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Preface
This book was written to take a step to fulfill a goal that George Friedman stated in 
his president’s keynote address in 1994 at just the second meeting of the International 
Council on Systems Engineering. George asked his audience to provide a mathemati-
cal basis for doing systems engineering. Such a basis is now called formal require-
ments, which are explicit, executable instructions to do something that can be verified 
by logic or examination. Since George asked, substantial advances have been gradu-
ally made in our ability to provide formal requirements for doing many aspects of 
software engineering and embedded systems. These successful efforts provide the 
insights needed to start the process for systems engineering. Also in the years since, 
the need to rationally control the interactions of families of systems has developed 
into a major concern. So we now need formal methods to do architecting as well.

The book describes a set of formal requirements and shows examples of their 
use. The actual formal requirements themselves are written in Mathematica® and 
are available online at http://www.wolfram.com. In retrospect, formulating the for-
mal requirements is actually much easier than inventing how to accomplish systems 
engineering and architecting tasks in the first place. The job to make formal require-
ments is more illumination than invention, so embellishing and adding to the set of 
formal requirements are best done by many people rather than a few individuals. 
Therefore, all my colleagues are encouraged to get the set and recommend improve-
ments or additions. My hope is that over time talented individuals will collectively 
achieve George’s goal.

The book was designed to enable systems engineers or architects to learn exactly how 
to accomplish many key activities of their discipline, as well as to caution that many of the 
activities remain more art than science and are not yet amenable to formal requirements.

Using the formal requirements as presented enables the book to serve as a text 
for an introductory course in systems engineering and architecting. In such a setting, 
the emphasis is on learning what to do. Each formal requirement can be taken as is 
and adhered to with minimum introspection. The book also supports a graduate-
level course where the focus is to find better ways for us to accomplish our job. In 
that setting, the formal requirements themselves are the focus and the educational 
objective is to comprehend them, creatively improve them, and develop new formal 
requirements to accomplish more activities.

Mathematica® and the Mathematica logo are registered trademarks of Wolfram 
Research, Inc. (WRI – www.wolfram.com http://www.wolfram.com/) and are used 
herein with WRI’s permission. WRI did not participate in the creation of this work 
beyond the inclusion of the accompanying software, and offers it no endorsement 
beyond the inclusion of the accompanying software.
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1 Motivation, Objective, 
Definitions, and Approach

1.1  MOTIVATIONS AND OBJECTIVE

Systems engineering and architecting are very young sciences. The practice of each 
is more an art than a science. Many excellent books are available to help a practitio-
ner increase the impact of the art or comprehend the science.1–8

This book aims to provide tools to do aspects of systems engineering and archi-
tecting better, faster, or cheaper. To accomplish systems engineering or architecting, 
one must do four things well:

	 1.	Model system or architecture behavior
	 2.	Make rational decisions
	 3.	Establish natural language requirements
	 4.	 Improve systems engineering and architecting processes and products

The objective of this book is to provide formal requirements to do each of these 
four activities a variety of ways. Formal requirements are just explicit instructions—
you can think of them as a computer program if you like. Though at first such a rigid 
structure may seem a hindrance, it actually provides two huge benefits. First, explicit 
instructions can be executed, that is, produce a product. Many systems engineer-
ing and architecting activities cannot yet be described as formal requirements. For 
example, how do you explicitly tell someone to come up with the best concept that 
fulfills customer requirements? The best you can do is give general guidance on how 
to identify candidate solutions and synthesize something new and innovative that 
will be appealing. The actual step-by-step process remains a mystery of the inner 
workings of an individual’s brain. Some people are extraordinarily good at con-
cept formulation. The extraordinary good people may be able to explain how they 
found their innovation, but even when they can, their explanation is insufficiently 
detailed for someone else to accomplish the same feat. On the other hand, you can 
explicitly tell someone how to find a mathematical minimum or maximum; indeed, 
there are many ways to do so, and some are better suited for some problems than 
others. Should the search for the solution concept be translatable to a mathematical 
optimization problem, those explicit instructions can be quite helpful. Even if you 
cannot make such a translation, you can also instruct someone on the many ways to 
compare optional solutions to determine which is best. The second benefit of formal 
requirements is that you can improve them and capture the improvements. If some-
one thinks they have a better way to do the job, they rewrite the formal requirements, 
execute them, and compare the results to how they were previously accomplished. 
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If better results are obtained, or the same results are obtained quicker or less expen-
sively, then the new version of the formal requirements should replace the old.

The subsequent chapters provide formal requirements in Mathematica® to per-
form each of the four key activities efficiently and expertly. Mathematica is a conve-
nient means to record the formal requirements because it provides a huge vocabulary 
of verified constructs to use to state formal requirements that are also executable. 
Since Mathematica is an interpreter-based language, the execution may not be the 
most efficient implementation of the formal requirements. Suitably skilled readers 
can translate the Mathematica code into whatever code they find more advanta-
geous to use. I presume the reader has basic familiarity with Mathematica; for a 
brief introduction, see the Appendix at the end of this chapter, and for details see 
Reference 9. Herein, variables are denoted in bold, while mathematical functions 
and Mathematica routines are denoted in italics.

To try to achieve a quantum leap in our collective ability to do systems engineer-
ing and architecting, the author asks his colleagues to help improve and develop the 
formal requirements in an open source environment. A copy of all the currently avail-
able formal requirements can be found at library.wolfram.com, in the Mathematica 
Technology section, as the Formal Requirements for Systems Engineering and 
Architecting entry. The reader is encouraged to provide modified or additional for-
mal requirements. The method to do so is explained at the website.

1.2  DEFINITIONS

Figure 1.1 identifies the key words that need to be defined to fully explain the objec-
tive. This section defines words as used in this book. Please check to ensure that how 
a term is used in this book is indeed what you mean when using the same word or 
phrase. Otherwise, you and I may use the same word to mean very different things.

Formal requirements are explicit instructions that are unambiguous, executable, 
and correct. Formal requirements document what needs to be done in such a way 
that there is only one possible interpretation, and they produce the result consistent 
with the documentation. A convenient way to record formal requirements is as a 

formal requirement > unambiguous > executable > correct > verified

architecture > mission > system > customer > operator > user

architecting > systems engineering > optimal solution > functional requirement > performance requirement

function > develop > design > manufacture > deploy > train > operate > maintain > dispose

performance > availability > coverage > timeliness > quality > quantity

behavior > feedback > linear > exponential  > threshold > oscillation > S shaped > collapse

resonance > damping > overshoot > steady-state error

FIGURE 1.1  Words to define as used in this book.
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mathematical or logical formula in the most general possible sense. All program-
ming languages record formulas in a manner certain to be sufficiently unambiguous 
such that they will execute on a computer in one particular way. But no programming 
language can by itself achieve complete correctness. Fortunately, for most program-
ming languages, if a program is proven correct once, it will stay correct every time 
it is used. This simplifies the effort to prove the correctness of formal requirements 
that are written in terms of other formal requirements.

Here is an example of the simplest possible formal requirement written in Mathematica:

ProbTrueGivenPosTest is the name given the formal requirement. The inputs are PA_, 
Pfalsepos_, and Pfalseneg_. Between the (* and *) markings is explanatory material.

When provided symbolic inputs, the formal requirements provide an abstract result:

When provided numerical inputs, the formal requirements provide a numerical result:

Unambiguous means the requirement statement can be interpreted in only one 
possible way. Please note that the tricky part is to achieve the intended interpretation.

Executable means that given correct and necessary inputs, the formal require-
ments produce an output consistent with the unambiguous stipulation. The execution 
could transform a set of measurements or information into other information, or 
simulate the behavior of a system or architecture.10,11 The execution could produce 
real-world entities in hardware or software.12,13

Correct means that executing the formal requirements achieves the intent for which 
they were written. To prove the formal requirements are correct requires they be verified.

Verified means there is proof that the formal requirements are correct. The proof 
requires examining the formal requirements mathematically or logically, or execut-
ing the formal requirements to obtain results that can be used as evidence to show 
the intent was satisfied. For formal requirements with a small finite list of possible 
inputs and simple rules for transforming the inputs to an output, such proofs are usu-
ally easy to obtain. For very large or infinite input variations, or very complicated or 
conditional rules for transforming the inputs to outputs, it is possible that the formal 
requirements may only be verified for stipulated conditions.
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System is a combination of people, machines, raw materials, methods, and envi-
ronment that produces a product or service. Should any portion of the system be 
deleted, the product or service would not be produced.

Customer is the name given to the person or persons acquiring the system.
Operator is the name given to the person or persons maintaining the system.
User is the name given to the person or persons utilizing the system’s products or 

services. One or more of the customers, operators, or users may be the same person 
or persons, or they may all be different.

Architecture consists of multiple systems that redundantly perform at least one 
mission. Should a system be deleted, the mission would still be accomplished, but 
perhaps not as well. The constituent systems may have different customers, operators, 
or users.

Mission is an attempt to achieve a quantifiable objective, usually subject to con-
straints. Figure 1.2 shows an example mission and a corresponding architecture.

Systems engineering is the process of determining, documenting, and verifying 
the optimal functional and performance requirements for a system.

Architecting is the process of determining the optimal systems for the architecture.
Optimal is defined as the minimum value of an index of performance (IP) that is 

a function of independent variables, subject to constraints involving the independent 
variables. Should IP need to be maximized, minimizing –IP, or 1/IP, achieves the 
desired result.

Optimal solution is the set of values for the independent variables that produce 
the optimal index of performance.

Function is a task or activity to be performed by a system. There are eight primary 
functions: develop, design, manufacture, deploy, train, operate, maintain, and dispose.

Mission:
Detect in the shortest time, an attack against any satellite operated by the United States, France or 
United Kingdom

Constituent systems:
System 1: �Existing ground based radars in the continental United States operated by the US 

Air Force
System 2: �To be developed ground based telescope to acquired by British Army, located in Australia, 

operated by the Australian Air Force
System 3: �To be developed ground based radars to be acquired by French Army, with fielding 

locations to be determine, and operated by the French Army
System 4: Existing ground based telescopes located in Norway, operated by US Air Force
System 5: �Space bases surveillance satellite to be acquired by the US Air Force, operated by the US 

Air Force
System 6: �Optical sensors placed on commercial satellites.  The satellites are operated by private entities. 

The sensor data is transformed into products by contractors working for the US Air Force.
System 7: �Command and control systems jointly operated by the US Air Force, British Air Force and 

French Air Force

FIGURE 1.2  An architecture consists of multiple systems, which perform a mission even if 
one system is deleted.
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Develop functions determine what system will best achieve the customer’s, oper-
ator’s, and user’s needs.

Design functions determine the instructions for creating the real-world items that 
will constitute the system.

Manufacture functions create the real-world items.
Deploy functions place the system in its operating environment.
Train functions prepare the operators to operate the system and the users to use 

the system.
Operate functions are the activities performed by the system in an associated 

environment for a user.
Maintain functions are the activities performed by operators to keep the sys-

tem operating.
Dispose functions address what to do with the system after it ceases to operate.
A functional requirement states a task or activity the system is to perform.
Performance is an observable and verifiable result during or after completing a 

functional requirement.
A performance requirement is an indication of how, or how well, the function is to 

be accomplished. Specifying at least one of the following can almost always denote 
performance requirements: availability, coverage, timeliness, quality, or quantity. 
Alternatively, a performance requirement may stipulate methodologies to use to per-
form the function, or give explicit instruction as to how to accomplish the function.

Availability addresses under what circumstances, or the fraction of the time in 
which, the function is to be provided.

Coverage addresses where geographically or spatially the function is to be provided.
Timeliness addresses when the function is to be provided.
Quality addresses a user’s measure of goodness that the function is to provide.
Quantity addresses how much of something associated with the function is to be 

provided.
Figure 1.3 shows an example of functional and performance requirements.
Whether or not formal requirements for systems engineering are also adequate 

for architecting depends on how architecting is defined. For some, architecture 
is the term for how a system is partitioned so that design and manufacture can be 
modularized. For example, an automobile manufacturer may create a vehicle archi-
tecture that consists of one or more basic structural platforms on which different 

Operate functional requirement:
– Lift chair above floor.

Corresponding performance requirements:
– Distance measured from floor to any point on chair is at least 0.5 m,  plus or minus 0.1 m.
– Acceleration is less than 0.2 g, plus or minus 0.05 g.
– Vector normal to seat surface deviates less than 1 degree from vector normal to floor.
– Time to achieve is 5 seconds, plus or minus 0.1 second.

FIGURE 1.3  Functional requirements state an activity to accomplish; performance require-
ments state how, or how well.
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engines and transmission, bodies, and interiors can be mixed and matched to 
achieve vehicles that appeal to buyers based on features and price. The software 
community uses the terms architecture and architecting this way as well. The aim 
of this type of architecting is to establish the most versatile modules from which the 
final whole system will be constructed. Formal requirements for systems engineering 
enable this type of architecting.

For people in the command, control, communications, intelligence, surveil-
lance, and reconnaissance communities, the word architecture is used to address 
the nature, structure, and flow of information between constituent systems. The 
fundamental aim of this architecting is to create opportunities to efficiently reuse 
information across systems. What the constituent systems should be is not relevant 
to the challenge. Formal requirements for systems engineering also enable this type 
of architecting.

Architecting as defined herein is the task to determining which constituent sys-
tems would best achieve one or more missions, with command and control of those 
systems but one consideration. Formal requirements for doing systems engineering 
are helpful for this type of architecting, but additional formal requirements are also 
needed.

When operating, systems and architectures exhibit behavior, which is at least one 
performance measure varying with an independent variable, such as time. All behavior is 
the result of the performance measures changing directly as a result of independent inputs 
(referred to as open loop dynamics) or as the result of the current state or a change in state 
of the performance measures (referred to as closed loop dynamics, or, more simply, feed-
back). Fundamental behaviors are linear, exponential, threshold, oscillation, S shaped, 
and collapse. All behaviors are combinations of these fundamental manifestations.

A convenient method for describing dynamic behavior is with differential equa-
tions that define the rate of change of the performance measures in terms of the 
performance measures and other features of the system or architecture, that is:

	 dy/dt = f(y,t)

where y are the performance measures, t is the independent variable, and f the func-
tional relationship incorporating the features. Such equations quantify the conse-
quences of feedback to the system or architecture.

The Mathematica routine DSolve solves differential equations symbolically, 
while the routine NDSolve solves the equations numerically. The Mathematica rou-
tine Plot enables us to visualize the solutions. Let’s use these routines to define and 
visualize the fundamental behaviors.

Linear behavior occurs when the change in performance is constant, that is:

	 dy/dt = constant

so the performance grows or shrinks proportionally with the independent variable. 
The differential equation and solution are
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For y0 = 0 and constant = 1, or –1, the results are

10

8

6

4

2

Independent Variable

Independent Variable

10864

Linear Behavior with Constant = –1

Linear Behavior with constant = 1

2

108642

Performance

Performance

–2

–4
Out[13]=

Out[11]=
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Exponential behavior occurs when the performance changes in proportion to a 
growth rate times the current performance level, which can be modeled as the fol-
lowing differential equation, with the indicated solution:
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For growthrate and y0 both equal to 1, the behavior is
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When the performance of a system or architecture is the combination of many 
oscillations at different fundamental frequencies, a second kind of exponential 
growth, called resonance, occurs when an input matches one of these fundamental 
frequencies of the system or architecture and there is little or no natural damping. 
The magnitude of the performance at the common frequency (called the resonant 
peak) as a function of the damping ratio is
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Exponential growth’s relentless upward curve fools us into believing the behavior 
will continue unabated forever. Yet this is never the case. Either the resources that 
enable the growth eventually deplete, or an as yet unperceived feedback grows stron-
ger in proportion to the growth. Once such counters stop the growth, the result is a 
partial or complete collapse. In the case of resonance, the resulting huge outputs can 
literally destroy the system or architecture. As will be shown later in this section, 
we can purposefully attempt to control exponential growth by introducing counter 
forces in proportion to the performance and the rate of change of the performance, 
bringing the behavior to a desired level.

Threshold behavior occurs when the performance grows in proportion to the dif-
ference between a desired goal and the current performance, which is modeled as the 
following differential equation, with the indicated solution:

For gain −0.5, goal = 10 and y0 = 0, the behavior is:

Notice how the performance decreases at a slower and slower rate. This increase 
in time or effort for the output to continue to decrease is modeled by the variable 
gain. Such behavior can also be exhibited for thresholds that grow, as illustrated here:
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Many systems and architectures exhibit oscillations in which the performance 
varies up and down with the same or different amplitudes at the same, multiple, or 
varying frequencies. Oscillation behavior can occur when the rate of change of the 
rate of change is proportional to the performance of the system, such as in a pendu-
lum, which is modeled as

When frequency = y0 = 1 and yp0 = 0, the behavior is
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Oscillations can also occur whenever at least two entities compete, for example, 
the population of victims and predators may oscillate for certain values of birth-
rates, natural death rates, and how often the predators kill the victims. In such situa-
tions, two differential equations are needed, one for each aspect of the system. Here 
is an example:

500
Time

400300

Victim’s Population

2001000
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Oscillations can also occur when corrective actions to achieve a goal are delayed 
relative to the perception of the performance, as modeled here:
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20

Goal Seeking with Measurement Delay Induced Oscillations
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These oscillations also exhibit overshoot (Abs[y[t] – goal] varies from the goal), and 
notice the peak values are gradually decreasing to what is called the steady-state error. 
Selecting values for gain and delay changes how much the performance overshoots the 
goal and how quickly the oscillations are reduced to a specified fraction of the goal.

Overshoot can also be exhibited when the rate of change of rate of change of the 
performance is proportional to both the current performance and the rate of change 
of the performance:
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For damping = 0.1, frequency = yp0 = 1, and ypgain = ygain = y0 = 0, this 
results in
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This behavior could be a natural result of the system or architecture, or we can cause 
it to happen if we can measure the current performance value or the rate of change of 
the performance measure and use that information to influence the rate of change in 
performance. One way to do this is to select nonzero values ypgain and ygain. Again, 
the peak values of the oscillations will eventually threshold to a steady-state error.

S-shaped behavior occurs when the performance changes are proportional to 
both the state of the system and the extent to which a capacity was achieved. This 
can be modeled in many ways; if the capacity is the difference between a resource 
and the performance measure, then the equations and solution are
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Collapse behavior occurs when the resources needed to achieve the performance 
decrease in proportion to the growth in performance. Here is an example where the 
resource is S shaped, starting large and then ending small:
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The performance first peaks, then collapses, because it is dependent on resource, 
which is exhibiting the following behavior:
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Collapse behavior can also occur very suddenly, such as when a structural col-
umn buckles. Under increasing load the column compresses more and more without 
noticeably bending, and then at a critical load, in the blink of an eye, the column 
bends to the point of breaking. Systems and architectures can also appear to be 
performing fine, until a single point failure occurs or a set of coupled failures occur, 
immediately causing the system or architecture to cease to function as desired.
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Good system engineers and architects must discover the possible sources of cata-
strophic collapse and prudently avoid their manifestation, and must comprehend the 
natural feedback loops inherent in the system or architecture. Once we’ve arrived at 
such an understanding, we may elect to introduce purposeful feedback to influence 
the behavior. But we must do so with extreme caution, as unintended consequences 
are the result of unrecognized feedback loops taking effect. Such consequences can 
negate all the good we attempted to achieve. Systems and architectures fail because 
the systems engineers or architects:

	 1.	Misconstrue an internal or external interface.
	 2.	Miss an influential feedback.
	 3.	 Improperly prepare for a single point or coupled failure.

That is why systems engineering and architecting is so challenging. Our failures 
are the result of omission rather than commission. We fail because we miss some-
thing we do not even know is there. Humans are naturally much better at checking 
for what is expected than identifying what is unexpected. That is why the successful 
practice of systems engineering and architecting is so dependent on learning les-
sons from prior mistakes. At a minimum, we can avoid those. Then it is up to us to 
do the best we can to avoid new mistakes when we expand the discipline into new 
endeavors and, at the very least, enable others to learn from our mistakes. To help 
us both avoid and learn from the mistakes we are about to make, we need the skills 
of modeling, good decision making, specifying requirements, and finding ways to 
improve what we do.

1.3  APPROACH

Chapter 2 addresses modeling system or architecture behavior. The focus is to 
achieve executable models of the proposed system or architecture so that both 
behavior and cost can be anticipated. Sources for mathematical models for various 
domains are identified. Processes to model systems and architectures are described. 
A key modeling consideration is how to address uncertainty. Five methods to model 
uncertainty are examined: regression, the Monte Carlo method, the fuzzy logic 
method, agent-based models, and fractals. Regression fits mathematical functions 
to data. Monte Carlo methods rely on probability and statistics. Fuzzy logic meth-
ods treat uncertainty as a “degree of belief” rather than probability density func-
tions. Agent-based models address uncertainty by simulating an environment and 
the interactions of many entities, each of which can perceive and perform in accor-
dance with stipulated rules. The value of fractal models is declared along with 
references for more information. The chapter concludes with formal requirements 
to monitor the key technical performance measures on a program.

All models imperfectly represent reality. Some models are useful for making 
decisions. The ideal practitioner of systems engineering and architecting is suffi-
ciently knowledgeable and experienced to quickly and inexpensively implement a 
useful model to obtain the information needed to make a decision with the least risk 
of error.
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Chapter 3 addresses decision making. First, principles to make a good decision, par-
ticularly a good decision in the presence of ambiguity in selection criteria and options, 
are presented. Then formal requirements provide for several techniques for making 
different types of decisions. Specifically, the following types of decisions are addressed:

	 1.	Assess the goodness of a diagnosis.
	 2.	Make a sequence of decisions to optimize a return.
	 3.	Provide people a fair method to choose from a static, finite set of options.
	 4.	Allocate a static, finite set of resources.
	 5.	Evolve options that best satisfy multiple criteria.
	 6.	Select from a static, finite set of options that one which best achieves mul-

tiple, dissimilar criteria.
	 7.	Select from a static, finite set of options those which maximize benefits 

while minimizing detriments.
	 8.	Do the optional endeavor with the best uncertain financial return.
	 9.	Select a portfolio of investments that maximize return and minimize risk.
	 10.	Choose the independent variable values that optimize an index of perfor-

mance subject to constraints when the index of performance is inexpensive to 
determine.

	 11.	Choose the independent variable values that optimize an index of perfor-
mance subject to constraints when the index of performance is expensive to 
determine.

	 12.	Define a dynamic control law to optimize a dynamic index of performance.
	 13.	Determine an optimal configuration.
	 14.	Determine the best strategy relative to a competitor.

The chapter ends with explaining how to apply the modeling and decision-making 
formal requirements to identify, assess, and manage risks. The ideal practitioner of 
systems engineering and architecting is sufficiently knowledgeable and experienced 
to quickly implement the most useful decision-making process to resolve the issues 
confronting the endeavor.

Chapter 4 addresses natural language requirements. First, the types of require-
ments needed are itemized, and then what constitutes a good natural language 
requirement is explained. Formal requirements to avoid ambiguities in natural lan-
guage requirement statements are demonstrated. The distinction between determin-
ing and documenting requirements is discussed. Then, the following techniques to 
determine and document functional and performance requirements are described, 
along with relative strengths, weaknesses, and recommended uses:

	 1.	Reuse from prior program
	 2.	 Interpret customer-provided documents
	 3.	Surveys
	 4.	Witness
	 5.	Focus groups
	 6.	Assess product defects
	 7.	Concept of operations
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	 8.	Formal diagramming techniques
	 9.	Quality matrices
	 10.	Prototypes
	 11.	 Incremental build

The thorny topic of how to verify that one has obtained the correct requirements is 
discussed, as well as how to ensure the people who need to implement the requirements 
interpret the requirements as intended. Formal requirements are presented to create 
and maintain a database of requirements, along with the means to group the appropri-
ate requirements into specifications to be provided to the item’s designers, manufactures, 
customers, users, and operators. The differences between a system specification and an 
architecture specification are illustrated. Then how to plan verification efforts and capture 
the resulting verification evidence is discussed. Finally, formal requirements are presented 
to predict when the requirement generation and verification processes will be completed.

The ideal practitioner of system engineering and architecting is sufficiently 
knowledgeable and experienced to quickly and inexpensively implement the most 
cost-efficient methods to obtain a minimal but complete set of natural language 
requirements, write the requirements in the least ambiguous manner possible, prepare 
a specification that is comprehended, plan the minimal required verification efforts, 
and obtain the information needed to determine if each requirement is achieved.

Chapter 5 addresses how to incrementally improve the practice of systems engi-
neering and architecting in a statistically meaningful way. First, the need for improv-
ing both process and products is argued. Then, surveys are shown that can be used 
by the team engaged in the effort to assess their current level of process maturity and 
product quality, and identify the most important areas of improvement.

The ideal practitioner of systems engineering and architecting is sufficiently 
knowledgeable and experienced to quickly determine what aspect of the effort most 
urgently needs improvement and quickly define and implement the means to improve.

Each chapter begins with introductory remarks, followed by case studies based 
on real events to provide lesson-learned guidance, and then the formal requirements 
are presented and used in illustrative examples. Each chapter ends with a list of heu-
ristics for performing the effort.

To put the subject matter of this book in the context of an industry systems engi-
neering standard, Table 1.1 relates the chapters to the subprocesses documented in 

TABLE 1.1
Formal Requirements for Some of the 
Subprocesses Defined in ANSI/EIA-632-1999

Chapter
Provides Formal Requirements for 

EIA 632 Subprocess

2 17, 22

3 23, 24

4 10, 14, 15, 16, 19, 25, 26, 27, 28, 29

5 4
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the Government Electronics and Information Technology Association Standard, 
Process for Engineering a System, ANSI/EIA-632-1999.14 The ANSI/EIA-632-1999 
standard does not address architecting as defined herein.

1.4  SUMMARY

•	 The objective of this book is to provide formal requirements for modeling 
systems and architecture behavior, making decisions, establishing natural 
language requirements, and improving the practice of systems engineering 
or architecting.

•	 Formal requirements are explicit instructions that are unambiguous, exe-
cutable, and correct.

•	 A system is a combination of people, machines, raw materials, methods, or 
environments that produce a product or service. Should any portion of the 
system be deleted, the product or service would not be produced.

•	 Systems engineering is the process of determining, documenting, and 
verifying the optimal functional and performance requirements for a 
system.

•	 Architecture consists of multiple systems, which redundantly perform at 
least one mission. Should a system be deleted from the architecture, the 
mission would still be accomplished, but perhaps not as well. The constitu-
ent systems may have different customers, operators, or users.

•	 Architecting is the process of determining the optimal systems to accom-
plish a mission.

•	 All system and architecture behaviors are combinations of the following 
fundamental behaviors, each of which is a consequence of feedback:
•	 Linear
•	 Exponential
•	 Threshold
•	 Oscillation
•	 S shaped
•	 Collapse

•	 Good system engineers and architects must comprehend the natural feed-
back inherent in the system or architecture they are addressing.

•	 Systems and architectures fail because the systems engineers or architects:
	 1.	 Misconstrue an internal or external interface.
	 2.	 Miss an influential feedback.
	 3.	 Improperly prepare for a single point or coupled failure.

•	 The ideal practitioner of systems engineering and architecting is sufficiently 
knowledgeable and experienced to quickly and inexpensively:

	 1.	 Implement a useful model to obtain the information needed to make a 
decision with the least risk of error.

	 2.	 Implement the most useful decision-making process to resolve the 
issues confronting the endeavor.



19Motivation, Objective, Definitions, and Approach

	 3.	 Obtain the minimal but complete set of natural language requirements, 
write the requirements in the least ambiguous manner possible, prepare 
a specification that is comprehended, plan the minimal necessary veri-
fication efforts, and obtain the information needed to determine if each 
requirement is achieved.

	 4.	 Determine what aspect of the systems engineering or architecting effort 
most urgently needs improvement and quickly define and implement 
the means to improve.

APPENDIX 1: MATHEMATICA IN BRIEF

Upon initiation, Mathematica creates a notebook to use and retain the results. Saved 
notebooks can be opened and modified. The basic working entity in the notebook is a 
cell. Every time the Enter key is pressed, a new cell is made. The contents of the cell 
can be text, mathematical expressions that are to be evaluated, or programs given 
definition to be executed later.

Mathematica is an interpreter-based language, which is geek speak for saying 
the contents for any or all selected cells are immediately executed by Mathematica 
upon selecting the cells and typing the Shift-Enter keys simultaneously. Between 
executions, Mathematica remembers all defined variables and programs (which I 
will call routines), so sometimes it is prudent to use the Mathematica function Clear 
to erase these from memory before use again. Mathematica denotes what it took as 
an input by

	 In[n]:=

and Mathematica denotes the result of its processing as

	 Out[n]=

where n will be the integer count of the total number of inputs and outputs accom-
plished so far.

A variable is given a name and value by typing it and using the “=” sign as follows:

The double equal sign “==” is a logical test of whether or not the left-hand side of 
an expression is identical to the right-hand side. Here are two examples:
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In Mathematica, the “=” sign is best interpreted as “is defined to be,” while the 
double equal sign, “==”, is best interpreted to be “is the same as?” and the colon 
equal sign “:=” is best interpreted to be “will execute” the subsequent set of com-
mands when provided all the information on the left-hand side of the expression.

Output is suppressed by ending the command line with a semicolon:

A variable can be given a symbolic name:

Notice even though, as far as Mathematica is concerned, symbol has neither a 
numerical nor text association, it is still perceived to be the same as variable:

Lists of text symbols are denoted between quote marks, for example:

Now symbol is defined and since it was previously associated to be defined as vari-
able, variable’s value is no longer “1” but the same text string associated with symbol:

The user can define a function with variable inputs, such as

	 y = a*t^2 + b*t + c

as follows:

Mathematica returns specific values when provided specific inputs, for example:
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Or specific values when provided defined variables, as follows:

Or symbolic values when provided symbolic inputs, as follows:

Mathematica treats variables as global entities. That is, once defined, that defini-
tion is used whenever that variable name is invoked within the notebook.

Functions can be used with other functions provided by Mathematica, such as Plot:

108642
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Users can also define a more complicated construct, called a Module, which 
can include internal logic and documentation which are denoted as text between 
“(*” and “*)” symbols. A Module can use global variables, input values denoted 
in the name of the Module, or can use local variables, that is, variable names can 
be defined that have meaning “only within” the context of the Module, but not 
the global environment. Here is an example in which the quadratic equation is 
redefined as a Module that expects one input variable (t) and contains three local 
variables (c1, c2, c3):
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First, note the local variables have no value assignment outside of the module:

If QuadraticEquation is proved an array of numbers for input, it returns the cor-
responding array of quadratic outputs:

QuadraticEquation is mathematically identical to the function y[t_, a_, b_, c_] 
we defined earlier, provided a = b = c = 1, as follows:

0.100.80.60.40.2

1.5

Out[98]= 2.0

2.5

3.0

S
Mathematica can handle both symbolic and numerical representations. For exam-

ple, if we want to solve for when a quadratic equation is 0, we can do it symbolically 
using the Mathematica routine Solve:



23Motivation, Objective, Definitions, and Approach

Or we can do it numerically, using the Mathematica routine NSolve:
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2 Model Systems and 
Architecture Behavior

Models enable the prediction of system or architecture behavior in order to provide 
information that people will use to determine requirements and to select the imple-
mentation approach. Behavior is how the system or architecture transforms a set of 
inputs, which may be varying with time, the environment, or the state of the system 
or architecture, into a set of outputs. Analysis allows for the examination of the intri-
cacies of the input-to-output transformation. Synthesis enables the determination of 
the functional and performance requirements and the implementation approach that 
will optimize the desired transformation. Models are valuable in proportion to how 
quickly and inexpensively they provide trusted results to make decisions. The model 
may be a diagram, or a miniature physical representation of the system or architecture. 
The model may be the system itself operated under controlled conditions. The model 
may be a single input, a single-output algebraic function, or a set of simultaneous 
nonlinear stochastic differential equations. To develop mathematical models it is 
necessary to understand the system or architecture at a deep level. The modeler’s 
adage is “All models are wrong; some models are useful.” All models are wrong 
because aspects of reality are excluded by conscious decision or error.

The modeler’s job is to find the least complicated model that can be used to obtain 
the information needed to make the decision at hand. For example, if one wants 
to determine the best architecture to maintain a timely catalog of objects in space 
orbit, it is sufficient to model the approximate orbits of a representative sample of 
the objects and the extent they can be perceived by the sensors being considered for 
use, as well as the location, availability, sensitivity, and capacity of the various sensors. If 
there are inherent time delays in directing a sensor to search for an object or in turn-
ing the sensed information into useful orbit information, those delays are important 
to model so one can determine the best ways to command and control the architec-
ture. While the three-dimensional shape of each object could be modeled, it is not 
relevant, nor are the higher order perturbations on the orbits. However, if the need 
is instead to characterize the objects in orbit, then imaging of the object is neces-
sary and the model must include the three-dimensional shape of the objects, their 
rotational motion, and how each object reflects or absorbs electromagnetic energy.

Determining the appropriate level of model fidelity remains more an art than a 
definable process. The easier mistake to avoid is having too much fidelity. This is 
because it usually takes more work to add more fidelity, and a good model develop-
ment heuristic is to incrementally add complexity. Yet, the fear of having too little 
fidelity often results in models being constructed with too much fidelity. (Plus mod-
elers get paid to model, and as more fidelity means more work, there is a natural ten-
dency to add fidelity.) Missed fidelity errors are examples of the notorious unknown 
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unknowns. Usually, these missing aspects are discovered during the model verifica-
tion process when it is noticed the model output does not match the real world. While 
it is then obvious that something is wrong with the model, what exactly is wrong is 
often initially a mystery. After first ensuring there are no errors in the mathematics 
or coding, only then is it possible to determine if the mismatch between the model’s 
results and the observed results is due to errors in the observed results, or because 
some aspect of reality is missing in the model’s mathematics. Unfortunately, if the 
model verification effort was limited in scope, the missing model aspect is often dis-
covered after the system or architecture solution is substantially developed, perhaps 
even in operation. Then these missing model features become lessons learned for the 
next similar modeling attempt. So another model development heuristic is to build 
on models used to produce successfully operating systems or architecture. By doing 
so, one absorbs the lessons learned from prior developers.

Two case studies follow, one associated with modeling systems and one associ-
ated with modeling an architecture.

Case Study 2.1: Using Models to Keep the 
Space Shuttle Wings from Falling Off

Background

The Space Shuttle during ascent flight consists of three elements: the two solid 
rocket boosters (SRBs), the external tank (ET), and the Orbiter. The SRBs fire 
from liftoff until the vehicle has risen above the atmosphere, then separate from 
the ET and parachute into the Atlantic Ocean, landing relatively close to the 
launch site. The ET holds the propellant stored as liquid hydrogen and oxygen for 
the three Space Shuttle main engines (SSMEs), which fire from just before liftoff 
to the main engine cutoff (MECO), which leaves the Orbiter–ET combination 
just short of orbit velocity. The winged Orbiter holds the crew and payload as 
well as the three SSMEs. The ET is jettisoned shortly after MECO. Since the ET 
velocity is just below that needed to achieve orbit, the ET doesn’t make it all the 
way around the Earth and ends up in the mid-Pacific Ocean. To achieve the final 
desired orbit, the Orbiter uses engines called the orbital maneuvering system 
(OMS), which are also used to slow the Orbiter down when it is time to leave 
orbit and reenter the atmosphere. The Orbiter glides to a landing.

In the mid- to late 1980s, the two potential failures of paramount concern for 
threatening the safe flight of the Shuttle were (1) premature loss of an SSME, and 
(2) exceeding the limit loads in one of the Orbiter’s wings during ascent.

Here, the loss of an SSME means the loss of the thrust of SSME, not a mal-
function resulting in damage. Should the thrust of any SSME be lost prior to 
achieving the desired orbit velocity, the Shuttle would fall back to Earth just as 
a motorcyclist trying to hurdle numerous buses parked side to side would fail to 
clear them if he fails to achieve an adequate velocity at the top of the ramp. To 
save the vehicle and crew in the event of the loss of a SSME, extensive analyses 
were conducted to determine contingency trajectories, depending on when the 
thrust was lost from one or more SSME. In brief, alternative trajectories were 
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planned to abort to orbit (ATO), abort once around (AOA), find an alternative 
landing site (ALS), or return to launch site (RTLS). The simplest of the options 
is ATO, used when the Shuttle had achieved enough velocity so that it could rely 
on the OMS to reach at least a lower altitude orbit than that of the nominal mis-
sion. The planned mission is abandoned, but the crew can return to Earth later 
by performing a near-normal reentry burn. All the other abort options require 
blending an ascent trajectory with an entry trajectory because to get the Shuttle 
from point A to point B, all energy the vehicle has at point A plus any energy 
added from continued engine firing must be expended in order for the Orbiter 
to come to a safe stop at point B. If the energy needed is underestimated, then 
the Orbiter fails to reach point B; if energy needed is overestimated, then the 
Orbiter cannot come to a stop at point B. The AOA alternative was for the condi-
tion in which enough velocity could be achieved to get the Orbiter to a landing 
site either on the west coast of the United States, or near the launch site at Cape 
Canaveral in Florida. The ALS locations were on the west coasts of Europe and 
Africa, so if enough velocity was achieved to at least cross the Atlantic, there 
was a place for the Orbiter to land. Finally, if an SSME failed very early so there 
was insufficient energy to cross the Atlantic, the Orbiter would perform a rocket-
powered loop, changing its velocity vector from heading basically due east to 
due west in order to fly back to the launch site; jettisoning first the SRB, then 
the ET, so neither impact land; and finally gliding to a landing near the launch 
site in Florida. Needless to say, finding, preparing for, and training the crew and 
mission support team for all these contingencies consumed a significant fraction 
of the resources available to plan Shuttle missions. But one effort consumed even 
more resources, and that was to ensure the atmospheric portion of the Shuttle’s 
ascent did not cause the wings to fail. This case examines how models were 
made, used, and abused over a period of years to address a very uncertain situa-
tion for which the decisions had life-and-death consequences.

What Happened

The complete process is illustrated in Figure 2.1. The models used are itemized 
in Figure 2.2.

Predicting the structural loads on a wing traveling at high velocity in the 
atmosphere and therefore being severely heated involves the disciplines of aero-
dynamics, thermodynamics, structures, materials, and dynamics. The loads on 
the wing are proportional to

	 q * alpha

where q is the dynamic pressure, defined to be 1/2 * rho * V^2, where rho is the 
atmospheric density and V is the vehicle’s velocity relative to the wind, and alpha 
is the angle of attack of the wing (in radians). The angle of attack is measured in 
the plane that contains the vehicle’s velocity vector and the net lift force, and is 
the angle between the velocity vector and the chord line of the wing. The chord 
line is from the front-most edge of the wing to the back-most edge. The larger 
the q or alpha, the higher the loads on the wing, but the exact stress and strain 
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in the wings parts are a complicated consequence of the structural forms and 
material used. Back in the 1980s, how to make models that could predict stresses 
and strains at various points in the wing was well known, but with the computers 
available at the time, it could take months to complete an analysis. This effort 
was termed a load cycle. Each load cycle assessed the result of a pressure profile 
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FIGURE 2.1  Space Shuttle ascent trajectory design process flow.
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on the surface of the wing, along with the forces due to the dynamic interactions 
between the Orbiter, ET, and SRB, as well as the extreme temperatures the struc-
ture was exposed to since the Shuttle achieved hypersonic velocity while still in 
the atmosphere, resulting in a great deal of heat being generated where the struc-
ture rammed into air molecules at high velocity. What was most difficult to model 
with certainty was the pressure profile on the wing’s surface that changes with 
speed, angle of attack, any yawing to left or right, the angles of the aerodynamic 
surfaces that can be moved, and the state of the atmosphere.

The primary means to have complete faith in the accuracy of mathematical 
models is to make sure the calculated predictions agree with real-world data. 
For regular airplanes, this is done three ways. First, scale models of the plane 
are placed in wind tunnels that simulate the fluid flow that would be achieved on 
the real full-sized wing. While in the tunnel, the net forces on the model as well 
as the pressure on parts of the model can be measured. These data are used to 
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adjust the mathematical models to ensure they agree with the wind tunnel data, 
as well as to determine what speed and angles of attack are most critical. Second, 
an instrumented test article is built; machines are used to impart measured loads 
on the structure; and the actual strain, stress, and deflections are compared to 
the model predictions. Third, the first airplane built is instrumented to measure 
strains on its structural members and possibly pressure on parts of the wing, 
and the plane is flown on numerous test flights at gradually higher speeds and 
steeper angles of attack and in more turbulent wind environments. If the mea-
surements show unacceptable loads are occurring in the wing, either the struc-
ture is made stronger (with the consequence of making the plane heavier, hence 
reducing its top speed or range) or a safe flight envelope is established that will 
become part of the pilot’s operating instructions. Wind tunnel tests using scaled 
models of the Shuttle were extensively undertaken. But the Shuttle flew so fast 
and so high, that in order to mimic the environment one essentially had to fire a 
small rocket to get the gases moving fast enough past the dime-sized model in 
the tunnel to mimic the environment. So the wind tunnel data were useful but 
also fraught with uncertainties. The Shuttle wings were instrumented, but exten-
sive flight tests of the Shuttle were not economically feasible, as each Shuttle 
mission cost approximately a billion dollars. (Note: The actual cost per mission 
was a notoriously difficult thing to determine. The “billion-dollar” cost estimate is 
roughly the annual budget divided by the four flights per year. Since a large portion 
of the shuttle program costs were fixed, the more missions flown, the less costly 
the per-flight rate. To my knowledge, no one ever determined the variable costs 
per mission or successfully comprehended the fixed costs sufficiently to appro-
priately reduce them.) As the Shuttle was to fly every few months (indeed, in 
the mid-1980s the desire was to fly the Shuttle every two weeks), a safe method 
of updating the mathematical models used to determine the best way to fly was 
needed in the interim, while the flight data that had been obtained to proceed 
through the many-month load cycle. The approach taken was to use whatever 
load cycle data were available to generate load indicators, which were numerical 
curve fits of predicted load in various parts of the wing as a function of trajec-
tory parameters. As more instrumented flights were accomplished, the new data 
would then be used to conduct a new load cycle, and thereafter the load indica-
tors would be modified if necessary to better match the newly obtained data.

Getting mass to orbit takes a tremendous amount of energy. Each pound of 
mass needs to be brought to approximately 17,500 miles per hour. The Shuttle 
was useful only if a useful payload got to orbit, so it was necessary to fly a trajec-
tory that used all the propellant available to get the maximum payload mass to 
orbit. The equations of motion for a vehicle in a vacuum are simple enough that 
calculus of variations can be used to derive a closed-form solution for the opti-
mal trajectory. But the equations of motion in the atmosphere, particularly for a 
winged vehicle like the Orbiter, add just enough complexity to prevent a calculus 
of variations from providing a closed-form solution. What can be discerned is 
that if dynamic pressure, or the angle of attack, must be constrained to achieve 
acceptable loads, then to minimize the propellant required, the angle of the 
applied thrust with respect to the horizon must vary with velocity in a manner 
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that is dependent on the total profile of the atmospheric density that will be felt 
as well as the total profile of the wind that will be felt. That is, any local change 
to either the density or wind causes the entire thrust profile to be changed, rather 
than just in the vicinity close to the density or wind change. Of course, it is 
impossible to change a rocket’s thrust angle history after it has already flown, 
and it is very difficult to know what the density or wind will be before it gets to 
that part of the sky. So the best that can be achieved is an approximate optimal 
trajectory during atmospheric flight. Very roughly, this approximate optimal 
trajectory can be accomplished by determining the velocity to rotate from the 
vertical motion the Shuttle starts with to clear the tower at the launch site, to an 
angle to be specified to achieve some horizontal velocity, then to achieve the 
maximum allowed dynamic pressure as soon as practical and hold it as long as 
practical. Of course, these conditions are completely contradictory to our criteria 
to minimize the loads on the wings. So, the modeler’s job was to find a trajectory 
that balanced the need to deliver a useful payload while keeping the uncertain 
loads on the wing safe. Any mistake in the model that predicted the loads would 
be less than the wing’s structural limit and could result in the destruction of the 
Orbiter and the death of the crew. Any mistake in overpredicting the loads would 
result in a reduced payload capability and thus reduced usefulness of the Shuttle.

It is one thing to determine what the trajectory should be and another for the 
vehicle to actually fly it. For atmospheric flight, the Shuttle flew an open-loop 
profile. That is, it commanded thrust levels and angles using constants at speci-
fied velocities called I-loads since they were inputs loaded into the flight soft-
ware (that is, software that operated in real time using the on-board computers). 
The flight software made real-time adjustments to keep moments about the three 
primary axes of the Shuttle balanced, so the Shuttle smoothly pitched, yawed, 
or rolled. After the SRBs were jettisoned and flight was in vacuum, the avion-
ics subsystem switched to a different flight software that implemented a near-
optimal trajectory by adjusting the thrust angles every two seconds to minimize 
the propellant needed to achieve the desired MECO condition. The Shuttle’s avi-
onics subsystem had five computers operating during launch: three ran a primary 
set of software to execute the mission, and two ran an independently derived, 
coded, and verified back-up software. Prior to actually commanding anything, 
the five results were compared. If the five results were all about the same, it was 
presumed they were all correct, and the result was then communicated to the 
mechanical devices (called actuators) that made the needed adjustments to thrust 
or change the direction of the Shuttle. If one or more of the computers came up 
with different results, it was presumed something was wrong: some of the redun-
dant sensor sets feeding information to one of the computers had failed, or a 
computer had failed, or something was wrong with the software. A complicated 
set of logic was undertaken to determine which of the computer outputs to trust 
and which to ignore. So prior to each mission, the software, including the I-loads, 
was run through numerous tests, some utilizing computer simulations and some 
utilizing copies of the real hardware-in-the-loop simulations, to verify that the 
flight software worked as intended. Once all this work was accomplished, people 
were loath to change anything about the flight software for fear of creating an 
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unverified state. As will be seen, this had the result of increasing the workload 
and paradoxically of flying the Shuttle less safely than possible.

Since the atmospheric flight was open loop, any differences between how 
the system really performed and how it was predicted, based on simulations of 
the vehicle and environment behavior, resulted in the real trajectory and there-
fore the wing loads being different than anticipated. So to be safe, these poten-
tial dispersions between the simulated behavior and the real behavior had to be 
accounted for.

Every machine performs a little differently every time it is turned on. The 
sources of these variations are called system dispersions. For the sake of safety, 
allowances must be made for these system dispersions. For the Shuttle, on any 
given launch, the performance of the pumps and turbines determines if the 
SSME would deliver a little more or a little less thrust with a little more or little 
less efficiency. Dynamic and thermally induced distortion of the nozzles’ shapes 
also impacts both the actual thrust achieved and the efficiency of the rockets. 
Deficiencies in the ability of the actuators to achieve and hold the commanded 
nozzle angles alter the true angles from those desired. The precise chemical 
nature and even the shape of the aluminum particles suspending in the SRB 
solid propellant mix have a huge impact on SRB thrust profile and burn time. 
The propellant in the SRBs is molded to create a void with a star-like pattern 
that runs along the long axis of the SRBs. The SRB thrust is proportional to how 
much surface area was burning, so the star is shaped to get a lot of area burning 
early to maximize thrust, then decrease the area and thrust as the Orbiter gained 
altitude to keep the dynamic pressure limits from being exceeded as well as to 
limit the acceleration felt by the crew. The mold is not perfectly shaped, nor is 
it possible to know for certain exactly how well the burning of the propellant 
would keep the desired varying shape. The accelerometers and gyroscope, used 
to sense motion and attitude, are imperfectly precise, so they provide imperfect 
measurements for the flight software to determine the vehicle’s true velocity and 
attitude. Consequently, any command to orientate the SSME, or to set a thrust 
level based on this imperfect knowledge, was inevitably inappropriate in some 
manner. Indeed, since there is an unavoidable delay between when the physical 
phenomena were sensed and the time the on-board computers complete the cal-
culations to determine the commands, this means the commands are always for a 
situation that literally no longer exists. The Earth’s gravitational force varies with 
latitude and longitude, so any deviation in position from the planned trajectory 
exposes the vehicle to a slightly different gravitational force than anticipated. 
The mass of the vehicle was known partly by measuring the entire Orbiter at 
some time in the past and partly by measuring the things that were added or 
removed; as it is likely things are added or removed without an accurate mass 
update, the mass of the Orbiter is never known exactly. (Interestingly, like a lot 
of people, all the Orbiters gradually got heavier.) At liftoff, the freezing cold 
liquids in the ET cause a coat of ice to stick to the ET, and that mass has a small 
effect on the Shuttle. The Shuttle is big enough that the air it displaces has some 
mass, which provides some buoyancy, and that small buoyancy changed with 
temperature. All possible system dispersions were identified and each possible 
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variation quantified. To gauge the impact of the system dispersions, 500 trajec-
tories were simulated, each using the same I-load but each with different system 
dispersion values, randomly selected according to the probability distribution 
associated with each. The 500 cases created 500 trajectories, which in turn cre-
ated 500 load indicator predictions. From these 500 results, the mean and vari-
ance of the potential impact on the trajectory and loads could be determined. The 
3 sigma level of possible variation that made a load worse was called a knock-
down. For example, the 3 sigma level of additional dynamic pressure that might 
occur was the dynamic pressure knockdown. Similarly, the 3 sigma possible 
additional loads to each indicator were the load indicator knockdowns. It turned 
out that these dispersions varied with the Shuttle’s velocity. In plain English, 
these knockdowns protected the vehicle from 99.87% of the possible effects of 
the system dispersions, provided, of course, that the basic trajectory to the mean 
wind and atmosphere and system performance parameters was also safe.

Since both dynamic pressure and angle of attack depend on wind velocity and 
the dynamic pressure depends on the atmospheric density, any difference between 
the actual atmospheric density and wind and the values used to design the trajec-
tory will cause the real trajectory to be different than designed. Similarly, the 
initial temperature of the propellant in the SRBs has some impact on the thrust 
and efficiency of the motor. These are examples of environmental dispersions. So 
to be safe, some allowances must be made for environmental dispersions. This 
was anticipated, so for years before the Shuttle first flew, balloons were launched 
every day near the launch site to measure the winds and atmospheric density 
versus altitude. The huge database of samplings was turned into a mean density 
and wind velocity versus altitude for every month of the year, along with the 95% 
possible variations in each. Also, 500 winds were chosen for each month to rep-
resent the statistical variation seen in that month from all the measured data. The 
500 monthly winds and densities were used to estimate the impact of the monthly 
environmental dispersions in the same way the potential impact of the system dis-
persions were determined. In general, particularly for the spring and fall months 
at the launch site, when the daily winds varied the most, the environmental dis-
persions had up to four times the potential impact as the system dispersions.

Given all this, the solution to finding a trajectory for the Shuttle to safely fly 
that maximized possible payload was to establish a constraining dynamic pres-
sure profile versus speed and a dynamic pressure times the angle of attack curve 
versus speed. The first was called the q profile, and the second the q-alpha pro-
file. Selecting the most appropriate phenomena for the independent variable is 
always one of the first critical modeling decisions. Speed was used rather than 
time since speed is also monotonically increasing during the Shuttle ascent flight 
and is more representative of the forces acting on the vehicle at that instant. That 
is, there is less variability in the forces acting on the Shuttle with velocity than 
time. The design profiles included the knockdowns. For example, if the 3 sigma 
system and environmental dispersion knockdown for dynamic pressers was found 
to be 50 newton/m2 and the maximum dynamic pressure for acceptable wing 
loads was 650 newton/m2, the design to dynamic pressure was 600 newton/m2. 
A three-degree-of-freedom trajectory simulator was created that designed 
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the trajectory to follow the stipulated q and q-alpha profiles for the mean wind and 
atmospheric density. With the computers of the day, about an hour was needed to 
design this trajectory that flew the Shuttle for about two minutes. For any rocket, the 
dynamic pressure rapidly increases as speed increases, but eventually reaches a 
peak, after which q decreases rapidly even though the rocket is still accelerating. 
This is because as the rocket gains altitude, the density of the atmosphere quickly 
falls to zero. The Shuttle controls the maximum dynamic pressure achieved and 
the duration held by throttling the SSME to a lower thrust level, holding that lower 
level until the Shuttle is high enough that the atmospheric density is reduced, and 
then increasing the thrust to go faster to get more payload capability. On a graph, 
the thrust profile looks like a bucket. The thrust starts at maximum level, then 
decreases at a constant rate to a minimum level, holds that minimum level, then 
increases at the constant rate back to the maximum level, so the design became 
known as determining the optimal thrust bucket. Given the thrust profile, the 
q-alpha constraint enabled the determination of the thrust angles relative to the 
horizon versus velocity. Once the trajectory that satisfied the q and q-alpha pro-
files was found, it was given to the people in the loads community, which used 
it as an input for the load indicators. If any load indicators exceeded their limits 
(including allowance for load indicator knockdowns), the q or q-alpha profile was 
adjusted and the process repeated. If there was excess margin in the indicators, 
the profiles were adjusted to try to get more payload capability, and the process 
repeated. Once a seemingly acceptable trajectory was found, the three-degree-of-
freedom trajectory simulator was used to determine I-loads that were given to the 
people in the avionics community who verified them for use in the flight software. 
If these I-loads were different from the I-loads used to establish the knockdowns, 
the system and environmental knockdowns were recalculated with the new I-loads 
to ensure the knockdowns were not underestimated. If the new I-load resulted in 
new knockdowns, this process was repeated with the new knockdowns. Since in 
the early days this process was often repeated, it did not take long for people to 
notice that the magnitude of the knockdowns was almost insensitive to the I-load 
values. The magnitude of the system dispersion knockdown is primarily driven by 
the SRB burn rate dispersion, and the environmental dispersion knockdowns are 
primarily driven by the magnitude of the deviations of the real wind from that used 
to design the trajectory.

Of course, every time a load cycle finished, the load indicators changed, so that 
a new trajectory had to be determined. Also, after about 20 flights there was suf-
ficient data to check if the presumed system dispersions values had been modeled 
appropriately and the data did indicate the need for some changes. The most sig-
nificant change concerned the SRB thrust. The flight data showed the SRBs some-
times ran hot (had extra thrust and burned out faster) and sometimes ran cold (had 
less thrust and burned out later than expected). There was no way to predict which 
would happen, just that one or the other would occur. This phenomenon was the 
predominant contributor to the dynamic pressure system dispersion knockdown. 
The historical flight data showed that if the Shuttle got to a target speed sooner 
than expected, the SRBs were almost certainly hot, or if the target speed was 
achieved late, the SRBs were likely to be cold. So the flight software was modified 
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to note the time a specified speed was reached, and then based on the size of the 
difference between that time and the nominal time that speed was predicted to be 
achieved, the flight software calculated a proportional adjustment to the minimum 
SSME throttle level I-load. If the SRBs were hot, the SSMEs were throttled to a 
proportionally lower limit than the initial I-load called for, and vice versa.

Extensive efforts were undertaken to continue to take advantage of the actual 
flight data to find the best trajectories to fly. Meanwhile, since each trajectory 
was designed for a projected launch day and the associated atmospheric and 
wind conditions for that month, every time a launch slipped out of the month, 
the I-loads needed to be checked for the new launch date. This happened often. 
Indeed, the actual launch date was never close to the first planned launch date. 
For the summer and winter months, there wasn’t a lot of variation in the atmo-
spheric density and wind from month to month, but for the spring and fall 
months, there was significant month-to-month variation. Eventually, the process 
was modified to use seasonal environmental databases to minimize the work 
required to verify the I-loads for a changed launch date. Wind and atmospheric 
databases were established for three seasons—summer, winter, and transition, a 
combination of variation seen in the spring and fall months.

The process described above was time consuming, not only because of the 
limited computing power of the day, but mostly because people were figuring 
out how to do things for the first time. As a result, the government (who was the 
customer) decided that the best way to handle all this uncertainty was to begin 
all the trajectory design work 24 months before flight, with scheduled updates 
at regular interviews closer to launch. All of these intermediate flight products 
added to the workload, though only the final product was actually utilized since 
many inputs changed during the 24-month period. However, the repeated assess-
ments did yield one huge benefit. There were four independently developed, 
coded, and operated trajectory simulations available for assessing Shuttle tra-
jectories. First, there was the three-degree-of-freedom simulator that designed 
the trajectory and determined the I-loads. A second simulation came from the 
avionics community tool used to verify the guidance, navigation. and control 
software, which saw the Shuttle as having six degrees of freedom—three repre-
senting translational motion, and three representing rotational motion. The third 
and fourth were government-sponsored simulations, one hosted by the Johnson 
Space Flight Center and one hosted by the Marshall Space Flight Center. When 
the outputs from these four simulations were first compared, there would inevi-
tably be discrepancies with respect to what the trajectory would be and how 
much propellant would be needed to get to the desired MECO condition. Upon 
careful review, the causes for these discrepancies were identified. Most often 
the cause was that the person running the simulation made a data entry error, 
as there were tens of thousands of numbers needed to represent the aerodynam-
ics, mass properties, propulsion, or avionics portions of the vehicle. Sometimes 
programming errors by one or more parties were found. In contrast, the load 
indicators were developed, coded, and operated by one group of people. Often 
very similar trajectories provided to the loads community would yield very dif-
ferent load predictions. In such cases it was clear that either data input mistakes 
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had been made, or there were errors in the indicator formulas. When such a 
problem was identified, the load indicator folks would look into it and eventually 
issue an update. The load indicator group was part of the structures group that 
did the load cycles. Since the loads were so critical to flight safety, the customer 
would periodically consider funding a second group to generate an independent 
estimate of the loads. But this never happened.

To avoid expending resources on trajectory designs that would ultimately not 
be used, it was suggested that the I-loads be updated only once, just before launch, 
for the measured environment of the day. This process was called day of launch 
I-load update. The wind and atmosphere would change in the approximate three-
hour period between the measurement and launch, but coincidentally data were 
available to model this effect from the source data for the monthly winds and 
atmospheres, as the balloons to get the data were released on three-hour inter-
vals. Incidentally, it took about three hours for the balloon to reach the neces-
sary altitudes, process and transmit the measured density and wind data to the 
trajectory simulators, run the trajectory designer to determine the new I-load for 
the measured case, obtain the resulting load indicator model predictions, and, if 
found acceptable, load the new I-loads to the vehicle’s flight software and confirm 
that the I-loads were stored with the intended values, leaving about 30 minutes 
to make the final decision whether or not to launch that day. This was possible 
because nearly all the I-loads produced using the monthly or seasonal data could 
continue to be used unchanged, while only the relative few numbers that stipulated 
the SSME thrust angles versus speed were updated. Day of launch I-load update 
offered considerable benefits. The trajectory was inherently safer since the only 
environmental dispersion left for the open-loop system to deal with was the change 
in environment during the three hours between the trajectory design and the actual 
flight, which was considerably less than the difference that could exist using the 
seasonal I-loads. Second, the trajectory would be more efficient, increasing pay-
load capability, and reduced the probability of running out of propellant prior to 
achieving MECO. Last, ceasing the practice of making trajectories prior to launch 
that were ultimately never used would free up resources to tackle other issues.

Though day of launch I-load update was proposed before the Shuttle flew, 
it took over six years before it was implemented, partly because the group that 
invented the process was not the group that would implement the process on 
launch day, and partly due to the fear of loading an incorrect I-load at the last 
minute, but mostly because those responsible for making the decisions found 
it difficult to gauge the probabilistic benefits. For all the launches during the 
first six years of Shuttle operation, at least one load indicator was at or above 
its allowable limit based on the preflight predictions using the measured winds. 
The structure experts would huddle, and then announce they had been suffi-
ciently conservative in designing their system dispersion knockdown such that 
the apparent problem was really within true tolerance, and they would recom-
mend a go for launch. Then. for one mission, the predicted loads were so large 
and so numerous that they resulted in a no-go advisory. The next day, the gov-
ernment managers who were so adamantly opposed to the day of launch I-load 
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update initiated implementation. Implementation required about 18 months, but 
day of launch I-load update became standard procedure for all Shuttle launches.

Lessons Learned

Determining what to model is as important as determining how to make the 
model. Losing SSME thrust and breaking a wing were only two of a huge 
list of events that were identified that could cause the Shuttle crew to be 
killed. Each of these possible events was documented on what was called 
the Category 1 list. Prior to the first Shuttle launch, a great deal of effort 
was expended to prevent or mitigate the consequences from items on the list, 
particularly those for which the likelihood was judged to be high and it was 
clear what could be done to alleviate the risk. All this work almost certainly 
prevented a Shuttle crew from being killed. Once flights started, the remain-
ing items on the Category 1 list were catastrophic events with unknown prob-
abilities needing significant resources to mitigate. So the government adopted 
a political process to determine which if any of the residual Category 1 items 
were addressed. That is, in order for action to be taken to mitigate one of the 
remaining Category 1 events, some organization had to make the case that 
the event was likely enough that it needed to be addressed and that there was 
an affordable means to remove the risk. The two events that ended up kill-
ing Shuttle crews were both on the Category 1 list before they occurred, but 
neither had an effective advocate until after they happened. That the O-rings 
inside the joints connecting SRB segments were being singed by the hot 
internal gases (indicating that some of the gas was leaking into the joints) and 
that a redesign of the joint was necessary were both known years before the 
Challenger crew was lost. There was no attempt to address the issue prior to 
the crew being killed because the SRB community never asked that one be 
made. The fact that ice was accumulating on the ET during the wait before 
launch was observed from the first Shuttle launch, and indeed on all rockets 
that ever used cryogenic propellants. That the ice was causing ET insulation 
to fall off during ascent and that both ice and ET insulation were damaging 
the thermal protection tiles on the Orbiter were known from the first Shuttle 
flight, many years prior to the loss of the Columbia crew. Indeed, after every 
Orbiter landed, every single dent and ding in the tiles were mapped and dam-
aged tiles were replaced. No attempt was made to minimize the ice buildup, 
reduce insulation delamination, use radar to see possible impacts as they 
occurred, or enable on-orbit inspection and repair prior to the Columbia crew 
being killed because the Orbiter community never initiated one. Once these 
events that had previously been perceived as unlikely actually happened, they 
became perceived as inevitable events, and huge amounts of resources went 
into addressing them. Indeed, after the Challenger loss, the entire Category 1 
list was reexamined and several other items on the list were addressed in 
addition to modifying the SRB joint design. But the process of selecting the 
Category 1 items to address post Challenger remained political. Ironically, 
after the Challenger was lost, it was suggested that the loss of a tile be one 
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of the items addressed, but the astronauts most urgently wanted a means to 
escape from the vehicle, so significant resources were expended in the futile 
search for ways for the crew to escape from the Orbiter in different flight 
modes, which consumed the resources that might have been used to prevent 
or mitigate the impact of tile loss or other possible catastrophic failures still 
on the Shuttle’s Category 1 list.

