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Preface
to the Second Edition

The major change in this new edition is an increase in the number of
challenging problems. This was requested by our readers. Since the
actuarial examinations are an exceiient source of challenging problems,
we have added 109 sample exam problems to our exercise sections.
(Detailed solutions can be found in the solutions manual). We thank the
Sociefy of Actuaries for permission to use these problems.

We have added three new sections which cover the bivariate normal
distribution, joint moment generating functions and the multinomial
distribution.

The authors would like to thank the second edition review team:
Leonard A. Asimow, ASA, Ph.D. Robert Morris University, and
Krupa S. Viswanathan, ASA, Ph.D., Temple University.

Finally we would like to thank Gail Hall for her editorial work on the
text and Marilyn Baleshiski for putting the book together.

Matt Hassett
Don Stewart

Tempe, Arizona
June,2006



Preface

This text provides a first course in probability for students with a basic
calculus background. It has been designed for students who are mostly
interested in the applications of probability to risk management in vital
modern areas such as insurance, finance, economics, and health sciences.

The text has many features which are tailored for those students.

Integration of applications and theory. Much of modem probability
theory was developed for the analysis of important risk management
problems. The student will see here that each concept or technique
applies not only to the standard card or dice problems, but also to the
analysis of insurance premiums, unemployment durations, and lives of
mortgages. Applications are not separated as if they were an afterthought
to the theory. The concept of pure premium for an insurance is
introduced in a section on expected value because the pure premium is an
expected value.

Relevant applications. Applications will be taken from texts, published
studies, and practical experience in actuarial science, finance, and
economics.

Development of key ideas through well-chosen examples. The text is
not abstract, axiomatic or proof-oriented. Rather, it shows the student
how to use probability theory to solve practical problems. The student
will be inhoduced to Bayes' Theorem with practical examples using
trees and then shown the relevant formula. Expected values of
distributions such as the gamma will be presented as useful facts, with
proof left as an honors exercise. The student will focus on applying
Bayes' Theorem to disease testing or using the gamma distribution to
model claim severity.

Emphasis on intuitive understanding. Lack of formal proofs does not
correspond to a lack of basic understanding. A well-chosen tree example
shows most students what Bayes' Theorem is really doing. A simple
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expected value calculation for the exponential distribution or a

polynomial density function demonstrates how expectations are found.
The student should feel that he or she understands each concept. The
words "beyond the scope of this text" will be avoided.

Organization as a useful future reference. The text will present key
formulas and concepts in clearly identified formula boxes and provide
useful summary tables. For example, Appendix B will list all major
distributions covered, along with the density function, mean, variance,
and moment generating function of each.

Use of technology. Modem technology now enables most students to
solve practical problems which were once thought to be too involved.
Thus students might once have integrated to calculate probabilities for an

exponential distribution, but avoided the same problem for a gamma
distribution with a=5 and B =3. Today any student with a TI-83

calculator or a personal computer version of MATLAB or Maple or
Mathematica can calculate probabilities for the latter distribution. The
text will contain boxed Technology Notes which show what can be done
with modern calculating tools. These sections can be omitted by students
or teachers who do not have access to this technology, or required for
classes in which the technology is available.

The practical and intuitive style of the text will make it useful for a

number of different course objectives.

A jirst course in prohability for undergraduate mathematics majors.
This course would enable sophomores to see the power and excitement
of applied probability early in their programs, and provide an incentive to
take further probability courses at higher levels. It would be especially
useful for mathematics majors who are considering careers in actuarial
science.

An incentive course for talented business majors. The probability
methods contained here are used on Wall Street, but they are not
generally required ofbusiness students. There is a large untapped pool of
mathematically-talented business students who could use this course
experience as a base for a career as a "rocket scientist" in finance or as a

mathematical economist.
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An applied review course for theoretically-oriented stadents, Many
mathematics majors in the United States take only an advanced, proof-
oriented course in probability. This text can be used for a review ofbasic
material in an understandable applied context. Such a review may be
particularly helpful to mathematics students who decide late in their
programs to focus on actuarial careers,

The text has been class-tested twice at Aizona State University. Each
class had a mixed group of actuarial students, mathematically- talented
students from other areas such as economics, and interested mathematics
majors. The material covered in one semester was Chapters 1-7, Sections
8.1-8.5, Sections 9.1-9.4, Chapter l0 and Sections 11.1-11.4. The text is
also suitable for a pre-calculus introduction to probability using Chapters
l-6, or a two-semester course which covers the entire text. As always,
the amount of material covered will depend heavily on the preferences of
the instructor.

The authors would like to thank the following members of a review team
which worked carefully through two draft versions of this text:

Sam Broverman, ASA, Ph.D., Universify of Toronto
Sheldon Eisenberg, Ph.D., University of Hartford
Bryan Hearsey, ASA, Ph.D., Lebanon Valley College
Tom Herzog, ASA, Ph.D., Department of HUD
Eugene Spiegel, Ph.D., University of Connecticut

The review team made many valuable suggestions for improvement and
corrected many effors. Any errors which remain are the responsibility of
the authors.

A second group of actuaries reviewed the text from the point of view of
the actuary working in industry. We would like to thank William
Gundberg, EA, Brian Januzik, ASA, and Andy Ribaudo, ASA, ACAS,
FCAS, for valuable discussions on the relation of the text material to the
dayto-day work of actuarial science.

Special thanks are due to others. Dr. Neil Weiss of Arizona State
University was always available for extremely helpful discussions
concerning subtle technical issues. Dr. Michael Ratlifl ASA, of
Northern Arizona University and Dr. Stuart Klugman, FSA, of Drake
University read the entire text and made extremely helpful suggestions.

vll
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Thanks are also due to family members. Peggy Craig-Hassett provided
warm and caring support throughout the entire process of creating this
text. John, Thia, Breanna, JJ, Laini, Ben, Flint, Elle and Sabrina all
enriched our lives, and also provided motivation for some of our
examples.

We would like to thank the ACTEX team which turned the idea for this
text into a published work. Richard (Dick) London, FSA, first proposed
the creation of this text to the authors and has provided editorial guidance
through every step of the project. Denise Rosengrant did the daily work
of tuming our copy into an actual book.

Finally a word of thanks for our students. Thank you for working with us
through two semesters of class-testing, and thank you for your positive
and cooperative spirit throughout. ln the end, this text is not ours. It is
yours because it will only achieve its goals if it works for you.

May, 1999
Tempe, Arizona

Matthew J. Hassett
Donald G. Stewart
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Chapter I
Probability: A Tool for

Risk Management

1.1 Who Uses Probability?

Probability theory is used for decision-making and risk management
throughout modem civilization. Individuals use probability daily,
whether or not they know the mathematical theory in this text. If a

weather forecaster says that there is a 90Yo chance of rain, people carry
umbrellas. The "90o/o chance of rain" is a statement of a probability. If a
doctor tells a patient that a surgery has a 50Yo chance of an unpleasant
side effect, the patient may want to look at other possible forms of
treatment. If a famous stock market analyst states that there is a 90o/o

chance of a severe drop in the stock market, people sell stocks. A1l of us
make decisions about the weather, our finances and our health based on
percentage statements which are really probability statements.

Because probabilities are so important in our analysis of risk,
professionals in a wide range of specialties study probability. Weather
experts use probability to derive the percentages given in their forecasts.
Medical researchers use probability theory in their study of the effective-
ness of new drugs and surgeries. Wall Street firms hire mathematicians
to apply probability in the study of investments.

The insurance industry has a long tradition of using probability to
manage its risks. If you want to buy car insurance, the price you will pay
is based on the probability that you will have an accident. (This price is
called a premium.) Life insurance becomes more expensive to purchase
as you get older, because there is a higher probability that you will die.
Group health insurance rates are based on the study of the probability
that the group will have a certain level of claims.
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The professionals who are responsible for the risk management
and premium calculation in insurance companies are called actuaries.
Actuaries take a long series of exams to be certified, and those exams
emphasize mathematical probability because of its importance in
insurance risk management. Probabilify is also used extensively in
investment analysis, banking and corporate finance. To illustrate the
application of probability in financial risk management, the next section
gives a simplified example of how an insurance rate might be set using
probabilities.

1.2 An Example from Insurance

In 2002 deaths from motor vehicle accidents occurred aT. a rate of 15.5

per 100,000 population.l This is really a statement of a probabilify. A
mathematician would say that the probability of death from a motor
vehicle accident in the next year is 15.5/100,000 : .000155.

Suppose that you decide to sell insurance and offer to pay $10,000
if an insured person dies in a motor vehicle accident. (The money will
go to a beneficiary who is named in the policy - perhaps a spouse, a

close friend, or the actuarial program at your alma mater.) Your idea is
to charge for the insurance and use the money obtained to pay off any
claims that may occur. The tricky question is what to charge.

You are optimistic and plan to sell 1,000,000 policies. If you
believe the rate of 15.5 deaths from motor vehicles per 100,000 popula-
tion still holds today, you would expect to have to pay 155 claims on
your 1,000,000 policies. You will need 155(10,000): $1,550,000 to
pay those claims. Since you have 1,000,000 policyholders, you can
charge each one a premium of $1.55. The charge is small, but
1.55(1,000,000) : $1,550,000 gives you the money you will need to
pay claims.

This example is oversimplified. ln the real insurance business you
would eam interest on the premiums until the claims had to be paid.

There are other more serious questions. Should you expect exactly 155

claims from your 1,000,000 clients just because the national rate is 15.5

claims in 100,000? Does the 2002 rate still apply? How can you pay
expenses and make a profit in addition to paying claims? To answer
these questions requires more knowledge of probability, and that is why

I Statistical Abstract of the Llnited States, 1996. Table No. 138, page I0l
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this text does not end here. However, the oversimplified example makes
a point. Knowledge of probability can be used to pool risks and provide
useful goods like insurance. The remainder of this text will be devoted to
teaching the basics of probability to students who wish to apply it in
areas such as insurance, investments, finance and medicine.

Probability and Statistics

Statistics is a discipline which is based on probability but goes beyond
probability to solve problems involving inferences based on sample data,
For example, statisticians are responsible for the opinion polls which
appear almost every day in the news. [n such polls, a sample of a few
thousand voters are asked to answer a question such as "Do you think
the president is doing a good job?" The results of this sample survey are

used to make an inference about the percentage of all voters who think
that the president is doing a good job. The insurance problem in Section
1.2 requires use of both probability and statistics. In this text, we will
not attempt to teach statistical methods, but we will discuss a great deal
of probability theory that is useful in statistics. It is best to defer a

detailed discussion of the difference between probability and statistics
until the student has studied both areas. It is useful to keep in mind that
the disciplines of probability and statistics are related, but not exactly the
same.

1.4 Some History

The origins of probability are a piece of everyday life; the subject was
developed by people who wished to gamble intelligently. Although
games of chance have been played for thousands of years, the
development of a systematic mathematics of probability is more recent.
Mathematical treatments of probability appear to have begun in Italy in
the latter part of the fifteenth century. A gambler's manual which
considered interesting problems in probability was written by Cardano
( l s00-1 s72).

The major advance which led to the modern science of probability
was the work of the French mathematician Blaise Pascal. In 1654 Pascal
was given a gaming problem by the gambler Chevalier de Mere. The
problem of points dealt with the division of proceeds of an intemrpted
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game. Pascal entered into correspondence with another French mathema-
tician, Pierre de Fermat. The problem was solved in this correspondence,
and this work is regarded as the starting point for modern probability.

It is important to note that within twenty years of pascal,s work,
differential and integral calculus was being developed (independently)
by Newton and Leibniz. The subsequent development of probability
theory relied heavily on calculus.

Probability theory developed at a steady pace during the
eighteenth and nineteenth centuries. contributions were made by leading
scientists such as James Bernoulli, de Moiwe, Legendre, Gauss and
Poisson. Their contributions paved the way for very rapid growth in the
twentieth century.

Probability is of more recent origin than most of the mathematics
covered in university courses. The computational methods of freshman
calculus were known in the early 1700's, but many of the probability
distributions in this text were not studied until the 1900's. The
applications of probability in risk management are even more recent. For
example, the foundations of modern portfolio theory were developed by
Harry Markowitz [11] in 1952. The probabilistic study of mortgage
prepayments was developed in the late 1980's to study financial
instruments which were first created in the 1970's and early 1980's.

It would appear that actuaries have a longer tradition of use of
probability; a text on life contingencies was published in 1771.2
However, modem stochastic probability models did not seriously
influence the actuarial profession until the 1970's, and actuarial
researchers are now actively working with the new methods developed
for use in modern finance. The July 2005 copy of the North American
Actuarial Journal that is sitting on my desk has articles with titles like
"Minimizing the Probability of Ruin when claims Follow Brownian
Motion With Drift." You can't read this article unless you know the
basics contained in this book and some more advanced topics in
probability.

Probability is a young area, with most of its growth in the twen-
tieth century. It is still developing rapidly and being applied in a wide
range of practical areas. The history is of interest, but the future will be
much more interesting.

2 See the section on Historical Background in the 1999 Societyof Actuaries Yearbook,
page 5.
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1.5 Computing Technology

Modern computing technology has made some practical problems easier to
solve. Many probability calculations involve rather difficult integrals; we
can now compute these numerically using computers or modern
calculators. Some problems are difficult to solve analytically but can be

studied using computer simulation. In this text we will give examples of
the use of technology in most sections. We will refer to results obtained
using the TI-83 and TI BA II Plus Professional calculators and Microsoft@
EXCEL. but will not attempt to teach the use of those tools. The

technology sections will be clearly boxed off to separate them from the

remainder of the text. Students who do not have the technological
background should be aware that this will in no way restrict their
understanding of the theory. However, the technology discussions should
be valuable to the many students who already use modern calculators or
computer packages.
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Counting for Probability

2.1 What Is Probability?

People who have never studied the subject understand the intuitive ideas
behind the mathematical concept of probability. Teachers (including the
authors of this text) usually begin a probability course by asking the
students if they know the probability of a coin toss coming up heads.
The obvious answer is 50% or Yz, and most people give the obvious
answer with very little hesitation. The reasoning behind this answer is
simple. There are two possible outcomes of the coin toss, heads or tails.
If the coin comes up heads, only one of the two possible outcomes has

occurred. There is one chance in two of tossing a head.
The simple reasoning here is based on an assumption - the coin

must be fair, so that heads and tails are equally likely. If your gambler
friend Fast Eddie invites you into a coin tossing game, you might suspect
that he has altered the coin so that he can get your money. However, if
you are willing to assume that the coin is fair, you count possibilities and

come up with%.
Probabilities are evaluated by counting in a wide variety of

situations. Gambling related problems involving dice and cards are

typically solved using counting. For example, suppose you are rolling a

single six-sided die whose sides bear the numbers 7,2,3,4,5 and 6,

You wish to bet on the event that you will roll a number less than 5. The
probability of this event is 416, since the outcomes 1,2,3 and 4 are less

than 5 and there are six possible outcomes (assumed equally likely). The

approach to probability used is summarized as follows:
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Probability by Counting for Equally Likely Outcomes

Probabilitv of an event :
I OIqt numDer oJ possrDle outcomes

Part of the work of this chapter will be to introduce a more precise

mathematical framework for this counting definition. However, this is
not the only way to view probability. There are some cases in which
outcomes may not be equally likely. A die or a coin may be altered so

that all outcomes are not equally likely. Suppose that you are tossing a

coin and suspect that it is not fair. Then the probability of tossing a head

cannot be determined by counting, but there is a simple way to estimate
that probabilify - simply toss the coin a large number of times and

count the number of heads. If you toss the coin 1000 times and observe
650 heads, your best estimate of the probability of a head on one toss is

650/1000 : .65. In this case you are using a relative frequency
estimate of a probability.

Relative Frequency Estimate of the Probability of an Event

Probability of an event :

We now have two ways of looking at probability, the counting
approach for equally likely outcomes and the relative frequency
approach. This raises an interesting question. If outcomes are equally
likely, will both approaches lead to the same probability? For example, if
you try to find the probability of tossing a head for a fair coin by tossing

the coin a large number of times, should you expect to get a value of t/z?

The answer to this question is "not exactly, but for a very large number

of tosses you are highly likely to get an answer close to '/t." The more
tosses, the more likely you are to be very close to %. We had our
computer simulate different numbers of coin tosses, and came up with
the following results.
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Number of Tosses Number of Heads Probability Estimate

4 I .25

100 54 .54
1000 524 .524

10,000 4985 .4985

More will be said later in the text about the mathematical reason-
ing underlying the relative frequency approach. Many texts identify a

third approach to probability. That is the subjective approach to
probability. Using this approach, you ask a well-informed person for his
or her personal estimate of the probability of an event. For example, one
of your authors worked on a business valuation problem which required
knowledge of the probability that an individual would fail to make a

monthly mortgage payment to a company. He went to an executive of
the company and asked what percent of individuals failed to make the
monthly payment in a fypical month. The executive, relying on his
experience, gave an estimate of 3Yo, and the valuation problem was
solved using a subjective probabilify of .03. The executive's subjective
estimate of 3'/o was based on a personal recollection of relative
frequencies he had seen in the past.

In the remainder of this chapter we will work on building a more
precise mathematical framework for probability. The counting approach
will play a big part in this framework, but the reader should keep in mind
that many of the probability numbers actually used in calculation may
come from relative frequencies or subjective estimates.

2.2 The Language of Probability; Sets, Sample Spaces
and Events

If probabilities are to be evaluated by counting outcomes of a probability
experiment, it is essential that all outcomes be specified. A person who
is not familiar with dice does not know that the possible outcomes for a
single die are 1,2,3, 4, 5 and 6. That person cannot find the probability
of rolling a I with a single die because the basic outcomes are unknown.
ln every well-defined probability experiment, all possible outcomes must
be specified in some way.

The language of set theory is very useful in the analysis of out-
comes. Sets are covered in most modern mathematics courses, and the
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reader is assumed to be familiar with some set theory. For the sake of
completeness, we will review some of the basic ideas of set theory. A set
is a collection of objects such as the numbers 1,2,3,4,5 and 6. These ob-
jects are called the elements or members of the set. If the set is finite and
small enough that we can easily list all of its elements, we can describe
the set by listing all of its elements in braces. For the set above,
S: {1,2,3,4,5,6}. For large or infinite sets, the set-builder notation is

helpful. For example, the set of all positive real numbers may be written
AS

S: {r lrisarealnumberandz > 0}.

Often it is assumed that the numbers in question are real numbers, and
the set above is written as ,S : {z I r > 0}.

We will review more set theory as needed in this chapter. The
important use of set theory here is to provide a precise language for
dealing with the outcomes in a probability experiment. The definition
below uses the set concept to refer to all possible outcomes of a

probability experiment.

Definition 2.1 The sample space ,S for a probability experiment
is the set of all possible outcomes of the experiment.

Example 2.1 A single die is rolled and the number facing
recorded. The sample space is ,9 : { 1,2,3,4,5,6} .

Example 2.2 A coin is tossed and the side facing up is recorded.
The sample space is S : {H,T}. tr

Many interesting applications involve a simple two-element
sample space. The following examples are of this fype.

Example 2.3 (Death of an insured) An insurance company is
interested in the probability that an insured will die in the next year. The
sample space is $ : {death, sut'vival}. D

Example 2.4 (Failure of a part in a machine) A manufacturer is

interested in the probability that a crucial part in a machine will fail in
the next week. The sample space is $ : ffailure, survival\. D

up
tr
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Example 2.5 (Default of a bond) Companies borrow money they
need by issuing bonds. A bond is typically sold in $1000 units which
have a fixed interest rate such as 8oh per year for twenty years. When
you buy a bond for $1000, you are actually loaning the company your
$1000 in return for 8% interest per year. You are supposed to get your
$1000 loan back in twenty years. If the company issuing the bonds has
financial trouble, it may declare bankruptcy and default by failing to pay
your money back. Investors who buy bonds wish to find the probability
of default. The sample space is $ : {default, no default}. D

Example 2.6 (Prepayment of a mortgage) Homeowners usually
buy their homes by getting a mortgage loan which is repaid by monthly
payments. The homeowner usually has the right to pay off the mortgage
loan early if that is desirable - because fhe homeowner decides to move
and sell the house, because interest rates have gone down, or because
someone has won the lottery. Lenders may lose or gain money when a
loan is prepaid early, so they are interested in the probability of
prepayment. If the lender is interested in whether the loan will prepay in
the next month, the sample space is 5 : {prepayment, no prepayrnent}.

D

The simple sample spaces above are all of the same type. Some-
thing (a bond, a mortgage, a person, or a part) either continues or
disappears. Despite this deceptive simplicity, the probabilities involved
are of $eat importance. If a part in your airplane fails, you may become
an insurance death - leading to the prepayment of your mortgage and a
strain on your insurance company and its bonds. The probabilities are
difficult and costly to estimate. Note also that the coin toss sample space

{H,T} was the only one in which the two outcomes were equally likely.
Luckily for most of us, insured individuals are more likely to live than
die and bonds are more likely to succeed than to default.

Not all sample spaces are so small or so simple.

Example 2.7 An insurance company has sold 100 individual life
insurance policies. When an insured individual dies, the beneficiary
named in the policy will file a claim for the amount of the policy. You
wish to observe the number of claims filed in the next year. The sample
space consists of all integers from 0 to 100, so ,S : {0,1,2, ..., i00}. tl

ll
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Some of the previous examples may be looked at in slightly
different ways that lead to different sample spaces. The sample space is
determined by the question you are asking.

Example 2.8 An insurance company sells life insurance to a 30-
year-old female. The company is interested in the age of the insured
when she eventually dies. If the company assumes that the insured will
not live to I10, the sample space is 5 : {30,31,... , 109}. n

Example 2.9 A mortgage lender makes a 30-year monthly
payment loan. The lender is interested in studying the month in which
the mortgage is paid off. Since there are 360 months in 30 years, the
sample space is ,9 : {1,2,3,...,359,360}. tr

The sample space can also be infinite.

Example 2.10 A stock is purchased for $100. You wish to
observe the price it can be sold for in one year. Since stock prices are
quoted in dollars and fractions ofdollars, the stock could have any non-
negative rational number as its future value. The sample space consists
of all non-negative rational numbers, S : {r I " > 0 and r rational}.
This does not imply that the price outcome of $1,000,000,000 is highly
likely in one year - 

just that it is possible. Note that the price outcome
of 0 is also possible. Stocks can become worthless. n

The above examples show that the sample space for an experiment
can be a small finite set, alarge finite set, or an infinite set.

In Section 2.1 we looked at the probability of events which were
specified in words, such as "toss a head" or "roll a number less than 5."
These events also need to be translated into clearly specified sets. For
example, if a single die is rolled, the event "roll a number less than 5"
consists of the outcomes in the set E : {1,2,3,4}. Note that the set -U is
a subset of the sample space ,9, since every element of E is an element
of S. This leads to the following set-theoretical definition of an event.

Definition 2.2 An event is a subset of the sample space S.

This set{heoretic definition of an event often causes some un-
necessary confusion since people think of an event as something
described in words like "roll a number less than 5 on a roll of a single
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die." There is no conflict here. The definition above reminds you that
you must take the event described in words and determine precisely what
outcomes are in the event. Below we give a few examples of events
which are stated in words and then translated into subsets of the sample
space.

Example 2.11 A coin is tossed. You wish to find the probability
of the event "toss a head." The sample space is S : {H,T}. The event
is the subset E : {H\

Example 2.12 An insurance company has sold 100 individual life
policies. The company is interested in the probability that at most 5 of the
policies have death benefit claims in the next year. The sample space is
S : {0, 1,2,...,100}. The event E is the subset {0,1,2,3,4,5}. D

Example 2.13 You buy a stock for $100 and plan to sell it one
year later. You are interested in the event E that you make a profit when
the stock is sold. The sample space is S: {r lz > 0 and z rational},
the set of all possible future prices. The event ,B is the subset
E: {r lr > 100 and r rational}, the set of all possible future prices
which are greater than the $100 you paid. D

Problems involving selections from a standard 52 card deck are

common in beginning probability courses. Such problems reflect the origins
of probability. To make listing simpler in card problems, we will adopt the

following abbreviation system :

l3

n

A:Ace

^9: Spade
K:King
11: Heart

Q: Queen J:Jack
D: Diamond C: Club

We can then describe individual cards by combining letters and
numbers. For example KH will stand for the king of hearts and2D for
the 2 of diamonds.

Example 2.14 A standard 52 card deck is shuffled and a card is
picked at random. You are interested in the event that the card is a king.
The sample space, S : {AS, K S, . . . ,3C ,2C), consists of all 52 cards.

The event.D consists ofthe fourkings, B : {KS, KH,KD,KC\. D
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The examples of sample spaces and events given above are straight-
forward. In many practical problems things become much more complex.
The following sections introduce more set theory and some counting
techniques which will help in analyzing more difficult problems.

2.3 Compound Events; Set Notation

When we refer to events in ordinary language, we often negate them (the
card drawn is not a king) or combine them using the words "and" or "or"
(the card drawn is a king or anace). Set theory has a convenient notation
for use with such compound events.

2.3.1 Negation

The event not E is written as -E. (This may also be written as E.;

Example 2.15 A single die is rolled, S : {1,2,3,4,5,6}. The
event -D is the event of rolling a number less than 5, so,E : {1,2,3,4}.
E does not occur when a 5 or 6 is rolled. Thus -E : {5, 6}. tr

Note that the event --O is the set of all outcomes in the sample
space which are not in the original event set E. The result of removing
all elements of -U from the original sample space ,9 is referred to as

S - E. Thus -E - S - E, This set is called the complement of E.

Example 2.16 You buy a stock for $100 and wish to evaluate the
probability of selling it for a higher price r in one year. The sample
space is 5: {rlr ) 0 and r rational}. The event of interest is
E : {r I r > 100 and z rational}. The negation -,8 is the event that no
profit is made on the sale, so -E can be written as

-E - {tl0 < r < l00andzrational) : 5 - B.

This can be portrayed graphically on a number line.

-E: no profit E:profit

tr



Counting for Prob ability

Graphical depiction of events is very helpful. The most common
tool for this is the Venn diagram, in which the sample space is
portrayed as a rectangular region and the event is portrayed as a circular
region inside the rectangle. The Venn diagram showing E and -E is
given in the following figure.

2.3.2 The Compound Events A or B, A and B

We will begin by returning to the familiar example of rolling a single
die. Suppose that we have the opportunity to bet on two different events:

l5

A: an even number is rolled

A: {2,4,6}

B: a number less than 5 is rolled

B : {1,2,3,4\

If we bet that A or B occurs, we will win if any element of the two
sets above is rolled.

AorB:{I,2,3,4,6\

In forming the set for A or B we have combined the sets A and B by
listing all outcomes which appear in either A or B. The resulting set is
called the union of ,4 and B, and is written as A U B. It should be clear
that for any two events A and B

-E

AorB:AuB.
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For the single die roll above, we could also decide to bet on the
event A and B. In that case, both the event A and the event B must
occur on the single roll. This can happen only if an outcome occurs
which is common to both events.

AandB:{2,4}

In forming the set for A and B we have listed all outcomes which are in
both sets simultaneously. This set is referred to as the intersection of ,4
and B, and is written as A n B. For any two events A and B

AandB:AnB.

Example 2.17 Consider the insurance company which has written
100 individual life insurance policies and is interested in the number of
claims which will occur in the next year. The sample space is

S: {0,1,2,...,100}. The company is interested in the following two
events:

there are at most 8 claims
the number of claims is between 5 and 12 (inclusive)

A and B are given by the sets

and
A : {0, 1,2,3,4, 5, 6,J,9}

B : {5,6,7,8,9, 10, I 1,12).

Then the events A or B and A and B are given by

A or B : AU B : {0,1,2,3,4,5,6,7,8,9,10, 11, l2}

and

AandB:A)B:{5,6,7,9}.

The events A or B and A and B can also be represented using
Venn diagrams, with overlapping circular regions representing A and B.

A:
B:

E]
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AUB A)B

t7

2.3.3 New Sample Spaces from Old; Ordered Pair Outcomes

ln some situations the basic outcomes of interest are actually pairs of
simpler outcomes. The following examples illustrate this.

Example 2.18 (Insurance of a couple) Sometimes life insurance
is written on a husband and wife. Suppose the insurer is interested in
whether one or both members of the couple die in the next year. Then
the insurance company must start by considering the following out-
comes:

Dp: death of the husband

Dw: death of the wife

SH: survival of the husband

S1y: survival of the wife

Since the insurance company has written a policy insuring both husband
and wife, the sample space of interest consists of pairs which show the
status of both husband and wife. For example, the pair (Da,Sw)
describes the outcome in which the husband dies but the wife survives.
The sample space is

S : {(Du, Sw),(Du, Dw),(Sn, Sw),(Sn, Dw)}.

In this sample space, events may be more complicated than they sound.

Consider the following event:

I/: the husband dies in the next year

H : {(Dn, Sw), (Da, Dw)\
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The death of the husband is not a single outcome. The insurance com-
pany has insured two people, and has different obligations for each of
the two outcomes in l/. The death of the wife is similar.

W: the wife dies in the next year

W : {(Da, Dw), (Sa, Dw)}

The events H orW and H andW are also sets ofpairs.

H UW : {(Da, Sw),(Dn, Dw),(Sn, Dw)l

H.W : {(Da, Dw)l n

Similar reasoning can be used in the study of the failure of two
crucial parts in a machine or the prepaynent of two mortgages.

2.4 Set Identities

2.4.1 The Distributive Laws for Sets

The distributive law for real numbers is the familiar

a(b -t c) -- ab + ac.

Two similar distributive laws for set operations are the following:

An@ u C) : (An B) u (,4 n C)

Au(BnC):(AuB).(AuC)

(2.r)

(2.2)

These laws are helpful in dealing with compound events involving the
connectives and and or. They tell us that

A and (B or C) is equivalent to (,4 and B) or (A and C)

A or (B and C) is equivalent to (A or B) and (A or C).
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The validity of these laws can be seen using Venn diagrams. This is
pursued in the exercises. These identities are illustrated in the following
example.

Example 2.19 A financial services company is studying a large
pool of individuals who are potential clients. The company offers to sell
its clients stocks, bonds and life insurance. The events of interest are the
following:

S: the individual owns stocks

B: the individual owns bonds

1: the individual has life insurance coverage

The distributive laws tell us that

In(Bu^9):(1nB)u(1nS)
and

I u (B n.s) : (1u B) n (1u S).

The first identity states that

insured and (owningbonds or stocks)

is equivalent to

(insured and owningbonds) or (insured and owning stocks).

The second identity states that

insured or (owning bonds and stocks)

is equivalent to

(insured or owning bonds) and (insured or owning stocks). n

2.4.2 De Morgan's Laws

Two other useful set identities are the following:

-(Au B): -An-B
-(A. B) : -Ao -B

(2.3)

(2.4)

l9
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These laws state that
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not(A or B) is equivalent to (not A) and (not B)
and

not(A and B) is equivalentto (not A) or (not B).

As before, verification using Venn diagrams is left for the exercises. The
identity is seen more clearly through an example.

Example 2.20 We return to the events S (ownership of stock) and
B (ownership of bonds) in the previous example. De Morgan's laws
state that

-(S u B): -S n-B
and

-(SnB):-Su-8.
In words, the first identity states that if you don't own stocks or bonds
then you don't own stocks and you don't own bonds (and vice versa).
The second identify states that if you don't own both stocks andbonds,
then you don't own stocks or you don't own bonds (and vice versa). D

De Morgan's laws and the distributive laws are worth remember-
ing. They enable us to simplify events which are stated verbally or in set
notation. They will be useful in the counting and probability problems
which follow.

2.5 Counting

Since many (not all) probability problems will be solved by counting
outcomes, this section will develop a number of counting principles
which will prove useful in solving probability problems.

2.5.1 Basic Rules

We will first illustrate the basic counting rules by example and then state
the general rules. In counting, we will use the convenient notation

n(A) : the number of elements in the set (or event) A.
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Example 2.21 A neighborhood association has 100 families on its
membership list. 78 of the families have a credit cardl and 50 of the
families are currently paying off a car loan. 41 of the families have both
a credit card and a car loan. A financial planner intends to call on one of
the 100 families today. The planner's sample space consists of the 100
families in the association. The events of interest to the planner are the
following:

C: the family has a credit card L: the family has a car loan

We are given the following information:

n(C) :79 n(L) : 59 n(LoC):41

The planner is also interested in the answers to some other questions.
For example, she would first like to know how many families do not
have credit cards. Since there are 100 families and 78 have credit cards,
the number of families that do not have credit cards is 100 - 78 :22.
This can be written using our counting notation as

n(-C): n(S) - n(C).

This reasoning clearly works in all situatrons, giving the following
general rule for any finite sample space S and event A.

n(-A): n(S) - n(A) (2.s)

Example 2.22 The planner in the previous example would also
like to know how many of the 100 families had a credit card or a car

loan. If she adds n(C):78 and n(L):50, the result of 128 is clearly
too high. This happened because in the 128 figure each of the 4l
families with both a credit card and a car loan was counted twice. To
reverse the double counting and get the correct answer, subtract 4l from
128 to get the correct count of 87. This is written below in our counting
notation.

n(C U L) : n(C)+ n(L) - n(C. L) :78+ 50 - 4l : 87 D

I In 2001, 72.7V' of American families had credit cards. (Slalisrical Abstract of the

United States,2004-5, Table No. I 186.)

21
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The reasoning in Example 2.22 also applies in general to any two
events ,4 and B in any finite sample space.

n(Au B): n(A) + n(B) - n(An B) (2.6)

Example 2.23 A single card is drawn at random from a well-
shuffled deck. The events of interest are the following:

1{: the card drawn is a heart n(H) : 13

K: the card is a king n(K) : 4
C: Ihe card is a club n(C) : 13

The compound event H 
^ 

K occurs when the card drawn is both a heart
and a king (i.e., the card is the king of hearts). Then n(I/fl K) : 1 3n6

n(H U K) : n(H) + n(K) - n(H n K) : 13 + 4- 1 : 16.

The situation is somewhat simpler if we look at the events H and C.
Since a single card is drawn, the event H a C can only occur if the
single card drawn is both a heart and a club, which is impossible. There
are no outcomes in 11 f-l C, and n(H ) C) : 0. Then

n(H u C) : n(H) + n(C) - n(H n C) : 13 + 13 - 0 : 26.

More simply,

n(H u C) : n(H) + n(C). D

The two events H and C are called mutually exclusive because
they cannot occur together. The occurrence of .FI excludes the possibility
of C and vice versa. There is a convenient way to write this in set

notation.

Definition 2.3 The empty set is the set which has no elements. It
is denoted by the symbol 0.

In the above example, we could write 11 ) C : 0 to show that H
and C are mutually exclusive. The same principle applies in general.

Definition 2.4 Two events ,4 and B are mutually exclusive if
An B :4.
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If A and B are mutually exclusive, then

n(Au B) : n(A) + n(B). (2.7)

2.5,2 Using Venn Diagrams in Counting Problems

Venn diagrams are helpful in visualizing all of the components of a

counting problem. This is illustrated in the following example.

Extmple 2.24 The following Venn diagram is labeled to com-
pletely describe all of the components of Example 2.22.|n that example
the sample space consisted of 100 families. Recall that the events of
interest were C (the family has a credit card) and tr (the family has a car
loan). We were given that n(C) : 78, n(L): 50 and n(L O C) : 41.
We found that n(L U C) : 87. The Venn diagram below shows all this
and more.

23

Since n(C):78 and n(L)C):41, there are 78 families with credit
cards and 41 families with both a credit card and a car loan. This leaves
78 - 4l : 37 families with a credit card and no car loan. We write the
number 37 in the part of the region for C which does not intersect -L.

Since n(tr) : 50, there are only 9 families with a car loan and no credit
card, so we write 9 in the appropriate region. The total number of
families with either a credit card or a car loan is clearly given by
37 + 4l * 9: 87. Finally, since n(,9): 100, there are 100 - 87 : 13

families with neither a credit card nor a car loan. tr
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The numbers on the previous page could all be derived using set

identities and written in the following set theoretic terms:

n(LnC):41
n(-LnC):37
n(L n-C) :9

n(L n-C) : 13

However, the Venn diagram gives the relevant numbers much more
quickly than symbolic manipulation. Some coffImon counting problems
are especially suited to the Venn diagram method, as the following
example shows.

Example 2.25 A small college has 340 business majors. It is
possible to have a double major in business and liberal arts. There are

125 such double majors, and 315 students majoring in liberal arts but not
in business. How many students are in liberal arts or business?

Let B and L stand for majoring in business and liberal arts,
respectively. The given information allows us to fill in the Venn diagram
as follows.

There are 215 + 125 + 315 : 655 students in business or liberal arts. D

The Venn diagram can also be used in counting problems involv-
ing three events, but requires the following slightly more complicated
diagram.
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Some problems of this type are given in the exercrses.

2.5.3 Trees

A tree gives a graphical display of all possible cases in a problem.

Example 2.26 A coin is tossed twice. The tree which gives all
possible outcomes is shown below. We create one branch for each of the
two outcomes on the first toss, and then attach a second set of branches
to each of the first to show the outcomes on the second toss. The results
of the two tosses along each set of branches are listed at the right of the
diagram.

HH

HT

TH

TT

!



26 Chapter 2

A tree provides a simple display of all possible pairs of outcomes
in an experiment if the number of outcomes is not unreasonably large.It
would not be reasonable to attempt a tree for an experiment in which
two numbers between I and 100 were picked at random, but it is
reasonable to give a tree to show the outcomes for three successive coin
tosses. Such a tree is shown below.

HHH

T

H

HHT

HTH

HTT

THH

THT

TTH

TTT

Trees will be used extensively in this text as visual aids in problem
solving. Many problems in risk analysis can be better understood when
all possibilities are displayed in this fashion. The next example gives a

tree for disease testing.

Exnmple 2.27 A test for the presence of a disease has two
possible outcomes - positive or negative. A positive outcome indicates
that the tested person may have the disease, and a negative outcome
indicates that the tested person probably does not have the disease. Note
that the test is not perfect. There may be some misleading results. The
possibilities are shown in the tree below. We have the following
outcomes of interest:
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D: the person tested has the disease

-D: the person tested does not have the disease

Y: the test is positive

l/: the test is negative

(D, n

(D,19

(-D, Y)

(-D,1\r)

The outcome (-D,Y) is referred to as a false positive result. The person
tested does not have the disease, but nonetheless tests positive for it. The
outcome (D, N) is a false negative result. tr

2.5.4 The Multiplication Principle for Counting

The trees in the prior section illustrate a fundamental counting principle.
In the case of two coin tosses, there were two choices for the outcome at
the end of the first branch, and for each outcome on the first toss there
were two more possibilities for the second branch. This led to a total of
2 x 2 :4 outcomes. This reasoning is a particular instance of a very
useful general law.

27
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The Multiplication Principle for Counting

Suppose that the outcomes of an experiment consist of a

combination of two separate tasks or actions. Suppose there are
n possibilities for the first task, and that for each of these n
possibilities there are k possible ways to perform the second
task. Then there are nk possible outcomes for the experiment.

Example 2.28 A coin is tossed twice. The first toss has n
possible outcomes and the second toss has k :2 possible outcomes.
experiment (two tosses) has nk : 2 . 2: 4 possible outcomes.

Example 2.29 An employee of a southwestern state can choose
one of three group life insurance plans and one of five group health
insurance plans, The total number of ways she can choose her complete
life and health insurance package is 3 . 5 : 15. tr

The validity of this counting principle can be seen by considering
a tree for the combination of tasks. There are n possibilities for the first
branch, and for each first branch there are k possibilities for the second
branch. This will lead to a total of nlc combined branches. Another way
to present the rule schematically is the following:

Task 1 Task 2 Total outcomes

n ways k ways nk ways

The multiplication principle also applies to combined experiments
consisting of more than two tasks. On page 26 we gave a tree to show all
possible outcomes of tossing a coin three times. There were 2. 2. 2 : 8

total outcomes for the combined experiment. This illustrates the general
multiplication principle for counting.

Suppose that the outcomes of an experiment consist of a combina-
tion of k separate tasks or actions. If task i can be performed in n; ways
for each combined outcome of the remaining tasks fori : l, . . . , /c, then
the total number of outcomes for the experiment is n1 x rlz \ ... x Trk.

Schematically, we have the following:

Task I Task 2 Task k Total outcomes

TL1 n2 nk n1Xn2X"'XrI1

_.,
The

D
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Example 2.30 A certain mathematician owns 8 pairs of socks, 4
pairs of pants, and 10 shirts. The number of different ways he can get

dressed is 8 .4. l0 : 320. (It is important to note that this solution only
applies if the mathematician will wear anything with anything else,
which is a matter of concern to his wife.) tr

The number of total possibilities in an everyday setting can be

surprisingly large.

Example 2.31 A restaurant has 9 appetizerc, 12 main courses, and

6 desserts. Each main course comes with a salad, and there are 6 choices
for salad dressing. The number of different meals consisting of an

appetizer, a salad with dressing, a main course, and a dessert is therefore
9 '6. lZ '6 : 3888.

2.5.5 Permutations

In many practical situations it is necessary to arrange objects in order. If
you were considering buying one of four different cars, you would be

interested in a 1,2,3,4 ranking which ordered them from best to worst.
If you are scheduling a meeting in which there are 5 different speakers,
you must create a program which gives the order in which they speak.

Definition 2.5 A permutation of n objects is an ordered arrange-
ment of those objects.

The number of permutations of n objects can be found using the

counting principal.

Example 2.32 The number of ways that four different cars can be

ranked is shown schematically below.

Rank I Rank 2 Rank 3 Rank 4 Total ways to rank

4 3 2 I 4.3 '2. I :24

The successive tasks here are to choose Ranks I,2, 3 and 4. At the be-

ginning there are 4 choices for Rank l. After the first car is chosen, there
are 3 cars left for Rank 2. After 2 cars have been chosen, there are only 2
cars left for Rank 3. Finally, there is only one car left for Rank 4.

n

29

tr
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The same reasoning works for the problem of arranging 5 speakers
in order. The total number of possibilities is 5 .4 .3 .2. I : 120. To
handle problems like this, it is convenient to use factorial notation.

nl : n(n-1)(n-2)...1

The notation n! is read as "n factorial." The reasoning used in the
previous examples leads to another counting principle.

First Counting Principle for Permutations

The number of permutations of n objects is n!.

Note: 0! is defined to be 1, the number of ways to arrange 0 objects.

Example 2.33 The manager of a youth baseball team has chosen
nine players to start a game. The total number of batting orders that is
possible is the number of ways to arrange nine players in order, namely
9t : 9. 8 -7 . 6. 5. 4. 3.2. 1 : 362,880. (When the authors coached
youth basebaii, another coach stated that he had looked at all possible
batting orders and had picked the best one. Sure.) D

The previous example shows that the number of permutations of n
objects can be surprisingly large. Factorials grow rapidly as n increases,
as shown in the following table.

rL nl
1 I

2 2

3 6

4 24

5 r20
6 720

7 5,040

8 40,320

9 362,880
r0 3,628,800

u 39,916,800
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The number 52! has 68 digits and is too long to bother with presenting
here. This may interest card players, since 52! is the number of ways that
a standard card deck can be put in order (shuffled).

Some problems involve arranging only r of the n objects in order.

Example 2.34 Ten students are finalists in a scholarship competi-
tron. The top three students will receive scholarships for $1000, $500
and $200. The number of ways the scholarships can be awarded is found
as follows:

Rank I Rank 2 Rank 3 Total ways to rank

10 9 8 l0'9.8:720

This is similar to Example 2.32. Any one of the 10 students can win the
$1000 scholarship. Once that is awarded, there are only 9 left for the

$500. Finally, there are only 8 left for the $200. Note that we could also
write

r0.9.8 : r0l
co=n

Example 2.34 is referred to as a problem of permuting 10 objects
taken3atatime.

Definition 2.6 A permutation of n objects taken r at a time is an

ordered arrangement of r of the original n objects, where r I n.

The reasoning used in the previous example can be used to derive
a counting principle for permutations.

Second Counting Principle for Permutations

The number of permutations of n objects taken r at a time is
denoted by P(n,r).

P(n,r):n(n- 1).. .(n- r+ l) : @% (2.8)

Special Cases: P(n,n) : n! P(n,O) : 1

31
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Technology Note

Calculation of P(n,r) is simple using modem calculators. Inex-
pensive scientific calculators typically have a factorial function key.
This makes the computation of P(10,3) above simple - find 10! and
divide it by 3!.

More powerful calculators find quantities like P(10,3) directly.
For example:

(a) On the TI-83 calculator, in the MATH menu under PRB,
you will find the operator nPr.lf you key in l0 nPr 3, you
will get the answer 720 directly.

(b) On the TI BA II Plus Professional calculator, nPr is avail-
ble as a 2 ND function on the E] t.t.

Because modern calculators make these compulations so easy, we will
not avoid realistic problems in which answers involve large factorials.2

Many computer packages will compute factorials. The spreadsheet
programs that are widely used on personal computers in business also
have factorial functions. For example Microsoft@ EXCEL has a function
FACT(cell) which calculates the factorial of the number in the cell.

Example 2.35 Suppose a fourth
available to the l0 students in Example
four scholarships can be awarded is

scholarship for $100 is made
2.34. The number of ways the

P(10,4):10.9-8-7 5040.

In some problems involving ordered arangements the fact of
ordering is not so obvious.

Example 2.36 The manager of a consulting firm office has 8
analysts available for job assignments. He must pick 3 analysts and

assign one to a job in Bartlesville, Oklahoma, one to a job in Pensacola,
Florida, and one to a job in Houston, Texas.3 In how many ways can he
do this?

2 On most calculators factorials quickly become too large for the display mode, and
factorials like 14! are given in scientific notation with some digits missing.
3 This is real. Ben Wilson, a consultant and son-in-law of one of the authors, was recently
sent to all three ofthosc cities.

tr
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Solution This is a permutation problem, but it is not quite so

obvious that order is involved. There is no implication that the highest
ranked analyst will be sent to Bartlesvrlle. However, order is implicit in
making assignment lists like this one. The manager must fill out the
following form:

City Analyst

Bartlesville 2

Pensacola ,|

Houston ,)

There is no implication that the order of the cities ranks them in any
way, but the list must be filled out with a first choice on the first line, a

second choice on the second line and a final choice on the third line.
This imposes an order on the problem. The total number of ways the job
assignment can be done is

55

P(8' 3) : 8'J '6 :

2.5.6 Combinations

D8!
5!

:336.

In every permutation problem an ordering was stated or implied. In some
problems, order is not an issue.

Example 2.37 A city council has 8 members. The council has

decided to set up a committee of three members to study a zoning issue.

In how many ways can the committee be selected?

Solution This problem does not involve order, since members of a
committee are not identified by order of selection. The committee
consisting of Smith, Jones and London is the same as the committee
consisting of London, Smith and Jones. However, there is a way to look
at the problem using what we already know about ordered arrangements.
If we wanted to count all the ordered selections of 3 individuals from 8

council members, the answer would be

P(8, 3) : 336 : number of ordered selections.

the 336 ordered selections, each group of 3 individuals is counted
: 6 times. (Remember that 3 individuals can be ordered in 3! ways.)

In
3!
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Thus the number of unordered selections of 3 individuals is

3)6 : P(=8r 3) : so.6- 3!

In the language of sets, we would say that the number of possible three-
element subsets of the set of 8 council members is 56, since a subset is a
selection of elements in which order is irrelevant. U

Definition 2.7 A combination of n objects taken r at a lime is an
r-element subset of the original n elements (or, equivalently, an unor-
dered selection of r of the original n elements).

The number of combinations of n elements taken r aI a time is
denoted by C(n,r) or (l). fne notation (|) tras traditionally been

more widely used, but the C(n,r) notation is more commonly used in
mathematical calculators and computer programs - probably because it
can be typed on a single line. We will use both notations in this text.

Example 2.37 above used the reasoning that since any 3-element
subset can be ordered in 3! ways, then

c(8,3): (!) : ryP
Using Equation (2.8) for P(8,3), we see that P(8, 3) : gi and thus

c(8,3): # : ffi:56.
This reasoning applies to the r-element subsets of any n-element

set, leading to the following general counting principle:

Counting Principle for Combinations

(?) : c(n,r): ryP : e-#d.: n(n-l)...(n-r*l
rl

(2.e)

Special Cases: C(n,n) : C(n,0) : I



Count ing for P robabil i ty 35

Any
The TI-83
functions
COMBIN

Technology Note

calculator with a factorial function can be used to ftnd C(n,r).
and TI-BA II Plus Professional calculators both have nCr

which calculate C(n,r) directly. Microsoft@ EXCEL has a
function to evaluate C(n,r).

Example 2.38 A company has ten management trainees. The
company will test a new training method on four of the ten trainees. In
how many ways can four trainees be selected for testing?

Solution

c(10,4) : :210 tr

Example 2.39 It has become a tradition for authors of probability
and statistics texts to include a discussion of their own state lottery. ln
the Arizona lottery, the player buys a ticket with six distinct numbers on

it. The numbers are chosen from the numbers 1,2,...,42. What is the

total number of possible combinations of 6 numbers chosen from 42

numbers?
Solution

c(42,6): : 5,245,786 tr

2.5.7 CombinedProblems

Many counting problems involve combined use of the multiplication
principle, permutations, and combinations.

Example 2.40 A company has 20 male employees and 30 female
employees. A grievance committee is to be established. The committee
will have two male members and three female members. In how many
ways can the committee be chosen?

Solution We will use the multiplication principle. We have the

following two tasks:

Task 1: choose 2 males from 20

Task 2: choose 3 females from 30

10! _
4t6t -

421. _ 42.4r . 40 .39 -38 .37
6!36! - 6l
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The number of ways to choose the entire committee is

(Number of ways for Task

-

Chapter 2

of ways for Task 2)

190'4060 :771,400. tr
1) x (Number

('t)(10) :
Example 2.41 A club has 40 members. Three of the members are

running for office and will be elected president, vice-president and
secretary-treasurer based on the total number of votes received. An
advisory committee with 4 members will be selected from the 37 mem-
bers who are not running for office. ln how many ways can the club
select its officers and advisory committee?

Solution In this problem, Task 1 is to rank the three candidates
for office and Task 2 is select a committee of 4 from 37 members. The
final answer is

: 6'66,045 :396,270.

2.5.8 Partitions

Partitioning refers to the process ofbreaking a large group into separate
smaller groups. The combination problems previously discussed are
simple examples of partitioning problems.

Example 2.42 A company has 20 new employees to train. The
company will select 6 employees to test a new computer-based training
package. (The remaining 14 employees will get a classroom training
course.) ln how many ways can the company select the 6 employees for
the new method?

Solution The company can select 6 employees from 20 in
C(20,6) :38,760 ways. Each possible selection of 6 employees results
in a partition of the 20 employees into two groups 

- 6 employees for
the computer-based training and 14 for the classroom. (We would get an

identical answer if we solved the problem by selection of the 14

employees for classroom training.) The number of ways to partition the
group of 20 into two groups of 6 and l4 is

n3r(T)

('3) : (?e) : :38.760. n
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A similar pattem develops when the partitioning involves more
than two groups.

Example 2.43 The company in the last example has now decided
to test televised classes in addition to computer-based training. In how
many ways can the group of 20 employees be divided into 3 groups with
6 chosen for computer-based training, 4 for televised classes, and l0 for
traditional classes?

Solution The partitioning requires the following two tasks:

Task 1: select 6 of 20 for computer-based training
Task 2: select 4 of the remaining l4 for the televised class

Once Task 2 is completed, only l0 employees will remain and they will
take the traditional class. Thus the total number of ways to partition the
employees is

(?)('t) : ffi utft : #fi.t :38:7e8,760 tr

The number of partitions of 20 objects into three groups of size 6,
4 and l0 is denoted by

37

(u, ?3'o)

Example 2.43 showed ttrat (0, ??rO) :
pte2.42showed,r'", (03?+) : #{h

20
6|?TT0I'

and, similarly, Exam-

The method of Example 2.43 can be used to show that this pattern
always holds for the total number of partitions.

Counting Principle for Partitions

The number of partitions of n objects into k distinct groups o

sizes n 1 , TL2, . .. , ntr is given by

/ n \- nt(r,,rr,". ..,nu) : ;1n{..i1,1.' (2'lo)
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Example 2.44 An insurance company has l5 new employees. The
company needs to assign 4 to underwriting, 6 to marketing, 3 to
accounting, and 2 to investments. In how many different ways can this
be done? (Assume that any of the 15 can be assigned to any department.)

Solution
/ ts \ 15!
(+' o,i, 2) : 4ffiW.: 6'306'3oo n

Many counting problems can be solved using partitions if they are

looked at in the right way. Exercise 2-39, finding the number of ways to
rearrange the letters in the word MISSISSIPPI, is a classical problem
which can be done using partitions.

2.5.9 Some Useful Identities

In Example 2.42 we noted that

This is a special case of the general identity C(n,k) : C(n,n-k), or

(T) : G? n) : wdiw
In Exercise 2-46,the reader is asked to show that the total number

of subsets of an n-element set is 2". Since C(n,k) represents the number
of /c-element subsets of an n-element set, we can also find the total
number of subsets of an n-element set by adding up all of the C(n,k).

z:(8)+(T)+ +(n?r)+(fi)
For example,

,' : (3). (i). (1). (3) : I *3+3+ I

ln Exercise 2-45,the reader is asked to use counting principles to
derive the familiar Binomial Theorem

(r -t a) : (3)"" + (T)""-'a + (T)""-'a2 + .'.

+ (*? t),u"-t + (E)a".
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This is useful for expansions such as

(, * v)a: (6),' . (i) #a * (t)*r' + (t)"u' + (1)u^

: 14 * 4r3y * 6r2y2 + 4ry3 + 94.

2.6 Exercises

2.2 The Language of Probability; Sets, Sample Spaces
and Events

2-1. From a standard deck of cards a srngle card is drawn. Let Ebe
the event that the card is a red face card. List the outcomes in the
event E.

2-2. An insurance company insures buildings against loss due to fire.
(a) What is the sample space of the amount of loss?
(b) What is the event that the amount of loss is strictly be-

tween $1,000 and $1,000,000 (i.e., the amount r is in the
open interval (1,000, 1,000,000))?

2-3. An urn contains balls numbered from I to 25. A ball is selected
and its number noted.
(a) What is the sample space for this experiment?
(b) If E is the event that the number is odd, what are the

outcomes in E?

2-4. An experiment consists of rolling a pair of fair dice, one red and
one green. An outcome is an ordered pair (r, g), where r is the
number on the red die and g is the number on the green die. List
all outcomes of this experiment.

2-5. Two dice are rolled. How many outcomes have a sum of (a) 7;
(b) 8; (c) I 1; (d) 7 or 11?

2-6. Suppose a family has 3 children. List all possible outcomes for
the sequence of births by sex in this family.
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Compound Eventsl Set Notation

Let ,9 be the sample space for drawing a ball from an urn
containing balls numbered from I to 25, and E be the event the
number is odd. What are the outcomes in --B?

In the sample space for drawing a card from a standard deck, let
,4 be the event the card is a face card and B be the event the
card is a club. List all the outcomes in ,4n B.

Consider the insurance company that insures against loss due to
fire. Let,4 be the event the loss is strictly between $1,000 and

$100,000, and B be the event the loss is strictly between
$50,000 and $500,000. What are the events in ,4 u B and
A. B?

2.3

2-7.

2-8.

2-9.

2-10. An experiment consists of tossing a coin and then rolling a die.
An outcome is an ordered pair, such as (.I1,3). Let ,4 be the
event the coin shows heads and B be the event the number on
the die is greater than 2. What is A n B?

2-11 . ln the experiment of tossing two dice, let E be the event the sum
of the dice is 6 and -P be the event both dice show the same
number. List the outcomes in the events .D U F and E ) F.

2-12. In the sample space for the family with three children in Exer-
cise 2-6,let.E be the event that the oldest child is a girl and F
the event that the middle child is a boy. List the outcomes in ,8,

F,EUFand EnF.

Set Identities

Z-13. Verify the two distributive laws by drawing the appropriate
Venn diagrams.

2-14. Verify De Morgan's laws by drawing the appropriate Venn
diagrams.

2.4
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2-15. Let M be the set of students in a large university who are taking
a mathematics class and E be the set taking an economics class.

(a) Give a verbal statement of the identity
-(M u E) : -M o-8.

(b) Give a verbal statement of the identity
-(M.E):-Mu-8.

2.5 Counting

2-16. An insurance agent sells two types of insurance, life and health.
Of his clients, 38 have life policies, 29 have health policies and
2l have both. How many clients does he have?

2-17. A company has 134 employees. There are 84 who have been
with the company more than l0 years and 65 of those are college
gtaduates. There are 23 who do not have college degrees and
have been with the company less than l0 years. How many
employees are college graduates?

2-18. A stockbroker has 94 clients who own either stocks or bonds. If 67

own stocks and 52 own bonds, how many own both stocks and

bonds?

2-19. In a survey of 185 university students,9l were taking a history
course, 75 were taking a biology course, and 37 were taking both.
How many were taking a course in exactly one of these subjects?

2-20. A broker deals in stocks, bonds and commodities. In reviewing his

clients he finds thal 29 own stocks, 2J own bonds, 19 own
commodities, 11 own stocks and bonds, 9 own stocks and

commodities, 8 own bonds and commodities, 3 orvn all three, and

I I have no current investments. How many clients does he have?

2-Zl. An insurance agent sells life, health and auto insurance. During the

year she met with 85 potential clients. Of these, 42 purchased life
insurance, 40 health insurance, 24 auto insurance, 14 both life and

health, 9 both life and auto, 1l both health and auto, and 2

purchased all three. How many of these potential clients purchased
(a) no policies; (b) only health policies; (c) exactly one type of
insurance; (d) life or health but not auto insurance?
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2-22. If an experiment consists of tossing a coin and then rolling a die,
how many outcomes are possible?

2-23. ln purchasingacar, a woman has the choice of 4 body styles, 15

color combinations, and 6 accessory packages. In how many
ways can she select her car?

2-24. A student needs a course in each of history, mathematics,
foreign languages and economics to graduate. In looking at the
class schedule he sees he can choose from 7 history classes, 8

mathematics classes, 4 foreign language classes and 7 economics
classes. In how many ways can he select the four classes he
needs to graduate?

2-25. An experiment has two stages. The first stage consists of drawing a

card from a standard deck. If the card is red, the second stage
consists of tossing a coin. If the card is black, the second stage

consists of rolling a die. How many outcomes are possible?

2-26. Let X be the n-element set {r1,r2,...,rn}. Show that the
number of subsets of X, including X and A, is 2". (Hint: For
each subset A of X, define the sequence (ar, e2,...,a,) such
thal a; : I if rt € A and 0 otherwise. Then count the number of
sequences).

2-27. An arrangement of 4letters from the set {,4., B,C,D,E,F} is
called a (four-letter) word from that set. How many four-letter
words are possible if repetitions are allowed? How many four-
letter rvords are possible if repetitions are not allowed?

2-28. Suppose any 7-digit number whose first digit is neither 0 nor I
can be used as a telephone number. I{ow many phone numbers
are possible if repetitions are allowed? How many are possible
if repetitions are not allowed'/

2-29. A row contains 12 chairs. In how many ways can 7 people be
seated in these chairs?

2-30. At the beginning of the basketball season a sportswriter is asked

to rank the top 4 teams of the 10 teams in the PAC-10 confer-
ence. How many different rankings are possible?
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2-31. A club with 30 members has three officers: president, secretary
and treasurer. In how many ways can these offices be filled?

2-32. The speaker's table at a banquet has l0 chairs in a row. Of the
ten people to be seated at the table,4 are left-handed and 6 are

right-handed. To avoid elbowing each other while eating, the
left-handed people are seated in the 4 chairs on the left. ln how
many ways can these l0 people be seated?

2-33. Eight people are to be seated in a row of eight chairs. In how
many ways can these people be seated if two of them insist on
sitting next to each other?

2-34. A club with 30 members wants to have a 3-person governing
board. In how many ways can this board be chosen? (Compare
with Exercise 2-31.)

2-35. How many S-card (poker) hands are possible from a deck of 52
cards?

2-36. How many of those poker hands consist of (a) all hearts; (b) all
cards in the same suit; (c) 2 aces,2 kings and 1 jack?

2-37. In a class of 15 boys and 13 girls, the teacher wants a cast of 4
boys and 5 girls for a play. In how many ways can she select the

cast?

2-38. The Power Ball lottery uses two sets of balls, a set of white balls
numbered 1 to 55 and a set of red balls numbered 1 to 42. To
play, you select 5 of the white balls and I red ball. In how many
ways can you make your selection?

2-39. How many different ways are there to arrange the letters in the
word MISSISSIPPI?

2-40. An insurance company has offices in New York, Chicago and

Los Angeles. It hires 12 new actuaries and sends 5 to New York,
3 to Chicago, and 4 to Los Angeles. ln how many ways can this
be done?
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2-41. A company has 9 analysts: It has a major project which has been
divided into 3 subprojects, and it assigns 3 analysts to each task.
In how ways can this be done?

2-42. Suppose that, in Exercise 2-41, the company divides the 9

analysts into 3 teams of 3 each, and each team works on the
whole project. ln how many ways can this be done?

2-43. Expand (2s - t)a .

2-44. In the expansion of (2u - 3r)8, what is the coefficient of the
term involving usu3?

2-45. Prove the Binomial Theorem. (Hint: How many ways can you
get the termr"-kyk from the product ofn factors, each ofwhich
is (r * s)?)

2-46. Using the Binomial Theorem, give an alternate proof that the
number of subsets of an n-element set is 2".

2.7 Sample Actuarial Examination Problem

2-47. An auto insurance company has 10,000 policyholders. Each
policyholder is classified as

(i) young or old;
(ii) male or female; and
(iii) manied or single.

Of these policyholders, 3000 are young, 4600 are male, and

7000 are married. The policyholders can also be classified as

1320 young males, 3010 married males, and l400young married
persons. Finally, 600 of the policyholders are young married
males.

How many of the company's policyholders are young, female,
and single?
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Elements of Probability

Probability by Counting for Equally Likely
Outcomes

3.1.1 Definition of Probability for Equally Likely Outcomes

The lengthy Chapter 2 on counting may cause the reader to forget that
our goal is to find probabilities. In Section 2.1 we stated an intuitively
appealing definition of probability for situations in which outcomes were
equally likely.

Probability by Counting for Equally Likely Outcomes

Probabilitv of an event :'" r -r ' '' - Total number of possible oulcomes

Chapter 2 gave us methods to count numbers of outcomes. The
discussion of sets gave us a precise language for discussing collections
of outcomes. Using the language and notation that have been developed,
we can now give a more precise definition of probability.

Definition 3.1 Let E be an event from a sample space S in which
all outcomes are equally likely. The probability of ,8, denoted P(,D), is
defined by

3.1

P(E):
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Example 3.1 A company has 200 employees. 50 of these employ-
ees are smokers. One employee is selected at random. What is the
probability that the selected employee is a smoker (Sm)?

Solution

P(sm): {# : ffi: .zs

Example 3.2 A standard 52 card deck is shuffled and one card is
picked at random. What is the probability that the card is (a) a king (K);
(b) a club (C); (c) a king and a club; (d) a heart and a club?

Solution

(a) P(K): ffi : Lu: +

(b) P(c): "\q) : l; : I??(S) - 52- 4

(c) The only card in the event K n C is the king of clubs. Then

P(K.ct:4ffi : +..

(d) A single card cannot be both a heart and a club, so we have

n(H )C) : 0. rhen P(11n C) : 4+e?: * : o.

n

Part (d) of Example 3.2 illustrates an important point. It is
impossible for a single card to be both a heart and a club. If an event is
impossible, n(E) will be 0 and P(E) will also be 0.

3.1.2 Probability Rules for Compound Events

Some very useful probability rules can be derived from the counting
rules in Section 2.5.1. The playing card experiment in Example 3.2 will
provide simple illustrations of these rules. A standard deck is shuffled
and a single card is chosen. We are interested in the following events:

11: the card drawn is a heart n(H) : 13 P(H) : 114

K: the card is a king n(K) : 4 P(K) : l/13
C: the card is a club n(C) : 13 P(C) : 114
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Example 3.3 Find P(-C).
Solution

P(-c):ffi : 52#- 1 - !: r - P(c) n

The general rule for P(-E) can be derived from Equation (2.5),
n(-E): n(S) - n(E). Dividing by n(S), we obtain

Negation Rule

P(-E): t - P(E) (3.1)

Another useful rule comes from Equation (2.6), which states

n(Au B) : n(A) + n(B) - n(An B).

Dividing by n(S) here, we obtain

nt A,, o, _ n(A U B) _ n(A) , n(B) n(A)B)r \/1\J "t - n,5) - t($ - t(S - n(S)

: P(A) + P(B) _ P(4. B).

This gives a useful identity for P(,4 U B).

