-later options, 269, 884
Payoff, 884

structure, 268
Payoff contingencies, 285

writing. See Two-security portfolio
PCE. See Pacific Coast Exchange; Pacific Exchange
pdf. See Discrete probability density function
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PENs. See Protected equity notes
PERCENTILE, 800
Perfect substitutes, 129, 884

implication
CAPM, usage, 146
European-style put-call parity, usage, 186
net cost of carry relation, 130

Petroleum, 737–748
derivatives

markets, 739–741
valuation, 741–746

futures contracts, NYMEX trades, 740
production/consumption, 737–739
risk management strategies, 746–748
spread contracts, 745

Philadelphia Stock Exchange (PHLX), 17, 383, 384
EUR option contract, 569
FX options, 570

Physical asset, 121, 884
Physical commodity, holding (storage costs), 178
Pit, 884
Plain-vanilla currency swap, 578
Plain-vanilla interest rate swap, 9, 37–40, 606, 884

agreement, 637
fixed rate discovery, zero-coupon yield curve

(inclusion), 657–658
Population, 782

sample, statistical contrast, 780
Portfolio value

change, 354
hedging, 160–163
increase, 357
one year to expiration, 523, 525

Portfolios, 884
allocation

risky securities, usage, 94–97
risky securities/risk-free security, usage, 102

composition, S&P tracking, 480
dividends, present value (subtraction), 520
gamma, 355
identification, risky securities (usage). See Effi-

cient portfolios
initial values, computation, 522–523, 524–525
insurance, 884. See also Dynamic portfolio

insurance; Passive portfolio insurance
market capitalization. See Standard & Poor’s

500 index
performance measurement, 110–117
profit functions, 368–372
risk attributes, 357
theory, 93–104, 884
units, lock-in. See Stock indexes
weights, computation, 524, 526, 528

Position, 884
limit, 26, 884
trader, 884

Positive kurtosis, 789

Power, definition, 814
Power of a test. See Test power
PPP. See Purchasing power parity
Preannouncement levels, 403
Preferred habitat theory, 884
Premium, 497
Premium/discount size, summary statistics (calcu-

lation), 483
Pre-open stock market predictions, 498–499
Prepaid forward contracts, prices, 279
Prepaid forward price, 272
Present value. See Expected future value; Expected

loss
computation. See Corporate bonds

Price appreciation, expected rate. See Assets
Price limit, 884
Price risk, 10, 884

hedging, 148–156
revenue risk hedging, comparison, 157–158

minimization, 149–151
sources, 333

Price uncertainty, sources, 329
Price-weighted DJIA, 469
Price-weighted index divisor, 489
Price-weighted indexes, 487–489
Primary market, 884
Principal-protected notes, 512
Private placements, 429
Probabilities, 803

1% level, 867
5% level, 866
computation. See Asset prices

threshold asset prices, usage, 212–219
density function. See Asset prices
distribution, 780–781, 795–818
expressions, 223–224
levels, 864, 865
symmetry, 376

Processing margin. See Gross margin
Proctor & Gamble, 489
Profit diagram, 884
Profit functions, 362–372. See also Call options
Program trading, 498, 884
Proprietary trading, 506
Protected equity notes (PENs), 884

creation, 512–513
valuation, 513–514

Protection buyer, 679
Protection seller, 679
Protective put, 369, 885
Protective put strategies, terminal profit diagram,

370
Protective put trading strategies

expected returns/risks, 351
expected return/volatility relation, 354

PSE. See Pacific Stock Exchange
Pull rate, 710, 712
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Purchasing power parity (PPP), 582–583
test, 847–849

Pure discount bond, 885
Put on call, 288–289
Put on maximum, 286
Put on minimum, 286–287
Put on put, 289–290
Put options, 287, 885

delta, numerical approximation, 265. See also
FX put option

profit function, 367–368
series, 559
terminal values, 30
value, computation, 426
vega, 241