If real-world test data are not available, the best method to verify a math-
ematical simulation is to independently develop, code, and operate at least 
two and ideally three independent simulations. The initial outputs from 
the four trajectory simulations used on the Shuttle program were always in 
disagreement. Had any one of the wrong trajectories been adopted as the 
correct simulation, the consequences could have been dire. Comparing the 
four simulations was the best way to identify and correct the errors. Each 
simulation was the province of a different community that happened to need 
a trajectory simulation. There was no conscious effort to create four sepa-
rate simulations, so the costs of the efforts were not perceived as duplicated. 
Because only one group was responsible for loads, only one group was funded 
to create load indicators. The load indicator folks also made errors, at about 
the same rate as the trajectory community. But since there were no indepen-
dent models for comparison, it took much longer to find errors and they were 
found only because of careful observations by the load indicator personnel 
and quite often by the people who produced the trajectories that were the 
input to the load indicators—or, to put it another way, luck. Often, those 
wrong results went undetected for a long time, so a lot of analyses had to be 
redone with the corrected indicators. A second independent group of people 
producing and predicting loads would certainly have doubled the simulation 
cost, but would have saved more in avoided rework costs. A second indepen-
dent group would also have been safer, since a load indicator mistake could 
have been catastrophic. If the second group had been within the trajectory 
community, the load indicators could have been used directly to design the 
trajectory, saving considerable time by avoiding having to do trajectory anal-
ysis followed by a load analysis in series to find the best trajectory design.

Do only the analysis needed to make the decision needed. Literally thousands 
of Shuttle flights were planned that never happened because the criteria to 
which they were planned would inevitably change before the trajectories 
were needed. This was a complete waste of resources, with the possible 
exception that it did help train people to do the analysis.

The model maker is responsible for constructing a model that can be used by the 
decision makers. Over and over again on the Shuttle program, whether it was 
regarding choosing the trajectory to use, determining the implication of the 
load indicator prediction, deciding if to implement day of launch I-load update, 
or choosing which Category 1 items to mitigate, decisions were made that 
were counter to what the probabilistic data recommended. One of the more 
extreme examples was that it was considered unnecessary to model the poten-
tial change in the environment during the three hours from the final go/no-go 
assessment until launch for I-loads built to monthly or seasonal environments, 
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but it was considered essential to do so for I-loads built to the launch minus 
three-hour wind, even though the potential impact was exactly the same. The 
reason appears to be that most people do not understand probability. Therefore, 
most people do not know how to make a decision if presented evidence in 
probabilistic terms. You could argue this is the decision maker’s problem, and 
as such, people shouldn’t be in decision-making roles if incapable of utilizing 
appropriate evidence to make decisions. But such an argument abdicates the 
modeler’s ethical responsibility to provide the information needed to make 
the decision in a manner that enables the decision to be made correctly.  If the 
modeler knows the decision maker misused the information in any way, the 
modeler is responsible to make this known and to find a way to present the 
information in a manner that the decision maker can comprehend.

The following presents a modeling case study for architecting.

Case Study 2.2: Best Systems to Acquire to 
Perform the Space Superiority Mission

Background

In the mid-2000s, those in charge of acquisition planning for the U.S. Air Force 
Space Command (AFSPC) sought a method to assess all possible means to do 
all the AFSPC’s missions, to enable selecting the few means that maximized the 
total mission accomplishment at least cost. Prior to adopting an approach for all 
of AFSPC, the acquisition planning organization conducted a pilot study in one 
mission area called Space Superiority. Space Superiority missions know where 
things are in space and what they are, defend our things in space from attack, 
and, if necessary, prevent an adversary from using their space assets. To imple-
ment the pilot program, multiple measures of goodness were defined for each 
Space Superiority mission area. Each measure of goodness was documented as 
a unit-less utility curve, so the individual goodness factors each had a potential 
score between 0 and 1. The features contributing to each goodness factor were 
the independent variables. Typically, these were qualitative ranges of perfor-
mance. For example, being able to detect something in geosynchronous orbit 
that was less than 1 meter in diameter might score 0.9 to 1, while only being 
able to detect something 10 meters in diameter might score 0.1 to 0.2. Expert 
opinions were used to gauge how well existing or conceptual systems achieved 
the independent variables, as well as to estimate the approximate annual cost for 
each of the existing or conceptual systems. The individual goodness measures 
were summed using normalized weights. The weight values were also based 
on soliciting expert opinions. A program was created to search through all the 
system options to find those that provided the highest utility score while staying 
under the annual acquisition budget limits for the next 20 years. At the time, the 
U.S. Department of Defense (DoD) had five-year budget cycles, with the first and 
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perhaps second year having some certainty. The 20-year time frame was thought 
necessary to ensure that the cost to maintain the systems, not just the cost to 
acquire the systems, was part of the selection process.

The approach was eminently rational, but the decision makers it was devel-
oped for did not know what to do with the results for several reasons. First, the 
goodness of one proposed collection of systems differed from another proposed 
collection of systems by a tiny fraction of a unit-less number. The decision mak-
ers could not relate to these small unit-less differences. Second, since the means 
for estimating the goodness of the individual systems, as well as the cost, was 
based on experts’ opinions, and since the decision makers weren’t these experts 
(though they had been asked to be), they doubted the scores the system com-
binations were given. Indeed, since each decision maker inevitably intuitively 
preferred one system over another, if the reported scores did not match their 
preconceptions, this inevitably cast doubt in their minds regarding all the scores. 
Also, the advocates for any conceptual systems saw them as eminently practi-
cal. If the advocate was also an expert judge, which did happen, these folks 
tended to score their identified solutions as superior to alternatives. Third, the 
decision makers were uncertain why the identified candidate systems were the 
only candidate systems. They would inevitably ask about other options that did 
not appear to be considered. This happened despite the effort by the acquisition 
planners to call for concepts from any and all potential sources. Fourth, the 
claimed system capabilities were doubted. Systems that existed might provide 
accurate capabilities, but didn’t always. Systems that were in development could 
report either their required capabilities or their predicted capabilities, but rarely 
wanted to report either for fear of the data being used to attack the rationale for 
their program or their budgets. Often the proposed systems were little more than 
ideas, for which the practicality was hard to judge. Fifth, the process performers 
showed only the result, so it was difficult for the decision makers to see the pros 
and cons for an alternative family of systems they thought might be superior to 
the proposed results. Finally, since even next year’s budget was often uncertain, 
and budgets 5‒20 years in the future were virtually unknowable, the imposed 
financial constraints that drove the solution were not what the decision makers 
wanted. The decision makers wanted to know what was the most effective bud-
get to try to get approved.

What Happened

An alternative methodology was developed. The process is shown in Figure 2.3. 
The process begins by establishing the capability definitions, which are docu-
mented in what became known as holistic view 1 (HV-1). (This product was 
originally called Helms’ view, since at the time the then Colonel Helms, later 
General Helms, was the commander in charge in formulating requirements.) 
Figure 2.4 shows the content of an HV-1. One of the key HV-1 items is the archi-
tecture reference mission (ARM), which is created by the Office of the Secretary 
of Defense (OSD). Each ARM was defined in sufficient detail to enable predic
ting how well the mission is achievable with optional systems. The HV-1, along 
with Department of Defense Architecture Framework (DoDAF) products from 
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FIGURE 2.4  Holistic view 1 documents what the architecture needs to accomplish.
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related programs, is used to generate the operational views (OV) and system 
views (SV) called for by the DoDAF process to enable identification of the most 
efficient means to exchange information between the Space Superiority family 
of systems, and those acquired and maintained by other organizations. Also, the 
ARM was used to establish performance requirements for each mission, not for 
individual systems. The results of the concept formulation stage are the key per-
formance parameters (KPPs) and the corresponding desired values to achieve. 
For defending space assets, a KPP is percent of service retained. For negating 
space assets, a KPP is percent of an adversary service denied. For space situ-
ational awareness, a KPP is attack warning time. The analysis phase starts with 
an assessment of the as-is systems, which results in the identification of specific 
shortfalls with respect to the defined KPP. The shortfalls are used to identify 
trade studies to perform to find ways to use existing systems, or to define the 
features of proposed systems to remove the shortfall. A template was provided 
to record in sufficient detail the physical nature of the proposed system to gauge 
its technical maturity and so performance could be simulated based on physics, 
not just claimed based on argument. The same physical features enabled the cost 
to develop and maintain the proposed system to be estimated using parametric 
models based on actual results for similar systems in the past. Only systems with 
completed templates were brought forward for further consideration. Without a 
completed template, the concept was termed an idea, perhaps a good idea, and 
was documented for future reference. The analysis continued by first formulating 
combinations of existing and proposed systems, each called a family of systems. 
This was done partly by using common sense, but also by simply mathematically 
assembling all possible permutations in type and quantity from the available 
pool of existing and possible systems. Each family of systems was simulated to 
determine how well it would achieve the KPP and how much it might cost for the 
next 20 years. Each family of systems was then plotted with respect to KPP value 
achieved and total cost of ownership, thus enabling identifying the sufficient 
frontier, which are those candidate family of systems that provide the best KPP 
values at each cost value. The decision becomes to pick the one family of sys-
tems that achieves the best value consistent with the cost willing to pay. Clearly, 
complicated families of systems are unlikely to be completely discernible based 
on only one parameter, even a key parameter. For example, three families of sys-
tems may be close in cost and value, but one needs substantially less manpower 
to operate and another is dependent on immature technology. Though the cost of 
the manpower and the cost to mature the technology are estimated to determine 
where along the cost axis the candidate family of systems is plotted, both are 
clearly estimates. So of the three, it is prudent to select the option that needs the 
least manpower and has the most mature technology. Once a family of systems 
is chosen consistent with the cost constraint, the technology maturation required 
becomes clear. If any of the systems that make up the chosen family of systems 
is dependent on immature technology, then clearly those technologies need to 
be matured as quickly as needed to enable the system to be operational when 
desired. Or, if a better performing family of systems was not selected, because 
one or more of the member systems had immature technology, then the rationale 
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for undertaking technology maturation efforts is again clear; if that technology 
develops, a better family of systems will be available. So technology road maps 
are then prepared to move the identified technologies from their current state 
to that needed to offer viable systems. The final step is to outline the entire 
time-phased family of system implementation process, which is shown in holis-
tic view 2 (HV-2). (This product was originally called Haywood’s view, because 
then Colonel Haywood, later General Haywood, was the commander in charge 
of acquisition.) Figure 2.5 shows the content of an HV-2, while Figure 2.6 shows 
a notional example. The chosen family of systems is cycled back to the start of 
the process to update the DoDAF products as necessary. The process is repeated 
only if the stipulations of the HV-1 change, if shortfalls close, or as technology 
matures.

The modeling process is explained in more detail in Figure 2.7. Rather than 
attempt one huge model, the modeling effort is stratified into engineering, 
engagement, mission, and campaign levels. The engineering-level models pre-
dict in physical terms how well the candidate systems will achieve factors rel-
evant to the KPP chosen for the mission. The engagement models determine for 
each candidate system just how well the KPPs are fulfilled. The mission models 
mix the candidate systems with respect to type and quantity to predict how well 
combinations of systems will fulfill the KPP associated with the ARM. For many 
decision makers, this is all that is needed, and they are comfortable making deci-
sions based on mission models. Some DoD decision makers prefer to know the 
military utility that the candidate family of systems will achieve. Determining 
military utility requires campaign models to translate the still mostly physical 
parameters associated with mission into net results in particular military scenar-
ios, such as time to achieve objective, or relative loss rates. Campaign models are 
notoriously difficult to build and make credible because they are so difficult to 
verify. All the levels can be used to explicitly point out performance, sufficiency, 
task satisfaction. or campaign shortfalls. Each shortfall was documented with 
an explanatory note, an indication of what was desired, and a list of the options 
considered to close the shortfall. For each option that might reduce or elimi-
nate a shortfall, physical features are defined, performance capabilities modeled, 
and total cost of ownership estimated. A model is used to assess how well any 
combination of systems achieves the mission KPP and what the total ownership 
cost will be, so each candidate family of systems is plotted versus KPP value 

Holistic View 2: Integrated Roadmap

1. Family of Systems efficient frontier

2. Program timelines

3. Benefit timelines

4. Technology roadmap(s)

5. Funding profile

FIGURE 2.5  Holistic view 2 documents what architecture to implement.
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and total ownership cost. Critical secondary considerations, such as manpower 
required or technical maturity level, should also be easy to display for any family 
of systems point on the plot.

The decision makers responsible for requirements, acquisition, and opera-
tions overwhelming preferred the revised methodology. The leader of the 
planning organization continued to prefer the utility curve approach based on 
expert judgments. The appeal of the new process to those that appreciated it 
was mostly due to the provided information transparency. The decision mak-
ers recognized that using the OSD-provided ARM proved they were seeking 
systems to do exactly what the OSD had stipulated as important to be able to 
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FIGURE 2.6  Notional HV2 product.
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do, and if their contribution to achieving the ARM was superior to solutions 
offered by other DoD organizations, then a strong case was made to acquire 
the superior solution. The decision makers appreciated that they could see com-
plete documentation on all the existing and proposed systems. They liked that 
the shortfalls were finite, explicit, and matched to options to close the short-
falls. More importantly, they valued the trade tree, which compared each candi-
date system’s ability to close shortfalls, since they understand how the solution 
space was searched, and if they wanted, they could direct a systems inclusion 
or exclusion. They liked that they could see in real physical terms the potential 
of each alternative family of systems. They liked that they could explicitly see 
in terms of physical phenomena whether some combinations of systems were 
very close or very different in value and cost. And they liked that secondary 
considerations (such as manpower required or technology maturation) could be 
overlaid onto the sufficient frontier so they could explore the option with respect 
to criteria different than what might be used for the value axis. Mostly, they 

4. Model campaign
To characterize utility
Examples: Force loss ratio predictions for Korean Operations

1. Model engineering
To characterize environment and performance
Examples: Link margins, availability, size and power required

3. Model mission accomplishment
To characterize mission success
Examples: Extent identified collection of communications
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2. Model engagement
To characterize individual system capability
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6. Estimate costs of concepts
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Examples: Technology developments, acquisition costs
and co-use resource accommodations
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To close engineering, engagement, mission or campaign
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Examples: Existing systems and new systems

7. Select concepts
To use or acquire
Example: Family of systems from sufficient frontier plot or
collection of systems to use or acquire versus time

FIGURE 2.7  Modeling an architecture is different than modeling a system.
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liked the new approach because it gave them a vocabulary to explain to each 
other, people trying to accomplish other missions, congressional staffers, and 
industry providers what they were trying to accomplish and why they thought 
the chosen solution was the best available.

Lessons Learned

The value of the model is determined by those who use the result, not by the 
model makers. Utility analysis is eminently rationale, but if not used by 
the decision makers it is developed for, something else needs to be done. 
Difficult-to-verify models, such as those usually associated with military 
utility analysis, should generally be avoided if they detract from the cred-
ibility of the claims.

Make lots of small models that are easier to verify and thus easier to be 
trusted, rather than one big model. Big models are complicated, and com-
plicated things rarely work well. Even if one gets a big model to work, for 
decision makers to trust the result, they will usually want an independent 
source to examine the model to confirm its validity. Big models are much 
harder to verify, even if true. For architecting in particular, what needs 
to be modeled and the fidelity to model are very uncertain at the start of 
the process. Big models are hard to change, while small models can be 
grouped as needed.

Architecture-level analysis needs to be a notch higher in abstraction than sys-
tem-level analysis, just as system-level analysis is a notch higher in abstrac-
tion than subsystem-level analysis. Architecting as defined in this book is a 
new field. To find the optimal set of systems to perform a mission is not the 
same thing as to find the best system. But just as system engineers would 
be bogged down in details if they used the most detailed possible models of 
all the subsystems, an architect will similarly be lost if he or she relied on 
system-level simulations. The architect must model the accomplishment of 
the ARM at a level higher than that of any individual system.

In this chapter, approaches are recommended to model systems and architectures 
using diagrams and mathematics. Sources are identified for excellent existing models 
that are reasonably certain to be error free. The bulk of the chapter illustrates different 
means to model uncertainty—namely, by regression, Monte Carlo, fuzzy logic, agent-
based programming, and fractals. The chapter concludes with recommendations on 
how to monitor key performance parameters during the program life cycle.

2.1  MODEL SYSTEMS AND ARCHITECTURE USING DIAGRAMS

Diagrams are useful to both comprehend and communicate aspects of systems or 
architectures, but rarely enable the prediction of behavior. The word diagram is 
used in the most general sense, including lists, tables, or pictorial representations. 
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No single diagram can communicate all aspects of the system or architecture. The 
following types of diagrams are usually needed:

	 1.	Reference mission. This is a depiction of the representative mission for 
the system or architecture, denoting the primary objectives and operat-
ing environment, ideally including key constraints. A still image is tradi-
tional for easy communication, but animated presentations are now easy 
to make and can better depict the intention of very complicated systems 
or architectures.

	 2.	Key performance parameters. A table that names and defines the most 
important results the system or architecture is to achieve, along with a 
quantified indication of the level sought. The level sought may stipulate a 
threshold (the minimum that must be achieved for the system or architec-
ture to be acquired) or an objective (the desired goal for which cost con-
straints may limit the actual amount achieved).

	 3.	Customer, user, and operator hierarchies. These identify customers, users, 
and operators with an indication of relationships. Victims, those who may 
lose something if the system is developed and therefore may work to pre-
vent the system from being achieved until their losses are acceptable, are 
also often useful to identify.

	 4.	Constraints. An itemization of any law, regulation, policy, rules, or other 
imposed restrictions bounding any of the primary functions or solution 
implementations of the system or architecture.

	 5.	System boundary. A representation of the entities that are internal to the 
systems or architecture and entities that are external to the system or archi-
tecture, with an indication of what if any information or material crosses the 
boundary. Typically, the boundary is established by the customer, implicitly 
if not explicitly, as those aspects which they have control over versus those 
they must cooperate with others.

	 6.	State transition diagram. For many systems, the same real-world parts need 
to function differently in different configurations. For example, your car 
has a limited set of functions at rest with the ignition turned off, another 
set when the ignition is set to power, a third when starting the engine, and 
a fourth when the transmission is engaged and the car is moving. These 
configurations are often referred to as states with subsets called modes. 
Whatever one cares to call them, the entire set of desired configurations 
needs to be identified along with an indication showing which configuration 
can transition to which configuration.

	 7.	Functional hierarchy. This identifies all the functions internal to the system 
or architecture in a specified state. An indentured list is usually adequate to 
provide the necessary information.

	 8.	Functional flow. This is an indication of the relative sequencing of the func-
tions internal to the system or architecture. Ideally, it is also an indication of 
the material or information input or output between functions, along with 
controls and resources needed for each function.
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	 9.	Functional timeline. An indication of the durations or time limits for per-
forming each function.

	 10.	 Information structure. An identification of the information that needs to be 
aggregated and how. This is typically shown as identified inputs, outputs, 
and transformations.

	 11.	Trade tree. The hierarchy of implementation options considered for the sys-
tem or architecture, denoting the explicit differences between the options, 
and the reason the chosen implementation was chosen. For systems, the 
options denote alternative subsystems; for architectures, the options denote 
alternative systems.

	 12.	Configured end items hierarchy. The hierarchy of the end items chosen to 
implement the system or architecture functions. Each end item could be 
hardware, software, procedure, documentation, or whatever needs to exist 
for the system or architecture to exist.

	 13.	Functional allocation. This is a mapping of the function hierarchy (along 
with associated performance requirements) to the configured end items.

	 14.	 Interface diagram. A naming of any information or physical relations 
between configured end items, usually with an indication of how the inter-
face will be accomplished, so both parties to the interface can be confident 
the other will comply.

Since the diagrams created to communicate these aspects of a system or architec-
ture are abstractions, there is no right or wrong way to create each diagram. As sys-
tems engineering and architecting disciplines have matured, prescriptions for how 
to develop such diagrams have also matured, and most likely will continue to do so. 
A prescription is desirable as it tends to standardize the content and hence meaning 
of the diagram. Standardization also enables reuse of the diagram, saving time, cost, 
and probably errors. Any particular prescription will have some strengths and weak-
nesses relative to any other. For some prescriptions, tools exist that can minimize 
the modeler’s work. For example, if a modeler draws many functional flows, the tool 
used should be able to automatically make the corresponding functional hierarchy, 
as that information is completely discernible from the functional flow diagrams. 
Also, some prescriptions may enable the automatic translation from a functional 
flow depiction or an information structure depiction to the corresponding mathe
matical equations. Readers are encouraged to research the current diagramming 
prescriptions and choose the approach they find most beneficial. Options in vogue 
are IDEF,1 Model Framework,2 Department of Defense Architecture Framework,3 
SysML,4 Unified Modeling Language,5 colored Petri nets,6 and Higraphs.7

2.2  �MODEL SYSTEMS AND ARCHITECTURES 
USING MATHEMATICS

The number of potential domains for which mathematical models may be needed 
is beyond the scope of this book. To keep the cost of systems engineering or archi-
tecting effort as low as possible, and to avoid errors, it is highly desirable to reuse 
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existing equations or software, rather than develop them from scratch. How can you 
be certain the reused material is error free? First, to the extent possible, use equa-
tions and code used by the largest number of people the most often. The more people 
who use the material for the longer period of time, the more likely someone will 
identify and correct errors. Second, perform exactly the same verification effort for 
reused equations and code as you would do with any you develop. Create test cases 
for which solutions are known by alternative means, and compare the reused mate-
rial output to the known result. Four very useful sources for reusable mathematical 
models are as follows:

	 1.	Wolfram Research website8

	 2.	MATLAB® website9

	 3.	National standards website10

	 4.	Cambridge numerical recipes11

Though there are similarities in how systems and architectures should be modeled, 
there are great differences too. The following sections define the approach for each.

2.2.1 � Mathematically Model Systems

Establishing models for systems is more art than the execution of a defined process. 
It is often an extraordinary difficult task to make the first appropriate fidelity model 
of a complex real-world situation. Once the basic model is derived for a situation, it 
can be reused with a fraction of the effort associated with its development. The three 
things to do to mathematically model a system are the following:

	 1.	Define the functions that constitute the systems. The dividing boundary 
constitutes external interfaces which must be modeled to the extent an 
external entity (a) commands or controls the system, (b) provides material 
or information needed by the systems, (c) obtains material or information 
from the system (which is perhaps the reason for the system), and (d) influ-
ences the behavior of the system in some manner.

	 2.	Establish at least one representative design reference mission (DRM) for 
the system to accomplish, such that if it is achieved, all other potential uses 
of the system are acceptable. This scenario illustrates the key inputs and 
desired outputs that are to be optimized and the key constraints on the ope
ration of the system. Care should be taken to comprehend the input and out-
put ranges, the uncertainty, and at what frequency or period of time updates 
to the inputs or knowledge of the outputs must be known. If the system is 
primarily mechanical, that is, not dependent on information to operate, then 
data flow between components of the system is not modeled. If the system 
is primarily associated with the collection and processing of information, 
then data flow may be all that needs to be modeled. For dynamic systems, 
any time delays associated with data acquisition and processing, or the abi
lity of the mechanical elements to act, must be modeled. Fundamentally, 
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the more complicated the system, the more DRMs are needed to scope the 
minimum acceptable operations. However, almost no one can make deci-
sions regarding more than three DRMs as that requires just too many poten-
tially contradictory situations to be simultaneously comprehended. The key 
is to make a single DRM’s features more difficult to achieve, rather than 
create more dissimilar DRMs.

	 3.	Establish the fewest, simplest equations that represent the system doing the 
scenario along with the interfaces to the necessary external entities that 
can be used to establish requirements to implement the system. This step 
requires extreme care. Obviously, whatever condition that is left out of the 
model will not manifest a corresponding translation of inputs to outputs. 
This fact is often forgotten, much to the chagrin of those who design struc-
tures that fail due to the differences between dynamic and static loads, or 
lose fortunes because they failed to model the lack of liquidity that will 
occur if many people pursue simultaneously the same investment strategy.

Attempting to model a system is an extraordinary powerful proxy for assessing 
if the system should be made real. For example, if the system is to go very fast in 
the atmosphere, both the drag and heat buildup associated with its speed are criti-
cal to model, or the representation is inherently flawed. But items going very fast in 
the atmosphere also create a sonic boom, as well as create exhaust gases high in the 
atmosphere; these consequences may irritate people so much that many may lobby 
to prevent the systems from ever becoming a reality. The modeler is probably the 
first person who will discern if the system is achievable and practical. The modeler 
has the responsibility to make it known if the proposed system is not possible or 
necessary.

The systems engineer’s job is to identify the functions and performance require-
ments for the systems. The designer and manufacturers are tasked to figure out how 
to best implement a solution to these requirements. The standard systems engineer-
ing heuristic is to stipulate requirements that are as neutral as possible in their imple-
mentation approach so the designers and manufacturers have the largest possible 
trade space to search for the implementing solution. The logic is that by doing so, 
the implementers are free to explore many implementation options to find the best 
one. Clearly, this is a noble goal, but to make mathematical models, with appropriate 
fidelity, some level of physical manifestation must be presumed. One means to avoid 
implementation prejudice is to model system performance using utility functions. 
Utility functions enable one to numerically score a systems option on a scale from 
0 to 1. The utility functions may be artfully designed to be linear, exponential, or S 
shaped to try to mimic the approximate increase in utility (goodness or badness) in 
proportion to some feature. Multiple utility functions may be scored to assess a sys-
tem, with numerical weights used to combine the scores. This approach allows many 
options to be assessed quickly with respect to goodness criteria without ever model-
ing the physical behavior of the system. My experience is that customers and users 
rarely find utility functions useful. The different system option scores obtained using 
utility functions differ on the order of hundredths or even thousandths of a unit-less 
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number. Typically customers and users find this difficult to relate to. Since the total 
utility score is unit-less, and a combination of many diverse parameters, it is very 
difficult for customers and users to comprehend what improvements they are getting 
from one option versus another for different levels of cost. Perhaps most damningly, 
it is extraordinarily difficult to obtain useful utility function scores. Often only per-
sonal opinions are used to determine both the independent inputs and the shape of 
the utility curve. Though expert opinion is certainly worth something, it is not a sub-
stitute for physical reality. Indeed, studies have shown that the term expert is often 
a misnomer, and that for many decisions, the mean opinion of a large number of 
people is often closer to the truth than the opinion of a few experts.12 In plain English, 
the designated expert often is not. Customers and users typically want to know how 
their options vary in terms of understandable physical parameters. So, when model-
ing a system mathematically, if the various options for the system implementation 
have different physical features, create different models true to the features, common 
only in that the outputs are the key criteria associated with the system.

2.2.2  Mathematically Model Architectures

The complexity of architectures increases the temptation to use utility functions to 
model effectiveness. Architectures, being combinations of systems, have profoundly 
large numbers of inputs and outputs, often of very different natures, so the effort to 
achieve physics-based models first appears overwhelming. But ironically, this very 
complexity extenuates the need to present candidate architecture goodness data in 
realistic dimensional terms for customers and uses; otherwise, they must find them-
selves having to blindly trust their analysts. Now, I have tremendous respect for ana-
lysts, but given the reality that all models are wrong and some models are useful, no 
decision maker should ever blindly trust analysts. I recommend you avoid making 
one humongous “be all do all” model. Rather, utilize a series of simpler models 
at three to four levels as illustrated in Figure 2.7. At the lowest level, use physical 
behavior to reasonably model relative performance and size (determine the basic 
features) of the candidate systems that make up the architecture. For the second 
analysis level, model how well a single system contributes to achieving a quantifi-
able mission goal. For the third analysis level, model how finite numbers of multiple 
systems can achieve the mission goal. Often, the third level is sufficient to make 
architecture decisions. Sometimes, the measure of goodness at the third level is still 
too abstract for customers or users. For example, suppose the measure of goodness 
at the third level is warning time, but what the user wants to know is which family 
of systems minimizes their losses in a hypothetical conflict? Warning time alone 
might contribute to minimizing losses, but does not by itself minimize loss. So at a 
minimum, the modeler must show the decision makers how by making a decision to 
maximize warning time they are also almost certainly minimizing their losses. To 
do so, a fourth level of analysis is needed, in which the quantifiable mission goal (in 
this example, warning time) is one of several inputs to an analysis that predicts what 
the decision makers most care about, in this case, losses. This fourth level of analysis 
is called the campaign level, since it is at this level that military utility analyses are 
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conducted. Campaign-level analyses need to address behavior well beyond physics. 
So, usually campaign analyses combine equations based on physics with canned for-
mulas and utility curves. Some customers may doubt the credibility of such approxi-
mations; if so, then it is useless to conduct campaign analyses.

The nine things to do to mathematically model an architecture are as follows:

	 1.	Establish what at least one architecture reference mission (ARM) is to 
accomplish, for which it is possible to grade the goodness of candidate fam-
ily of systems with respect to performance and cost. This ARM illustrates 
the key desired accomplishment of the architecture and constraints under 
which the architecture must operate. Please note I used a different term 
for the mission used to determine a system from that used to determine an 
architecture. A sample DRM for a system is to deliver at least 65,000 lbs. to 
a specified orbit from a specified launch site subject to specified constraints. 
A sample ARM for an architecture is at any given instant to maximize 
the knowledge of the position and characterization of all objects in space 
utilizing a to-be-determined set of existing or new systems with multiple 
owners and operators as well as a large defined set of existing systems. A 
system DRM, though perhaps extraordinary difficult to accomplish, is sub-
stantially narrower in scope than an architecture ARM.

	 2.	 Identify all the existing systems currently used to achieve the mission, and 
analyze the current extent to which the mission is being performed and at 
what total ownership cost.

	 3.	 Identify all the performance, capability, mission, and if necessary cam-
paign-level shortfalls.

	 4.	For each shortfall, identify optional ways of using existing systems or new 
systems to potentially close the shortfall. For each shortfall, identify which 
options are inherently superior to other options, if any. That is, if to close 
a shortfall, one can think of six possible ways, and two of those ways are 
inferior with respect to all selection criteria to the other four, then it is only 
necessary to document why the two inferior options are not considered.

	 5.	Fully define the candidate systems using physics to predict ability to achieve 
the mission and estimate the total cost of ownership.

	 6.	 Identify all the possible combinations of systems that could conceivably 
achieve this mission. This step calls for being able to model the perfor-
mance and cost of existing systems as well as conceptualized systems. But 
this creates a paradox: the cost of existing systems and their performance 
are usually well known, while the real performance and cost for conceptual 
systems are but a guess. All the blemishes of existing systems are known. 
The blemishes of conceptual systems are likely not yet known. So to com-
pare existing and yet-to-exist systems, one must take care to credit exist-
ing systems for improvements that might negate current weaknesses, along 
with the associated cost to implement as well as modify the claimed cost 
and performance for proposed new systems in proportion to the technologi-
cal maturity of the proposed systems. A methodology to do so is presented 
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in this chapter. Frankly, the modeler will find it difficult to downgrade the 
new system, as advocates for new systems are inherently motivated to do 
the opposite. Historical data are your best defense. Claims to achieve some-
thing substantially better or cheaper than something similar done in the 
past may be shown to lack credibility based on physics. But quite often the 
new performance or cost claim is based on some new technology that is at 
least physically possible, but not fully developed today. If the performance 
claim is based on something that doesn’t exist (say, a very low-mass tile that 
can withstand 2500°C for nearly 30 minutes for which there is no obvious 
means to attach to the titanium primary structure), then any cost estimate 
is a guess. Now, for the particular mission to be accomplished, with any 
hope of cost-effectiveness, just such a phenomenal tile may be needed. So 
the gamble to produce it must be taken or there is no system. But at this 
point, the decision is clear. Unless the magic tile is real, there is no option 
worth pursuing, so one bets on the magic tile and proceeds to plan a way to 
make the magic tile real, fully understanding that both more time and more 
money may be needed than originally anticipated, but also knowing that, 
if necessary, the effort can be abandoned if the difficulty of achieving the 
magic shows no sign of alleviating.

	 7.	Establish the fewest and simplest equations that enable determining how 
well the candidate systems achieve the architecture ARM. If time is criti-
cal to the ARM, include in this model any and all delays associated with 
obtaining the information necessary for the candidate systems to be able 
to actually act, due to the need to obtain material or information from 
internal or external systems. Also include a representation of how the con-
stituent systems will be tasked to engage in the mission. To the extent the 
candidate architecture may affect the environment in which its mission 
is to be conducted in such a manner as to affect the performance of the 
architecture, then this feedback must be incorporated into the equations. 
For the reasons we have stated for system modeling, avoid using utility 
functions graded by experts. A very good illustration of how to do this is 
provided by reference 13. In this paper, to avoid examining a large num-
ber of options, the authors utilized the Taguchi method, which will be 
examined in Chapter 3. The Taguchi method is very valuable if the cost 
to evaluate the options is very high. If the cost to evaluate the options is 
low, which is the case for the problem addressed in reference 13, then go 
ahead and evaluate all the options. Indeed, if the authors had evaluated all 
the options, they would have noticed in their Table 4 that trial 11 is better 
per all their criteria than the solution they pick using the Taguchi method, 
which is trial 24.

	 8.	Establish the cost to obtain and operate the candidate systems while 
achieving the architecture design reference mission. All new systems 
require the expenditure of effort to design, produce, and test. When com-
paring existing and conceptual systems, the development costs for the new 
systems must be included in the cost estimate. The family of system costs 
could be as simple as adding up the individual system costs. But quite 
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often for architectures, some systems considered to include are provided 
by agencies distinct from the agencies looking to enhance the mission. 
How are the costs of these vital shared systems to be included? One must 
compare costs at the level truly borne. For example, suppose architecture 
option A consists of systems 1, 2, and 3, where 2 and 3 are provided by 
another agency, and our agency will pay to acquire system 1. Let architec-
ture option B consists of system 4, which our agency must pay for. Suppose 
options A and B achieve the same mission value and have equal second-
ary considerations such as manpower required and technological maturity. 
If system 4 costs us more than system 3, we will prefer A, because with 
respect to our expenditures, we will get the same result at less expense. 
If the taxpayer is the true source for funding for all the systems, then we 
should make the decision including all the costs to the taxpayer. To do so, 
we must include the costs for systems 2 and 3 in the cost comparison, and 
if the sum of costs for systems 1, 2, and 3 exceeds the costs for system 4, 
now B is preferred. But, as systems 2 and 3 are also achieving other mis-
sions for their sponsors, in addition to contributing to accomplishing our 
mission, from the taxpayers’ view systems 2 and 3 should be perceived as 
having more value than just contributing to our mission. So, if considering 
the perspective from the taxpayers’ point of view, the architectural analy-
sis must increase in scope to consider which systems are best to achieve 
both our mission and the mission that systems 2 and 3 are already con-
tributing to. The recommended approaches for representing the costs of 
systems shared across mission areas are as follows:

Option 1.	Determine and include in the cost estimate for a single mission what the 
external agencies will charge for using their systems. In our example, 
find out what the cost to use systems 2 and 3 would be and add this cost 
to the estimate for Option A.

Option 2.	Increase the scope of the architecting analysis to include all the 
missions all the candidate systems might perform. To do this, rec-
ommend against creating some ponderously complicated reference 
mission, but rather continue to assess candidates against separate 
mission values.

	 9.	Plot each candidate family of systems with respect to a vertical axis denot-
ing mission goodness versus a horizontal axis of total cost of ownership. 
What will result is an efficient frontier of families of systems at a given cost 
for which no other family of systems can be found that provides superior 
mission goodness. Which of all the families of systems on or near the effi-
cient frontier is preferred is partly a function of what can be afforded, but 
also the consideration of factors in addition to the single index of perfor-
mance used to grade each candidate family of systems. If one is assessing 
candidate systems for multiple missions, include all the costs for all systems 
in one mission plot. If a system in that plot is also included as part of a 
family of systems on another mission plot, do not include the cost for that 
system on any other plots, except as may be needed to add more quantities 
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in the second plot than may be utilized in the first plot. This way the full 
cost of the system is accounted for in one mission, at it is essentially free 
for other missions. If the system shows up in a candidate family of systems 
near the efficient frontier for several missions, then it is clearly worth hav-
ing. Otherwise, though the system is making multimission contributions, 
the contributions are insufficient in proportion to the cost relative to other 
family-of-system options.

2.3  MATHEMATICALLY MODEL UNCERTAINTY

Uncertainty can manifest itself in several ways. First, the underlying behavior may 
be random. That is, the system may initiate behavior from various starting points and 
reach an end point in a manner that is knowable probabilistically, as it is knowable 
that a die will land on one of its six sides. Second, the underlying behavior may be 
uncertain but bounded. For example, when predicting the cost to complete an item 
that has not previously been made, it may be possible to estimate the lowest cost 
likely and the highest cost likely, and guess as to the most likely cost. These costs 
have degrees of belief from 0 for the lowest and highest, to 1 for the most likely. 
This is not random behavior, as the costs are just uncertain with a range of possible 
values, or “fuzzy.” Third, the uncertainty may be due to inherent complexity, or our 
ignorance regarding how to approximate the behavior in some aggregate means. 
Examples are prices for items in a large market, the behavior of a population in 
response to legislation, and global weather. In such cases, the uncertainty is in how 
to model the aggregate behavior of many individual elements for which behavior 
may be well understood. The following sections illustrate using Mathematica® to 
model uncertainty using regression, Monte Carlo analysis, fuzzy logic, agent-based 
programming, and fractals.

2.3.1  Using Regression

Regression is the process of deriving an equation of independent variables to pre-
dict the values of dependent variables. The equation may be linear or nonlinear, 
with one or multiple independent and dependent variables. Typically, the equation 
is derived using many more data points than independent variables. A wonderful 
feature is that in addition to the equation, a confidence level associated with the 
likelihood the equation is correct is also produced. Regression results are best used 
for independent variable values within the range of those used to derive the result. 
Extrapolating beyond the range of the independent variables used to formulate the 
equations is a fool’s bet. There are numerous books available to describe the process, 
and Mathematica provides routines to implement the methodology along with copi-
ous documentation and examples. A simple example follows, which will be revisited 
to show how fuzzy logic is used to achieve the same end. Reference 14 includes the 
following data pairs, relating an independent variable (the first of each pair) to a 
dependent variable (the second of each pair):
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The Mathematica routine ListPlot enables visualizing the data:
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Since there are 25 data points, up to 25 coefficients can be used to combine func-
tions to fit the data. As there are at least five changes of slope for a curve through these 
data, at least a sixth-order polynomial is needed, which needs seven coefficients to be 
determined. Mathematica provides NonlinearModelFit to determine the fit function 
coefficients, which are saved in an output given the name sixthorderfit as follows:
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The estimate, standard error, t statistic, and P-value of sixthorderfit are eas-
ily obtained:

as is other information about the goodness of the fit using other Mathematica param-
eters. We can plot sixthorderfit against trainingdata using the Mathematica func-
tions Show and ListPlot:
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Not a bad fit. Would a seventh-order polynomial provide a better fit? To find out, 
here is the result called seventhorderfit:

Plotting seventhorderfit against the trainingdata:
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The seventh-order polynomial fits the data very well, except for the spike in the 
range of 6 to 8, as there are no data in that range to justify such a spike or absolutely 
negate the spike. The data themselves would seem to justify only a near-linear transi-
tion from the group of points in the range from 5 to 6 to the one point at about 7.5. 
This is a common issue regarding regression analysis. The most prudent course of 
action would be to get some data between 6 and 7. Alternatively, seventhorderfit 
can be used for 0 to 6, but a substitute regression should be prepared from the range 
of 5 to 8.

2.3.2 �U sing Monte Carlo Analysis

The Monte Carlo analysis method is now well known and routinely used. This 
section illustrates Monte Carlo analyses to enable comparison with the fuzzy 
logic method presented subsequently. Monte Carlo analysis starts with the deter-
ministic equations used to model the system or architecture. The input parameters 
are modeled as random variables, that is, each input is presumed to have a known 
probability density function. Then a draw of each input variable is determined 
consistent with its stipulated probability density function. Then the equations are 
solved with the draw values for each of the inputs, and the results noted. Draws 
are repeated N times. Using the N results, the mean and variance for each depen-
dent variable are calculated. Thus, for each dependent variable, the probability of 
being less than or greater than a specified value can be determined by adding or 
subtracting the calculated number of standard deviations to the calculated mean 
value. How many draws need to be conducted? A heuristic is at least 30 for each 
independent variable. So, if a problem has M independent random variables, at 
least 30 * M draws should be obtained before relying on the summary statis-
tics for the dependent variables. To be prudent, one should experiment with the 
number of draws. The mean and variance of the dependent variables should be 
obtained using different numbers of draws differing by orders of magnitude. Then 
use the fewest number of draws for which the mean and variance have the desired 
precision for which no larger number of draws alters their values.

2.3.2.1  Multiple-Input Single-Output Monte Carlo Example
Our task is to develop a high-energy laser to be used to make holes into a mate-
rial within a specified time with the key performance features of the system uncer-
tain. LaserTimeMargin determines the margin in the time for a high-energy laser to 
achieve a half tear length of a specified size in a material requiring a specified flux 
to achieve the tear.

To illustrate using the Monte Carlo method to model this situation, all the 
independent variables are assumed to follow triangular distributions, except for 
the laser wavelength, which is assumed to be certain. Since there are 11 input vari-
ables, 30 * 11 = 330 draws will be defined. The potential variability for each of the 
11 input variables is simulated using Mathematica’s RandomReal, with type set 
to TriangularDistribution with associated {{lowest, highest}, most likely values} 
as inputs. The twelfth input, laser wavelength, is presumed certain at 2.8*10^‒6 
meters.
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Then LaserTimeMargin is evaluated for each of the 330 draws with the result held 
in an array called margin:

A histogram is used to plot the 330 margin values:
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What is important is the probability to achieve a margin of at least 1, that is, the 
laser will succeed to produce the fluence for a sufficient time to produce the desired 
tear length. This can be approximately determined by dividing the number of draws 
that resulted in margins less than 1 to the total number of draws:

So there is better than about a 70% chance the needed margin will be obtained.
The value of the method is plain. For relatively little work, the possible range of out-

puts is determined. The weaknesses of the method are also plain. This analysis concludes 
there is about a 30% chance of failure. Is that acceptable? Deciding will be difficult 
for people uncomfortable with probability. There are a few more subtle problems that 
can result in the perfectly good analysis being a perfectly inappropriate model of real-
ity. First, clearly, if we underestimated the input uncertainty, we will underestimate the 
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output uncertainties. Worse, as will be shown in detail in Section 2.3.3.1, the mathemat-
ics results in the dependent variable variability being reduced by the quantity of input 
variables. So, paradoxically, the more uncertain inputs we include, the less uncertainty in 
the result that we get, which can be totally the opposite of reality. Finally, we presumed 
the inputs are all independent; that may not be the case, and that we failed to model this 
can mean the mathematical results are again very different from what reality will be.

2.3.2.2  System of Linear Equations: Monte Carlo Example
Another very common mathematical model for a system or architecture is a system 
of linear equations. To illustrate this application, the displacement for a planar, rigid, 
two-story space frame is modeled for horizontal loads (see Figure 2.8). The structure 
actually has eight degrees of freedom, but symmetry allows the analysis to be done 
using only four degrees of freedom, two horizontal displacements, and two rotations. 
TwoStoryFrameDisplacements obtains the four displacements.

Again, for illustration purposes, each input variable is presumed to be modeled 
by a triangular distribution with {{lowest, highest}, most likely} values, and 7 × 30 
= 210 draws are obtained.
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FIGURE 2.8  Two-story planar frame structure with two horizontal forces.
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Then using TwoStoryFrameDisplacements, the output vector, v, is determined for 
each of the input cases.

The Mathematica routines Mean and StandardDeviation are used to calculate the 
mean and standard deviation for each of the displacement vector components:

The first and third numbers in each array are for the first- and second-floor ceiling 
translations due to the loads applied to the structure. The second and fourth numbers 
in each array are for the two rotations, which will occur at the intersection of the 
vertical and horizontal beams. A histogram enables visualizing the distribution for 
the 210 trials for the two translations:
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Since, by nature of the model, each of the output vector components is the result 
of linear relationships, there is a high degree of correlation between any two of them.  
The routine Correlation returns the correlation coefficient for two vectors. In this 
case, we’ll determine it for the horizontal displacements of the second floor and ceil-
ing, as follows:

As expected, the results are almost perfectly correlated. This is true for all Monte 
Carlo analyses based on simultaneous linear equations. This strong correlation 
between the outputs usually allows conclusions to be made by looking at as few as 
one variable, rather than every output, since all the variables are so highly corre-
lated, one is a good proxy for them all.

How appropriate is Monte Carlo analysis for this type of problem? Inputs such as 
loads certainly could be random. They could also just be unknown, but certain to be 
in a range. Presuming a random load for an unknown load with a range of value is a 
bad model. What is most important may be the behavior under the worst-case loads, 
which can be modeled deterministically. Structural member material properties and 
dimensions will very likely vary randomly in a manner that can be determinable by 
sampling. But the statistics will vary with vendor and production lot, so care is needed 
to use the statistics that match the actual items. Perhaps the most serious potential flaw 
in the model is the presumed symmetry. An actual two-story frame fixed at its base 
has 12 degrees of freedom, a vertical and horizontal displacement, and one rotation at 
each the four intersections of horizontal and vertical members. For our illustration, the 
degrees of freedom were reduced to four by limiting the model to two horizontal forces, 
which in turn allowed assuming the four vertical displacements were all zero, and not-
ing structural symmetry ensures the right-hand side of the structure will move the same 
way as the left-hand side. Certainly if the load magnitude can vary, then so could the 
angle of load application. And certainly if the lengths of the members can vary, then it is 
likely no beam is either perfectly horizontal or vertical. These differences can be mod-
eled by introducing direction cosines for each element of the structure and are important 
to include if one wants to accurately predict system behavior. The model assumes all 
of the beams were put in place unloaded, that is, none was pulled or pushed prior to 
being connected. If any of the beams were indeed forced into position, then this model 
provides incorrect predictions. If the amount any beam was preloaded or deformed is 
known, that could be modeled. And so it goes, if the loads either are impulsive or change 
with time, a different model is needed that includes the mass as well as the stiffness of 
the structural members. If the structural members may be heated dissimilarly, a differ-
ent model is needed to include thermally inducted displacements and loads.

2.3.2.3  System of Differential Equations: Monte Carlo Example
To illustrate this type of Monte Carlo analysis, the flight of a two-stage rocket to 
achieve a stipulated orbit is modeled. The first stage flies an open-loop steering pro-
file through the atmosphere and is subject to two environmental dispersions, both of 
which vary with altitude (atmospheric density and wind) and eight system disper-
sions (initial mass, first-stage vacuum thrust, first-stage specific impulse, axial and 
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normal aerodynamic coefficients, initial propellant mass, first-stage inert mass, and 
first-stage thrust vector misalignment). The second stage flies an open-loop linear 
tangent steering law and is subject to three system dispersions (second-stage vacuum 
thrust, second-stage specific impulse, and second-stage thrust vector misalignment), 
so the number of Monte Carlo draws (numbermcr) will be 2 + 8 + 3 = 13 * 30 = 390:

Motion is constrained to be in a plane. The Earth is assumed to be a spherical 
body with a uniform gravitational force dependent on the distance from the center 
of the Earth. The constants needed are the gravity constant mu in m^3/sec^2, the 
spherical radius of the earth, rearth in meters, and g = mu / rearth^2:

To approximate the effect of atmospheric density and winds on the first-stage 
trajectory, randomly generated density and wind profiles are needed. These can be 
obtained by direct measurement, or synthetically derived if the mean and variance 
are known. The basic process to generate a synthetic profile is to find the mean and 
the one sigma possible deviation. The synthetic profile is then the mean plus a nor-
mally distributed random number times the standard deviation.

First, we model a synthetic density dispersion. Generally, cold gases are denser than 
warm gases. So, for a column of air, if the air near the earth is denser for a cold day, then 
the air at altitude must generally be less dense; otherwise, the denser higher altitude air 
will sink down to the lower altitudes. This means the difference between a 3 sigma cold 
density and a 3 sigma hot density won’t be a physically realistic atmospheric density at 
altitudes. So rather than using the difference of two extremes, only one extreme is used. 
Reference 15 provides a graph of the 2 sigma cold density, for which there is only a 2% 
chance for the air to be denser. The variable density2sigmacoldvalues holds data read 
from the plot in {altitude in meters, density impact in kg/meter^30} as follows:
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The Mathematica routine Interpolation, with InterpolationOrder set to 3 so 
cubic splines are fit between the data, is used to define density2sigmacold, which is 
then plotted versus altitude as follows:
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To create the synthetic random density, random multiples of 0.5*density2sigma-
cold (an approximation of one standard deviation) are added to the mean profile. The 
mean profile is assumed to be

	 IF r >= rearth + 100000 OR r < rearth THEN density = 0

	 IF r >= rearth THEN density = 1.225 * Exp[-h[r] / 8600]

The random multiples are determined from a normal distribution with mean 0 
and 1 as the standard deviation. The random draws are recorded in densityfactorset:

Assuming the rocket launches due east, a wind with an azimuth of 270° is a head 
wind (that is, winds blowing toward the west are flowing against the motion of the 
rocket), so such a wind has a negative sign relative to a position axis that is positive due 
east from the launch site. A wind with an azimuth of 90° is a tail wind (that is, winds 
blowing due east are flowing in the same direction as the rocket, so such a wind has a 
positive sign relative to a position axis that is positive due east from the launch site). To 
construct a synthetic wind versus altitude in the plane of the rocket’s motions, we need 
the mean wind, a representation of the standard deviation for the wind, and a way to 
model gusts. The following illustrate how to construct random synthetic winds versus 
altitudes. To start, the 95% head wind data points are read off the reference graph in 
reference 15, which is in {feet, feet/second}, converted to {meters, meter/second} by 
multiplying by 0.348 meters/foot, and stored in the variable windspeed95percentat 
270az:
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The Mathematica routine Interpolation, with InterpolationOrder set to 3, is 
used to obtain a cubic spline fit of the data to define the windspeed95at270 profile 
versus altitude of the 95% wind at 270° azimuth. The result is plotted for altitudes 
from 0 to 250,000 feet:
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The same is done to define an interpolation for the 95% wind at 90° azimuth:
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The mean wind data are read off the reference graph (in {feet, feet/second}, con-
verted to {meters, meters/second}), and for the third time Interpolation is used to 
create windspeedmean to fit the mean wind data.
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The variable windleveset holds the Monte Carlo draws for formulating the syn-
thetic wind. Each is generated from a normal distribution with mean 0 and a stan-
dard deviation of 1:
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In this case, the reference provided the extreme values as percentiles. To determine 
the corresponding number of standard deviations, Mathematica provides the rou-
tine InverseCDF. For a normal distribution, 95% is found to be about 1.64 standard 
deviations.

The wind speedataltitude is the mean wind plus the chosen windleveset value 
times the standard deviation of the wind speed, which is approximated by taking the 
difference of the 95% wind with an azimuth of 270°, minus the 95% wind with an 
azimuth of 90°, divided by 2*1.64. Here is an example with mcr set to 1 so we use 
the first set of the random inputs:

Real winds also have gusts, locally occurring increases and decreases in velocity. 
To model the gusts, at 5000-feet intervals, a normally distributed random variable 
is added with a zero mean and a standard deviation of 3 meters/second16. First, the 
random variables needed to produce the gusts are set for each of 51 data points from 
0 to 250,000 feet and are stored in gustamountset:

The array speedwithgusts are the wind speed values with the gustamontset val-
ues added at 5000 foot intervals.  An illustration for the first draw (mcr = 1) follows, 
this time with InterpolationOrder set to 2, so a quadratic is fit to the data to make 
the result less smooth than if used cubic splines:
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The array speedwithgusts are the wind speed values with the gustamountset values 
added at 5000 foot intervals. An illustration for the first of these draws (mcr = 1) 
follows.   This time with InterpolationOrder set to 1, so a quadratic is fit to the data 
to make the results less smooth than if used cubic splines:

The simulation starts after the vehicle has cleared a hypothetical tower and has 
obtained some initial height (hinitial, in meters) and horizontal and vertical inertial 
speeds (uinitial, vinitial, in meters per second):

Though certainly these values could vary for each launch, there is little value in 
simulating them as random variables, since whatever small variation may exist at 
this point will be overwhelmed by the environmental and system dispersions that 
will manifest themselves subsequently. However, the movement of the vehicle in the 
first few seconds is extremely important, particularly if there is a tower nearby that 
might be hit. If that is the issue of concern, then the simulation should model just 
these first few moments with the fidelity needed to determine all locations on the 
vehicle relative to the tower.

For our example, the mean values for the system dispersions are as used in 
reference 16. The standard deviations are the same percentage of mean as exhib-
ited by the Space Shuttle.17 The following physical attributes of the first stage are 
the assumed constant engine exit area (exitareastg1, in meters squared) and the 
reference area for calculating aerodynamics forces on the vehicle (s in meters 
squared):
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Both the exit area and the reference area of the rocket could be uncertain. But, 
since both exitareastg1 and s multiply other inputs, we might as well presume all the 
sample data are purely the result of the other values, since both these variables are 
essentially impossible to measure directly during the test firing of a rocket.

The nine first-stage system dispersions are initial mass (massinitialset, in kilograms), 
vacuum thrust (thrustfvacstg1set, in Newtons), specific impulse (ispstg1set, in sec-
onds), axial aerodynamic coefficient (caset, unit-less), normal aerodynamic coefficient 
(cnset, unit-less), mass of the propellant loaded (masspropfsinitial, in kilograms), time 
of staging (tstage, in seconds; since this is when the first-stage propellant mass is all con-
sumed, it is not an independent random variable, but must be calculated using the equa-
tion mass / thrust / (g* ispstg1set), the inert mass of the first stage (stagingmassloss, in 
kilograms), and the first-stage thrust vector misalignment (fstvmaset, in degrees). Each 
of the source dispersions is chosen to be modeled as a normal distribution. Mathematica 
provides the routine NormalDistribution[mean, 1sigma] to randomly generate numbers 
consistent with a normal distribution of mean m and standard deviation 1sigma.

As second-stage flight is above the atmosphere, the equations of motion simplify 
and we are concerned only with the second-stage system dispersions. These are vac-
uum thrust for the second stage (thrustvacstg2set, in Newtons), specific impulse for 
the second stage (ispstg2set, in seconds), and second-stage thrust vector misalign-
ment (sstvmaset, in degrees). As with the first stage, the nozzle exit area (exitar-
estg2) is presumed constant, since in the equations of motion it is multiplied by other 
variables, which are easier to model as random variables.

Now we need control laws to steer each rocket stage. For the first stage, there is 
no closed-form solution for the optimal profile. The stage flies open loop; the thrust 
angle is stipulated using a fourth-order Hermite polynomial in time. For the second 
stage, there is a well-known approximate optimal control law that the tangent of the 
thrust angle varies linearly with time, that is:

tan[thrust_angle] = constant_1 + constant_2 * time

The first stage thrusts until all propellant is consumed. For the second stage, the 
objective is to achieve a specified orbit, which is uniquely determined by the final 
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horizontal and vertical velocities as well as the altitude. To achieve these three condi-
tions, three controls are needed. Two are the coefficients associated with the linear 
tangent steering law. The third is the time to burn propellant during the second-stage 
flight. So the control variables are a seven-element vector: four constants to multiply 
times Hermite polynomials to steer the first stage, two constants for the linear tan-
gent function to steer the second stage, and the burn time for the second stage. Here 
is a possible set where the first four numbers are for the constant, linear, quadratic, 
and cube Hermite polynomials; the fifth is constant_1; the sixth is constant_2; and 
the last is the burn time for the second stage:

FirstStage simulates the first-stage behavior. The final-stage vector (mass, altitude, 
horizontal, and vertical velocities) comprises the initial conditions for the second-
stage flight. SecondStage simulates the behavior of the second stage. RocketTraj 
executes the first- and then the second-stage calculations. Two utility formal require-
ments will be useful. FSOut plots the time history of first-stage trajectory param-
eters. SSOut plots the second-stage trajectory parameters.

Before performing the Monte Carlo analysis, the trajectory for the first set of 
system and environmental dispersion values is determined. The controlled variables, 
coef, is printed to record what the inputs are, then each of the system dispersions is 
assigned the first value from the random set previously defined:
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RocketTraj is run to integrate the first- and second-stage equations of motion. The 
output is an array of the form

 	 {first_stage_output, second_stage_output}

The first _stage _output =

	 {maximum_dynamic_pressure, final_mass, altitude, horizontal_inertial
	 _velocity, vertical_inertial_velocity, flight_path_angle, maximum_angle_of_

	attack, minimum_angle_of_attack}

The second_stage_output =

	 {mass, altitude, inertial_horizontal _velocity, inertial_vertical_velocity,
	flight_path_angle}

FSOut plots the time histories of first-stage trajectory parameters. The first stage 
ends at tstage1[[1]]:
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SSOut plots the time histories of second-stage trajectory parameters. The second-
stage duration is coef[[7]]:



77Model Systems and Architecture Behavior



78 Systems Engineering and Architecting: Creating Formal Requirements



79Model Systems and Architecture Behavior

To perform the Monte Carlo analysis, the formal requirements 
OpenLoopEnvandSysDispersionCase evaluate the mcr random draws and report 
the resulting mean and standard deviation obtained for the resulting trajectories.

Finally, by executing the OpenLoopEnvandSysDispersionCase, the mean and stan-
dard deviation of the impact of the environmental and system dispersions are estimated:
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Here are a few examples of how these results can be used. Since the maximum 
dynamic pressure standard deviation is about 1700 Pa, if one wanted 3 sigma cer-
tainty that the vehicle never exceeded a maximum dynamic pressure of 35,500 
Pascals, one needs to design the mean trajectory to be 35,500 ‒ 3 * 1700 Pa. Also 
note that standard deviation of the mass at t_final is about 1300 kg. If one wants 
to be certain one has at least 3 sigma protection that they will not run out of pro-
pellant prior to achieving the orbit condition, then 3*1370 kg of propellant must 
be stored in reserve, and the useful payload would be the mean mass at t_final 
− 3*1370, the second-stage inert mass. Finally, since the final orbit is a function 
of the altitude and velocities (or speed and flight path angle) at t_final, the mean 
and standard deviations of these terms enable us to predict the mean and standard 
deviations of the resulting orbits that we will achieve. Clearly, the Monte Carlo 
analysis method can be a very valuable means to make decisions in the presence 
of random uncertainties.

2.3.3 U sing Fuzzy Logic

Fuzzy numbers are an alternate way to model uncertainty.14,18,19 If the inputs or model 
parameters are uncertain but not random, then fuzzy logic modeling is preferred to 
using Monte Carlo analysis since the representation of the uncertainty is truer. Fuzzy 
numbers have a range: the wider the range, the more uncertainty. Fuzzy numbers 
have a degree of belief between zero and one associated with each point in the range. 
The degree of belief is not a probability of occurrence. The degree of belief curve 
does not need to integrate to 1, and integrating it does not produce a cumulative 
density function. There is no probability associated with the extremes of the range, 
or any point within the range.

For the triangular fuzzy number

	 <l, m, h>

the degree of belief is zero from minus infinity to l and from h to positive infinity. 
The degree of belief at m is 1, from which the degree of belief varies linearly to 
zero at both l and h. Using triangular fuzzy numbers, the number “5” might be rep-
resented as <3, 5, 9>, <4, 5, 6>, <5, 5, 5.5>, or <5, 5, 5>, depending on the potential 
values the number might have other than exactly 5. A trapezoidal fuzzy number is 
denoted as

	 <l, m1, m2, h>

where again the degree of belief is 0 from minus infinity to l and from h to positive 
infinity and is 1 between m1 and m2, varying linearly from 0 to 1 between l and 
m1 and linearly from 1 to 0 from m2 to h. In general, for fuzzy numbers, the degree 
of belief can vary in any manner appropriate from 0 to 1, but it will be numerically 
convenient if the degree of belief is unimodal over the uncertain range.
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Triangular fuzzy numbers are popular because the resulting linear fuzzy arithmetic 
is so simple for linear operations. For triangular fuzzy numbers of the form <l, m, h>:

	 a * <l, m, h> + b = <al + b, am + b, ah + b>

	 <l1, m1, h1> + <l2, m2, h2> = <l1 + l2, m1 + m2, h1 + h2>

	 <l1, m1, h1> * <l2, m2, h2> = <l1 * l2, m1 * m2, h1 * h2>

If a deterministic number is needed to implement the result of an analysis, then 
the fuzzy output must be defuzzified. There are many possible ways to formally 
defuzzify a number. A convenient geometric argument is for the centroid of the 
fuzzy range to be an appropriate deterministic representation. This is particularly 
convenient for triangular fuzzy numbers of the form <l, m, h>, for which the cen-
troid and thus the defuzzified values are (l + m + h)/3.

Evaluating nonlinear functions of fuzzy numbers requires an iterative evaluation 
of the function at intermediate degrees of belief values, not just at degrees of belief of 
0 and 1. The formal requirement fuzFoffuzX determines the fuzzy result of an arbi-
trary function of fuzzy numbers, and is based on the algorithm presented by Hanss,20 
here modified to work for a multivalue function.

First let’s use fuzFoffuzX to evaluate a simple linear sum of three fuzzy numbers:

For the interim evaluation points set to 1:
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which is the expected result, the sum of the low, degree of belief of 1, and high 
values. Notice, since this F[p] is a linear combination of fuzzy numbers, we get the 
same result if we increase the number of interim evaluations to 5 or 10:

109876

0.2

0.4

0.6

0.8

1.0

109876

0.2

0.4

0.6

0.8

1.0

Now we’ll use fuzFoffuzX to evaluate the simple nonlinear function:

	 F[p] = (p1 + p2)/p1,

with p1 = <1 ,2, 3> and p2 = <4, 4.5, 5>, for the number of intermediate values of 1, 
5, and 10:
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We see that the minimum, degree of belief of 1, and maximum values are the same 
regardless of the number of intermediate values. The maximum value is the largest 
value that p2 can have (5) divided by the smallest value p1 can have (1), while the small-
est value is the smallest value p2 can have (4) divided by the largest value p1 can have 
(3). But the degrees of belief of the intermediate values change based on the number of 
incremental evaluations, which in turn changes the shape of the fuzzy result, which in 
turn changes to the defuzzified value, since we are interpreting the centroid of the shape 
to be this value.

It is possible that a nonlinear function of fuzzy numbers will result in a non-
unimodal fuzzy number. Here is an example:
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What is happening is that the fuzzy result is consistent with the truth that there 
are two solutions to the quadratic that can result in a value of 0, namely, p equal to 0 
and 2. For values greater than 0, the higher degree of belief curve is associated with 
the input near 2, since the degree of belief of the input at 2 is 0.5. The lower value 
degree of belief curve is associated with the solution of input near 0, since the degree 
of belief of the input at 0 is 0. Notice that the largest value F can have is indeed 1, 
which occurs when p has the value 1, which has a degree of belief of about 2/3.

A fuzzy rule is an inference that a set of fuzzy numbers implies another set of 
fuzzy numbers. For two deterministic inputs input_1 and input_2, which infer two 
fuzzy outputs, output_1, and output_2, the inference rule is

IF input_1 = <l1, m1, h1> AND input_2 = <l2, m2, h2> THEN output_1 = <l3, 
m3, h3> AND output_2 = <l4, m4, h4>.

The shorthand depiction of the same is

	 IF <l1, m1, h1> AND <l2, m2, h2> THEN <l3, m3, h3> AND <l4, m4, h4>.

The ultimate shorthand depiction is

	 If f1 AND f2 THEN f3 and f4.

where f1, f2, f3, and f4 are the fuzzy numbers associated with input and output.
Since many applications require the conclusion to be implemented as a nonfuzzy 

number, a more convenient fuzzy rule representation is

	 IF f1 AND f2 THEN o1 AND o2.

Here the outputs, o1 and o2, are regular deterministic numbers.
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To evaluate a fuzzy rule, first we need to define how to determine the degree of 
fulfillment of each input (that is, how much the input equals <l, m, h>), then we need to 
define how to determine the net truth of the combined inputs (that is, how to combine 
the degree of fulfillment of multiple IF clauses), and last we must define how to establish 
the THEN clause(s) consistent with the determined fuzzy truth of all the IF clauses.

