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PREFACE

INTENDED READERS

This book is intended for three types of readers with an interest in financial
risk management: first, master’s and Ph.D. students specializing in finance and
economics; second, market practitioners with a quantitative undergraduate or
graduate degree; third, advanced undergraduates majoring in economics, engi-
neering, finance, or another quantitative field.

I have taught the less technical parts of the book in a fourth-year undergraduate
finance elective course and an MBA elective on financial risk management. The
more technical material I have covered in a Ph.D. course on options and risk
management and in technical training courses on market risk designed for market
practitioners.

In terms of prerequisites, the reader should have taken as a minimum a course
on investments, a course on options, and one or two courses on econometrics
or mathematical statistics. In addition, certain chapters require some previous
exposure to matrix algebra.
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xii PREFACE

SOFTWARE

A number of empirical exercises are listed at the end of each chapter. Excel spread-
sheets with the data underlying the exercises can be found on the CD-ROM that
is shipped with the book. The CD-ROM also contains Excel files with answers to
all the exercises. This way, virtually every technique discussed in the main text of
the book is implemented on the CD using actual asset return data. The material on
the CD is an essential part of the book. Previews of the spreadsheets are therefore
shown following the exercise questions at the end of each chapter.

Updates to the material in the book including the data and the answers to the
exercises as well as links to further risk management resources can be found at
www.christoffersen.ca. Any suggestions regarding improvements to the book are
most welcome. Please e-mail these suggestions to peter.christoffersen@mcgill.ca.
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1
RISK MANAGEMENT AND

FINANCIAL RETURNS

1.1. CHAPTER OUTLINE
1.2. LEARNING OBJECTIVES
1.3. RISK MANAGEMENT AND THE FIRM

1.3.1. Why Should Firms Manage Risk?
1.3.2. Evidence on Risk Management Practices
1.3.3. Does Risk Management Improve Firm Performance?

1.4. A BRIEF TAXONOMY OF RISKS
1.5. STYLIZED FACTS OF ASSET RETURNS
1.6. OVERVIEW OF THE BOOK
1.7. FURTHER RESOURCES
1.8. EMPIRICAL EXERCISES ON CD-ROM

1.1. CHAPTER OUTLINE

This chapter begins by listing the learning objectives of the book. We then ask why
firms should be occupied with risk management in the first place. In answering
this question, we discuss the apparent contradiction between standard investment
theory and the emergence of risk management as a field, and we list theoretical
reasons for why managers should give attention to risk management. We also
discuss the empirical evidence of the effectiveness and impact of current risk
management practices in the corporate as well as financial sectors. Next, we list a
taxonomy of the potential risks faced by a corporation, and we briefly discuss the
desirability of exposure to each type of risk. After the risk taxonomy discussion,
we list the stylized facts of asset returns, which are illustrated by the S&P 500
equity index. Finally, we present an overview of the remainder of the book.

1.2. LEARNING OBJECTIVES

The book is intended as a practical handbook for risk managers as well as a
textbook for students. It suggests a relatively sophisticated approach to risk mea-
surement and risk modeling. The idea behind the book is to document key features
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2 RISK MANAGEMENT AND FINANCIAL RETURNS

of risky asset returns and then construct tractable statistical models that capture
these features. More specifically, the book is structured to help the reader to do the
following:

• Become familiar with the range of risks facing corporations and learn how
to measure and manage these risks. The discussion will focus on various
aspects of market risk.

• Become familiar with the salient features of speculative asset returns.
• Apply state-of-the-art risk measurement and risk management techniques,

which are nevertheless tractable in realistic situations.
• Critically appraise commercially available risk management systems and

contribute to the construction of tailor-made systems.
• Use derivatives in risk management.
• Understand the current academic and practitioner literature on risk man-

agement techniques.

1.3. RISK MANAGEMENT AND THE FIRM

Before diving into the discussion of the range of risks facing a corporation and
before analyzing the state-of-the art techniques available for measuring and man-
aging these risks, it is appropriate to start by asking the basic question about
financial risk management.

1.3.1. Why Should Firms Manage Risk?

From a purely academic perspective, corporate interest in risk management seems
curious. Classic portfolio theory tells us that investors can eliminate asset-specific
risk by diversifying their holdings to include many different assets. As asset-
specific risk can be avoided in this fashion, having exposure to it will not be
rewarded in the market. Instead, investors should hold a combination of the risk-
free asset and the market portfolio, where the exact combination will depend on
the investor’s appetite for risk. In this basic setup, firms should not waste resources
on risk management, as investors do not care about the firm-specific risk.

From the celebrated Modigliani-Miller theorem, we similarly know that the
value of a firm is independent of its risk structure; firms should simply maximize
expected profits, regardless of the risk entailed; holders of securities can achieve
risk transfers via appropriate portfolio allocations. It is clear, however, that the
strict conditions required for the Modigliani-Miller theorem are routinely violated
in practice. In particular, capital market imperfections, such as taxes and costs of
financial distress, cause the theorem to fail and create a role for risk management.
Thus, more realistic descriptions of the corporate setting give some justifications
for why firms should devote careful attention to the risks facing them:

• Bankruptcy costs. The direct and indirect costs of bankruptcy are large and
well known. If investors see future bankruptcy as a nontrivial possibility,
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then the real costs of a company reorganization or shutdown will reduce
the current valuation of the firm. Thus, risk management can increase the
value of a firm by reducing the probability of default.

• Taxes. Risk management can help reduce taxes by reducing the volatility
of earnings. Many tax systems have built-in progressions and limits on
the ability to carry forward in time the tax benefit of past losses. Thus,
everything else being equal, lowering the volatility of future pretax income
will lower the net present value of future tax payments and thus increase
the value of the firm.

• Capital structure and the cost of capital. Amajor source of corporate default
is the inability to service debt. Other things equal, the higher the debt-to-
equity ratio, the riskier the firm. Risk management can therefore be seen as
allowing the firm to have a higher debt-to-equity ratio, which is beneficial
if debt financing is inexpensive. Similarly, proper risk management may
allow the firm to expand more aggressively through debt financing.

• Compensation packages. Due to their implicit investment in firm-specific
human capital, managerial level and other key employees in a firm often
have a large and unhedged exposure to the risk of the firm they work for.
Thus, the riskier the firm, the more compensation current and potential
employees will require to stay with or join the firm. Proper risk manage-
ment can therefore help reducing the costs of retaining and recruiting key
personnel.

1.3.2. Evidence on Risk Management Practices

In 1998, researchers at the Wharton School surveyed 2000 companies on their
risk management practices, including derivatives uses. Of the 2000 firms surveyed,
400 responded. Not surprisingly, the survey found that companies use a range of
methods and have a variety of reasons for using derivatives. It was also clear that
not all risks that were managed were necessarily completely removed. About half
of the respondents reported that they use derivatives as a risk-management tool.
One-third of derivative users actively take positions reflecting their market views,
thus they may be using derivatives to increase risk rather than reduce it.

Of course, not only derivatives are used to manage risky cash flows. Compa-
nies can also rely on good old-fashioned techniques such as the physical storage
of goods (i.e., inventory holdings), cash buffers, and business diversification.

Not everyone chooses to manage risk, and risk management approaches differ
from one firm to the next. This partly reflects the fact that the risk management
goals differ across firms. In particular, some firms use cash-flow volatility, while
others use the variation in the value of the firm as the risk management object of
interest. It is also generally found that large firms tend to manage risk more actively
than do small firms, which is perhaps surprising as small firms are generally viewed
to be more risky. However, smaller firms may have limited access to derivatives
markets and furthermore lack staff with risk management skills.
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1.3.3. Does Risk Management Improve Firm Performance?

The overall answer to this question appears to be yes. Analysis of the risk man-
agement practices in the gold mining industry found that share prices were less
sensitive to gold price movements after risk management. Similarly, in the natural
gas industry, better risk management has been found to result in less variable stock
prices. A study also found that risk management in a wide group of firms led to a
reduced exposure to interest rate and exchange rate movements.

While it is not surprising that risk management leads to lower variability—
indeed the opposite finding would be shocking—a more important question is, does
risk management improve corporate performance? Again, the answer appears to
be yes.

Researchers have found that less volatile cash flows result in lower costs
of capital and more investment. It has also been found that a portfolio of firms
using risk management would outperform a portfolio of firms that did not, when
other aspects of the portfolio were controlled for. Similarly, a study found that
firms using foreign exchange derivatives had higher market value than those who
did not.

The evidence so far paints a fairly rosy picture of the benefits of current
risk management practices in the corporate sector. However, evidence on the
risk management systems in some of the largest U.S. commercial banks is less
cheerful. A recent study found that while the risk forecasts on average tended to
be overly conservative—perhaps a virtue—at certain times the realized losses far
exceeded the risk forecasts. Importantly, the excessive losses tended to occur on
consecutive days. Thus, looking back at the data on the a priory risk forecasts and
the ex ante loss realizations, one would have been able to forecast an excessive
loss tomorrow based on the observation of an excessive loss today. This serial
dependence unveils a potential flaw in current financial sector risk management
practices, and it motivates the development and implementation of new tools such
as those presented in this book.

1.4. A BRIEF TAXONOMY OF RISKS

We have already mentioned a number of risks facing a corporation, but so far
we have not been precise regarding their definitions. Now is the time to make up
for that.

Market risk is defined as the risk to a financial portfolio from movements
in market prices such as equity prices, foreign exchange rates, interest rates, and
commodity prices.

While financial firms take on a lot of market risk and thus reap the profits (and
losses), they typically try to choose the type of risk they want to be exposed to. An
option trading desk, for example, has a lot of exposure to volatility changing, but
not to the direction of the stock market. Option traders try to be delta neutral, as it
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is called. Their expertise is volatility and not market direction, and they only take
on the risk about which they are the most knowledgeable, namely volatility risk.
Thus financial firms tend to manage market risk actively. Nonfinancial firms, on the
other hand, might decide that their core business risks (say chip manufacturing)
is all they want exposure to and they therefore want to mitigate market risk or
ideally eliminate it altogether.

Liquidity risk is defined as the particular risk from conducting transactions in
markets with low liquidity as evidenced in low trading volume and large bid-ask
spreads. Under such conditions, the attempt to sell assets may push prices lower,
and assets may have to be sold at prices below their fundamental values or within
a time frame longer than expected.

Traditionally, liquidity risk was given scant attention in risk management,
but the events in the fall of 1998 sharply increased the attention devoted to liquidity
risk. The Russian default, the Long Term Capital Management (LTCM) crisis, and
the subsequent flight to high-quality assets dried up liquidity in the markets for
many more risky securities. Funding risk is often thought of as a second type
of liquidity risk, and indeed the LTCM collapse was ultimately triggered by a
withdrawal of funding by bank lenders.

Operational risk is defined as the risk of loss due to physical catastrophe,
technical failure, and human error in the operation of a firm, including fraud,
failure of management, and process errors.

Operational risk—or op risk—should be mitigated and ideally eliminated in
any firm as the exposure to it offers very little return (the short-term cost savings
of being careless, for example). Op risk is typically very difficult to hedge in asset
markets, although certain specialized products such as weather derivatives and
catastrophe bonds might offer somewhat of a hedge in certain situations. Op risk
is instead typically managed using self-insurance or third-party insurance.

Credit risk is defined as the risk that a counterparty may become less likely
to fulfill its obligation in part or in full on the agreed upon date. Thus, credit
risk consists not only of the risk that a counterparty completely defaults on its
obligation, but also that it only pays in part or after the agreed upon date.

The nature of commercial banks has traditionally been to take on large
amounts of credit risk through their loan portfolios. Today, banks spend much
effort to carefully manage their credit risk exposure. Nonbank financials as well as
nonfinancial corporations might instead want to completely eliminate credit risk
as it is not a part of their core business. However, many kinds of credit risks are not
readily hedged in financial markets, and corporations are often forced to take on
credit risk exposure that they would rather be without.

Business risk is defined as the risk that changes in variables of a business plan
will destroy that plan’s viability, including quantifiable risks, such as business
cycle and demand equation risk, and nonquantifiable risks, such as changes in
competitive behavior or technology. Business risk is sometimes simply defined
as the types of risks that are an integral part of the core business of the firm and
that should therefore simply be taken on.
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1.5. STYLIZED FACTS OF ASSET RETURNS

While any of the preceding risks can be important to a corporation, this book
focuses on various aspects of market risk. As market risk is caused by movements
in asset prices or equivalently asset returns, we begin by defining returns and then
give an overview of the characteristics of typical asset returns.

We start by defining the daily geometric or “log” return on an asset as the
change in the logarithm of the daily closing price of the asset. We write

Rt+1 = ln (St+1) − ln (St )

The arithmetic return is instead defined as

rt+1 = (St+1 − St ) /St = St+1/St − 1

The two returns are typically fairly similar, as can be seen from

Rt+1 = ln (St+1) − ln (St ) = ln (St+1/St ) = ln (1 + rt+1) ≈ rt+1

The approximation holds because ln(x) ≈ x − 1 when x is close to 1.
One advantage of the log return is that we can easily calculate the compo-

unded return at the K−day horizon simply as the sum of the daily returns

Rt+1:t+K = ln (St+K) − ln (St ) =
K∑

k=1

ln (St+k) − ln (St+k−1) =
K∑

k=1

Rt+k

We can consider the following list of so-called stylized facts, which apply to
most stochastic returns. Each of these facts will be discussed in detail in the first
part of the book. We will use daily returns on the S&P 500 from January 1, 1997,
through December 31, 2001, to illustrate each of the features.

• Daily returns have very little autocorrelation. We can write

Corr (Rt+1, Rt+1−τ ) ≈ 0, for τ = 1, 2, 3, . . . , 100

In other words, returns are almost impossible to predict from their own
past. Figure 1.1 shows the correlation of daily S&P 500 returns with
returns lagged from 1 to 100 days. We will take this as evidence that the
conditional mean is roughly constant.

• The unconditional distribution of daily returns has fatter tails than the nor-
mal distribution. Figure 1.2 shows a histogram of the daily S&P 500 return
data with the normal distribution imposed. Notice how the histogram has
longer and fatter tails, in particular on the left side, and how it is more
peaked around zero than the normal distribution. Fatter tails mean a higher
probability of large losses than the normal distribution would suggest.

• The stock market exhibits occasional, very large drops but not equally
large up-moves. Consequently, the return distribution is asymmetric or
negatively skewed. This is clear from Figure 1.2 as well. Other markets
such as that for foreign exchange tend to show less evidence of skewness.
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FIGURE 1.1 Autocorrelations of Daily S&P Returns for Lags 1 Through 100. January 1, 1997—
December 31, 2001.

• The standard deviation of returns completely dominates the mean of
returns at short horizons such as daily. It is not possible to statistically reject
a zero mean return. Our S&P data have a daily mean of 0.0353% and a
daily standard deviation of 1.2689%.

• Variance, measured, for example, by squared returns, displays positive
correlation with its own past. This is most evident at short horizons such
as daily or weekly. Figure 1.3 shows the autocorrelation in squared returns
for the S&P 500 data, that is

Corr
(
R2

t+1, R
2
t+1−τ

)
> 0, for small τ

Models that can capture this variance dependence will be presented in
Chapter 2.
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FIGURE 1.2 Histogram of Daily S&P Returns Superimposed on the Normal Distribution. January
1, 1997—December 31, 2001.
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FIGURE 1.3 Autocorrelation of Squared Daily S&P 500 Returns for Lags 1 Through 100.
January 1, 1997—December 31, 2001.

• Equity and equity indices display negative correlation between variance
and returns. This is often termed the leverage effect, arising from the fact
that a drop in a stock price will increase the leverage of the firm as long
as debt stays constant. This increase in leverage might explain the increase
variance associated with the price drop. We will model the leverage effect
in Chapter 2.

• Correlation between assets appears to be time varying. Importantly, the
correlation between assets appears to increase in highly volatile down
markets and extremely so during market crashes. We will model this impor-
tant phenomenon in Chapter 3.

• Even after standardizing returns by a time-varying volatility measure, they
still have fatter than normal tails. We will refer to this as evidence of
conditional non-normality, which will be modeled in Chapter 4 and 5.

• As the return-horizon increases, the unconditional return distribution
changes and looks increasingly like the normal distribution. Issues related
to risk management across horizons will be discussed in Chapter 5.

Based on the previous list of stylized facts, our model of individual asset
returns will take the generic form

Rt+1 = µt+1 + σt+1zt+1, with zt+1 ∼ i.i.d. D(0, 1)

The conditional mean return, Et [Rt+1], is thus µt+1, and the conditional variance,
Et [Rt+1 − µt+1]2, is σ 2

t+1. The random variable zt+1 is an innovation term, which
we assume is identically and independently distributed (i.i.d.) according to the
distribution D(0, 1), which has a mean equal to zero and variance equal to one.

In most of the book, we will assume that the conditional mean of the return,
µt+1 is simply zero. For daily data this is a quite reasonable assumption as we
mentioned in the preceding list of stylized facts. For longer horizons, the risk
manager may want to estimate a model for the conditional mean as well as well as
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for the conditional variance. However, robust conditional mean relationships are
not easy to find, and assuming a zero mean return may indeed be the most prudent
choice the risk manager can make.

1.6. OVERVIEW OF THE BOOK

The book contains eight chapters including the present. Chapters 2 through 4
discuss the construction of conditional densities for simple assets such as equities,
indices, bonds, and foreign exchange. These assets typically form the basis of
any risk management system, and knowing their statistical properties is crucial.
Chapter 2 discusses methods for estimating and forecasting variance on an asset-
by-asset basis, Chapter 3 presents methods for modeling the correlation between
two or more assets, and Chapter 4 introduces methods to model the tail behavior
in asset returns that is not captured by volatility and correlation models and that is
not captured by the normal distribution.

Chapter 5 introduces simulation-based methods in risk management. We sur-
vey data-based methods such as historical simulation and weighted historical
simulation and contrast them with the Monte Carlo simulation of GARCH models.
Finally, we introduce filtered historical simulation, which combines the attractive-
ness of conditional GARCH models with data-based methods for obtaining the
conditional distribution.

Chapters 6 and 7 discuss option pricing and hedging. In Chapter 6, we discuss
how the seminal Black-Scholes model, which relies on constant volatility and
a normal distribution, has problems capturing the pricing properties of particu-
larly close-to-maturity and deep in and out-of-the-money options. We then con-
sider alternatives to Black-Scholes that are able to better capture key features of
observed market option prices. In Chapter 7, we discuss different ways of measur-
ing and hedging the risk from holding options in a portfolio. Options have nonlinear
payoffs and therefore present a set of challenges that are different from those
discussed in Chapters 2 through 4, which consider assets with linear payoffs only.

Chapter 8 gives a thorough treatment of risk model evaluation and compari-
son. We first discuss different methods for back testing (or evaluating the model)
on historical data. We finally consider a coherent method for stress testing,
which entails feeding extreme scenarios into the model and assessing the perfor-
mance of the model under these scenarios.

1.7. FURTHER RESOURCES

A very nice review of the theoretical and empirical evidence on corporate risk
management can be found in Stulz (1996). Allayannis and Weston (2003), Minton
and Schrand (1999), Smithson (1999), and Tufano (1998) present further empirical
evidence. Berkowitz and O’Brien (2002) document the performance of risk man-
agement systems in large commercial banks, and Dunbar (1999) contains a



10 RISK MANAGEMENT AND FINANCIAL RETURNS

discussion of the increased focus on the corporate risk manager after the turbulence
in the fall of 1998. The definitions of the main types of risk used here can be found
at www.erisk.com and in JPMorgan/Risk Magazine (2001). Cont (2001) contains
a nice overview of the stylized facts of speculative asset returns. Useful surveys of
risk management models include Duffie and Pan (1997) and Marshall and Siegel
(1997). Useful web sites include www.gloriamundi.org, www.riskwaters.com,
www.defaultrisk.com, www.bis.org, and www.riskmetrics.com. Links to these
and other useful sites can be found at www.christoffersen.ca.

1.8. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter1Data.xls file on the CD-ROM. (Excel Hint: Enable the Data
Analysis Tool under Tools, Add-Ins.)

1. From the S&P 500 prices, calculate daily returns as Rt+1 = ln(St+1) − ln(St )

where St+1 is the closing price on day t + 1, St is the closing price on day t ,
and ln is the natural logarithm. Plot the closing prices and returns over time.

2. Calculate the mean, standard deviation, skewness, and kurtosis of returns. Plot
a histogram of the returns with the normal distribution imposed as well. (Excel
Hints: You can either use the Histogram tool under Data Analysis, or you can
use the functions AVERAGE, STDEV, SKEW, KURT, and the array function
FREQUENCY, as well as the NORMDIST function. Note that KURT computes
excess kurtosis. Note also that array functions are entered using CONTROL-
SHIFT-ENTER instead of just ENTER.)

3. Calculate the 1st through 100th lag autocorrelation. Plot the autocorrelations
against the lag order. (Excel Hint: Use the function CORREL.) Compare your
result with Figure 1.1.

4. Calculate the 1st through 100th lag autocorrelation of squared returns. Again,
plot the autocorrelations against the lag order. Compare your result with
Figure 1.3.

5. Set σ 2
0 (i.e., the variance of the first observation) equal to the variance of the

entire sequence of returns (you can square the standard deviation found in
2). Then calculate σ 2

t+1 = 0.94σ 2
t + 0.06R2

t for t = 2, 3, . . . , T (the last
observation). Plot the sequence of standard deviations, (i.e., plot σt ).

6. Compute standardized returns as zt = Rt/σt and calculate the mean, standard
deviation, skewness, and kurtosis of the standardized returns. Compare them
with those found in 2.

7. Calculate daily, 5-day, 10-day, and 15-day nonoverlapping log returns. Calcu-
late the mean, standard deviation, skewness, and kurtosis for all four return
horizons. Do the returns look more normal as the horizon increases?

The answers to these exercises can be found in the Chapter1Results.xls file.
Previews of the answers follow.
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2.6.1. In-Sample Check on the Autocorrelations
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2.7.2. Using Intraday Returns
2.7.3. Range-Based versus Realized Variance

2.8. SUMMARY
2.9. FURTHER RESOURCES
2.10. EMPIRICAL EXERCISES ON CD-ROM

2.1. CHAPTER OVERVIEW

The ultimate goal of this and the following two chapters is to establish a frame-
work for modeling the non-normal conditional distribution of the relatively large
number of assets that make up the financial portfolio of a company. This is an ambi-
tious undertaking, and we will proceed cautiously in three steps following what we
will call the stepwise distribution modeling approach (SDM). The first step of the
SDM is to establish a variance forecasting model for each of the assets individually
and to introduce methods for evaluating the performance of these forecasts. The
second step is to link the individual variance forecasts with a correlation model.
The variance and correlation models together will yield a time-varying covariance

19



20 VOLATILITY MODELING

model, which can be used to calculate the variance of an aggregate portfolio of
assets. Finally, the third step will consider ways to model conditionally non-normal
aspects of the assets in our portfolio—that is, aspects that are not captured in the
conditional mean and variance.

The second and third steps are analyzed in subsequent chapters, while the first
step is covered in this chapter in the following manner:

1. We briefly describe the simplest variance models available including the
so-called RiskMetrics or exponential smoothing variance model.

2. We introduce the GARCH variance model and compare it with the
RiskMetrics model.

3. We suggest extensions to the basic model, which improve the ability to
capture variance persistence and leverage effects. We also consider ways
to expand the model to take into account explanatory variables such as
volume effects, day-of-week effects, and implied volatility from options.

4. We consider parameter estimation using Quasi Maximum Likelihood and
introduce a simple diagnostic check.

5. We describe techniques for assessing the in-sample fit and out-of-sample
predictive ability of GARCH models and

6. We suggest how intraday data can be used to enhance daily variance
predictability.

2.2. SIMPLE VARIANCE FORECASTING

We begin by establishing some notation and by laying out our underlying assump-
tions for this chapter. In Chapter 1, we defined the daily asset log-return, Rt+1,

using the daily closing price, St+1, as

Rt+1 ≡ ln (St+1/St )

We will also apply the finding from Chapter 1 that at short horizons such as
daily, we can safely assume that the mean value of Rt is zero as it is dominated
by the standard deviation of returns. Issues arising at longer horizons will be dis-
cussed in Chapter 5. Furthermore, we will assume that the innovations or news
hitting the asset return are normally distributed. We hasten to add that the norma-
lity assumption is not realistic, and it will be relaxed in Chapters 4 and 5. Norma-
lity is simply assumed for now, as it allows us to focus on modeling the
conditional variance of the distribution.

Given the assumptions made, we can write the daily return as

Rt+1 = σt+1zt+1, with zt+1 ∼ i.i.d. N(0, 1)

where the abbreviation i.i.d. N(0, 1) stands for “independently and identically
normally distributed with mean equal to zero and variance equal to 1.”
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Together these assumptions imply that once we have established a model of
the time-varying variance, σ 2

t+1, we will know the entire distribution of the asset,
and we can therefore easily calculate any desired risk measure. We are well aware
from the stylized facts discussed in Chapter 1 that the assumption of conditional
normality that is imposed here is not satisfied in actual data on speculative returns.
However, as we will see later on, for the purpose of variance modeling, we are
allowed to assume normality even if it is strictly speaking not a correct assumption.
This assumption conveniently allows us to postpone discussions of nonnormal
distributions to a later chapter.

The sole focus of this chapter then is to establish a model for forecasting
tomorrow’s variance, σ 2

t+1. We know from Chapter 1 that variance, as measured
by squared returns, exhibits strong autocorrelation, so that if the recent period was
one of high variance, then tomorrow is likely to be a high-variance day as well.
The easiest way to capture this phenomenon is by letting tomorrow’s variance be
the simple average of the most recent m observations, as in

σ 2
t+1 = 1

m

m∑
τ=1

R2
t+1−τ =

m∑
τ=1

1

m
R2

t+1−τ

Notice that this is a proper forecast in the sense that the forecast for tomorrow’s
variance is immediately available at the end of today when the daily return is
realized. However, the fact that the model puts equal weights (equal to 1/m) on the
past m observations yields unwarranted results. When plotted over time, variance
will exhibit box-shaped patterns. An extreme return (either positive or negative)
today will bump up variance by 1/m times the return squared for exactly m periods
after which variance immediately will drop back down. Figure 2.1 illustrates this
point for m = 25 days. The autocorrelation plot of squared returns in Chapter 1
suggests that a more gradual decline is warranted in the effect of past returns on
today’s variance. Even if one is content with the box patterns, it is not at all clear
howm should be chosen. This is unfortunate as the choice ofm is crucial in deciding
the patterns of σt+1: A high m will lead to an excessively smoothly evolving σt+1,
and a low m will lead to an excessively jagged pattern of σt+1 over time.

JP Morgan’s RiskMetrics system for market risk management considers the
following model, where the weights on past squared returns decline exponentially
as we move backward in time. The RiskMetrics variance model, or the exponential
smoother as it is sometimes called, is written as

σ 2
t+1 = (1 − λ)

∞∑
τ=1

λτ−1R2
t+1−τ , for 0 < λ < 1

Separating from the sum the squared return term for τ = 1, where λτ−1 = λ0 = 1,

we get

σ 2
t+1 = (1 − λ)

∞∑
τ=2

λτ−1R2
t+1−τ + (1 − λ)R2

t
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FIGURE 2.1 Squared S&P 500 Returns with Moving Average Variance Estimate (bold) on past
25 observations (m = 25).

Applying the exponential smoothing definition again, we can write today’s
variance, σ 2

t , as

σ 2
t = (1 − λ)

∞∑
τ=1

λτ−1R2
t−τ = 1

λ
(1 − λ)

∞∑
τ=2

λτ−1R2
t+1−τ

so that tomorrow’s variance can be written as

σ 2
t+1 = λσ 2

t + (1 − λ)R2
t

The RiskMetrics model’s forecast for tomorrow’s volatility can thus be seen as a
weighted average of today’s volatility and today’s squared return.

The RiskMetrics model has some clear advantages. First, it tracks variance
changes in a way that is broadly consistent with observed returns. Recent returns
matter more for tomorrow’s variance than distant returns as λ is less than one and
therefore gets smaller when the lag, τ, gets bigger. Second, the model only con-
tains one unknown parameter, namely, λ. When estimating λ on a large number
of assets, RiskMetrics found that the estimates were quite similar across assets,
and they therefore simply set λ = 0.94 for every asset for daily variance forecast-
ing. In this case, no estimation is necessary, which is a huge advantage in large
portfolios. Third, relatively little data need to be stored in order to calculate tomor-
row’s variance. The weight on today’s squared returns is (1 − λ) = 0.06, and the
weight is exponentially decaying to (1 − λ)λ99 = 0.000131 on the 100th lag of
squared return. After including 100 lags of squared returns, the cumulated weight
is (1 − λ)

∑100
τ=1 λτ−1 = 0.998, so that 99.8% of the weight has been included.

Therefore it is only necessary to store about 100 daily lags of returns in order to
calculate tomorrow’s variance, σ 2

t+1. Of course, once σ 2
t is calculated, the past

returns are no longer needed.
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Given all these advantages of the RiskMetrics model, why not simply end
the discussion on variance forecasting here and move on to correlation modeling?
Unfortunately, as we will see shortly, the RiskMetrics model does have certain
shortcomings, which will motivate us to consider slightly more elaborate mod-
els. For example, it does not allow for a leverage effect, which we considered
a stylized fact in Chapter 1, and it also provides counterfactual longer-horizon
forecasts.

2.3. THE GARCH VARIANCE MODEL

We now introduce a set of models that capture important features of returns data
and that are flexible enough to accommodate specific aspects of individual assets.
The downside of these models is that they require nonlinear parameter estimation,
which will be discussed subsequently.

The simplest generalized autoregressive conditional heteroskedasticity
(GARCH) model of dynamic variance can be written as

σ 2
t+1 = ω + αR2

t + βσ 2
t , with α + β < 1

Notice that the RiskMetrics model can be viewed as a special case of the simple
GARCH model if we force α = 1−λ, β = λ, so that α+β = 1, and further ω = 0.

Thus, the two models appear to be quite similar. However, there is an important
difference: We can define the unconditional, or long-run average, variance, σ 2,

to be

σ 2 ≡ E[σ 2
t+1] = ω + αE[R2

t ] + βE[σ 2
t ]

= ω + ασ 2 + βσ 2, so that

σ 2 = ω/(1 − α − β)

It is now clear that if α + β = 1, as is the case in the RiskMetrics model, then the
long-run variance, is not well-defined in that model. Thus, an important quirk of the
RiskMetrics model emerges: It ignores the fact that the long-run average variance
tends to be relatively stable over time. The GARCH model, in turn, implicitly
relies on σ 2. This can be seen by solving for ω in the long-run variance equation
and substituting it into the dynamic variance equation. We get

σ 2
t+1 = (1 − α − β)σ 2 + αR2

t + βσ 2
t = σ 2 + α(R2

t − σ 2) + β(σ 2
t − σ 2)

Thus, tomorrow’s variance is a weighted average of the long-run variance, today’s
squared return, and today’s variance. Put differently, tomorrow’s variance is the
long-run average variance with something added (subtracted) if today’s squared
return is above (below) its long-run average, and something added (subtracted) if
today’s variance is above (below) its long-run average.
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Our intuition might tell us that ignoring the long-run variance, as the Risk-
Metrics model does, is more important for longer-horizon forecasting than for
forecasting simply one-day ahead. This intuition is correct, as we will now see.

A key advantage of GARCH models for risk management is that the one-day
forecast of variance, σ 2

t+1|t , is given directly by the model as σ 2
t+1. Consider now

forecasting the variance of the daily return k days ahead, using only information
available at the end of today. In GARCH, the expected value of future variance at
horizon k is

Et

[
σ 2

t+k

]
− σ 2 = αEt

[
R2

t+k−1 − σ 2
]

+ βEt

[
σ 2

t+k−1 − σ 2
]

= αEt

[
σ 2

t+k−1z
2
t+k−1 − σ 2

]
+ βEt

[
σ 2

t+k−1 − σ 2
]

= (α + β)
(
Et

[
σ 2

t+k−1

]
− σ 2

)
, so that

Et

[
σ 2

t+k

]
− σ 2 = (α + β)k−1

(
Et

[
σ 2

t+1

]
− σ 2

)
= (α + β)k−1

(
σ 2

t+1 − σ 2
)

The conditional expectation, Et [∗], refers to taking the expectation using all the
information available at the end of day t , which includes the squared return on day
t itself.

We will refer to α + β as the persistence of the model. A high persistence—
that is, an (α + β) close to 1—implies that shocks which push variance away from
its long-run average will persist for a long time, but eventually the long-horizon
forecast will be the long-run average variance, σ 2. Similar calculations for the
RiskMetrics model reveal that

Et

[
σ 2

t+k

]
= σ 2

t+1, ∀k

as α + β = 1 and σ 2 is undefined. Thus, persistence in this model is 1, which
implies that a shock to variance persists forever: An increase in variance will push
up the variance forecast by an identical amount for all future forecast horizons.
This is another way of saying that the RiskMetrics model ignores the long-run
variance when forecasting. If α +β is close to one as is typically the case, then the
two models might yield similar predictions for short horizons, k, but their longer
horizon implications are very different. If today is a high-variance day, then the
RiskMetrics model predicts that all future days will be high-variance. The GARCH
model more realistically assumes that eventually in the future variance will revert
to the average value.

So far we have considered forecasting the variance of daily returns k days
ahead. Of more immediate interest is probably the forecast of variance of K–day
cumulative returns,

Rt+1:t+k ≡
K∑

k=1

Rt+k
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As we assume that returns have zero autocorrelation, the variance of the cumulative
K-day returns is simply

σ 2
t+1:t+K ≡ Et

(
K∑

k=1

Rt+k

)2

=
K∑

k=1

Et

[
σ 2

t+k

]

So in the RiskMetrics model, we get

σ 2
t+1:t+K =

K∑
k=1

σ 2
t+1 = Kσ 2

t+1

But in the GARCH model, we get

σ 2
t+1:t+K = Kσ 2 +

K∑
k=1

(α + β)k−1
(
σ 2

t+1 − σ 2
)

�= Kσ 2
t+1

If the RiskMetrics and GARCH model has identicalσ 2
t+1, and if σ 2

t+1 < σ 2, then the
GARCH variance forecast will be higher than the RiskMetrics forecast. Thus,
assuming the RiskMetrics model if the data truly look more like GARCH will
give risk managers a false sense of the calmness of the market in the future, when
the market is calm today and σ 2

t+1 < σ 2. Figure 2.2 illustrates this crucial point. We
plot σ 2

t+1:t+K/K for K = 1, 2, . . . , 250 for both the RiskMetrics and the GARCH
model starting from a low σ 2

t+1 and setting α = 0.05 and β = 0.90. The long-run
daily variance in the figure is σ 2 = 0.000140.

An inconvenience shared by the two models is that the multiperiod distribu-
tion is unknown even if the one-day ahead distribution is assumed to be normal,
as we do in this chapter. Thus, while it is easy to forecast longer-horizon variance
in these models, it is not as easy to forecast the entire conditional distribution.

FIGURE 2.2 Variance Forecasts for 1 through 250 Days Ahead Cumulative Returns From
GARCH (bold) and RiskMetrics (horizontal line) Models.
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We will return to this important issue in Chapter 5 as it is unfortunately often
ignored in risk management.

2.4. EXTENSIONS TO THE GARCH MODEL

As we noted earlier, one of the distinct benefits of GARCH models is their flexi-
bility. In this section, we explore this flexibility and present some of the models
most useful for risk management.