Putable bonds, 723–724
Putable swap, 885
Put-call parity, 369, 885. See also American-style

options; European-style options
application, 424
arbitrage portfolio, 185

trades. See American-style put-call parity;
European-style put-call parity

price, 185
relations, 188
writing, 424

Puts
characteristic, 354
number, computation, 521
portfolio, expressions, 352
prices, 405

p-value, 838

QQQQs, 484
Quadratic approximation, 337–341, 885

application. See Futures options
method, 303

components, 339
computations, 587

usage, 343, 627
Quadratic method, usage. See American-style options
Quality option, 622, 754, 885

valuation. See U.S. Treasury bonds
comparison, 623

Quantity risk, 885
Quarterly Bankruptcy Index (QBI), CME launch,

679
Quarterly expiration cycles, 479
Quarterly interest payments, 660
Quoted bid-ask spread, 9, 885
Quoted price, 75

RAES. See Retail automatic execution system
Random variables, 780–786

list, 786
positive/negative covariance, 784

Ratchet call options, valuation, 274–275

Ratchet options, 273–275, 885
Rate capped swap, 885
Ratio spread, 885
Ratio swap, 701, 885
Ratio vertical spread, 885
Real asset, 885
Realized volatility

computation, 246–247
derivative contracts, 539–544
implied volatility, option price comparison,

246–247
swap, settlement price (computation), 540–541

Recombining lattice, 708
Reference asset, 681
Reference entity, 681

appearance. See Credit derivatives
Reference issuer, 681
Reference obligation, 681
Refining capacity, 738

world production, 738
Regression. See Simple linear regression; Weighted

least squares regression
errors, elimination. See Cross-sectional regres-

sion
estimation, issues, 167–170
hypothesis tests, 846
parameters, hypothesis tests, 827–831
program, application, 835–838
specification, omitted variable (effect, examina-

tion), 850–851
statistics, 838, 845

Regression analysis, 821
objectives, 821
references/readings, 858–859
usage, 709

Regression line
intercept

confidence intervals, 831
hypothesis tests, 829

slope, 829
confidence intervals, 831
hypothesis tests, 828

Regression sum of squares (SSR), 834, 835, 846
Relative systematic risk, estimation. See Stocks
Reload features, inclusion. See Employee stock options
Replicating portfolio, 464, 885
Reported price, 75
Repurchase agreements (repos), 624–626. See also

Reverse repo; Term repo
securities, 625
usage, 624

Reset date, 39, 654, 885
Residual sum of squares, 834
Residual variances, 854
Retail automatic execution system (RAES), 885
Retail customer, 885
Retractable bond, 885
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Return
continuously compounded rate, 208
distribution

semistandard deviation, estimation, 793–795
semivariance, estimation, 793–795

relation stationarity (test), dummy variable slope-
shifter (usage), 844–845

risk-free rate, 505
standard deviation, 549

Return swap, total rate, 890
Return/risk

management
applications. See Expected return/risk manage-

ment applications
strategies, 510–514

profiles, 695
relationship, 89

references/readings, 117–118
Returns

volatility, 443
Revenue risk, hedging, 156–158

comparison. See Price risk
Reversal, 885
Reverse conversion, 185, 885
Reverse crush spread, 885
Reverse repurchase agreements (reverse repos), 624,

885
Reversing in/out, 886
Rho (carry), 258, 886

increase, 357
usage, 238–240
value, 238, 239

Rho (interest), 886
Rho-neutral (carry-neutral), 886
Rho-neutral (interest-neutral), 886
Rights, 7, 439, 886
RIMM, 246
Risk

attribute, movement, 355
aversion, 886
averter, 90
exposure, negation, 355
factors, usage. See Hedging
market price, 881
measurement, 533. See also Coupon-bearing bonds

alternatives, 113–114
development, 57

multiple sources, hedging, 163–166
numerical measurement, 341–343
preferences, 886
premium, 145, 886
sources, 319–320, 333–334
tolerance, 549, 886

Risk management, 587–598. See also Coupon-
bearing bonds; Currency products

applications. See Interest rate products
foundational management, 509

lessons, 506–510
strategies, 143, 347, 406–414. See also Futures

references/readings, 171, 380
Risk measures, numerical computation (accuracy

assessment), 265–266
Risk-adjusted basis, 113
Risk-averse investors, 206
Risk-averse valuation, binomial model (usage),