Disjunction Rule

P(Au B) : P(A) + P(B) - P(A o B) (3 2)

Example 3.4 A single card is drawn at random from a deck. Use

Equation (3.2) to find (a) P(K u C); (b) P(H u C).
Solution
(a) P(K u C) : P(K) + P(C) - P(K 

^ 
C)

4131t6: s2- 52- 57 - 52

47

P(-E):#&: #B -ffi- I - P(E)

This gives a useful identify for P(-E).
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Note that this problem could also have been solved directly
by counting n(K U C) and dividing by 52. This should be
obvious, since the rule used was based on counting. We will
see later that Equation (3.2) still holds in situations where
counting does not apply.

(b) P(Huc) :i,ll,:l-:::"", -57-152-52-52 rJ

Part (b) of Example 3.4 illustrates a simple situation which occurs
otten. P(FI o C) :0, so that P(H U C) : P(H) + P(C). Events like
ff and C are cailed mutually exclusive because the occurrence of one
excludes the occurrence of the other. Mutually exclusive events were
defined in Definition 2.4, which is repeated here for reinforcement.

Definition 2.4 Two events A and B are mutually exclusive if
An B :4.

For mutually exclusive events, P(An B):0, and the following
addition rule holds.

Addition Rule for Mutually Exclusive Events

If ,4 n B : A, then P(A U B) : P(A) + P(B).

Some care is needed in identifying mutually exclusive events. For
example, if a single card is drawn from a deck, hearts and clubs are
mutually exclusive. In some later problems we will look at the experi-
ment of drawing two cards from a deck. ln this case a first draw of a

heart does not exclude a second draw ofa club.
The rules developed here can be used in a wide range of applica-

tions.

Example 3.5 In Examples 2.21 and 2.22 we looked at a financial
planner who intended to call on one family from a neighborhood
association. In that association there were 100 families. 78 families had a
credit card (C), 50 of the families were paying off a car loan (,L), and 41

of the families had both a credit card and a car loan. The planner is going
to pick one family at random. What is the probability that the family has

a credit card or a car loan?
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Solution
P(L u C) : P(L) + P(C) - P(L ) C)

:ffi+ffi-fib: tt tr

The last problem could also have been solved directly by counting
n(L U C) : 87. The identities used here will prove much more useful
when we encounter problems which cannot be solved by counting.

3.1.3 More Counting Problems

It is a simple task to find the probability that a single card drawn from a
deck is a king. Some probability calculations are a bit more complex. In
this section we will give examples of individual probability calculations
which are more interesting.

Example 3.6 In Example 2.40 we looked at a company with 20
male employees and 30 female employees. The company is going to
choose 5 employees at random for drug testing. What is the probability
that the five chosen employees consist of (a) 3 males and 2 females;
(b) all males; (c) all females?

Solution The total number of ways to choose 5 employees from
the entire company is C(50,5). This will be the denominator of the
solution in each part of this problem.

(to) : 2'tt8'760

(a) The total number of ways to choose a group of 3 males and
2 females is

: 1 140 . 435 :495,900

The probability of choosing a group of 3 males and 2
females is therefore

49

(?)('t)

(TXT)
('f )

495,900 _ .) A

- 7JTg36 - 'Lr,'
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(b) An all-male group consists of 5 males and 0 females.
Reasoning as in part (a), we find that the probability of
choosing an all male group is

('f )('d) ('f )
('f )

- 7s-o\ -
\)/

ffi=oo7
(c) Similarly, the probability of choosing an all-female group is

/3-0 \
\t1: =t!?rs9g=x.o6t. D/s0-\ - TJtsS@'.
\5/

The above analysis is useful in many different applications. The
next example deals with testing defective parts; the mathematics is
identical.

Example 3.7 A manufacturer has received a shipment of 50 parts.
Unfortunately,20 of the parts are defective. The manufacturer is going
to test a sample of 5 parts chosen at random from the shipment. What is
the probability that the sample contains (a) 3 defective parts and 2 good
parts; (b) all defective parts; (c) no defective parts?

Solution

495,900 _ 1) A- TJIffrm - 'Lr=

:ffir.oo7

##*x o6i

(a)w

(b)w:E
(T)

(c) H: tr



E lements of P robabi I itv

The range of different possible counting problems is very wide.
The next example is not at all similar to the last two.

Example 3.8 Four people are subjected to an ESP experiment.
Each one is asked to guess a number between 1 and 10. What is the
probability that (a) no two of the four people guess the same number;
(b) at least two of the four guess the same number?

Solution
(a) Each of the four people has the task of choosing from the

numbers I to 10. The total number of ways this can be done
is the number of ways to perform 4 tasks with 10

possibilities on each task. which is 104. The number of ways
for the four people to choose 4 distinct numbers is
10.9'8'7 : P(10,4):5040. (The first person has all 10

numbers to choose, leaving 9 for the second, 8 for the third,
and 7 for the fourth.) Then the probability that none of the
four guess the same number is

: .504.

(b) At least two people guess the same number if it is not true
that none of the 4 guess the same number.

P(at least two people guess the same)

- I - P(no two people guess the same)

: .496

In the previous example there were four people picking numbers
from I to 10. A very similar problem occurs when you ask if any two of
the four people have the same birthday. In this case, the birthday can be
thought of as a number between 1 and 365, and we are asking whether
any two of the people have the same number between 1 and 365. For a

randomly chosen person, any day of the year has a probability of * ot
being the birthday. The probability that at least two of the four have the
same birthday is

51

_ 5,040
- 10,000

tr

I_P(365:4)=.016.
365"
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A surprising result appears when there are 40 people in a room. The
probability that at least two have the same birthday is

I _ P(365' 40) 
= .891.--l6F- -

This result provides an interesting classroom demonstration for a teacher
with 40 students and a little bit of nerve. (Remember that the probability
of not finding 2 people with the same birthday is about .l l.) The
birthday problem is pursued further in the exercises.

Many more probability problems can be solved using counting.
Most of the counting examples in this chapter can easily be used to solve
related probability problems. A practical illustration of this is Example
2.39, which showed that the Arizona lottery has 5,245,786 possible
combinations of 6 numbers between I and 42. This means that if you
hold a lottery ticket and are waiting for the winning numbers to be
drawn, the probability that your numbers will be drawn is 115,245,786.

3.2 Probability When Outcomes Are Not Equally Likely

The outcomes in an experiment are not always equally likely. We have
already discussed the example of a biased coin which comes up heads
65%o of the time and talls 35%o of the time. Dice can be loaded so that the
faces do not have equally likely probabilities. Outcomes in real data
studies are rarely equally likely - e.9., the probability of a family
having 5 children is much lower that the probability of having 2
children. In this section we will take a detailed look at a situation in
which probabilities are not equally likely, and develop some of the key
concepts which are used to analyze the probability in the general case.

Example 3.9 A large
component of their planning
involve more than one child
to the following table:l

HMO is planning for future expenses. One
is a study of the percentage of births which

- twins, triplets or more. The study leads

I These numbers are adapted from the 2006 edition of Statistical Abstract of the United
States.TableT5.
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Number of children I 2 J

Percent of all births 96.700 3.11V, 0.190A

How will the company assign probabilities to multiple births for future
planning?

Solution The table shows that the individual outcomes are not
equally likely - a result which would not surprise anyone. The table
also gives us numbers to use as the probabilities of individual outcomes.

P(l): .9679 P(2): .9311 P(3) : .9919

Once probabilities are defined for the individual outcomes, it is a simple
matter to define the probability of any event. For example, consider the
event E that a birth has more than one child. In set notation, p : {2,31.
We can define

P(E) : P(2u3) : P(2)+ P(3) :.0311 + .0019 : .0330.

What we have done here is to apply the addition rule to the mutually
exclusive outcomes 2 and 3. We can define the probability for any event
in the sample space S : {1,2,3} in the same way - 

just add up the
probabilities of the individual outcomes in the event. It is important to
note that

P(^9): P(l)+ P(2)+ P(3): .9670+.0311+.0019: 1.

The sum of the probabilities of all the individual outcomes is I . tr

3.2.1 Assigning Probabilities to a Finite Sample Space

Example 3.9 illustrated a natural method for assigning probabilities to
events in any finite sample space with n individual outcomes denoted by
Or,Oz,...,On.

(l) Assign a probability P(Ot) ) 0 to each individual outcome
Oi. The sum of all the individual outcome probabilities must
be l.

(2) Define the probability of any event .E to be the sum of the
probabilities of the individual outcomes in the event. (This
is an application of the addition rule for mutually exclusive
outcomes.) Then we have
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P(E) : I pro,).
OieE

Example 3.10 An automobiie insurance company does a study to
find the probability for the number of claims that a policyholder will file
in a year. Their study gives the following probabilities for the individual
outcomes 0,7,2,3.

Number of claims 0 2 J

Probability .72 .22 .05 .01

The individual probabilities here are all non-negative and add to l. We
can now find the probability of any event by adding probabilities of
individual outcomes. D

3.2.2 The General Definition of Probability

Not all sample spaces are finite or as easy to handle as those above. To
handle more difficult situations, mathematicians have developed an

axiomatic approach that gives the general properties that an assignment
of probabilities to events must have. If you define a way to assign a

probability P(E) to any event E, the following axioms should be

satisfied:

(1) P(E) > 0 for any event E
(2) P(S): 1

(3) Suppose Er,Ez,...,En,... is a (possibly infinite) sequence

of events in which each pair of events is mutually exclusive.
Then

: lela)'
i:1

These axioms hold in Examples 3.9 and 3.10. Events have non-negative
probabilities, individual probabilities add to one, and the addition rule
works for mutually exclusive events.

In this text we will not take a strongly axiomatic approach. In
situations where individual outcomes are not equally likely, we will
define event probabilities in an intuitively natural way (as we did in the
preceding examples) and then proceed directly to applied problems. The

"(P"')
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reader can assume that the above axioms hold, and in most cases it will
be obvious that they do.

One advantage of the axiomatic approach is that the probability
rules derived for equally likely outcomes can be shown to hold for any
probability assignment that satisfies the axioms. In any probability
problem we can use the following rules:

P(-E): | - P(E)

P(Au B) : P(A) + P(B) - P(4. B)

P(Au B): P(A) + P(B), if ,4 and B are mutually exclusive

The proof of the last rule from the axioms is simple - it is a special
case of Axiom (3).Proofs of the first two properties from the axioms are
outlined in the exercises. However, the emphasis here is not on proofs
from the axioms. The important thing for the reader to know is that when
probabilities have been properly defined, the above rules can be used.

3.3 Conditional Probability

In some probability problems a condition is given which restricts your
attention to a subset of the sample space. When lookrng at the employees
of a company, you might want to answer questions about males only or
females only. When looking at people buying insurance, you might want
to answer questions about smokers only or non-smokers only. The next
section gives an example of how to find these conditional probabilities
using counting.

3.3.1 Conditional Probability by Counting

Example 3.11 A health insurance pool includes 200 individuals.
The insurer is interested in the number of smokers in the pool among
both males and females. The following table (called a contingency
table) shows the desired numbers.
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Males (M) Females (F) Total

Smokers (,9) 28 22 50
Non-smokers (-S) 72 78 150

Total 100 100 200

Suppose one individual is to be chosen at random. Counting can be used
to find the probability that the individual is a male, a female, a smoker,
or both.

P(M): j88: s P(F):

P(M.s1:ffi::+

P(.9): ffi: .rt

P(FnS): 22
T6A

: .l I

100 .
200 

: ''

Suppose you were told that the selected individual was a male, and asked
for the probability that the individual was a smoker, given that the
individual was a male. (The notation for this probability is P(S|M).)
Since there are only 100 males and28 of them are smokers, the desired
probability can be found by dividing the number of male smokers by the
total number of males.

This problem can also be solved using probabilities. If we divide the
numerator and denominator of the last fractional expression by 200 (the
total number of individuals), we see that

P(slM): m: # :4W:.28.
The probability that the selected individual was a smoker, given that the
individual was a female, can be found in the same two ways.

P(slF) : ?+&P : ffi: zz

-.11 ..-m-'"tP(slr):
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Note that the above conditional probabilities can be stated in words in
another very natural way. In this group, 28Yo of the males smoke and
22%o of the females smoke. tr

3.3.2 Defining Conditional Probability

Example 3.11 showed two natural ways of finding a conditional probabi-
lity. The first was based on counting.

Conditional ProbabilitLfl;ffJ,ing for Equally Likely

P(A1B): ry&P (3 3)

When outcomes are not equally likely, this rule does not apply. Then we
need a definition of conditional probability based on the probabilities
that we can find. This definition is based on the second approach to
conditional probability used in the example.

Definition 3.2 For any two events A and -8, the conditional
probability of A given B is defined as follows:

Definition of Conditional Probability

P(A:B) - ryffiP (3.4)

Example 3.12 In Example 3.9, probabilities were found for the
number of children in a single birth.

P(l): .9761 P(2): .9231 P(3) : .9993

Suppose M is the event of a multiple birth, so that, M : 12,31 . Find the
probability of the birth of twins, given that there is a ntultiple birth.

Solution We need to find P(2lh,I). We first note that

P(M): .0231 + .0008 : .0239
and

P(M )2): P(z): .0231.
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Then by Definition 3.2,
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P(2lM): ryW: ffi=.e67
The result tells us that approximately 96.7% of the multiple births are
twins. tr

Example 3.13 In Example 3.10, probabilities were given for the
possible numbers of insurance claims filed by individual policyholders.

Number of claims 0 I 2 3

Probability .72 .22 .05 .01

Find the probability that a policyholder files exactly 2 claims, given that
the policyholder has filed at least one claim.

Solution Let C be the event that at least one claim is filed.
Then C: {1,2,3} and P(C):.22+.05 *.01 :.28. We also need
the value P(2 n C) : P(2) : .05. Then

P(?'n' P(2 
' 

C)Ltvt---p@l- -# =J79.

This tells us that approximately 17.9% of the policyholders who file
claims will file exactly 2 claims. D

It is often simpler to find conditional probabilities by direct
counting without using Equation (3.4).

Example 3.14 A card is drawn at random from a standard deck.
The card is not replaced. Then a second card is drawn at random from
the remaining cards. Find the probability that the second card is a king
(K2), given that the first card drawn was a king (K l).

Solution If a king is drawn first and not replaced, then the deck
will contain 51 cards and only 3 kings for the second draw.

P(K2|Kt): fr = .0s88

In this case the probability formula given by Equation (3.4) would
require much more work to get this simple answer. n

The definition of conditional probability, given by Equation (3.4),
can be rewritten as a multiplication rule for probabilities.
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Multiplication Rule for Probability

P(A) B) : P(AIB). P(B) (3.s)

Example 3.15 Two cards are drawn from a standard deck without
replacement, as in Example 3.14. Find the probability that both are
kings.

Solution

P(Kt o K2): P(Kt). P(KzlKt) :

59

43
52' 5T

ry.0045 U

3.3.3 Using Trees in Probability Problems

Experiments such as drawing 2 cards without replacement and checking
whether a king is drawn can be summarized completely using trees. The
tree for Examples 3.14 and 3.15 is shown below.

First Draw Second Draw Outcome Probability
(Kl, K2) (4ts2)(3ts1)K2

-Kz (Kl, -K2) (4tsz)(48lst)

K2 eKr, K2) (48ls2xl4lst)

-KZ (-K1, -K2) (481s2\47lsl

The first two branches on the left represent the possible first draws, and
the next branches to the right represent the possible second draws. We
write the probability of each first draw on its branch and the conditionel
probability of each second draw on its branch. At the end of each final
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branch we write the resulting 2-card outcome and the product of the two-
branch probabilities. The multiplication rule tells us that the resulting
product is the probability of the final 2-card outcome. For example, the
product of the two fractions on the topmost branch is P(K|etK2), as
calculated in the previous example.

The tree provides a rapid and efficient way to display all outcome
pairs and their probabilities. This simplifies some harder problems, as
the next example shows.

Example 3.16 Two cards are drawn at random from a standard
deck without replacement. Find the probability that exactly one of the
two cards is a king.

Solution The only pairs with exactly one king are (Kl,-K2) and
(-K I , K2). The desired probability is

PL(K\,*K2))+ Pl(-Kt, K2)): ## * #+ = r45. n

An intuitive description of our method for finding the probability
of exactly one king would be to say that we have added up the final
probabilities of all tree branches which contain exactly one king. This
technique will be explored further in Section 3.5 on Bayes' Theorem.

3.3.4 Conditional Probabilities in Life Tables

Life tables give a probability of death for any given year of life. For
example, Bowers, et al. [2] has a life table for the total population of the
United States, 1979-1981. That table gives, for each integraT age r, the
estimated probability that an individual at integral age z will die in the
next year. This probability is denoted by q,.

q, -- P(an individual aged r will die before age z * l)

For example,

qzs : .00132 : P(a 2i-year-old will die before age 26)

and

qsz : .01059 : P(a 57-year-old will die before age 58).

Life tables are used in the pricing of insurance, the calculation of life
expectancies, and a wide variety of other actuarial applications. They are
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mentioned here because the probabilities in them are really conditional.
For example, q25 is the probability that a person dies before age 26,
given that the person has survived to age 25.

3.4 Independence

3.4.1 An Example of Independent Eventsl The Definition of
Independence

Example 3.17 A company specializes in coaching people to pass

a major professional examination. The company had 200 students last
year. Their pass rates, broken down by sex, are given in the following
contingency table.

This table can be used to calculate various probabilities for an individual
selected at random from the 200 students.

P(Pass): j38 : .oo

P(PasslMale) : # : .U, P(PasslFemale): ffi : .OO

These probabilities show that the overall pass rate was 600/o, and that the
pass rate for males and the pass rate for females were also 60%. When
males and females have the same probability of passing, we say that
passing is independent ofgender. n

The reasoning here leads to the following definition.

Definition 3.3 Two events A and B are independent if

P(AIB): P(A).

Males Females Total

Pass 54 66 120

Fail 36 44 80

Total 90 ll0 200
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In the above example, the events Pass and Male are independent
because P(PasslMale): P(Pass). When events are not independent
they are called dependent.

In Example 3.11 we looked at an insurance pool in which there
were males and females and smokers and non-smokers. For that pool,
P(S) : .25 but P(SIM): .28. The events ,5 and It{ are dependent.
(This was intuitively obvious in the original example. 28%o of the males
and only 22o/o of the females smoked. The probability of being a smoker
depended on the sex of the individual.)

In many cases it appears obvious that two events are independent
or dependent. For example, if a fair coin is tossed twice, most people
agree that the second toss is independent ofthe first. This can be proven.

Example 3.18 The full sample space for two tosses of a fair coin
is

{HH , HT ,TH,TT}.

The four outcomes are equally likely. Let Hl be the event that the first
toss is a head, and H2 the event that the second toss is a head. Show that
the events Hl and H2 are independent.

Solution We have H2: {HH,TH} and P(H2):.50. Given
that the first toss is a head, the sample space is reduced to the two
outcomes {H H, HT} . Only one of these outcomes, H H, has a head as

the second toss. Thus P(HzlHl): .50. Then P(HZlIlt; : P(H2), and
thus l/1 and H2 are independent. D

Coin-tossing problems are best approached by assuming that two
successive tosses of a fair coin are independent. The counting argument
above shows that is true.

There is another corrunon problem in which independence and
dependence are intuitively clear. If two cards are drawn from a standard
deck without replacement of the first card, the probability for the second
draw clearly depends on the outcome of the first. If a card is drawn and
then replaced for the second random draw, the probability for the second

draw is clearly independent of the first draw.
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3.4.2 The Multiplication Rule for Independent Events

The general multiplication rule for any two events, given by Equation
(3.5), is

P@n B): P(AIB). P(B).

If A and B are independent, then P(AIB) : P(A) and the multiplication
rule is simplified:

Multiplication Rule for Independent Events

P(4. B) : P(A) ' P(B) (3.6)

In some texts this identify is taken as the definition of independence and
our definition is then derived. This multiplication rule makes some
problems very easy if independence is immediately recognized.

Example 3.19 A fair coin is tossed twice. What is the probabilify
of tossing two heads?

Solution The two tosses are independent. The multiplication rule
yields P(HH):+.+:i D

The multiplication rule extends to more than two independent
events. If a fair coin is tossed three times, the three tosses are indepen-
dent and

P(HHH):t + +:*
ln fact, the definition of independence for n > 2 events states that the
multiplication rule holds for any subset of the n events.

Definition 3.4 The events At, Az, . . . , An are independent if
P(Ai, ?'Ai,a .-) Ai) : P(Ar,) x P(A;,) x ... x P(Ar),

forl(il1i2

The situation is more complicated than it appears. Exercise 3-30
will show that it is possible to have three events A, B and C such that
each pair of events is independent but the three events together are not
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independent. Independence may be tricky to check for in some special
problems. However, in this text there willbe many problems where inde-
pendence is intuitively obvious or simply given as an assumption of the
problem. In those cases, the general multiplication rule should be applied
immediately.

Example 3.20 A fair coin is tossed 30 times. What is the probabi-
lity of tossing 30 heads in a row?

Solution

/ -L \'o
\2 ) - 1,073,741,824

Don't bet on it!

Example 3.21 A student is taking a very difficult professional
examination. Unlimited tries are allowed, and many people do not pass

without first failing a number of times. The probability that this student
will pass on any particular attempt is .60. Assume that successive
attempts at the exam are independent (If the exam is unreasonably
tricky and changes every time, this may not be a bad assumption.) What
is the probability that the student will not pass until his third attempt?

Solution
P(Fai,l and Fail ond Pass): (.40X.40)(.601 : .696 tr

Example 3.22 An insurance company has written two life
insurance policies for a husband and wife. Policy I pays $10,000 to their
children if both husband and wife die during this year. Policy 2 pays
S100,000 to the surviving spouse if either husband or wife dies during
this year. The probability that the husband will die this year (fIp) is
.011. The probability that the wife will die this year (Wp) is.008. Find
the probability that each policy will pay a benefit this year, You are to
assume that the deaths of husband and wife are independent.

Solution
Policy 1: The probability of payment is

P(H o and Wp) : (.011X.008) : .000088.

Policy 2: The probability of payment is
P(HnuWn) : P(Hn) + P(Wil - P(Ho ) Wn)

n

: .0ll +.008 - .000088 : .018912. EI
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3.5 Bayes'Theorem

3.5.1 Testing a Test: An Example

ln Example 2.27, we showed how to list the possible outcomes of a

disease test using a tree. In the discussion, we mentioned that disease
tests can have their problems. A test can indicate that you have the
disease when you don't (a false positive) or indicate that you are free of
the disease when you really have it (a false negative). Most of us are

subjected to other tests that have similar problems - placement tests,
college and graduate school admission tests, and job screening tests are a
few examples. Bayes' Theorem and the related probability formulas
presented in this section are quite useful in analyzing how well such
tests are working, and we will begin discussion of Bayes' Theorem with
a continuation of the disease-testing example. (This material has a wide
variety of other applications.)

Example 3.23 The outcomes of interest in a disease test, from
Example 2.27, are the following:

D: the person tested has the disease

-D: the person tested does not have the disease

Y: the test is positive

l/: the test is negative

In this example, we will consider a hypothetical disease test which most
people would think of as "95Vo accurate", defined as follows:

(a) P(YID) : '95; in words, if you have the disease there is a
.95 probability that the test will be positive.

(b) P(NI-D): '95; if you don't have the disease the probabili-
fy is .95 that the test will be negative.

Only lV, of all people actually have the disease, so P(D): .01. The
tree for this test (with branch probabilities) is given on the following
page.
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Outcome Probability

(D, y) .0095

ry (D,.M)

Y ?D,n

.0005

.0495

N (-D, A) .940s

The tree illustrates that the test is misleading in some cases. 5yo of
individuals with the disease will test negative, and 5o/o of the individuals
who do not have the disease will test positive. There are two important
questions to ask about this test.

(a) What percentage of the population will test positive? This
percentage is given by P(Y).

(b) Suppose you know that someone has tested positive for the
disease. What is the probability that the person does not
actually have the disease? (This probability is p(-Dly).)

Solution
(a) P(Y) is just the sum of the probabilities of all branches

ending in Y.

P(Y): PL(D,y)l + PleD,Y)l:.009s + .0495 : .059

(b) Note that the event -D nY corresponds to the branch
(-D,Y),

P(-D:Y):W:W:f4;Ery 83e

The practical information here is interesting. The "95%o accurate" test
will classify 5.9%o of the population as positives 

- 
a classification
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which can be alarming and stressful. 83.9% of the individuals who tested
positive will not actually have the disease. il

ln Example 3.23 we used Bayes' Theorem and the law of total
probability without mentioning them by name. In the next section we
will state these useful rules.

3.5.2 The Law of Total Probability; Bayes'Theorem

In Example 3.23 we found P(Y) by breaking the event Y into two
separate branch outcomes, so

y : {(D,y),(_D,y)\,
which enabled us to write

P(Y): P[(D,Y)] + PI(-D,Y)1.

Using set notation, we could rewrite the last two identities as

Y:(DnY)u(-D)Y)
and

P(Y): P(D.Y) + P(-D.Y).
Note that D U -D: S. The events D and -D partition the sample

space into two mutually exclusive pieces. Then the events (D n Y) and
(-D n Y) break the event Y into two mutually exclusive pieces. This is
illustrated in the following figure.

The events D and -D are said to partition the sample space. This is a

special case of a more general definition.

67
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Definition 3.5 The events At, Az,...,An partition the sample
spaceSif Ar U AzU"'UA,:,9and Ai)Ar:Aforil j.

The law of total probability says that a partition of the sample
space will lead to a partition of any event -D into mutually exclusive
pieces.

E : (Ar n,g) u (A2n E)u ... u (4" ) E)

Then we can write P(E) as the sum of the probabilities of those pieces.

Law of Total Probability

Let -B be an event. If A1, Az, . . . , A, partition the sample space,
then

P(E): P(AtnE)+ P(Az nB)+ "'+ P(A"nE). (3.7)

This is the law we used intuitively when we wrote

Y : (D n Y) u ?D nY): {(D,Y),(-D,Y)I
and

P(Y) -- P(D nY) + P(-D nY)
In that case n : 2, At : D, and Az : -D.

The law of total probability can be rewritten in a useful way. In the
disease testing example, the probabilities P[(D,Y)] and P[(-D,Y)l
appeared to be read directly from the tree, but they were actually
obtained by multiplying along branches.

P(D.Y): P(D)' P(YID) P(-D n v) : P(-D)' P(YI-D)

Thus when we found P(Y), we were really writing

P(Y): P(D)Y)+ P(-D nv): P(D).P(YID)+ P(-D).P(YI-D).

Samnle

Ar Az A,
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When we calculated P(-DlY), our reasoning could be summarized as

P(-D:Y\: _ P(-p). P(Y l-p)- P(D). P(YID) + P(-D) P(Y|-D)'

The last expression on the right is referred to as Bayes' Theorem. It
looks complicated, but can be stated simply in terms of trees.

P(-D.Y):

The general statement of Bayes' Theorem is simply an extension
of the above reasoning for a partition of the sample space into n events.

Bayes'Theorem

Let E be an event.lf At, A2,..., An partition the sample space,
then

P(AilE)-4W
_

(3 .8)

We illustrate the use of Bayes' Theorem for a partition of the sample
space into 3 events in the next example.

Example 3.24 An insurer has three types of auto insurance poli-
cyholders. 50o/" of the policyholders are low risk (I). The probability
that a low-risk policyholder will file a claim in a given year is .10.

Another 30% of the policyholders are moderate rrsk (M). The
probability that a moderate-risk policyholder will file a claim in a given
year is .20. Finally,20yo of the policyholders are high risk (.I1). The
probability that a high-risk policyholder will file a claim in a given year
is .50. A policyholder files a claim this year. Find the probability that he

is a high-risk policyholder.
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Solution The given probabilities lead to the following tree.

.10 -.- C

L -<a

Outcome Probabili

L&C .05

,/----<90x --- -c L &-C .4s

.20 M&C .06

.30
.80

.20 -C

C

M&-C

H&C

.24

.10

<--- 50

------ -c H &-c .lo

P(Htc) : ryA?: 35*jffi = .476

This shows that approximately 47 .6% of the claims are filed by high-risk
drivers. D

Note that in a typical problem it is simpler to draw the tree and use
branch probabilities than it is to memorize the formula and try to
substitute numbers into it. For many people the tree provides the intui-
tion to understand and memorize the formula.
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Exercises

Probability by Counting for Equally Likely Outcomes

You toss a fair coin 3 times. What is the probability that you get
2 heads and I tail? (Note: All possible outcomes for this exper-
iment were given in a tree in Section 2.5.3.)

If a fair coin is tossed 3 times what is the probability of getting
at least I head?

An um contains 3 red balls, 7 green balls and 6 blue balls. If a

ball is selected at random from the um, what is the probabilify
that it is (a) red; (b) not green?

A consulting company has 68 employees. Of these 2l have
degrees in mathematics, 33 have degrees in economics and 7
have degrees in both. What is the probability that an employee
chosen at random has a degree in either mathematics or econ-
omics?

If a pair of dice is rolled, what is the probability that the sum of
the two dice is (a) 7; (b) 11; (c) less than 5?

An insurance agent has 78 clients. Of these 45 have life insur-
ance,32 have auto insurance, and 16 have both types. What is
the probability that a client chosen at random has neither life nor
auto insurance?

An urn contains 4 red balls and 6 green balls. Three balls are

selected at random. What is the probability (a) all 3 are red; (b)
I is red and2 are green; (c) all 3 are the same color?

A computer company has a shipment of 40 computer compo-
nents of which 5 are defective. If 4 components are chosen at
random to be tested, what is the probability that (a) all are good;
(b) 2 are good and 2 are defective?
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3-9. Ten people, 5 men and 5 women, are to be seated in a row of
ten chairs. What is the probability that the men and women end
up in altemate chairs?

3-10. 8 people were all born in January. What is the probability that at
least 2 of them have the same birthday?

3-11. What is the probability that at least 2 of a group of 4 people
were bom on the same day of the week?

3-12. 4 balls are picked at random from an urn containing 5 red balls
and 6 blue balls. What is the probability that you get balls of
both colors?

3-13. A 5-card poker hand is dealt from a standard deck of cards.
What is the probability that you get a full house (3 of one kind
plus a different pair, such as KKK55) ?

3-14. If a poker hand is dealt, what is the probability that you get 2
pairs (e.g., QQ993)?

3-15. The odds for an event .E are defined as the ratio P(E) to P(-E).
Odds are generally written as the ratio of two integers, such as

5:4, which is read "5 to 4". The odds against E are given by the
reverse ratio (i.e., 4:5). If a pair of dice are rolled, what are (a)
the odds for a7; (b) the odds against an 11?

3-16. If the odds for E are known, say r:s, then P(E) : rl(r * s). If
the odds against F are a:b, what is the P(F)?

3.2 Probability When Outcomes Are Not Equally Likely

3-17. Prove P(-E): 1 - P(E).

3-18. Prove P(A U B) : P(A) + P(B) - P(An B) using the axioms
in Section 3.2.2. Hint: First show that

(Au B): (A.-B) u @n B) u (-A n B).
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3-19. A four-year college has the following enrollment by class:
27.8% freshman, 26.3% sophomore, 24.4% junior and 2l.5Yo
senior. What is the probability that a student chosen at random is
a junior or senior.

3-20. An auto insurance company finds that in the past l0 years 22o/o

of its policyholders have filed liability claims, 37Yo have fied
comprehensive claims, and l3o/o have filed both fypes of claims.
What is the probability that a policyholder chosen at random has
not filed a claim of either kind?

3-21. A teacher's grade distribution for the year is as follows: A,
13.l%; B, 27.8%o; C, 31.2o/o; D, 8.9o/o; E, 9.4o/o; and W, 9.6oh.

What is the probabilify that a student of this teacher got (a) a
grade C or better; (b) a grade ofD or E?

3-22. ln a survey of college students it was discovered that 37oh had
received flu shots, 58%o had a skin test for tuberculosis , and 21%o

had received neither. What is the probability that a student
received both?

3.3 Conditional Probability

3-23. In Exercise 3-21 what is the probability that a randomly selected
student got an A, given that she got a grade ofC or better?

3-24. In the first quarter of a year, a company's records showed that
635% of its employees missed no work, 23.7% missed one day
of work, 8.1% missed two days, and 4.7Yo missed three days.
What is the probability that an employee who missed work
missed only one day?

3-25. An insurance company classifies its claims as low if they are
under $10,000, and high otherwise. During the year 79.2Yo of its
policyholders filed no claims, 16.9% filed low claims, and 3.9Yo
filed high claims. If a policyholder filed a claim, what is the
probability that it was a low claim?

3-26. Two cards are drawn from a standard deck without replacement.
What is the probability that (a) both are hearts; (b) neither is a
heart; (c) exactly one is a heart?

13
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3-27. For the experiment of tossing a single fair coin 3 times, what is
the probability of getting exactly 2 heads, given that you get at
least one head?

3-28. For the experiment in Exercise 3-27 what is the probability of
getting exactly 2 heads, given that the first toss is a head?

3-29. Three cards are drawn from a standard deck. What is the
probability that all three are hearts, given that at least two of
them are hearts?

3.4 Independence

3-30. Let X be the experiment of drawing a single card from a deck.
Let A be the event the card is a spade or a heart, B be the event
it is a spade or a diamond, and C be the event it is a spade or a
club. Show that each of the pairs (.4, B), (A,C) and (B,C) is
independent. Show that P(A n B n C) + P(A). P(B). P(C).

3-31. Two cards are drawn from a standard deck with replacement.
Let Al be the event the first card is an ace and A2 be the event
the second card is an ace. Show that Al and A2 are independent.

3-32. Let ,9 be the sample space for rolling a single die. Let
A: {1,2,3,4}, B: {2,3,4}, and C: {3,4,5}. Which of the
pairs (,4, B),(A,C) and (B,C) is independent?

3-33. A company needs some of its employees for a task that requires
that they not be color blind. ln testing them it finds that 7 of the
130 men are color blind and 2 of the 170 women are color blind.
Are the events male and color blind independent or dependent?

3-34. A student is taking a history course and an English course. He
decides that the probability of passing the history course is .75

and the probability of passing the English course is .84. If these
events are independent, what is the probability that (a) he passes

both courses; (b) he passes exactly one of them?
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3-35. A company has three identical machines operating independent-
ly of each other. The probability of any one machine breaking
down during the next year is .05. What is the probability that
during the next year there will be no breakdowns?

3-36. A machine has two parts that could fail and have to be replaced.
The probabilities of failure of parts A and B are .17 and .12,
respectively. If failures of these parts are independent of each
other, what is the probability that at least one of them will fail?

3-37 . For the experiment of tossing a single fair coin 3 times, let E be
the event the first toss is a head and -F be the event 2 heads and
I tail are tossed. Are E and -F independent?

3.5 Bayes'Theorem

3-38. A manufacturing company has a fabrication plant and an
assembly line. The fabrication plant has 600/, of the employees
and the assembly line 40o/o. During the past year 35o/o of the
workers in the fabrication plant sustained injuries and 20Yo of
the assembly line workers had injuries.
(a) What percentage of all workers had injuries in this period?
(b) If an employee had an injury, what is the probability that

he worked on the assembly line?

3-39. Two jars contain coins. Jar I contains 5 pennies, 4 nickels and 6
dimes. Jar II contains 6 pennies, 4 nickels and 2 dimes. A jar is
selected at random and a coin is selected from that jar. If the
coin is a nickel, what is the probability that it came from Jar II?

340. An insurance company divides its policyholders into low-risk
and high-risk classes. For the year, of those in the low-risk class,
80% had no claims, l5o/o had one claim, and 5%o had 2 claims.
Of those in the high-risk class, 50o/ohad no claims, 30% had one
claim, and 20o/o had two claims. Of the policyholders, 600% were
in the low-risk class and 40Yo in the high-risk class.
(a) If a policyholder had no claims in the year, what is the

probability that he is in the low-risk class?
(b) If a policyholder had two claims in the year, what is the

probability that he is in the high-risk class?
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341. A manufacturer has three machines producing light bulbs.
Machine A produces 40%o of the light bulbs with 1% of them
defective. Machine B produces 35%' of them with 2o/o being
defective. Machine C produces 25oh with 4o/obeing defective. If
a light bulb is tested and found to be defective, what is the
probability that it was produced by machine A?

3-42. A skin test for a disease is less expensive but less accurate than
an X-ray. ln a country 20% of the adult population has this
disease. For a person with the disease, the skin test is positive
95%o of the time. If a person does not have the disease, it will be
positive 30% of the time.
(a) What is the probability that a

does not have the disease?
(b) What is the probability that a

has the disease?

3-43. A card is drawn from a deck, not replaced, and a second card is
drawn. What is the probability that the second card is a heart?

3-44. A company classifies injuries to its workers as minor if the
worker does not have to take time off and severe if the worker
has to take time off. The company has two plants, A and B. In
plant A 600/, of the workers had no injuries, 30o/, had, minor
injuries, and 10%o had severe injuries. In plant B 50% had no
injuries, 35o/o minor injuries, and l5Vo severe injuries. 70Yo of all
workers work in plant A and 30o/o in plant B. What is the
probability that a worker with a severe injury worked in plant A?

3-45. In Exercise 3-44,what is the probability that a worker who had
an injury worked in plant B and had a minor injury?

3.7 Sample Actuarial Examination Problems

3-46. The probability that a visit to a primary care physicians (PCP)
office results in neither lab work nor referral to a specialist is
35%. Of those coming to a PCP's office, 30%o are referred to
specialists and 40o/o require lab work.

Determine the probability that a visit to a PCP's office results in
both lab work and referral to a specialist.

person who tests positrve

person who tests negative
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3-47 . You are given P(A u B) = 0.7 and P(Aw B') =0.9.
Determine P[l].

3-48. An insurance company examines .its pool of auto insurance
customers and gathers the following information:

(i) All customers insure at least one car.
(ii) 64oh of the customers insure more than one car.
(iii) 20o/o of the customers insure a sports car.
(iv) Of those customers who insure more than one car, l1Yo

insure a sports car.

What is the probability that a randomly selected customer
insures exactly one car, and that car is not a sports car?

3-49. Among a large group of patients recovering from shoulder
injuries, it is found thal22%o visit both a physical therapist and a
chiropractor, whereas l2o/o visit neither of these. The probability
that a patient visits a chiropractor exceeds by 0.14 the probability
that a patient visits a physical therapist.

Determine the probability that a randomly chosen member of
this group visits a physical therapist.

3-50. A survey of a group's viewing habits over the last year revealed
the following information :

(i) 28o/o watched gymnastics
(ii) 29o/o watched baseball
(iii) l9o/o walched soccer
(i") l4oh watched gymnastics and baseball
(") l2%o watched baseball and soccer
(vi) l07o watched gymnastics and soccer
(vii) 8% watched all three sports.

Calculate the percentage of the group that watched none of the
three sports during the last year.
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3-51. An actuary studying the insurance preferences of automobile
owners makes the following conclusions:

(i) An automobile owner is twice as likely to purchase colli-
sion coverage as disability coverage.

(ii) The event that an automobile owner purchases collision
coverage is independent of the event that he or she pur-
chases disability coverage.

(iii) The probability that an automobile owner purchases both
collision and disability coverages is 0.15.

What is the probability that an automobile owner purchases
neither collision nor disability coverage?

3-52. An insurance company pays hospital claims. The number of
claims that include emergency room or operating room charges
is 85% of the total number of claims. The number of claims that
do not include emergency room charges is 25o/o of the total
number of claims. The occurrence of emergency room charges is
independent of the occurrence of operating room charges on
hospital claims,
Calculate the probability that a claim submitted to the insurance
company includes operating room charges.

3-53. The number of injury claims per month is modeled by a random

variable N with Pt N:nl= ---!_-_ . where r > 0.(n+t)\n+2)

Determine the probability of at least one claim dunng a

particular month, given that there have been at most four claims
during that month.

3-54. A public health researcher examines the medical records of a

group of 937 men who died in 1999 and discovers that 210 of the
men died from causes related to heart disease.
Moreover, 312 of the 937 men had at least one parent who
suffered from heart disease, and, of these 312 men, 102 died
from causes related to heart disease.

Determine the probability that a man randomly selected from
this group died of causes related to heart disease, given that
neither ofhis parents suffered from heart disease.
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3-55. An urn contains 10 balls: 4 red and 6 blue. A second um contains
l6 red balls and an unknown number of blue balls. A single ball
is drawn from each um. The probability that both balls are the
same color is 0.44.

Calculate the number of blue balls in the second urn.

3-56. An actuary is studying the prevalence of three health risk factors,
denoted by A, B, and C, within a population of women. For each
of the three factors, the probability is 0.1 that a woman in the
population has only this risk factor (and no others). For any two of
the three factors, the probability is 0.12 that she has exactly these

two risk factors (but not the other). The probability that a woman
has all three risk factors, given that she has A and B, is 1/3.

What is the probability that a woman has none of the three risk
factors, given that she does not have risk factor A?

3-57. An insurer offers a health plan to the employees of a large
company. As part of this plan, the individual employees may
choose exactly two of the supplementary coverages A, B, and C,
or they may choose no supplementary coverage. The proportions
of the company's employees that choose coverages A, B, and C
are ll4, 113, and 5/12, respectively.

Determine the probabilify that a randomly chosen employee will
choose no supplementary coverage.

3-58. An insurance company estimates that40%" of policyholders who
have only an auto policy will renew next year and 600/o of
policyholders who have only a homeowners policy will renew
next year. The company estimates that 80% of policyholders
who have both an auto and a homeowners policy will renew at

least one of those policies next year. Company records show that
65% of policyholders have an auto policy, 50% of policyholders
have a homeowners policy, and l5%o of policyholders have both
an auto and a homeowners policy.

Using the company's estimates, calculate the percentage of
policyholders that will renew at least one policy next year.
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3-59. A blood test indicates the presence of a particular disease 95oh of
the time when the disease is actually present. The same test
indicates the presence of the disease 0.5Yo of the time when the
disease is not present. One percent of the population actually has
the disease.

Calculate the probabilify that a person has the disease given that
the test indicates the presence of the disease.

3-60. An insurance company issues life insurance policies in three
separate categories: standard, preferred, and ultra-prefened. Of the
company's policyholders, 50oh are standard, 40oh are preferred,
and 10%o are ultra-preferred. Each standard policyholder has prob-
ability 0.010 of dying in the next year, each preferred policyholder
has probability 0.005 of dying in the next year, and each ultra-
preferred policyholder has probability 0.001 of dying in the next
year. A policyholder dies in the next year.

What is the probability that the deceased policyholder was ultra-
preferred?

3-61 . Upon arrival at a hospital's emergency room, patients are catego-
rized according to their condition as critical, serious, or stable. In
the past year:

(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;

(iii) the rest of the emergency room patients were stable;

(iv) 40o/o of the critical patients died;

(vi) l0% of the serious patients died; and

(vii) l% of the stable patients died.

Given that a patient survived, what is the probability that the
patient was categorized as serious upon arrival?
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3-62. An actuary studied the likelihood that different types of drivers
would be involved in at least one collision during any one-year
period. The results of the study are presented below.

Type of Driver Percentage
of all drivers

Probability of at Ieast
one collision

Teen 8% 0.15

Youns Adult t6% 0.08

Midlife 45% 0.04

Senior 3r% 0.05

Total t00%

3-63.

Given that a driver has been involved in at least one collision in
the past year, what is the probability that the driver is a young
adult driver?

The probability that a randomly chosen male has a circulation
problem is 0.25. Males who have a circulation problem are twice
as likely to be smokers as those who do not have a circulation
problem.

What is the conditional probability that a male has a circulation
problem, given that he a smoker?

A health study tracked a group ofpersons for five years. At the

beginning of the study, 20oh were classified as heavy smokers,
30o/o as light smokers, and 50% as nonsmokers. Results of the

study showed that light smokers were twice as likely as

nonsmokers to die during the five-year study, but only half as

likely as heary smokers. A randomly selected participant from
the study died over the five-year period.

Calculate the probability that the participant was a heavy
smoker.

3-64.

8l



Chapter 4
Discrete Random Variables

4.t Random Variables

4,1.1 Defining a Random Variable

Random variables surround us. The (unknown) number of years that you
are going to live is a random variable, as is the number of auto insurance
claims you will file in your lifetime and the number of TV sets owned by
a randomly selected American family. Next year's return on your stock
portfolio is a random variable, and so is your weight after Thanksgiving.
The number you roll when you toss dice at a table in Las Vegas is also a

random variable - 
gambling is always with us in probability. The key

feature in each of these random variables is that the outcome of interest
is a number (a count of insurance claims or a weight measurement) and

it depends on chance. Most of us try not to have accidents or gain
weight, but somehow those things are forced on us by chance. This leads

to an intuitive definition of a random variable.

Definition 4.1 A random variable is a numerical quantity whose
value depends on chance.l

I This nice intuitive description of a random variable is taken from Weiss [18], who
adapted it from the words of the mathematician B.V. Gnedenko.
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Example 4.1 You are tossing a coin twice and will bet on the
number of heads. The outcome is a number (0, 1 or 2) which depends on
chance. The number ofheads is a random variable. D

Example 4.2 You are tossing a coin twice and will bet on specific
outcomes such as "first a head then a tail" or HT. The outcome depends
on chance, but is not a number. This is not arandom variable. D

Example 4.3 A resident of Winsted, Connecticut, is selected at
random and his height is measured. The height is a number which
depends on the chance event of random selection. The height is a

random variable. tr

Example 4.4 You go to Las Vegas and begin to put quarters in a

slot machine. Let X be the number of quarters you play before your first
win of any amount. X is a number and depends on chance. X is a

random variable. tr

There is an important difference between the height random
variable in Example 4.3 and the other random variables. Height can be
measured with such precision that any number between two given
heights is still a theoretically possible height - if you are given the two
heights (in inches) 66 and 66.01, any number between 66 and 66.01 is
still a theoretically possibly height. For this reason, height is said to be
measured on a continuous scale, and the height random variable is called
a continuous random variable. In contrast, the outcomes 0, I and 2 for
the numbers in Example 4.1 are distinct, and the values between them
are not possible. This kind of random variable is called a discrete ran-
dom variable. In Example 4.4, the possible numbers of attempts before
the first win at a slot machine are {0, l, 2, 3, . . . } . This sample space is
discrete and infinite - as any visitor to a casino will attest.

In this chapter we will study only discrete random variables.
Continuous random variables require a different approach, which
requires the use of calculus. They will be studied in Chapter 7.

Intelligent people often get into ridiculous arguments over whether
a certain random variable is truly discrete or continuous. For example,
one of our students became quite excited over the argument that he
would measure heights to at most 3 decimal places, which meant that
heights were discrete for him. That is an unproductive argument. The
real point is that calculus-based continuous mathematics is the most
efficient way to analyze heights. When we say that heights are continu-
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ous, we are really just identifying the kind of mathematical model we
will use.

4.1.2 Redefining a Random Variable

Our approach in this text is intuitive and applied. More advanced books
in probability give more rigorous definitions which are a bit harder to
understand at first sight. A widely used definition of a random variable
is the following.

Definition 4.1a A random variable is a function mapping the
sample space to the real numbers.

The idea behind this definition can be visualized by looking at the
example of the number of heads when two coins are tossed. When we
look at the results of the tosses, we assign numerical results to the
physical outcomes we see.

Original Outcome Number of Heads

HH

HT

TH

TT

This assignment of numerical values is a function from the sample space

to the real numbers - as the last definition states. We will not use the

more rigorous definition any further in this text.

4.1.3 Notation; The Distinction Between X and r

Random variables are usually denoted by capital letters. If we were to

look at the random variable for the number of heads in two coin tosses,

we might use X to represent the entire random variable which can take

on any of the values 0, I or 2. However, specific outcomes are usually
referred to using small letters. Thus the reader will see statements like
"let r be the number of heads in the first two coin tosses." This refers to
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a single reahzed outcome, not to the entire random variable. This
confuses students, and the confusion is increased by the convention that
if r heads are tossed the notation is mixed write "X : :r." The
reader should be aware that we are not arbitrarily mixing capital and
small letters in our notation. The notation has a purpose, and the
statement "X : tr" is not nonsense. It means that the random variable X
was realized with a specific value r.

4.2 The Probability Function of a Discrete Random
Variable

4.2.1 Defining the Probability Function

If we decide to bet on the number of heads which will occur when a fair
coin is tossed twice, we can better manage our risk if we have a table of
all possible outcomes and their probabilities. The following table gives
this useful information.

Number of heads (r) 0 2

p(r) .25 .50 .25

This table assigns a probability to each individual outcome. Once we
have such a function, we can use it to find the probability of any event
by adding the probabilities of the individual outcomes in the event.

Definition 4.2 LeI X be a discrete random variable. A probabili-
ty function for X is a function p(r) which assigns a probability to each
value ofthe random variable. such that

p(r) > 0 for all r, and

Dp@): 1. (The sum of all individual outcome probabili-
ties is l).

The probability function is also referred to as the probability mass
function or the discrete density function for X.

For discrete random variables with a finite number of individual
outcomes, the probability function can be given by a table. This was
done for the two coin toss problem at the beginning of this section.

(a)

(b)
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Example 4.5 In Example 3.9, alarge HMO studied the number of
children in a given birth. The probability function was as follows:

Number of children (r) 2 3

p(r) .9761 .0231 .0008

D

Example 4.6 In Example 3.10, an automobile insurer studied the
number of claims filed by a policyholder in a given year. The probability
function was as follows:

Number of claims (r) 0 I 2 3

p(r) .12 .22 .05 .0'r

tr

If a discrete random variabie has a very iarge or infinite number of
possible outcomes, a simple table is not possible, and p(r) must be
specified in some other way - usually by a formula.

Example 4.7 On a certain slot machine, the probability of win-
ning on an individual play is .05. Let X be the number of unsuccessful
attempts before the first win. If we assume that successive plays are

independent, the probability of k unsuccessful plays before the first win
is given by the multiplication rule for independent events.

p(k): P(X : k): .954(.05), k: 0,1,2,... tr

4.2.2 The Cumulative Distribution Function

Example 4.8 A clinical researcher is studying a fatal disease. The
random variable of interest to her is X, the number (r : 1,2, . . . ) of the
year following diagnosis in which a patient dies. Her studies lead to the
probabiliry table given below.

Year of death (z) I 2 3 4 5

p(r) .53 .25 l2 .07 .03

This probability function gives the probability that someone who is diag-
nosed will die in a specific year following diagnosis. For example, the
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empirical probability that a person diagnosed today will die sometime
during the third year from today is .12. However, the table does not
directly give the probability that a person will die during the first two
years or the first three years. These probabilities are given by

P(X < 2) : p(l) + p(2): .53 * .25 : .78

and

P(X < 3):p(1) +p(2) +p(3):.53*.25+.12:.90. tr

These useful probabilities are obtained by cumulatively adding
successive probabilities in the table above. If we do this throughout the
table, we obtain the cumulative distribution function F(r).

Definition 4.3 Let X be a random variable. The cumulative
distribution function F(rr) for X is defined by

F(r): P(X < r).

For a discrete random variable, we can find F(z) by adding all values of
p(y)fora < r.

Example 4.9 The cumulative distribution function for the proba-
bilify function of Example 4.8 is given by the following table:

Year of death (r) I 2 3 4 5

F(r) .53 .78 .90 .97 1.00

This tells us, for example, that for those diagnosed with the disease, the
probability of death within 3 years of diagnosis is 90%. D

Note that the last entry in the table for F(r) is 1.00. This will
always hold for a finite discrete random variable.

Example 4.10 In Example 4.6 we looked at the distribution of the
number of claims filed in a year by a policyholder in a large insurance
company. The cumulative distribution function is given by the following
table:
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Number of claims (r) 0 1 2 -t

F(r) .72 .94 .99 r.00

This tells us that 94oh of policyholders file one claim or less in a year 
-leaving 60/o who file more than one claim. tr

In Example 4.10 we gave values of F(r) only for r :0, 1,2,3,
since those r-values represent the numbers of claims that actually
occurred. Although it is not possible to have 0.5 claims, we can define
r(.5)

F(.5) : P(X < .5): P(X < 0) : P(X :0): .72

Since it is not possible to have an actual claim number in the open

interval (0, l), we can see that

F(r) : P(X < r) : P(X ( 0) : .72,0 < r < 1.

Continuing this reasoning, we can write a definition F(z) for any real
number.

89

The graph of F(z) is as follows:
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The cumulative distribution function for an infinite discrete

random variable requires a bit more work. For example, the cumulative
distribution function for the random variable in Example 4.7 requires use

of the formula for the sum of a geometric series. This is reviewed next.
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Geometric Series Review

A geometric series is a series of the form o, ar, ar2, ar3,...,
arn.The sum of the series for r I I is given by

a* ar + ar2 +...* ar',: "(5#; (4.1)

The number r is called the ratio or common ratio. If l"l < I,
we can sum the infinite geometric series.

at ar + ar2 +...* arn +...- r(r5) @.2a)

Example 4.11 You play a slot machine repeatedly. (How else?)
The probability of winning on a single play is .05, and successive plays
are independent. The random variable of interest is X, the number of
unsuccessful attempts before the first win. Find an expression for F(z).

Solution In Example 4.'7,we showed that

P(k) : P(X : k) : .95e(.05).

The cumulative distribution function is given by

F(r) : p(0) + p(1) + ... + p(r)
: .05 * .95(.05) + .952(.05) + ... + .95'(.05)

: .os( ) ^'r+r \
\ -ijii ) 

: t - 'e5'+r' 0

The first five values of p(r) and F(r) are given in the table below.

T 0 I 2 3 4

p(r) .05 .0475 .045125 .04286875 .0407253125
F(r) .05 .0975 .14262s .t8549375 .2262190625

It is interesting to interpret these values of F(r). For example, the value
F(4) : P(X < 4) =, .226 is the probability that at most 4 unsuccessful
plays will occur before the first win. Then I - F'(4) : P(X > 4) =, .774
is the probability that at least 5 unsuccessful plays will occur before the
first win. You have a 77.4o/o probability of losing at least 5 times before
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the first win. This means that if you play the slot machine five times in a

row, the probability of losing all 5 times is approximately .774 and the
probability of winning at least once in the 5 plays is F(a) : .226.

This interpretation of the cumulative distribution in the slot
machine problem holds for any r. F(r) is the probability that you win at
least once in z * I successive plays. This is used in the next example.

fxample 4.12 How many times would you need to play the slot
machine in Example 4.11 in order to be sure that your probability of
winning at least once is greater than or equal to .99?

Solution F(k - 1) : 1 - .95k is the probabiiity that you win at
least once in k successive plays. We need this probability to be at least
.99. Set

l-.95k:.99.
Then

.951 : .01

tn(.95k): kUn(.95)l : /n(.01)

k: ffi= 8e.78.

You need lc : 89.78 (round up to 90) plays for the probability to be 99o

that you win at least once. Note that since k was between 89 and 90, the
probability of winning exactly once in 89 plays is less than .99 and the
probability of winning exactly once in 90 plays is more than .99.
Rounding up to 90 guarantees that the probability is at least .99. In
problems like this one, the value of k rs always rounded up. If k had

been 89. 12, we still would have rounded up. D

4.3 Measuring Central Tendency; Expected Value

4.3.1 Central Tendency; The Mean

When we try to interpret numerical information that has a wide range of
values, we like to reduce our confusion by looking al a single number
which summarizes the information. For example, when tests are returned
to a class, students are usually interested in the test average as well as

9l
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the distribution of grades. In the next example, we will introduce a basic
concept by looking at a distribution of grades.

Example 4.13 A large lecture class with 100 students was given a
l0-point quiz. The lowest score actually recorded was a 5. The distribu-
tion of scores (from 5 to 10) is given in the following table.

Students are interested in two things: the percentage of students at each
grade level and the class average. The percentage of students at each
grade level is given next.

Grade 5 6 7 8 9 l0
Percent 5% t0% 45% 20% t0% t0%

Note that we could reinterpret this table as a probability function of a

random variable X. Suppose a student score X is chosen at random
from the class. What is the probability p(r) that the student score is z?
The next table repeats the previous one in probability function format.

The previous tables show the grade distribution, but people still want to
know what the "average" is. The word "average" is in quotes here

because there are different kinds of averages that can be calculated.
More will be said about this later. The "average" that is most familiar to
students is the mean, which is calculated by adding up all 100 student
scores and dividing by 100. We do not really have to add 100 separate

scores, since we can add 5 scores of 5 by multiplying 5 x 5, add 10

scores of 6 by multiplying 6 x 10, and so on. The mean is given by

ClassMean: :7.5.

This mean can be rewritten in terms of the probabilities for the grade

random variable by a little rearrangement of numbers.

Grade 5 6 1 8 9 t0
Count 5 l0 45 20 10 l0

Grade (r) { 6 7 8 9 IO

p(r) .05 .10 .45 .20 .10 .10
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classMean:s.1001 *6 +0%*7 ffi*s ffi*e +%+10.#
: 5(.05) + 6(.10) + 7(.4s) + 8(.20) + e(.10) + l0 (.10)

: \-r .p(z) tr- /--*

This example shows that if we are given numerical results in the
form of a probability function, we can calculate the familiar mean (or
average) using the above result.

Mean:\x.n@)

When we are given a discrete random variable X, we are usually given
only the probability function p(r). The mean of the random variable X
can be obtained from p(r) by using the simple equation above.

The mean of the random variable is also called the expected value
of the random variable.

Definition 4.4 Let X be a discrete random variable. The expected
value of X is defined by

E(X):Dr.o@).
The expected value of the random variable X is often denoted by the
Greek letter p, (pronounced "mew").

E(X): p

Example 4.14 The probability function for the random variable in
Example 4.5 (number of children in a birth) was as follows:

Number of children (z) I 2 3

p(r) .9670 .031 1 .0019

Then the mean is

p: E(X):1(.9670) +2(.0311)+3(.0019): I '0349. n

The calculations become more interesting if the discrete random
variable is infinite. It is necessary to look at another infinite series
formula before the next example.
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Series Formula

The infinite geometric series given by Equation @.2a) tells us
that for lrl < l,

oc

Lru: t* r+12+13+ . : +". @.zb)
ft:0

If we differentiate this infinite series term by term, and differen-
tiate the expression on the right in the usual manner, we see that
for lrl < l,

m

fr rk-r : r *2r *3r2 *4r3+... - r-l= torl
A:r (l - r)"

Example 4.15 Let X be the random variable for the number of
unsuccessful plays before the first win on the slot machine in Examples
4.7 and 4.11. The probability function is p(,k) : P(X - k):.954(.05).
Then

moo
pr,: E(X): !r .p(k): !r1.lsk;1.0s;

ft:O A:0

: 0(.05) + l(.05X.9s) + 2(.05X.9s2) + .'.

: ( 0sx.9s)t1 + 2(.95) + 3(.95)2 + ...1

: (.os)(.e5) ( ,-l-) : 4; : 'n. tr
11r-'95)2)-'05-',

One common way of interpreting this result is to say that the

average (mean) number of unsuccessful plays before the first win is 19.

We could also say that the expected number of unsuccessful plays before
the first win is 19. These verbal interpretations can be misleading. They
do not say that you should expect to have exactly 19 unsuccessful plays

and then the first win. Some players win on the first play and some on
the fortieth. The expected value is not what you "expect" to happen. It is
an average.

4.3.2 The Expected Value of Y : a,X

Example 4.16 In Example 4.6 we looked at the probability
function for the random variable X, the number of claims filed by a

policyholder in a large insurance company in a year.
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Number of claims (r) 0 2 J

p(r) .72 .22 .05 .01

The expected number of claims is

E(X) :0(.72) + t(.22) + 2(.0s) + 3(.01) : .35.

Suppose this table is for a type of policy which guarantees a fixed
payment of $1000 for each claim. Then the amount paid to a

policyholder in a year is just $1000 multiplied by the number of claims
filed. The total claim amount is a new random variable Y : 1000X. We
now have two random variables, X and Y, and each random variable has
its own probabilify function. To avoid confusion, we will subscript the
probability function. The probability function for X is p"(r) and the

probability function for Y is ny@).The probabilify function for Y has

the same second row as the probability function for X, since

ry(1000r) : ny(r).

Total claim amount (9) 0 1000 2000 3000
pv@) .72 .22 .05 .01

The expected claim amount is

E(Y): 0(.72) + 1000(.22) + 2000(.05) + 3000(.01) : $350. tr

Since E(X) : .35, then E(1000X) : E(Y): 10008(X). This
simple multiplication rule always works.

For any constant a and random variable X,
E(aX): a'E(X). @.aa)

The derivation of Equation (4.4a) should be clear from Example
4.I6.If Y : aX, ny(a) : ny@r): p"(r). Then

E(Y): E(aX): )--o, .ny@r): a)]r .ny@) : a. E(X).

The expected claim amount for the year is often called the pure
premium for the insurance policy. If the company charges the mean
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amount of $350 per year for each policy sold, and its experience actually
follows the assumed probability function, then there will be just enough
money to pay all claims. This is pursued in Exercises 4-7 and 4-8.

The useful rule for Y : aX can be extended to a rule for aX * b.

For any constants a and b and random variable X,

E(aX + b) : a. E(X) + b. (4.4b)

The derivation of Equation (4.4b) is left as Exercise 4-9.

Example 4.17 The company in Example 4.16 has a yearly fixed
cost of $100 per policyholder for administering the insurance policy.
Thus its total cost in a year for a policy is the sum of the claim payments
and the administrative cost.

Total cost per policy : 1000X + 100

The expected cost per policy per year is

E(1000X + 100) : 10008(X) + tOO : $450. tr

4.3.3 The Mode

The mean of a random variable is the most widely used single measure
of central tendency. There are other measures which are also informa-
tive. One of these, the median or fiftieth percentile, will be covered in
Chapter 7 . The other, the mode, is discussed below.

Definition 4.5 The mode of a probability function is the value of
z which has the highest probability p(z).

Example 4.18 The mode of the probability function for the
number of claims is z : 0, as the table clearly shows.

Number of claims (r) 0 2 J

p(r) .72 .22 .05 .01

The mode will be used infrequently in this text. The more widely used
tools in probability theory rely more on the mean. tr
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4.4 Variance and Standard Deviation

4.4.1 MeasuringVariation

The mean of a random variable gives a nice single summary number to
measure central tendency. However, two different random variables can

have the same mean and still be quite different. The next example
illustrates this.

Example 4.19 Below we give probability functions representing
quiz scores for two different classes.

first class: random variable X
Score (r) 7 8 9

p(r) .20 .60 .20

Second class: random variable Y
Score (y) 6 8 10

p@) .20 .60 .20

Each random variable function has a mean of 8.

E(X) : 7(2a)+ 8(.60) * e(.20) : s

E(Y) : 6(.20)+ 8(.60) + l0(.20) : 8

However, the two random variables are clearly quite different. There is
much more variation or dispersion in Y than in X. The question is how
to measure that variation. One possible suggestion is to measure

dispersion by looking at the distance of each individual value r or y
from the mean of its distribution. This is shown in the tables below.

First class: random variable for distance from mean, X - 8

r-8 7-8:-l 8-8:0 9-8:1
p(r) .20 ,60 .20

97

Second class: random variable Y - 8
y-8 6-8:-2 8-8:0 l0-8:2
p@) .20 .60 .24
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The expected value of each of the random variables X - 8 and Y - 8
gives an average distance from the original mean. Unfortunately, this
average is of no use in measuring dispersion. Positive and negative
values cancel each other out, and we find E(X - 8): E(Y - 8) : 0.
(E(X - F):0 for any distribution with p : E(X).) However, if we
look at the square of the distance from the mean, this problem does not
occur.

Firs cl ndom variable (X

The expected value of each of these new random variables gives an
average squared distancefrom the mean.

El(X - 8)21 : l(.20) + 0(.60) * 1(.20) : s.4

EIV - 8)'l : 4(.20)+ 0(.60) * 4(.20) : 1.6

This is the single measure of variation that is most widely used
probability theory.

Definition 4.6 The variance of a random variable X is defined to

V(X) : El(X - tt)zf : ft" - tt)z . p(r).

The standard deviation of a random variable is the square root of its
variance. It is denoted by the greek letter o.

o: Jv(x)
The variance is also written as V (X) : 62 .

If more than one random variable is being studied, subscripts are
used to associate mean and standard deviation with the proper random
variable.

1n

tr

be

ass: ra e E)

(r 8)2 (7-8)2:t (8-8)',:9 (9-8)2:t
p(r) .20 .60 .20

Second class: random variable (L - S)z

(v - 8)' (6-8)2:4 (8-8)r:0 (10-8)2:4
ptu) .20 .60 .20



Dis crete Random Variables

Example 4.20 For the
4.19, we write the following:

99

random variables X and y in Example

Fy:lLy:$

V(X): ozx : .40 V(y): o? : 1.6

o*:{ok:JAo:.632 /-.ov:lo?:t/1.6:1.265

Note that the random variable y, which is more <iispersed, has a greatervariance and standard deviation. tr
4.4.2 The Variance and Standard Deviation of y : af
If Y : aX, we 

"1."11f 
know that Fv: E(y): a.E(X) _ o.Hx.Recall that if Y : eX,then pr.(y): nrl@x1 : py@).Then

v(Y): ff, - F)t .pyfu):L,@, - a.tlx)z .ny@)

: o2D,@ - t")' .nx(r): o2 .V(X).