2.4.1. Long Memory in Variance

The simple GARCH model discussed earlier is often referred to as the
GARCH(1,1) model because it relies on only one lag of returns squared and one
lag of variance itself. For short-term variance forecasting, this model is often found
to be sufficient, but in general we can allow for higher order dynamics by consider-
ing the GARCH(p,q) model, which simply allows for longer lags as follows:

σ 2
t+1 = ω +

p∑
i=1

αiR
2
t+1−i +

q∑
j=1

βjσ
2
t+1−j

The simple GARCH model assumes that the long-term variance is constant
over time. The component GARCH model, which is a restricted GARCH(2,2),
can be seen as allowing the long-term variance to be time varying and captured by
the factor vt+1 in

σ 2
t+1 = vt+1 + α

(
R2

t − vt

)
+ β

(
σ 2

t − vt

)

vt+1 = ω + αv

(
R2

t − σ 2
t

)
+ βvvt

This model can potentially capture autocorrelation patterns in variance, which die
out slower than what is possible in the simple short-memory GARCH(1,1) model.

2.4.2. The Leverage Effect

We argued in Chapter 1 that a negative return increases variance by more than a
positive return of the same magnitude. This was referred to as the leverage effect,
as a negative return on a stock implies a drop in the equity value, which implies
that the company becomes more highly levered and thus more risky (assuming
the level of debt stays constant). We can modify the GARCH models so that the
weight given to the return depends on whether the return is positive or negative in
the following simple manner:

σ 2
t+1 = ω + α (Rt − θσt )

2 + βσ 2
t = ω + ασ 2

t (zt − θ)2 + βσ 2
t

which is sometimes referred to as the NGARCH (nonlinear GARCH) model.
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Notice that it is strictly speaking a positive piece of news, zt > 0, rather than
raw return Rt , which has less of an impact on variance than a negative piece of
news, if θ > 0. The persistence of variance in this model is α(1 + θ2)+β, and the
long-run variance is σ 2 = ω/(1 − α(1 + θ2) − β).

Another way of capturing the leverage effect is to define an indicator variable,
It , to take on the value 1 if day t ′s return is negative and zero otherwise. The
variance dynamics can now be specified as

σ 2
t+1 = ω + αR2

t + αθItR
2
t + βσ 2

t

Thus, a θ larger than zero will again capture the leverage effect. This is sometimes
referred to as the GJR-GARCH model.

A different that also captures the leverage is the exponential GARCH model
or EGARCH,

ln σ 2
t+1 = ω + α (φRt + γ [|Rt | − E |Rt |]) + β ln σ 2

t

which displays the usual leverage effect if αφ < 0. The EGARCH model has
the advantage that the logarithmic specification ensures that variance is always
positive, but it has the disadvantage that the future expected variance beyond one
period cannot be calculated analytically.

2.4.3. Explanatory Variables

Because we are considering dynamic models of daily variance, we have to be
careful with days where no trading takes place. It is widely recognized that days
that followed a weekend or a holiday have higher variance than average days. As
weekends and holidays are perfectly predictable, it makes sense so include them
in the variance model. Other predetermined variables could be yesterday’s trading
volume or prescheduled news announcement dates such as company earnings and
FOMC meetings dates. As these future events are known in advance, we can model

σ 2
t+1 = ω + βσ 2

t + ασ 2
t z2

t + γ ITt+1

where ITt+1 takes on the value 1 if date t + 1 is a Monday, for example.
We have not yet discussed option prices, but it is worth mentioning here that

so-called implied volatilities from option prices often have quite high predictive
value in forecasting next-day variance. Including the variance index (VIX) from
the Chicago Board Options Exchange as an explanatory variable can improve the
fit of a GARCH variance model of the underlying stock index significantly. Of
course, not all underlying market variables have liquid options markets, so the
implied volatility variable is not always available for variance forecasting. We
will discuss the use of implied volatilities from options further in Chapter 6.

In general, we can write the GARCH variance forecasting model as follows:

σ 2
t+1 = ω + g (Xt ) + ασ 2

t z2
t + βσ 2

t
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where Xt denote variables known at the end of day t . As the variance is always a
positive number, it is important to ensure that the GARCH model always generates
a positive variance forecast. In the simple GARCH model, positive coefficients
guarantee positivity. In the more general more considered here, positivity of g(Xt )

along with positive ω, α, and β will ensure positivity of σ 2
t+1.

2.5. MAXIMUM LIKELIHOOD ESTIMATION

In the previous section, we suggested a range of models that we argued should
fit the data well, but they contain a number of unknown parameters that must be
estimated. In doing so, we face the challenge that the conditional variance, σ 2

t+1,

is an unobserved variable, which must itself be implicitly estimated along with the
parameters of the model, for example, α, β, and ω.

2.5.1. Standard Maximum Likelihood Estimation

We will briefly discuss the method of maximum likelihood estimation, which can
be used to find parameter values. Explicitly worked-out examples are included in
the answers to the empirical exercises contained on the CD-ROM.

Recall our assumption that

Rt = σtzt , with zt ∼ i.i.d. N (0, 1)

The assumption of i.i.d. normality implies that the probability, or the likelihood,
lt , of Rt is

lt = 1√
2πσ 2

t

exp

(
− R2

t

2σ 2
t

)

and thus the joint likelihood of our entire sample is

L =
T∏

t=1

lt =
T∏

t=1

1√
2πσ 2

t

exp

(
− R2

t

2σ 2
t

)

A natural way to choose parameters to fit the data is then to maximize the
joint likelihood of our observed sample. Recall that maximizing the logarithm
of a function is equivalent to maximizing the function itself as the logarithm is
a monotone, increasing function. Maximizing the logarithm is convenient as it
replaces products with sums. Thus, we choose parameters (α, β, ...), which solve

Max ln L = Max

T∑
t=1

ln(lt ) = Max

T∑
t=1

[
−1

2
ln (2π) − 1

2
ln
(
σ 2

t

)
− 1

2

R2
t

σ 2
t

]
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and we refer to the optimal parameters as maximum likelihood estimates or
MLEs. The MLEs have the theoretical properties that with infinitely many observa-
tions the parameter estimates would converge to their true values and the variance
of these estimates would be the smallest possible.

In reality we of course do not have an infinite past of data available. Even if
we have a long time series, say, of daily returns on the S&P 500 index available,
it is not clear that we should use all that data when estimating the parameters.
Sometimes obvious structural breaks such as a new exchange rate arrangement
or new rules regulating trading in a particular market can guide in the choice
of sample length. But often the dates of these structural breaks are not obvious
and the risk manager is left with having to weigh the benefits of a longer sample,
which implies more precise estimates (assuming there are no breaks), and a shorter
sample, which reduces the risk of estimating across a structural break. When
estimating GARCH models, a fairly good general rule of thumb is to use the past
1000 daily observations and to update the sample fairly frequently to allow for the
parameters to change over time.

2.5.2. Quasi-Maximum Likelihood Estimation

The skeptical reader will immediately protest that the MLEs rely on the condi-
tional normal distribution assumption, which we argued in Chapter 1 is false.
While this protest appears to be valid, a key result in econometrics says that even
if the conditional distribution is not normal, MLE will yield estimates of the mean
and variance parameters, which converge to the true parameters as the sample
gets infinitely large as long as the mean and variance functions are properly spec-
ified. This convenient result establishes what is called quasi-maximum likelihood
estimation or QMLE, referring to the use of normal MLE estimation even when
the normal distribution assumption is false. Notice that QMLE buys us the free-
dom to worry about the conditional distribution later on (in Chapter 4), but it
does come at a price: The QMLE estimates will in general be less precise than
those from MLE. Thus, we trade theoretical asymptotic parameter efficiency for
practicality.

The operational aspects of parameter estimation will be discussed in the exer-
cises following this chapter. Here we just point out one simple but useful trick,
which is referred to as variance targeting. Recall that the simple GARCH model
can be written as

σ 2
t+1 = ω + αR2

t + βσ 2
t = (1 − α − β)σ 2 + αR2

t + βσ 2
t

Thus, instead of estimating ω by MLE, we can simply set the long-run variance,
σ 2, equal to the sample variance, which is easily estimated beforehand as

σ 2 = 1

T

T∑
t=1

R2
t
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FIGURE 2.3 Squared S&P 500 Returns with NGARCH Variance Estimate (bold). The NGARCH
Parameters are Estimated Using Quasi Maximum Likelihood on Daily Returns from January 1, 1997
through December 31, 2001.

Variance targeting has the benefit of imposing the long-run variance estimate on
the GARCH model directly. More important, it reduces the number of parameters
to be estimated in the model by one. This typically makes estimation much easier.

2.5.3. An Example

Figure 2.3 shows the S&P 500 squared returns from Figure 2.1, but now with an
estimated GARCH variance superimposed. The estimated model is the GARCH
model with leverage (NGARCH) from above. Using numerical optimization of
the likelihood function (see the exercises at the end of the chapter), the optimal
parameters imply the following variance dynamics:

σ 2
t+1 = ω + α (Rt − θσt )

2 + βσ 2
t

= 0.0000099 + 0.0556 (Rt − 2.1449σt )
2 + 0.6393σ 2

t

The parameters have been estimated on the 1257 daily observations from January
2, 1997, through December 31, 2001. The persistence of variance in this model is
α(1 + θ2) + β = 0.9504, which is quite a bit lower than in RiskMetrics where it
is 1. As illustrated in Figure 2.2, this difference will have important consequences
for the variance forecasts for horizons beyond one day.

2.6. VARIANCE MODEL EVALUATION

Before we start using the variance model for risk management purposes, it is
appropriate to run the estimated model through some diagnostic checks.
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2.6.1. In-Sample Check on the Autocorrelations

In Chapter 1, we studied the behavior of the autocorrelation of returns and
squared returns. We found that the raw return autocorrelations did not display any
systematic patterns, whereas the squared return autocorrelations were positive for
short lags and decreased as the lag order increased.

The objective of variance modeling is essentially to construct a variance mea-
sure, σ 2

t , which has the property that the standardized squared returns, R2
t /σ

2
t

have no systematic autocorrelation patterns. Whether this has been achieved can
be assessed in plots such as the top panel of Figure 2.4, where we show the auto-
correlation of R2

t /σ
2
t from the GARCH model with leverage for the S&P 500

returns along with their standard error bands. The standard errors are calculated
simply as 1/

√
T , where T is the number of observations in the sample. Usually the

autocorrelation is shown along with plus/minus two standard error bands around
zero, which simply mean horizontal lines at −2/

√
T and 2/

√
T . These so-called

Bartlett standard error bands give the range in which the autocorrelations would
fall roughly 95% of the time if the true but unknown autocorrelations of R2

t /σ
2
t

were all zero.
The bottom panel in Figure 2.4 redraws the autocorrelation of the squared

returns from Chapter 1, now with the standard error bands superimposed. Com-
paring the two panels in Figure 2.4, we see that the GARCH model has been
reasonably effective at removing the systematic patterns in the autocorrelation of
the squared returns.

2.6.2. Out-of-Sample Check Using Regression

Another traditional method of evaluating a variance model is based on simple
regressions where squared returns in the forecast period, t + 1, are regressed on
the forecast from the variance model, as in

R2
t+1 = b0 + b1σ

2
t+1 + et+1

A good variance forecast should be unbiased, that is have an intercept b0 = 0, and
be efficient, that is have a slope, b1 = 1. In this regression, the squared returns
is used as a proxy for the true but unobserved variance in period t + 1. One key
question is, how good of a proxy is the squared return?

First of all, notice that it is true that Et [R2
t+1] = σ 2

t+1, so that the squared
return is an unbiased proxy for true variance. But the variance of the proxy is

V art [R2
t+1] = Et

[(
R2

t+1 − σ 2
t+1

)2
]

= Et

[(
σ 2

t+1(z
2
t+1 − 1)

)2
]

= σ 4
t+1Et [(z2

t+1 − 1)2] = σ 4
t+1(κ − 1)

where κ is the kurtosis of the innovation, which is 3 under conditional normality
but higher in reality. Thus, the squared return is an unbiased but potentially very
noisy proxy for the conditional variance.
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FIGURE 2.4 Autocorrelation of Standardized Squared S&P 500 Returns (top) and of Squared
Returns (bottom) with Bartlett Standard Errors (dashed).

Due to the high degree of noise in the squared returns, the fit of the preceding
regression as measured by the regression R2 will be very low, typically around 5
to 10%, even if the variance model used to forecast is indeed the correct one. Thus
obtaining a low R2 in such regressions should not lead one to reject the variance
model. The conclusion is just as likely to be that the proxy for true but unobserved
variance is simply very inaccurate.

2.7. USING INTRADAY INFORMATION

If the squared return from daily closing prices really is a poor proxy for the true but
unobserved daily variance, then we may be able to improve on variance models,
which are based purely on squared return, by looking for better variance proxies.
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2.7.1. Using Intraday High and Low Prices

One such readily available proxy is the difference between the intraday high and
the intraday low log-price, which is often referred to as the range. The intraday
high and low prices are often available along with the daily closing prices in
standard financial databases. Range-based variance proxies are therefore easily
calculated.

Let us define the range of the log-prices to be

Dt = ln
(
S

High
t

)
− ln

(
SLow

t

)

where S
High
t and SLow

t are the highest and lowest prices observed during day t .
One can show that the expected value of the squared range is

E
[
D2

t

]
= 4 ln(2)σ 2

A natural range-based estimate of volatility is therefore

σ 2 = 1

4 ln(2)

1

T

T∑
t=1

D2
t

The range-based estimate of variance is simply a constant times the average
squared range. The constant is 1

4 ln(2)
≈ 0.361.

The range-based estimate of unconditional variance suggests that a proxy for
the daily variance can be constructed as

σ 2
r,t = 1

4 ln(2)
D2

t ≈ .361D2
t

The top panel of Figure 2.5 plots σ 2
r,t for the S&P 500 data. Notice how

much less noisy the range is than the daily squared returns, which are shown in
the bottom panel. Figure 2.6 shows the autocorrelation of σ 2

r,t in the top panel.
The first-order autocorrelation in the range-based variance proxy is around 0.35
(top panel), whereas it is only half of that in the squared-return proxy (bottom
panel). Furthermore, the range-based autocorrelations show more persistence than
the squared-return autocorrelations. The range-based autocorrelations are posi-
tive and significant from lag 1 through lag 28, whereas the squared-return–based
autocorrelations are only significant for the first 5 to 10 lags.

The σ 2
r,t variance proxy could, of course, be used instead of the squared

return for evaluating the forecasts from variance models. Thus, we could run the
regression,

σ 2
r,t+1 = b0 + b1σ

2
t+1 + et+1

which is done in the exercises at the end of the chapter.
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FIGURE 2.5 Range-Based Variance Proxy (top) and Squared Returns (bottom).

It is also interesting to go one step further and use the range as the driving
variable in a variance model. At the least, one could use the range as a regressor
in the simple GARCH specification as in

σ 2
t+1 = ω + αR2

t + βσ 2
t + γD2

t

However, one could go even further and consider the range rather than the
squared return to be the fundamental innovation of the variance model.

2.7.2. Using Intraday Returns

Sometimes, the daily high and low prices is not the only intraday information
available. Liquid assets are traded many times during a day, and there is potentially
useful information in the intraday prices about daily variance.

Consider the case where we have observations every 5 minutes on the price of
a liquid asset, for example, the dollar/yen exchange rate. Let m be the number of
observations per day. If we have 24-hour trading and 5-minute observations, then
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FIGURE 2.6 Autocorrelation of Range-Based Variance Proxy (top) and Autocorrelation of
Squared Returns (bottom) with Barlett Standard Errors (dashed).

m = 24 ∗ 60/5 = 288. Let the j th observation on day t + 1 be denoted St+j/m.

Then the closing price on day t + 1 is St+m/m = St+1, and the j th return is

Rt+j/m = ln(St+j/m) − ln(St+(j−1)/m)

Having m observations available within a day, we can calculate an estimate of the
daily variance from the intraday squared returns simply as

σ 2
m,t+1 =

m∑
j=1

R2
t+j/m

This variance measure could of course also be used instead of the squared
return for evaluating the forecasts from variance models. Thus, we could run the
regression,

σ 2
m,t+1 = b0 + b1σ

2
t+1 + et+1
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But again, we want to go further and use the new variance measure directly for
variance forecasting.

The so-called realized variance measure noted earlier is, of course, only an
estimate of the true variance. Under fairly general conditions it can be shown
that as the number of intraday observations, m, gets infinitely large, the realized
variance measure will converge to the true variance for day t +1. Furthermore, for
liquid securities, the distribution of the logarithm of σ 2

m,t+1 across days appears
to be very close to the normal distribution. Thus, a very practical and sensible
forecasting model of variance based on the realized variance measure would be,
for example,

ln σ 2
m,t+1 = ρ ln σ 2

m,t + εt+1, with εt+1 ∼ N(0, σ 2
ε )

or perhaps

ln σ 2
m,t+1 = ρ ln σ 2

m,t + δεt + εt+1

which are, respectively, an AR(1) and an ARMA(1,1) model in the log-realized
volatilities. The AR(1) can be estimated using simple linear regression, while the
ARMA(1,1) can be estimated using MLE. The ARMA(1,1) can be viewed as an
AR(1) allowing for measurement error in the realized volatilities.

Notice that these simple models are specified in logarithms, while for risk
management purposes we are ultimately interested in forecasting the level of vari-
ance. As the logarithmic transformation is not linear, we have to be a bit careful
when calculating the variance forecast. From the assumption of normality of the
error term, we can use the result

εt+1 ∼ N(0, σ 2
ε ) =⇒ E[exp(εt+1)] = exp(σ 2

ε /2)

Thus, in the AR(1) model, the forecast for tomorrow is

σ 2
t+1|t = Et [exp(ρ ln σ 2

m,t + εt+1)] = exp(ρ ln σ 2
m,t )Et [exp(εt+1)]

=
(
σ 2

m,t

)ρ

exp(σ 2
ε /2)

and for the ARMA(1,1) model, we get

σ 2
t+1|t = Et [exp(ρ ln σ 2

m,t + δεt + εt+1)] = exp(ρ ln σ 2
m,t + δεt )Et [εt+1]

=
(
σ 2

m,t

)ρ

exp(δεt + σ 2
ε /2)

More sophisticated models, such as fractionally integrated ARMA models,
can be used to model realized variance. These models may yield better longer
horizon variance forecasts than the short-memory ARMA models considered here.
For short horizons such as a day or a week, the short-memory ARMA models are
likely to perform quite well.
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FIGURE 2.7 Fundamental Price (bold) and Quoted Price with Bid-Ask Bounces.

2.7.3. Range-Based versus Realized Variance

There is convincing empirical evidence that for very liquid securities, the realized
variance modeling approach is useful for risk management purposes. The intuition
is that using the intraday returns gives a very reliable estimate of today’s variance,
which in turn helps forecasting tomorrow’s variance. In standard GARCH models
on the other hand, today’s variance is implicitly calculated using exponentially
declining weights on many past daily squared returns, where the exact weight-
ing scheme depends on the estimated parameters. Thus, the GARCH estimate of
today’s variance is heavily model dependent, whereas the realized variance for
today is calculated exclusively from today’s squared intraday returns. When fore-
casting the future, knowing where you are today is key. Unfortunately in variance
forecasting, knowing where you are today is not a trivial matter as variance is not
directly observable.

While the realized variance approach has clear advantages, it also has certain
shortcomings. First of all, it clearly requires high-quality intraday returns to be
feasible. It is very easy to calculate daily realized volatilities from 5-minute returns,
but it is not at all a trivial matter to construct at 10-year data set of 5-minute returns.
Second, how do we decide on the frequency with which to sample the intraday
data? Why 5-minute returns and not 1-minute or 30-minute returns? Clearly, in a
perfect world we would sample as often as possible. However, in the real world,
the higher the sampling frequency, the bigger the problems arising from market
microstructure effects such as bid-ask bounces and discrete tick sizes. Figure 2.7
illustrates this point using simulated data for one trading day. We assume the
fundamental asset price, SFund, follows the dynamics

ln SFund
t+j/m = ln SFund

t+(j−1)/m + εt+j/m, with εt+j/m ∼ N(0, 0.0012)

However, the observed price fluctuates randomly around the bid and ask quotes,
which are posted by the market maker. We thus observe

St+j/m = Bt+j/mIt+j/m + At+j/m(1 − It+j/m)
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where Bt+j/m is the bid price, which we take to be the fundamental price rounded
down to the nearest $1/10, and At+j/m is the ask price, which is the fundamental
price rounded up to the nearest $1/10. It+j/mis a random variable, which takes the
value 1 and 0 with probability 1/2. It+j/m is thus an indicator variable of whether
the observed price is a bid or an ask price.

Figure 2.7 illustrates that the observed intraday price can be quite noisy com-
pared with the fundamental but unobserved price. Therefore, realized variance
measures based on intraday returns can be noisy as well. This is especially true for
securities with wide bid-ask spreads and infrequent trading. Notice on the other
hand that the range-based variance measure discussed earlier is relatively immune
to the market microstructure noise. The true maximum can easily be calculated as
the observed maximum less one-half of the bid-ask spread, and the true minimum
as the observed minimum plus one-half of the bid-ask price. The range-based
variance measure thus has clear advantages in less liquid markets.

In the absence of trading imperfections, however, range-based variance
proxies can be shown to be only about as useful as 4-hourly intraday returns.
Furthermore, as we shall see in the next chapter, the idea of realized variance
extends directly to realized covariance and correlation, whereas the range-based
covariance and correlation measures are less obvious.

2.8. SUMMARY

This chapter presented a range of variance models that are useful for risk manage-
ment. Simple equally weighted and exponentially weighted models that require
minimal effort in estimation were first introduced. Their shortcomings led us to
consider more sophisticated but still simple models from the GARCH family. We
highlighted the flexibility of GARCH as a virtue and considered various exten-
sions to account for leverage effects, day-of-week effects, announcement effects,
and so on. The powerful and flexible quasi-maximum likelihood estimation tech-
nique was presented and will be used in the next chapter as well. In-sample and
out-of-sample model validation techniques were introduced subsequently. Stan-
dard out-of-sample forecast evaluation regressions make use of the daily squared
return as a proxy for observed variance. However, we argued that the daily squared
return proxy is a very noisy proxy and considered instead variance proxies based
on intraday high and low prices as well as intraday squared returns. Finally, we
suggested dynamic variance models, which directly use variance proxies from
intraday returns to construct more precise forecasts of future daily variance. Most
of the techniques suggested in this chapter are put to use in the empirical exercises
that follows.

2.9. FURTHER RESOURCES

The literature on variance modeling has exploded during the past 20 years, and we
only present a few papers here. The exponential smoother variance model is studied
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in JP Morgan (1996). The exponential smoother has been used to forecast a wide
range of variables and further discussion of it can be found in Granger and Newbold
(1986). The basic GARCH model is introduced in Engle (1982) and Bollerslev
(1986), and it is discussed further in Bollerslev, Chou and Kroner (1992) and Engle
and Patton (2001). Long memory including fractionally integrated (FIGARCH)
models are presented in Baillie, Bollerslev, and Mikkelsen (1996), Bollerslev
and Mikkelsen (1999), and Engle and Lee (1999). The leverage effect and other
GARCH extensions are described in Ding et al. (1993), Glosten et al. (1993),
Hentschel (1995), and Nelson (1990). Quasi-maximum likelihood estimation of
GARCH models is thoroughly treated in Bollerslev and Wooldridge (1992). Taylor
(1994) contains a very nice overview of a different class of variance models known
as Stochastic Volatility models. This class of models was not included in this
chapter due to the relative difficulty of estimating them.

Range-based estimates of static variance models are introduced in Parkinson
(1980) with recent developments included in Yang and Zhang (2000). Range-
based models of dynamic variance are given in Azalideh et al. (2002), Brandt
and Jones (2002), and Chou (2001). Brandt and Jones (2002) use the range rather
than the squared return as the fundamental innovation in an EGARCH model and
find that the range improves the model’s variance forecasts significantly. Finally,
forecasting with realized variance models is analyzed in Andersen et al. (2003).

2.10. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter2Data.xls file. A number of the exercises in this and the com-
ing chapters rely on the maximum likelihood estimation technique. The general
approach to answering these questions is to use the parameter starting values to
calculate the log likelihood value of each observation and then compute the sum
of these individual log likelihoods. If using Excel, the Solver tool is then activated
to maximize the sum of the log likelihoods by changing the cells corresponding
to the parameter values. Solver is enabled through Tools, Add-Ins, Solver Add-
In. When using Solver, choose the options Use Automatic Scaling and Assume
Non-Negative. Set Precision, Tolerance, and Convergence to 0.0000001.

1. Estimate the simple GARCH(1,1) model on the S&P 500 daily log returns using
the maximum likelihood estimation (MLE) technique. First estimate

σ 2
t+1 = ω + αR2

t + βσ 2
t , with Rt = σtzt , and zt ∼ N(0, 1)

Let the variance of the first observation be equal to the unconditional variance,
V ar(Rt ). Set the starting values of the parameters to α = 0.1, β = 0.85, and
ω = V ar(Rt )(1−α −β) ≈ 0.012 ∗0.05 = .000005. (Excel Hint: The number
π is calculated in Excel using the function pi()). Re-estimate the equation using
variance targeting, that is, set ω = V ar(Rt )(1 − α − β), and use Solver to find
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α and β only. Check how the estimated parameters and persistence differ from
the variance model in Chapter 1.

2. Include a leverage effect in the variance equation. Estimate

σ 2
t+1 = ω + α (Rt − θσt )

2 + βσ 2
t , with Rt = σtzt , and zt ∼ N(0, 1)

Set starting values to α = 0.1, β = 0.85, ω = 0.000005, and θ = 0.5. What is
the sign of the leverage parameter? Explain how the leverage effect is captured
in this model. Plot the autocorrelations for lag 1 through 100 for R2

t as well as
R2

t /σ
2
t , and compare the two. Compare your results with Figure 2.4.

3. Include the option implied volatility V IX series from the Chicago Board
Options Exchange (CBOE) as an explanatory variable in the GARCH equation.
Use MLE to estimate

σ 2
t+1 = ω + α (Rt − θσt )

2 + βσ 2
t + γV IX2

t /252,

with Rt = σtzt , and zt ∼ N(0, 1)

Set starting values to α = 0.04, β = 0.5, ω = 0.000005, θ = 2, and γ = 0.07.

4. Run a regression of daily squared returns on the variance forecast from the
GARCH model with a leverage term. Include a constant term in the regression

R2
t+1 = b0 + b1σ

2
t+1 + et+1

(Excel Hint: Use the function LINEST.) What is the fit of the regression as
measured by the R2? Is the constant term significantly different from zero? Is
the coefficient on the forecast significantly different from one?

5. Run a regression using the range instead of the squared returns as proxies for
observed variance—that is, regress

1

4 ln(2)
D2

t+1 = b0 + b1σ
2
t+1 + et+1

Is the constant term significantly different from zero? Is the coefficient on the
forecast significantly different from one? What is the fit of the regression as
measured by the R2? Compare your answer with the R2 from question 4.

The answers to these exercises can be found in the Chapter2Results.xls file.
Previews of the answers follow.
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3.1. CHAPTER OVERVIEW

In this chapter, we go through the second part of the stepwise distribution mode-
ling (SDM) approach. The objective is to model the linear dependence, or correla-
tion, between returns on different assets, such as IBM and Microsoft stocks, or
on different classes of assets, such as stock indices and Foreign Exchange (FX)
rates. Once this is done, we will be able to calculate risk measures on portfolios
of securities such as stocks, bonds, and foreign exchange rates.

We start by calculating risk measures such as value at risk for very simple
portfolios and discussing how the models of correlation will allow for a quick
recalculation of risk measures when the portfolio weights change.

We then present a general model of portfolio risk for large portfolios and con-
sider ways to reduce the problem of dimensionality in such portfolios. Just as the
main topic of the previous chapter was modeling the dynamic aspects of variance,
the main topic of this chapter is modeling the dynamic aspects of correlation.
We consider dynamic correlation models of varying degrees of sophistication,
both in terms of their specification and of the information required to calculate
them.
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3.2. VALUE AT RISK FOR SIMPLE PORTFOLIOS

Value at risk, or VaR, is a simple risk measure that answers the following question:
“What dollar loss is such that it will only be exceeded p × 100% of the time in the
next K trading days?” The $VaR loss is implicitly defined from the probability of
getting an even larger loss as in

Pr
(
$Loss > $VaR

) = p

We want to map this VaR definition into our model of returns. We can define the
portfolio (PF) return as RPF and write the $Loss as

$Loss = −VPF ∗ RPF

where VPF is the current market value of the portfolio. Substituting this
relationship into the definition of the VaR yields

Pr
(−VPF ∗ RPF > $VaR

) = p

Dividing by −VPF on both sides of the inequality, we get

Pr
(
RPF < −$VaR/VPF

) = p

where the inequality has been switched around because−VPF is a negative number.
If we define the VaR relative to the current portfolio value as in

VaR ≡ $VaR/VPF

then we have

Pr (RPF < −VaR) = p

This is the definition of VaR we will be using throughout the book. Writing the VaR
relative to the current value of the portfolio makes it much easier to think about.
Knowing that the $VaR of a portfolio is $500,000 does not mean much unless we
know the value of the portfolio. Knowing that the VaR is 50% of the value of the
portfolio conveys more information. The appendix to this chapter contains more
discussion of the calculation of the VaRs.

If we start by considering a very simple example, namely that our portfolio
consists of just one security, say Microsoft stock, then we can use a variance model
from the previous chapter to give us a VaR for a portfolio. Let VaR.01

t+1 denote the 1%
VaR for the 1-day ahead return, and assume that returns are normally distributed
with zero mean and standard deviation σPF,t+1. Then

Pr
(
RPF,t+1 < −VaR.01

t+1

)
= .01 ⇔

Pr
(
RPF,t+1/σPF,t+1 < −VaR.01

t+1/σPF,t+1

)
= .01 ⇔

�
(
−VaR.01

t+1/σPF,t+1

)
= .01
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where �(∗) denotes the cumulative density function of the standard normal
distribution.

�(z) calculates the probability of being below the number z, and �−1
p =

�−1(p) instead calculates the number such that 100 ∗ p% of the probability mass
is below �−1

p . Taking �−1(∗) on both sides of the preceding equation yields the
VaR as

−VaR.01
t+1/σPF,t+1 = �−1(0.01) ⇔

VaR.01
t+1 = −σPF,t+1 ∗ �−1

.01

= −.025 ∗ (−2.33)

= 0.05825

where the standard deviation forecast, σPF,t+1 for tomorrow’s return is assumed
to be 2.5% and where we have found �−1

.01 = �−1(0.01) = −2.33 to be the 1%
quantile from the standard normal distribution.

Because �−1
p is always negative for p < 0.5, the minus sign in front of the VaR

formula again ensures that the VaR itself is a positive number. The interpretation
is thus that the VaR gives a number such that there is a 1% chance of losing more
than 5.825% of the portfolio value today. If the value of the portfolio today is $2
million, the $VaR would simply be 0.05825 ∗ 2,000,000 = $116,500.

Figure 3.1 illustrates the VaR from a normal distribution. Notice that we
assume that K = 1 and p = .01 here. The top panel shows the VaR in the proba-
bility distribution function, and the bottom panel shows the VaR in the cumulative
distribution function. As we have assumed that returns are normally distributed
with a mean of zero, the VaR can be calculated very easily. All we need is a
volatility forecast.

VaR has undoubtedly become the industry benchmark for risk calculation.
This is because it captures an important aspect of risk, namely how bad things
can get with a certain probability, p. Furthermore, it is easily communicated and
easily understood.

VaR does, however, have drawbacks. Most important, extreme losses are
ignored. The VaR number only tells us that 1% of the time we will get a return
below the reported VaR number, but it says nothing about what will happen in
those 1% worst cases. Furthermore, the VaR assumes that the portfolio is constant
across the next K days, which is unrealistic in many cases when K is larger than
a day or a week. Finally, it may not be clear how K and p should be chosen.
Later on we will discuss other risk measures that can improve on some of the
shortcomings of VaR.

As another simple example, consider a portfolio the value of which consists
of 40% Microsoft stocks and 60% GE stocks. One way to calculate the VaR for
the portfolio of these two stocks is to directly model the volatility of the portfolio
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FIGURE 3.1 Value at Risk from the Normal Distribution. Return Probability Distribution
(top panel) and Cumulative Return Distribution (bottom panel).

return, RPF,t+1 = 0.4∗RMS,t+1 +0.6∗RGE,t+1, call it σPF,t+1, and then calculate
the VaR for the portfolio as

VaRp

t+1 = −σPF,t+1 ∗ �−1
p

where we assume that the portfolio returns are normally distributed.
Notice, however, that this aggregate VaR method is directly dependent on the

portfolio allocations (40% and 60%), and it would require us to redo the volatility
modeling every time the portfolio is changed or every time we contemplate change
and want to study the impact on VaR of changing the portfolio allocations. While
modeling the aggregate portfolio return directly may be appropriate for passive
portfolio risk measurement, it is not as useful for active risk management. To do
sensitivity analysis and assess the benefits of diversification, we need models of
the dependence between the return on individual assets or risk factors.

We also hasten to add that the assumption of normality is made for convenience
and is not realistic. Important methods for dealing with the nonnormality evident
in daily returns will be discussed in Chapters 4 and 5. We simply assume normality
now in order to postpone the discussion of the distribution until later. The normality
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assumption allows us to focus on the modeling of covariance and correlation in
this chapter.

3.3. PORTFOLIO VARIANCE

We now establish some notation that is necessary to study the risk of portfolios
consisting of an arbitrary number of securities. The return on the portfolio on day
t + 1 is defined as

RPF,t+1 =
n∑

i=1

wiRi,t+1

where the sum is taken over the n securities in the portfolio. wi denotes the rela-
tive weight of security i at the end of day t .

The variance of the portfolio is

σ 2
PF,t+1 =

n∑
i=1

n∑
j=1

wiwjσij,t+1 =
n∑

i=1

n∑
j=1

wiwjσi,t+1σj,t+1ρij,t+1

where σij,t+1 and ρij,t+1 are the covariance and correlation respectively between
security i and j on day t+1. Notice we haveσij,t+1 = σji,t+1, andρij,t+1 = ρji,t+1
for all i and j. We also have ρii,t+1 = 1 and σii,t+1 = σ 2

i,t+1 for all i.
Using vector notation, we will write

σ 2
PF,t+1 = w′�t+1w

where w is the n by 1 vector of portfolio weights, and �t+1 is the n by n covari-
ance matrix of returns. In the case where n = 2, we simply have

σ 2
PF,t+1 = [

w1 w2
] [ σ 2

1,t+1 σ12,t+1

σ12,t+1 σ 2
2,t+1

] [
w1
w2

]

= w2
1σ

2
1,t+1 + w2

2σ
2
2,t+1 + 2w1w2σ12,t+1

as σ21,t+1 = σ12,t+1.

If we are willing to assume normality, then the VaR of the portfolio is just

VaRp

t+1 = −σPF,t+1 ∗ �−1
p

Notice that even if we have already constructed volatility forecasts for each
of the securities in the portfolio, then we still have to model and forecast all
the correlations. If we have n assets, then we will have n(n − 1)/2 different
correlations, so if n is 100, then we’ll have 4950 correlations to model, which
would be a daunting task. We will therefore explicitly be looking for methods that
are able to handle large-dimensional portfolios.
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3.3.1. Exposure Mappings

A very simple way to reduce the dimensionality of the portfolio variance is to
impose a factor structure using observed market returns as factors. In the case of a
very well diversified stock portfolio, for example, it may be reasonable to assume
that the variance of the portfolio equals that of the S&P 500 market index. This is
referred to as index mapping and can be written as

σ 2
PF,t+1 = σ 2

Mkt,t+1

In this case, only one volatility—that of the S&P 500 index return—needs to be
modeled, and no correlation modeling is necessary. The 1%, 1-day VaR is simply
σMkt,t+1 ∗ 2.33.

In portfolios that contain systematic risk, but which are diversified enough
that the firm-specific idiosyncratic risk can be ignored, one can pose a linear
relationship between the portfolio and the market index and use the so-called beta
mapping, as in

σ 2
PF,t+1 = β2

PFσ 2
Mkt,t+1

where βPF is the coefficient from regressing the portfolio return on the market
return. In this case, only an estimate of βPF is necessary—no further correlation
modeling is needed.