204–206
Risk-bond, collateral, 411
Risk-free bonds, 129, 179

equivalence. See Risky bonds
inclusion, 427
long position, 420
portfolio, 426–427
units, 428, 429, 527
usage, 428. See also Dynamic insurance; Dynamic

portfolio insurance
zero-coupon yield curve, 136

Risk-free borrowing, 185
obligation, 183

Risk-free hedge, formation, 305
Risk-free hedge portfolio

approach, 204
binomial model, usage, 202–204

Risk-free interest rate, 127, 223
assumption, 298
illustration, 435
unlimited borrowing/lending, 53

Risk-free rate, 886. See also Return; Term-specific
risk-free rate

implied risk-free rate, computation. See U.S.
risk-free rate

value, 590
yield curve, 555

Risk-free securities, market, 698
Risk-free zero-coupon interest rate, 638
Riskless rate, 886
Risk-minimizer, 886
Risk-minimizing hedge, 147–148, 749

computation, 153–154
relation. See Ordinary least squares regression
setting, 152–154

Risk-minimizing portfolio, discovery, 100–101
Risk-neutral investor, 94, 886
Risk-neutral net cost of carry rate, 400
Risk-neutral option valuation principles, applica-

tion, 337
Risk-neutral probability, 233, 288, 416
Risk-neutral valuation, 289, 886

adoption, 629
binomial model, usage, 204
intuition, 202–206

Risk-neutrality, assumption, 306
Risky assets, 281

European-style call on maximum, valuation, 334–
335
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Risky bonds, 426–427
risk-free bonds, equivalence, 424–425

Risky securities/portfolios, evaluation, 782
Robustness, testing, 169–170
Rogue Trader, 506, 509
Roll model, 886
Rounding factor, 39
R-squared, 847. See also Adjusted R-squared

coefficient of determination, 834–835
computation, 835

Rubinstein, Mark, 518

Safe-return certificates, 512
Sage, Russell (entrepreneur), 187
Sale repurchase agreement, 624, 886
Sample

mean, 782
statistical contrast. See Population

Sample correlation coefficient, 788
Sampling error, 328
Samuleson, Paul A. (formula), 224–226
Scale-free covariance, 783
Scalper, 886
Scratch trade, 886
Seasoned new issue, 886
Seat, 886
Second nearby options, 403
Secondary market, 9, 886
Securities, 886

absence, 443
name, variable, 412

Securities and Exchange Commission (SEC), 886
Form 4, 412
governance, 26
impact, 383
registration, 385
regulation, 26
regulatory jurisdiction, 483

Security market line (SML), 106–107, 886
calculations, 108

Security position, tail value-at-risk (computation),
222

Self-financing trading strategy, 886
Seller, 886
Selling. See Collateral
Semiannual interest payments, 660
Semicorrelation, 785

estimation, 793–795
estimator, 788

Semicovariance, 785
estimation, 793–795
estimator, 788

Semistandard deviation, 785
estimation. See Return
formula, 114

Semivariance
estimation. See Return

estimator. See Lower semivariance
semi-standard deviation, relationship, 784–785
usage, 533

Senior bonds, value, 436
Senior management, understanding (absence), 509
Serial correlation, 856–858

presence, 857
Series, 886
Settlement price, 412, 886

determination, 688
SFE. See Sydney Futures Exchange
Share price, 447. See also Maximum share price;

Minimum share price
abnormal behavior, 402–403
behavior, 401–402
minimum/maximum, 410

Shareholder record date, 393, 887
Shares, pledge, 410
Sharing rule. See Optional sharing rule
Short, 887
Short asset position

coverage, 196
terminal profit diagram, 363

Short call position, terminal profit diagram, 366
Short futures, right, 754
Short futures position, terminal profit diagram, 364
Short hedge, 887

bond portfolio, long-term interest rate risk
(usage), 633

Short hedger, 5
Short maturities, inversion, 555
Short put position

profit function, 367
terminal profit diagrams, 368

Short rate
log-normal distribution, assumption. See No-

arbitrage pricing models
normal distribution, 715–717

assumption. See Binomial lattice
Short sale, 887

freedom, proceeds (usage), 53–54
Short squeeze, 20, 887
Short volatility, 887
Short-hedging. See Money market

forward contract, usage, 591–592
options, usage, 592–593

Shorting-against-the-box, 408
Short-rate movements, defining, 708
Short-rate parameters, calibration, 712
Short-rate process, Vasicek derivation, 707
Short-term borrowings, usage, 668
Short-term interest, 721

rate, 148, 254
Short-term LIBOR rate, usage, 675
Short-term long hedge, 631–632
Short-term options, implied volatilities, 452
Short-term rates, 625
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SIMEX. See Singapore International Monetary
Exchange