The degree of fulfillment of an input x with the fuzzy inference <l, m, h> is 
denoted by d(x, <l, m, h>), and for linear triangular fuzzy numbers it is calculated by

	 IF x > l AND x <= m THEN d = (x ‒ l) / (m ‒ l)

	 IF x > m AND x < h THEN d = (x ‒ m) / (m ‒ h)

So the degree of fulfillment is a number between 0 and 1, where the number is 0 if 
the IF proposition is completely false, 1 if the IF proposition is completely true, and 
an intermediate value otherwise. For triangular fuzzy inferences, geometrically, this 
is simply the degree of belief of the deterministic input variable for the fuzzy number 
that it is being compared to.

The next step is to interpret the combination of multiple input clauses to also yield 
a value between 0 and 1, for completely false to completely true, respectively. There 
are at least two equally valid optional ways to interpret the combination of multiple 
IF clauses. One is to multiply all input degrees of fulfillment for each IF clause (also 
known as product inference), and the other is to take the minimum of all the degrees 
of fulfillment of each for each of the IF clauses (also known as minimum inference). 
Herein, minimum inference is used to combine IF clauses, unless otherwise stated.

Now that the IF clauses can be evaluated to yield a number between 0 and 1, the 
resulting inference is used to determine how much of the THEN clauses to impose. 
If the THEN clauses are fuzzy numbers, the inference value is taken as the limiting 
degree of belief for each THEN clause. Geometrically, the IF inference value is used to 
establish a cap on each THEN fuzzy number. If the IF inference is 0, then the cap is 0, 
so the fuzzy output is 0. If the If inference is 1, then the cap is 1, so the complete fuzzy 
number is output (which to be used may be de-fuzzified to its centroid). If the IF infer-
ence is between 0 and 1, and the fuzzy output is a triangular fuzzy number, the THEN 
clause is the trapezoid formed by the triangular fuzzy number truncated at the degree 
of belief that corresponds to the IF clause inference value. If there are multiple rules 
for the same output, and a deterministic number is needed to implement the output, the 
output value is the centroid of all the output value areas. If the THEN clauses are regu-
lar numbers (o1 and o2 in the example), then the inference value is taken as a weight to 
apply to the THEN clause outputs. If there are multiple rules addressing the same out-
put, the net output is the weighted sum of all the rules that may affect the output. The 
precise arithmetic to implement these narratives will be specified in Section 2.3.3.2.

2.3.3.1  Using Fuzzy Logic to Predict Results Based on Uncertain Inputs
Fuzzy mathematics is a powerful means to quantify things that are uncertain but not 
random. When creating a new system, both the developer and customer want to esti-
mate the cost and schedule with some margin to compensate for the risks associated 
with making the system operational. Particularly if some aspect of the endeavor has 
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never been done before, both the cost and the time to complete are uncertain, but not 
random. Yet, often today probability is used to estimate the risk-adjusted cost and 
schedule.21,22

To estimate system cost using probability, the system is first divided into pieces, 
typically in the form of a contract work breakdown structure (CWBS). To present the 
customer a bid, the developer estimates the cost of each CWBS item. If the customer 
is to pay for the development, then the cost estimate includes the activities to design, 
manufacture, verify, and deliver the item. If the customer is to pay for the life cycle 
costs, then estimates are also needed for operations, support, training, and disposal 
costs. To obtain these estimates, each item’s developer may use prior actual costs 
(adjusted for scope) and/or mathematical cost-estimating relationships (usually based 
on regression analysis of actual costs with respect to some physical parameter, such 
as mass), extrapolate from experience, or simply guess. Then, one or more experts 
identify risk sources that might prevent that item from being delivered for the speci-
fied cost. To aid this effort, a risk source versus level matrix (also known as a Maxwell 
scale) is provided. The rows of the matrix enumerate the potential sources of risk, for 
example the required technical advancement, technology status, complexity, interac-
tions or dependencies, process controls, manufacturing precision, reliability, produce-
ability, critical status to the mission, and cost. The columns of the matrix state the 
risk level, perhaps as a numerical scale, or perhaps simply low, medium, or high. The 
risk level attempts to gauge the probability of the risk occurring combined with the 
severity of the consequence. With these risks in mind, one or more experts are asked 
to identify the potential risk level for each source and then to produce a probability 
density function for the item’s cost. The experts may actually draw a probability dis-
tribution, or a distribution is created for them, based on how they respond to questions 
about the minimum, most likely, and maximum cost. Once probability density func-
tions are obtained for all the system’s items, a Monte Carlo simulation is run to obtain 
a cumulative distribution for the total cost and schedule. Note, then, if the system 
was made up of n items each with normally distributed cost estimates of mean u and 
standard deviation s, the sum has mean nu and standard deviation Sqrt[n]* s. The 
ratio of total cost standard deviation to the total cost mean is (s / u) / Sqrt[n], which is 
smaller than the ratio (s / u) for each item’s ratio of standard deviation to item mean. 
In plain English, if a probabilistic cost estimate is constructed as described, the stan-
dard deviation relative to the total cost estimate reduces as the number of itemizes 
increases, which is clearly nonsensical. This observation causes most cost analysts to 
require the item costs to be correlated, either directly through use of equations in the 
Monte Carlo simulation or approximately by using for the total cost standard devia-
tion the average of the perfectly correlated standard deviation and the not correlated 
standard deviation, which is (1/2) (n + 1 / Sqrt[n]) s. Clearly, this is very worrisome, 
because by definition, the items are defined to be independent, so why must their costs 
now be correlated?

The same basic approach is used to estimate the duration of the development effort. 
The tasks to design, manufacture, and verify the item are defined with appropriate 
dependencies. The times to complete each task are estimated using probability den-
sity functions, and Monte Carlo simulations are run to determine the total duration 
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of the effort recognizing the task dependencies that exist. Note that such an approach 
will also return the probability that a given task is on the critical path. Perhaps, more 
logically, cost and schedule risks can be determined simultaneously by using prob-
ability density functions for duration, and the fixed and labor costs associated with 
each task.

Though rigorous, Monte Carlo–based probability and schedule estimates should 
be avoided. I recommend this to avoid the phenomenon of an ever-shrinking net 
uncertainty as the number of tasks increases. Practically speaking, the Monte Carlo 
methodology is actually very difficult to implement. While it is good practice to ask 
domain experts to identify potential causes for cost increases or schedule delays, 
combining these overlapping sources into a single risk impact is a very subjective 
decision. Many domain experts don’t know how to assess cost as well as they can 
predict technical performance. For a totally new component, any cost is a guess. 
Fitting a probability curve to a guess is reasonable, but there is no way to know 
for sure if the domain expert is conservative or an optimist, so it is not knowable if 
the ends of the distribution he or she provides are at the 1 sigma or 10 sigma level. 
Finally, if the program manager and/or the customer are not comfortable with prob-
ability, they won’t know what to do with the result. Even if both the program man-
ager and the customer can comfortably interpret a cumulative distribution, they may 
doubt its accuracy. All these issues motivate finding an alternative approach to model 
cost and schedule uncertainty. Fuzzy logic provides such an alternative.

First, let’s define some terms to clarify what we will discuss. We postulate two factors 
are predominantly responsible for the cost uncertainty. The first factor is the item’s tech-
nical maturity—is it something done before or just an idea? We define a scale to allow 
us to quantify an item’s technical maturity at least in a fuzzy sense. The second factor is 
literally our certainty with our own estimate. We call this proposal risk, and we define a 
scale to enable it to be quantified. The cost margin that is needed will be calculated based 
on fuzzy rules concerning the technical maturity and the proposal risk of the items.

Table 2.1 broadly defines levels of technical maturity on a scale from 0 to 8. For any 
given end item, it is devilishly difficult to declare its technical maturity. For example, 

TABLE 2.1
Technical Maturity Level Definitions

Technical Maturity Definition
Technical 

Maturity Level

Successfully operating 8

Qualified but not yet used operationally 7

Prototype demonstrated in operational environment 6

Prototype demonstrated in relevant environment 5

Portions validated by analysis or in laboratory 4

Analysis or experiments show concept could work 3

Concept defined 2

Solution scientifically feasible 1

No known approach to meet requirements 0



89Model Systems and Architecture Behavior

suppose the system needs a new propellant tank with twice the volume as any previ-
ously made tank, but to be built exactly the same way as the smaller tanks that have 
successfully operated. The item certainly isn’t successfully operating, so maturity is 
less than 8. But the to-be-made tank certainly has a known approach to meet require-
ments, so its technical maturity level is more than 0. The extent that the to-be-made 
tank has intermediate levels of technical maturity is best approached as a degree of 
belief, so fuzzy modeling is appropriate. The to-be-made tank’s technical maturity 
could be represented as the fuzzy number <3, 5, 7>, if we have done an analysis that 
convinces us the tank can be made and meets its requirements (the 3), and we give our-
selves some credit for the fact that we have made, qualified, and successfully operated 
similar, albeit smaller, tanks (the 7), and our previously made tanks are effectively the 
prototype for the new larger tank (the 5). Please notice how much easier it is to poten-
tially agree on the range of technical maturity than it is to agree on the explicit level 
given the inevitably ambiguous definitions. This is precisely the beauty of the fuzzy 
logic method—unobtainable precision is avoided. Fuzzy logic methods enable the 
explicit articulation of the inherent uncertainty. Table 2.2 defines four technical matu-
rity states. Table 2.3 shows a scale to broadly define levels of cost estimate certainty.

As with technical maturity, fuzzy numbers allow us to be ambiguous about the 
cost estimate certainty, too. If we are very certain our estimate has little certainty, we 
can categorize our proposal risk as <1, 1, 1>, while if we have some fear our estimate 

TABLE 2.2
Fuzzy Technical Maturity Levels

Fuzzy Maturity Technical Maturity Levels

Very mature <6, 8, 8>

Mature <3, 5, 7>

Immature <1, 2, 4>

Very immature <0, 0, 2>

TABLE 2.3
Cost Estimate Certainty Definitions

Cost Estimate Certainty Definitions Certainty Level

No prior similar efforts and for many reasons 
actual cost may be different than predicted.

0

Mostly never done before with more cost 
uncertainties than certainties.

1

Similar to prior efforts with reasonable 
certainty that costs can be predicted 
accurately.

2

Nearly identical to prior efforts and costs are 
highly predictable.

3
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is off, using the scale in Table 2.3 we might categorize our proposal certainty as <1, 
2, 3>. Table 2.4 defines three proposal risk states.

Technical maturity level and proposal risk level are used to define fuzzy rules of 
the form:

	 IF Technical_Maturity_Level AND Proposal_Risk_Level, THEN
	Margin_recommended.

Reference 23 is used to define the Margin_recommended fuzzy numbers. These 
values are used to create a set of 12 fuzzy rules, summarized in Table 2.5.

For example, an item with high proposal risk that is very immature has the 
Margin_recommended set to <0.25, 0.75, 1.50> to indicate the final cost could 
be 25% to 150% more than the estimate, with 75% the degree of belief of 1 value. 
Similarly, an item with low proposal risks that is very mature has the Margin_rec-
ommended set to <‒0.10, 0.00, 0.15> to indicate the final cost could be from 10% 
less than the estimate to 15% more than the estimate, with a degree of belief of 1 
value of 0, to indicate the final cost will be the estimate.

The 12 rules are captured as follows; notice by substituting the defuzzified value 
for the 12 THEN clauses:

TABLE 2.4
Fuzzy Proposal Risk Levels

Fuzzy Proposal 
Risk

Cost Uncertainly 
Levels

Low <1, 2, 3>

Medium <0.5, 1.5, 2.5>

High <0, 0, 2>
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The Mathematica routine Plot3D is used to show the recommended margin as a 
function of all possible inputs for the rulesTMPRM:
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Table 2.6 shows the result of applying the process to a four-element system. First, 
itemize the work content into independent but complete tasks using a contract work 
breakdown structure (CWBS) (column 1). Then, for each CWBS item, determine 
its technical maturity as a fuzzy variable using the previously stipulated technical 

TABLE 2.5
Fuzzy Rules for Determining Fuzzy Margin Required

Proposal risk 
level

High < 0.25, 0.75, 
1.50 >

< 0.25, 0.50, 
1.00 >

< 0.10, 0.25, 
0.75 >

< 0.00, 0.15, 0.25 >

Medium < 0.25, 0.50, 
0.75 >

< 0.10, 0.25, 
0.75 >

< 0.00, 0.15< 
0.50 >

< –0.05, 0.05, 0.25 >

Low < 0.10, 0.25, 
0.75 >

< 0.00, 0.15, 
0.25 >

< –0.10, 0.05, 
0.25 >

< –0.10, 0.00, 0.15 >

Fuzzy margin
Very mature Immature Mature Very Mature

Technical maturity level
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maturity scale (column 2). Then, for each CWBS item, determine a cost estimate 
(column 3), and denote your certainty with the cost estimate using the previously 
stipulated cost estimate certainty scale (column 4). To estimate the likely final cost 
of each item, input to EvalFuzRulesIFA1andA2THENBconst the defuzzified values 
for technical maturity and cost estimation certainty, and multiply each item cost 
estimate times 1 plus the recommended margin, to estimate the likely final cost of 
each item (column 5).

The values in column 5 are obtained as follows:

Fuzzy logic models can also be used to estimate the time to accomplish a project. 
If the input uncertainty is being guessed, rather than based on observed statistics, 
then it is more appropriate to model each input as a fuzzy number with a stated 
minimum and maximum possible values for which the degrees of belief are both 0, 
and a best-guess value, for which the degree of belief is 1. Suppose there are eight 
tasks to be accomplished, with the dependencies as shown in Figure 2.9. What is of 
interest is the possible total time to assemble the item. Based on dependencies shown 
in Figure 2.9, this time is

	 Max[Max[T1, T2], Max[T3, T4]] + Max[T5, T6, T7] + T8

where Ti is the time it takes to complete task i.

TABLE 2.6
Example Fuzzy Cost Estimate

1: CWBS
2: Technical 

Maturity
3: Cost 

Estimate ($K)
4: Cost 

Certainty
5: Cost Estimate 
with Margin ($K)

1 <6, 7, 8> 1500 <1, 3, 3> 1550

2 <3, 5, 8> 200 <1, 2, 3> 228

3 <1, 3, 5> 2000 <0, 1, 2> 2950

4 <7, 7, 7> 500 <2, 3, 3> 508

Total — 4200 — 5237
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Each task time Ti can be estimated directly, or as a consequence of the number 
of required operations, divided by the sum of the products of number of performers 
times the performer’s rate of accomplishment. For this illustration, let

	 T1 through T7 be estimated as fuzzy times (E1 through E7)

and

	 T8 = 100 operations / (10 machines x MachineOps8)

where MachineOps8 is the machine operations per time.
Each task has some chance of having to be redone due to the need to fix or rework 

the effort. The task i rework rate is denoted by RWRi, which increases the time to 
complete each task i by 1 + RWRi, so:

	 Ti = (1 + RWRi) * Ei, i = 1 to 7

	 T8 = (1 + RWR8) * (100/(10* MachineOps8)

A representation of the total time to do all tasks is then provided by

Task 8Task 6

Task 5

Task 7

Task 2

Task 1

Task 3

Task 4

FIGURE 2.9  Example activities with dependencies.
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Here are illustrative example inputs:

The fuzzy total time to accomplish all eight tasks is then found by
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The time to budget to accomplish all eight tasks is the defuzzified value of about 
31 days. The degree of belief is 0 that the eight tasks can be accomplished in less than 
13.6 days or take longer than 62.5 days. Please note, however, that the 60-day out-
come could happen. So while the current plan for the project is to complete in about 
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31 days, contingency plans should be prepared in case the project requires as many 
as 62.5 days.

Virtually any uncertain outcome can be assessed by one or the other of these 
fuzzy logic methods: either produce fuzzy rules for what to do or what will happen 
based on fuzzy inputs, or model the situation deterministically and assess the conse-
quence of the fuzzy inputs.

2.3.3.2  Using Fuzzy Logic to Predict Results Based on Observed Data
Fuzzy logic rules can be constructed to fit observed data as an alternative to using 
regression. To compare the fuzzy logic approach to regression, we’ll use the same train-
ing data as used previously. Rather than a polynomial, fuzzy logic rules of the form:

	 IF Ai THEN Bi,

where i = 1 to the number of rules, are used to fit the training data. The fuzzy Ai’s 
are at the discretion of the user. A way to pick the Ai’s is to divide the independent 
variable range into overlapping regions of fuzzy numbers. As it was noted in the 
regression example, the training data had at least six changes in slope, and so at least 
a six-order polynomial was needed; similarly, the fuzzy Ai’s can be grouped to over-
lap more in ranges of high data variation and spread out for ranges of little variation 
or near-linear variation.

Two optional methods to determine corresponding Bi values are counting and least-
squares fit. For the counting method, let b[Ai] denote the set of training data dependent 
variable values that have independent variables in the range Ai. The counting method 
sets Bi to be the defuzzified value of the triangular fuzzy number of the form:

	 <Min[b[Ai]], Mean[b[Ai]]], Max[b[Ai]] >

which is

	 (Min[b[Ai]] + Mean[b[Ai]] + Max[b[Ai]])/3

For example, for trainingdata shown for the regression example, suppose our 
first Ai is the fuzzy number <0, 0, 1>; the counting method determines that the fol-
lowing data points fall within that range:

	 {{.09, .22},

	 {.28, .57},

	 {.34, .76},

	 {.65, 1.47},

	 {.67, 1.64}}
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because these are the only data points for which independent variables are between 
0 and 1. So, b[<0,0,1>] are the corresponding dependent variables, {0.22, 0.57, 0.76, 
1.47, 1.64}, and

	 Min[b[<0,0,1>] = 0.22

	 Max[b[<0,0,1>]] = 1.64

	 Mean[b[<0,0,1>]] = 0.93

and the rule becomes

	 IF <0, 0, 1> THEN (0.22+0.93+1.64)/3.

Additional rules are formulated for additional Ai’s distributed over the range 
of independent variables for which the predicted results are needed and there is 
data.

The least-squares method solves a set of linear equations to determine Bi to mini-
mize the squared difference between the observed dependent variable values and the 
fuzzy logic rules assessed at the observed independent variables.14

To begin, let’s try eight rules, the left-hand sides of which each span a portion of 
the data range from 0 to 8, as stipulated below in the variable called A8rules:

The formal requirements FuzRulestoFitDatabyCounting determine Count8rules, 
which holds the eight Ai and Bi values obtained using the counting method with 
trainingdata and A8rules as inputs:

The formal requirements EvalIFAiTHENBconsti evaluate rules of the form IF Ai 
THEN Bi, where Bi is a constant.

The following plots the trainingdata points, the sixthorderfit obtained by using 
regression, and the fuzzy logic fit using the counting method:
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The sixthorderfit is the smooth dashed curve, and the fuzzy rules provide the 
piecewise linear fits (solid). Let’s see if more rules improve the fit to the training-
data. We’ll define 13 left-hand sides for 13 rules as A13rules:

For this A13rules, the rules for trainingdata by the counting method become

Again, let’s plot the trainingdata, the sixthorderfit, and the result fuzzy fit 
using Count13rules:
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The fuzzy rules obtained are arguably a better fit to the data than that obtained by 
regression for the range of 0 to 6. There is no evidence to substantiate the claim for 
the predicted values in the range from 6 to 8, but the fuzzy rules give a reasonable 
guess, perhaps more so than that made by the seventh-order polynomial and almost 
certainly better than that obtained by the seventh-order polynomial.

FuzRulestoFitDatabyLeastSquares determines rules using the least squares 
method. This method solves a set of linear equations for the Bi values so that the 
application of the rules minimizes the error between the training value and those 
obtained by the rules.

Here are the rules using the least-squares method on trainingdata for the left-
hand sides denoted by A8rules:

Which yields the following result:
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This is perhaps the best fit so far, except in the neighborhood of 4. Let’s try the least-
squares method for the larger number of rules associated with A13rules. Determine 
the rules using FuzRulesFitDatabyLeastSquares:

This provides the following prediction, which appears to be very accurate, with the 
understood uncertainty in the range of 6 to 8:
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The fuzzy logic rules using a least-squares fit and A13rules fit the data extremely 
well. (Again, as with the regression result, we really should get more data in the range 
from 6 to 8.) Fuzzy logic can therefore be used for predictions based on observed 
data at least as well as regression. Though the above examples are limited to predict-
ing an outcome based on a single independent variable, the same techniques apply 
for multiple independent and dependent variables. My experience is that the counting 
algorithm is preferred as more variables become involved, but one should always 
experiment with both methods to find the best for the situation.

2.3.3.3  Multiple-Input Single-Output Fuzzy Logic Example
For this example, we’ll redo the “time for a laser to make a hole” margin analyses we 
did using the Monte Carlo method. This time the inputs are triangular fuzzy num-
bers with ranges matching the triangular probability distributions used in the Monte 
Carlo analyses. For convenience, scale factors are defined as PO for power, WE for 
wavefront error, AE for jitter, RE for range, lambda for wavelength, TLF for half 
tear length, TLFdelta for high and low uncertainty, FF for fluence required, FFdelta 
for high and low offset, TR for time required, and TRdelta for high and low offset.
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Define fuzzy power (p) as

Define fuzzy beam diameter (d) as

Define fuzzy transmission factor (T) as

Define fuzzy obscuration factor (o) as

Define fuzzy sigma wavefront error (sigmawfe) as

Define fuzzy range (R) as

Define fuzzy sigma jitter (sigmaj) as

Define fuzzy angle of incidence (theta) as

Define fuzzy half tear length (htl) as

Define fuzzy fluence required (Frequired) as
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Define fuzzy time required (trequired) as

The input variables are collected in a single array named iv:

fuzLaserMargin is defined to provide the margin obtained for the independent fuzzy 
numbers representing each of the inputs.

Evaluating fuzLaserMargin for 10, 50 and 100 incremental degrees of belief:
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Notice that, unlike a Monte Carlo analysis in which the number of trials needs to 
be determined experimentally, for a fuzzy model, as few as 10 incremental degrees 
of belief between 0 and 1 provide enough precision for answer. Second, notice that 
the margin of about 1.5 has degree of belief of 1. This means the individual margin 
that is most expected has about 50% contingency. Third, the defuzzified margin is 
about 2.16, which means that given all the presumed uncertainty, the likely deter-
ministic margin is 2.16, so there is more than 100% contingency. Finally, notice the 
degree of belief that the margin could be less than 1 begins at about 0.7 and declines 
to 0 for a margin about 0.2.

How to interpret these results? There are three useful outputs: the degree of belief 
of 1 value, the defuzzified value, and the extreme value at degree of belief of 0, be it 
the maximum or the minimum. In general, a situation where the defuzzified value is 
adequate can be taken as strong evidence the modeled uncertainties will result in an 
acceptable result. Recall that the defuzzified value was chosen to be the centroid of 
the output distribution degree of belief, but this is not the 50% certain point as it is 
for a probabilistic assessment. If both the defuzzified value and the degree of belief 
of 1 values are adequate, that is even stronger indication the real outcome will be 
acceptable. The ultimate certainty is that the extreme values also meet the criteria. 
If the model is reasonably accurate, such a result indicates complete and total likeli-
hood the real result will always be acceptable. That is an extraordinary conservative 
position.

Still, some caution is urged. Studies have shown people often greatly underes-
timate the actual variability that can occur with respect to something they know 
little about.12 When using fuzzy logic models, be careful to input the true likely 
variation, and be conservative, that is, err by assuming more variation, particularly 
in the direction that can lead to a bad result. Care is especially needed when the 
uncertainty is asymmetric and the real level of bad things that can happen is larger 
than that of good things that can happen. If the model fails to represent the true pos-
sible range of bad things that can happen, then the fuzzy logic model will overstate 
the goodness of the result relative to reality, and decisions based on the model will be 
overly optimistic and therefore failure is more likely to occur than perceived.
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Recognizing the possibility of errors in the model relative to the reality of the 
real item, many disciplines utilize the concept of a factor of safety, FS. For example, 
if something must be greater than X to be acceptable, a solution is sought which an 
analysis shows is FS * X, with FS > 1. Appropriate factors of safety to use are a com-
promise between safety and cost, generally established based on lessons learned, 
larger FS are gradually reduced until failures start occurring, while smaller FS 
gradually increased until failures stop occurring. In addition to providing protection 
from modeling errors, factors of safety provide design robustness, as the real entity 
can now operate beyond its explicit design criteria. For situations where the analysis 
is highly questionable or the consequence of error is loss of life, FS values typically 
around 10 are appropriate. For situations where the model is believed to be suffi-
ciently validated against reality, and either the consequences are minor or it is sim-
ply not tolerable to be so conservative, lower FS values are utilized. Indeed, in the 
aerospace industry, where additional mass is so detrimental to system performance, 
despite the high potential consequences of failure, an FS value as high as 3 is typi-
cally used for only pressure vessels designs based on analysis only, reducing to 1.5 
for pressure vessel designs based on actual demonstration, and 1.1 to 1.2 for all other 
structural considerations. Fuzzy logic model results can be utilized in conjunction 
with factors of safety. The defuzzified value should be more than a factor of safety 
multiple of the required value.

2.3.3.4  Fuzzy Solutions to Simultaneous Linear Equations Example
The model equations are of the form:

	 A * x = b,

with A and n × n matrix, and b and n × 1 array, and any of the elements of matrix 
A and array b represented by fuzzy numbers. The same two-story frame structure 
analyzed by the Monte Carlo method will serve as the example for the fuzzy logic 
analysis alternative. fuzTwoStoryFrame provides the two horizontal displacements 
and two rotations as a function of fuzzy inputs.

A matrix is defined that contains each of the needed fuzzy numbers, namely, the 
two horizontal forces (fF2, fF3), the Young’s modulus (fE), the horizontal beam area 
moment of inertia (fIhor) and length (fLhor), as well as the vertical column area 
moment of inertia (fIver) and length (fLver). For this example, each fuzzy number 
input is given the same numerical values used for the triangular probability density 
functions used for the Monte Carlo simulation.

Then, again use fuzFoffuzX to solve for the four outputs from the model, two 
horizontal displacements and two rotations. Here is the result:
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The results are almost linear, but not quite. The output with the degree of belief of 
1 is clearly determined. The range of possible output is clearly identified with lesser 
degrees of belief. The defuzzified value for each output can be taken as the presumed 
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output. The defuzzified values can be compared directly to requirement values or the 
results and be compared to the requirements multiplied by a factor of safety.

2.3.3.5  Model Uncertainty Using Fuzzy Ordinary Differential Equations
The last example addresses a system of ordinary differential equations. Since the 
solution to all such equations can be approximated by numerical methods, and since 
these methods basically generate a time history F[x], where x are the fuzzy factors, 
be they terms in the equations or uncertainty associated with the initial conditions, 
the same method we just used on simultaneous linear equations can be used for dif-
ferential equations, where

	 dx/dt = F[x[t], t], and x[0] = xo

To begin, here is a very simple single-variable differential equation in which two 
constants, k1 and k2, are fuzzy:

	 dx/dt = (k1^2) * x + k2,

with x[0] = 0, and k1 = <0.5, 1.0. 1.5> and k2 = <0.75, 1.0, 1.25>.
The routine to determine the derivative value is

Although Mathematica provides routines to symbolically or numerically inte-
grate ordinary differential equations, let’s define our own formal requirements 
MidPointIntegrate to do the numerical integration.

To use fuxFoffuxX to integrate a system of ordinary differential equations, we 
first need to define an F to return the integrated value at tfinal based on specific 
values for the fuzzy numbers in the equation:

Here is the solution obtained for x[tfinal] for

	 pin[[1]] = <0.5, 1, 1.5>

	 pin[[2]] = <0.75, 1, 1.25>

evaluated at the low, high, and degree of belief 1 value of the inputs:
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Here is the result when evaluating using intermediate degrees of belief, so the 
nonlinear nature of the equations manifests itself into the value of x at tfinal:
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Examine the result; the extremes and degree of belief of 1 value can be deter-
mined by the extremes of the inputs, but the fuzzy nature of x[tfinal] is not linear and 
the defuzzified value needs to be determined using intermediate degrees of belief.
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The Monte Carlo analysis of the two-stage rocket trajectory subject to wind and 
system dispersions is not a good candidate for fuzzy logic representation. The atmo-
spheric density and wind velocity variations are random, not fuzzy, and the possi-
bility of nominal system dispersions can also appropriately be modeled as random 
behavior since it is possible to run enough tests to determine valid statistics.

But suppose we have not built the rocket yet and we intend to fly it on a planet we 
have not visited before. Rather than assuming probability density functions for the 
key modeling parameters, for which we have no basis but a guess, we simply model 
them as fuzzy numbers. A much simpler model, proposed in reference 24, is used to 
illustrate the fuzzy solution of a system of ordinary differential equations:

	 dx[[1]](t)/dt = x[[3]]

	 dx[[2]](t)/dt = x[[4]]

	 dx[[3]](t)/dt = A * Cos[theta]

	 dx[[4]](t)/dt = A * Sin[theta] ‒ g

with

	 x[[1]](0) = x[[2]](0) = x[[3]](0) = x[[4]](0) = 0

and

	 x[[2]](tfinal) = H

	 x[[3]](tfinal) = U

	 x[[4]](tfinal) = 0

where

x[[1]] for horizontal position;
x[[2]] for vertical position (which is to be H at time equal tfinal);
x[[3]] for horizontal velocity (which is to be U at time equal tfinal); and
x[[4]] for vertical velocity (which is to be 0 at time equal tfinal).

Reference 24 uses these equations to show how a calculus of variations derives 
the open-loop optimal steering law, that is, the theta time history so that the terminal 
conditions at tfinal are achieved in the least amount of time, which, since this rocket 
is assumed to be accelerating at a constant rate A, also is the minimal fuel consump-
tions profile. Even though the obtained steering law is clearly based on very crude 
assumptions such as no atmosphere, constant gravity and thrust, and a flat planet, it 
turns out to be an extraordinarily good control law for real rockets flying over real 
planets provided one updates the solution as fly.
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The calculus of variations derived steering law is

	 Tan[theta[t]] = constant_1 * t + constant_2

Reference 24 shows for the case:

A = 20.82 meters/second;
g = 5.32 meters/second^2;
H = 50,000 meters; and
U = 5444 meters/second;

the constants for the optimal theta time history are

constant_1 = -1.598*10^-3 radians;
constant_2 = 0.4887 radians/second; and
tfinal = 272.4 second.

To illustrate an application of integrating a fuzzy system of differential equations, 
we’ll assume both the system performance (as represented by A) and the environ-
ment (as represented by g) are fuzzy, and derivativeofx returns the derivative values 
for these fuzzy inputs:

Fuzzy A (fA) and fuzzy g (fg) are taken to be

Next we formulate F[p] to return the x[tfinal], with F[[1]] = x[[1]] (range), F[[2]] 
= x[[2]] (altitude), F[[3]] = x[[3]] (horizontal velocity), and F[[4]] = x[[4]] (vertical 
velocity), with

	 tinital = 0;

	 finitial = {0,0,0,0};

	 tfinal = 272.4; and

	 h = .01

as follows:

The fuzzy terminal state vectors are then determined using 10 incremental 
degrees of belief:
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The results indicate that given uncertainty in A and g, we get uncertainty in our 
final position (F[1], F[2]) as well as velocity (F[3], F[4]). Notice our final orbit is low, 
slow, and heading down since the defuzzified final altitude (F[2]) is 41,001.5 feet, 
rather than the desired 50,000 feet; the defuzzified final horizontal velocity (F[3]) is 
5344.4 feet/second, rather than the desired 5444 feet/second; and the final defuzzi-
fied vertical velocity (F[4]) is ‒59.3 feet/second, rather than 0. So we immediately 
know we need better decisions for steering. I will show how fuzzy logic can be used 
to obtain superior steering decisions in Chapter 3.

2.3.4 � With Agents

The components of an agent based model are as follows:25

•	 Agents: Coded rules that take inputs from the environment and other agents 
to produce outputs. The rules enable perception of the environment or other 
agents, performance instantiated by motion, communication or action, 
memory, and policy.

•	 Environments: Codes that create a situation external to the agents.

Several agents of the same, or dissimilar, definition interact within the environ-
ment, and their impact on each other or the environment is noted. The motivation is 
that by causing many relatively simple events occurring simultaneously, the grander 
scheme will be observable. These models seek to simulate behavior when an aggre-
gating principle remains unknown. Modeling uncertainty using agent-based models 
is a developing procedure. The ability to utilize large numbers of parallel processors 
for massive amounts of calculations enables such simulations. As is common with 
new things, the method has extreme skeptics as well as extreme advocates. I know 
of one person who is adamant that the only appropriate means to model a military 
conflict is by agent-based models, his claim being that to do so by any other method 
was inherently dishonest. His argument, in a nutshell, is that the results of military 
conflicts are so uncertain, with so much that can depend on the instances of a few 
key interactions, that no aggregation method would ever be truthful. Yet, ample evi-
dence exists that the aggregate models based on Lanchester equations accurately 
predict many military conflicts.26

In systems engineering and architecting, the most valuable models are predictive. 
They enable us to anticipate something before it happens, thereby using that infor-
mation to take action either to alter the events or to better prepare for the inevitable. 
Predictive models are only as good as the accuracy of their prediction and the oppor-
tunity time they provide between the receipt of the prediction and the occurrence 
of the predicted event. There is much comfort in using a validated aggregation rule 
because one is reasonably certain the result will be correct and useful. Validation of 
the agent-based model remains the biggest challenge to acceptance. For example, 
one of the earliest agent-based models was of two sets of agents, one red and one 
green, initially randomly placed on a large two-dimensional grid. At each step in the 
simulation, each agent checked its eight possible neighbors, determining the fraction 
of those of the same color. The control variable was a tolerance level. If the fraction 
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was above it, the agent stayed put; if the fraction was below it, the agent moved one 
spot away if any open spots were available (no two agents could occupy the same 
spot). It was found that for tolerance levels of 0.3 or higher, after numerous simula-
tions, the environment became a checkerboard of agents of the same color as the 
agent. The inference was that a group of people with any intolerance to live near-
dissimilar people will naturally form neighborhoods of similar people. But is this 
conclusion valid? Can it be used for prediction? I honestly do not know the answers 
to these questions, and because I don’t, I am uncertain what to do with such a model. 
This issue is common to many agent-based models.

Clearly the technology will evolve and its value become more established. Also 
clearly, our job as system engineers and architects is to provide models to help 
make decisions. For those situations in which an aggregation rule is unknown, 
then agent-based models enable analysis to proceed. Here is an illustration. 
Suppose we are considering improving the intelligence, surveillance and recon-
naissance, and communications (ISRC) abilities of our military forces. Intuitively, 
each should be beneficial. And people accept this. But there are a lot of good ideas 
out there. How much benefit would these improvements provide, say, relative to 
other measures? An agent-based model gives us the ability to approximately 
answer these questions.

The environment consists of two 50 × 50 unit squares, one considered Blue terri-
tory, and the other Red. A location on either is denoted by an i and j value. Initially, 
there are 25 Blue agents. Each will be assigned to a fixed random location in their 
territory. Initially, there are 50 Red agents; each will be assigned a fixed random 
(i, j) location in their territory as well. Each Blue and Red agent has a device that, 
up to a range of 75 units, can destroy another agent with probability of kill (Pkill, 
presumed to be 50%). A unit is the distance between a spot (i1, j1) and a spot (i2, j2) 
measured by

	 Sqrt[(i1 ‒ i2)^2 + (j1 ‒ j2)^2]

In the first simulation, none of the agents know where the enemy agents are, nor 
can they communicate, or maneuver. Of interest is how long does it take the Red 
agents to destroy the Blue agents, and what is the relative loss rate? The form require-
ments BluevsRedAreaFire create the environment, and randomly locate the Blue 
and Red agents. Then time is advanced, and at the start of each time interval, all the 
remaining agents fire randomly into enemy territory, and the number of surviving 
agents is noted.

After 50 simulations, the results are
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As expected, since Blue is outnumbered two to one, it has a fatality rate more than 
twice as fast as Red’s.

To investigate the ISRC benefits, a new formal requirement, BluevsRedwith 
BlueDirectedFire, is written to simulate that Blue takes advantage of an ISRC capa-
bility that lets Blue know where all the Red targets are and each Blue agent then 
targets a random Red agent at its known location. In plain English, in this simula-
tion, Blue agents now fire directly at Red agents, without coordination, while the Red 
agents still must randomly fire into Blue territory.

Here is the result of 50 simulations with Blue having perfect knowledge of Red’s 
location, but no coordination of fire:

Perfect knowledge of Red’s location, with Red oblivious to Blue agent locations, 
has reduced the Blue-to-Red kill ratio from over 2 to 1 to about 0.1 to one. What is still 
happening is each of the Blue elements is randomly selecting a Red target, so as the 
targets reduce, there is a lot of duplicated targeting. This is beneficial for Blue, as even 
two engagements of the same target increase the effective kill probability to 75%. Blue 
would be more efficient if they coordinate their attacks, which requires communications.

In this final modification, the formal requirements BluevsRedwithBlueDirected 
FireandComm, two Blue entities are chosen at random to engage the same identified 
target.

Here is the result of simulations of Blue having perfect knowledge of Red agent 
locations; Red agents are oblivious to Blue agent locations, and Blue agents can com-
municate to coordinate their attacks:

Directed fire with communications enables the Blue forces to concentrate fire on 
Red agents, thereby essentially guaranteeing kill as a result of each coordinated attack. 
The relative loss ratio is now hugely in Blue’s favor even though Blue is initially out-
numbered by 2 to 1. All 50 Red agents are killed with essentially two Blue shots each. 
The Red agents are killed so swiftly that they barely get any shots off at all.

The agent-based models suggest ISRC information reduces relative loss rates 
on the order of 200 times, from worse than 2 to 1 to almost 0.01 to 1. So, clearly 
agent-based models enable quantification of behavior that at first appears difficult 
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or impossible to discern using aggregation principles. Yet, difficult does not mean 
impossible. So, if an aggregation principle is not known, certainly utilize agent-based 
models to enable some level of prediction. But do not confuse your own inability to 
produce a set of equations based on aggregation principles with the presumption that 
no aggregation principle exists.

2.3.5 � With Fractals

The nature and use of fractals to model real-world physical phenomenon are well 
documented.27 Fractals are relatively simple rules recursively exercised to produce 
a result. Find the right rules, and one can simulate many different things, from what 
mountain ranges look like, to the nooks and crannies of a coastline, to the location, 
diameter, and length of branches of capillary systems such as plant appendages, riv-
ers, arteries, and nerves. Fractal shapes can have desirable properties. Antennas with 
fractal shapes cover a very small area but are sensitive to a wide range of frequen-
cies, making them very practical for small devices such as cell phones. Research 
continues on how to use the fractal as a predictive tool. For example, if one thing is 
measured (say, the branching of tree limbs or capillary networks), then other things 
are predicted (say, the total number of leaves in a forest given a sampling of trunk 
circumferences, or the presence or absence of a tumor). For readers unfamiliar with 
the method, I urge they undertake further education in this area. What follows is 
an illustration that I hope will motivate such investigation. Suppose one needs to 
produce many representations of a fern. We do not want all the ferns to be exactly 
alike, nor do we want them to be randomly altered in some manner that would result 
in them not looking like real ferns. FernBuilder, based on an algorithm presented 
in reference 28, produces a possible fern, but never produces the same fern twice. 
(Note that the color was set to black to make producing this book more convenient; 
however, it is easy to modify the routine to introduce appropriate colors.)

Here are ferns using 100, 1000, and 10,000 iterations:

Out[175]=
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2.4  �MONITORING SYSTEM OR ARCHITECTURE 
TECHNICAL PERFORMANCE MEASURES

While a system or architecture is being produced, modeling may be used to peri-
odically predict the expected performance of the few key technical performance 
measures (TPMs).

There are two types of TPMs: those associated with a continuing process, and those 
representative of the physical features of the system or architecture. Examples of pro-
cess metrics are defect rates, throughput quantities, or delivery times. Process TPMs are 
monitored using run charts.29,30 Run charts need to be made showing the corresponding 
control limits. This is critical, as only processes that exhibit statistical control can be 
improved. If the process is out of control, the first priority must be to establish control.

The following formal requirements provide the different types of control charts. 
Each example uses data found in reference 30.

The first type is the c chart, which is for the number of nonconforming items from 
multiple samples of identical quantities.
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The variable ctest holds data representing the number of blemishes on samples 
each with a fixed area. Then cControlChart is used to produce the control chart.

The production process is out of control as one of the non-conformance counts 
touches the lower control limit of 0. Process changes may be attempted to reduce the 
non-conformance variability, to reduce the mean non-conformance rate.

The second type is the u chart, which is for the number of non-conforming items 
from multiple samples with different quantities.

The variable utest is an array of two elements, the first element is the number of 
defective items, the second number is the number produced that day. Then uControl-
Chart is used to produce the control chart.
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The production process may now be in control, as just on the first day of produc-
tion the fraction of errors was greater than the upper control limit.
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The third type of control chart is the np chart, which is the count of items possess-
ing an attribute out of a fixed number of items.

The variable nptest holds data representing the number of rejected parts per basket 
of 60 items, for 21 baskets. Then npControlChart is used to produce the control chart.
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The production process is out of control. Immediate effort should be limited to 
get the process of rejecting parts under control.

The fourth type of control chart is the p chart, which does the same thing as the 
np chart, but allows for varying sample sizes.

The variable ptest holds data representing a daily number of items with errors out 
of a total number of items. Then pControlChart is used to produce the control chart.
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The production process is out of control since on day 6 the upper control limit 
was exceeded.
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The fifth and final type is the average and range chart, also called an XR control 
chart; these are the most versatile.

The xrtest holds the average and range for two sampled items for 30 samples. 
Then xrControlChart is used to produce the control chart.
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Though none of the average or range value exceeds the control limits, the process 
is still out of control, because there are many consecutive range samples which fall 
below the mean range.

For a physical feature TPM, any apparent trend in the plotted values versus 
date of evaluation is usually an illusion. Physical feature TPMs change because 



118 Systems Engineering and Architecting: Creating Formal Requirements

the assumptions used to calculate the prediction changed, or how the metric is 
calculated changed. For example, mass margins almost always shrink as presumed 
mass estimates are replaced with estimates that take into account parts not antici-
pated, as well as the reality of the actual part mass versus prior assumptions. This 
phenomenon is so expected that it is actually possible to assign contingency per-
centages to add to a current mass estimate based on the maturity of the design.31 

The date of the evaluation has nothing to do with the mass estimate, so the mass 
margin history versus time cannot be used to predict mass in the future. For physi-
cal feature TPMs, what is most useful to plot are three values: was, is now, and will 
be. Was denotes the prior estimate as a reference to explain why an action may now 
be required that was not then, or vice versa. Is now denotes what the value will be if 
nothing is changed. Will be denotes the predicted value if the recommended actions 
are taken.

As discussed throughout this chapter, the prediction must include allowance for 
bad things that can yet happen—with the badness estimated using a Monte Carlo 
or fuzzy logic analysis. If using fuzzy logic, plot the defuzzified value, unless there 
is a need to be very conservative, in which case multiply the defuzzified value by 
a factor of safety. If using a Monte Carlo analysis, then plot the value at the prob-
ability level for which you can tolerate failing to achieve the prediction. Note that 
this means for a constraint, plot how close it could get to or exceed the constraint, 
while for a desired value, plot how distant it might be. What is usually most useful 
to show is the margin, or predicted difference between the target or limit and the 
prediction. To help comprehension, always define margin so that positive is good, 
and negative is bad, with the legend used to remind everyone the limit or desired 
value. Provided the limit or desire is not 0, it is also useful to plot the margin 
percent, which is the difference divided by the target or limit. Finally, since the 
purpose of the plots is to notice a situation developing so that decisions can be 
made to do something about them, quite often program managers or customers 
will insist that a trigger line be established, so it becomes immediately apparent 
that action is needed once the margin falls below the trigger amount, but is still 
well away from the limit.

The formal requirements MarginMonitor track margins. An example follows. 
Suppose the mass limit is 30,000 kg, the trigger is 5% of the limit, and the predicted 
history is as shown in Table 2.7.

TABLE 2.7
Example Margin Monitor

When
Mass 

Estimate (kg)
Contingency Mass 

Increase (kg)

Was 22,500 5000

Is 27,500 3900

Will be 28,000 1000
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Then, the inputs to the formal requirements and the results are

–1000

Was Is Will

1000

Out[209]=

2000

Margin
Margin wrt 30 000 kg Mass Limit

Similarly, for a key parameter that should not go below a 60,000 kg lift mass 
limit, the predicted history is shown in Table 2.8.

Providing Margin Monitor the data in Table 2.8 results in

TABLE 2.8
Example “More Is Better” Margin Monitor

When
Mass Estimate 

(kg)
Contingency Mass 

Increase (kg)

Was 70,000 5000

Is 65,000 2500

Will be 61,000 500
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2.5  MODELING HEURISTICS

•	 Models are valuable in proportion to how quickly and inexpensively they 
provide trusted results to make decisions.

•	 The modeler’s adage is, “All models are wrong; some models are useful.” 
Determining the appropriate level of model fidelity is an art, not a definable 
process.

•	 Build on models used to produce successfully operating systems and 
architectures.

•	 Every machine performs a little differently every time it is turned on, so 
when human life is at stake or a high probability of mission success is to be 
achieved, it is necessary to model the impact of these system dispersions.

•	 When human life is at stake or a high probability of mission success is to be 
achieved, the impacts of environmental variability must be modeled.

•	 Determining what to model is as important as determining how to make 
the model.

•	 That a model is correct must be proven with evidence.
•	 If real-world test data are not available, the best method to verify a math-

ematical simulation is to compare results with at least two other indepen-
dently developed and operated mathematical simulations.

•	 Do only the analysis needed to make the decision needed.
•	 The model maker is responsible for constructing a model that can be used 

by the decision makers.
•	 The value of the model is determined by those who use the results, not by 

the model makers.
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•	 Make lots of small models, which are easier to verify and thus easier to be 
trusted, rather than one big model.

•	 Architecture-level analysis needs to be a notch higher in abstraction than 
system-level analysis, just as system-level analysis is a notch higher in 
abstraction than subsystem-level analysis.

•	 The following types of diagrams help comprehend a system or architecture:
	 1.	 Reference mission
	 2.	 Key performance parameters
	 3.	 Customer, user, and operator hierarchies
	 4.	 Constraints
	 5.	 System boundary
	 6.	 State transition diagram
	 7.	 Functional hierarchy
	 8.	 Functional flow
	 9.	 Functional timeline
	 10.	 Information structure
	 11.	 Trade tree
	 12.	 Configured end item hierarchy
	 13.	 Functional allocation
	 14.	 Interface diagram

•	 At any time, different methods to make such diagrams will be in vogue. 
Research the methods, and use the one that allows the most reuse from 
existing systems similar to the one being developed.

•	 Useful diagramming prescriptions are
	 1.	 IDEF
	 2.	 Model framework
	 3.	 Department of Defense Architecture Framework
	 4.	 SySML
	 5.	 UML
	 6.	 Colored Petri nets
	 7.	 Higraphs

•	 Four very useful sources for reusable mathematical models are
	 1.	 Wolfram Research website
	 2.	 MATLAB® website
	 3.	 National standards website
	 4.	 Cambridge numerical recipes

•	 Establishing models for systems is more art than execution of a well-
defined process.

•	 The three things to do to mathematically model a system are as follows:
	 1.	 Define functions that constitute the systems.
	 2.	 Establish at least one worst-case representative design reference mis-

sion for the system to accomplish, such that if it is achieved, all other 
potential uses of the system are acceptable.

	 3.	 Establish the fewest and simplest equations that represent the system 
doing the scenario along with the interfaces to the necessary external enti-
ties that can be used to establish requirements to implement the system.
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•	 Three design reference missions (DRMs) are usually sufficient for any sys-
tem. For very complicated systems, make fewer reference missions that are 
more difficult to achieve, rather than many easy-to-do DRMs.

•	 Attempting to model a system is an extraordinarily powerful proxy for 
assessing if the system should be made.

•	 The modeler has the responsibility to make it known if the proposed system 
is impossible or not necessary.

•	 Avoid using utility curves to model systems because customers and users 
find it difficult to make decisions based on such models. Make models 
based on physics instead.

•	 “Designated experts” usually aren’t.
•	 The nine things to do to mathematically model an architecture are as 

follows:
	 1.	 Establish at least one representative architecture reference mission for 

the system to accomplish, such that if it is achieved, all other potential 
uses of the system are acceptable.

	 2.	 Identify all the existing systems currently used to achieve the mission 
and analyze the current extent to which the mission is being performed 
and at what total ownership cost.

	 3.	 Identify all the performance, capability, mission, and if necessary, 
campaign-level shortfalls.

	 4.	 For each shortfall, identify optional ways of using existing systems or a 
new system to potentially close the shortfall.

	 5.	 Fully define the candidate systems using physics to predict the ability to 
achieve the mission and estimate the total cost of ownership.

	 6.	 Identify all the possible combinations of systems that could conceivably 
achieve this mission.

	 7.	 Establish the fewest and simplest equations that enable determining how 
well the candidate systems achieve the reference mission.

	 8.	 Establish the cost to obtain and operate the candidate systems while 
achieving the architecture design reference mission.

	 9.	 Plot each candidate family of system with respect to a vertical axis 
denoting mission goodness versus a horizontal axis denoting total cost 
of ownership.

•	 The weaknesses of existing systems are known, while the weaknesses of 
conceptual systems are yet to be known.

•	 When comparing systems with multiple owners and users, calculate their 
costs to all those who truly bear their burden.

•	 To be useful, models of uncertainty must be true to the nature of the uncer-
tainty—random, fuzzy, evolving from underlying simple behavior, or as a 
consequence of noninteger dimensions.

•	 Extrapolating beyond the range of independent variables used to derive a 
regression is a fool’s bet.

•	 Monte Carlo analysis predicts the consequences of random uncertainty.
•	 Fuzzy numbers and logic predict the consequence of value uncertainty.
•	 Agent-based models predict the consequences of aggregation uncertainty.
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•	 If an aggregation principle is not known, utilize agent-based models to 
enable some level of prediction. But do not confuse your own inability to 
produce a set of equations based on aggregation principles with the pre-
sumption that no aggregation principle exists.

•	 Fractal models predict the consequences of dimensional uncertainty.
•	 There are two types of technical performance measures, those associated 

with a continuing process, and those representative of physical features of 
the system or architecture.

•	 Process metrics should be monitored using run charts.
•	 Physical feature metrics should have their was, is now, and will be values 

monitored with respect to margin trigger levels, with values discounted for 
the bad things that can still happen, using either a Monte Carlo or fuzzy 
logic analysis.
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3 Make Decisions

Decisions must be made to establish system or architecture requirements, and to 
determine the implementation approach. Rational decisions follow conscious effort, 
as our brains are wired to make intuitive decisions.1 Table  3.1 summarizes some 
of the errors intuitive decisions are prone to. What constitutes a good decision? To 
answer that simple question, we need to address seven aspects of the decision:

	 1.	What needs to be decided?
	 2.	When is the decision needed?
	 3.	Who needs to make the decision?
	 4.	What options are there to choose from?
	 5.	What is it about each option that distinguishes it from the other options with 

respect to what needs to be decided?
	 6.	How can appropriate and accurate information be obtained to assess each 

option with respect to what needs to be decided?
	 7.	How robust is the decision should the goodness criteria assessment be 

flawed?

Making a good decision means getting all seven factors “right,” which is rarely 
an easy thing to do for complicated situations. Formal methods usually improve only 
our ability to assess the robustness of the decision. Activities to identify the “cor-
rect” decisions to make, identify the most appropriate decision maker, fully explore 
the option space, and distinguish relevant and useful data from bad data are all more 
an art than a science. Only after a type of decision was made many times, so all the 
seven factors have knowable bounds, can formal methods find the best decision. For 
example, deciding what car to buy with what features or what medical treatment to 
perform for a well-known disease with a cure can both be formulated in such a way 
that all seven questions can be addressed in a formal way. But deciding the best car 
to make, or the details of a successful medical treatment, is not fully determinable 
by formal methods alone.

The following case studies illustrate real-world examples of difficult decisions to 
make. The first case concerns whether to adopt a system configuration that appears 
to provide better performance, but at higher cost.

Case Study 3.1: Deciding System Features

Background

The government’s request for proposal for the National Polar–orbiting Operational 
Environmental Satellite System (NPOESS) included a reference design. In that 
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design, two existing, government-owned, high-latitude ground stations were to 
collect the instrument data from the satellite, and then forward those data to 
computational facilities in the United States, where the instrument data were 
transformed into many weather products. Since the satellite orbits sometimes 
failed to fly within range of either of these ground stations, on those occasions, 
up to two orbits would transpire before the raw data stored on the satellite were 
finally sent to the ground for processing. This was significant because the gov-
ernment had very stringent data delivery timeliness requirements. Whenever the 
orbit failed to over fly one of the ground stations, all the timeliness requirements 
were not met for a large fraction of two orbits of data. Engineers on the proposal 
team developed an alternative architecture, which they called SAFETYNETTM 
and subsequently patented. SAFETYNET had numerous antennas spread 
around the world, each near a major fiber hub. With SAFETYNET, each satel-
lite was assured to come into range of at least one of these receivers every orbit. 
Indeed, most orbits overflew more than one of the ground stations. So the data 
timeliness requirement was actually exceeded. But this came at the cost of buy-
ing, installing, and maintaining many more ground receivers, rather than rely-
ing on established government facilities already in place. The SAFETYNET 

TABLE 3.1
Potential Causes for Faulty Intuitive Decisions

Potential Cause for Intuitive Decision Error Example from Case Studies

Jump to conclusions, that is, generalize on 
insufficient evidence.

Do not need day of launch I-load update because 
Shuttle launches have never been scrubbed due to 
winds.

Too much weight on own experience. The next proposal must be lowest cost because prior 
proposals were lost because the cost was too high.

AND
Dinged tiles won’t cause the loss of a Shuttle.

Confirmation bias—when first number or option 
mentioned limits the options considered.

Providing crew with an escape method is more 
important than other Category 1 failures.

Hubris. Can solve a vexing technical issue others have 
repeatedly failed to solve.

AND
Can win in one year more proposals than won in 
prior decade.

Disaster myopia. Cold weather cannot cause Shuttle loss.

Averse to ambiguity—selecting the surer option 
when the uncertainty option is better.

Rather use an I-load created for a season than a 
to-be-determined I-load for the day.

Procrastination and laziness. Continue to use utility curves for option assessment 
when decision makers express dissatisfaction with 
the method.



127Make Decisions

option was repeatedly briefed to the customer during the contract activity that 
paralleled the proposal period. But prior to submitting the proposal to obtain the 
contract, the customer gave no explicit indication they preferred it to their own 
reference. The decision the capture team had to make was whether to propose 
the government reference solution, or the SAFETYNET solution. The decision 
made was to propose the SAFETYNET architecture.

Many years later, after the NPOESS effort had experienced massive time 
delays and cost growth, the same customer issued a request for proposal for 
a replacement for their Geostationary Operational Environmental Satellites, 
called GOES-R. Satellite missions are accomplished by their payloads, which 
in this case were weather instruments. The government had previously awarded 
parallel, competitive payload development contracts first, before giving seri-
ous attention to the spacecraft, or the ground-based data-processing systems 
necessary to turn the instrument data into weather products. They sought to 
get all the instruments mature before beginning detailed spacecraft and ground 
system engineering and production. This was a well-thought-out attempt to 
minimize program risk. Space systems often turn out to be much more difficult 
to accomplish than originally envisioned. Considerable delays and cost growth 
occur if a spacecraft is built to host a satellite with a mass of 100 kg, needing 
100 W of power that must be pointed to within 0.1 of a degree, then must be 
modified to accommodate more instrument mass or power or precise pointing.

The government wanted to fly on GOES-R a new large instrument called 
a sounder, since it would provide a profile of a column of the atmosphere. 
Producing the new sounder quickly became more difficult than anticipated. 
Evidence mounted that the sounder’s costs were unpredictable and it would not 
be available in time for the first GOES-R. So the government canceled the devel-
opment of the sounder. Up to that point, the three companies competing to be 
the spacecraft provider were studying how to best provide a new spacecraft to 
host all the instruments, including the sounder, which was by far the instrument 
needing the most spacecraft resources.

Once the largest and most demanding instrument was removed from the 
manifest, a decision had to be made about what to require of the spacecraft. One 
option would be to lower spacecraft cost by “shrinking” it to provide just enough 
volume, power, thermal control, pointing stability and accuracy, and mass allow-
ance for the reduced instrument manifest. Or, the spacecraft could be left the 
same with the available resources providing margin for all the other instruments 
in development, or as a reserve capacity for a new instrument.

The proposal team studied the options, concluding that the larger space-
craft increased life cycle cost about 3%, but offered considerable margin for the 
remaining instruments, essentially mitigating their cost and schedule growth 
risks. However, should the sounder ever be remanifested, the larger spacecraft 
would probably exceed the lift capability of the desired launch vehicle, forcing the 
government to use a larger and more expensive launch vehicle. Prior to receiving 
the proposal to award the contract, the proposal team briefed the customer once, 
recommending that the GOES-R spacecraft be required to provide the resources 
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needed for the now-vanished sounder, because for only a few percent larger life 
cycle cost, the total cost risk would be significantly reduced, since the spacecraft 
would need few modifications to host a sounder, should the development con-
tinue. The customer listened politely, but gave no indication of agreement.

We favored going with the larger spacecraft for competitive reasons as well. 
Each of our competitors had spacecraft assembly lines so they could offer a 
standard spacecraft less expensively than we could. But these standard space-
craft were primarily for communications satellites, not weather satellites, so they 
were all on the “small” side. The more demanding the GOES-R requirements, 
the more the competitors needed to grow their assembly line spacecraft, negat-
ing their apparent cost advantages. Our spacecraft was based on a successfully 
operating design built a decade ago, but we had not built one in the interim. 
Our NPOESS spacecraft was also based on the prior design. Though on a brief-
ing chart our prior, GOES-R, and NPOESS spacecrafts looked very similar, 
in reality their sizes and internal components were very different. This meant 
we had to offer a new spacecraft for GOES-R, with all the inherent risks, but 
this seemed preferable to claiming a modification of the NPOESS spacecraft 
that still existed only on paper and had associated with it a lot of bad press. The 
customer was a sophisticated buyer. They had been buying and operating GOES 
spacecraft from different providers for decades. They understood they were ask-
ing for a new spacecraft, not one off an assembly line. They recognized the dif-
ferences between the spacecraft we were offering and that under development 
for NPOESS.

The proposal team needed to decide what spacecraft to offer. The proposal 
team that had worked with the customer for over two years was convinced the 
customer saw GOES-R as a risky project. The instruments were mostly new and 
the spacecraft was new with pointing requirements significantly more difficult 
to achieve than the current GOES. We decided the customer wanted the lowest 
risk approach. So we elected to baseline the larger satellite based on our opinion 
that although the customer didn’t literally say it, the larger spacecraft was the 
lower risk approach.

The year 2007 shaped up to be a competitive turning point for our company. 
Six major proposals needed to be responded to during the year. The GOES-R 
proposal was slated to be the last one received. Indeed, the company’s senior 
leadership thought it would be delayed at least a year, since the existing GOES 
spacecraft appeared to have plenty of operational life remaining, and their 
replacements were yet to be launched. Also, since we already had the NPOESS 
contract, which was not going particularly well, the senior leadership judged 
it unlikely that we would also be given the geosynchronous weather satellite 
work. The logical conclusion was that GOES-R was the lowest priority capture 
effort. Those of us who worked with the customer were certain the proposal 
would come out late in the year because the customer had expressed profound 
concern that the spacecraft being launched now may not achieve their design 
lives and they wanted GOES-R ready to go soon, and because the leader of the 
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customer team had always met his publicly announced dates. We judged that if 
he said the request for proposal would come out on a specified date, it would. 
As it turned out, we lost all but two of the major proposals, spending well 
over $40M in discretionary money on one futile bid to win the Tracking and 
Data Relay Satellite (TDRS) replacement contract away from an incumbent. 
Then, the GOES-R proposal came out in December, as advertised. Suddenly, 
GOES-R went from the lowest priority effort to a must win. The proposal 
asked that the spacecraft be able to accommodate the larger, eliminated instru-
ment for the second and third satellites in the series.

New management was brought in to run the capture, and they concluded 
that the customer wanted lowest cost rather than the low-risk solution. This 
put us at a major disadvantage to our competitors, who each could offer modi-
fications of spacecraft coming off their respective communications satellite 
assembly lines. The strategy to offer the lowest cost resulted in three fateful 
decisions: (1) team with Loral, who had a spacecraft assembly line, and had 
built earlier GOES spacecraft, but had not been engaged in the GOES-R effort; 
(2) propose that the GOES-R spacecraft was “the same” as the NPOESS space-
craft, thereby arguing that the NPOESS effort would pay for the bulk of the 
nonrecurring costs and that the GOES spacecraft would be fourth, fifth, and 
sixth off the (not yet currently functioning) assembly line; and (3) redesign our 
baseline offering so that it was smaller and could be launched by a less costly 
launch vehicle. All these decisions were made after the draft proposal was 
received, so there was no means to discuss them privately with the customer 
to gauge their opinion.

It was obvious to anyone with a spacecraft background that Loral’s existing 
spacecraft could not achieve the GOES-R requirements. A good fraction of the 
proposal response time was consumed convincing senior management. Why? 
Because they had communications payload backgrounds, rather than space-
craft backgrounds. The new teammate could credibly offer two subsystems: 
the communication subsystem needed to get the instrument data delivered to 
the ground, which was very similar to systems they had produced, and we 
had not; and their lithium ion battery–based electrical power subsystem. The 
customer required this type of power system, and we lagged in the industry 
since we were still using nickel hydride batteries in our satellites. Loral was 
given a cost target for the communication subsystem, which they then declined 
to meet showing that the parts alone would cost more than the target, despite 
any negotiations that might be achieved with the providing suppliers. Loral 
did design a suitable lithium ion battery–based power system, but there was 
one catch. Loral built communications satellites using 100 volts to be efficient. 
For GOES-R, the customer required all the instruments to use 28 volt power 
and the rest of our spacecraft components also utilize this voltage. So a large 
number of proven voltage converters had to be added to Loral’s heritage power 
subsystem. The extra mass of all these converters made the spacecraft argu-
ably too heavy to fit on the desired launch vehicle. The mad last-minute design 
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effort to come up with a smaller first spacecraft came to naught when it was 
shown we had little hope of reducing the mass enough to be able to be launched 
by the less costly launch vehicles and it was pointed that out our total costs for 
two similar but different spacecraft would be more than our one cost for the 
same spacecraft.

What Happened

The NPOESS contract was won and SAFETYNET was cited as one of the rea-
sons why, but there is uncertainty regarding just how significant this feature 
was to the win. Prior to awarding large government contracts, the competitors 
often work with the government for many years. A significant factor with respect 
to winning such awards is to achieve good working relationships during these 
preliminary stages, and the NPOESS team did so, most likely better than the 
competition, who were long-time incumbents in the weather satellite business. 
It’s possible the customer was tired of working with the current contractor and 
was simply ready for a new relationship. Also, our teammate Raytheon offered a 
superior data-processing system, which was critical. In addition, the instruments 
proposed to fly on NPOESS were, at time of award, so immature and so different 
from anything that flew before, that no existing spacecraft could be used without 
significant modification, so our proposed modifications to a successfully operat-
ing spacecraft were judged very credible and low risk.