This gives us a simple way to findV(y) : V(aX).

The standard deviation of ax can now be obtained by taking thesquare root.

Example 4.21 we return to the distributions of craim number andclaim amount given in.Example 4.r6. The probabirity function for claimnumber random variable X was as follows:

V(aX): az .V(X)

aax:lol.o,x

Number of cltmJGj
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We found that E(X): .35. Using Definition 4.6,V(X) is given by

o2:E[(X-p)zl
: .72(0-.35)2 + .ZZ(t-3r2 +.05(2-.35)2 + .01(3-.3s)2

: .3875.

o: /.3875 = .622495

The probability function for the claim amount random variable Y was

Total claim amount (9) 0 1000 2000 3000
p@) .72 .22 .05 .01

We previously found E(Y): 1000(.35) : 350. V(Y) does not have to
be calculated directly. Instead we write

V(Y) : y(1000x) : 10002 .V(X): 1,000,000(.3875) : 387,500.

The reader can check this result by direct calculation. tr

The useful rule (4.5a) can be extended to handle Y : aX * b.

V(aX + b): a2'V1X1 (4.sb)

A derivation of Equation (4.5b) is outlined in Exercise 4-14. The
intuitive idea is that if all values are shifted by exactly b units, the mean
changes but the dispersion around the new mean is exactly as before.

Example 4.22 ln Example 4.17 we looked at the total cost ran-
dom variable Y : 1000X + 100, where X is the claim number random
variable. In Example 4.20 we showed V(X) :.3875. Then

y(1000X + 100) : 10002(.3875) : 387,500. n

4.4.3 Comparing Two Stocks

Suppose you are considering an investment in one of two stocks, imag-
inatively named A and B. You have a forecast of the value of the stocks
in the future.
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Forecast: The value of each stock will increase by 5% if the
national economy stays as it is. If the economic outlook improves, Stock
A will increase in value by 10% and Stock B will increase in value by
l5%. If the economic outlook deteriorates, Stock A will decrease in
value by l0o/o and Stock B will decrease in value by 15%. You believe
that probabilities for the future states of the economy are given by the
following table:

State of the economy Deteriorate Unchanged Improve
Probability .20 .60 .20

This information enables you to create probability function tables for the
return on each of the two stocks.

o/o Change in value of Stock A: a -.10 .05 +.10
Probability: p(a) .20 .60 .20

%o Change in value of Stock B: b -.15 .05 +.15
Probability: p(b) .20 .60 .20

We cannot use expected value to choose between these stocks,
since they have the same expected value.

E(A) : (-.10x.20) + .0s(.60) + .10(.20) : .03

E(B) : (-.15X.20) + .05(.60) + .15(.20) : .03

However, there is a real difference between the two stocks. There
is much more variation in the return of Stock B than the return of Stock
A. Modern financial theory says that Stock B is riskier than Stock A
because of that increased variation. You can make a greater profit with
B, but you risk a greater loss.

One number that can be used to measure the risk in a stock is the

standard deviation of returns. For the stocks above, we can easily
compute the variances and standard deviations of the random variables
representing change in value.

v (A) : (-.10-.03)2(.20) + (.05-.03)2(.60) + (.10-.03)2(.20) : .ss46

v (B) : (-.15-.03)21.207 + (.0s-.03)2(.60) + (.15-.03)2(.20) : .sse6

101
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Then o1 = .068 and oB = .098. The standard deviation of the riskier
stock is higher.

Modern finance texts use the standard deviation of an investment
as one possible measure of risk.2 Many books of investment information
give the mean and standard deviation of recent historical returns for
stocks and mutual funds.3

4.4.4 z-scores; Chebychev'sTheorem

Example 4.23 In Example 4.13, we studied the probability distri-
bution ofgrades for a class.

The expected value is 7.5. The variance and standard deviation are

v(x): .0s(-2.r2 + .10(-l.s)2 + .4s(-0.r2

+.20(0.s)2 +.10(1.5)2 + .10(2.r2: 1.550

and

ox:JL55x1.245.

Suppose a student scored l0 on this quiz. The student is 2.5 points above
the mean of 7.5. However, if we think of variability as measured in
standard deviation units, those 2.5 points are

l0 - 7.5 2.5ffi:ffi =2.008

standard deviation units above the mean. We have just computed a z-
score. tr

2 See, for example, page 143 of Bodie et al. [].3 On page 146 of [] you will find this information for the entire Standard and Poor's
Composite index of common stocks, 1926-2002. The mean is 12.04% and the standard
deviation is 20.55Y'.

Grade (z) 5 6 7 8 9 10

p(r) .05 .10 .45 .20 .10 .10
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Definition 4.7 For any possible value z of a random variable, the
z-score is

The z-score measures the distance of z from p: E(X) in standard
deviation units.

Example 4.24 For the test example above, a student with a score
of6 has a z-score of

": T#f = -r.205.

That student's score is approximately 1.205 standard deviations below
the mean. We could say that the student's score of 6 is within 1.21

standard deviations of the mean, since the score is below the mean by
less than 1.21 standard deviations.

Definition 4.8 We say that a value z of the random variable X is
within k standard deviations of the mean if lzl < k.

Example 4.25 In the grade example, the highest z-score is ap-
proximately 2.008. The lowest z-score is found for r :5; it is -2.008.
Thus we could say that all of the r-values are within 2.01 standard
deviations of the mean. This means that the probability is 1 that a score
will be within 2.01 standard deviations of the mean. Below we give all
the values of r with their approximate z-scores and probabilities.

Grade (r) 5 6 '7
8 9 t0

-2.008 - 1.205 -.402 .402 r.205 2.008
p(r): p(z) .05 .10 .45 .20 .10 .10

The values 6,7,8, and 9 are within 1.21 standard deviations of the mean.
Then

P(X is within 1.21 standard deviations of the mean)

: P(6 < X <9) : .10 +.45 +.20+.10 : .85.

For the original data, we could simply say that 85oh of the scores are

within 1 .21 standard deviations of the mean. D

r-u
-o

D
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It is common to discuss the percentage of values of a random
variable that lie within a certain number of standard deviations of the
mean. The results can vary widely from one random variable to another.

Example 4.26 The claim amount distribution in Example 4.22
had p": 350 and o : J3n,500 x 622.495. The probability function
table with approximate z-scores is as follows:

Total claim amount (g) 0 1000 2000 3000
z -.562 1.044 2.651 4.257

p@) .72 .22 .05 .01

For this distribution, the probability that X is within 2.01 standard
deviations of the mean is .94, not 1.00 as in the previous example. tr

Usually discussions of thrs type depend on what specific probabili-
ty function is being studied. However, there is a general result which
holds for all probability functions.

Chebychev's Theorem For any random variable X, the probabi-

lity that X is within k standard deviations of the mean is at least I - +.k'

P(p-ko 1X < p,*ko)> 1- #
Example 4.27 For the grade random variable, the mean was 7.5

and the standard deviation was approximately 1.245. Chebychev's
Theorem says that the probability that a grade is within 3 standard

deviations of the mean is at least I - + , or approximately .889.
3L'

P(7.s - 3(r.24s) < X < 7.s + 3(1 .24s))
: P(3.765 < X < 11.235) > I - 1

J = .889

This last result is certainly true. All values of X are between 3.765 and
11.235, so the exact probabiiity that X is in this range is 1.00. The true
probability of 1.00 is certainly greater than or equal to .889. D

Chebychev's Theorem was quite conservative here: it estimated a

lower bound of .889 for a probability that was actually 1.00. For the
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distributions studied in this text, we will calculate exact probabilities for
problems like this. Chebychev's Theorem will see very little use.

4.5 Population and Sample Statistics

4.5.1 Population and Sample Mean

Most people are familiar with the calculation of an average or mean for a
set of numbers, such as the test scores for a class. Modern calculator
technology makes this calculation easy. However, it takes a little work to
relate our standard deviation calculations to calculator technology. This
is required because most calculators have two different standard
deviation keys - one for a population and one for a sample. The
difference between a population and a sample can be illustrated by
retuming to our probability function for the number of claims X filed by
a policyholder with a large insurance company.

Number of claims (r) 0 1 2 -l

p(r) .12 .22 .05 .01

This is the probability function for all policyholders of the

company - the entire population of policyholders. The mean and
standard deviation were calculated in Examples 4.16 and 4.21 by using
the probabilities above and the formulas

105

and

Suppose the
compiled the above
ing table:

100,000 policyholders and had
all records to obtain the follow-

p:Lr'p(x): -35

JUG:E .e@: .6224e5.

company had n :
table by looking at

Number of claims (r) 0 I 2 .,

Number of policyholders with
r claims (/)

72,000 22,000 5,000 I,000
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If we rewrite each p(r) as f ln, the
standard deviation can be rewritten as

Chapter 4

for population mean andformulas
follows:

These formulas essentially add up all 100,000 individual values instead
of using the probability table. They are equivalent, and give the correct
answers for the entire population.

In many cases, it is not possible to gather complete data on an
entire population. Then people who need information might take a
sample of records to get an estimate of the mean and standard deviation
of the population. Suppose an analyst does not know the true values of p,
and o for the entire company population. She picks a sample of n: r0
policyholder records at random from the company files, and finds the
following numbers of claims on the 10 records.

0, 0, I ,0,2,0,0, 0, l, 0
This sample leads to the following frequency table.

Population Mean and Standard Deviation

u: $lf ., @.7a)

(4.7b)+L,r .@ - rD'

Number of claims (r) 0 2
Number of policyholders with z claims (/) l 2 I

There are now two means and two standard deviations to consider: a)
the original population mean and standard deviation, which are unknown
to the analyst, and b) the sample mean and standard deviation. we
picture this as follows:

J
Sample

Known data;
can calculate

mean and
standard deviation
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To estimate the true mean and standard deviation, the analyst would
compute the sample mean and sample standard deviation from the
sample values using a slightly different set of formulas. The difference is
that the sum of squares in the standard deviation formula is divided by
n - 1 instead of n when the calculation is done for sample data. This is
done to make the estimates come out better on the average4, but the
details are the subject of another course. The real issue here is that
calculations using sample data require a new and different formula.

Sample Mean and Standard Deviation

n: |lf ." (4.8a)

(4.8b);\L,r @-,)2

t07

and

For the sample data above,

=- 7 r7:16-.(7.0+2 '1+ 1 .2):.40

': /$tzto-.+o)z +2(t-.40)2 +r(2-.40)21 = .699206.

These numbers are estimates of pl and o; the analyst did not know those
values (and still does not). A major difference between statistics and
probability is that the subject of statistics deals primarily with estimating
unknown values like p and o from sample data, whereas probabiiity
deals with solving problems for populations with known (or assumed)

distributions. More will be said about this in later sections. 'Ihis text
covers probability and deals very little with estimation from sample data.

However, it is important for the student to realize that the concepts of
mean and standard deviation are widely used in two different ways with
two different sets of formulas. This occasionally leads to confusion in
calculator use.

a The technical term is that the estimators are unbiased.
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4.5.2 Using Calculators for the Mean and Standard Deviation

Modern calculators typically give both the sample and population stan-
dard deviations. Thus the student must be familiar with both and be able
to determine which one is required for any given problem.

The TI-83 calculator calculates both sample and population stan-

dard deviation. On this calculator, the values of :r and the frequencies /
are entered in separate lists, say, Ly and 12. Then the command

7 - Var Stats Lr, Lz

will lead to a screen which shows the mean as e, sample standard devia-
tion as s., and population standard deviation as or.

The TI BA II Plus calculator has a STAT menu. Under the l-V
option the calculator will show the mean as 7, sample standard deviation
as sr, and population standard deviation as o, just as the TI-83 does.

In Microsoft EXCEL@ the function AVERAGE gives the mean,
the function STDEV gives the sample standard deviation and the
function STDEVP gives the population standard deviation.

4.6

4.2

4-1.

Exercises

The Probability Function of a Discrete Random
Variable

Let X be the random variable for the number of heads obtained
when three fair coins are tossed. What is the probability function
for X?

Ten cards are face down in a row on a table. Exactly one of them
is an ace. You turn the cards over one at a time, moving from
left to right. Let X be the random variable for the number of
cards turned before the ace is turned over. What is the
probability function for X'!

A fair die is rolled repeatedly. Lel X be the random variable for
the number of times the die is rolled before a six appears. What
are the probability function and the cumulative distribution func-
tion for X?

4-2.

4-3



4-4.

4.3

4-5.

4-6.
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the sum obtained by rolling
F(z) functions for X?

Let X be the random variable for
two fair dice. What are the p(r) and

Measuring Central Tendency; Expected Value

For the X defined in Exercise 4-4,what is E(XX

The GPA (grade point average) random variable X assigns to
the letter grades A, B, C, D and E the numerical values 4,3,2, I

and 0. Find the expected value of X for a student selected at
random from a class in which there were 15 A grades, 33 B
grades, 5l C grades, 6 D grades, and 3 E grades. (This expected
value can be thought of as the class average GPA for the
course.)

A construction company whose workers are used on high-risk
projects insures its workers against injury or death on the job.
One unit of insurance for an employee pays $1,000 for an injury
and $10,000 for death. Studies have shown that in ayear 7.3oh

of the workers suffer an injury and 0.41oh are killed. What is the

expected unit claim amount (pure premium) for this insurance?
If the company has 10,000 employees and exactly 7.3Y, are

injured and exactly 0.41% are killed, what is the average cost
per unit of the insurance claims?

Suppose that in the above problem the administrative costs are

$50 per person insured. The company purchases l0 units of
insurance for each worker. Let X be the total of expected claim
amount and adminrstrative costs for each worker. Find E(X).

4-7.

4-8.

4-9. Verify Equation (4.4b).

4-10. Let X be the random variable for the number of times a fair die
is tossed before a six appears (Exercise 4-3). Find E(X).

4-ll. The mode of a probability function does not have to be unique.
Find the mode of the probability function in Exercise 4-1, for the

random variable for the number of heads obtained when three
fair coins are tossed.
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4.4 Variance and Standard Deviation

4-12. If X is the random variable for the sum obtained by rolling two
fair dice (Exercise 4-4), what is V(X)?

4-13. For the insurance policy that pays $1,000 for an injury and
S10,000 for death (Exercise 4-7), what is the standard deviation
for the claim amount on 5 units of insurance? (Note: Some
employees receive $0 of claim payment. This value of the
random variable must be included in your calculation.)

4-14. Verify Equation (4.5b). (Hint: It is sufficient to show that
V(X +b):V(X). lf Y : X +b and E(X): Fx, what is
y _ pr?)

4-15. Let X be the random variable for the sum obtained by rolling
two fair dice (Exercise 4-4).
(a) Using Chebychev's Theorem, what is a lower bound for

the probability that the value of X is within 2 standard
deviations of the mean of X?

(b) What is the exact probability that this sum is within this
range?

4.5 Population and Sample Statistics

4-16. An auto insurance company has 15,000 policyholders rvith
comprehensive automobile coverage. ln the past year 17,425
filed no claims, 3,100 filed one claim, 385 filed two claims, and
90 filed three claims. What are the mean and the standard
deviation for the number of claims filed by a policyholder?

4-17. A marketing company polled 50 people at a mall about the
number of movies they had seen in the previous month. The
results of this poll are as follows:

Number of movies 0 z 3 4 5 6 7 8

Number of viewers J 5 6 9 ll l 5 3 I

What are the sample mean and sample standard deviation for the
number of movies seen by an individual in a month?
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4.7 Sample Actuarial Examination Problems

4-18. A probability distribution of the claim sizes for an auto insurance
policy is given in the table below:

Claim Size Probability

20 0.15

30 0.10
40 0.05

50 0.20
60 0.10
70 0.10
80 0.30

What percentage of the claims are within one standard deviation of
the mean claim size?

4-19. A recent study indicates that the annual cost of maintaining and
repairing a car in a town in Ontario averages 200 with a variance
of260.

If a tax of 20o/o is introduced on all items associated with the
maintenance and repair of cars (i.e., everything is made 20o/o more
expensive), what will be the variance of the annual cost of
maintaining and repairing a car?

4-20. A tour operator has a bus that can accommodate 20 tourists. The
operator knows that tourists may not show up, so he sells 2l
tickets. The probability that an individual tourist will not show up
is 0.02, independent of all other tourists.

Each ticket costs 50, and is non-refundable if a tourist fails to
show up. If a tourist shows up and a seat is not available, the tour
operator has to pay 100 (ticket cost * 50 penalty) to the tourist.

What is the expected revenue of the tour operator?

111
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Commonly Used Discrete
Distributions

In Chapter 4 we saw a number of examples of discrete probability
distributions. In this chapter we will study some special distributions that
are extremely useful and widely applied. Examples of some of these
distributions have already appeared in Chapter 4.

5.1 The Binomial Distribution

We have already seen an example of a binomial distribution problem:
tossing a coin three trmes and finding the probability of observing
exactly two heads. The binomial distribution is useful for modeling
problems in which you need to find probabilities for the number of
successes in a series of independent trials; how many times will you toss
a head, hit a target, or guess a right answer on a test. We will introduce
the binomial distribution by looking at the coin-tossing example.

5.1.1 Binomial Random Variables

Suppose you are going to toss a fair coin three times and record the num-
ber of heads X. The process of tossing the coin three times and
observing whether or not each toss is a head is called a binomial
experiment because rt satisfies all the conditions given in the following
definition.
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Definition 5.1 An experiment is called a binomial experiment if
all of the following hold:

(a) The experiment consists of n identical trials.
(b) Each trial has exactly two outcomes, which are usually

referred to as success (S) or failure (f').
(c) The probability of success on each individual trial is always

the same number P(S) : p. (The probability of failure is
then always P(F) : 1 - p.It is traditional to use the nota-
tionP(F):q:l-P')

(d) The trials are independent.

Definition 5.2 lf X is the number of successes in a binomial
experiment, X is called a binomial random variable.

Example 5.1 A fair coin is tossed three times and the number of
heads X is recorded. The experiment is a binomial experiment since all
of the following hold:

(a) There are n :3 identical trials (coin tosses).
(b) Each trial has two outcomes: heads (a success, ^9) or tails (a

failure, F).
(c) The probability of success is the same on each trial; in this

case, P(S) : P(H): .50 for each toss'
(d) Successive tosses ofa fair coin are independent.

Thus X is a binomial random variable.

Example 5.2 A student takes a multiple choice examination with
n : l0 questions. He has not attended class or studied for three weeks
and plans to guess on each question by having his calculator display a

random integer from I to 5. (There are 5 choices for each question.) I-et
X be the number of questions out of 10 for which the student guesses

correctly. Then X is a binomial random variable, since all of the
following hold:

(a) There are n : l0 identical trials.
(b) Each trial has two outcomes: right (a success, ,9) or wrong.
(c) P(S) : p -- ll5: .20 on each trial.
(d) Successive guesses a1e independent. n

D
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5.1.2 Binomial Probabilities

In Section 3.4.2 we used the multiplication rule for independent events
to show that the probability of tossing 3 heads in a row with a fair coin
was l/8. That was an example of a binomial probabilify problem 

- we
found the probability P(X :3) for the binomial random variable X in
Example 5.1. There is a formula which will enable us to find P(X : k)
for any binomial random variable X and any k. We will show how this
formula works by looking at the example of tossing a fair coin 3 times.

Example 5.3 Below is the tree for three tosses of a fair coin.
Probabilities for each branch are included.

Outcome Probability
H HTIH 1/8

T HHT

H HTH

T HTT
H THH

T THT

H TTH

T TTf

l/8

l/8

t/8
1/8

1/8

1/8

l/8

115

Let X be the number of heads observed. There is only one branch
(H H H)with X : 3. Since the probability of each branch is 1/8,

P(X :3) : (number of branches with 3 heads){ : t (+) : *
This reasoning works for any possible value of X. For example

P(X :2) : (number of branches with 2 heads){ : , (*) : fr. n
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The above results above could also have been obtained from the general

formula for P(X : k).

Binomial Distribution

If X is a binomial random variable with n trials and P(S) : p,

p(x : D: (T)po(r - p) k : (T)pu(q) u, (5.1)

fork :0,I, ...,n.

Example 5.4 Let X be the number of heads in 3 tosses of a fair

coin. Then n:3 and p: ] Urine Equation (5.1) for k:2, we can

replicate the value of P(X : 2) obtained in the last example.

P(x :2): (32) (+)' (+)' : '(+) 
: 

3

Note that the term ( I ) giu"r the number ol branches with exactly 2
\L/ "

heads, and the 
"r* 

(+)t(1)' *tt.. the probability of a single branch

with 2 heads. tr

The example should make clear the meaning of the terms in
Equation (5.1).

(l) Okrn-k gives the probability of a single branch with exactly
k successes.

(2) ([ ) gives the number of branches with exactly k successes.

Example 5.5 We retum to the student who is guessing on a ten-
question multiple choice quiz, with n : 10 and yt: .20. The probability
that the student gets exactly 2 questions right is

(to)t rol't.80)s = .3o1ee.

The probability that the student who guessed on all l0 questions got only
2 right answers is approximately .302. There is some justice in this. tr
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5.1.3 Mean and Variance of the Binomial Distribution

The mean and variance of a binomial distribution depend on the under-
lying values of n and p. It is not too hard to find the mean and variance
for a binomial distribution when there is only one trial - i.e., with
n: l. The probabilify distribution for a binomial random variable with
n : 1 and P(.9) : p is given below.

Number of successes (z) 0 I

p(r) q:l-P p

E(X):s.0+p.1:p

V(X) : Etq - p)21: qi(-d2 -t p(I-p)2

: q(p)2 + p(q)2 : pq(p * q) : pq

I Exercise 5-10 asks the reader to show that for a binomial random
I ,rariable X with n :2 and P(S) : p,

' and
E(X) : 2,

V(X) : 2ro.

The general formulas for the mean and variance of any binomial
distribution X follow the pattern established above. Methods for proving
these rules in general will be developed later in the text.

Binomial Distribution Mean and Variance

If X is a binomial random variable with n trials and P(S) : p,

E(X): np (5.2a)
and

V(X) : nq(l - P): nqq' (5.2b)

Example 5.6 Let X be the number of heads in 3 tosses of a fair
coin. Since X is binomial with n : 3 and p : .50,

E(X) : 3(.50) : t.S and V(X): 3(.50X1 - .50) : .75. tr

Ill
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Example 5.7 Let X be the number of correct answers for a

student guessing on a 10 question (n : 10) multiple choice test with 5

choices on each question (p: .20).

E(X) : t0(.20) :2 v(x): 10(.20x.80) : 1.6 tr

Technology Note

We have already noted that calculators like the TI-83 or TI-BA II
Plus will calculate the coefficient (? ) needed for the binomial proba-

bility formula. Thus it is fairly easy to calculate binomial probabilities
on these calculators. Since the binomial distribution is widely used,
many calculators and computer packages have special functions for
finding binomial probabilities. On the TI-83, entering

binompdf(10, .20,2)

gives the probability of .30199 found in Example 5.5. (The function
binompdf( ) can be found in the DISTR menu.)

Microsoft@ EXCEL has a function BINOMDIST which finds
binomial probabilities. The statistical package MINITAB will quickly
give the entire probability distribution for a binomial random variable X.
Below is the entire probability distribution for the binomial random
variable X with n : l0 and p: .20, as calculated by MINITAB.

Binomial (10,.20)
K P(X: K)

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

0.1074
0.2684
0.3020
0.2013
0.0881

0.0264
0.0055
0.0008
0.0001
0.0000
0.0000
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The last two probabilities in the MINITAB printout are not 0; they
round to 0 when four decimal places are used. The computer-generated
table can be used to rapidly answer questions about the binomial experi-
ment

Example 5.8 Consider the guessing student with n : 10 and
p: .20. What is the probability that he has 6 or more correct answers?

P(X > 6) : .0055 +.0008 + .0001 +.0000 +.0000 : .0064

The guessing student will score 60oh or more on this quiz less than
of the time.

5.1.4 Applications

Example 5.9 (Insurance) The 1979-81 United States Life Table
given in Bowers et al. [2] gives the probability of death within one year
for a 57-year-old person as .01059. (In actuarial notation, qsz : .01059.)
Suppose that you are an insurance agent with l0 clients who have just
reached age 57. You are willing to assume that deaths of the clients are
independent events.

(a) What is the probability that all l0 survive the next year?
(b) What is the probability that 9 will survive and exactly one

will die during the next year?

Solution If client deaths are independent, the number of survivors
X will be a binomial random variable with parameters ?z : l0 and
p:l-.01059:.98941.

(a) P(x : lo) : (18)f ntrot;ro = .Seeo1

(b) p(x:e): (to)tnrrotlel.oroso;r x.0e622 n

Example 5.10 (Polling) Suppose you live in a large city which
has 1,000,000 registered voters. The voters will vote on a bond issue in
the next month, and you want to estimate the percent of the voters who
favor the issue. You cannot ask each of 1,000,000 people for his or her
opinion, so you decide to randomly select a sample of 100 voters and ask
each of them if they favor the issue. What are your chances of getting
reasonably close to the true percentage in favor ofthe issue?
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Solution To answer this question concretely, we will make an

assumption. Suppose the true percent of the voters who favor the bond
issue is 65o/o.You don't know this number; you are trying to estimate it.
In polling voters, you are really doing a binomial experiment. A success

^9 is finding a voter in favor of the bond issue, and P(.9) : p : .65. You
are polling 100 voters, so n : 100. Your random selection is designed to
make the successive voter opinions independent. Below is a table of
probabilities p(r) and cumulative probabilities F(r) for values of r from
59 to 70.

r p(r) F(r)
59

60

6r
62

63

64
65

66

67

68

69
10

0.0474
0.057'7

0.0674
0.0755
0.0811
0.0834
0.0821

0.0714
0.0698
0.0601

0.0494

0. r 250
0.1724
0.2301
0.2976
0.3731
0.4542
0.s316
0.6191
0.6971
0.7669
0.8270
0.8764

The probability that 65 out of the 100 voters sampled favor the bond
issue is .0834, so that you will estimate the true percentage of 65%o

exactly with a probabilify of .0834. The probability that your estimate is
in the range 60%-70% is the sum of all the p(e) values above, since it
equals

P(60 < X < 70) : p(60)+ p(61) + ... + p(70).

The cumulative distribution function F(r) helps to simplify this calcula-
tion, since

P(60 < X < 70) : P(X < 70) - P(X < 59) : .3764 - .1250 : .7514

to four places.l Even though you do not know the true value of p - .65,
your estimate will be in the range .60 to .70 with probability .7514. D

I Thc 1dr;) values add to .75 l3 due to rounding
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Polling problems are really statistical estimation problems. A
statistics course would demonstrate how to increase sampie size to give
an even higher probability of getting an estimate very close to the true
value of p. However, the statistical methods taught in other classes are
based on the kind of reasoning used in the last example.

5.1.5 Checking Assumptions for Binomial Problems

There are some applied problems in textbooks in which independence of
trials is questionable. A standard example is the following problem:

A baseball piayer has a batting average of .350.2 What is the
probability that he gets exactly 4 hits in his next 10 at bats?

This problem usually appears at the end of the section on binomial
probabilities. The obvious intent is to treat the next l0 at bats as n : 10

independent trials with p : .350 on each trial. Many students question
this problem, either because they do not believe that successive at bats
are independent or they do not believe that p: .350 on each trial. (The
authors also question these assumptions.) The best way to simplify this
situation for the student is simply to add a clause to the problem:

Assume that successive at bats are independent and the same
value ofp applies in each at bat.

The polling problem in Example 5.10 also raises issues about the
validity of assumptions. The usual method of sampling voters is called
sampling without replacement. Once you have polled a specific voter,
you wiil not sample hrm or her again. This means that when the first
voter is selected for polling, the next selection will not be from all
1,000,000 voters, but from the remaining 999,999. This changes the
probability of favoring the bond issue very slightly for the second trial.
The usual response to this problem is to say that with 1,000,000 voters
and a sample of only 100, the removal of a few voters changes things
very little on each trial, and it is still reasonable to use the binomial
probability model. This practical argument depends heavily on the
underlying population being very large and the sample very small in
comparison. In the next section we will introduce the hypergeometric
distribution, which will handle sampling without replacement exactly for
any population size.

2 This often gives textbook authors a chance to put in thcir favorite hitters, so that the
problem becomes the Ted Williams problem or the Tony Gwynn problem.
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5.2 TheHypergeometricDistribution

5.2.1 An Example

We have already solved counting problems that were truly sampling
without replacement problems in Chapter 3. The first of these problems
was in Example 3.6, which is reviewed below.

Example 5.ll In Example 3.6, we looked at a company with 20
male employees and 30 female employees. The company is going to
choose 5 employees at random for drug testing. We found, for example,
that the probability of choosing a group of 3 males and 2 females is

495,900 _.t.,^- 2;nTJ6o- N 'Lr1'

The numerator in the above expression is the product of (a) the
number of ways to choose 3 males from 20, and (b) the number of ways
to choose 2 females from 30. The denominator represents the number of
ways to choose a random sample of 5 from 50 people.

It is easy to follow the reasoning in this calculation and find the
probability that the group selected for testing contains any number of
females between 0 and 5. If X is the number of females selected, then

/ 20 \ /30\

P(x:*,: (t -tf .( * /, k:0, 1,2,3,4,s
r'g )
\5/

The probabilify function for X is given in the following table:

Number of females r p(r)
0
I
2

J

4

5

0.0073
0.0686
0.2341
0.3641
0.2587
0.0673

(,iXT)
(T)
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The problem of selecting five employees for testing is a sampling with-
out replacement problem. Once a person is selected for a drug test, that
person is no longer in the pool for future selection. This makes
successive selections dependent on what has gone before. Originally the
pool of employees is 40%o male and 60o/o female. If a male is selected on

the first pick, the remaining pool consists of 49 people. The proportion
of males changes to 19149 = .388 and the proportion of females changes

to 30149 x .612.

5.2.2 The Hypergeometric Distribution

The probability function given for the number of females selected in
Example 5.1I is hypergeometric. A useful intuitive interpretation of the

hypergeometric distribution can be obtained from Example 5.1 l.

A sample of size n is being taken from a finite population of
size N. In Example 5.1l, N : 50 (the number of employees
in the entire company) and n: 5 (the size of the group
selected for testing).
The population has a subgroup of size r ) n that is of
interest. ln our problem, there were r : 30 females in the
population of 50. We were interested in the number of
females in the group selected for testing.
The random variable of interest is X, the number of
members of the subgroup in the sample taken. In Example
5.11, X is the number of females in the group selected for
testing.
The probability function for X is given below.

123

n

(1)

(2)

(3)

(4)

Hypergeometric Distribution

( N - i)(;)P(X :rl: U# , K: t),...,n and r ) n

(; ) 
(s 3)j

3 Afl applicationsherewill satisfyr2nandthisisthemostcommonsituation. lfwe
do not require r ) n, the formula will still be applicable, with & ranging from
mar(O, n * r - N) to min(r, n).
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A common textbook example of the hypergeometric distribution
involves testing for defective parts. This was covered in Example 3.7,
and is reviewed here.

Example 5.12 A manufacturer receives a shipment of 50 parts. 20
of the parts are defective. The manufacturer does not know this number,
and is going to test a sample of 5 parts chosen at random from the
shipment.

Solution In this problem there is a population of ly' : 50 parts. A
sample of size n: 5 will be taken. The manufacturer would like to
study the subgroup of defective parts, and this subgroup has r :20
members. The random variable of interest is X, the number of defective
parts in the sample of size 5. The probability function for X is

P(X : k): ,k:0,1,2,3,4,5. tr

5.2.3 The Mean and Variance of the Hypergeometric Distribution

The mean and variance of the hypergeometric distribution are given
without proof by the following:

Hypergeometric Distribution Mean and Variance

E(x): "(*)
v(x):"(*)('-+) (ff=i)

Q.aa)

(s.4b)

An example will enable us to relate this to the binomial distribution
mean and variance.

Example 5.13 We return to the parts testing of Example 5.12. A
sample of size n : 5 was taken from a population of size ly' : 50 which
contained r : 20 defectives. If X is the number of defectives, the mean
number of defectives in a sample is

E(x):r(38) :5(40):2.
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In this problem, we are conducting n : 5 trials in which a success
,9 occurs if and when we find a defective part. On the first trial,
P(S) : 20150 : .40 : p. Since parts are not replaced, P(S): p
changes on later trials, but the mean is still np : 5(.40) as in the binomral
case.

A similar relationship appears when we find the variance of the
number of defective parts in the sample.

v(x): 
'(38)(t- 38)(;8=) : 5(40X 60)# = r 102

A binomial distribution with n : 5 would have a variance of
npq :5(.40X.60) : 1.20. The hypergeometric variance is adjusted by
multiplying 1.20 by 45149. The final term in the hypergeometric variance
is often called the finite population correction factor.

5.2.4 Relating the Binomial and Hypergeometric Distributions

Both the binomial and hypergeometric distributions can be thought of as

involving n success-failure trials. In binomial problems, successive trials
are independent and have the same success probability. In hyper-
geometric problems, successive trials are influenced by rvhat has
happened before and the success probability changes. When the
population is large and the sample is small, the hypergeometric
distribution looks much like the binomial. Meyer [10] states that "In
general, the approximation of the hypergeometric distribution by the
binomial is very good if n/l/ S .10."4 In our Example 5.13, we found

Hypergeometric

n
p

r
0
I
2
3

4
5

5

0.6

p(r)
0.0102
0.0768
0.2304
0.3456
0.2592
0.0778

Sample size (r)
Population size (l/)
Subgroup size (n)

Successes in sample (r)

5
50
30

p(r)
0
I
2
3

4
5

0.0073
0.0686
0.2341
0.3641
0.2587
0.0673

t25

a Seepage 176.
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nlN:5/50:.10. For the reader's comparison, the probability tables
for the hypergeometric distribution with N : 50, n: 5 andr :30, and
for the binomial with n : 5 and p: .60, are shown at the bottom of
page ll7.

Technology Note

The formulas for hypergeometric probabilities use the combina-
torial coefficients (T) : C(n,k) and can easily be calculated on

modem calculators. Microsoft@ EXCEL has a spreadsheet function
HYPGEOMDIST which calculates hypergeometric probabilities
directly. The comparison table on the previous page is an EXCEL
spreadsheet.

5.3 The Poisson Distribution

In the last two sections, we have used the binomial distribution and the
hypergeometric distribution to find the probability of a given number of
successes in a series of trials - 8.g., the number of heads in 3 coin
tosses or the number of females selected for drug testing. ln this section,
we will study the Poisson distribution, which is also used to find the
probability of a number of occurren e.g., the number of accidents
at an intersection in a week or the number of claims an insured files with
a company in a year. We will hrst look at the example of the number of
accidents at an intersection to get an idea of the kind of problems that
are modeled by the Poisson distribution.

5.3.1 The Poisson Distribution

Example 5.14 A busy intersection is the scene of many traffic
accidents. An analyst studies data on the accidents and concludes that
accidents occur there at "an average rate of \ :2 per month". This does

not mean that there are exactly 2 accidents in each month. In any given
month there may be any number of accidents, k : 0,1,2,3,... . The
number of accidents X in a month is a random variable. The Poisson
distribution can be used to find the probabilities P(X : k) in terms of
/c and A, the average rate.
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Poisson Distribution

The random variable X follows the Poisson distribution with
parameter (or average rate) ) if

P(X :k) : #, k : 0,1,2,3,....

For this distribution,

E(X):

v(x):

(5.sa)

(s.sb)5

(5.5c)5
and

)

).

The number of accidents in a month at this intersection can be
modeled using the Poisson distribution with an average rate of ), :2 if
we make a few reasonable assumptions about how accidents occur. We
will discuss why the Poisson distribution works well for this problem
later in this section and again in Chapter 8. Once we accept that the
Poisson distribution is the right one to use here, it is a simple matter to
calculate probabilities, mean and variance. If X is the number of acci-
dents in a month, then

P(X:q:#=.1353353,

P(X:D:+=.2706706,

P(X:4:+x'2706706,
E(X):2 and V(X):2.

It should not be too surprising that the mean of X is 2, since 2 was given
as the average rate of accidents per month. tr

The Poisson distribution is used to model a wide variety of
situations in which some event (such as an accident) is said to occur at
an average rate ) per time period.

5 A derivation of E(X): ,\ will be provided in Section 5.3.4. The proof that V(X): x
is outlined in Exercise 5-22.



t28 Chapter 5

Example 5.15 The holders of an insurance policy file claims at an
average rate of 0,45 per year. Use the Poisson model to answer the
following questions.

(a) Find the probability that a policyholder files at least one
claim in ayear.

(b) Find the mean number of claims per policyholder per year.
(") Suppose each claim pays exactly $1000. Find the mean

claim amount for a policyholder in a year. (This is the pure
premium for the policy.)

Solution
(a) Let X be the number of claims.

P(at least one claim) - 1 - P( no claims)

-l-P(x:0)
-l-#x3624

(b) E(X) : ) : .45 claims per client per year.

(c) The annual claim amount random variable is Y : 1000X.
Equation (4.4a) states that E(aX) : a. E(X). Thus the
pure premium is

E(Y) : E(1000X) : 1000.8(x) : 1000(.45) : 450. D

5.3.2 The Poisson Approximation to the Binomial for Large
n 

^nd 
Small p

With two reasonable assumptions we can demonstrate why the Poisson
distribution gives realistic answers for the probabilities in Exampl e 5.14:

Assumption I The probability of exactly one accident in a small
time inter-val of length t is approximately )t. For example, if a month
consists of 30 days, the month will have 30(24) :720 hours so that an
hour is a time interval of length t : 11720 of a month. If the rate of
accidents is .\ : 2 per month, the probability of an accident in a single
hour is ),t : 21720 (or 2 accidents per 720 hours).
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Assumption 2 Accidents occur independently in time intervals
which do not intersect.

With these two assumptions, we can find the probabilify of any
given number of accidents in a month using the binomial distribution.
Divide the month into 120 distinct hours which do not intersect. In each
hour, the probability of an accident is p :21720. Since accidents occur
independently in these 720 hours, we can think of observing accidents
over a month as a binomial experiment with n :'J20 trials and
p:21720. Let X be the number of accidents in a month. Using the
binomial distribution

P(x :') : ('1') (h)' (, - h)"e = .2io6to2.

ln Example 5.14 we found P(X: 1) to be .2106706 using the
Poisson formula. The binomial calculation gives the same answer as the
Poisson, to 5 places, for P(X : 1).

This relationship between Poisson and binomial probabilities is no
accident. The binomial distribution with n : 720 and p : 21720 is very
closely approximated by the Poisson distribution with A : 2. In the
following table we give probability values for (a) the binomial distribu-
tion with n : 720 and p : 21120, and (b) the Poisson distribution with
),:2 for r : 0, 1,..., 10. The values are very close.

r29

Poisson
),:2

Binomial
n: J20

p -- 2/720

T

0

I
2

3

4

5

6

8

9

l0

p(r)
0. I 353
0.2707
0.2707
0.1 804
4.0902
0.0361

0.0120
0.0034
0.0009
0.0002
0.0000

T

0

1

2

J

4

5

6
a

8

9

l0

p(r)
0.1 350
0.2707
0.27 t0
0.1 807

0.0902
0.0360
0.0119
0.0034
0.0008
0.0002
0.0000
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Thus we can think of the Poisson probabilities for an average rate
of 2 accidents per month as approximately binomial probabilities for
n : 720 hourly trials per month, with a probability of p : 21720 for one
accident in an hour. In general, the Poisson probabilities for any rate )
approximate binomial probabilities for large n and small p: \ln.

Poisson Approximation to the Binomial

If n is large and p: A is small, then P(X : le) canbe cal-
culated using the Poisson or the binomial with approximately the
same answer.

e-))fr --'Ea - (?) (*)-(r )\"-r- n) (s.6)

We will give some idea of why this is true in the next section.

Example 5.16 In Example 5.15 we looked at an insurance com-
pany whose clients file claims at an average rate of ) : .45 per year.
The company has 500 clients. What is the probability that a client files
exactly one claim?

Solution Let X be the number of claims filed. If we use the
Poisson distribution,

P(X : l): x .2869.

If we are willing to assume that the 500 clients are independent, we can
look at X as the number of successes in 500 trials with n : 500 and
p: .451500. Then

P(x :1): (t?t)(#)'(t - #)"' x .2871 n

5.3.3 Why Poisson Probabilities Approximate
Binomial Probabilities

To understand the Poisson approximation to the binomial, we need to
review the definition of the number e and the implied value of e-).

e-'4s .451

-T!-

e-): tX\- *)"" 
:l,:J(t * *)"



Commonly Used Discrete Dis tributions 131

This means that for large n,

e_\ = (,_ *)'
To see how this identity can be used to establish the approxima-

tion, we will look at the simplest cases - i.e., P(X :0) and P(X : l).
For X : 0, the Poisson gives

P(X-0):e-).
The binomial with large n and p: )/n gives

P(x :o): (6)(#)'(r - *)": (r - *)" = "-^.
For X : 1, the Poisson gives

P(X: l): e-r,\.

The binomial with large n and p : )/n gives

P(x: r): (?)(*)'(, - +)"-'

: x(r - 4\'-'-"\' n)

: 
''* 

(, _ 
"l)" = )"-^,

ll-
\'- " /

srn"e (t - *) = t

The general proof of the approximation is based on the same principles,
but requires much more rearranging of terms.

5.3.4 Derivation of the Expected Value of a
Poisson Random Variable

In order to prove that E(X): ) for a Poisson distribution with rate ),
we need to review the series expansion for e':

e,:t*z* *-++...+ fi+
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The expected value of X is also an infinite series.

E(X) : ltr P(X : k)

+ rL# +21{*r" i,]'* .

Chapter 5

-0 e-),\olt--

:)e )('*^ ***S* ):^" 
reA:)

Technology Note

The Poisson formulas are simple to evaluate on any modern
calculator. However, the distribution is used so often that the TI-83
calculator has a time-saving function (poissonpdf) which calculates
Poisson probabilities. For example, if A : 2, entering

poissonpdf(2,1)

from the DISTR menu gives .27067 : P(X : l).
Microsoft@ EXCEL has a POISSON function to calculate Poisson

probabilities, and MINITAB will generate tables of Poisson probabili-
ties. The table which compared Poisson and binomial probabilities in
Section 5.3.2 was calculated in both EXCEL and in MINITAB.

The Geometric Distribution

5.4.1 Waiting Time Problems

The geometric distribution is used to study how many failures will
occur before the first success in a series of independent trials. We have
already looked at a geometric distribution problem in Example 4.7. This
example dealt with a slot machine for which the probability of winning
on an individual play was .05 and successive plays were independent.
The random variable of interest was X, the number of unsuccessful
plays before the first win. This is a waiting time random variable - it
represents the number of losses we must wait through before our first
win.

5.4
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The general setting for a geometric distribution problem has many
features in common with a binomial distribution problem:

(1) The experiment consists of repeating identical success-or-
failure trials untrl the first success occurs.

(2) The trials are independent.
(3) Oneachtrial P(.9) - pandP(F):1- p: q.

(4) The random variable of interest is X, the number of failures
before the first success.

The probability of k failures before the first success can be found
by the multiplication rule for independent events:

Geometric Distribution

P(X : k): qkp, k : 0,1,2,3, ... (5.7)

Example 5.17 Let X be the number of unsuccessful plays before
the first win on the slot machine in Example 4.7. X follows the
geometric distribution with p : .05 and q : .95. Then

P(X :k) : .9Sk(.05), k : 0, 7,2,3, ....

This was derived in Example 4.7 using the multiplication rule. tr

Example 5.18 A telemarketer makes repeated calls to persons on
a computer generated list. The probability of making a sale on any
individual call is p : .10. Successive calls are independent. Let X be the
number of unsuccessful calls before the first sale. Then X has a

geometric distribution wrth

P(X:k):.90k(.t0), k:0,1,2,3,.... tr

Example 5.196 An unemployed worker goes out to look for a job
every day. The probability of finding a job on any single day is ). Let X
be the number of days of job search before the worker finds a job. If we
assume that successive days are independent, then

P(X: k): (l-I)k^, k:0,1,2,3,.... tr

133

6 This example is taken from London [9]
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5.4.2 The Mean and Variance of the Geometric Distribution

The mean and variance of the geometric distribution are given below.

Geometric Distribution Mean and Variance

and

Eq): fi
vq): #

(s.8a)

(5.8b)

Example 5.20 Let X be the number of unsuccessful plays on the
slot machine in Example 5.17.

The expected value of 19 in the last example was previously
derived in Example 4.i5 using Equation (a.3). We can follow the steps
of Example 4.15 to derive the general expression forthe mean of a geo-
metric random variable X with P(S): p.

E(x) : 0q * lpq * 2pqz * 3pq3 + ... + kpqo + .'.

: pq(t *2q *3q2 + 4q3 +... + kqo, + ...)

/ -l-):g !:es\(r-qit):fr

We will show how to derive the expression for V(X) in a later
section.

5.4.3 An Alternate Formulation of the Geometric Distribution

We defined the geometric random variable X to be the number of
failures before the first success. Other texts define the geometric random
variable to be Y, the total number of trials needed to obtain the first
success - including the trial on which the success occurs. This implies
thatY : X * l, and changes things slightly.

(a) E(x): fi: # : tn

(b) v(x) -- s - +Z: 380p' .u5'
n
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Our text P(X : k) : qkp k : 0, 1,2,3, ...

Alternative P(Y: k): P(X * 1: k)

:P(X:k-l)
:qk-tp k:1,2,3,...

When the alternative form is used, the expression for the mean changes
slightly and the expression for the variance remains the same. We can
show this using the relationships E(aX + b) : a. E(X) + b and
V(aX + b) : az .V1X7.

E(Y) -- E(X + r) : E(X)* I : fi * t :

V(Y): V(X + t): V(X): +p-

Our use of X as the geometric random variable is consistent with
Bowers et al. l2l. The reader needs to exercise care in problems to be
sure that X is not mistaken for Y or vice versa.

Example 5.21 The telemarketer in Example 5.18 makes succes-
sive independent calls with success probability p: .10. The calls cost
$0.50 each. What is the expected cost of obtaining the first success
(sale)?

Solution The total number of calls needed to obtain the first sale
includes the call on which the sale is made. Thus Y : X * I is the
number of calls to make the first sale, and .50Y is the cost of the first
sale.

tr(.s0v) : .s0E(v) : .s0 .s(x + 1)

: .50[E(X) + l]

: .so({f; + r)

: $5.00

135
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fechnology Note

The TI-83 calculator has a function

geometpdf(p, r)

for which p is the probability of success and r is the number of trials
needed for the first success. Thus the TI-83 calculates probabilities for
the random variable Y : X * 1. Entering

geometpdf(.10, 2)

from the DISTR menu will return the answer .09.
Microsoft@ EXCEL will calculate geometric probabilities as a

special case of the negative binomial distribution. This will be covered
in the next section.

5.5 The Negative Binomial Distribution

5.5.1 Relation to the Geometric Distribution

The geometric random variable X represents the number of failures
before the first success. In some cases, it may be useful to study the
number of failures before the second success, or the third or the fourth.
The negative binomial distribution gives probabilities for X, the
number of failures before the nth success. We will solve a problem of
this type directly before giving the general probability formulas.

Example 5.22 You are playing the slot machine on which the
probability of a win on any individual trial is .05. You will play until you
win twice. What is the probability that you will lose exactiy 4 times
before the second win?

Solution There are a number of different sequences of wins and
losses which will give exactly four losses before the second win. For
example, if S stands for a success (win) and F stands for a failure (loss),

two such sequences are SFFFFS and FS.PF.FS. Note that the
probability of each of the above sequences can be obtained using the
multiplication rule for rndependent events.
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P(S F F F FS) : P(FS F F F S) : (.95)4(.05)2

The probabilify of 4rll sequence with exactly four losses before the
second win will be the same value (.95)4(.05)2. However, there are
clearly more such sequences than the two above. The number of such
sequences can be counted using a simple idea. The last letter in the
sequence must be an S. We really only need to count the number of
ways to put a five letter sequence consisting of 1 S and four.Fs in front
of the last S.

{5 letter sequence with one S} 
-r 

{final .9}

We can create a 5 letter sequence with one ^9 by simply choosing the one
place in the sequence where the single S appears. The number of ways

this can be done'. (i) : 5. Thus there are 5 sequences with exactly 4

losses before the second win. Each sequence has a probability of
(.95)4(.05)2. The probability of exactly 4 losses before the second win is

P(X :4) : 5(.95)a('05)2 = .01018. tr

In the general negative binomial problem, the number of desired
successes is denoted by r. (In the last example, r : 2 and a win was a
success.) The random variable of interest is X, the number of failures
before success r in a series of independent trials. As before X will
assume the value k if there is a sequence of r successes (S) and k
failures (F) with last letter S. (h the last example we looked at k -- 4.)
The probability of any such sequence will be qkp' . Each such sequence
wrll have r * k entries, with ,9 as a final entry. The form of a sequence
is

{r -f k - I letters with exactly r - I copies of .9} 
-----r {final S}.

The number of ways to choose the location of the r - I copies of S in

the first r+k-l letters is ('ILit) (ln the last example,

r*k- l:5 and r -1:1.) TheprobabilityrhatX: kwillbegiven

by the product

( N umb er o f s e quen c e s)( P r ob ab al it y o f an in d iu i dual s e quen c e).
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Negative Binomial Distribution

A series of independent trials has P(S) : p ort each trial.
Let X be the number of failures before success r.

/*-Ll.- 1\
P(X : /r) : (' ;: i ' )orr', k : 0,1,2,3, ... (5.9)

Example 5.23 The telemarketer in Example 5.18 makes success-

ful calls with probability p:.10. What is the probability of making
exactly 5 unsuccessful calls before the third sale is made?

Solution In this problem, r : 3 and k :5.

(1) ooosno+e

: 2l(.00059049) = .0124

Rote memorization of the distribution formula is not recommended. An
intuitive approach is more effective. In this problem, one should think of
sequences of 8 letters (calls) ending in ^9 with exactly 2 copies of S in
the first 7 letters. Each sequence has probability (.90)5(.10)3 and there

ur.- (1) : zt such sequences. tr

It is important to note one special case. When r: l, X is the

number of failures before the first success - a geometric random vari-
able. This is intuitively obvious, and can also be verified in the distribu-
tion formula. For r : I

5.5.2 The Mean and Variance of the
Negative Binomial Distribution

The expressions given below will not be derived until a later chapter.

However, we will give examples which should make these formulas
intuitively reasonable.

P(x :s) : (' 1l, I){.m)'{.to)' :

P(x: k): (t tll t)nro': (8) qkp: qkp.
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Negative Binomial Distribution Mean

Eq): ry

v6): ry
p-

and Variance

and

(s. l0a)

(s.10b)

Example 5.24 We return to Example 5.22 and the slot machine
player who wishes to win twice. For this player, r :2 and p : .05.
Thus

E(X):2,8? :2.te: 38 and v(x): : 2'380 - 760.

These answers can be related to the geometric distribution. Recall that
we have already calculated the mean and variance for the geometric
distribution case (r: l) in Example 5.17. The mean number of losses

before the first win was 19. Now we see that the mean number of losses

before the second win is 2 x 19. The player waits through 19 losses on
the average for the first win. After the first win occurs, the player starts
over and must wait through an average of 19 losses for the second time.
Similarly, the variance of the number of losses for the first win was 380.
For the second win it is 2 x 380.

This example illustrates that we can look at X, the number of
failures before the second success, as a sum of independent random
variables. Let Xt be the number of failures before the first success and

Xz the number of subsequent failures before the second success. Then
Xr and X2 are independent random variables, and X : Xr * Xz.If we
are waiting for the second success, we wait through X1 failures for the
first success and then repeat the process as we go through X2 subsequent

failures before the second success, for a total of X: Xr -l Xz failures.
Note that although the separate waits X1 and X2 follow the same kind of
geometric distribution, Xr and X2 can have different values. Thus
X1* X2 is not the same as 2Xt. (A common student mistake is to
confuse X1 I X2 and 2X1.) Sums of random variables will be studied
further in Chapter I l.
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Technology Note

Microsoft@ EXCEL has a NEGBINOMDIST function which
calculates probabilities for this distribution. The table below was done in
EXCEL. It shows the negative binomial probabilities for p: .10 and
r : 1,2 and3. p(k): P(X : /c) is given for k : 0, 1,..., 10. We have
also included the cumulative probabilify F(k) : P(X < k).

Binomial Distribu lon
T: 1

P: 0.1

f:2
p: 0.1

f:3
P: 0-l

k
0
I
2

3

4

5

6
l
8

9

l0

p(k) F(k)
0.10000 0.r0000
0.09000 0.19000
0.08100 0.27100
0.07290 0.34390
0.06561 0.409s 1

0.0s90s 0.46856
0.05314 0.52170
0.04183 0.56953
0.04305 0.61258
0.03874 0.65r32
0.03487 0.68619

p(k) F(k)
0.01000 0.01000
0.01800 0.02800
0.02430 0.05230
0.02916 0.08146
0.03281 0.11427
0.03s43 0.14969
0.03720 0.18690
0.03826 0.22516
0.03874 0.26390
0.03874 0.32064
0.03835 0.34r00

p(k) F(k)
0.00100 0.00100
0.00270 0.00370
0.00486 0.00856
0.00729 0.01585
0.00984 0.02569
0.01240 0.03809
0.01488 0.05297
0.01722 0.07019
0.01937 0.08956
0.0213 1 0.1 1087
0.02301 0.133 88

The value of p:.10 was used in our analysis of the telemarketer.
The above table tells the telemarketer (or his manager) quite a bit about
the risks of his job. There is a reasonable probability (.68619) that the
first sale will be made with 10 or fewer unsuccessful calls. There is a
low probability (.13388) that three sales will be made with l0 or fewer
unsuccessful calls.

This table was stopped at k : 10 only for reasons of space. The
reader who constructs it for herself will find that it takes only a few
additional seconds to extend the table to k : 78. This gives a fairly
complete picture of the probabilities involved.
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5.6 The Discrete Uniform Distribution

One of our first probability examples dealt with the experiment of
rolling a single fair die and observing the number X that came up. The
sample space was ,S: {1, 2,3,4,5, 6} and each of the outcomes was
equally likely with probability 1/6. The random variable X is said to
have a discrete uniform distribution on 1, ...,6. This is a special case

of the discrete uniform distribution on l, ..., ?2.

Discrete Uniform Distribution on 1, - . . t fl
.tp(r) : *.,, : 1. ..., n

E(x): "+l
v(x):+

(5.1 1a)

(s.11b)

(5.1 1c)

Example 5.25 Let X be the number that appears when a single
fair die is rolled. Then

E(X): : 3.5

V(X): :2.916.

ln Exercise 5-33 you will be asked to verify the results of
Example 5.25 by direct calculation using the definitions of E(X) and
V(X).The derivations of E(X) and V(X) using summation formulas
are outlined in Exercise 5-35.
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5.7

Chapter 5

Exercises

The Binomial Distribution

A student takes a l0 question true-false test. He has not attended
class nor studied the material, and so he guesses on every
question. What is the probability that he gets (a) exactly 5

questions correct; (b) he gets 8 or more correct?

A single fair die is rolled 10 times. What is the probability of
getting (a) exactly 2 sixes; (b) at least 2 sixes?

An insurance agent has 12 policyholders who are considered
high risk. The probability that one of these clients will file a
major claim in the next year is .023. What is the probability that
exactly 3 of them will file major claims in the next year?

A company produces light bulbs of which 2%o are defective.
(a) If 50 bulbs are selected for testing, what is the probability

that exactly 2 are defective?
(b) If a distributor gets a shipment of 1,000 bulbs, what are

the mean and the variance of the number of defective
bulbs?

In the game of craps (dice table) the simplest bet is the pass line.
The probability of winning such a bet is .493 and the payoff is
even money, i.e., if you win you receive $1 more for each dollar
that you bet. A gambler makes a series of 100 $10 bets on the
pass line. What is his expected gain or loss at the end of this
sequence ofbets?

In a large population l0% of the people have type B+ blood. At
a blood donation center 20 people donate blood. What is the
probability that (a) exactly 4 of these have B+ blood; (b) at most
3 have B+ blood?

ln the population of Exercise 5-6, 50,000 pints of blood are
donated. What is the expected number of pints of B+ blood?
What is the variance of the number of pints of B+ bloodr

5.1

5-1.

5-2.

5-3.

5-4.

5-5.

5-6.

5-7.
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5-8. An experiment consists of picking a card at random from a

standard deck and replacing it. If this experiment is performed
12 times, what is the probability that you get (a) exactly 2 aces;
(b) exactly 3 hearts; (c) more than t heart?

5-9. Suppose that 5o/o of the individuals in a large population have a
certain disease. If l5 individuals are selected at random, what is
the probabilify that no more than 3 have the disease?

5-10. For a binomial random variable X with n :2 and P(S) : p,
show that (a) E(X) : 2p; (b) V(X) : 2p(l - p\.

5.2 TheHypergeometricDistribution

5-11. There are l0 cards lying face down on a table, and 2 of them are
aces. If 5 of these cards are selected at random, what is the
probability that 2 of them are aces?

5-12. In a hospital ward there are 16 patients, 4 of whom have AIDS.
A doctor is assigned to 6 of these patients at random. What is the
probability that he gets 2 of the AIDS patients?

5-13. A baseball team has 16 non-pitchers on its roster. Of these, 6 bat
left-handed and l0 right-handed. The manager, having already
selected the pitcher for the game, randomly selects 8 players for
the remaining positions.
(a) What is the probability that he selects 4 left-handed batters

and 4 right-handed batters?
(b) What is the expected number of left-handed batters

chosen?

143

5-14. The United States Senate has 100 members. Suppose there
54 Republicans and 46 Democrats.
(a) If a committee of 15 is selected at random, what is

expected number of Republicans on this committee?
(b) What is the variance of the number of Republicans?

are

the
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5-15. A bridge hand consists of 13 cards. IfX is the random variable
for the number of spades in a bridge hand, what arc E(X) and
V(X)?

5.3 The Poisson Distribution

5-16. An auto insurance company has determined that the average
number of claims against the comprehensive coverage of a

policy is 0.6 per year. What is the probability that a policyholder
will file (a) I claim in a year; (b) more than I claim in a year?

5-17. A city has an intersection where accidents have occurred at an
average rate of 1.5 per year. What is the probability that in a

year there will be (a) 0; (b) l; (c) 2 accidents in a year?

5-18. Policyholders of an insurance company file claims at an average
rate of 0.38 per year. If the company pays $5,000 for each claim,
what is the mean claim amount for a policyholder in a year?

5-19. An insurance company has 5,000 policyholders who have had
policies for at least 10 years. Over this period there have been a
total of 12,200 claims on these policies. Assuming a Poisson
distribution for these claims, answer each of the following.
(a) What is ), the average number of claims per policy per

year?
(b) What is the probability that a policyholder will file less

than 2 claims in a year?
(c) If all claims are for $1,000, what is the mean claim amount

for a policyholder in ayear?

5-20. Claims filed in a year by a policyholder of an insurance company
have a Poisson distribution with .\ : .40. The number of claims
filed by two different policyholders are independent events.
(a) If two policyholders are selected at random, what is the

probability that each of them will file one claim during the
year?

(b) What is the probability that at least one of them will file no
claims?
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5-21. Show that a Poisson distribution withparameter ): k (an inte-
ger) has two modes, fr - 1 and k.

5-22. Show that V(X): ) for a Poisson random variable X with
parameter ). Hint: Show I/(X) : E(X2) + E(-2^X + 

^2)and E(Xz): ,\2 + ,\.

5.4 The Geometric Distribution

5-23. If you roll a pair of fair dice. the probability of getting an 11

1/18. (See Exercise 4-4.) If you roll the dice repeatedly, what
the probability that the first 11 occurs on the eighth roll?

5-24. An experiment consists of drawing a card at random from a

standard deck and replacing it. If this experiment is done
repeatedly, what is the probabilify that (a) the first heart appears
on the fifth draw; (b) the first ace appears on the tenth draw'/

5-25. For the experiment in Exercise 5-24,let X be the random varia-
ble for the number of unsuccessful draws before the first ace is
drawn. Find E(X) andV(X).

5-26. At a medical clinic, patients are given X-rays to test for tubercu-
losis.
(a) If 15% of these patients have the disease, what is the

probability that on a given day the first patient to have the
disease will be the fifth one tested?

(b) What is the probability that the first with the disease will
be the tenth one tested?

5.5 The Negative Binomial Distribution

5-27. Consider the experiment of drawing from a deck of cards with
replacement (Exercise 5 -24).
(a) What is the probability that the third heart appears on the

tenth draw?
(b) What is the mean number of non-hearts drawn before the

fifth heart is drawn?

t45
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5-28. A single fair die is rolled repeatedly.
(a) What is the probability that the fourth six appears on the

twentieth roll?
(b) What is the mean number of total rolls needed to get 4

sixes?

5-29. For the experiment in Exercise 5-28, let X be the random
variable for the number of non-sixes rolled before the fifth six is
rolled. What are E(X) andv(X)?

5-30. A telemarketer makes successful calls with probability .20. What
is the probability that her fifth sale will be on her sixteenth call?

5-31. If each sale made by the person in Exercise 5-30 is for $250,
what is the mean number of total calls she will have to make to
reach $2,000 in total sales?

5-32. Consider the clinic in Exercise 5-26, where l5%o of the patients
have tuberculosis.
(a) What is the probability that the fifteenth patient tested will

be the third with tuberculosis?
(b) What is the mean number of patients without tuberculosis

tested before the sixth patient with tuberculosis is tested?

5.6 The Discrete Uniform Distribution

5-33. Verify the results of Example 5.25 by direct calculation using the
definitions of E(X) andV(X).

5-34. A contestent on a game show selects a ball from an um containing
25 balls numbered from I to 25. His prize is $1,000 times the
number of the ball selected. If X is the random variable for the
amount he wins, find the mean and standard deviation of X.

5-35. Derive the formulas for .O(X) and V(X) for the discrete uniform

distribution. (Recall that | + 2 +3 + '.' * n: tfu;) and

t2 +22 +32+ ...tn2:@j#d.l
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5.8 Sample Actuarial Examination Problems

5-36. A company prices its hurricane insurance using the following
assumptions:
(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05.
(iii)The number of hurricanes in any calendar year is indepen-

dent of the number of hurricanes in any other calendar year.

Using the company's assumptions, calculate the probability that
there are fewer than 3 hurricanes in a 2D-year period.

5-37. A study is being conducted in which the health of two indepen-
dent groups of ten policyholders is being monitored over a one-
year period of time. lndividual participants in the study drop out
before the end of the study with probability 0.2 (independently
of the other participants).

What is the probability that at least 9 participants complete the
study in one of the two groups, but not in both groups?

5-38. A hospital receives 1/5 of its flu vaccine shipments from
Company X and the remainder of its shipments from other
companies, Each shipment contains a very large number of
vaccine vials.

For Company X's shipments, 109/o of the vials are ineffective.
For every other company,2o/o of the vials are ineffective. The
hospital tests 30 randomly selected vials from a shipment and
finds that one vial is ineffective.

What is the probability that this shipment came from Company
X?

5-39. An actuary has discovered that policyholders are three times as

likely to file two claims as to file four claims. If the number of
claims filed has a Poisson distribution, what is the variance of
the number of claims filed?

t4'7
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5-40. A company buys a policy to insure its revenue in the event of
major snowstorms that shut down business. The policy pays
nothing for the first such snowstorm of the year and 10,000 for
each one thereafter, until the end of the year. The number of
major snowstorms per year that shut down business is assumed
to have a Poisson distribution with mean 1.5.

What is the expected amount paid to the company under this
policy during a one-year period?

5-41. In modeling the number of claims filed by an individual under
an automobile policy during a three-year period, an actuary
makes the simplifying assumption that for all integers n ) 0,

Pn+l : |p,,, where pn represents the probability that the policy-
holder files n claims during the period.

Under this assumption, what is the probability that a
policyholder files more than one claim during the period?



Chapter 6
Applications for Discrete

Random Variables

6.1 Functions of Random Variables and Their
Expectations

6.1.1 The Function Y : a,X * b

We have already looked at functions of random variables. In Sections
4.3 and 4.4, we looked at the function f (X): aX * b and used the

identities

Elf 6)l: E(aX + b) : a' E(X) + b

and
vlf 6)l : v(ax + b) : az 'v1x1.

For example, we looked at a random variable X for the number o[
claims filed by an insurance policyholder in Example 4.6.

Number of claims (r) 0 2 3

p(r) .72 .22 .05 .01

The expected value ,E(X) was .35 and the variance V(X) was .3875. In
Examples 4.17 and 4.22, we looked at the total cost random variable

f (X) : 1000X + 100' We then found

Etf 6)l: E(1000X + 100) : 1000-a(X) + 100 : 450
and

vf.f 6)l: 7(i000X + 100) : 10002v(x) : 387,500.
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Simple derivations of these results were sketched previously, but a

closer look at the reasoning is needed. The reasoning used previously
relied on the observation that Y : f (X) had a distribution table with the
same underlying probabilities as X.