Simple interest rate, 887
Simple linear regression, 822–838

estimation
Excel regression routine, usage, 837–838,

839–841
formulas, 836

origin estimation formula, 841
Simple method, 310

possibilities, 313
Simple return, 887
Simulation parameters, 532
Singapore International Monetary Exchange

(SIMEX), 507
Single flows, 591–598
Single future cash payment, 55
Single stock futures

contract, trading. See OneChicago Exchange
historical statistics, 384
trading, 383

Single-currency interest rate derivatives, total notional
amount, 19

percentage, 607, 637
Single-name CDSs, 681
Six-month LIBOR, 667

basis, 649
Skewness, 785

degrees, 532
estimation, 789–792
estimator, 789

Slope
coefficient estimate, 163
confidence interval, computation, 832
hypothesis test, 829–831. See also Regression line
prediction, 832–833

SML. See Security market line
Smoothing. See Yield curve

methods, 647
SOLVER. See Excel
SOQ. See Special opening quotation
Southwest Airlines, annual report (2003), 746
Sovereign risk, 683
Soybean markets, 751–758

acquisitions, 44–45
activity (Spring 1989), 43
confrontation, 45–46
crisis, 45–46

development, 43–44
postponement, 44

derivatives
markets, 754–757
valuation, 757

emergency action, 46–47
futures

contracts, trading. See Chicago Board of Trade
crush spread, daily closing levels, 758

production/consumption, 753–754
risk management strategies, 757–758
squeeze, 43–47
stability, 47
USDA markets, 758

SPDRs. See Standard & Poor’s Depository Receipts
Special cash settlement quotation, usage. See Stan-

dard & Poor’s 500 index
Special opening quotation (SOQ), 545
Specialist, 887
Speculation, 4, 887

trading restriction/regulation, circumvention, 10
Speculative bubble, 12, 887
Speculative gain, 4
Speculator, 887
Spot currency

European-style USD/GBP values, computation,
583–586

GBP/USD options values, computation, 583–586
Spot exchange rate, 887
Spot market, 887
Spot price, 887
Spot rates, 593, 595, 887

American-style USD/GBP options, values/early
exercise premiums (computation), 587

term structure, 79, 889
Spot transactions, 4, 565
Spread, 497, 887

contracts. See Petroleum
Spread option

valuation, binomial method (usage), 320–321
value, computation, 745–746

Spreader, 887
SPTR. See Standard & Poor’s 500
Squared residuals, sum, 824
Squawk Box. See CNBC
SSE. See Error sum of squares
SSR. See Regression sum of squares
SST. See Total sum of squares
Standard & Poor’s 100 (S&P 100) index, 480

option contract, 481
options (OEX), implied volatilities, 433

Standard & Poor’s 500 (S&P500)
calls, 544
cash dividends, 492
dividends, 491–492

yield, report, 492
futures, intraday prices, 519
monthly returns, 817
pre-announcement period, 402
put option volume, 544
return, confidence interval, 833
three-month variance futures contract, 542
total return index (SPTR), 534

month-end total return indexes, 535
standardized monthly returns, distributions,

537
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Standard & Poor’s 500 (S&P500) index, 198, 887
average daily cash dividends, 491, 492
daily levels, 545
dividend yield, 493
futures

contract, 477
options contract, 479

gold bullion price/level, 762
intraday prices, 519
levels. See Intraday S&P500 index levels
monthly returns, summary statistics, 534
performance measures, estimation, 536
portfolio, 283

market capitalization, 487
market value stocks, ranking, 488

special cash settlement quotation, usage, 499–501
total cash dividends, 493

Standard & Poor’s 500 (S&P500) index options
average implied/realized volatility, 537
implied volatility, 538
prices, 504

usage. See At-the-money option; Market Vol-
atility Index

Standard & Poor’s Corporation, credit rating, 384
Standard & Poor’s Depository Receipts (SPDRs),