Of the three GOES-R bidders, we were ranked last, though we were the low-
est cost. We were given a significant plus grade for offering the larger space-
craft. However, our offering was graded negatively for being too heavy and for 
many other features of the spacecraft that were not liked. Indeed, the complaints 
echoed all the known complaints of the NPOESS spacecraft, which was still in 
development. It was clear the competition was to provide the lowest risk space-
craft, not the lowest cost. Both the higher rated proposals were perceived supe-
rior in this regard, and the winner much more so. Though the words were not 
explicitly used, it was obvious the customer was not about to award a contract 
for their geosynchronous spacecraft to the same organization providing them 
the troubled low–earth orbit spacecraft, NPOESS, so efforts to explicitly tie the 
GOES bus to NPOESS completely backfired.

Lessons Learned

When making proxy decisions, test the candidate decision with the proxy. A 
proxy decision is one where you have to make a decision in anticipation of 
someone else. When you submit a proposal, inevitably, given the ambiguity 
in the customer’s desires, you have to make decisions as though you were 
the customer, but you are not. You will find it virtually impossible to avoid 
your own prejudices in determining the answers to the seven aspects of the 
decision-making process, despite all your attempts to the contrary. So, it is 
vitally important to test your decision with the real decision maker before 
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executing it. The NPOESS team was able to do this with SAFETYNET; the 
GOES-R proposal team made almost every decision wrong from the cus-
tomer’s perspective, but they didn’t know this because they couldn’t com-
municate with the customer privately during the proposal phase.

Complicated situations require a hierarchy of decisions to be made, so make 
sure the top decision is made correctly. The decision to offer SAFETYNET 
was an important but not overriding decision. If decisions regarding which 
people to tell the customer would constitute the NPOESS team, ground 
segment design, or spacecraft design had been faulty, that we offered 
SAFETYNET by itself would not have been enough to win. For GOES-R, 
the key decision was whether to offer the lowest risk or lowest cost space-
craft. Once that decision was made incorrectly, all the subordinate deci-
sions, though perhaps appropriate for achieving lowest cost, were wrong 
by default.

The wrong people will make wrong decisions. The decisions on how to 
approach the GOES-R capture were made by the most senior management 
of the organization after the proposal was received. Virtually none of these 
people had spent any time with the customer and therefore could only guess 
what the customer might really want. During that year they had received 
feedback that they had lost four major bids in a row because our costs were 
too high. They were determined not to make that mistake again. And they 
didn’t. Based on the customer’s feedback, our GOES-R cost was the low-
est and judged credible. Unfortunately, the customer wasn’t looking for the 
lowest advertised cost; they were looking for the lowest risk spacecraft. The 
customer found little to admire about our spacecraft relative to the com-
petitors’. Since all the key decision makers knew communication payloads 
much better than they did spacecraft, none instinctively recognized a good 
spacecraft from a bad one. Three months after the loss, the organization was 
taken over by another part of the corporation and most of the principals were 
reassigned or replaced.

The second case study concerns deciding whether to keep a problematic system as a 
part of a system of systems.

Case Study 3.2: Kill or Fix a Key System?

Background

The space superiority family of systems included a system that was years late 
and way over budget. That the system was not meeting requirements was clear, 
but it was uncertain what to do to correct the problems. Even figuring out 
what the problems were was difficult. Some customers were certain a working 
system would add a very important capability. Some customers perceived that 
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stopping now, after a huge outlay of resources, would be a waste of all those 
resources. The customer’s key question was whether to continue to build the 
system or stop. The contractor’s key decision was whether to take responsi-
bility to complete the system from the incumbent. Two parallel efforts were 
kicked off simultaneously to determine what to do. The architecture team 
was asked to determine the mission impact if the system was terminated, and 
what alternative systems might be best pursued. Meanwhile, a tiger team was 
assembled to review the system in depth to see if and how it could be salvaged. 
At the time, the architecting process described in the previous chapter was 
still being developed and all the needed processes and modeling tools were 
not yet in place, so the architecture assessment was done in an ad hoc manner. 
The architecture team concluded the system was not critical to the mission, 
given that some newer systems were about to be fielded successfully that were 
not even envisioned when the troubled system was initiated. In addition, the 
architecture team concluded that even if the troubled system was successfully 
developed, it would be extremely difficult to use operationally and maintain. 
Finally, the architecture team concluded parts of the troubled system did work 
well, and could be salvaged and utilized to make an effective alternative sys-
tem that would have value and be easier to maintain. Basically, the ideal was 
to subsume the troubled system into an enhancement of the successful system 
that was procured recently. As the architecture team was assembled in a clas-
sified conference room formulating the briefing to present these findings, the 
leader of the tiger team came into the conference room, announced a decision 
was made that we would be taking over responsibility to complete the troubled 
system, so the architecture team recommendations were no longer needed, and 
walked out.

What Happened

The effort to produce the system proved to be tremendously more difficult 
than anticipated. Many issues were fixed. Perhaps symbolically, the system 
was literally hit by lightning during a test when it had been left unattended! 
The prime issue, that a non-real-time operating system was failing to operate 
the system in real time, was never resolved. The problem manifested itself 
most acutely in system tests. The people who designed and built the system 
were able to operate it, while the government’s operators could not. Over a year 
after the salvage effort had commenced, the same government leader who had 
asked us to attempt to fix the system asked again whether the system was still 
worth salvaging. By this time the architecture process had matured tremen-
dously. Within one day, convincing evidence was obtained and presented that 
the system had negligible value and its operating and sustenance difficulties 
would continue the pain. The tiger team lead, who had become the program 
manager in charge of fixing the system, was given a few weeks to report what 
to do to fix the system. He didn’t have much to say. The government program 
manager canceled the system. The government leader was so unhappy that the 
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system had to be terminated that he reduced our award fee for that period, and 
for every period in the future for which he was our award fee determination 
authority.

Lessons Learned

Hubris comes before the fall. Don’t get talked into fixing other people’s prob-
lems. You may think you’re better than the other guy, and you might be, but 
that does not mean he messed things up so badly that you can figure it out 
and make the necessary fixes.

Make decisions when you have to, not before. Before spending a lot of time and 
effort to fix something that is not working, make sure it’s worth fixing. One 
more day was all that was needed to wait for the architecture team’s recom-
mendation. The evidence may or may not have swayed the day, but the evi-
dence would have recommended against proceeding. As a result, we would 
have lost the sales that came with the attempt to fix the system, but we may 
have earned somewhat less but still good sales providing the less risky alterna-
tives, and we certainly would have avoided the zero award fees that ultimately 
led to the termination of the entire support contract, not just the salvage effort.

Constantly test if your decision is wrong, and give yourself options to alter 
your decision as new information becomes available. We like to think that 
once we made a decision, we were right and we should get on with get-
ting the decision accomplished. The decision to proceed to attempt to fix 
the late, overrun, and not working system should have been accompanied 
with options to stop with criteria to execute those options. Instead, once the 
decision to proceed was made, the possibility of failure was not seriously 
considered, as surely all that was needed was for some good engineers to 
replace the bad engineers who had been working on it so far. What then 
results is a “death march” for which there was no escape except a success 
that was not achievable. If hard work was the only ingredient needed to fix 
the problems, those charged with trying to save the system gave all there 
was to give.

What is good for a system is not necessarily good for an architecture. Since an 
architecture is a combination of systems, it does not follow that what is good 
for a system is good for an architecture. The faulty system was marginally 
beneficial for the architecture, so all the hard work fixing the system was at 
best marginally beneficial to the architecture. The same resources, devoted 
to other systems, could have tremendously improved the architecture. No 
one responsible for individual systems is likely to discern this, so it is critical 
that someone watch out for the architecture and make system decisions for 
the benefit of the architecture.

The following case study illustrates what happens when conflicting motivations add 
high levels of emotion to the decision-making process.
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Case Study 3.3: Launch?

Background

After the loss of Space Shuttle Mission 51L, a massive effort to recertify the 
entire system was undertaken that took years. When the day to resume launches 
finally arrived, the manager responsible for the contractor support for launch 
and for on-orbit and entry mission planning and support is called upon to give 
an advisory recommendation to NASA whether or not it is safe to do each 
aspect of the mission. As was explained in Chapter 2, this involved simulat-
ing the trajectory through measured winds and atmosphere to determine both 
if sufficient propellant was on board to get the payload to orbit and that loads 
on the wings would be below tolerances. Unfortunately, for the trial 24 hours 
before launch, numerous instances of wing load levels exceeded allowable lim-
its, and the responsible contractor supervisor advised that a launch scrub may 
be needed. When this was reported to the president of the division, that super-
visor, his lead analyst, the manager, the head of the loads group, the lead load 
analyst, and two VPs were called to the division president’s office for a data 
review. The supervisor presented plots showing the loads exceeding limits, and 
the manager expected that would be that. To his growing astonishment, the 
president started ordering the supervisor to reverse his recommendation. At 
first, the manager was dumbfounded; he presumed the president had miscon-
strued the data presented, so the manager, through a series of questions, tried to 
determine what part of the assessment the president found faulty or otherwise 
that would lead him to be comfortable to order a launch go recommendation 
when the data clearly showed the reverse. Rather than helping, these questions 
induced a red-faced, spittle-producing, profanity-infused rage, during which 
the manager was told in no uncertain terms his career was at stake if he didn’t 
change the recommendation. The manager sat there for a moment completely 
uncertain what to do. He looked at his supervisor and his lead analyst, and 
they were literally shaking. He looked at his peer from the structures depart-
ment and their lead analyst, and they appeared to be willing to comply—which 
really puzzled the manager as it was their wings he was trying to protect from 
failing. The manager knew the loads guys tended to be conservative, so much 
so that usually when their analyses showed load indicators exceeding limits, 
they tended to huddle and announce things were OK after all. And he looked 
at the Integration and Orbiter VPs for some hint of their opinion on the subject, 
and saw blank faces staring back. Then the manager thought of why 51L was 
lost and people died, and all the work the past year and a half putting in place 
a process for precisely this situation, and said something to the effect of “Sir, 
I will personally check every aspect of this analysis, but until such time as a 
flaw is found, I back the advisory we provided and will not change it, and if you 
continue to pressure me to do so I will bring this situation to the attention of the 
NASA Inspector General.” At that, the president ordered everyone out of the 
room with a few expletives.
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What Happened

An error was found in the analysis that introduced transient, higher than 
needed system dispersion protections, effectively overstating the possible loads. 
Coincidentally, other aspects of the Shuttle had problems that first launch 
attempt, and the launch was postponed anyway. By the next try, the system dis-
persion calculation corrections were made, and the winds of the day were much 
closer to those the trajectory was designed for, and there were no wing load 
issues and so a go advisory was issued. Was the president’s behavior based on 
his experience, anticipating such a finding and trying to avoid an unnecessary 
flight cancellation? Or was his behavior an emotional reaction to having his order 
disobeyed? Why did all the other participants disengage from the decision? Was 
their silence support for the president’s position, uncertainty on what to do, or 
fear of directly confronting his anger?

Lessons Learned

Do your work so you trust your work. If you are going to go to all the trouble to 
put in place a means to make a rational decision, then use that decision-mak-
ing system you put into place. Don’t confuse what you want to happen with 
what your decision-making system is suggesting you should do. The man-
ager made the right decision, even though the source data turned out to be 
incorrect. Until the work was carefully checked and the error found, the only 
appropriate decision was to issue an advisory consistent with the data avail-
able. You can argue that it is prudent to use intuition or a hunch to make the 
opposite decision, and of course people do that all the time. Making decisions 
based on hunches is leaving your fate to random events or, in plain English, 
luck. Such behavior is certainly human, and is even admired by some people, 
but it is not rational decision making. We tend to celebrate the good outcomes 
from intuitive decision making as evidence of a superior intellect, but intui-
tive decision making precedes many individuals’ biggest failures.

Ironically, making the correct rational decision often requires irrational cour-
age. Making rational decisions is the easy part. People seem fundamentally 
built to first ensure their own safety and comfort and their own survival. Try 
as we might, none of us can be completely sure when these instincts have 
trumped rationality. As rational decisions usually result in some “winners” 
and some “losers,” amazingly, often implementing the rational decision 
means going against the choice of the majority or at least a very motivated 
minority. In these situations, despite all one’s efforts to be rational, it takes 
trust in one’s rationality to proceed as chosen, while fully realizing there is 
the distinct possibility one could be wrong. Trust is, of course, just another 
word for belief or faith, an irrational response.

This chapter first addresses what it means to do the best we can with respect to the 
seven decision-making questions. Then we demonstrate formal methods to help us 
implement each approach.
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3.1  �MAKE GOOD DECISIONS

3.1.1 D etermine What to Decide

One may need to do the following:

	 1.	Assess the goodness of a diagnosis so one can determine what actions to 
take (or not take).

	 2.	Make a sequence of decisions to optimize a return (or minimizes a loss).
	 3.	Give people a fair method to choose from a static, finite set of options.
	 4.	Allocate a static, finite set of resources so that the recipients feel equally 

satisfied.
	 5.	Evolve options to best satisfy multiple criteria.
	 6.	Select from a static, finite set of options that one which best achieves mul-

tiple dissimilar criteria.
	 7.	Select from a static, finite set of options those which maximize benefits 

while minimizing detriments.
	 8.	Do the optional endeavor with the best uncertain financial return.
	 9.	Select a portfolio of investments that maximize return and minimize 

risk.
	 10.	Choose the independent variable values that optimize an index of perfor-

mance, perhaps subject to constraints, when the index of performance is 
inexpensive to determine.

	 11.	Choose the independent variable values that optimize an index of perfor-
mance, perhaps subject to constraints, when the index of performance is 
expensive to determine.

	 12.	Define a dynamic control law to optimize a dynamics index of performance.
	 13.	Define an optimal configuration.
	 14.	Define the best strategy relative to a competitor.
	 15.	Determine how best to address identified risks.

The first job is to determine which of these types of decisions is to be made, as 
the best means to make each of these decisions is different. Formal methods are 
presented to make all these kinds of decisions.

3.1.2 D etermine When to Make the Decision

The decision must be made leaving sufficient time for it to be implemented and the 
results obtained prior to the consequences being of importance. If the situation is 
subject to change, then to effect the situation, decisions needs to be made with a 
frequency at least twice that of the rate of change.

3.1.3 D etermine Who Should Make the Decision

Human societies implement hierarchies one way or another, with each level of 
the hierarchy usually defined by the decisions people are empowered to make. 
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Acknowledging this reality, four heuristics are useful to attempt to increase the odds 
of making a good decision.

First, people unaffected by the result of the decision will most likely make the 
best decision. Obviously, judges and juries, referees and umpires, are all manifesta-
tions of this heuristic.

Second, to the extent that implementing a decision requires the acceptance and 
cooperation of multiple people, the more the affected people participate in making 
the decision, the more likely the selected result will be implemented. All people, to 
some extent, can be commanded, but all people commanded against their will even-
tually revolt, even if only by passivity. On any complicated issue, there is unlikely 
to be a clear overwhelming majority agreement on what to do, so how to include the 
nonmajority in the implementation is critical to the decision-making process.

Third, the more people involved in the decision-making process, the more likely 
a good decision will be reached. This heuristic recognizes first, as Deming made 
famous, that “new knowledge always comes from outside.” As individuals, our brains 
tend to lock onto a set of known things. To get a new idea into our heads requires 
interaction with someone for which this new thing is locked into their heads as some-
thing established. Also, studies have repeatedly shown that the mean assessment of 
many people has less error than the assessment of individual people. This so-called 
wisdom of crowds is often very useful to make good decisions.2 But carefully note 
the conclusion: the mean prediction of a large group of people has less error than the 
mean of individual opinions. That does not mean the crowd was right, only generally 
less wrong. So the heuristic does not infer blindly following the crowd.

Fourth, we cannot predict the truly revolutionary events, so we must react wisely 
when they occur. These unanticipated, presumed to be impossible, but then proven to 
be very real events were popularized by Taleb3 as “black swans.” Black swan events 
sweep aside the consequences of any collection of incremental decisions we may 
make. Fortunately for most of us, though black swan events are inevitable, for long 
periods of time we can muddle along on our more pedestrian way, making localized 
decisions within the context of the current environment, until are lives are inexorably 
altered. All of us need to recognize the reality of the phenomenon, for which one 
must adopt a decision-making philosophy best described in Taleb’s book. Taleb, in 
our vernacular, provides heuristics for a control law based on the state of the system 
to achieve an optimal result. In his framework, the status quo, rather than assumed 
constant, is expected to change in an unpredictable manner, and when it does, one 
optimizes to the new state, not the prior state. For example, if the price of something 
is inexorably rising, the status quo calls for decisions to be made presuming continu-
ing price rises. Tabel’s guidance is such a state of uninterrupted price increases must 
eventually change, and at an unknowable time, and further the prices will likely 
plummet back to unknowable but lower levels. So one should now be making deci-
sion anticipating rapid and deep price cuts, rather than the perceived certainty of 
continual prices increases. Taleb’s guidance is that what appears to be predictable 
almost never is, stable situations will go unstable, apparently inexorable increases or 
decreases will stop and precipitously reverse, and abundance will turn into scarcity 
and vice versa. It will not be clear in advance what will cause these revolutions, but 
they will occur. So make decisions recognizing this reality.
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When making decisions we need to adopt the appropriate leadership style and the 
appropriate method. The leadership style to use predominantly depends on whether 
there is likely to be one right solution or many acceptable options, and how much fol-
lower acceptance is required for the decision to be implemented. Table 3.2 provides 
heuristics on what leadership style to use depending on those two considerations.

If there are many acceptable solutions and implementation needs essentially 
everyone to accept the chosen solution, then consensus is the best leadership style; 
otherwise, any method to solicit and select an acceptable approach is acceptable. 
Consensus is defined here to mean that all can live with the decision, though none 
may be particularly thrilled by it. If there is probably one best solution, and to imple-
ment that solution follower acceptance is necessary, then one should consult with 
those affected, meaning seek guidance with respect to how to make the decision. 
If there is likely a single best solution and it can be achieved without a high level of 
follower buy-in, then one can direct the decision-making effort. Most of us have a 
default leadership style: we tend to direct others, consult, seek to achieve consensus, 
or adopt a “let them do what they want” approach. Notice, though, that to make the 
right decision it is critical to adopt the leadership style for the situation with respect 
to follower acceptance required and the likelihood that one solution is truly the best. 
Notice the very limited use of consensus leadership: “many correct solutions; fol-
lower acceptance is critical.” Similarly, notice the limited use of direct leadership 
style: “one right decision; large amounts of follower acceptance are not required.”

How to make the decision depends predominantly on two other considerations: time 
available and the follower’s expertise with respect to the issue at hand. Table 3.3 provides 
guidance for the decision-making method with respect to these two considerations.

TABLE 3.2
Leadership Style to Use when Making a Decision

Leadership Style to Use
Follower Acceptance Required 

to Implement Decision

Low High

Number of correct solutions One Direct Consult

Many Convenience Consensus

TABLE 3.3
Decision-Making Method to Use

Decision-Making Method Follower Expertise

High Low

Time available Ample Collaborate Sell

Constrained Delegate Command
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If a decision is time critical, and the followers are not well prepared to assess the 
situation but the leader is, then the leader should command the decision. Alternatively, 
if there is ample time to make the decision, the leader should explore options with 
the followers and provide evidence for the appropriateness of each option with the 
intent of enabling each follower to come to agree with the chosen option. If followers 
are well prepared to address the decision because they have more expertise than the 
leader, and the situation is time critical, then the leader should delegate the decision 
to those best prepared to make it. Alternatively, if there is ample time to make the 
decision, then the leader should cast a wide net for options and assessments, and col-
laborate with all parties that could both recommend a solution and be affected by the 
solution, before making the decision.

3.1.4 D etermine the Decision Measure of Goodness

Options and measure of goodness go hand in hand. The options must be definable 
in a manner appropriate to the measures of goodness. What follows are suggested 
options and measures of goodness for each of the types of decision types identified 
in Section 3.1.1:

Type: Assess the goodness of a diagnosis so one can determine what actions 
to take (or not take).

Measure of goodness: Probability of a correct diagnosis given the realities of 
false positives and false negatives.

Type: Make a sequence of decisions to optimize a return (or minimize a loss).
Measure of goodness: Consequence of the actions.
Type: Give people a fair method to choose from a static, finite set of options.
Measure of goodness: Number or percentile of people accepting the choice.
Type: Allocate a static, finite set of items so that the recipients feel equally satisfied.
Measure of goodness: Allocating in proportion to what the receivers are will-

ing to pay.
Type: Evolve options to best satisfy multiple criteria.
Measure of goodness: Pugh4 studied this for a long time and recommends the 

goodness measure be “better than (+),” “equal to (0),” or “inferior to (–).” He 
offers profound arguments why to avoid graduated scales.

Type: Select from a static, finite set of options that one which best achieves 
multiple dissimilar criteria.

Measure of goodness: Use fuzzy mathematics to combine the assessments of 
how well each option meets each criterion with fuzzy weights for the rela-
tive importance of each criterion.

Type: Select from a static, finite set of options those which maximize benefits 
while minimizing detriments.

Measure of goodness: On or near the efficient frontier of benefit versus detri-
ment. The options that constitute the efficient frontier are those for which 
all other options have lower benefits with similar detriments.

Type: Do the optional endeavor with options with the best financial return.
Measure of goodness: Whatever the endeavor seeks to achieve.
Type: Select a portfolio of investments which maximize return and minimize risk.
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Measure of goodness: On or very near the efficient frontier or return versus risk.
Type: Choose the independent variable values that optimize an index of per-

formance, perhaps subject to constraints, when the index of performance 
criteria is inexpensive to determine.

Measure of goodness: The index of performance value augmented with a pen-
alty times the extent each constraint is not satisfied.

Type: Choose the independent variable values that optimize an index of per-
formance, perhaps subject to constraints, when the index of performance 
criteria is expensive to determine.

Measure of goodness: Taguchi quality indices.4

Type: Define a dynamic control law to optimize a dynamic index of performance.
Measure of goodness: The index of performance value.
Type: Define the optimal configuration.
Measure of goodness: What the configured item is to achieve.
Type: Define the best strategy relative to a competitor.
Measure of goodness: What the strategy seeks to maximize or minimize.
Type: Determine how best to address risks.
Measure of goodness: First minimize the potential uncertainty in the result, 

then drive the deviation from the desired result and the possible result to zero.

3.1.5 E nsure Option Evaluation Data Are Valid

Human history is full of spectacularly wrong decisions being made due to expertly 
applied approaches based on incorrect data or presumptions. Prior to implementing any 
decision-making process, it is critical that those empowered to make the decision, or 
those trusted to provide information to those who will make the decision, first perceive 
all data associated with the decision-making process to be completely and totally wrong 
until substantial evidence is presented to prove otherwise. Clearly, this adds a time delay 
to the process, which is probably the primary reason this critical activity is rarely done. 
Since people are smart, they can anticipate what conclusion the chosen decision-making 
process will reach given the input information, so then people who will benefit from a 
particular conclusion will do all they can to make sure the input data are those needed to 
reach their desired conclusion. Hence the recommendation in Section 3.1.3 that when-
ever possible, the decision should be made by people not affected by the decision to pur-
posely minimize the likelihood of bias. Of course, one person’s bias is another person’s 
fact. So just what is bias and how do you recognize it? The equation

	 F = m * a

is not bias, though it may not always be correct. Definitions; assumptions; or screen-
ing of larger data sets for selected values of an F, m, or both, which results in a’s that 
benefit a group of people at the expense of another group of people, is bias. To avoid 
bias, avoid making decisions based primarily on expert opinion, or accepting deci-
sions made by people who will directly benefit from the decision. Though in neither 
case is it absolutely certain that bias tainted the decision, it may have, and it is wiser 
to presume a false conclusion. To put it another way, for every decision to be made by 
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people with a vested interest in the outcome, there is always a way for the decision to 
be made by people without a vested interest, so use the method least subject to bias.

3.1.6 A ssess the Robustness of the Decision

When making a decision, it is wise to know how different the inputs can be for the 
decision to be the same, so you know when the decision is no longer valid and you 
need to make a new decision. In this case “different” means that for all key inputs to 
the decision-making process, if the “true” input was different than the presumed input, 
the same decision would be made. Certainly if the “difference” is large, it would be 
expected that a different conclusion would be reached. Another way to define robust-
ness is to declare the range of the inputs for which the decision is valid: the larger the 
range, the more robust the decision. So, one needs to attempt to know the variability 
associated with each input, in either a probabilistic or fuzzy sense, and make deci-
sions that explicitly acknowledge this variability. Some of the methods we next dis-
cuss inherently include such potential variability; some of the methods don’t. If input 
uncertainty is not inherently part of the decision-making process, then you must make 
the decision repeatedly while purposefully varying the inputs over a wider and wider 
range until you understand under what conditions the decision is no longer valid.

3.1.7 D o the Right Thing

All systems engineers and architects must realize that politics always trumps analysis. 
This is usually appropriate, since as we have already discussed, all analysis is inher-
ently flawed at some level, so the political considerations may override the analytical 
conclusion. But there is a line that must be drawn. We each have an ethical responsibil-
ity to challenge decisions that are wrong. For example, if a credible analysis predicts 
something is highly unlikely to be accomplished, but the politically motivated decision 
purports a high likelihood of success, and thus results in the continuation of actions 
that may be harmful to people but benefit the decision makers, then those responsible 
for the analysis must, at the minimum, make the discrepancy known to as many people 
as possible. Truth is very hard to know. But we must be motivated to attempt to express 
it, and to attempt to recognize we may be wrong about what we believe most strongly. 
We must trust that a rational decision will, in the end, defeat a decision based on self-
ishness, if those who recognize this state of affairs will so declare.

3.2  �MAKE GOOD DECISIONS BY SPECIFIC MEANS

3.2.1 A ssess the Goodness of a Diagnosis

The problem statement is as follows:

A test has a probability for false positives (the test indicates a condition is true, 
but it isn’t) of Fp and a probability of false negatives (the test indicates the 
absence of a condition that does exist) of Fn. What is the probability the 
condition really exists if the test returns positive?
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To assess this situation, we use Bayes’ rule, with A denoting event condition is 
True and B denoting event test indicates condition is True, as follows:

Event Prior Probability
Conditional 
Probability Joint Probability

Condition is true P(A) * P(B|A) = 1 ‒ Fn = P(B intersect A)

Condition is false P(not A) = 1 ‒ P(A) * P(B|not A) = Fp = P(B intersect not A)

Total 1 P(B)

So then:

	 P(A|B) = P(B intersect A)/P(B)

ProbTrueGivenPosTest determines P(A|B) for provide P(A), Fp, and Fn.
By treating P(A) as a variable, we can plot the result from 0 to 1, for an Fp of 2% 

and an Fn of 1%.
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Note that unless the condition has a likelihood of at least 20%, the probability 
a positive test is truly indicating a positive result is diminishing small. Here’s what 
happens for a probability of false positives of 0.1% and false negatives of 0.2%:
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So very accurate tests are needed for a test to be useful for conditions that occur less 
than 5% of the time.

Alternatively, if we can establish the probability density function for the population 
without the condition with respect to a test value, and the separate probability density 
function for the population with the condition with respect to the same test value, we 
can construct a “receiver operating characteristic” curve that relates the true positive 
probability (which equals 1 minus the false negative probability) to the false positive 
probability (which equals 1 minus the true negative probability). A straight line on 
this plot denotes a 50% probability the test is predicting the result at the stipulated 
threshold.

Here is an example. Suppose the population not exhibiting the condition has a 
normal distribution of mean 20 with a standard deviation of 10, while the popula-
tion exhibiting the condition has a normal distribution of mean 35 with a standard 
deviation of 10. Then the receiver operating characteristic curve looks like the 
following.

Receiver Operating Characteristic
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A lenient threshold has a high true positive probability but also a high false posi-
tive probability, while a strict threshold has the reverse. Selective thresholds can be 
explicitly noted on the plot as follows:
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3.2.2  Make a Sequence of Decisions to Optimize a Return

The problem statements are as follows:

	 1.	At a node N, there are M possible outcomes each with known likelihood 
and consequence; what is the aggregate result?

	 2.	At a node N, there are many possible choices with known benefits and costs; 
which is the choice that maximizes the net benefits?

The decision-making process requires the construction of a decision tree. The 
decision tree starts with a decision (often termed a node or gate) for which there 
are at least two options (each often termed a leaf ); each option may have another 
decision with at least two options, to whatever number of decisions are to be 
made.

There is no formal method to guarantee correct identification of every option 
that needs to be considered, all the possibilities of those options occurring, and all 
the consequences. To visualize the problem, a network is drawn, with nodes used to 
denote the decision/result and arcs used to denote the options, typically labeled with 
the probability of occurrence or cost and benefit. What can be formally required 
is the methodology to solve the two problem statements. The formal requirements 
probDecGateEval address the first problem statement returning the most likely net 
result for all the options at a node.

As an example, suppose a node has three potential options with probabilities:

P1 = 0.1
P2 = 0.2
P3 = 0.7
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with the returns:

R1 = {‒1, 0, 1}
R2 = {0, 5, 10}
R3 = {‒4, 1, 2}

This is evaluated as follows:

So option 3 is preferred. Trees with more arcs are evaluated by concatenating. 
For example, suppose the decision tree again starts with three options with the same 
probabilities as before, but this time the first option itself splits into the same 3 
options. Then this tree is evaluated as follows:

So option 3 is still preferred. The solution to the second problem is to determine 
which branches to follow to maximize return. fuzzDecisionNode determines the net ben-
efit to move from one node to another, when the cost and benefits for each transfer are 
known. In this case, both the cost and benefit are modeled as triangular fuzzy numbers.

To illustrate, suppose our choice is either to do a plant expansion or not to do the 
plant expansion. Suppose the fuzzy cost to do the expansion and benefits of doing an 
expansion are found to be

Since the cost to not expand is 0, and the benefit is found to be

we create a tree representing these branches as follows:

fuzzyDecisionNode returns

The defuzzified result for expansion is 0.43. The defuzzified result for no expansion 
is 1.564. So the decision should be to not expand.

To evaluate concatenated branches, use the fuzzDecisionNode to evaluate each 
individual node, and then sum the results for each unique node path. For example, 
if the expand branch had a second option to expand again or not expand with same 
values, then there are now three potential outcomes:



146 Systems Engineering and Architecting: Creating Formal Requirements

	 1.	Expand and expand again.
	 2.	Expand once.
	 3.	No expansion.

This tree is modeled as follows using components of the firsttree:

No expansion continues to be the best option.

3.2.3 �G ive People a Fair Method to Choose 
from a Static Finite Set of Options

The problem statement is as follows:

There are C candidates (an M × 1 array) for N people to choose from; which 
candidate is preferred?

When there are only two candidates, and each voter has one vote, the candidate 
who receives the majority of the votes is the candidate the majority of the people pre-
fer. But if there are more than two candidates, it is necessary to allow people to vote 
for an alternative choice as well as their primary choice to help ensure the candidate 
who is selected is preferred by the most people. The Borda count is one of the methods 
for N people to select from three or more candidates the one who they collectively 
most prefer. The formal requirements BordaCount implement the methodology.

As an example, suppose there are four options (or candidates) A, B, C, and D, and 
six voters who cast their ballots as follows for each of the candidates:

Voter1: Doesn’t have a preference, so casts one each for A, B, C and D.
Voter2: Is only happy if A is chosen, so casts all four for A.
Voter3: Is only happy if B is chosen, so casts all four for B.
Voter4: Prefers A or B equally, so casts two each for A and B.
Voter5: Prefers A and C equally, so casts two each for A and C.
Voter6: Can accept B but prefers C, so casts one for B and three for C.

Then input to BordaCount and results are
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The result narrowly supports selection of candidate or option A. Your experience 
with dual-candidate, single-vote elections may result in your wanting to sponsor a 
second election between candidates A and B since neither obtained the majority of 
the 24 votes cast. But the Borda count methodology avoids the need for a second 
election. This is what should logically happen if everyone votes their stated prefer-
ence, but the candidates are reduced to A and B. In theory, A will obtain the back-
ing of Voter2 and Voter5, while B obtains the support of Voter3 and Voter6. So 
Voter1 and Voter4 will determine the result. But based on their initial preferences, 
both Voter1 and Voter4 are equally enamored with candidates A and B. Given the 
opportunity to vote again, Voter1 and Voter4 will determine the election based 
on an explicit comparison of just candidates A and B. Voter1 and Voter4 may not 
vote, since they do not care whether A or B wins. Or Voter1 and Voter4 may each 
toss a coin, so there is a 50% chance the runoff election ends in a tie, and a 25% 
chance either candidate A or B will obtain both Voter1 and Voter4 support. The 
original Borda count result provides a useful solution without the need for a runoff 
election.

The most important consideration when making a decision by voting is what will 
the people do when the result is obtained? Only make decisions by voting when you 
are certain the participants will abide by the result.

3.2.4 �A llocate a Static Finite Set of Resources so 
That the Recipients Feel Equally Satisfied

The problem statements are as follows:

	 1.	 Maximize the return of providing N identical items to those who may want them.
	 2.	Maximize the return of providing N dissimilar items to those who may want 

them.
	 3.	Distribute N dissimilar items between M people in a manner that gives 

equal opportunity for each to obtain each item.

The best way to allocate finite resources to those desiring them is to conduct an 
auction. A useful auction methodology for multiple items is the Dutch auction. In a 
Dutch auction, each bidder is given a number of tokens equal to the number of items 
to be chosen. Each bidder may allocate none to all of their tokens on each item. Each 
item goes to the bidder who allocated the most tokens to that item.

The formal requirements DutchAuctionforSameItems enable the bidders to make 
dissimilar bids for the same items. The formal requirements DutchAuctionforDifferent
Items enable bidders to choose from dissimilar items.

For example, suppose selector A is willing to pay 100 for 10 items and 90 for 9 
of the items, while selector B is willing to pay 200 for 8, and selector C is willing to 
pay 50 for 20, then 100 for 20, and finally 75 for 20.
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Then DutchAuctionforSameItems returns

As an example of an auction for different items, suppose there are three selectors, 
who each may want one or more of a house, car, plane, and painting. One approach 
is to achieve the maximum return to the seller. In that case, each selector’s bid is 
unconstrained. Suppose

•	 Selector A is willing to pay 1000 for house, 10 for car, 1000 for plane, and 
1 for painting.

•	 Selector B is willing to pay 900 for house, 20 for car, 0 for plane, and 5 
for painting.

•	 Selector C is willing to pay 100 for house, 20 for car, 2000 for plane, and 
5 for painting.

Then the input to and output from DutchAuctionforDifferentItems are

Should one or more of the bidders make the same maximum bid for an item, the 
input and output would be
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Alternatively, if the objective is to offer equal opportunity for each selector to 
obtain any item, then the selectors are granted the same number of tokens to bid, and 
the items go to the selector who offers the most tokens for each item. Suppose each 
selector is given 1000 tokens, and

•	 Selector A offers 495 for house, 10 for car, and 495 for plane.
•	 Selector B offers 950 for house, 40 for car, and 10 for painting.
•	 Selector C offers 345 for house, and 10 for car, and 645 for plane.

Then the input and output for the routine are
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3.2.5 �E volve Options That Best Satisfy Multiple Criteria

The problem statement is as follows:

Select a finite set of features for an item that collectively best satisfy a finite 
set of criteria.

Whenever making a decision to select from a finite number of options, broadly 
define those options, for clearly if you fail to identify the optimal option, the evaluation 
process does not find it for you. Human nature tends to limit the options considered to 
those that worked in the past, or those known to fail. To counter this human limitation, 
command the definition of at least six options prior to doing an assessment. Most peo-
ple can quickly identify two to four options to do anything: one or two they won’t want, 
and one or two they know might work from prior experience. Demanding at least six 
credible options compels an attempt to think more broadly and be innovative. We’ve 
all noticed some people are more innovative than others. How the more innovative of 
us achieve this capacity is more art than science. But some have thought deeply about 
how to mechanically aid the innovation process and have documented their opinions.6,7

Pugh3 studied the creative process extensively and established principles for mak-
ing decisions to select a finite set of features, which collectively best satisfy a finite 
set of criteria. In the Pugh process, the number of options and the number of criteria 
can dynamically vary. Pugh’s process compares all options against a baseline, one 
criterion at a time. Pugh emphatically rejects numerically weighting the importance 
of each criterion. His rationale is that if a criterion is important to making a decision, 
then it must be utilized to make the decision. By default, if options compare equally 
with respect to that criterion, by definition that criterion is not important to make 
the decision. Pugh rejects both ranking and rating how well each option satisfies 
each criterion. Rather, for each criterion, each option is analyzed to determine if it is 
inferior, equal, or superior to how the baseline satisfies that criterion. Pugh’s primary 
purpose is to synthesize an option that incorporates as much as practical the best 
features of any of the currently identified options. Though Pugh does not explicitly 
use this language, his approach mimics natural selection. Each option consists of 
features that can be perceived to be part of that option’s genetic basis. Pugh perceived 
the decision process to be one of searching for and accepting beneficial features, 
while rejecting negative features, as determined by the criteria.

The formal requirements PughComparison enable one to see how options com-
pare with respect to evaluation criteria and synthesize new options that may be supe-
rior to those initially identified.

As an example, suppose the baseline case is called Status Quo; we have three 
alternative options identified O1, O2, and O3; and we conduct a Pugh comparison 
with respect to four criteria, C1, C2, C3, and C4. Let the Pugh comparison of the 
options to the Status Quo be stipulated as shown in Table 3.4.

Examining the Pugh comparison, all the options are superior to Status Quo with 
respect to C1. With respect to criteria C2, O1 is inferior to Status Quo and O3 is supe-
rior. With respect to criteria C3, option O1 is superior to Status Quo and option O3 is 
inferior. With respect to C4, all the options are inferior to Status Quo. So, the solution 
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has any of the option features associated with C1, the features of O3 for C2, and the 
features of O1 for C3 and of Status Quo for C4. The inputs for PughComparison are

which, when provided to PughComparison, results in the following output:

3.2.6 �S elect from a Finite Set of Static Alternatives the One 
That Best Achieved Multiple Dissimilar Criteria

The problem statement is as follows:

Which option O (chosen from an n × 1 array) best satisfies goals G (an m × 1 
array), where the relative importance of each goal may need to be determined?

When selecting from a finite set of options with respect to multiple criteria, the 
relative importance of each criterion must be known. This is often conveniently done 
by assigning weights to each criterion so the sum of the weights is one. But when 
different people are involved in the decision, they may disagree as to the relative 

TABLE 3.4
Sample Pugh Comparison of Options to a Baseline

Status Quo Option O1 Option O2 Option O3

Criteria C1 1 1 1

Criteria C2 ‒1 0 1

Criteria C3 1 0 ‒1

Criteria C4 ‒1 ‒1 ‒1
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importance of each decision criterion. Also, people may find it easier to rate the 
importance of each criterion on a common scale, say, from 9 for the most important 
to 1 for the least important. “Importance” is inherently fuzzy, so on a 1–9 scale a 
person might judge a criterion to be a fuzzy triplet of <4, 5, 6>, indicating “not com-
pletely sure,” but certainly not less than 4, not more than 6, and maybe 5. The formal 
requirements GoalImportance determine a composite importance for an arbitrary 
number of goals on a scale from 1 (for least) to 9 (for most), given multiple opinions.

As an example, suppose there are three goals or criteria and for which three different 
people are providing an indication of the relative importance for each goal, as follows:

•	 Person1 gives goal1 a fuzzy importance of <1, 2, 3>, goal2 a fuzzy impor-
tance of <3, 4, 5>, and goal3 a fuzzy importance of <6, 7, 8>.

•	 Person2 gives goal1 a fuzzy importance of <0.5, 1.5, 3>, goal2 a fuzzy 
importance of <4, 4, 4>, and goal3 a fuzzy importance of <7.5, 8, 8.5>.

•	 Person3 gives goal1 a fuzzy importance of <9, 9, 9>, goal2 a fuzzy impor-
tance of <1, 1, 1>, and goal3 a fuzzy importance of <1, 1, 1>.

For these inputs, GoalImportance returns

On a scale from 1 to 9, goal1 has a collective importance of 3.1, goal2’s impor-
tance is 2.5, and goal3 has an importance of 3.8.

The formal requirements AlternativeGoalSatisfaction calculate how well each 
option or alternative satisfies the weighted sum of the goals or criteria.

An example, suppose there are two alternatives to be evaluated against two goals, 
and there are again three people making potentially different evaluations, as follows:

•	 Evaluator1 determines alternative1 satisfies criterion A by <1, 2, 3> and 
satisfies criterion B by <3, 4, 5>, while alternative2 satisfies criterion A by 
<4, 5, 6> and criterion B by <7, 8, 9>.

•	 Evaluator2 determines alternative1 satisfies criterion A by <0.5, 1.5, 2.5> 
and satisfies criterion B by <3.5, 4.5, 5.5>, while alternative2 satisfies cri-
terion by A <4.5, 5.5, 6.5> and satisfies criterion B by <7.5, 8.5, 9>.

•	 Evaluator3 determines alternative1 satisfies criterion A by <1.5, 2.5, 3.5> 
and satisfies criterion B by <4, 5, 6>, while alternative2 satisfies criterion 
A by <3.5, 4.5, 5.5> and satisfies criterion B by <6.5, 7.5, 8.5>.

Then AlternativeGoalSatisfaction returns

The output indicates alternative1 scored about 2.0 against criterion A and about 
4.5 against criterion B, while alternative2 scored 5.0 against criterion A and 7.8 
against criterion B.
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The formal requirements FuzzyDecisionMaker input goals, the relative goal 
importance (calculated by GoalImportance), alternatives, and indications of how 
well each alternative satisfies each goal (calculated by AlternativeGoalSatisfaction) 
and returns net values between 0 and 1 for each alternative (that sum to 1); the higher 
the number, the better the alternative achieves the weighted goals.

As an example, suppose we want to choose one of four possible cars (sedan, SUV, 
midsize, or convertible) with respect to five criteria (medium cost, powerful engine, 
good gas mileage, large carrying capacity, and stylish interior), for which the relative 
importance has already been determined to be 5, 8, 2, 3, and 6, respectively, and we 
assess each option with respect to each criterion on a 1–9 scale as follows:

•	 For the sedan: medium cost 2, powerful engine 8, good gas mileage 4, large 
carrying capacity 6, and stylish interior 9

•	 For the SUV: medium cost 5, powerful engine 8, good gas mileage 2, large 
carrying capacity 8, and stylish interior 6

•	 For the midsize: medium cost 8, powerful engine 1, good gas mileage 9, 
large carrying capacity 2, and stylish interior 2

•	 For the convertible: medium cost 5, powerful engine 9, good gas mileage, 6, 
large carrying capacity 1, and stylish interior 9

Then FuzzyDecisionMaker returns

The convertible is the preferred option. The robustness of the decision can be 
assessed two ways. To assess how the decision might change if the importance cri-
teria are changed, redo the analysis with each of the entries {5, 8, 2, 3, 6} increased 
and decreased by 1 unit. To assess how the decision result might change if the option 
assessments are changed, simply one by one lower each convertible evaluation 
assessment that is not 1, by 1, and redo the analysis to see if it is still selected. That 
is, redo the analysis with the convertible’s evaluation vector sequentially set to {4, 9, 
6, 1, 9}, then {5, 8, 6, 1, 9}, then {5, 9, 6, 1, 8} to determine if the convertible remains 
the chosen car. Here is that process illustrated:
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The convertible remains preferred for all these evaluation adjustments so it is a 
robust choice.

3.2.7 �S elect from a Finite Set of Static Options Those That 
Maximize Benefits while Minimizing Detriments

The problem statement is as follows:

For a finite set of options with dissimilar benefit and detriment, which is the 
best to choose?

The situation is easiest to visualize in two dimensions; for a given option, the 
benefit provided corresponds to a vertical axis value (such as performance or return) 
and the detriment (such as cost or risk) corresponds to the horizontal axis value. 
The option to pick, all else being equal, is the one that returns the highest benefit 
at the least cost, but since the collective options present a range of detriment and a 
range of benefit, the best options lie on what is called the efficient frontier, the set 
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of options for which there are no options offering more benefit at the same detri-
ment. The option you choose is the one corresponding to the most detriment you 
can tolerate.

Let’s assume our benefit is a performance level and our detriment is the cost, and 
we have 20 options to choose from as follows:

The formal requirements EfficientFrontier present the information to make it 
easy for us to identify the best options.
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The efficient frontier consists of G, B, and M, because no other option offers 
superior performance at lower costs. Certainly, something other than a single per-
formance criterion may be important to picking the option. For example, suppose 
option M is considered considerably riskier to achieve than option S; it is then wise 
to go with option S, sacrificing some performance for less risk.

3.2.8  �Do the Optional Endeavor with the Best 
Uncertain Financial Return

The problem statement is as follows:

Multiple proposed endeavors require a time series of uncertain expenses with 
uncertain returns; which one is the best to do?

To make these types of decisions, first determine if an arbitrage situation is pres-
ent. Such situations mean you can earn money without risk. An example is BankA, 
which is willing to pay 5% interest, and BankB, which is willing to loan money at 
3% interest. Then borrow as much money as possible from BankB to invest with 
BankA to guarantee a 2% return as long as the condition exits. In competitive mar-
kets, arbitrage situations are rare, but when they exist the logical decision is to take 
advantage of them.

If an arbitrage situation does not exist, then we face a series of cash outflows fol-
lowed by cash inflows. For example, what is the better investment: double your money 
in one year, or triple it in two years? Here are cash flows associated with the options:

Option1: ‒1, 2

Option2: ‒1, 0, 3

Two common methods to compare investment options with periods of negative 
and positive returns are net present value and internal rate of return. For the net 
present value method, the outflows and inflows of cash at fixed periods of time are 
discounted to the present using a chosen interest rate. The option with the larger 
value is preferred. Typically, the discount rate used for this method is chosen to be 
the risk-free return rate for the period of the cash flow. Though that is easy to say, 
it can be difficult to determine, but is often taken to be the current rate of the U.S. 
Treasury bonds for the period in question. For the internal rate of return method, 
the rate of return of the outflows and inflows is determined. The internal rate of 
return method solves a polynomial of order one less than the number of cash flow 
instances, for the interest rate that corresponds to the net present value of the cash 
flow to be 0.

The formal requirements NPV determine the net present value for a cash flow. The 
formal requirements IRR determine the internal rate of return for a cash flow. Here are 
net present values for the two illustrative cash flows, assuming the interest rate is 3%:
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The net present value evaluation method suggests selecting Option2, even though 
the payback is delayed a year, because the larger amount is worth the wait. The inter-
nal rate of return method suggests selecting Option1 because it has the better rate of 
return. So which method should one use? If the intention is to repeat the investment, 
then using the internal rate of return is the more useful indicator. The internal rate of 
return is saying that, given a choice between doubling an investment every two years 
or tripling it every three years, it is preferable to double every year. If the intention is 
to make a one-time investment that cannot be repeated, then the net present value is 
the more appropriate measure of goodness.

Though useful and simple, neither net present value nor internal rate of return 
methods should be used to make decisions when the cash flows are uncertain, which 
is often the case. As we discussed in Chapter 2, one could model the cash flows as 
random variables or fuzzy numbers, and use Monte Carlo to determine probability 
density function or fuzzy logic to obtain the defuzzified net present value or internal 
rate of return. But often what we are looking for is a means to know when to do 
something, given that we at least understand our options. That is, what we want to 
know is, “Under what circumstances should we exercise our options?” Reference 8 
shows several ways to do this.

As an example, suppose we can produce something of value up to 100,000 kilo-
grams per year at a cost of $1000 per kilogram. The current price of the commodity 
is $2000 per kilogram. We have an option to design, build, and use a new machine to 
increase the production rate to 150,000 kilograms per year with a nonrecurring cost 
of $100M and a new operating cost of $1500 per kilogram. The risk-free rate of return 
is 5%. Our financial decision is to determine, “Under what conditions, if any, should 
the new machine be introduced?” To make this decision, we need to obtain a value for 
the operation, with and without the option being invoked at various times, explicitly 
modeling the reality that the future price of the commodity could vary quite consider-
ably. To do this, we first establish the value of a 10-year lease for the as-is mine opera-
tion for different future prices. The price of the commodity is modeled as a binomial 
lattice such that each year the price will either increase by 1.15 or decrease by a 
factor of 0.9. We do not need to know the relative probability the price can increase 
or decrease. The formal requirements BimonialLattice routine builds such a lattice.

So for the commodity at a current price of $2000 per kilogram, with the potential 
each year to increase by 15% or decrease by 10%, the potential prices for 10 years 
are as follows:
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Which we can visualize a bit easier if we use the Mathematica® routines MatrixForm 
to make each row distinct and NumberForm to set the number of digits to display:

The first row shows the current price. The second row shows the possible range 
of prices for one year from now. Each subsequent row shows a growing finite set of 
possible prices from the lowest to the highest for that year, given the possibility of the 
assumed potential maximum and minimum price changes for each price possibility 
in the prior year.

To value the venture, we note that it can be viewed as a lease that is valueless to us 
in the last year, since we must return operations to the owners, and work backward 
to determine the potential value of the lease for each price of the commodity, which 
is the profit that can be made that year, discounted by a risk-free interest rate, plus 
a risk-neutral expected value of the lease in the next period. Reference 7 shows the 
value of such a lease to be as follows:

	 (1 / 1 + riskfreereturn) * (q * Cu + (1 ‒ q) * Cd)

where q is the risk-neutral probability that equals

	 (1 + riskfreereturn ‒ down)/(up ‒ down)

and

	 Cu = Max[0, up * value]

and

	 Cd = Max[0, down * value]

The formal requirements LeaseValues determine the lease values lattice for the 
price lattice derived above in [MatrixForm[price], 4].
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Using the Mathematica routine ScientificForm to set the displayed digits to 3, the 
lease values that correspond to the possible commodity prices are as follows:

This shows the lease price value for each year from now for 10 years; for the 
corresponding range of commodity prices each year, the current lease value is about 
$1.1 billion for the 10-year period.

To determine the value of the production enhancement option if implemented 
immediately, we repeat the above process using the new productivity and costs:

The nonrecurring cost of $100 million needs to be subtracted from the optional 
$1.120 billion lease value if the option is to be implemented immediately, so the 
current lease value for the optional improved production is just a little over $1 bil-
lion, less than the $1.130 billion determined without the optional improvement, so 
it makes no sense to implement the improvement now. However, we can implement 
the higher productivity option in any year we care to, particularly if the commodity 
prices increase enough to favor it. The formal requirements LeaseValuewithOption 
determine when it’s favorable to implement the new machine, by calculating a new 
lattice, where for each entry in the lattice, the value obtained with the option in place 
minus the cost to implement the option is compared with the value we had in the 
original lease lattice without the option. If the lattice entry value with the option 
is more than without the option, the option value is recorded for that lattice entry; 
otherwise a 0 is recorded.
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Here is the result:

To compare the nonoption with option cases, we simply subtract the two lattices:

The results are indicating when and with what commodity price it makes sense to 
implement the option. For example, in two years, if the commodity price is at or above 
2645, the highest value in the second year (which is shown as the third entry in the third 
row of price), we can make an extra $123.7 million (third entry in the third row above) 
if we implement the improvement. For the year and commodity price (row and column) 
for which the denoted profit is judged too small relative to the $100 million investment, 
the productivity option should not be invoked. Similarly, for the year and price for which 
the denoted profit is judged attractive relative to the investment, the productivity option 
should be invoked. So this type of analysis provides information as to when and under 
what manifestation of uncertain circumstances an option should be taken, or not.

3.2.9  �Select a Portfolio of Investments That 
Maximize Return and Minimize Risk

The problem statement is as follows:

How much to invest in a finite number of dissimilar investment opportuni-
ties with uncertain returns so that the likely return is maximized while the 
potential loss is minimized?
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If an uncertain investment has a mean return and a variance, and considering 
any observable correlation that might exist between the investment option returns, 
various combinations of investment options can be plotted with respect to total 
mean return (goodness) and total variance (badness), which will create an efficient 
frontier. The investment portfolio to go with is the one on the frontier that offers 
the maximum mean return at the risk level (variance) that is palatable. Given also 
that one can periodically modify the portfolio, one can improve the cumulative 
return by rebalancing the level of investment in each option in the portfolio. That 
is, at the end of a period, one buys more of the investment option that performed 
the least well and one buys less of, or even sells, the investment option that did 
the best, so that each investment option is approximately the same value again. To 
fully benefit from this strategy, the individual investments must be independent or 
at least not strongly correlated. If the investment options are perfectly correlated, 
they will all achieve the same value at the end of the period so rebalancing is not 
possible.

Here are examples to illustrate the strategy. There are two investment options, one 
with a 50% probability of paying twice the amount bet, and the other a 50% prob-
ability of paying half the amount bet. ProbReturn calculates the probabilistic return 
and CertReturn models the certain return of invested funds, no more, no less (which 
is the equivalent of holding cash).

The formal requirements TotalReturn returns the final amount after n periods, where 
at the start of each period, a proportion of available money is invested in each option.

Since the returns are random, a Monte Carlo simulation is conducted.
Suppose we start with $100 and make investments for 10 periods; here are the 

results for 10,000 Monte Carlo simulations if we put all our money in the certain 
return option:
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Here are the results if we put all the money in the risky return:

We see that, on average, we net about nine times our starting money, for a mean 
rate of return of about 22%, but there is just under a 40% chance we will end up 
with less than our initial $100. Here is what happens if put 75% of our money in the 
certain return and 25% in the risky return:

The mean return is now 17%, and the risk of ending up with less money than we 
started is still about 40%.

To get a feel for the potential return versus potentially ending up with less money 
than we started with, we produce an efficient frontier plot for various percentages of 
investment in the risky and certain return options.
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Clearly the sufficient frontier consists of 0% in the risky return, 40% in the risky 
return, and 100% in the risky return. Depending on one’s risk tolerance, one should 
invest either 40% or 100% in the risky return.

Does a longer investment period improve our chances? First, increase the period 
from 10 to 20:
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Clearly, the longer investment period has reduced risk while retaining the poten-
tial returns. Here is the result for 40 periods:
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Again, the more opportunities to rebalance the investments, the less risk for the 
same mean return.

Finally, what happens if we have two uncorrelated risky investments? The formal 
requirements TotalReturnUCRisk investigate this option.
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Here are some cases for investing equally in two risky investments with the same 
probability of return as previously defined, but with the returns totally independent 
of each other:

This is an amazing result, as we obtain a better return than the single pure-risk 
play. Notice the mean rate of return of 22%, but this time the odds of losing money 
are reduced from near 40% to near 30%. And time is again on our side; here are 
results for 20 and 40 periods rather than 10:

The mean rate of return holds at over 20%, but the probability of ending up with 
less money than we started with keeps dropping.

From these examples, investment strategy heuristics are quite clear:

	 1.	Presume the possibility of what could happen, not what did happen. Many 
people are very good at finding patterns in data for things that already 
occurred. One can examine the daily fluctuations for a stock over a period 
of time and create a probability density function that fits the data. But the 
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stock prices may or may not behave in the future as they have behaved in 
the past. When evaluating an investment opportunity, model the potential 
for what may happen, not just what has happened.

	 2.	Buy low, sell high. The rebalancing strategy does this automatically.
	 3.	 If the likely result is positive, maximize the number of opportunities.
	 4.	Diversify, and note that two independent risky investments provide a better 

return than one risky investment.
	 5.	 Invest an amount in proportion to what one can lose. All investment deci-

sions must be made in full cognizance of the level of risk that can be tolerated.

3.2.10 �C hoose the Independent Variable Values That Optimize 
an Index of Performance Subject to Constraints When 
the Index of Performance Is Inexpensive to Determine

The problems statement is of the form:

Find the x* (an array of n values) such that J(x) is minimized, while H(x) = 0 
(an array of m equations) and G(x) < 0 (an array of p equations).

Recall that finding the minimum of J is the same as finding the maximum of ‒J, so 
any maximization problem can be recast as a minimization problem.

There are many algorithms available to find solutions to the stated problem. Some 
of these algorithms require explicit or numerical derivatives of the index of perfor-
mance, which are often inconvenient to obtain. I prefer methods that do not require 
derivatives. Some methods attempt to find the maximum while explicitly honoring 
the constraints. This is straightforward if the constraint involves only limits on the 
independent variables; simply do not attempt any trial solution with values exceed-
ing the limits. But for large numbers of constraints, the permissible space for solu-
tion can be quite complicated, and perhaps not even convex, so I prefer methods that 
append the constraints to the index of performance as follows:

	 IP(x) = J(x) + W(H.H + g.g)

where g[[i]] = 0 if G[[i]] is < 0 and g[[i]] = G[[i]] if G[[i]]> 0, and W is a large but 
arbitrary value.

Then, to minimize IP, the algorithm will seek to drive each H to 0 and keep each 
G less than 0.

Mathematica comes with routines that enable determining the minimum of func-
tions (NMinimum, FindMinimum, etc.), and as Mathematica evolves, the robustness 
of these routines will improve, so I urge the reader to first attempt optimization using 
these routines. The Mathematica numerical optimization routines are tested against 
35 problems, with results shown in Appendix 3A.

Always check the obtained x* for robustness before using. To do so, first check 
J in the neighborhood of x. If small changes in any of the x* components result in 
small changes in J, one can be reasonably assured the x* obtained will be useful. 
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However, the solution to constrained optimization problems is often on the bound-
aries of one or more constraints. So also explicitly examine the constraints that are 
in effect at x*. Determine to what extent these constraint equations may be wrong 
or approximate. Determine if it is better to be conservative, and use for the optimal 
solution an x that is a bit further away from the constraint than x* to make sure no 
constraint is violated, even though the resulting J may be larger.

3.2.11 �C hoose the Independent Variable Values That Optimize 
an Index of Performance Subject to Constraints When 
the Index of Performance Is Expensive to Determine

The problem statement is the same as in Section 3.2.10, but now the cost to evaluate 
either J, or the constraints, is very expensive. The “expense” may be that the index 
of performance or the constraints are so complicated that even the fastest computer 
needs a long time to provide the necessary evaluations so that the iterative search 
for the solution will take longer than we have to make the decision. Or the index of 
performance values need to be obtained from the actual output of a system that costs 
time and money to operate each time a different trial set of independent variables is 
used in attempt to find the minimum. So, we must sacrifice perfection for efficiency. 
We need to select and try the smallest possible sample of trial independent variables 
to evaluate the function to be minimized, and identify an approximate best set of 
independent variables from those few trials.

The Taguchi method5 is a way to both select the trial cases and utilize the results to 
find an approximate optimum answer that is robust with respect to uncertainty in con-
trolled factors and noise factors. The Taguchi method seeks to minimize a quality loss 
function that is presumed to be a quadratic with respect to the independent variables of 
interest. So the method finds control variables that minimize the variation from a tar-
get value. This is accomplished by calculating a signal-to-noise ratio, and finding the 
control variables that maximize the ratio. To achieve the desired mean response, a con-
trol variable is reserved to use as an adjustment factor, purposely selected to have the 
least impact on the signal-to-noise ratio, but a significant impact on the mean response.

The Taguchi method consists of six steps as follows:

Step 1.	Select the appropriate quality loss function to optimize, which will be one 
of the following:

If smaller is better, use ‒10 * Log[Sum[y[[i]]^2, {i, 1, n] / n].
If larger is better, use ‒10 * Log[Sum[1 / y[[i]]^2, {i, 1, n} / n].
If nominal is best, use ‒10 * Log[(1 / n) (T - V) /V)], where:

	 T = Sum[y[[i]], {i, 1, n}]^2

	 V = (Sum[y[[i]]^2, {i, 1, n}] ‒ Total) / (n ‒ 1)

Or use

	 ‒10 * Log[V]

when y[[i]] may be both negative and positive.
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Step 2.	 Identify the m control factors that will be selected to achieve the optimum 
result, and the n noise factors, or things not explicitly controlled that still 
influence quality. Each control factor is presumed to affect quality inde-
pendently, so if two control factors may affect quality as a consequence of 
their combined action, then that interaction is itself a separate control factor. 
When selecting both control and noise factors, it is important to be able to 
achieve selected test values, so one must also select these test values. A mini-
mum of two values needs to be selected, but if there is any hint of nonlinear 
behavior in the quality loss function with respect to control or noise, then 
at least three values need to tested. The key to value selection is to bound 
the quality factor, for the approximate optimum will be determined within 
the interior ranges of these variables. So, it may be necessary to conduct 
preliminary tests to establish the appropriate bounding values. The more 
control factors and noise factors, the more tests that will need to be run. So, 
given the expense of the trials, limit the number of each to keep within cost 
constraints.

Step 3.	Select an orthogonal array to use that specifies the control value combina-
tions for each test. For each control value combination, the test is repeated 
for the full set of noise factors possible. For example, if there are two 
noise factors at three levels, then each control variable combination is 
repeated 3^2 = 9 times for the nine different combinations of three things 
taken two at a time. Reference 5 documents orthogonal arrays for two lev-
els, two and three levels, four levels, two and four levels, and five levels. 
Along with the arrays are line graphs, which help one determine which 
column of a given array should be used for any controls that are needed to 
model interactions between two controls. The orthogonal arrays are con-
structed so those factors that are hardest to manipulate (change) should be 
assigned to the first few columns.

Step 4.	Conduct the test runs as stipulated by the orthogonal array to obtain the 
quality loss values.

Step 5.	 Perform the calculations necessary to ascertain the most significant con-
trol factors and the best values for each. This requires determining the 
mean value for each experiment, the mean signal-to-noise ratio (qual-
ity loss function) for each experiment, the mean signal-to-noise ratio of 
each control factor at each test level, the effect of each factor level on the 
signal-to-noise ratio (the difference between the largest and smallest val-
ues achieved), the identification of those control factors with the largest 
quality loss function effect (roughly the half of the control factors with 
the largest signal-to-noise ratio effect), the mean response for each control 
factor level, the effect of each factor on the mean response, identifying the 
roughly half of the control factors that influence the mean response, and 
finally selecting the control factor values that predict the minimal quality 
loss function.

Step 6.	Conduct a test with the chosen control variable values to confirm the pre-
dicted quality loss achieved.
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Here is an example analysis.

Step 1.	Quality loss function: Nominal is best, with a target value of 35.75.
Step 2.	Eight control factors are identified, one with two levels, seven with three 

levels, and initially no interactions presumed significant.
Step 3.	 The L18 orthogonal array is found to be appropriate as it enables stipulating 

1 two-level variable and up to 7 three-level variables. (If we had instead only 
four control factors, all of which were to be assessed at three levels, then we 
would have used the L9 orthogonal array. Alternatively, if we had as many 
as 13 control factors, to be assessed at three levels, we would have used the 
L27 array.) The L18 array specifies the level to use for 18 experiments. The 
L18 array is as follows. Each row is an experiment, to perform the 1, 2, or 3 
entry specifying the level to set the control variable to for that experiment:

Step 4.	There are two critical noise factors, one to be tested at three levels and one 
to be tested at two levels, for a total of six combinations. Thus, for each 
18 variations of control factors, we run six tests at the different noise fac-
tors, for a total of 84 experiments. Let’s say the 18 tests at six different 
settings for noise factors give the 84 results as follows:
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Step 5.	The calculations that are needed are as follows:
	 1.	 Mean experiment value (i.e., the mean of the result for the noise cases 

for each run), ymean
	 2.	 Mean of the signal-to-noise ratio for each run, ston
	 3.	 The signal-to-noise ratio for each factor at each level, stonfactor[[level]]
	 4.	 The signal-to-noise ratio response table (which shows the ston-

factor for each control factor at each level and the difference 
between the maximum and minimum signal-to-noise achieved at 
any level)

	 5.	 The mean response level for each factor at each level, meanresp
	 6.	 The mean response table which shows the meanresp for each control 

factor at each level and the difference between the maximum mean 
response and minimum mean response at any level

These calculated results are used to first identify which factors should be chosen 
to maximize the signal-to-noise ratio (and thus minimize the variability in output) 
and what value each should be set to. Then we identify the control variables that con-
tribute most to the mean response. We look for the control variable that does not also 
affect the signal-to-noise ratio to use to move the mean response to the target. The 
formal requirements TaguchiResponseTable perform the necessary calculations for a 
provided orthogonal array, test results, and an indication of the number of control vari-
ables (which are presumed to be assigned in order to the columns of the orthogonal 
array).