Finally, the risk manager of a large-scale portfolio may consider risk as mainly
coming from a relatively small number of different risk factors, say 10. The exact
choice of factors depends highly on the particular portfolio at hand, but they could
be, for example, country equity indices, FX rates, or commodity price indices.
In this case, it makes sense to model the variances and correlations of these risk
factors and assign exposures to each factor to get the portfolio variance. This
general factor structure can be written

σ 2
PF,t+1 = w′

F �F
t+1wF

where wF is a vector of exposures to each risk factor and where �F
t+1 is the

covariance matrix of the returns from the risk factors.

3.4. MODELING CONDITIONAL COVARIANCES

Suppose the portfolio under consideration contains n assets. Alternatively, we can
think of the risk manager as having chosen n risk factors to be the main drivers of
the risk in the portfolio. In either case, an n-dimensional covariance matrix must
be estimated where n may be a large number.

We now turn to various methods for constructing the covariance matrix �t+1
directly, without first modeling the correlations. Arguably the simplest way to
model time varying covariances is to rely on plain rolling averages, a method that
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FIGURE 3.2 Rolling Covariance Between S&P 500 and US$/yen Returns.

we considered for volatility in the previous chapter. For the covariance between
asset i and j , we can simply estimate

σij,t+1 = 1

m

m∑
τ=1

Ri,t+1−τRj,t+1−τ

which is easy to do, but which is not necessarily satisfactory due to the depen-
dence on the choice of m. Notice that, as in previous chapters, we assume the
average expected return on each asset is simply zero. Figure 3.2 shows the rolling
covariance between the S&P 500 and the US$/yen for m = 25.

We can instead use a simple exponential smoother on the covariances, and let

σij,t+1 = (1 − λ)Ri,tRj,t + λσij,t

where λ = .94 as it were for the corresponding volatility model in the previous
chapter. Figure 3.3 shows the exponential smoother covariance between the S&P
500 and the US$/yen.

Clearly, the caveats that applied to the exponential smoother volatility model
apply to the exponential smoother covariance model as well. The restriction that
the coefficient (1 − λ) on the cross product of returns

(
Ri,tRj,t

)
and the coeffi-

cient λ on the past covariance
(
σij,t

)
sum to one is not necessarily desirable. It

implies that there is no mean-reversion in covariance: based on the closing price
today; if tomorrow’s covariance is high then it will remain high, rather than revert
back to its mean.

We can instead consider models with mean reversion in covariance. For
example, a GARCH(1,1) specification for covariance would be

σij,t+1 = ωij + αRi,tRj,t + βσij,t
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FIGURE 3.3 Exponentially Smoothed Covariance Between S&P 500 and US$/yen Returns.

which will tend to revert to its long run average covariance, which equals

σij = ωij /(1 − α − β)

Notice that so far we have not allowed for the persistence parameters λ, α, and
β to vary across securities. This is no coincidence. It must be done to guarantee
that the portfolio variance will be positive regardless of the portfolio weights, w.

We will say that a covariance matrix, �t+1, is internally consistent if for all
vectors w:

w′�t+1w ≥ 0

This corresponds to saying that the covariance matrix is positive-semidefinite.
It is ensured by estimating volatilities and covariances in an internally consistent
fashion. For example, relying on exponential smoothing using the same λ for
every volatility and every covariance will work. Similarly, using a GARCH(1,1)
model with α and β identical across variances and covariances and with long-run
variances and covariances estimated consistently will work as well.

Unfortunately, it is not clear that the persistence parameters λ, α, and β should
be the same for all variances and covariance. We therefore now consider methods
that are not subject to this restriction. The estimation of the various parameters
introduced earlier and in the following will be discussed subsequently.

3.5. MODELING CONDITIONAL CORRELATIONS

We now turn to the modeling of correlation rather than covariance. This is moti-
vated by the desire to free up the restriction on the persistence across variances
and covariances and also by the fact that correlations are easily interpreted as they
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fall in the interval from minus one to one. Covariances, on the other hand, are
a confluence of correlation and variance. For example, the covariance between
two assets could be time varying, even though the correlation is constant simply
because the variances are time varying. Thus, to truly assess the dynamics in the
linear dependence across assets, we need to get a handle on correlation. There is
ample empirical evidence that correlations increase during financial turmoil and
thereby increase risk even further; therefore, modeling correlation dynamics is
crucial to a risk manager.

A simple way to measure correlation is to treat it as the residual from the
covariance and the variance models. By definition

σij,t+1 = σi,t+1σj,t+1ρij,t+1

and so

ρij,t+1 = σij,t+1/(σi,t+1σj,t+1)

therefore if, for example,

σij,t+1 = (1 − λ)Ri,tRj,t + λσij,t , for all i, j

then

ρij,t+1 = (1 − λ)Ri,tRj,t + λσij,t√
((1 − λ)R2

i,t + λσ 2
i,t )((1 − λ)R2

j,t + λσ 2
j,t )

which, of course, is not particularly intuitive. We therefore now consider models
where the dynamic correlation is modeled directly.

We will again rely on the definition

σij,t+1 = σi,t+1σj,t+1ρij,t+1

In matrix notation, we can write

�t+1 = Dt+1
t+1Dt+1

where Dt+1 is a matrix of standard deviations, σi,t+1, on the ith diagonal and zero
everywhere else, and where 
t+1 is a matrix of correlations, ρij,t+1 with ones on
the diagonal. In the simple two-by-two case, we have

�t+1 =
[

σ 2
1,t+1 σ12,t+1

σ12,t+1 σ 2
2,t+1

]

=
[
σ1,t+1 0

0 σ2,t+1

] [
1 ρ12,t+1

ρ12,t+1 1

] [
σ1,t+1 0

0 σ2,t+1

]

We will consider the volatilities of each asset to already have been estimated
through GARCH or one of the other methods considered in the previous chapter.
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We can then standardize each return by its dynamic standard deviation to get the
standardized returns,

zi,t+1 = Ri,t+1/σi,t+1 for all i

By dividing the returns by their conditional standard deviation, we create variables,
zi,t+1, i = 1, 2, .., n, which all have a conditional standard deviation of one. The
conditional covariance of the zi,t+1 variables equals the conditional correlation of
the raw returns as can be seen from

Et

(
zi,t+1zj,t+1

) = Et

((
Ri,t+1/σi,t+1

)(
Rj,t+1/σj,t+1

))

= Et

(
Ri,t+1Rj,t+1

)
/(σi,t+1σj,t+1)

= σij,t+1/(σi,t+1σj,t+1)

= ρij,t+1, for all i, j

Thus, modeling the conditional correlation of the raw returns is equivalent to
modeling the conditional covariance of the standardized returns.

We first consider simple exponential smoothing correlation models. Let the
correlation dynamics be driven by the auxiliary variable qij,t+1, which gets updated
by the cross product of the standardized returns, zi,t and zj,t as in

qij,t+1 = (1 − λ)
(
zi,t zj,t

)+ λqij,t , for all i, j

The exact conditional correlation can now be obtained by normalizing the qij,t+1
variable as in

ρij,t+1 = qij,t+1√
qii,t+1qjj,t+1

The reason we need to do the normalization is to ensure that the correlation will
always fall in the interval from minus one to plus one.

Figure 3.4 shows the exponential smoothed correlations for the S&P 500 and
US$/yen example where λ is estimated to be 0.9828. (Estimation of these models
will be discussed shortly.)

Just as we did for volatility models, we may want to consider generalizations
of the exponential correlation model, which allow for the correlations to revert to
a long-run average correlation, E

[
zi,t zj,t

]
. We can consider GARCH(1,1)-type

specifications of the form

qij,t+1 = ρ̄ij + α
(
zi,t zj,t − ρ̄ij

)+ β
(
qij,t − ρ̄ij

)

If we rely on correlation targeting, and set ρ̄ij = E
[
zi,t zj,t

]
, then we have

qij,t+1 = E
[
zi,t zj,t

]+ α
(
zi,t zj,t − E

[
zi,t zj,t

])+ β
(
qij,t − E

[
zi,t zj,t

])

Again we have to normalize to get the conditional correlations

ρij,t+1 = qij,t+1√
qii,t+1qjj,t+1
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FIGURE 3.4 Exponentially Smoothed Correlation Between S&P 500 and US$/yen Returns.

The key thing to notice about this model is that the correlation persistence para-
meters α and β are common across i and j. Thus, the model implies that the
persistence of the correlation between any two assets in the portfolio is the same.
It does not, however, imply that the level of the correlations at any time is the same
across pairs of assets. The level of correlation is controlled by E

[
zi,t zj,t

]
and will

thus vary over i and j . It does also not imply that the persistence in correlation
is the same as the persistence in volatility. The persistence in volatility can vary
from asset to asset, and it can vary from the persistence in correlation between
the assets. But the model does imply that the persistence in correlation is constant
across assets. Figure 3.5 shows the GARCH(1,1) correlations for the S&P 500 and
US$/yen example.
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FIGURE 3.5 GARCH Correlation Between S&P 500 and US$/yen Returns.
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We can write the models in matrix notation as

Qt+1 = (1 − λ)
(
zt z

′
t

)+ λQt

for the exponential smoother, and for the GARCH(1,1) we can write

Qt+1 = E
[
zt z

′
t

]
(1 − α − β) + α

(
zt z

′
t

)+ βQt

In the two-asset case for the GARCH(1,1) model, we have

Qt+1 =
[
q11,t+1 q12,t+1
q12,t+1 q22,t+1

]

=
[

1 ρ12
ρ12 1

]
(1 − α − β) + α

[
z2

1,t z1,t z2,t

z1,t z2,t z2
2,t

]

+ β

[
q11,t q12,t

q12,t q22,t

]

where ρ12 is the unconditional correlation between the two assets, which can be
estimated in advance as

ρ12 = 1

T

T∑
t=1

z1,t z2,t

An important feature of these models is that the matrix Qt+1 is positive definite
as it is a weighted average of positive semidefinite and positive definite matrices.
This will in turn ensure that the correlation matrix 
t+1 and the covariance matrix,
�t+1, will be positive semidefinite as required.

Another important practical advantage of this model is that we can estimate the
parameters in a sequential fashion. First, all the individual variances are estimated
one by one using one of the methods from Chapter 2. Second, the returns are
standardized and the unconditional correlation matrix is estimated. Third, the
correlation persistence parameters α and β are estimated. The key issue is that only
very few parameters are estimated simultaneously using numerical optimization.
This feature makes the dynamic correlation models considered here extremely
tractable for risk management of large portfolios. We now turn to the details of the
estimation procedure.

3.6. QUASI-MAXIMUM LIKELIHOOD ESTIMATION

Fortunately, in estimating the dynamic conditional correlation models suggested
earlier, we can rely on the quasi-maximum likelihood estimation (QMLE) method,
which we used for estimating the GARCH volatility models in Chapter 2.

Although a key benefit of the correlation models suggested here is that they are
easy to estimate—even for large portfolios—we will begin by analyzing the case
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of a portfolio consisting of only two assets. In this case, we can use the bivariate
normal distribution function for z1,t and z2,t to write the log likelihood as

Lc = −1

2

T∑
t=1


ln

(
1 − ρ2

12,t

)
+
(
z2

1,t + z2
2,t − 2ρ12,t z1,t z2,t

)
(

1 − ρ2
12,t

)



where ρ12,t is given from the particular correlation model being estimated and
the normalization rule. In the simple exponential smoother example,

ρ12,t = q12,t√
q11,t q22,t

where

q11,t = (1 − λ)
(
z1,t−1z1,t−1

)+ λq11,t−1

q12,t = (1 − λ)
(
z1,t−1z2,t−1

)+ λq12,t−1

q22,t = (1 − λ)
(
z2,t−1z2,t−1

)+ λq22,t−1

We find the optimal correlation parameter(s), in this case λ, by maximizing
the correlation log-likelihood function, Lc. To initialize the dynamics, we set
q11,0 = 1, q22,0 = 1, and q12,0 = 1

T

∑T
t=1 z1,t z2,t .

Notice that the variables that enter the likelihood are the rescaled returns, zt ,
and not the original raw returns, Rt themselves. We are essentially treating the
standardized returns as actual observations here.

In the general case of n assets in the portfolio, we rely on the n−dimensional
normal distribution function to write the log likelihood as

Lc = −1

2

∑
t

(
log |
t | + z′

t

−1
t zt

)

where |
t | denotes the determinant of the correlation matrix, 
t .

As before, the QMLE method will give us consistent but inefficient estimates.
In theory, we could obtain more precise results by estimating all the volatility
models and the correlation model simultaneously. In practice, this is not feasible for
large portfolios. In realistic situations, we are forced to rely on the stepwise QMLE
method, which gives us decent parameter estimates while avoiding numerical
optimization in high dimensions.

3.7. REALIZED AND RANGE-BASED COVARIANCE

At the end of Chapter 2, we considered methods for daily volatility estimation
and forecasting that made use of intraday data. These methods can be extended
to covariance estimation as well. Consider first daily covariance estimation using,
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say, 5-minute returns. Again, let the j th observation on day t + 1 for asset 1 be
denoted, Si,t+j/m. Then the j th return on day t + 1 is

R1,t+j/m = ln(S1,t+j/m) − ln(S1,t+(j−1)/m), for j = 1, 2, . . . , m

Observing m returns within a day for two assets recorded at exactly the same time
intervals, we can calculate an estimate of the realized daily covariance from the
intraday cross product of returns simply as

σ12,t+1 =
m∑

j=1

R1,t+j/mR2,t+j/m

Given estimates of the two volatilities, the realized correlation can, of course, then
easily be calculated as

ρ12,t+1 = σ12,t+1/
(
σ1,t+1σ2,t+1

)

Treating the realized covariances and correlations as regular time series observa-
tions, they can then easily be modeled using standard time series techniques.

While it is straightforward to generalize the idea of realized volatility to real-
ized correlation, extending range-based volatility to range-based correlation is
less obvious as the cross product of the ranges is not meaningful. But consider,
for example, the case where S1 is the US$/yen FX rate, and S2 is the Euro/US$
FX rate. If we define S3 to be the Euro/yen FX rate, then by ruling out arbitrage
opportunities we can write

S3,t+1 = S1,t+1S2,t+1

Therefore, the log returns can be written

R3,t+1 = R1,t+1 + R2,t+1

and the variances as

σ 2
3,t+1 = σ 2

1,t+1 + σ 2
2,t+1 + 2σ12,t+1

Thus, we can rearrange to get the covariance as

σ12,t+1 =
(
σ 2

3,t+1 − σ 2
1,t+1 − σ 2

2,t+1

)/
2

If we then use the Parkinson variance proxy from Chapter 2 defined as

σ̃ 2
i,t+1 ≈ .361D2

i,t+1 = .361
[
ln
(
S

High

i,t+1

)
− ln

(
SLow

i,t+1

)]2

then, we have

σ̃12,t+1 = .185
(
D2

3,t+1 − D2
1,t+1 − D2

2,t+1

)
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Similar arbitrage arguments can be made between spot and futures prices
and between portfolios and individual assets—assuming, of course, that the range
prices can be found on all of the involved series.

Finally, as we suggested in the volatility chapter, range-based proxies for
covariance can be used as regressors in GARCH covariance models. Consider,
for example,

σij,t+1 = ωij + αRi,tRj,t + βσij,t + γ σ̃ij,t

At a first glance, we may be worried about a high correlation between σij,t

and σ̃ij,t , which in turn may lead to problems in estimating β and γ accurately.
However, our main objective is to get a good forecast for σij,t+1 and therefore
the individual parameter values are rarely of specific interest. Including the range-
based covariance estimate in a GARCH model instead of using it by itself will have
the beneficial effect of smoothing out some of the inherent noise in the range-based
estimate of covariance.

3.8. SUMMARY

Risk managers who want to calculate risk measures such as value at risk need
to construct the matrix of variances and covariances for portfolios consisting of
many assets. If the returns are assumed to be normally distributed with a mean
of zero, then the covariance matrix is all that is needed to calculate the VaR. This
chapter thus considered methods for constructing the covariance matrix. First, we
presented simple rolling estimates of covariance, followed by simple exponential
smoothing and GARCH models of covariance. We then discussed the important
issue of estimating variances and covariances in an internally consistent way so as
to ensure that the covariance matrix is positive semidefinite and therefore generates
sensible portfolio variances for all possible portfolio weights. This discussion led
us to consider modeling the conditional correlation rather than the conditional
covariance. We presented a simple framework for dynamic correlation modeling,
which is based on standardized returns and which thus relies on preestimated
volatility models such as those discussed in Chapter 2. Finally, methods for daily
covariance and correlation estimation that make use of intraday information were
introduced.

3.9. FURTHER RESOURCES

Bollerslev and Engle (1993) is the standard reference on general multivariate
GARCH models, but the simple and practical conditional correlation models in
this chapter are taken from Engle (2002) and Engle and Sheppard (2001). See also
Tse and Tsui (2002). Range-based covariance estimation is considered in Brandt
and Diebold (2002), who also discuss ways to ensure positive semidefiniteness
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of the covariance matrix. Foreign exchange covariances estimated from intraday
returns are shown in Andersen et al. (2001). The choice of risk factors may be
obvious for some portfolios, but in general it is not. It is therefore useful to let the
return data help when deciding on what the factors should look like and how many
factors we need. Although not discussed in this chapter, the method of principal
components is often helpful in this regard. Frye (1997) contains a neat application
to fixed income portfolios and Alexander (2001) suggests multivariate GARCH
models, which rely on the idea of principal components. An nice overview of the
mechanics of assigning risk factor exposures can be found in Jorion (2000).

3.10. APPENDIX: VaR FROM LOGARITHMIC VERSUS
ARITHMETIC RETURNS

The VaR concept used in this book relies on the logarithmic returns as defined
in Chapter 1. The $Loss definition in the beginning of this chapter is therefore,
strictly speaking, an approximation. Assuming a 1-day horizon, we can write

$Losst+1 = − (VPF t+1 − VPF t ) ≈ −VPF t ∗ RPF,t+1

= −VPF t ln (VPF t+1/VPF t )

If we want to convert the approximate log-return-based VaR defined is this
chapter as

Pr
(
RPF,t+1 < −VaRp

t+1

) = p

to one which relies on the exact $Losst+1 definition, we can write

Pr
(
RPF,t+1 < −VaRp

t+1

) = p ⇔
Pr
(
ln (VPF t+1/VPF t ) < −VaRp

t+1

) = p ⇔
Pr
(
VPF t+1/VPF t < exp

(−VaRp

t+1

)) = p ⇔
Pr
(
VPF t+1/VPF t − 1 < exp

(−VaRp

t+1

)− 1
) = p ⇔

Pr

(
VPF t+1 − VPF t

VPF t

< exp
(−VaRp

t+1

)− 1

)
= p

which is now written in terms of the arithmetic return.
Thus, the conversion of the VaRs is simply

ṼaR
p

t+1 = − [exp
(−VaRp

t+1

)− 1
] = 1 − exp

(−VaRp

t+1

)

where ṼaR
p

t+1 denotes the VaR from using arithmetic returns. Both are written
as a ratio of the current portfolio value and both can be converted to dollars by
simply multiplying by today’s portfolio value, VPF t . Notice that if the VaR as a
percentage of the total portfolio value is close to zero, then the two VaRs will be
close in value.
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3.11. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter3Data.xls file on the CD-ROM.

1. Convert the TSE prices into US$ using the US$/CAD exchange rate. Normalize
each time series of closing prices by the first observation and plot them.

2. Calculate daily log returns and plot them on the same scale. How different is
the magnitude of variations across the different assets?

3. Construct the unconditional covariance and the correlation matrices for the
returns of all assets. What are the determinant values?

4. Calculate the unconditional 1-day, 1% value at risk for a portfolio consisting
of 20% in each asset. Calculate also the 1-day, 1% value at risk for each asset
individually. Compare the portfolio VaR with the sum individual VaRs. What do
you see? (Excel Hint: Use the MMULT function to calculate matrix products.)

5. Estimate a Simple GARCH(1,1) model for the variance of the S&P 500, the
US$/yen FX rate, and the TSE in US$. Set starting values to α = 0.06; β =
0.93; ω = 0.00009.

6. Standardize each return using its GARCH standard deviation from question 5.
Construct the unconditional correlation matrix for the standardized returns of
the three assets. This is the constant conditional correlation (CCC) model.

7. Use MLE to estimate λ in the exponential smoother version of the dynamic
conditional correlation (DCC) model for the two bivariate systems consisting of
the S&P 500 and each of two other series (US$/yen and Toronto Stock Exchange
(TSE) index in US$). Set the starting value of λ to 0.94. Calculate and plot the
correlations as well as the 1-day, 1% VaRs for the CCC model from question 6
and the exponential smoother DCC model. (Notice that we estimate bivariate
systems here simply for convenience of computation in Excel. The models
considered can easily be estimated for large sets of assets simultaneously, as is
pointed out in the chapter.)

8. Estimate the GARCH DCC model for the bivariate systems from question 7.
Set the starting values to α = 0.05 and β = 0.9. Plot the dynamic correlations.
Calculate and plot the 1-day, 1% VaRs for the CCC model from question 6 and
the GARCH DCC model.

The answers to these exercises can be found in the Chapter3Results.xls file.
Previews of the answers follow.
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4.1. CHAPTER OVERVIEW

We now turn to the third and final part of the stepwise distribution modeling (SDM)
approach, namely accounting for conditional non-normality in portfolio returns. In
Chapter 1, we saw that asset returns are not normally distributed unconditionally.
If we construct a simple histogram of past returns on the S&P 500 index, then it will
not conform to the density of the normal distribution: The tails of the histogram
are fatter than the normal, and the histogram is more peaked around zero. From a
risk management perspective, the fat tails, which are driven by relatively few but
very extreme observations, are of most interest. These extreme observations can
by symptoms of liquidity risk or event risk as defined in Chapter 1.

One motivation for the time-varying variance models discussed in Chapter 2 is
that they are capable of accounting for the unconditional non-normality of the data.

71
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For example, a GARCH(1,1) model with normally distributed innovations will
imply an unconditionally non-normal distribution, so if one drew a histogram of
returns from the GARCH model, they would have fat tails.

Simple normal GARCH models by definition do not capture conditional non-
normality in the returns. Returns are conditionally normal if the standardized
returns (i.e., returns divided by their time-varying standard deviation) are normally
distributed. Unfortunately, histograms from standardized returns typically do not
conform to the normal density. Figure 4.1 illustrates this point. The top panel shows
the histogram of the raw returns superimposed on the normal distribution, and the
bottom panel shows the histogram of the standardized returns superimposed on the
normal distribution as well. The volatility model used to standardize the returns
is GARCH(1,1) with a leverage effect. Notice that while the bottom histogram
conforms more closely to the normal distribution than does the top histogram, there
are still some systematic deviations, including fat tails and a more pronounced peak
around zero.
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FIGURE 4.1 Histogram of Daily S&P 500 Returns (top) and of Returns Standardized by a
GARCH(1,1) Model (bottom). January 1, 1997—December 31, 2001.



4.2. VISUALIZING NON-NORMALITY 73

We will analyze the conditional nonnormality in several ways:

1. We introduce the quantile-quantile (QQ) plot, which is a graphical tool
better at describing tails of distributions than the histogram.

2. We consider a simple Student’s t (d) distribution and discuss the estimation
of it.

3. We introduce the Cornish-Fisher approximation to value-at-risk in non-
normal distributions.

4. We consider extreme value theory for modeling the tail of the conditional
distribution.

5. We show the implications for value at risk of the different approaches to
distribution modeling. This in turn motivates us to introduce expected
shortfall (ES) or TailVaR as a more appropriate risk measure when
conditional returns are not normally distributed.

Throughout this chapter we will assume that we are working with a time series
of portfolio returns using today’s portfolio weights and past returns on the under-
lying assets in the portfolio. Therefore, we are essentially dealing with a univariate
time series. We will assume that the portfolio variance has already been modeled
using the methods presented in Chapters 2 and 3. As discussed in the introduction
to Chapter 3, working with the univariate time series of portfolio returns has the
disadvantage of being conditional on exactly the current set of portfolio weights.
If the weights are changed, then the portfolio tail modeling will have to be redone.

4.2. VISUALIZING NON-NORMALITY

We consider the following generic model of the returns on our portfolio:

RPF,t =
n∑

i=1

wiRi,t = σPF,tzt , with zt ∼ D(0, 1)

where σPF,t is constructed using the methods in the previous two chapters and
where the focus in this chapter is on modeling the distribution of the innovations,
D(0, 1), which has a mean of zero and a standard deviation of 1. So far, we have
relied on setting D(0, 1) to N(0, 1), but we now want to assess the problems
of the normality assumption in risk management, and we want to suggest viable
alternatives.

Before we venture into the particular formulas for suitable non-normal dis-
tributions, let us first introduce a valuable visual tool for assessing non-normality,
which we will also use later on as a diagnostic check on non-normal alternatives.
The tool is commonly know as a quantile-quantile (QQ) plot, and the idea is to
plot the quantiles of the calculated returns against the quantiles of the normal dis-
tribution. If the returns are truly normal, then the graph should look like a straight
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line on a 45-degree angle. Systematic deviations from the 45-degree line signal
that the returns are not well described by the normal distribution. QQ plots are,
of course, particularly relevant to risk managers who care about value at risk,
which itself is essentially a quantile.

The QQ plot can be constructed as follows: First, sort all standardized returns
zt = RPF,t/σPF,t in ascending order, and call the ith sorted value zi . Second,
calculate the empirical probability of getting a value below the actual as (i−.5)/T ,

where T is the total number of observations. The subtraction of .5 is an adjustment
allowing for a continuous distribution.

Calculate the standard normal quantiles as �−1
(i−.5)/T , where �−1 denotes

the inverse of the standard normal density as before. We can then scatter plot the
standardized and sorted returns on the Y-axis against the standard normal quantiles
on the X-axis as follows:

{Xi, Yi} =
{
�−1

(i−.5)/T , zi

}

If the data were normally distributed, then the scatter plot should conform roughly
to the the 45-degree line.

Figure 4.2 shows a QQ plot of the daily S&P 500 returns from Chapter 1. The
top panels uses standardized returns from the unconditional standard deviation,
σPF, so that zt = RPF,t/σPF, and the bottom panel works off the returns standardized
by a GARCH(1,1) with a leverage effect. Notice that the GARCH model does
remove some of the non-normality in the returns, but some still remains. The
patterns of deviations from the 45-degree line indicate that large positive returns
are captured well by the normal GARCH model but that the model does not allow
for a sufficiently fat left tail as compared with the data.

4.3. THE STANDARDIZED t(d ) DISTRIBUTION

We now turn to the important task of modeling the non-normality in conditional
returns. Perhaps the most important deviations from normality we have seen are the
fatter tails and the more pronounced peak in the standardized returns distribution
as compared with the normal.

The standardized t (d), call it the t̃ (d), distribution is a relatively simple distri-
bution that is well suited to deal with these features. Conveniently, the distribution
has only one parameter, d. The t̃ (d) density is described by the following formula:

ft̃(d)(z; d) = �((d + 1)/2)

�(d/2)
√

π(d − 2)
(1 + z2/(d − 2))−(1+d)/2, where d > 2

where z denotes the random variable with mean zero and standard deviation
one, and where �(∗) represents the gamma function that can be found in most
quantitative software packages. The parameter d must be larger than two for the
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FIGURE 4.2 QQ Plot of daily S&P 500 Returns Against the Normal Distribution and of Returns
Standardized by GARCH Against the Normal Distribution.

standardized distribution to be well defined. The key feature of the t̃ (d) distribu-
tion is that the random variable, z, is taken to a power, rather than an exponential
as in the normal distribution. This will allow for the t̃ (d) distribution to have fatter
tails than the normal, that is, higher values of f (∗) when z is far from zero.

The distribution is symmetric around zero, and the mean (µ) , variance
(
σ 2
)
,

skewness (ζ1), and excess kurtosis (ζ2) of the distribution are
µ = 0,

σ 2 = 1,

ζ1 ≡ E[z]3/σ 3 = 0

ζ2 ≡ E[z]4/σ 4 − 3 = 6/(d − 4)
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Thus, notice that d must be higher than four for the kurtosis to be well defined.
Notice also that for large values of d, the distribution will have an excess kurtosis
of zero and one can show that it converges to the standard normal distribution as d

goes to infinity. Indeed, for values of d above 50, the t̃ (d) distribution is difficult
to distinguish from the standard normal distribution.

4.3.1. Maximum Likelihood Estimation

Notice that we model our portfolio returns as

RPF,t = σPF,tzt , with zt ∼ t̃ (d)

If we ignore the fact that variance is estimated with error, we can treat the stan-
dardized return as a regular random variable, calculated as zt = RPF,t/σPF,t . The
d parameter can then be estimated using maximum likelihood by choosing the d

which maximizes

ln L1 =
T∑

t=1

ln(f (zt ; d)) = T {ln(�((d + 1)/2)) − ln(�(d/2)) − ln(π)/2

− ln(d − 2)/2} − 1

2

T∑
t=1

(1 + d) ln(1 + (RPF,t/σPF,t)
2/(d − 2))

Given that we have already modeled and estimated the portfolio variance σ 2
PF,t ,

and taken it as given, we can maximize ln L1 with respect to the parameter, d, only.
This approach builds again on the quasi-maximum likelihood idea, and it is helpful
in that we are only estimating few parameters at a time, in this case only one. The
simplicity is potentially important as we are doing numerical optimization.

If we instead want to estimate the variance parameters and the d parameter
simultaneously, we must adjust the distribution to take into account the variance,
σ 2

PF,t , and we get

f (RPF,t; d) = �((d + 1)/2)

�(d/2)

√
π(d − 2)σ 2

PF,t

(1 + (RPF,t/σPF,t)
2/(d − 2))−(1+d)/2

To estimate all the parameters together, we must maximize the log-likelihood
of the sample of returns, which can be written

ln L2 =
T∑

t=1

ln(f (RPF,t; d)) = ln L1 −
T∑

t=1

ln(σ 2
PF,t)/2

If we can maximize ln L2 over all the parameters simultaneously, including
those needed to define σ 2

PF,t , then we will get more precise parameter estimates in
general.
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As a simple univariate example of the difference between quasi maximum like-
lihood estimation (QMLE) and maximun likelihood estimation (MLE), consider
the GARCH(1,1)-t̃ (d) model with leverage. We have

RPF,t+1 = σPF,t+1zt+1, with zt+1 ∼ t̃ (d), where

σ 2
PF,t+1 = ω + α

(
RPF,t − θσPF,t

)2 + βσ 2
PF,t

We can either estimate all the parameters, i.e. {ω, α, β, θ, d} in one step using ln L2
noted earlier, which would correspond to exact MLE, or we can first estimate the
GARCH parameters {ω, α, β, θ} using the QMLE method in Chapter 2, which
assumes the likelihood from a normal distribution, and then estimate the condi-
tional distribution parameter, d, from ln L1. In this simple example, exact MLE
is clearly feasible as the total number of parameters is only five. The empirical
exercises at the end of the chapter contain a comparison of the two estimates for
the GARCH(1,1)-t̃ (d) model, which has been found to be a very good statistical
model of asset returns.

4.3.2. An Easy Estimate

While the quasi-maximum likelihood estimation procedure as noted here is in line
with the suggestions made in previous chapters, there is a very simple alternative
estimation procedure available in this case. If the conditional variance model
has already been estimated, then we are only estimating one parameter, namely d.
As there is a simple closed-form relationship between d and the excess kurtosis, ζ2,
this suggests first simply calculating ζ2 from the zt variable and then calculating d

from

ζ2 = 6/(d − 4) ⇒ d = 6/ζ2 + 4

Thus, if excess kurtosis is found to be 1, for example, then the estimate of d is 10.
This is a simple method-of-moments estimate, where we match the fourth moment
of the data to that of the distribution.

4.3.3. QQ Plots

We can generalize the preceding QQ plot to assess the appropriateness of non-
normal distributions as well. In particular, we would like to assess if the returns
standardized by the GARCH model conform to the t̃ (d) distribution.

However, the quantile of the standardized t̃ (d) distribution is usually not easily
found, whereas the quantile from the conventional Student’s t (d) distribution is.
We therefore need the relationship

Pr

(
zt

√
d

d − 2
< t−1

p (d)

)
= p
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FIGURE 4.3 QQ Plot of Daily S&P 500 Returns Against the t̃ (d) Distribution.

⇔ Pr(zt < t−1
p (d)

√
d − 2

d
) = p

⇔ t̃−1
p (d) =

√
d − 2

d
t−1
p (d)

where t−1
p (d) is the pth quantile of the conventional Student’s t (d) distribution.

We are now ready to construct the QQ plot as

{Xi, Yi} =
{√

d − 2

d
t−1
(i−.5)/T (d) , zi

}

where zi again denotes the ith sorted standardized return.
Figure 4.3 shows the QQ plot of the standardized returns from the GARCH-

t̃ (d) with leverage, estimated using QMLE; d is estimated to be 12.6. Notice that
the model now fits the left tail better, but this happens partly at the cost of fitting
the right tail worse. The symmetry of the t̃ (d) distribution appears to be somewhat
constraining.

4.3.4. Calculating Value at Risk

Once d is estimated, we can calculate the value at risk for the portfolio return:

RPF,t+1 = σPF,t+1zt+1, with zt+1 ∼ t̃ (d)

as

VaRp

t+1 = −σPF,t+1 t̃
−1
p (d)

where t̃−1
p (d) is the pth quantile of the t̃ (d) distribution.
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Thus, we have

VaRp

t+1 = −σPF,t+1

√
d − 2

d
t−1
p (d)

where we have used the preceding result relating the quantiles of the standardized
t̃ (d) distribution to that of the conventional student’s t (d).

We round off this section by stressing again that so far we have analyzed the
conditional distribution of the aggregate portfolio return only. Thus, the distribu-
tion is dependent on the particular set of portfolio weights, and the distribution
must be recalculated when the weights change.

4.4. THE CORNISH-FISHER APPROXIMATION TO VAR

The t (d) distribution is arguably the most used tool for allowing for conditional
nonnormality in portfolio returns. However, it is somewhat restrictive in that it
builds on only one parameter and it does not, for example, allow for conditional
skewness. We now consider a simple alternative way of calculating value-at-risk,
which has certain advantages. First, it does allow for skewness as well as excess
kurtosis. Second, it is easily calculated from the empirical skewness and excess
kurtosis estimates from the standardized returns. Third, it can be viewed as an
approximation to the value at risk from a wide range of conditionally non-normal
distributions.

We again start by defining standardized portfolio returns by

zt+1 = RPF,t+1/σPF,t+1 ∼ D(0, 1)

The Cornish-Fisher VaR with coverage rate, p, can then be calculated as

VaRp

t+1 = −σPF,t+1CF−1
p

where

CF−1
p = �−1

p + ζ1

6

[
(�−1

p )2 − 1
]

+ ζ2

24

[
(�−1

p )3 − 3�−1
p

]

− ζ 2
1

36

[
2(�−1

p )3 − 5�−1
p

]

Again, ζ1 is the skewness and ζ2 is the excess kurtosis of the standardized returns,
zt . The Cornish-Fisher quantile can be viewed as a Taylor expansion around the
normal distribution. Notice that if we have neither skewness nor excess kurtosis
so that ζ1 = ζ2 = 0, then we simply get the quantile of the normal distribution
back:

CF−1
p = �−1

p , for ζ1 = ζ2 = 0.
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Consider now, for example, the 1% VaR, where �−1
.01 ≈ −2.33. Allowing for

skewness and kurtosis, we can calculate the Cornish-Fisher 1% quantile as

CF−1
p ≈ −2.33 + 0.74ζ1 − 0.24ζ2 − 0.38ζ 2

1

and the portfolio VaR can be calculated as

VaR.01
t+1 = −(−2.33 + 0.74ζ1 − 0.24ζ2 − 0.38ζ 2

1 )σPF,t+1

Thus, for example, if skewness equals −1 and excess kurtosis equals 4, then we get

VaR.01
t+1 = −(−2.33 − 0.74 − 0.24 ∗ 4 − 0.38)σPF,t+1 = 4.41σPF,t+1

which is almost twice as high as the VaR number from a normal distribution,
which equals 2.33σPF,t+1.