483
traded shares/share dollar value. See American

Stock Exchange
Standard American-style put, 313
Standard deviation, 483, 887. See also Normal

distribution
computation. See Implied standard deviations
estimation, 152–153, 789–792
formula, 114
relationship. See Variance

Standard error, expression, 811
Standard normal density function, 796
Standard normal distribution

area, 862–863
function, 797

Standard options, 887. See also Nonstandard options
analytical options, 201

references/readings, 248
lives

chooser option lives, comparison, 276
comparison, 272

Standardized contracts, 19
State Investment Fund (SIF), 698

portfolio, composition, 701
State of Wisconsin Investment Board (SWIB), risk

management lesson, 698–701
Static hedge, 887
Static portfolio insurance (creation), index puts

(purchase), 520–523
Statistical method, 780
Statistical tables, 861
Stochastic volatility assumptions, 504

Stock dividends, 887
Stock index futures, 477–478, 888

option contracts, contract volume, 475
relations/valuation, 494–499
U.S. exchange listing, 471
usage. See Dynamic portfolio insurance

Stock index products, 469. See also Strategy-based
stock index products

contract volume, U.S. exchange trades, 476
contracts, number (U.S. exchange trades), 476
evolution, 470–477
references/readings, 515–516

Stock indexes, 887
composition, 484–494
derivatives

continuous dividend yields (inclusion), no-
arbitrage price relations/valuation equa-
tions/methods, 496

discrete dividends (inclusion), no-arbitrage
price relations/valuation equations/meth-
ods, 495

European-style call, value (finding), 230–232
European-style put, value (finding), 233–234
expected volatility, time-series variation, 544
markets, 470–484
options, 478–482, 501–506, 888

contracts, contract volume, 475
sale, 538

portfolio units, lock-in, 123
Stock markets, 384–392

indexes, returns (correlation). See U.S. stock
markets

predictions. See Pre-open stock market predic-
tions

price movements, abnormality, 487
returns

normality, Jarque-Bera test, 805–806
normality, test, 804–805

volume/volatility, importance, 385
Stock portfolios, 426–427

beta, 510
hedging, forward contract (usage), 129
insuring, 518–530
market risk alteration, index futures (usage),

510–511
market value, 510
risk

alteration, 511
level, 520

Stock prices, 350, 353
assumption, 406
collar, 408, 888
information. See Corporate bonds

usage. See Bonds values
lattice, 456

computation, 461
level, 354
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Stock prices (Cont.)
midpoint, 397
usage. See Employee stock options
value-weighted arithmetic sum, 471

Stock return prediction. See Market
Stocks

basket, 471
beta, 349, 351, 353, 354
expected return/risk relation, 438

parameters, 447
forward contract, value computation. See Divi-

dend-paying stock
futures, 385–386

contract, value, 396
inclusion, 427
market values, 604
options, 27–31, 387–392. See also Dell stock

options
average BSM implied volatilities. See Lucent

Technologies; Octel Communications, Inc.
exchange, listing decision, 385

products, 383
references/readings, 415

returns
correlation, absence, 549
series, variance differences (test), 816–817

short selling, 10, 410
split, 888
synthetic short sell, stock futures (usage), 133–134
total market value, 486
total risk/relative systematic risk, estimation,

108–110
units, 428
usage. See Dynamic insurance; Dynamic portfo-

lio insurance
valuation, 83–85, 392–406

constant dividend growth, usage. See Com-
mon stock valuation

formula, 83, 888
values, 423, 424

Stock-style settlement, 888
Stop-limit order, 888
Stop-loss order, 888
Storage, 888

costs, 182, 733, 741, 888
rate, 734

Straddle, 371, 888
cash generation, 508
impact. See Expected profit computation
profit, 378

function, plotting, 371–372
risk-averse probabilities, computation, 372–373
risk-neutral probabilities, computation, 372–373