The results obtained are as follows:
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The results above indicate that the control factors that most impact the signal-to-
noise ratio (variability in result) are 6, 4, and 2, with respective responses of 10.9, 7.4, 
and 6.7. A Taguchi method heuristic is to use approximately half of the control factors 
that have the most impact on the signal-to-noise ratio. Since there are eight control 
factors, we would nominally select four. But a second Taguchi method heuristic is to 
stop selecting control factors when the difference in response results between it and its 
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predecessor first increases. In this case, the difference between the largest and second 
largest is

while the difference between the second and third largest is

while the difference between the third and fourth largest is

and, lastly, the difference between the fourth and fifth largest is

Notice these differences first increased after decreasing for the third and fourth 
largest, so we stop our selection for control factors to control the signal-to-noise ratio 
to the three largest.

So the difference in response results first increases after the third highest control 
variable, so we stop our selection with control factor 2 which had a 6.72 response 
impact on the signal-to-noise ratio.

Examining the signal-to-noise ratio plots, the control values to choose to maxi-
mize the signal-to-noise ratio and therefore minimize the variability in the output 
are

For control factor 2, at level 2
For control factor 4, at level 3
For control factor 6, at level 2

as these are the levels with the maximum values in respective response plots.
Each orthogonal array has unique properties. The L18 array implicitly contains 

the interaction of factor 1 and 2, even though this interaction was not assigned to 
an array dimension. Since we choose factor 2 to obtain the approximate optimal 
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solution, it is important to then also find what value of control factor 1 to utilize 
since it inherently has interacted with control factor 2 in the experiments, due to the 
construct of the orthogonal array, even though we did not explicitly intend it to do 
so. All that is required of us is to use the experiment data to calculate the following 
means:

Control factor 1 at level 1 and control factor 2 at levels 1, 2, and 3

and

Control factor 1 at level 2 with control factor 2 at levels 1, 2, and 3

The formal requirements InteractionResponse report the interaction mean 
response and signal-to-noise ratio, which provides the following information:

Since will use control factor 2 at level 2, we see that the signal-to-noise ratio is 
maximized for control factor 1 also set to level 2 (32.2056 > 25.08); similarly control 
factor 1 set to level 2 also, just barely, provides the maximum mean response.

Revisiting the output from TaguchiResponseTable, the control factors that most 
influence the mean response are 2 and 3, with respective values of 0.71 and 0.57. 
Again, even though we normally would be looking to set about half, or in this 
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case four, of the control variables, we quit after selecting the two control variables 
because the difference in the mean responses obtained increase after the second 
selection.

The difference in response between control factors 2 and 3 is

While the difference in response between control factors 3 and 6 is

Step 6.	Select a value for control factor 3, estimate the mean result expected, and 
run a confirmation experiment at the selected values to see if the result is 
as predicted.

Since the signal-to-noise maximization assessment determined control factor 2 
should be part of the set to maximize the signal-to-noise ratio (and therefore mini-
mize the variability in the response), we use it for that purpose, and use control fac-
tor 3 as the factor to adjust the mean closer to the desired value. We find the desired 
value for control factor 3 by predicting the mean response based on the selected 
control factors and their selected values:

Notice that the mean response of control factor 3 at level 1 is 35.52, the mean 
response of control factor 3 at level 2 is 35.42, and the mean response of control fac-
tor 3 at level 3 is 36.00, so to move the mean to the target with the chosen values for 
control factor 1, 2, 4, and 6, we need to set control factor 3 to a value intermediate 
between our chosen level 2 and level 3.

To test our analysis results, run one more experiment with the control factors set as 
stipulated, for the six noise levels to determine if the mean response is as predicted.

3.2.12 �D efine a Dynamic Control Law to Optimize 
a Dynamic Index of Performance

The problems statement is of the form:
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Find an m × 1 vector of control variables that are a function of the state of the 
system and an independent variable, u(x, t), such that for the n × 1 state vector x,

	 dx/dt = f(x, u, t)

with

	 x(0) usually known

and

	 minimize J = g(x, u, t),

There are two ways to offer a solution. The easier solution finds, u, the “con-
trols” to be provided as a function of independent variable, t. Though often easy to 
do, when we attempt to apply the control in the real world, it will usually perform 
badly because the solution is optimal only for the precise equations specified. Any 
errors in the mathematical model’s representation of reality, or the inability to pre-
cisely provide the stipulated control levels, will manifest themselves in the system 
drifting off the desired optimum. This is because, unless the control law includes 
the current values of x, there is no way for u to adjust its value accordingly. So 
what we really seek is a control law, a function of the independent variables and 
the state variables. Granted, the solution obtained remains only truly optimal for 
exactly the situation modeled, but since we can model noise in the measurement 
of the states, and noise in the application of the control, we have a much better 
chance of implementing a solution that will actually work. Unfortunately, finding 
such solutions are amongst the most difficult numerical processes known. Still, 
very smart people have been at work on this for a long time and their progress 
can be harvested.

For the case:

	 f [x, u, t] = A * x + B * u,

with x(0) and final time (tf) specified and

	 F * x[tf ]= Fo,

where:

A is an n × n matrix of known functions of time,
B is an n × m matrix of known functions of time,
F is a p × n matrix of known constants, and
Fo is a p × 1 matrix of known constants.	
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If we seek to minimize

 J = 0.5 * Transpose[x[tf]] * G *x[tf] + 0.5 * Integrate[Transpose[x[t]] * W1 * x[t] + 
2 * Transpose[x[t]] * W2 * u[t] + Transpose[u[t]] * W3 * u[t], for {t, 0, tf}],

where:

G is an n × × n symmetric matrix of known constants,
W1 is an n × m symmetric matrix of known functions of time,
W2 is an n × m matrix of known functions of time, and
W3 is an m × m symmetric matrix of known functions of time and is taken to 

be positive definite.

Then the control law is known to be9

u[x, t] = –Inverse[W3] * Transpose[B] * R[t] * Inverse[Q] * C * x[tf] ‒ Inverse[W3] 
* (Transpose[W2] + Transpose[B] * (P[t] ‒ R[t] * Inverse[Q] * Transpose[R])) * x[t]

where:

	� dP/dt = ‒P * A ‒ Transpose[A] * P ‒ W1 + (P * B + W2) * Inverse[W3] * 
	 (Transpose[W2] + Transpose[B] * P),

with P[tf] = G. Note P is an n × n matrix of functions of time determined by inte-
grating backward from P[tf].

dR/dt = (P * B * Inverse[W3] * Transpose[B] – Transpose[A] + W2 * Inverse[W3] 
* Transpose[B]) * R, with R[tf] = Transpose[F].

Note that R is an n × p matrix of functions of time determined by integrating 
backward from R[tf].

	 dQ/dt = Transpose[R] * B * Inverse[W3] * Transpose[B] * R, with Q[tf] = 0.

Note Q is a p × p matrix of functions of time determine by integrating backward 
from Q[tf]).

Similar results can be quoted with the introduction of noise or uncertainty in the 
equations of motion, measurement of state variables, and application of controls. For 
the case of A, B constant, G and W3 zero matrices, and tf taken to be infinity, the 
solution simplifies considerably to

	 u[x, t] = -K * x,

where

	 K = Inverse[W3] * Transpose[B] * P
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and

	 Transpose[A] * P + P * A ‒ P * B * Inverse[W3] * Transpose[B] + W1 = 0

The formal requirements ContFunctforLinConstEOM provide solutions to this 
type of problem. Here is a simple example:

A stable solution is obtained only for P’s that are positive definite, which is the 
case for candidate solution 4, provided c > ‒2. Notice the optimal control law requires 
measurement of all the states, this is a universal characteristic of such solution, so 
clearly then, unless the states can be measured or estimated, the optimal control can-
not be implemented.

Let’s examine the solution for the presumed equations of motion. The resulting 
differential equations are
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Assuming c = 1 and x1[0] = 1 and x2[0] = 0, the index of performance is trying to 
drive both states to 0 as soon as practical:
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So the obtained control law works pretty well. But suppose the equations of 
motion are slightly wrong, for example, the 1’s in A and B should really be 1.1 and 
a small bias of 0.01 is unknowingly provided by the real-world control mechanisms:
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The optimal control law is still working very well but no longer perfectly; you 
can discern a bit longer to get to 0 values and some oscillation about the 0 value 
with time. Now suppose neither state can be perfectly measured, that there will be 
random noise corrupting the x1 and x2 utilized by the controller, and suppose this 
noise uniformly distributed between ‒0.01 and 0.01, we can simulate this situation 
as follows:
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The optimal controller is still working pretty well, though we do see it takes lon-
ger to get to the 0 values for both states and we see the beginnings of some over- and 
undershoot on both variables. Still, the power of the method is evident; even with 
reality incorrectly modeled, biases in control application, and noise in the measure-
ments, the controller is working.

For system models with terms that vary with time, or with nonlinear f’s, closed 
form solutions using calculus of variations are rarely derivable. The reader should be 
able to find developed application packages for these much more complicated situa-
tions, and sometimes they will work wonderfully.

My suggestion to the reader is that fuzzy logic offers a general purpose solution 
process, that though approximate, is quite robust in implementation. The process is as 
follows:

	 1.	Establish the equations of motion with careful attention to what can really 
be accurately measured and accurately controlled in a timely fashion.

	 2.	For these equations of motion, find by whatever means is possible, a near-
optimum nominal control function.

	 3.	Vary the key parameters that could affect the control function over the likely 
range of possible alternative values and determine two things—the new con-
trol law and the difference between that and the nominal control law.

	 4.	Use the above sensitivity data to establish fuzzy logic rules for establishing 
a control based on fuzzy senses values.

We’ll use the flat earth, no-atmosphere equations of motion introduced in Chapter 
2 to illustrate the creation of and use of a fuzzy controller. The problem statement is

minimize tfinal with

dx1/dt = x3, x1(0) = 0, x1(tfinal) unspecified
dx2/dt = x4, x2(0) = 0, x2(tfinal) = 50,000 meters
dx3/dt = A * Cos[Theta], x3(0) = 0, x3(tfinal) = 5444 meters/second
dx4/dt = A * Sin[Theta] – g, x4(0) =0, x4(tfinal) = 0 meters/second
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where g is acceleration due to gravity, assumed to be a constant of 5.32 meters/sec-
ond^2; A is thrust divided by mass and assumed to be a constant of 20.82 meters/
second^2; and atmospheric affects such as lift and draft are assumed to be negligible.

Recall the open loop optimal steering law is given by

	 Tan[Theta]= a * t + b

where a and b are constants which are determined by solving three nonlinear 
equations in three unknowns of a, b, and tfinal. Despite the almost absurd sim-
plifications, I assure you this “lintan” control function is remarkably robust for the 
exo-atmospheric phase of rocket motion, and provides a near optimal solution even 
with the realities of an oblong planet and gravity decreasing with altitude. The Space 
Shuttle used this control law. Thanks to a math trick I won’t bother you with, we 
can find equations of motion that let us use on-board computers of modest power to 
solve for a new a and b every few seconds; since the new solution is dependent on 
the current state, a control law is thus achieved. But, though effective, the solution so 
obtained remains sensitive to modeling errors, and a less than optimal solution will 
be obtained in proportion to the size of the errors.

Alternatively, we can use fuzzy logic to approximate the control law. What fol-
lows is the step-by-step process for so doing. When we are done, we’ll compare how 
well the fuzzy logic solution deals with modeling and control system implementation 
realities to utilizing the open-loop optimum provided by calculus of variations.

Knowing the solution is the tangent varying linearly with time, we can use the 
Mathematica routine FindMinimum to find the linear constants (a and b) that mini-
mize the index of performance (tfinal). To do this, we must integrate the equations 
of motion with the trial control law and figure out when to stop the integration. This 
is a common issue in such problems. In this case, x3 is a convenient variable to 
use to stop integration since for essentially any control law we try, we see from the 
equations x3 will monotonically increase by A * Cos[Theta], eventually reaching 
the desired value of 5444. Once it does we stop integrating, and note what tfinal 
is, and what value x2 got to, hoping it is near 50,000, while x4[tf] is near 0. So 
we ask FindMinimum to find a and b so that tfinal is minimized and the penalties 
(x2[tf]/50000–1)^2 and x4[tf]^2 are driven to zero.

First define the needed constants, which are the desired final altitude (H), the 
desired final horizontal velocity (U), the rocket’s assumed constant acceleration (A), 
and the planet’s assumed constant gravity acceleration (g):

The formal requirements FlatNoAtmConstTEOM integrate and save the state and 
control values in arrays from time equals 0 to achieving the stopping condition (x3 
achieves its desired value), and report the corresponding tfinal, x2[tfinal] and x4[tfinal].

The index of performance is defined to be

	 minimize J = tfinal + w1 * (x2[tfinal]) / H ‒ 1)^2 + w2 * (x3[tfial])^2
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where w1 and w2 are positive numbers used as weights on the penalty terms added 
to tfinal to achieve the terminal condition constraints. So, J is defined as follows:

Since there are only two independent variables, it is easy to produce a contour plot 
using z1 to represent possible a values and z2 to represent possible b values, to help 
visualize where the solutions may be
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The plot indicates a huge area in which J is very close to a minimum. This 
means the exact global optimum is going to be difficult to find numerically. If the 
solution space is approximately symmetric, the solution is somewhere near the cen-
ter of the area which is a equal to ‒.0015 and b equal to .5. With some difficulty, 
FindMinimum finds an optimal set of steering constants and we check the trajec-
tory achieved:
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To check how well the solution did, substitute z1 for a and z2 for b into 
FlatNoAtmConstTEOM:

So we terminate thrust at 272.5 seconds, 0.8 above the desired altitude of 50,000, 
and just under 0.003 over the desired vertical velocity of 0.

Please note what the optimum steering law is: it is a complete time history for 
theta, from initial time to final time, that is dependent on the terminal conditions 
sought (H, U, and that the final vertical velocity is to be 0) as well as the system 
variables A and g, and the form of the equations of motion. Change any of these 
factors, and a totally different theta time history is optimum, not a deviation from 
the nominal optimum. Unfortunately then, should reality not match our model, the 
chosen steering decision will not be optimum. Since our model is at best an approxi-
mation, we can then be certain our so-called optimal steering law is in reality going 
to be suboptimum when it is applied in real life.

The goodness of our decision is dependent on the goodness of our model. 
We can estimate our sensitivity to the modeling inaccuracies by performing a 
Monte Carlo simulation, in which the potential alternative values for A and g are 
estimated by probability density functions and we can model to what extent the 
real-world control system may implement a theta value somewhat off the one we 
command. As an example, possible real-world values for A, g, and the steering 
bias are represented as uniform distributions between a minimum and maximum 
value with mean the value we assumed to determine the optimum steering law. 
So if the real A could be as much as 5% more or less than the assumed A, the real 
g plus or minus 1% the assumed g, and a bias of plus or minus 0.1 degree could 
manifest itself in the control mechanism, then we produce 500 random possibili-
ties as follows:

So, at tfinal, the mean and standard deviation obtained are



188 Systems Engineering and Architecting: Creating Formal Requirements

For the final altitude achieved, which is desired to be 50,000, the mean and stan-
dard deviation are

For the final vertical velocity achieved, which is desired to be 0, the mean and 
standard deviation obtained are

Our job is to determine theta so that we can keep the mean result for final altitude 
and vertical velocity closer to the goals of 50,000 and 0, while still minimizing the 
tfinal. Fuzzy logic controllers are usually superior to any alternative method because 
the fuzzy logic controller expects the sensed information to be uncertain, the applied 
control to be uncertain, and the underlying equations used to establish the control 
relationship uncertain. It is not surprising then that the resultant controller is very 
robust when confronted with all these uncertainties.

To develop the fuzzy controller for this problem, we note that the optimal control 
law is directly a result of the initial state, the desired final state, and the system vari-
ables, A, g, and any theta bias that may manifest itself. Let’s assume all these are 
unknown but constant while we are flying, then the optimal linear tangent steering 
law still has the form of a linear tangent relationship, just with unknown constants. 
So we must first solve a system identification problem to ascertain, as easily as we 
can to facilitate real time determination, what combination of real A, g, and theta 
bias are we experiencing, then determine the best control law from that point for-
ward. Alternatively, we can examine the measured state vectors and compare them 
to the values we would have if everything was nominal, and use the difference in the 
state vectors as a proxy indicating we must have different A, g, or theta bias than 
expected, and again, relate the state vector differences to new values for a and b 
we should use from that point on. For this problem, a body-mounted accelerometer 
enables dx3/dt and dx4/dt (vertical and horizontal acceleration) to be approximately 
measured at any time in the trajectory. So we could integrate this information on-
board and estimate x3 and x4 (vertical and horizontal velocity) and relate the values 
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obtained to the nominal values we would expect at a point in time that we’ll call the 
decision gate.

To make the optimal control decisions, we need to get some data. Since we have 
three uncertainties and we can easily assume at least five trial values for each, 
we could evaluate 125 cases. But to minimize the work we’ll take advantage of 
the Taguchi method and use an orthogonal array to reduce the number of need 
optimizations. Using the L25(5x6) array we can assess combinations of up to six 
variables at five levels with only 25 evaluations. The 25 optimization problems 
that were solved to get the training data are documented in Appendix 3B. For each 
of those optimization problems, we fly the nominal steering profile to 3 seconds, 
while the trial acceleration, gravity, and bias are set to specify off nominal values. 
Starting at 3 seconds, the optimization routine finds out what the steering law 
needs to be for those off nominal parameters. The 25 results are summarized in 
Table 3.5, which also show what the horizontal (x3) and vertical (x4) velocities 
were at 3 seconds.

TABLE 3.5
Training Data for Fuzzy Controller for Optimal Rocket Trajectory

Trial A value g value bias value x3 at 3s x4 at 3s a* b*

1 1 1 1 53.4292 10.0104 ‒0.0014458 0.491329
2 1 2 2 53.4067 9.97719 ‒0.00143856 0.491326
3 1 3 3 53.3841 9.94399 ‒0.00143928 0.492063
4 1 4 4 53.3614 9.91076 ‒0.00144029 0.492805
5 1 5 5 53.3388 9.87752 ‒0.00144138 0.49356
6 2 1 2 54.8121 10.7374 ‒0.00151469 0.487227
7 2 2 3 54.7889 10.7055 ‒0.0015158 0.487933
8 2 3 4 54.7657 10.6735 ‒0.00151693 0.489337
9 2 4 5 54.7424 10.6415 ‒0.00151796 0.489337

10 2 5 1 54.8352 10.3704 ‒0.0015134 0.494674
11 3 1 3 56.1938 11.4670 ‒0.00159324 0.484222
12 3 2 4 56.1699 11.4362 ‒0.00159433 0.484879
13 3 3 5 56.1461 11.4054 ‒0.00159543 0.485538
14 3 4 1 56.2413 11.1294 ‒0.00159198 0.490727
15 3 5 2 56.2175 11.0987 ‒0.00159309 0.490277
16 4 1 4 57.5742 12.1989 ‒0.00167183 0.481433
17 4 2 5 57.5497 12.1693 ‒0.0016729 0.482044
18 4 3 1 57.6473 11.8885 ‒0.0067895 0.488112
19 4 4 2 57.6230 11.8590 ‒0.00167011 0.487771
20 4 5 3 57.5986 11.8294 ‒0.00167128 0.488401
21 5 1 5 58.9543 12.9333 ‒0.00174927 0.478731
22 5 2 1 59.0533 12.6475 ‒0.00175585 0.484796
23 5 3 2 59.0284 12.6192 ‒0.00175686 0.485362
24 5 4 3 59.0034 12.5909 ‒0.00175769 0.485902
25 5 5 4 58.9784 12.5626 ‒0.00175901 0.486511



190 Systems Engineering and Architecting: Creating Formal Requirements

From the table above, here are the training data to determine a as a function of x3 and x4:

Since we want the steering law to be a function of both the x3 and x4, the fuzzy 
logic rules are of the form:

	 IF x3 = fuzzyX3[[i]]and x4 = fuzzyX4[[i]]THEN a = A[[i]]

for i equal 1 to the number of regions we care to subdivide the possible horizontal 
and vertical velocities into. Since we see from the training data x3 values between 
53 and 60, we elect to subdivide the region into eight fuzzy x3 regions, as follows:

	 fuzzyX3[[1]] = x3_very_very_very_low = <53, 53, 54>

	 fuzzyX3[[2]] = x3_very_very_low = <53, 54, 55>,

	 fuzzyX3[[3]] = x3_very_low = <54, 55, 56>,

	 fuzzyX3[[4]] = x3_low = <55, 56, 57>,

	 fuzzyX3[[5]] = x3_high = <56., 57, 58>,

	 fuzzyX3[[6]] = x3_very_high = <57, 58, 59>,

	 fuzzyX3[[7]] = x3_very_very_high = <58, 59, 60>

	 fuzzyX3[[8]] = x3_very_very_very_high = <59, 60, 60>

So:
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Similarly, since the training data shows x4 values between 9.5 and 12.5, we define 
eight fuzzy x4 regions as follows:

	 fuzzyX4[[1]] = x4_very_very_very_low = <9.5, 9.5, 10>,

	 fuzzyX4[[2]] = x4_very_very_low = <9.5, 10, 10.5>

	 fuzzyX4[[3]] = x4_very_low = <10, 10.5, 11>

	 fuzzyX4[[4]] = x4_low = <10.5, 11, 11.5>

	 fuzzyX4[[5]] = x4_high = <11, 11.5, 12>

	 fuzzyX4[[6]] = x4_very_high = <11.5, 12, 13>

	 fuzzyX4[[7]] = x4_very_very_high = <12, 12.5, 13>

	 fuzzyX4[[8]] = x4_very_very_very_high = <12.5, 13, 13>

So:

Since there are eight ranges for each input variables x3 and x4, the total input 
range space is an 8 × 8 grid. We lack training data for every one of these 64 boxes 
because all our trial cases fall into a subset of the 64 boxes essentially near the 
diagonal of the range because small changes in the fuzzy input parameters result 
in small changes in the output parameters. This is a common occurrence for 
fuzzy rules associated with physical motion. We know the fuzzy rules will be of 
the form:

	 {{x3range[[i]], x4range[[j]]}, output_value}

Recall from Chapter 2, the output_value determined by the counting method 
is the mean of the minimum, mean, and maximum training data that fell into that 
fuzzy range. If a region has no data associated with it, there is no means to calculate 
output_value. We could just leave the output undefined, after all it is, but should our 
rocket end up in a state associated with one of these fuzzy zones, there would be no 
steering command to provide and things will only get worse. So, even though our 
training data suggests there is a low probability we need steering commands for all 
64 fuzzy regions, it is prudent to define some output just in case. For our problem, 
we’ll assume the open loop optimal steering command is the best we can recom-
mend for these unlikely to reach fuzzy states.

FuzRulesIn1In2ForAbyCounting formulates fuzzy rules for two inputs and 
one deterministic output. Providing atraining data and fuzzyX3 and fuzzyX4 to 
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FuzRulesIn1In2ForAbyCounting yields the rules to determine a* as a function of x3 
and x4, which is called astarrules:

Recall in Chapter 2 we used EvalFuzRulesIFA1ANDA2THENBconst to evaluate 
such rules. Here we do so again and show the results using Plot3D:
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We can look at the training points relative to the fuzzy logic fit as follows:
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Finally, we can calculate the error between what the fuzzy rules return and the 
training data input values and the training data–dependent value:

Next, repeat the process for b*. First, get the training data from the table sum-
marizing the 25 optimization problems that were solved:
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Then, this time use the open loop optimal b* values as the default output for when 
no training data exists, the rules, bstarrules, for establishing b* values based on 
measured x3 and x4 at t = 3 are then found to be

The resulting b* value variability with the input values is visualized using Plot3D:
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Now we can test the decision-making process. We again run a Monte Carlo analy-
sis of the flights for randomly dispersed A, g, and thetabias values. We make the 
optimal controller’s job rightfully more difficult by modeling x3 and x4 measure-
ment errors by adding a random error to both x3 and x4 obtained at t = 3 seconds, 
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then use the fuzzy rules just defined about to set a new a and b to use to fly that point 
forward. To do this, we define FlatNoAtmConstTEOMopt to simulate the trajectory 
to first generate the corrupted x3 and x4 values at t = 3, then to enable the derived 
fuzzy rules to be evaluated to obtain the steering constants.

For the Monte Carlo analysis we use the same 500 random inputs for Apossibilities, 
gpossibilities and thetabiaspossibilities as used before. The mean and standard 
deviation for the fuzzy logic controller are

The mean and standard deviation for the flight time is

The mean and standard deviation for final altitude, which is to be 50,000, are

The mean and standard deviation for the final vertical velocity, which is to be 0, are

Table 3.6 compares the open and fuzzy logic controller results.

TABLE 3.6
Terminal Conditions Achieved Using Open-Loop Optimal and 
64-Rule Fuzzy Controller

Parameter
Open-Loop 

Optimal Control
64-Rule Fuzzy 

Control

Mean final time 272.9 272.9

Final time standard deviation < 10 <10 but > 10% larger

Error in mean final altitude 100’s 10’s

Final altitude standard deviation < 10000 <1000

Error in mean final vertical velocity 1’s 0.1’s

Final vertical velocity standard deviation < 100 <10
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The fuzzy controller improves the mean performance and reduces the standard devia-
tion by roughly a factor of 10. Notice the mean final time is about the same but the fuzzy 
controller standard deviation is actually more than 10% larger than when using the open 
loop optimal controller. The longer the rocker must burn, the more fuel it must carry, and 
the less payload it can deliver. These results indicate the final orbit insertion accuracy 
can be improved substantially, but only if more propellant is held in reserve. So, as with 
nearly everything in life, to get one thing, you need to prepare to sacrifice something else.

We can run experiments to see the impact of other rule sets. Suppose for example, 
our on-board processor is a bit limited, and we’d like to reduce the rule set to 25, 
roughly for measured x3 and x4 with fuzzy values of very high, high, nominal, low or 
very low. To start, redefine fuzzyx3 and fuzzyx4 to have five potential fuzzy values:

Then update the rules to determine a* and b* using the same training data and 
default values, but the new fuzzy ranges.  First, for a*:

Using Plot3D to visualize how the new rules translate the measured x3 and x4 
into the steering parameter:
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Then for b*:
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Finally, redo the Monte Carlo analyses with this new fuzzy controller:

The mean and standard deviation for the flight time are

The mean and standard deviation for final altitude, which is to be 50,000, are
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The mean and standard deviation for the final vertical velocity, which is to be 
0, are

Table 3.7 compares the three results.
The 25 rules case still provides considerable reduction in variability in the final 

altitude and vertical velocity, but the mean performance degrades considerably. As 
we showed in Chapter 2, more rules enables a better fit to the data, so controllers 
based on less rules are likely to be less “good.” But there is only so much informa-
tion in the data, and adding too many rules slows down the calculations to no benefit.

The basic process for establishing a fuzzy controller is as illustrated above, establish 
a mathematical model of the system behavior, and then formulate rules to provide con-
trols based on some of the measured states. If mathematics enables finding a near opti-
mal way to formulate these rules, then certainly take advantage of the situation. The 
Taguchi method can be used to minimize the trial cases needed to form the training 
data to establish the rules. Often, the rules can be formulated just as well using com-
mon sense. In such instances, each rule invokes a control in proportion to the measured 
state. A third approach is to structure the rules using the IF clauses, then select the 
THEN values by having each be the independent variables in an optimization problem.

3.2.13  �Determine an Optimum Configuration

By configuration, I mean an arrangement of objects or activities. The area of a beam 
versus its length is a simple configuration. A wing span, angle, and taper is a more 
complicated configuration. The locations for sensors to track satellites, with different 

TABLE 3.7
Terminal Conditions Achieved Using Open-Loop Optimal and 25- and 
64-Rule Fuzzy Controllers

Parameter
Open-Loop 

Optimal Control
64-Rule  Fuzzy 

Control
25-Rule  Fuzzy 

Control

Mean final time 272.9 272.9 272.9

Final time standard deviation < 10 <10 < 10 but > 10% larger

Error in mean final altitude 100’s 10’s ½ open loop

Final altitude standard deviation < 10000 ~1000 >1000

Error in mean final vertical velocity 1’s 0.1’s >1

Final vertical velocity standard 
deviation

< 100 <10 ~10
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viewing and data communications capabilities around the globe, are a still more 
complicated configuration. The problem statement is as follows:

What is the optimal configuration to achieve a stipulated result?
Optimum configurations are sought for a wide variety of problems, such as 

the following:

	 1.	How much of an item to move from multiple sources to multiple destina-
tions, with different costs for transport between the sources and destina-
tions? This is also known as the transportation problem.

	 2.	Which order to visit nodes to minimize the cost of travel? This is also 
known as the traveling salesman problem.

	 3.	What sequence of operations completes an assignment at minimum cost? 
This is also known as the scheduling problem.

	 4.	How to assign multiple resources to accomplish specified activities dur-
ing available times to maximize goals? This is also known as the table 
problem.

	 5.	Fastest ways to group objects into a set of categories? This is also known as 
the partitioning problem.

	 6.	What path should an object follow from point A to B where there are 
impassable obstacles or dangers to be avoided? This is also known as the 
navigation problem.

To illustrate determining optimal configurations, here is a problem documented 
in reference 10:

	 Minimize J = Sum[ f[x[[i,j]]],

with

	 i = 1 to 3

and

	 j = 1 to 4

where

	 f[x[[i,j]]] = 0 if x[[i, j]] = 0, otherwise = d + c * Sqrt[x[[i, j]]]

with

	 d = 5

	 c = {{0, 21, 50, 62}, {21, 0, 17, 54}, {50, 17, 0, 60}},

and
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	 x[[1, 1]] + x[[1, 2]] + x[[1, 3]] + x[[1, 4]] = 10

	 x[[2, 1]] + x[[2, 2]] + x[[2, 3]] + x[[2, 4]] = 15

	 x[[3, 1]] + x[[3, 2]] + x[[3, 3]] + x[[3, 4]] = 20

	 x[[1, 1]] + x[[2, 1]] + x[[3, 1]] = 3

	 x[[1, 2]] + x[[2, 2]] + x[[3, 2]] = 20

	 x[[1, 3]] + x[[2, 3]] + x[[3, 3]] = 5

	 x[[1, 4]] + x[[2, 4]] + x[[3, 4]] = 17

The last equation is actually redundant as the prior six equations uniquely deter-
mine the answer.

This is a 12-variable transportation problem to get {10, 15, 20} items from three 
sources to four places needing {3, 20, 5, 17} items, respectively.

TransportProblem represents the index of performance for which the constraints 
are added as penalty functions:

Simple configurations can often be found using the algorithms described in previ-
ous sections, but both FindMinimim and NMinimize fail to solve this optimization 
problem. Our best clue to find a solution is to mimic the way nature evolves a life form, 
which is, after all, a profoundly complicated configuration. To do so, we manufacture 
a method to denote a configuration uniquely as a series of numbers, perhaps as a long 
binary string, where finite lengths of the string correspond to parts of the configura-
tion description. In essence, we create a set of genes to represent the configuration, 
where each number in the gene, whether we use just ones and zeros, or real numbers, 
roughly corresponds to chromosomes. We randomly create many gene sequences, so 
we have a population of diverse individual test cases. For each member of the popula-
tion we assess goodness against our criteria. We then select two members from the 
population, perhaps randomly, perhaps with the odds in proportion to their goodness, 
and we manufacture a means to create one or more new members of the population 
based on the chromosomes associated with the chosen parents. There are numerous 
ways to do this. We could specify an arbitrary point in the number sequence, and up to 
that point, we could copy numbers from the first parent, and after that point we could 
copy numbers from the second parent. This is called crossover. We could do this at 
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an arbitrary number of places in the sequence, for arbitrary quantity of numbers, to 
the limit of each chromosome’s value; this is called multiple crossover. We could 
compare the two numbers from each parent and select an arbitrary number between 
the two values, or even extrapolated beyond the two variables. This is called arith-
metic combination. In addition, at a low probability, we could mutate one or more of 
the numbers to a value that has no correspondence to either parent. We can make any 
number of children by all these means. We can assess all their respective goodness. 
We can keep for the next population just the children, or a finite set of those that score 
the best, and repeat the process. What will gradually happen is all members of the 
population become essentially the same as represented by their numerical genes. We 
will see very little difference in goodness, and we can select the one that has the best 
goodness as our answer. In a nutshell, this is a description of the genetic programming 
algorithm. Though we can utilize such an algorithm to solve any optimization prob-
lem, I have found that usually this method is best suited for configuration problems. 
The tricky part is to figure out an efficient means to represent the configuration so 
goodness can be easily and rapidly calculated. “Rapid” is necessary, because to find 
the optimum and not get stuck on a local optimum, these methods, like evolution, 
need a sizable population with genetic diversity. A heuristic for the trial population 
size is at least 50 members for each parameter sought. Then, at least hundreds and 
usually thousands of generations must be produced, so J evaluation needs to be very 
efficient, or the method takes a long time to reach a conclusion. For this reason, it is 
wise to also monitor the solution obtained for incremental generations.

The very first genetic algorithms represented independent variable values in base 
two using binary strings of equal length and sufficient number of digits to span the 
permissible range for the independent variables. The gene string was the binary rep-
resentation of the each independent variable, concatenated from first to last. You can 
see how crossover got invented, picking an arbitrary point along the total string of 
1’s and 0’s, (most likely interior to the span associated with an independent variable) 
and swapping prior values with one parent’s string and post values with another par-
ent’s string, changes the value for all independent variables. Also, mutation is easy 
to visualize: randomly change any or several 0’s to a 1’s or vice versa. Experiments 
soon showed the methodology converged faster if real numbers were used. Crossover 
became not only swapping numbers, but also arithmetically combining numbers, and 
mutation changed the value of one or more numbers to a new value between a permis-
sible minimum and maximum. Basic ways to mimic genetic manipulations are

	 1.	Uniform mutation: an existing population member has one randomly cho-
sen element modified based on a uniform distribution between a minimum 
and maximum value

	 2.	Boundary mutation: an existing population member has one randomly cho-
sen element set to either its minimum or maximum value, usually with equal 
probability

	 3.	Non-uniform mutation: an existing population member has one randomly 
chosen element set to a value randomly intermediate between its current 
value or its minimum or maximum value
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	 4.	Arithmetic crossover: two randomly chosen members of the population, 
with gene strings p1 and p2 respectively, create two children as follows:

	 r * p1 + (1 ‒ r) * p2

and

	 r * p2 + (1 ‒ r) * p1

where r is a uniform random variable between 0 and 1

	 5.	 Simple crossover: two randomly chosen members of the population switch 
elements starting at a randomly chosen element, to the end of the end of the last 
element

	 6.	Heuristic crossover: one parent is chosen randomly, p1, and a second parent 
p2 is chosen randomly from those with a better index of performance; the 
new population member is

	 r * (p2 ‒ p1) + p2

(Note that if the numerical values have limits, they need to be checked, and if 
exceeded, they need to be set to the appropriate limit.)

The formal requirements FindMinGA perform a genetic optimization.
To apply FindMinGA to optimize TransportProblem, first define the minimum 

and maximum values each independent variable can have, which are l and u, respec-
tively, then run FindMinGA a number of times since the initial variable assignment 
and subsequent modifications are randomly determined. Here are 10 example runs 
with a population size of 100, 10 parents per generation, 5000 maximum genera-
tions, and a stopping condition set for when the difference between the best and 
worst index of performance for the population is less than 1%:
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Notice all the independent variables are now integers, since we are assuming only 
whole things can be shipped from place to place. There is quite a range in results, but 
a few hint as to the optimum answer.

As genetic algorithm research matured, people soon realized the process was a 
specific implementation of an evolving strategy, where randomness could be used 
in a “controlled” way to mimic the same result. The simplest random search tries  
one new randomly selected set of independent variables. The more effective ran-
dom search methods use an annealing function which provides a number less than 
1 that slowly decreases in value as the search proceeds. The annealing function 
value is the probability a worse trial solution is accepted rather than a better trial 
solution, to help prevent premature termination at a local minimum. In evolving 
strategies, randomness is used differently, rather than to directly select a new trial 
point, randomness is used to create solutions similar to existing solutions with the 
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rationale that good characteristics can be retained and bad characteristics gradu-
ally eliminated.

A typical evolving strategy algorithm is as follows:

	 To min J[x],

with
	 x an array of dimension n,

and

	 L[[i]] <= x[[i]] <= U[[i]] for i = 1 to n,

also define

	 sigma[[i]] =(U[[i]] - L[[i]])/6 for i = 1 to n

Step 1.	Form a population of P x’s by randomly assigning values between L[[i]] 
and U[[i]] to each x[[i]], i = 1 to n.

Step 2.	Do the following at least P times: Randomly select 2 individuals from the 
population, x1 and x2 along with their associated sigma1 and sigma2, 
with a 50% probability, create a trial member y by selecting with 50% 
probability each element from x1 or x2 and sigma1 and sigma2, with 
50% probability, create a trial member:

	 y = alpha * x1 + (1 ‒ alpha) * x2

and

	 sigmay = alpha * sigma1 + (1 ‒ alpha) * sigma2

with alpha randomly selected between 0 and 1. To each member of sigmay apply a 
mutation as follows

	 sigmaymutated = sigmay * Exp[NormalDistribution(0, delta)]

(where NormalDistribution(m, s) is a normal probability density function with mean 
m and standard deviation s. Note, for small delta, this step will increase or decrease 
sigmay a small amount). To each member of y apply a mutation as follows:

	 ymutated = y + NormalDistribution(0, sigmaymutated).

Evaluate the index of performance for y.

Step 3.	 Of the P trials, let ybest be the ymutated that provides the best J, denoted 
Jbest, and yworst be the ymutated that provides the worst J, denoted Jworst.

	 If |Jbest – Jworst| is less than a tolerance, stop.

Otherwise, replace the population x with ymutated, and go to step 2. (Or keep the P 
members from x or ymutated that provided the P best J values. Or keep the x or ymu-
tated which provides the best J values, and replace the remaining P ‒ 1 members of the 
population with the all the ymutated, except the one which generates the worst J value.)
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The formal requirements MakeChildrenSigma do precisely that, and make evolv-
ing trial solutions and their corresponding sigma values.

The formal requirements FindMinES minimizes an index of performance 
using the evolving strategy outlined above. Here are five trial runs of FindMinES 
for the TransportProblem:
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Notice we are again getting a range of answers, with slightly better results than 
obtained using the genetic algorithm, that require substantially more index of per-
formance evaluations.

Lastly, we examine what can happen if we spend the time to produce a genetic 
algorithm that is tailored to the problem. In both the proceeding attempts we con-
structed a vector to represent the solution. But the natural construct is clearly a matrix 
that relates how much to move from source i to destination j. Our primary difficulty 
is to find a way to assign values to the matrix that satisfy the constraints. Reference 
10 explains a very clever solution, which is implemented here in Mathematica by 
InitialTransport1.

The formal requirements InitialTransport1 can be used as many times as we want 
to create an initial population, all members of which satisfy the constraints. Here is 
one instantiation:

Next, we need a way to mutate a population member, in a manner that again 
assures the mutation satisfies the constraints. To do so, take a random matrix (at least 
2 × 2) and apply the above routine to that matrix, then insert the modified result back 
into the elements of the total matrix. This is accomplished by the formal require-
ments TransportMutateType1. Here is an example:

The above allows us to rearrange elements of the matrix. The following 
allows us to actually change element values. The InitialTransport2 is identical to 
InitialTransport1, except a conditional is introduced, such that up to assigning the 
last mutated element, the predecessor elements can have randomly assigned values 
up to the lower of the source or destination limits.

The formal requirements InitialTransport2 are used in TransportMutateType2 
to change values in matrices that are permissible solutions. Here is an example 
output:
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For crossover, an arithmetic combination works just fine, since we are certain the 
child will still honor the constraints. (In reference 10, a fixed combination term was 
used; here we use a random term.) The formal requirements TransportCrossOver 
implement this. An example crossover output:

The formal requirements TransportGA solve the general (nonlinear, that is 
the solution can be real, not all integers) transport problem for a specified index 
of performance denoting the cost of transportation from sources to destina-
tions. The requirements first make a population of a user-specified size, using 
InitialTransport1. Then for each member of the population, for a specified prob-
ability, it may combine with a randomly selected second member of the population 
to create two children by crossover, or with a specified probability, create a child 
by either TransportMutate1 or TransportMutate2, with equal probability. So this 
is a very explicit example of applying genetic algorithm to a problem in exactly the 
form of the problem.

To utilize these formal requirements, we need to modify the index of perfor-
mance to make its calculation based on a matrix input, rather than a vector, as 
follows:
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Now to apply the approach to the transport problem:
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Clearly, this genetic search provides better solutions with fewer index of per-
formance evaluations. Hence the heuristic, for configuration problems, use genetic 
algorithms coded in the context of the problem.

3.2.14  �Determine the Best Strategy Relative to a Competitor

The problem statement is

What strategy will maximize my payoff versus a competitor?

This problem is always extremely difficult to solve since the options to choose 
from quickly grow so huge they cannot be exhaustively assessed in any reason-
able time. Nevertheless, progress can be made: witness the success of software 
programmed to complete against humans at checkers, backgammon, and chess. To 
achieve this success took considerable effort over many years, fast computers, and 
the discovery of clever approximations to help guide strategy selection, rather than 
brute force tabulation of every possible move and counter move. 

Here, we limit our attention to two competitors, C1 and C2. C1 can make one of 
n decisions; C2 can make one of m decisions. The payoff is known for all possible 
decisions and represented by an n by m matrix so that payoff [[i, j]] declares the 
amount C1 pays C2 if C1 invokes strategy i and C2 invokes strategy j. Some care 
is recommended in producing the payoff matrix. For example, there is no reason to 
include a row that has all its values less than another row; if you did, there no is rea-
son to ever pick the strategy corresponding to that row. Similarly, there is no reason 
to have a column with every element less than some other column.

For some payoff matrices, there is a mutual strategy selection that maximizes the 
payoff for both players relative to all other strategy options. This [[i, j]] is called a 
saddle point. If the value of the payoff is not 0, it will not be “fair” since if positive, 
C2 keeps getting more at expense of C1, and if it is negative, C1 keeps gaining at 
the expense of C2, but neither player can alter their strategy without risking larger 
loss. The formal requirements SaddlePoint determine if a saddle point exists and the 
corresponding payout.

P1 and P2 as defined below are payoff matrices, with saddle points.

So for P1, if C1 always invokes strategy 4 and C2 always invokes strategy 3, C2 
always wins 1. Though not nice for C1, any other strategy could result in a worse 
payoff. There are several other payoff cells with the same value, namely, [[1,1]], 
[[1,2]], [[2,1]], [[2,2]], [[2,3]], [[3,1]], [[3,3,]], and [[4,4,]]. For all these other strategy 
combinations, there is a counterstrategy that pays off better for one competitor. For 
example, if C1 tries strategy 1, the risk of loss is now 2, if C2 plays strategy 4. If C1 
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plays strategy 2, he will only be better off if C2 plays strategy 3, so C2 will not, and 
C1 continues to lose 1. If C1 plays strategy 3, though he would be better off if C2 
plays strategy 2 or 4, C2 will not do so, so again C1 continues to lose 1. A similar 
review of C2 options will show though there are options that might provide a bigger 
payoff than 1, each can be countered by a strategy option for C1 that limits the payoff 
to 1. For P2, C1 has numerous larger winning possibilities, but they consistently play 
strategy 3 and C2 consistently plays strategy 2, and there is no better combined out-
come for the two competitors, even though the payoff always favors C2.

Here is an example without a saddle point:

If there is no saddle point in the payoff matrix, then, given no insight into the 
Competitor’s intentions, assuming the competition will last several rounds, one seeks 
to randomly pick a strategy with the probability of selecting each strategy set to max-
imize one’s likely payoff over the multiple competitions. For a square payoff matrix 
(m = n) with no negative payoffs (this can be assured by adding the same constant to 
each element so no element is less than 1), the probabilities are found by solving the 
following optimization problem:

For Competitor2, let c2[[j]] be the probability to invoke strategy j, 1<= j <= m.
Then:

	 max[Sum[x[[i]],{i, 1, number_strategies}]]

subject to the constraints:

	 P.x <= 1.

Then:

	 c2[[i]] = x[[i]] / determinent[P]

For Competitor1, apply the same algorithm on Transpose[P].
The formal requirements StrategyProbabilities determines the probabilities. 

Here is the strategy for C2 for the payoff matrix Pm:

Competitor1 strategies are
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Here is a simulation of the two competitors playing their respective strategies 10 times:

10
Competitions

Competitor 2 Gain

8642

10

20Out[182]=

30

40

The formal requirements GameSim executes 10 games, with each competitor 
playing an optimum random strategy 1000 times. Here is the result for 1000 trials of 
the optimum strategy:
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The formal requirements GameSimStrategy3 simulates 1000 trials of 10 games 
in which Competitor1 knows Competitor2 will invoke such a strategy, so then 
Competitor1 picks strategy 3 every time since that is the only strategy for which 
Competitor1 gets a return. Here is the result for 1000 trials of the optimum strategy:

Although the mean result is about the same, the variance is about six times larger. 
By invoking a non-optimum strategy, Competitor1 does create the possibility of less 
loss (the minimum payoff for Competitor2 is much about 10 times less), but also the 
possibility of much worse losses (the maximum payoff for Competitor2 is substan-
tially higher). You cannot beat an optimum strategy unless your intelligence is very 
specific, in this case, you have to know precisely what Competitor2’s strategy will 
be just before invoked; only then could you formulate a strategy that will necessarily 
be toward your advantage. But then again, if luck is all you have, you might as well 
depend on it.

Even if real-world competition complexities are beyond practical analysis, one 
can usually approximately analyze the strategic options and consequences by the 
means illustrated above. The heuristics that should be heeded are

	 1.	 If the payoff matrix value is in your favor, then compete, if the worse pos-
sible loss can be tolerated. Remember, it is very rare you are absolutely 
guaranteed to win. Your competitor is probably just as smart as you. They 
will recognize a situation that shows they are unlikely to win, and so most 
likely they will avoid competition. This is potentially to your advantage.

	 2.	Should the payoff matrix show you will lose, then don’t compete. It is amaz-
ing how often people fail to heed this advice. Rather, seek to change the 
situation so the payoff matrix has at least a saddle point of 0 value or with 
too low a value for your competitor to be interested in competing.

	 3.	 If cooperation either minimizes your maximum loss or maximizes your 
minimum gain, then cooperate.

	 4.	 If your competitor is executing an optimum strategy, and you can discern 
this, intelligence is of value only if it can determine exactly what the com-
petitor will do immediately prior to doing it.

3.2.15  �Make Decisions Regarding Risks

A risk is something that can happen with detrimental consequences. Risk manage-
ment is a program management function, but often the program manager asks the 
systems engineers or architects to support, so methodologies are presented to do 
decision making regarding identifiable and unidentifiable risks.
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3.2.15.1  Make Decisions to Mitigate Identifiable Risks
For identifiable risks, the risk management process is

Step 1.	 Identify potential risks.
Step 2.	Assess the likelihood and consequence.
Step 3.	Prepare a plan to attempt to reduce the likelihood or make the risk conse-

quence acceptable.
Step 4.	Execute the risk mitigation plan.

The four primary ways to identify risks are to do the following:

	 1.	Recall what bad things happened previously on similar endeavors.
	 2.	Utilize thought prompting questions based on prior experience.
	 3.	Challenge the veracity of assumptions made.
	 4.	 Identify any items not previously used before or any activities not previ-

ously accomplished successfully.

How the prior similar systems or architectures were designed, or analyzed, or how 
people used the prior similar system or architecture, may have resulted in undesirable 
consequences. Risk mitigation for these prior issues is straightforward; implement a 
solution that accommodates the bad thing happening to the fullest extent willing to 
allocate resources to do so. For example, if a prior building was destroyed due to a 
particularly energetic earthquake, then design and build future buildings to withstand 
such earthquakes. Of course, it is much easier to say this than do it. Considerable effort 
will need to be expended to analyze, simulate, and test ways to make earthquake toler-
ant buildings.

Many organizations utilize standard questions to try to institutionalize risk identi-
fication. A particularly good set of questions is documented in reference 11.

One never knows for certain how long it will take for technology to mature, nor 
even if it will ever perform as desired. Such risks are also easy to mitigate. First, 
minimize dependency on immature technology. In the limit, this could result in 
avoiding implementing a system solution, which will upset those who want the solu-
tion, but if the technology never matures, the system never comes in to existence so 
it seems imminently logical to avoid implementing systems with immature technol-
ogy. Alternatively, there may be an acceptable, but a less well-performing system 
that could be fielded until the technology is matured. Under these conditions, the risk 
mitigation decision is when to switch to the more mature technology.

Any assumptions that turn out to be incorrect can manifest themselves in unin-
tended consequences. Uncertainty risks are managed by modeling the variability 
or uncertainty to determine the amount of design margins to impose. These risk 
decisions involve setting the magnitude of the uncertainties to accommodate and the 
establishment of how much margin to impose.

It is currently fashionable to identify a risk as a mark on a 5 × 5 matrix, where 
rows depict different levels of probability of occurrence, and the columns depict dif-
ferent levels of consequence, as shown in Table 3.8.
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The rows and column headers may use relative words as shown above, or may 
specify the probability ranges numerically. The consequences columns may state 
ranges for dollars, days of delay, or physical units for some desired performance. 
Each cell is often color coded, from blue or green for those combinations of prob-
ability and consequence that are considered low risk, to yellow and then red for those 
cells that denote high risk. The risk register approach, though certainly better than 
nothing, has two serious weaknesses.

First, virtually nothing that can go wrong (what a risk is) has a single distinct 
probability and consequence, but is rather a continuum of possible results at either 
different probabilities, or a fuzzy number depicting the uncertainty associated with 
the result. For example, a risk might be as follows:

IF the structural mass exceeds its allocation, THEN the payload mass allocation 
will have to be reduced in proportion.

During system development, the mass is a guess, and has a wide range of possible 
values, many of which are under the launch vehicle’s limit, a few of which may be 
over the limit. Rather than communicate the mass risk on a 5 × 5 table, show the 
mass estimate as a fuzzy number with respect to the launch vehicle capability.

Second, the state of the mitigation effort affects where the mark should be made. 
When using the risk register it is common to denote multiple marks for each risk, 
indicating where it is “now” (or “before mitigation”) and where it will be moved to 
as the mitigation effort is completed. But what really happens as the mitigation effort 
proceeds is that the uncertainty in the result is hopefully reduced and the difference 
between the predicted value and the desired value hopefully shrinks. None of this 
is communicated by placing marks on the 5 × 5 matrix. Let’s go back to the mass 
risk above. As the design matures the mass estimate uncertainty will undoubtedly 
improve: it may get heavier, it may get lighter, but the certainty will increase, and the 
consequence is partly a result of what the final number is for the entity, and equally 
what the final numbers are of all the other masses, relative to a requirement, which 
itself might change. If it is ever determined the mass estimate is going to cause a 
problem, then the mitigation effort may be to reduce the item’s mass by removing 
material, or perhaps substituting material, or the mitigation effort might be to accept 
the mass increase in one item and reduce mass elsewhere, or to find a carrier that can 

TABLE 3.8
Typical Risk Register Currently in Vogue

Risk Level

Consequence

Very Low Low Medium High Very High

Probability Very high Low risk Low risk Medium risk High risk High risk

High Low risk Low risk Medium risk Medium risk High risk

Medium Low risk Low risk Medium risk Medium risk Medium risk

Low Low risk Low risk Low risk Low risk Low risk

Very low Low risk Low risk Low risk Low risk Low risk
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tolerate the higher mass. None of these options is well documented on the 5 × 5 matrix. 
At best you put a mark in one of the yellow or red areas for the mass “as is,” and you 
also put a mark in one of the green areas to denote that you predict the mass “will 
be” acceptable at some point. A better communication is shown in Chapter 2, plot the 
“was,” “is” and “will be” mass estimates.

The following recommend ways to identify, assess, and mitigate identifiable 
risks.

3.2.15.1.1  To Mitigate Cost Risks Retain Financial Reserves
All developmental and operations activities have inherent cost risks, the less prior 
experience doing either activity, the more the risk. For developmental cost estimates, 
the situation is aggravated since the acquirer will often deliver the contract to the 
lowest bidder, while the provider also bids the cost low to obtain the job. This mutu-
ally destructive behavior is unavoidable.

Development cost risks are mitigated by the acquirer using the methodology illus-
trated in Chapter 2 to adjust the seller’s proposed cost based on technology maturity 
and proposal risk (also known as estimation certainty.)  Obviously, should the seller 
apply such a technique to their estimate, the acquirer should only adjust the factors 
necessary to remove possible underbidding adjustments.

Operations costs for new systems are equally uncertain. To the extent opera-
tions require expendables, for example, such consumables as fuel, future opera-
tions costs will fluctuate with these costs. Use the lattice technique illustrated 
earlier in this chapter to determine possible operations cost ranges, then formulate 
options to enable cost reductions that pay off in proportion to the consumable cost 
increases that may occur.

3.2.15.1.2  To Mitigate Schedule Risks Promise Late and Deliver Early
Model the activities as shown in Chapter 2, honoring dependencies, with fuzzy num-
bers. Plan on the de-fuzzified time to be the necessary time to complete the effort. 
Note the worst possible time, and allow some contingency for the difference between 
the defuzzified total time and the worst possible time.

3.2.15.1.3  �To Mitigate Performance Risks Require the Entity 
to Tolerate Off Nominal Conditions and Predict 
Performance Acknowledging the Likelihood of Uncertainty

If an item is susceptible to less than perfect performance, then impose requirements 
to tolerate the uncertainty to some amount. A simple example is to require a structure 
be designed to accommodate a factor of safety times the most likely worst load, as 
mitigation for the risks of underestimating the load, or that the material properties 
are worse than assumed, or that the structure is utilized in a manner that will cause 
more loading than planned. Or, for example, if the item must operate in a high radia-
tion environment, then require a level of radiation to be tolerated. Or, if the item may 
have an engine failure, but must still be able to conduct its mission, then require the 
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capacity to do so. The art of this effort is to be able to name the possible things that 
can go wrong for which design tolerance must be included. Typical sources are as 
follows:

•	 Extremes in the operating environment (examples: loads, temperatures, 
humidity, dirt, pressure, radiation)

•	 Malfunction of components (examples: power failure, propulsion failure, 
structural failure, sensor failure, processing failure, communication failure)

•	 Purposeful damage by a specified means (examples: exposed to fire, hit by 
a car, shot with a bullet, attacked by a virus)

As was shown in Chapter 2, use either Monte Carlo or fuzzy mathematics to 
model the uncertainty and predict the likely performance, so the design allows for 
all components performing less than perfectly.

3.2.15.1.4  �Avoid Reliance on Immature Technologies for Key System or 
Architecture Performance and Mature Technology with Exit Gates

Should a system or architecture be dependent on a yet to be demonstrated technology, 
then obviously that lack of maturity represents a risk. If the cost adjustment and sched-
ule adjustment techniques mentioned above are used, then the some of the potential 
impact on the project are quantified. Sometimes backup alternatives for the low matu-
rity technologies can be substituted, then explicit circumstances should be identified 
when a decision will be made for the backup to substitute for the immature technology.

Technology development should be planned in the following manner. The current 
maturity level should be explicitly stated (recall in Chapter 2 that we showed how 
to do this using fuzzy number to allow for the ambiguity that might exist as to the 
itemized current state). Activities should be described that explain what will be done 
to attempt to get the technology to the next higher maturity level, step by step. Each 
activity needs to consist of declared tasks, rather than a implicit call for a miracle to 
happen. The capability that is to be demonstrated by the end of the actions must be 
quantified. As with any plan, a time estimate and a cost estimate are to be provided. 
As you approach the end of the activity, make a decision: continue or stop? At this 
point the money and time are spent, so looking back does no good. Rather estimate 
forward, an inherently inaccurate thing to do, but as demonstrated in Chapter 2 and 
as shown using uncertainties lattices, we can make reasonable predictions. The pri-
mary motivation should be to kill the immature technology in favor of the proven 
technology, so to continue, extraordinary good evidence must exist that the cost to 
go and time to go and capability to go are very attractive relative to the money and 
time available.

Please understand, I am all for technology development; it is exactly how new 
systems and architecture are created to enhance our lives. But they are fundamen-
tally gambles, and most do not pay off. Thank goodness though that both the fun of 
chase and the vision of the reward are tantalizing enough that people keep trying. 
My suggestion is, getting a complicated systems or architecture fielded is fraught 
with enough problems, so try to avoid the woes due to the unpredictable realities of 
technology development. System and architect engineers should communicate what 
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their current systems do, and customers should communicate what they wish they 
could do, and the technology developer should try to create something better. System 
engineers and architects should avoid like the plague the conscious inclusion of new 
technologies into an operational system. If the system or architecture one envisions 
to achieve the customer and user needs is dependent on an envisioned technology, 
then one should concentrate effort initially and exclusively on maturing that technol-
ogy. Since complicated systems and architectures often take a long time to come into 
being even if use existing technology, many organizations gamble that the technol-
ogy maturation efforts can proceed in parallel with the more mature efforts. But this 
is a gamble that history has showed nearly everyone loses, at least in the sense of 
achieving original cost and schedule targets. So, recognize technology maturation 
for what it is, a gamble. And like any successful gambler, you must do your best to 
get the odds in your favor, or at least stipulate a loss level you do not go beyond. If 
you have decided you need the technology no matter what, then cost and schedule 
limits must be approached in a different way. If your need is so great, cost is not the 
prime consideration, you certainly don’t want to behave that way or cost will grow 
unbounded. Useful heuristics are

	 1.	Compete the development. Though one may think it is counterproduc-
tive to split one’s resources, given human nature, it is almost always better 
to fund two different organizations to competitively deliver the needed 
technology.

	 2.	Utilize cost plus award fee contracts. That is, recognizing the cost is essen-
tially impossible to predict, be willing to reimburse the costs you approve, 
but keep the profit a judgment call on how well the effort is progressing.

	 3.	Parcel out the money in parts, consistent with the planned activities. This 
makes it easier to save resources if you need to stop. And thus makes it 
easier to stop if you need to.

	 4.	Review the planned activities, and object to and remove all unnecessary 
expenses other than those needed to mature the technology. Staffing levels 
should be low and overheads and other charges for expenses secondary to 
the technology maturation should be challenged and cut to the minimum 
level. Never let the ratio go below 20 active members for 1 administrative 
member.

	 5.	Make the decision whether to proceed based on estimate of time and money 
to spend, not spent. Never let the amount of the effort you’ve put into mak-
ing a technology work influence your decision on whether or not to continue 
to try to make the technology work. Decide whether to keep trying based 
only on the estimate of how much more resources are needed.

3.2.15.2  Make Decisions for Unidentifiable Risks
Operational risks cannot always be anticipated. Once the system or architecture is 
fielded and people operate it, inputs will be encountered that were not fully antici-
pated which will put the system or architecture in an unanticipated state. You may 
ask why? Certainly one should think through or test in advance all the possible 
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inputs and all the possible combinations! Unfortunately, for most complicated sys-
tems and architectures the combinations and permutations involved are beyond 
human comprehension. What we are discussing here is how can we do our best given 
finite resources to anticipate the potential gotcha’s before they get us.

For unidentifiable risks, the risk management process is as follows:

Step 1.	Provide redundancy. That is, enable independent means for the system or 
architecture to continue to function as desired if a portion of the system 
or architecture fails.

Step 2.	Provide self-sufficiency. That is, enable the system or architecture to con-
tinue to function if cut off from external entities normally associated with 
operations.

Step 3.	Provide adaptability. That is, enable the system or architecture to change 
how it functions should a portion of the system or architecture fail or 
interfaces disappear.

Unfortunately, the killer risks are always the ones we don’t see coming. Even 
though someone somewhere wrote an email that proves to be an accurate prediction, 
my experience is for every one of these apparently sanguine emails, there are thou-
sands of false alarm emails that never see the light of day because their prediction 
never came true. Many of these apparently accurate predictions were storytelling, 
that is, lucky guesses. If you get enough people to guess about anything, a few of 
them will guess what actually happens. Still, people in general are poor at antici-
pating things that could have huge impacts. That means I, and probably you, being 
people in general, are poor at so doing as well. We have to acknowledge this about 
ourselves. One must consciously seek out inputs from as wide a set or sources as 
possible about what could go wrong and one needs to find the time to decide what 
to do about each. The reverse situation is also true; one can do too much trying to 
avoid risks. A useful heuristic, though fictional, comes from a movie in which the 
characters mysteriously wake up inside a cube connected on all six sides by a door 
to another cube. They find they can move from cube to cube, but any given cube 
may have in it a means to kill them quite spectacularly. Meanwhile, every once in a 
while they can feel the cubes move so the sides open to new cubes. The poor char-
acters gradually diminish in number as they make their way from cube to cube, with 
a few survivors ending up in exactly the cube they woke up in, with now one door 
opening up to apparent freedom. The heuristic is, unless your actions reduce risk, 
there is no point taking them. Still, I’m afraid in the end, we will fail to anticipate a 
risk and it will get us. Recognizing this, three features useful for system and archi-
tecture survival, be it during development, or during operations, are redundancy, 
self-sufficiency, and adaptability. A redundant system or architecture can achieve 
its functionality utilizing numerous ways using some of its parts. Self-sufficiency is 
much harder to measure than talk about. You may grow your own food, but if you 
buy the seeds, or fertilizer, or water and power, or need police to guard ownership, 
you really are not much more self-sufficient than if buy your food. Good measures 
for self-sufficiency for systems and architecture are
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•	 Percent of information needed to operate that is self-generated (meaning 
have absolutely no need to involve another system or architecture)

•	 Percent of energy needed to operate that is self-generated

Adaptability is partly measurable by the ratio of ultimate capability to nominal 
operation performance. For example, if your car can go 200 mph, but you normally 
operate at 60 mph, you have a speed adaptability of better than 3 to 1. Adaptability is 
also potentially measurable by the functionality one could do beyond that for nomi-
nal operation. For example, your car may normally be used to get you from point A 
to point B, but your car could also be used as a home. Extra functional adaptability 
can be measured by estimating the economic value of the alternative functions that 
could be performed by the system or architecture from those stipulated to create it 
in the first place.

When an unknown risk manifests itself, quite possibly with catastrophic implica-
tions, then the risk management process is

Step 1.	 Formulate a review board of people who are not associated with the design, 
manufacture, or operation of the failed system or architecture, but who 
have the fundamental education to comprehend the system or architecture.