Cost: /(r) : 1000r + 100 100 I 100 2100 3 100

p(r) .72 .22 .05 .01

For example, since the probability of 0 claims is .72, the probability of a
total cost of /(0) : 1000(0) + 100 will also be .72. We could check the
expected value above using this diskibution table.

Ef,f (X)l: .72(100) + .22(t 100) + .05(2100) + .01(3100)

: 450 :lf {d.n{")

6.1.2 Analyzing Y : f ()() in General

The identity

Etf 6\ : L,f {d . ot") (6 t)

holds for any discrete random variable X and function /(r). However,
there is a subtle point here. This point is illustrated in the next example.

Example 6.1 Let the random variable X have the distribution below.

If f (r): 12, the naive table extension technique just used in Section
6.1.1 gives us a similar distribution.

f(r): r' -72:7 0z:0 lz-1
p(r) .20 .60 .20

Calculating the mean lor X2 gives

lL -1 0 I

p(r) .20 .60 .20

E(Xz) : D"' . p(r) :.20(l) + .60(0) + .20(l) : .40.
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The subtle point is that the previous table is
distribution table for X2, since the value of I
row. The true distribution table for Y : X2 is

l5l

not exactly the probabilify
is repeated twice in the top
the following:

?t - f (r,): rz 0 I
ptu) .60 .40

Using this table, we still get the same result.

E(Y) : La . p@) :.60(0) + .40(l) : .40. tr

This example illustrates two major points:

(l) The distribution table for X can be converted into a prelim-
inary table for /(X) with entries for /(r) and p(r), but some
grouping and combination may be necessary to get the actual
distribution table for Y : f(X).

(2) Even though the tables are not the same, they lead to the
same result for the expected value of Y : f (r).

E(Y) : Da p(0 : Et f 6)l : lf {O . n{r)

The final summation above is the expression in Equation (6.1). It
is usuaily the simplest one to use to ftnd Elf (X)]. The general proof of
Equation (6.1) follows the reasoning of the previous example, but will
not be given here.

6.1.3. Applications

In this section we will give an elementary example from economics: the
expected utility of wealth.

Example 6.2 For most (but not all of us), the satisfaction obtained
from an extra dollar depends on how much wealth we have already. A
single dollar may be much less important to someone who has $500,000
in the bank than it is to someone who has nothing saved. Economists
describe this by using utility functions that measure the importance of
various levels of wealth to an individual. One utility function which fits
the attitude described above is u(tr.,) : \/-, for wealth tr.' > 0. The
graph of u(w) is given in the following figure.



t52 Chapter 6
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We can see from this graph that utility increases more rapidly at first and

then more slowly at higher levels of wealth, tl. We will now look at how
a person with the utility function u(w): 1/ut might make financial

decisions. (The reader should be aware that this is only one possible

utility function. Other individuals may have very different utility func-
tions which lead to very different financial decisions.)

Suppose a person with the utility function u(u) : 1/- cun choose

between two different methods for managing his wealth. Using Method
1, he has a 10%o chance of ending up with u:0 anda90%o chance of
ending up with u.' : 10,000. Using Method 2, he has a 2%o chance of
ending up with u :0 and a 98oh chance of ending up with w : 9,025.
(Which would you choose?) These two methods of managing wealth are

really two random variables, W1 andW2.

Random variable W for Method I
Wealth(ru) | 0 | 10,000

p(tu) ll0 I .e0

Random variable W2 for Method 2

Wealth (Tr) 0 9,025
p(tu) .02 .98

One way to evaluate these two alternatives would be to compare their
expected values.

E(Wt): .10(0) + .90(10,000) : 9,000

E(W): .02(0) + .98(9,025) : 8,844.50
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This comparison implies that Method 1 should be chosen, since it has

the higher expected value. However, this method does not take into
account the utility that is attached to various levels of wealth. The
expected utility method compares the two methods by calculating u(u)
for each outcome and comparing the two expected utilities Elu(W1)l
and E[u(W2)]. We can expand the two tables for wealth outcomes to
include u(u) : fi to, this calculation.

Method I
Wealth (u.') 0 10,000

u(tu) : 1/ut 0 /mooo
p(tu) .10 .90

Method 2

Wealth (to) 0 9,025

u(w): 1/w 0 ,/o,ozs
p(tu) .02 .98

We can now compute expected utility.

E[u(Wt)]:.10(0) + .90

153

Expected utility rs

important point here is
makes use of the identity

analyzed much more
that this economic

E[u(W)]: .02(0) + .98J9,025 : 93.10

Using expected utilify, the person with u(w) : /tr.r would choose

Method 2 instead of Method l. tr

deeply in other texts. The
decision-making method

EIu(W)l : !u(u.') . p(u),

which was discussed in this section.

6.1.4 Another Way to Calculate the Variance
of a Random Variable

In Section 4.4.1 we defined the variance of a random variable X by

v(x): El6 - tD2l: t(, - tDz .p(r).
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In that definition, we were implicitly using Equation (6.1) with

f(r): D("- 1l2.There is another way to write the variance. If we

expand the expression (r - p)2 , we obtain

v(X) : D@' - 2p" + tt2)' p(r)

: Dr' . p(r) - zpL" . p(r) + uzln@)

: E(X\ - 2pt. E(X) + p2 .1

: E(x2) - 2p,. p, * trtz ' I

: E(xz) - ti.

Thus we can write

V(X) : E(X\ - tr2 : E(X2) - @(n)'?. 6.2)

Example 6.3 We will verify the variance calculated for the claim
number distribution from Example 4.6.

Number of claims (r) 0 I 2 J

p(r) .72 .22 .05 .01

We know that E(X): .35. Using Equation (6.1),

E(x2\ : .i2(0\ + .22Q\ + .ysQ\+ .01(32) : .51.

Then Equation (6.2) gives

V(X): E(X\ - (E(n)2 : .51 - .352 :.3875.

This verifies our previous calculation obtained directly from the defini-
tion. n
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It is important to know Equation (6.2).It is widely used in proba-
bility and statistics texts. These texts often note that the cqlculation of
V(X) can be done more easily using Equalion (6.2) than from the
definition. This is true for computations done by hand, but computations
are rarely done by hand in our computer age. In fact, examples have been
developed to show that Equation (6.2) has a disadvantage for computer
work when large values of X are present; there are problems with
overflow due to the magnitude of Xz. This is pursued in Exercise 6-4.

6.2 Moments and the Moment Generating Function

6.2.1 Moments of a Random Variable

We saw in Section 6.1.4 that E(X\ could be used in the calculation of
V(X). E(Xz) is called the second moment of the random variabie X.
There are useful applications of expected values of higher powers of X
as well.

Definition 6.1 The nth moment of X is E(X") .

Note that the first moment is simply E(X).

Example 6.4 The third moment of the claim number random
variable in Example 6.3 is

E(x\: .72(0\ + .220\ + .0s(2r) + .01(33) : .8e. D

6.2.2 The Moment Generating Function

The definition of the moment generating function does not have an
immediate intuitive interpretation. In this section, we will define the
moment generating function and show how it is applied. In Section 6.2.9
we will give an infinite series interpretation which may help the reader
to understand the motivation behind the definition.

Definition 6.2 Let X be a discrete random variable. The moment
generating function, denoted Mx(t), is defined by
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Mx(t) : E(e'x) : L"" p(r).
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Example 6.5 Below is the probability function table for the claim
number random variable X. We have added a row for e''x so thal l\.ty(t)
can be calculated .

Number of claims (r) 0 2 3

et' eot :7 ell e2t e3t

p(r) .72 .22 .05 .01

Then
Mx(t) : .72(1) * .22(et) + .05(e2t) + .01(e3').

Mx(t) is called the moment generating function because its derivatives
can be used to find the moments of X. For the function above the
derivative is

I,tk(t) : 0 * .22(et) * .05(2)(e2t) + .01 (3)(e3').

If we evaluate the derivative at t:0, we obtain

I,Ik(o) : 0 * .22(t) +.05(2) + .01(3) : .35 : E(X).

This is the first moment of X. The higher derivatives can be used in the
same way.

M r(t) : 0 * .22(et) + .05(2\k2'1 + .0t1:2;1e;';

AxkQ):0 * .220\ +.05(22) +.01(32): .51 : E(x\ tr
This result holds in general.

Mx(t):1"" .p(r)

It'tx(t): I" .et' .p(r) and IuIxQ): f, .p(r): E(X)

Mi(t):Lr' .et' .p(r) and ItIiQ):Dr' .p(r): E(XZ)

The general form is the following:

Vf!'i)(o) :Lr" .p(r): E(X") (6.3)
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Many standard probability distributions have moment generating
functions which can be found fairly easily. In the next sections, we will
give the moment generating functions for all of the random variables in
this chapter except the hypergeometric. This will give us a way of
deriving the mean and variance formulas stated in the previous chapter.

6.2.3 Moment Generating Function for the Binomial Random
Variable

We begin with the binomial random variable with n : I and P(S): p.
The distribution table needed for the moment generating function is the
following:

t 0 I
et

p(r) q:7-P p

Then

For n:2,
follows:

IuIx(t) : qz + Zpqet * p2e2' : q2 + Zq(pet) + (pe')2 : (q + pet)2

The pattern should be clear.

Binomial Distribution Moment Generating Function
(n trials, P(S) : P1

tuIx(t): (q + pe\n (6.4)

The general proof is similar to the proof for n : 2, and is outlined
in Exercise 6-5. Once the moment generating function is derived, the

mean and variance of the binomial distribution can be easily found.
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Mx(t):E(etx):q*pet.
the table and moment generating function are as

T, 0 1 2

E I et e'"
p(r) q2 2pq

.,

p'
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Mk(t) : n(q + pet)-t pet

MkQ) : n(p -t q) tp : np : E(X)

M*(t) : n[(q*pet1n-t pet * (n-l)(q+pet)-'(p"\'l
IvIkQ) : nfp * (n- l)p2l: np -f (np)z - npz : E(X2)

V(X) -- E(X') - (E(n)'z : (np*(np)2-rp2) - (np)2

: np(l - p)

6.2.4 MomentGenerating Function./
for the Poisson Random Variable

Poisson Distribution Moment Generating tr'unction
(Rate ))

Mxe) - e^@t-t) (6.5)

The derivation of this result makes use of the series for e'.

E(",x): ir(rl .",k :E(#)",-
:"-^E(qP)

: g \")'et 
- €'\(et- l)

We have already shown that E(X): ,\. Exercise 6-6 asks the reader to
use the moment generating function to verify that E(X) : V(X) : \.

6.2.5 Moment Generating Function
for the Geometric Random Variable

Geometric Distribution Moment Generating Function
(P(S): p;

Mx(t): =L- (6.6)r-qe



Applications for Discrete Random Variables

The derivation of this result relies on the sum of an infinite geometric
series.
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Exercise 6-7 asks the reader to
the mean and variance for X.

for the Negative Binomial

E("'x): Ip(k).etk : f{rc^)"'o : pL,@"')^' : p. ,:=
ft:o ft:o /:o | - qL

We have already shown that E(X): qlp.
use the moment generating function to find

6.2.6 Moment Generating Function
Random Variable

Negative Binomial Distribution Moment Generating Function
(P(S) : p; X : number of failures before success r)

MxG): (' o ,)" 6.7)
\L - qe-/

Note that the moment generating function for the geometric random
variable, given by Equation (6.6), is just Equation (6.7) with r : 1. We
will not give a derivation of this result at this time. ln Chapter 11 we will
develop machinery which will make it easier to establish this result by
looking at the negative binomial random variable as a sum of indepen-
dent geometric random variables.

6.2.7 Other Uses of the Moment Generating Function

Moment generating functions are unique. This means that if a random
variable X has the moment generating function of a known random
variable, it must be that kind of random variable.

Example 6.6 You are working with a random variable X, and find
that its moment generating function is

MxQ) : (.2 + .8"')' .

is the moment generating function for a binomial random variable
p : .80 and n: 7. Thus X is a binomial random variable with

.80 and n :7. tr

This
with
p:
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The technique of recognizing a random vanable by its moment
generating function is common. Thus it will be very useful to be able to
recognize the moment generating functions given in this section.

6.2.8 A Useful Identity

If Y : aX * b, the moment generating function of Y is as follows:

M"x+a(t):etb'Mx@t) (6.8)

Example 6.7 Suppose X is Poisson with ) :2.LetY :3X + 5.
Then

Mx(t) - e2(et-t)

and

IVI1Q): sSt ' MxQt) - este\(e3t t).

A proof of this identity is outlined in Exercise 6-1 1. tr

6.2.9 Infinite Series and the Moment Generating Function

We can understand wny m!)g) : E(X") if we look at an infinite series

representation ofet'.
The series expansion for e' about r : 0 is

-2 __le,:l*r*T*T*.
If we substitute the random variable tX for r in this series, we obtain

etX:t+tx++*t,#'*....
If we take the expected value of each side of the last equation (assuming
that the expected value of the infinite sum is the sum of the expected
values of the terms on the right-hand side), we obtain
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Mx():E(etx) :l+ t.E(x)++ E(xz)+* E(X|)+....

Now we can look at the derivatives"of MyQ)by differentiating the
series for Mx(t). For example,

Mx(t): fitu*{t)l
: E(x)+t. E(x\+* E(x3)+ . .

It is clear from this series representation that Mk(O) : E(X). Similarly,

ui(t): frtukft>l

: E(Xz) + tE(x\ + *.nrx\ + . .,

and we see that Mx(0) : E(X2).

6.3 Distribution Shapes

We can visualize the probabiiify pattern in a distribution by plotting the
probability values in a bar graph or histogram. For example, the
geometric distribution with p : .60 has the following probability values
(rounded to three places):
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T p(r)
0
I
2

3

4

5

6
7

0.600
0.240
0.096
0.03 8

0.01s
0.006
0.002

0.001
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The histogram is shown in the following figure.

Chapter 6

Geometric: p =.60

0.700

0.600

0.500

^ 0.400
)<

\ 0.300

0.200

0.r00

0.000

The binomial distribution with n:20 and p :.15 has the histo-
gram below. (Values of z ) 11 are omitted because p(z) is very small.)

Binomial: n=20,p=.15

0.300

0.250

0.200

5 o.tso\
0.1 00

0.050

0.000
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The Poisson distribution with ) : 3 has a very similar histogram.

Poisson. rate : 3

0.25

0.20

^ 0.15
g\ o.lo

0.05

0.00

9 r0

In many applied problems, researchers look at histograms of the
data in their application to try to detect the underlying distribution.
These histograms also provide a useful hint as to the method for
analyzing continuous distributions. Suppose we look at the binomial dis-

tribution for n : l0 and p: .60.

Binomial: n=10, p=.60
0.300

0.250

^ 0.200

5 0.150o 
o.too
0.050

0.000

The area of the marked bar in this histogram represents the probability
that X: 9. The pattem of this distribution might be represented by a

continuous curve fitted through the tops ofthese rectangles.
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Binomial: Continuous Approximation

l<

0.300

0.250

0.200

0.1 50

0.r00

0.050

0.000

This curve describes the pattern very well, and the area under the curve
between 8.5 and 9.5 is a good approximation of the area of the marked
bar in the histogram area which represents P(X :9). This approxima-
tion is helpful in understanding the probability methods for continuous
distributions in the next chapter. These methods are based on calculating
probability as an area under a curve between two points.

6.4 Simulation of Discrete Distributions

6.4.1 A Coin-Tossing Example

Suppose you plan to toss a coin ten times and bet that it will show a head
on each toss. The theoretical probabilities of each possible number of
heads are completely known. They follow a binomial distribution with
n : l0 and p: .50. We can calculate these probabilities easily. They
are given in the following table:
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r p(r)
0

1

2
J

4
5

6
7

8

9
10

.000977

.009766

.04394s

.l 1 7188

.205078

.246094

.205078

.117188

.043945

.009766

.000977

However, knowing these probabilities does not enable you to experience
what happens when you actually toss the coin ten times. You could do
this simple experiment by actually tossing a coin ten times, but you
could do it more rapidly and simply using a computer simulation. To
simulate a single toss, have the computer generate a random number
from the interval [0, 1). If the number is less than .50, call the toss a
head. If the number is greater than or equal to .50, call the toss a tail. To
simulate ten tosses, have the computer generate ten random numbers for
the same procedure. We did this in EXCEL. The results of one series of
ten "tosses" are given below.

Random Number
0.32957
0.96496
0.10965
0.10876
0.38750

Outcome
H
T
H
H
H

Random Number
0.86690
0.03550
0.84940
0.20878
0.64528

Outcome
T
H
T
H
T

Since the number used is chosen at random from [0, 1), the probability
that the number is in the interval [0,.50) for heads is .50 and the
probability that the number is in the interval [.50, 1) for tails is .50. Thus
P(H): .50 and P(T) : .50, as is desired for a fair coin.

The simulation in this example merely allows us to play a game

whose probabilities we already understand. Simulation is also used to
study complicated probability problems which cannot be solved easily in
closed form. We will not look at problems of that level of difficulty until
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Chapter 12. In this section we will discuss how to simulate the discrete
random variables studied in this chapter.

6.4.2 Generating Random Numbers from [0,1)

The intuitive procedure used in the last section relied on the ability to
pick a number at random from the interval [0, l). This random pick must
give all numbers in the interval an equal probability of being chosen, so
that the probability of a number in the interval [0, .50) is .50. In practice,
most people simply use the random number generator on their computers
or calculators to find random numbers. In this section we will illustrate
the kind of method that might be used to build a random number
generator for a computer program. In later sections of this text, we will
use computers to generate random numbers without showing the
background calculations.

A basic method for generating a sequence of random numbers is
the linear congruential method. When using this method, you must
start by selecting four non-negative integers, a, b, rn and r 1 . The number
u 1 muSt be less than m, and is your first number in the random sequence.
It is called the seed. To generate the second number in the sequeflcE x2,
calculate A:art *b, divide itby m, and find the remainder. This
process can be repeated to find more numbers in the sequence. In
practice, the values used for a, b and rn are quite large, but we will
illustrate the procedure for the simpler case where a : 5, b : '7, m : 16

and rr1 : 5.

Step l: A:art*b:5(5)+7:32

Remainder when 32 is divided by 16: rz : 0

A:arz*b:5(0)+7:7

Remainder when 7 is divided by 16: 13 - 7

Step 2:

The successive numbers in the sequence are all between 0 and 15.

We can generate numbers in [0, l) by dividing by 16.

0
T6

7_16-5_t6- .3125 -0 .4375



Applications for Discrete Random Variables 167

The results of repeating this procedure 16 times are given in the next
table.

k I1, 5**+7 r*l16
I
2

3

4

5

6
7

8

9

10

ll
t2
l3
t4
l5
t6

5

0

7

l0
9
4
11

14

l3
8

15

2

I
12

J

6

32

7

42
57

52
27
62
77

72
47

82
17

t2
67
22
J/

.312s

.0000

.4375

.6250

.5625

.2500

.6875

.8750

.8125

.5000

.937s

.t250

.0625

.7500

.1 87s

.3750

In the preceding example the numbers za were remainders after dividing
by 16, so there are only 16 possible values for rs. In fact, if we use the
last number in the table (rrc :6) to find re, we will find that rs : J
which was our starting point. The sequence will repeat itself after
m: 16 entries.

The random number generators used in computers are based on
much larger values of a, b, and m. For example, Klugman et al. [8]
discuss using o : 742,938,285, b : 0 and rn : 231 - l. These numbers
provide reasonable random number generators for practical use, and
researchers have discovered other values of a, b and rn which also
appear to work well. However, the example above with m: 16

illustrates an important point. Any linear congruential generator will
eventually enter a deterministic repeating pattern. Thus it is not truly
random. For this reason, these useful generators are called pseudo-
random.

In the remainder of this text, we will not require linear congruen-
tial generator calculations for random numbers. Computers can do these
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calculations for us. We will
numbers in the interval [0, 1).

Chapter 6

simply use computer generated random

Technology Note

The 1'I-83 will generate a random number from [0, 1) using the

command "p{}.trD" in the MATH menu under PRB. EXCEL has a
RAND0 function which will give a random number in [0, 1). MINITAB
will generate numbers from [0, 1) using the menu choices Calc, Random
Data, and Uniform.

6.4.3 Simulating Any Finite Discrete Distribution

We can use random numbers from [0, 1) to simulate any finite discrete
distribution by using an extension of the coin toss simulation reasoning.
This is best shown by an example. Suppose we are looking at the random
variable with the following probability function.

Given a random number r from [0, 1), we assign the outcome 0, I
or 2 using the rule

outcome:
ifO<r<.25
if.25<r<.75.
rf.15<r<1

We did this in an EXCEL spreadsheet. The results of 10 trials are shown
in the next table.

{i

T 0 I 2

p(r) .25 .50 .25
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Trial Random Number Outcome

1

2

3

4

5

6

7

8

9

10

109371
4499s8
2s3222
1084s8
377789
481501

021924
452472
936474
3 l 8389

0

I
I
0

I
1

0
I
2

1

The frequencies of the individual outcomes in the preceding table are

shown in the next table.

Outcome Frequency Percent

0

1

2

3

6

I

300

60%
t0%

Note that with only ten trials, you should not expect to see the

outcomes occur with exactly the same percentages as given in the

original distribution. Even with 100 trials, the percentages of the out-
comes do not always match the original distribution very well. The next
table gives the results of a simulation of 100 trials for this distribution.

Outcome Frequency Percent

0

1

2

34
42

24

34%
42%
240

A simulation of 1000

tion. The results of a

next table.

trials gives results closer to the
single simulation of 1000 trials

original distribu-
are given in the
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Outcome Frequency Percent

0

I
2

245
514
241

24.5%
sr.4%
24.t%

6.4.4 Simulating a Binomial Distribution

The reader may have noticed that the finite discrete diskibution
simulated in the last section was a binomial distribution with n :2 and
p : .50. The method was easy to implement for that binomial due to the
small number of outcomes, but programming may become tedious if n is
large. There is another way to simulate any binomial by having the
computer simulate n trials and total the number of successes. For
example, if you wish to simulate the binomial with n : l0 and p : .36,
generate l0 random numbers r. If r ( .30 on a trial, a success has
occurred. Otherwise, the trial was a failure. The computer can be used to
add up the number of successes to obtain the binomial outcome. In the
next table we show the result of one simulation for n : l0 and p : .30.

Trial Random Number Outcome Trial Random Number Outcome

I
2

J

4
5

.53917995

.49763993

.53307458
.5367283
.4t993715

F

F

F
F
F

6

7

8

9
l0

414125
33s325
438872
377748
076637

F

F
F

F

S

This ten-trial experiment led to nine failures and one success.

6.4.5 Simulating a Geometric Distribution

The geometric random variable X represents the number of failures
before the first success in a series of binomial experiment trials. To
simulate it, have the computer generate random numbers for a success-

failure experiment until the first success is obtained and then count the
number of prior failures. The table in Section 6.4.4 demonstrates how
this might be done for p - .30. h that table, the first success was
obtained on trial 10, so that the geometric random variable X assumes
the value 9.
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6.4.6 Simulating a Negative Binomial Distribution

The negative binomial random variable measures the number of failures
before the rth success. This can be simulated in the same manner as the
geometric distribution.

6.4.7 SimulatingOtherDistributions

Simulations are widely used, and a number of ingenious methods have
been developed for them. Many of those methods are beyond the scope
of this course, but the designers of computer programs have implemen-
ted them so that they are available to the ordinary user. In this section we
have tried to give a basic idea of how simulations may be done, not to
show the reader how to implement every possible kind of simulation. ln
practice, most people simply use computer routines which simulate the
most widely-used distributions directly (without the intermediate step of
starting with random numbers from [0, l)). The spreadsheet Microsoft@
EXCEL and the statistical program MINITAB both will simulate the
binomial and Poisson distributions directly. In addition, each program
will allow the user to input any finite discrete distribution for simulation.

6.5 Exercises

Functions of Random Variables and Their Expectations

ln a year, a policyholder with an insurance company has no
claims with probability .69, I claim with probabllity .23, 2
claims with probability .07, and 3 claims with probability .01. If
X is the random variable for the number of claims, find
(a) E(s00X + s0); (b) E(X?); (c) E(X3).

Let X be the random variable for the sum obtained by rolling a

pair of fair dice (see Exercise 4-4). Find 7(X) by using the
alternate formula V(X) : E(X\ - E(X)z.

Rework Example 6.2 using the logorithmic utilify function
u(tu): lnQo -t l). What are Elu(W1)l and Elu(W)l for this
utility function?
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6.1

6-1.

6-2.

6-3.
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6-4.

6.2

6-5.

6-6.

6-7.

6-8.

6-9.
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Overflow problems occur when you exceed the precision of the
computer or calculator you are using. Consider the distribution
whose values of r are 1,000,000,000.1, 1,000,000,000 and
999,999,999.9, each with probability ll3. The variance for this
distribution is .00666. If you try to compute the variance using
Equation (6.2), the value you get will depend on the precision of
your computer or calculator and may not be correct. Use your
calculator to find E(X\ and E(X). Then use Equation (6.2) and
determine whether or not you found the correct value of V (X).

Moments and the Moment Generating Function

Show that the moment generating function for the binomial
distribution is (q * pet1 . HinI: Expand (q -t p)^ using the bino-
mial theorem and use it to get the moment generating function.

Use the moment generating
to verify that E(X): V(X)

for the Poisson distributionfunction

-).

Use the moment generating function for the geometric distribu-
tion to obtain its mean and variance.

Use the moment generating function for the negative binomial
distribution to obtain its mean and variance.

Let X be a discrete random variable with p(r) : fi for
tr : l, . . . , rL. (X is a discrete uniform random variable.)
(a) Show that the moment generating function for X is

rn
MxG) : +De'' .

t:l
(b) Find E(X) andV(X).

6-10. Let X be a random variable whose probability function is given
below.

T 0 I 2 3

p(r) .42 .30 17 11

Find M;(t) and use its derivatives to find E(X) and E(X\.
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6-1 1. Prove Moyaa(f) : etb . My(at).

6-12. If X is a binomial random variable with p : .60 and n : 8, and
if Y :3X + 4, what is L'Iy(t)?

6-13. If LIx(t) :1.101(l * .3"')]s, what is the distribution of X.

6.4 Simulation of Discrete Distributions

6-14. Using the linear congruence A:9r * 11 (mod 16), with seed

rt : 6, find 12, 13, .,., r16.

For Exercises 6-15 and 6-16, use the followrng sequence of
random numbers from [0, 1).

1. .5619 6. .9983 11. .7855 16. .3729
2. .4500 7. .0225 12. .99s5 17. .1326
3. .3566 8. .8026 13. .6558 18. .9246
4. .s844 9. .3516 14. .1280 t9. .6867
5. .8638 r0. .4584 15. .3908 20. .9638

6-15. Random numbers from [0, ]) are used to simulate a binomial
distribution with n : 20 and p : .40.If the random number r is
less than .40 on a trial, then a success has occurred. Count the
number of successes rn the 20 trials.

6-16. Random numbers from [0, 1) are used to simulate repeated trials
of the experiment of tossing 5 fair coins. The first five numbers
represent the first trial, the second five numbers the second, and
so on. If the random number z is less than .50, the coin is a head.
How many heads appear on each of the first four repetitions of
this experiment?

t73
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6.6 Sample Actuarial Examination Problems

6-17 . A baseball team has scheduled its opening game for April l. If it
rains on April 1, the game is postponed and will be played on the
next day that it does not rain. The team purchases insurance
against rain. The policy will pay 1000 for each day, up to 2 days,
that the opening game is postponed.

The insurance company determines that the number of con-
secutive days of rain beginning on April 1 is a Poisson random
variable with mean 0.6.

What is the standard deviation of the amount the insurance
company will have to pay?

6-18. Let X1, Xz, Xz be a random sample from a discrete distribution
with probability function

p(r) :
for x:0
for r :1
otherwise{i

Determine the moment generating function, M (t), of
Y : XtXzXs.
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Continuous Random Variables

7.1 Defining a Continuous Random Variable

7.1.1 A Basic Example

Suppose you are asked to pick a number at random from the interval
[0, 1] with all numbers in the interval being equally likely. I The number
X that you pick is a random variable, since it is a numerical quantify
whose value depends on chance. However, X is not discrete. The
interval [0, l] is continuous, and you can pick any number from it. X is
therefore continuous.

Probabilities for continuous random variables will be calculated in
a new way. The discrete methods used in the previous chapters will not
apply. The continuous probability method is nicely illustrated by looking
at the random variable X above. For example, suppose that you wished
to calculate the probability P(.50 < X < .75). Intuitively, it is natural to
guess that this probability is .25, since 25o/o of the numbers in the
interval [0, l] are between .50 and .75. The probability calculation
method for continuous random variables should give this natural answer.

The method that is used involves the standard calculus problem of
finding areas under curves. In Section 6.3 we noted that probabilities
(represented by histogram areas) for a discrete random variable could be
approximated by areas under a suitable curve. For this random variable,

I The random number generator introduced in Chapter 6 would pick a rational number
from [0, l), so that I was not a possible value. In this example, we pick a real number
from [0, 1], and I is possible.
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we will find probabilities exactly
a : f @) defined by

f(r) :

This function f (r) is called the density function for X. We will
calculate the probability P(.50 < X < .75)by finding the area bounded
by f (") and the r-axis between r : .50 and r :.75. This is pictured in
the next figure.

The desired area is .25, which is the intuitively natural answer for
P(.sO<x<.ts).

To find the general probability P(a < X < b), we find the area
bounded by the graph of f (r) and the r-axis between r: e, and r: b.

This is the area of a rectangle, but we could calculate it by integration.

1b

P(a<X<b): | 71r1dt
Jo.

For example, 
,.32

P(.10< X<.3D: I ld.r:.22.' 
J.rc

This also is the intuitively natural answer, since 22Yo of the interval is
between .10 and .32.

{;

Chapter 7

by looking at areas under the curve

0(r(1
otherwise '

Density Function

t.z

1.0

0.8

>, 0.6

0.4

0.2

0.0

0.00
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It is important to note that the total area bounded by f (r) and the
r-axis is 1.00. This tells us that P(0 < X < 1): 1, which is certainly
true if we are picking a number in the interval [0, 1].

7.1.2 The Density Function and Probabilities
for Continuous Random Variables

Probabilities for any continuous random variable are computed in a

similar fashion, using a density function and areas under the density
function curve. The density function used will depend on the random
variable. The following definition of a density function is based on
properties which were illustrated in the example rn Section 7.1.1.

Definition 7.1 The probability density function of a random
variable X is a real-valued function satisfying the following properties:

(a) f (r) 2 0 for all r.
(b) The total area bounded by the graph of y : f(r) and the z-

axis is 1.00.

f (r)dr:1 (7.1 )

(c) P(o < X < b) is given by the area under u: f @) between
tr:Qandr:b.

P(a<X (7.2)

Example 7.1 A risky investment has widely varying possible
return percentages for the next year. The best that can happen for this
particular investment is a return of 100%. (The investor doubles her
money by getting back the amount invested plus 100% of the amount
invested.) The worst that can happen is a return of -100%. (The
investor loses 100% of the amount she invests.) The percentage return is
a random variable X which could be anything from -1 (-100%) to 1

(100%), depending on the state of the economy in one year. The
probability density function is

f('):{ts<t-'21 -1 (r{1
' t 0 otherwise

Find the probability that the return is greater than 10%.

l-_

( b): 
f"u 

f tdo,
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Solution Since we are told that f (r) is a density function, we
know that f(r) > 0 and the total area under the curve is 1.00. It is still a

good idea for the reader to check these key properties. The graph of f(r)
is given in the next figure.

Investment Density Function

0.6

0.5

o.4

0.3

0.2

0.1

The graph shows that /(z) is non-negative. The total area under the

curve is

+)l_, : '
The probability that X is greater that 10% is

7t / -:\rlI tr,ld,x:.75(,-+)l :.4252s. D
J:0"' \ r/l'o

The probability density function in this example makes intuitive
sense for a risky investment. The investor can make a 1ot or lose a lot. In
fact, the probability that X is less than -10% is also .42525. The shape

of the curve shows that the greatest gains and losses have somewhat

lower probabilities.

l-' ,ral 
d'x : '7s(r -
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7.1.3 Building a Straight-Line Density Function
for an Insurance Loss

In this section we will look at an example in which we derive the densify
function for a random variable based on simple assumptions about its
behavior.

Example 7.2 You are going to offer a warranty insurance policy
which pays for repairs on a new appliance in the next year. Your
experience indicates that repair costs X on a single policy will be in the
interval [0, 1000]. Probability will be highest for the lowest costs (those
near 0), and will fall off in a straight line fashion until r reaches 1000.
Find an appropriate density function, and calculate P(X > 600).

Solution The density function will be a straight line segment of
negative slope, startingatr :0 and endingat r : 1000. It is pictured in
the graph below.

Loss Severity Density Function

k

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

The straight line and the two axes bound a triangle with base 1000. To
make the total area under the curve equal 1.00, we need a height of .002.

Thus /(0) : .002 and /(1000):0. Once these values are specified, we

can find the equation of the straight line.

t79

(.ooz-.ooooo2r olr < looo/(r): t0 othlrw-ise
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probability P(X > 600) is the area of the triangle to the right of
600 and below the line segment. Thus

P(X >600) : 400' /(600) : 200(.0008) : .16.

For straight-line densities, it is usually easier to find probabilities as

areas of trapezoids or triangles. The reader can check that integration
would give the same answer.

/'ooo,.oo, - .ooooo2z )d,r : .16

F(r): l" *f {u)0, (7.3)

n

7.1.4 The Cumulative Distribution Function F(r)

In Chapter 4 we defined the cumulative distribution function ,F(z) by

F(r): P(X < r).

The definition of F(r) is the same for discrete and continuous random
variables, but the calculations for continuous random variables use

integration rather than discrete summation.

Example 7.3 We
Example 7.2. For z in the

density curve from 0 to r.

return to the loss severity distribution in
interval (0, 1000], F(r) is the area under the

Loss Severity Density Function

l{

0.0025

0.0020

0.001 5

0.0010

0.0005

0.0000

400 600 800 1000

Loss Amount
.r

I 200 1400



Continuous Random Variables 181

We can calculate this area as the area of a trapezoid or by integration.

F(x) (.002 -.0000022) du: .002r - .000001r',0 < r < 1000

Note that F(x):0 for z ( 0 and F(r): I for r > 1000. The graph of
F(r) is shown below.

Loss Severity Cumulative Distribution Function

t(
r\

\.2

1.0

0.8

0.6

0.4

o.2

0.0

: 
IO'

tr

Since F(r) is defined by
derivative of F(r) is /(r). This
when the derivative F'(r) exists.

integrating f(r), tt
simple relationship

is clear that the
is very important

Ft(r) : f (r) (7.4)

7.1.5 A Piecewise Density Function

The density function for a continuous random variable can be defined
piecewise and fail to be continuous at some points, as the following
example shows.

Example 7.4 A company has made a loan which has a variable
interest rate. One month from now interest will be due, but the rate is not
known now. It will be set then, based on the value of a short-term
borrowing rate which changes daily. The company believes that the den-

sity function given below is a reasonable one for this future interest rate.
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(o r<o
f (t) : 

{ 1'h + 3 7s :r;: ;::r,
t0 r).25

The graph of f (r) for 0 < r I .25 is shown below. Note that /(z) is not
continuousatr:.05.

Interest Rate Density Function

.x.

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0.00 0.05 0.l0 0.l5 o.20 o.25

The company is projecting higher probabilities for rates below 5%o,but
is allowing the possibility of rates above 5%o. The total area under this
density function breaks into two triangular pieces whose areas can be
easily calculated.

r.o5
P(0 < X S .05): 

/ 
560rdr: .70

f2s
P(.05 < X < .25): I (-l5r+3.75)dr :.30

J .os

The total area is 1.00. Other probabilities may also involve two calcula-
tions similar to the above. For example,

f .0s f .07

P(.03 < X < .0T : I 56Mh + | (15r +335)drJ.o: J.os

: .448 + .057 : .505.
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It is important to note that the values of f (r) are not themselves proba-
bilities; they define areas which give probabilities. The vqlues of f (r)
must be positive, but they can be greater than one as in this example.
For example, f (.04): 560(.04) : 22.40. This value of 22.40 cannot be
a probability, but

r.O4l

P(.03g 3 r 1.041) : I SeO" dn : .0448.' 
J .ots

The cumulative distribution function F(r) must be calculated in pieces.

F(r) :P(0 < X < r) : 
fo' 

sOOud.u : 28012, 0 ( r < .05

F(.05): .79

F(x) :P(0 < X < r) : .70 * [' errrt3.75\d,u
Jos

: -7.5r2 *3.75r + .53125, .05 < r < .25

The graph of F(r) for 0 ( r 3 .25 is pictured below.

lnterest Rate Cumulative Distribution Function

rr
t\

L00

0.80

0.60

0.40

0.20

0.00

0.00 0.05 0.10 0.1 5 0.20 02s

Note that even though
However, F(r) is not
defined at .05. Values

interval [0, 1].

/(z) is not continuous,
differentiable everywhere,
of F(r) are probabilities

F(u) is continuous.
since F/(r) is not

and must be in the
tr
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Technology Note

The density functions used in this section were simple enough that
no special help was needed to integrate them. In later sections we will
deal with more complex density functions which must be integrated
numerically. The TI-83, TI 89 or TI-92 calculators will do those inte-
grals for us.

The piecewise function in this section was not demanding, but it
required a tedious calculation. Piecewise functions can be defined on the
TI 89 or TI-92 using the "when" operator. Once this is done, calculations
can be done more rapidly. For example, the author found F(z) for the
piecewise function in Example 7.4 with a single integration statement on
the TI-89.

7.2 The Mode, the Median, and Percentiles

In Chapter 4, we looked at two measures of central tendency for discrete
random variables: the mean and the mode. We will look at the mean of a
continuous random variable in Section 7.3.\n this section, we will look
at the mode of a continuous random variable and introduce another
commonly used measure of central tendency, the median.

For a discrete random variable, the mode was defined to be the
value of r for which the probability p(") was highest. For a continuous
random variable, we look at the density function /(r).

Definition 7.2 The mode of a continuous random variable is the
value of r for which the density function /(r) is a maximum.

Example 7.5 ln Example 7.1, we looked at X, the
return on an investment. The density function was

f("):{ts{t-r'z) -l(z(1
' I 0 otherwise

/(r) is maximized when z : 0, so the mode is 0.

percentage

tr

Example 7.6 ln Example 7 .4, we looked at a variable interest rate
whose density function /(z) was defined piecewise. The maximum
value of /(z) occurred at e : .05. The mode is .05. tr
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Example 7.7 LeI X be the random variable for the value of a

number picked at random from [0, 1]. Then

(t o(r(l
11zl:Io ornlrwise.

/(r) is constant on [0,1] and does not have a unique maximum. Any r
in the interval [0, l] is a mode. tr

Definition 7.3 The median m of a continuous random variable X
is the solution of the equation

F(m): P(X < rn): .50. (7.5)

Example 7.8 The loss severity distribution in Example 7.2 had
the following density and cumulative distribution functions.

f(r) : { !o'-'ooooo2z o ( r < looo

I0 otherwise

fI
F(r) : | (.002- .000002r)du : .002r -.00000112,

Jo
0(r<1000

The median m ean be found by solving F(m) :.50 for rn.

.002m -.000001m2 : .50

The solution to this quadratic equation, in the interval [0, 1000], is
m x 292.89. This has a nice intuitive interpretation. Half of all losses
will be less than 292.89; the other half will be greater. Note that the
mode of this distribution is 0. The median and the mode are not
necessarily equal. D

If the density function is symmetric, the median can be found
without calculation. For example, if X is a random number chosen from

[0,1], the median is clearly m: .50. If X is the random variable of
investment returns in Example 7.1, the density function graph is sym-
metric about 0.

185
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Investment Density Function

0.0

x

0.5

0.4

0.3

0.2

0.1

It should be clear from the graph that rrv:0.
For the loss severity example, the median could be interpreted as

separating the top 50oh of losses from the bottom 50%. For this reason,
the median is called the 50'h percentile. Other percentiles can be
defined using similar reasoning. For example, the 90'h percentile
separates the top 10% from the bottom 90oh. Percentiles are defined in
general in the next definition.

Definition 7.4 Let X be a continuous random variable and
0 < p < l. The l00f h percentile of X is the number ro defined by

F(rr): n'

Example 7.9 The 90th percentile of the loss severity distribution
is found by solving 

.002r.eg- .000001r z.so: .g0.

The solution in the interval [0, 1000] is r e6 x 683.77. tr

The median and percentiles are more difficult to find for piecewise
densities, since one must first find which piece contains the median or
the desired percentile. This will be necessary in Exercise 7-7.
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7.3 The Mean and Variance of a Continuous Random
Variable

7.3.1 The Expected Value of a Continuous Random Variable

In Chapter 4, the expected value of a discrete random variable X was
defined as

E(X):L, .o@).

Using the integral as a continuous sum, we can similarly define the

expected value of a continuous random variable X.

Definition 7.5 Let X be a continuous random variable with
density function /(r). The expected value of X is

187

/p 
oo

E(X): 
J_*r' f (r)dr.

E(X) is also denoted by p, and referred to as the mean of X.

( .ooz- .ooooo2z o ( z < loool(u):to other*[e

E(x) : 
fo'ooo 

,.ror"- .ooooo2r') d, :

(7.6)

Example 7.10 Let X be the loss severity random variable from
Example 7.2.

:333.33 D

Note that the mean is not equal to the median for the loss severity
distribution. (The median is approximately 292.89.) This illustrates that
the mean and median are not necessarily equal. The next example

illustrates a case where the two are equal.

Example 7.ll Lel X be a number chosen at random from [0, l].

1000--------
J

trE(X): 
Irt ".td,r 

: .50
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The mean equals the median for the random number X. The reader
will be asked to show in Exercise 7-10 that for the random variable of
investment values in Example 7.1, the mean equals the median of 0. The
mean will equal the median when the graph of the density function is
symmetric.

Finding the mean when the density function is defined piecewise
requires a bit more calculation.

Example 7.12 The interest rate random variable in Example 7.4
had density function

(soo, o<r(.05
f(r)-- { -rs' +3.7s .os<"<.2s.

[ 0 otherwise

r.05 r.25
E(X): I seor'dr+ | (r5r2*3.75r)d"r

J o J.os

.0233 +.035 : .05833 D

7.3.2 The Expected Value of a Function of a Random Variable

Suppose X is a random variable, but we are actually interested in the
random variable 9(X). In Section 6.1 we discussed how to find E[g(X)]
if X is discrete with probability function p(r),

E[s6)l : lo(',) ' p(r).

The result for continuous random variables is similar, with summation
replaced by integration.

Expected Value of a Function of a Continuous Random Variable
X continuous with density function /(z)

n[s6)] : [* s@) ' f (r) d,r (7.7)
J--

Dealing with functions of random variables can be tricky. We will
not give a proof of Equation (7 .7) here, but we will discuss finding the
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density function for 9(X) in a
centrate on applying Equation
when 9(z) : ar I b.
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later section. At this point, we will con-
(7.7). One comrnon application occurs

Elo;x\: f* {or+b)'f (r)ar: ol* r'f(r)ar+ul* f @)d'r

:a'E(X)+b'1

Thus for any discrete or continuous random variable X,

E(aX + b) : a' E(X) + b. (7.8)

Example 7.13 Le'L X be the loss severity random variable of
Example 7.2. In Example 7.10 we showed that E(X):333'33' The

random variable is the amount of loss on one policy in the next year.

Suppose that next year is 1999, but you also wish to project costs Y for
the year 2000. You believe that costs will inflate by 5% for the year

2000. Then the inflated cost for the year 2000 is Y : 1.05X, and

E(Y): E(1.05X) : 1.05 'E(x) : 350. n

we will use Equation (7.7) in many applications throughout this

chapter. In the next section, we will use it in the definition of the vari-

ance ofa continuous random variable.

7.3.3 The Variance of a Continuous Random Variable

In Chapter 4 we defined the variance of a discrete random variable to be

El6 - p;21. 1.his expectation also defines the variance of a continuous

,utdorn variable, but the expectation is calculated using integration

instead of summation.

Definition 7.6 Let X be a continuous random variable with

density function f (r) andmean p. Then the variance of r is defined by

E[f,- - t)'l: I*V(X): @- rD'.f(r)dr. (7.e)
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The square root of the variance is called the standard deviation and
denoted by the Greek letter sigma.

o: Jv(x)
o2 : V(X)

Example 7.14 Let X be a number chosen at random from [0,1].
In Example 7.1 l, we showed that E(X) : .50. Then

v(x): Et6 -.50)2t : [^' (, - t)' ta, : #.. D
JO \

In Chapter 6 we showed that for a discrete random variable X

V(X) : E6\-LE(n)2 : E(X2)- tL2. (7.10)

This result can also be derived for continuous random variables.

El6 - t-t)21: [* @', - 2t"r + t"\. f (r)d,rt'J-m

: I:"' . r(r)d.r - r, l:" . r(x) d,r * r' I:r@)d,r

E(.]{.2) - Zpt' tt * tt2 . l : E(X2\ - p2

We noted in Chapter 6 that Equation (7.10) is often preferred for
calculations that must be done by hand. The definition of variance in
Equation (7.9) gives a calculation method which avoids certain round-
off error problems, and is preferred for computer solutions. In the next
example we illustrate how Equation (7.10) might be used to shorten
computation time for a traditional hand calculation.

Example 7.15 Let X be the loss severity random variable of
Example 7.2.We showed in Example 7.10 that

E(X): ry: i;.3.33.

In order to use Equation (7.10), we need only calculate E(Xz).
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E(x\ : f'ooo "'1.002 -.0000022) d.r : 166,666.66.
Jo

V(X): 166,666.66- 333332: Ig%qgq : 55,555.55

Calculation of V(X) from the defining Equation (7.i0) would require
evaluation of the integral

[^'ooo 
(r- tp)'r ooz - .ooooo2r)dn.

JO

This calculation is straightforward, but much more time-consuming if
done by hand. If the calculation is done on a computer or powerful
calculator, calculation time is not an issue. D

We have already used Equation (7.7) to derive the expected value
of a linear function of a continuous random variable X, which was
E(aX +b): a'E(X) * b: ap'*b. We can also derive a formula for
V(aX + b). If Y : aX * b, then

Y - E(Y) : aX * b - (ap*b) : a(X - tt).

v(Y): EIV - E(n)21: ELaz(x - D2l: a2 ' El(x - p)zl

: a2 .V(X).

V(aX + b): a2 .V1X1 (7.1l)

The expressions for E(aX * b) and V (aX * b) derived here for contin-
uous random variables are identical with those derived earlier for
discrete random variables.

Example 7.16 In Example 7.13, we looked at the effect of 5%
inflation on the loss severity random variable X. The random variable
for loss severify after inflation was Y:1.05X. In Example 7.15 we
showed thatV(X): 55,555.55. Then

V(Y): y(l.05X) : i.052(55,555.5t : 61,250. D

Then
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7.4 Exercises

Chapter 7

7,1 Defining a Continuous Random Variable

7-1. Let f (r):1.5r+.25, for0 ( r 11, and /(z):0elsewhere.
(a) Show that /(r) is a probability density function.
(b) What is the cumulative distribution function?
(c) FindP(0 < X S j)undP(+ < * 

=11.
7-2. Let f (u) : s(s-2x - "-3'), 

for z ) 0, and f (r):0 elsewhere.
(a) Find a so that /(z) is a probability density function.
(b) What is P(X < r)?

7-3 Let

FindP(.10<X<.60).

7-4. Let f (r): al(l + r2), for r ) 0, and f (r):0 elsewhere.
(a) Find o so that /(r) is a probability density function.
(b) What is P(X < t)2

7.2 The Mode, the Median, and Percentiles

7-5. For the density function in Exercise 7-1, find r.zs, x.s0 and r.75.

7-6. Let f (r): e',for01r 11n2, and /(r):0 elsewhere.
(a) Find c.5s and r.es.
(b) What is the mode of this distribution?

7-7. For the density function in Exercise 7-3, find the median and
lt.ao'

(zsx o(r(.20
f(r): I t.sozslr -11 .zi<r<t.

I o elsewhere
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7.3 The Mean and Variance of a
Continuous Random Variable

7-8. If X is the random variable whose density function is defined in
Exercise 7-1, what zre E(X) and V(X)?

7-9. If Xis the random variable whose density function is defined in
Exercise 7-3, what is E(X)?

7-10. For the random variable in Example 7.1 whose density function

is /(x) = .75(1-xz), for -1 < x < 1, and /(x) = Q elsewhere,

show that both the mean and the median are equal to 0.

7-11. Let Xbe a random variable whose density function is ;ft*,1,
for x ) 0, and 0 elsewhere (Exercise 7-4). Show that E(X)
does not exist.

7.5 Sample Actuarial Examination Problems

7-12. The lifetime of a machine part has a continuous distribution on
the interval (0,40) with probability density function f, where

f (x) isproportional to (10 + x)*2 .

Calculate the probability that the lifetime of the machine part is
less than 6.

7 -13. An insurer's annual weather-related loss, X, is a random variable
with density function

I z.s(zoo)" for x > 2oo

f(x)=1-;3---
[O otherwise

Calculate the difference between the 30s and 70th percentiles ofX.

193
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7-14. An insurance company's monthly claims are modeled by a

continuous, positive random variable X, whose probability

density function is proportional to (l+x)-a where 0 < x < co.

Determine the company's expected monthly claims.

7-15. LetXbe a continuous random variable with density function

[l"l 
1

/f') = ] iii for -2< x <4

Io otherwise

Calculate the expected value ofX.

7-16. The loss due to a fire in a commercial building is modeled by a

random variable Xwith density function

[.oosr20-x) for 0<x<20
"f(x) 

_ r .
' lo otherwise

Given that a fire loss exceeds 8, what is the probability that it
exceeds l6?

7-17. An insurance company insures a large number of homes. The
insured value, X, of a randomly selected home is assumed to
follow a distribution with densify function

f@ = {1r-o for x>l
l0 otherwise

Given that a randomly selected home is insured for at least 1.5,

what is the probability that it is insured for less than2?
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Commonly Used Continuous
Distributions

8.1 The Uniform Distribution

8.1.1 The Uniform Density Function

The uniform distribution is the first of a series of useful continuous
probability distributions which will be studied in this chapter. It is
covered first because it is the simplest. We have already seen an example
of a random variable X which has a uniform distribution. In Section
7.1.1, we looked at X, the value of a number picked at random from the

interval [0, l]. The density function was constant (at 1) on the interval

[0, l], and 0 otherwise.

(t o(r(t/(r): to othlrrrise

The general uniform density function is constant on an interval

[a, b], and 0 otherwise. To assure that the area bounded by the density

function and the c-axis is l, the constant value must t" /;

Uniform Density Function
X uniform on [o, b]

f(x):{* a{r1b (8.r)
[ 0 otherwise
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Uniform Density Function

The graph of the uniform density function is pictured above. The
graph shows that

Example 8.1 A company is expecting to receive payment of a

large bill sometime today. The time X until the payment is received is
uniformly distributed over the interval [1,9], sometime between I and 9
hours from now, with all times in the interval being equally likely. The
density function for X is

f(r):l+ t1x1e.
I O otherwise

The probability that the time of receipt is between 2 and 5 hours from
now is

P(2<X<5):#:&

8.1.2 The Cumulative Distribution Function
for a Uniform Random Variable

Equation (8.2) can be used to find P(X < z) for values of rl in the

interval [a, b].

D
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P(X<r):P(a<X< r):ffi,
Then the cumulative distribution function -F(r)
variable X onla,b] can be defined.

Example 8.2 Let X
receipt in Example 8.1. X
tion is given by

197

foro( rlb

for a uniform random

be the random variable for time of payment
is uniform on [1,9]. The cumulative distribu-

F(r):
<1
(-r(.9.
>9{r:

F(x)

1.0

0.5

0.0

As the graph shows, the cumulative dishibution function is a straight
linebetweena: I andb:9. tr

8.1.3 Uniform Random Variables for Lifetimes; Survival
Functions

In many applied probability problems, the random variable of interest is
a time variable ?. This time variable could be the time until death of a

person, which is a standard insurance application. However, the same

Uniform Cumulative Distribution Function
X uniform on [a, b]

F(") : lor-=o
\l-"

rla
alrlb
rlb

(8.3)
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mathematics can be used to analyze the time until a machine part fails,
the time until a disease ends, or the time it takes to serve a customer in a
store. The uniform distribution does not give a very realistic model for
human lifetimes, but it is often used as an illustration of a lifetime model
because of its simplicity.

Example 8.3 Let T be the time from birth until death of a

randomly selected member of a population. Assume thatT has a uniform
distribution on [0, 100]l . Then

and

f(t):

F(r):

0<t<100
otherwise

,<0
0 <, < 100.

,>100

t+
tilr

The function F(t) gives us the probability that the person dies by age t.
For example, the probability of death by age 57 is

P(T<s7):F(57):ffi:.57.

Most of us are interested in the probability that we will survive past a
certain age. In this example, we might wish to find the probabilify that
we survive beyond age 57. This is simply the probability that we do not
die by age 57.

P(T>57):1-F(sZ)-l- ffi:.Ot D

The probability of surviving from birth past a given age I is called
a survival probability and denoted by S(t).

Definition 8.1 The survival function is

,9(t):P(T>t):l-F(t).

In the last example, we could have written S(57) : .43.

I Actuarial texts refer to this as a de Moivre distribution.

(8.4)
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8.1.4 The Mean and Variance of the Uniform Distribution

The mean and variance of the uniform distribution are given below.

Uniform Distribution Mean and Variance
X uniform on [4, b]

Eq): + (8.5a)

(8.sb)V(X) :

We will discuss the derivation of these formulas at the end of the sec-

tion. First we will look at some examples.

Example 8.4 Let X be the payment time in Example 8.1, where

X is uniform on [,9]. Then

E(x): v : t
and

199

v(x):

Note that the expected value
interval [a,b].

: #': s'll'

uniform X is the midpoint of the

(e - 1)2
-.TT-

of the

Example 8.5 Let 7 be the time until death in Example 8.3, where

7 is uniform on [0, 100]. Then

E(T):Q-+rl!Q:so
and

v(T): (1oo-r o)2 : *P : 833.33.

The formulas for the mean and the variance be derived

D

byI he lormulas 10r tne mean ano rne varlance can oe oenveq t
rtegrating polynomials. The mean is derived below.

E(X\: I'ur. -l-rtr: -J- .41u : I . b' =o' - a*b
.1, o- ou':5= o'Zl,: 6=A'---Z- - --Z-

integrating polynomials. The mean is derived below.

To derive the variance,find EfXzl and use Equation (7.10). This is left
for the reader in Exercise 8-1.
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8.1.5 A Conditional Probability Problem Involving the
Uniform Distribution

In some problems we are given information about an individual and end

up solving conditional probability problems based on that information.
In Example 8.3 we looked at a random variable 7 which represented the
lifetime of a member of a population. If you are a twenty-year-old in that
population, you are interested in lifetime probabilities for twenty-year-
old individuals. This requires conditional probability calculations in
which you are given that an individual is at least twenty years old.

Example 8.6 Let 7 be the lifetime random variable in Example
8.3, where 7 is uniform on [0, 100]. Find (a) P(T > 50 lT > 20) and
(b) P(" > rlT > 20), for r in [20,100].

Solution

(a) P(T>5017>20):W
: .625

(b) If z is any real number in the intervall20,100l, then

P(T>rlT>20):W
_ P(T}_ r)
- P(T > 20)

The final expression in part (b) is the survival function ,9(z) for a

random variable which is uniformly distributed on [20, 100]. This has a
nice intuitive interpretation. If the lifetime of a newborn is uniformly
distributed on [0, 100], the lifetime of a twenty-year-old is uniformly
distributed on the remaining interval [20, 100]. tr

l_ I
^ loo--.80-
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8.2 The Exponential Distribution

8.2.1 Mathematical Preliminaries

The exponential distribution formula uses the exponential function

f (") : e-o'. It is helpful to review some material from calculus. The
following limit will be useful in evaluating definite integrals.

limrn .e-o' :
r+co iry# : 0, for a)0 (8.6)

Many applications will require integration of expressions of the
form rne-o', from 0 to oo, for positive a. The simplest case occurs when
n : O.ln this case

.lo* "-" d'"

The 0 term in the evaluation results from Equation (8.6).
If n : l, we can use integration by parts with z : r and

du : e-o" dr to show that

l' r'"-"' dx : =t# - " i' +C..l "a'
This antiderivative enables us to show that, for o ) 0,

.1,", e o' d.r : (=+ - #)l* :,0-ol- (o- #) : *
Repeated integration by parts can be used to show that

:+l]:o-+:+

rn 'e o'dt -nlOnIl;
for o > 0andn apositiveinteger. (8.7)

Equation (8.7) will be used frequently. It is worth remembering.
An interesting question is what happens to the integral in Equation

(8.7) if n is not a positive integer. The answer to this question involves a

special function f(r) called the gamma function. (Gamma (f) is a

capital "G" in the classical Greek alphabet.) The gamma function is
definedforn>Oby
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f(n) : 
.[o* 

,"-' . e-" d,r. (8.8)

Equation (8.7) can be used to show that for any positive integer n,

f(n): (n-l)!. (8.e)

The gamma function is defined by an integral, and gives a value
for any n.If n is a positive integer, the value is (n - 1)!, but we can also
evaluate it for other values of n. For example, it can be shown that

.(;) :tni='88623.

If we look at the relation between the gamma function and the factorial
function in Equation (8.9), we might think of the above value as the

factorial of j.

*.,:r(1) : t"+ =.88623

The gamma function will be used in Section 8.3 when we study the
garrrma distribution. It can be used here to give a version of Equation
(8.7) that works for any n ) -1.

8.2.2 The Exponential Density: An Example

In Section 5.3 we introduced the Poisson distribution, which gave the
probability of a specified number of random events in an interval. The
exponential distribution gives the probability for the waiting time
between those Poisson events. We will introduce this by returning to the
accident analysis in Example 5.14. The mathematical reasoning which
shows that the waiting time in this example has an exponential distribu-
tion will be covered in Section 8.2.9.

lr-r".e-o,dr: *+l), for o>0and n>-t (8.10)
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Example 8.7 Accidents at a busy intersection occur at an average
rate of \ :2 per month. An analyst has observed that the number of
accidents in a month has a Poisson distribution. (This was studied in
Section 5.3.2.). The analyst has also observed that the time T between
accidents is a random variable with density function

f (t) : 2u-2', for t ) 0.

The time 7 is measured in months. The shape of the density function is
given in the next graph.

Exponential Density Function

3.0

2.0

1.0

0.0

The graph decreases steadily, and appears to indicate that the time
between accidents is almost always less than 2 months. We can use the
density function to calculate the probability that the waiting time for the
next accident is less than2 months.

P(o<?< 4: lo
ze-,, dx : -e-2'l' : -"-o* I = .9g16g n

lo

8.2.3 The Exponential Density Function

The density function in the preceding section was an example of an

exponential density function.

Exponential Density Function
Random variable ?, parameter )

f (t) :.\e-)t , for t ) o (8.1 l)
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This definition of /(t) satisfies the definition of a density function, since

f (t) > 0 and the total area bounded by the curve and the r-axis is 1.00.

fx

| >'e-^'41 : -e 'rrl- :0-(-1;: I.ro ro

ln many applications the parameter ) represents the rate aI which
events occur in a Poisson process, and the random variable T represents
the waiting time between events.2 A common application of the expo-
nential distribution is the analysis of the time until failure of a machine
part.

Example 8.8 A company is studying the reliability of a part in a
machine. The time ? (in hours) from installation to failure of the part is
a random variable. The study shows that T follows an exponential
distribution with ):.001. The probability that a part fails within 100
hours is 

rroo r loo
P(0 < T S 100) : 

./ 
.gg1"- oorr4.r : -e *''l'""

:-e-'t*l=.095. tr

If we replace the failure of a part by the death of a human, we can
apply the exponential distribution to human lifetimes. We will show in
Section 8.2.10 that the exponential distribution is not a good model for
the length of a normal human life, but it has been used to study the
remaining lifetime of humans with a disease.

Example 8.9 Panjer [13] studied the progression of individuals
who had been infected with the AIDS virus. Modern treatments have
greatly improved the treatment of AIDS, and Panjer's numbers are no
longer valid for modern patients. However, for the data available in
1988, Panjer found that the time in each stage of the disease until
progression to the next stage could be modeled by an exponential
distribution. For example, the time 7 (in years) from reaching the actual
Acquired Immune Deficiency Syndrome (AIDS) stage until death could
be modeled by an exponential distribution with ), = 11.91. tr

2 ) might also be described as the average number of events occuring per unit of time
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8.2.4 The Cumulative Distribution Function and Survival
Function of the Exponential Random Variable

In Example 8.8 we found the probability P(T < 100). This is F(100),
where F(l) is the cumulative distribution function. The cumulative
distribution for any exponential random variable is derived below.

7l tt
P(T<D: I ),e'^'dr:-e t'l : l-e ^t .forl >o' .ln lo

Exponential Cumulative Distribution and Survival Functions
Random variable ?, parameter )

F(t): l-e )' (8.12a)

S(r) : 1- f(t) : s-\t (8.12b)
forf ) 0

These simple formulas make the exponential distribution an easy one
with which to deal.

Example 8.10 Let T be the time until failure of the part in
Example 8.8. 7 has an exponential distribution with ):.001. Find
(a) the probability that the part fails within 200 hours; (b) the probability
that the part lasts for more than 500 hours.

Solution
(a) ,F(200)- I -e-20=.181
(b) 5(500) : s- 50 x .601 tr

8.2.5 The Mean and Variance of the Exponential Distribution

The mean and variance of the exponential distribution with parameter ,\
can be derived using Equation (8.7).

E(T) : 
.lr* 

t 
^e-^td,t 

: 
^.lo* 

r." ^'dt - )+ Ir
2fE(T\: 

.[r" 
r' '^e*^td,t: s 

lo* 
tt ."-A'd.t:

v(T) : E(r\ - tE(Dlz : + - (i)'

1

^'I-F
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Exponential Distribution Mean and Variance
Random variable 7, parameter.\

E(O: * (8.13a)

vQ): + (8.13b)

Example 8.11 Let T be the random variable for the time from
reaching the AIDS stage to death in Example 8.9. T is exponential with
) : 1/.91. Then

E(T): * : .nt

and

V(T): .912 :.8281.

Example 8.12 Let ? be the time to failure of the machine part in
Example 8.8. ? is exponential with ) : .001. Then

E(T): { : 1OOO

and

V(T): 1,000,000.

Although the part in Example 8.12 has an expected life of 1000
hours, you might not want to use it for 1000 hours if your life depended
on it. The probability that the part fails within 1000 hours is

P(f < 1000) : f(1000) - I - e-t x .632.

It is true for any exponential distribution that F[E(T)] : I - e-t = .632.
The reader is asked to verify this in Exercise 8-14.

8.2,6 Another Look at the Meaning of the Density Function

We have mentioned before that density function values are not probabil-
ities, but rather they define areas which give probabilities. We can illus-
trate this in a new way by looking at the previous exponential graph
from Example 8.8. At the time value I we have inserted a rectangle of
height /(t) with a small base dt. The rectangle area is /(t) dt, and it
approximates the area under the curve between I and l*dt. Thus

Dl_

^2-

Dl_

^2-
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P(t<T <t+dt)= f(t)dt.

Exponential Density Function

2-5

2.0

1.5

l.u

0.5

0.0

1.0 1.5 2.0 2.5 3.0

When /(l) is the density function, f (t)dt represents the probability that
the random variable ? falls in the small interval from t lo t*dt.

8.2.7 The Failure (Hazard) Rate

We will introduce the failure rate (also called the hazard rate) by retum-
ing to the machine part failure time random variable ?. Since ) : .001,
the survival function is

,9(r): e-'oort.

This formula is identical with the familiar formula for exponential decay
at a rate of .001. Thus it is intuitively natural to think of the machine part
as one member of a population which is failing at a rate of .001 per hour,
and to refer to .001 as the failure rate of the part.

The above reasoning is intuitive, but probability theory has a more
careful definition of the failure rate.

Definition 8.2 Let T be a random variable with density function

/(t) and cumulative distribution function F(t). The failure rate
function )(t) is defined by

207

xr):&r: (8. l4)
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The failure rate can be defined for any random variable, but is
simplest to understand for an exponential random variable. For the
exponential distribution with parameter ),

\/ -\ - ftr\ - ^e 
\'

A(r1: ffi:;-.:^.
Thus our intuitive idea of ):.001 as the failure rate of the machine
part agrees with the probabilistic definition of the failure rate. To get a
better understanding of the reasoning behind the definition of the failure
rate, multiply through the defining equation for )(i) by dt.