Straight bonds, expected return/volatility rate, 447
Strangle, 888
Strap, 888
Strategy-based stock index products, 517

references/readings, 552–553
Strike price, 888. See also Options

intervals, 392
Strike spread, 888
Striking price, 7, 888
Strip, 137, 888. See also U.S. Treasury strips

hedge, 888
Stripped bond, 888
Stripped Collateralized Fixed Rate USD Par Bonds,

699
Stripped Mexican par spread, 700
Stripped Treasury bonds, trading, 63–64
Stripped Treasury notes, trading, 63–64
Structure collar agreement, 408–409
Student Loan Marketing Association swapped

interest payments, 18
Student t-distribution, 806
Subordinated bonds, valuation, 436–438
Subordinated debt, valuation, 435–436
Sums of squares, computation, 835
Swaps, 121, 637

agreement, 748
averaging method, 649

contracts, 18, 888. See also Commodity swaps
dealer, 888
fixed exchange rate computation, time-varying

quantities (inclusion), 581–582
forward curve basis, fixed rate computation,

138–140
forward exchange rate, computation. See Fixed

exchange rate computation
no-arbitrage price relations, development, 578–

579
rates, 574, 888. See also Eurodollars
references/readings, 141, 676–677
valuation, 136–140

Swaptions, 888
valuation, 673–675

illustration, 675–676
SWIB. See State of Wisconsin Investment Board
Switching option, 888
Sydney Futures Exchange (SFE), 17, 229, 396
Synthetic asset, 889
Synthetic CDOs, 695–697

flowchart, 697
Synthetic CLN, 694–695
Synthetic derivatives, 889
Synthetic fixed supply contracts, end-user creation,

750
Synthetic long call, 889
Synthetic long put, 8889
Synthetic short call, 889
Systematic risk

estimation. See Stocks
performance measures, 112–113

Tail value-at-risk, computation. See Security position
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Tailing the hedge. See Hedge
Tangency risky-security portfolio, composition

(identification), 102–104
Target duration, 889
Taxpayer Relief Act of 1997, 408
Taylor series expansion. See Bonds values
T-bills. See U.S. Treasury bills
T-bonds. See U.S. Treasury bonds
TDIST, 809
t-distribution, 806–809

critical values, 865
degrees of freedom, 842
derivation, 806
normal distribution, contrast, 807
ten degrees of freedom. See One-tailed tests;

Two-tailed tests
Technical analysis, 889
Telescoping futures position, 131–133

cash flows, 132
terminal values, comparison. See Long forward

positions
Term repo, 625, 889

rate, 625
usage, 666

Term structure. See Forward exchange rates; Inter-
est rates; Spot rates

Term to maturity, 598
Terminal asset price, 328

decrease, 368
probability, 375

Terminal futures, 198
Terminal option value, 462
Terminal profit diagrams. See Buy-write strategies;

Long asset position; Long call position;
Long futures position; Short asset posi-
tion; Short call position; Short futures
position

Terminal put option value, 328
Terminal values, 203

computation, 521–522
Terminal wealth, expected utility, 91, 876
Termination date, 38, 650, 889
Term-specific risk-free rate, 579
Test power, 854

type I/type II errors, 814
Thales, transactions, 11
Theoretical value, 889
Theta, 259–260, 889. See also European-style put

option
computation, 361
usage, 241–243

Theta-neutral, 889
Thirty-day money market index (MM), month-

end total return indexes, 535
Three-month time intervals, consideration (ignor-

ing), 645

Three-month variance futures contract. See Stan-
dard & Poor’s 500

Three-period binomial lattice. See No-arbitrage
pricing models

Threshold asset prices, usage. See Probabilities
Through delivery, 6
Tick, 889. See also Uptick
Tick size, 889

convention, 481
minimum. See Options

Time, discrete intervals, 348
Time decay, 242, 243
Time deposits. See Eurodollars
Time increment, 706
Time premium, 889
Time spread, 889
Time to expiration, 296, 297, 456

change, 241–243
computation, 554
differences, 275

Time value, 179, 889
decay, 889

Time-deposit rates, 643
Time-series regression specification, 114–115
Time-series variation. See Stock indexes
Time-varying parameters, 714
Time-weighted arithmetic average, 649
Time-weighted average, 647
Timing option, 624, 889
TINV, 809
T-notes. See U.S. Treasury notes
Total cash dividends. See Standard & Poor’s 500

index
Total commodity futures, proportion, 734
Total cost of carry, 123
Total rate of return swap (TRORS), 685–687