Step 2.	Invoke no penalty for the failure provided no law was broken. Any 
inferred penalty will impede the ability to get truthful evidence.

Step 3.	Collect and preserve any available evidence of what the system or archi-
tecture was doing prior to, during, and after the risk manifested itself. 
This evidence is the only hope we have to determine cause and effect. The 
evidence must be assembled as quickly as possible and protected from 
contamination by accidental or purposeful means.

Step 4.	Hypothesize causes.
Step 5.	Select the most likely cause and if necessary secondary causes if judged 

credible.
Step 6.	Formulate actions for the system owners and operators to take to prevent 

the cause in the future.
Step 7.	 Impose the prevention measures with a means to verify adoption. 	

3.3  �DECISION HEURISTICS

•	 Making a good decision requires considering all seven of the following 
questions:

	 1.	What needs to be decided?
	 2.	Who needs to make the decision?
	 3.	When is the decision needed?
	 4.	What options are there to choose from?
	 5.	What is it about each option that distinguishes it from the other options with 

respect to what needs to be decided?
	 6.	How can appropriate and accurate information be obtained to assess each 

option with respect to what needs to be decided?
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	 7.	How robust is the decision should the goodness criteria assessment be 
flawed?

•	 Formal methods improve our ability to assess the robustness of the deci-
sion. Only after a type of decision was made many times, so all the seven 
factors have knowable finite ranges, or at least bounds, can formal methods 
be established to find the best decision.

•	 When making proxy decisions, test the candidate decision with the proxy.
•	 Complicated situations require a hierarchy of decisions to be made, so 

make sure the top decision is made correctly.
•	 The wrong people will make wrong decisions.
•	 People unaffected by the result of the decision will most likely make the 

best decision.
•	 To the extent that implementing a decision requires acceptance and 

cooperation of multiple people, the more the affected people partici-
pate in making the decision, the more likely the selected result will be 
implemented.

•	 The more people involved in the decision-making process, the more likely 
a good decision will be reached.

•	 Hubris comes before the fall. Don’t get talked into fixing other people’s 
problems.

•	 Make decisions when you have too, not before.
•	 Constantly test if your decision is wrong; give yourself options to alter your 

decision as new information becomes available.
•	 Do your work so you trust your work.
•	 What is good for a system is not necessarily good for an architecture.
•	 We cannot predict the truly revolutionary events, so we must react wisely 

when they occur.
•	 Use a leadership style of direction when there is one correct solution and 

follower acceptance to implement is low.
•	 Use a leadership style of consultation when there is one correct solution and 

follower acceptance to implement is high.
•	 Use a leadership style of convenience when there are many correct solutions 

and follower acceptance to implement is low.
•	 Use consensus when there are many correct solutions and follower accep-

tance to implement is high.
•	 Use collaborative decision-making method when follower expertise is high 

and have ample time to make decision.
•	 Sell the decision to followers when their expertise is low and have ample 

time to make decision.
•	 Delegate the decision when followers have high expertise and time to make 

the decision is limited.
•	 Command the decision when followers have low expertise and time to make 

the decision is limited.
•	 There are at least 14 different types of decisions that a system engineer or 

architect may need to help make. Table 3.9 summarizes the types, recom-
mended measures of goodness, and formal methods to use.
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TABLE 3.9
Formal Methods to Use for Each Type of Decision to Make

Type of Decision Measure of Goodness Formal Method to Use

Determine action based on 
diagnosis.

Probability of correct 
diagnosis 

ProbTrueGivenPosTest

A sequence of actions to optimize a 
return.

The return probDecGateEval
fuzzDecisionNode

Give people a fair means to 
choose from a static, finite set of 
options.

Percent of people accepting 
the decision

BordaCount

Allocate a static, finite set of items 
so that the recipients feel equally 
satisfied.

People’s willingness to pay for 
items

DutchAuctionforSameItems
DutchAuction for 
DifferentItems

Evolve options to best satisfy 
multiple criteria.

Better than (+), equal to (0), or 
worse than (‒)

PughComparison

Select from a static, finite set of 
options that one which best 
achieves multiple dissimilar 
criteria.

Weighted sum of criteria 
satisfaction

FuzzyDecisionMaker

Select from a static, finite set of 
options those which maximizes 
benefits while minimizing 
detriments.

On or very near the efficient 
frontier of benefit versus 
detriment

EfficientFrontier

Do the optional endeavor with the 
best financial return.

Whatever the endeavor seeks 
to achieve

BinomialLattice
LeaseValue
LeaseValuewithOption

Select a portfolio of investments 
which maximize the return and 
minimize the risk.

On or very near the efficient 
frontier of return versus risk

EfficientFrontier
Or invest equally in 
uncorrelated risky returns 
and rebalance periodically.

Choose the independent variable 
values that optimize an index of 
performance, perhaps subject to 
constraints, when the index of 
performance is inexpensive to 
determine.

The index of performance 
value augmented with a 
penalty times the extent each 
constraint is not satisfied.

FindMinimum
NMinimize

Choose the independent variable 
value that optimizes an index of 
performance, perhaps subject to 
constraints, when the index of 
performance is expensive to 
determine.

Taguchi quality function TaguchiResponseTable
InteractionResponse
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•	 Prior to implementing any decision-making process, it is critical that those 
empowered to make the decision, or those trusted to provide information to 
those who will make the decision, first perceive all data associated with the 
decision-making process to be completely and totally wrong, until substan-
tial evidence is presented to prove otherwise.

•	 To avoid bias, avoid making decisions based primarily on expert opinion, or 
accepting decisions made by people who will directly benefit from the decision.

•	 When making a decision, it is wise to know how different the inputs can be 
for the decision to be the same, so you know when the decision is no longer 
valid and you need to make a new decision.

•	 Do the right thing. All systems engineers and architects must realize poli-
tics always trumps analysis. This is usually appropriate, since as we have 
already discussed, all analysis is inherently flawed at some level, so the 
political considerations may override the analytical conclusion. But there 
is a line that must be drawn; we each have an ethical responsibility to chal-
lenge decisions that are wrong.

•	 Truth is very hard to know. But we must be motivated to attempt to express 
it, and to recognize we may be wrong about what we believe most strongly.

•	 Human nature tends to limit the options considered to those that worked in 
the past or those known to fail. To counter this human limitation, command 
the definition of at least six options prior to doing an assessment.

•	 Only use voting as a decision-making process if you are certain the voters 
will abide by the result.

•	 To optimize the return from a portfolio of investments:
	 1.	 Presume the possibility of what could happen, not what did happen.
	 2.	 Buy low, sell high. A periodic rebalancing strategy does this automatically.
	 3.	 If the likely result is positive, maximize the number of opportunities 

since more periods provided better return statistics.
	 4.	 Diversify; note that two independent risky investments provide a better 

return than one risky investment and one certain investment.
	 5.	 Invest an amount in proportion to what can lose.

TABLE 3.9
Formal Methods to Use for Each Type of Decision to Make

Type of Decision Measure of Goodness Formal Method to Use

Define a dynamic control law to 
optimize a dynamic index of 
performance.

The index of performance 
value

ContFunctforLinConstEOM
Formulate a fuzzy controller.

Define the optimal configuration. What the configured item is to 
achieve

FindMinGA
FindMinEs

Determine the best strategy relative 
to a competitor.

What the strategy seeks to 
maximize or minimize

SaddlePoint
StrategyProbabilities
Derive from game theory.
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•	 Always check the obtained x* from a parameter optimization for robustness 
before using.

•	 A Taguchi method heuristic is to use approximately half of the control factors 
that have the most impact on the signal-to-noise ratio. A second Taguchi method 
heuristic is to stop selecting control factors with decreasing results when the dif-
ference in response results between it and its predecessor first increases.

•	 To find optimal configurations, use genetic algorithms coded in the context 
of the problem.

•	 Competition heuristics that should be heeded:
	 1.	 When the payoff matrix shows value is in your favor, then compete, 

if the worse possible loss can be tolerated. Remember, it is very rare 
you are absolutely guaranteed to win. Your competitor is probably just 
as smart as you. They will recognize a situation that shows they are 
unlikely to win, and so most likely they will avoid competition. This is 
potentially to your advantage.

	 2.	 When the payoff matrix shows you will lose, then don’t compete. It is 
amazing how often people fail to heed this advice. Rather, seek to change 
the situation so the payoff matrix has at least a saddle point of 0 value or 
too low a value for your competitor to be interested in competing.

	 3.	 If cooperation either minimizes your maximum loss or maximizes your 
minimum gain, then cooperate.

	 4.	 You cannot beat an optimum strategy unless your intelligence is very 
specific. If your competitor has found an optimum strategy, intelligence 
is of value only if you can determine exactly what the competitor will 
do immediately prior to doing it.

•	 For identifiable risks, the risk management process is as follows:
	 Step 1.	 Identify potential risks.
	 Step 2.	 Assess the likelihood and consequence.
	 Step 3.	 Prepare a plan to attempt to keep the risk consequence acceptable. 

(Note that the plan could be null, that is, accept the risk and do 
nothing.)

	 Step 4.	 Execute the risk mitigation plan.
•	 The four primary ways to identify risks are as follows:

	 1.	 Recall what bad things happened previously on similar endeavors.
	 2.	 Utilize thought prompting questions based on prior experience.
	 3.	 The cost, schedule, and performance for each portion of the system or 

architecture not previously used.
	 4.	 Challenge the veracity of assumptions made.

•	 The following describe recommended ways to mitigate identifiable risks:
	 1.	 Retain financial reserves to compensate for cost risks.
	 2.	 Promise late and deliver early to compensate for schedule risks.
	 3.	 Require the entity to tolerate off-nominal conditions for performance risks 

and predict performance acknowledging the likelihood of uncertainty.
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	 4.	 Mature technology with exit gates and avoid reliance on immature 
technologies for key system or architecture performance, and:

•	 Compete the technology development.
	 1.	Utilize cost plus award fee contracts.
	 2.	Parcel out the money in parts, consistent with the planned activities.
	 3.	Review the planned activities, object to and remove all unnecessary 

expenses other than those needed to mature the technology.
	 4.	Proceed only if the estimated cost and time to complete are acceptable, 

ignoring the time and money already spent.
•	 People in general are poor at anticipating things that could have huge impacts.
•	 One must consciously seek out inputs from as wide a set or sources as pos-

sible what could go wrong and one needs to find the time to decide what to 
do about each.

•	 Unless your actions reduce risk, there is no point taking them.
•	 For unidentifiable risks, the risk management process is the following:
	 Step 1.	 Provide redundancy. That is, enable independent means for the 

system or architecture to continue to function as desired if a por-
tion of the system or architecture fails.

	 Step 2.	 Provide self-sufficiency. That is, enable the system or architecture 
to continue to function if cut off from external entities normally 
associated with operations.

	 Step 3.	 Provide adaptability. That is, enable the system or architecture to 
change how it functions should a portion of the system or architec-
ture fail.

•	 When an unknown risk manifests itself, quite possibly with catastrophic 
implications, then the risk management process is the following:

	 Step 1.	 Formulate a review board of people not associated with the design, 
manufacture, or operation of the failed system or architecture but 
with the fundamental education to comprehend the system or 
architecture.

	 Step 2.	 Invoke no penalty for the failure provided no law was broken. Any 
inferred penalty will impede the ability to get truthful evidence.

	 Step 3.	 Collect and preserve any available evidence of what the system or 
architecture was doing prior to, during, and after the risk mani-
fested itself. This evidence is the only hope we have to determine 
cause and effect. The evidence must be assembled as quickly as 
possible and protected from contamination by accidental or pur-
poseful means.

	 Step 4.	 Hypothesize causes, and determine to the extent the evidence 
supports the cause.

	 Step 5.	 Select the most likely cause and if necessary secondary causes if 
judged credible.

	 Step 6.	 Formulate prevention measures to prevent the cause in the future.
	 Step 7.	 Impose the prevention measures with a means to verify adoption. 
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APPENDIX 3A: RESULTS OF TESTING MATHEMATICA’S 
PARAMETER OPTIMIZATION ROUTINES

Reference 12 documents 35 problems consisting of 39 numerical optimization 
problems with reported solutions for testing parameter optimization routines. 
Unfortunately, upon careful review, 12 of the reported solutions do not evaluate to 
the reported value of the index of performance, so presumably there are typographi-
cal errors in the statement of the problem or solution. So, 27 problems are available 
to test Mathematica’s built-in parameter optimization routines. The following docu-
ments the attempts to utilize the Mathematica to solve all 39 test cases.

Problem 1

Mathematica finds the documented solution.

Problem 2

Mathematica finds the documented solution.

Problem 3

The reported solution is x* = (75, 65) with J* = 58.903. The documented equations 
fail to evaluate to J* at x*, so a Mathematica solution was not attempted.
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Problem 4

There are five reported solutions, with x*, depending on how well the three equality 
constraints are satisfied. For all constraints no larger than 10‒6, x* is (0.0406, 0.1477, 
0.7832, 0.0014, 0.4853, 0.0007, 0.0274, 0.018, 0.0375, 0.0969) and J* = ‒47.761. A solu-
tion is shown with no constraint larger than 2*10^‒11, with J* = ‒47.751 and x* = (0.0350, 
0.1142, 0.8306, 0.0012, 0.4887, 0.0005, 0.0209, 0.0157, 0.0289, 0.0751). NMinimimum 
fails to find a solution using the default settings, but FindMinimum does.
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Problem 4a

This is the same problem as Problem 4, with a change in variables to y[[i]] = 
Exp[[x[[i]]]. Mathematica finds the documented solution.

Problem 5

NMinimize fails to find the documented solution. FindMinimum does.

Problem 6

The documentation fails to define a key parameter, so a Mathematica solution was 
not attempted.

Problem 7

The problem requires that seven functions in terms of the three independent 
variables be recursively determined using logical expressions. As it is not clear 
how Mathematica routines can be used to solve this problem, a solution was not 
attempted.
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Problem 8

Mathematica finds the documented solution.

Problem 9

The reported x* = (12.277, 4.632, 0.313, 2.029) with J* = 0.0075. NMinimize finds a 
slightly better J* but at a different x*; however it needs limits imposed on the inde-
pendent variables to find the solution. FindMinimum fails to find the solution.
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Problem 10

The reported solution is x* = (0.3000, 0.3335, 0.4000, 0.4285, 0.224) with J* = 
‒32.349. NMinimize and FindMinimum fail to find a solution.
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Problem 11

Mathematica finds the documented solution.

Problem 12

The reported solution is x* = (705.06, 68.600, 102.900, 282.341, 35.627) with J* = 
1.905. The documented equations fail to evaluate to J* at x*, so a Mathematica solu-
tion was not attempted.



232 Systems Engineering and Architecting: Creating Formal Requirements

Problem 13

The reported solution is x* = (4.538, 2.400, 60.000, 9.300, 7.000) with J* = 5280.254. 
The documented equations fail to evaluate to J* at x*, so a Mathematica solution was 
not attempted.
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Problem 14

The reported solution is x* = (11884, 3288, 20000, 4000, 114.18, –155.03) with J* = 
250799.9. The documented equations fail to evaluate to J* at x*, so a Mathematica 
solution was not attempted.

Problem 15

Different results are reported depending on the numerical precision used. For high 
precision, the reported result is x* = (10.7.81, 196.32, 373.83, 420.00, 21.31, 0.153) 
with J* = 8927.5888. The documented equations fail to evaluate to J* at x*, and the 
documented constraints are not satisfied at x*, so a Mathematica solution was not 
attempted.
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Problem 16

The reported solution is x* = (0.9971, –0.0758, 0.5530, 0.8331, 0.9981, –0.0623, 
0.5642, 0.8256, 0.0000024) with J* = 0.8660. Mathematica returns the same value 
for J* to 4 digits, but at a different x*.

Problem 17

The reported solution is x* = (9.351, 9.351, 9.351, 9.351, 9.351, 9.351, 9.351, 
9.351, 9.351, 9.351) with J* = –45.778. Mathematica finds a slightly different 
solution.
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Problem 18

The reported x* = (0, 0, 5.174, 0, 3.0611, 11.8395, 0, 0, 0.1039, 0, 0.3, 0.3335, 0.4, 
0.4283, 0.224) with J* = –32.386. The documented equations fail to evaluate to J* at 
x*, so a Mathematica solution was not attempted.

Problem 19

Mathematica finds the reported solution.
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Problem 20

Three solutions are reported. For the one with no constraints violated, x* = (7.804 
1^‒3, 1.121 10^‒1, 1.136 10^‒1, 0, 0, 0, 6.609 10^‒2, 0, 0, 0, 1.914 10^‒2, 6.009 10^‒3, 5.008 
10^‒2, 1.844 10^‒1, 2.693 10^‒1, 0, 0, 0, 1.704 10^‒1, 0, 0, 0, 8.453 10^‒4, 1.98 10^‒4), with 
J* = 0.057. The documented equations fail to evaluate to J* at x*, so a Mathematica 
solution was not attempted.

Problem 21

The reported solution is x* = (50, 25, 1.5) with J* = 0. The documented equations fail 
to evaluate to J* at x*, so a Mathematica solution was not attempted.
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Problem 22

This problem contains four cases.

For case 1, b = (4.97, ‒1.88, ‒29.08, ‒78.02), the reported x* = (0, 0, 0, 0, 0, 
0.00333) with J* = 0.0156. NMinimize finds a different solution.

For case 2, b = (4.97, ‒1.88, ‒69.08, ‒118.02), the reported x* = (0, 0, 0, 0, 0. 
0.00332) with J* = 0.0156. NMinimize finds this solution.

For case 3, b = (32.97, 25.12, ‒29. 08, ‒78.02), the reported x* = (0, 0, 0.0633, 
0, 0, 0.0134) with J* = 4.070. NMinimize finds a similar solution while 
FindMinimum finds a better solution at a different point.

For case 4, b = (32.97, 25.12, ‒124.08, ‒173.02), the reported x* = (0, 0, 0.0633, 
0, 0, 0.0134) with J* = 4.070. NMinimize finds a better solution.

The first case:

The second case:

The third case:
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The fourth case:

Problem 23

Two different solutions are reported, each with J* = 1732. The documented equa-
tions fail to evaluate to J* at x*, so a Mathematica solution was not attempted.
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Problem 24

Mathematica finds the documented solution.

Problem 25

Mathematica finds the documented solution.

Problem 26

Mathematica finds the documented solution.

Problem 27

The reported solutions are all J* = 0 with x* = (1, unbounded), (0, unbounded) or 
(unbounded, 0). NMinimize finds a J* near 0, but cannot determine one variable may 
be unbounded.

Problem 28

The reported solutions are x* = (3, 2) or (3.58443, -1.84813) with J* = 0. NMinimize 
finds one solution, but not the other, unless force x2 < 0.

Using Random search from 2000 starting points doesn’t find the other solution.
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Forcing x[[2]] to be less than 0 does find the other solution.

Problem 29

The reported solution is x* = (–21.026653, –36.760090) with J* = 0, but there is a 
local minimum x* = (0.28581, 0.27936) with J* = 5.9225. NMinimize with default 
settings finds the local minimum, even if force NMinimize to use the Simulated 
Annealing optimization method which is more likely to avoid local minimums. The 
global minimum is almost found only if constrain the search space for the inde-
pendent variables. This can easily be done for two-dimensional problems because 
Mathematica offers elaborate three-dimensional and contour plot capabilities that 
enable one to visualize the likely location for the global minimum.

Forcing x[[2]] to be less than 0 does find the other solution.

Problem 30

Mathematica finds the documented solution.

Problem 31

The reported solution is x* = (1.7954, 1.3779) with J* = 0.16904 which is reported to 
be a local minimum. NMinimize finds the solution.
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Problem 32

The reported solution is x* = (2.714, 140.4, 1707, 31.51) with J* = 318.572. The doc-
umented equations fail to evaluate to J* at x*, so a Mathematica solution was not 
attempted.

Problem 33

The reported solution is x* = (0, 1) or (0, ‒1) with J* = 1.1.036. But this cannot be cor-
rect as Exp[‒3] is not the same as Exp[3]. So did not attempt a Mathematica solution.

Problem 34

Mathematica finds the documented solution.

Problem 35

Mathematica finds the documented solution.

APPENDIX 3B: DATA FOR FUZZY LOGIC 
CONTROLLER FOR ROCKET

Our purpose is formulate a fuzzy closed-loop controller for the rocket problem, so 
that if the actual gravity, thrust, or thrust misalignment is not as we assumed in our 
model, we will get to the final desired state vector with less variance than if we fly 
an open-loop controller with the thrust steering constants fixed.

Our plan is to fly the original open-loop optimal a and b to the time decision gate, 
then based on how much our actual horizontal and vertical velocity differs from 
what the open-loop optimal solution predicted, use fuzzy rules to determine the new 
a and b to use the rest of the trajectory.

To formulate these rules we need training data. Let’s try five trial values, trialA, 
trialg, and trialthetabias, for each uncertain parameter, A, g, and thrustbias, respec-
tively, the nominal value, the two extremes and two intermediate values, as follows:
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The formal requirements FlatNoAtmConstTEOMrev flies the nominal steering 
law to the decision gate time (chosen to be 3 seconds), then flies a commanded law 
the remainder until the x3 = U stopping condition. Where the needed constants are

H = 50000
U = 5444
A = 20.82
g = 5.32

So we have at least two optional ways to implement the fuzzy controller.
Option 1 is to base the controller on fuzzy rules relating the estimated A, g, and 

thetabias, that we’ll denote as: Aest, gest, and biasest, respectively. From the equa-
tions of motion we note, assuming the bias is small enough to be neglected:

	 Aest = dx3/dt_measured / Cos[theta],

where

	 dx3/dt_measured = a_measured * Cos[theta + thetabias] + Error

and theta is the commanded thrust angle and Error is potentially a measurement or 
alignment bias or dither.

	 gest = dx3/dt_measured * Tan[theta] – dx4/dt_measured,
where

	 dx4/dt_measured = a_measured * Sin[theta + thetabias] + Error

Since the real acceleration

	 a_measured = A^2 + g^2 ‒ 2A * g * Sin[theta + thetabias]
and

	 Sin[theta + thetabias] = Sin[theta] + thetabias * Cos[theta]

For small thetabias, then

biasest = (Aest^2 + gest^2 – 2Aest * gest * Sin[theta] ‒ a_measured) / (2Aest * gest 
* Cos[theta]

From t = 0 to t = tgate, we can obtain estimates for Aest, gest, and biasest, and 
use the mean or fuzzy value as our independent variables in fuzzy rules used to 
determine the new a and b needed from that point forward.

Option 2 bases the fuzzy rules for the new a and b directly on two fuzzy inputs:

	 (x3_measured[[tgate]] – x3nominal[[tgate]])

and
	 (x4_measured[[tgate]] – x4_nominal[[tgate]]).

For this option, we need to integrate a_measured from t = 0 to tgate and decompose 
the result into x3 and x4. Since there will be both bias and dither errors in measuring the 
acceleration and the x3 and x4 obtained will also feel the effect of the as of yet unknown 
bias, the obtained difference in state vectors obtained at tgate will have some error.

Which approach to use is partly the determination of whether or not we prefer to 
integrate an accelerometer or estimate parameters based on noisy accelerometer data. 
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Usually, we prefer the integration, and it tends to eliminate dither errors, but not bias 
errors. But our choice is also dependent on whether we prefer to have fuzzy rules in 
terms of two independent inputs (difference in x3 and x4 measured from nominal 
values at tgate) or three independent variables (Aest, gest, and biaest). Usually, the 
smaller the number of independent variables, the better, provided excluding the third 
does not miss important information.

So at this point, one typically must get some data to see which approach is pre-
ferred. So we need to get some data combining the uncertainties to derive the fuzzy 
rules. Since we have three uncertainties and we can easily assume at least five trial 
values for each, we could evaluate 125 cases of values. But to keep the workload down 
we’ll take advantage of the Taguchi method and use an orthogonal array to reduce the 
number of need optimizations. The L25(56) array shows we can assess combinations 
of up to six variables at five levels with only 25 evaluations, so we’ll use that array.

Table 3.10 shows which of the five value levels each independent variable should 
be set to, per the first three columns of the L25(56) orthogonal array.

TABLE 3.10
Level Settings for the Independent Variables to 
Obtain Training Date for the Fuzzy Controller

Case to Optimize Level for A Level for g Level for Bias

1 1 1 1

2 1 2 2

3 1 3 3

4 1 4 4

5 1 5 5

6 2 1 2

7 2 2 3

8 2 3 4

9 2 4 5

10 2 5 1

11 3 1 3

12 3 2 4

13 3 3 5

14 3 4 1

15 3 5 2

16 4 1 4

17 4 2 5

18 4 3 1

19 4 4 2

20 4 5 3

21 5 1 5

22 5 2 1

23 5 3 2

24 5 4 3

25 5 5 4
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Here are the results for the 25 cases. First we determine the optimal steering law 
for each of the 25 conditions. Then we use that law to determine what the trajectory 
will be at 3 seconds. The fuzzy logic controller relates the velocity components at 3 
seconds to the optimal steering constants.

Case 1: Levels 1, 1, 1

Case 2: Levels 1, 2, 2
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Case 3: Levels 1, 3, 3

The weight on the altitude term had to be increased from 10,000 to 20,000 to obtain 
an acceptable solution.

Case 4: Levels 1, 4, 4

The weight on the altitude term had to be increased from 10,000 to 20,000 to obtain 
an acceptable solution.
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Case 5: Levels 1, 5, 5

The weight on the altitude term had to be increased to 30,000 from 10,000 to obtain 
an acceptable result.

Case 6: Levels 2, 1, 2

The constraints are better satisfied using a weight of 20,000 on the altitude term 
rather than 10,000.
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Case 7: Levels 2, 2, 3

Case 8: Levels 2, 3, 4

The weight on the altitude term had to be increased to 30,000 from 10,000 to obtain 
an acceptable result.
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Case 9: Levels 2, 4, 5

The weight on the altitude term was increased to 20,000 from 10,000 to obtain an 
acceptable result.

Case 10: Levels 2, 5, 1

The weight on the altitude term was increased to 20,000 from 10,000 to get an 
acceptable solution.
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Case 11: Levels 3, 1, 3

The weight on the altitude term was increased to 20,000 from 10,000 to obtain an 
acceptable solution.

Case 12: Levels 3, 2, 4

The weight on the altitude term was increased to 20,000 from 10,000 to obtain an 
acceptable solution.
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Case 13: Levels 3, 3, 5

The weight on the altitude term was increased to 20,000 from 10,000 to obtain an 
acceptable solution.

Case 14: Levels 3, 4, 1

The weight on the altitude term was increased to 20,000 from 10,000 to obtain an 
acceptable solution.
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Case 15: Levels 3, 5, 2

The weight on the altitude term was increased to 20,000 from 10,000 to obtain an 
acceptable solution.

Case 16: Levels 4, 1, 4

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.
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Case 17: Levels 4, 2, 5

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.

Case 18: Levels 4, 3, 1

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.
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Case 19: Levels 4, 4, 2

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.

Case 20: Level 4, 5, 3

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.
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Case 21: Levels 5, 1, 5

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.

Case 22: Levels 5, 2, 1

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.
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Case 23: Levels 5, 3, 2

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.

Case 24: Levels 5, 4, 3

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.
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Case 25, Levels 5, 5, 4

The weight on the altitude term was increased to 30,000 from 10,000 to obtain an 
acceptable solution.
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4 Establish Natural 
Language Requirements

A natural language requirement is a statement in a language such as English defining 
a feature a system or architecture must possess. Later in this chapter I’ll suggest 
which “features” need be addressed. To help people comprehend the requirements, 
attributes for documenting such things as the requirement’s source, rationale, and 
verification method are associated with the requirement statement.

Since all natural languages are inherently ambiguous, many people believe that 
only a model, ideally an executing model, of the system or architecture can clearly 
communicate the requirements. In “model-based systems engineering,” what the 
system is to achieve is physically or mathematically modeled to predict, or at least 
mimic, the subsequent behavior of the system or architecture. In order to make 
realistic models, it is usually necessary to mathematically model physical behavior, 
which means we must first assume how the system or architecture requirements 
will be achieved. So model-based systems engineering may presume a solution 
preference before it should be presumed. As we discussed in the prior chapter, 
the way to keep solution selection options open is to make different models for 
the different implementation options, and compare suitability based on one or a 
few technical parameters and cost. Proponents of model-based systems engineer-
ing believe that if the customers and users perceive the model behavior as what 
they want, then one can be reasonably assured the “requirements” are correct. 
As discussed in Chapter 2, I share the opinion models are critical to accomplish-
ing good systems engineering and architecting. Who would buy a house or car if 
offered only a collection of requirement statements, rather than at least pictures, 
or a three-dimensional model? However, though model-based systems engineer-
ing can enhance requirement perception, natural language requirements are still 
needed for the following reasons:	

	 1.	Though one can try to translate directly from a customer verbal statements 
to a model, inevitably for anything even remotely complex, you first have to 
write down what the customer wants so you can figure out what to model. 
So, inevitably, some set of natural language requirements must be penned if 
for no other purpose than to guide the model to be created.	

	 2.	To trust the model output, it needs to be verified. The verification effort 
needs to compare a result from the model to something expected of it. The 
documentation of what is expected of the model can often be documented 
as a mathematical expression, but not always, so once again we need natural 
language requirements to attempt to record the expectations.
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	 3.	Even if it is reasonable to presume a physical behavior, such as a rocket 
will be required to achieve orbit, and we verify we derived the necessary 
equations and solve them correctly, we remain uncertain that something 
can actually be built that will perform as the model predicts. So, though the 
customer may want what the model predicts, achieving the model behavior 
may be extremely difficult or impossible.

In a phrase, though models are less directly ambiguous, they are inherently indi-
rectly ambiguous. I believe the system engineering and architect’s job is to define 
achievable requirements—or to otherwise inform everyone of the impracticality 
of achieving their desire. Again, this infers the need to compare what the model 
achieves to prior documented requirements.

The following case study describes some of the real-world difficulties in 
establishing requirements.

Case Study 4.1: Repeated Requirements

Background

In the early 2000s the USAF, for the third time in its history, sought to develop 
a space-based laser (SBL). Though the SBL could execute many missions, SBL’s 
primary job would be to keep a laser beam on an enemy’s rocket stage long enough 
to cause a rupture and the destruction of the rocket, presumably keeping the war-
head from causing any damage, at least at the intended delivery point. (That the 
warhead might still cause substantial damage somewhere else seems to rarely be 
of concern to antimissile technology developments.) At the time, chemical lasers 
were the only practical means to achieve the laser power levels needed to rupture 
the rocket’s pressure vessel. A high power chemical laser is essentially a rocket 
itself. A significant chemical combustion occurs that produces photons, which 
after application of almost magical optics, can generate substantial power. Roughly 
speaking, the amount of laser beam power that results is very much dependent 
on the corresponding volume and extent of the chemical reaction. This particular 
project was seeking to produce a demonstration article, not an operational system. 
The plan was to launch the SBL into orbit and test its capacity to destroy missiles 
in flight, in a very controlled test environment. Ultimately, since these tests would 
encompass the full functionality of an operational system, the demonstrator would 
go a long way to both discovery and hopefully retire the key technical risks. The 
effort was by far the most technically challenging I witnessed in my entire career.

To make things really interesting, rather than compete and award the contract 
to one company, or perhaps a few companies and ultimately neck down to a 
provider through a series of competitions, the government elected to formulate 
a national team composed of Boeing, Lockheed Martin, and then TRW, now 
Northrop Grumman. The contract was set up so it was mandatory that each 
organization receive one third of the sales and award fee.

One of the early products was the System Specification, which came together 
relatively painlessly. Then it was necessary to produce the segment specifications. 
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The SBL system was deemed to consist of the following segments: space vehi-
cle, ground segment (for mission planning and control), and an integrated test 
laboratory (for developmental testing on the ground prior to testing in space). 
The space vehicle consisted of the following elements: beam director, beam con-
troller, spacecraft bus, and laser. The beam director was the big mirror used to 
focus the beam onto the rocket, and the beam controller was the source of the 
command and control to both aim, focus, and maintain the beam as a coherent 
set of light. Boeing was the system integrator and had primary responsibility 
for the beam controller. Lockheed Martin had the primary responsibility for 
the spacecraft and beam director. TRW had primary responsibility for the laser. 
The functionality of the on-orbit segments was, unfortunately, unclear, due to 
unclear roles and responsibilities of the performing organizations, and tradition. 
By tradition, in the space business, the spacecraft provider is usually the space 
vehicle integrator, where what is integrated onto the spacecraft are the payloads. 
This tradition had inherent logic, as the payloads were usually much “smaller” 
than the spacecraft, that is, each individually needs a fraction of the spacecraft’s 
provided attach area, electrical power, thermal control, and data processing. So 
Lockheed Martin, as spacecraft provider, maintained they were also responsible 
for the space vehicle. For SBL, the traditional situation of a “larger” spacecraft 
bus with many “smaller” payloads was literally the opposite. The laser payload 
overwhelmed the spacecraft in every conceivable physical dimension. TRW had 
a long history of providing various communications and surveillance payloads 
to Boeing and Lockheed Martin. The head of TRW at the time bitterly resented 
this subordinate role as payload provider, and longed for the day when the “pay-
load is prime.” If ever there was a situation this might be true, it was for SBL, so 
he directed under no circumstance would his laser payload group submit to the 
Lockheed Martin leadership for the space vehicle specification. Yet, for SBL, 
there was a third legitimate claim for space vehicle leadership. For any laser, 
making a powerful beam is all well and good, but unless the beam is kept on 
target very precisely, it is all but useless. Boeing, as the beam controller pro-
vider, had responsibility for this element. To the Boeing beam control guys, the 
situation was analogous to the old World War II bombers. The pilot (spacecraft) 
got the plane to and back from the target, but it is the bombardier (beam control-
ler) that flies the plane for the last critical maneuvers to get the bombs on target.

An additional issue was how to produce the specifications for the end items. 
There are basically two ways to view a specification for an end item: as a compi-
lation of all known requirements for that end item, including subelements of the 
item, or as a communication of just what the providers of the end item need to do. 
Traditionally, when requirements were documents, system engineers preferred 
the first approach. They liked to document all their hard work, so they produced 
a system specification with sections for requirements for the entire system as 
well as sections to record requirements for subordinate parts of the system. This 
approach leads to requirement written as follows:

The [insert end item name] shall [insert feature].
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Which results in many “repeated” requirements. Repeated requirements 
state the same feature, but imposed on different items. The number of repeated 
requirements can skyrocket quickly because the typical specification tree has 
seven levels: system, segment, element, subsystem, assembly, component, and 
part. That means the same feature could end up being documented seven times 
for the main body of each specification and an untold number of times for all sub-
ordinate items. Alternatively, today, thanks to the convenience of database soft-
ware, a different approach is found to be much more efficient. In this approach, a 
feature need be defined once. Requirement statements have the form:

The [insert function] shall [insert feature].

If function in the statement applies to multiple end items, then it is allocated 
to multiple items. In this second approach, the specification for an item contains 
only the subset of all the requirements for that item, not requirements for its 
subordinate items. If you want to know the requirements for the subordinate 
items, look at the specification for those subordinates. In this second approach, 
no requirement is “repeated,” though many requirements may be allocated to 
many different items. On SBL the traditional approach was used.

What Happened

The overall program manager, who was from Boeing, knew that if he clarified 
the space vehicle roles and responsibilities, he would upset at least two-thirds of 
his team. So he purposefully never made the call. As a consequence the require-
ment process never did determine the key requirements for the entire program.

Though Boeing was the overall system integrator, they concurred with 
Lockheed Martin recommendation to follow the traditional specification pro-
duction approach, where each specification had sections devoted to the item 
as a whole, and sections to record any application requirements for the items 
immediate subordinate items. The system specification had about 125 require-
ments naming the total system. The system specification also contained about 
120 space vehicle requirements, 80 ground segment requirements, and 50 test 
facility requirements. A large fraction of these 250 odd segment requirements 
documented in the SBL system specification were exactly the same statements 
as in the 125 system requirements, except rather than stating,

 “The SBL system shall X;”

it stated,

“The [insert SBL segment name] shall X.”

Similarly, the space vehicle specification had more than 300 requirements, 
with more than half repeated requirements. The payload specification had nearly 
400 requirements, again, more than half repeated requirements. One by one, for 
days, each statement was reviewed and commented upon by dozens of people to 
the extent that the requirement generation process consumed more budget than 
the technology maturation process. But, despite all this effort, two extremely 
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important jobs were not accomplished. First, the requirement statements were 
recorded without rationales and without verification methods. Thanks to the long 
and laborious dialogues, the rationale was almost always explained, but never 
documented for the hundreds and even thousands of future people who would be 
needed to implement the requirement, increasing the odds these implementers 
would misinterpret the requirement. Perhaps even more importantly, a verifica-
tion method for each requirement was not documented. A requirement without a 
verification method cannot be validated. So requirements were being allocated 
to end items for which end item compliance was unspecified.

Shortly after the payload specification was approved, the program was can-
celed despite achieving near perfect award fee scores. The predominant reason 
for the cancellation was the cost of the system could not be justified in relation 
to the relatively inexpensive countermeasures that an adversary could have uti-
lized. Even if the project wasn’t cancelled, the team was on the verge of complete 
self-destruction. With responsibility for key requirements unclear, and the next 
job being to produce all the subsystem requirements, the number of repeated 
requirements would bloom into the thousands—swamping all effort to review, 
verify, and maintain status check on all those sentences that said the same thing.

Lessons Learned

Requirement allocation requires roles and responsibility clarity. Though the 
SBL program was done in by a sane assessment of its cost versus benefit, it 
would ultimately have been done in by the byzantine politics of the teaming 
arrangement. Comprehensible and verifiable requirements can only result 
from clear roles and responsibilities.

Put only the requirements needed for the end item in the specification for the end 
item. Providing a system that works is hard enough. We don’t need to impose 
on people a mountain of words that repeats requirements. Look at the situa-
tion from the end item provider’s point of view. They only need to know their 
requirements. It is very common that a requirement may be applicable exactly 
as written to many end items. Think of a specification not as a stand-alone 
document, but as the instantiation of the subset of the requirement applicable 
to that end item. There is no need to allocate the requirements applicable to 
the lower level items in the specification for the higher level item, because 
they will be allocated to the lower level item. If the same requirement is appli-
cable to many of the subitems or even all of the subitems, then the exact 
same requirement statement should be allocated to each. A requirement has 
a statement, and a bunch of attributes. One of those attributes is what the 
requirement is allocated to. All one needs to do is to document the allocation. 
Other useful attributes may address how the requirement verification is to be 
accomplished. If the same requirement is allocated to multiple items, it needs 
to be verified as stipulated by all those items.

Validate requirements first, not last. Many practitioners of systems engineer-
ing make a distinction between “verification” and “validation.” They define 
“verification” as showing the items built comply with their requirements, 
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while “validation” shows the item complies with the user desires. So the 
chronological order is verification followed by validation. This is because 
the provider first “verifies,” that is, conducts an effort to obtain evidence 
the item meets requirements prior to the buyer being willing to take owner-
ship of the item. Then, subsequently, the buyer “validates” by a separate 
effort to see how well what they bought or are about to make final payment 
on really works. So “validation” is the stronger proof of compliance than 
“verification.” But think about it a moment, what possible good does it do 
to discern an item isn’t validated even though verified? True, contractually 
one may be off the hook, but certainly the net result will be an unhappy 
customer and damage to the brand. I strongly recommend we follow the 
process described in reference 1, which proceeds through a sequence of 
requirement status states defined as follows:

	 1.	Defined. The requirement is written in an unambiguous manner.
	 2.	Validated. Have proof the requirement is needed, has an accepted ratio-

nale, is correct, comprehended, and verifiable.
	 3.	Verification method determined. A means is defined to obtain the evi-

dence that the implementing item complies with the requirement.
	 4.	Approved. The requirement is to be achieved.
	 5.	Allocated. The requirement is imposed on the entity to achieve the 

requirement.
	 6.	Traced to verification document. There exists a documented procedure 

that explains how the verification method is to be achieved.
	 7.	Designed. Instructions exist explaining how to create something to 

achieve the requirement.
	 8.	 Implemented. The entity to fulfill the requirement exists.
	 9.	Tested. The procedure described in the verification document was 

performed to obtain the evidence the real world entity achieves the 
requirement.

	 10.	� Verified. The obtained evidence confirms the real world entity fulfills the 
requirement.

The next case study illustrates another common issue that exists between program 
phases and system or architecture functions.

Case Study 4.2: Requirement Generator

Background

I served on an integrated product team (IPT) at Rockwell International’s Space 
System Division, asked to formulate ways to reduce by a factor of 10 the time and 
cost for design and production. On the team was a middle level executive in the 
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production organization. During the course of our investigations, he kept a steady 
dialogue pushing for a requirements determination tool. My perception was he 
was asking for something like a database tool to help keep track of requirements, 
but on multiple occasions when I would describe such things to him, it was clear 
that wasn’t what he wanted. After a week or so of misinterpreting each other, we 
arranged to sit alone in a conference room with a white board to try to describe to 
each other our ideas. I showed him a demo of System Architect, a tool then in its 
infancy that we were using as a core component in our systems engineering tool set. 
He seemed impressed, but clearly it was not what he had in mind. Then he showed 
me a picture of his idea. The picture had hundreds of little boxes on it, each labeled 
“Unit n” with n running from 1 to 100, as examples. His requirement generator 
sketch showed a person in front of a computer screen. What was on the screen was 
an inflow of shall statements and as outflow a list of units. What my colleague was 
envisioning was a “designer” that could automatically interpret a customer’s spec 
and identify what existing parts would be used to produce the item. My friend was 
asking for a revolutionary tool that completely automated the design process and 
ensured the resulting design could be implemented with items that were already 
produced. To him, design was a necessary evil, just ordering items from a catalog. 
I recall feeling completely dumbfounded. On the one hand, I was impressed by the 
belief what seemed an art to me could be turned into a process. I remember think-
ing if we could pull it off we’d achieve our cost and schedule reduction goal. But, 
on the other hand, we were basically in the business of providing the government 
things that accomplished ends for which there was no suitable existing item. Sooner 
or later it seemed to me we had to design new items, and what we were looking for 
was how to get the production considerations into the decision-making process, and 
this idea didn’t help with that at all. My friend had interpreted the offer to get pro-
ductions requirements into the design as being satisfied by the designer only using 
parts the production people already knew how to make or buy. My friend didn’t see 
being on an IPT as a means to get his needs for new items known, he saw it as a 
one-time deal to set up a system for designers to reuse parts. At the end of that day 
I realized the whole idea of “integrated” product teams had a great deal of inertia 
and misconception to overcome.

What Happened

I explained to my boss what production was looking for. He basically asked, 
are you sure? I said yes. The proposed requirements development project was 
never funded. I believe my friend, to his dying day, remained convinced in 
the rationality of his idea, and saw the refusal to support the project as just 
another attempt by the pesky designers to have job security at the expense of 
production.

Lessons Learned

Regardless of the program implementation construct used, all systems have 
eight primary functions for which requirements may need to be speci-
fied. Recall in Chapter 1 that our profession has settled on eight primary 
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functions: develop, design, manufacture, deploy, train, operate, maintain, 
and dispose. The “design phase” is not the “design function.” The design 
phase is the period predominantly devoted to determining what the end 
items should be and how to make them. The design functions are the tasks 
and activities associated with coming up with the instructions to make the 
end items, for each of which performance requirements may be imposed. 
Functions and program phases are not the same, even if the same words are 
used for both. Program phases are a management construct used to orga-
nize the effort to produce a system. A common, but certainly not universal, 
set of program phases is research, design, development, test, and evaluate. 
Another set may be develop, produce, and service, where here develop has 
as its subphases determine requirements, design, implement, integrate, and 
accept. In this construct the develop phase produces a first or few items, 
while the production phase produces larger quantities of the item. Different 
industries have adopted relatively stable program phases, but every once in 
a while a revolution occurs that radically alters how an industry fields its 
systems. Functions are tasks and activities that the system is to perform.

Requirements can and should lead directly to design and production. Many 
system engineering purists insist performance and functional requirements 
be written as implementation neutral as possible, the rationale being this 
enables the best design and production approach to be found by rational deci-
sion making. There certainly is tremendous merit to this opinion. However, 
for many situations, where there is a wealth of perfectly good end items 
available to fulfill a mission; all that is needed is to translate customer and 
user requirements directly into the instructions as to what to build and pro-
duce. A typical example is a car or computer. The customer’s requirements 
can literally be shown as component options to select from. Though this 
approach is not conducive to fostering innovative new solutions, it is a tre-
mendously cost effective requirement determination process.

In this chapter I define three types of natural language requirements, and sum-
marize ways to determine what requirements are needed. Formal requirements in 
Mathematica® are presented to

	 1.	help write less ambiguous statements;
	 2.	maintain a requirement database; and
	 3.	 prepare specifications containing subsets of the requirements applicable for 

those who will design and produce an end item, and retain verification evidence.

Then various processes to determine requirements are presented, along with 
strengths and weaknesses and recommendations when best to use that particular 
requirement determining process. Then processes and heuristics are presented to 
verify each step of the process from requirements determination to delivering the 
complying systems and architecture. Finally, formal requirements are presented for 
a means to predict when the requirements development process is mature enough to 
stop and formally initiate design.
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4.1  �DEFINE THREE TYPES OF NATURAL 
LANGUAGE REQUIREMENTS: FUNCTIONAL, 
PERFORMANCE, AND SOUGHT

Each requirement type addresses a different type of feature of a system or architec-
ture and each has a different set of attributes. Three convenient requirement types 
are functional, performance, and sought. Any and all requirements for a system or 
architecture can be one of these three types.

As mentioned in Chapter 1, there are eight primary functions: develop, 
design, produce, deploy, train, operate, support, and dispose. Recall that a func-
tional requirement declares an activity or task that the system or architecture 
is to do, not how well the activity or task is to be performed, nor how the func-
tion is to be implemented. Develop functions name the activities to establish 
what the system or architecture should be. Develop functional requirements 
stipulate the decision gates for the program to proceed. Develop performance 
requirements may state activity time or cost limits, or dictate external interfaces 
to honor, or stipulate a particular implementation approach to use or avoid, 
as well as the incremental prototypes or technology developments that should 
be performed. Design functions name the activities to create the instructions 
to build the system or architecture. For software end items, design require-
ments are often formally defined pictorial representations of the software con-
structs, or pseudo-code, or the coding language or standards to follow, with the 
key performance requirements indicating execution time limits, input and out 
throughput, or memory limits. For hardware end items, design function per-
formance requirements are margins, factors of safety, tolerances, reliability, 
dimension limits, mass limits, as well as standards to adhere to, materials to 
use or avoid, access provisions, operating and storage environments, or specific 
entities to procure. Production functions name the activities to create the end 
items. For software, production could be manual or automated translation of 
the design requirements into a specific high-level language, that itself is ulti-
mately translated into machine instructions. For hardware, production perfor-
mance requirements are procedures to follow, raw material stock needs and 
reserves, standards, tolerances, facility cleanliness levels, throughput, yield, 
and safety precautions. Deploy functions name activities to get the system to 
its operational environment. Times, paths, and environmental factors to toler-
ate are typical performance requirements for deploy functional requirements. 
Train functions name activities to prepare and ensure users know how to oper-
ate or support the system or architecture. Highest education level for opera-
tors to accommodate, proficiency categories and levels, the nature and content 
of the training material (manuals, books with exercises, videos, simulations, 
and proficiency examinations) are typical performance requirements for train 
functional requirements. Operate functions name the activities the system must 
conduct. Typical operate performance requirements stipulate the environment 
to be tolerated, key performance to be achieved, lifetimes, or other measures for 
how often the system is to be used, as well as overall reliability and availabil-
ity. Other performance requirements allocated to operate activities may address 
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the impact the system or architecture is allowed to have on its environment. 
Support functions name the activities to keep the system operating. Typical 
support performance requirements address how to avoid damage to the system, 
inspection procedures, maintenance schedules, maintenance procedures, and 
how to ensure a safe environment for those doing the maintenance. Dispose 
functions name activities for the system when no longer needed. Performance 
requirements for dispose functions may address where to put the system and 
how to get it there, or how long residual material needs to be stored, or perhaps 
to what extent the system or architecture is to be disassembled and what to do 
with the resulting parts.

For many systems or architecture, large numbers of requirements may be reused 
from previous systems or architecture, because the new item is a derivative of an 
existing item. When prior requirements can be used, do so it because it reduces 
costs and there is a good chance these are well-crafted requirements because they 
have already been translated into well-working real things. Clearly, then, do not 
reuse requirements that failed to produce well-working real things! But new sys-
tems and architecture will need new requirements, and the generation process can 
be time consuming and messy. Many system engineers draft requirements with 
“to be determined” (TBD) or “to be reviewed” (TBR) marks next to the numbers 
contained in the statements. Indeed, a common practice is to count the “TBx’s” and 
utilize the reduction to zero as evidence the requirement generation job is nearing 
its end.

A requirement with TBD communicates no useful information, so why create? A 
requirement with a TBR is a draft requirement; it doesn’t matter whether it contains a 
TBR or not. An accepted requirement with a TBR mark is begging for a cost increase 
for any value other than that marked TBR, and even if the value is not changed, the 
system probably costs more than needed to because the implementation will proceed 
to the stipulated amount which usually is set conservatively to try to avoid a cost 
increase if changes, but thereby causes a cost increase from what could have been 
accomplished with an easier requirement to achieve.

We need a means to note if a requirement is active or draft, and that is easily han-
dled by an attribute associated with the statement. We traditionally adopted the TBx 
markings because we see our job to be to write requirements, so we wrote require-
ments, even if incomplete or uncertain, so we can keep track of what we have done and 
still need to do. A more direct approach is to introduce a third type of requirement, 
the sought requirement. A sought requirement is a statement from someone stipulat-
ing what they need to know. The statement can be written how the requester hopes 
the requirement will read. The statement may simply ask what needs to be known, for 
example:

“Need to know mass limits for end item X.”

For derivative systems or architectures, at the start of the project, a very large 
number of requirements can immediately be stipulated as “sought” because similar 
requirements were needed for the predecessor system or architecture. The sought 
requirements can be counted, and as the count goes to zero, the requirement genera-
tion job is coming to an end.
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4.1.1  �Stipulate Attributes for Functional, 
Performance, and Sought Requirements

Convenient attributes for functional requirements are as follows:

	 1.	 Identification: a unique number.
	 2.	Status: “draft,” “approved,” or “discontinued.”
	 3.	Parent(s): the identification of the requirement or requirements from which 

this requirement is derived. Only another functional requirement can be a 
parent for a functional requirement. Functional requirements form a hierar-
chy where the lower level requirements add detail to the higher level require-
ments. The lower level functions should be a complete and independent set 
of activities associated with the next higher level functional requirement.

	 4.	End item allocation: name of the end item that is to perform the function. This 
presumes a hierarchical decomposition of the end items exists. A function 
may be allocated to more than one end item, but do so only with extreme care 
or the implementation may contain unnecessary redundancy. To achieve safe 
or reliable systems, rather than allocating the same function to multiple end 
items, recommend instead to create different functions, a prime function allo-
cated to the prime item, and one or more redundant or back-up functions, to 
be allocated to other end items. Or better still, use performance requirements 
to stipulate the fail-safe level or reliability required and let the design experts 
find the best implementation. An end item may have more than one function 
allocated to it. This is often desirable as it will tend to minimize parts count, 
but again, care is needed to avoid end items from becoming overly complex.

	 5.	Acceptance record: date and name of organization (or person with contact infor-
mation) who accepted responsibility to implement the function and all allocated 
performance requirements. In essence, this is the person the requirements were 
written for, who is acknowledging need, receipt, comprehension, and commit-
ment to implement. This attribute is useful to create pressure to make sure only 
needed requirements are defined. If this functional requirement is to be achieved 
by multiple end items, then representatives of those multiple organizations must 
accept the requirement. This presumes an organizational hierarchy exists nam-
ing the persons or organizations responsible for all end items.

	 6.	Rationale: a brief explanation in plain language stating why the requirement 
is needed and why presumed correctly stated. Rationales are very difficult 
and time consuming to write. However, there is often more useful informa-
tion in the rationale than the requirement statement, and it is my experience 
that while writing the rationale, you figure out the real requirement.

	 7.	Author: who wrote the requirement with contact information.
Notice there are no attributes regarding verification. This is because the 

functional requirement just says “do something,” not how well to do it, so 
verification is addressed with respect to the performance requirements allo-
cated to the functional requirement. Obviously, we do need to ensure all 
end items have at least one functional requirement and we need to ensure 
all functional requirements are allocated and accepted by at least one end 
item, but we check for this without stipulating anymore attributes.
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	 8.	Compliance method: document how to implement this requirement. This is an 
optional attribute, as allocation may be all that is needed to trace the function 
to and end item. Compliance is more general than allocation, or document-
ing the basic method that will be used to implement each function—such as 
simply stating such things as “commercial off the shelf,” “reuse from Program 
x,” “modification of part Y from program Z,” “new development,” and so on. 
If add this attribute, can easily construct compliance reports that provide an 
indication of the basic methods that will be used to implement each function.

Performance requirements specify how well a function needs to be performed. 
More than one performance requirement may be allocated to a functional require-
ment. Useful attributes for performance requirements are as follows:

	 1.	 Identification: a unique number.
	 2.	Status: “draft,” “approved,” or “discontinued” to denote as stated.
	 3.	Parent(s): the identification of the requirement or requirements from which 

this requirement is derived. Only another performance requirement can be 
a parent for a performance requirement.

	 4.	Function allocation: the identification number of the functional requirement 
to achieve this performance. A performance requirement may be allocated 
to more than one functional requirement. To enable this to happen we need 
to agree to a rule on how to do this. If the functions are allocated to multiple 
items, then clearly each of those end items must independently verify compli-
ance with the same performance requirement. What must be clarified is if the 
performance requirement is allocated to a function, is it also allocated to all 
descendants of that function? We can build an approach that allows for either 
a yes or no answer. I recommend using a process for when the answer is no. 
I’ll call this explicit allocation. At first, this may seem to be illogical. Surely, 
if a requirement is allocated a performance requirement, then for any more 
detailed subdivision of the function the requirement must still apply for each 
subfunction? Explicit allocation is both logical and vastly simplifies the veri-
fication process. To show the rule is logical, let’s revisit our very first simple 
functional requirement example: “Lift the chair.” Lifting a chair has subfunc-
tions of accelerate chair to a velocity, decelerate chair to 0 velocity, and apply 
force to keep the chair at specified height. A performance requirement for this 
function might be “so the point of the chair closest to the floor is 0.5 meter 
give or take 0.05 meter.” This performance requirement applies to the first and 
second subfunctions, but not the third, which only needs to know the mass of 
the chair. Explicit allocation vastly simplifies the verification planning effort 
because we need to only verify the performance requirements for the func-
tions to which they have been explicitly allocated, rather than have to decipher 
if performance requirements are truly applicable to all subfunctions implicitly 
allocated. For example, if performance requirement R is allocated to function 
F, which in turn is allocated to end item E, then we must find a way to show E 
does complies with R. We do not need to find ways to show every subelement 
of E also complies with R. However, if we explicitly allocate R to F, and F to 
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E, and R is also explicitly allocated to a subfunction Fsub, which is allocated 
to a different end item Esub, then we must verify both E and Esub comply 
with R. If we presumed a performance requirement allocated to a function is 
ALSO allocated to all subfunctions, then when planning verification efforts, 
we must carefully ascertain to what extent the implicit allocation needs to be 
included in the verification of the end item. For the example above, once R was 
allocated to F which was allocated to E, when building the verification plan, 
we must now ascertain to what extent R applies to all sub-functions of F that 
may be allocated to many items and determine for each case whether or not 
and how to show the end items comply with R. This can be done, but is a much 
more difficult task and more prone to missing a verification that can lead to a 
failed or unaccepted systems.

	 5.	Verification method: how it is to be shown that the performance is achieved 
by the end item to which allocated. Options are as follows:

	 5.1.	Record: Rely on a certification that was previously proven and believed 
to still be true. For example, a circuit board is presumed to achieve its 
performance requirements because it is routinely manufactured and the 
supplier has previously demonstrated it achieves a very low defect rate 
and continues to test samples of its production run to ensure product 
remains within tolerance.

	 5.2.	Inspection: Exercise a defined procedure to examine specified features 
for conformance. For example, measure the circuit board dimensions 
and mass to ensure it meets stipulated requirements.

	 5.3.	Analysis: Predict the performance based on a mathematical model. For 
example, the circuit board is verified to meet its requirement if a mathe-
matical model of how it translates inputs into outputs shows it complies.

	 5.4.	Test all, or test samples: To test means to exercise a defined procedure on 
physical representations of the actual system or architecture, in a defined 
environment, usually with independent witnesses. For example, the circuit 
board is subjected to planned inputs while housed in a compartment in 
which worst case operating temperature, humidity, and electromagnetic 
environment are maintained, for a specified time, while the real outputs are 
witnessed to see if they are as required. If multiple end items are to be pro-
duced, an important question is, does every end item have to be tested, or 
just some? If the system is such that no failures can be tolerated, exhaustive 
testing of all produced end items may be desired, but this will be costly and 
possibly very difficult if the test itself affects, or even destroys, the end item. 
We often rely on the assumption that if items are manufactured by the same 
process, then testing a sample of items may be acceptable to believe all the 
produced items will perform as required. If we do not test all the items, 
then the design must be able to tolerate the expected fraction of items likely 
to be unacceptable. So, the “test all” entry clarifies that every produced 
end item associated with this requirement must be tested to ensure it meets 
requirement. The “test samples” entry enables an appropriate sample of 
end items to be tested, and infers the production process needs to be moni-
tored to ensure the chosen sampling process is trustworthy.
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	 5.5.	Demonstration: Utilize in operational environment, usually with inde-
pendent witnesses. For example, inputs and outputs to the circuit board 
are monitored in the completed system during real-time operations.

	 6.	Verification acceptance: date and name of the organization (or person with 
contact information) responsible to conduct the verification effort. The 
organization that designs the end item that will achieve the performance 
requirement may also be responsible to verify that it does, or perhaps a 
different organization, the one producing the end item, is responsible to 
verify the requirement is met. This attribute again provides a means to help 
prevent the generation of unneeded or unverifiable requirements.

	 7.	Verification status: one of the following: not verified, in work, or verified.
	 8.	Verification evidence: either explicitly the evidence that shows the require-

ment is met, or a pointer to or name of a file that contains the evidence.
	 9.	Rationale: an explanation in plain language explaining why the requirement 

is needed and why presumed correctly stated.
	 10.	Author: who wrote the requirement with contact information.

Note there is no “level” of verification attribute. Common system level names, from 
highest to lowest, are architecture, system, segment, subsystem, component, assembly, 
and part. In this text, verification is conducted at the level of end item allocated the 
functional requirement to which the performance requirement is allocated. For exam-
ple, if circuit board performance is to be verified, it would be at the circuit board level. 
If that circuit board also needs to be verified that it works with additional circuit 
boards for an end item at a higher level in the system, then a function and associ-
ated performance requirements need to be allocated to that end item, for which 
verification attributes are documented. That is because the performance requirement 
is allocated to the functional requirement, which is allocated to an organization to 
provide. When the providing organization “accepts” the functional requirement, they 
are accepting the allocated performance requirements as well. It’s possible the provid-
ing organization is quite willing to accept all but one performance requirement; by 
insisting they then reject the entire functional requirement, we are ensuring the issue 
gets resolved.

	 11.	Compliance: if the performance requirement stipulates a numerical level to 
achieve, this attribute enables recording the current predicted or demonstrated 
value, or the percentile exceeding the requirement. If the performance require-
ment stipulates adhering to a standard or, for example, materials to avoid, then 
can record level of current compliance along with method used to comply.

Useful attributes for sought requirements are as follows:

	 1.	 Identification: a unique number.
	 2.	Status: “draft,” “approved,” or “discontinued.”
	 3.	Requesting entity: name and contact information for the person who is 

requesting the requirement.
	 4.	Acceptance record: date and name of systems engineering or architect-

ing organization or person that agreed to be responsible to provide the 
requirement. This provides a counterpressure to make sure only needed 
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requirements are generated, not something that might be an optional design 
detail, or even already specified, but not recognized yet by the requester.

	 5.	Rationale: a brief statement why this requirement is sought.
	 6.	Author: name of person or organization that needs the requirement determined.

Note that neither parent nor verification attributes are listed. The predominant 
reason to note parent functional and performance requirements is to enable tracing a 
network relationship amongst the requirements, so just in case a requirement at some 
level in the network is changed, requirements related to the changed requirement 
can be found to check if they need to change too. Though the sought requirements 
may be related, we need not worry about relational changes until they are formal 
functional or performance requirements, and to be such, we stipulate their parents. 
Similarly, we don’t worry about verifying sought performance requirements until we 
turn them into approved requirements.

The above are the minimal attributes for each requirement type. In my experience, 
if you elect to exclude any, you eventually have problems with the verification process. 
Any attribute the organization finds useful to efficiently do their job can certainly be 
added. For example, it may be useful to know who has authority to approve to accept 
or change each requirement. Approval authority, or even an indication of whether or 
not the customer must approve the requirement or its change, is a simple attribute 
that can be added. An approval authority attribute was explicitly not included in the 
recommended set because, in my experience, all attributes are costly to maintain. 
At some times, the customer may not care about any requirement; at other times the 
customer may care passionately about any requirement. Also, it is very easy for the 
approval authority attribute to be used to create information walls between groups, 
and this usually results in many requirements that should have had much wider review 
and approval being created and hidden for those who might be impacted by them. 
Obviously, extreme care is needed when deciding what attributes to add. One should 
inherently resist adding attributes because it is always significantly easier for the attri-
bute definer to add than it is for the potentially hundreds of people who will need to 
provide the information for thousands of requirements. A good question to ask yourself 
before adding an attribute is, “If I had to provide the input for every requirement, how 
long would it take me including every time it needs to be modified, and will having this 
attribute really save at least that much time?” Only if the answer is yes, consider adding 
the attribute. Compliance attributes are suggested as optional for this reason. Having 
them makes the system engineer’s life easier, but for larger systems and architectures, 
there is a tremendous amount of work required of other people to keep up to date the 
true current state of compliance, and unless the system engineers and architects create 
an audit system, they will be uncertain as to the veracity of the attribute values.

4.1.2  �Allocate Interface Requirements to an End Item 
as Any Other Functional Requirement

Because the very nature of an interface presumes at least a two-sided relationship, a 
tradition has developed to collect interface requirements separately in documents usu-
ally with “interface” in the title, that apply uniquely to the parties of the interface. So, 
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an end item has several requirements documents to comply with, its own collection 
of requirements (often called a specification) plus one or more interface requirement 
documents. In the days of manually produced paper specifications this was efficient as 
the interface specifications paperwork need only be distributed amongst the parties of 
that interface. Yet, every possible interface is a function to be performed with associ-
ated performance desired. Clearly both parties need to concur to the requirement state-
ments, as well how the interface will be implemented, but in the end, the “interface” 
requirements can and should be allocated to those end items just as any other func-
tional requirements that end item is to implement. This can easily be recognized by 
using the acceptance record attribute to record all parties to the interface requirement.