The Cornish-Fisher approach constructs approximations to quantiles from
estimates of skewness and kurtosis. These estimates are in turn constructed from the
sample of all standardized returns. These estimates may be influenced excessively
by standardized returns close to zero, which risk managers care little about. We
therefore now turn to an approach that only makes use of extreme data points.

4.5. EXTREME VALUE THEORY (EVT)

Typically, the biggest risks to a portfolio is the sudden occurrence of a single
large negative return. Having an as-precise-as-possible knowledge of the proba-
bilities of such extremes is therefore at the essence of financial risk management.
Consequently, risk managers perhaps should focus attention explicitly on model-
ing the tails of the returns distribution. Fortunately, a branch of statistics is devoted
exactly to the modeling of these extreme values.

The central result in extreme value theory states that the extreme tail of a
wide range of distributions can approximately be described by a relatively simple
distribution, the so-called generalized Pareto distribution.

Virtually all results in extreme value theory (EVT) assume that returns are
i.i.d. and are therefore not very useful unless modified to the asset return environ-
ment. Asset returns appear to approach normality at long horizons, thus EVT is
more important at short horizons, such as daily. Unfortunately, the i.i.d. assump-
tion is the least appropriate at short horizons due to the time-varying variance
patterns. We therefore need to get rid of the variance dynamics before applying
EVT. Consider therefore again the standardized portfolio returns

zt+1 = RPF,t+1/σPF,t+1 ∼ i.i.d. D(0, 1)

Fortunately, it is in many cases reasonable to assume that these standardized
returns are i.i.d.Thus, we will proceed to apply EVT to the standardized returns and
then combine EVT with the variance models estimated in Chapter 2 in order to
calculate VaRs.
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4.5.1. Defining EVT

Let us first introduce some notation. Consider the probability of standardized
returns z less a threshold u being below a value x given that the standardized
return itself is beyond the threshold, u. We write

Fu(x) ≡ Pr {z − u ≤ x|z > u} , where x > u

We are thus working with the standardized returns in excess of a threshold, and
the distribution, Fu(∗), depends on the choice of threshold, which we will discuss
next. Using the general definition of a conditional probability, we can write

Fu(x) = Pr {u < z ≤ x + u}
Pr {z > u} = F(x + u) − F(u)

1 − F(u)

Thus, we can write the distribution of the standardized returns in excess of the
threshold as a function of the distribution of the standardized returns themselves,
F(∗), which is our ultimate object of interest.

The key result in extreme value theory states that as you let the threshold,
u, get large, in almost any distribution you can think of, Fu(x), converges to the
generalized Pareto (GP) distribution, G(x; ξ, β), where

G(x; ξ, β) =
{

1 − (1 + ξx/β)−1/ξ if ξ 	= 0

1 − exp (−x/β) if ξ = 0

with β > 0, and
{

x ≥ u if ξ ≥ 0

u ≤ x ≤ u − β/ξ if ξ < 0

Standard distributions that are covered by the EVT result include those that
are heavy tailed, for example the Student’s t (d) distribution, where the tail param-
eter, ξ, is positive. This is, of course, the case of most interest in financial risk
management, where returns tend to have fat tails.

The normal distribution is also covered. We noted earlier that a key difference
between the Student’s t (d) distribution and the normal distribution is that the
former has power tails and the latter has exponential tails. Thus, for the normal
distribution we have that the tail parameter, ξ, equals zero.

Finally, short tailed distributions, which are of less interest in financial risk
management, are covered with tail parameter ξ < 0.

4.5.2. Parameter Estimation

Consider points, x with x > u, in the tail of the distribution, and let y = x + u,
then we can rearrange

Fu(x) = F(x + u) − F(u)

1 − F(u)
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to get

F(y) = 1 − [1 − F(u)] [1 − Fu(y − u)]

Let T denote the total sample size and let Tu denote the number of observations
beyond the threshold, u. The term 1 − F(u) can then be estimated simply by
the proportion of data point beyond the threshold, u, call it Tu/T . Fu(∗) can
be estimated by MLE on the standardized observations in excess of the chosen
threshold. Assuming ξ 	= 0, we then have the distribution

F(y) = 1 − Tu/T (1 + ξ (y − u) /β)−1/ξ

4.5.3. An Easy Estimate

If we are willing to assume that the tail parameter, ξ, is positive, as is typically
the case in finance, then a very easy estimator exists, namely the so-called Hill
estimator. We can write

Pr(z > y) = 1 − F(y) = L(y)y−1/ξ ≈ cy−1/ξ , for y > u

The approximation builds on the fact that L(y) is a slowly varying function of y

for most distributions and is thus set to a constant, c. Given this approximation
and using the definition of a conditional distribution, we can define the likelihood
function for all observations yi larger than the threshold, u, as

L =
Tu∏
i=1

f (yi)/(1 − F(u)) =
Tu∏
i=1

−1

ξ
cy

−1/ξ−1
i /(cu−1/ξ ), for yi > u

so that the log likelihood function is

ln L = −
Tu∑
i=1

− ln(ξ) − (1/ξ + 1) ln(yi) + 1

ξ
ln(u)

Taking the derivative with respect to ξ and setting it to zero yields the simple Hill
estimator

ξ = 1

Tu

Tu∑
i=1

ln(yi/u)

We can estimate the c parameter by ensuring that the fraction of observations
beyond the threshold is accurately captured by the density as in

F(u) = 1 − Tu/T

From the definition of F(u), we can write

1 − cu−1/ξ = 1 − Tu/T
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Solving this equation for c yields the estimate

c = Tu

T
u1/ξ

Our estimate of the cumulative density function for observations beyond u is
therefore

F(y) = 1 − cy−1/ξ = 1 − Tu

T
(y/u)−1/ξ

Notice that our estimates are available in closed form—they do not require
numerical optimization. They are therefore extremely easy to calculate.

So far we have implicitly referred to extreme returns as being large gains.
Of course, as risk managers we are more interested in extreme negative returns
corresponding to large losses. To this end, we simply do the EVT analysis on the
negative of returns instead of returns themselves.

4.5.4. Choosing the Threshold

Until now, we have focused on the benefits of the EVT methodology, such as
the explicit focus on the tails and the ability to study each tail separately, thereby
avoiding unwarranted symmetry assumptions. The EVT methodology does have
an Achilles’ heel, however, namely the choice of threshold u. When choosing u,
one must balance two evils: bias and variance. If u is set too large, then only very
few observations are left in the tail and the estimate of the tail parameter, ξ , will be
very uncertain. If on the other hand u is set too small, then the EVT theory may not
hold, meaning that the data to the right of the threshold do not conform sufficiently
well to the generalized Pareto distribution to generate unbiased estimates of ξ .

For samples of around 1000 observations, corresponding to about 5 years of
daily data, a good rule of thumb is to set the threshold so as to keep the largest 5%
of the observations for estimating ξ—that is, we set Tu = 50. The threshold u will
then simply be the 95th percentile of the data set.

4.5.5. Constructing the QQ Plot from EVT

We next want to show the QQ plot of the large losses using the EVT distribution.
Define y to be a standardized loss, that is,

yi = −Ri/σi

The first step is to estimate ξ and c from the losses, yi , using the Hill estimator
noted earlier.

Next we need to compute the inverse cumulative distribution function, which
gives us the quantiles. Recall the EVT cumulative density function from before:

F(y) = 1 − cy−1/ξ = 1 − Tu

T
(y/u)−1/ξ
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FIGURE 4.4 QQ Plot of Daily S&P 500 Returns Against the EVT Distribution.

The third step is to set the estimated cumulative probability function equal to 1−p

so that there is only a p probability of getting a standardized loss worse than the
quantile, F−1

1−p, which is implicitly defined by

F(F−1
1−p) = 1 − p

from the definition of F(∗), we can solve for the quantile to get

F−1
1−p = u [p/ (Tu/T )]−ξ

We are now ready to construct the QQ plot from EVT using the relationship

{Xi, Yi} = {
u [{(i − .5)/T }/(Tu/T )]−ξ , yi

}

where yi is the ith sorted in descending order standardized loss.
Figure 4.4 shows the QQ plots of the EVT tails for large losses from the

standardized S&P 500 returns. For this data, ξ is estimated to be 0.23. Notice how
closely the EVT quantiles fit the data.

4.5.6. Calculating VaR from the EVT Quantile

We are, of course, ultimately interested not in QQ plots but rather in portfolio
risk measures such as value at risk. Using again the loss quantile F−1

1−p defined
earlier by

F−1
1−p = u [p/(Tu/T )]−ξ
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The VaR from the EVT combined with the variance model is now easily
calculated as

VaRp

t+1 = σPF,t+1F
−1
1−p = σPF,t+1u [p/(Tu/T )]−ξ

The reason for using the (1 − p)th quantile from the EVT loss distribution
in the VaR with coverage rate p is that the quantile such that (1 − p) ∗ 100% of
losses are smaller than it is the same as minus the quantile such that p ∗ 100% of
returns are smaller than it.

We usually calculate the VaR taking �−1
p to be the pth quantile from the

standardized return so that

VaRp

t+1 = −σPF,t+1�
−1
p

But we now take F−1
1−p to be the (1 − p)th quantile of the standardized loss so that

VaRp

t+1 = σPF,t+1F
−1
1−p

4.6. THE EXPECTED SHORTFALL RISK MEASURE

The upshot of the discussion in this chapter so far is that the normal versus EVT
distribution may lead to similar 1% VaRs but very different 0.1% or 0.01% VaRs
due to the different tail shapes. That is to say that standard VaR calculations based
on a 1% coverage rate may conceal the fact that the tail shape of the distribution
does not conform to the normal distribution. Figure 4.5 illustrates this point. It
shows the left tail of a normal distribution as well as an EVT distribution, with
a tail parameter ξ = 0.5. The figure is constructed so that the two distributions
have the same 1% VaRs, but clearly very different tail shapes. The tail of the
normal distribution very quickly converges to zero, whereas the EVT distribution
has a long and fat tail. The figure thus shows that underlying two similar 1% VaR
numbers can be two very different tail risk profiles. In the example given, the
portfolio with the EVT distribution is arguably much more risky than the portfolio
with the normal distribution in that it implies non-negligable probabilities of very
large losses.

We previously discussed a key shortcoming of VaR, namely that it is con-
cerned only with the number of losses that exceed the VaR and not the magnitude of
these losses. The magnitude, however, should be of serious concern to the risk
manager. Large VaR exceedences are much more likely to cause financial distress,
such as bankruptcy, than are small exceedences, and we therefore want to consider
a risk measure that accounts for the magnitude of large losses as well as their
probability of occurring.

The most complete measure of large losses is no doubt the entire shape of the
tail of the distribution of losses beyond the VaR. The tail of the portfolio return
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FIGURE 4.5 Tail Shapes of the Normal Distribution and EVT (bold) with ξ = 0.5. For Com-
parison, the 1% VaR is Fixed at 2.33 in the EVT Distribution.

distribution, when modeled correctly, tells the risk manager everything about the
future losses. Reporting the entire tail of the return distribution corresponds to
reporting VaRs for many different coverage rates, say p ranging from .001% to
1% in increments of .001%. It may, however, be less effective as a reporting tool
to senior management than is a single VaR number. Arguably, the vast popularity
of VaR as a risk measurement tool is due to its simple interpretation as “What’s
the loss so that only 1% of potential losses tomorrow will be worse?”

The challenge is to come up with a portfolio risk measure that retains the
simplicity of the VaR but conveys information regarding the shape of the tail.
Expected shortfall (ES), or TailVaR as it is sometimes called, does exactly this.

ES is defined as

ESp

t+1 = −Et [Rt+1|Rt+1 < −VaRp

t+1]
where the negative signs in front of the expectation and the VaR are needed
because the ES and the VaR are defined as positive numbers. The expected shortfall
tells us the expected value of tomorrow’s return, conditional on it being worse
than the VaR. In line with our VaR definition in Chapter 3, the ES measure is
defined in terms of log return rather than dollar loss.

The distribution tail shape is a two-dimensional object that gives us informa-
tion on the range of possible losses on the x-axis and the probability associated with
each outcome on the y-axis. The expected shortfall measure aggregates these two
dimensions into a single number by computing the average of the tail outcomes
weighted by their probabilities. So where VaR tells us the loss so that only 1% of
potential losses will be worse, the ES tells us the expected loss given that we actu-
ally get a loss from the 1% tail. So while we are not conveying all the information
in the shape of the tail when using ES, the key is that the shape of the tail beyond
the VaR measure now is important for determining the risk number.
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To gain more insight into the ES as a risk measure, let’s first consider the
normal distribution. The expected value of a normal variable with zero mean
return truncated at the VaR is

ESp

t+1 = −Et

[
Rt+1|Rt+1 ≤ −VaRp

t+1

] = σPF,t+1
φ
(−VaRp

t+1/σPF,t+1
)

�
(−VaRp

t+1/σPF,t+1
)

where φ(∗) denotes the density function and �(∗) the cumulative density function
of the standard normal distribution. Of course, in the normal case we know that

VaRp

t+1 = −σPF,t+1�
−1
p

Thus, we have

ESp

t+1 = σPF,t+1

φ
(
�−1

p

)

p

which has a structure very similar to the VaR measure. The ratio of the expected
shortfall to the VaR is

ESp

t+1

VaRp

t+1

= −
φ
(
�−1

p

)

p�−1
p

When, for example, p = .01, we have �−1
p ≈ −2.33, and the ratio

ES.01
t+1

VaR.01
t+1

≈ − (2π)−1/2 exp(−(−2.33)2/2)

.01(−2.33)
≈ 1.15

In the normal case, one can show that as the VaR coverage probability p gets close
to zero, the ratio of the ES to the VaR goes to 1.

In general, the ratio of ES to VaR for fat-tailed distribution will be higher than
that of the normal. For the EVT distribution, when p goes to zero, the ES to VaR
ratio converges to

ESp≈0
t+1

VaRp≈0
t+1

≈ 1

1 − ξ

So that for fat-tailed distributions where ξ > 0, the fatter the tail, the larger the ratio
of ES to VaR. For example, in Figure 4.5 where ξ = 0.5, the ES to VaR ratio is
roughly 2, even though the 1% VaR is the same in the two distributions. Thus, the
ES measure is more revealing than the VaR about the magnitude of losses larger
than the VaR.

4.7. SUMMARY

Time-varying variance models help explain non-normal features of financial
returns data. However, even the distribution of returns standardized by a dynamic
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variance tends to be fat tailed and maybe skewed. This chapter has considered
methods for modeling the non-normality of portfolio returns by building on the
variance and correlation models established in earlier chapters and using the same
maximum likelihood estimation techniques.

We first considered a graphical tool for visualizing non-normality in the data,
the so-called QQ plot. This tool was used to assess the appropriateness of alterna-
tive distributions. We first considered the normal distribution, which showed large
deviations from the data in the tails. Second, we defined the standardized t (d)

distribution, which allows for fatter tails than the normal, but which also assumes
that the distribution is symmetric around zero. While the t (d) distribution fits the
data better in the tails, it appeared to be restricted by the symmetry assumption.

In light of the evidence of asymmetry, we introduced the Cornish Fisher
approximation to the value-at-risk calculation, which allows for asymmetry
through a nonzero skewness. We next considered extreme value theory, which
models each tail of the distribution individually and therefore also allows for
asymmetry. The simple Hill estimator was used to find the parameters of the EVT
distribution. The estimation of EVT has the intuitive appeal that only data in the
tail of interest is used to estimate that particular tail.

Finally, in light of the mounting evidence of non-normality in financial
returns, we discussed the shortcomings of the value-at-risk measure and considered
expected shortfall as a viable alternative.

4.8. FURTHER RESOURCES

Extensions to the basic symmetric t (d) distribution considered here can be found
in Hansen (1994), and Fernandez and Steel (1998). The GARCH-t̃ (d) model was
introduced by Bollerslev (1987). Applications of extreme value theory to financial
risk management is discussed in McNeil (2000). The choice of threshold value
in the GARCH-EVT model is discussed in McNeil and Frey (2000). Huisman
et al. (2001) explore improvements to the simple Hill estimator considered here.
Multivariate extensions to the univariate EVT analysis considered here can be
found in Longin (2000), Longin and Solnik (2001), and Poon et al. (2001).

Artzner et al. (1999) define the concept of a coherent risk measure and show
that expected shortfall (ES) is coherent whereas VaR is not. Studying dynamic
portfolio management based on ES and VaR, Basak and Shapiro (2001) find
that when a large loss does occur, ES risk management leads to lower losses than
VaR risk management. Cuoco, He, and Issaenko (2001) argue instead that VaR
and ES risk management lead to equivalent results as long as the VaR and ES
risk measures are recalculated often. Both Basak and Shapiro (2001) and Cuoco
et al. (2001) assume that returns are normally distributed. Finally, notice that the
ES expression in this chapter relies on log-returns and is therefore an approxi-
mation to the standard dollar loss definition. See the appendix to Chapter 3 for
details.
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4.9. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter4Data.xls file on the CD-ROM.

1. Construct a QQ plot of the S&P 500 returns divided by the unconditional stan-
dard deviation. Use the normal distribution. Compare your result with the top
panel of Figure 4.2. (Excel Hint: Use the NORMSINV function to calculate the
standard normal quantiles.)

2. Copy and paste the estimated GARCH(1,1) volatilities from Chapter 2,
question 2.

3. Standardize the returns using the volatilities from question 2. Construct a QQ
plot for the standardized returns using the normal distribution. Compare your
result with the bottom panel of Figure 4.2.

4. Using QMLE, estimate the GARCH(1,1)-t̃ (d) model. Fix the variance param-
eters at their values from question 3. Set the starting value of d equal to 10.
(Excel Hint: Use the GAMMALN function for the log-likelihood function of
the standardized t (d) distribution.)

Construct a QQ plot for the standardized returns using the standardized
t (d) distribution. Compare your result with Figure 4.3. (Hint: Excel contains a
two-sided quantile from the t (d) distribution. To compute one-sided quantiles
from the standardized t (d) distribution, we use the relationship

t̃−1
p (d) =

{ − |tinv(2p, d)| √(d − 2)/d, if p ≤ 0.5

|tinv(2(1 − p), d)| √(d − 2)/d if p > 0.5

where TINV is the function in Excel, and where t̃−1
p (d) is the standardized

one-sided quantile we need for the QQ plot.)

5. Estimate the GARCH(1.1)-t̃ (d) model using MLE instead of QMLE. Set the
starting values of all parameters equal to the final values from question 4. Skip
this question if you are working on a slow computer.

6. Estimate the EVT model on the standardized portfolio returns using the Hill
estimator. Use the 5% largest losses to estimate EVT. (Excel Hint: Use the
PERCENTILE function to calculate the pth quantile of a series.) Calculate the
0.01% standardized return quantile implied by each of the following models:
normal, t (d), EVT, and Cornish-Fisher. Notice how different the 0.01% VaRs
would be from these four models.

7. Construct the QQ plot using the EVT distribution for the 5% largest
losses. Compare your result with Figure 4.4.

The answers to these exercises can be found in the Chapter4Results.xls file.
Previews of the answers follow.
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5.1. CHAPTER OVERVIEW

The main objectives of this chapter are twofold. First, we want to introduce meth-
ods for forecasting the distribution of portfolio returns, which are very popular in
practice but which we argue have some key flaws, namely the so-called historical
simulation methods. Second, we want to consider ways in which the daily risk
models we have constructed in previous chapters can be used for risk forecasting
at multiple horizons. While most risk models are estimated on daily data and there-
fore automatically forecast 1 day ahead, risk managers are typically interested in
the risk across longer horizons as well.

The chapter is organized as follows:

1. We introduce the historical simulation (HS) method and discuss its pros
and particularly its cons.

2. We consider an extension of HS, often referred to as weighted historical
simulation (WHS).

3. We show how Monte Carlo simulation (MCS) can be used to generate
multiday forecasts from the conditional daily risk models constructed in
Chapters 2 through 4.

4. We argue the advantages of combining the conditional variance and corre-
lation models from Chapters 2 and 3 with a modified version of HS, which
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we refer to as filtered historical simulation (FHS). FHS can be used to
generate daily as well as multiday forecasts from daily models. The FHS
method has been found to perform well, and it can be seen as a model-free
alternative to the model-based conditional distribution methods suggested
in Chapter 4.

5.2. HISTORICAL SIMULATION (HS)

Before defining exactly what we mean by historical simulation, let us recap some
notation and ideas from previous chapters. This will help us in comparing HS with
the previously suggested methods.

5.2.1. Background

First, return on the portfolio on day t + 1 is defined as

RPF,t+1 =
n∑

i=1

wiRi,t+1

where the sum is taken over the n securities in the portfolio. wi denotes the relative
weight of security i at the end of day t .

We have previously written the variance of the portfolio return as

σ 2
PF,t+1 =

n∑
i=1

n∑
j=1

wiwjσij,t+1 =
n∑

i=1

n∑
j=1

wiwjσi,t+1σj,t+1ρij,t+1

where σij,t+1 is the covariance and ρij,t+1 is the correlation between security i

and j on day t + 1. We have ρii,t+1 = 1, and we write σii,t+1 = σ 2
i,t+1 for all i.

In Chapter 2, we considered univariate variance models, which can be used
to estimate the portfolio variance, σ 2

PF,t+1, directly from the time series of past
hypothetical portfolio returns. Alternatively, the variance models can be used to
model the individual asset variances, σ 2

i,t+1, which in conjunction with the corre-
lation models for ρij,t+1 in Chapter 3 can be used to form the portfolio variance by
summing over all the assets as in the preceding equation. While the latter approach
clearly requires more effort, its advantage is that it can be used for active asset
allocation purposes. The former aggregate portfolio approach simply provides a
risk measurement tool.

In either of these variance modeling approaches, the VaR of the portfolio is
simply

VaRp

t+1 = −σPF,t+1 ∗ F−1
p

where F−1
p is the pth quantile of the rescaled portfolio returns.
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5.2.2. Defining Historical Simulation

Against this backdrop we are now ready to define the historical simulation approach
to risk management. The HS techniques is deceptively simple. Consider again the
definition of portfolio returns

RPF,t+1 =
n∑

i=1

wiRi,t+1

and consider the availability of a past sequence of m daily hypothetical portfolio
returns, calculated using past returns on the underlying assets of the portfolio, but
using today’s portfolio weights. We write

{
RPF,t+1−τ

}m
τ=1 ≡

{
n∑

i=1

wiRi,t+1−τ

}m

τ=1

The HS technique simply assumes that the distribution of tomorrow’s portfolio
returns, RPF,t+1, is well approximated by the empirical distribution of the past m

observations—that is,
{
RPF,t+1−τ

}m
τ=1. Put differently, the distribution of RPF,t+1

is captured by the histogram of
{
RPF,t+1−τ

}m
τ=1. The value at risk (VaR) with

coverage rate, p, is then simply calculated as 100pth percentile of the sequence
of past portfolio returns. We write

VaRp

t+1 = −Percentile
{{

RPF,t+1−τ

}m
τ=1 , 100p

}

Thus, we simply sort the returns in
{
RPF,t+1−τ

}m
τ=1 in ascending order and

choose the VaRp

t+1 to be the number such that only 100p% of the observations are
smaller than the VaRp

t+1. As the VaR typically falls in between two observations,
linear interpolation can be used to calculate the exact number. Standard quantita-
tive software packages will have the Percentile or similar functions built in so
that the linear interpolation is performed automatically.

5.2.3. Pros and Cons of Historical Simulation

Historical simulation is widely used in practice. The main reasons are (1) the ease
with which is it implemented and (2) its model-free nature.

The first advantage is difficult to argue with. The HS technique clearly is very
easy to implement. No parameters have to be estimated by maximum likelihood
or any other method. Therefore, no numerical optimization has to be performed.

The second advantage is more contentious, however. The HS technique is
model-free in the sense that it does not rely on any particular parametric model
such as a GARCH(1,1) for variance and a normal distribution for the standard-
ized returns. HS lets the past m data points speak fully about the distribution of
tomorrow’s return without imposing any further assumptions. This has the obvious
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advantage compared with the approach taken in Chapters 2 to 4, that relying on
modeling assumptions can be misleading if the model is poor.

The model-free nature of the HS model also has serious drawbacks, however.
Consider the choice of the data sample length, m. How large should m be?

This drawback is very similar in nature to the model-free estimates of variance and
covariance from daily returns, which were discussed at the beginning of Chapters
2 and 3, respectively. If m is too large, then the most recent observations, which
presumably are the most relevant for tomorrow’s distribution, will carry very little
weight, and the VaR will tend to look very smooth over time. If m is chosen
to be too small, then the sample may not include enough large losses to enable
the risk manager to calculate, say, a 1% VaR with any precision. Conversely,
the most recent past may be very unusual, so that tomorrow’s VaR will be too
extreme. The upshot is that the choice of m is very ad hoc, and, unfortunately,
the particular choice of m matters a lot for the magnitude and dynamics of VaR
from the HS technique. Typically m is chosen in practice to be between 250
and 1000 days corresponding to approximately 1 to 4 years. Figure 5.1 shows
VaRs from HS m = 250 and m = 1000, respectively, using daily returns on the
S&P 500 for 2001. Notice the curious box-shaped patterns that arise from the
abrupt inclusion and exclusion of large losses in the moving sample. Notice also
how the dynamic patterns of the HS VaRs are crucially dependent on m. The
lack of properly specified dynamics in the HS methodology causes it to ignore
well-established stylized facts on return dependence—most importantly variance
clustering. The result is highly curious-looking patterns in the VaR over time, as
witnessed by Figure 5.1.

As a reasonably large m is needed in order to calculate 1% VaRs with any
degree of precision, the HS technique has a serious drawback when it comes to
calculating the VaR for the next say 10 days rather than the next day. Ideally, the
10-day VaR should be calculated from 10-day nonoverlapping past returns, which
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would entail coming up with 10 times as many past daily returns. This is often not
feasible. Thus, the model-free advantage of the HS technique is simultaneously a
serious drawback. As the HS method does not rely on a well-specified dynamic
model, we have no theoretically correct way of extrapolating from the 1-day dis-
tribution to get the 10-day distribution other than finding more past data. While
it may be tempting to simply multiply the 1-day VaR from HS by

√
10 to obtain

a 10-day VaR, doing so is only valid under the assumption of normality, which
the HS approach is explicitly tailored to avoid. If the data were truly normally
distributed, then HS would not be an attractive method at all.

In contrast, the daily dynamic return models suggested in Chapters 2 to 4 can
be generalized to provide distributions at any horizon. We will consider methods
to do so later in the chapter.

5.3. WEIGHTED HISTORICAL SIMULATION (WHS)

We have discussed the inherent tension in the HS approach regarding the choice
of sample size, m. If m is too small, then we do not have enough observations in
the left tail to calculate a precise VaR measure, and if m is too large, then the VaR
will not be sufficiently responsive to the most recent returns, which presumably
have the most information about tomorrow’s distribution.

We now consider a modification of the HS technique, which is designed to
relieve the tension in the choice of m by assigning relatively more weight to the
most recent observations and relatively less weight to the returns further in the
past. This technique is referred to as weighted historical simulation (WHS).

WHS is implemented as follows:

1. Our sample of m past hypothetical returns,
{
RPF,t+1−τ

}m
τ=1, is assigned

probability weights declining exponentially through the past as follows:

ητ =
{
ητ−1(1 − η)/

(
1 − ηm

)}m

τ=1

so that, for example, today’s observation is assigned the weight η1 =
(1 − η)/ (1 − ηm). Note that ητ goes to zero as τ get large, and that the
weights from τ = 1, 2 . . . , m sum to 1. Typically, η is assumed to be a
number between 0.95 and 0.99.

2. The observations, along with their assigned weights, are sorted in
ascending order.

3. The 100p% VaR is calculated by accumulating the weights of the ascend-
ing returns until 100p% is reached. Again, linear interpolation can be
used to calculate the exact VaR number between the two sorted returns
with cumulative probability weights surrounding p.

Notice that once η is chosen, the WHS technique still does not require esti-
mation and thus retains the ease of implementation, which is the hallmark of
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FIGURE 5.2 VaRs (bold with squares) and Daily Losses from Long S&P 500 Position, October
1987. Historical Simulation VaR (top panel) and Weighted Historical Simulation VaR (bottom panel).

simple HS. It has the added advantage that the weighting function builds in some
conditionality in the technique: Today’s market conditions matter more as today’s
return gets weighted much more than past returns. The weighting function also
makes the choice of m somewhat less crucial.

An obvious downside of the WHS approach is that no guidance is given on
how to choose η. A more subtle, but also much more important downside is the
effect on the weighting scheme of positive versus negative past returns, a downside
that WHS shares with HS. We illustrate this with a somewhat extreme example
drawing on the month surrounding the October 19, 1987, crash in the stock market.
Figure 5.2 contains two panels both showing in dots the daily losses on a portfolio
consisting of a $1 long position in the S&P 500 index. Notice how the returns are
relatively calm before October 19, when a more than 20% loss from the crash set
off a dramatic increase in market variance.
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The squares in the top panel show the VaR from the simple HS technique,
using an m of 250. The key thing to notice of course is how the simple HS technique
responds slowly and relatively little to the dramatic loss on October 19. The HS’s
lack of response to the crash is due to its unconditional nature: Once the crash
occurs, it simply becomes another observation in the sample, which carries the
same weight as the other 250 past observation. The VaR from the WHS method in
the bottom panel shows a much more rapid and large response to the VaR forecast
from the crash. As soon as the large portfolio loss from the crash is recorded, it
gets assigned a large weight in the weighting scheme, which in turn increases the
VaR dramatically. The WHS estimate in Figure 5.2 assumes a η of 0.99.

Thus, apparently the WHS performs its task sublimely. The conditionality of
the weighting scheme kicks in to lower the VaR exactly when our intuition says it
should. Unfortunately, all is not well. Consider Figure 5.3, which in both panels
shows the daily losses from a short $1 position in the S&P500 index. Thus, we have
simply flipped the losses from before around the x-axis. The top panel shows the
VaR from HS, which is even more sluggish than before: As we are short the S&P,
the market crash corresponds to a large gain rather than a large loss. Consequently,
it has no impact on the VaR, which is calculated from the largest losses only.
Consider now the WHS VaR instead. The bottom panel of Figure 5.3 shows that as
we are short the market, the October 19 crash has no impact on our VaR, only the
subsequent market rebound, which corresponds to a loss for us, increases the VaR.

Thus, the upshot is that while WHS responds quickly to large losses, it does not
respond to large gains. Arguably it should. The market crash sets off an increase in
market variance, which the WHS only picks up if the crash is bad for our portfolio
position. To put it bluntly, the WHS treats a large loss as a signal that risk has
increased, but a large gain is chalked up to the portfolio managers being clever.
This is not a prudent risk management approach.

Notice that a simple GARCH model estimated on portfolio returns would
have picked up the increase in market variance from the crash regardless of whether
the crash meant a gain or a loss to us. In the simple GARCH model, returns are
squared and losses and gains are treated as having the same impact on tomorrow’s
variance and therefore on the portfolio risk.

Finally, a serious downside of WHS, and one which it shares with the simple
HS approach, is that the multiday value at risk requires a large amount of past
daily return data, which is often not easy to obtain. We now turn to exactly this
issue of multiperiod risk calculations and consider risk management methods in
which multiday value at risk easily can be calculated.

5.4. MULTI-PERIOD RISK CALCULATIONS

So far we have mostly considered calculating value at risk and other risk mea-
sures for the 1-day horizon. However, risk managers are typically also interested
in the risk of their holdings at horizons beyond 1 day. In the simplistic case,
where portfolio returns are normally distributed with a constant variance, σ 2

PF , the
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FIGURE 5.3 VaRs (bold with squares) and Daily Losses from Short S&P 500 Position, October
1987. Historical Simulation VaR (top panel) and Weighted Historical Simulation VaR (bottom panel).

returns over the next K days are also normally distributed, but with variance Kσ 2
PF .

In that case, we can easily calculate the VaR for returns over the next K days
calculated on day t, as

VaRp

t+1:t+K = √
KσPF�−1

p = √
KVaRp

t+1

In the much more realistic case where the portfolio variance is time varying,
going from 1 day ahead to K days ahead VaR is not so simple. As we saw in
Chapter 2, the variance of K-day returns in general is

σ 2
t+1:t+K ≡ Et

(
K∑

k=1

Rt+k

)2

=
K∑

k=1

Et

[
σ 2

t+k

]

where we have omitted the portfolio, PF, subscripts.
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In the simple RiskMetrics variance model, where σ 2
t+1 = λσ 2

t + (1 − λ)R2
t ,

we get

σ 2
t+1:t+K =

K∑
k=1

σ 2
t+1 = Kσ 2

t+1

so that variances actually do scale by K in the RiskMetrics model. However, we
argued in Chapter 2 that the absence of mean reversion in variance, which is under-
lying the simply scaling rule in the RiskMetrics model, will imply counterfactual
variance forecasts at longer horizons. Furthermore, although the variance is scaled
by K in this model, the returns at horizon K are no longer normally distributed. In
fact, one can show that the RiskMetrics model implies that returns get further away
from normality as the horizon increases, which is counterfactual as we discussed
in Chapter 1.

In the symmetric GARCH(1,1) model, where σ 2
t+1 = ω + αR2

t + βσ 2
t , we

instead get

σ 2
t+1:t+K = Kσ 2 +

K∑
k=1

(α + β)k−1
(
σ 2

t+1 − σ 2
)

�= Kσ 2
t+1

where

σ 2 = ω

1 − α − β

is the unconditional, or average, long-run variance. Notice that conveniently in
GARCH models, tomorrow’s variance, σ 2

t+1, can be calculated at the end of today
once Rt is realized.

In this case, the variance does mean revert and it therefore does not scale
by the horizon K, and again the returns over the next K days are not normally
distributed, even if the 1-day returns are assumed to be. However, a nice feature
of mean-reverting GARCH models is that as K gets large, the return distribution
does approach the normal. This appears to be a common feature of real-life return
data as we argued in Chapter 1.

The upshot is that we are faced with the challenge of computing risk measures
such as VaR at multiple horizons, without knowing the analytical form for the
distribution of returns at those horizons. Fortunately, this challenge can be met
through the use of Monte Carlo simulation techniques.

In Chapter 1 we discussed two stylized facts regarding the mean or average
daily return—first, that it is very difficult to forecast, and, second, that it is very
small relative to the daily standard deviation. At a longer horizon, it is still fairly
difficult to forecast the mean, but the relative importance of the mean increases with
horizon. Consider a simple example where daily returns are normally distributed
with a constant mean and variance as in

Rt+1 ∼ i.i.d. N
(
µ, σ 2

)



108 SIMULATION-BASED METHODS

The 1-day VaR is thus

VaRp

t+1 = −
(
µ + σ�−1

p

)
≈ −σ�−1

p

where the approximation holds as the daily mean is typically orders of magnitude
smaller than the standard deviation.

The K-day returns in this case is distributed

Rt+1:t+K ∼ N
(
Kµ, Kσ 2

)

and the K-day VaR is thus

VaRp

t+1:t+K = −
(
Kµ + √

Kσ�−1
p

)
�≈ −√

Kσ�−1
p

As the horizon, K , gets large, the relative importance of the mean increases and
the zero-mean approximation no longer holds.

Although the mean return is potentially important at longer horizons in order
to save on notation, we will still assume that the mean is zero in the sections that
follow. However, it is easy to generalize the analysis to include a nonzero mean.