^(t)dt:{9#:ry#
The numerator /(t)dl is approximately P(t < T < t+dt). The denom-
inator is P(7 > l). The quotient of the two can be thought of as a

conditional probability.

^(t) 
dt = ryi6i#@ : P(t < r < t+dtlt < r)

ln words, 
^(t) 

dt is the conditional probability of failure in the next dt
time units for a part that has survived to time t.

The situation for now is simple. For an exponential distribution,
the failure rate is constant; it is always equal to .\. The same general
definition of failure rate can lead to much more complicated functions
for other random variables. The reader is asked to derive the failure rate
function for the uniform distribution in Exercise 8-12.

When we look at a human being subject to death, instead of a part
exposed to failure, we think of death as a hazard. In thts case, we might
refer to the failure (deaih) rate as the hazard rate. In Example 8.9, the
parameter \: ll.9l for the exponential distribution o1'time to death
rvould be referred to as a hazard rate.

8.2.8 Use of the Cumulative Distribution Function

Once the cumulative distribution F(z) is known for a random variable
X, it can be used to find the probability that X lies in any interval, since

P(a < X < b) : P(X < b)- P(X < a) : F(b)- F(a).(S.15)3

3 Forcontinuousdistributions, P(a < X < b): P(a< X < b).Fordiscreteandmixed
distributions. this will not bc the case.
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Equation (8.15) is true for any random variable X. For the exponential
random variable, it leads to the simple formula

P(a<X<b):e \o-e-\b.

We have not emphasized the use of technology in Sections 8.1 and
8.2 because there is little need for it tn dealing with the uniform and
exponential distributions. The probability integrals for uniform probabi-
lities are rectangle areas, and the cumulative distribution for the
exponential distribution is a simple exponential expression which can be
evaluated on any scientific calculator. 'fhis situation will change in the
following sections, where we will see much more complicated density
functions and integrals which cannot be done in closed form. It is worth
noting that the exponential distribution is important enough that a

function for it is included in Microsoft@ EXCEL. The function
EXPONDIST0 will calculate values of the cumulative distribution
function ofan exponential random variable.

8.2.9 Why the Waiting Time is Exponential for Events Whose
Number Follows a Poisson Distribution

ln Section 8.2.2 we stated that the exponential distribution gave the
waiting time between events when the number of events followed a

Poisson distribu(ion. To see why this is true, we need to make one more
assumption about the events in question: If the number of events in a
time period o/'length I is u Poisson randon voriable tuith parameter ),,
then lhe rutmber of events in a time period of length t is q Poisson
random variable with paranteter ),t.

This is a reasonable assumption. For example, if the number of
accidents in a month at an intersection is a Poisson random variable with
rate parameter ,\ : 2, then the assumption says that accidents in a two-
month period will be Poisson with a rate parameter of 2), : 4.

Using this assumption, the probability of no accidents in an
interval of length I is

P(x :o) : Ll#g : s-\t.

However, there are no accidents in an interval of length I if and oniy if
the waiting time ? for the next accident is greater than l. Thus

209

P(X :0): P(T ) l) : S(r) : e-'\1
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This is the survival function for an exponential dishibution, so the
waiting time 7 is exponential with parameter ).

8.2.10 A Conditional Probability Problem Involving the
Exponential Distribution

In Section 8.1.5 we looked at a conditional probability problem involv-
ing the uniform distribution. We can use the same kind of reasoning for
conditional problems in which the underlying random variable is expo-
nential,

Example 8.13 Let ? be the time to failure of the machine part in
Example 8.8, where ? is exponential with ):.001. Find each of (a)
P(T > l50l 7 > 100) and (b) P(T > zf 10017 > 100), for r in [0, m).

Solution

@) P(r > 1501? > r00) - P(tr 2l5.!gnqI.> r00)
P(" > 100)

_ P(" > r50)
- PQ > 100)

_ e .001(l5o)

-e-.ool(loo-e 
o5='951

(b) If r is any real number in the interval [0, oo), then

P(tl> r* l00l?> 100) : W
- P€2r+100)

P(?-r00r
_ 

"-.ool("r+loo) 
_ o .oort

":.66,rllTnr 

_ E

The final expression in part (b) is the survival function S(z) for a

random variable which is exponentially distributed on [0, oo) with
,\ : .001 . This has a nice intuitive interpretation, since we can think of z
as representing hours survived past the l00tn hour. If the lifetime of a

new part is exponentially distributed on [0,oo) with .\:.001, the
remaining lifetime of a 100-hour-old part is also exponentially Cistribu-
ted on [0,oo) with ) : .001. The lifetime random variable of the part is
called memoryless, because the future lifetime of an aged part has the
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same distribution as the lifetime of a new part. All exponential distribu-
tions are memoryless. (Exercise 8-18 asks for a proof of this fact.) The
memoryless property makes the exponential distribution a poor model
for a normal human life. D

8.3 The Gamma Distribution

In the following sections we will discuss a number of distributions
which are quite useful in applications. The mathematics for these distri-
butions is complex, and derivations of most key properties will be left
for more advanced courses. We will focus on the application of these
distributions in applied problems. The first of these distributions is the
gamma distribution.

8.3.1 Applications of the Gamma Distribution

In Section 5.4, we showed that the geometric probability function p(z)
gave the probability of r failures before the first success in a series of
independent success-failure trials. ln Section 5.5 we showed that the
negative binomial probability function p(r) gave the probability of r
failures before the rth success in a series of independent success-failure
trials. The gamma distribution is related to the exponential distribution
in a similar way. The exponential random variable T can be used to
model the waiting time for the first occurrence of an event of interest,
such as the waiting time for the next a, :ident at an intersection. The
garnma random variable X can be used to model the waiting time for the
n'h occurrence ofthe event ifsuccessive occurrences are independent. In
this section, we will use the garnma random variable as a model for the
waiting time for a total of two accidents at an intersection. The gamma
distribution can also be used in other problems where the exponential
distribution is useful; examples include the analysis of failure time of a
machine part or survival time for a disease.

There are a number of insurance applications of the gamma distri-
bution. The distribution has mathematical properties which make it a

convenient model for the average rate of claims filed by different
policyholders of an insurance company. (See, for example, page 152 of
Herzog [4J or page 98 of Hossack et al. [6].) Bowers et al. [2] use a
translated gamma distribution as a model for the aggregate claims of an
insurance company.
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8.3.2 The Gamma Density Function

The density function for the gamma distribution has two parameters, a
and B. It requires use of the gamma function, f(x), which was defined

in Equation (8.8) in Section 8.2.1. The key property of the gamma func-
tion which will be needed in this section was given by Equation (8.9).
For any positive integer n, f (n) = (n -l)!.

Note that for a = l,

f (x) = {[,*0"-'' = pe-/]'.

This is the exponential density function, so the exponential distribution is
a special case of the gamma distribution.

The next ligure shows the shape of the gamma density functions
for, B =2 and a =1, 2 and 4.

Gamma Density Function
Parameters a, p >0

.f (r) = ft-r*"-'"-o', .for x>o (8. I 6)

Gamma Density Functions

2.0

1.5

1.0

0.5

0.0

The familiar negative exponential curve for a = I
the higher values of a, the curve increases to
decreases.

is clearly visible. For
a maximum and then
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8.3.3 Sums of Independent Exponential Random Variables

We will state without proof an important theorem which will aid us in
understanding the application of the gamma distribution. This theorem
will be proved using moment generating functions in Chapter 1 1.

Theorem Let Xr , X2, ..., X, be independent random variables,
all of which have the same exponential distribution with f (r): 0" 0'.

Then the sum X1 tXz+'..*X,. has a gamma distribution with
parameters (L : rL and 13.

Example 8.14 ln Example 8.7 we studied T,the time in months
between accidents at a busy intersection. ? w'as modeled as an

exponential random variable rvith parameter p :2. T represents the
waiting time for the first accident after observation begins. If we assume

that accidents occur independently, it is natural to assume that once the

first accident occurs we will again have an exponential waiting time with
0 :2 for the second accident. The total waiting time from the start of
observation will be the sum of the waiting time for the first accident and

the waiting time from the first accident until the second. In the notation
of the preceding theorem,

Xr is the waiting time for the frrst accident,

Xz is the waiting time betrveen the first and second accidents,

and, in general,

X; is the waiting time between accidents i - 1 and 2,.

Then

fx,: x,
i.= I

the total waiting time for accident n. For example, X : Xt * Xz is the

random variable for the waiting time fror.r the start of observation until
the second accident. According to the theorem, X has a gamma distribu-
tion with parameters a : 2 and B :2. The density function is

12 1

f(2) "f(r): -l 
"-2t 

: A,a . 
"-2x
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Its graph was given in the previous figure. We can now use this density
function to find probabilities. For example, the probability that the total
waiting time for the second accident is between one and two months is

r2

P(l<X<2\: I 4r."-2'dr.' Jr

Using integration by parts, we can evaluate this as

-2r .e z, - "-z'12 
:3e-2 - 5e-a = .314. D

lt

8.3.4 The Mean and Variance of the Gamma Distribution

The mean and variance of the gamma distribution can be derived using
Equation (8.10). This is left for the exercises.

Gamma Distribution Mean and Variance
Parameterso.,p>0

E(X): fr (8.17a)

v(x) - o: F (8.17b)

Example 8.15 Let X : Xr * Xz be the random variable for the
waiting time from the start of observation until the second accident in
Example 8.14. X has a gamma distribution with a : 2 and B :2. Then

and

E(X):

v(x):

Example 8.16 Let Y : Xr I Xz * Xz * Xt, be the random
variable for the waiting time from the start of observation until the fourth
accident in Example 8.14. y has a gamma distribution with c : 4 and

0 :2.Then
E(x): t: z

v(x): $ : r

D

l:r
2 _L
t2 - )'

n
and



Commonly Used Continuous Distributions

8.3.5 Notational Differences Between Texts

215

Probability textbooks are divided on notational issues. Many textbooks
follow our presentation for the gamma distribution. Others replace B by
llB, giving the alternate formulation

f (r): p46i""-t "-x/B

for the density function. This version leads to E(X): sp and

V(X):a82. This altemate formulation may also be used for the
exponential diskibution. The reader needs to be aware of this difference
because different versions may be used in different applied studies.

Technology Note

Technology is very helpful when working with the gamma distri-
bution, since integrating the gamma density function can be quite tedious
for most values of a and p. Consider, for example, the gamma random
variable Y:Xt*Xz*Xt*X+ with parameters a:4 and F:2
from Example 8.16. The density function is

f (x): fr" -t"-2t - \r3"-z'.

To find the probability P(1 < Y < 2),we must evaluate the integral

P(l <Y<2): -2, dr.

This can be done by repeated integration by parts, but that is time
consuming. The TI-83 calculator can approximate this integral in a few

seconds using the function fnlnt. It gives the answer .42365334. The TI 89

or Tl-92 will rapidly do the integration by parts exactly. Each calculator
gives the answer

0ge2 -_7De-4
J

This exact value approximated to eight places leads to the same answer
given by the TI-83.

r2

J, 8o"
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Microsoft@ EXCEL has a function GAMMADIST which will
calculate values of the gamma cumulative distribution function. (Para-
meters must be entered in the alternative format of Section 8.3.5.) For
the random variable y, EXCEL gave the values

F(2): .56652988 and F(1) : .1428'/654.

This gives the same answer to our problem.

P(l < Y < 2) : F(2)- l'(1) : .42365334

The reader may have noted that in this section the values of a and

lj were integers in all examples. This was done only for computational
simplicity. The parameters a and 13 may assume any non-negative real
values. Technology will enable us to find probabilities for any gamma
random variable. This is important. For example, the Chi-square random

variable used in statistical work is a ganxna random variable with p : I
and a : \, for some non-negative integer n.

8.4 The Normal Distribution

8.4.1 Applications of the Normal Distribution

The normal distribution is the most widely-used of all the distributions
found in this text. It can be used to model the distributions of heights,
weights, test scores, measurement errors, stock portfolio returns,
insurance portfolio losses, and a wide range of other variables. A classic
example of the application of the normal distribution was a study of the
chest sizes of 5732 Scottish militiamen in 1817. (This study is nicely
summarized in Weiss [18].) An army contractor who provided uniforms
to the military collected the data for planning purposes. The histogram of
chest sizes is shown in the next figure.
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Chest Size of Scottish Militiamen
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We can see a pattern to the histogram. The pattern is the shape of the
norrnal densify curve. The next figure shows the histogxam with a

norrnal density curve fitted to it.

A wide range of natural phenomena follow the symmetric pattern
obsened here.4 People often refer to the normal density curve as a

"bell-shaped curve." The normal curve for the chest sizes is shown
below without the histogram so that its bell shape can be seen more
clearly.
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0.00

ll 35 37 39 4t 43 45 47

Normal Density Function
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a We will see why the normal curve is so widely applicable when we discuss the Central
I-imit Theorem in Section 8.4.4.
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Every normal density curve has this shape, and the normal density
model is used to find probabilities for all of the natural phenomena
whose histograms display this pattern. Random variables whose histo-
grams are well-approximated by a normal density curve are called
approximately normal. The distribution of chest sizes of Scottish mili-
tiamen is approximately normal.

8.4,2 The Normal Density Function

The normal density function has two parameters, p and o. The function
is difficult to integrate, and we will not find normal probabilities by
integration in closed form.

Normal Density Function
Parameters p" and o

t \t-p)2
f (r): -*-"--Zf , for -oo < r < oa (8.18)

y zTfo

It can be shown that pr, : E(X) and oz : V(X).(Derivations of E(X)
andV(X) will be given in Section 9.2.3.)

Normal Distribution Mean and Variance
Parameters p, and o

E(X): p (8.19a)

v(x): 02 (s'19b)

Example 8.17 The chest sizes of Scottish militiamen in 1817
were approximately normal with p - 39.85 and o :2.A7. The density
function is graphed in the preceding figure. tr

Example 8.18 The SAT aptitude examinations in English and
Mathematics were originally designed so that scores would be approxi-
mately normal with p : 500 and o : 100. D

Note that in each of the previous examples we gave the value of
the standard deviation o rather than the variance o2. This is the usual
practice when dealing with the normal distribution.
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8.4.3 Calculation of Normal Probabilities; The Standard
Normal

Suppose we are looking at a nationai examination whose scores X are
approximately normal with pr:500 and o: 100. If we wish to find the
probability that a score falls between 600 and 750, we must evaluate a
difficult integral.

r750

P(6oo < x < 750) : l'''" -| -" 
'i## 4,

Jr,oo t/ 2tr ' 100

This cannot be done in closed form using the standard techniques of
calculus, but it can be approximated using numerical methods. We did
this using the fnlnt operation on the TI-83 calculator, and found that the
answer was approximately .152446.

We will discuss use of technology in more detail at the end of this
section. Until recently, numerical integration was not readily available to
most people, so another way of finding normal probabilities involving
tables of areas for a standard normal distribution was developed. It is
still the most common way of finding normal probabilities. ln the rest of
this section we will cover this method, and the basic properties of
normal distributions which are behind it, in a series of steps. We begin
with an important property of normal distributions which is stated with-
out a complete proof.

Step 1: Linear transformation of normal random variables.
Let X be a normal random variable with mean p, and standard deviation
o. Then the transformed random variable Y : aX * b is also normal,
with mean ap, * b and standard deviation la.lo.

The crucial statement which is rol proved here is the assertion that Y is
also normal. This will be proved using moment generating functions in
Section 9.2.3.We can easily derive the mean and variance of Y.

E(aX +b): a.E(X)*b: ap*b

V(aX + b) : a2 .V1X1 : a2o2

on:r/oto':lalo
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Step 2: Transformation to a standard normal. Using the linear
transformation property of normal random variables, we can transform
any normal random variable X with mean p and standard deviation o
into a standard normal random variable Z with mean 0 and standard
deviation 1. The linear transformation that is used to do this is

lv-Fo" o' (8.20)

Note that this is the transformation used to define the z-score in Section
4.4.4.The linear transformation property tells us that Z is normal, with

E(z) : *"rr>-
and

oZ:

The standard normal random variable Z has a density function
which is somewhat simpler in appearance. This density function still
requires numerical integration, but it will be the only density function we
need to integrate to find normal probabilities.

#:o

lo:1.

Standard Normal Density Function

Parameters F : 0 and o2 : o : I

r ,l

f (z): -*" i-, for -oo ( z ( oo
t/ ltr

(8.21)

The density function for the distribution of Z is shown in the next
figure.
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Standard Normal Density Function

0.3

0.2

0.1

Step 3: Using z-tables. Tables of areas under the density curve
for the distribution of Z have been constructed for use in probability
calculations. In Appendix A, we have provided a table of values of the
cumulative distribution function for Z, FzQ) : P(Z < z). The left
hand column of the table gives the value of z to one decimal place and
the upper row gives the second decimal place for z.The areas F7(z) are
found in the body of the table. Below we have reproduced a smallpart of
the table and highlighted the key points for finding the value
Fz(1.28) : .8997 .

0

0.5398 0.5438
0.5793 0.5832
0.6t79 0.62t7
0 6554 0.6591

0.6915 0.6950
0.7257 0.7251
0.7580 0.761 I

0.788 l 0.791 0
0.8159 0 8r86
0.84 l 3 0.8438
0.8643 0.866s
0.8849 0.8869
0.9032 0.9049
0.9t92 0.9247

221

0.090.070.060.0r0.00

0.5478
0.5871
06255
0.6628
0.698s
0.1124
0.7642
0.7939
0.82t2
0.8461
0.8686
0.8888
0.9066
0.9222

0.551 7

0.5910
0.6293
0.6664
0.701 9

0.7 357

0.1673
o.7961
0.8218
0.8485
0.8708
0.8907
0.9082
o.9236

0.55s7
0.5948
0.6331

0.6700
0.7054
0.7389
0.7704
0.7995
0.8261
0.8508
0.8729
0.8925
0.9099
0.9251

0.559(r

0.5987
0.6368
0.6736
0.7088
0.7422
0.7134
0.8023
0.8289
0853r
0.8749
0,8944
0.91 I 5
0.9265

0.5636 0.5675
0.6026 0.6064
0.6406 0.6443
0.6772 0.6808
0 .7 t23 0.7 15'1

0.7 454 0.7486
0.77 64 0.7794
0.805 r 0.8078
0.8t r5 0.8340
0.8554 0.8577
0.8770 0.8790
0.8962 0.8980
0.9131 0.914'7

0.9279 0.9292

0.5714 0.57,s3

0.6103 0.614 I

0.6480 0.651 7
0.6844 0.6879
0.7190 0.7224
0.7 517 0.7519
o.7823 0.78s2
0.8106 0 81 33

0.8365 0.8389
0.8599 0.8621
0.881 0 0.8830

s&$xr: 0.e015
0.9162 0.91'7'7

0.9306 0.9119

The table tells us that

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
l l

P(Z < 1.28): F20.28): .8997.



222 Chapter 8

Using the negation rule, we see that

P(Z > 1.28) : 1 -.8997 : .1003.

We can also calculate the probability that Z falls in an interval.
For example,

P(l < Z <2.5): Fz(2.50)- F20.00):.9938-.8413: .1525.

Step 4: Finding probabilities for any normal J(. Once we
know how to find probabilities for Z, we can use the transformation
given by Equation (8.20) to find probabilities for any normal random
variable X with mean /-, and standard deviation o, using the identify

P(r1 ( x I 12): P(ry 
= + t+) : P(zr I Z I zz'),

, It-ll . .L)-ll
where at : -ioL and z2 : -=o - .

Example 8.19 The national examination scores X in Example
8.18 were normally distributed with p:500 and o: 100. Then the
probability of a score in the interval [600, 750] is

P(600 < x s 750) : 
"(609"3!0 

. X#0 s D+#AA)

: P(l < Z <2.5)

: Fz(2.50) - F20.00)

: .9938 - .8413 : .1525.

We might also calculate

P(X < 600): Fz(|.00):.8413,

P(X s400) : Fz?1.00) : .1s87,

and

P(X> 750): I-FzQ.50): I-.9938:.0062. tr
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The observant reader will note that we previously calculated the
probability P(600 < X < 750) by numerical integration of the density
function and got an answer of .1524, not lhe .1525 found above. Each z-
value is rounded to two places and each entry in the table is rounded to
four places. This rounding can produce small inaccuracies in the last
decimal place of answers found using the tables.

Example 8.20 The chest sizes of Scottish militiamen in 1817

were approximately normally distributed with p : 39.85 and o : 2.07.
Find the probability that a randomly selected militiaman had a chest size

in the interval 138, 421.
Solution

P(38< X<42): -/38-39.85 - X-39.85 ,42-39.85\
'\--7T7- > -Tnr- > --znT- )

P(-0.89<Z<r.04)

F20.04) - Fze0.89)

.8508 - .1867 : .6641 tr

Technology Note

Calculation of normal probabilities using Z-tables is not as quick
or convenient as direct calculator use. The probability P(38 < X < 42)
from Example 8.20 can be done in seconds on the TI-83, which has a
special function for normal probabilities. The function, normalcdf, is
found in the DISTR menu. Entering

normalcdf(38, 42, 39.85, 2.07 )

will give the answer .6648 to 4 places. Note that this answer is not
identical with the less-accurate answer obtained from table use. If we
wish an independent check on this answer, we could use the TI-92 to do

the integral
f42 1 (r lq 85)2

P(38 < X < 4D : I -#-e--zcuT dr'' Jsa t/zr.z.ol
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The answer is .6648 to four places. The calculator is using numerical
methods to approximate the probability to a higher degree of accuracy
than is possible using the tables.

Microsoft@ EXCEL has a NORMDISTQ function which will
calculate values of either the density function f (r) or the cumulative
distribution function F(r). Using EXCEL,

P(38 < X < 42) : F(42)- r(38) : .8505 - .1857 : .6648.

Although modern technology is quicker and more accurate than
use of z-tables, we will continue to find normal probabilrties using the

table method in thrs text. The old method is so widely used that it must
be learned for use in standardized examinations which do not allow
porverful calculators, and for use in other probability and statistics
courses.

z-scores are useful for purposes other than table calculation. In
Chapter 4 we observed that a z-value gives a distance from the mean in
standard deviation units. Thus for the national examination with
tr : 500 and o: 100, a student with an exam score of r :750 and a
transformed value of z : 2.5 can be described as being "2.5 standard
deviations above the mean." This is a useful type of description.

8.4.4 Sums of Independent, Identically Distributed,
Random Variables

Sums of random variables will be fully covered in Chapter I 1. A brief
discussion here may help the reader to have a greater appreciation of the
usefulness of the normal distribution. We will use the loss severify
random variable X of Examples7.2,7.10 and 7.15 to illustrate the need
for adding random variables. The random variable X represented the
loss or,r a single insurance policy.It was not normally distributed. We
found that

E(X) : $ and V(X) :

We also found probabilities for X. However, this information applies
only to a single policy. The company selling insurance has more than
one policy, and must look at its total business. Suppose that the company

500,000
--9-'
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has 1000 policies. The company is willing to assume that all of the
policies are independent, and that each is governed by the same (non-
normal) distribution given in Example 7.2. Then the company is really
responsible for 1000 random variables, Xt, X2,..., Xrooo.The total
claim loss S for the company is the sum of the losses on all the
individual policies.

S : Xr * Xz *'.. * Xrooo

There is a key theorem, called the Central Limit Theorem, which
shows that this important sum is approximately normal, even though the
individual policies X; are not.

Central Limit Theorem Let Xr, Xz, ..., X, be independent
random variables, all of which have the same probability distribution and
thus the same mean p, andvariance o2.If n is large5, the sum

S:Xr *Xz+"'*Xn
will be approximately normal with mean npr, andvariance no2.

This theorem shows that the total loss S : Xt t Xz +... -l Xrooo
will be approximately normal with mean and variance equal to 1000
times the original mean and variance.

E(S):1000 ' 1000 v(s): looo.sooiooo

This means that even though the original single claim distribution is rol
normal, the normal distribution probability methods can be used to find
probabilities for the total claim loss of the company. Suppose the
company wishes to find the probability that total claims ,9 were less that
$350,000. We know that ,9 is approximately normal, and the calculations
for E(S) and Iz(^9) show that

Fs :333,333.33 and os :7453.56.

5 How large n must be depends on how close the original distribution is to the normal.
Some elementary statistics books define n ) 30 as "large", but this will not always be the
case.
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Then we can use Z-tables to find

P(^s < 3so,ooo = 
"f 

t -lll;'lj ") .\ 745 3.56 I

Chapter B

= P(Z <2.24) = Fz(2.24) =

350,000 -333,333.33
7453.56

.9875.

This shows the company that it is not likely to need more than $350,000
to pay claims, which is helpful in planning. ln general, the normal
distribution is quite valuable because it applies in so many situations
where independent and identical components are being added.

The Central Limit Theorem enables us to understand why so many
random variables are approximately normally distributed. This occurs
because many useful random variables are themselves sums of other
independent random variables.

8.4.5 Percentiles of the Normal Distribution

The percentiles of the standard normal can be determined from the
tables. For example,

P(Z <1.96)=.975

Thus the 97.5 percentile of the Z distribution is 1.96.

The 90tt', 95tl' and 99th percentiles are often asked for in problems. They
are listed for the standard normal distribution below.

Z 0.842 1.036 1.282 1.645 r.960 2.326 2.576
P(Z<z) 0.800 0.850 0.900 0.950 0.975 0.990 0.995

If Xis a normal random variable with mean p and standard deviation o,
then we can easily find xo, the lOOpth percentile ofX, using the l00p'h

percentile of Z and the basic relationship of X and Z.

xp-F
.p - -+ xp = ll+zpo.

For example, if X is a standard test score random variable with mean

/ = 500 and standard deviation o = 100, then the 99th percentile of Xis

x.gg = F* Z.ssc = 500 +2.326(100) = 732.6.
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8.4.6 The Continuity Correction

When the normal model is used to approximate a discrete distribution
(such as integer test scores), you might be asked to apply the continuity
correction. This is covered in detail in basic statistics courses.t

If you are finding P(a < X < b) for a normal random variable X, the

continuity correction merely decreases the lower limit by 0.5 and raises

the upper limit by 0.5. Suppose, for example, that for the test score
random variable in example 8.20 you wanted to find the probability that
a score was in the range from 600 to 700. Without the continuity
correction you would calculate:

p(s00 <x<700) = "(ti#t=,=lAr*A-M)
= P(0<Z<2) =.9772-.5 =.4772

With the continuity correction you would calculate

p(4ss.s < x <700.5) = "(qfrru =, = 
]Q9frflq)

= P(-.005 <Z <2.005)

Your tables for Z do not go to three places. If you rounded to two places
you would get

P(-.01 <z <2.01) = .9778-.4960 = .4818

In this example the use of the continuity correction would make no
difference in your final answer if exam choices are rounded to two places

-each method would give you .48. You should use the continuity
correction if you are instructed to in an exam question or if o is small
enough that the change of .51 o would change the second place in your
z-score.

' You can review the
Introductory Statistics,
Wesley 2005.

contrnurty coffectlon
(Seventh edition) by

in introductory texts such as
Neil Weiss, Pearson Addison-
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8.5 The Lognormal Distribution

Chapter B

8.5.1 Applications of the Lognormal Distribution

Although the normal distribution is very useful, it does not fit every
situation. The normal distribution curve is symmetric, and this is not
appropriate for some real phenomena such as insurance claim severity or
investment retums. The lognormal distribution curve has a shape that
is not symmetric and fits the last two phenomena fairly well. The next
figure shows the lognormal curve for a claim severity problem which
will be examined in Example 8.21.

Lognormal Density Function

This curve gives the highest probability to claims in a range around
r : 1000, but does give a non-zero probability to much higher claim
amounts.

The use of the lognormal distribution as a model for claim severity
in insurance is discussed by Hossack et al. [6]. The reader interested in
using the lognormal to model investment returns should see page 187 of
Bodie et al. [], or page 281 of Hull [7].

8.5.2 Defining the Lognormal Distribution

A random variable is called lognormal if its natural logarithm is
normally distributed. This is said in a slightly different way in the usual
definition of the lognormal.

Definition 8.3 A random variable Y is lognormal if Y : eX for
some norrnal random variable X with mean p, and standard deviation o.
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Example 8.21 Let X be a normal random variable with pr :7 and
o : 0.5. Y : eX is the lognormal random variable whose density curve
is shown in the last figure. The shape of the curve makes it a reasonable
model for some insurance claim analyses. tr

The density function of a lognormal distribution is given below.

Density Function for Lognormal Y - sx
X normal with mean p and standard deviation o

! -t(tnY u12

f(y) : --f-e-,\' /,fory ) 0
oav z7t

(8.22)

This function is difficult to work with, but we will not need it. We will
show how to find lognormal probabilities using normal probabilities in
Section 8.5.3.

Note that the parameters ;l and o represent the mean and standard
deviation of the normal random variable X which appears in the expo-
nent. The mean and variance of the actual lognormal distribution Y are
given below.

Mean and Variance for Lognormal Y : eX
X normal with mean pl and standard deviation o

E(Y) : su+{ $'23a)

V(y) : ezp+oz(eo'? - l) (8.23b)

Example 8.22
o : 0.5. and let Y :

v (Y)

Let X be a normal random variable with p : 7 and
ex as in the Example 8.21.

E(Y): "'** x 1242.65

_ e2(7)+0.s2("0.5' _ l) = 43g,5g4.g0

If we think of Y as a model for insurance claim amounts, the mean claim
amount is$1,242.65. D
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8.5.3 Calculating Probabilities for a
Lognormal Random Variable

We do not need to integrcte the density function for the lognormal
random variable Y. The cumulative distribution function can be found
directly from the cumulative distribution for the normally distributed
exponent X.

Fvk): P(Y { c) : P(ex < c): P(X { lnc): Fx(lnc)

Example 8.23 Suppose the random variable Y of Examples 8.21
and 8.22 is used as a model for claim amounts. We wish to find the
probability of the occurrence of a claim greater than $1300. Since X is
normal with p :'/ and o :0.5, we can use Z-Iables. The probability of
a claim less than or equal to 1300 is

P(Y < 1300):P(ex < 1300)

: P(X < ln 1300)

: ,(t < h1*&J) : 116+): 633r

The probability of a claim greater than 1300 is

| - P(Y < 1300) - I - .6331 : .3669.

Technology Note

Microsoft@ EXCEL has a function LOGNORMDIST$ which
calculates values of the cumulative distribution function for a given log-
normal. For the preceding example, EXCEL gives the answers

P(Y < 1300) : .6331617 and P(Y > 1300) : .3668383.

Note the difference from the Z-table answer in the fourth decimal place.
Recall that EXCEL will give more accurate normal probabilities than the

Z-table method. (The TI-83 gives the same answer as EXCEL when
used to calculate the P(X < ln 1300) for the normal X with p:7 and
a : 0.5.)
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8.5.4 The Lognormal Distribution for a Stock Price

The value of a single stock at some future point in time is a random
variable. The lognormal distribution gives a reasonable probability model
for this random variable. This is due to the fact that the exponential
function is used to model continuous growth.

Continuous Growth Model
Value of asset at time t if growth is continuous at rate r

A(t) : A(0)' e't (8.24)

Example 8.24 A stock was purchased for ,4(0) :
grows at a continuous rate of 10o/" per year. What is its
months; (b) one year?

Solution
(a) A(.5) : 1gg" to('s) = 105'13
(b) ,4(1) : 199" t0(t) = l10'52

100. Its value
value in (a) 6

u

In the last example, the stock is known to have grown at a given
rate of 10%o over a time period in the past. When we look to the future,
the rate of growth X is a random variable. If we assume that X is
normally distributed, then the future value Y : 100 .ex is a multiple of
a lognormal random variable.

Example 8.25 A stock was purchased for ,4(0) : 100. Its value

will grow at a continuous rate X which is normal with mean F : .10 and

standard deviation o : .03. Then the value of the stock in one year is the
random variable Y : l00ex, where ex is lognormal. n

The use of the lognormal distribution for a stock price is discussed

in more detail by Hull [7]6.

6 See page 28 l.
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8.6

Chapter 8

The Pareto Distribution

8.6.1 Application of the Pareto Distribution

In Section 8.5 the lognormal distribution was used to model the amounts
of insurance claims. The Pareto distribution can also be used to model
certain insurance loss amounts. The next figure shows the graph of a

Pareto density function for loss amounts measured in hundreds of dollars
(i.e., a claim of $300 is represented by r : 3).

Pareto Density Function

r.000

0.800

0.600

0.400

0.200

0.000

Note that the distribution starts at r :3. This insurance policy has a
deductible of $300. The insurance company pays the loss amount minus
$300. Thus claims for $300 or less are not filed and the only losses of
interest are those for more than $300.

8.6.2 The Density Function of the Pareto Random Variable

The Pareto distribution has a number of different equivalent formula-
tions. The one we have chosen involves two constants, o and 6.

7 The Pareto density function can be defined for a > 0, but the restriction that d > 2

guarantees the existence ofthe mean and variance.

Pareto Density Function
Constants a and 13

f(r) : "O(Pr)".', a ) 2, r > p > 0 (8.25)7
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Example 8.26 The Pareto density rn the previous figure has
a :2.5 and B - 3. The density curve is

forr>.3.

Note that the value of f must be set in advance to define the domain of
the density function. Once B is set, the value of a can vary. The Pareto
distribution shown here is often referred to as a single parameter Pareto

distribution with parameter a. There is a different Pareto distribution
called the two parameter Pareto distribution. We will not cover the two
parameter distribution in this text, but it is useful to know that the term
"Pareto distribution" can refer to different things.

8.6.3 The Cumulative Distribution Function; Evaluating
Probabilities

In dealing with the normal and lognormal distributions we had density
functions which were difficult to integrate in closed form, and numerical
integration was used for evaluation of F(r). Since the Pareto distribu-
tion has a density which is a power function, F(z) can be easily found.
The details are left for the reader in Exercise 8-42.

f (r):1t (;)",

Pareto Cumulative Distribution Function
Parameters a and 13

/ R\aF(r) : t- l;), e)2,r) P>o (8-26)

Once F(z) is known, it can be used to find probabilities for a Pareto
random variable. There is no need for further integration.

Example 8.27 The Pareto random variable in Example 8.26 had
a :2.5 and p :3. The cumuiative distribution function is

F(r):t-(+)",ro.r)3.
If the random variable X represents a loss amount, find the probability
that a loss is (a) between 400 and 600; (b) greater than 1000.

Solution

(a) p(4 < x < 6): r'(6) - F(4): (?)" - (e)2s = .3104

(b) P(X > 10):511s; - I - r(10): (r_1)" x .04e3 tr
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8.6.4 The Mean and Variance of the Pareto Distribution

The mean and variance of the Pareto distribution can be obtained by
straightforward integration of power functions. This is left for the exer-
cises.

Pareto Distribution Mean and Variance
Parameters a and p

E(X): #
v(x) : g- (#)'

(8.27a)

(8.27b)

Example 8.28 The Pareto random variable in Example 8.26 had
s:2.5 and lj :3. The mean and variance are

E(x): ffi : t
and

v(x) : '44- (#q))' : 20. tr
L.J - \L.J L /

Note that if we look at X as a loss amount in hundreds of dollars,
Example 8.28 says that the expected loss is $500. However, we have
interpreted the insurance modeled as insurance for the loss less a
deductible of $300. The random variable for the amount paid on a single
claim is X - 3. Thus the expected amount of a single claim is

E(X-3): E(X)-3:2.

8.6.5 The Failure Rate of a Pareto Random Variable

In Equation (8.14) we defined the failure (hazard) rate of a random vari-
able to be

^(f):#%
The reader may wonder why we did not calculate the failure rates

of the gamma, normal and lognormal distributions. The answer is that
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those calculations do not provide a simple answer in closed form. The
Pareto distribution, however, does have a failure rate that is easy to find.

o I 0\"*'
B\x))1r;: ffi:g
\;i

This failure rate does not make sense if r represents the age of a mach-
ine part or a human being, since it decreases with age. Unfortunately,
humans and their cars tend to fail at higher rates as the age z increases.

Although the Pareto model may not be appropriate for failure time
applications, it is used to model other phenomena such as claim
amounts. The decreasing failure rate causes the Pareto density curve to
give higher probabilities for large values of r than you might expect. For
example, despite the fact that the density graph for the claim distribution
in this section appears to be approaching zero when r : 12, Ihe
probability P(X > 12) is.031. The section of the density graph to the
right of r : 12 is called the tail of the distribution. The Pareto distribu-
tion is referred to as heavy-taited8.

8.7 The Weibull Distribution

8.7.1 Application of the Weibull Distribution

Researchers who study units that fail or die often like to think in terms of
the failure rate. They might decide to use an exponential distribution
model if they believe the failure rate is constant. If they believe that the
failure rate increases with time or age, then the Weibull distribution
can provide a useful model. We will show that the failure rate of a

Weibull distribution is of the form )(z) : afrro-t. When a ) I and

B > 0, this failure rate increases with r and older units really do have a

higher rate of failure.

8.7,2 The Density Function of the Weibull Distribution

This density function has two parameters, a and p.It looks complicated,
but it is easy to integrate and has a simple failure rate.

8 See [8] Klugman et al., Second Edition, page 48 for a discussion of this
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Weibull Density Function
Parametersa>0andp>0

f (r): a0ra-ts-0'", forr ) 0 (8.28)

Example 8.29 When a : 2 and p : 2.5, the density function is

f (r) : 5, ' 
"-2'5t2, 

for r ) o'

It is graphed in the next figure.
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The reader should note that if a : 1, the density function becomes the
exponential density ge-0'. Thus the exponential distribution is a special
case of the Weibull distribution.

8.7.3 The Cumulative Distribution Function
and Probability Calculations

The Weibull density function can be integrated by substitution since
ero-t is the derivative of zo. Thus the cumulative distribution function
can be found in closed form. (The reader can check the F(r) given
below without integration by showing that F'(r) : f (r).)
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Weibull Cumulative Distribution Function
Parametersa>0andB>0

F(z): l-e-9'", forr)0 (8.29)

For the density function in Example 8.29,

Ir(z) : 1 - "-2.5t2,forz 
) 0.

Once we have F(r), we can use it to find probabilities as we did with
the Pareto distribution.

Example 8.30 Suppose the Weibull random variable X with
a :2 and p :2.5 represents the lifetime in years of a machine part.
Find the probability that (a) the part fails during the first 6 months; (b)
the part lasts longer than one year.

Solution
(a) Convert 6 months to 0.5 years.

P(X <.5): F('5) - 1- e 2's(*) x .465

(b) P(X >1):S(1)- 1 -F(1): e-zs(tz)=.082 tr

8.7.4 The Mean and Variance of the Weibull Distribution

The mean and variance of the Weibull distribution are calculated usrng
values of the gamma function f(z), which was defined in Equation (8.8)
of Section 8.2.1. We will not give derivations here. The reader will be
asked to derive E(X) using Equation (8.10) in Exercise 8-49.

Weibull Distribution Mean and Variance
Parametersa > 0andp > 0

E(x) : f (1{ *)
t3;

v(x) : 
*- l'('*3) - r(r+j)']

(8.30a)

(8.30b)
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The reader may recall that when n is a non-negative integer, then
f(n) : (n - 1)!. In cases where the above gamma functions are applied
to non-integral arguments, calculation of the mean and variance may
require some work. However, the calculations can be done using
numerical integration on modem calculators. In the following example
we will be able to avoid this by using the known garnma function value

'(;) 
:

Example 8.31 We retum to the Weibull random variable X with
a : 2 and p :2.5. The mean and variance of X are

and

8.7.5 The Failure Rate of a Weibull Random Variable

The Weibull distribution is of special interest due to its failure rate.

)(r): & aB(ra-t 
"-0x" ) : og@'-t) (8.3r)

e
:a;"

As previously mentioned, the Weibull failure rate is proportional to a
positive power of r. Thus the Weibull random variable can be used to
model phenomena for which the failure rate increases with age.

Example 8.32 For the Weibull random variable X with a:2
and B : 2.5, the failure rate is )(z) : 5r. tr

,/;2-

tr
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Technology Note

Probability calculations for the Weibull distribution do not require
sophisticated technology, since F(r) has an exponential form that can be

easily evaluated. Microsoft@ EXCEL does have a WEIBULL0 function
to calculate values of f (r) and F(r). The reader needs to use this with
some care, since a different (equivalent) form of the Weibull is used

there, and parameters must be converted from our form to EXCEL form.
Technology can be used to evaluate the mean and variance when the

gamma function has arguments that are not integers. We can either evaluate

the defining integral for the gamma function to complete the calculation of
Equations (8.30a) and (8.30b), or directly evaluate the integrals which define
E(X) and E(X\. The latter approach was used by the authors to check the

values found in Example 8.31 using theTI-92 caiculator.

8.8 The Beta Distribution

8.8.1 Applications of the Beta Distribution

The beta distribution is defined on the interval [0, l]. Thus the beta distri-
bution can be used to model random variables whose outcomes are

percents ranging from 0% to 100% and written in decimal form. It can be

applied to study the percent of defective units in a manufacturing process,

the percent of errors made in data entry, the percent of clients satisfied
with their service, and similar variables. Herzog [4] used properties of the

beta distribution to study errors in the recording of FHA mortgages.e

8.8.2 The Density Function of the Beta Distribution

The beta distribution has two parameters, a and B. The gamma function
f(r) is used in this density function.

f(r):

Beta Density Function
Parametersa)0andB>0

a#+ft; r-t(l - r)a-t' foro < r < l (8.32)

9 See Chapter I I
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The density function f (r) may be difficult to integrate if a or B is not an
integer, but it will be a polynomial for integral values of a and {3.

Example 8.33 A management firm handles investment accounts
for a large number of clients. The percent of clients who telephone the
firm for information or services in a given month is a beta random
variable with a : 4 and 0 : 3. The density function is given by

f (r): fu.ra-t{t - r)t t :6013(l - r)2

: 60(13 - Zra + rs),for0 < r < l.

The graph is shown in the next figure.

Beta Densitv Function
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8.8.3 The Cumulative Distribution Function and Probability
Calculations

When a - I and B - I are non-negative integers, the cumulative distri-
bution function can be found by integrating a polynomial.

Example 8.34 For the random variable X in Example 8.33, F(r)
is found by integration. For 0 < r < 1,

fr fx / 4 5 o\
F(r) : I f@)a":160(u3-2ua+us1du:60{ 4-24+41lo"' -/o--'* -"\4 -) 6)

The probability that the percent of clients phoning for service in a month
is less than 407o is

F(.40) - '17920'

The probability that the percent of clients phoning for service in a month
is greater than 60% is
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I - F(.60) - I - .54432: .45568.

Calculations are more difficult when a and 13 are not integers, but
technology will help us obtain the desrred results. D

8.8.4 A Useful Identity

The area between the density function graph and the r-axis must be I, so

the integral of the density function from 0 to I must be 1.

l'' f(r)or: [' :tI*-fl.ro-r(r - r)1 tdx: 
1

Jo - ln l(o) .f (P\-

We have stated this result without proof. A proof would be required to
show that /(z) is truly a density function. Once we accept the result, we
can derive a useful identity.

241

lot 
,'-t (1 - altt-t dr : r(a)'l(0)

f(o +,6)
(8.33)

Example 8.35 Let s: 4 and B :3. Then

7l

| ,t0 - r)zd.r: #: #Jo
tr

8.8.5 The Mean and Variance of a Beta Random Variable

The identify in Equation (8.33) can be used to find the mean and
variance of a beta random variable X. The reader is asked to find E(X)
in Exercise 8-55. The mean and variance are given below.

Beta Distribution Mean and Variance

Parametersa)0andp>0

E(x) : a+-B (8.34a)
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Example 8.36 The mean and variance of the percent of clients
calling in for service in the preceding examples are

E(x):T+3:jx.s7:v,

V(X) : 4.3 = .0306.(4+3)tg+3+1)

Technology Note

When either a or p is not an integer, technology can be used to
find probabilities for a beta random variable. Microsoft@ EXCEL has a
function BETADISTQ which gives values of F(r) for the beta
distribution. Alternatively, the TI-83 or TI-89 can be used to integrate
the density function. For example, when a:4 and B - 1.5, Microsoft
EXCEL gives the value F(.40):.05189. The reader will be asked to
show in Exercise 8-50 that the density function for a : 4 and {3 : 1.5 is

f (,): L$9"'{ - r.
The TI-83 gives the numerical result

!

lnoof{")dz=.0518e.

8.9 Fitting Theoretical Distributions to Real Problems

The reader may be wondering how a researcher first decides that a

particular distribution fits a specific applied problem. Why are claim
amounts modeled by Pareto or lognormal distributions? Why do heights
follow normal distributions? This kind of model selection is difficult,
and it may involve many methods which are not developed in this text.
However, there is one simple approach which is commonly used. If a

researcher is familiar with the shapes of various distributions, he or she

can collect real data on claims and try to match the shapes of the real

data histograms with the patterns of known distributions. There are

statistical methods for testing goodness of fit which the researcher can

then use to see if the chosen theoretical distribution fits the data fairly
well.
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The choice of distribution to apply to a problem is really the sub-
ject of another text. In a probability text, we discuss how to use the
distribution that applies to a particular problem, not how to find the
distribution. The distribution appears somewhat like a rabbit pulled out
of a hat. The reader should be aware that a good deal of work may have
gone into the selection of the particular rabbit that suddenly appeared.

8.10 Exercises

8.1 The Uniform Distribution

8-1. Derive Equation (8.5b).

8-2. If ? is the random variable in Example 8.3 whose distribution is
uniform on [0, 100], frnd E(T) andV(T).

8-3. In a hospital the time of birth of a baby within an hour interval
(e.g. between 5:00 and 6:00 in the morning) is uniformly
distributed over that hour. What is the probability that a baby is
born between 5:15 and 5:25, given that it was born between 5:00
and 6:00?

8-4. On a large construction site the lengths of pieces of lumber are
rounded off to the nearest centimeter. Let X be the rounding
error random variable (the actual length of a piece of lumber
minus the rounded-off value). Suppose that X is uniformly
distributed over [-.50,.50]. Find (a) P(-.10 < X <.20);
(b) v(x).

8-5. A professor gives a test to a large class. The time limit for the

test is 50 minutes, and the first student to finish is done in 35

minutes. The professor assumes that the random variable Z for
the time it takes a student to finish the test is uniformly
distributed over [35, 50].
(a) Find E(T) andV(T).
(b) At what time 7 will 60 percent of the students be fin-

ished?
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8-6. Let T be a random variable whose distribution is uniform on

[a, b] and a L c 1. d < b. Suppose you are given that the value
of ? falls in the intervallc,dl.LetY be the conditional random
variable for those values of 7 that are in [c, d]. Show that the
distribution of Y is uniform over [c, d].

8-7. Suppose you consider the subset of the population in Example
8.3 who survive to age 40. If 7 is the random variable for the
age at time of death of these survivors, ? has a uniform distribu-
tion over [40, 100].
(a) Find E(7) andV(T).
(b) What is P(f > 57) for this group? (Compare this with the

result in Example 8.3.)

8-8. For the population in Example 8.3 where the time until death
random variable ? is uniform over [0,100], consider a couple
whose ages are 45 and 50. Assume that their deaths are indepen-
dent events.
(a) What is the probability that they both live at least 20 more

years?
(b) What is the probability that both die in the next 20 years?

8.2 The Exponential Distribution

8-9. Tests on a certain machine part have determined that the mean
time until failure of this part is 500 hours. Assume that the time
7 until failure of this part is exponentially distributed.
(a) What is the probability that one of these parts will fail

within 300 hours?
(b) What is the probability that one of these parts will still be

working after 900 hours?

8-10. If ? has an exponential dishibution with parameter .\, what is
the median of ??

8-11. For a certain population the time until death random variable ?
has an exponential distribution with mean 60 years.
(a) What is the probability that a member of this population

will die by age 50?
(b) What is the probability that a member of this population

will live to be 100?
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8-12. If 7 is uniformly distributed over [o, b], what is its failure rate /

8-13. Researchers at a medical facility have discovered a virus whose
mean incubation period (time from being infected until symp-
toms appear) is 38 days. Assume the incubation period has an

exponential distribution
(a) What is the probability that a patient who has just been

infected will show symptoms in 25 days?
(b) What is the probability that a patient who has just been

infected will not show symptoms for at least 30 days?

8-14. If ? has an exponential distribution, show that PIT < E(")l is
FtE(T)l-l-e-tx.632.

8-15. A city engineer has studied the frequency of accidents at two
busy intersections. He has determined that the time ? in months
between accidents at each intersection has an exponential distri-
bution. The parameters for these two distributions are 2 and2.5.
Assume that the occurrence of accidents at these intersections is
independent.
(a) What is the probability that there are no accidents at either

intersection in the next month?
(b) What is the probabilify that there will be no accidents for

at least one of these intersections in the next month?

8-16. If ? has an exponential distribution with parameter .15, what are
the 25th and 75th percentiles for T?

8-17. Using Equation (8.8) and integration by parts, derive the identity
f(n):(n-1).f(n-l).

8-18. Let ? be a random variable whose distribution is exponential
with parameter ). Show that P(T ) c, * bff > q) : P(T > b).

8-19. Consider the population in Exercise 8-l 1.

(a) What is the probability that a member of this population
who lives to age 40 will die by age 50?

(b) What is the probability that a person who lives to age 40
will then live to age 100?
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8.3 The Gamma Distribution

8-20. Using Equation (8.10) and the result in Exercise 8.17, show that
the mean of the gamma distribution with parameters a and B is
al0.

8-21. Use Equation (8.10) and Exercise 8.17 to show if X has a garnma
distribution with parameters a and p, then E(X\ : a(a + 1)lP2

and hence V (X) : alBz .

8-22. At a dangerous intersection accidents occur at a rate of 2.5 per
month, and the time between accidents is exponentially
distributed. Let T be the random variable for the waiting time
from the beginning of observation until the third accident. Find
E(T) andV(T).

8-23. Suppose a company hires new people at a rate of 8 per year and
the time between new hires is exponentially distributed. What
are the mean and variance of the time until the company hires its
12th new employee?

8-24. A gamma drstribution has a mean of 18 and
What are a and {3 for this distribution?

8-25. A gamma distribution has parameters a :2
(a) F(r); (b) P(0 < X < 3); (c) P(l < X <

a variance of 27.

and [3: 3. Find
2).

8-26. The length of stay X in a hospital for a certain disease has a
gamma distribution with parameters cv :2 and 0:113. The
cost of treatment in the hospital is C : 500X + 50X2. What is
the expected cost of a hospital treatment for this disease?

8.4 The Normal Distribution

8-27 . Using the z-table in Appendix A, find the following probabilities:

(a) P(-l.ts<Z <1.56) (b) P(0.15<Z<2.r3)
(c) P(lzl < 1.0) (d) P(lzl > 1.6s).
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8-28. Using the z-tables in Appendix A, find the value of z that satis-
fies the following probabilities:

(a) P(Z < z): .8238
(c) P(Z > z) : .9115
(e) P(lZl > z) : .10

(b) P(Z < z): .0287
(d) P(Z > z): .1660
(0 P(lzl s z): .e5

8-29. Let z be the standard normal random variable. If z > 0 and

FzQ): a, what are Fr(-z) and P(-z < Z < z)?

8-30. If X is a normal random variable with a mean of ll.l and a

standard deviation of 3.2, what is P(14 < X < 25)?

8-31. An insurance company has 5000 policies and assumes these
policies are all independent. Each policy is govemed by the

same distribution with a mean of $495 and a variance of
$30,000. What is the probabilify that the total claims for the year
will be less than $2,500,000?

8-32. A company manufactures engines. Specifications require that the
length of a certain rod in this engine be between 7.48 cm. and

7 .52 cm. The lengths of the rods produced by their supplier have
a normal distribution with a mean of 7.505 cm. and a standard
deviation of .01 cm.

(a) What is the probability that one of these rods meets these
specifications?

(b) If a worker selects 4 of these rods at random, what is the
probability that at least 3 of them meet these specifica-
tions?

8-33. The lifetimes of light bulbs produced by a company are normally
distributed with mean 1500 hours and standard deviation 125

hours.

(a) What is the probability that a bulb will last at least 1400

hours?
(b) If 3 new bulbs are installed at the same time, what is the

probability that they will all still be burning after 1400
hours?

247
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8-34. If a number is selected at random from the interval [0, l], its
value has a uniform distribution over that interval. Let ,9 be the
random variable for the sum of 50 numbers selected at random
from [0, l]. What is P(24 < S < 27)?

8-35. LeI X have a normal distribution with mean 25 and unknown
standard deviation. If P(X < 29.9) : .9192, what is o?

8.5 The Lognormal Distribution

8-36. If Y: ex, where X is a normal random variable with p: J
and o : .40, what are E(Y) andV(Y)2

8-31. If Y is lognormal and X, the normally distributed exponent, has
parameters F: 5.2 and o : .80, what is P(100 < y < 500)?

8-38. The claim severity random variable for an insurance company is
lognormal, and the normally distributed exponent has mean 6.8
and standard deviation 0.6. What is the probability that a claim
is greater than $1750?

8-39. If Y is a lognormal random variable, and the normally distribu-
ted exponent has parameters p and o, what is the median of Y?

8-40. For the stock in Example 8.24, whose value in one year is
Y : l00ex where X is normal with parameters tr : .10 and

' o :.03, what is the probability that the value of the stock in one
year will be (a) greater than 112.50; (b) less than 107.50.

8-41. If Y : ex is a lognormal random variable with E(Y) :2,500
and V (Y) : 1,000,000, what are the parameters p' and o for X?
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8.6 The Pareto Distribution

8-42. Let X be the Pareto random variable with parameters a and B,
a)2andz) p>0.

(a) Verify that F(z) - I - (0lr).
(b) Verify that E(X) : al3l(a - l).
(c) Verify that E(X2): a02l(a - 2), and use this result to

obtain V(X).

8-43. For the Pareto random variable with a : 3.5 and 0 : 4, find
(a) E(X); (b) v(X); (c) the median of X; (d) P(6 < X < rz).

8-44. A comprehensive insurance policy on cornmercial tmcks has a
deductible of $500. The random variable for the loss amount
(before deductible) on claims filed has a Pareto distribution with
a failure rate of 3.51x (r measured rn hundreds of dollars). Find
(a) the mean loss amount; (b) the expected value of the amount
paid on a single claim; and (c) the variance of the amount of a

single loss.

8.7 The Weibull Distribution

8-45. It can be shown (although beyond the scope of this text) that
f (l12) : 1rt/2. Using this and the result of Exercise 8-17, find (a)
l(312); (b) f (5/2); (c) l(712). (Can you see a pattern?)

8-46. Let X be the Weibull random variable with a : 3 and 0 :3.5.
Find (a) P(X < 0.a); (b) P(X > 0.8).

8-47. What is the failure rate for the random variable in Exercise
8-46?

8-48. For the Weibull random variable X with a:2 and p: 3.5,
find (a) E(X); (b) v(X); (c) P(.2s < X < .7s).

8-49. Using Equation (8.10), verify that the mean of a Weibull distri-
butron is f(1 + l/a)lpt/". (Hint: Transform the integral usrng
the substitution u : zo.)
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8.8 The Beta Distribution

8-50. Find the density function for the beta distribution with a = 4 and

F =1.5. (Hint: Use the results of Exercise 8.17.)

8-51. Find the value of k so that .f(x)=tua1t-x12 for 0<x<1 is a
beta density function.

8-52. A meter measuring the volume of a liquid put into a bottle has an
accuracy of * I cm'. The absolute value of the error has a beta
distribution with a = 3 and p = 2. What are the mean and
variance for this error?

8-53. ln Exercise 8-52, what is the probability that the error is no more
than 0.5cm3?

8-54. A company markets a new product and surveys customers on
their satisfaction with this product. The fraction of customers
who are dissatisfied has a beta distribution with a = 2 and

F = 4. What is the probability that no more than 30 percent of
the customers are dissatisfied?

8-55. Using Equation (8.33), verify that the mean of the beta distribu-
tion is a l(a+ B).

8.1f Sample Actuarial Examination Problems

8-56. The time to failure of a component in an electronic device has an

exponential distribution with a median of four hours.

Calculate the probability that the component will work without
failing for at least five hours.

8-51. The waiting time for the first claim from a good driver and the
waiting time for the first claim from a bad dnver are independent
and follow exponential distributions with 6 years and 3 years, re-
spectively.

What is the probability that the first claim from a good driver
will be filed within 3 years and the first claim from a bad driver
will be filed within 2years?
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8-58. The lifetime of a printer costing 200 is exponentially distributed
with mean 2 years. The manufacturer agtees to pay a full refund
to a buyer if the printer fails during the first year following its
purchase, and a one-halfrefund ifit fails during the second year.

If the manufacturer sells 100 printers, how much should it expect
to pay in refunds?

8-59. The number of days that elapse between the beginning of a

calendar year and the moment a high-risk driver is involved in an
accident is exponentially distributed. An insurance company
expects that 30o/o of high-risk drivers will be involved in an
accident during the first 50 days ofa calendar year.

What portion of high-risk drivers are expected to be involved in
an accident during the first 80 days ofa calendar year?

8-60. An insurance policy reimburses dental expense, X, up
maximum benefit of 250. The probability density function
is:

251

toa
for X

.f(x) =

wherecisaconstant.

f -o.oo+.r

\',"
l.0

for x20
otherwise

Calculate the median benefit for this policy.

8-61. You are given the following information about N, the annual
number of claims for a randomly selected insured:

P(N=0) = P(N =1) = + P(N > 1)

Let,S denote the total annual claim amount for an insured. When
N = l, S is exponentially distributed with mean 5. When N > I,

S is exponentially distributed with mean 8.

Determine P(4<S<8).

:1
6

1
2
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8-62. An insurance company issues 1250 vision care insurance
policies. The number of claims filed by a policyholder under a
vision care insurance policy during one year is a Poisson random
variable with mean 2. Assume the numbers of claims filed by
distinct policyholders are independent of one another.

What is the approximate probability that there is a total of
between 2450 and 2600 claims during a one-year period?

8-63. The total claim amount for a health insurance policy follows a
distribution with density function

f (x)

The premium for
claim amount.

_T
e 1000 for x>0

l

the

I
1000

policy is set at 100 over the expected total

If 100 policies are sold, what is the approximate probability that
the insurance company will have claims exceeding the premiums
collected?

8-64. A city has just added 100 new female recruits to its police force.
The city will provide a pension to each new hire who remains
with the force until retirement. In addition, if the new hire is
married at the time of her retirement, a second pension will be
provided for her husband. A consulting actuary makes the
following assumptions:

(i) Each new recruit has a 0.4 probability of remaining with the
police force until retirement.

(ii) Given that a new recruit reaches retirement with the police
force, the probability that she is not married at the time of
retirement is 0.25.

(iii) The number of pensions that the city will provide on behalf
of each new hire is independent of the number of pensions it
will provide on behalf of any other new hire.

Determine the probability that the city will provide at most 90
pensions to the 100 new hires and their husbands.
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8-65. In an analysis ofhealthcare data, ages have been rounded to the
nearest multiple of 5 years. The difference between the true age

and the rounded age is assumed to be uniformly distributed on
the interval from -2.5 years to 2.5 years. The healthcare data are
based on a random sample of 48 people.

What is the approximate probability that the mean of the rounded
ages is within 0.25 years of the mean of the true ages?

8-66. A charity receives 2025 contributions. Contributions are assumed
to be independent and identically distributed with mean 3125 and
standard deviation 250.

Calculate the approximate 90th percentile for the distribution of
the total contributions received.



Chapter 9
Applications for Continuous

Random Variables

9.1 Expected Value of a Function of a Random Variable

9.1.1 Calculatine EIg(X)l

In Section 7.3.2 we gave the integral which is used for the expected
value of g(X), where X is a continuous random variable with density
function /(r).

r.x:E[s(X)): I gQ).f(r)dr
Jx

In this section we will give a number of applications which require cal-
culations of this type.

9.1.2 Expected Value of a Loss or Claim

Example 9.1 The amount of a single loss X fbr an insurance
policy is exponential, with density function

f (r) : '002e- oo2',

for r ) 0. The expected value of a single loss is

E(X):.U1U, : SOO. tr
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Example 9.2 (Insurance with a deductible) Suppose the insur-
ance in Example 9.1 has a deductible of $100 for each loss. Find the
expected value of a single claim.

Solution The amount paid for a loss c is given by the function
g(r) below.

g@: {9 9^'" < loo

[(r-100) 100<r

The expected amount of a single claim is

rooEts6\ : I s@) . (.002e-'oo2tS dx
Jo

r6: I (r - looX.ooru-'oohydr
J loo

: -s-'002t72+a00)l*o : 500e-20 x 409.37. tr

Example 9.3 (lnsurance with a deductible and a cap) Suppose the
insurance in Example 9.1 has a deductible of $100 per claim and a

restriction that the largest amount paid on any claim will be $700.
(Payments are capped at $700, so that any loss of $800 or larger will
receive a payment of $800 - $100 : $700.) Find the expected value of
a single claim for this insurance.

Solution The amount paid for a loss r is given by the function
h(r) below.

(o o<z<1oo
h(r): ( (r- 100) 100 < z ( 800

Izoo r>soo-

The expected claim amount E[h(X)] is

l@
Eth(x)l : I h@). (.002e- oo2r)dr

Jo

1"800 fx: I (z - 100)(.002e-002'1dr + | 700(.002e-'oo',)d,../roo Jeoo

- -"- 00211"+400)l::: * 700(-e- oor,)lilo

x 167.09 + 141.33 : 308.42. tr
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Calculations of the expected value of the amount paid for in-
surance with a deductible or for an insurance with a cap are very impor-
tant in actuarial mathematics. Because of this, there is a special notation
for each of them.

The expected value of the amount paid on an insurance with loss
random variable X and deductible r is written as E[(X-z)*]. In
Example 9.2we found E[tX - 100)+].

The expected value of the amount paid on the insurance with
loss random variable X and cap c is written as E [(X n 

")J 
.

In the advanced actuarial text Zoss Models: From Dale to
Decisionsl there are formula tables that give simple algebraic formulas
for these amount paid expected values for many random variables
(including the exponential), thus enabling you to skip the integrations
and proceed rapidly to the answer. It is not necessary to master this
advanced material at this point, but it is good to know that a very useful
simplification is available in many cases.

9.1.3 Expected Utility

In Section 6.1.3 we looked at economic decisions based on expected
utility. The next example illustrates the use of expected utility analysis
for continuous random variables.

Example 9.4 A person has the utility function u(ra): Ufi,
which measures the utility attached to a given level of wealth u. She can
choose between two methods of managing her wealth. Under each
method, the wealth W is a random variable in units of 1000.

Method 1: Wr is uniformly disfributed on [9,11]. Then the expected
value is E(Wr): 10 and the density function is

fr(w): ),for9 < u ,-lI.

Method 2: Wz is uniformly distributed on [5, l5]. Then the expected
value is E(Wz\: 10 and the density function is

I See [8]

fz(w):1f,fo.5(u(15.
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The two methods have identical expected values, but the investor bases

decisions on expected utility. The expected utilities under the two

tl5
J

rl5
Method 2: Etu(W)l : J, Ji ; a.

- 'u,'-t l'5 = :.t:r: Is

The person here will choose Method 1 because it has higher expected
utility. Economists would say that a person with a square root utility
function is risk averse and will choose W1 because W2 is riskier. tr

9.2 Moment Generating Functions for Continuous
Random Variables

9.2.1 A Review

The moment generating function and its properties were presented in
Section 6.2. The moment generating function of a random variable X
was defined by

Mx(t): E(etx).

The moment generating function has a number of useful properties.

(1) The derivatives of Mx(t) can be used to find the moments
of the random variable X.

Mk@ : E(X), Mk@ -- E(X\, ... , nrf){o) : E(x")

(2) The moment generating function of aX * b can be found
easily if the moment generating function of X is known.

Mnx+t'(t): etb ' M{at)

methods are as follows:

Method 1: E[u(W)): 
lnt'

li .|a.
rll

I ry 3.16
lq
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(3) If a random variable X has the moment generating function
of a known distribution, then X has that distribution.

All of the above properties were developed for discrete random
variables in Chapter 6. All of them also hold for continuous random
variables. The only difference for continuous random variables is that
the expectation in the definition is now calculated using an integral.

Moment Generating Function
X continuous with density function /(r)
II1Q) : E(etx) : [- "" 

. f (r)d,r (9.1)
J--

Some continuous random variables have useful moment generating
functions which can be written in closed form and easily applied, and

others do not. ln the following sections, we will give the moment
generating functions for the gamma and normal random variables
because these can be found and will have useful applications for us. 'I-he

moment generating function of the uniform distribution will be left as an
exercise. The beta and lognormal distributions do not have useful mo-
ment generating functions, and the Pareto moment generating function
does not exist.