4.1.3  �Treat Compliance Requirements as Any Other Requirement

Inevitably, customers will care very much about some requirements, and presume as 
“details” many more requirements they trust the provider to determine and comply 
with, until of course, one of those supposed details becomes a cost, schedule, or per-
formance concern. So, a tradition has developed to package separately requirements 
to be formally controlled by the customer, from a larger number of requirements 
that a customer may review or change if desired, for which the providing organiza-
tion is responsible for “compliance” but controls without explicitly bothering the 
customer. Compliance requirements typically provide the detailed definition of the 
operating environments or explicit design details. In many companies this material 
represents the collective lessons learned by the implementing organization that are 
passed on to the program performers to help ensure program success by not making 
a prior mistake again. In the days of manually produced paper specifications, these 
compliance requirements were often packaged into documents for limited audiences, 
usually defined by engineering discipline, such as structures, guidance and control, 
or propulsion. Yet, every compliance requirement is either a function with allocated 
performance, or a performance requirement that needs to be allocated to a function. 
Given today’s powerful database programs, each and every compliance requirement 
should be treated no differently than any other requirement. Treating the compli-
ance material as any other requirement means each needs a parent and rationale. 
This is very important, because otherwise, given the esoteric nature of the material, 
the implementing organizations often falsely presume the need for the compliance 
and end up making the “wrong” thing, which isn’t discovered until major reviews, 
or even in integration and test, causing cost and schedule delays to fix the situation.

4.2  �WRITE GOOD NATURAL LANGUAGE REQUIREMENTS

Writing good natural language requirements is an art, for which we cannot yet stipu-
late formal requirements, but can offer heuristics for accomplishment.

The requirement statement may be codified with words such as “shall,” “should,” 
or “will,” to denote mandatory, preferred, or deferred compliance, respectively. Use 
of these particular words is a tradition; any words or phrases that communicate the 
level of desirability for the feature are appropriate, as long as understood by the cus-
tomer, users, and the rest of the implementation team.
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Good functional requirements minimize the reader’s uncertainty as to what activi-
ties are required to be implemented. Good functional requirements state what is to be 
done, avoiding stating things not to do, because “Not A” is usually a much bigger set 
than “A,” and some of the items in “Not A” may be perfectly acceptable. Performing 
a good functional decomposition remains mostly an art. To extent intellectual prop-
erty rights allow, good functional decomposition can be copied, rather than invented. 
Nature should be an inspiration. Inevitably, a functional decomposition proceeds 
to a level at which implementation decisions must be performed, because any addi-
tional decomposition is implementation dependent. When this happens, provided 
good decision-making process are used to choose the implementation option, smile, 
because you’re doing your job well. A good functional decomposition will tend to 
minimize the unique end items needed, while simultaneously enabling low-cost and 
reliable end items be used. A good functional decomposition goes only deep enough 
to uniquely assign each needed activity to an end item. A failed functional decompo-
sition has functions that overlap or exclude an activity that is needed. Try as we might, 
functional requirements will remain ambiguous since they are general statements of 
activities sans performance. Functional requirements are routinely read with imple-
mentation expectations in mind, and different implementations will infer different 
meanings. The predominant errors regarding functional requirements are as follows:

	 1.	Missing activities that need to be accomplished
	 2.	 Imposing an implementation method prematurely
	 3.	Decomposing functions too much, producing a lot activity names that can 

be implementation options rather than end item requirements

Good performance requirements minimize the readers’ uncertainty as to how well 
a function needs to be accomplished, and are verifiable. Good performance require-
ments address what is critical the function accomplish, allowing the designer as much 
implementation freedom as possible. The thought foremost in mind is to stipulate per-
formance, not implementation. But, as soon as the functional decomposition needs to 
address implementation decisions to proceed, the performance parameters required 
will become implementation specific. Again, provided good decision-making pro-
cesses are used, you get to smile a second time when this starts to happen. Performance 
requirements are often extremely useful if specifying a permissible range, as this 
increases the possibility of using existing end items. If performance requirements are 
to express a minimally acceptable level (threshold) and a desired level (objective), then 
one must also provide a means to assess the value of providing more performance than 
threshold level, so rational decisions can be made as to how much resources should be 
expended to do so. The biggest value system engineering and architecting can provide 
is to find the total set of performance requirements which collectively balance any 
conflicting customer and user needs, for which a solution can be provided at lowest cost 
or quickest. Because performance requirements impact cost and schedule, with the 
precise consequences uncertain at time of stipulation, then painfully obvious eventu-
ally, the biggest error regarding performance requirements is to ask for more than can 
be provided with resources available, or more than needs to be provided.

Good sought requirements make it clear what information is needed and why. Ideally 
the statement is written as the requirement needed, but a question is perfectly acceptable. 
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Sought requirements should be declared as soon as need is known, even if it may take 
some time before an answer can be provided. The least valuable sought requirement is 
one that is asked for after the activity dependent on the answer is already underway.

4.3  �REDUCE AMBIGUITIES IN THE NATURAL 
LANGUAGE REQUIREMENT STATEMENT

Natural language requirements are inherently ambiguous due to their very nature. 
The plethora of possible interpretations of all words used will lead various people to 
read requirements differently than intended, assuming they actually bother to read 
them rather than presume they know what they say, or presume they know what 
they should say in their opinion. A typical English word has 10 synonyms, so even a 
4 word requirement statement has 10,000 possible interpretations.

You can minimize these issues by careful use of words and phrases. One method 
to reduce natural language ambiguity is evident in legal documents where a writing 
style is enforced by declaring rules concerning the words, phrases, and grammar to 
use. The use of the style is perfected by extensive education, and ultimately by spe-
cialization, as those who are best at it get paid by others to do it for them. New provi-
sions often build upon existing provisions. The new is understood in part by meanings 
inferred from common experience and extensive dialogue. The resulting prose can be 
very precise to those schooled in the style rules, but incomprehensible to others.

Herein, formal rules are defined to check for the following types of ambiguities:

	 1.	Compliance level
	 2.	Completeness
	 3.	Precision
	 4.	Comprehension
	 5.	Referencing
	 6.	Vague words
	 7.	Functional requirement
	 8.	Acronyms
	 9.	English unit usage
	 10.	Word emphasis

Also provided are suggestions to minimize the ambiguities.

4.3.1  �Compliance-Level Ambiguity

Compliance-level ambiguity is caused by confusion regarding the extent the require-
ment is to be adhered to. If a requirement is a constraint, then it bounds the acceptable 
solution space and compliance is mandatory. If a requirement is a preference, then it 
determines that the goodness of the solution within the constraint space and compli-
ance is optional, but very important to achieving customer satisfaction. Expectations 
are features the customer wants without an explicit declaration. Not all expectations 
are practical given cost and schedule constraints. If a requirement is an expectation, 
the requirement must be written to clearly communicate whether to comply, offer as an 
option, or defer incorporating the stated feature. Deferring does not mean eliminating; 
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in the ideal case, defer means leaving the possibility of future inclusion easy to do. Any 
feature that is not required is simply not written. The words shall, should, and will are 
used here to denote mandatory, optional, and deferred compliance, respectively.

ComplianceLevelChecker performs the compliance level check by implementing 
these rules.

Check for the following:

Type 1.	also, anticipate, apply, applies, are to, aspire, can, could, crave, demand, 
desire, expect, force, forcing, ideally, goal, got to, has to, is to, might, 
must, necessary, necessitates, need, needed, needs, obligate, obligation, 
require, prefer, preference, should, stipulate, want, wants, will, would

Type 2.	can’t, don’t, mustn’t, needn’t, not, shouldn’t, won’t

Issue warnings:

Using <check for text> could cause compliance level ambiguity.

Provide suggestions:

For type 1:

If feature M is mandatory for entity E, use: The E shall M.
If feature O is optional for entity E, use: The E should O.
If feature D is deferred for entity E, use: The E will D.

If entity E may exhibit feature V with values between V1 and V2, use: The E shall 
V between V1 and V2 with equal preference over the range.

If entity E must exhibit feature V at Vt, but is desired to be Vo, use: The E shall V 
with threshold Vt and objective Vo with preference Vo = n Vt (where n >= 1 indicat-
ing approximately how much more valuable Vo is than Vt).

For type 2:

Phrase as a statement of inclusion rather than exclusion.

4.3.2  �Completeness Ambiguity

Completeness ambiguity is caused when missing information is included in the 
requirement statement. The rules for checking completeness are as follows:

Check for the following:

not known, tbd, tbr, tbs, tbx, to be determined, to be provided, to be reviewed, 
to be specified, to be supplied, unknown, ?

Issue warnings:

Using <check for text> could increase cost or delay receipt.

Provide suggestions:

Delete the requirement until complete, or provide the incomplete information.

CompletenessChecker implements the completeness ambiguity check.
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4.3.3  �Precision Ambiguity

Precision ambiguity is uncertainty in how to interpret numerical information. The 
rules for precision ambiguity check are as follows.

Check for the following:

Word is type 1, 2, 3, or 4 defined below, and next word is a number using digits 
or letters, where:

Type 1 is above, at least, minimum of, no less than, not less than, not to be less 
than, exceed.

Type 2 is at most, below, maximum, no greater than, not greater than, not to be 
greater than, under, up to, within.

Type 3 is about, almost, approximately, at, between, close to, exactly, give or 
take, more or less, near, of, or so, plus or minus, roughly, tolerance, use, +/‒.

Type 4 is average.

Issue warnings:

Using <check for text> could cause precision ambiguity.

Provide suggestions:

For type 1:

For a feature F to be >(=) L, an unambiguous statement to use is as follows:

The probability F is greater than (or equal to) L shall be p.

An equally unambiguous statement to use is as follows:

The degree of belief for F shall be (insert fuzzy L).

The most ambiguous statement to use is as follows:

The F shall be greater than (or equal to) L.

For type 2:

For a feature F to be <(=) U, an unambiguous statement to use is as follows:

The probability F is less than (or equal to) U, shall be p.

An equally unambiguous statement to use is as follows:

The degree of belief for F shall be (insert a fuzzy U).

The most ambiguous statement to use is as follows:

The F shall be less than (or equal to) U.

For type 3:

For feature F to be countable, use the following:

The F shall be C.



281Establish Natural Language Requirements

For feature F to be >(=) L and <(=) U, an unambiguous statement to use is as follows:

The probability F is greater than (or equal to) L and less than (or equal to) U 
shall be p.

An equally unambiguous statement to use is as follows:

The degree of belief for F shall be (insert fuzzy number that spans L and U).

The most ambiguous statement to use is as follows:

The F shall be greater than (or equal to) L and less than (or equal to) U.

For type 4:

For average: use mean, median, mode, and arithmetic or geometric, or explain 
how average is to be determined.

PrecisionChecker implements the precision ambiguity check.

4.3.4  �Comprehension Ambiguity

Comprehension ambiguity is caused by complex syntax that potentially hinders under-
standing the requirement. The rules for comprehension ambiguity check are as follows.

Check for the following:

Type 1.	Using more than two instances of shall, a semicolon, or a colon.
Type 2.	Using more than two instances of and or or.
Type 3.	Using more than one but.

Issue warnings:

Type 1: >= <shall or colon limit> shall statements or clauses separated by colons 
could hinder comprehension.

Type 2: >= <and or limit> and or or could hinder comprehension.
Type 3: Using but could hinder comprehension.

Provide suggestions:

Replace statement with multiple statements of the form:

(If C1 then) the E1 (shall, should, will) be A1 ((else if C2 then) the E2 (shall, should, 
will) be A2) …), where Ci are conditions, Ei are entities, and Ai are attributes.

ComprehensionChecker implements the comprehension ambiguity check.

4.3.5  �Referencing Ambiguity

Referencing ambiguity occurs when citing other information sources that might not 
be known or followed. The rules for referencing ambiguity check are as follows:
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Check for the following:

as defined, as shown, as specified, comply with, per, refer to, referenced, see, 
under

Issue warnings:

<check for text> information could be misinterpreted.

Provide suggestions:

Include information in external reference to comply with as additional requirements.

SiteReferenceChecker implements the check for referencing ambiguity.

4.3.6  �Vague Words Ambiguity

Vague words are adjectives or adverbs that may not be interpreted as intended. The 
rules for vague words ambiguity check are as follows:

Check for the following:

All adjectives and adverbs in Lutz,2 excluding those already listed in other 
style check requirements, with next word not a number.

Issue warnings:

<check for text> could be vague.

Provide suggestions:

Ask questions of those responsible to comply with requirement to determine if 
they interpret as intended. If not, replace with requirement(s) that provide 
correct answers to the question.

VaguenessChecker implements the check for vague words ambiguity. Vagueness 
Checker needs two files, vaguewordswithbreaksfile, and vaguewordsfile, holding 
potentially vague phrases and individual words. As each file contains a large number of 
entries they are not presented here, but are available online with the formal requirements.

4.3.7  �Functional Requirement

The ambiguity checker attempts to identify likely functional requirements and suggest 
a specific sentence format. The rules for functional requirement check are as follows:

Check for the following:

able to, achieve, act, accomplish, be capable of, bring about, capability to, 
carry out, code, collect, command, complete, design, develop, disseminate, 
dispose, do, establish, execute, fix, fulfill, instruct, maintain, manufac-
ture, move, operate, perform, program, provide, pull, push, realize, record, 
repair, ride, roll, support, teach, train, transport, watch, witness
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Issue warnings:

<check for text> suggests this statement is a functional requirement.

Provide suggestions:

For entity E to have function F, use “A function of E shall be to F.”
For entity E to have a subfunction S of F, use “A subfunction of F for E shall 

be to S.”

FunctionalRequirementChecker implements the check for functional require-
ment ambiguity.

4.3.8  �Acronym Ambiguity

Acronym ambiguity occurs whenever acronyms are used but not defined. The list of 
potential acronyms is very large. What can readily be checked is if a used acronym is 
on an approved list with definitions. Unfortunately, a text matching program cannot 
determine if an acronym that is identical to one on the approved list is used properly. 
The rules for acronym ambiguity check are

Check for the following:

Approved acronyms in an array with each element the string representation of 
the approved and defined acronym.

Issue warnings:

<check for text> could be an acronym that may not be understood.

Provide suggestions:

Spell out the acronym, or make sure definition is known by reader.

AcronymChecker implements the check for acronym ambiguity.

4.3.9  �English Unit Ambiguity

Presuming a program has standardized the use of the metric system, English unit 
ambiguity occurs when English units of measure are used. The English unit ambigu-
ity check rules are as follows.

Check for the following:

mil, inch, inches, in, foot, feet, ft, yard, yards, yd, yds, mile, miles, mi, nm, fathom, 
fathoms, league, parsec, astronomical unit, IAU, AU, light year, pica, acre, 
knot, fps, ft/sec, mph, g, acre foot, barrel, board foot, gallon, gallons, gal, pint, 
pints, pt, quart, quarts, qt, cup, cups, tablespoon, tablespoons, tbs, teaspoon, 
teaspoons, tsp, ounce, ounces, oz, btu, calorie, cal, kilocalorie, kcal, therm, 
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quad, eV, kilowatt hour, kilowatt-hour, kw-hr, kw hr, kwh, kwhr, foot pound, 
foot-pound, foot poundal, foot-poundal, ft lb, ftlb, ft-lbf, ft lbf, explosive energy 
of TNT, ton equivalent of TNT, horsepower, hp, ft-lbf/sec, ft lbf/sec, ton of 
refrigeration, pound, lb, lbs, poundal, kip, lbf, lbm, grain, slug, ton, atm, torr, 
bar, psf, psi, centimeter of mercury, centimeter of water, foot of water, fahr-
enheit, F, celsius, C, rankine, R, deg, revolutions, rev, RPM, Faraday, Gilbert, 
statampere, statvolt, statohm, curie, footcandle, footlambert, lambert, roentgen

Issue warnings:

Using: <check for text> could denote an English unit of measure.

Provide suggestions:

Convert to <metric equivalent for check for text> as the unit of measure.

UnitChecker implements the English unit ambiguity check.

4.3.10  �Word Emphasis Ambiguity

Nouns and verbs have many potential interpretations. A way to determine a require-
ment statement is being interpreted as intended is to substitute synonyms for each 
noun or verb and determine if any resulting modified requirement statement is pref-
erable. The rules for synonym ambiguity are as follows.

Check for the following:

All the synonyms for all the nouns and verbs found in Lutz.2

Issue warnings:

None.

Provide suggestions:

If the synonyms for word W are S1, S2, S3, and so on, for W, consider S1, S2, 
S3, and so on.

WordEmphasisChecker implements word emphasis check an ambiguity check. 
WordEmphasisChecker imports files of nouns and verbs along with alternative 
meanings. Each of these files can be found online with the formal requirements defi-
nitions, to avoid having to essentially reproduce a dictionary in this text.

4.3.11  �Requirement Statements for Ambiguities

ReqCheck executes each of the above ambiguity checks to identify draft requirement 
statement ambiguities. ReqCheck takes as input text which is the requirement state-
ment in quotes, and a logical array string docheck for which if docheck[[i]] is True, 
then ambiguity check i is performed, if False, ambiguity check i is not performed.

Here is an example application:
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Here is a second example application of ReqCheck:
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A third example of ReqCheck:
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4.4  �DETERMINE THE NATURAL LANGUAGE REQUIREMENTS

There are many candidate processes to determine natural language requirements. 
The following sections summarize each process, strengths and weaknesses, and 
when best to use.

4.4.1  �Natural Language Requirements by 
Reusing from Prior Programs

Prior systems or architecture may provide a wealth of established requirements. Prior 
requirements are beneficial in several ways. First, if the end items created for prior 
programs are acceptable for use in a new program, then the entire requirement 
establishment process for those elements is radically simplified. If the instructions 
to build the end items were retained and can simply be used again, avoiding all 
that work and time delay. Some caution is warranted. For some systems the time 
lag between requirement generation and end item production can be so long, that 
the material or processes to produce the end items may no longer be available. 
Also, how the end items are produced may now be different than how the origi-
nal requirements stipulate. So even when existing end items could do the needed 
job, it is necessary to confirm the end items can still be produced and identify the 
appropriate requirements to use for their verification. If an end item for a prior 
program was new, but is now routinely produced, then it can simply be bought. 
But care should still be taken to update the verification attributes associated with 
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the requirements. Second, end items created for prior programs may be usable 
with modification. Again, if the original requirements were not lost, they can be 
reviewed and edited, which is almost always much more efficient than starting with 
a clean sheet of paper. Third, even when the new program needs substantially dif-
ferent end items, the program is likely to need requirements addressing the same 
topics as those for a prior related program. At a minimum then, reviewing prior 
program requirement data can help identify the requirements that need to be estab-
lished. If the new program and prior program share the same environments, then 
requirements defining the environment may be reused with little or no change, even 
though the end items sought to operate in those environments may be different. 
Fourth, requirements established to ensure end items are well produced and easy to 
support are almost always reusable, checking only that they apply to the reality of 
the end items to be produced.

4.4.1.1  �Process to Determine Natural Language Requirements 
by Reusing from Prior System or Architecture

Step 1.	Prepare the structure of requirements that the new system or architecture 
needs by identifying primary and subordinate functions, and associated 
performance criteria, acknowledging likely implementation elements.

Step 2.	Gather existing requirement definitions and verification evidence from 
prior system or architecture and sort by new program functions and 
implementation elements. Note that the process of relating the prior 
requirements to the new program needs may suggest changes to the result 
of Step 1; if so, make those changes.

Step 3.	For each group of prior requirements sorted by new functions, make deci-
sion whether can use as is, can use with modification, and cannot use.

Step 4.	For “can use” prior requirements, confirm applicability to new program.
Step 5.	For “can use with modification” prior requirements, decide how to modify.
Step 6.	Complete attribute data for each requirement retained.
Step 7.	 Formally review and approve additions to program requirement database.
Step 8.	Identify the remaining requirements to establish.

4.4.1.2  �Strengths
The requirements are determined very quickly with few errors.

4.4.1.3  �Weaknesses
Requirements may not have “aged” well, invoking features that may no longer be 
doable. Or, the requirement documentation available may not have kept up with the 
reality of how the end items are now produced, so if used without checking, the 
requirement set will not be relevant to the end items. Or, if the requirements are 
sufficiently old, much better approaches may now be available. Too forceful an insis-
tence of reuse may stifle innovation, but this is mitigated somewhat if the require-
ments reused are implementation neutral.
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4.4.1.4  �Best Use
Whenever possible.

4.4.2  �Natural Language Requirements by Interpreting 
Customer Provided Documents

A customer may provide one or more documents with statements and diagrams indi-
cating requirements. If so, the documentation is parsed into the requirements state-
ments, either by finding the items the customer was kind enough to formally identify as 
requirements, or by reading each sentence and examining each diagram and creating 
a requirement statement judged to be an accurate representation of what the customer 
seems to want. If attributes are not provided, they need to be hypothesized. Although 
the provided requirements may be quite specific, it is unusual that the customer will 
provide every requirement needed, so additional requirements need to be derived.

4.4.2.1  �Process to Determine Requirements by Interpreting 
Customer Provided Documents

Step 1.	 Itemize every statement that may be construed as a candidate customer 
requirement into a functional, performance, or sought requirement. This 
may be very straightforward, as the customer specifically denotes state-
ments as requirements, or may take considerable interpretation.

Step 2.	Make sure to comprehend each requirement, both as it stands alone and in 
context with other relevant requirements. If the customer did not provide 
attribute information, hypothesize the necessary attributes.

Step 3.	To extent practical, get confirmation to understand each requirement as 
customer intended by discussing any uncertainties with customer.

Step 4.	As the customer is human, it is possible alternate requirements may bet-
ter express what they really want, so to extent customer allows, recom-
mend less ambiguous requirements for customer to adopt, or alternative 
requirements that achieve their apparent desires sooner, or at lower cost 
or risk.

Step 5.	Determine for each comprehended requirement whether it is a constraint, 
preference, or expectation. If constraint, impose upon program. If prefer-
ence, make decision as to how much of the optional feature to offer. If 
expectation, make decision whether constraint, option (and therefore how 
much to offer), or to defer, and if defer, how will defer so can most easily 
be added in the future.

Step 6. Formally review and approve additions to program requirement database.

4.4.2.2  �Strengths
A great deal of what the customer may want is explicitly declared.

4.4.2.3  �Weaknesses
Though the requirements are declared, that does not mean you comprehend them. 
The effort to comprehend the requirements may be quite considerable. Often when 
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the customer goes to such extremes, they are soliciting competitive bids on the 
system or architecture they seek. To be fair to all bidders, they will be reluctant 
to explain the requirements to one bidder without the other bidders present, or to 
avoid the hassle, the customer may simply not want to discuss the requirements in 
depth. The customer is human too, and writing good requirements is difficult, so it 
is quite possible some requirements fail to actually communicate what the customer 
wants. Most customers recognize these potential problems, so they often will hire 
the potential providers to help develop the requirements. In theory, this should pro-
vide near-perfect comprehension of what the customer wants. But to achieve this 
clarity, you have to be very careful to listen to the customer reaction to what you 
say you can offer, rather than push the solution you feel you can provide better than 
your competitors. True, it’s possible the customer will concur and stipulate require-
ments that are best fulfilled by your offering, but more likely they will know what 
they like best from all the potential providers and will ask for a combination of the 
features. In your zeal to try to convince your customer to slant the requirements in 
your favor, you may lose lock on what the customer wants, as you are blinded by 
what you want the customer to want. Sometimes the requirements do not state what 
the customer really wants, but indicate what their superiors want communicated, 
and the real requirements go unstated. For example, who approves the release of the 
requirement document may want a very mature, proven solution, while the direct 
customer may want to push the state of the art. The official requirement document 
may reflect the wishes of the authority with the power to approve, but the selection 
process may reflect the wishes of the direct acquirer. Or, the customer may perceive 
all available providers as roughly equally good at providing the desired solution, and 
what they really want is to work with the people they are most comfortable with. 
This overwhelming requirement may go completely unstated. For complicated sys-
tems, you will often find one or more subsets of the customer community responsible 
for an aspect of the system or architecture will appear to overspecify requirements. 
That is, they will provide so many detailed requirements they have essentially locked 
in the design. If the design works, give it to them. If the requirements stipulate a 
design that will not work, you must try to communicate this to the customer, with 
the best unemotional evidence you can muster. If the evidence is compelling, the 
customer will change their mind and usually be very grateful. If you cannot con-
vince the customer to change unachievable requirements, then you have to decide if 
circumstances may change and the customer’s opinion will change before it becomes 
critical, or to not offer a solution. Finally, it is unlikely the customer will stipulate 
every requirement needed to implement a solution, so the job will remain to derive 
the remaining necessary requirements.

4.4.2.4  �Best Use
Whenever possible.

4.4.3  �Natural Language Requirement by Surveys

A questionnaire is prepared and given to representative customers or users with their 
answers used to determine requirements.
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4.4.3.1  �Process to Determine Natural Language Requirements by Surveys
Depending on the circumstances, people asked to complete questionnaires may or 
may not want to. A general recommendation then is to keep any questionnaire as 
easy and quick to complete as possible, and therefore of limited focus.

Step 1.	Establish what needs to be known.
Step 2.	Determine whom to provide questionnaire to that will reliably provide the 

needed information.
Step 3.	Determine how many people need to participate to be a valid input and by 

what means to solicit participation.
Step 4.	For the target information providers, determine the best way to deliver the 

questionnaire, for example, by mail or email, by website, by calling, or by 
visiting in person.

Step 5.	For the target information providers, determine the format of the input, 
that is, what to ask and how answers are to be obtained. Options include 
statements to mark true, false, or don’t know/not applicable; statements 
to show a level of agreement or compliance with; reaction to an image; or 
free-form input.

Step 6.	Prepare a draft survey and conduct at least one test data-gathering exer-
cise. Modify survey based on results of test.

Step 7.	 Distribute the survey to target information providers.
Step 8.	Tabulate the results and formulate corresponding requirements.
Step 9. Formally review and approve additions to program requirement data base.

4.4.3.2  �Strengths
One can obtain direct customer or user input regarding requirements trying to ascer-
tain. Surveys can be particularly useful to ascertain the relative importance custom-
ers and users place on conflicting requirements.

4.4.3.3  �Weaknesses
Searching for requirements via surveys almost always yields conflicting require-
ments due to variation in what people want. So all such methods need a means to 
resolve these conflicts. One can attempt to appease the majority, or each cluster of 
similar interest by offering options, or perhaps an innovative solution can be found 
to appease the apparent contradictory requirements. Extreme care must be taken in 
selecting the survey respondents. Should the survey be given to a random sample of 
the all potential customers and users? Should the survey be given to those believed 
to be the most important customer and users? How do you really ascertain relative 
customer importance? Surveys themselves are notoriously easy to produce but often 
prove worthless. I wish I had a dime for every survey I completed that was so poorly 
designed that it is obvious the originator never bothered to attempt to complete it. 
Always test the survey on a sample population to be sure your questions are inter-
preted as you desire and you collect the type of input you need. We now live in a 
survey crazy society—you cannot rent something, stay somewhere, or browse the 
Internet without being asked to complete a survey. You must design the survey to 
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be as easy and quick to complete, or the people you ask to participate may simply 
decline to complete the survey. The survey will not provide requirement informa-
tion beyond that you design into the survey, so you could miss asking about things 
critical to the customer. Multiple surveys may be required, some exploring for topics 
of importance, not just details. Also, surveys rarely enable you to find out the cus-
tomer wants something they do not have. Survey results can be dangerous as they 
can legitimize wrong requirements. For example, if there are 100 people affected 
by the system or architecture, and you get survey response from 25, how do you 
know that the conclusions based on those 25 responses will be agreeable to the other 
75 people? It is quite possible the 25 have strong biases not representative of the 
majority. Finally, few customers take surveys completely seriously, so it’s a good idea 
to find independent ways to collaborate survey conclusions.

4.4.3.4  �Best Use
To establish details for narrow topics for which random sampling of users is likely 
to represent majority opinion or detailed sampling of most affected users is possible.

4.4.4  �Natural Language Requirements by Witness

The requirements authors watch the customer or user in action, so the authors can 
comprehend features that could enhance results or ease the work load for the users.

4.4.4.1  �Process to Determine Natural Language Requirements by Witness

Step 1.	Establish what needs to be known.
Step 2.	Determine whom to witness doing what to get the information needed. 

Determine to what extent you need to protect those witnessed from hav-
ing their identity become known. Often you will witness errors, and few 
people want their errors to be public.

Step 3.	Obtain permission to witness. Sometimes the customer or user is very 
happy and willing to be witnessed; if so, seek their active input to accom-
plish Steps 1, 2, and 4.

Step 4.	Determine how to capture the observations; examples are video record-
ing, audio recordings, sketches, or notes. Be very clear in advance what 
you are looking for: duration of activities, range of activities, error rates, 
delays, and so on.

Step 5.	 Witness the activity, and then collect data. Much more may be going on 
than you expected, or much faster than you can accurately record, or even 
much slower than you anticipated. So repeat from Step 4 as needed and can.

Step 6.	To fullest extent possible, have those whom you witnessed endorse at least 
the accuracy of the record. You may not have witnessed what you think 
you witnessed.

Step 7.	 Prepare draft findings into requirements. Again, to the fullest extent pos-
sible, share with those you witnessed to get their concurrence.

Step 8.	Tabulate the results and formulate corresponding requirements
Step 9.	 Formally review and approve additions to program requirement database.
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4.4.4.2  �Strengths
One can get deep insight into user needs.

4.4.4.3  �Weaknesses
Witnessing is time consuming and expensive. The performers need deep domain 
knowledge to comprehend what they are witnessing and to be able to visualize alter-
native functions. Not all users will welcome being witnessed, and there is always the 
possibility user behavior will be different when witnessed than when not. Though 
witnessing is quite powerful to determine what could benefit the user, that customer 
may not seek the system or architecture implied.

4.4.4.4  �Best Use
To find requirements for potential enhancements to existing system or architectures 
or to get ideas for features for new systems or architecture.

4.4.5  �Natural Language Requirements by Focus Groups

A small number of people are invited to review and discuss a potential offering, with their 
reactions recorded to help determine what features they favor and which they do not.

4.4.5.1  �Process to Determine Natural Language 
Requirements by Focus Groups

Step 1.	Establish what needs to be known.
Step 2.	Determine how many people need to participate to obtain a valid input, 

by what means to solicit participation, and what will provide to people in 
exchange for participating.

Step 3.	 Determine the best way to present the material to be reviewed to the target 
participants and the best means to record their reactions. Basically, you 
must prepare a script for the presentation while also putting in place a 
means to record reaction, be it video recording, audio recording, asking the 
participants to complete prepared surveys, or having witnesses take notes.

Step 4.	Determine whom to invite to be a focus group member and how much of 
their time will be need.

Step 5.	 Find or create an appropriate place to host the meeting and record the 
happenings.

Step 6.	Perform at least one trial focus group meeting, and modify output of Steps 
1 to 5 above based on what is learned.

Step 7.	 Conduct one or more focus group meetings.
Step 8.	Tabulate the results and formulate corresponding requirements.
Step 9.	 Formally review and approve additions to program requirement database.

4.4.5.2  �Strengths
You get direct input from potential customers or users. If the topic is narrow and well 
understood and important to the participants, you can get clear and valuable insight 
into what they want or need.
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4.4.5.3  �Weaknesses
All the same weaknesses as for surveys, only more so. Plus, you face the likelihood 
that the personality of one or a few of the participants will drown out inputs from many 
of the other participants, who may be more representative of the total customer or user 
community. Focus group sessions are very difficult to facilitate, and it takes consider-
able skill to keep the discussion on topic while not also influencing the participants. 
Since the focus group members really have nothing at stake, their inputs may lack 
conviction, or be first reactions, therefore not representative of their longer term. more 
stable opinions. So, just as with surveys, data obtained from focus groups need inde-
pendent confirmation.

4.4.5.4  �Best Use
Use focus groups only when truly representative of the customer or user community.  
Focus groups are best used to determine the range of possible requirements for nar-
row issues. 

4.4.6  �Natural Language Requirements by Assessing Product Defects

Review records of user complaints or maintenance records of a system or architec-
ture for systematic issues.

4.4.6.1  �Process to Determine Natural Language 
Requirements by Assessing Product Defects

Step 1.	Gather complaints or error reports. To fullest extent possible, ascertain 
method of collection. If an existing process to capture does not exist, 
invent a process.

Step 2.	Itemize the defects by type, frequency, and impact on customer or users. 
Look for those defects that are most important to prevent.

Step 3.	Conduct detailed assessment to identify likely causes for defects.
Step 4.	Hypothesize ways to eliminate defect causes.
Step 5.	Conduct trials to determine validity of hypotheses.
Step 6.	Tabulate the results and formulate corresponding requirements.
Step 7.	 Formally review and approve additions to program requirement database.

4.4.6.2  �Strengths
Directly address known deficiencies with known impacts

4.4.6.3  �Weaknesses
This method can only be applied if there is an existing, reliable record of defects, 
in terms of failures, user complaints, or service outages. Even if the record 
exists, to accurately infer requirements from fault data requires deep domain 
knowledge.
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4.4.6.4  �Best Use
Implement enhancements to existing systems or architectures and get ideas for fea-
tures for new systems or architectures.

4.4.7  �Determine Natural Language Requirements 
by Deriving Concepts of Operation

A concept of operation describes how the system or architecture is to behave from 
the operator’s perspective. Here the word operation includes the functions I called 
training, deployment, operations, support, and disposal. The description could be 
a single picture, a long narrative, a movie, or an equation of how the system or 
architecture is to be operated. The concept of operations foreshadows the imple-
mentation approach chosen, but as much as practical remains aloof from the exact 
end items that will be used, instead describing what activities the user expects to 
perform to achieve what ends. For very complicated systems, it may be pointless to 
try to describe every single operation, so the concept of operations may concentrate 
on describing a few key activities, sometimes called threads.

4.4.7.1  �Process to Determine Natural Language 
Requirements by Concepts of Operation

Step 1.	 Describe quantitatively what is to be accomplished by the system or 
architecture for whom by whom. This is called the mission. For com-
plicated systems or architecture, more than one such description may be 
needed. However, if the number of missions exceeds three or so, then 
probably need to subdivide the concept of operations effort into multiple 
volumes of three or less missions each.

Step 2.	 Name the performers, both internal to the system or architecture, and 
those external to the system or architecture, that need to participate for 
the mission to be a success, and the relationships between them.

Step 3.	 Name what information or material that needs to move between the inter-
nal and external performers to enable the mission to be accomplished.

Step 4.	 Name and determine the sequence of the operations functions needed to 
get and move the information and material to perform the mission. This 
can be accomplished by examining the operations activities from both 
the perspective of those with highest authority to execute the mission 
and those with lowest authority or most limited roles.

Step 5.	 Indicate, chronologically, the order and duration of the activities that 
move the stipulated information or material to enable the mission.

Step 6.	 Define constraints on the activities that move information or material 
flow between performers to enable the mission.

Step 7.	 Define measures of effectiveness that quantitatively denote how well the 
operations activities are proceeding.

Step 8.	 Mathematically model the behavior to accomplish the missions, in such 
a manner that system or architecture feature options can be explored for 
effectiveness.
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Step 9.	 To the fullest extent practical, confirm that your perception of the con-
cept of operations is what the customer and user want.

Step 10.	 Utilizing the mathematical models, decide what are the best perfor-
mance requirements to allocate to each operational function associated 
with the mission.

Step 11.	 Tabulate the results and formulate corresponding requirements.
Step 12.	Formally review and approve additions to program requirement database.

4.4.7.2  �Strengths
By describing what is desired in terms of activities and results, achieve a high level 
of clarity as to the operations functional requirements and desired associated per-
formance requirements. As the key operations may involve multiple aspects of the 
system or architecture, this approach helps understand which interfaces are critical 
to success and how they should be implemented.

4.4.7.3  �Weaknesses
Concept of operations development is time consuming and expensive. If the product 
is a long written narrative, many people won’t read it, so there will be an unknown 
level of uncertainty if correctly interpreting customer and user desires. Sometimes 
the customer provides at least the top level concept of operations to put their pro-
vided requirements in some perspective. Otherwise you may produce the concept of 
operations you think the customer wants rather than the one they do want. Pictures or 
movies work better than narratives to get the basic top-level information, but details 
may remain elusive. Care needs to be taken to not confuse customer or user wishes 
with constraints. As the focus is operations, deployment and disposal can easily be 
addressed, training and support less so, while and design and production functions 
are not considered. This can easily lead to a wonderful description for the desired 
operations with little or no hope the result can be implemented due.

4.4.7.4  �Best Use
This is for new or never-accomplished portions of systems or architectures to flesh 
out the basic types of requirements needed. Other methods are usually then neces-
sary to get the details correct.

4.4.8  �Natural Language Requirements by Formal 
Diagramming Techniques

Though by definition, natural language requirements are sentences, diagrams are 
very useful to show to customer, users, designers, producers, and supporters to grasp 
what the requirements statements are trying to communicate. Seven types of dia-
grams are needed:

	 1.	Mission diagram. An illustration that evokes the fundamental job the sys-
tem or architecture is to achieve.

	 2.	Hierarchy diagram. This can be shown using an indentured outline or a con-
struct similar to an organization chart. Hierarchy diagrams are used to depict 
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customer and user relationships, work breakdown structures, the performing 
organization relationships, the system end items, and functional decomposition.

	 3.	Activity flow. Boxes or ovals are used to name things to accomplish, ordered 
left to right, with arrows used to denote precedence. Unlabeled arrows denote 
only sequencing, but an arrow could be labeled to describe explicitly what 
is flowing from activity to activity. Any named activity can be decomposed 
into subordinate functions in a second diagram. The horizontal dimension of 
each box or oval could be in proportion to the duration of the activity per a 
time scale denoted on the diagram. The controls for each activity are denoted 
by named arrows flowing vertically downward into the top of each box, or 
oval. Or, material and items needed to implement the activity can be noted as 
named arrows flowing vertically upward into the bottom of each box or oval.

	 4.	Relationship diagram. Labeled rectangles, ovals, or stick figures denote 
entities, with arrowhead lines used to show what information or material 
flows from one entity to another. An alternative is a relationship table. This 
is shown usually with the entities listed in the main diagonal of the table. 
The remaining boxes are used to record the input and output between each 
entity using the following rules: each box left or right of an entity is to 
record what is output from that entity as input to the corresponding entity 
on the diagonal above or below.

	 5.	Timeline diagram. This is shown by using left to right, or top to bottom an 
axis depicting increasing time, and noting when activities start and stop 
relative to this axis.

	 6.	Feature table. The columns of the table name what is recorded in each row. 
More than one table may be defined to show more than one feature.

	 7.	Data graph. Shows dependent variables as a function of independent variables.

All formal diagramming methods utilize the seven above constructs to define a 
finite list of specific diagrams that the methodology judges adequate to express any 
aspect of interest for a system or architecture. That there are so many diagramming 
methodology variants is partly a result of the process maturing, but also a result of 
disagreements as to what constitutes useful information. The primary reason for 
the disagreement is that different types of systems and architecture, meaning they 
attempt to achieve different missions by different end items, need different depic-
tions. Still, tremendous progress is being made and one should explore the current 
status of these efforts and utilize to the fullest extent.

In addition to the structural difference, diagram methodologies also differ by 
what aspect of the system to perceive. There are at least two potential ways to view a 
system or architecture—functionally or physically. But there are many other poten-
tially valid views:

	 1.	Maturity of items used to implement
	 2.	What it costs or will cost
	 3.	How much longer it will take to be in operation, or will last
	 4.	How well it performs a mission
	 5.	 Impacts to environment
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Diagrams can certainly also be used regardless of the number of views deemed 
adequate.

4.4.8.1  �Process to Determine Requirements 
by Formal Diagramming Techniques

Step 1.	Sketch a draft diagram, using less than seven items in a single diagram.
Step 2.	Review it with customer, users and designers, producers and supporters, 

record edits directly on draft. Repeat as needed to settle on final answer.
Step 3.	Translate into natural language requirements. Note extent the diagram 

itself can be used as a requirement record, use as such, particularly if tool 
enables the diagram to be translated into the end item.

Step 4.	Formally review and approve additions to program requirement database.

4.4.8.2  �Strengths
Diagrams capture a lot of information succinctly. By sketching and modifying in 
real time with a customer, users and designers, producers, and supporters, one can 
often quickly establish what basic requirements are. Diagrams can be reused, saving 
a lot of time and avoiding errors. Tools enable an activity diagram to be translated 
automatically into a hierarchy diagram or even a timeline, making it relatively easy 
to make different diagrams from the same source inputs.

4.4.8.3  �Weaknesses
For complicated systems, huge numbers of diagrams are needed, each adding detail 
for an object on a higher level diagram, just as a huge number of drawings may be 
needed to depict the hardware end items to produce. Retaining comprehension of many 
diagrams is equally difficult as retaining comprehension of large amounts of text. 
Denoting whether something is a constraint or a preference is difficult on a diagram.

4.4.8.4  �Best Use
Software intensive systems or whenever tools enable diagrams to be automatically 
converted into end items.

4.4.9  �Natural Language Requirements by Quality Matrices

Quality matrices are a series of tables that indicate the relationship between what 
(typically labeled rows) and how (typically labeled columns).3 The basic method-
ology has four phases: product planning, part deployment, process planning, and 
production planning. Each phase utilizes at least one matrix to relate what is desired 
to how it will be done. For product planning, the what’s are the customer desires 
and the how’s what we call the functions and performance requirements. The part 
deployment matrix takes the relevant functions and performance requirements from 
the product planning metric as rows and introduces the derived design requirements 
as columns. The process and production planning matrices take the relevant design 
requirements as rows and introduce process and production functions and perfor-
mance requirements as columns, respectively. To establish what to put in each matrix 
requires application of the other techniques discussed above.
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4.4.9.1  �Process to Determine Natural Language 
Requirements by Quality Matrices

Step 1.	Produce the product-planning matrix.
•	 Determine customer wants.
•	 Estimate importance of each want.
•	 Establish functions and associated performance parameters relevant to 

achieving each want.
•	 Denote the correlation of which functions will fulfill which wants.
•	 Determine performance importance. (That is, if what_importance is 

a vector such that what_importance[[i]] records the importance of 
the ith what relative to the others, and C is a matrix, such that C[[i,j]] 
is relative importance of the ith what to achieve the jth function, then 
the importance of each function is given by C . what_importance.)

•	 To extent practical, ascertain competitor’s performance levels.
•	 Conduct trades to establish target performance levels which offer 

superior value to customer.
Step 2.	Produce part deployment matrix.

•	 Identify relevant functions and performance for the part.
•	 Conduct a trade to select an implementing concept.
•	 Identify as columns the critical design features and parameters for the 

concept chosen.
•	 Establish correlation of design features to function and performance 

requirements.
•	 Calculate design feature and parameters importance (the dot product of 

the functional and performance importance with the correlation values).
•	 Conduct trades to determine best design feature parameters.

Step 3.	Process the planning matrix.
•	 Identify the relevant design features and parameters with importance.
•	 Identify processes that will be used to provide each design feature.
•	 If no process exists, develop one.
•	 Establish the correlation between processes and features.
•	 Calculate the importance of each process.
•	 Establish the production values to achieve.

Step 4.	Support material.
•	 Prepare production quality control procedures and monitor.
•	 Prepare maintenance schedule material.
•	 Prepare operating instruction material.

4.4.9.2  �Strengths
Enables easy visualization of the allocation of performance requirements to func-
tions as well as functional allocation to end items. Enables high levels of reuse from 
system to system or architecture to architecture. Can easily display threshold or 
objective performance levels as well as competitor performance levels so can visual-
ize how might offer a more attractive product. Well suited for hardware end items 
with describable, static features.
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4.4.9.3  �Weaknesses
Even relatively simple systems need huge numbers of functions and performance 
requirements which rapidly can create a diagram needing a very large wall area and 
therefore hard to comprehend. Since the diagram is a static table, it does not show 
flow, change, or time.

4.4.9.4  �Best Use
Concise documentation for subelements of the system or architecture for which the 
fundamental functions, performance requirements, and end items can all fit in read-
able rectangles that fit on a standard size piece of paper or computer screen, or as a 
means to show how well the requirements provide a more competitive offering.

4.4.10  �Natural Language Requirements by Models or Prototypes

A representative version of the system or architecture is produced and displayed and 
possibly used by user and customer to solicit feedback regarding what to keep the 
same and what to change.

4.4.10.1  �Process to Determine Natural Language 
Requirements by Models or Prototypes

Step 1.	Build a model of the proposed offering with a clear idea what to demon-
strate to customer to solicit reaction.

Step 2.	Demonstrate model to customer, note positive and negative reactions.
Step 3.	Adjust model to better satisfy customer.
Step 4.	Repeat from Step 2 until customer satisfaction is maximized with 

resources available.

4.4.10.2  �Strengths
Since the model enables the customer and user to comprehend the system less 
abstractly, this should increase the likelihood of comprehending what they like or 
dislike. When the system or architecture is relying on new technologies, incremental 
prototypes offer the means to ascertain if the needed technologies are maturing to 
the level necessary for the system or architecture to work with incremental funding.

4.4.10.3  �Weaknesses
Many people perceive this method as the best way to get requirements. Yet use is 
fraught with issues. First, all the potential concerns associated with the reliability 
of the input when using surveys or focus groups still apply. Second, preliminary 
prototypes may simulate behavior that is desired, but very difficult to achieve in 
real life, or may underestimate the true manufacturing difficulties to make the real 
item. One may then get a “true” indication of the desirability of the feature from a 
user or customer perspective, but fail to comprehend how difficult the feature is to 
provide. Third, model production can be time consuming and expensive, though 
the art of the process is to mitigate these negative. Fourth, by definition, since the 
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prototype is a representation of the end item, not the requirements for the end item, it 
can only be created by choosing a specific implementation. So there is some danger 
the use of prototypes will limit the implementation solution space. This can be miti-
gated considerably by insisting at least prior to agreeing to the final implementation, 
prototypes representing numerous potential implementations be produced. A good 
heuristic is to insist at least six different implementations be found. Most people can 
easily think of three ways to do anything—the way it is done now, a way it shouldn’t 
be done, and the way they first think it can be done. Forcing an effort to find at least 
three more options has a good chance of finding a better solution.

4.4.10.4  �Best Use
For simple systems or architecture for which the primary job is to determine how to 
mix and match features to offer product superior to those currently available.

4.4.11  �Natural Language Requirements by Incremental Build

This could also be called trial and error, or simply art. For some systems, or at least 
some subsets of systems, there may be no practical means to obtain requirements 
from users or customers. In those instances, one essentially must build a product and 
see what customer thinks of it after built, and incorporate their changes into the next 
build of the product.

4.4.11.1  �Process to Determine Natural Language 
Requirements by Self-determination

Step 1.	Determine what features the customer and users want to the fullest level 
they can describe.

Step 2.	 To the extent you need additional information to fully know how to imple-
ment a customer’s stated feature, use your own judgment to determine the 
additional needed information.

Step 3.	Produce the end items.
Step 4.	Show the end item to customer and users, and learn what changes or new 

features they want.
Step 5.	Repeat from Step 2.

4.4.11.2  �Strengths
This method is particularly suited for very innovative end items. When many options 
can be developed and proposed in a relatively short time, this can be a very efficient 
method, as a continuous stream of hypothetically useful end items is produced, the 
survivors of which are those customers want the most. Over time, this method will 
eventually provide more improved systems. This method is effective for many soft-
ware intensive systems, particularly those with extensive graphical user interfaces. 
This method all but guarantees hitting cost and schedule targets since the due date 
for the increment is fixed and the effort can be predicted with high accuracy. What 
is at risk is the extent the desired features are all fully implemented by the stipulated 
date for the stipulated amount.
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4.4.11.3  �Weaknesses
This method relies on a great deal of customer interaction, which may not be sustain-
able. Though progress toward meeting customer or user objectives is likely, there 
still is no absolute guarantee that the customer and users won’t change their minds 
so often the process will spiral out of control.

4.4.11.4  �Best Use
When the requirements are very uncertain, or the effort to determine them exceeds 
the effort to produce a specification for the customer to react to. Also an effective 
way to introduce new elements to an existing system that combine the latest state of 
the art technologies in novel or innovative ways to satisfy well recognized shortfalls.

4.5  �MAINTAIN A NATURAL LANGUAGE REQUIREMENT DATABASE

A collection of natural language requirements are best maintained using a database 
program. Formal requirements are presented to create and maintain functional, perfor-
mance, and sought requirements, manage the database of requirements, as well as pre-
pare specifications which are the subsets of the requirements allocated to an end item.

4.5.1  �Create a Requirement Type

CreateReqType creates a requirement type. CreateReqType defines and stores in a 
file called typename, an array, the first element of which defines each attribute asso-
ciated with the requirement type. The second element is a unique identifier for that 
type of requirement.

CreateReqType is first used to create a functional requirement type. For this 
example, the type was arbitrarily given the name P (to, for example, represent a 
program name) followed by the type name.

To see the state of the Pfunctional database, use the Mathematica routine Get 
or <<.
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The file is an array with two elements: the first element is also an array, with two 
elements, the first an attribute name, and the second the attribute definition. This 
enables such information be utilized in table headers, or definition of terms. The 
second element is an integer, set to “1,” which is the number that will be assigned to 
the next defined requirement of this type. Clearly, then, whatever routine is defined 
to define a requirement, it must update this integer after each definition. Also note, 
every time CreateReqType is used with the same typename, any previous instantia-
tion of typename is deleted.

Mathematica provides routines to copy, rename, or delete the resulting files, namely:

CopyFile[from_file1, to_file2]
Rename[from_file1, to_file2]
DeleteFile[file]

4.5.2  �Create an End Item Hierarchy

An easy way to depict a hierarchy in Mathematica is to create a list consisting of the 
items numbered as an outline, which is stored in a file given an appropriate name. 
Here is an example for program P with end item structure Penditems, saved in a file 
called Penditemsfile:

4.5.3  �Create an Implementation Organization Hierarchy

The implementing organization hierarchy can be depicted the same way as the end 
items. To keep the example simple, Porganization is defined to be exactly the same 
as the end item organization, with the result saved in a file given the arbitrary name 
of Porganizationfile.
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4.5.4  �Define a Requirement of a Particular Type

DefReq defines a single new requirement of a particular type.
What follows is an example to define a specific functional requirement:

By displaying the contents of the file Pfunctinal we see how the file is constructed:

Simply, the requirement record is a two-element array: the first element is the 
natural language statement, and the second element is an array of type attribute 
values, with the unique identifier the first element of this array. To help distinguish 
types, this implementation joins the requirement type name with “-” followed 
by a unique integer. When defining a second requirement, it is appended to the 
Pfunctional database:

4.5.5  �Edit a Requirement

To change a requirement statement or an attribute value, we must find it in the database, 
redefine the part that is to change, and return the new information to the database, with-
out changing the ID number. EditReqAttribute enables this for attribute information.

For example, if we want to change the status of Pfunctional-2 from draft to approved 
and change author from Name_author to Name_author2, we do the following:
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Similarly, EditReqStatement changes a requirement statement. Here is an example:

To edit requirements in a large database, it’s convenient to be able to search the 
database. ShowStatement finds any statements that contain the test string. Here is 
an example:

ShowAttributes finds requirements with attributes that match a specified value. 
Here is an example:

ShowAttributes can also find requirements that match multiple attribute values:

4.5.6  �Create a Dependency Report

A dependency report identifies all requirements that are either parents or children of 
an identified requirement.
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ReqParentReport finds all parents of a requirement, and recursively calls itself to 
find parents of the parents.

ReqChildReport finds all children of a requirement, and recursively calls itself to 
find children of the children.

To demonstrate, first create a sample network of dependent requirements:

Here are several examples of determining parents:
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Here are several examples of determining children:
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4.5.7  �Create a Functional Allocation Report

A useful report is to determine if all functional requirements were allocated to end 
items. AllocatedTo does this check.

The following creates an array, each element of which shows what functional 
requirement was allocated to the corresponding end item. An “{}” indicates no func-
tion has yet been assigned to those end items.

NotAllocatedTo finds any functional requirements not allocated to the approved 
end items. Here is the output for the database Pfunctional and the end items defined 
by Penditems:

This is correct, since we recorded “{tbd}” in the end item allocated attribute loca-
tion for each of these requirements.

4.5.8  �Create a Performance Allocation Report

To check for any functional requirements for which no performance requirement is 
allocated, use AllocatedTo with oftype set equal to the name given the performance 
requirement type file, and totype set equal to an approved functional requirement 
identification.

Use NotAllocatedTo to check for functional requirements that have not been allo-
cated performance requirements by using NotAllocatedTo with oftype set to the file 
name for the performance requirements, and totype set to an array of approved or 
draft and approved functional requirement identifications.

4.5.9  �Create End Item Specifications

A specification is a subset of the system or architecture requirements database that 
are applicable for a stipulated end item. Before the convenience of modern database 
programs, a specification traditionally was a document, organized per some standard 
outline, to help ensure all the necessary requirements types were captured and prior 
requirements could be easily reused. Now, for an end item at any level in a system 
or architecture, a specification is best visualized as a table that shows requirement 
statements and all their attributes.
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Systems engineering literature is full of similar but different, very well thought 
out, templates for specifications. Perhaps the granddaddy of all specification stan-
dards is Military Standard 490A.4 This document defined potential formats for a sys-
tem specification as well as what were called “development specifications,” “product 
specifications,” “process specifications,” and “material specifications.” The recom-
mended outline for a system specification is as follows:

	 1.	Scope
	 2.	Applicable documents
	 3.	Requirements
	 3.1.	System definition
	 3.1.1.	General description
	 3.1.2.	Missions
	 3.1.3.	Threat
	 3.1.4.	System diagrams
	 3.1.5.	Interface definition
	 3.1.6.	Government-furnished property
	 3.1.7.	 Operational and organizational concepts
	 3.2.	Characteristics
	 3.2.1.	Performance characteristics
	 3.2.2.	Physical characteristics
	 3.2.3.	Reliability
	 3.2.4.	Maintainability
	 3.2.5.	Availability
	 3.2.6.	System effectiveness models
	 3.2.7.	Environmental conditions
	 3.2.8.	Nuclear control requirements
	 3.2.9.	Transportability
	 3.3.	Design and construction
	 3.3.1.	Materials, processes, and parts
	 3.3.2.	Electromagnetic radiation
	 3.3.3.	Nameplates and product markings
	 3.3.4.	Workmanship
	 3.3.5.	Interchangeability
	 3.3.6.	Safety
	 3.3.7.	Human performance and human engineering
	 3.4.	Documentation
	 3.5.	Logistics
	 3.5.1.	Maintenance
	 3.5.2.	Supply
	 3.5.3.	Facilities and facility equipment
	 3.6.	Personnel and training
	 3.7.	Functional area characteristics
	 3.8.	Precedence
	 4.	Quality assurance provisions
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	 4.1.	General
	 4.1.1.	Responsibility of tests
	 4.1.2.	Special tests and examinations
	 4.2.	Quality performance inspections
	 5.	Preparation for delivery
	 6.	Notes
		  Appendix

Sections 1 and 2 are preamble and descriptive. Section 3 is called “Requirements,” 
but section 3.1 is explanatory material only. The actual requirements are contained 
in 3.2 to 3.6, which are roughly grouped by the primary functions, which were not 
acknowledged as such in the day of the standard. Sections 4, 5, and 6 were also 
descriptive, perhaps instructional, but did not contain requirements. Note, software 
and computers are not mentioned in the outline. The Standard’s “development speci-
fication” template for “computer program,” is as follows:

	 1.	Scope
	 2.	Applicable documents
	 3.	Requirements
	 3.1.	Program definition
	 3.2.	Detailed functional requirements
	 3.2.1.	Inputs
	 3.2.2.	Processing
	 3.2.3.	Outputs
	 3.2.4.	Special requirements
	 3.3.	Adaptation
	 3.3.1.	General environment
	 3.3.2.	System parameters
	 3.3.3.	System capacities
	 4.	Quality assurance provisions
	 4.1.	Introduction
	 4.2.	Test requirements
	 4.3.	Acceptance test requirements
	 5.	Preparation for delivery
	 6.	Notes
		  Appendix

Again, the first two and final three sections do not contain requirements. Here, 
“function” is explicitly used, but it refers to only the operational functionality of the 
computer program.

Based on this standard, the Aerospace Corporation published a guide,5 which 
noted inconsistencies between published standards at the time, and recommend a 
resolution for system specifications for military space systems. The template for 
Aerospace’s system specification is as follows:

	 1.	Scope
	 1.1.	Identification
	 1.2.	System overview
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	 1.3.	Documentation overview
	 1.4.	System classifications
	 2.	Applicable documents
	 3.	System requirements
	 3.1.	Definition
	 3.1.1.	System description
	 3.1.2.	System segments
	 3.1.3.	Specification tree
	 3.1.4.	Top-level system functions
	 3.1.5.	System states and modes
	 3.2.	Characteristics
	 3.2.1.	Performance characteristics
	 3.2.2.	Reference timelines
	 3.2.3.	External interface requirements
	 3.2.4.	Physical characteristics

	 3.2.4.1.	 Protective coatings
	 3.2.4.2.	 Mass and size properties
	 3.2.4.3.	 Power
	 3.2.4.4.	 Survivability
	 3.2.4.5.	 Other

	 3.2.5.	System quality factors
	 3.2.5.1.	 Reliability
	 3.2.5.2.	 Maintainability
	 3.2.5.3.	 Availability
	 3.2.5.4.	 Additional quality factors

	 3.2.6.	Environmental conditions
	 3.2.6.1.	 Environmental design margins
	 3.2.6.2.	 Environmental conditions for space equipment
	 3.2.6.3.	 Ground environments
	 3.2.6.4.	 Environmental conditions for ground equipment

	 3.2.7.	Transportability
	 3.2.8.	Flexibility and expansion

	 3.2.8.1.	 Operational computer resource reserves
	 3.2.8.2.	 Computer resource reserves for operational ground 

equipment
	 3.2.8.3.	 Nonoperational computer resource reserves
	 3.2.8.4.	 Other flexibility and expansion requirements

	 3.2.9	 Portability
	 3.3.	Design and construction
	 3.3.1.	Materials
	 3.3.2.	Nameplates and product marking
	 3.3.3.	Workmanship
	 3.3.4.	Interchangeability
	 3.3.5.	Safety
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	3.3.6.	 Human engineering
	3.3.7.	 Nuclear control requirements
	3.3.8.	 System security
	3.3.9.	 Government-furnished property
	3.3.10.	Computer resources
	3.3.11.	Space vehicle design requirements
	3.3.12.	Operational ground equipment general design requirements
	3.3.13.	Nonprofessional ground equipment general design requirements
	3.3.14.	General construction requirements

	 3.3.14.1.	 Processing and controls for space vehicle equipment
	 3.3.14.2.	 Processing and controls for ground equipment

	 3.4.	Documentation
	 3.5.	Logistics

	3.5.1.	 Support concept
	3.5.2.	 Support facilities

	 3.6.	Personnel and training
	 3.7.	Characteristics of subordinate items
	 3.8.	Precedence

	3.8.1.	 Conflicts
	3.8.2.	 Requirement weighting factors

	 3.9.	 Qualification
	 3.10.	 Standard sample
	 3.11.	 Preproduction sample, periodic production sample, pilot, or pilot lot
	 4.	Quality assurance provisions
	 4.1.	Responsibility for inspection
	 4.2.	Special test and examinations
	 4.3.	Requirements cross-reference
	 5.	Preparation for delivery
	 6.	Notes
Appendices
Index

Other than the obvious explicit mention of space vehicles, the Aerospace guide 
also uses “characteristics,” to address that a complicated system may be built in 
increments, and each increment may have different requirements, as well as “states 
and modes” as a way to name different ways a system may be configured to be oper-
ated with different requirements applicable to the different states and modes. Also 
note the Aerospace expanded section “3.8 Precedence” to explicitly indicate how to 
react to conflicting requirements. Finally, there is a new section, “3.9 Qualification,” 
to address that when more than one item is to be made, how should the first and sub-
sequent be qualified. But perhaps Aerospace’s most salient difference is the introduc-
tion of section “3.7 Characteristics of subordinate items.” In this section, the template 
is recursively applied in whole or part for the items that constitute the system.

Perhaps the most annoying argument that bedevils systems engineering leads on 
programs for the Department of Defense is whether or not a specification needs 
to identify both the requirements for the end item and for the subordinate items. 



316 Systems Engineering and Architecting: Creating Formal Requirements

Many system engineers insist there must be a “3.7” in a specification. Many design-
ers and producers find a “3.7” useless at best, and a load of unnecessary work at 
worst. The system engineer’s reasoning is as follows:

“The specification, particularly the system specification, is my product. To produce 
my product, I and my colleagues spent a great deal of time very carefully analyzing 
how the requirements should be allocated and divided up between all the segments, 
elements or subsystems, in such a manner, that the result is the ‘best’ balance for the 
overall system. That allocation is very important, and it needs to be recorded, and its 
record needs to be carefully reviewed and approved at the same time the system spec 
is approved.”

The recipients of the “3.7” requirements have an entirely different perspective. 
The designers, producers and testers who have the job to make something real, see 
the “3.7” entries as unnecessary duplication, their reasoning is as follows:

“The requirements in section 3.7 of the higher level specification duplicate the require-
ments that are in the lower specification section 3.2. Why do we have to define and 
keep track of all these extra requirements that say exactly the same thing? Why must 
we define the 3.7 requirements for our subordinate items, when they are recorded 
perfectly well in the 3.2 section of their respective specifications? This repeating of 
requirement is exponentially growing duplicate requirements. We have to keep track of 
our compliance with respect to all these duplicate requirements and we have to prepare 
and execute verification plans for all these duplicate requirements, creating literally 
tons of paper work that adds no value at great expense.”

Clearly, both sides have a point. One could even suggest to the anti-3.7 folks that 
any requirements recorded in that section can be exactly the same (that is, have the 
same identification numbers) as any requirements that will show up in the corre-
sponding lower level documents, so the requirements are not really duplicate, they 
are simply repeated. But this does not address their primary concern—please pro-
vide me a record of what my end item must provide, no more, no less.

I must confess I once was an advocate for having subordinate requirements 
stipulated in system specifications. My primary motivation was very similar to the 
argument above, as I saw value in recording the explicit allocations made between 
subordinate items, with the rationale that this allocation was critical to success. And 
I thought if the end item explicitly states key requirements imposed on subordinate 
items, the odds of those requirements being complied with went up.

But I now strongly recommend that one produce a specification that contains only 
those requirements that apply to that end item. Furthermore, should a requirement 
apply to multiple end items, it should be recorded as the same requirement allocated 
to each, not different requirements.

Chapman, Bahill, and Wymore6 recommend a set of documents be generated:

	Document 1.  Problem Situation	
	Document 2.  Operational Need
	Document 3.  System Requirements
	Document 4.  System Requirements Validation
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	Document 5.  Concept Exploration
	Document 6.  System Functional Analysis
	Document 7.  System Physical Synthesis

They also use the terms input trajectories and output trajectories both to remind and 
to enforce definition of the variability of each.

The software community was never well served by natural language require-
ments, so they have devoted considerable attention on the subject and have generally 
become more and more enamored with graphical representations. Still, many in the 
field see a need for words to go along with the pictures. Robertson and Robertson7 
offer a large template for software intensive systems, which is actually applicable 
to many other types of systems. The authors purposely try to address every pos-
sible aspect of a software project, so the range of topics is substantially beyond just 
requirements.