5.5. MONTE CARLO SIMULATION (MCS)

We illustrate the power of Monte Carlo simulation (MCS) through a simple
example. Consider our GARCH(1,1)-normal model of returns, where

Rt+1 = σt+1zt+1, with zt+1 ∼ N(0, 1)

and

σ 2
t+1 = ω + αR2

t + βσ 2
t

As mentioned earlier, at the end of day t we obtain Rt and we can calculate
σ 2

t+1, which is tomorrow’s variance in the GARCH model.
Using random number generators, which are standard in most quantitative

software packages, we can generate a set of artificial random numbers

ži,1, i = 1, 2, . . . , MC

drawn from the standard normal distribution, N(0, 1). MC denotes the number of
draws, which could be, for example, 1000. To confirm that the random numbers
do indeed conform to the standard normal distribution, a histogram of the random
numbers can be constructed and compared with the theoretical normal probability
distribution function.
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From these random numbers we can calculate a set of hypothetical returns for
tomorrow as

Ři,t+1 = σt+1ži,1

Given these hypothetical returns, we can update the variance to get a set of
hypothetical variances for the day after tomorrow, t + 2, as follows:

σ̌ 2
i,t+2 = ω + αŘ2

i,t+1 + βσ 2
t+1

Given a new set of artificial random numbers drawn from the N(0, 1) distribution,

ži,2, i = 1, 2, . . . , MC

we can calculate the hypothetical return on day t + 2 as

Ři,t+2 = σ̌i,t+2ži,2

and variance is now updated by

σ̌ 2
i,t+3 = ω + αŘ2

i,t+2 + βσ̌ 2
i,t+2

Graphically, we can illustrate the simulation of hypothetical daily returns
from day t + 1 to day t + K as

ž1,1 → Ř1,t+1 → σ̌ 2
1,t+2 ž1,2 → Ř1,t+2 → σ̌ 2

1,t+3 ... ž1,K → Ř1,t+K

↗ ž2,1 → Ř2,t+1 → σ̌ 2
2,t+2 ž2,2 → Ř2,t+2 → σ̌ 2

2,t+3 ... ž2,K → Ř2,t+K

σ 2
t+1 −→ ... ... ... ...

↘ ... ... ... ...

žMC,1 → ŘMC,t+1 → σ̌ 2
MC,t+2 žMC,2 → ŘMC,t+2 → σ̌ 2

MC,t+3 ... žMC,K → ŘMC,t+K

Each row corresponds to a so-called Monte Carlo simulation path, which
branches out from σ 2

t+1 on the first day, but which does not branch out after that.
On each day a given branch gets updated with a new random number, which is
different from the one used any of the days before. We end up with MC sequences
of hypothetical daily returns for day t + 1 through day t + K. From these hypo-
thetical future daily returns, we can easily calculate the hypothetical K-day return
from each Monte Carlo path as

Ři,t+1:t+K =
K∑

k=1

Ři,t+k, for i = 1, 2, . . . , MC

If we collect these MC hypothetical K-day returns in a set
{
Ři,t+1:t+K

}MC

i=1
,

then we can calculate the K-day value at risk simply by calculating the 100p

percentile as in

VaRp

t+1:t+K = −Percentile

{{
Ři,t+1:t+K

}MC

i=1
, 100p

}
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Notice that in contrast to the HS and WHS techniques introduced earlier, the
GARCH-MCS method outlined here is truly conditional in nature as it builds on
today’s estimate of tomorrow’s variance, σ 2

t+1.

Another key advantage of the MCS technique is its flexibility. We can use MCS
for any assumed distribution of standardized returns—normality is not required.
If we think the standardized t (d) distribution with d = 12, for example, describes
the data better, then we simply draw from this distribution. Commercial software
packages typically contain the regular t (d) distribution, but we can standardize
these draws by multiplying by

√
(d − 2) /d as we saw in Chapter 4. Further-

more, the MCS technique can be used for any fully specified dynamic variance
model.

5.6. FILTERED HISTORICAL SIMULATION (FHS)

So far in this chapter, we have discussed methods that take very different
approaches: historical simulation (HS) is a completely model-free approach, which
imposes virtually no structure on the distribution of returns: the historical returns
calculated with today’s weights are used directly to calculate a percentile. The
Monte Carlo simulation (MCS) approach takes the opposite view and assumes
parametric models for variance, correlation (if a disaggregate model is estimated),
and the distribution of standardized returns. Random numbers are then drawn from
this distribution to calculate the desired risk measure.

Both of these extremes in the model-free/model-based spectrum have pros
and cons. Taking a model-based approach (MCS, for example) is good if the
model is a fairly accurate description of reality. Taking a model-free approach
(HS, for example) is sensible in that the observed data may capture features of the
returns distribution that are not captured by any standard parametric model.

The filtered historical simulation approach (FHS), which we present next,
attempts to combine the best of the model-based with the best of the model-free
approaches in a very intuitive fashion. FHS combines model-based methods of
variance with model-free methods of distribution in the following way.

Assume we have estimated a GARCH-type model of our portfolio variance.
Although we are comfortable with our variance model, we are not comfortable
making a specific distributional assumption about the standardized returns, such
as a normal or a t̃ (d) distribution. Instead, we would like the past returns data to
tell us about the distribution directly without making further assumptions.

To fix ideas, consider again the simple example of a GARCH(1,1) model:

Rt+1 = σt+1zt+1

where

σ 2
t+1 = ω + αR2

t + βσ 2
t
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Given a sequence of past returns, {Rt+1−τ }mτ=1, we can estimate the GARCH
model and calculate past standardized returns from the observed returns and
from the estimated standard deviations as

ẑt+1−τ = Rt+1−τ /σt+1−τ , for τ = 1, 2, . . . , m

We will refer to the set of standardized returns as
{
ẑt+1−τ

}m
τ=1 .

Moving forward now, at the end of day t we obtain Rt and we can calculate
σ 2

t+1, which is day t + 1’s variance in the GARCH model. Instead of drawing ran-
dom ẑs from a random number generator, which relies on a specific distribution,
we can draw with replacement from our own database of past standardized resid-
uals,

{
ẑt+1−τ

}m
τ=1 . The random drawing can be operationalized by generating a

discrete uniform random variable distributed from 1 to m. Each draw from the
discrete distribution then tells us which τ and thus which ẑt+1−τ to pick from the
set
{
ẑt+1−τ

}m
τ=1.

We again build up a distribution of hypothetical future returns as

ẑ1,1 → R̂1,t+1 → σ̂ 2
1,t+2 ẑ1,2 → R̂1,t+2 → σ̂ 2

1,t+3 ... ẑ1,K → R̂1,t+K

↗ ẑ2,1 → R̂2,t+1 → σ̂ 2
2,t+2 ẑ2,2 → R̂2,t+2 → σ̂ 2

2,t+3 ... ẑ2,K → R̂2,t+K

σ 2
t+1 −→ ... ... ... ...

↘ ... ... ... ...

ẑFH,1 → R̂FH,t+1 → σ̂ 2
FH,t+2 ẑFH,2 → R̂FH,t+2 → σ̂ 2

FH,t+3 ... ẑFH,K → R̂FH,t+K

where FH is the number of times we draw from the standardized residuals on each
future date, for example, 1000, and where K is the horizon of interest measured
in number of days.

We end up with FH sequences of hypothetical daily returns for day t + 1
through day t + K. From these hypothetical daily returns, we calculate the
hypothetical K-day returns as

R̂i,t+1:t+K =
K∑

k=1

R̂i,t+k, for i = 1, 2, ..., FH

If we collect the FH hypothetical K-day returns in a set
{
R̂i,t+1:t+K

}FH

i=1
, then

we can calculate the K-day value at risk simply by calculating the 100p percentile
as in

VaRp

t+1:t+K = −Percentile

{{
R̂i,t+1:t+K

}FH

i=1
, 100p

}

In the case where K = 1, the variance is known and sampling is not necessary.
We can simply calculate the 1-day VaR using the percentile of the database of
standardized residuals as in

V aR
p

t+1 = −σt+1Percentile
{{

ẑt+1−τ

}m
τ=1 , 100p

}
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At the end of Chapter 4, we introduced expected shortfall (ES) as an alterna-
tive risk measure to VaR. ES is defined as a the expected return given that the
return falls below the VaR. For the K-day horizon, we have

ESp

t+1:t+K = −Et
[
Rt+1:t+K |Rt+1:t+K < −VaRp

t+1:t+K

]

The ES measure can be calculated from the simulated returns by simply taking
the average of all the R̂i,t+1:t+Ks that fall below the −VaRp

t+1:t+K number—
that is

ESp

t+1:t+K = −1

p ∗ FH
∗

FH∑
i=1

R̂i,t+1:t+K ∗ 1
(
R̂i,t+1:t+K < −VaRp

t+1:t+K

)

where the indicator function 1 (∗) returns a one if the argument is true and zero
if not. The ES risk measure can be calculated from Monte Carlo simulation in a
similar fashion. Notice that it is, however, not obvious how to calculate ES from
historical simulation or weighted historical simulation.

Another interesting and useful feature of FHS as compared with simple HS
is that it can generate large losses in the forecast period, even without having
observed a large loss in the recorded past returns. Consider the case where we
have a relatively large negative z in our database, which occurred on a relatively
low variance day. If this z gets combined with a high-variance day in the simulation
period, then the resulting hypothetical loss will be large.

We close this section by reemphasizing that the FHS method suggested here
combines a conditional model for variance with a historical simulation method for
the standardized returns. FHS thus retains the key conditionality feature through
σt+1 but relieves us from having to make assumptions about the tail distribution.
Building on the variance and correlation models from Chapters 2 and 3, FHS
thus represents a viable alternative to the model-based distributional models in
Chapter 4. Finally and most important, the FHS method has been found to perform
very well in several studies, and it should be given serious consideration by any
risk management team.

5.7. SUMMARY

Risk managers have a variety of methods to choose from when building a risk
management system. The purpose of this chapter has been to introduce a variety of
simulation-based methods ranging from completely model-free approaches such as
historical simulation to completely model-based approaches such as Monte Carlo
simulation. We have underscored the benefits of conditional approaches, which
use all the relevant information available at any given time. Such considerations
have motivated the introduction of filtered historical simulation, which combines
conditional variance models with historical simulation of the standardized returns.
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As an added advantage, FHS can easily be used to calculate risk measures for any
given horizon of interest.

5.8. FURTHER RESOURCES

Useful overviews of the various approaches to value at risk calculation can be
found in Duffie and Pan (1997) and Manganelli (2000).

Bodoukh, Richardson, and Whitelaw (1998) introduce the weighted historical
simulation approach. They find that it compares favorably with both the HS
approach and the RiskMetrics model.

Christoffersen, Diebold, and Schuermann (1998) elaborate on the issues
involved in calculating VaRs at different horizons. Diebold, Hickman, Inoue,
and Schuermann (1998) study the problems arising from simple scaling rules
of variance across horizons. Christoffersen and Diebold (2000) investigate the
usefulness of dynamic variance models for risk management at various forecast
horizons.

Hull and White (1998) and Barone-Adesi, Giannopoulos, and Vosper
(1999) introduce the filtered historical simulation approach, and Barone-Adesi,
Giannopoulos, and Vosper (2000) consider an application of FHS to portfolios of
options and futures. Figures 5.2 and 5.3 follow Pritsker (2001), who finds that the
FHS approach compares favorably with the HS and WHS approaches.

Finally, Engle and Manganelli (1999) suggest an interesting alternative
method for VaR calculation based on conditional quantile regression, which was
not discussed.

5.9. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter5data.xls file on the CD-ROM. Use sheet 1 for questions 1 and
2, and sheet 2 for questions 3 and 4.

1. Assume you are long $1 of the S&P 500 index on each day. Calculate the 1-day,
1% VaRs on each day in October 1987 using historical simulation and weighted
historical simulation. You can ignore the linear interpolation part of WHS. Use
a weighting parameter of η = 0.99 in WHS. Use a 250-day moving sample size
for both HS and WHS. (Excel Hint: Sort the returns along with their weights by
selecting both columns in Excel and sorting by returns.) Plot losses and VaRs
from HS and losses and VaRs from WHS in two different figures. Compare
your result with Figure 5.2. Note that we are comparing losses (i.e., negative
returns) with VaRs denoted as positive numbers.

2. Redo question 1, assuming instead that you are short $1 of the S&P 500 each
day. Compare your result with Figure 5.3.
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3. For each day in 2001, calculate the 1-day, 1% VaRs using the following methods:
(a) RiskMetrics, that is, normal distribution with an exponential smoother on
variance using the weight, λ = 0.94; (b) GARCH(1,1)-t̃ (d) with parameters
estimated in Chapter 4, question 5; (c) historical simulation; and (d) filtered
historical simulation (Excel Hint: Use the sampling tool in data analysis.) Use
a 251-day moving sample. Plot the VaRs along with the return.

4. Estimate 10-day, 1% VaRs on December 29, 2000, using FHS (with 1000 sim-
ulations), RiskMetrics scaling the daily VaRs by

√
10 (although it is incorrect),

and GARCH(1,1)-t̃ (d) with parameters estimated in Chapter 4, question 5.
(Excel Hint: To simulate returns, generate uniformly distributed random num-
bers from 0.000001 to 0.999999. To obtain t̃ (d) distributed random numbers
for the standardized returns in the GARCH model, use the TINV function in
Excel the same way it was used in Chapter 4.)

The answers to these exercises can be found in the Chapter5Results.xls file.
Previews of the answers follow.
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6.1. CHAPTER OVERVIEW

The previous chapters have established a framework for constructing the distribu-
tion of a portfolio of assets with simple linear payoffs—for example, stocks, bonds,
foreign exchange, forwards, futures, and commodities. This chapter is devoted to
the pricing of options. An option derives its value from an underlying asset but its
payoff is not a linear function of the underlying asset price, and so the option price
is not a linear function of the underlying asset price either. This nonlinearity adds
complications to pricing and risk management.

In this chapter we will do the following:

1. Provide some basic definitions.
2. Establish an option pricing formula under the simplistic assumption

that daily returns on the underlying asset follow an independent normal
distribution with constant variance. We will refer to this as the Black-
Scholes-Merton (BSM) formula. While the BSM model provides a useful
benchmark, it systematically misprices observed options. We therefore
consider the following alternatives.

121
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3. Extend the normal distribution model by allowing for skewness and kur-
tosis in returns. We will rely on the Gram-Charlier expansion around the
normal distribution to derive an option pricing formula in this case.

4. Extend the model by allowing for time-varying variance relying on the
GARCH models from Chapter 2. Two GARCH option pricing models are
considered: one allows for general variance specifications but requires
Monte Carlo simulation or another numerical technique; the other assumes
a specific variance dynamic but provides a closed form solution for the
option price.

5. Introduce the ad hoc implied volatility function (IVF) approach to option
pricing. The IVF method is not derived from any coherent theory but it
works well in practice.

In this chapter, we will restrict attention to the pricing of European options,
which can only be exercised on the maturity date. The following chapter will
describe in detail the risk management techniques available when the portfolio
contains options. At the end of the next chapter we will also provide the key
references to pricing methods for American options, which can be exercised on
any day up until the maturity date.

There is enough material in this chapter to fill an entire book, so needless to
say the discussion will be brief. We will simply provide an overview of different
available option pricing models and suggest further readings at the end of the
chapter. This chapter thus assumes that the reader is already familiar with option
pricing, including risk-neutral valuation.

6.2. BASIC DEFINITIONS

A European call option gives the owner the right but not the obligation (that is the
option) to buy a unit of the underlying asset T̃ days from now at the price X. We
refer to T̃ as the days to maturity and X as the strike price of the option. We denote
the price of the European call option today by c, the price of the underlying asset
today by St , and at maturity of the option by S

t+T̃
.

A European put option gives the owner of the option the right to sell a unit of
the underlying asset T̃ days from now at the price X. We denote the price of the
European put option today by p. The European option restricts the owner from
exercising the option before the maturity date. American options can be exercised
any time before the maturity date.

We note that the number of days to maturity, T̃ , is counted in calendar days
and not in trading days. A standard year of course has 365 calendar days but only
around 252 trading days. In previous chapters we have been using trading days
for returns and value-at-risk (VaR) horizons, for example, referring to a two-week
VaR as a 10-day VaR. In this chapter it is therefore important to note that we are
using 365 days per year when calculating volatilities and interest rates.
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FIGURE 6.1 Payoffs as a Function of the Value of the Underlying Asset at Maturity. Call Option,
Put Option, Underlying asset, Risk-Free Bond.

The payoff function is the option’s defining characteristic. Figure 6.1 contains
four panels. The top left panel shows the payoff from a call option and the top
right panel shows the payoff of a put option both with a strike price of 870. The
payoffs are drawn as a function of the hypothetical price of the underlying asset
at maturity of the option, S

t+T̃
. Mathematically, the payoff function for a call

option is

Max
{
S

t+T̃
− X, 0

}

and for a put option is

Max
{
X − S

t+T̃
, 0
}

The bottom left panel of Figure 6.1 shows the payoff function of the underlying
asset itself, which is simply a straight line with a slope of one. The bottom right-
hand panel shows the value at maturity of a risk-free bond, which pays the face
value 1, at maturity t + T̃ regardless of the future price of the underlying risky
asset and indeed regardless of any other assets. Notice the linear payoffs of stocks
and bonds and the nonlinear payoffs of options.

6.3. OPTION PRICING UNDER THE NORMAL
DISTRIBUTION

We start off by going back to the most simple assumptions we made about asset
returns. Let daily returns on an asset be independently and identically distributed
according to the normal distribution,

Rt+1 = ln(St+1) − ln(St ) ∼ N(µ, σ 2)
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Then the aggregate return over T̃ days will also be normally distributed with the
mean and variance appropriately scaled as in

R
t+1:t+T̃

= ln(S
t+T̃

) − ln(St ) ∼ N(T̃ µ, T̃ σ 2)

and the future asset price can of course be written as

S
t+T̃

= St exp (R
t+1:t+T̃

)

The so-called risk-neutral valuation principle calculates the option price as
the discounted expected payoff, where discounting is done using the risk-free rate
and where the expectation is taken using the risk-neutral distribution:

c = exp (−rT̃ )E∗
t

[
Max

{
S

t+T̃
− X, 0

}]

where Max
{
S

t+T̃
− X, 0

}
as before is the payoff function and where r is the

risk-free interest rate per day. The expectation E∗
t [∗] is taken using the risk-neutral

distribution where all assets earn an expected return equal to the risk-free rate. In
this case, the option price can be written as

c = exp (−rT̃ )

∫ ∞

−∞
Max

{
St exp (x∗) − X, 0

}
f (x∗) dx∗

= exp (−rT̃ )

∫ ∞

ln(X/St )

St exp (x∗)f (x∗) dx∗ −
∫ ∞

ln(X/St )

Xf (x∗) dx∗

where x∗ is the risk-neutral variable corresponding to the underlying asset return
between now and the maturity of the option. f (x∗) denotes the risk-neutral dis-
tribution, which we take to be the normal so that x∗∼ N(T̃ r, T̃ σ 2). The second
integral is easily evaluated whereas the first requires several steps. In the end, one
obtains the call option price

cBSM = exp (−rT̃ )
[
St exp (rT̃ )�(d) − X�

(
d − σ

√
T̃
)]

= St�(d) − exp (−rT̃ )X�
(
d − σ

√
T̃
)

where �(z) is the cumulative density of a standard normal variable, and where

d = ln(St/X) + T̃
(
r + σ 2/2

)

σ
√

T̃

We will refer to this as the Black-Scholes-Merton (BSM) model. Black,
Scholes, and Merton derived this pricing formula in the early 1970s using a model
where trading takes place in continuous time. Assuming continuous trading only
the absence of arbitrage opportunities is needed to derive the formula.

It is worth emphasizing that to stay consistent with the rest of the book, the
volatility and risk-free interest rates are both denoted in daily terms, and option
maturity is denoted in number of calendar days, as this is market convention.



6.3. OPTION PRICING UNDER THE NORMAL DISTRIBUTION 125

The elements in the option pricing formula have the following interpretation:

• �
(
d − σ

√
T̃
)

is the risk-neutral probability of exercise.

• X�
(
d − σ

√
T̃
)

is the expected risk-neutral payout at exercise.

• St�(d) exp (rT̃ ) is the risk-neutral expected value of the stock acquired
through exercise of the option.

• �(d) measures the sensitivity of the option price to changes in the under-
lying asset price, St , and is referred to as the delta of the option, where
δBSM ≡ ∂cBSM

∂St
is the first derivative of the option with respect to the under-

lying asset price. This and other sensitivity measures are discussed in detail
in the next chapter.

To get the price of a European put option, p, we invoke the put-call parity,
which is a simple no-arbitrage condition that does not rely on any particular option
pricing model. It states

St + p = c + X exp (−rT̃ )

It can be derived from considering two portfolios: One consists of the underlying
asset and the put option, and another consists of the call option and a cash position
equal to the discounted value of the strike price. Whether the underlying asset price
at maturity, S

t+T̃
, ends up below or above the strike price X, both portfolios will

have the same value, namely Max
{
S

t+T̃
, X
}
, at maturity and therefore they must

have the same value today for the no-arbitrage condition to hold. The portfolio
values underlying this argument are shown in the following table:

Time t Time t+T̃

Portfolio I If S
t+T̃

≤ X If S
t+T̃

> X

St S
t+T̃

S
t+T̃

p X − S
t+T̃

0

St + p X S
t+T̃

Portfolio II If S
t+T̃

≤ X If S
t+T̃

> X

c 0 S
t+T̃

− X

X exp (−rT̃ ) X X

c + X exp (−rT̃ ) X S
t+T̃

The put-call parity also suggests how options can be used in risk management.
Suppose an investor who has an investment horizon of T̃ days owns a stock with
current value St . The value of the of the stock at the maturity of the option is S

t+T̃
,

which in the worst case could be zero. But an investor who owns the stock along
with a put option with a strike price of X is guaranteed the future portfolio value
Max

{
S

t+T̃
, X
}
, which is at least X. The downside of the stock portfolio including

this so-called protective put is thus limited, where as the upside is still unlimited.
The protection is not free however as buying the put option requires paying the
current put option price or premium, p.
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Using the put-call parity result and the formula for cBSM , we can get the put
price formula as

pBSM = cBSM + X exp (−rT̃ ) − St

= e−rT̃
{
X
[
1 − �

(
d − σ

√
T̃
)]

− St [1 − �(d)] erT̃
}

= e−rT̃ X�
(
σ

√
T̃ − d

)
− St�(−d)

where the last line comes from the symmetry of the normal distribution, which
implies that [1 − �(z)] = �(−z).

In the case where cash flows such as dividends accrue to the underlying asset,
we discount the current asset price to account for the cash flows by replacing St

by St exp (−qT̃ ) everywhere, where q is the expected rate of cash flow per day
until maturity of the option. This adjustment can be made to both the call and the
put price formula, and in both cases the formula for d will then be

d = ln (St/X) + T̃
(
r − q + σ 2/2

)

σ
√

T̃

The adjustment is made because the option holder at maturity receives only
the underlying asset on that date and not the cash flow that has accrued to the
asset during the life of the option. This cash flow is retained by the owner of the
underlying asset.

We now want to use the Black-Scholes pricing model to price a European
call option written on the S&P 500 index. On August 29, 2002, the value of the
index was 917.80. The European call option has a strike price of 890 and 23 days
to maturity. The risk-free interest rate for a 23 day holding period is found from
the T-bill rates to be 0.004521% per day (that is, 0.00004521) and the dividend
accruing to the index over the next 23 days is expected to be 0.004360% per
day. For now we assume the volatility of the index is 1.341285% per day. Thus,
we have

St = 917.80

X = 890

T̃ = 23

r = 0.004521%

q = 0.004360%

σ = 1.341285%

and we can calculate

d = ln (St/X) + T̃
(
r − q + σ 2/2

)

σ
√

T̃
= 0.510896, and d − σ

√
T̃ = 0.446570
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which gives

�(d) = 0.695288, and �
(
d − σ

√
T̃
)

= 0.672407

from which we can calculate the BSM call option price as

cBSM = St exp (−qT̃ )�(d) − exp (−rT̃ )X�
(
d − σ

√
T̃
)

= 39.68

6.3.1. Model Implementation

The simple model considered earlier implies that a European option price can be
written as a nonlinear function of six variables,

cBSM = c(St , r, X, T̃ , q; σ)

The stock price is readily available, and a Treasury bill rate with maturity T̃

can be used as the risk-free interest rate. The strike price and time to maturity are
known features of any given option contract, thus only one parameter needs to be
estimated—namely, the volatility, σ. As the option pricing formula is nonlinear,
volatility can be estimated from a sample of n options on the same underlying
asset, minimizing the mean-squared dollar pricing error (MSE)

MSEBSM = min
σ

{
1

n

n∑
i=1

(
cmkt
i − cBSM(St , r, Xi, T̃i , q; σ)

)2
}

where cmkt
i denotes the observed market price of option i. The CD-ROM, which

contains answers to the exercises at the end of this chapter, includes an example
of this numerical optimization. Notice that we could, of course, also have simply
plugged in an estimate of σ from returns on the underlying asset; however, using
the observed market prices of options tends to produce much more accurate model
prices.

Using prices on a sample of 106 call options traded on the S&P 500 index
on August 29, 2002, we estimate the volatility, which minimizes the MSE to be
1.341285% per day. This was the volatility estimate used in the numerical pricing
example. Further details of this calculation can be found on the CD-ROM.

6.3.2. Implied Volatility

From Chapter 1, we know that the assumption of daily asset returns following
the normal distribution is grossly violated in the data. We therefore should worry
that an option pricing theory based on the normal distribution will not offer an
appropriate description of reality. To assess the quality of the normality-based
model, consider the so-called implied volatility calculated as

σ iv
BSM = c−1

BSM

(
St , r, X, T̃ , q, cmkt

)
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FIGURE 6.2 Implied BSM Daily Volatility from S&P 500 Index Options with 23, 205 and 296
Days to Maturity (DTM). Quoted on August 29, 2002.

where cmkt again denotes the observed market price of the option, and where
c−1

BSM(∗) denotes the inverse of the BSM option pricing formula derived earlier.
The implied volatilities can be found contract by contract by using a numerical
equation solver.

Returning to the preceding numerical example of the S&P 500 call option
traded on August 29, 2002, knowing that the actual market price for the option
was 42.60, we can calculate the implied volatility to be

σ iv
BSM = c−1

BSM

(
St , r, X, T̃ , q, 42.60

)
= 1.528620%

where the St , r, X, T̃ , and q variables are as in the preceding example. The
1.528620% volatility estimate is such that if we had used it in the BSM formula,
then the model price would have equalled the market price exactly, that is,

42.60 = cBSM

(
St , r, X, T̃ , q, 1.528620%

)

If the normality assumption imposed on the model were true, then the implied
volatility should be roughly constant across strike prices and maturities. However,
actual option data displays systematic patterns in implied volatility, thus violating
the normality based option pricing theory. Figure 6.2 shows the implied volatility
of various S&P 500 index call options on August 29, 2002. The picture shows
clear evidence of the so-called smirk. Furthermore, the smirk is most evident at
shorter horizons. As we will see shortly, this smirk can arise from skewness in the
underlying distribution, which is ignored in the BSM model relying on normality.
Options on foreign exchange tend to show a more symmetric pattern of implied
volatility, which is referred to as the smile. The smile can arise from kurtosis in
the underlying distribution, which is again ignored in the BSM model.

Smirk and smile patterns in implied volatility constitute evidence of mis-
specification in the BSM model. Consider for example pricing options with the
BSM formula using a daily volatility of approximately 1.3% for all options.
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In Figure 6.2, the implied volatility is approximately 1.3% for at-the-money
options where S/X ≈ 1. Therefore, the BSM price would be roughly correct for
these options. However, for options that are in the money—that is S/X > 1—the
BSM implied volatility is higher than 1.3%, which says that the BSM model needs
a higher than 1.3% volatility to fit the market data. This is because option prices are
increasing in the underlying volatility. Using the BSM formula with a volatility
of 1.3% would result in a BSM price that is too low. The BSM is thus said to
underprice in-the-money call options. From the put-call formula, we can conclude
that the BSM model also underprices out-of-the-money put options.

In the preceding example, the BSM formula calculated the price of a 23-day
in-the-money call option to be 39.68 when using a volatility of approximately
1.3% per day. However, the actual market price was 42.60 resulting in an implied
volatility of almost 1.53% per day as we also saw earlier. The BSM model under-
priced the in-the-money call option in this particular example—a finding that is
true more generally.

6.4. ALLOWING FOR SKEWNESS AND KURTOSIS

We now introduce a relatively simple model that is capable of making up for some
of the obvious mispricing in the BSM model. We again have one-period returns
defined as

Rt+1 = ln(St+1) − ln(St )

and T̃ -period returns as

R
t+1:t+T̃

= ln(S
t+T̃

) − ln(St ).

The mean and variance of the daily returns are again defined as E(Rt+1) = µ

and E(Rt+1 − µ)2 = σ 2. In addition, we now define the skewness of the 1-day
return as

ζ11 = E(Rt+1 − µ)3

σ 3

Skewness is informative about the degree of asymmetry of the distribution. A
negative skewness arises from large negative returns being observed more fre-
quently than large positive returns. Negative skewness is a stylized fact of equity
index returns, as we saw in Chapter 1. Kurtosis of the 1-day return is defined as

ζ21 = E(Rt+1 − µ)4

σ 4
− 3

which is sometimes referred to as excess kurtosis due to the subtraction by 3.
Kurtosis tells us about the degree of tail fatness in the distribution of returns. If
large (positive or negative) returns are more likely to occur in the data than in
the normal distribution, then the kurtosis is positive. Asset returns typically have
positive kurtosis.
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Assuming that returns are independent over time, the skewness at horizon T̃

can be written as a simple function of the daily skewness,

ζ1T̃
= ζ11/

√
T̃

and correspondingly for kurtosis

ζ2T̃
= ζ21/T̃

Notice that both skewness and kurtosis will converge to zero as the return horizon,
T̃ , and thus the maturity of the option increases. This corresponds well with the
implied volatility in Figure 6.2, which displayed a more pronounced smirk pattern
for short-term as opposed to long term options.

We now define the standardized return at the T̃ -day horizon as

w
T̃

= R
t+1:t+T̃

− T̃ µ√
T̃ σ

so that

R
t+1:t+T̃

= µT̃ + σ

√
T̃ w

T̃

and assume that the standardized returns follow the distribution given by the
Gram-Charlier expansion, which is written as

f
(
w

T̃

) = φ
(
w

T̃

)− ζ1T̃

1

3!D
3φ
(
w

T̃

)+ ζ2T̃

1

4!D
4φ
(
w

T̃

)

where φ
(
w

T̃

)
is the standard normal density, and Dj is its j th derivative. We have

D1φ(z) = −zφ(z)

D2φ(z) =
(
z2 − 1

)
φ(z)

D3φ(z) = −
(
z3 − 3z

)
φ(z)

D4φ(z) =
(
z4 − 6z2 + 3

)
φ(z)

The Gram-Charlier density function f
(
w

T̃

)
is an expansion around the nor-

mal density function, φ
(
w

T̃

)
, allowing for a nonzero skewness, ζ1T̃

, and kurtosis
ζ2T̃

. The Gram-Charlier expansion can approximate a wide range of densities
with nonzero higher moments, and it collapses to the standard normal density
when skewness and kurtosis are both zero. We notice the similarities with the
Cornish-Fisher expansion for value at risk in Chapter 4, which is a similar expan-
sion but for the inverse cumulative density function instead of the density function
itself.
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To price European options, we can again write the generic risk-neutral
call pricing formula as

c = e−rT̃ E∗
t

[
Max

{
S

t+T̃
− X, 0

}]

Thus, we must solve

c = e−rT̃

∫ ∞

ln X/St

(
St exp (x∗) − X

)
f
(
x∗) dx∗

Earlier we relied on x∗ following the normal distribution with mean r and variance
σ 2 per day. But we now instead define the standardized risk-neutral return at
horizon T̃ as

w∗
T̃

=
(
x∗ − rT̃

)
√

T̃ σ

and assume it follows the Gram-Charlier (GC) distribution.
In this case, the call option price can be derived as being approximately

equal to

cGC ≈ St�(d) − Xe−rT̃ �
(
d −

√
T̃ σ

)
+ Stφ(d)

√
T̃ σ

[
ζ1T̃

3!
(

2
√

T̃ σ − d
)

−ζ2T̃

4!
(

1 − d2 + 3d

√
T̃ σ − 3T̃ σ 2

)]

= St�(d) − Xe−rT̃ �
(
d −

√
T̃ σ

)
+ Stφ (d) σ

[
ζ11

3!
(

2
√

T̃ σ − d
)

−ζ21/
√

T̃

4!
(

1 − d2 + 3d

√
T̃ σ − 3T̃ σ 2

)]

where we have substituted in for skewness using ζ1T̃
= ζ11/

√
T̃ and for kurtosis

using ζ2T̃
= ζ21/T̃ . We will refer to this as the GC option pricing model. The

approximation comes from setting the terms involving σ 3 and σ 4 to zero, which
also enables us to use the definition of d from the BSM model. Using this approx-
imation, the GC model is just the simple BSM model plus additional terms, which
vanish if there is neither skewness (ζ11 = 0) nor kurtosis (ζ21 = 0) in the data.
The GC formula can be extended to allow for a cash flow q in the same manner
as the BSM formula shown earlier.

Recall the previous European call option example where

St = 917.80

X = 890

T̃ = 23

r = 0.004521%

q = 0.004360%
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Pricing the option using the GC formula, we will use the estimates

σ = 1.413912%

ζ11 = −10.610613

ζ21 = 0

where the kurtosis has been set to zero because skewness is the main source of
non-normality in equity index options. Using these estimates, we find

d = ln (St/X) + T̃
(
r − q + σ 2/2

)

σ
√

T̃
= 0.488047, and d − σ

√
T̃ = 0.420238

which gives

�(d) = 0.687242, and �
(
d − σ

√
T̃
)

= 0.662844

and a GC option price of

cGC = 43.66

Notice that the GC model price is somewhat higher than the market price of 42.60
but still much closer than the BSM price of 39.68.

6.4.1. Model Implementation

This GC model has three unknown parameters: σ, ζ11, and ζ21. They can be
estimated as before using a numerical optimizer minimizing the mean squared
error

MSEGC = min
σ,ζ11,ζ21

{
1

n

n∑
i=1

(
cmkt
i − cGC(St , r, Xi, T̃i; σ, ζ11, ζ21)

)2
}

We can calculate the implied BSM volatilities from the GC model prices by

σ iv
GC = c−1

BSM

(
St , r, X, T̃ , cGC

)

where c−1
BSM(∗) is the inverse of the BSM model with respect to volatility. But

we can also rely on the following approximate formula for daily implied BSM
volatility:

σ iv
GC = c−1

BSM

(
St , r, X, T̃ , cGC

)
≈ σ

√
T̃

[
1 − ζ11/

√
T̃

3! d − ζ21/T̃

4!
(

1 − d2
)]

Notice this is just volatility times an additional term, which equals one if there
is no skewness or kurtosis. Figure 6.3 plots two implied volatility curves for options
with 10 days to maturity. One has a skewness of −3 and a kurtosis of 7 and shows
the smirk, and the other has no skewness but a kurtosis of 8 and shows a smile.
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FIGURE 6.3 Implied BSM Volatility from Gram-Charlier Model Prices. The Asymmetric Smirk
(from skewness) and the Symmetric Smile (from Kurtosis).

The main advantages of the GC option pricing framework are that it allows
for deviations from normality, it provides closed form solutions for option prices,
and, most important, it is able to capture the systematic patterns in implied volatil-
ity found in observed option data. For example, allowing for negative skewness
implies that the GC option price will be higher than the BSM price for in-the-
money calls, thus removing the tendency for BSM to underprice in-the-money
calls, which we saw evidence of in Figure 6.2.