9.2.2 The Gamma Moment Generating Function

The gamma distribution provides a nice example of a distribution which
looks complex, but has a simple moment generating function which can

be derived in a few lines. To derive it, we will need to use the integral
given in Equation (8.10).

fnn 
,'"-"'d,, : (q*! , for a) o and n > -1

This identity is valid if n is not an integer. If n is an integer, then
f(n+l): n!. Using the identity we can find I'Ix(t) for a gamma
random variable X with parameters a and 0.We will need to assume

that we are only working with values of f for t < p, so that P - t > 0.
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/o.
hlr(t) : 

Jn 
et' . [1t'1dr

: 
lr* 

,,, . ffir"-t e-0, d,r

: !:- fn ro-tr.-(t3 tv 4,_ fl")Jn r

:ffi(ds) : (&)"
Moment Generating Function for the Gamma Distribution

Parameters a and p

MxQ):(&)",fort<B Q.2)

We can now use Mx(t) to find the mean and variance of a gamma
distribution. It is convenient to rewrite Mx(t) as a negative power
function.

Mx(t): B"(B-t)-"

Mk(t): a0"(0-t)-(a+r)

Mxft\ : s(a*l)p"(P - t)-@+21

MkQ): a0"(g-0)-(a+tr : fr : E(X)

Mk@: a(aIl)13"(13-0)-(o+z) - a(gl'l) : E(X2)
lJ'

V(x): E(x\-lE(X)1'z : ft
We have now derived the mean and variance of the gamma distribution.
Since the exponential distribution is the special case of the gamma with
(t : 7, we have also found the moment generating function for the
exponential distribution.
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Moment Generating Function for the Exponential Distribution
Parameter B

MxQ):u+, fortlB (9.3)
lt 

- 
L

9.2.3 The Normal Moment Generating Function

We will not derive this function, but will use it to derive an important
properly of the normal distribution.

Moment Generating Function for the Normal Distribution
Parameters p, and o

_2.2

Mx(t) : sttt+Lf (9.4)

We can now use Mx(t) to find E(X).
_2,2

Mk@ : e,t+"f (p. + ozt\

MkQ) : tt

The reader is asked in Exercise 9-11 to find E(Xz) and V(X) using the

moment generating function.
Suppose X has a normal distribution with mean p, and standard

deviation o, and we need to work with the transformed random variable
Y : aX * b. Property (2) of the moment generating function enables us

to find Mv(t).

Mox+u(t): 
"'b 

'Mx@t): etb '"uot+"$

- o@u+ilt+$!

The last expression above is the moment generating function of a normal
distribution with mean (ap* b) and standard deviation lalo' Thus

Y : aX * b must follow that distribution. We have derived the follow-
ing property of normal random variables. This property was stated

without proof in Section 8.4.3.

261
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Linear Transformation of Normal Random Variables

Let X be a normal random variable with mean p" and standard
deviation o. Then Y : aX * b is a normal random variable with
mean (apt * b) and standard deviation lalo.

The moment generating function will prove very useful in Chapter
l l when we look at sums of random variables.

9.3 The Distribution of Y : g()()

9.3.1 An Example

We have already seen simple methods for finding EISq)l andVlg(r)1,
but the mean and variance alone are not sufficient to enable us to calcu-
late probabilities for Y : S(X). Calculation of probabilities requires
knowledge of the distribution of Y. The reasoning necessary to find this
distribution has already been used. It is reviewed in the next example.

Example 9.5 The monthly maintenance cost X for a machine is
an exponential random variable with parameter p :.01. Next year costs
will be subject to 5%, inflation. Thus next year's monthly cost is
Y : 1.05X. Find (a) E(Y); (b) P(y < 100); (c) the cumulative distri-
bution function Fv@).

Solution
(a) The given information implies that

E(X): /: roo.

Then E(Y) :1-058(X): 105. We did not need to know
the distribution of Y for this calculation.

(b) We know that the cumulative distribution function for X is

Fx@) - I - " 
otx,z ) 0.

Some simple algebra allows us to find the desired probabi-
iify for Y using the known cumulative distribution for X.
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P(Y < 100): P(l.05X < 100)

: p(x < lqq)-' \" -. 1.05/

: r" (#) : r - "- 
o'(#) x .6t4

(c) We have just found P(Y < 100) : fl'(100). The same

logic can be used to find P(Y < y) : Fvfu) for any value
ofg > 0.

Fv@): P(Y I a): P(1.05X < Y)

: P(x < J:)' \'^-: l'05/

:P,(-4-):l-"-o'(#)- ^ \ 1.05/

Note that the set of all possible outcomes for X is the interval [0, oo).
The set of all possible outcomes for Y : 1.05X is the same interval. D

9.3.2 Using Fx@) to Find Fv@\forY: s(X)

The method of Example 9.5 can be used in a wide range of problems.

Example 9.6 Let X be exponential with 0 :3. Find the cumula-
tive distribution function for Y : JV.

Solution We know that Fy@) - | - e-3'.

Fv@): P(Y '1 a): PtG S al

: p(X < a2)

:F.u(g2) :l-e-lc'

The sample space for Y is the interval [0, -). Thus Fy(g/) is defined for
y > 0. Note that Fv(A) is the cumulative distribution function for a

Weibull random variable with a :2 and 0 - 3. tr
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Example 9.7 Let X be exponential with 0 :3. Find the cumula-
tive distribution function for Y : I - X.

Solution We know that .9y(r) : s-32.

Fv@): P(Y 3a): P(l - X Sa)

:P(l-a<X)

: sx(1 - a): e-3(r-g)

The set of all possible outcomes for X is the interval [0, m). The set of
all possible outcomes for Y - I - X is the interval (-m,ll. This
example shows that the sample space for Y may differ from the sample
spacefor X. tl

Finding Fv@) gives us all the information that is needed to
calculate probabilities for Y. Thus there is no real need to find the
density function fv@). If the density function is required, it can be
found by differentiating the cumulative distribution function.

fv@): &r"to>

Example 9.8 Let X be exponential with 0 :3. The density
function forY :1 - X is

fv@): ,^L.p-tt,-ot1: ls-3(l-v;, for 9 ( l. trda'

In each of the previous examples the function g(r) was strictly increas-
ing or strictly decreasing on the sample space interval [0, oo). Careful
attention is required if g(r) is not restricted in this manner.

Example 9.9 Let X have a uniform distribution on the interval

L-2,2). Then for -2 1 a < b < 2,

b-a--4-P(a<X<b):
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Suppose thatY : X2. The sample space forY isthe interval [0,4]. For
g in this interval,

Fv@): P(Y 4 a): P(Xz < a)

: P(lxl < ,n)
: P(-,,fr < x S \fr)

_ Jt-eJil _ &4 - 2'

9.3.3 Finding the Density Function for Y : g(X)
When g(c) Has an Inverse Function

Examples 9.5 through 9.7 were much simpler than Example 9.9. We will
see that this is due to the fact that the function 9(r) was either strictly
increasing or strictly decreasing on the sample space interval for X in
Examples 9.5 through 9.7. For a strictly increasing or decreasing
function g(r), we can find an inverse function h(9) defined on the

sample space interval for Y. The reader should recall that if h(g) is the

inverse function of g(z), then

h[s(r)]: 7
and

slh(a)l: a.

The inverse functions for Examples 9.5 through 9.7 are given in the

following examples.

Example 9.10 In Example 9.5, g(r):1.05r, for r ) 0. Then
h(a) : 911.05, for gr ) 0. tr

Example 9.11 In Example 9.6, g(r): Ji, for r ) 0. Then

h(0:y2,foty20. n

Example 9.12 In Example 9.7, g(r) - I - r, for r ) 0. Then

h(a): | - A, for gr ( 1. tr
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Example 9.9 was more complicated because the function
g(r) : 12, for -2 { r < 2, did not have an inverse function. We can
see why things are simpler when inverse functions are available if we
look at two general cases and repeat the reasoning of our previous
examples.

Case 1: g(r) is strictly increasing on the sample space for J(.
Let h(y) be the inverse function of g(r). The function h(a) will also be

strictly increasing.In this case, we can find Fv@) as follows.

Fv@): P(Y I y): P(s(X) < a)

: Plh(s(X)) < h(y)l

: P(X < h(0)

: Fx(h(a))

We can now find the density function by differentiating.

fv@): hr"t r: &rr@ril) 
: Fk1.a@)).h,(0 : f x@@)).h,(E)

Case 2: 9(r) is strictly decreasing on the sample space for X.
Let h(y) be the inverse function of g(r). The function h(a) will also be
strictly decreasing. In this case, we can find Fv@) as follows.

Fv@): P(Y I a): P(sq) < a)

: P[h(s(X)) > h(s)]

: P(X > h(D)

: Sx(h(a))

We can now find the density function by differentiating.

fv@): &o'to: &t"@@))
: &rt - Fxirn@)))

: - Fk(h(aD . h' (il : - 7 
"(h(uD 

. h' (a)
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Since h(y) is decreasing, its derivative is negative. Thus the final expres-
sion in the preceding derivation is positive.

f x (h(y)) ' (- h' (aD : f x (h(y)) . lh' (01

The final expression above also equals fv(A) in Case 1, since h(g) is
positive in Case 1. We have derived a general expression for fv@)
which holds in either case.

Density Function for Y : S(X)
Let g(r) be strictly increasing or strictly decreasing on the domain
consisting of the sample space. Then

fv@) : fx(h(y)).1h,(01. (e.sa)

Example 9.13 ln Example 9.6, g@): G, for r ) 0 and

h(0:yz, for y> 0. The random variable X was exponential with

0 :3 and density function f x@) :3e-3'.If Y : JV :9(X), then

fv@) : f x@2)'l2al : 3e-3v' '2v, for v >- 0. D

Example 9.14 In Example 9.7, g@) - I - r, for r ) 0 and
h(a) -- | - A, for y ( 1. The random variable X was exponential with
0:3 anddensityfunction fx@):3e-3'.lf Y : I - X: g(X),then

fv(fi: fx\ -a).j.-11 : 3"-r1t-u),forg < 1. D

Some texts use a slightly different notation for this inverse func-
tion formula. Since the inverse function gives r as a function of g, we
can write r : h(A). Then the derivative of h(y) is written as

n'@): #.
Using this notation, our rule becomes the following:

Density function for Y : S(X)
Let g(r) be strictly increasing or strictly decreasing. Then

fvtu) : f x@tu)) l#l (e'sb)

267
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9.4 Simulation of Continuous Distributions

Chapter 9

9.4.1 The Inverse Cumulative Distribution Function Method

The inverse cumulative distritrution method (also known as the
inverse transformation method) is the simplest of the many methods
available for simulation of continuous random variables. If X is a

continuous random variable with cumulative distribution function .tr(z),
a randomly generated value of X can be obtained using the following
steps:

(1) Find the inverse function F '(r) for F(r).
(2) Generate a random number u from [0, 1).
(3) The value r : F- l1z; is a randomly generated value of X.

This procedure requires that we find the inverse function -P l(r), and
this may be difficult to do. However the inverse method works simply
when the inverse is easy to compute. This is illustrated in the next
example.

Example 9.15 Let X have the straight line density function

The graph of this straight-line density function is shown in the next
figr-rre.

fo: {3 h;:"'

Y:x/2

t.00

0.80

0.60
/ 

o.+o

0.20

0.00

1.5 2

The cumulative distribution function F(r) is given by
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F(r):
0( r( 2

r <1 0

r)2
F(z) is strictly increasing on the interval [0,2]. The inverse function is

F-'('):zrt, lbr0< ull'
To generate values of X, we generate random numbers z from [0, 1) and
calculate r : F-t (u). The next table shows the result of generating 5

random numbers u and transforming them to values of X, r : F l(z).

Trial ,IL F '(u)
I
2

3

4
5

15529095
32379337
.1 860507
41523288
21343523

0.7881395
1.1 380569
0.8626719
1.2887713
0.923981

To illustrate how well this simulation method works, we generated
1000 values of X. The next figure gives a bar graph showing the percent
of simulated values in subintervals of [0,2]. The bar graph displays the
triangular shape of the densify function.

Simulation Results

ffi

0.0 0.2 0.4 0.(r 0.8 I .0 t .2 1.4 t.6 r .8 2.0

-r

{r
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The results on the previous page indicate that the method works fairly
well, but does not show why. A look at the graph of F(r) might help
give an intuitive understanding of the method.

F(x )

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0. l0

0.00

The inverse function takes us from a value selected from [0, 1) (the range
of F) back to a value of r in the domain of -F. As we pick values at
random from [0, ]) on the g-axis above, the inverse procedure will
convert them into random values of X on the r-axis. The proof that the
procedure works is not given here. It relies on the fact that the trans-
formed random variable U : F(X) is uniform on [0, l). This is covered
in Exercise 9-16.

9.4.2 Using the Inverse Transformation Method
to Simulate an Exponential Random Variable

To simulate an exponential random variable with parameter pr, it is
necessary to find the inverse of the cumulative distribution function
F(r) : I - e-t". This is done by solving the equation r : F(A) for A.

r-l-e-Pa

e-tta:l_r

-Ha: ln(\ - t)
ln(l - r\y__T:F-t(r)

tr



Applications for Continuous Random Variables

In the next table we show the result of transforming 5 random
numbers from [0, l) into values of the exponential random variable X
with pr : 2.ln this case

p-,(u) - -ln(l- 
u)

Trial u F-t (u)

I
2
J

4
5

407381
892484
297554
485448
798462

0.261602
1. l I 5058
0.176593
0.332230
0.800889

The graph below shows the results of 1000 trials in this simulation.
The graph shows that the simulation produced values whose distribution
approximated the shape of an exponential density function.

9.4.3 Simulating OtherDistributions

The inverse transformation method can be applied to simulate other distri-
butions for which F t(r) is easily found. Exercises 9-17 and 9-18 ask the

271
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reader to do this for the uniform2 and Pareto distributions. Unfortunately,
some useful distributions do not have closed forms for F(r) which allow
a simple solution for F-l(r). This is true in the case of the most widely
used distribution, the normal. Fortunately other methods are available.
The inverse function can be approximated numerically, or entirely
different methods can be used. Such work is beyond the scope of this
course, but it is incorporated into computer technology that gives all of us
the capability of generating values from a wide range of distributions. The
spreadsheet EXCEL has inverse functions for the normal, gamma, beta
and lognormal distributions. The statistics program MINITAB will
generate random data from the uniform, normal, exponential, gamma,
logrormal, Weibull and beta distributions.

9.5 Mixed Distributions

9.5.1 An Insurance Example

ln some situations, probability distributions are a combination of dlscrete
and continuous distributions. The next example illustrates how this may
happen naturally in insurance.

Example 9.16 An insurance company has sold a warranty policy
for appliance repair. 90o/, of the policyholders do not file a claim. 10%
file a single claim. For those policyholders who file a claim, the amount
paid for repair is uniformly distributed on (0,10001. ln this situation, the
probability distribution of the amount X paid to a randomly selected
policyholder is mixed. The probability of no claim being filed is
discrete, but the amount paid on a claim is continuous. Before we can

describe the distribution of the amount X, we need to look more
carefully at its components.

The discrete part of this problem is the distribution of ly', the
number of claims paid. The distribution of l/ is shown in the following
table.

2 Note that the linear
is actually simulating a

can be used to simulate

congruential generator used to produce random numbers in [0, l)
uniform distribution on [0, l). The inversc transformation method
a unilorm distribution on any other interval.

rL 0 I
p(n) .90 .10
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The continuous distribution for claim amount applies only if we are
given that a claim has been filed. This is a conditional distribution. In
more formal terms

P(X < zlIy': l): F(rll/: l): Tfu, for0 < z < 1000.

The insurance company needs to find the cumulative distribution func-
tion F(r) : P(X ( r) for X, the amount paid to any randomiy selected
policyholder. This can be done in logical steps.

Case 1: fr < 0. The amount paid cannot be negative. If z < 0,
P(X<r):F(7):Q.

Case 2: r :0. The probability that X : 0 is .90, the probability
that,A/:0.ThenF(0): P(X < 0): P(X:0):.90.

Case 3: 0 < a < 1000. This case requires a probabiliry calcula-
tion.

F(r) : P(X < r) : PIX : 0 or0 < X < rl
: P[(l/ :0) or (l/ : I and X < r\]
: P(l/ : o)* P(l/ : 1 and X < r)
: P(// : 0) * P(X < rlly' : l)'P(l/ : l)

nn , ( r \,:.e0* ldoo/(.r0)

000. AII claims are less than or equal to 1000, soCase4: s> l
P(X<0):1.

We can now give a co

r-(r) :

mplete desc

J3,

l,no* 'o

ription

(r
\1000

of F(z) : P(X < r).

r<0
r:0

) o.r<1000,/-
z > 1000
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The graph of F(r) on the interval [0, 1200] is shown below.

F(x)

The cumulative distribution function can now be used to find probabili-
ties for X. For example,

p(x <s00) - r'(s00) : .e0* to(#&) : .e5.

Care is necessary over the use of the relations ( and ( because of the

mixture of discrete and continuous variables. The preceding probability
is not the same as P(0 < X < 500).

P(0 < x < 500): F(500)-F(0):.95-.90:.05 D

9.5.2 The Probability Function for a Mixed Distribution

It is usually easier to derive the cumulative distribution function F(r)
for a mixed distribution, but problems can also be stated using a mixed
probability function which is partly a discrete probability function and

partly a continuous probability density function. In the next example, we

find the combined probability function for the insurance problem.

Example 9.17 The probability function p(r) for Example 9.16 can

also be found in logical steps.

Case 1: r 10. Values less than 0 are impossible, so P(r) :0.

Case 2: r :0. Since the probability of no claim is .90, we see

that P(0) : .90.
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Case 3: 0 < x < 1000. In this case, x is a continuous random
variable. For a continuous random variable, p(x)=/(,x) is the

derivative of F(;r). We can find /(x) for this interval by taking

the derivative of the formula for 
^F 

(x) on this interval.

p(x) -- .f(x) = F'(x) = *(uo. to(*h)) = ooor

Case 4: r > 1000. This is impossible. pQ) =0.

We can summarize the probability function in the following definition by
cases.

I o x<o
I .qo .x=o

n(-r) = i'\/ 1.0001 0<xS1000

I o x>rooo

This mixed distribution is continuous on (0,1000] and is said to have a

point mass at x=0. It is graphed below, with the point mass indicated
by a heavy dot.

9.5.3 The Expected Value of a Mixed Distribution

For discrete distributions, the expected value was found by summation
of the probability function.

E(X) = Zr'p(r)

Mixed Density Function

llllll

0 200 400 600 800 1000 r
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For continuous distributions, the expected value was found by integra-
tion of the density function.

fnE(X): I r.f\r)dr
J-

For mixed distributions we can combine these
random variable is discrete, and integrate where it
done in the next example.

Example 9.18 For the insurance example,
bility function just derived.

E(X): r(.0001)dr : 50

9.5.4 A Lifetime Example

In the next example, we will apply the reasoning used above to the life-
time of a machine part.

Example 9.19 When a new part is selected for installation, the
part is first inspected. The probability that a part fails the inspection and
is not used is .01. If a part passes inspection and is used, its lifetime is
exponential with mean 100. Find the probability distribution of 7, the
lifetime of a randomly selected part.

Solution Let .9 be the event that a part passes inspection. Then
P(.9): .99 and P(-S):.01. The given exponential distribution is the
conditional distribution of lifetime for a part that passes inspection.
Since the mean is 100, the parameter of the exponential distribution is
) : .01.

P(f <tl S) : 1 - e-or' : F(ll,S), fort ) 0

The cumulative distribution function F(l) : P(T ( l) can be found in
steps, as before.

Case 1: t < 0. Values less than 0 are impossible, so F(t; : g.

Case 2: t : 0. When a part fails rnspection, it is not used and
T :0. F(0) : P(T < 0): P(T: 0) : .01.

ideas, sum where the
is continuous. This is

we can use the proba-

D.eo(o) + 
ln'*o
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Case3: t > 0.

F(t) : P(T 1>t) : P(T : 0) * P(0 < T < t)

: P(-.9) + P(S and (T < t))

: P(-S) + P(T < ,l ,s) ' P(s)

Then F(f) is given by 
: '01 + (1-e - 0rt)'99

The probability function is

9.6 Two Useful Identities

In this section we will give two identities which are used in risk manage-
ment applications. In each case, we will state the identity first, then give
an application to illustrate its use and finish with a discussion of the

derivation.

9.6.1 Using the Hazard Rate to Find the Survival Function

Let X be a random variable defined on [0, oo). If we are given the hazard
rate .\(r), we can find the survival function S(r) using the identity

512.1 : s- td \r"\a" (e.6)

Example 9.20 In Section 8.7.5, we showed that the hazard rate for
a Weibull distribution with parameters o and B was

Xz) : a[)ro-t'

(o r<o
F(1): {.01 l:0.

[.ll1t-"-ort; r>o

(o t<o
p(f): ( .01 / :0.

[.os1.or"-orr; r>o
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: 0ro .The identity shows

tr

.f'f'
Then / \(u)du: 

J,
that S(z) : s-1r' .

a\u"-t du: \u"l',

To derive this identity, recall that

S'(r) : *O -F(r)) : - f(r).

.\(r):& : - 4h s(r\.
CIT

By definition,

Then

t:),(u)du: -InS(")lo : -lnS(r) + lnl: -ln S(r).

Thus

e-li^(qa" - "tns(r): 
.g(z).

9.6.2 Finding E(X) Using,S(c)

Let X be a random variable defined on [0, oo). If we are given the
survival function S(z) : 1 - F(r), we can find the expected value of X
using the identity

E(x): 
Io* 

tr"ra": 
lo- {r - F(r))dr. (e.7)

Example 9.21 In Section 8.2.4, we showed that the survival
function for an exponential random variable with parameter B was

S(r) - s 0',

forr)0.Then

E(x): [*"-u'd.t:" Tl* :o -+:+. D
Jo -'u lo -P P

t:
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This identity is derived using integration by parts. The definition
of E(X) is

E(X) = {" r' f (t)dr.
Jo

If we take

1L:r u:-(l-F(z))
du: dr fly: f(r)dr

we obtain

E(x) : -r(t -F('))l- * [* 0 - F(r))d,rto Jo

-o- o+ [" sg)d.r : [- s67ar.
Jo Jo

In this derivation, we have made use of the fact that

lryk"t'- F(z)) : s'

This requires proof:

/Prc

l,yJ".s(z) : !,1:" J, f (ildu

rx: Iim I *' f (y)dy
t-xJ r

fx
t j,*J, a'f(Dda: o

The last equality above will hold if E(X) is defined, since

fxE(X): I y f(y)dv.
Jo
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9.7 Exercises

9.1 Expected Value of a Function of a Random Variable

9-1 . Suppose the amount of a single loss for an insurance poiicy has
density function f (r):.991"- 001r, for r ) 0. If this policy has
a $300 per claim deductible, what is the expected amount of a

single claim for this policy?

9-2. If the policy in Exercise 9-1 also has a payment cap of $1500 per
claim, what is the expected amount of a single claim'/

9-3. Work Example 9.4 using the utility function u(ta): ln(tu).
What are Elu(W1)l and E[u(W)l?

9.2 Moment Generating Functions of Continuous Random
Variatrles

9-4. Let X be the random variable which is uniformly distributed
over the interval [a, bl. Find Atxft).

9-5. Find E(X) for the random variable in Exercise 9-4 using its
moment generating function.

9-6. Let X be the random variable whose density function is given by
f (r):2(1 - r), for 0 ( r 11, and /(r):0 elsewhere. Find
Mx(il.

9-7. Find E(X) for the random variable in Exercise 9-6 using irs
moment generating function. (Note: the derivative of ,41(t) is not
defined at 0, but you can take the limit as t approaches 0 to find
E(X).This is a much more difficult way to find E(X) than
direct integration for this particular density function.)

9-8. If the moment generating function of X is (;-)s. identify the

random variable X.
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9-9. If X is an exponential random variable with.\:3, what is the
moment generating function of Y : 2X + 5?

9-10. Let X be the random variable whose moment generating func-
tion is e\+i). Find E(X) and,V(X).

9-11. Let X be a normal random variable with parameters;z and o.
Use the moment generating function for X to find E(X2). Then
show that V(X) : 02.

9.3 The Distribution of Y : g(){)

9-12. Let X be uniformly distributed over [0, 1] and Y : ex . Find (a)
Fv@); (b) fv@)-

9-13. Let X be a random variable with density function given by
fx@):3tr-4, for z ) 1 (Pareto with a:3,9:1), and let
Y : lnX. Find Fy.(A)

9-14. If X is the random variable defined in Exercise 9-13 and
Y : ltX, find (a) Fv(a); G) /v(s).

9-15. The monthly maintenance cost X of a machine is an exponential
random variable with unknown parameter. Studies have deter-
mined that P(X > 100) : .64. For a second machine the cost Y
is a random variable such that Y : 2X . Find P(Y > 100).

9.4 Simulation of Continuous Distributions

9-16. For a continuous random variable X, show that F(X) is uni-
formly distributed over [0, 1]. (i.e., show P[F(X) < ,l: r, for
0(z(1.

281



For Exercises 9-17
numbers in [0, 1).

t. .90463
2. .17842
3. .55660
4. .55071
5. .96216

and 9-18, use

6. .81008
7. .49660
8. .92602
9. .71129
10. .39443

the following sequence of random

I I . .15533 16. .31239
12. .29701 17. .68995
13..82751 18..77787
t4. .67490 19. .66928
15. .68556 20. .53100
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9-17. Let X be uniformly distributed over [0,4], and use the above
random numbers to simulate F(r). How many of the trans-
formed values r : F-t(u) are in each subinterval [0, l), Il,2),
[2,3) and [3,4)?

9-18. Let X have a Pareto distribution with c : 3 and 0 :3, and use
the above random numbers to simulate F(z). How many of the
transformed values u: F l(z; are in each subinterval [3,4),
[4,5), [5,6) and [6, o").

9.5 Mixed Distributions

9-19. For a certain type of policy, an insurance company divides its
claims into two classes, minor and major. Last year 90 percent
of the policyholders filed no claims, 9 percent filed minor
claims, and I percent filed major claims. The amounts of the
minor claims were uniformly distributed over (0, 1,000], and the
major claims were uniformly distributed over (1,000, 10,000].
Find F(z), for0 < r ( 10,000.

9-20. Find E(X) for the insurance policy in Exercise 9-19.

9-21 . An auto insurance company issues a comprehensive policy with
a $200 deductible. Last year 90 percent of the policyholders
filed no claims (either no damage or damage less than the
deductible). For the l0 percent who filed claims, the claim
amount had a Pareto distribution with a : 3 and 0 :200.If X
is the random variable of the amount paid by the insurer, what is
F(r),forr>t0?
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9.6 Two flseful Identities

g-22. Let X be a random variable with hazard rate )-(x) = tft, for

-r > 0. Find S(-r).

g-23. Let X be a random variable with hazard rate 2(x)= mi;, fot

0 < .x < 100. Find S(.r).

9-24. Let X be the random variable defined in Exercise 9-22. Use
Equation (9.7) to find E(X).

9-25. Let X be a random variable whose survival function is given

by S(.r)=+H,for 0<x<100, and S(x)=O for.r>100.

Use Equation (9.7) to find E(X)

9.8 Sample Exam Problems

9-26. An insurance policy pays for a random loss X subject to a

deductible of C, where 0 < C < l. The loss amount is modeled
as a continuous random variable with density function

^ (zx fbr o<x<l
I tx) : 

{o otherwise

Given a random loss X, the probabilrty that the insurance payment
is less than 0.5 is equal to 0.64.

Calculate C.

9-27. A manufacturer's annual losses follow a distribution wrth density
function

f z.s(o .6)2 s .
f (x) = ]-;- ttt x > o'6

lO otherwise

'Io cover its losses, the manufacturer purchases an insurance
policy with an annual deductible of 2.

What is the mean of the manufacturer's annual losses not paid by
the insurance policy?



284 Chapter 9

9-28. An insurance policy is written to cover a loss, X, where Xhas a
uniform distribution on [0, 1000].

At what level must a deductible be set in order for the expected
payment to be 25oh of what it would be with no deductible?

9-29. A piece of equipment is being insured against early failure. The
trme from purchase until failure of the equipment is exponentially
distnbuted with mean 10 years. The insurance will pay an amount
x if the equipment fails during the first year, and it will pay 0.5,r if
failure occurs dunng the second or third year. If failure occurs
after the first three years, no payment will be made.

At what level must x be set if the expected payment made under
this insurance is to be 1000?

9-30. A device that continuously measures and records seismic activity
is placed in a remote region. The time, Z, to failure of this device
is exponentially distributed with mean 3 years. Since the device
will not be monitored during its first two years of service, the
time to discovery of its failure is X = max(T,2).

Determine E[X].

9-31. An insurance policy reimburses a loss up to a benefit limit of 10.

The policyholder's loss, I, follows a distribution with density
function:

14 v>tf0) = 1v'
lO otherwise

What is the expected value of the benefit paid under the insurance
policy?

9-32. The warranty on a machine specifies that it will be replaced at
failure or age 4, whichever occurs first. The machine's age at
failure, { has density function

l+ for o<x<5
l(x) = {J

[0 otherwise

Let Ybe the age of the machine at the time of replacement.
Determine the variance of ).
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9-33. The owner of an automobile insures it against damage by
purchasing an insurance policy with a deductible of 250. In the
event that the automobile is damaged, repair costs can be
modeled by a uniform random variable on the interval (0,1500).

Determine the standard deviation of the insurance payment in the
event that the automobile is damaged.

9-34. An insurance company sells an auto insurance policy that covers
losses incurred by a policyholder, subject to a deductible of 100.

Losses incurred follow an exponential distribution with mean 300.

What is the 95th percentile of actual losses that exceed the
deductible?

9-35. The time, T,that a manufacturing system is out of operation has

cumulative distribution function
( , ^,2
lr -JZl for t >2|.(t)=i \l/
lo otherwise

The resulting cost to the company is Y =72 .

Determine the density function of Y, for y > 4.

9-36. An investment account eams an annual interest rate R that
follows a uniform distribution on the interval (0.04,0.08). The

value of a 10,000 initial investment in this account after one year

is given by V =10,000eR.

Determine the cumulative distribution function, F(v), of V for
values of v that satisfy 0 < F(v) < l

9-37. An actuary models the lifetime of a device using the random

variable Y =10X8, where Xis an exponential random variable
with mean 1 year.

Determine the probability density function f (y), for y >0, of
the random variable I'.
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9-3 8. Let Z denote the time in minutes for a customer service represen-
tative to respond to l0 telephone inquiries. I is uniformly
distributed on the interval with endpoints 8 minutes and 12

minutes. Let R denote the average rate, in customers per minute,
at which the representative responds to inquiries.

tion of the random variable R on the

9-39. The monthly profit of Company I can be modeled by a continu-
ous random variable with density function I Company II has a

monthly profit that is twice that of Company I.

Determine the probability density function of the monthly profit
of Company II.

9-40. A random variable Xhas the cumulative distribution function

[o for x<l

-F(x) = 1I+" for 1<x<2
I

U for x>2

Calculate the variance ofX.

Find the density func

intervar (19., = +)
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Multivariate Distributions

10.1 Joint Distributions for Discrete Random Variables

10.1.1 The Joint Probability Function

We have already given an example of the probability distribution X for
the value of a single investment asset. Most real investors own more
than one asset. We will look at a simple example of an investor who
owns two assets to show how things become more interesting when you
have to keep track of more than one random variable.

Example 10.1 An investor owns two assets. He is interested in
the value of his investments in one year. The value of the first asset in
one year is a random variable X , and the value of the second asset in one
year is a random variable Y. It is not enough to know the separate
probability distributions. The investor must study how the two assets

behave together. This requires a joint probabitity distribution for X
and Y. The following table gives this information.

The possible values of X are 90, 100 and I 10. The possible values of Y
are 0 and 10. The probabilities for all possible pairs of individual values
of z and y are given in the table. For example, the probability that

r
v 90 t00 110

0 .05 .27 .18

l0 15 .33 .02
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X :90 and y : 0 is .05. The probability values in this table define a
joint probability function p(r,g) for X and Y, where p(r,y) is the
probability that X : r lndY : A. This is written

p(r,y):P(X:r,Y:A).
For example,

P(90,0) : P(X :90,Y : 0) : .05.

The information here is useful to the investor. For example, when X
assumes its lowest value, Y is more likely to assume its highest value.
We will discuss the use of this information further in later sections. D

Definition 10.1 Let X andY be discrete random variables. The
joint probability function for X and Y is the function

p(r,A): P(X : x,Y : A).

Note that the sum of all the probabilities in the table in Example
10. I is 1.00. This must hold for any joint probability function.

DLo.,,u): I (10.r)
aa

Joint probabilify functions for discrete random variables are often given
in tables, but they may also be given by formulas.

Example 10.2 An analyst is studying the traffic accidents in two
adjacent towns. The random variable X represents the number of acci-
dents in a day in town -4, and the random variable Y represents the
number of accidents in a day in town B. The joint probability function
for X and Y is given by

p(r,u) : #,for r : 0,1,2,... and a - 0,1,2,....

The probability that on a given day there will be
and 2 accidents in town B is 

-_zp(l,2): f-ot = .068.

1 accident in town .4
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The above probability function must satisfy the requirement

IIp(", a) : l. If a probability function is given in a problem in this
zy

text, the reader may assume that this is true. For the above probability
function, it is not hard to prove that the sum of the probabilities is l.

nn# : 'f-(#f #) : .'ifi<"t
co

: "-':# : e-te:1

10.1.2 Marginal Distributions for Discrete Random Variables

Once we know the joint distribution of X and Y, we can find the
probabilities for individual values of X and Y. This is illustrated in the
next example.

Example 10.3 The table of joint probabilities for the asset values
in Example 10.1 is the following:

The probability that X is 90 can be found by adding all joint probabili-
ties in the first column of the table above.

P(X :90) : P(X :90,Y :0) + P(X :90,Y : 10)

.05+.15:.20

The probabilities that P(X : 100) and P(X : 110) can be found in the
same way. The probability that Y is 0 can be found by adding all the
joint probabilities in the first row of the table.

289

T
a 90 100 110

0 .05 .27 l8
10 15 .33 .02

P(Y :0) : .05 + .27 +.18 : .50
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The probability that Y is 10 can be found in the same way. It is efficient
to display the probability function table with rows and columns added to
give the individual probability distributions of X and Y.

The individual distributions for the random variables X and Y are called
marginal distributions. U

Definition 10.2 The marginal probability functions of X and Y
are defined by the following:

ny@) : I p@,a)
u

P','(a):lniu.,u)

(10.2a)

( 10.2b)

Example 10.4 The jornt probability function for numbers of acci-
dents in two towns in Example 10.2 was

p(r,a) - ",', -rlyl'

The marginal probabilify functions are

o(lrX_rlnx@):t#:iflLi:T":#
A=0 A=t,

and

py(u):*# :#*,+:T":+
Each marginal distribution is Poisson with .\ : L tr

T,
v 90 r00 110 p(v)

0 .05 .27 .18 .50

10 .15 .33 .02 .50

p(r) .20 .60 .20
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10.1.3 Using the Marginal Distributions

Once the marginal distributions are known, we can use them to analyze
the random variables X and Y separately if that is desired.

Example 10.5 For the asset value joint distribution in Examples
10.1 and 10.3,

P(X>100):.60*.20:.80
and

P(Y>0):.50.

Example 10.6 For the accident number joint distribution in
Examples 10.2 and 10.4, both X and Y were Poisson with ) : 1. Thus

P(X:2):P(Y:4:+. tr

In the following examples, we will calculate the mean and vari-
ance of the random variables in the last two examples. This information
is important for future reference, since we will find these expectations
by another method involving conditional distributions in Section 1 1.5.

Example 10.7 For the asset value joint distribution in Examples
10.1 and 10.3,

E(X) : e0(.20) + 100(.60) + 1 10(.20) : 100

and 
E(Y) :o(.50) + lo(.so) : 5.

To find variances, we first calculate the second moments.

E(x\ : 902(.20)+ 1002(.60) + 1 102(.20) : 10,040

E(Y\: o2(.so) + 102(.so) : so

291

tr

Then

and
V(X) :10,040 - 1002 : 40

V(Y) : 50 - 52 :25. tr
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Example 10.8 For the accident number joint distribution in
Examples 10.2 and 10.4, both X and Y were poisson with ) : 1. Thus
E(X) : E(Y) : V(X) : V(Y) : 1. tr

10.2 Joint Distributions for continuous Random variables

10.2.1 Review of the Single Variable Case

Probabilities for a continuous random variable x are found using a
probability density function /(r) with the following properties:

(i) f (") > 0 for all z.

(ii) The total area bounded by the graph of A : f @) and the r-
axis is 1.00.

f*
J *f @)dt: 1

(iii) P(o < X < b) is given by the area under A: f @) between
r:e,andr:b.

7b

P(a<X<b): | 7g1ar
Jo

It is important to review these properties, since the joint probability
densify function will be defined in a similar manner.

10.2.2 The Joint Probability Density Function
for Two Continuous Random Variables

Probabilities for a pair of continuous random variables X and y must be
found using a continuous real-valued function of two variables f (r,0.
A function of two variables will define a surface in three dimensions.
Probabilities will be calculated as volumes under this surface, and
double integrals will be used in this calculation.
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Definition 10.3 The joint probability density function for two
continuous random variables X and Y is a continuous, real-valued
function f (r,u) satisfying the following properties:

(i) f (r,D ) 0 for all r,y.
(ii) The total volume bounded by the graph of z : f (r,g) and

the r-y plane is L00.

(10.3)

(iii) P(a < X < b, c 1Y S d) is given by the volume between
the surface " 

: f (r,g) and the region in the r-y plane
boundedby r : a, tr : b, A : c andy : 4.

P(o< x <b,c:Y Sd): fu fo frr.y)d.ydr (10.4)
Jo J, -

Example 10.9 A company is studying the amount of sick leave
taken by its empioyees. The company allows a maximum of 100 hours of
paid sick leave in a year. The random variable X represents the leave
time taken by a randomly selected employee last year. The random
variable Y represents the leave time taken by the same employee this
year. Each random variable is measured in hundreds of hours, e.g.,
X : .50 means that the employee took 50 hours last year. Thus X and
Y assume values in the interval [0, 1]. The joint probability density
function for X and Y is

f(r,A) - 2- l.2r -.8y, for0 ( r < 1,0 < E < 1.

The surface is shown in the next figure.

I*l*tr,a)drda: I
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We will first verify that the total volume bounded by the surface and the
r-y plane is 1.

nt rt ft ^ rl

J, J, , - t.2r - .8y) dr dy : 
Jo 

,r, - .612 - srytl',:ody

7l: 
Jort.4 -.8y) da: l

To illustrate a basic probability calculation, we will find the probability
that X ) .50 and y > .50. ln the notation used in property (iii) of
Definition 10.3, we need to find

p(.so < x < 10,.s0 < ), < 1.0) = 
lr' lr' f(r.a)dydr

: [' l'' rr- t.2r-.8y) d.yd.xJsJ'

ft ' r

= JrQ, - t.2ry - .4a')lo=rd

f': 
J.rQ - '6")dr: '125'

The volume represented by this calculation is shown in the next figure.
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The region of integration for this probability calculation is the region in
the r-yplane defined by R : {(r,y)1.50 < z ( I and .50 < y < 1}. It
is often helpful to include a separate figure for the region of integratron.
This is given below.

In this example, the random variables X and Y were limited to the

interval [0, 1]. The next example gives random variables which assume

values in [0, oo). tr

Example 10.10 In Example 10.2, an analyst was studying the

traffic accidents in two adjacent towns, A and B. That example gave the
joint distribution of X and Y, the discrete random variables for the

number of accidents in the two towns. In this example we look at the

continuous random variables S and ?, the time between accidents in
towns A and B, respectively. The joint density function of ,5 and ? is

f(s,t)- "-(srt), 
fors ) 0 andt > 0.

We will first check that the total volume under the surface is 1.00.

L" l,-
The densify function can now be used to calculate probabilities. For
example, the probability that ,5 < I and T ( 2 is given by the following:

295

e-G+t)dsd,t: l, "'f-"-')llo d.t: l, "'11;dt: t
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P(o < ,s < 1, o < T i-2): 
Ir' lrt 

e-(s+t)dsdt

: 
Io' "'{-"-')l'-oat

r2
: | "-r1t_ e-11d,t

,J O

: (1 - "-rxl - "-2) 
x .54i tr

10.2,3 Marginal Distributions for Continuous Random Variables

ln Section 10.1.2, we found the discrete marginal distribution px@)by
keeping the value of r fixed and adding the values of p(r,y) for all y.
Similarly, pv(A) was found by fixing E and adding over r values. These

marginal probability functions are given by Equations (10.2a) and
(10.2b).

For continuous functions, the addition is performed continuously
by integration. Thus the marginal distributions for a continuous joint
distribution are defined by integrating over r or A instead of summing
over r ot a.

Definition 10.4 Let f (r,g) be the joint density function for the
continuous random variables X and Y. Then the marginal density
functions of X and Y are defined by the following:

f x@):

fv@):

L
I

f@,a)da

f (r, s) dr

( 10.5a)

(r0.sb)

The probability distributions of X and Y are referred to as the marginal
distributions of X andY.

Example 10.11 For the sick leave random variables of Example
10.9, the joint density function was f(r,A):2-1.2r-.8A, for
0 1 r < 1,0 I U 1 1. The marginal density functions are
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1t ^ rlIx@): | (2- l.2r - .8a)dy: (2s - l.2ry - .4u)l :1.6- I.2rJo ro

and
fl ^ tl

fvfu): I tZ- l.2r-.8A)dr: (2r-.612 -.8ru)l :1.4-.8A.Jo -ro 
tr

Example 10.12 For the joint distribution of waiting times for
accidents in Example 10.10, the joint probability density function was

f(s,t) - "-(s*t), 
for s ) 0 and, > 0. The marginal density functions

are

.fs(s): [" f o.t)d"t: [' "-r'*ttdt: " ' I e-td.t: e 'J n"' Jo Jo

and

fr(t): [* f o,t)ds: fo "-t'*'td": "-' fn "'"d,s: e-t.J *"' Jo J,

The marginal distributions of ^9 andT are exponential with.\ : l. D

10.2.4 Using Continuous Marginal Distributions

We can now use the continuous marginal distributions to study X andY
separately.

Example 10.13 Let X be the number of sick leave hours last year
and Y the number of sick leave hours this year from Example 10.9. We
showed in Example 10.11 that

fx@) : l'6 - l'2r,for0 ( r ( 1

and

fv(0: 7'4 - 89, for 0 ( E < l.

We can now calculate probabilities of interest.

P(x >.50) : 
L' U.u - t.2r) d,r : .35

P(Y >.so) : 
lr'ft.o- 

.8s) du : .40
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For each year the above probability is the probability that the sick leave
exceeds 50 hours. This probability has increased from last year to this
year. We can see the same type of increase if we calculate expected
values.

ft 1t
E(X): I ,. Ix@)dr: | (1.6r - 1.2r2)dt: .40

Jo Jo

7t pt
E(Y): I a. fv(ilda: I 0.4a - .8s2)ds : .43

Jo Jo

The mean number of sick leave hours has increased from 40 to 43.33. tr

Example 10.14 Let ,9 and 7 be the accident waiting times in
Example 10.12. The marginal distributions of ,9 and T each have an
exponential distribution with ) : l. Thus E(^9) : E(T) : 1 and
P(S>|):P(T )l):er. n

10.2.5 More General Joint Probability Calculations

In the previous examples, we have only used the joint density function to
find the probability that X and Y lie within a rectangular region in the
r-g plane.

P(a < x < b,c 1 Y I d) : fu fo frr,y)dyd.r
Jo J"

lntegration of the joint density function can be used to find the probabili-
ty that X and Y lie within a more general region R of the r-y plane,
such as a triangle or a circle. We will not prove this, but will use this fact
in applied problems. The general probability integral statement is

P((x,Y) e R): I l_rO,y)d.r 
d,s.

The next example is typical of the kind of probability calculation
which requires integration over a more general region.
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Example 10.15 Let X be the sick leave hours last year and I' the

sick leave hours this year as given in Example 10'9' Suppose we wish to

find the probability tirat an individual's sick leave hours are greater this

year than last year. This is P(Y > X). Recall that x and )' assume only

non-zero values in the rectangular region of the x-y plane' where

0 <x<1and 0.y.L TheregionR where Y>X isthetriangularhalf

of that rectangle Pictured below.

To find P(Y > X) we must integrate the density function over that

region.

P((x,l') e R) = I /* tr,,r) dx dv

/o' /r'' ,' -t '2x - '8v) dx tIY

fn' ,r* - 
.6x2 -.axv1ll-^ av

fo' ,r, -t'4vt) dv = f = '53

The probability that the number of sick leave hours for an employee

increases over the two years is .53. il
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10.3 ConditionalDistributions

10.3.1 Discrete Conditional Distributions

Chapter I0

We will illustrate conditional distributions by returning to our previous
examples.

Example 10.16 The joint probability function for the two assets
in Examples 10.1 and 10.3 is given belorv (with marginals included).

Suppose we are given that Y : 0. Then we can compute conditional
probabilities for X based on this information.

P(X :901Y : 0) : P(X:90, Y :0)
P(y:0)

p(90.0) _.05 _ rnp"lO--Jo--'''

- .27 - .n-50-''-P(X : l00lY - 0) : P(109'-0)- pY(o)

P(X:1101Y - 0): P(l19'-0)- pY(o)
.18 a.:io:''o

These values give a complete probability lunction p(rlY : 0) for X,
given the information that Y : 0.

In this calculation, the conditional probabilities were obtained by
dividing each joint probability in the first row of the table above by the
marginal probability at the end of the first row. A similar procedure
could be used for the second row to obtain the conditional distribution
forXgiventhatY:10.

a 90 100 ll0 pv@)

0 .05 .27 .18 .50

l0 .15 .5J .02 .50
po@) .20 .60 .20

r 90 100 110

p(zlo) .10 .54 .36



r 90 100 110

p(r110) .30 .66 .04

Mul t iv ar i a t e Di s tr i buti on s

The two conditional distributions show that there is a useful relation
between X and Y. When Y is low (y : 0), then X has a greater proba-

bilify of assuming higher values; when Y is high (Y : l0), then X has a

greater probability of assuming lower values. Thus X and Y tend to
offset the risk of the other.
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The calculation technique used here is summarized in the follow-
ing definition.

Definition 10.5 The conditional probability function of X,
given that Y : A, is given by

P(X -- rlY : 11: P(rlfi: P(t,,a) 
.' ny(a)'

Similarly, the conditional probability function of Y, given that X : r, is
given by

P(Y : ylx : r): p(glr\ - P(r'a))- P*(x)'

Example 10.17 The conditional probability function of Y, given
that X : 90, is given by

P(Y :olx: eo): #E : $: .zs

and

P(Y : rolx: eo): #H? : # : 15. rl

Example 10.18 In Example 10.2, the joint probabrlity function for
X and Y (the numbers of accidents in two towns) was given by

p(r,y): #.,forr: 0,1,2,... and a:0,1,2,....

In Example 10.4 we showed that the marginal probability functions were
Poisson with .\ : 1.

Ie'
7r

Ie'zlPs;(r) : ny(u):
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This enables us to compute conditional probabilify functions.

e-2p(rla):Wg:y:+
y!

Thus the conditional distribution of X, given Y - g, is also Poisson
with ,\: 1. The conditional distribution of Y, given X: tr, is also
Poisson.

,- Ip@lr): ? D

10.3.2 Continuous Conditional Distributions

Conditional distribution functions for two continuous random variables
X and Y are defined using the pattem established for discrete random
variables.

Definition 10.6 Let X and Y be continuous random variables
with joint density function f (x,A). The conditional density function for
X, given thatY - g, is given by

f @lY : a): f (rla) -- #&
Similarly, the conditional density for Y, given that X -- r, is given by

f@lx - r): f@lr): X8
Example 10.19 Let X be the sick leave hours last year and Y the

sick leave hours this year from Example 10.9. The joint density and
marginal density functions are

f(r,a) - 2 - l.2r -.837, for 0 I r

f x@): 1.6 - l.2r,fot 0 I

<1,019/-1,
r {-1,

and

fv@) : 1.4 - 0.8y,for 0 ( y < l.
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Using Definition 10.6, we can calculate the conditional densities.

f(*10 : ## : t-#:i#, for o ( r ( I

f@lr):X8:'#,roro(e< I

This enables us to calculate probabilities of interest. Suppose an individ-
ual had X: .10 (10 hours of sick leave last year). Then his conditional
density for Y (the hours of sick leave this year) is

/(yl.ro) : T##m# : Eh&, roro < E < r.

The probability that this individual has less than 40 hours of sick leave
next year is P(Y < .401X : .10).

P(Y < .4olx :. ro) : / 
-'1q.;, 

)du x .+6s n

Example 10.20 For the joint distribution of waiting times for
accidents in Example 10.10, the joint probability density function and
marginal density functions were

f(s,t) - "-(s*t),fors 
) 0, t > 0,

,fs(s):e-',fors)0,
and

fr(t):e*t,fort>0.

The conditional densities are identical with the marginal densities.

/(slt) : #& : # : €-s,fors ) o

/(tls):#:#:s*t,fort)o D
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10.3.3 Conditional Expected Value

Once the conditional distribution is known, we can compute conditional
expectations. For discrete random variables we have the following:

E(Ylx

E(xlY

- r):Da .p(alr)
a

: a): t" p@la)

(10.6a)

(10.6b)

Example 10.21 Let X and
of Example 10.1. The conditional
was found in Example 10.16.

The conditional expected value of X, given that Y : 0, is

E(XIY - 0) : 90(.10) + 100(.s4) + ll0(.36) : 102.60.

When X and Y are continuous, the conditional expected values
found by integration, rather than summation.

E(YIX - r) :

E(XIY : a) :

I**, f@lr)da

[".f (rly)dr

( 10.7a)

(10.7b)

Example 10.22 Let X be the sick leave hours last year and Y the
sick leave hours this year from Example 10.9. The conditional density
function of Y, given X : .10, is

F be the asset value random variables
distribution of X, given that Y : 0,

T 90 100 110

p(rlo) .10 .54 .36

/(sl.ro) : UiUe&, for0 < y < t.
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The conditional expected value, given that X:.10, is found by usrng

Equation (10.7a).

E(ylx: .10) : I" ,./(yl.ro) ao: lo'u($hir)aE 
x .+ss

D

Conditional variances can also be defined. There are some inter-
esting applications of conditional expected values and variances. These

will be discussed in Section 1 1.5.

10.4 Independence for Random Variables

10.4.1 Independence for Discrete Random Variables

We have already discussed independence of events. When two events A
and B are independent, then P(A3 B): P(A).P(B).The definition
of rndependence for two discrete random variables relies on this multi-
plication rule. If the events X : r and Y : ! ar.^ independent, then
P(X : r andY : a): P(X : r)' P(Y : 91.

Definition 10.7 Two discrete random variables X and Y are

independent if
p(r,a) : P*(r)'ny(a),

for all pairs of outcomes (r, g).

Example 10.23 A gambler is betting that a farr coin will come up

heads when it is tossed. If the coin comes up heads, he gets $l:
otherwise he must pay $1. He bets on two consecutive tosses. X is the

amount won or paid on the first toss, and Y is the corresponding amount

for the second toss. The joint distribution for X and Y is given below
with marginal distributions.
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v -1 I p"(a)

-1 .25 .25 .50

I .25 .25 .50

p 
"(r)

.50 .50
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The values of p(r,y) in this table were constructed using the multiplication
rule, since we know that successive coin tosses are independent. Definition
10.7 is satisfied, and X and Y are independent random variables.

In this betting example, joint distribution functions were con-
structed by the multiplication rule because the events involved were
known to be independent. We can also look at joint distributions which
have already been constructed and use the definition to check for inde-
pendence. n

Example 10.24 The joint probabilify function for the two assets
in Examples 10.1 and 10.3 is given below (with marginals included).

Note that p(90,0):.05 and pxpD).pvp):.20(.50):.10. The ran-
domvariablesXandY arenot independent. D

Example 10.25 In Example I0.2, the joint probability function
and marginals for X and Y (the numbers of accidents in two towns)
were

-')p(r,U) : ffi., for r : 0,I,2,... and A : 0,1,2, ...,

ny@): +,
and

ny(a):

In this case, p(r,U): ny@).ny(U), and X and Y are independent.
(This is probably a reasonable assumption to make about numbers of
accidents in two different towns.) tr

In Example 10.18 we found the conditional distributions for the
independent accident numbers X and Y. We showed that these condi-
tional distributions were the same as the marginal distributions. This is

_l
e

al

u 90 100 110 p.(v)
0 .05 .27 .18 .50

l0 ,15 .33 .02 .50

Po(r) .20 .60 .20
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an identity that holds in general for independent random variables X and

Y.

Conditional Discrete Distributions for Independent X and Y

p(rla): n*(r)

p(alr): Pv(s)

(10.8a)

(10.8b)

This follows directly from the definitions of independence and the con-
ditional distribution.

p(rli: W& ,,0"07,0u,,"u9;#9 : Py(r)

10.4.2 Independence for Continuous Random Variables

The definition of independence for continuous random variables is the
natural modification of the definition for the discrete case.

Definition 10.8 Two continuous random variables X andY are
independent if

f (r,v): f x@)' fv@),

for all pairs (r, g).

Example 10.26 Let X be the sick leave hours last year and Y the

sick leave hours this year from Example 10.9. The joint density and

marginal density functions are

f(r,A) - 2 - l.Zx -.89, for0 ( r < l, 0 I U 3 l,

fx@) : 1.6 - 1'2r,fot0 < z S 1'

and

fv(Y) : 1.4 - 0.8g,for 0 S Y < I'

X and Y are not independent, since f (x,A) * f x@)' fv(il. tr
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Example 10.27 For the joint distribution of waiting times for
accidents in Example 10.10, the joint probability density function and
marginal density functions were

and

-f(s,t) = s-(s+t), for s>0, l>0,

/s(s) = e-', for s)0,

JrQ) = e-', lbr l>0.

In this case/(s,l)="fs(s).frQ) and ,S and Z are independent. (This

also a reasonable assumption to make about time between accidents
two different towns.)

As in the discrete case, the conditional distributions for indepen-
dent random variables Xand Yare the same as their marginal distribu-
tions.

Conditional Continuous Distributions for
IndependentXand Y

f Qlv) = fx@)

f 0lr) = "fvU)

(10.9a)

(1O.eb)

10.5 The Multinomial Distribution

In this chapter we have studied bivariate distributions. In many cases
there are more than two variables and we have a true multivariate
distribution. We will illustrate this by looking at the widely used
multinomial distribution.

The multinomial distribution will remind you of the binomial
distribution, and the binomial distribution is a special case of it. Before
starting, we will review the partition counting formula -formula 2.10 of
Chapter 2.

IS

in
n
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Counting Partitions

The number of partitions of n objects into & distinct groups of size
fl1,/12,...,tIp is given by

( " )= ,!
\nr.nr,...,no ) nrt. nrl...nol

Suppose that a random experiment has & mutually exclusive outcomes
E1,...,E1,, with P(Ei) = p,. Suppose that you repeat this experiment in n
independent trials. Let X, be the number of times that the outcome E,

occurs in the n trials. Then

P(Xt = nt & X, = flz &..' & X o - nr1

...p';r

Example 10.28 You are spinning a spinner that can land on
three colors - red, blue and yellow. For this spinner P(red) = .{,
P(blue) =.35, and P(yellow) =.25, you spin the spinner l0 times. What
is the probability that you spin red five times, blue three times and
yellow two times?

Solution There are k = 3 mutually exclusive outcomes. Let Xr,
X, and X, be the number of times the spinner comes up red, blue, and

yellow respectively. Then p, = P(Xr) = .4, pz = P(Xz) =.35, and

Pz = P(X) = .25. We need to find

P(Xt=5&X2--3&.Xj=2)

2520(.4s 353.252)

= .069.

The sample exam problem 10-37 uses the multinomial distribution.
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10.6 Exercises

Chapter I0

l0.l Joint Distributions for Discrete Random Variables

l0-1. Let p(r,A): \rA + fi127. for e : 1,2,3 and A : 1,2, be the
joint probability for the random variables X and Y. Construct a
table of the joint probabilities of X and Y and the marginal
probabilities of X and Y.

L0-2. A company has 5 CPA's, 3 actuaries, and 2 economists. Two of
these l0 professionals are selected at random to prepare a report.
Let X be the random variable for the number of CPA's chosen
and let Y be the random variable for the number of actuaries
chosen. Construct a table of the joint probabilities for X and Y
and the marginal probabilities of X and Y.

For the random variables in Exercise l0-1, find E(X) and E(Y).

For the random variables in Exercise l0-2, find .9(X) and E(Y).

For the random variables in Exercise 10-2, find V(X) andv(Y).

10.2 Joint Distributions for Continuous Random Variables

10-6. Show that the function f(r,y):l+$+$+"y, for

0 { r ( I and0 < y ( l,isajointprobabilitydensityfunction.
FindP(0 S X < .50,.50 < Y < l).

10-7. For the joint density function in Exercise 10-6, find (a) f x@);
(b) fv@)-

l0-8. Let f (r,U):2rz *3y, for 0 < y 1r '-1. Find (a) fx@):
(b) fv(u)'

10-9. For the joint density function in Exercise 10-8, use the marginal
distributions to find (a) P(X > .50); (b) P(Y > .50).

l0-10. For the joint density function in Exercise l0-6, find E(X).

l0-5.
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l0-l l. For the joint density function in Exercise l0-6, find P(X > Y).

l0-I2. For the joint density function in Exercise 10-8, find E(X) and
E(Y).

l0-13. An auto insurance company separates its comprehensive claims
into two parts: losses due to glass breakage and losses due to
other damage. If X is the random variable for losses due to glass
breakage and Y the random variable for other damage,

f(x,il: (30 - r - y)ll875,for0 ( r { 5,0 < g ( 25, where
r and y are in hundreds of dollars. Find P(X > 4,Y > 20).

10-14. For the random variables in Exercise 10-13, find (a) fx@);
(b) fv@).

10-15. For the random variables in Exercise 10-13, find E(X) and
E(Y).

10.3 ConditionalDistributions

Exercises 10-16, l0-17 and l0-18 refer to Exercise l0-1.

10-16. Find P(XIY : 1).

l0-17. Find P(YlX : I ).

10-18. Find E(XlY: 1).

l0-19. For the joint density function in Exercise 10-6, find f (r10.

10-20. For the joint density function in Exercise l0-8, find f (alr).

10-21. For the conditional density function in Exercise 10-20, find
(a) f (a 1.50), (b) E(Y I X: .s0).

10-22. If f(r,U):6r, for 0(r<.y{l and 0 elsewhere, find
(a) fv@\; (b) /(r j y); (c) E(X lY : s); (d) E(X lY : .s0).

311
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10.4 Independence for Random Variables

10-23. Determine if the random variables in Exercise 10-l are depend-
ent or independent.

10-24. Determine if the random variables in Exercise l0-2 are depend-
ent or independent.

10-25. Determine if the random variables in Exercise 10-6 are depend-
ent or independent.

10-26. Determine if the random variables in Exercise 10-8 are depend-
ent or independent.

10,7 Sample Actuarial Examination Problems

10-27. A doctor is studying the relationship between blood pressure and
heartbeat abnormalities in her patients. She tests a random sample
of her patients and notes their blood pressures (high, low, or
normal) and their heartbeats (regular or irregular). She finds that:

(D l4o/ohave high blood pressure.
(i1) 22% have low blood pressure.
(iii) 15% have an irregular heartbeat.
(iv) Of those with an irregular heartbeat, one-third have high blood

pressure.
(v) Of those with normal blood pressure, one-eighth have an

irregular heartbeat.

What portion of the patients selected have a regular heartbeat and
low blood pressure?

10-28. A large pool of adults eaming their first driver's license includes
50% low-risk drivers, 30o% moderate-risk drivers, and 20o/" high-
risk drivers. Because these drivers have no prior driving record, an
insurance company considers each driver to be randomly selected
from the pool. This month, the insurance company writes 4 new
policies for adults earning their first driver's license.

What is the probabilify that these 4 will contain at least two more
high-risk drivers than low-risk drivers?
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10-29. A device runs until either of two components fails, at rvhich
point the device stops running. The joint density function of the
lifetimes of the two components, both measured in hours, is

-f(*,y)=*:Y for 0<.r<2 and 0.y<2I

What is the probability that the device fails during its first hour
of operation?

10-30. A device runs until either of two components fails, at which
point the device stops running. The joint density function of the
lifetimes of the two components, both measured in hours, is

-f (*,y) : ++ for 0 <.r'< 3 and 0. y.3

Calculate the probabilify that the device fails during its first hour
of operation.

l0-31. A device contains two components. The device fails if either
component fails. The joint density function of the lifetimes of the
components, measured in hours, is /(s,l), where 0 < s < I and

0<l<1.

Express the probability that the device fails during the first half
hour of operation as a double integral.

10-32. The future lifetimes (in months) of two components of a machine
have the following joint density function:

.f (x,y) = {tt*-t50-x-v) 
for 0 <;r < 50-v < 50

|.0 otherwise

What is the probabilify that both components are still functioning
20 months from now? Express your answer as a double integral,
but do not evaluate it.
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l0-33. An insurance company sells two types of auto insurance policies:
Basic and Deluxe. The time until the next Basic Policy claim is
an exponential random variable with mean two days. The time
until the next Deluxe Policy claim is an independent exponential
random variable with mean three days.

What is the probability that the next claim will be a Deluxe
Policy claim?

l0-34. Two insurers provide bids on an insurance policy to a large com-
pany. The bids must be between 2000 and 2200. The company
decides to accept the lower bid if the two bids differ by 20 or
more. Otherwise, the company will consider the two bids further.

Assume that the two bids are independent and are both uniformly
distributed on the interval from 2000 to 2200.

Determine the probability that the company considers the two
bids further.

10-35. A car dealership seils 0, l, or 2luxury cars on any day. When
selling a car, the dealer also tries to persuade the customer to buy
an extended warranty for the car.

LetXdenote the number of luxury cars sold in a given day, and
let Idenote the number of extended warranties sold.

P(X:0, I= 0): 1/6

P(X= l, I= 0) = lll2
P(X: r, Y: t): U6

P(X:2,I= 0):1112

P(X:2,Y:l):ll3
P(X= 2, Y:2) = 116

What is the variance of,l?
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10-36. Let X and Ibe continuous random
function

3r5

variables with joint density

-f (r, y)
for 0<x<1 and 0<y<l-x
otherwise.

10-37. Once a fire is reported to a fire insurance company, the company
makes an initial estimate, X, of the amount it will pay to the
claimant for the fire loss. When the claim is finally settled, the
company pays an amount, I', to the claimant. The company has

determined thatXand Yhave the joint density function

-f (*,yl = -J y-(2r-r)/('r-r), x >l,y >l .

x'(x-l)

Given that the initial claim estimated by the company is
determine the probability that the final settlement amount
between 1 and 3.

10-38. A company offers a basic life insurance policy to its employees,
as well as a supplemental life insurance policy. To purchase the
supplemental policy, an employee must first purchase the basic
policy.

Let X denote the proportion of employees who purchase the
basic policy, and Y the proportion of employees who purchase
the supplemental policy. Let X and I have the joint density
function -f(x,y)=2(x+y) on the region where the density is

positive.

Given that l0o/o of the employees buy the basic policy, what is
the probability that fewer than SYobuy the supplemental policy?

lz+xy=lo

nno r(r .xtx =+)

)
is
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10-39. Two life insurance policies, each with a death benefit of 10,000
and a one-time premium of 500, are sold to a couple, one for
each person. The policies will expire at the end of the tenth year.
The probability that only the wife will survive at least ten years
is 0.025, the probability that only the husband will survive at
least ten years is 0.01, and the probability that both of them will
survive at least ten years is 0.96.

What is the expected excess of premiums over claims, given that
the husband survives at least ten years?

10-40. A diagnostic test for the presence of a disease has two possible
outcomes: 1 for disease present and 0 for disease not present. Let
X denote the disease state of a patient, and let X denote the
outcome of the diagnostic test. The joint probability function of
X and )/ is given by:

P(X: 0, Y:0) : 0.800

P(X= 1, )':0) = 0.050

P(X: 0, Y: l) : 0.025

P(X: 1, Y: l) : 0.125

Calculate Var(Y lX=l).

10-41. The stock prices of two companies at the end of any given year
are modeled with random variables X and Y thal follow a

distribution with joint density function

f(x,v) =
for 0<x<l and x<y<x+l
otherwise

What is the conditional variance of )'given that X = x?

Ir*
Io
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10-42. An actuary determines that
counties P and Q are jointly

the annual numbers of tomadoes in
distributed as follows:

311

Annual number in Q
A,nnual number in P

0 I 2 3

0 0.12 0.06 0.05 0.02
0.13 0.15 0.t2 0.03

2 0.05 0. 15 0.r0 0.02

Calculate the conditional variance of the annual number
tornadoes in county Q, given thqt there are no tornqdoes
county P.