flowchart, 686
Total return swap, 685–687

confirmation, 687
Total risk

estimation. See Stocks
performance measures, 110–112

Total sum of squares (SST), 833, 834, 845
Toxic waste. See Equity tranche
Trade confirmation, 506
Trade date, 38, 649, 890
Trading

activity, averages, 478
costs, 8–10

absence, 52–53
savings, 9

frequency, 168–169
regulation, circumvention. See Speculation
restrictions, 10

circumvention. See Speculation
reverse, 15
strategies, 406–414
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Trading (Cont.)
volatility options, launching (CBOE contempla-

tion), 538
volume, 403, 732

Trading halt, 890
Tranche, usage, 695
Transactions

costs, 890
hedging. See Uncertain transaction
legging into, 507
risk

exposure, 591
management, FX futures/options (usage), 591–

597
Transfer risk. See Floating rate payments
Transparency, 890. See also Market; Over-the-

counter derivatives markets
importance. See Exchange-traded derivatives

Transportation costs, 546
t-ratio, 109, 813
Treasury bills, trading, 61–63
Treasury bonds, trading. See Stripped Treasury bonds
Treasury notes, trading. See Stripped Treasury notes
Treynor ratio, 112–113
Triangular arbitrage, 574–575, 890

opportunity, profit (computation), 575
Trinomial approximation method, approximation

error, 325
Trinomial method, 303, 321–326, 342

accuracy, degree (assessment), 325–326
application, 323–325

Trinomial model, 890
Triple-witching hour, 482, 500
TRORS. See Total rate of return swap
TSE-35, 487
t-test, 812
Tulip bulb speculations, 12
t-value, excess, 865
Two-asset case, exchange option formula (usage),

278
Two-day settlement, considerations (ignoring), 645
Two-period binomial lattice. See No-arbitrage

pricing models
Two-period lattice, 307. See also Asset price loga-

rithm
Two-period trinomial asset price lattice, usage. See

Options
Two-period trinomial method, usage. See Ameri-

can-style put option
Two-security portfolio, payoff contingencies (writ-

ing), 464
Two-tailed tests, 865

t-distribution, ten degrees of freedom, 807
Type I error. See Test power
Type II error. See Test power

Unbiased estimator, 787

Unbiased expectations theory, 890
Uncertain transaction, hedging, 595–596
Uncovered option, 890
Underlying instrument, 17, 890
Underpriced condition, 890
Unexpected changes, management. See Options
Unhedged portfolio, 355
Unit normal distribution, 327

random drawing, generation, 326
Univariate normal distributions. See Cumulative

univariate normal distributions
subscript, addition, 416

Univariate normal probability, approximation, 252
Unleaded gasoline, daily prices, 749
Unsystematic risk, 890
Unwinding, 20, 890
Up-and-in option, 890
Up-and-out American-style put, 313
Up-and-out option, 890
Up-step, 305–306

coefficient, 317
assumption, 322
change, 321

probabilities, 312
Uptick, 890

rule, 890
Upward-sloping environment, 548
U.S. dollar (USD), 40–41

bonds, 588–589
denomination, 594
LIBOR, swap, 637
USD-LIBOR-LIBO, 651

U.S. Indexed Assets Survey, 482
U.S. risk-free rate, implied risk-free rate (computa-

tion), 571, 573
U.S. short-term benchmark, 667
U.S. stock markets

focus, 500
indexes, returns (correlation), 473

U.S. stock option trading volume, option exchange
(share), 385

U.S. Treasury bills (T-bills), 889, 890
continuously compounded interest rate, 706
futures, 889, 890
option, 254

U.S. Treasury bonds (T-bonds), 889, 890
30-year bonds, issuance (cessation), 610
coupons, difference, 612
eligibility, CBT conversion factors, 614
embedded quality option, valuation, 623–624
exercise price, 283
futures, 610–611, 889, 890. See also Chicago

Board of Trade
options, 615–616

U.S. Treasury instruments, 639–643
U.S. Treasury notes (T-notes), 890

futures, 610–611, 890
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U.S. Treasury strips, 63, 890
bonds, 452

USD. See U.S. dollar
USDA announcement. See Soybean markets
USD-LIBOR-LIBO, 39
UST, due date, 700
Utility of wealth function, 89, 890
Utility theory, 89–92