6.5. GARCH OPTION PRICING MODELS

While the GC model is capable of capturing implied volatility smiles and smirks
at a given point in time, it assumes that volatility is constant over time and is
thus inconsistent with the empirical observations we made earlier. Put differently,
the GC model is able to capture the cross strike price structure but not the cross
maturity structure in observed options prices. In Chapters 1 and 2 we saw that
variance varies over time in a predictable fashion: High-variance days tend to be
followed by high variance days and vice versa, which we modeled using GARCH
and other types of models. When returns are independent, the standard deviation

of returns at the T̃ -day horizon is simply
√

T̃ times the daily volatility, whereas the
GARCH model implies that the term structure of variance depends on the variance
today and does not follow the simple square root rule.

We now consider option pricing allowing for the underlying asset returns to
follow a GARCH process. The GARCH option pricing model assumes that the
expected return on the underlying asset is equal to the risk-free rate, r , plus a
premium for volatility risk, λ, as well as a normalization term. The observed
daily return is then equal to the expected return plus a noise term. The noise term
is conditionally normally distributed with mean zero and variance following a
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GARCH(1,1) process with leverage as in Chapter 2. By letting the past return feed
into variance in a magnitude depending on the sign of the return, the leverage effect
creates an asymmetry in the distribution of returns. This asymmetry is important
for capturing the skewness implied in observed option prices.

Specifically we can write the return process as

Rt+1 ≡ ln(St+1) − ln(St ) = r + λσt+1 − 1

2
σ 2

t+1 + σt+1zt+1

with zt+1 ∼ N(0, 1), and σ 2
t+1 = ω + α (σtzt − θσt )

2 + βσ 2
t

Notice that the expected value and variance of tomorrow’s return conditional
on all the information available at time t are

Et[Rt+1] = r + λσt+1 − 1

2
σ 2

t+1

Vt[Rt+1] = σ 2
t+1

For a generic normally distributed variable x ∼ N(µ, σ 2), we have that
E[exp (x)] = exp (µ + σ 2/2) and thus we have that the conditional mean of
one plus the rate of return for the preceding process is

Et[St+1/St ] = Et

[
exp

(
r + λσt+1 − 1

2
σ 2

t+1 + σt+1zt+1

)]

= exp

(
r + λσt+1 − 1

2
σ 2

t+1

)
Et [exp (σt+1zt+1)]

= exp

(
r + λσt+1 − 1

2
σ 2

t+1

)
exp

(
1

2
σ 2

t+1

)

= exp (r + λσt+1)

where we have used σt+1zt+1 ∼ N(0, σ 2
t+1). This expected return equation

highlights the role of λ as the price of volatility risk.
We can again solve for the option price using the risk-neutral expectation as in

c = exp (−rT̃ )E∗
t

[
Max

{
S

t+T̃
− X, 0

}]

Under risk neutrality, we must have that

E∗
t [St+1/St ] = exp (r)

V ∗
t [Rt+1] = σ 2

t+1

so that the expected rate of return on the risky asset equals the risk-free rate and
the conditional variance under risk-neutrality is the same as under the original
process. Consider the following process:

Rt+1 ≡ ln(St+1) − ln(St ) = r − 1

2
σ 2

t+1 + σt+1z
∗
t+1

with z∗
t+1 ∼ N(0, 1), and σ 2

t+1 = ω + α
(
σtz

∗
t − λσt − θσt

)2 + βσ 2
t
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In this case, we can check that the conditional mean equals

E∗
t [St+1/St ] = E∗

t

[
exp

(
r − 1

2
σ 2

t+1 + σt+1z
∗
t+1

)]

= exp

(
r − 1

2
σ 2

t+1

)
E∗

t

[
exp

(
σt+1z

∗
t+1

)]

= exp

(
r − 1

2
σ 2

t+1

)
exp

(
1

2
σ 2

t+1

)

= exp(r)

which satisfies the first condition. Furthermore, the conditional variance under the
risk neutral process equals

V ∗
t [Rt+1] = E∗

t

[
ω + α

(
σtz

∗
t − λσt − θσt

)2 + βσ 2
t

]

= Et

[
ω + α

(
Rt − r + 1

2
σ 2

t+1 − λσt − θσt

)2

+ βσ 2
t

]

= Et

[
ω + α (σtzt − θσt )

2 + βσ 2
t

]

= σ 2
t+1

where the last equality comes from tomorrow’s variance being known at the end of
today in the GARCH model. The conclusion is that the conditions for a risk-neutral
process are met.

An advantage of the GARCH option pricing approach introduced here is its
flexibility: The previous analysis could easily be redone for any of the GARCH
variance models introduced in Chapter 2. More important, it is able to fit observed
option prices quite well.

6.5.1. Model Implementation

While we have found a way to price the European option under risk neutrality,
unfortunately, we do not have a closed-form solution available. Instead, we have
to use simulation to calculate the price

c = exp (−rT̃ )E∗
t

[
Max

{
S

t+T̃
− X, 0

}]

The simulation can be done as follows: First notice that we can get rid of a para-
meter by writing

σ 2
t+1 = ω + α

(
σtz

∗
t − λσt − θσt

)2 + βσ 2
t

= ω + α
(
σtz

∗
t − λ∗σt

)2 + βσ 2
t , with λ∗ ≡ λ + θ.
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Now, for a given conditional variance σ 2
t+1, and parameters, ω, α, β, λ∗, we

can use Monte Carlo simulation as in Chapter 5, to create future hypothetical
paths of the asset returns. Parameter estimation will be discussed subsequently.
Graphically, we can illustrate the simulation of hypothetical daily returns from
day t + 1 to the maturity on day t + T̃ as

ž∗
1,1 → Ř∗

1,t+1 → σ̌ 2
1,t+2 ž∗

1,2 → Ř∗
1,t+2 → σ̌ 2

1,t+3 ... ž∗
1,T̃

→ Ř∗
1,t+T̃

↗ ž∗
2,1 → Ř∗

2,t+1 → σ̌ 2
2,t+2 ž∗

2,2 → Ř∗
2,t+2 → σ̌ 2

2,t+3 ... ž∗
2,T̃

→ Ř∗
2,t+T̃

σ 2
t+1 −→ ... ... ... ...

↘ ... ... ... ...

ž∗
MC,1 → Ř∗

MC,t+1 → σ̌ 2
MC,t+2 ž∗

MC,2 → Ř∗
MC,t+2 → σ̌ 2

MC,t+3 ... ž∗
MC,T̃

→ Ř∗
MC,t+T̃

where the ž∗
i,j s are obtained from a N(0,1) random number generator and where

MC is the number of simulated return paths. We need to calculate the expectation
term E∗

t [∗] in the option pricing formula using the risk-neutral process, thus we
calculate the simulated risk-neutral return in period t+j for simulation path i as

Ř∗
i,t+j = r− 1

2
σ̌ 2

i,t+j +σ̌i,t+j ž
∗
i,j

and the variance is updated by

σ̌ 2
i,t+j+1 =ω+α

(
σ̌i,t+j ž

∗
i,j −λ∗σ̌i,t+j

)2+βσ̌ 2
i,t+j

As in Chapter 5, the simulation paths in the first period all start out from the same
σ 2

t+1, therefore we have

Ř∗
i,t+1 = r− 1

2
σ 2

t+1+σt+1ž
∗
i,1

σ 2
i,t+2 =ω+α

(
σt+1ž

∗
i,1−λ∗σt+1

)2+βσ 2
t+1

for all i.

Once we have simulated say 5000 paths (MC=5000) each day until the
maturity date, T̃ , we can calculate the hypothetical risk-neutral asset prices at
maturity as

Š∗
i,t+T̃

=St exp




T̃∑
j=1

Ř∗
i,t+j


, i =1,2, . . . ,MC

and the option price is calculated taking the average over the future hypothetical
payoffs and discounting them to the present as in

cGH =exp(−rT̃ )E∗
t

[
Max

{
S

t+T̃
−X,0

}]

≈exp(−rT̃ )
1

MC

MC∑
i=1

Max
{
Š∗

i,t+T̃
−X,0

}

where GH denotes GARCH.
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Thus, we are using simulation to calculate the average future payoff, which
is then used as an estimate of the expected value, E∗

t [∗]. As the number of Monte
Carlo replications gets infinitely large, the average will converge to the expectation.
In practice, around 5000 replications suffice to get a reasonably precise estimate.
The CD-ROM accompanying this book contains a spreadsheet with a Monte Carlo
simulation calculating GARCH option prices.

In theory, we could, of course, estimate all the parameters in the GARCH
model using the maximum likelihood method from Chapter 2 on the underlying
asset returns. But to obtain a better fit of the option prices, we can instead minimize
the option pricing errors directly. Treating the initial variance, σ 2

t+1, as a parameter
to be estimated, we can estimate the GARCH option pricing model on a daily
sample of options by numerically minimizing the mean squared error

MSEGH = min
σ 2

t+1,ω,α,β,λ∗

{
1

n

n∑
i=1

(
cmkt
i −cGH (St ,r,Xi, T̃i;σ 2

t+1,ω,α,β,λ∗)
)2
}

Notice that for every new parameter vector the numerical optimizer tries, the
GARCH options must all be repriced using the MC simulation technique, thus the
estimation can be quite time consuming.

6.5.2. A Closed-Form GARCH Option Pricing Model

A significant drawback of the GARCH option pricing framework outlined here
is clearly that it does not provide us with a closed-form solution for the option
price, which must instead be calculated through simulation. While the simulation
technique is straightforward, it does take computing time and introduces an addi-
tional source of error arising from the approximation of the simulated average to
the expected value.

Fortunately, if we are willing to accept a particular type of GARCH process,
then a closed-form pricing formula exists. We will refer to this as the closed-form
GARCH or CFG model. Assume that returns are generated by the process

Rt+1 ≡ ln(St+1)−ln(St )= r+λσ 2
t+1+σt+1zt+1

with zt+1 ∼N(0,1), and σ 2
t+1 =ω+α(zt −θσt )

2+βσ 2
t

Notice that the risk premium is now multiplied on the conditional variance not
standard deviation, and that zt enters in the variance innovation term without
being scaled by σt . Variance persistence in this model can be derived as αθ2+β

and the unconditional variance as (ω+α)/(1−αθ2−β).

The risk neutral version of this process is

Rt+1 ≡ ln(St+1)−ln(St )= r− 1

2
σ 2

t+1+σt+1z
∗
t+1

with z∗
t+1 ∼N(0,1), and σ 2

t+1 =ω+α
(
z∗
t −θ∗σt

)2+βσ 2
t
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To verify that the risky assets earn the risk-free rate under the risk neutral
measure, we check again that

E∗
t [St+1/St ]=E∗

t

[
exp

(
r− 1

2
σ 2

t+1+σt+1z
∗
t+1

)]

=exp

(
r− 1

2
σ 2

t+1

)
E∗

t

[
exp

(
σt+1z

∗
t+1

)]

=exp

(
r− 1

2
σ 2

t+1

)
exp

(
1

2
σ 2

t+1

)

=exp(r)

and the variance can be verified as before as well.
Under this special GARCH process for returns, the European option price can

be calculated as
cCFG =e−rT̃ E∗

t

[
Max

(
S

t+T̃
−X,0

)]=StP1−Xe−rT̃ P2

where the formulas for P1 and P2 are given in the appendix. Notice that the
structure of the option pricing formula is identical to that of the BSM model. As in
the BSM model, P2 is the risk-neutral probability of exercise, and P1 is the delta
of the option.

6.6. IMPLIED VOLATILITY FUNCTION (IVF) MODELS

The option pricing methods surveyed so far in this chapter can be derived from
well-defined assumptions about the underlying dynamics of the economy. The
next approach to European option pricing we consider is instead completely static
and ad hoc but it turns out to offer reasonably good fit to observed option prices,
and we therefore give a brief discussion of it here. The idea behind the approach is
that the implied volatility smile changes only slowly over time. If we can therefore
estimate a functional form on the smile today, then that functional form may work
reasonably in pricing options in the near future as well.

The implied volatility smiles and smirks mentioned earlier suggest that option
prices may be well captured by the following four-step approach:

1. Calculate the implied BSM volatilities for all the observed option prices
on a given day as

σ iv
i =c−1

BSM

(
St ,r,Xi, T̃i ,c

mkt
i

)
for i =1,2, . . . ,n

2. Regress the implied volatilities on a second-order polynomial in money-
ness and maturity. That is, use ordinary least squares (OLS) to estimate
the a parameters in the regression

σ iv
i =a0+a1 (St/Xi)+a2 (St/Xi)

2+a3

(
T̃i/365

)
+a4

(
T̃i/365

)2

+a5 (St/Xi)
(
T̃i/365

)
+ei
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where ei is an error term and where we have rescaled maturity to be in years
rather than days. The rescaling is done to make the different a coefficients
have roughly the same order of magnitude.

3. Compute the fitted values of implied volatility from the regression,

σ̂ iv(St/Xi, T̃i; â)= â0+â1 (St/Xi)+â2 (St/Xi)
2+â3

(
T̃i/365

)

+â4

(
T̃i/365

)2+â5 (St/Xi)
(
T̃i/365

)

4. Calculate model option prices using the fitted volatilities and the BSM
option pricing formula, as in

cIVF =c(St ,r,Xi, T̃i;Max(σ̂ iv(S/Xi, T̃i/365; â),0.0001))

where the Max(∗) function ensures that the volatility used in the option
pricing formula is positive.

Notice that this option pricing approach requires only a sequence of simple
calculations and it is thus easily implemented.

While this four-step linear estimation approach is standard, one can typi-
cally obtain much better model option prices if the following modified estimation
approach is taken. We can use a numerical optimization technique to solve for
a ={a0,a1,a2,a3,a4,a5} by minimizing the mean squared error

MSEMIVF

=min
a

{
1

n

n∑
i=1

(
cmkt
i −c(St ,r,Xi, T̃i;Max(σ iv(S/Xi, T̃i/365;a),0.01))

)2
}

The downside of this method is clearly that a numerical solution technique rather
than simple OLS is needed to find the parameters. We refer to this approach as
the modified implied volatility function (MIVF) technique. Both the IVF and the
MIVF techniques are implemented on the CD-ROM, which contains answers to
the exercises at the end of the chapter.

6.7. SUMMARY

This chapter has surveyed some key models for pricing European options. First
we introduced the famous Black-Scholes-Merton (BSM) model. The key assump-
tion underlying the BSM model is that the underlying asset return dynamics are
captured by the normal distribution with constant volatility. While the BSM model
provides crucial insight into the pricing of derivative securities, the underlying
assumptions are clearly violated by observed asset returns. We therefore next
considered a generalization of the BSM model, which was derived from the
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Gram-Charlier (GC) expansion around the normal distribution. The GC distri-
bution allows for skewness, and kurtosis and it therefore offers a more accurate
description of observed returns than does the normal distribution. However, the
GC model still assumes that volatility is constant over time, which we argued in
earlier chapters was unrealistic. Next, we thus presented two types of GARCH
option pricing models. The first type allowed for a wide range of variance specifi-
cations, but the option price had to be calculated using Monte Carlo simulation or
another numerical technique as no closed-form formula existed. The second type
relied on a particular GARCH specification but in return provided a closed form
solution for the option price. Finally, we introduced the ad hoc implied volatility
function (IVF) approach, which in essence consists of a second-order polynomial
approximation to the implied volatility smile.

6.8. FURTHER RESOURCES

This chapter has focused on option pricing in discrete time in order to remain con-
sistent with the previous chapters. There are many excellent textbooks on options.
A popular example is Hull (2002). The classic papers on the BSM model are
Black and Scholes (1973) and Merton (1973). The discrete time derivations in
this chapter were introduced in Rubenstein (1976) and Brennan (1979). Merton
(1976) introduced a continuous time diffusion model with jumps allowing for
kurtosis in the distribution of returns. See Andersen and Andreasen (2000) for
some recent extensions to Merton’s (1976) model. The GC model is derived in
Backus et al. (1997). The general GARCH option pricing framework is introduced
in Duan (1995). Duan and Simonato (1998) discussed Monte Carlo simulation
techniques for the GARCH model and Duan et al. (1999) contains an analytical
approximation to the GARCH model price. Ritchken and Trevor (1999) suggest a
trinomial tree method for calculating the GARCH option price. Duan (1999) dis-
cusses extensions to the GARCH option pricing model allowing for conditionally
non-normal returns. The closed-form GARCH option pricing model is derived in
Heston and Nandi (2000). Christoffersen and Jacobs (2002) compares the empir-
ical performance of various GARCH variance specifications for option pricing
and found that the simple variance specification including a leverage effect as
applied in this chapter works very well compared with the BSM model. Hsieh and
Ritchken (2000) compare the GARCH (GH) and the closed-form GARCH (CFG)
models and find that the GH model perform the best in terms of out-of-sample
option valuation. Hull and White (1987) and Heston (1993) derive continuous time
option pricing models with time-varying volatility. Bakshi et al. (1997) contains an
empirical comparison of Heston’s model with more general models and finds that
allowing for time-varying volatility is key in fitting observed option prices. Lewis
(2000) discusses the implementation of option valuation models with time-varying
volatility. The IVF model is described in Dumas et al. (1998) and the modified
IVF model (MIVF) is examined in Christoffersen and Jacobs (2001) who finds
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that the MIVF model performs very well empirically compared with the simple
BSM model. Berkowitz (2002) provides a theoretical justification for the MIVF
approach.

6.9. APPENDIX: THE CFG OPTION PRICING FORMULA

The probabilities P1 and P2 in the closed-form GARCH (CFG) formula are derived
by first solving for the conditional moment generating function. The conditional,
time-t , moment generating function of the log asset prices as time t+T̃ is

f
t,t+T̃ (ϕ)=Et

[
exp

(
ϕ ln

(
S

t+T̃

))]=Et

[
S

ϕ

t+T̃

]

In the CFG model, this function takes a log-linear form (omitting the time
subscripts on f (ϕ))

f (ϕ)=S
ϕ
t ∗exp

(
A
(
t; t+T̃ ,ϕ

)
+B

(
t; t+T̃ ,ϕ

)
σ 2

t+1

)

where

A
(
t; t+T̃ ,ϕ

)
=A

(
t+1; t+T̃ ,ϕ

)
+ϕr+B

(
t+1; t+T̃ ,ϕ

)
ω

− 1

2
ln
(

1−2αB
(
t+1; t+T̃ ,ϕ

))

and

B
(
t; t+T̃ ,ϕ

)
=ϕ (λ+θ)− 1

2
θ2+βB

(
t+1; t+T̃ ,ϕ

)

+
1
2 (ϕ−θ)2

1−2αB
(
t+1; t+T̃ ,ϕ

)

These functions can be solved by recursing backward one period at a time
from the maturity date using the terminal conditions,

A
(
t+T̃ ; t+T̃ ,ϕ

)
=0, and B

(
t+T̃ ; t+T̃ ,ϕ

)
=0

A fundamental result in probability theory establishes the following rela-
tionship between the characteristic function, f (iϕ), and the probability density
function p(x):

∫ ∞

A

p(x)dx = 1

2
+ 1

π

∫ ∞

0
Re

[
exp(−iϕA)f (iϕ)

iϕ

]
dϕ

where the Re(∗) functions take the real value of the argument.
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Using these results, we can calculate the conditional expected payoff as

Et

[
Max

(
S

t+T̃
−X,0

)]=Et

[
Max

(
exp

(
ln
(
S

t+T̃

))−X,0
)]

=
∫ ∞

ln(X)

exp(x)p(x)dx−X

∫ ∞

ln(X)

p(x)dx

=f (1)

(
1

2
+ 1

π

∫ ∞

0
Re

[
X−iϕf (iϕ+1)

iϕf (1)

]
dϕ

)

−X

(
1

2
+ 1

π

∫ ∞

0
Re

[
X−iϕf (iϕ)

iϕ

]
dϕ

)

To price the call option, we use the risk-neutral distribution to get

cCFG =e−rT̃ E∗
t

[
Max

(
S

t+T̃
−X,0

)]

=St

(
1

2
+ 1

π

∫ ∞

0
Re

[
X−iϕf ∗ (iϕ+1)

iϕf ∗ (1)

]
dϕ

)

−Xe−rT̃

(
1

2
+ 1

π

∫ ∞

0
Re

[
Xiϕf ∗ (iϕ)

iϕ

]
dϕ

)

≡StP1−Xe−rT̃ P2

Where we have used the fact that f ∗(1)=E∗
t

[
S

t+T̃

]=erT̃ St . Note that under the

risk-neutral distribution, λ is set to − 1
2 , and θ is replaced by θ∗. Finally, we note

that the previous integrals must be solved numerically.

6.10. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter6Data.xls file from the CD-ROM. The file contains European
call options on the S&P 500 from August 29, 2002.

1. Calculate the BSM price for each option using a standard deviation of 0.015 per
day. Using Solver, find the volatility that minimizes the mean squared pricing
error using 0.015 as a starting value. Keep the BSM prices that correspond to
this optimal volatility and use these prices below.

2. Scatter plot the BSM pricing errors (actual price less model price) against
moneyness defined as (S/X) for the different maturities.

3. Calculate the implied BSM volatility (standard deviation) for each of the
options. You can use Excel’s Solver to do this. Scatter plot the implied
volatilities against moneyness.

4. Fit the Gram-Charlier option price to the data. Estimate a model with skewness
only. Use nonlinear least squares (NLS) again.
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5. Regress implied volatility on a constant, moneyness, the time-to-maturity
divided by 365, each variable squared, and their cross product. Calculate the
fitted BSM volatility from the regression for each option. Calculate the ad hoc
IVF price for each option using the fitted values for volatility.

6. Redo the IVF estimation using NLS to minimize the mean squared pricing error
(MSE). Call this MIVF. Use the IVF regression coefficients as starting values.

7. Calculate the square root of the mean squared pricing error from the IVF and
MIVF models and compare them to the square root of the MSE from the stan-
dard BSM model and the Gram-Charlier model. Scatter plot the pricing errors
from the MIVF model against moneyness and compare them to the plots from
question 2.

8. Using GARCH parameters ω=0.00001524,α=0.1883, β =0.7162, θ =0,
and a λ=0.007452, simulate the GARCH option price with a strike price of
100 and 20 days to maturity. Assume r =0.02/365 and assume that today’s
stock price is 100. Assume today’s variance is 0.00016. Compare the GARCH
price with the BSM price using a daily variance of 0.00016 as well.

The answers to these exercises can be found in the Chapter6Results.xls file.
Previews of the answers follow.
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7.1. CHAPTER OVERVIEW

In the previous chapter, we gave a brief overview of various models for pricing
options. In this chapter, we turn our attention to the key task of incorporating
derivative securities into the portfolio risk model, which we developed in previ-
ous chapters. Just as the nonlinear payoff function was the key feature from the
perspective of option pricing in the previous chapter, it is also driving the risk
management discussion in this chapter. The nonlinear payoff creates asymmetry
in the portfolio return distribution, even if the return on the underlying asset fol-
lows a symmetric distribution. Getting a handle on this asymmetry is a key theme
of this chapter.

The chapter is structured as follows:

1. We define the delta of an option, which provides a linear approximation to
the nonlinear option price. We then present delta formulas from the various
models introduced in the previous chapter.
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2. We establish the delta-based approach to portfolio risk management. The
idea behind this approach is to linearize the option return and thereby make
it fit into the risk models discussed earlier in the book. The downside of
this approach is that it ignores the key asymmetry in option payoffs.

3. We define the gamma of an option, which gives a second-order approxi-
mation of the option price as a function of the underlying asset price.

4. We use the gamma of an option to construct a quadratic model of the port-
folio return distribution. We discuss two implementations of the quadratic
model: one relies on the Cornish-Fisher approximation from Chapter 4, and
the other relies on the Monte Carlo simulation technique from Chapter 5.

5. We measure the risk of options using the full valuation method, which
relies on an accurate but computationally intensive version of the Monte
Carlo simulation technique from Chapter 5.

6. Finally, we illustrate all the suggested methods in a simple example. We
then discuss a major pitfall in the use of the linear and quadratic approxi-
mations in another numerical example. This pitfall, in turn, motivates the
use of the full valuation model.

7.2. THE OPTION DELTA

The delta of an option is defined as the partial derivative of the option price with
respect to the underlying asset price, St . For puts and calls, we define

δc ≡ ∂c

∂St

δp ≡ ∂p

∂St

Notice that the deltas are not observed in the market but instead are based on the
assumed option pricing model.

Figure 7.1 illustrates the familiar tangent interpretation of a partial derivative.
The option price for a generic underlying asset price, S, is approximated by

c(S) ≈ c (St ) + δ(S − St )

where St is the current price of the underlying asset. In Figure 7.1, St equals 100.

The delta of an option (in this case, a call option) can be viewed as providing
a linear approximation to the nonlinear option price, where the approximation is
reasonably good for asset prices close to the current price but it gets gradually
worse for prices that deviate significantly from the current price, as Figure 7.1
illustrates. To a risk manager, the poor approximation of delta to the true option
price for large underlying price changes is clearly unsettling. Risk management
is all about large price changes, and we will therefore consider more accurate
approximations here.
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FIGURE 7.1 The Call Option Price (bold) and the Delta Approximation to the Option Plotted
against the Price of the Underlying Asset. The Strike Price is 100 and Delta is calculated with an Asset
Price of 100.

7.2.1. The Black-Scholes-Merton Model

Recall, from the previous chapter, the Black-Scholes-Merton (BSM) formula for
a European call option price

cBSM = St�(d) − exp (−rT̃ )X�
(
d − σ

√
T̃
)

where �(∗) is the cumulative density of a standard normal variable, and

d = ln (St/X) + T̃
(
r + σ 2/2

)

σ
√

T̃

Using basic calculus, we can take the partial derivative of the option price with
respect to the underlying asset price, St , as follows:

∂cBSM

∂St
≡ δc

BSM = �(d)

We refer to this as the delta of the option, and it has the interpretation that for small
changes in St the call option price will change by �(d). Notice that as �(∗) is the
normal cumulative density function, we have

0 ≤ δc
BSM ≤ 1

so that the call option price in the BSM model will change in the same direction
as the underlying asset price, but the change will be less than one-for-one.

For a European put option, we have the put call parity stating that

St + p = c + X exp(−rT̃ ), or

p = c + X exp(−rT̃ ) − St
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so that we can easily derive

∂pBSM

∂St
≡ δ

p
BSM = ∂cBSM

∂St
− 1 = �(d) − 1

Notice that we have

−1 ≤ δ
p
BSM ≤ 0

so that the BSM put option price moves in the opposite direction of the underlying
asset, and again the option price will change by less (in absolute terms) than the
underlying asset price.

In the case where a dividend or interest is paid on the underlying asset at a
rate of q per day, the deltas will be

δc
BSM = exp (−qT̃ )�(d),

δ
p
BSM = exp (−qT̃ ) (�(d) − 1)

where

d = ln (St/X) + T̃
(
r − q + σ 2/2

)

σ
√

T̃

The deltas of the European call and put options from the BSM model are
shown in Figure 7.2 for X = 100 and for St varying from 50 to 150. Notice that
delta changes most dramatically when the option is close to at the money—that is,
when St ≈ X. This in turn means that a risk management model that relies on a
fixed initial delta is likely to be misleading if the portfolio contains a significant
amount of at-the-money options.

Figure 7.3 shows the delta of three call options with different strike prices
(X = 80, 100, and 120, respectively) for maturity, T̃ , ranging from 1 to 365
calendar days. The asset price St is held fixed at 100 throughout the graph. Notice
when the maturity gets shorter (we move from right to left in the graph), the
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FIGURE 7.2 The Delta of a Call Option (top) and a Put Option (bottom) Plotted against the Price
of the Underlying Asset. The Strike Price is 100.
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FIGURE 7.3 The Delta of Three call Options with Different Strike Prices Plotted against the
Number of Days to Maturity.

deltas diverge: the delta from the in-the-money call option increases to 1, the delta
from the out-of-the-money option decreases to 0, and the delta from the at-the-
money option converges to 0.5. An in-the-money call option with short maturity is
almost certain to pay off St − X, which is why its price moves in tandem with the
asset price St and its delta is close to 1. An out-of-the money option with short
maturity is almost certain to pay 0, which is why its price is virtually constant and
its delta is close to 0.

7.2.2. The Gram-Charlier Model

As the delta is a partial derivative of an option pricing model with respect to the
underlying asset price, it is fundamentally model dependent. The preceding deltas
were derived from the BSM model, but different option pricing models imply dif-
ferent formulas for the deltas. We saw in the previous chapter that the BSM model
sometimes misprices traded options quite severely. We therefore want to consider
using more accurate option pricing models for calculating the options delta.

In the case of the Gram-Charlier option pricing model, we have

cGC ≈ St�(d) − Xe−rT̃ �
(
d −

√
T̃ σ

)
+ Stφ(d)σ

[
ζ11

3!
(

2
√

T̃ σ − d
)

−ζ21/
√

T̃

4!
(

1 − d2 + 3d

√
T̃ σ − 3T̃ σ 2

)]

and the partial derivative with respect to the asset price in this case is

δGC = ∂cGC

∂St
= �(d) − ζ11/

√
T̃

3! φ(d)
(

1 − d2 + 3σ

√
T̃ − 2σ 2T̃

)

+ ζ21/T̃

4! φ(d)
[
3d
(

1 + 2σ 2T̃
)

+ 4d2σ

√
T̃ − d3 − 4σ

√
T̃ + 3σ 3T̃ 3/2

]
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which collapses to the BSM delta of �(d) when skewness, ζ11, and excess
kurtosis, ζ21, are both zero. Again, we can easily calculate the put option delta
from

δ
p
GC ≡ ∂pGC

∂St
= ∂cGC

∂St
− 1

7.2.3. The GARCH Option Pricing Models

Calculating deltas from the general GARCH option pricing model, we are
immediately faced with the issue that the option price is not available in closed
form but must be simulated. We have in general

cGH = exp (−rT̃ )E∗
t

[
Max

{
S

t+T̃
− X, 0

}]

which we compute by simulation as

cGH ≈ exp (−rT̃ )
1

MC

MC∑
i=1

Max
{
Š∗

i,t+T̃
− X, 0

}

where Š∗
i,t+T̃

is the hypothetical GARCH asset price on option maturity date t + T̃

for Monte Carlo simulation path i, where the simulation is done under the risk
neutral distribution.

The partial derivative of the GARCH option price with respect to the
underlying asset price can be shown to be

δc
GH = exp (−rT̃ )E∗

t

[
S

t+T̃

St

1
(
S

t+T̃
≥ X

)]

where the function 1(∗) takes the value 1 if the argument is true and zero otherwise.
The GARCH delta must also be found by simulation as

δc
GH ≈ exp (−rT̃ )

1

MC

MC∑
i=1

Š∗
i,t+T̃

St

1
(
Š∗

i,t+T̃
≥ X

)

where Š∗
i,t+T̃

is again the simulated future risk-neutral asset price. The delta of the
European put option can still be derived from the call-put parity formula.

In the special case of the closed-form GARCH process, we have the European
call option pricing formula

cCFG = StP1 − Xe−rT̃P2

and the delta of the call option is

δc
CFG = P1

The formula for P1 is given in the appendix to the previous chapter.
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7.3. PORTFOLIO RISK USING DELTA

Equipped with a formula for delta from our option pricing formula of choice, we
are now ready to adapt our portfolio distribution model from earlier chapters to
include portfolios of options.

Consider a portfolio consisting of just a call option on a stock. The change
in the dollar value (or the dollar return) of the option portfolio, DVPF,t+1, is then
just the change in the value of the option

DVPF,t+1 ≡ ct+1 − ct

Using the delta of the option, we have that for small changes in the underlying
asset price

δ ≈ ct+1 − ct

St+1 − St

Defining geometric returns on the underlying stock as

Rt+1 = St+1 − St

St

≈ ln (St+1/St )

and combining the three above equations, we get the change in the option portfolio
value to be

DVPF,t+1 ≈ δ(St+1 − St ) ≈ δStRt+1

The upshot of this formula is that we can write the change in the dollar
value of the option as a known value δSt times the future return of the under-
lying asset, Rt+1, if we rely on the delta approximation to the option pricing
formula.

Notice that a portfolio consisting of an option on a stock corresponds to a
stock portfolio with δSt shares. Similarly, we can think of holdings in the under-
lying asset as having a delta of 1 per share of the underlying asset. Trivially, the
derivative of a stock price with respect to the stock price is 1. Thus, holding one
share corresponds to having δ = 1, and holding 100 shares corresponds to having
a δ = 100.

Similarly, a short position of 10 identical calls corresponds to setting
δ = − 10δc, where δc is the delta of each call option. The delta of a short position
in call options is negative, and the delta of a short position in put options is
positive as the delta of a put option itself is negative.

The variance of the portfolio in the delta-based model is

σ 2
DV ,t+1 ≈ δ2S2

t σ 2
t+1

where σ 2
t+1 is the conditional variance of the return on the underlying stock.
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Assuming conditional normality, the dollar value at risk (VaR) in this case is

$VaRp

t+1 = −σDV,t+1 ∗ �−1
p ≈ −abs(δ)Stσt+1 ∗ �−1

p

where the absolute value, abs(∗), comes from having taken the square root of
the portfolio change variance, σ 2

DV ,t+1. Notice that since DVPF,t+1 is measured
in dollars, we are calculating dollar VaRs directly and not percentage VaRs as in
previous chapters. The percentage VaR can be calculated immediately from the
dollar VaR by dividing it by the current value of the portfolio.

In case we are holding a portfolio of several options on the same underly-
ing asset, we can simply add up the deltas. The delta of a portfolio of options
on the same underlying asset is just the weighted sum of the individual deltas
as in

δ =
∑
j

mj δj

where the weight, mj, equals the number of the particular option contract j . A
short position in a particular type of options corresponds to a negative mj.

In the general case where the portfolio consists of options on n underlying
assets, we have

DVPF,t+1 ≈
n∑

i=1

δiSi,tRi,t+1

In this delta-based model, the variance of the dollar change in the portfolio
value is again

σ 2
DV ,t+1 ≈

n∑
i=1

n∑
j=1

abs
(
δi)abs(δj

)
Si,t Sj,tσij,t+1

Under conditional normality, the dollar VaR of the portfolio is again just

$VaRp

t+1 = −σDV ,t+1 ∗ �−1
p

Thus, in this case we can use the risk management framework established
in Chapters 2 and 3 without modification. The linearization of the option prices
through the use of delta, together with the assumption of normality, makes the
calculation of the VaR and other risk measures very easy.

Notice that if we allow for the standard deviations, σi,t+1, to be time
varying as in GARCH, then the option deltas should ideally be calculated from the
GARCH model also. We recall that for horizons beyond 1 day, the GARCH returns
are no longer normal, in which case the return distribution must be simulated.
We will discuss simulation-based approaches to option risk management later.
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When volatility is assumed to be constant and returns are assumed to be normally
distributed, we can calculate the dollar VaR at horizon K by

$VaRp

t+1:t+K = −σDV
√

K ∗ �−1
p

where σDV is the daily portfolio volatility and where K is the risk management
horizon measured in trading days.

7.4. THE OPTION GAMMA

The linearization of the option using the delta approach outlined here often does
not offer a sufficiently accurate description of the risk from the option. When the
underlying asset price makes large moves in a short time, the option price will
change by more than the delta approximation would suggest. Figure 7.1 illus-
trates this point. If the underlying price today is $100 and it moves to $115, then
the nonlinear option price increase is substantially larger than the linear increase
in the delta approximation. Risk managers, of course, care deeply about large
moves in asset prices and this shortcoming of the delta approximation is there-
fore a serious issue. A possible solution to this problem is to apply a quadratic
rather than just a linear approximation to the option price. The quadratic approx-
imation attempts to accommodate part of the error made by the linear delta
approximation.