10-43. A company is reviewing tomado damage claims under a farm
insurance policy. Let X be the portion of a claim representing
damage to the house and let I be the portion of the same claim
representing damage to the rest of the property. The joint density
function of Xand I/ is

f (x,y) = 
{:t'- 

('+r,)l 
:;.;:,r'o 

and x+v <1

Determine the probability that the portion of a claim representing
damage to the house is less than 0.2.

10-44. Let X and Y be continuous random variables with joint density
function

of
in

1G,D={tt, tl *23v3'
[0 otherwise

Find g, the marginal density function of }.
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10-45. An auto insurance policy will pay for damage to both the
policyholder's car and the other driver's car in the event that the
policyholder is responsible for an accident. The size of the
payment for damage to the policyholder's car, X, has a marginal
density function of I for 0<x<1. Given X =x, the size of the

payment for damage to the other driver's car, Y, has conditional
densityof I for x<y<x+1.

If the policyholder is responsible for an accident, what is the
probability that the payment for damage to the other driver's car
will be greater than 0.500?

10-46. An insurance policy is written to cover a loss X where X has
density function

fG)={+ for o<x<2

l0 otherwise

The time (in hours) to process a claim of size ,r, where 0 < x <2,
is uniformly distributed on the interval from x to 2x.

Calculate the probability that a randomly chosen claim on this
policy is processed in three hours or more.

10-47. LetXrepresent the age of an insured automobile involved in an
accident. Let Y represent the length of time the owner has
insured the automobile at the time of the accident.

X and )/ have joint probability density function

f(*,y) =
for 2<x<10 and 0<y<1
otherwise

Calculate the expected
an accident.

age of an insured automobile involved in

{f 
t" -xv2)
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l0-48. A device contains two circuits. The second circuit is a backup for
the first, so the second is used only when the first has failed. The
device fails when and only when the second circuit fails.

Lel X and Y be the times at which the first and second circuits
fail, respectively. Xand I'have joint probability density function.

.f(x,y) = {e"--"
Io

-2Y for ocx<yco
otherwise

What is the expected time at which the device fails?

l0-49. A study of automobile accidents produced the following data:

An automobile from one of the model years 1997, 1998, and
1999 was involved in an accident.

Model
Proportion of
All Vehicles

Probability of
Involvement

in an Accident
1997 0.16 0.05
1998 0.18 0.02
t999 0.20 0.03
Other 0.46 0.04

Determine the probability that the model year of this automobile
is 1997 .



Chapter LL

Applytng Multivariate
Distributions

1l.f Distributions of Functions of
Two Random Variables

ll.l.1 Functions of X and Y

Many practical applications require the study of a function of two or
more random variables. For example, if an investor owns two assets with
values X and Y, the function S(X,Y): X * Y is the random variable
that gives the total value of his two assets.

In this text, we will focus on four important functions: X + Y,
XY, mini.mum(X,Y), and marimum(X,Y) The reader should be
aware that a more general theory can be developed for a wider class of
functions S(X,Y), but that theory will not be developed in this text.

ll.l.2 The Sum of Two Discrete Random Variables

Example 11.1 We return to the two asset random variables X and

Y' in Example 10.1.

r
a 90 100 110

0 .05 .27 l8
l0 l5 .33 .02
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Probabilities for the sum ,5 -- X +Y can be found by direct inspection.
For example, X +Y : 90 can occur only if r :90 and A : 0.

P(X +Y :90): p(90,0) : .05

X +Y assumes a value of 100 for the two outcome pairs (100,0) and
(90, l0).

P(X +Y : 100) : p(100,0) *p(90, l0) : .27 + .15 : .42

Similarly,

P(X +Y : ll0) : p(l10,0) + p(100,10) : .13 * .33 : .51

and
P(X +Y :120): p(l10,10): .92.

We have now found the entire distribution of S : X + Y.

0

The technique we used to find p(s) was simply to add up all values
of p(r,g) for which r * g : s. Another way to say this is that we added

all joint probability values of the form p(r, s - r). This is stated symbo-
lically as

p(s):Dn':l,s-r).

11.1.3 The Sum of Independent Discrete Random Variables

When the two random variables X and Y are independent, then we have
p(r,s - r): px(r).pyG - r). In this case Equation (11.1) assumes a

form that is convenient for calculation.

Probability tr'unction for ,9 : X + Y
(J( and Y are Independent)

ps(s) : Do"{")' nyG - x) (11'2)

(l l.l)

s 90 100 110 t20
p(s) .05 .42 .51 .02
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Example 11.2 An insurance company has two clients. The
random variables representing the number of claims filed by each client
are X and Y. X and Y are independent, and each has the same probabil-
ity distribution.

T 0 2 a
p"(r) l2 t/4 U4 Pr@)

We can find the distribution for ,S : X + Y using Equation 1 1.2.

P(S : 0) : pr(0) : px(O) .pyQ): +. +: i
ps(l) : px9)' py|o)+ px|o)' py9) : + tr* i + : i
ps(2) : px(0)' pyQ) + pxQ)'py(O) + px0)'py(o)

_11 I l,l l_5:2.4-r4.2'r4-4:T6

ps(3): px$)'pyQ) + pxQ)'py1)
_l 1,1 l_l:4'4t4'4:8

ps(4): pxQ).pyQ): tr.tr : +a

The distribution of S is given by the following:

The above calculation (based on Equation 1 1.2) is referred to as finding
the convolution of the two independent random variables X and Y. We
will retum to convolutions when we look at the sum of independent
continuous random variables.

11.1.4 The Sum of Continuous Random Variables

Finding probabilities for X * Y is a bit more complicated in the con-
tinuous case, since summation is replaced by integration.

s 0 I 2 a
-l 4

p*(s) t/4 Il4 5lt6 U8 Ilt6
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Example 11.3 Let X be the sick leave hours last year and Y the
sick leave hours this year in Example 10.9. The joint density function is

f@,a)-2-1.2r-.89, for0lr < 1,0 <g<L
Let S : X * Y be the total sick leave hours for both years. We will
calculate the probability that S: X +Y <.50. (This is actually a

single value of the cumulative distribution function of the random
variable ,S, since P(S < .50) : Fs(.50)). The points (r, y) where the
random variable X +Y is less than or equal to .50 are in the region R in
the r-y plane satisfying the inequalities r*y1.50, for 0(r( l,
0 < y < 1. If we integrate the densify function f (r,A) over this region,
we will find the desired probability.

P(X+Y( 50): tt+Y <.50) : 
JJrf@.a)drdy

The region R is shown in the following figure.

We can now evaluate the double integral.

P(X +Y < (2 - l.2r - .8E) dr dy.so): 
Io- Io'o 

'

: 
lo'o

: 
lo'o

- r.5o g

(2r - .6r' - .8xy)l dy
I r-0

(.2a2 - l.8g * .85)du : .20833

Example I 1.3 required a fair amount of work to find a single value
of Fs(s). However, the pattern of the last calculation will apply to the
task of finding Fs(s) for 0 ( s ( 1. The region of integration changes to
require a different integral for Fs(s) for I < s { 2. This reasoning is
developed in Exercise l1-4.
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11.1.5 The Sum of Independent Continuous Random Variables

In the preceding example, the two random variables X and Y were not
independent. ln many applications, the random variables which are being
added are independent. Fortunately, calculations are simpler if X and Y
are independent. The simplification results from the use of a convolution
rule. For two independent discrete random variables, the convolution
rule was

p(s):\,ny@)'n"G-r)'

The same reasoning with summation replaced by integration leads to the

continuous convolution principle.

Density Function for ^9 : )( + Y
()f and Y Independent)

f6
.fs(s) : I f x@) . fvG - r) dr (l 1.3)

J-n

Example 11.4 In Example 10.10, we looked at the waiting times
S and ? between accidents in two towns. For notational simplicity, we

will use the variable names X and Y instead of ^9 and T in this example.
The probability density function and marginal density functions are

f @,0 - e-@+a), for r ) 0,g ) 0,

fx@) : s-r, forr ) 0,

fv@):"-a,forY>0.

In Example 10.27, we showed that X and Y are independent. Thus
can use Equation I 1.3 to find the density function of ,5 : X + Y .

",r "-(s-r) 
flr

and

.fs(s) : l_*;*@. fvG - r)dr: 
fo"

: e " l'"rar: se-"
Jo
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Note the limits on the second integral above. The random variables X,
Y, and ^9 are all non-negative. Thus z > 0, U: s- x) 0, and
s)z)0.

The two independent random variables X and Y were exponential
with parameter 13:1. The sum .9: X* Y is a gamma random
variable with parameters c :2 and 0 : L In Section 8.3.3 we stated
(without proof) that the sum of n independent exponential random
variables with parameter B has a gamma distribution with parameters
(t : rL and p. We have just derived a special case of that result. tr

The distribution of X + Y could also be found by evaluating the

cumulative probability P(S < s) : Fs(s) as a double integral.

P(X + Y ( s):

The reader is asked to do this in Exercise l1-5. The convolution
approach is simpler, and is widely used. The reader should be aware that
in some examples the limits of integration in Equation 11.3 become
tricky. In the following sections, we will look at even simpler ways to
obtain information about X * Y.

11.1.6 The Minimum of Two Independent Exponential
Random Variables

For most of this section we have concentrated on the function

s(X,Y): X * Y. To illustrate that distribution functions can be found
for other functions of X and Y, we will now look at the minimum
function mi,n(X,Y) for independent exponential random variables X
and Y. We first need to review basic properties of the exponential
random variable. An exponential random variable X with parameter p
has the following cumulative and survival functions:

F(t):P(X<t):1-eat

,9(r) : P(X > t): 
"-et

I l-ro,v)d'r 
d's
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Suppose that X and Y are exponential with parameters B and \,
respectively, and let M denote the random variable rnin(X,Y). We will
find the survival function for M.

Sru(t): P(rnin(X,Y) > t) : P(X>tandY>t)

.,:, P(X>t)'P(Y>t)
tndependcnce

e-Bte-^t _ e-(p+^)t

The function e (P+^)t is the survival function S(t) for an exponential
distribution with parameter p*\. Thus M must have that distribution.

Minimum of Independent Exponential Random Variables
(X and Y Independent with Parameters B and ),)

M : rnin(X, Y) is exponential with parameter B*)

Example 11.5 We retum to X and Y, the independent waiting
times for accidents in Example 11.4. X and Y have exponential
distributions with parameters B: 1 and .\: l, respectively. Then
M : min(X,Y) has an exponential distribution with parameter

0 + S: 2. This can be interpreted in a natural way. In each of two
separate towns, we are waiting for the first accident in a process where
the average number of accidents is 1 per month. When we study the
accidents for both towns, we are waiting for the first accident in a

process where the average number of accidents is a total of 2 per month.
tr

ll.l.7 The Minimum and Maximum of any Two Independent
Random Variables

Suppose that X and y are two independent random variables.
Recall that the survival function of a random variable X is defined
by

Sx(t) : P(X >7) : I-Fx(t)
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The general reasoning for analyzing Min = min(X< )') follows the argu-

ment we used for the minimum of two independent exponential random
variables.

Sui,Q) = P(min(X,Y)>t) : P(x >t &-Y >t)

= P(X>t).P(Y >/) =.Sx(r).sy(r)
independence

The method of analysis for Max = max(X ,IZ) is very similar.

Fu^(t) : P(max(X,Y)<t) : P(X <t &Y <t)

= P(X <t).P(Y st) = Fy(t)Fy(t)
independence

The next example shows that once we use the previous identities to get

Fu*Q)ot Syln(l),, we can find density functions and expected values

for the maximum and the minimum.

Example ll.6 For a uniform random variable Xon [0,100],

r"(')=ffi and Sx(x) = t-ffi = t%#

Suppose X and Iare independent uniform random variables on [0,100].
Then

Svi,(t) = P(min(X,Y) > t) = S.r(r)Srtrl = (##

F^,,-(r\ -,-(too-l)2
10,000

Fu*(t) : P(max(X,Y)<t) = Fx(t)Fv(t) = 10500

Taking derivatives, we can find the density functions for
min(X.I) and max(X,Y)

lui,(t)=-?(t99^'):ry*ro,ooo 5,0# 'fu*Q):t#dd
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Efmin(x,y)l = foorlQQ--rd, =,tgqr,1 __4^.l'oo- loJoo - l5.oool, = 33'33

Efmax(x,vll = [1,0 
,#*0, = #_/,, = 66 66 D

This method can easiry be extended to more than two independ-ent random variables, as the next example shows.

Exampre 11'7 Let x ,y and Z be three independent exponentiar
random varjables with mean 100. Find p(ma.x(X,y,4 < 5;).-

sorution Each of the random variables has densify function andcumulative distribution function

,f('r) = (#)"-"''0 -.0r"-o'" F-(x)= r-n-.0rr

using the same reasoning used for two random variables, we see that

P(max(X,y,Z)<50) = p12,-<50&f <50 &Z <50)

i nd"pi,d",," 
F* (so| r' ( so) r, ( so)

= (1 - e- ol(so))3

= .061 D

ll'2 Expected varues of Functions of Random variabres

1t.2.1 Finding E[g6,v)]

we have seen that finding the distribution of g(x,y) can require a fairamount of work for a function as simple as g(X,y)=X+y. However,the expected value of g(X,Y) can be found without first finding thedistribution of g(x,/). This is due to the forowing theorem which isstated without proof.
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Theorem 11.1 Let X and Y be random variables and let g(r,A)
be a function of two variables.

(a) If X and Y are discrete with joint probability function p(r,A),

E[s(X,y)] : tt g(r, a) . p(r, a).
ra

(b) If X and Y are continuous with joint density f (r,A),

Els(X,Y)l : l*l_^",a) 
. f (r,y) d.r d,y.

t1.2.2 Finding E(){ + L)

We will begin with an example to illustrate the application of the
preceding theorem with g(r, y) : r * A.

Example 11.8 We retum to the two asset random variables X and
Y in Example 10.1.

The theorem says that

E(x+n:tti.;,+ il.p@,a)
r!

: (0+90x.05) + (0+100)(.27) + (0+110x.18)

+ (10+90x.ls) + (r0+100x.33) + (10+l10x.02)

:105,

We were not required to find the probability function for S : X + Y .

The theorem allows us to work directly with the joint distribution
function. We can check our answer here, since we have already found
the probability function for ^9.

a 90 100 ll0
0 .05 .27 18

l0 .15 .33 .02

s 90 100 110 120
p(s) .05 .42 .51 .02

Then E(S) : 90(.05) + 100(.42) + 110(.s1) + t20(.02): 105. EI
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A very useful result becomes apparent if we look at the random
variables X and Y in the last example separately. We have previously
shown that E(X): 100 and E(Y) : 5. Thus

105 : E(X +Y) : E(X) + E(Y).

This useful result always holds. If X and Y are discrete,

E(x+n:tti(r+il.p@,u)
ra

: If" 'p(r,a) * f D, ' p(r,a)
xaar

: I,f p@,y)* fsf p@,a)
IgAT

:L".nr@) *4r.pt@)

: E(X) + E(Y).

A similar proof is used for continuous random variables, with summa-
tion replaced by integration. This is left for Exercise 11-9.

Expected Value of a Sum of Two Random Variables

E(X +Y) : E(X) + E(Y) (11.4)

Example 11.9 Let X be the sick leave hours last year and Y the
sick leave hours this year from Example 10.9. We have shown in
Example 10.13 that E(X) : .40 and E(Y) : .43. Then

E(X +Y): .40 *.43: .83. I

11.2,3 The Expected Value of XY

We have just shown that the expected value of a sum is the sum of the
expected values. Products of random variables are not so simple; the

331
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expected value of XY does not always equal the product of the expected
values. This is shown in the next example.

Example 11.10 We return again to the two asset random variables
X and Y in Example 10.1.

Using the expected value theorem with g(r,a) : rU,

E(xY): IIf, D.p@,0.
ra

: (0 . 90x.0s) + (0 . 100x.27) + (0 . 110x.18)

+ (10 .e0x.l5) + (10 . 100)(.33) + (10 . 110x.02)

: 487.

Note that
E(X)' E(Y): 100(s) : 500.

In this case, E(XY) + E(X). E(Y). tr

In the special case where X and Y are independent, rt is true that
E(XY) : E(X). E(Y).If X and Y are discrete and independent,

",: (T' ex(')) (T, n,rut)

: II"a'Pu@)'pvl)
rg

: II', .p(r,a)
:xa

-- E(xY).

A similar proof applies for independent continuous random variables.

r
a 90 100 ll0

0 .05 .27 .18

l0 l5 .JJ .02
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Expected Value of XY
(J( and Y Independent)

E(XY) : E(X).E(Y) (1 l.s)

Note: a) The identity in (11.5) may fail to hold if X and Y are not
independent. b) There are examples of random variables X and Y which
are not independent but satisfy (l I .5). See problem I I -1 9.

Example 11.11 The random variables X and Y in Example ll.2
represented the number of claims filed by two insured clients. X and Y
were independent, and each had the same probability distribution.

T 0 I 2 v
n*@) l12 l4 U4 P"(Y)

Each random variable also had the same expected value.

E(x):o(]) *'(1) * r(i):tr: 
"(t)

By Equation (l1.5),

E(xY): E(x) E(Y): (-r)(o) : * D

In Exercise l1-10, the reader is asked to find E(XY) directly and
verify the last answer.

Example 11.12 X and Y, the waiting times for accidents in
Example I 1.4, were independent exponential distributions with para-
meters 0: I and ) : 1.

E(x):fi:t:*:EV)
By Equation (1 1.5),

E(XY): E(X). E(Y): 1. tr

It is important to be able to calculate E(XY) directly when X and
Y are not known to be independent. We have already done this for the
discrete case in Example 11.10. The loilowing example illustrates the
calculation for the continuous case.
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Example 11.13 Let X be the sick leave hours last year and Y the
sick leave hours this year from Example 10.9. The joint density function
is

f(r,A) - 2 - l,2r -.89, for0 ( r < 1,0 < g < 1.

We will calculate E(XY) by integration, using part (b) of Theorem 1 I . L

nl rl
E(XY) : I I "aQ - t.2r - 8ild.r d,y

Jn .Jn

: 
[^t 

{r', - .4"'y - .+r,u\lt,_od,u
JO

7l: I ela.+.oy\ay:f,
Jo

The reader should note that E(X)' E(Y) : .4(.43) : .773 + E(XY).
tr

11.2.4 The Covariance of -)f and Y

The covariance is an extremely useful expected value with many appli-
cations. It is a key component of the formula for V(X * Y), and it is
used in measuring association between random variables.

Definition ll.l Let X and Y be random variables. The covari-
ance ofX andY is defined by

Cou(X,Y): El(X - P)(Y - Py\-

Example 11.14 For the two asset random variables X andY in
Example 10.1, E(X) : Fx:100 and E(Y): Fv:5. The joint distri-
bution table is as follows:

v 90 100 110

0 .05 .27 .18

10 l5 .JJ .02
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We will calculate C oa(X, Y) directly from the definition.

Cou(X,Y): E[(X - tLx)(Y - py)]

33s

: (90- 100x0-sx.Os)
+ (r00- 100x0-5x.27)
+ (l l0- 100x0-sx.r 8)

* (9$*100X10-5)(.15)
+ (lo0- looxlo-s)(.33)
+(110-100x10-s)(.02)

: 50(.05)
+ 0(.27)
+ -s0(.1s)
+ -50(.ls)
+ 0(.33)
+ 50(.02)

t5
+0
+-9
+ -7.5
+0
+1

: -13

The sign of the covariance is determined by the relationship
between the random variables X and Y. ln our example above, the

random variables X and Y are said to be negatively associated, since

higher values of X tend to occur simultaneously with lower values of Y.
The covariance was negative for these negatively associated random
variables because the negative terms in the covariance had more
influence on the sum than the positive terms. (The negative terms are

shaded for emphasis.) Note that an individual term in the covariance is
negative when (r - Fx) and(y - Itv) are of opposite sign and positive

when (r - Fx) and (9 - ttv) have the same sign. Thus the negative

terms occur when the realized value of X is above the mean and the

value of Y is simultaneously below the mean or vice versa, i.e., when
higher values of X are paired with lower values of Y or vice versa.

Paired random variables such as the height and weight of an

individual are said to be positively associated, because higher values of



336 Chopter I I

both tend to occur for the same individuals and lower values do the
same. For positively associated random variables, the covariance will be
positive. The study of measures of association is really a topic for a

statistics course, but it is useful to have some idea of the meaning that is
attached to the covariance in this course. Positive covariance implies
some positive association, and negative covariance implies some nega-
tive association.

We calculated the covariance directly from the definition in the
last example in order to give an intuitive interpretation. There is another
way to calculate the covariance.

cou(x'" 
:"r',Y' :7,Y -:ij * px r"v)

E(XY) - pv. E(X) - LLx. E(Y) * px. Fv

: E(Xy) - Fx . ttv

Alternative Calculation of Covariance

Cou(X,Y) : E(XY) - E(X) . E(Y) (11.6)

Example 11.15 For the two asset random variables X and Y in
Example 10.1, E(X) : px : 100 and E(Y): Fy :5. In Example
I l.10 we showed that E(XY) : 487. Then Equation (l 1.6) shows that

Cou(X,Y) : E(XY) - E(X). E(Y) : 487 - (100Xs) : -13.
n

Example 11.16 Let X be the sick leave hours last year and Y the
sick leave hours this year from Example 10.9. In Example 11.13 we

showed that E(XY) : * and, E(X). E(Y) : .173. Then Equation

(11.6) shows that

Cou(X,Y) : .166- .773': -.0066' tr

We know from Equation (11.5) that when X and Y are indepen-
dent, E(XY) : E(X) ' E(Y). This means thal Cou(X, Y) will be zero.
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Covariance of ){Y
(X and Y Independent)

Cou(X,Y) :0

Example 11.17 X and Y, the waiting times for accidents in
Exampie I 1.4, were independent exponential distributions with para-
metersf : l and): l.ThenCou(X,Y):0. tr

77.2.5 The Variance of l( * Y

The covariance is of special interest because it can be used in a simple
formula for the variance of the sum of two random variables.

Variance of X *Y

V(X +Y) : V(X)+V(Y)+2. Cou(X,Y) (11.7)

The derivation is straightforward.

V(X +Y) : E[(X +Y)2] - @(X +YDz
: E(Xz + zXY +Y, - Q", + t"v),

: E(X2) + LE(Xr) + E(y\ - (u'^+zp" . pv+ pl,)

: E(xz) - tt'x * E(Y\ - p', + 2(E(xY)- Fy ' tly)
: V(X) + v(Y) * 2' Cou(X,Y)

The calculations in our previous examples will now enable us to
calculate V(X + Y) without finding the distribution of X + Y.

Example ll.l8 The joint probability function for the two assets

in Examples 10.1 and 10.3 is given below (with marginals included).

T
a 90 100 110 ny@)
0 .05 .27 .18 .50

l0 .15 .33 .02 .50

po@) .20 .60 .20
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We have already found that E(X) : 100, y(X) : 40, E(Y): 5 and
V(Y):25.In Example 11.15, we found that Cou(X,Y): - 13.-fhus

V(X +Y): V(X) + V(Y) * 2.Cou(X,Y): 40 + 2s - 2(13) : zs.

We can proceed in the same way if X and Y are continuous. n

Example 11.19 Let X be the sick leave hours last year and Y the
sick leave hours this year from Example 10.9. The joint density and
marginal density functions are

f(r,A) - 2 - 1.2r -.8y, for0 ( z < 1, 0 { g { l,

fx@): l'6- 1'2r,for0 ( r ( 1,

and

fvfu) : 1.4 - 0.8Y, for0 ( Y < l.

We have already found that E(X) --.40 and E(Y) :.43. Using the
marginal density functions,

and

7l
E(X2) : I 1211.6 - 1.2r)dr : .233.

Jo

71

E(Y2) : I a'(1.4 - 0.8gtda : .266.
Jo

V(X): .233- .402 : .0733,

V(Y): .266- .4332 :.0788.

In Example I 1 .16, we found that C ou(X ,Y) : -.0066. Thus

V(X +Y): V(X)+V(Y) *2'Cou(X,Y):.1388. tr

In the special case where the random variables X and Y are inde-
pendent, Cou(X,Y):0. This leads to a nice result for independent
random variables.

Variance oI X -fY
(X and Y Independent)

V(X +Y) : V(X)+V(Y) ( I 1.8)
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Example 11.20 X and Y, the waiting times for accidents in
Example I 1.4, were independent exponential distributions with para-
meters 13 -- l and ) : 1. Then

v(X):,uL:1:3:v(Y)
IJ'  -

Equation (1 1.8) shows that

v(x + Y) : v(x) * v(Y) :2. tr

11.2.6 Useful Properties of Covariance

The covariance has a number of useful properties. Five of these are
given below with derivations.

(1) Cou(X,Y):Cou(Y,X)

EI6 - pi(Y - pil: El(Y - p)(x - p)l
(2) Cou(X,X): V(X)

Cou(X,X): El(X - Px)(X - P'x))

: E[(X - p,x)?)

: v(x)

(3) If /c is a constant random variable, then C ou(X,k) : 0.

Since k is constant, E(k) : k. Then

Cou(X,k): El(X - Px)& - k)l : -B[0] : g.

(4) Cou(aX,bY) : ab' Cou(X,Y)

Since E(aX) : a' Fy and E(bY): b ' /-t,,, then

Cou(aX,bY): EI(aX - a' t")(bY - b' pn))

: o"b. EIq - trx)(Y - py)l

: ab'Cou(X,Y).
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(5) Cou(X,Y + Z): Coa(X,Y) + Cou(X,Z)
Since E(Y + Z): E(Y) + E(Z): Fy * lt,then

C ou(X,Y + Z) -- El6 - tL )(Y + Z - (ur+ 11,111

: El(X - px)(V - t"v) + Q - t'))l
: E[(X - p)(Y - py)l

+ El(x - px)Q - p')l
: Cou(X,Y) + Cou(X, Z).

11.2.7 The Correlation Coefficient

The correlation coefficient is used in statistics to measure the level of
association between two random variables X and Y. A detailed analysis
of the correlation coefficient and its properties can be found in any
mathematical statistics text. The correlation coefficient is defined using
the covariance. We have already observed that the sign of the covariance
is detemined by the association between X andY .

Definition ll.2 Let X and Y be random variables. The correla-
tion coefficient between X and Y is defined by

C ou(X.Y\
Yxy - o xov

Although we will not prove all of the properties of p xv discussed in this
section, it is a simple matter to derive the value of p xy when X and Y
are linearly related, i.e.,Y : aX + b.

Cou(X.aX *b\ _ Cou(X,aX)+Cou(X,b)pxv---did,x_, -W

_ a.V(X)+0 _
lal(o )2

Thus when X and Y are linearly related, the correlation coefficient is 1

when the slope of the straight line is positive, and - 1 when the slope is
negative. The following propertres can also be shown.

" I I a)0
lol t-l a(0
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(a) If Pn,= 1, then Y = aX +b with a>0.
(b) If Psry =-1, then Y = aX +b with a<0.2

Thus we can simply look at the correlation coefficient and determine that
there is a positive linear relationship between X and Y if p^, = 1or a
negative relationship between X and Y if p,n = -1.

To see what might happen when X and Y are not linearly related,
we will look at the extreme case in which X and Y are independent and
have no systematic relationship. When X and Y are independent, then
Cov(X,)') = 0. Thus

pxy=Cov(X,Y) = __q_:g.
OXOy independence 6XOy

Clearly Pxy = 0 whenever Cov(X,I)=0. (There are examples ol
random variables X and Y which are not independent but still satisfy
Cov(X,I) =0. One is given in Exercise I 1-19.)

It can be shown that

_l<pxy<1,

for any random variables X and Y. We display the possible values of
pn and their verbal interpretations on the following diagram.

-t
Negative

linear
relationship

Y=aX+b,a<0

The possible values of
Values of pxy close to

p,n lie on a continuum between -1 and l.
+l are interpreted as an indication of a high

0
No

linear
relationship

I
Positive
linear

rclationship
Y=aX+b,a>0

level of linear association between X and Y. Values of p^.y near 0 are

interpreted as implying little or no linear relationship between X and Y.

In the following examples, we will find p,y for random variables

presented earlier in this chapter.

2 More advanced texts would say that Y: aX + D rvith probability l. This is done to
include more complicated random variables which are beyond the scope of this tcxt.
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Example 11.21 Let X and Y be the two asset random variables
defined in Example 10.1. We have shown Ihat V (X) : 40, V (Y) : 25
andCou(X,Y): -13.

PXY:

Example 11.22 Let X and Y be the sick leave hour random
variables defined in Example 10.9. We have shown thatV(X): .073,
V(Y) :.078, and Cou(X,Y) : -.0066.

PXY: ry -.088

Although both of the conelation coefficients above are closer to 0

than to 1, the implied association, however small, may be of some use. We
have already noted that the relationship between the two assets X and Y
may be useful in reducing risk. In practical situations, the interpretation of
the conelation coefficient can be subtle. As we have mentioned previously,
this is discussed more extensively in statistics texts.

11.2.8 The Bivariate Normal Distribution

There is a multivariate analogue of the normal distribution. This is im-
portant in advanced statistics, and we will briefly illustrate it by looking
at the two variable multivariate normal distribution.The density function
iooks complicated at first glance. Two random variables X and Y have a
bivariate normal distribution if their join density is of the form

f@,a): 2noyo2t/T=
enil,ltT f - r, tq ) hf ) + {'-f )')

X andY are also referred to as jointly normally distributed.

We will not look at the bivariate normal in depth, but it is nice
to note here that:

!
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The marginal distribution of X is normal with
standard deviation o1.
The marginal distribution of Y is normal with
standard deviation o2.

The correlation coefficient between X and Y is p.

a)

b)

c)

343

mean pl and

mean p"2 and

11.3 Moment Generating Functions for Sums of
Independent Random Variables;
Joint Moment Generating Functions

11.3.1 The General Principle

IfX and Y are independent random variables, we can conclude that the
random variables etx and etY used in the definition of the moment
generating function are also independent. This gives a nice simplifica-
tion for the moment generating function of X + Y .

Mx+v(t) : E(et(x+Y)) : E(etx . 
"t\'7

, , :, E(r'x). E(utY) : Mx(t). Mv(t)
rnacpenrlence

Moment Generating Function of )(*Y
(Jf and Y Independent)

Nlyay(t) : Mx(t).Mv(t) (11.9)

This leads to a number of nice results about sums of random variables.

11.3.2 The Sum of Independent Poisson Random Variables

The moment generating function of a Poisson random variable X with
parameter A is

I{ x (t) - e'\(et- r) 
.

If Y is Poisson with parameter 13 and Y is independent of X, the
moment generating function of X * Y is given by
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Mx+v(t): Mx(t). NI.Q) - e^kt-t) . e7?t-t) - e\+bkt-t).

The final expression is the moment generating function of a Poisson
random variable with parameter () + f).

If X and Y are independent Poisson random variables with
parameters \ and B, then X * Y is Poisson with parameter () + d).

Example 11.23 ln Example 10.2, the joint probability function
and marginal probability functions for X and Y (the numbers of acci-
dents in two towns) were

1

p(r,a) : ffi,forr : 0,1,2,... and U : 0,1,2,...,

--1ny(r): ;f '
and

-tny(il: fi.
In this case, p(r,U): nr@)'nr(U) and X and Y are independent
Poisson random variables with .\ : 1. Thus X + Y is a Poisson random
variable with ) : 2. D

11.3.3 The Sum of Independent and Identically Distributed
Geometric Random Variables

The moment generating function of a geometric random variable with
success probability p is

n1x(1) : tJ:.,.l-Qe

If Y is also geometric with success probability p, then Y has the same

distribution as X. ln this case X and Y are said to be identically
distributed. If Y is independent of X, the moment generating function
ofX*Yisgivenby

I 'r2
Mx+v(t): Mx(t)' My(l: t p \- \t - set )
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This is the moment generating function of a negative binomial distribu-
tion wrth success probability p and r : 2.

The sum of two independent and identically distributed geo-

metric random variables with success probability p has a negative
binomial distribution with the same p and r : 2.

This is consistent with our interpretation of the geometric and

negative binomial distributions. The geometric random variable repre-
sents the number of failures before the first success in a series of
independent trials. The sum of two independent geometric random
variables would give the total number of failures before the second

success which is represented by a negative binomial random variable
with r : 2.

17.3.4 The Sum of Independent

The moment generating function of a

p and variance o2 is

L'I{G):

Normal Random Variables

normal random variable with mean

sut+z!-t .

If Y is normal with mean z and variance 12 and Y is independent of X,
then the moment generatrng function ofX + y 

)J,!t to2+,21r2
Mx+vQ): .l\,tx(l) .MvQ): sut+t1: . 

"ut+L!- - e(r+ur+'-\r--.

The final expression is the moment generating function of a normal
random variable with mean p.*u and variance o2 +rz .

If X and Y are independent normal random variables with
respective means p, and z and respective variances o2 and 12, then
X + Y is normal with mean LL + u and variance o2 + rz.

11.3.5 The Sum of Independent and Identically Distributed
Exponential Random Variables

The moment generating function of an exponential random variable with
parameter p is
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R
M,(t) : l-

If )z is an identically distributed exponential random variable with
parameter p and Yis independent of X, the moment generating function
of X+1 isgivenby

Mx*y(t) = MxQ).My(t) = (+)'
\P-t)

The final expression is the moment generating function of a gamma
random variable with parameters a =2 and F.

IfX and Y are independent and identically distributed exponen-
tial random variables with parameter B, then X+), is a gamma
randomvariablewithparameters a =2 and F.

Example 11.24 In Example 11.4 we looked at X and y, the
independent waiting times between accidents in two towns. X and y
were independent and identically distributed exponential random
variables with B = 1. In Example I 1.4 we used convolutions to find the
distribution of X + Y, and showed that X + I was a gamma random
variable with a =2 and F=1. The moment generating function result
above confirms this conclusion without requiring the work of convolu-
tion integrals. !

It is very important to keep in mind that these results rely upon the
assumption of independence. The situation is much more complex when
the random variables X and Y are not independent.

11.3.6 Joint Moment Generating Functions

In the one variable case, the moment generating function is defined by
Mx$)=Efe,x). ln the bivariate case the joint moment generating
function for Xand I is defined similarly as

M *.r(s,t) = Ele''**''f .

we will illustrate this with a simple discrete example. Let the joint
distribution forXand )'be given by the table below.
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For this distribution

Mx.v$,t) = [fss'Y+tY1

^.r+31 r 2s+31=.ze +.Je
a s+6t ' 2.s t(rt+.+e +.te

Recall that in the single variable case we can use derivatives of the
moment generating functron to find moments of Xusing the relationship

M:i) @ = E(x').

In the bivariate case we can use partial derivatives of the joint moment
generating function to get the expected values of mixed moments
involving powers of both X and )'. The key relationship is

Elxi yk I = 
atlr 

Y :" (o,o).
Osr Otk

We will illustrate this in our example by using the joint moment generat-
ing function to find

Etxvt: *#ro,r,
Y# = .2(3)e'*3' +.3(3)e2'*rr +.4(6)e'n6t +.1(6)e2'*6'

1#: = .2(1X3)e'* 3, + .372y131"2,*3,

+ .4(1)(6)e"*6t + .112)161e2' 
n6t

62M n,Elxvl = j;- (0,0)

= .2(l)(3) + .3(2X3) + .a(lX6) + .1(2)(6) = 6

P.vQ)
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You can check this result by calculating E(XY) directly.

Note that we can use the joint moment generating function to get the
individual moment generating functions of X and Y.

M y,y(s,0) - E(esx+ov) = E(e'x) = M xG)

Mx.Y(O,t) - E(eox+tr) = E(e'Y) = MvQ)

When X and )'are independent, the joint moment generating function
easy to find.

My.y(s,t) = My(s)My(t)
X,Y independent

ll.4 The Sum of More Than Two Random Variables

ll.4.l Extending the Results of Section 11.3

The basic results of Section 11.3 can be extended for more than two
random variables by the same technique of multiplication of moment
generating functions. The results and some examples are given below
without repeating the proof.

If X1,X2,...,Xnare independent Poisson random variables with

parameters h,12,..,,L,, then X1 + X2+...r X, is Poisson with

parameter 1r,h+'..+ h.

Example 11.25 A company has three independent customer service
locations. Calls come in to the three locations at average rates of 5, 7 and

8 per minute. The number of calls per minute at each location is a

Poisson random variable. Then the total number of calls at all three

locations is a Poisson random variable with )" = 5 +7 + 8 + 20. n

The sum of r independent and identically distributed geometric
random variables with success probability p is a negative binomial
random variable with the same p and r = n.
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Example 11.26 Four marksmen aim at a target. Each marksman
hits the target with probability p: .70 on each individual shot. Indivi-
dual shots are independent, and the marksmen are independent of each
other. Each fires until the first hit is made. For each marksman, the
number of misses before the first hit is a geometric random variable with
p : .70. The total number of misses for all four is a negative binomial
random variable with p : .70 and r : 4. D

lf Xt, Xz, ..., X, are independent normal random variables
with respective means Ft, F2,...,1ht and respective variances of,
o2r, ..., ol, then the sum Xt + Xz + .'.+ X, is normal with mean

ltt * 11,2 + ..' + 1.tn and variance ol + ol + ... + o2,.

Example 11.27 Three salesmen have variable annual incomes
with means of fifty-five thousand, seventy thousand, and one hundred
thousand dollars per year, respectively. The variance of income is
$10,000 for each, and the incomes are independent normal random varia-
bles. Then the total income of the three salesmen is a normal random
variable with a mean of /-, : 55,000 + 70,000 + 100,000 : $225,000
and a variance of3(10,000) : S30,000. tr

lf Xr, Xz, ..., Xn are independent and identically distributed

exponential random variables with parameter p, then the sum

Xr * Xz +'..+ X, is a gamma random variable with parameters

(y:nand13.

Example 11.28 The waiting time for the next customer at a

service station is exponential with an average waiting time of 2 minutes.
Since E(X) - 1lP, the exponential parameter {3 is j. Walting times for
successive customers are independent and identically distributed. Then
the total waiting time for the fifth customer is a gamma random variable
withparameters a : 5 and 0 : *. tr
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11.4.2 The Mean and Variance of )( + Y + Z

In this section we will find the mean and variance of the sum of three
random variables. This will enable us to see the pattern of the general
result for the sum ofn random variables. The results are based on use of
the formulas for the sum of two random variables.

El(x + (Y+z)l: E(x) + E(Y+z): E(x) + E(Y) + E(Z)

V[(X + (Y + Z)) : V (X) + V (Y + Z) * 2 . C ou(X,Y + Z)

: v(x) + VV) + v (z) * 2 . c ou(Y, z)l
* 2 . C ou(X,Y) + 2' C ou(X, Z)

Mean and Variance of )f +Y + Z
E(X + Y+Z) : E(X) + E(y) + E(Z)

V(X +Y + Z) : V(X) + V(Y) + V(Z)
IZ[Cou(X,Y) + Cou(X, Z) * Cou(Y, Z)]

Example 11.29 Let X, Y and. Z be random variables with mean
20 andvariance 3, and Cou(X,Y): Cou(X,Z): Cou(Y,Z) : L

E(X+Y+Z):20*20+20:60

V(X+Y+Z): 3*3+3+2[i+1+l] : 15 n

'l'he general pattem is now easy to see. The expected value of a

sum of random variables is the sum of their expected values. The
variance ofa sum ofrandom variables is the sum oftheir variances plus
twice the sum of their covariances.

Mean and Variance of X1 * )(z + - - - + )(n
/" \

slfx,): i E(xi)\?)fr
r (Ir,) : : v(X) * r?cou(Xi, Xi)
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If all the random variables Xr, Xz, ..., X, are independent, then
all covariance terms are 0. Then the variance of the sum is the sum of the
variances.

"(i"')
n

, :, rvtx,t
tndeDenttencL' 4' t: I

77.4.3 The Sum of a Large Number of Independent and
Identically Distributed Random Variables

In Section 8.4.4, we looked at an insurance company which had 1000
policies. The company was willing to assume that all of the policies
were independent, and that each policy loss amount had the same (non-
normal) distribution with

and v(x): IA%qqq

Then the company was really responsible for 1000 random variables,
Xt, Xz,.. . , Xrooo. The total claim loss ^9 for the company was the sum
of the losses on all the individual policies, S : Xr * Xz +'.. * Xrooo.
,S was shown to be approximately normal (even though the individual
policies X; were not) using the Central Limit Theorem.

Central Limit Theorem Let Xr , X2, ..., X,, be independent
random variables all of which have the same probability distribution and
thus the same mean p, and varianee o2.If n is large, the sum

,9:Xr *Xz+"'*X,
will be approxrmately normal with mean np andvariance no2.

This theorem was stated without proof. The mean and variance of
,S can now be derived.

E(S):E(Xt+Xz*"'+X")
: E(xr) + E(x) + '.. + E(x")

-np
7(,S) : V(Xt+Xz.* "' + X")

., :, V(Xt)+V(X2)+ "'+V(X")
tndependence

: nO2

351

E(X): 1000
J
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This result enabled us to see that for the insurance company

E(S) : looo. 1%oo

and

v(s): looo'sooiooo.
It is more difficult to show that S must be normal, and we will not prove
that here. (One way to prove normality is based on moment generating
functions.) However, it is important to remember the result for applica-
tion. ln many practical examples, the random variable being considered
is the sum of a large number of independent random variables and
probabilities can be easily found as they were in Section 8.4.4.

11.5 Double Expectation Theorems

11.5.1 Conditional Expectations

In this section we will retum to the conditional expectations which were
discussed in Section 10.3.3. We will use the joint probability function
for two assets as our key example.

Example 11.30 The joint distribution of two assets was given
with its marginal distributions in Example 10.3.

In Example 10.7 we found that E(X) : 100 and E(Y) :5. In Example
10.16, we calculated the conditional distribution for X given the
information that Y : 0 by dividing each element of the top row of the
preceding table by WQ) :.50. This gave us the conditional distribu-
tion.

a 90 100 110 pv@)

0 .05 .27 .18 .50

l0 l5 .33 .02 .50
p,(r) .20 .60 .20

r 90 100 ll0
p(zlo) .10 .54 .36
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The conditional distribution was used to find the conditional expecta-
tion.

E(XIY - 0) : 90(.10) + 100(.54) + 110(.36) : 102.60

We can repeat these steps to find the conditional distribution of X and
the conditional expected value ofX that Y : 10.

E(XIY : 10) : 90(.30) + 100(.66) + 110(.04) : 97.4

Up to this point, all of the material in thrs example has been review
work. The new insight in this example comes from the observation that
the two conditional expectations we have just calculated are values of a

new random variable which depends on Y. We might see this more
clearly if we create a probability table.

E 0 l0
p.@) .50 .50

E(XIY : u) 102.6 97.4

The numerical quantity E(XIY - gr) depends on the chance event that
either Y:0 or Y: l0 occurs. We can find the expected value of this
new random variable in the usual way.

EtE(XlY)l: .50(102.6) + .SO(gt.q) : 100 : E(X)

The above equality holds for any two random variables X andY. tr

Double Expectation Theorem for Expected Value

EIE(X:Y)I: E(X)

EtE(YlX)l: E(Y)

We will not give a

EtE(YlX)): E(Y)
identity is very useful
tions are given.

proof. The reader will be asked to verify that
for the two asset example in Exercise I l-26. The
in applications in which only conditional expecta-

ven
T, 90 100 r10

p(r110) .30 .66 .04
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Example 11.31 The probability that a claim is filed on an lnsur-
ance policy is .10. Only one claim maybe filed. When a claim is filed,
the expected claim amount is $1000. (Claim amounts may vary.) A
policyholder is picked at random. Find the expected amount of claim
paid to that policyholder.

Solution Note that the expected amount paid to the randomly
selected policyholder is not $1000; only l0% of the policyholders
actually file claims. To solve this problem we need to identify random
variables X and Y for the double expectation theorem. First, let Y be the
number of claims filed by a policyholder. The probabilify function of Y
is shown rn the following table:

a 0 I

Pr@) .90 .10

Let X be the amount of claim paid. We are not given the joint distribu-
tion of X and Y, but we are given (in words) the value of E(XIY : l).
It rs the expected amount of $1000 paid if a claim is filed. If no claim is
filed, the amount paid is $0, so that is the value of E(XIY : 0). Thus

E(XIY - 0):0 and E(XIY: 1): 1000.

The average claim amount paid to any policyholder is

EIE(X|Y)I: .e0(0) + .10(1000) : 100 : E(x). tr

11.5.2 Conditional Variances

Since the expected value of X is the expected value of the conditional
means E(X|Y), the reader might expect the variance of X to be the
expected value of conditional variances. However, the situation is a bit
more complicated. We will illustrate it by continuing our analysis of the
two asset distribution.

Example 11.32 In Example 10.7 we found that V(X):40 and
V(Y):25. To find conditional variances for X, we will first find
E(X2\Y - g) and use the identity

V(XIY : y) : E62lY : a) - @(XIY : a))2.
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When Y : 0, we have the following conditional distribution:

Then E(X'IY :0) : 902(.10) + 1002(.54) + 1102(.36) : 10,566 and

V(XIY - 0): 10,566 - 102.62 :39.24. When Y: 10 , we have the

following conditional distributron:

Then E62lY : i0) : 902(.30) + 1002(.66) + I102(.04) : 9514 and

V(XIY : 10) : 9514 - 97.42 :21.24. The conditional variance V(XIY)
is also a random variable. A probability table for it is given below.

v 0 l0
p"@) .50 .50

v(xlY : y\ 39.24 21.24

We can find the expected value of V(XIY) from the information in the
table.

EIV(XlY)l: 3e.24(.50) + 27.24(.s0) : 33.24

Note that EIV (XlY)l does not equal the value of V (X) : 40. It is short
by an amount of 40 - 33.24: 6.76. However, we can account for the

remaining 6.76. It is the variance of the values of the random variable
E(XIY). We repeat the table for this random variable below.

a 0 10

pufu) .50 .50

E(XIY : y1 t02.6 97.4

The expected value of E(XIY) was /., : 100. Then the variance of
E(XlY) is

vLE(XlY)l : Q02.6- 100)2(.50) + (97.4- 100)2(.s0) : 6.76.

T 90 100 110

p(rlo) .10 .54 .36

:x 90 100 ll0
p(rll0) .30 .66 .04
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Now we have two expressions whose sum is the variance of X.

v (x) : 40 : 33.24 + 6.76 : EIV (XlY)l + VIE(XIY)]

This identity always holds.

Double Expectation Theorem for Variance

v(x) : Elv(XlY)l + vlE(xlY)l

v(Y) : Elv(YlX)l + vtg(Ylx)l

We will not give a proof of this identity. The reader will be asked to
verify that V(Y) : EIV(YlX)] + VIE(Y lX)l for the two asset exam-
ple in Exercise 1 1-30. As we have already seen, this identity is useful in
situations rvhere conditional means and variances are given without
additional information about the distribution.

Example 11.33 We return to the insurance Example 1 1.3 1. ln that
example we were given the information that the probability of a claim
being filed by a policyholder is .10 and the expected amount of an

individual claim (given that a claim is filed) is $1000. Suppose we are
given that the variance of claim amount (given that a claim is filed) is
$100. Find the variance of claim amount for a randomly selected policy-
holder.

Solution We have already identified the random variables
involved. Y is the number of claims filed by a randomly selected
policyholder, and X is the amount of claim paid to that policyholder. We
have already found that E(X) : 100. To find V(X) we need to find the

two components: (a) EIV(X|Y)] and (b) VtE(XlY)1.

(a) Given that a claim is filed, the variance of claim amount is
100. Thus V(XIY - 1): 100. If no claim is filed, the

claim amount is the constant 0, so V(XlY - 0) : 0. Then

EIV(X|Y)I: .e0(0) + .10(100) : 10'

(b) The mean of the random variable E(XIY) is E(X) : 100.
Thus the variance is
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vlE(xly)l : (E(xl0)- 100)2(.e0) + (E(xl 1)- 100)2(. 10)

: (0- 100)2(.90) + (1000- 100)2(.10)

: 1oo2(.90) + 9oo2(.to) : 99,969.

We can now find V(X).

v (x) : Elv (XlY)l + v lE(XlY )l
: l0 * 90,000 : 90.010 tr

The student who has studied statistics may have seen the variance
identity before. In the above example, the expected value EIV(XlY)l is the

mean of the variances within each of the two categories Y :0 (no claim
firled) and Y : I (1 claim filed). It is often refened to as the variance within
groups. The term VIE(XlY)l is the variance of the means of the two groups

and is referred to as the variance befiveen groups.

11.6 Applying the Double Expectation Theorem; The
Compound Poisson Distribution

11.6.1 The Total Claim Amount for an Insurance Company:
An Example of the Compound Poisson Distribution

In previous chapters we have looked at insurance claims in two different
ways. Using discrete distributions, we found the probability of the
number of claims that might be experienced. The number of clairns
experienced is called the claim frequency. Using continuous distribu-
tions, we found the probability of the amount of a single claim. The
amount of a claim is called the claim severity. The insurance company's
total experience depends on the combination of frequency and severity.
This is illustrated in the next example.

Example 11.34 Claims come in to an insurance office at an

average rate of 3 per day. The number of claims in a day is a Poisson
random variable 1/ with mean ) : 3. Claim amounts X are independent
of lf and independent of other claim amounts. All claim amounts have
the same distribution. The ith claim X, is uniformly distributed on the
interval [0. 1000]. The experience in one series o[ five days is given in
the next table.
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Day
Number ol
claims ly'

Amount
Xt

Amount
X2

Amount
x3

Amount
Xo,

'l otal
s

I 2 628 864 1492

2 2 322 947 1269

3 4 640 559 457 322 1978

4 J 184 447 144 775

5 3 448 s23 620 1591

The variable of real importance to the company is the total amount of
claims that must be paid out. This random variable is denoted by ,9 in
the table above. Note that the number of claims on different days varies,
so that the number of summands in the total varies from day to day. We
can write total claims as

S:XtIXz*"'*X,nr.

5 is a sum of a random number of random variables. It is referred to as a

compound Poisson random variable because the number of claims N
has a Poisson distribution. tr

11.6.2 The Mean and Variance of a Compound Poisson
Random Variable

The double expectation theorems can be used to find the mean and
variance of a compound Poisson distribution. We will leave the derivation
for Section 11.6.3. First we rvill give the mean and variance formulas and

show how to use them in Example 11.34. There is one notation to discuss

first. Since the claim amounts Xi are identically distributed, they are all
copies of the same random variable X and all have the same mean E(X)
and variance V (X).

Compound Poisson Random Variable
ly' Poisson, with parameter )

X : X; independent and identically distributed
S : Xr +X2+ "'*Xrr

.D(.9) : E(l/). E(X) : 
^. 

E(X)

v(.e) : 
^. 

E(x\ : )[v(X) + (E(&)2]
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Example 11.35 For the insurance company in Example 11.34, the
number of claims .l{ was Poisson with parameter A : 3 : E(,n/). The
claim amount X was uniform on [0, 1000]. Thus

E(X): 5gg
and

v(x): rggd

The above formulas immediately show that

-D(.9):3(500):1500
and

Y(s) : ',lrq@ -r 5oo2l: 3 
LiTL F soo'J : l.ooo.ooo'

There is a very natural intuitive interpretation for E(S). We expect an
average of 3 claims with an average amount of 500. The expected total is
3(s00). n

Example 11.36 A large insurance company has claims occur at a

rate of 1000 per month. The number of claims N is assumed to be
Poisson with .\ : 1000. Claim amounts X are assumed to be indepen-
dent and identically distributed, with E(X) : 800 andV(X): 10,000.
Then ,9, the total amount of all claims in a month, has a compound
Poisson distribution with

E(S) : 1000(800) : 800,000
and

y(S) : 1000[10,000 + 8002] : 650,000,000. tr

11.6.3 Derivation of the Mean and Variance Formulas

We will begin by looking at some conditional expectations which will
come up in the double expectation calculation. Recall that

S:Xr*Xz*"'*Xa*.
Then E(Sl//) can be written as a sum

t(sl'^/) ::uu'rX',)J;r.r,ri 
"l'J1"", - .^/ E(x)
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Since the claim amounts are independent, the variance of the sum is the
sum ofthe variances.

Y(sr'^/) ::i',X',ilr,l,,** 
"_,')1"", 

- .^/ v(x)

Now we have all necessary information to use the double expectation
theorems.

_E(.9) : EtE(Sl,^/)l : Eu/ . E(X)I : E(X). E(l/) : 
^. 

E(X)

""'-:::x'!,:f 

,:!"r:iri.';i,,:,.,
:^.v(x)+r.(a(x))2
: 

^. 
E(X2)

11.6.4 Finding Probabilities for the Compound Poisson ,9
by a Normal Approximation

The mean and variance formulas rn the preceding sections are useful, but
in insurance risk management it is important to be able to find probabili-
ties for the compound Poisson ,9 as well as the mean and variance.
Methods for this have been developed, and the actuarial student can find
them in Chapter 12 of Bowers et al. [2]. Those methods will not be

covered in this text. However, there is a special case in which probabilities
for S can be approximated by a normal distribution with the same mean

and variance. This is the case rn which the Poisson mean ) is very large.

Normal Approximation to the Compound Poisson for Large,\

If S: Xr* Xz + "'+X1,' has a compound Poisson distribu-
tion, then the distribution of S approaches a normal distribution with
mean .\ . E(X) and variance 

^. 
E(X\ as ) -' oo.

We will not give a proof here. (The interested reader is referred to
Bowers et al. [2], page 386.) The next example shows how it can be

applied for an insurance company with a large claim rate ).
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Example 11.37 In Example 11.36 we looked at an insurance
company with the large claim rate l : 1000. We showed that the
compound Poisson claim total S had mean E(^9): 800,000 and
variance V(S)- 650,000,000. Thus the standard deviation of S is

/650"000-000 x 25,495. Suppose the company has $850,000 available
to pay claims and wants to know the probability that this will be enough
to pay all claims that come in. This is the probabilify P(S < 850,000).
We can find it using the normal approximation above.

P(s <sso,ooo) : r(t s Uq!*7#@)
: P(Z < 1.96) : .9750

ll.7 Exercises

ll.1 Distributions of Functions of Two Random Variables

ll-1. Let p(r,E) be the joint probability function of Exercise l0-1,
and let S : X * Y. Find the probability function f5(s).

lI-2. Let f(r,g:!!p, for 0(r(1, 0<g<1. Find

P(X+ v< 1).

l1-3. Let X and Y be independent random variables with marginal
distribution functions f x@) :2e-2', for z ) 0. and

fv(0:3e-3a, forE ) 0,andlet,9: X +Y.Find/,e(s).

11-4. For the joint density function given in Example 11.3, find
P(X +Y < 1.5). Hint: Find P(X +Y > 1.5) first.

I l-5. Let f (r,g) be the joint density function given in Example 11.4,

and let S : X * Y. Use a double integral to find Fs(s), take the

derivative of this to get /5(s), and compare with Example I 1 .4.

I 1-6. Let X and Y be the independent random variables in Exercise
10-6. Find P(min(X, y) > t), for 0 < I ( l. Note: X and Y
are nol exponential random variables.

361
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ll.2 Expected Values of Functions of Random Variables

ll-7. For the random variables in Exercise 10-1, find E(X + Y) using
the joint probabilities in the table. Then find E(X * Y) using
the function f5(s) found in Exercise 1l-1. Show that each of
these is equal to E(X\ + E(Y), as found in Exercise 10-3.

11-8. Let f (r,0: {4, for 0 I x 11 and 0 1a l-1, as in
5

Exercise 11-2. Find E(X + Y) using the joint densify function.
Show that this is equal to E(x) + E(Y).

1l-9. Prove that E(X +Y): E(X)+ E(Y) for continuous random
variables.

11-10. For the random variables in Example 11.11, find E(XY) directly.

l1-ll. For the random variables in Exercise l1-8, find (a) E(XY\;
(b) E(x) ' E(Y); (c) Cou(X,Y).

ll-I2. For the random variables in Exercise 11-8, find (a) V(X);
(b) Y(Y), (c)V(X +Y).

1 1-13. For the random variables in Exercise l0-1, find V(X + Y).

I 1-14. Let X andY be random variables whose joint probability distri-
bution and marginal distributions are given below.

Find (a) E(X); (b) E(v); (c) V(X); (d) v(Y); (e) Cou(X,Y);
(r) v(x +Y).

11-15. Let X and Y be the random variables in Exercise 10-22 with
joint density function f @,y):6r, fot 0 < r 1y I 1, and

f(x,0:0 elsewhere. Find (a\ V(X); (b) y(y); (c) E(XY);
(d)v(x +Y).

a 1 2 pv@)

1 .15 .25 .40

2 .35 .25 .60

p,(r) .50 .50
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1l-16. For the random variables given in Exercise ll-14, find the
correlation coeffic ient.

1l-17. For the random variables given in Exercise 11-15, find the
correlation coeffic ient.

11-18. Let X and Y be random variables with joint density function

f(r,il : r *y, for 0 { x { I and 0 { a { 1, and f(r,a):0
elsewhere. Find the correlation coefficient.

11-19. Let X and Y be random variables whose joint density function
Ir-2 ' ',2t

is f(r,il : A#, for -l I r I 1 and -1 < y < l, and

f @,a): 0 elsewhere'
(a) Find fig(r) and fy(E), and show that X and Y are not

independent.
(b) Find E(X), E(Y), E(XY) and C ou(X,Y).

11.3 Moment Generating Functions for Sums of
Independent Random Variables

11-20. Let X andY be independent random variables with joint proba-
bility function f (r,a): r(g + 1)i15, for z: 1,2 and U:1,2.
Find,4,fg1y(t).

11-21. Let X and Y be independent random variables, each uniformly
distributed over [0,2]. Find AIy4,Q).

ll.4 The Sum of More Than Two Random Variables

11-22. The random variable S representing the sum of n fair dice is the
sum of n independent random variables, Xi, i: 7,2,...,r1,
where X; represents the number of dots on the toss of the ith die.
Find E(S) and 7(S).

11-23. Let Xr , Xz, Xt and Xa be random variables such that for each i,
V(X):131162, and for i I i, Cou(Xi,X): -1181. Find
V(Xt -t Xz * Xz a X+)'
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ll-24. Let ,9 : Xr * Xz * ... * Xro be the sum of random variables
such that y(S) : 500/9, V(X) :2513 for each i, and all
covariances,for i, f j, are the same. Find Cou(X;,X).

1l-25. Let ,5 : Xt * Xz * . " * Xsoo, where the X.i are independent
and identically distributed with mean .50 and variance .25. Use
the Central Limit Theorem to find P(235 < S < 265).

11.5 Double Expectation Theorems

Exercises I 1-26 through 1 1-30 refer to the random variables and distri-
butions in Examples I l 30 and 11.32.

1t-26. Find (a) E(YIX : 90)' (b) E(YIX : 100); (c) E(YIX : 110).

tt-27. Find E[E(Y|X)].

t1-28. Find (a) V(YlX : 90); (b) V(YlX : 100); (c) V(YlX : 1 10).

tt-2e. Find EIY(YjX)1.

11-30. Find V[E(YIX)], and verify the identify

Elv(Ylx)l + vlE(Ylx)l: v(Y).

l1-31. The probability that a claim is filed on an insurance policy is
.07, and at most one claim is filed in a year. Claim amounts are
for either $500, $1000 or $2000. Given that a claim is filed, the
distribution of claim amounts is P(500) - .60, P(1000) : .30
and P(2000) : .10. Find the variance of the claim amount paid
to a randomly selected policyholder. (Recall that some policy-
holders do not file a claim and are paid nothing.)

Exercises I l-32 through 1 l-36 refer to the random variables in Exercise
10-24, rvhose joint densify function is /(r, A) : 6r, for 0 < r { y { 1,

and f (r,A):0 elsewhere.

tt-32. Find (a) f x@); (b) E(X); (c) y(X).
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11-33. Find E[E(Xly)]. (This should be equal to E(X).)

t1-34. FindV(XlY : y).

l1-35. Find E[Y(X|Y)].

1l-36. Find V[E(XIY)]. verify that EIV(Xl4l + VIE(X|Y)1: V(X).

ll.6 Applying the Double Expectation Theorem;
The Compound Poisson Distribution

ll-37. The number of claims received by an insurance company in a

month is a Poisson random variable with ,\ : 20. The claim
amounts are independent of each other, and each is uniformly
distributed over [0,500]. S is the random variable for the total
amount of claims paid. Find (a) E(S); (b) y(S).

I l-38. Let the claim amounts in Exercise 1l-37 have a lognormal distri-
bution, whose underlying normal distribution has p : 5 and

o : .40. Find (a) E(S); (b)Y(S).

Use the normal approximation to the compound Poisson distribution in
Exercises I 1-39 and I l-40.

11-39. The number of claims received in a year by an insurance
company is a Poisson random variable with .\ : 500. The claim
amounts are independent and uniformly distributed over

[0,500]. If the company has $140,000 available to pay claims,
what is the probabilify that it will have enough to pay all the
claims that come in?

11-40. The number of claims received in a year by an insurance

company is a Poisson random variable with l : 500. The claim
amount distribution has mean E(X) : 699 and variance

V(X):12,000. What is the minimum amount the company
would need so that it would have a .95 probability of being able
to pay all claims? (Use the fact that Fz(\.645) = .95.)
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11.8 Sample Actuarial Examination Problems

1l-41. An insurance company determines that N, the number of claims

received in a week, is a random variable with f[1tr=r]:#,
where n > 0. The company also determines that the number of
claims received in a given week is independent of the number of
claims received in any other week.

Determine the probability that exactly seven claims will be
received during a given two-week period.

11-42. A company agrees to accept the highest of four sealed bids on a
property. The four bids are regarded as four independent random
variables with common cumulative distribution function

F1x1 =f1l+sinzxl for 1.".12'' """"-' 2-'"-2
Which of the following represents the expected value of the
accepted bid?

(A) rlt,'' *"oro*,1, D jrfrs,'j.oso"tr +sinrx)3dx

(B) * I'i,lU.sinrx)a d.r tu) ]z [',' r"oro.r(l+ sin rx13 dx

r e5/2
(C) 

16_L lr,', 
*tt +sinnxla clx

11.43. Claim amounts for wind damage to insured homes are
independent random variables with common density function

(3 for x>l
fg)=lxa

l0 otherwise

where -r is the amount of a claim rn thousands.

Suppose 3 such claims will be made. What is the expected value
of the largest of the three claims?
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l-44. An insurance company insures a large number of drivers. Let X
be the random variable representing the company's losses under
collision insurance, and let I/ represent the company's losses
under liability insurance . X and Y havejoint densify function

l2.r+2-y for0<.r<l and 0<y<2
.f (x) = l----4-

[0 otherwise

What is the probability that the total loss is at least 1?

11-45. A family buys two policies from the same insurance company.
Losses under the two policies are independent and have continu-
ous uniform distributions on the interval from 0 to 10. One
policy has a deductible of 1 and the other has a deductible of 2.
The family experiences exactly one loss under each policy.

Calculate the probabilify that the total benefit paid to the family
does not exceed 5.

ll-46. LeI T1 be the time between a car accident and reporting a claim
to the insurance company. Let T2 be the time between the report
of the claim and payment of the claim. The joint density function
of fi and 72, f(\,t2), is constant over the region 0<t1 <6,

A < tz < 6, t1 + t2 < 10, and zero otherwise.

Determine ElTl+ 7z], the expected time between a car accident

and payment of the claim.

ll-47. Let T and T2 represent the lifetimes in hours of two linked
components in an electronic device. The joint density function
for T and Tz is uniform over the region defined by

0 <lr < t2 < L where Z is a positive constant.

Determine the expected value of the sum of the squares of fi
and 7,.
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I l-48. In a small metropolitan area, annual losses due to storm, fire, and
theft are assumed to be independent, exponentially distributed
random variabies with respective means 1.0, 1.5, and2.4.

Determine the probability that the maximum of these losses
exceeds 3.

ll-49. A company offers earthquake insurance. Annual premiums are

modeled by an exponential random variable with mean 2.

Annual claims are modeled by an exponential random variable
with mean 1. Premiums and claims are independent.

LetXdenote the ratio of claims to premiums.

What is the density function of ,tr?

1l-50. Let X and Y be the number of hours that a randomly selected
person watches movies and sporting events, respectively, during
a three-month period. The following information is known about
X and Y:

E(X) = 59 Var(X) = 5g E(Y) = 29

Var(Y) = 39 Cov(X ,)') = 10

One hundred people are randomly selected and observed for
these three months. Let Ibe the total number of hours that these
one hundred people watch movies or sporting events during this
three-month period.

Approximate the value of P(T < 7100).

1l-51. The profit for a new product is given by Z =3X-Y-5. X and Y

are independent random variables wilh Var(X) = 1 and Var(Y)

= 2. What is the variance of Z?
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11-52. A company has two electric generators. The time until failure for
each generator follows an exponential distribution with mean 10.

The company will begin using the second generator immediately
after the first one fails.

What is the variance of the total time that the generators produce
electricity?