Valuation. See Coupon-bearing bonds; Stocks
error, oscillation, 315
methods, accuracy degree (assessment). See Bino-

mial method
taxes, impact, 53

Valuation assumptions, 51
references/readings, 85–86
usage, 51–54

Valuation-by-replication, 891
Value

constraint, 523, 525
hedging, 162–163
lattice. See Discount bonds

Value Index, computation, 471
Value Line Composite Index futures contract, 470
Value Line index, 471
Value-at-risk (VAR), 217–218, 798. See also Con-

ditional value-at-risk
tail, 222

Value-weighted arithmetic sum. See Stock prices
Value-weighted indexes, 486–487

dividend income, 490
Vanguard Group, 482

500 Portfolio, 487
Vanguard Index Trust--500 Portfolio, 482
VAR. See Value-at-risk
Variable prepaid forward (VPF)

contracts, 409–413, 891
haircut, 413
transaction, construction, 411

Variance, 782, 891. See also Covariance; Semivariance
computation. See Asset prices
contracts, contrast. See Volatility
equivalence, test, 815–816
estimation, 789–792
estimator, 787
forward contracts, payoff structure (long posi-

tions/short positions), 543
futures contract. See Standard & Poor’s 500
payoffs, 542
standard deviation, relationship, 783

Variance/covariance, estimation, 151
Variation margin, 22, 891
Vasicek model, 711–713
Vasicek model, two-period lattice, 709

short rate assumption, 710
Vega, 258–259, 891. See also Futures

decrease, 357

identification. See Asset prices
usage, 240–241

Vega risk
exposure, 361
hedge, 358–360
one-day hedge, 360–362

Vega-neutral, 891
Vertical bear spread, 891
Vertical bull spread, 891
Vertical spread, 891
Vesting period, 455, 891
VIX. See Market Volatility Index
Volatility, 891. See also Historical volatility; Implied

volatilities
contracts, variance contracts (contrast), 542–543
derivatives, 538–551

contracts, realization, 539–544
estimates, 714
estimation, 452
forwards, 539

contracts, payoff structure (long positions/
short positions), 543

futures, DTB launch, 538
predictors. See Expected long-term volatility
shorting, 356
spread, 371, 891

Volatility rate, 273, 350, 354, 710, 712
calculation, 721
change, 240–241
computation, 421
impact. See Interest rates
increase, 424
level, 308, 340
specificity, 671

Volume, 891
VPF. See Variable prepaid forward
Vulnerable derivative, 891

Warehouse rent, 190
Warrants, 891

expiration, 440
issuance, incentives, 441
terminal value, 440
valuation, 439–444

dilution effects, assessment. See At-the-money
warrants valuation

illustration, 441–443
Washington Agreement, 766
Wealth constraint, 96, 891
Wealth function. See Utility of wealth function
Weather-induced spikes, 738
Weeklys, listing, 481
Weighted average term to maturity. See Coupon
Weighted least squares regression, 823
Wheat forward contract, 5
White noise, 817
Wildcard option, 624, 891
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Windfall gain, 461
Windfall loss, 461
Wine

commodity derivatives, 768–769
futures, 768

Winnipeg Commodity Exchange, 16, 731
World Gold Council, 760

Yield curve, 891
implication. See Zero-coupon bonds
riding, 666
smoothing, 646–648

Yield risk, 10, 891
Yield stock options. See Constant dividends
Yield to maturity, 69, 891

compounding, 640
computation, yield curve (usage). See Coupon-

bearing bonds
usage, 69

Zero mean, test, 808–809

Zero-cost collars, 766
Zero-coupon bonds, 55, 434, 721–722, 891

prices, yield curve implication, 711
trading, 61
valuation, no-arbitrage pricing model (usage).

See Four-year zero-coupon bond
Zero-coupon corporate bond, 690
Zero-coupon rates, 643, 645

determination, 639
identification, 638–646

Zero-coupon yield curve, 64, 79, 578
calculation, 716, 717, 721
estimation, 638–648
inclusion. See Floating rate bond; Inverse floater;

Plain-vanilla interest rate swap
increase, 68
rates, consideration, 720
usage. See Coupon-bearing bonds; Forward dis-

count factors; Forward rates
Zero-coupon yields, 645
Zero-sum game, 8, 891
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