The Greek letter gamma, γ, is used to denote the rate of change of δ with
respect to the price of the underlying asset—that is,

γ ≡ ∂δ

∂St
= ∂2c

∂S2
t

Figure 7.4 shows a call option price as a function of the underlying asset price.
The gamma approximation is shown along with the model option price. The
model option price is approximated by the second-order Taylor expansion

c(S) ≈ c(St ) + δ(S − St ) + 1

2
γ (S − St )

2

For a European call or put on an underlying asset paying a cash flow at the
rate q, and relying on the BSM model, the gamma can be derived as

γ c = γ p = φ(d)e−qT̃

Stσ
√

T̃
, where

d = ln (St/X) + T̃
(
r − q + σ 2/2

)

σ
√

T̃
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FIGURE 7.4 The Call Option Price (bold) and the Gamma Approximation Plotted against the
Price of the Underlying Asset. The Strike Price is 100 and Delta is calculated with an Asset Price
of 100.

and where φ(∗) as before is the probability density function for a standard normal
variable,

φ(d) ≡ 1√
2π

exp (−d2/2)

Figure 7.5 shows the gamma for an option using the same parameters as
in Figure 7.2 where we plotted the deltas. When the option is close to at the
money, the gamma is relatively large and when the option is deep out of the
money or deep in the money, the gamma is relatively small. This is because
the nonlinearity of the option price is highest when the option is close to at the
money. Deep in-the-money call option prices move virtually one-for-one with the
price of the underlying asset because the options will almost surely be exercised.
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FIGURE 7.5 The Gamma of an Option with a Strike Price of 100 Plotted against the Price of the
Underlying Asset.
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Deep out-of-the money options will almost surely not be exercised, and they are
therefore virtually worthless regardless of changes in the underlying asset price.

All this, in turn, implies that for European options, ignoring gamma is most
crucial for at-the-money options. For these options, the linear delta-based model
can be highly misleading.

7.5. PORTFOLIO RISK USING GAMMA

In the previous delta-based model, when considering a portfolio consisting of
options on one underlying asset, we have

DVPF,t+1 ≈ δStRt+1

where δ denotes the weighted sum of the deltas on all the individual options in
the portfolio.

When incorporating the second derivative, gamma, we instead rely on the
quadratic approximation

DVPF,t+1 ≈ δStRt+1 + 1

2
γ S2

t R2
t+1

where the portfolio δ and γ are calculated as

δ =
∑
j

mj δj

γ =
∑
j

mjγj

where again mj denotes the number of option contract j in the portfolio.

7.5.1. The Cornish-Fisher Approximation

If we assume that the underlying asset return, Rt+1, is normally distributed with
mean zero and constant variance, σ 2, and rely on the preceding quadratic approx-
imation, then the first three moments of the distribution of changes in the value of
a portfolio of options can be written as

µDV ≈ 1

2
γ S2

t σ 2

σ 2
DV ≈ δ2S2

t σ 2 + 1

2
γ 2S4

t σ 4

ζ1,DV ≈
9
2δ2γ S4

t σ 4 + 15
8 γ 3S6

t σ 6 − 3
(
δ2S2

t σ 2 + 3
4γ 2S4

t σ 4
)

µDV + 2µ3
DV

σ 3
DV
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For example, we can derive the expected value as

µDV ≡ E
[
DVPF,t+1

] ≈ E [δStRt+1] + E

[
1

2
γ S2

t R2
t+1

]

= δSt ∗ 0 + 1

2
γ S2

t σ 2 = 1

2
γ S2

t σ 2

The K-day horizon moments can be calculated by scaling σ by
√

K

everywhere.
Notice that because the change in the portfolio value now depends on the

squares of the individual returns, the portfolio return is no longer normally dis-
tributed, even if the underlying asset returns are normally distributed. In particular,
we notice that even if the underlying return has mean zero, the portfolio mean is
no longer zero. More important, the variance formula changes and the portfolio
skewness are no longer zero, even if the underlying asset has no skewness. The
asymmetry of the options payoff itself creates asymmetry in the portfolio distribu-
tion. The linear-normal model presented earlier fails to capture this skewness, but
the quadratic model considered here captures the skewness at least approximately.
In this way, the quadratic model can offer a distinct improvement over the linear
model.

The approximate value at risk of the portfolio can be calculated using the
Cornish-Fisher approach discussed in Chapter 4. The Cornish-Fisher VaR allow-
ing for skewness is

$VaRP
t+1 = −µDV −

(
�−1

p + 1

6

((
�−1

p

)2 − 1

)
ζ1,DV

)
σDV

Unfortunately, the analytical formulas for the moments of options portfolios
with many underlying assets are quite cumbersome, and they rely on the unrealistic
assumption of normality and constant variance. We will therefore now consider
a much more general but simulation-based technique that builds on the Monte
Carlo method introduced in Chapter 5. Later, we will illustrate the Cornish-Fisher
quadratic VaR in a numerical example.

7.5.2. The Simulation-Based Gamma Approximation

Consider again the simple case where the portfolio consists of options on only one
underlying asset and we are interested in the K-day $VaR. We have

DVPF,t+K ≈ δStRt+1:t+K + 1

2
γ S2

t R2
t+1:t+K

Using the assumed model for the physical distribution of the underlying asset
return, we can simulate MC pseudo K-day returns on the underlying asset

{
R̂K

h

}MC

h=1
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and calculate the hypothetical changes in the portfolio value as

D̂V
K

PF,h ≈ δSt R̂
K
h + 1

2
γ S2

t

(
R̂K

h

)2

from which we can calculate the value at risk as

$VaRp

t+1:t+K = −Percentile

{{
D̂V

K

PF,h

}MC

h=1
, 100p

}

In the general case of options on n underlying assets, we have

DVPF,t+K ≈
n∑

i=1

δiSi,tRi,t+1:t+K +
n∑

i=1

1

2
γiS

2
i,tR

2
i,t+1:t+K

where δi and γi are the aggregate delta and gamma of the portfolio with respect
to the ith return.

If we in addition allow for derivatives that depend on several underlying
assets, then we write

DVPF,t+K ≈
n∑

i=1

δiSi,tRi,t+1:t+K +
n∑

i=1

n∑
j=1

1

2
γij Si,t Sj,tRi,t+1:t+KRj,t+1:t+K

which includes the so-called cross-gammas, γij . For a call option, for example,
we have

γ c
ij ≡ ∂2c

∂Si∂Sj

, for i �= j

Cross-gammas are relevant for options with multiple sources of uncertainty. An
option written on the U.S. dollar value of the Tokyo stock index is an example of
such an option.

We now simulate a vector of underlying returns from the multivariate
distribution

{
R̂K

i,h

}MC

h=1
, for i = 1, 2, . . . , n

and we calculate D̂Vs by summing over the different assets using

D̂V
K

PF,h ≈
n∑

i=1

δiSi,t R̂
K
i,h +

n∑
i=1

n∑
j=1

1

2
γij Si,t Sj,t R̂

K
i,hR̂

K
j,h

The great benefit of this approach is that we are aggregating all the options
on one particular asset into a delta and a gamma for that asset. Thus, if the port-
folio consists of a thousand different types of option contract but only written on
100 different underlying assets, then the dimension of the approximated portfolio
distribution is only 100.
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As these formulas suggest, we could, in principle, simulate the distribution
of the future asset returns at any horizon and calculate the portfolio value at risk
for that horizon. However, a key problem with the delta and the delta-gamma
approaches is that if we calculate the VaR for a horizon longer than 1 day, the delta
and gamma numbers may not be reliable approximations to the risk of the option
position. We therefore next consider an approach that is computationally intensive
but does not suffer from the problems arising from approximating the options by
delta and gamma.

7.6. PORTFOLIO RISK USING FULL VALUATION

Linear and quadratic approximations to the nonlinearity arising from options can
in some cases give a highly misleading picture of the risk from options. Particularly,
if the portfolio contains options with different strike prices, then problems are likely
to arise. We will give an explicit example of this type of problem.

In such complex portfolios, we may be forced to calculate the risk measure
using what we will call full valuation. Full valuation consists of simulating future
hypothetical underlying asset prices and using the option pricing model to calculate
the corresponding future hypothetical option prices. For each hypothetical future
asset price, every option written on that asset must be priced. While full valuation
is precise, it is unfortunately also computationally intensive. Full valuation can be
done with any of the option pricing models discussed in Chapter 6.

7.6.1. The Single Underlying Asset Case

Consider first the simple case where our position consists of a short position in
one call option. The dollar change at horizon K can be written

DVPF,t+K = −1 ∗
(
c(St+K, r, X, T̃ − τ, q; σ) − cmkt

)

where cmkt is the current market price.
The τ is the risk horizon measured in calendar days because the option matu-

rity, T̃ , is measured in calendar days. The risk management horizon in trading days
is denoted by K . For example, if we have a 2 week $VaR horizon, then K is 10
and τ is 14.

We can think of full valuation as pretending that we have arrived on the
risk management horizon date and want to price all the options in the portfolio.
As we do not know the price of the underlying asset K days into the future,
we value the options for a range of hypothetical future prices of the underlying.
Assuming a particular physical distribution of the return on the underlying asset,
and applying the Monte Carlo methods discussed in Chapter 5, we can simulate
future hypothetical returns on the underlying asset

{
R̂K

h

}MC

h=1
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and calculate future hypothetical asset prices
{
ŜK

h = St exp
(
R̂K

h

)}MC

h=1

We can now calculate the hypothetical changes in the portfolio value as

D̂V
K

PF,h = −1 ∗
(
c(ŜK

h , r, X, T̃ − τ, q; σ) − cmkt
)

,

for h = 1, 2, . . . , MC

The $VaR can now be calculated as in Chapter 5 using

$VaRp

t+1:t+K = −Percentile

{{
D̂V

K

PF,h

}MC

h=1
, 100p

}

Thus, we sort the portfolio value changes in
{

D̂V
K

PF,h

}MC

h=1
in ascending order

and choose the $VaRp

t+1:t+K to be the number such that only 100p% of the
observations are smaller than the $VaRp

t+1:t+K.

7.6.2. The General Case

More generally, consider again the portfolio of linear assets such as stocks. We
have

DVPF,t+K =
n∑

i=1

w̃i

(
Si,t+K − Si,t

)

where w̃i is the dollar value of the holding in share i.

If we add, for example, call options to the portfolio, we would have

DVPF,t+K =
n∑

i=1

w̃i

(
Si,t+K − Si,t

)+
n∑

i=1

∑
j

mi,j

(
c(Si,t+K, r, Xi,j , T̃i,j − τ,

qi,j ; σi) − cmkt
i,j

)

where mi,j is the number of options of type j on the underlying asset i.

The value at risk from full valuation can be calculated from simulation again.
Using the model for the returns distribution, we can simulate future returns and
thus future asset prices

{
ŜK

i,h

}MC

h=1
, for i = 1, 2, . . . , n

and calculate the hypothetical changes in the portfolio value as

D̂V
K

PF,h =
n∑

i=1

w̃i

(
Ŝi,h − Si,t

)+
n∑

i=1

∑
j

mi,j

(
c(ŜK

i,h, r, Xi,j , T̃i,j − τ, qi,j ; σi)

−cmkt
i,j

)
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From these simulated value changes, we can calculate the dollar value at risk as

$VaRp

t+1:t+K = −Percentile

{{
D̂V

K

PF,h

}MC

h=1
, 100p

}

The full valuation approach has the benefit of being conceptually very sim-
ple; furthermore it does not rely on approximations to the option price. It does,
however, require much more computational effort as all the future hypothetical
prices of every option contract have to be calculated for every simulated future
underlying asset price. Considerations of computational speed therefore some-
times dictate the choice between the more precise but slow full valuation method
and the approximation methods, which are faster to implement.

7.7. A SIMPLE EXAMPLE

To illustrate the three approaches to option risk management, consider the fol-
lowing example. On August 29, 2002, we want to compute the 10-day $VaR of
a portfolio consisting of a short position in one S&P 500 call option. The option
has 51 calendar days to maturity, and it has a strike price of 925. The price of the
option is $35.10, and the underlying index is 917.8. The expected flow of dividends
per day is 0.004513%, and the risk-free interest rate is 0.0045205% per day. For
simplicity, we assume a constant standard deviation of 1.5% per calendar day (for
option pricing and delta calculation) or equivalently 0.015 ∗ √

365/252 = 0.0181
per trading day (for calculating VaR in trading days). We will use the BSM model
for calculating δ, γ as well as the full valuation option prices. We thus have

St = 917.80

X = 925

T̃ = 51

r = 0.0045205%

q = 0.004513%

σ = 1.5% per calendar day

from which we can calculate the delta and gamma of the option as

d = ln (St/X) + T̃
(
r − q + σ 2/2

)

σ
√

T̃
= −0.0194

δ = exp (−qT̃ )�(d) = 0.491149

γ = φ (d) e−qT̃

Stσ
√

T̃
= 0.004048
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for the portfolio, which is short one option; we thus have

m ∗ δ = −1 ∗ 0.491149

m ∗ γ = −1 ∗ 0.004048

where the −1 comes from the position being short.
In the delta-based model, the dollar VaR is

$VaR0.01
t+1:t+10 = −abs(δ) ∗ St ∗ σ ∗ √

10 ∗ �−1
0.01

≈ −abs (−1 ∗ 0.491149) ∗ 917.8 ∗ 0.0181 ∗ √
10 ∗ (−2.33)

≈ $59.73

where we now use volatility in trading days.
Using the quadratic model and relying on the Cornish-Fisher approximation

to the portfolio dollar return distribution, we calculate the first three moments
for the K-day change in portfolio values, when the underlying return follows the
N(0, Kσ 2) distribution. Setting K = 10, we get

µDV ≈ 1

2
S2

t γKσ 2 =−5.5558,

σ 2
DV ≈S2

t δ2Kσ 2+ 1

2
S4

t γ 2K2σ 4 =723.9459

ζ1,DV ≈
9
2S4

t δ2γK2σ 4+ 15
8 S6

t γ 3K3σ 6−3
(
S2

t δ2Kσ 2+ 3
4S4

t γ 2K2σ 4
)
µDV +2µ3

DV

σ 3
DV

=−1.2037

where we use volatility denoted in trading days as K is denoted in trading days.
The dollar VaR is then

$VaR.01
t+1:t+10 = −µDV −

(
�−1

p + 1

6

((
�−1

p

)2 − 1

)
ζ1,DV

)
σDV = $91.96

which is much higher than the VaR from the linear model. The negative skewness
coming from the option γ and captured by ζ1,DV increases the quadratic VaR in
comparison with the linear VaR, which implicitly assumes a skewness of 0.

Using instead the simulated quadratic model, we generate 5000 10-trading
day returns, R̂h, h = 1, 2, . . . , 5000 with a standard deviation of 0.0181 ∗ √

10.
Using the δ and γ calculated earlier, we find

$VaR0.01
t+1:t+10 = −Percentile

{{
δSt R̂h + 1

2
γ S2

t ∗ R̂2
h

}MC

h=1
, 1

}

= −Percentile
{{

(−1 ∗ 0.491149) ∗ 917.8 ∗ R̂h
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+1

2
(−1 ∗ 0.004048) ∗ 917.82 ∗ R̂2

h

}MC

h=1
, 1

}

≈ $95.52

Notice again that due to the relatively high γ of this option, the quadratic VaR is
more than 50% higher than the linear VaR.

Finally, we can use the full valuation approach to find the most accurate VaR.
Using the simulated asset returns R̂h to calculate hypothetical future stock prices,
Ŝh, we calculate the simulated option portfolio value changes as

D̂VPF,h = −1 ∗
(
c(Ŝh, r, X, T̃ − 14, q; σ) − 35.10

)
, for h = 1, 2, . . . , 5000

where 14 is the number of calendar days in the 10-trading-day risk horizon. We
then calculate the full valuation VaR as

$VaR0.01
t+1:t+10 = −Percentile

{{
D̂VPF,h

}MC
h=1 , 1

}

≈ $97.31

In this example, the full valuation VaR is slightly higher than the quadratic
VaR. The quadratic VaR thus provides a pretty good approximation in this simple
portfolio of one option.

To gain further insight into the difference among the three VaRs, we plot the
entire distribution of the hypothetical future 10-day portfolio dollar returns under
the three models. Figure 7.6 shows a normal distribution with mean zero and
variance δ2S2

t 10σ 2 = 659.17. Figure 7.7 shows the histogram from the quadratic
model using the 5000 simulated portfolio returns. Finally, Figure 7.8 shows the
histogram of the 5000 simulated full valuation dollar returns. Notice the stark
differences between the delta-based method and the other two. The linear model
assumes a normal distribution where there is no skewness. The quadratic model
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FIGURE 7.6 Histogram of Portfolio Value Changes from Simple Option Portfolio Using the
Delta-Based Model.
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FIGURE 7.7 Histogram of Portfolio Value Changes from Simple Option Portfolio Using the
Gamma-Based Model.

allows for skewness arising from the gamma of the option. The portfolio dollar
return distribution has a negative skewness of around −1.25. Finally, the full
valuation distribution is slightly more skewed at −1.43.The difference in skewness
arises from the asymmetry of the distribution now being simulated directly from
the option returns rather than being approximated by the gamma of the option.

Further details on all the calculations in this section can be found on the
CD-ROM.

7.8. PITFALL IN THE DELTA AND GAMMA
APPROACHES

While the previous example suggests that the quadratic approximation yields
a sufficiently precise approximation to the true option portfolio distribution,

FIGURE 7.8 Histogram of Portfolio Value Changes from Simple Option Portfolio Using Full
Valuation.
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we now show a different example, which illustrates that even the gamma app-
roximation can sometimes be highly misleading.

To illustrate the potential problem with the approximations, consider an
options portfolio that consists of three types of options, all on the same asset,
and that has a price of St = 100, all with T̃ = 28 calendar days to maturity. The
risk-free rate is 0.02/365, and the volatility is 0.015 per calendar day. We take a
short position in 1 put with a strike of 95, a short position in 1.5 calls with a strike
of 95, and a long position in 2.5 calls with a strike of 105. Using the BSM model
to calculate the delta and gamma of the individual options, we get

Type of Option: Put Call Call
Strike, Xj : 95 95 105
Option Price: 1.1698 6.3155 1.3806
Delta, δj : −0.2403 0.7597 0.2892
Gamma, γj : 0.03919 0.03919 0.04307
Position, mj : −1 −1.5 2.5

We are now interested in assessing the accuracy of the delta and gamma
approximation for the portfolio over a 5 trading day or equivalently 7 calendar
day horizon. Rather than computing VaRs, we will take a closer look at the com-
plete payoff profile of the portfolio for different future values of the underlying
asset price, St+5. We refer to the value of the portfolio today as VPF t and to the
hypothetical future value as VPF t+5 (St+5) .

We first calculate the value of the portfolio today as

VPF t = −1 ∗ 1.1698 − 1.5 ∗ 6.3155 + 2.5 ∗ 1.3806

= −7.1916

The delta of the portfolio is similarly

δ = −1 ∗ (−0.2403) − 1.5 ∗ 0.7597 + 2.5 ∗ 0.2892

= −0.1761

Now, the delta approximation to the portfolio value in 5 trading days is easily
calculated as

VPF t+5 (St+5) ≈ VPF t + δ (St+5 − St )

= −7.1916 − 0.1761 (St+5 − 100)

The gamma of the portfolio is

γ = −1 ∗ 0.03919 − 1.5 ∗ 0.03919 + 2.5 ∗ 0.04307

= 0.0096898

and the gamma approximation to the portfolio value in 5 trading days is

VPF t+5 (St+5)=VPF t +δ (St+5−St )+ 1

2
γ (St+5−St )

2

=−7.1916−0.1761∗(St+5−100)+0.004845∗(St+5−100)2
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FIGURE 7.9 The Five Day Future Portfolio Values for the Three-Option Portfolio Using the Delta,
Gamma and Full Valuation Methods Plotted against the Future Price of the Underlying Asset.

Finally, relying on full valuation, we must calculate the future hypothetical
portfolio values as

VPF t+5 (St+5)=−1∗pBSM(St+5,r =0.02/365,X=95, T̃ =28−7;σ =0.015)

−1.5∗cBSM(St+5,r =0.02/365,X=95, T̃ =28−7;σ =0.015)

+ 2.5∗cBSM(St+5,r =0.02/365,X=105, T̃ =28−7;σ =0.015)

where we subtract 7 calendar days from the time to maturity corresponding to the
risk management horizon of 5 trading days.

Letting the hypothetical future underlying stock price vary from 85 to 115,
the three-option portfolio values are shown in Figure 7.9. Notice how the exact
portfolio value is akin to a third-order polynomial. The nonlinearity is arising from
the fact that we have two strike prices. Both approximations are fairly poor when
the stock price makes a large move, and the gamma-based model is even worse
than the delta-based approximation when the stock price drops. Further details on
all the calculations in this section can be found on the CD-ROM.

The important lesson of this three-option example is as follows: The different
strike prices and the different exposures to the underlying asset price around the
different strikes create higher-order nonlinearities, which are not well captured
by the simple linear and quadratic approximations. In realistic option portfolios
consisting of thousands of contracts, there may be no alternative to using the full
valuation method.

7.9. SUMMARY

This chapter has presented three methods for incorporating options into the risk
management model.
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First, the delta-based approach consists of a complete linearization of the
nonlinearity in the options. This crude approximation essentially allows us to use
the methods in the previous chapters without modification. We just have to use the
options delta when calculating the portfolio weight of the option.

Second, we considered the quadratic, gamma-based approach, which attempts
to capture the nonlinearity of the option while still mapping the option returns into
the underlying asset returns. In general, we have to rely on simulation to calculate
the portfolio distribution using the gamma approach, but we only simulate the
underlying returns and not the option prices.

The third approach is referred to as full valuation. It avoids approximating the
option price, but it involves much more computational work. We simulate returns
on the underlying asset and then use an option pricing model to value each option
in the portfolio for each of the future hypothetical underlying asset prices.

In a simple example of a portfolio consisting of just one short call option, we
showed how a relatively large gamma would cause the delta-based VaR to differ
substantially from the gamma and full valuation VaRs.

In another example involving a portfolio of three options with different strike
prices and with large variations in the delta across the strike prices, we saw how
the gamma and delta approaches were both quite misleading with respect to the
future payoff profile of the options portfolio.

The main lesson from the chapter is that for nontrivial options portfolios and
for risk management horizons beyond just a few days, the full valuation approach
may be the only reliable choice.

7.10. FURTHER RESOURCES

The delta, gamma, and other risk measures are introduced and discussed in detail
in Hull (2002). Backus et al. (1997) gives the formula for delta in the Gram-
Charlier model. Duan (1995) provides the delta in the GARCH option pricing
model. Garcia and Renault (1998) discuss further the calculation of delta in the
GARCH option pricing model. Heston and Nandi (2000) provided the formula for
delta in the closed-form GARCH option pricing model.

The sample portfolio used to illustrate the pitfalls in the use of the delta
and gamma approximations is taken from Britten-Jones and Schaefer (1999),
which also contains the analytical VaR formulas for the gamma approach assuming
normality.

The important issue of accuracy versus computation speed in the full valuation
versus delta and gamma approaches is analyzed in Pritsker (1997).

In this and the previous chapter, we have restricted attention to European
options. American options and many types of exotic options can be priced using
binomial trees. Deltas and gammas can be calculated from the tree approach
as well. Hull (2002) contains a thorough introduction to binomial trees as an
approximation to the normal distribution with constant variance. Ritchken and
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Trevor (1999) price American options under GARCH using a time-varying tri-
nomial tree. Duan and Simonato (2001) price American options under GARCH
using instead a Markov chain simulation approach. Longstaff and Schwartz (2001)
establish a convenient least squares Monte Carlo method for pricing Ameri-
can and certain exotic options. Derman (1999), Derman and Kani (1994), and
Rubinstein (1994) suggest binomial trees, which allow for implied volatility smiles
as in the implied volatility function (IVF) approach in the previous chapter.

Whether one relies on the delta, gamma, or full valuation approach, an option
pricing model is needed to measure the risk of the option position. As all models
are inevitably approximations, they introduce an extra source of risk referred to as
model risk. Analysis of the various aspects of model risk can be found in Gibson
(2000).

7.11. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter7Data.xls file. The file contains European call options on the
S&P 500 from August 29, 2002.

1. Assume a volatility of 0.015 per calendar day for option pricing and a volatility
of 0.015 ∗ √

365/252 = 0.0181 per trading day for return volatility. Calculate
the delta and gamma of a short position of one option. Do this for every option in
the sample. Calculate the delta-based portfolio variance for each option and the
10-trading-day (that is, 14-calendar-day) 1% delta-based dollar VaR for each
option.

2. Assume a portfolio that consists of a short position of one in each of the option
contracts. Calculate the 10-day, 1% dollar VaRs using the delta-based and the
gamma-based models. Assume a normal distribution with the variance as in
question 1. Use MC = 5000 simulated returns for the 10-trading-day return.
Compare the simulated quadratic VaR with the one using the Cornish-Fisher
expansion formula.

3. Assume a short position of one option contract with 51 days to maturity and a
strike price of 925. Using the preceding 5000 random normal numbers, calculate
the changes in the 10-day portfolio value according to the delta-based, the
gamma-based, and the full valuation approach. Calculate the 10-day, 1% dollar
VaRs using the simulated data from the three approaches. Make histograms of
the distributions of the changes in the portfolio value for these three approaches
using the simulated data. Calculate the Cornish-Fisher VaR as well.

4. Replicate Figure 7.9.

The answers to these exercises can be found in the Chapter7Results.xls file.
Previews of the answers follow.
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8.1. CHAPTER OVERVIEW

The first seven chapters covered various methods for constructing risk manage-
ment models. Along the way we also considered several ways of diagnostic check-
ing. For example, in Chapter 1 we looked at the autocorrelations of returns to see
if the assumption of a constant mean was valid. In Chapter 2 we looked at the
autocorrelation function of returns squared divided by the time varying variance
to assess if we had modeled the variance dynamics properly. We also ran variance
regressions to assess the forecasting performance of the suggested GARCH mod-
els. In Chapter 4 we studied the so-called QQ plots to see if the distribution we
assumed for standardized returns captured the extreme observations in the sample.
In Chapter 5 we looked at the reaction of various risk models to an extreme event
such as the 1987 stock market crash. Finally, in Chapter 6 we illustrated option
pricing model misspecification in terms of implied volatility smiles and smirks.
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The objective in this chapter is to consider the ex ante risk measure forecasts
from the model and compare it with the ex post realized portfolio return. The
risk measure forecast could take the form of a value at risk (VaR), an expected
shortfall (ES), the shape of the entire return distribution, or perhaps the shape of
the left tail of the distribution only. We want to be able to backtest any of these
risk measures of interest. The backtest procedures developed in this chapter can be
seen as a final diagnostic check on the aggregate risk model, thus complementing
the various specific diagnostics covered in previous chapters. The discussion on
backtesting is followed up by a section on stress testing at the end of the chapter.
The material in the chapter will be covered as follows:

1. We take a brief look at the performance of some real-life VaRs from
six large (and anonymous) commercial banks. The clustering of VaR
violations in these real-life VaRs provides sobering food for thought.

2. We establish procedures for backtesting VaRs. We start by introducing a
simple unconditional test for the average probability of a VaR violation. We
then test the independence of the VaR violations. Finally, we combine the
unconditional test and the independence test in a test of correct conditional
VaR coverage.

3. We consider using explanatory variables to backtest the VaR. This is done
in a regression-based framework.

4. We establish backtesting procedures for the expected shortfall measure. As
discussed in Chapter 4, expected shortfall often contains more information
than the VaR measure, which, however, is more commonly used.

5. We broaden the focus to include the entire shape of the distribution of
returns. The distributional forecasts can be backtested as well, and we
suggest ways to do so. Risk managers typically care most about having a
good forecast of the left tail of the distribution, and we therefore modify
the distribution test to focus on backtesting the left tail of the distribution
only.

6. We define stress testing and give a critical survey of the way it is often
implemented. Based on this critique we suggest a coherent framework for
stress testing.

Before we get into the technical details of backtesting VaRs and other risk
measures, it is instructive to take a look at the performance of some real-life VaRs.
Figure 8.1 shows the exceedences (measured in return standard deviations) of the
VaR in six large (and anonymous) U.S. commercial banks during the January 1998
to March 2001 period. Whenever the realized portfolio return is worse than the
VaR, the difference between the two is shown. Whenever the returns is better,
zero is shown. The difference is divided by the standard deviation of the portfolio
across the period. The return is daily, and the VaR is reported for a 1% coverage
rate. To be exact, we plot the time series of

Min
{
RPF,t+1 −

(
−VaR.01

t+1

)
, 0
}/

σPF,t+1
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FIGURE 8.1 Value-at-Risk Exceedences From six Major Commercial Banks Reprinted from
Berkowitz and O’Brien (2002).

Bank 4 has no violations at all, and in general the banks have fewer violations
than expected. Thus, the banks on average report a VaR that is higher than it
should be. This could either be due to the banks deliberately wanting to be cautious
or the VaR systems being biased. Another culprit is that the returns reported by
the banks contain nontrading-related profits, which increase the average return
without substantially increasing portfolio risk.

More important, notice the clustering of VaR violations. The violations for
each of Banks 1, 2, 3, and 5 fall within a very short time span and often on adjacent
days. This clustering of VaR violations is a serious sign of risk model misspec-
ification. These banks are most likely relying on a technique such as historical
simulation (HS), which is very slow at updating the VaR when market volatility
increases. This issue was discussed in the context of the 1987 stock market crash
in Chapter 5.

Notice also how the VaR violations tend to be clustered across banks. Many
violations appear to be related to the Russia default and long-term capital man-
agement bailout in the fall of 1998. The clustering of violations across banks is
important from a regulator perspective as it raises the possibility of a country-
wide banking crisis.
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Motivated by this sobering evidence of misspecification in existing commer-
cial bank VaRs, we now introduce a set of statistical techniques for backtesting
risk management models.

8.2. BACKTESTING VaRs

Recall that a VaRp

t+1 measure promises that the actual return will only be worse
than the VaRp

t+1 forecast p∗100% of the time. If we observe a time series of past
ex ante VaR forecasts and past ex post returns, we can define the “hit sequence”
of VaR violations as

It+1 =



1, if RPF,t+1 < −VaRp

t+1

0, if RPF,t+1 > −VaRp

t+1

The hit sequence returns a 1 on day t + 1 if the loss on that day was larger
than the VaR number predicted in advance for that day. If the VaR was not vio-
lated, then the hit sequence returns a 0. When backtesting the risk model, we
construct a sequence {It+1}Tt=1 across T days indicating when the past violations
occurred.

8.2.1. The Null Hypothesis

If we are using the perfect VaR model, then given all the information available to
us at the time the VaR forecast is made, we should not be able to predict whether
the VaR will be violated. Our forecast of a VaR violation should be simply 100*p%
every day. If we could predict the VaR violations, then that information could be
used to construct a better risk model. In other words, the hit sequence of viola-
tions should be completely unpredictable and therefore distributed independently
over time as a Bernoulli variable. We write

H0 : It+1 ∼ i.i.d. Bernoulli(p)

If p is one half, then the i.i.d. Bernoulli distribution describes the distribution of
getting a “head” when tossing a fair coin. The Bernoulli distribution function is
written

f (It+1; p) = (1 − p)1−It+1pIt+1

When backtesting risk models, p will not be one-half but instead on the
order of 0.01 or 0.05 depending on the coverage rate of the VaR. The hit sequence
from a correctly specified risk model should thus look like a sequence of random
tosses of a coin, which comes up heads 1% or 5% of the time depending on the
VaR coverage rate.
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8.2.2. Unconditional Coverage Testing

We first want to test if the fraction of violations obtained for a particular risk
model, call it π, is significantly different from the promised fraction, p. We call
this the unconditional coverage hypothesis. To test it, we write the likelihood of
an i.i.d. Bernoulli(π) hit sequence

L (π) =
T∏

t=1

(1 − π)1−It+1πIt+1 = (1 − π)T0 πT1

where T0 and T1 are the number of 0s and 1s in the sample. We can easily
estimate π from π̂ = T1/T —that is, the observed fraction of violations in the
sequence. Plugging the maximum likelihood (ML) estimates back into the
likelihood function gives the optimized likelihood as

L
(
π̂
) = (1 − T1/T )T0 (T1/T )T1

Under the unconditional coverage null hypothesis that π = p, where p is the
known VaR coverage rate, we have the likelihood

L(p) =
T∏

t=1

(1 − p)1−It+1pIt+1 = (1 − p)T0pT1

We can check the unconditional coverage hypothesis using a likelihood ratio test

LRuc = −2 ln
[
L(p)/L

(
π̂
)]

Asymptotically, that is, as the number of observations, T , goes to infinity, the
test will be distributed as a χ2 with one degree of freedom. Substituting in the
likelihood functions, we write

LRuc = −2 ln
[
(1 − p)T0 pT1

/{
(1 − T1/T )T0 (T1/T )T1

}]
∼ χ2

1

Choosing a significance level of say 10% for the test, we will have a critical value
of 2.7055 from the χ2

1 distribution. If the LRuc test value is larger than 2.7055,
then we reject the VaR model at the 10% level. Alternatively, we can calculate the
P-value associated with our test statistic. The P-value is defined as the probability
of getting a sample that conforms even less to the null hypothesis than the sample
we actually got—given that the null hypothesis is true. In this case, the P-value is
calculated as

P-value ≡ 1 − Fχ2
1
(LRuc)

where Fχ2
1
(∗) denotes the cumulative density function of a χ2 variable with one

degree of freedom. If the P-value is below the desired significance level, then we
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reject the null hypothesis. If we, for example, obtain a test value of 3.5, then the
associated P-value is

P-value = 1 − Fχ2
1
(3.5) = 1 − 0.9386 = 0.0614

If we have a significance level of 10%, then we would reject the null hypothesis,
but if our significance level is only 5%, then we would not reject the null that the
risk model is correct on average.

The choice of significance level comes down to an assessment of the costs of
making two types of mistakes: We could reject a correct model (Type I error) or we
could fail to reject (that is, accept) an incorrect model (Type II error). Increasing
the significance level implies larger Type I errors but smaller Type II errors and vice
versa. In academic work, a significant level of 1%, 5%, or 10% is typically used.
In risk management, the Type II errors may be very costly so that a significance
level of 10% may be appropriate.

Often we do not have a large number of observations available for backtesting,
and we certainly will typically not have a large number of violations, T1, which
are the informative observations. It is therefore often better to rely on Monte Carlo
simulated P-values rather than those from the χ2 distribution. The simulated P-
values for a particular test value can be calculated by first generating 999 samples
of random i.i.d. Bernoulli(p) variables, where the sample size equals the actual
sample at hand. Given these artificial samples, we can calculate 999 simulated test

statistics, call them
{
L̃Ruc(i)

}999
i=1 . The simulated P-value is then calculated as the

share of simulated LRuc values, which are larger than the actually obtained LRuc

test value. We can write

P-value = 1

1000

{
1 +

999∑
i=1

1
(
L̃Ruc(i) > LRuc

)}

where 1(∗) takes on the value of one if the argument is true and zero otherwise.
To calculate the tests in the first place, we need samples where VaR violations

actually occurred—that is, we need some ones in the hit sequence. If we, for
example, discard simulated samples with zero or one violations before proceeding
with the test calculation, then we are in effect conditioning the test on having
observed at least two violations.

8.2.3. Independence Testing

Imagine all of the VaR violations or “hits” in a sample happening around the same
time, which was the case in Figure 8.1. Would you then be happy with a VaR
with correct average (or unconditional) coverage? The answer is clearly no. For
example, if the 5% VaR gave exactly 5% violations but all of these violations
came during a 3-week period, then the risk of bankruptcy would be much higher
than if the violations came scattered randomly through time. We therefore would
very much like to reject VaR models which imply violations that are clustered in
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time. Such clustering can easily happen in a VaR constructed from the historical
simulation method in Chapter 5, if the underlying portfolio return has a clustered
variance, which is common in asset returns and which we studied in Chapter 2.