1 1-53. A joint density function is given by

JQ,fi= {F t: 0<x<l' 0<v<1
/ ' l0 otherwise

where k is a constant. What is Cov(X,Y)?

l1-54. Let X and I be continuous random variables with joint density
function

f(x,y) = {i, T.:::=t,x<v<2x

Calculate the covariance ofXand I.

I 1-55. Let X and )' denote the values of two stocks at the end of a live-
year period. X is uniformly distributed on the interval (0,12).

Given X = x, )zis uniformly distributed on the interval (0,x).

Determine Cov(X,Y) according to this model.

369
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I l-56. An actuary determines that the claim size for a certain class of
accidents is a random variable, X, with moment generating
function

Mx(t)

Determine the standard
of accidents.

(1-2500r)4'

deviation of the claim size for this class

l-57. A company insures homes in three cities, J, K, and L. Since
sufficient distance separates the cities, it is reasonable to assume
that the iosses occurring in these cities are independent.

The moment generating functions for the loss distributions of the
cities are:

MLQ)=Q-zt) 3 w*(t)=(t-20-2'5 MLQ)=(t-20-4'5

Let Xrepresent the combined losses from the three cities.

Calculate E63)

l-58. An insurance policy pays a total medical benefit consisting of
two parts for each claim.

LetXrepresent the part of the benefit that is paid to the surgeon,
and let I represent the part that is paid to the hospital. The
variance of X is 5000, the variance of )Z is 10,000, and the
variance of the total benefit, X + Y, is 17,000.

Due to increasing medical costs, the company that issues the
policy decides to increase X by a flat amount of 100 per claim
and to increase Yby 10% per claim.

Calculate the variance of the total benefit after these revisions
have been made.
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I 1-59. Let Xdenote the size of a surgical claim and let I denote the size
of the associated hospital claim. An actuary is using a model in

which E(X)=5, E6\=27.4, E(Y)=1, E(Y')=51.4, and

Var(X+Y) =$.

Let C1 = X + I denote the size of the combined claims before the

application of a 20'/o surcharge on the hospital portion of the

claim, and let Cz denote the size of the combined claims after
the application ofthat surcharge.

Calculate Cov(C1,C2).

I l-60. Claims filed under auto insurance policies follow a normal distri-
bution with mean 19,400 and standard deviation 5,000.

What is the probabilify that the average of 25 randomly selected

claims exceeds 20,000?

I 1-61 . A company manufactures a brand of light bulb with a lifetime in
months that is normally distributed with mean 3 and variance 1.

A consumer buys a number of these bulbs with the intention of
replacing them successively as they burn out. The light bulbs
have independent lifetimes.

What is the smallest number of bulbs to be purchased so that the

succession of light bulbs produces light for at least 40 months
with probability at least 0.9172?

11-62. An insurance company sells a one-year automobile policy with a

deductible of 2.

The probability that the insured will incur a loss is .05. If there is

a loss, the probability of a loss of amount N is K/N, for
N=1,,...,5 and K a constant. These are the only possible loss

amounts and no more than one loss can occur.

Determine the net premium for this policy.
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11-63. An auto insurance company insures an automobile worth 15,000
for one year under a policy with a 1,000 deductible. During the
policy year there is a .04 chance of partial damage to the car and
a .02 chance of a total loss of the car. If there is partial damage to
the car, the amount X of damage (in thousands) follows a

distribrrtion with densitv function

.f (,) ={foor"- 
.,' 

"1"n1"30.J 

. "
What is the expected claim payment?
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Stochastic Processes

12.l SimulationExamples

In many situations it is important to study a series of random events over
time. Insurance companies accumulate a series of claims over time.
Investors see their holdings increase or decrease over time as the stock
market or interest rates fluctuate. These processes in which random
events affect variables over time are called stochastic processes. In this
section we will give a number of examples of stochastic processes. Each
example will contain simulation results designed to give the reader an

intuitive understanding of the process.

72.1.1 Gambler's Ruin Problem

We return to the gambling roots of probability for our first example.

Example 12.1 Two gamblers, A and B, are betting on tosses of a
fair coin. The two gamblers have four coins between them: A has 3

coins and B has 1. On each play, one of the players tosses one of his
coins and calls heads or tails while the coin is in the air. If his call is

correct, he gets a coin from the other player. Otherrvise, he loses his
coin to the other player. The players continue the game until one player
has all the coins.

Solution lntuitively, it seems that A would be more likely to end

up with all the coins, since A starts with more coins. We can test this
hypothesis experimentally with a computer simulation. The probability
that A wins on any single toss is P(H) : P(T) : .50. We can simulate
tosses of the coin by generating a random number in [0,1) and giving A
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a loss if the number is in [0, .5) and a win if the number is in [.5, 1).

result of one simulation of the game is shown below.

Play Random Number A has

Begin
1

2

3

4

5

0.007s 10

0.126708
0.614643
0.621 189

0.913 130

3

2

I
2

3

4

In this game, A had two losses in a row but was able to recover with
three wins in a row to get all 4 coins. It is less likely that A will lose, but
that is possible. The next simulation shows a series of plays in which B
ended up with all 4 coins and A with none.

Play Random Number A has

Begin
1

2

3

4

5

6
1

0.425238
0.971694
0.217407
0.362054
a.942864
0.076474
0.26225r

3

2

J

2

1

2

I
0

Any time this game is played, one player will eventually get all of the
coins. The process is random in any single game, but if a large number
of such games is played, an interesting pattem emerges. We used the
computer to play this game to completion 100 times. In that series of
simulations, Player A won 75 times and Player B won 25 times. It
appears that the player who starts with 75%o of the coins has a 75o/o

probability of winning all the money, but our simulation only tells us

that this might be true; it does not tell us that this must be true. We
repeated the experiment of 100 plays a number of times, and found that
in each sequence of plays the number of wins for A was near (but not
exactly equal to) 75.|n Section 12.2 we will develop some theory to
prove that P(A wins all coins) : .75.
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This problem is called the gambler's ruin problem because one
of the gamblers will always lose all of his money. Theory can be
developed to show that if A starts with o coins and B starts with b coins,
then

P(A wins all coins) : o+I.

For example, when A has 10,000,000 coins and B has 200, the probabili-
ty that A wins all of the coins and B leaves with nothing is

+fffi#= eeee8

This is useful to remember when you are B entering a casino. EI

12.1.2 Fund Switching

Example 12.2 Employees in a pension plan have their money
invested in one of two funds which we will call Fund 0 and Fund 1.

Each month they are allowed to switch to the other fund if they feel that
it may perform better. For investors in Fund 0, the probability of staying
in Fund 0 is .55 and the probability of moving to Fund I is .45. For
investors in Fund 1, the probabilify of a switch to Fund 0 is .30 and the
probability of staying in Fund I is .70. We can summarize this in the

following table of probabilities.

End inlitart rn 0 I

0 .55 .45

I .30 .70

We can simulate the progress of a single employee over time as follows:

Generate a random number from [0, 1).

If the employee is in Fund 0 now, keep the employee in
Fund 0 if the random number is in [0,.55). Otherwise switch
the employee to Fund 1.

If the employee is in Fund I now, switch the employee to
Fund 0 if the random number is in [0,.30). Otherwise keep
the employee in Fund 1.

(a)
(b)

(c)
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The result of one such simulation for 6 months gave
results for an employee starting in Fund 1:

Chapter l2

the following

Month Random Number Fund

Start
I
2

3

4
5

6

0.232
0.099
0.768
0.773
0.427
0.101

1

0

0
I
1

I
0

As with the gambler's ruin example, there is a long-run pattern to be
found. We srmulated this process for 100 months at a time, and found
that a fypical employee was in Fund 1 approximately 60% of the time.
We will be able to use theory in Section 12.2 to prove that this must
happen. n

12.1.3 A Compound Poisson Process

The crucial process for an insurance company is to observe the frequency
and severity of claims day by day. On each day a random number of claims
for random amounts comes in. The company must manage the risk of its
total claims S over time. If the number of claims N is Poisson, and the
claim amounts X are independent of each other and of ,ly', then .9 follows a

compound Poisson distribution. We have already given a simulation
example for such a process in Chapter 11. In Example 11.34 the number of
claims in a day was a Poisson random variable N with mean ) : 3. Claim
amounts X were independent, as required. The zrl' claim X; was uniformly
drstributed on the interval [0, 1000]. The experience in one series of five
days was the following:

Day

Number
of claimsl/

Amount
X1

Amount
X2

Amount
Xt

Amount
Xa

Total
s

I
2
J

4

5

2

2
4
J

J

628
322
640
184

448

864
947
559
447
523

457
144
620

322

1492
t269
1978
7t5
1591
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This is only one simulation of the process for a short number of days.
Theory can also be used here to develop useful patterns for risk manage-
ment, but that theory will not be studied in this text.

12.1.4 A Continuous Process: Simulating Exponential
Waiting Times

All of the previous stochastic processes were recorded for discrete time
periods. The plays or months were indexed using the positive integers
1,2,3,.... Other stochastic processes occur in continuous time. For
example, the exact waiting time for the next accident at an intersection
can be any real number. The reader might recall that the waiting time ?
for the next accident at an intersection can be modeled using an expo-
nential random variable. This is illustrated in the next example.

Example 12.3 The waiting time ? (in months) between accidents
at an intersection is exponential with ,\ : 2. We can simulate values of'
this random variable using the inverse transformation method from
Section 9,5.2. The following table contains the result of a simulation of
the waiting time for the next 5 accidents at the intersection.

Trial Random
u

F-'(u)
Time to Next

Accident Total Time
1

2
3

4
5

0.391842
0.603216
0.094226
0.092443
0.489792

0.248660
0.462181
0.049483
0.048499
0.336468

0.710841
0.760324
0.808823
1.145291

The first accident occurred at time .24866 and the second accident
occurred .462181 time units later, at a total time of .710841. These
results are in continuous time. tr

The reader might note that the first 4 accidents occurred before
one time unit (month) had been completed. Thus the random number of
accidents in one month was ly' : 4 accidents. In this exponential simu-
lation, we have simulated one value of the Poisson random variable ly'
which gives the number of accidents in a month. One method for
simulating the Poisson random variable is based on using exponential
simulations in this wav.
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12.1.5 Simulation and Theory

We have provided simulations here to illustrate the basic intuitions
behind simple stochastic processes. The processes studied here could
have been analyzed without simulation, since there are theorems to
determine their long-term behavior. We will illustrate the theory used on

random walks and fund switching in Section 12.2. The reader can find
additional useful theoretical results for Poisson processes in other texts.
However, simulation plays a very important role in modern stochastic
analyses. The processes given here are very basic, but in many other
practical examples the stochastic processes are so complex that exact
theoretical results are not available and simulation is the only way to
seek long term patterns.

12.2 Finite Markov Chains

12.2.1 Examples

The first two examples in Section l2.l were examples of finite Markov
chains. We will return to Example 12.1 to illustrate the basic properties
of a finite Markov chain.

Example 12.4 In the gambler's ruin example, two gamblers bet
on successive coin tosses. The two gamblers have exactly 4 coins
between them. On each toss, the probability that a gambler wins or loses

a coin is .50. The gamblers play until one has all the coins. At the end

of each play, there are only 5 possibilities for a gambler: he may have 0,
I, 2, 3, or 4 coins. The number of coins the gambler has is referred to as

his state in the process. In other words, if the gambler has exactly i
coins, he is said to be in State i. The process is called finite because the

number of states is finite. If the gambler is in State 2, there is a .50

probability of moving to State 3 and a .50 probability of moving to State 1.

The probability of moving to any other state is 0, since only one coin is
won or lost on each play. It is helpful to have a general notation for the
probability of moving from one state to another. The probability of
moving from State i to State j on a single toss is called a transition
probatrility and is written as pij. In our example, pzt : .50, pt : .50,
p2t :0, pz2:0, and 741 - 0.
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The last probability is of special interest. Once you are in State 0,

you have lost al1 your money and play stops. The probability of going to
any other state is 0. In this process, the States 0 and 4 are called
absorbing states, because once you reach them the game ends and the
probability of leaving the state is 0. Since there are only finitely many
states, we can display all the transition probabilities in a table. This is
done for the gambler's ruin process in the next table. The beginning
states are displayed in the left column, the ending states in the first row,
and the probabilities in the body of the table.

It is simpler to write the transition probabilities pi, in matrix form,
without including the states. The resulting matrix is called the transition
matrix P. For our gambler's ruin example, the transition matrix is

A key feature of the gambler's ruin process is the fact that the gambler's
next state depends only on his last state and not on any previous states.

If the gambler is in State 2, he will move to State 3 on the next play with
probability .50. This does not depend in any way on the fact that he may
have been in State I or State 3 a few plays before. The probability of
moving from State i to State j in the next play depends only on being in
State i now, and thus can be written simply as pij. tr

In general, a finite Markov chain is a stochastic process in which
there are only a finite number of states so, sl, s2, ..., s,. The probability
of moving from State i to State j in one step of the process is written as

pi1, and depends only on the present State i, not on any prior state. The

I 0 0 0 0l
.s 0 .s 0 0l
0 .s 0 .s 0l
0 0 .s 0 .sl
o o o o ll

P-

Ending state
Beginning state 0 I 2 3 4

0
I
2

J

4

I

.5

0

0
0

0

0

.5

0

0

0

.5

0

.5

0

0

0

.5

0

0

0

0

0

.5

1
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matrix P : [pt] is the transition matrix of the process. Our next
example is taken from the fund switching process of Example 12.2.

Example 12.5 Members of a pension plan may invest their pension
savings in either Fund 0 or Fund l. There are only two states,0 and l.
Each month members may switch funds if they wish. The probabilities
of switching remain constant from month to month. The probabiiity of
switching from 0 to I is por: .45. The probability of switching from I
to 0 is pro : .30. The transition matrix for this process is

': Ii3
.451
-70l'

This process is different from the gambler's ruin process. There are no
absorbing states. It is possible to go from any state to any other. tr

The use of constant transition probabilities for fund switching may
not be completely realistic. It is difficult to accept the assumption that
the transition probability p,7 is the same for every step of the fund-
switching process and does not change over time. Investor behavior is
influenced by a number of factors which may change over time. It is also
likely that investor behavior is influenced by past history, so that the
probability of a switch may depend on what happened two months ago
as well as the present state. We will use this process to illustrate the
mathematics of Markov chains in the next section, but it is important to
remember that results will change if the probabilities p;i change over
time instead of remaining constant.

12.2.2 Probability Calculations for Markov Processes

Example 12.6 Suppose the pension plan in Example 12.5 started
at time 0 with 50o/" of its employees in Fund 0 and 50% of its employees
in Fund l. We would like to know the percent of employees in each fund
at the end of the first month. ln probability language, the probabilities of
an employee being in Fund 0 or Fund I at time 0 are each .50, and we
would like to find the probability that an employee is in either fund at
time L To analyze this, we will use the notation

p:o) : the probability of being in State z at time k.



Stochastic Processes

We are given that

P[o) : 'so
and

r,!o) : .50.

We need to find r[') and p1'). w. can find r'[') using basic rules of prob-

ability from Chapter 2.

p[" : P(An employee is in Fund 0 at time l)

: P(The employee started in Fund 0 and did not switch)
* P(The employee started in Fund 1 and switched to Fund 0)

: P(Stay in Fund 0lStart in Fund 0) x P(Start in Fund 0)
* P(Switch to Fund 0lStart in Fund l) x P(Start in Fund l)

: Poo' p[o) + p,o 'plo)

: .55(.50) + .30(.50) : .425

We can find p{r) in a similar manner.

p\" -- por 'p[0) t ht ' plo' : .45('50) + '70('50) : .575

This sequence of calculations can be written much more simply using

the transition matrix P. Note that

[rf'.ri"]P: ['50 ttll iS :fi]
: [.s0(.55) + .50(.30), .s0(.4s) + .s0(.70)]

: [.42s. .s7s]: [r[',,11"]

We can calculate the probabilities of being in States 0 or I at time 1

using matrix multiplication. tr

381
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In the preceding calculation, we have shown that we can use multi-
plication by P to move from the probability distribution of funds at time
0 to the probability distnbution at time 1.

[rf''. n1'']e : [r1", r1"]

The same reasoning can be used to show that we can move from the
distribution at any time i to the distnbution at the next time i * 1 using
multiplication by P.

[r[", 4i"] " 
: 

lr3'* ". o1'- "]

This gives us a simple way to find the probability distribution of funds at
any point in time.

[ri".11"] 
: 

lofo'. rlo']e

lof '' r1"] : fo5",z1')]r 
: 

lolo', r10)]r'

[o[''' o1"] : [of', r1')]r : [o5o', r1o)]r'

In general, if we are given the probabilify of being in each fund at time
0, we can llnd the probability distribution for the two funds at time n
using the identity

[n!"', 11"'] : lolo'' o1o']*"

On the following page are the first 7 powers of the transition
matrix for fund switching, along wrth the distributions for the first 7

months starting at [.50,.50].
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PN [of' ,1'']

[0.s000 0.s0oo]

10.42s0 0.s7501

[0.4063 0.se38]

[0.4016 0.5984]

[0.4004 0.see6]

[0.4001 0.5e99]

[0.4000 0.6000]

I o.ssoo

lo.:ooo

I o.+tts
lo.rzso

o.+soo I
0.7000l

o.sozs I
o.ozso l

o.sqoo l
o.ooo: l

I o.+ogq

lo.lrra

I o.qozz o.sgtt l
lo.:ls+ o.ooro l

I o.+oor o.sqqq I

lo.:lll o.ooor 
J

I o.+ooo o.sqq+ I

lo.rwo o.ooo+l

' i3 i333 3 3333] ro 4ooo o 6oool

This calculation shorvs us that even though the pension plan started with
50o/u of the employees in each fund, the distribution of employees

appears to be stabilizing with 40oh in Fund 0 and 60o/o in Fund 1. In
Section 12.3 we will show that there will eventually be 40"/o of all
employees in Fund 0 and 600/o in Fund 1, no matter rvhat the starting

distribution is.
The matrix multiplication procedure works for any finite Markov

process. If the states ?re ss, .s1, s2, .,., s[, the probability distribution at

time i is the row vector
pri) : [p['), p\,) , ... , pll].
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If P is the transition matrix for the process, then we can move from the
probability distribution at time i to the probability distribution at time
i * 1 using the identity

p(i+l) - p(,)p.

The probability distribution at time n is related to the initial probability
distribution p(o) by the identity

p(') : p(o)p".

Example 12.7 For the gambler's ruin example with 4 coins
between the two gamblers, the hansition matrix was

Suppose a gambler starts with I coin. His initial probability distribution
at time 0 is given by the row vector

p(o) : 10, l, 0,0,0].

His probabrlity distribution at time I is given by

p(l) : O(o)p : [.5,0, .5,0,0].

We can observe what happens to this gambler in the long run by looking
at p(n) - p(o)pn for larger values of n. Such calculations are a problem
when done by hand, but calculators such as the TI-83 will do them
easily. Below are the results for n:12. The matrix Pl2 isgiven next
with all entries rounded to three places.

[r o o o olls o s o olp:lo.s o.s ollo o .s o .sl
lo o o o rJ
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0.000 0.000 0.000

0.008 0.000 0.008

0.000 0.016 0.000
0.008 0.000 0.008
0.000 0.000 0.000

The probability distribution for the gambler after 12 plays is the row

vector

[.]42, .008,.000, .008, .2421.

we will show in Section 12.4 that the long-term probability distribution

for a gambler starting with one out of 4 coins is [.75, 0, 0, 0, .25]' tr

12.3 Regular Markov Processes

12.3.1 Basic Properties

we retum to the analysis of fund switching in Example 12.6 to illustrate

the basic properties of regular finite Markov chains. The transition

matrix for that process was

Note that all the entries in P are positive. A stochastic process is called

regular if, for some rr, all entries in P" are positive. Thus the fund-

switching process above is regular with n : 1. An important consequence

of this definition is that for a regular process it is always possible to move

from State i to State j in exactly n, steps for any choice of z and j. Note

that the gamblers ruin process is not regular. If you have lost all your

money and are in State 0, it is not possible to move to any other state.

we can describe the long-term behavior of regular finite Markov

processes by looking at the limit of P' as n approaches infinity. we

observed in Example 12.6 thal the matrix P" rapidly approached a

limiting matrix L. The matrices P6 and P7 were

0.5999.l
o.6001l

0.0001
0242|i
0.4s2 |

0.742|i
I .ooo l

I r.ooo
I ottz
I o.qsz
I o.zqz

lo.ooo

*: Ili .i;]

io.+oo t

L 0.3eee

and
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f o.+ooo 0.6000'l ,

lo.+ooo 0.6000

Note that the limiting matrix L had identrcal rows. It can be proved that
this happens for any regular finite Markov chain.

Limit of P" for a Regular Finite Markov Chain

If P is the transition matrix of a regular finite Markov process,
then the powers P" converge to a limiting matrix L.

!;':ZP":r-

The rows of L are all equal to the same row vector /.

In our example of fund switching, the limiting matrix L was

and the common row vector was I : [.4 .6] In that example, the
distribution of employees was shown to approach / over time. This will
happen no matter what the distribution of employees is at time 0. If the

initial distribution is 
[o[o', rlo'], then the limiting distribution is

": 11 :1,

: 
l'50'' '1''l [.i .:]

l,:Jlof',r10)] r" : loSo', 
n\o)ftmY"

: l.4pf) + .4p\'), .oo[n, * .oplo)]

: 1.4, .61.

Note that the limiting distribution is given by the common row vector /
of L, and that p(ottr : /. This, too, holds for every regular finite Markov
chain.
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Limiting Distribution for a Regular Finite Markov Chain

For any regular finite Markov chain, O(0)1 : / no matter what
initial distribution p(0) is chosen. The limiting probability distribu-
tion is given by the common row vector / of the limiting matrix L.

12.3.2 Finding the Limiting Matrix of a Regular Finite
Markov Chain

The vector 2 can be found using a simple system of equations. The
system is based on the observation that lP : /. Intuitively, this equation
tells us that once we have reached the limiting distribution, future steps
of the process leave us there. A derivation of the equation 4P :2 is
outlined in Exercise 12-12. We will use this equation to find the limiting
distribution of the fund-switching process in the next example.

Example 12.8 If we write the unknown vector I for the fund-
swrtching process as lr,y), the equation (.P : t. becomes

[ {{ asl
r', vrl ;; i;l : tr, al

This reduces to the following system of equations:

.55r*.309 : a

.45r*.70Y: Y

This, in turn, reduces to the following linear homogeneous system:

-.45r *.30Y : I
.45r -.30y : g

This system has infinitely many solutions, but we are looking for the

solution which is a probability distribution, so that it satisfies the condition
r + y : 1. Thus we solve the following system:



388 Chapter I2

-.45r *.309 : 6

.452 -.309 : 6

r*Y: I

The solution of this system is r : .40 and A : .60. Thus we have

demonstrate d that L - [.40, .60]. This procedure works in general. D

Finding the Limiting Distribution for a Regular Finite
Markov Chain

For any regular finite Markov chain, we can find the cofirnon
row vector { : [rt, 12, ..., r,,) of the limiting matrix L by solving
the system of n* I linear equations given by

frt, rz, ..., znlP : lrr,:xz, ..., rrl
and

11*12+"'+rn: l.

Example 12.9 Another pension plan gives its employees the
choice of three funds: Fund 0, Fund I and Fund 2. Participants are

permitted to change funds at the end of each month. The transition
matrix for the fund-switching process is given by

Then the limiting distribution l: fr, E, zl can be found by solving the

following system:

l.z .s .31p:1.: .6 1l
lz 3 sj

Lz .s .31

1r, y. ,ll .t .6 .l | : [r. a" "ll.z 3 .sl

t*A*z:l

This leads to the following system of equations:
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-.82*.3yI.22
.5r-.4y*.32
.3r*.|y-.52

rlY*z:1

The solution is r - .25, g:.50 and z: .25. In the long run, the
pension plan will have 25Yo of employees in Fund 0, 50oA in Fund 1 , and
25'/, rn Fund 2. This solution can be checked by evaluating powers of
the transition matrix. The TI-83 (with rounding set to three places) gives

p6:

p7:

Thus this switching process should be very close to its limit rn 6 or 7

months. !

12.4 Absorbing Markov Chains

12.4.1 Another Gambler's Ruin Example

The gambler's ruin process in Example 12.7 did not follow the patterns
observed in Section 12.3, since it was not a regular process. It was not
possible to get from any state to any other, since rt was impossible to
leave an absorbing state. However, the gambler's ruin process had a

long-term pattern of another kind. In the next example we will look at a
simpler gambler's ruin problem (with three coins instead of four) to
illustrate the basic properties of absorbing Markov charns.

389

and

-0
-0
-0

I .zso .soo .2s01
I .zso sol 24s I

f .zso .4ss .2s r .l

I .zso .soo .2so l
I zso .5oo 250 

|

1.2s0 .s00 .2so )
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Example 12.10 Two gamblers start with a total of 3 coins
between them. As before, they bet on coin tosses until one player has all
the coins. In this case, the table of states and probabilities is as follows:

Endinq state
Beginning state 0 2 -1

0

1

2

J

I

.5

0

0

0

0

.5

0

0

.5

0

0

0

0

.5

I

The transition matrix rs

This chain is called an absorbing Markov chain because rt is possible to
go from any state to an absorbing state. If we take powers of the matrix P,
we will see a long-term pattern develop. For example, the TI-83 calculator
gives the result (with rounding to 3 places)

P20 -

This seems to imply the intuitive results that one player will eventually
win all the coins, and the player with 2 out of 3 coins will win all the
coins with a probability of 213. D

12.4.2 Probabilities of Absorption

The statement that one player will eventually win all the coins in this
process is equivalent to the statement that the probability of the
absorbing chain eventually reaching an absorbing state is 1. We will not
prove this, but it is true.

[t o o ol*:l;: ;:l
lo o o rl

I t.ooo .ooo .ooo .ooo I
I .es .ooo .ooo .333 I

I .l:: .ooo .ooo .667 l'
| .ooo .ooo .ooo r .ooo l
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The probability that an absorbing Markov chain will eventually
reach an absorbing state is 1.

The major task is to find the exact probabilify of eventually ending
up in each absorbing state. In order to do this, it helps to rewrite the table
for the process rvith the absorbing states first. For the three-coin
gambler's ruin, the table changes to the following table.

bndlns state
Beginning state 0 3 2

0

3

I
2

I
0

.5

0

0

I

0
.5

0

0
0

.5

0

0

.5

0

Now the transition matrix is written differently. The reader must remem-
ber that the order of states has changed.

This matrix can be partitioned into four distinct parts in a natural way.

The matrix in the upper left comer is denoted by I; it shows that the
probability of staying in each absorbing state is 1 and the probability of
leaving is 0. The matrix in the lower left corner is denoted by R; it gives

the probabilities of going in one step from each non-absorbing state to
each absorbing state. If we use the transition probability notation,

391

1 0 0 0l
o I o ol
.s 0 0 sl
o .5 .s ol

P-

p:fr'o r''l -f s ol
LPzo Pzt) Lo '51
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The matrix in the lower right comer is denoted by Q; it shows the one-
step probabilities of moving between the non-absorbing states.

6-ir" rr:l-fo .slu:Lo, o,'l 
:l.s ol

When the transition matrix is arranged this way it is said to be in
standard form. We could write this schematically as

tr l0tttt
Ln I ql

We will use the matrices introduced above to solve for the proba-
bilities of ending up in each absorbing state. One absorption probability
we need to find is

aij : the probability of eventually being absorbed in the absorbing
State j, from a start in the non-absorbing State i.

In this problem, there are four such unknown probabilitieSi ots, a20, &13,
and ay. We can write four equations in these four unknowns by setting
up some basic probability relationships. The first unknown is

aro : the probability of eventually being absorbed in
State 0, from a start in the non-absorbing State 1.

There are three ways to start in State I and eventually be absorbed in
State 0. They are given below with therr probabilities.

P(move from State I to State 0 in one step) : p1e

P(move from State I to State 1 in one step and eventually reach State 0)
: Pllalo

P(move from State I to State 2 in one step and eventually reach State 0)
: Pl2a2o

The desired a16 is the sum of these three probabilities.

&to : ptl * htarc * Pnezo: .5 * 0a1s * .5o2s
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we can reason similarly to obtain three more linear equations.

e20 : p20 * pztarc * pzzazo : 0 * .5o16 * 0a2q

at3 : Pt3 ! Pttas * Pnazs : 0 * 0a3 ]_'5a23

aT : Ih3 * Puan * pzzazt -'5 + .5o'r: * 0c'zl

we now have a system of four equations in four unknowns which

can be solved for the absorption probabilities. The matrix notation

introduced in this section can make this task considerably easier' The

four simultaneous equations are equivalent to the single matrix equation

f o'o ar3l : f r'o n'rl* f l' rr:l[416 o':l
L;,; ",; I 

: 
Lo,o p', ) - lp^ n: ) lo,o an l

If we write A for the unknown matrix of absorption probabilities, this

matrix equation is

A:R+QA.

We can then solve this equation for A.

A_QA:R
(I-Q)A:R

A: (I - Q)-rn

For our three-coin gambler's ruin problem, the values of the necessary

matrices are
l s olR: Lo sl'

^ lo .sle:1., o j,
and 

l-a:i'' -''-l
L-.5 I j
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We find that the matrix of absorption probabilities is

The top row of the matrix A shows that a1s : ! and o,, : 1. A gam-

bler with one coin will end up with no coins with probabllit1 4,and all

three coins with probabilify +, as predicted. The second row of the

matrix can be interpreted similarly. Another item of interest is the
expected number of times a gambler will be in each non-absorbing state
if he starts in a particular non-absorbing state.

nit : the expected number of visits (betbre absorption) to
non-absorbing State j, from a start in the non-absorbing State j.

In the three-coin gambler's ruin problem, we would like to find the
entries in the matrix

It can also be shown that

N:(I-Q) r.

Thus in the three-coin gambler's ruin problem,

lt zl(r-Q) : 
Li i]

A:(r_Q)-n:li ilt;:l :li il

,*: f;ll :,,:l

lq 21
N:(r_Q)-r :l) ilLr 3l
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For a gambler with one coin, the expected number of visits to State 1 is
4/3 (including a count of I for the start in State I and an expected value
of 1/3 subsequent visits before absorption), and the expected number of
visits to State 2 before absorption rs2l3. The game will end fairly soon.

We have examined these matrix results for a simple gambler's ruin
chain, but the same reasoning can be used to show that they apply to any
absorbing finite Markov chain.

Absorbing Finite Markov Chains

The transition matrix can always be written in the form

Ir t0lt+t

LRIAI
The matrix of absorption probabilities is given by

A: (I-Q)-rn.
The entries of the matrix

(I-Q)-r :N
give the expected number of visits to non-absorbing State 1 from a

start in non-absorbing State i.

In the next example, we will apply this theory to the gambler's
ruin problem in which the two gamblers have a total of four coins.

Example 12.11 The four-coin process has standard form matrix

The matrices needed to flnd N and A are

395

I 0 0 0 0l
o 1 o o ol
.s 0 0 .s 01.
0 0 .s 0 .sl
o .s o .5 o_]

P-

l-.s o I
R: 

LS :]
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We then calculate the following:

-;,1

These absorption probabilities are those we suspected on the basis of our
matrix power calculations. For example, a gambler who starts with one
coin has a .75 probability of absorption in State 0 (losing all his coins)
and a .25 probability of absorption in State 4 (winning all four coins.) D

12.5 Further Study of Stochastic Processes

The material in this chapter was included to show the reader that theory
can be developed to study the long-term behavior of stochastic proces-
ses. Much further study and additional coursework is needed to learn the
wide range of additional theory that can be used in financial risk
management. For example, the reader who has had a course in the theory
of interest can get a nice introduction to the stochastic theory of interest
rates by reading Chapter 6 of Broverman [3]. Hopefully the end of this
text has served only as a beginning.

l-o .s ol
e:l.s o sl

lo .s oJ

I r -.s(r-Q): l-.5 1

I o -s
It.s r .sI

N:(r-Q)-' :lt 2 1l
f.s r rsl

A:(r-e),R:NR:f i'i iI|.;3l:l]3 2sr

ls r rsjlo sj Lrr';3]
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12.6 Exercises

l2.l SimulationExamples

397

For Exercises 12-1 through l2-3, use the following sequence of random
numbers.

t..57230
2. .85472
3. .37282
4..71r33
5. .20525

6. .82496
7. .52184
8. .49837
9. .76729
10. .50986

I l. .02480
t2. .99954
13..81708
14. .90535
15..76227

16. .78322
17. .00067
18. .24844
19. .14118
20. .47417

l2-1. For the two gamblers in Example 12.1, suppose A has 3 coins
and B has 5 coins, and the game is played as described in the

example. Use the random numbers given above to simulate the
game. Which player would win the game, and how many coin
tosses were needed to decide the winner?

12-2. For an employee in the pension plan in Example 12.2, the
probabilities for staying in a fund or switching funds are given in
the following table.

.B,nd ln
Start in 0

0 .65 .35

.25 .15

Use the decision-making process for switching funds described
in the example and the random numbers given above to simulate
the progress of an employee who is initially in Fund 0. How
many times in the next 20 months would he switch to, or stay in.
Fund 1?

l2-3. Suppose the waiting time in months between accidents at an

intersection is exponential with .\ : 3. Use the method in
Example 12.3 and the random numbers given above to simulate
the time between accidents. How many accidents occur in each

of the first three months at this intersection?
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12.2 Finite Markov Chains

Chapter I2

l2-4. For members in a pension plan, the transition matrix of probabil-
ities of switching funds is

D l.os .3s l' : l.zs .7s ]'
If the initial probability distribution is p(o) : [.50, .50], find
(u) p('); (bl pt:t.

l2-5. The transition matrix for a Markov process with 2 states is

D I .tz 28.]
':1.36 .64]'

and the initial probability distribution is p(0) : [.40, .60]. Find
(a) ptt)' (b) p(2).

12-6. The transition matrix for a Markov process with 3 states is

l+ .2 4l
P- 1.2 .5 .31,

l-r 3 6J

and the initral probability distribution is p(0): [.30, .30, .40].
Find Ptt)'

l2-7 . A mutual fund investor has the choice of a stock fund (Fund 0),
a bond fund (Fund 1), and a money rnarket fund (Fund 2). At the
end of each quarter she can move her money from fund to fund.
The probability that she stays in Fund 0 is .60, in Fund l, .50,

and in Fund 2, .40. If she switches funds, she will move to each
of the other funds with equal probability. If she starts with all of
her money in the stock fund, what is the probabilify distribution
after two quarters?
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12.3 Regular Markov Processes

12-8. For the transition matrix in Exercise 12-4, find the limiting dis-
tribution.

12-9. What is the limiting distribution for the Markov process in
Exercise l2-5?

12-10. What is the limiting distribution for the Markov process in
Exercrse 12-6?

12-11. What is the limiting distribution for the investor in Exercise
12-72

12-12. Prove that if P is the transition matrix of a regular finite Markov
process and I is its limiting distribution, then (.P : 1.. Hint:
Write /Pn : (4,P"- r)P and take the limit of both sides.

12.4 Absorbing Markov Chains

12-13. In the gambler's ruin example, suppose the game is rigged so

that the probability that A wins is ll3 and the probabiiity that B
wins is 213. Let the states represent the number of coins that A
has at any time, and let the total number of coins between both
players be 3.

(a) Find the matrix N.
(b) Find the matrix A.
(c) If A starts with 2 coins, what is the probability that he will

lose (end in State 0)?

12-14. Let the gamblers in Exercise 12-13 start with 4 coins between
them.
(a) Find the matrix N.
(b) Find the matrix A.
(c) If A starts with 2 coins, what is the probability that he will

lose?
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Values of the Cumulative Distribution Function for the
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0.9515 0.9525 0.9535 0.9545

0.9608 0.9616 0.9625 0.9633
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0.9989 0.9989 0.9990 0.9990
0.9992 0.9992 0.9993 0.9993

0.9994 0.999s 0.9995 0.
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Second Decimal Place in z
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Answers to the
Exercises

CH {PTER 2

2-1. KH, QH, JH, KD, QD, JD

2-2. (a) S: {rlr> 0andrrational}
(b) E : {rl 1,000 < r < 1,000,000 andz rational}

2-3. (a) S : {7,2,3,...,251 (b) E : {1,3, 5,...,251

2-4. (1,l),(1,2),(1,3),(1,4),(1,5),(l .6),(2,1),(2,2),(2,3),(2,4).(2,5),(2,6).
(3, 1),(3,2),(3,3),(3,4),(3,5),(3, 6),(4,1),(4,2),(4,3),(4.4),(4,5),(4,6).
(5, 1),(5,2),(5,3),(5,4),(5, 5),(5,6),(6, 1),(6, 2),(6,3),(6,4),(6, 5),(6,6)

2-s. (a) 6 (b) 5 (c) 2 (d) 8

2-6. BBB, BBG, BGB, BGG, GBB, GBG, GGB,GGG

2-7. -E - {2,4,6,...,24}

2-8. KC, QC, JC

2-9. AVB: {211,000 <r < 500,000andrrational},
An B: {2150,000 < r < 100,000 and r rational}

2-10. (H,3), (H,4), (H,5), (H,6)

z-tt. E u F
: 

{ ( 1, 5),(2, 4),(3, 3),(4, 2),(5, 1 ), ( 1, 1 ), (2, 2),(4, 4),(5, 5 ), (6, 6) }
E) F: {(3,3)}
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2-12. E: {GGG,GGB,GBG,GBB}, F : {GBG,GBB,BBG,BBB},
E U F : {GGG,GGB,GBG,GBB,BBG, BBB},

2-15.

E.F: {GBG,GBB}

(a) "You are not taking either a mathematics course or an

economics course" is equivalent to "you are not taking a

mathematics course and you are not taking an econo-
mics course."

(b) "You are not taking both a mathematics course and an

economics course" is equivalent to "you are either not
taking a mathematics course or you are not taking an
economics course."

46

92

25

92

61

(a) 1r (b) 17 @) a4 (d) 50

12

360

2-24. 1568

2-25. 208

2-21. 1296; 360

2-28. 8,000,000; 483,840

2-29. 3,991,680

2-30. 5040

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

141

2-23.
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2-31. 24.360

2-32. 11.280

2-33. 10,080

2-34. 4,060

2-35. 2,599,960

2-36. (a) 1,287 (b) s.148 (c) Ia4

2-3'1. 1,756,755

2-38. 146,107,962

2-39. 34,650

2-40. 27,120

2-41. 1,680

2-42. 280

2-43. l6sa - 32s3t + 24s2t2 - 8st3 + ,a

2-44. --48,394

2-47. 880

CHAPTER 3

3-1. 3t8

3-2. 718

3-3. (a) 3tt6 (b) 9t16

3-4. 47168 x .6912

3-s. (a) t/6 (b) l/18 (c) 1/6

107
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3-6. 17118 x .2179

3-7 . (a) 1/30 (b) rtz (c) 1/5

3-8. (a) .572e (b) .06s1

3-9. .0079

3- 10. .6271

3-1 l. .6501

3-12. 31133 ;= .9394

3-13. .00i4

3-14. .0475

3-15. (a)1:5 (b)17:1

3-16. -!-a+0

3-19. .459

3-20. .54

-7-21 . (a) .721 (b) .183

3-22. .16

3-23. .1817

3-24. .6493

3-25. .8125

3-26. (a) .0588 (b) .s588 (c) .3824

3-27. 317

Answers to the Exercises



Annvers to the Exercises

3-28-

409

l12

,0859

(A,C)

Dependent

(a) .63 (b) .33

.8574

.2696

No

(a) 2e% (b) .27se

5/9

(a) .705e (b) .1213

.1905

(a).s581 (b).0175

U4

.6087

.2442

.05

.60

.256

.48



410

3-50. .52

3-51. .33

3-52. .40

3-53. 2t5

3-s4. .173

3-55. 4

3-56. .461

3-57. U2

3-58. .53

3-59. .657

3-60. .0141

3-61. .2922

3-62. .2195s

3-63. .40

3-64. .42

Answers to the Exercises

CHAPTER 4

4-1.

4-2.

4-3.

P@):lll0 r:0,1,...,9

p(r): (116)(5/6)' r :0,1,2,...
F(r) : 1 - (516)+t r : 0,1,2,.

Number of heads (r) 0 I 2 3

p(r) t/8 318 3/8 l/8



Anstuers to the Exercises

4-4. r p(r) F(r)
2

J

4

5

6

8

9

10

l1
t2

U36
l/1 8

Ut2
U9

sl36
v6

sl36
U9
1lt2
1/1 8

U36

1136

1n2
1t6

5/1 8

5t12
7^2
13/18

5t6
11112

35t36
I

4-5. 7

4-6. 2671108 = 2.47

4-7. $1 14; $1 14

4-8. 51 190

4-10. 5

4-ll. Modes are 7 and 2

4-12. 210136 = 5.8333

4-t3. 3,421 .84

4-rs. (a) .75 (b) .e444

4-16. lt : .276; o : .53587

4-17. i:3.64; s:1.9667

4-18. 45%

4-19. 374.4

4-20. 984.58

411



412

CHAPTER 5

s-1. (a) 0.246r (b) 0.0s469

s-2. (a) 0.2907 (b) 0.515s

5-3. 0.00217

5-4. (a) 0.1858 (b) F:20; o2 : 19.6

5-5. Loss of $14

s-6. (a) .0898 (b) .8670

5-7. 5,000; 4,500

s-8. (a) .r754 (b) .2581 (c) .8416

5-9. .9945

5-l l. 219 x .2222

5-12. .3109

5-13. (a) .2448 (b) 3

s-14. (a) 8.1 (b) 3.lee

5-15. 3.25, 1.864

5-16. (a) .32e3 (b) .l2le

s-17. (a) .2231 (b) .3347 (c) .2510

5-18. 1,900

s-19. (a) .244 (b) .9747 (c) 2aa

s-20. (a) .07te (b) .8913

5-23. .03',12

s-24. (a) .0791 (b) .0374

Answers lo the Exercises



Answers to the Exercises

s-25. E(X): 12: V(X): 156

s-26. (a) .0783 (b) .0347

s-21 . (a) 0751 (b) ls

5-28. (a) .040a b) 24 (20 failures and 4 successes)

5-29. E(X):25' V(X) : 156

5-30. .0375

5-3 l. 40 (32 failures and 8 successes)

s-32. (a) .0437 (b) 34

5-34. p = $13,000; o : S7,211.10

5-36. .92452

5-37. .469

s-38. .0955

5-39 2

5-40 7,231

5-41. .04

CHAPTER 6

6-1. (a) 250 (b) 0.6 (c) 1.06

6-2. 5.8333

6-3. Elu(W1\ : 8.289; E[u(W)) : 8.926

6-9. (b) E(X) : (n * t)t2; V(X) : (n2 - t)lt2

4t3



414 Answers lo the Exercises

6-10. A,Ix(t): .42 +.30et+ .77eLt + .l1.e3t;
E(X) : .97; E(X?) : 1.97

6-12. eat1.4 +.6u1')8

6-13. Negativebinomial withp : .J andr : 5

6-14. 1,4, 15,2, 13,0,11, 14,9,12,7,10, 5, g, 3

6- 15. 7

6-16. 2,3,2,2

6-11. 698.9

6-18. H + *"'
CHAPTER 7

7-I. (b) F(X):0 for r --0,.7512 *.25r for 0 ( r ( 1, and I for
r ) I (c)P(0 < X < ll2) : .3125; P(114 < X < 314) : .59

7-2. (a) 6 (b) .6e36

7-3. .75

7-4. (a) 2tr (b) tt2

7-5. .4343; 213; .8471

7-6. (a) .4055; .6419 (b) ln2

7-7. .20; .4940

7-8. .625; .0677

7-9. 0.3

7-12. .46875



Answers to the Exercises

7 -13. 93.06

7-14. 112

7-ls. 281ls

7-16. v9

7-17. .57813

CHAPTER 8

8-2. 50; 83 3.33

8-3. U6

8-4. (a) 3/10 (b) tl12

8-5. (a) 42.5; 18.75 (b) 44 minutes

8-"7. (a) 70; 300 (b) .7161

8-8. (a) .3818 (b) .1455

8-e. (a) .4512 (b) .16s3

8-10. \.t"2
8-11. (a) .s654 (b) .1889

8-12. *
8-13. (a) .a82r (b) .4541

8-15. (a) .01I I (b) .2063

8-16. 1.9179;9.2420

8-1e. (a) .1535 (b) .3679

415



416 Answers to the Exercises

8-22. 1.20 .48

8-23. 1.50; .1875

8-24. a: 12; 0 :213

8-25. (a) I - e-3'13r+1) (b).9988 (c).181S

8-26. 3270

8-27. (a) .81s5 (b) .4238 (c) .6826 (d) .0ee0

8-28. (a) 0.e3 (b) -1.90 (c) -1.35 (d) 0.e7 (e) 1.645 (0 1.e6

8-29. l-a;2a-l

8-30. .8272 (Table), .82689 (TI-83)

8-31. .9793 (Table), .97939 (TI-83)

8-32. (a) .9270 (Table), .92698 (TI-83)
(b) .9711 (Using Table answer in binomial probability),

.91104 (using TI-83 answer)

8-33. (a) .7881 (Table), .7881s(TI-83)
(b) .4895 (Using Table answer in binomial probability),

.48957 (using TI-83 answer)

8-34. .5244 (Table), .524304 (TI-83)

8-35. 3,5

8-36. E(Y): 160.71; V(Y) : 4,484.96

8-37. .6684 (Table), .6691 (TI-83)

8-38. .1335 (Table),.1330 (TI-83)

8-39. et)



Answers to the Exerctses

8-40. (a) .2776(Table), .276668(TI-83)
(b) . 178S(Table), . 1 78096(TI-83)

8-41. p : 1.74981 o : .3853

8-43. (a) 5.6 (b) s.9133 (c) 4.876t (d) .220s4

8-44. (a) 700 (b) 200 (c) 93,333.33

8-45. (a) (1l2)rttz (b) (314)zrtt2 (c) (1518)zrtt2

8-46. (a) .2001 (b) .1666

8-47. 10.5r2

8-48. (a) .a737 (b) .0613 (c) .6638e

8-50. 315n3(l - t11t2132

8-51. 105

8-52. .60; .04

8-53. .3t25

8-54. .47178

8-56. .42045

8-57. .1915

8-58. t0,256

8-59. .4348

8-60 173.3

8-61. .t23

8-62. .8185

41,'7
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8-63. . l 587

8-64. .9887

8-65. .7698

8-66. 6,342,547.5

CHAPTER 9

9-1. 740.82

9-2. 575.52

9-3. Elu(W1)l : 2.3009; Elu(W.)l:2.2574

9-4. (ebt - eot)lft(b- a)lif t+0,1ifl:0.

9-s. (b + a)12

9-6. (2", -2t-2)lf tf t+0. t if i:0

9-7. 1t3

9-8. Gamma with a : 5 and 13 :2

9-9. e5t73t13 - 2t))

9-10. E(X1 : 1; V(X) :2

9-11. E(X\ - p2 + 02

9-12. (a) lny (b) lly (both on [1, e])

9-13. l-e-3!r,fory)0

9-14. (u) y3 (b) 3g2,for 0 < y < I

9-15. .80

9-17. 2,4,8,6

Answers to the Exercises



Answers to the Exercises

9-19. 9,6,2,3

9-19. F(0) : .99
F(r) : .90 + .09111000, for0 < r < 1000
F(r) :.99 + .01(z-1000y9000, for 1000 <

9-20. 100

9-21. F(0) : .99
F(r) :.90 + .10[l - (200t(r+200))3], for r

g-22. --l._.r)0(l*r)' -

g-23. lo0-:z,o(r<1oo

9-24. I

9-25. 50

9-26. .3

9-27. .93427

9-28. 500

9-29. 5644.30

9-30. 2 + 3e-213

9-31. r.9

9-32. r.7067

9-33. 403.436

9-34. 998.72

e-3s. +
a"

419

r ( 10,000

>0
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s-36 zs[r'(ffi) -r.]
g_37 . .rrru_l.ro,),rr {.lyy.r,

e-38. gzr-

s-3s f "G)l+)
s-40. +

CHAPTER IO

Ansyyers to the Exercises

I 0-1.

r0-2. a 0 2 p(a)

0 1145 t0l4s to/45 2114s
I 6145 l5/45 0 2|4s
2 3l4s 0 0 3145

p(") 10145 25145 t0145

l0-3. E(X) :2919' E(Y) : 513

10-4. E(X) : 1' E(Y) :315

10-5. V(X) : 419' V(Y):23175

l0-6. 15164

l0-7. (a) 712+r,0(r(l (b) 112*a,0<g<l

l0-8. (a) 2r3 + (3/2)12,0 ( r ( I
(b) 213 +3s - (213)y3 - 3a2, 0 < y < 1

a 2 3 p(v)

2/27 U9 4127 U3

2 4127 2t9 8/27 213

p(x) 2/9 U3 4t9



Answers to the Exercises

l0-9. (a) 29132 (b) 41t96

l0-10.7112

10-11. v2

10-12. E(X) : 31140; E(Y) : 9129

t0-13.1t125

10-14. (a) (35 -2r)1150,0( r< 5 (b) (55-2a)1750,0 < a<25

10-ls. E(X) -- 85136; E(Y) -- 32st36

10-16.

1 0-l 7. v 2

p@lt) v3 2/3

10-18. 2019

10-19. ll2*r,0(z(1
10-20. (2r2 +3Dl(2r3 * ((312)12), 0 < y 7 t < 1

t0-2r. (a) 4t5 + (241s)y, 01y < 1/2 (b) 3110

10-22. (a) 3y2,0 <a < 1 (b) 2rls2,0 < r <a < I (c) 2y/3

(d) v3

10-23. Independent

10-24. Dependent

10-25. independent

f0-26. Dependent

10-27. 20%

l0-28. .0488

421

r I 2 )
p(rlt) 2t9 It3 4t9
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t0-29. .625

l0-30. .4t

r o-3 1 . 
Ioo 

' 
fo' ,, ,r, 

t) d,s d"t *
n n3i) 150 r'

to-32 -:*l I (50
125, 000 J,ro J rn

10.33.2t5

t0-34. .19

10-35. .5t 6

10-36. U4

10-37. 819

l0-38. .4167

l0-39.896.91

10-40. .204

l0-41. Ut2

t0-42. .9856

10-43. .488

10-44. 151,3/2 (1 - .!,"')
l0-45.7t8

t0-46..t72

10-47. 5.78

10.48. .833

10-49. .45474

Answers to the Exercises

/o' 1," f (s,t) ds dt

-r-y)dydr



Answers to the Exercises

CHAPTER 1 I

1 1-1. s 2 3 4 5

p"(s) 2t27 7 /27 t0/27 8127

t1-2. 11/18

I 1-3. 6(s-z' - "-3")

tt-4. .95833

11-5. Fs(s) : I - e-"(l+s)

I 1-6. (1 - ttz - * t2)2

11-7. E(X + Y) : 3519 : 2019 + 1519 : E(X) + E(Y)

I l-8. E(X +Y):819; E(X): E(Y): 419

11-11. (a)5127 (b) l6181 (c) -1181

1r-12. (a) 131162 (b) r3l162 (c) 1l/81

1 1-13. 68/81

I l-14. (a) 1.5 (b) 1.6 (c) .2s (d) .24 (e) -.05 (f) .3e

11-1s. (a) 1t20 (b) 3/80 (c) 2ts (d) 1l/80

I 1-16. -.2041

11-r7. .5774

1

ll-18. -n

1l-le. (a) fx@) : f, +tr"', ft(r) : i*trr',
f x@)' fv@) I f @,a)

(b) E(x) : E(Y): E(XY): Cou(X,Y) : 0

423



424

ll-20. (2e2t +7e3t + 6e4t;115

t1-21. l@2' - D2t(r'i*)l

11-22. E(.S) : n(112); V(S) : n(351r2)

11-23. 14t81

n-24. -25181

1l-25. .8198 (Table), .82029 (TI-83)

t1-26. (a) 7.s (b) s.5 (c) 1

tt-21. 5

11-28. (a) 18.75 (b) 24.7s (c) 9

11-29. 20.4

1l-30. 4.6

11-31.56,364

11-32. (a) 6r(1 -r),for0<z<1 (b)

1l-33. 1t2

11-34. y2118

11-3s. v30

1 1-36. 1160

1l-37. (a) 5000 (b) 1,666,666.67

1l-38. (a) 32ts.48 (b) 606,665.15

11-39. .9898(Table), .98993(TI-83)

1 1-40. 322.434.81

Answers to the Exercises

112 (c) 1120



Answers to the Exercises

11-41 . 1 164

425

tt-42. i" I::r' rcos zir(1 + sinzrr)s d,r

rl-43.202s

11-44..71

1t-45..295

t1-46.5.72

'l 12
11-47

3

11-48. .414

t
1l-49. ---: - forr>0

(2r + r)'z

I l-50. .8413

I 1-51. 1 1

11-52. 200

I 1-53. 0

1l-54. .041

r 1-55. 6

1 1-56. 5,000

tt-57. 10,560

1 1-58. 19,300

l I -s9. 8.80



Answers to the Exercises426

1 l -60. .2743

I 1-61. l6

t|-62 .03139

t1-63.328

CHAPTER 12

l2-1. A would win in 13 tosses

t2-2. 13

l2-3. 2,3,3

t2-4. (a) [.4s, .ss] (b) [.43, .s77

12-5. (a) [.s04, .496) (b) [.54144, .4s856]

t2-6. I.ZZ, .33, .45)

12-7 . 1.47, .28, .251

t2-8. 15lt2,7l12l

t2-9. [9116,7116)

t2-10. nll57, 20157, 261511

12-l l. u5137, 12137, l0l37l

tz't3 @lZ!,1 ',i-1 @l'{i :!1] @)a7

I tts 3ts r/51 I t+tts l/l s l
t2-14. (a) | ols sts 3/s | (b) I 4s tts I t.) ors

ltrs 6ts lts I I srts trts )
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A
Absorbing Markov chains 389-396
Absorbing states 379
Addition rule 48

B
Bayes'Theorem 65-70
Bernoulli 4
Beta distribution 239 -242

applications 239
cumulative distribution

function 240-241
density function 239
mean and variance 241

Binonrial distribution 113-l2l
approximation by Poisson 128

mean and variance I 17

moment generating function 157
probability function I l6
randomvariable 114
relation to hypergeometric 125

shape of 162,163
simulation of 170

Binomial experiment I 14

Binomial theorem 38

Bivariate normal 342-343
Bonds I I

C
Cap (of insurance payment) 256
Cardano 3

Central Limit Theorem 226
Central tendency 9l-96
Chebychev's Theorem 102-104
Chevalier de Mere 3

Chi-square distribution 2 I 6

Claim frequency 357

Claim severity 357

Index

Combinations 33-34
Common ratio (of geometric series) 90
Complement 14

Compound events 14, 46
Compound Poisson distribution

357-359
Computer simulation 165

Conditional expectation 304, 352-354
Conditional probability 55-61, 200,

210
definition of 57
multivariate distributions 300-305

Conditional variance 354-355
Contingency table 55
Continuity conection 227
Continuous distributions 1 89-253

beta 239-242
exponential 201-211
garnma 211-216
lognormal 228-231
normal 216-226
Pareto 232-234
uniform 195-200
Weibull 235-239

Continuous random variables
beta 239-242

chi-square 216
compound Poisson 358
cumulative distribution function

180-l8l
exponential 201-2ll
functions of 188-189
gamma 2ll-216
independence 307-308
joint distributions 292-296
lognormal 228-231
marginal distributions 296-298
mean 187-189
median 185



430 Index

mode 184 independence 305-307
normal 216-226 jointdistributions 287-291
Pareto 232-234 marginal distributions 289-292
percentile 186 mode 96
probability density function negative binomial I36-140

176-180, 181-184 Poisson 126-132
standard deviation 190 probability function 86-87
standard normal 220-221 standard deviation 9'/ -lO4
sums of 323-324 sums of 321-323
uniform 195-200 uniform 141

variance 189-191 variance 97-104
Weibull 235-239 Disjunction 47

Continuous growth models 23 I Distributions
Convolution 323 bivariate normal 342-343
Correlation coefficient 340-342 continuous 195-253
Counting principles 30,31,34,37 discrete I l3-148
Covariance 334-337,339-340 nixed 272-217
Cumulative disfribution function multivariate 287-319

87-91,180-181,196-197,205, shapesof 161-164
208-209, 233,236-231, 240-241, 263 Distributive law l8

Double expectation theorems 352-357

D
Deductible 256 E
de Fermat, Pierre 3 Elements (of sets) l0
de Moivre 4 Empty set 22

De Morgan's Laws 19 Equally-likely events 7,45,51
Density function (see probability Event 12

density function) compound event 14-15
Dependent events 62 Expected utility of wealth 151,251
Discrete distributions I l3-148 Expected value

binomial 113-121 beta distribution 241
geometric 132-136 binomial distribution 1 17

hypergeometric 122-126 compound poisson 358-360
negativebinorrual 136-140 conditional 304,359-360
Poisson 126-132 continuous random variable 187-189
uniform l4l discrete random variable 91-96

Discrete random variables exponential distribution 205-206
binomial 113-121 function of random variable
conditionaldistributions 300-302 88, 149-153, 188-189,
cumulative distribution 255-257 ,329-334,

function 87-91 galruna distribution 214
definition of 83, 85 geometric distribution 134

expected value 9l-96, 304 hlpergeometric distribution 124

geometric 132-136 lognormal distribution 229
hypergeometric 122-126 mixed distribution 275-216



Index

negative binomial
distribution 139

normal distribution 218
Pareto distribution 234
Poisson distribution 127
population 106

uniform distribution 141, 199

using survival function 278-219
utility function 153, 257

Weibull distribution 237
Exponential distribution 201-21 1

cumulative distribution
function 205

density function 203-204
failure rate 207-208
mean and variance 205-206
moment generating function 261

relation to gamma 213
relation to Poisson 209
simulation of 270-27 I
survival function 205

F
Failure rate function 20"7 -208, 234
False negative 27
False positive 27
Factorial notation 30
Finite Markov chains 378-385
Finite population correction factor 125

G
Gambler's ruin problem 373-375,

389-390
Gambling 3

Gamma distribution 211 -216
alternate notation 215

applications 2l I
density function 212
mean and variance 214
moment generating function

259-260
relation to exponential 2 I 3

Gamma function 2Ol-202
Gauss 4

43r

Geometric distribution 132-136
alternate formulation 134-135
mean and variance 134
moment generating function 158
probability function 133

shape of 162

simulation of 170

Geometric series 90
Goodness of fit 242

H
Hazard rate (see failure rate)
Hypergeometric distribution 122-126

mean and variance 124
probability function 123

relation to binomial 125

I
Independence 6 1-64, 305-308

definition of 6l
Infinite series 94, 160
Intersection 16

Inverse cumulative distribution
method 265-270

J
Joint distributions

(see multivariate distributions)

L
Law of total probability 68

Legendre 4

Leibnitz 4
Life tables 60
Limiting matrix 387-389
Linear congruential method 166
Lognormal disfribution 228-23 1

applications 229
calculation of probabilities 230
density function 229
mean and vartance 229
continuous growth models 231

Loss severity 179-181
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M

Index

Marginal disfributions 289-292 Negation 14, 47
Markov chains Negative binomial disnibution 136-140

absorbing 389-396 meanandvariance 139
finite 378-385 moment generating function 159
regular 385-389 probability function 138

Markowitz, Hany 4 simulation of 171
Mean (see expected value) Negatively associated 335
Median 185 Newton, Isaac 4
Members (of sets) 10 Non-equally-likely events 52-55
Microsoft@ EXCEL 5, 32,35, 108, Normal distriburion 216-226

118,126,132,136,140, 168, 171, applications 216-218
209,215,223,230,239,242,272 approximation ofcompound

Minimumof independent random Poisson 360-361
variables 326-327 calculation of probabilities 219-223

MINITAB 1 18, 132, 168, l7l,272 Central Limit Theorem 226
Mixed distributions 272-277 continuity conection 22J
Mode 96, 184 density function 218
Moment generating function linear transformation 219

155-161, 258-262,343-348 mean and variance 218
binomial distribution 157 moment generating function 261
exponential distribution 261 percentiles 226
gamma distribution 259-260 standard normal 220-221

leometric distribution 158 nr'moment 155
joint 343-344,346-348
normal distribution 261 P
Poisson distribution 158 Partitions 36-37
negative binomial Pascal, Blaise 3

distribution 159 Percentile 1 86
Mortgage loans 11 Permutations 29-33
Multinominaldistribution 308-309 Piecewisedensityfunction 181-182
Multiplication principles 27 , 59,63 Pareto disrribution 232-234
Multivariatedistributions 287-319 cumulativedistribution

bivariant normal 242-243 function 233
conditional distributions 300-305 density function 232
correlation coefficient 340-342 failure rate 234
covariance 334-337,339-340 meanandvarjance 234
expected value 304, 329-334 Point mass 275
functions ofrandom variables Poisson 4

321-340 Poisson distnbution 126-132
independence 305-308 approximation to binomial 128-130
jointdistributions 287-289, compound 357-359

292-296,298-299 mean and variance 127
marginal disnibutions 289-292 moment generating function 158
moment generating functions 343-348 probability function 127
variance 337-339 relationto exponential 209

Mutually exclusive 22, 48 shape of 163

N



Index

Population 105-107
Positively associated 335
Premium 1

Probability, approaches to
counting 8,45-52
general definition 54
relative frequency 8

subjective 9
Probability density function 177

beta distribution 239
conditional 302
exponential distribution 203 -204
gamma distribution 212
joint 293
lognormal distribution 229
marginal 296
normal distribution 218
Pareto 232
piecewise 181-182
relation to cumulative

distribution function 181

standard normal distribution 220-221
sum of independent

continuous random
variables 325, 344-346, 348-350

transformed random
variable 265-267

uniform distribution 195 -196
Weibull distribution 236

Probability function
binomral distribution I l6
conditional 301
geometric distribution 133

hypergeometric distribution 123

in general 86-87
joint 288
marginal 290
mixed distribution 27 4-27 5
negative binomial distribution 138
Poisson distribution 127
sum of independent discrete
random variables 322
uniform distribution 141

Product of random variables 331-334
Pseudorandomnumber 167
Pure premium 95

433

R
Randomnumbers 166-168
Random variables 83

binomial I 14

continuous 84,115-194
discrete 83-108

Regular Markov chains 385-389
Relative frequency estimate (of

probability) 8

Risk averse 258

S
Sample 105-107

mean of 107

standard deviation of 107

Sample space 10, 53, 67-68
Sampling without replacement 121

Second moment 155

Seed (ofrandom number generator)
166

Sets 9

Shapes of distributions 161-164
binomral 162,163
geomefric 162

Poisson 163

Simulation continuous distributions
268-272
exponential 270
inverse cumulative distribution

method 268-270
discrete distributions 164-17l

binomial 170
geometric 170

negative binoniral 171

stochastic processes 373-378
Standard deviation

ofcontinuous random variable 190

ofdiscrete random variable 91-104
Standard form (of transition matrix)

392
Standard normal random variable

220-22t
Statistics 3
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Stochastic processes 37 3-399
Markov chains

absorbing 389-396
finite 378-385
regular 385-389

simufated 374-378
Sums of random variables

exponential 213 -21 4, 345 -346, 348
geometric 344
independent 224
in general 321-326
normal 345-346,348
Poisson 343,348

Survival function 197 -198, 205, 277 -27 8

T
Technology 5,32,35,108, 1 18, 126,

r32, 136, 140, 168, 184, 215, 223-
224 , 230, 239 , 242

TI BA II Plus 5, 32,35, 108, 118

Tr-83 5,32,35,108, 118, 132, 136,
168, 184, 215, 219, 223. 242

TI-89 184,215,242
Tt-92 184,215,223,239
Total probability 68
Transformati ons 219 -220, 262-267
Transition matrix 379
Transition probabilities 378
Trees 25, 26, ll5

U
Uniform distribution 141, 195-200

cumulative distribution function
196-t91

density function 195-196
mean and variance 141, 199
probability function l4l

Union 15

Utility function 151

lndex

V
Variance

beta distribution 241
binomial distribution I 17

calculating formula 154, 190
compound Poisson 358-360
conditional 354-357
continuous random variable 1 89- 191

discrete random variable 97-104
exponential distribution 205-206
function of random variable 99,149,
191,331 -339, 350-35 1

gamma distribution 214
geometric distribution 134
hypergeometric distribution 124
lognormal distribution 229
negative binomial distribution 139
normal distribution 218
Pareto distribution 234
Poisson distribution 127
population 106
uniform distribution l4I, 199
Weibull distribution 237

Venn diagram 15-16, 23-25

w
Waiting time 132, 203,209,317
Weibull distribution 235-239

applications 235-239
cumulative distribution function

236-237
density function 236
fhilure rate 238
mean and variance 231-238

z-scores 102-104,224
z-tables 227
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