If the VaR violations are clustered, then the risk manager can essentially
predict that if today is a violation, then tomorrow is more than p∗100% likely to
be a violation as well. This is clearly not satisfactory. In such a situation, the risk
manager should increase the VaR in order to lower the conditional probability of
a violation to the promised p.

Our task is to establish a test that will be able to reject a VaR with clustered
violations. To this end, assume the hit sequence is dependent over time and that
it can be described as a so-called first-order Markov sequence with transition
probability matrix

�1 =
[

1 − π01 π01
1 − π11 π11

]

These transition probabilities simply mean that conditional on today being a
nonviolation (that is, It = 0), then the probability of tomorrow being a violation
(that is, It+1 = 1) is π01.The probability of tomorrow being a violation given today
is also a violation is

π11 = Pr (It = 1 and It+1 = 1)

The first-order Markov property refers to the assumption that only today’s outcome
matters for tomorrow’s outcome—that the exact sequence of past hits does not
matter, only the value of It matters. As only two outcomes are possible (zero and
one), the two probabilities π01 and π11 describe the entire process. The probability
of a nonviolation following a nonviolation is 1 − π01, and the probability of a
nonviolation following a violation is 1 − π11.

If we observe a sample of T observations, then we can write the likelihood
function of the first-order Markov process as

L(�1) = (1 − π01)
T00 π

T01
01 (1 − π11)

T10 π
T11
11

where Tij , i, j = 0, 1 is the number of observations with a j following an i.
Taking first derivatives with respect to π01 and π11 and setting these derivatives
to zero, one can solve for the maximum likelihood estimates

π̂01 = T01

T00 + T01

π̂11 = T11

T10 + T11

Using then the fact that the probabilities have to sum to one, we have

π̂00 = 1 − π̂01

π̂10 = 1 − π̂11
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which gives the matrix of estimated transition probabilities

�̂1 ≡
[
π̂00 π̂01

π̂10 π̂11

]
=
[

1 − π̂01 π̂01

1 − π̂11 π̂11

]
=



T00
T00+T01

T01
T00+T01

T10
T10+T11

T11
T10+T11




Allowing for dependence in the hit sequence corresponds to allowing π01
to be different from π11. We are typically worried about positive dependence,
which amounts to the probability of a violation following a violation (π11) being
larger than the probability of a violation following a nonviolation (π01). If, on the
other hand, the hits are independent over time, then the probability of a violation
tomorrow does not depend on today being a violation or not, and we write π01 =
π11 = π. Under independence, the transition matrix is thus

�̂ =
[

1 − π̂ π̂

1 − π̂ π̂

]

We can test the independence hypothesis that π01 = π11 using a likelihood
ratio test

LRind = −2 ln
[
L
(
π̂
) /

L
(
�̂1
)] ∼ χ2

1

where L
(
π̂
)

is the likelihood under the alternative hypothesis from the LRuc test.
In large samples, the distribution of the LRind test statistic is also χ2 with

one degree of freedom. But we can calculate the P-value using simulation as we
did before. We again generate 999 artificial samples of i.i.d. Bernoulli variables,
calculate 999 artificial test statistics, and find the share of simulated test values
that are larger than the actual test value.

As a practical matter, when implementing the LRind tests one may incur
samples where T11 = 0. In this case, we simply calculate the likelihood function as

L
(
�̂1
) = (

1 − π̂01
)T00 π̂

T01
01

8.2.4. Conditional Coverage Testing

Ultimately, we care about simultaneously testing if the VaR violations are inde-
pendent and the average number of violations is correct. We can test jointly for
independence and correct coverage using the conditional coverage test

LRcc = −2 ln
[
L(p)/L

(
�̂1
)] ∼ χ2

2

which corresponds to testing that π01 = π11 = p.

Notice that the LRcc test takes the likelihood from the null hypothesis in the
LRuc test and combines it with the likelihood from the alternative hypothesis in
the LRind test. Therefore,

LRcc = −2 ln
[
L(p)

/
L
(
�̂1
)]
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= −2 ln
[{

L(p)
/
L
(
π̂
)}{

L
(
π̂
)/

L
(
�̂1
)}]

= −2 ln
[
L(p)

/
L
(
π̂
)]− 2 ln

[
L
(
π̂
)/

L
(
�̂1
)]

= LRuc + LRind

so that the joint test of conditional coverage can be calculated by simply
summing the two individual tests for unconditional coverage and independence.As
before, the P-value can be calculated from simulation.

8.3. INCREASING THE INFORMATION SET

The preceding tests are quick and easy to implement. But as they only use infor-
mation on past VaR violations, they might not have much power to detect misspec-
ified risk models. To increase the testing power, we consider using the information
in past market variables, such as interest rate spreads or volatility measures. The
basic idea is to test the model using information that may explain when violations
occur. The advantage of increasing the information set is not only to increase power
but also to help us understand the areas in which the risk model is misspecified.
This understanding is key in improving the risk models further.

If we define the vector of variables available to the risk manager at time t as
Xt , then the null hypothesis of a correct risk model can be written as

H0 : Pr (It+1 = 1|Xt) = p ⇔ E [It+1|Xt ] = p

The first hypothesis says that the conditional probability of getting a VaR
violation on day t + 1 should be independent of any variable observed at time t ,
and it should simply be equal to the promised VaR coverage rate, p. This hypothesis
is equivalent to the conditional expectation of a VaR violation being equal to p.

The reason for the equivalence is that It+1 can only take on one of two values:
0 and 1. Thus, we can write the conditional expectation as

E [It+1|Xt ] = 1 ∗ Pr (It+1 = 1|Xt) + 0 ∗ Pr (It+1 = 0|Xt) = Pr (It+1 = 1|Xt)

Thinking of the null hypothesis in terms of a conditional expectation immedi-
ately leads us to consider a regression-based approach, because regressions are
essentially conditional mean functions.

8.3.1. A Regression Approach

Consider regressing the hit sequence on the vector of known variables, Xt . In a
simple linear regression, we would have

It+1 = b0 + b′
1Xt + et+1

where the error term et+1 is assumed to be independent of the regressor, Xt.
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The hypothesis that E [It+1|Xt ] = p is then equivalent to

E
[
b0 + b′

1Xt + et+1|Xt

] = p

As Xt is known, taking expectations yields

b0 + b′
1Xt = p

which can only be true if b0 = p and b1 = 0. In this linear regression framework,
the null hypothesis of a correct risk model would therefore correspond to the
hypothesis

H0 : b0 = p, b1 = 0

which can be tested using a standard F-test. The P-value from the test can be
calculated using simulated samples as described earlier.

There is, of course, no particular reason why the explanatory variables should
enter the conditional expectation in a linear fashion. But nonlinear functional
forms could be tested as well.

8.4. BACKTESTING EXPECTED SHORTFALL

In Chapter 4 we argued that the value at risk had certain drawbacks as a risk
measure, and we defined expected shortfall (ES),

ESp

t+1 = −Et

[
RPF,t+1|RPF,t+1 < −VaRp

t+1

]

as a viable alternative. We now want to think about how to backtest the ES
risk measure.

Consider again a vector of variables, Xt, which are known to the risk manager
and which may help explain potential portfolio losses beyond what is explained
by the risk model. The ES risk measure promises that whenever we violate the
VaR, the expected value of the violation will be equal to ESp

t+1. We can therefore
test the ES measure by checking if the vector Xt has any ability to explain the
deviation of the observed shortfall or loss, −RPF,t+1, from the expected shortfall
on the days where the VaR was violated. Mathematically, we can write

−RPF,t+1 − ESp

t+1 = b0 + b′
1Xt + et+1, for t + 1 where RPF,t+1 < −VaRp

t+1

where t +1 now refers only to days where the VaR was violated. The observations
where the VaR was not violated are simply removed from the sample. The error
term et+1 is again assumed to be independent of the regressor, Xt.

To test the null hypothesis that the risk model from which the ES forecasts
were made uses all information optimally (b1 = 0), and that it is not biased
(b0 = 0), we can jointly test that b0 = b1 = 0.

Notice that now the magnitude of the violation shows up on the left-hand
side of the regression. But notice that we can still only use information in the tail
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to backtest. The ES measure does not reveal any particular properties about the
remainder of the distribution, and therefore we only use the observations where
the losses were larger than the VaR.

8.5. BACKTESTING THE ENTIRE DISTRIBUTION

Rather than focusing on particular risk measures from the return distribution such
as the value at risk or the expected shortfall, we could instead decide to backtest
the entire return distribution from the risk model. This would have the benefit
of potentially increasing further the power to reject bad risk models. Notice,
however, that we are again changing the object of interest: If only the VaR
is reported, for example, from historical simulation, then we cannot test the
distribution.

Assuming that the risk model produces a cumulative distribution forecast for
returns, call it Ft(∗). Then at the end of every day, after having observed the
actual portfolio return, we can calculate the risk model’s probability of observing
a return below the actual. We will denote this so-called transform probability by
p̃t+1:

p̃t+1 ≡ Ft

(
RPF,t+1

)

If we are using the correct risk model to forecast the return distribution,
then we should not be able to forecast the risk model’s probability of falling
below the actual return. In other words, the time series of observed probabilities
p̃t+1 should be distributed independently over time as a Uniform(0, 1) variable.
We therefore want to consider tests of the null hypothesis

H0 : p̃t+1 ∼ i.i.d. Uniform (0, 1)

The Uniform(0, 1) distribution function is flat on the interval 0 to 1 and zero
everywhere else. As the p̃t+1 variable is a probability, it is must lie in the zero to
one interval. A visual diagnostic on the distribution would be to simply construct a
histogram and check to see if it looks reasonably flat. If systematic deviations from
a flat line appear in the histogram, then we would conclude that the distribution
from the risk model is misspecified.

For example, if the true portfolio return data follows a fat tailed Student’s
t (d) distribution, but the risk manager uses a normal distribution model, then we
will see too many p̃t+1s close to zero and one, too many around 0.5, and too few
elsewhere. This would just be another way of saying that the observed returns
data have more observations in the tails and around zero than the normal distri-
bution allows for. Figure 8.2 shows the histogram of a p̃t+1 sequence, obtained
from taking Ft

(
RPF,t+1

)
to be normal distribution with zero mean and variance

d/(d − 2), when it should have been Student’s t (d), with d = 6. Thus, we use
the correct mean and variance to forecast the returns, but the shape of our density
forecast is incorrect.
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FIGURE 8.2 Histogram of the Transform Probability, p̂t+1. The returns follow an i.i.d. Student’s
t (6) distribution, but they are forecasted by an i.i.d.N(0, 2/(d − 2)), with d = 6.

The histogram check is, of course, not a proper statistical test, and it does not
test the time variation in p̃t+1. If we can predict p̃t+1 using information avail-
able on day t , then p̃t+1 is not i.i.d., and the conditional distribution forecast,
Ft(RPF,t+1), is therefore not correctly specified either. We want to consider proper
statistical tests here.

Unfortunately, testing the i.i.d. uniform distribution hypothesis is cumber-
some due to the restricted support of the uniform distribution. We therefore
transform the i.i.d. Uniform p̃t+1 to an i.i.d. standard normal variable, z̃t+1
using the inverse cumulative distribution function, �−1. We write

H0 : p̃t+1 ∼ i.i.d. Uniform (0, 1) ⇔
H0 : z̃t+1 = �−1 (p̃t+1) = �−1 (Ft

(
RPF,t+1

)) ∼ i.i.d. N (0, 1)

We are now left with a test of a variable conforming to the standard normal
distribution, which can easily be implemented.

We proceed by specifying a model that we can use to test against the null
hypothesis. Assume again, for example, that we think a variable Xt may help
forecast z̃t+1. Then we can write

z̃t+1 = b0 + b′
1Xt + σzt+1, with zt+1 ∼ i.i.d. N(0, 1)

The log-likelihood of a sample of T observations of z̃t+1 under the alternative
hypothesis is then

ln L
(
b0, b1, σ

2
)

= −T

2
ln (2π) − T

2
ln
(
σ 2
)

−
T∑

t=1

((
z̃t+1 − b0 − b′

1Xt

)2
2σ 2

)

where we have conditioned on an initial observation.
The parameter estimates b̂0, b̂1, σ̂

2 can be obtained from maximum likelihood
or, in this simple case, from linear regression. We can then write a likelihood ratio
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test of correct risk model distribution as

LR = −2
(

ln L (0, 0, 1) − ln L
(
b̂0, b̂1, σ̂

2
))

∼ χ2
nb+2

where the degrees of freedom in the χ2 distribution will depend on the number of
parameters, nb, in the vector b1. If one does not have much of an idea about how
to choose Xt, then lags of z̃t+1 itself would be obvious choices.

8.5.1. Backtesting Only the Left Tail of the Distribution

In risk management, we often only really care about forecasting the left tail of the
distribution correctly. Testing the entire distribution as we did earlier, may lead us
to reject risk models that capture the left tail of the distribution well, but not the
rest of the distribution. Instead, we should construct a test that directly focuses on
assessing the risk model’s ability to capture the left tail of the distribution, which
contains the largest losses.

Consider restricting attention to the tail of the distribution to the left of the
VaRp

t+1—that is, to the 100p% largest losses.
If we want to test that the p̃t+1 observations from, for example, the 10% largest

losses are themselves uniform, then we can construct a rescaled p̃t+1 variable as

p̃∗
t+1 =

{
10p̃t+1, if p̃t+1 < 0.10

Else not defined

Then we can write the null hypothesis that the risk model provides the correct tail
distribution as

H0 : p̃∗
t+1 ∼ i.i.d. Uniform (0, 1)

or equivalently

H0 : z̃∗
t+1 = �−1 (p̃∗

t+1

) ∼ i.i.d. N (0, 1)

Figure 8.3 shows the histogram of p̃∗
t+1 corresponding to the 10% smallest

returns. The data again follows a Student’s t (d) distribution, but the density fore-
cast model assumes the normal distribution. We have simply zoomed in on the
leftmost 10% of the histogram from Figure 8.2. The systematic deviation from a
flat histogram is again obvious.

To do formal statistical testing, we can again construct an alternative
hypothesis as in

z̃∗
t+1 = b0 + b′

1Xt + σzt+1, with zt+1 ∼ i.i.d. N(0, 1)

for t + 1 such that RPF,t+1 < − VaRp

t+1. We can then calculate a likelihood ratio
test

LR = −2
(

ln L(0, 0, 1) − ln L
(
b̂0, b̂1, σ̂

2
))

∼ χ2
nb+2

where nb again is the number of elements in the parameter vector b1.
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FIGURE 8.3 Histogram of the Transform Probability, p̂t+1 from the 10% Largest Losses. The
returns follow an i.i.d. Student’s t (6) distribution, but they are forecasted by an i.i.d.N(0, 2/(d − 2)),
with d = 6.

8.6. STRESS TESTING

Due to the practical constraints from managing large portfolios, risk managers
often work with relatively short data samples. This can be a serious issue if the
historical data available do not adequately reflect the potential risks going forward.
The available data may, for example, lack extreme events such as an equity market
crash, which occurs very infrequently.

To make up for the inadequacies of the available data, it can be useful to
artificially generate extreme scenarios of the main factors driving the portfolio
returns (see the exposure mapping discussion in Chapter 3) and then assess the
resulting output from the risk model. This is referred to as stress testing, as we
are stressing the model by exposing it to data different from the data used when
specifying and estimating the model.

At first pass, the idea of stress testing may seem vague and ad hoc. Two key
issues appear to be, first, how should one interpret the output of the risk model
from the stress scenarios, and second, how should one create the scenarios in the
first place? We deal with each of these issues in turn.

8.6.1. Combining Distributions for Coherent Stress Testing

Standard implementation of stress testing amounts to defining a set of scenarios,
running them through the risk model using the current portfolio weights, and if
a scenario results in an extreme loss, then the portfolio manager may decide to
rebalance the portfolio. Notice how this is very different from deciding to rebalance
the portfolio based on an undesirably high VaR or expected shortfall (ES). VaR
and ES are proper probabilistic statements: What is the loss such that I will lose
more only 1% of the time (VaR)? Or what is the expected loss when I exceed my
VaR (ES)? Standard stress testing does not tell the probability manager anything
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about the probability of the scenario happening, and it is therefore not at all clear
what the portfolio rebalancing decision should be. The portfolio manager may end
up overreacting to an extreme scenario, which occurs with very low probability,
and underreact to a less extreme scenario, which occurs much more frequently.
Unless a probability of occurring is assigned to each scenario, then the portfolio
manager really has no idea how to react.

On the other hand, once scenario probabilities are assigned, then stress testing
can be very useful. To be explicit, consider a simple example of one stress scenario,
which we define as a probability distribution fstress(∗) of the vector of factor
returns. We simulate a vector of risk factor returns from the risk model, calling it
f (∗), and we also simulate from the scenario distribution, fstress(∗). If we assign
a probability α of a draw from the scenario distribution occurring, then we can
combine the two distributions as in

fcomb(∗) =
{

f (∗), with probability (1 − α)

fstress(∗), with probability α

Data from the combined distribution is generated by drawing a random vari-
able Ui from a Uniform(0,1) distribution. If Ui is smaller than α, then we draw
a return from fstress(∗); otherwise we draw it from f (∗). The combined distribu-
tion can easily be generalized to multiple scenarios, each of which has its own
preassigned probability of occurring.

Notice that by simulating from the combined distribution, we are effectively
creating a new data set that reflects our available historical data as well our view
of the deficiencies of it. The deficiencies are rectified by including data from the
stress scenarios in the new combined data set.

Once we have simulated data from the combined data set, we can calculate
the VaR or ES risk measure on the combined data using the previous risk model.
If the risk measure is viewed to be inappropriately high, then the portfolio can be
rebalanced. Notice that now the rebalancing is done taking into account both the
magnitude of the stress scenarios and their probability of occurring.

Assigning the probability, α, also allows the risk manager to backtest the VaR
system using the combined probability distribution fcomb(∗). Any of these can be
used to test the risk model using the data drawn from fcomb(∗). If the risk model,
for example, has too many VaR violations on the combined data, or if the VaR
violations come in clusters, then the risk manager should consider respecifying the
risk model. Ultimately, the risk manager can use the combined data set to specify
and estimate the risk model.

8.6.2. Choosing Scenarios

Having decided to do stress testing, a key challenge to the risk manager is to create
relevant scenarios. The scenarios of interest will typically vary with the type of
portfolio under management and with the factor returns applied. The exact choice
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of scenarios will therefore be situation specific, but in general, certain types of
scenarios should be considered. The risk manager ought to do the following:

• Simulate shocks that are more likely to occur than the historical database
suggests. For example, the available database may contain a few high
variance days, but if in general the recent historical period was unusually
calm, then the high variance days can simply be replicated in the stress
scenario.

• Simulate shocks that have never occurred but could. Our available sample
may not contain any stock market crashes, but one could occur.

• Simulate shocks reflecting the possibility that current statistical patterns
could break down. Our available data may contain a relatively low persis-
tence in variance, whereas longer samples suggest that variance is highly
persistent. Ignoring the potential persistence in variance could lead to a
clustering of large losses going forward.

• Simulate shocks that reflect structural breaks that could occur. A prime
example in this category would be the sudden float of the previously fixed
Thai baht currency in the summer of 1997.

Even if we have identified a set of scenario types, pinpointing the specific
scenarios is still difficult. But the long and colorful history of financial crises may
serve a source of inspiration. Examples could include crises set off by political
events or natural disasters. For example, the 1995 Nikkei crisis was set off by the
Kobe earthquake, and the 1979 oil crisis was rooted in political upheaval. Other
crises such as the 1997 Thai baht float and subsequent depreciation mentioned
earlier could be the culmination of pressures such as a continuing real appreciation
building over time resulting in a loss of international competitiveness.

The effects of market crises can also be very different. They can result in
relatively brief market corrections, as was the case after the October 1987 stock
market crash, or they can have longer lasting effects, such as the Great Depression
in the 1930s. Figure 8.4 depicts the 10 largest daily declines in the Dow-Jones
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1915–2002.
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Industrial Average during the past 100 years. It clearly shows that the October 19,
1987, decline was very large even on a historical scale.

Figure 8.5 shows 10 episodes of prolonged market downturn—or bear
markets—defined as at least a 30% decline over at least 50 days. Figure 8.5
shows that the bear market following the 1987 market crash was relatively mod-
est compared to previous episodes. Stress testing scenarios should include both
rapid corrections, such as the 1987 episode, as well as prolonged downturns that
prevailed previously.

8.7. SUMMARY

The backtesting of a risk model can be seen as a final step in model building
procedure, and it therefore represents the final chapter in this book. The clustering
in time of VaR violations as seen in actual commercial bank risk models can
pose a serious threat to the financial health of the institution. In this chapter,
we have therefore developed backtesting procedures capable of capturing such
clustering. Backtesting tools were introduced for various risk measures including
VaR, expected shortfall (ES), the entire return density, and the left tail of the density.

The more information is provided in the risk measure, the higher statistical
power we will have to reject a misspecified risk model. The popular VaR risk mea-
sure does not, unfortunately, convey a lot of information about the portfolio risk.
It tells us a return threshold, which we will only exceed with a certain probability,
but it does not tell us about the magnitude of violations that we should expect. The
lack of information in the VaR makes it harder to backtest. All we can test is that the
VaR violations fall randomly in time and in the proportion matching the promised
coverage rate. Purely from a backtesting perspective, other risk measures such as
ES and the distribution shape are therefore preferred.

Backtesting ought to be supplemented by stress testing, and we have outlined
a framework for doing so. Standard stress testing procedures do not specify the
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probability with which the scenario under analysis will occur. The failure to specify
a probability renders the interpretation of stress testing scenarios very difficult. It
is not clear how one should react to a large VaR from an extreme scenario unless
the likelihood of the scenario occurring is assessed. While it is, of course, difficult
to pinpoint the likelihood of extreme events, doing so enables the risk manager to
construct a pseudo data set that combines the actual data with the stress scenarios.
This combined data set can be used to backtest the model. Stress testing and
backtesting is then done in an integrated fashion.

8.8. FURTHER RESOURCES

The VaRs exceedences from the six U.S. commercial banks in Figure 8.1 are
taken from Berkowitz and O’Brien (2002). Jorion (2002) argues that the temporal
clustering of violations in bank VaRs is due to smoothing constraints imposed on
the risk management systems by regulators. The VaR backtests of unconditional
coverage, independence, and conditional coverage are derived from Christoffersen
(1998). Kupiec (1995) restricts attention to unconditional testing. The regression-
based approach is used in Christoffersen and Diebold (2000). Christoffersen and
Pelletier (2003) discuss further details in implementing the Monte Carlo simulated
P-values, which are originally derived by Dufour (2000). Christoffersen, Hahn,
and Inoue (2001) develop tests for comparing different VaR models. Andreou
and Ghysels (2002) consider ways of detecting structural breaks in the return
process for the purpose of financial risk management. Procedures for backtesting
the expected shortfall risk measures can be found in McNeil and Frey (2000).
Graphical tools for assessing the quality of density forecasts are suggested in
Diebold, Gunther, and Tay (1998) and in Diebold, Hahn and Tay (1999). Crnkovic
and Drachman (1996) and Berkowitz (2001) establish formal statistical density
evaluation tests, and Berkowitz (2001), in addition, suggests focusing attention to
backtesting the left tail of the density.

A useful general discussion of stress testing can be found on www.erisk.com.
The coherent framework for stress testing is spelled out in Berkowitz (2000). The
May 1998 issue of the World Economic Outlook, published by the International
Monetary Fund (see www.imf.org), contains a useful discussion of financial crises
during the past quarter of a century. Kindleberger (2000) takes an even longer
historical view.

8.9. EMPIRICAL EXERCISES ON CD-ROM

Open the Chapter8Data.xls file from the CD-ROM.

1. Compute the daily variance of the returns on the S&P 500 for the period starting
January 2, 1992, using the RiskMetrics approach. Use the first 2 years of data
to calculate the variance of the return on January 2, 1992.
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2. Compute the 1% and 5% 1-day value at risk for each day using RiskMetrics
and historical simulation with 500 observations. Again, the first 2 years of data
should be used to calculate the value at risk on January 2, 1992.

3. For the 1% and 5% value at risk, calculate the indicator “hit” sequence for both
the RiskMetrics and historical simulation models. The hit sequence takes on
the value 1 if the return is below the (negative of the) VaR and 0 otherwise.

4. Calculate the LRuc, LRind , and LRcc tests on the hit sequence from the RiskMet-
rics and historical simulation models. (Excel Hint: Use the CHIINV function.)
Can you reject the VaR model using a 10% significance level?

5. Using the RiskMetrics variances calculated in question 1, compute the uniform
transform variable. Plot the histogram of the uniform variable. Does it look
flat?

6. Transform the uniform variable to a normal variable using the inverse cumula-
tive density function (cdf) of the normal distribution. Plot the histogram of the
normal variable. What is the mean, standard deviation, skewness, and kurtosis?
Does the variable appear to be normally distributed?

7. Take all the values of the uniform variable that are less than or equal to 0.1.
Multiply each number by 10. Plot the histogram of this new uniform variable.
Does it look flat? Why should it?

8. Transform the new uniform variable to a normal variable using the inverse cdf
of the normal distribution. Plot the histogram of the normal variable. What is
the mean, standard deviation, skewness, and kurtosis? Does the variable appear
to be normally distributed?

The answers to these exercises can be found in the Chapter8Results.xls file.
Previews of the answers follow.
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unconditional coverage testing,

185–186
Bankruptcy, 2–3
Bartlett standard error bands, 31
Black-Scholes-Merton model

description of, 121, 124
development of, 124
empirical exercises, 142, 144
European call option price,

126–127
implied volatility, 128–129, 132
misspecification in, 128–129
option delta, 155–157
summary of, 139–140

Business risk, 5

Call option
Black-Scholes-Merton model, 155
delta of, 154
description of, 123
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Call option (continued )
European

Black-Scholes-Merton model for pricing
of, 126–127

delta for, 155
gamma for, 161–162

Capital structure, 3
Closed-form GARCH option pricing model,

137–138, 141–142
Combined probability distribution, 195
Conditional correlation modeling, 54–58
Conditional covariances, 52–54
Conditional coverage testing, for backtesting

value at risk, 188–189
Conditional probability, 81
Conditional variance, 28, 135
Cornish-Fisher approximation value at risk,

79–80, 88, 164
Correlations

covariances vs., 54–55
modeling of, 54–58
resources regarding, 61–62

Covariance
conditional, 52–54
correlation vs., 54–55
definition of, 55
GARCH(1,1) for, 53
range-based, 59–61
realized, 59–61

Credit risk, 5
Cross-gammas, 165
Cumulative distribution forecast, 191

Daily returns, 6
Daily squared return proxy, 33, 38
Delta, option

Black-Scholes-Merton model, 155–157
definition of, 154
empirical exercises, 175–179
GARCH option pricing model, 158
Gram-Charlier model, 157–158
pitfalls associated with, 171–173
portfolio risk evaluated using, 159–161
resources regarding, 174
summary overview of, 174

Distribution
backtesting of, 191–193
left tail of, 193–194
stress testing, 194–195

EGARCH, 27
Empirical exercises

backtesting, 198–207
Black-Scholes-Merton model, 142, 144
delta, 175–179
full valuation, 175–179
gamma, 175–179
implied volatility, 143, 146
option pricing, 142–150
option risk modeling, 175–179
quantile-quantile plots, 89–96
risk management, 10–17
simulation(s), 113–118
standardized t (d) distribution, 89–96
stress testing, 198–207
value at risk, 63–71
variance models, 39–45

European call option
Black-Scholes-Merton model for pricing of,

126–127
delta for, 155
gamma for, 161–162

European put option
delta for, 155–156
gamma for, 161–162
pricing formula, 125

Expected shortfall
backtesting of, 190–191
definition of, 190

Expected shortfall risk measure, 85–87
Exponential smoother. see RiskMetrics variance

model
Exposure mappings, 52
Extreme value theory

central result in, 80
defining of, 81
easy estimate, 82–83
parameter estimation, 81–82
quantile-quantile plot constructed from,

83–85
thresholds, 83

Filtered historical simulation, 100, 110–112
Firm performance, 4
First-order Markov property, 187
Forecasting, simple variance, 20–23
Full valuation

definition of, 166
empirical exercises, 175–179
portfolio risk using, 166–168
resources regarding, 174
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summary overview of, 174
value at risk, 167, 170

Gamma, option
definition of, 161
empirical exercises, 175–179
pitfalls associated with, 171–173
portfolio risk using, 163–166
resources regarding, 174
simulation-based approximation, 164–166
summary overview of, 174

GARCH(1,1)
covariance, 53
definition of, 26
description of, 101–102
distribution implied by, 72

GARCH(2,2), 26
GARCH option pricing model

assumptions of, 133–134
closed-form, 137–138, 141–142
description of, 133–135, 158
implementation of, 135–137
maximum likelihood estimation, 137

GARCH variance model
advantage of, 24
explanatory variables, 27–28
exponential, 27
extensions to, 26–28
flexibility of, 38
formula for, 23, 27, 29
long-term variance, 26
nonlinear, 26–27, 30
resources regarding, 39
RiskMetrics variance model vs., 25
simple normal, 72
today’s variance using, 37
tomorrow’s variance using, 23

Generalized autoregressive conditional
heteroskedasticity. see GARCH variance
model

Generalized Pareto distribution, 81
Gram-Charlier density function, 130
Gram-Charlier expansion, 130, 140
Gram-Charlier option price model, 130, 140,

147, 157–158

Hill estimator, 82
Historical simulation

advantages and disadvantages of, 101–103
background, 100

defining of, 101
filtered, 100, 110–112
value at risk, 102
weighted, 103–105

Implied volatility
description of, 127–129, 132
empirical exercises, 143, 146
functions, 138–139

Independence testing, for backtesting value at
risk, 186–188

Index mapping, 52
Individual asset returns, 8
Intraday information

description of, 32
high and low prices, 33–34
range of prices, 33
returns, 34–36

Kurtosis, 80, 129–133

Leverage effect, 26–27
Likelihood ratio, 192–193
Liquidity risk, 5
“Log” return, 6
Logarithmic returns, 62
Long Term Capital Management, 5

Market risk, 4–5
Markov property, first-order, 187
Maximum likelihood estimation

definition of, 29
example of, 30
GARCH option pricing model, 137
quasi-, 29–30, 58–59, 77
standard, 28–29
standardized t (d) distribution, 76–77

Modigliani-Miller theorem, 2
Monte Carlo simulation, 108–110, 136, 186
Multi-period risk calculations, 105–108

Negative kurtosis, 129
NGARCH, 26–27, 30
Non-normality

analysis of, 73
visualizing of, 73–74

Null hypothesis, for backtesting value at risk,
184
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Operational risk, 5
Option delta

Black-Scholes-Merton model, 155–157
definition of, 154
empirical exercises, 175–179
GARCH option pricing model, 158
Gram-Charlier model, 157–158
pitfalls associated with, 171–173
portfolio risk evaluated using, 159–161
resources regarding, 174
summary overview of, 174

Option gamma
definition of, 161
empirical exercises, 175–179
pitfalls associated with, 171–173
portfolio risk using, 163–166
resources regarding, 174
simulation-based approximation, 164–166
summary overview of, 174

Option prices, 27
Option pricing

Black-Scholes-Merton model. see
Black-Scholes-Merton model

definitions, 122–123
empirical exercises, 142–150
European, 127. see also European call option;

European put option
formula, 125
GARCH model

assumptions of, 133–134
closed-form, 137–138, 141–142
description of, 133–135, 158
implementation of, 135–137
maximum likelihood estimation, 137

Gram-Charlier model, 130, 140, 147, 157–158
implied volatility function models, 138–139
normal distribution

description of, 123–127
implied volatility, 127–129
model implementation, 127

overview of, 121–122
resources regarding, 140–141
summary overview of, 139–140

Option risk modeling
delta. see Option delta
empirical exercises, 175–179
examples of, 168–171
full valuation, 166–168
gamma. see Option gamma
summary overview of, 173–174

Parkinson variance proxy, 60
Partial derivative, 154
Plain rolling averages, 52–53
Portfolio, value at risk for, 48–51
Portfolio returns

definition of, 101
description of, 76
standardization of, 79
variance of, 100

Portfolio risk
delta for, 159–161
full valuation for, 166–168
gamma for, 163–166

Portfolio variance
description of, 51
exposure mappings, 52
GARCH-type model of, 110

Protective put, 125
Put option

description of, 123
European

delta for, 155–156
gamma for, 161–162
price formula, 125

Put-call parity, 125–126

Quantile-quantile plots
description of, 73–74, 181
empirical exercises, 89–96
extreme value theory, 83–85
standardized t (d) distribution, 77–78
summary overview of, 88

Quasi-maximum likelihood estimation, 29–30,
58–59, 77

Range-based covariance, 59–61
Range-based variance, 33, 37–38
Realized covariance, 59–61
Realized variance

description of, 36
limitations of, 37
range-based variance vs., 37–38

Returns
intraday, 34–36
sample of, 76

Risk
business, 5
credit, 5
liquidity, 5
market, 4–5
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multi-period, 105–108
operational, 5

Risk management
differences in, 3
empirical exercises, 10–17
evidence of, 3–4
firm performance and, 4
importance of, 2–3
reasons for, 2–3
resources regarding, 9–10

RiskMetrics variance model
advantages of, 22
formula for, 21–22
GARCH variance model vs., 25
persistence, 24
today’s variance using, 22
tomorrow’s variance using, 22
variances, 107

Risk-neutral expectation, 134
Risk-neutral valuation principle, 124, 131

Shocks, 196
Simple portfolios, value at risk for, 48–51
Simple variance forecasting, 20–23
Simulation(s)

empirical exercises, 113–118
historical

advantages and disadvantages of,
101–103

background, 100
defining of, 101
filtered, 100, 110–112
value at risk, 102
weighted, 103–105

Monte Carlo, 108–110, 136, 186
overview of, 99–100
resources regarding, 113
summary of, 112–113

Skewness, 129–133
Smile, 128, 138
Smirk, 128, 138
Standardized t (d) distribution

description of, 74–75
empirical exercises, 89–96
estimates, 77
features of, 75–76
formula, 74
maximum likelihood estimation, 76–77
quantile-quantile plots, 77–78
resources for, 88
value at risk calculations, 78–79

Stepwise distribution modeling approach, 19, 71
Stress testing

coherent, 194–195
description of, 194
distributions combined for, 194–195
empirical exercises, 198–207
resources for, 198
scenarios for, 195–197
summary overview of, 197–198

Tail of distribution, 193–194
Taxes, 3
t (d) distribution. see Standardized t (d)

distribution

Unconditional coverage testing, for backtesting
value at risk, 185–186

Value at risk
arithmetic returns, 62
backtesting

conditional coverage testing, 188–189
independence testing, 186–188
null hypothesis, 184
unconditional coverage testing, 185–186

calculating of, 78–79, 85
Cornish-Fisher approximation, 79–80, 88, 164
empirical exercises, 63–71
extreme value theory, 84–85
full valuation, 167, 170
historical simulation, 102
hit sequence returns, 184
horizons, 122
limitations of, 49
logarithmic returns, 62
portfolio, 100
principles of, 48–51
real-life examples, 182–183
violations, 183–184

Variance, 7
Variance index, 27
Variance models

empirical exercises of, 39–45
evaluation of, 30–32
GARCH. see GARCH variance model
in-sample check on autocorrelations, 31
objective of, 31
out-of-sample check using regression, 31–32
resources regarding, 38–39
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Variance models (continued )
RiskMetrics. see RiskMetrics variance model
summary overview of, 38

Volatility
implied

description of, 127–129, 132

empirical exercises, 143, 146
functions, 138–139

range-based estimate of, 33

Weighted historical simulation, 103–105
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