I strongly endorse a multiple document approach. I see both simplicity and value 
in separately documenting:

	 1.	The need for the system
	 2.	What constitutes solution goodness
	 3.	An identification of the alternatives assessed
	 4.	The rationale for selecting the chosen approach
	 5.	The performance and functional requirements for end items
	 6.	The design of the end item
	 7.	Verification plans
	 8.	Verification evidence

As for the requirements, “all” that is needed is to communicate the functions and 
associated performance requirements to the end item designers, producers, and sup-
porters. The structure of a specification then is as follows:

Specification for: <end item name>
Functional requirement: <identification> <statement>
Accepted by: <value>
Rationale: <value>
Allocated performance requirement: <identification> <statement>
Accepted by: <value>
Rationale: <value>
Verification method: <value>
Verification status: <value>
Verification evidence: <value>
[Repeated for each allocated performance requirement.]
[Repeated for each allocated functional requirement.]
Sought requirements:
<none> or <id> <statement>
Accepted by: <value>

Rationale: <value>
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 To illustrate, first let’s define a few more functional requirements to allocate to 
the end item 1 System:

Next, we make up a few more that are “inactive” or “approved”:

To create the sample specification, one needs performance requirements too, so 
first define a performance requirement type:



319Establish Natural Language Requirements

For illustration purposes only, we quickly make up 20 performance requirements, 
which we allocate to some of the defined functional requirements:
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Finally, we make a few arbitrary sought requirements. First, one needs to create 
the type:

Then we make two: one applicable to 1System, one not:

SpecWriter prepares the specification. Here is sample output for the make believe 
requirements generated for end item called 1System:
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4.5.12  �Create an Architecture Specification

The DoDAF8 provides exceptional guidance as to what to describe about an archi-
tecture. All that is needed is a little adjustment to acknowledge that the architecture 
comprises more than the information flow between its constituents. An architecture 
specification is obtained by slightly modifying the DoDAF All View 1 (AV1) as fol-
lows:	

	 1.	Architecture identification
	 1.1.	Name
	 1.2.	Organization developing the architecture
	 1.3.	Approval authority
	 1.4.	Participating organizations
	 2.	Mission, constraints, and assumptions
	 2.1.	Reference missions
	 2.2.	Constraints
	 2.3.	Assumptions
	 3.	As-is architecture
	 3.1.	As-is system constituents
	 3.2.	As-is reference mission performance
	 3.3.	As-is interorganizational relationships
	 3.4.	As-is communications network
	 3.5.	As-is information exchange
	 4.	To-be architecture
	 4.1.	Rationale for to-be architecture selection and corresponding reference 

missions performance
	 4.2.	To-be system constituents
	 4.3.	To-be interorganizational relationships
	 4.4.	To-be communications network
	 4.5.	To-be information exchange
	 4.6.	As-is to To-be transition plan
	 5.	Technology development recommendations
	 6.	Tools used to assess candidate architectures

Notice unlike the system specification, the architecture specification is a document 
that tells a story; it is not an output of a requirements database indicating which 
performance requirements correspond to which functional requirements. This is 
another reason architecting is a different activity than systems engineering.

4.6  �VERIFY REQUIREMENTS ARE COMPLIED WITH

There are numerous types of “verifications” that need to be accomplished to bring a 
system into existence in compliance with its requirements. The word verification is 
often used to denote the effort to determine the real-world solution meets the docu-
mented requirements, while the word validation is used to denote the effort to show 
the real-world solution meets the customers’ and users’ needs.
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Though these two efforts are very important, it is equally important to present evi-
dence the documented requirements are complete and correct, that the simulations 
used to make decisions provide necessarily accurate results, that both the design 
(instructions to build end items) and the end items themselves comply with require-
ments, and that the system (collection of end items) or architecture (collection of 
systems) meets requirements. So there are at least six kinds of “verification efforts.” 
I can’t think of six different single-word names for each of these verification efforts, 
so I will use the word verify but add a phrase to explain what is being verified.

This section provides process descriptions and heuristics to perform the six types of 
verification. Please note that the name given to each of the verification types is purely 
arbitrary and at the discretion of the traditions of an organization or industry. Based on 
my experience, it is critical to perform each of the applicable types for a program to 
succeed.

4.6.1  �Requirements Are Complete and Correct

Completeness means all the necessary functions to be implemented were named 
and only those functions are being implemented. Correctness means all the perfor-
mance requirements needed for all the functional requirements to have meaning are 
defined, and, the values chosen are the best set in terms of resolving contradictions 
and ease of implementation.

Since we lack of a specification for the requirements, how do you know when you 
have found and accurately documented the complete and correct requirements? Most 
people presented a real-world “thing” to fulfill their needs can tell you what they like 
or don’t like about it, but many have a harder time telling you how they want it differ-
ent. Many people have trouble relating to abstractions in a manner that enables them to 
communicate their reaction, and requirements are the ultimate abstraction. So we first 
need to find ways to ensure requirement comprehension, or the opposite, the extent of 
ambiguity.

Gause and Weinberg9 identify the following sources of ambiguity:

	 1.	Observation
	 2.	Recall
	 3.	 Interpretation or problem solving

Observation ambiguity is variation in what people see or hear. Recall ambiguity 
is variation in what people remember. Interpretation ambiguity is variation in how 
people in their own minds formulate what they have read or witnessed. Evidence of 
an interpretation or problem-solving ambiguity is clusters of people interpreting the 
requirements in fundamentally different ways. Observation and recall ambiguities 
tend to cause variation amongst people within a given cluster.

Gause and Weinberg suggest three methods for uncovering ambiguity:

	 1.	Definition variants
	 2.	An ambiguity poll
	 3.	A memory poll
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We already implemented a means to do the definition variant test, which calls for 
substituting synonyms for words in the requirement. A caution: it is highly unlikely 
a customer will in reality consent to read and react to hundreds of variants of the 
same requirement. So this method is best used by the system engineer or architect 
to identify the possible misinterpretations they may have regarding the customer’s 
communicated requirements, to then have a direct conversation with the customer 
on a few specific topics.

To implement the ambiguity poll, select a metric (examples: time to complete, 
or cost to do) that requires understanding the requirements to estimate. Ask people 
who must implement the requirements to independently estimate the chosen metric. 
Then the individuals are brought together to compare and discuss the tabulated 
results. Large differences in the metric typically are the result of interpretation 
ambiguity, smaller differences usually the result of observation and recall ambigui-
ties. This is an extremely powerful method to use with the designers, producers and 
supporters.

To implement the memorization poll, ask individuals to recall requirements from 
memory. Those requirements remembered well are likely to be unambiguous; the 
requirements that are not remembered well will likely be ambiguous. Though this 
method is powerful, the customer is unlikely to care to participate, nor the designers, 
producers, and supporters. So, a useful variant is to show how you intend to comply 
with the requirements to the designers, producers, and supporters; their reaction will 
be doubly helpful to determine if you understood their requirements and are providing 
a solution they might like. Similarly, by asking the designers, producers, and support-
ers to write down how they plan to comply with each requirement allocated to them, 
you will indirectly determine if the requirement was interpreted as you intended.

All these methods share a very basic human activity—conversation. By talk-
ing about the requirements, the huge number of potential interpretations is reduced 
to the desired one. The requirements can be then be reworded to aid maintaining 
that agreed to interpretation in the future, but once the common understanding is 
achieved, it really doesn’t matter what words are used, provided the people involved 
remain the same and remember the agreements, which cannot be guaranteed. New 
participants must be taught how to interpret the requirements to retain the agreed to 
meaning.

The following explains how to verify requirements are complete and correct:

4.6.1.1  �Process to Verify Requirements Are Complete and Correct

Step 1.	 Perform the ambiguity checks on each requirement.
Step 2.	 Ensure the system or architecture structure closely resembles the func-

tional and physical structure.
Step 3.	 Look for and eliminate aggregation of items with conflicts of interest, 

and partition them into separate end items to ensure checks and balance.
Step 4.	 Check to ensure that all functions have parents; if not, delete or establish 

the appropriate parent.
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Step 5.	 Check that all subfunctions are independent and collectively name the 
activities of the parent function that need to be implemented; if not, 
change the subfunction names and definitions.

Step 6.	 Check that all functions have been allocated to at least one end item; if 
not, delete, or allocate to at least one end item.

Step 7.	 Check that all end items have at least one function allocated; if not, 
delete the end item, or identify the functions the end item performs.

Step 8.	 Check all functions have at least one performance requirement allo-
cated to them; if not, delete the function, otherwise record performance 
requirements for the function.

Step 9.	 Check all performance requirements have been allocated to at least one 
function; if not, delete the performance requirements, otherwise, define 
the functions for which the performance requirements apply.

Step 10.	 Check all attributes, except the acceptance attributes, are defined for all 
requirements.

Step 11: Verify requirements with customer and users.
	 Step a.	 Create a model, either physical or virtual, that simulates the functions 

to be provided along with performance that will be achieved. Where 
customer and user desires result in contradictory features, explicitly 
construct the model so the contradiction can be varied so the customer 
and user can visualize the impact and express preferences as to what 
solution to the contradiction is best for them.

	 Step b.	 Demonstrate the model to the customer and users and note what they 
want as is and what they want changed.

	 Step c.	 Explicitly identify any item that needs technology development to the 
customers and users, and note their reaction. Find solutions that do not 
require the development of immature technology, unless there is no 
alternative for a function and its associated performance. In all such 
instances, ensure the customer is willing to provide the resources to 
provide the technology maturation. If the customer is not, but you are 
certain these features are necessary for success, then you must self-
fund the development of the technology.

	 Step d.	 Explain the estimated development and annual operating cost to the cus-
tomer and users, and note their reaction. If not acceptable, itemize what 
needs to change. It is possible at this point that what the customer wants 
and what you can deliver are found to be dramatically at odds. If so, you 
then have a tough choice, either determine how to get the customer what 
they want, by perhaps involving others, or undertaking a focused develop-
ment, or realize that you cannot satisfy this customer and walk away from 
the program.

Step 12: �Verify requirements with those who will implement and support the 
system.

	 Step a.	 Provide the applicable functional and performance requirements and 
allow them to study for a time period.
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	 Step b.	 Hold a requirements familiarization review, asking those attending to 
individually provide one or more of the following: estimate of time to 
design and produce the item, nonrecurring and recurring cost of the 
item, likely reliability of the item, likely availability of the item, and 
worst-case performance values that will be achieved (for this, do not 
specify the performance terms, let the presenters identify both the 
parameter and their prediction). The presentation will most likely iden-
tify requirements that were misunderstood, adjust as needed.

	 Step c.	 After the designers, producers, and supporters have had some time to 
react to the result of the requirements familiarization review, hold a 
requirements compliance review. Ask for indication of how will com-
ply with each allocated requirement, and document these statements 
in a table that shows each requirement and its associated compliance 
approach. In so doing, the designers, producers, and supporters may 
indicate they do not know what the requirement means, so further dia-
logue and potential requirement editorial is needed before can provide 
a compliance methodology. Review the compliance methodology and 
report to the designers, producers, and supporters any that appear con-
tradictory to the intended requirement. Dialogue until agreement is 
reached and acceptable compliance method is found.

	Step d.	 Explicitly ask the design team what else they need to know to design the 
end item.

	 Step e.	 Explicitly ask the producers if they have the information they need to 
know how to make the item.

	 Step f.	 Explicitly ask the supporters if they have the information they need to 
know to support the item.

	 Step g.	 Complete the acceptance attribute entry for at least the functional 
requirements.

4.6.2  �Simulations

There are four related but distinct aspects of simulations that need verification:

	 1.	The equations used adequately represent the real-world phenomenon of interest.
	 2.	The input data are correct.
	 3.	The means used to evaluate the equations is correct.
	 4.	The means used to depict the output is correct.

The best general purpose method to verify simulations is to have them inde-
pendently developed and operated by different teams of people, ideally using 
different tools. The more significant the potential negative consequence of the 
simulation, the more independent teams should be formed. Two is the absolute 
minimum, and five is probably the maximum that will ever be needed. Most 
organizations are loath to do this, due to the perceived extra cost, but considering 
the potential negative consequences of wrong simulation data being used to make 
decisions, the insurance is well worth the cost. The process is the independent 
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teams produce their own simulations and compare outputs. Should the outputs 
agree, the independence is presumed to provide confidence the agreed too out-
puts are correct. Should the outputs disagree, the teams work together to find the 
cause by checking and comparing their input data and equations used. Obviously, 
completely independently developed and operated simulations are unlikely to 
agree exactly for any simulation, so a tolerance is required, which typically is 
set at the threshold that the simulation could be in error before bad consequences 
would occur.

For equations that predict physical events, verification is best done by using the 
equations to predict outcomes that can be compared to physical tests. For equations 
that are fits to data, then the best verification is to be independently derived by at 
least two separate teams.

Sometimes input data are self-checked, when the equations utilizing the data 
blow up or produce physically impossible results. Often, input data checking can 
be semiautomated, as each input may have a likely range or precision, so each input 
can be tested against their respective test values, and any nonconformance reported. 
Probably the most common input data errors are as follows:

	 1.	The numbers are not in the units expected.
	 2.	The numbers are in the wrong “sequence” (e.g., yesterday’s information 

rather than today’s; decreasing rather than increasing, or vice versa; or loca-
tion specific with missing location identifiers).

The possibility of this can be minimized by enforcing labels are part of the input data.
Coding of the equations is verified by comparing output to other codes that have 

been shown to match real-world results. This may be a sequential process, where 
more and more complicated checks are performed. For example, start by comparing 
the computed values to those obtained by hand calculations. Then compare more 
complicated results to programs built independently, or by a different method, or 
using a different program that is more trusted because it was used for a while and 
errors have been found and weeded out.

Most complicated equations are that way because of the need for iteration or 
recursion to obtain the solution. Typical concerns are as follows:

	 1.	How many iterations should be executed?
	 2.	How “small” or “large” can a numerical “step” be and still obtain correct 

results?

As computer power has increased, these issues have tended to be minimized. But 
as computer power grows, the problems we seek to solve also grow in complexity as 
well, so inevitably some system engineers and architects will be addressing simula-
tions that are at the edge of what computing technology enables at the moment. These 
simulations are very difficult to verify as there is likely to be literally no alternative 
computer or software combination that can possibly perform the same calculations. 
That is why the results of these simulations are viewed so skeptically by those not 
engaged in the effort. For all practical purposes, these leading-edge simulations are 
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not fully verified until sometime after computing capability increases. In the mean-
time, one can try to logically break down the process into parts that can be inde-
pendently verified, ideally by people with no vested interest in the result, with the 
conjecture that since these parts have been independently shown to be performing 
correctly, the entire result can be presumed to be correct as well.

Verifying the output depictions are correct is roughly the same as verifying the 
input data was correct. Output data often self-check, in that errors show up in non-
sensical plots. Legitimate output ranges are often predictable, so output obtained 
can be checked against these ranges, with outliers flagged. The labels on plots, titles, 
and axes need to be checked to ensure the correct units are noted and the data are 
what they are purported to be. Finally, several points on the plot or table should be 
selected at random, and an effort can be made to ascertain that the input and equa-
tions actually produced those points.

4.6.2.1  �Process for Verifying Simulations

Step 1.	Formulate at least two independently derived and executed simulations.
Step 2.	Compare results, if results match to a publicly declared tolerance, presume 

the simulation is correct, otherwise determine cause and rerun until do.

4.6.3  �End Item Design

This verification is to attempt to predict with certainty that the instructions to build 
the item will build the desired items prior to it being built. Desired means it will 
perform its allocated functions, achieve its performance, and be manufactured and 
supportable. Different processes are needed for hardware and software.

4.6.3.1  �Verify Hardware End Item Design
For a hardware item that needs technology to be matured, the first task is to check 
the credibility of the technology maturation plan. These plans are typically depicted 
as a stair step from whatever level the technology is currently, to an acceptable level 
by a specified date, or milestone. On the maturation plan, each technology matura-
tion improvement must require some explicit criteria to be demonstrated that are 
independently verifiable. On the plan, the step stays at that maturity level for the 
predicted time the declared activity will require. So one needs to be examine “proof” 
the duration of the step is likely, and the maturation jump is the right amount. Of 
course, how can one possibly know this? The effort, by its very nature, is essentially 
or completely new and almost completely conjecture! Nevertheless, progress can be 
made. Of the two factors, duration and maturation increase, the second is the easier 
to verify. By carefully reviewing the planned activity, one can almost always articu-
late to what level additional technical maturity is achieved, provided the maturity 
level definitions are reasonable, such as those shown in Chapter 2. Duration of the 
activities are much more difficult to predict. The best that can be done is to insist 
the proposed activities be broken down into comprehensible tasks that consist of 
things that have been done before and those that have not. Remarkably, many of 
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the tasks will be quite ordinary: material to order, plans drawn up, various facilities 
and machines acquired and installed, and permissions from agencies or test centers 
requested and received. These all have historical precedence, and unless something 
is explicitly done, they are going to take as long as they usually take. Inevitably, there 
will remain tasks that have never been done before. Some of these “new” activities 
may be very similar to a prior activity, for which historical actual durations are avail-
able. Again, unless something is significantly different, these similar activities will 
take as long as they have taken in the past. Ultimately, there will be completely new 
tasks, for which the duration is frankly a guess. Whoever made the guess had some 
rationale. Ask what it was; you may discover the estimate is more of a wish than a 
conjecture, or perhaps that was all the time that was left! For these truly new activi-
ties, one needs to give as much time as possible. Ideally, one should try to impose 
cycles, requiring something tangible as quickly as humanly possible, even a bit faster 
than seems humanly possible. So, then perform at least a second cycle, and ideally 
a third. At the end of each cycle, have an exit option. That is, if the originally per-
ceived effort is now found to be much harder than anticipated, or even impossible, 
have a backup alternative that will be invoked to keep the overall program on track. 
From my experience however, this is usually more than one can ask, as it is exactly 
those technologies the system is most dependent on for which there is no acceptable 
alternative, and one has to keep slogging away until the technology is working. This 
is a royal pain for that program, but once the technology is matured, it’s literally a 
breakthrough, and a blessing for related programs to follow.

4.6.3.1.1  �Process to Verify Technology Maturation

Step 1.	Document a stair step plan from the current technology level to the desired 
technology level.

Step 2.	Check for explicit criteria to check results against.
Step 3.	Check the duration to achieve each step is appropriate.
Step 4.	Check the resources to achieve each step are appropriate.
Step 5.	Have a backup alternative to invoke if reality stalls the plan.

For hardware, ideally, the end item requirements can be met by buying an existing 
item, for which at least a specification is available. If the end item must be produced 
for the first time, then either its description or a manifestation of it is examined for 
compliance with the requirements.

4.6.3.1.2  �Process to Verify Hardware Meets Design Requirements

Step 1.	 Check that predicted dimensions will be less than or equal to any allocation.
Step 2.	 Check that only acceptable or specified materials are used.
Step 3.	 Check that predicted mass will be less than or equal to any allocation 

(included moments of inertia).
Step 4.	 Check that hardware accommodates potential loads to tolerance level 

specified.
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Step 5.	 Check that it will accommodate potential temperatures, humidity, or any 
other environmental factors to tolerances specified.

Step 6.	 Check that any power input will be accommodated, including potential 
variations in current or voltage.

Step 7.	 Check how much heat and the peak heat rate the item will produce and 
make sure as specified or within tolerance.

Step 8.	 Should radiation or electromagnetic interference tolerances be specified, 
check for likely compliance.

Step 9.	 If a new item, have the producers examine and determine how it will 
be produced, and recommend means to simply its production.

Step 10.	Have supporters examine, both as an end item, and where it is in the 
system surrounded by other items, and confirm it can be supported, and 
recommend changes to make support time and cost less.

Step 11.	Predict reliability and compare to expectation.
Step 12.	Predict availability and compare to expectation.
Step 13.	If a new item, examine the schedule for development, looking for evi-

dence, usually based on analogy to similar items produced before, that 
the estimated spans are likely to be achieved.

Step 14.	If a new item, examine the cost prediction, looking for evidence, usually 
based on analogy to similar items produced before, that the material and 
labor estimates are likely to be achieved.

Step 15.	Check that each of the allocated functions will indeed be performed.
Step 16.	Predict performance achieved and compare to requirements.
Step 17.	Confirm that a plan exists to verify the produced item will meet its 

requirements and ascertain both the completeness and cost of executing 
the plan, and make sure acceptable.

4.6.3.2  �Verify Software End Item Design
For software, the verification effort is very dependent on the software design process 
utilized.

4.6.3.2.1  �Process to Verify Software Meets Requirements

Step 1.	Check functions are indeed implemented.
Step 2.	Check inputs are as intended, and especially check types and units.
Step 3.	Check how will handle spurious inputs, in value, quantity, and rate.
Step 4.	Check outputs will be as intended (regardless as to how obtained), and 

especially check units.
Step 5.	Simulate the internal activities to get as much evidence as possible the 

transformation from input to output will occur as intended (regardless of 
memory or timing requirements).

Step 6.	Check the proposed code is suitable for the application.
Step 7.	 Check memory required will be within limits.
Step 8.	Check processing time required will be within limits.
Step 9.	 Review the proposed verification method to assess it will indeed verify 

the final software will indeed meet its requirements.
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4.6.4  �End Item

This verification is to show the produced end item meets its requirements. Each end 
item is allocated one or more functional requirements with associated performance 
requirements. Each performance requirement came with attributes stipulating the veri-
fication method. Nearly every end item will interface with either another end item or 
an item external to system. Each of these interface requirements is also a documented 
function with performance requirements. So the first job is to formulate a verification 
plan for the end item that honors the verification method stipulations and obtains inde-
pendently reviewed evidence the requirements are met. Then the planned verification 
efforts are conducted, and the evidence produced examined to see if met the stipulated 
requirements. For new end items, it may be necessary to create a facility to mimic 
environments the end item will face, and this may be as challenging as producing the 
end item itself. Clearly, though the process is easy to state, end item requirement verifi-
cation is a complicated task that needs an effort in proportion to the complexity of the 
system itself, for which deep domain knowledge is critical to success.

The impression may be that it is the requirements that need to be verified. In 
reality, when planning these efforts, the primary focus is how to show the end item 
meets the requirements allocated to it, a subtle but critical distinction.

4.6.4.1  �Heuristics for End Item Verification

	 1.	Verify interface functions and performance first, simulate the worst thing 
one side could do to another and make sure to handle appropriately.

	 2.	 Inspect the inspectors.
	 3.	When verifying by analysis, first verify the analysis is of the as-built end 

item, not the could-have-been-built end item.
	 4.	When verifying by test, know how to discern test equipment and process 

failures and end item failures.
	 5.	When verifying by test, test the test equipment first.
	 6.	When verifying by test, start at the lowest level end items and do not break 

configuration as test higher level end items.
	 7.	When verifying by test, know how to discern test equipment and process 

failures and end item failures.

4.6.5  �System

Systems are verified by first showing their end items have achieved their requirements, 
then by showing the collection of the end items meets requirements. Recall higher level 
functions with performance requirements were allocated to higher level parts of the 
system. As with verifying the end items, the first job is to create a plan to verify these 
higher level elements achieve their stipulated performance. Some systems are asked to 
achieve missions that are hoped never to occur. In such instances, it is not possible to 
fully test the system to its end objective, and we must make do with verifying aspects 
of the systems with the presumption the aspects will work in unison when called upon.

Though so simple to state, the effort can be enormous and expensive.
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4.6.5.1  �Heuristics for System Verification

	 1.	 If anything can go wrong, it will, so identify everything that can or will go 
wrong, and put in place something to prevent it, or if it cannot be prevented, 
recovery from it quickly.

	 2.	 If it isn’t broken, do not fix it (alternatively, if you have achieved a goal 
node, stay there).

	 3.	Unless everyone who needs to know does know, there will be a screw-up.
	 4.	Mistakes are inevitable; failure to report is inexcusable.
	 5.	The number of software defects remaining is proportional to those found.
	 6.	Ensure that explicit permission with public acknowledgment is the only 

way a system undergoing verification can be changed.
	 7.	When searching for a cause, change only one thing at a time, and trace 

defect to cause by asking, “Why?” at least five times.

4.6.6  �Architecture

Architectures are verified by first showing their systems have achieved their require-
ments, then by showing collection of the systems meet requirements. Architectures 
are often so complex, with elements under so disparate control, that it is virtually 
impossible to fully verify all requirements desired of them. When establishing archi-
tecture requirements, one must keep this in mind, for it is virtually useless to write 
architecture requirements for which verification is impossible.

4.6.6.1  �Heuristics for Architecture Verification

	 1.	Assume previous studies and approaches are flawed.
	 2.	Models are not reality.
	 3.	For architectures that impact society, perceptions are more important than 

facts, so a coherent constituency must be found and maintained.
	 4.	Unless the politics are a go, the architecture will not go, which means the 

best engineering solution is not necessarily the best solution.
	 5.	No architecture can be optimum with respect to all desires, so cost rules; so 

know and appease who benefits, who pays, and who loses.

4.7  �MEASURE REQUIREMENTS VOLATILITY

Requirements volatility is defined as

	 (number_new_requirements + number_deleted_requirements +
number_revised_requirements) / (Total_number_of_approved_requirements)

Design efforts should begin after all key requirements are established and volatil-
ity is less than 5%. SRRDatePrediction takes historical volatility data and projects 
the date when a specified level will be achieved.
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Here is an example:
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4.8  �REQUIREMENTS HEURISTICS

•	 Requirement allocation requires roles and responsibility clarity.
•	 Put only the requirements needed for the end item in the specification for 

the end item.
•	 Validate requirements first, not last.
•	 Regardless of the program implementation construct used, all systems have 

eight primary functions (develop, design, produce, deploy, train, operate, 
support, and dispose) for which requirements may be specified.

•	 Different requirement types have different associated attributes.
•	 Three very useful types of requirements are functional, performance, 

and sought.
•	 Convenient attributes for functional requirements are unique identification 

number, status, parents, end item allocated too, acceptance record, ratio-
nale, and author.

•	 Convenient attributes for performance requirement are unique identifica-
tion number, status, parents, function allocated too, verification method, 
verification status, verification evidence, rationale, and author.

•	 A requirement with TBD or TBR in it communicates no useful information, 
so why create? Create a “sought” requirement instead.

•	 Convenient attributes for sought requirements are unique identification 
number, status, requesting entity, acceptance record, rationale, and author.

•	 Allocate interface requirements to an end item as any other requirement.
•	 Treat compliance requirements as any other requirement.
•	 Requirement statement may be codified with words such as shall, should, 

or will to denote mandatory, preferred, or deferred compliance, respec-
tively. Any words or phrases accepted by the group with the responsibility 
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to provide the system or architecture that denotes level of desirability are 
acceptable to use.

•	 Good functional requirements minimize the reader’s uncertainty as to what 
activities are required to be implemented.

•	 The usual functional requirement errors are as follows:
	 1.	 Missing a required activity
	 2.	 Imposing an implementation prematurely
	 3.	 Decomposing functions to lower level than needed to determine how will 

implement
•	 Good performance requirements minimize the reader’s uncertainty as to 

how well a function needs to be accomplished.
•	 The biggest performance requirement error is to ask for more than can be 

provided with the resources available.
•	 Good sought requirements make it clear what information is needed and why.
•	 Requirement statements need to attempt to minimize all the following 

types of ambiguity:
	 1.	 Compliance level
	 2.	 Completeness
	 3.	 Precision
	 4.	 Comprehension
	 5.	 Referencing
	 6.	 Vague words
	 7.	 Functional requirement
	 8.	 Acronyms
	 9.	 English unit usage
	 10.	 Word emphasis
•	 Processes to determine requirements are as follows:

	 1.	 Reuse from prior program
	 2.	 Interpreting customer provided documents
	 3.	 Surveys
	 4.	 Witness
	 5.	 Focus groups
	 6.	 Assessing product defects
	 7.	 Deriving concept of operations
	 8.	 Formal diagramming techniques
	 9.	 Quality matrices
	 10.	 Models or prototypes
	 11.	 Incremental build

•	 The collection of requirements and attribute information is best main-
tained as a database for which at least the following functions can be 
performed:

	 1.	 Create a requirement type.
	 2.	 Create an end item hierarchy.
	 3.	 Create an implementation organization hierarchy.
	 4.	 Define a requirement of a particular type.
	 5.	 Edit requirement attributes.
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	 6.	 Edit requirement statement.
	 7.	 Find requirements with specified attribute values.
	 8.	 Find requirements with specified content.
	 9.	 Identify parents of a requirement.
	 10.	 Identify children of a requirement.
	 11.	 Identify functional requirements allocated to end items.
	 12.	 Identify performance requirements allocated to functions.
	 13.	 Identify functional requirements not allocated to an end item.
	 14.	 Identify performance requirements not allocated to functional requirements.
	 15.	 Create end item specification.
	 16.	 Create a requirements compliance report.
	 17.	 Create a verification status report.
	 18.	 Create an architecture specification.

•	 The best end item specification format is to simply collect all allocated 
functional requirements along the corresponding performance requirement 
and all attribute values.

•	 An architecture specification format is as follows:
	 1.	 Architecture identification
	 1.1.	 Name
	 1.2	 Organization developing the architecture
	 1.3	 Approval authority
	 1.4	 Participating organizations
	 2.	 Mission, constraints, and assumptions
	 2.1	 Design reference missions
	 2.2	 Constraints
	 2.3	 Assumptions
	 3.	 As-is architecture
	 3.1	 As-is system constituents
	 3.2	 As-is design reference mission performance
	 3.3	 As-is interorganization relationships
	 3.4	 As-is communications network
	 3.5	 As-is information exchange
	 4.	 To-be architecture

	 4.1	 To-be system constituents and rationale for selection
	 4.2	 As-is design reference mission performance
	 4.3	 As-is interorganization relationships
	 4.4	 As-is communications network
	 4.5	 As-is information exchange
	 4.6	 Transition plan

	 5.	 Technology development recommendations
	 6.	 Tools used to assess candidate architecture

•	 To verify requirement are met:
	 1.	 Verify that you have a complete and correct set of requirements using 

ambiguity checks, showing models of consequences to customer and 
users, and asking implementers and supporters what it costs and how 
well it will be accomplished.
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	 2.	 Verify simulations by comparing results from at least two to five inde-
pendently developed and operated sources.

	 3.	 Verify hardware design by checking physical features and tolerance 
to achieving performance in off-nominal environment and verify soft-
ware design screens inputs for suitability, requires fraction of process-
ing and memory available and self-checks output.

	 4.	 Verify end item actuality by simulation or test.
	 5.	 Verify interface functions and performance first, simulate the worst 

thing the other side could do to another, and make sure it can handle it 
appropriately.

	 6.	 Inspect the inspectors.
	 7.	 When verifying by analysis, first verify the analysis is of the as-built 

end item, not the could-have-been-built end item.
	 8.	 When verifying by test:

	 8.1.	� Know how to discern test equipment and process failures from end 
item failures.

	 8.2.	 Test the test equipment first.
	 8.3.	 Start at the lowest level end item and do not break the configura-

tion as you test higher level end items.
	 9.	 Verify system actuality by simulation or test.
	 10.	 If anything can go wrong, it will, so identify everything can think will 

go wrong, and put in place something to prevent, or if cannot prevent, 
then recover from quickly.

	 11.	 If it isn’t broke, do not fix it, or, if you have achieved the goal, stay 
there.

	 12.	 Unless everyone who needs to know does know, there will be a screw up.
	 13.	 Mistakes are inevitable; failure to report one is inexcusable.
	 14.	 The number of software errors remaining is proportional to those 

found so far.
	 15.	 Ensure that explicit permission with public acknowledgment is the 

only way a system undergoing verification can be changed.
	 16.	 When searching for a cause, change only one thing at a time, and trace 

defect to cause by asking, “Why?” at least five times.
	 17.	 Verify architecture actuality by simulation or test.
	 18.	 Assume previous studies and approaches are flawed.
	 19.	 Models are not reality.
	 20.	 For architectures that impact society, perceptions are more important 

than facts, so a coherent constituency must be found and maintained.
	 21.	 Unless the politics are a go, the architecture will not go, which means 

the best engineering solutions are not necessarily the best solution.
	 22.	 No architecture can be optimum with respect to all desires, so cost 

rules; so know and appease who benefits, who pays, and who loses.
•	 Schedule system requirements reviews when the forecast of requirement 

volatility is below a threshold level such as 5%.
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5 Improve an 
Organization’s Ability to 
Do Systems Engineering 
and Architecting

This chapter recommends an approach to improve both the processes and perfor-
mance of an organization’s systems engineering or architecting. The chapter pre
sents surveys that can be used to gather data to determine where best to concentrate 
improvement efforts at a point in a program.

The following case studies illustrate issues with attempts to improve systems 
engineering or architecting.

Case Study 5.1: Reducing Systems Engineering 
Errors in Competitive Proposals

Background

A systems engineering organization had lost several competitive proposals due 
to inadequacies in the systems engineering section. A systems engineer was 
asked to examine reported weaknesses and recommend remedial actions.

What Happened

Four of the six losing proposals came with evaluation material available for 
review. For each, there were a large number of customer-provided feedback 
briefs, selection letters explaining relative strengths and weaknesses, and “expla-
nation notices,” which are written questions or comments from the proposal 
evaluators asking for a clarification of some kind. Each weakness was character-
ized as one of the following:

	 1.	Management if it concerned schedule, roles and responsibilities, or con-
figuration management

	 2.	Analysis if it concerned mass claims, estimates or projections, tech-
nical performance parameters, trajectories, availability, timeliness, 
communication link, thermal protection, or guidance, navigation, and 
control adequacy
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	 3.	Requirements if it concerned compliance, derivation, allocation, or the 
verification method

	 4.	Verification and integration and test if it concerned test plans, facilities, 
or shipping

	 5.	Risk if it concerned identifying, assessing, or mitigation plans
	 6.	Launch operations if it concerned process and time lines or interfaces
	 7.	Cost if it concerned acceptance and comprehension of the basis of 

estimates

Each weakness of the above types was given one of four grades, based on the 
customer’s words:

	 1.	Significant weakness or deficiency
	 2.	Weakness
	 3.	Failed to follow proposal instructions
	 4.	Response unclear

Since the proposals were for very different kinds of systems, prepared by 
mostly different people and for different customers, there were a lot of unique 
weaknesses. But several types of weaknesses were found on at least 75% of the 
four proposals. These were the following:

	 1.	Management:
100% had schedule inconsistencies.
75% had the following:
•	 Government saying they would not provide the named property or 

inconsistencies in claims as to what property would be provided by 
government

•	 Unclear or inconsistent role and responsibility statements
•	 Configuration in consistencies

	 2.	Analysis:
100% had incomplete trajectory information or unaccepted assumptions
75% had the following:
•	 Mass inconsistencies
•	 Key performance parameters not properly calculated
•	 Reliability claim errors

	 3.	Requirements: 75% had the following:
•	 Failed to comply with some customer stipulated requirement
•	 Derived wrong requirements

	 4.	Verification and integration and test: 75% had at least one verification 
effort not performed properly.

	 5.	Risk: 75% had the following:
•	 Significant risks not identified
•	 Disagreement with risk assessment
•	 Inconsistent statements regarding what risks were or how to mitigate
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Finally a root cause analysis was undertaken, and the following was determined:

	 1.	The proposal effort was undertaken while the offering itself was imma-
ture or uncertain.

	 2.	The proposal authors lacked the knowledge needed to prepare an appro-
priate response.

	 3.	There was a flaw in the proposal process.
	 4.	Author or editor error.

Six recommendations were made to counter the root causes:

	 1.	Have a mature offering before start proposal; otherwise, don’t bid.
	 2.	Maintain one database of all information for end items.
	 3.	 Independently verify analyses. (A process to do so was also 

recommended.)
	 4.	Conduct a proposal requirements review prior to RFP receipt. (A pro-

cess to hold the review was also recommended.)
	 5.	Do verification regarding the way the customer wants the proposal; oth-

erwise, don’t bid.
	 6.	Find the minimum risk offering. Do risk analyses as the customer 

wants, be pessimistic, and use the risk word only in the risk section of 
the proposal.

Table 5.1 maps each recommendation to the root causes.
The product was delivered to the head of systems engineering, who was very 

happy with it and it passed on to the head of proposal operations, who was also 
very happy with it. However, none of the recommendations was fully imple-
mented on future proposals.

Lessons Learned

Finding process faults is easy; fixing them is difficult. Though at first blush, iden-
tifying systemic problems in system engineering proposals may appear to be 
very difficult, in fact was very easy. Diagnosing potential root causes for the 
faults and even recommending approaches to prevent the root causes were 
not too difficult. The recommendations to address the root cause are often 
obvious. What is very difficult is for people who were not associated with the 
analysis and recommendation formulation to adopt the recommendations.

As much as practical, have the performers find their faults, recommend the 
fixes, and implement the fixes. This is the best way to get adults to buy into 
what must be done.

The list of things to fix always exceeds what one can afford to fix, so one needs 
a means to prioritize the improvement efforts. Faults are not equal, and some 
are much more significant than others, so it is critical to provide a means for 
people to denote the relative importance of the issues.
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Case Study 5.2: Improving Architecting Efficiency

Background

After presenting the results of an architecting effort that took three years for one mis-
sion area, our customer asked us to do two more mission areas in the next two years.

What Happened

Examining why it took three years to do the first architecting effort, the first 
impression was that this was the time needed to collect all the relevant data. 
But upon closer examination, though the data collection effort certainly took a 
lot of man-hours and chronological time, the fundamental cause for three years 
to pass before having the result was a near-constant debate regarding both what 
was to be accomplished and how to accomplish it. Once we had established the 
process and the products expected, a complete product was achieved in about 

TABLE 5.1
Fix Recommendations Mapped to Issues and Root Causes

Issue or Cause
Immature 
Offering

Lack of 
Knowledge

Process 
Flaw

Author or 
Editor Error

Schedule inconsistencies X-1 X-1

Item on GFE list will not be provided or is 
inconsistent

X-1 X-2 X-1

Unclear or inconsistent responsibilities X-1 X-2 X-1

Configuration management inconsistencies X-1 X-2 X-1

Mass inconsistencies X-1 X-1

Incorrect performance metric calculations X-1 X-3

Trajectory analysis errors X-1 X-3

Reliability analysis errors X-1 X-3

Missed requirement to comply with X-1 X-4

Derived wrong requirement X-1 X-3 X-4

Doing verification or integration and test wrong X-1 X-5

Fail to identify risks X-1 X-6 X-6

Disagree with risk assessment X-1 X-6

Inconsistent risk assessment X-1 X-6 X-1

Recommendations:
1.  Have a mature offering; otherwise, don’t bid.

2.  Maintain a database of all information for end item.

3.  Independently verify analyses.

4. � Conduct a proposal requirements review prior to RFP receipt.

5.  Do verification the way the customer wants; otherwise, don’t bid.

6.  Find minimum risk offering.
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a year. So a commitment was made to produce the architecture for the second 
mission area in one year. This goal was met. What I noticed during the effort to 
produce the second architecture was that nearly complete products were avail-
able much faster than anyone thought. But that didn’t mean everything was com-
pletely known quickly. What I envisioned now was that an architecting product 
could be prepared in as little as six months, provided we had opportunity to 
do an improvement cycle of approximately the same length. So we promised 
to do the third mission area in six months. In turned out that, about halfway 
through the effort, there was a pressing need to make some decisions. So we 
held an architecture review on what we had at about the three-month point. The 
people dependent on the information were so happy to get what they had that 
they started asking us to do things then and there. So what then happened was 
we iterated the architecture on about one-month cycles for the remaining three 
months until the product was done.

Lessons Learned

Use the learning curve to your advantage. Nearly everyone gets better at doing 
everything in a predictable way. If can arrange your work to be a series of 
repetitive efforts, you will end up doing the work very rapidly with less 
mistakes in a predictable way.

Ask for a product in about half the time people think they can provide the 
product. Interestingly, since most people get in trouble for delivering things 
late, you would think most people would pad their time estimates to give 
themselves as much time as possible. But the pressure to provide immediate 
good news leads most people, particularly people new at doing something, to 
promise the result as quickly as possible. Inevitably, something unforeseen 
happens, or the effort is simply much more difficult than anticipated, and the 
product is late. So you would think a good heuristic would be to increase the 
time estimate provided to you. But another heuristic is that work expands to 
fill the time provided. So, a good method to get things done is by incremental 
builds on tight schedules. That way, at least the schedule is certain, and to a 
high degree the cost is as well, since a known number of people will work for 
a known amount of time. All that is uncertain is exactly how much product 
will be available. This is also an extremely useful approach if the require-
ments for the product are very uncertain, as they too can be adjusted with 
each increment.

5.1  �MEASURE SYSTEMS ENGINEERING 
OR ARCHITECTING PROGRESS

Before I address how to improve doing systems engineering or architecting, we first 
must agree on how to measure work accomplished. Solomon and Young1 provide 
sound guidance in how to use performance-based measures, which very briefly is 
an enhancement of earned value-based progress monitoring to explicitly include the 
extent the requirements for the entity are being met is included in the measurement.
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For those who may be new to the topic, there are basically two types of work, 
measurable (sometimes called discrete) and level of effort. Measurable work can be 
monitored in proportion to the extent a product is complete. For example, suppose 
half the budget is spent, and half the house is painted, in half the anticipated time 
to complete the job, and the quality is deemed fine. The performance-based earned 
value is the product or ratios:

	 (actual days) / (planned days)

	 (actual cost) / (planned cost)

	 (actual quality) / (required quality)

	 (actual quantity) / (planned quantity)

which in this case are all 1’s, so the product is 1. But if instead of one half of the 
house being painted, only one fourth was, the status would be as follows:

	 (1) * (1) * (1/4) / (1/2) * (1) = 0.5

That is, the work is substantially behind and it can be estimated that it will take two 
times the current cost or two times the time spent to complete the house.

Level-of-effort work is necessary, but not attempting to achieve a product with a 
definite specification. Today there is a great deal of prejudice against level-of-effort 
work, as it is perceived as non value added because it does not produce a defini-
tive product. Yet, without level-of-effort work, nothing would be accomplished. 
Management of the project is level-of-effort work. All level-of-effort work can and 
should be tied to milestones. That is, by a specified date, something is to be done 
and checked to ensure that it is satisfactory. This could be a first draft, the second 
draft, or the final product. With the number and even identity of the performing 
staff fixed for a set time, cost and schedule are met by default. All that is of issue is 
whether the product is acceptable. Let’s examine the four types of systems engineer-
ing and architecting work discussed previously to determine which are measurable 
and which are level of effort:

	 1.	Make decisions. The time and cost to make an ad hoc decision can be allo-
cated budget, but the fraction of the decision accomplished and the quality 
of decision are very difficult to discern. So recommend efforts to make 
ad hoc decisions be level of effort. However, once the process for making 
a routine decision is in place, the time, cost, quantity, and quality of the 
decision-making process are measurable.

	 2.	Model the system or architecture. If there is a specification for the model to 
be made, the effort is measurable. Modeling is level of effort, if the model 
is changed in an ad hoc manner as the need for improvements are noticed, 
such as when users identify desired changes.
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	 3.	Determine natural language requirements. Solomon and Young show how 
this work can be measurable. To establish the budget baseline, one must 
know the number of requirements and the budget time allocated for each 
requirement effort, and presume the fraction of the budget time that will be 
spent in each of the following activities:
•	 Define the requirements.
•	 Validate the requirements.
•	 Determine the verification method.
•	 Allocate the requirement.
•	 Document the verification procedure.
•	 Verify the requirement is met.

By then monitoring the actual accomplishment of the above activities for 
each requirement, the performance earned value is determined.

ReqManPerfEval reports the schedule variance for requirements determination efforts.
For example, suppose the total number of requirements is three, with a budget of 

80 days to get all requirements verified. Suppose 15% of the effort is expended on 
each of defining, validating, determining verification method, and preparing verifica-
tion plan, while 20% of the effort is expended on each of allocating the requirements 
and verifying the requirements are met. Then the input variables are as follows:

Suppose the effort is stretched out over seven months, and the number of require-
ments that achieve each state per month is as follows:

Finally, suppose after five months, the actual count of requirements that achieve 
each state is as follows:
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The result is as follows:

5.2  �IMPROVE PROCESSES USED

Deming2 definitively demonstrated that production and standardized service processes 
are either statistically “in control” or “out of control.” A process is in control when the 
measured process output does not exceed control limits. The control limits are estab-
lished mathematically based on the nature of the process output measurement and the 
sampling amount. A process is out of control when control limits cannot be determined, 
or an output occurs that exceeds previously determined control limits, or a sequence 
of outputs occur that show recognizable nonrandom behavior while still bounded by 
the control limits. Deming’s first great lesson is that only in control can processes be 
improved. The first job for anyone attempting to improve a process is to achieve statisti-
cal control. Once achieved, there are two types of improvement possible: first, to reduce 
the variability in the output; and, second, to nudge the mean of the output in a more 
favorable direction. Neither of these improvements can be achieved for an out-of-control 
process because it is impossible to determine if the results witnessed after a process 
change are due to the process change, or the result of inherent variation of the out-of-
control process. Deming’s second great lesson is that process improvement is achieved 
incrementally by a series of experiments that are planned, implemented, assessed, and 
acted upon. If the experiment results in a controlled process with less variability or a 
better mean result, then continue to do what the experiment attempted; if not, then don’t.

Deming’s insights apply to processes that are measurable and repetitive and that 
occur often, approximately at least 30 times. System engineers and architects may 
believe their activities are so unique, or creative, that a process cannot be defined for 
their efforts, and therefore process improvement techniques do not apply to them. 
Process zealots, on the other hand, may claim that process improvement efforts are 
applicable to all system engineering and architecting activities.

To get a process under control, the activities involved must produce a result that is 
measurable with minimal ambiguity. The outputs must occur in sufficient number that 
we can estimate the mean and variance of the product quality, at least by using samples, 
and can work to improve the output measures using multiple experiments. A process with 
defined steps that produces only one or a few outputs is not easily improved, as it cannot 
be established that the process is in control, and there are insufficient opportunities to 
apply process improvement experiments to achieve controlled improvements. So, for a 
process improvement effort to be achievable, the following three criteria must be present:

	 1.	The activity can be broken down into describable, repeatable steps.
	 2.	The quality of the product is unambiguously measurable quickly enough to 

affect the process.
	 3.	A sufficient amount of product is produced to establish if the process is in 

statistical control.
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Describable and repeatable steps simply means the process can be taught to oth-
ers, or automated. The execution of the process may take considerable judgment or 
skill. The product quality measure may be binary (e.g., accept or reject), but ideally 
it has a range of possible values. For many systems engineering and architecting 
processes, the primary obstacle to implementing process improvements is that the 
most obvious measures of goodness are not determined until long after the process is 
completed, which of course makes it impossible to use the process output as a means 
to improve the process. The best one can do is record “lessons learned” and hope 
they are learned by the team doing the next similar job. Of course, if the next team 
is not the team that learned the lessons, they probably won’t. The time and effort to 
produce the product measure the resources expended, which certainly are important, 
but they are not product quality measures. If the nature of the process is such that 
an acceptable quality level is essentially guaranteed, then retaining that quality with 
increasing efficiency could be the process improvement sought.

Let’s examine the processes discussed in the previous chapters to determine 
which satisfy these three conditions.

Make decisions. There are two situations to consider: making specific deci-
sions within an established framework, and making ad hoc decisions to establish 
the framework. Examples of making decisions in an established framework are 
acceptance per defined criteria, travel route selection, diagnosis, activities to per-
form based on a diagnosis, and resource allocations. Making specific decisions in an 
established framework often satisfies all three criteria—the process can be broken 
down into identifiable steps, the quality of the product is readily measured either 
using the decision criteria or (post decision audits) examining the results of the 
decision, and a large number of decisions may need to be made. Making ad hoc 
decisions to establish a framework is unlikely to meet all three criteria. The process 
includes determining what needs to be decided, and when, then selecting the meth-
odology to make the decision and executing that methodology. Activities to deter-
mine what to decide, and by when, can be defined only very vaguely, and for any 
particular issue, happens once. The quality of the decision is measurable against the 
decision criteria, but it is extremely difficult to know if the “best” decision criteria 
are being used. Selecting the most appropriate decision-making method to use is a 
repeatable process that can happen often, and one can usually judge if the method 
chosen is appropriate or not. The exception is when what has to be decided is so new 
and unique that none of the currently known decision-making methods apply, and 
a new method must be invented. Since a big part of the value of system engineers 
and architects to an enterprise is to help efficiently make good decisions, when we 
can add methodologies to make decisions, we are potentially increasing our value. 
So with respect to making ad hoc decisions, at most, only the subprocess of apply-
ing the chosen decision-making method can potentially be brought under statistical 
control.

Model the system or architecture. The process includes determining what is 
important to model and how to represent it as equations, followed by evaluating the 
equations. Determining for the first time what to model and how to write the appro-
priate equations are not describable processes, nor repetitive, nor unambiguously 
measurable. However, once the key equations are derived and have been shown to 
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be reliably useful, the process to evaluate the equations is well defined, often repeat-
able, and the product quality can be measured by how well the model mimics reality, 
or the index of performance value achieved. So with respect to modeling systems or 
architectures, at most, only the model evaluation process can potentially be brought 
under statistical control. What we model are consequences of candidate require-
ments. We model the requirements to predict the performance that will be achieved 
by the end items as well as the cost and time to deliver. Prediction is an extremely 
difficult endeavor as it involves simplifications and assumptions, and even the small-
est error may totally invalidate the result. As discussed in Chapter 3, humans are 
reasonably good at forecasting results within a known context, but very weak at 
predicting the unlikely potential that will radically change the context. If system 
engineers and architects can widen the context in which we can make useful predic-
tions at lower cost, then the value of our expertise to our enterprise increases.

Determining natural language requirements. The process includes finding the 
requirements, documenting them unambiguously, identifying the desired end items, 
allocating the requirements to the end items, establishing verification plans for each 
end item, and collecting evidence to show if the requirements were satisfied. Let’s go 
through each subprocess in detail.

Finding requirements. In Chapter 4, several different processes to find require-
ments were presented, so the processes are certainly describable. Do they happen 
often, and are there useful goodness measures? There are two situations to consider. 
If the job is to find specific instances of known requirement types (such as to specify 
options regarding features of a house, automobile, computer, or other system), then 
the process may occur often. This is an example where a process all but guarantees 
acceptable quality, if the measure of goodness is that the chosen options can indeed 
be produced. Alternatively, the quality measure could be the percentage of custom-
ers who provide inputs and then actually purchase the selection, as this goodness 
measure addresses if the option combinations offered are indeed acceptable to cus-
tomers. So finding specific instances for requirements in an established framework 
can be brought under statistical control and incrementally improved. The second 
situation is when the job is to find for the first time the basic requirements for a 
systems or architecture, even if we also expect to reuse existing requirements. Then, 
the process is done only once, and the goodness of the requirements is difficult to 
measure. We can and should ask the designers, producers, users, and supporters, “Do 
you have the requirements you need to do your job?” And we can try to determine 
if the requirements are sufficiently unambiguous by “testing” for comprehension. 
The quality of the requirement set could be measured by how well it balances the 
customer’s conflicting needs, or how easily in terms of cost and time it will take to 
implement the solution. We can and should ask the customer if the proposed require-
ments best balance their needs, and hopefully they will tell us. But, unfortunately, if 
they are seeking the solution by competitive bidding, they may wait to tell us until 
they selected the provider with the explanation that after seeing their options, they 
actually prefer more of feature A than feature B. So, finding requirements for the first 
time cannot be brought under statistical control.

Documenting requirements. Regardless of the requirement-finding process used, 
once declared, maintaining and communicating the results comprise a repeatable 
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process that happens often. A possible product quality measure is how accurately the 
retained requirements data match the initially determined requirements. This could be 
measured by auditing retained data with respect to initial data. If the initial require-
ments are recorded in any semblance of a database, then perfect accuracy is all but guar-
anteed. So this is another example of where process quality is essentially guaranteed 
and efficiency is to be improved. So documenting and communicating the determined 
requirements can be brought under statistical control and incrementally improved.

Identify the end items and allocate requirements to the end items. Again there 
are two situations to consider. If the job is to create something by utilizing existing 
end items, then the process steps are potentially definable, and goodness is mea-
sured by the extent to which new end items are avoided, and could be done often, 
so this situation could be brought under statistical control. But, for new systems and 
architectures, these activities are very difficult to describe and happen only once, 
but goodness can be measured by how well the result satisfied the requirements, as 
well as the estimated cost and time to provide the final system or architecture. So 
defining end items and allocating for the first time cannot be brought under statistical 
control. However, the process of literally naming which performance requirements 
are allocated to which functional requirements and which functional requirements 
are allocated to which end items is describable, and it happens often, with good-
ness potentially measurable by how succinctly the allocation is documented, or the 
efficiency of the process. So this subprocess can be brought under statistical control.

Establishing verification plans for each end item. The two situations previously 
mentioned exist here as well. If the job is to verify specific instances of known 
requirement types, then the process is desirable, repeatable, and may happen often, 
with goodness measured by certainty that the requirements are verified, or efficiency, 
and therefore it can be brought under statistical control. If the job is to figure out how 
to verify new requirements for a new end item, it will be describable and measurable, 
but happens once, and cannot be brought under statistical control.

Collecting evidence for verification. Once again, if we are collecting well-
established evidence to verify well-established requirements for well-established 
end items, the process is describable, repeatable, and potentially happens often, with 
goodness potentially measured by evidence rejection rate or efficiency, so it can be 
brought under statistical control. Collecting evidence for new requirements will be 
describable, and also be able to use goodness measures such as rejection rate or cost 
or time to accomplish. If the effort is repeated often, we can seek statistical control, 
but if happens infrequently, we won’t be able to.

So we have a very complicated situation. Some aspects of the systems engineer-
ing and architecting process remain “an art,” subject to the varieties of individual 
practitioners, for which the activities are yet to be completely describable, or lack 
repetition, or for which quality is difficult to measure. These activities cannot be 
brought to statistical control, and therefore cannot be improved by incremental pro-
cess improvement methods. These areas include the following:

	 1.	Determining what decisions to make, and by when
	 2.	Determining for the first time how best to model a system or architecture 

and write the appropriate equations
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	 3.	Finding “new” requirements, as well as establishing the best end items for 
implementation

	 4.	The associated verification plans and verification evidence collection

A goal of the profession is to find ways to bring these activities into the realm 
of processes that can be brought under statistical control. All the other aspects of 
systems engineering and architecting are likely to be definable processes with mea-
surable goodness, and if they happen repetitively enough, they can and should be 
brought under statistical control.

To deal with these complications, we separate process improvements into two 
areas. First and foremost, for processes for which statistical process control can be 
achieved, apply Deming-inspired processes improvement experiments. For process 
areas not yet under control, seek to mature the process, aiming eventually to achieve 
statistical process control. Possible broad levels of process maturity are as follows:

	 1.	Not needed
	 2.	Performed ad hoc (that is, in a manner such that the next activity is deter-

mined only after the current activity is completed or there is more trial and 
error than in adherence to a documented set of repeatable steps)

	 3.	Performed per formal documentation that someone can be taught to follow 
or that can be automated

	 4.	Performed per formal documentation that someone can be taught to follow 
or that can be automated with product quality assessed

	 5.	Performed per documentation that someone can be taught to follow or that 
can be automated with adjustments made based on statistically valid prod-
uct quality measures

5.2.1  �Systems Engineering Process Areas

In Chapter 1 we defined a narrow set of systems engineering activities—namely, to 
make decisions, model systems, and establish natural language and formal require-
ments. Each of these activities occurs within the context of a number of program 
activities. We should attempt to improve systems engineering in relation to other 
activities on a program, just as we seek to improve a design that needs fasteners first 
by trying to eliminate the need for fasteners. To this end, we identify 16 program 
process areas for which we can assess process maturity:

	 1.	Planning: identifying, defining, and integrating tasks, responsibilities, 
resources, and schedules associated with program activities.

	 2.	Tracking and oversight: tracking establishes metrics associated with planned 
tasks and products. Oversight assesses these metrics and then initiates cor-
rective actions as required to resolve or otherwise mitigate deficiencies.

	 3.	Subcontractor management: selecting, tracking, and overseeing subcontrac-
tors engaged in the effort.

	 4.	 Intergroup coordination: enabling and achieving effective communication 
and issue resolution between a program’s groups.
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	 5.	Configuration management: the planning, identification, change control, 
status accounting, and auditing of the product elements which include 
requirements, interfaces, design representations, production procedures, 
test plans and results, and end items.

	 6.	Quality assurance: evaluate and assess products and processes to reduce 
noncompliance rates and enhance robustness.

	 7.	Risk management: involves three related activities: risk identification, risk 
analysis, and risk mitigation. Risk identification determines what might 
impact technical performance, cost, or schedule. Risk analysis determines 
the likelihood of the impact and the magnitude of the consequences. Risk 
mitigation determines and executes actions to deal with the identified risks.

	 8.	Training: ensure program participants are prepared and qualified to per-
form defined program tasks.

	 9.	Technology management: identifying, evaluating, and selecting appropriate 
technologies for the program’s products and processes.

	 10.	Environment and tool support: determine and make available appropriate 
facilities, procedures, and tools for the tasks to be performed within cost 
and schedule constraints.

	 11.	 Integrated engineering analysis: create simulations and conduct analyses to 
assess requirements to determine the best set with respect to development, 
production, deployment, training, operations, support, disposal effective-
ness, cost, and schedule.

	 12.	System concept definition: establish a top-level description of the solution 
to meet customer and user needs that is consistent with technology, cost or 
schedule limitations, and risk tolerance level.

	 13.	System requirements: identify, refine, allocate, and communicate the necessary 
and sufficient information to define performance goals or constraints for the 
system to achieve for each of the following primary functions: development, 
design, production, deployment, training, operation, support, and disposal.

	 14.	System design: allocate functions with associated performance require-
ments and constraints to implementing end items.

	 15.	System integration: define and control internal and external interfaces to 
ensure that the end items come together as a complete system that satisfies 
the system-level requirements within the defined operating environment.

	 16.	System verification: ensures that the completed system satisfies the system-
level requirements. Successively applied to the requirements set, simula-
tions used, end item design, produced end items, and total system.

5.2.2  �Architecting Process Areas

The process areas for architecting are defined as follows:

	 1.	Planning: identifying, defining, and integrating tasks, responsibilities, resour
ces, and schedules associated with the architecting effort.

	 2.	Tracking and oversight: tracking establishes metrics associated with 
planned tasks and products. Oversight assesses these metrics and then 
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initiates corrective actions as required to resolve or otherwise mitigate 
deficiencies.

	 3.	Subcontractor management: selecting, tracking, and overseeing subcontrac-
tors engaged in the effort.

	 4.	 Intergroup coordination: enabling and achieving effective communication 
and issue resolution among groups involved in the architecting effort.

	 5.	Configuration management: the planning, identification, change control, 
status accounting, and auditing of the product elements which include 
requirements, interfaces, concept definitions, simulation tools, and cost 
estimates.

	 6.	Training: ensure architecting participants are prepared and qualified to per-
form defined architecting tasks.

	 7.	Environment and tool support: determine and make available appropriate 
facilities, procedures, and tools for the tasks to be performed within cost 
and schedule constraints.

	 8. Establish as-is architecture and requirements: define the (1) scenarios or 
reference missions the family of systems are to accomplish, (2) existing 
family of systems, and (3) current organizational and information exchange 
interface requirements.

	 9.	Determine the as-is family of systems shortfalls: Conduct campaign, 
mission, engagement, and engineering analyses to explicitly identify the 
as-is family of systems performance, capability, sufficiency, or utility 
shortfalls.

	 10.	Develop concepts to mitigate shortfalls: Define candidate concepts to 
remove shortfalls in sufficient depth to enable accurate life cycle cost 
estimates.

	 11.	 Identify key enabling technologies: Define quantitatively technological 
advances that could mitigate shortfalls.

	 12.	Determine the utility of the candidate families of systems: identify and esti-
mate the utility and cost of the candidate families of systems.

	 13.	Establish to-be architecture and requirements: Determine the desired fam-
ily of system consistent within cost constraints and specify key require-
ments for each contributing system. Document a time-phased acquisition 
and deployment plan from the as-is to the to-be family of systems showing 
the estimated incremental improvement in sufficiency utility achieved and 
the required funding profile. Establish the to-be organizational and infor-
mation exchange implementing requirements.

5.3  �IMPROVE PROCESS PRODUCT QUALITY

The second area to improve is the quality of the process area outputs. One could argue 
that since systems engineering and architecting contribute to the creation of the end 
item, the features of the end item should be used to judge quality. System engineers 
and architects seek to provide a requirement set for the product that best balances 
conflicting customer and user needs while requiring the minimum resources to pro-
duce and operate. So, the most basic product quality measure could be how well 



355Improve an Organization’s Ability to Do Systems Engineering

the desired technical performance will be achieved at what expense of resources. 
Obviously, this has two problems. First, as was shown in Chapter 3, there is no such 
thing as the single best system or architecture. All we provide are possible features 
at different price points; it is a customer judgment as to what combination of features 
and price is most acceptable to them. Second, the system engineering and architects 
can only predict performance, cost, and schedule. Only after the designers and pro-
ducers translate the requirements into real-world items do we begin to really know 
the true resources required and the true performance achieved. And, once created, 
user expertise can still dramatically affect both demonstrated performance and effi-
ciency of operation. Since the evidence of the real performance, cost, and schedule 
materialize well after the bulk of the requirement establishment effort is completed, 
this information is not available when needed to guide process improvements, unless 
the customer grants a “do over” and adjustments are made to the requirement set 
post initial production or even operation. Also since many other program activi-
ties “cause” the real performance and resource needs, neither the predictions nor 
the reality can be used to guide changes to the system engineering or architecting 
process independent of actions to be taken on all the other related activities on the 
program. We can assess how well we achieve goals associated with the process areas 
described in the previous section. Rather than attempting to define an absolute scale 
for goal achievement, we can compare relatively any approach and result A with 
respect to any approach and result B, which is good enough for us to enable a means 
to improve process product quality. Simply put, to improve process area product 
quality, we name goals for each process area, and we periodically assess both how 
important each goal is to the program and how well we are achieving the goals. 
Regardless of the grading scheme used, a subset of the goals will always be more 
important than the mean importance, with goal satisfaction less than the mean goal 
satisfaction. These most important and least satisfied goals are the ones the program 
should now concentrate on to improve.

5.3.1  �Program Process Quality

Planning process goals are as follows:

•	 Work tasks are complete, efficient, and well documented.
•	 Design, production, test, training, support, and operations tasks are well 

integrated.
•	 Cost, schedule, and technical objectives are achievable.

Tracking and oversight process goals are as follows:

•	 Tasks to track and oversee program activities are complete, efficient, and 
well documented.

•	 Current cost, schedule, and technical status is accurately known.
•	 Actions taken to achieve cost, schedule, or technical goals best balance the 

impact on impacted groups.
•	 Work effort to track and oversee activities is appropriate and productive.
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Subcontractor management process goals are as follows:

•	 Select fully qualified subcontractors who are contributing to a success-
ful program.

•	 Subcontractor tasks are complete, efficient, and well documented.
•	 Subcontractor cost, schedule, and technical goals are achievable and agreed to.
•	 Subcontractor cost, schedule, and technical accomplishments are tracked, 

enabling timely issue resolution.
•	 Actions to resolve subcontractor cost, schedule, or technical issues best bal-

ance impact to all groups.

Intergroup coordination process goals are as follows:

•	 Group roles and responsibilities are defined and are adequately unambiguous.
•	 Methods for intergroup coordination are documented in a useful manner.
•	 Appropriate groups are involved in resolving technical or program issues.
•	 All groups have the program and technical information they need, when 

they need it.

Configuration management process goals are as follows:

•	 Tasks to document, control, and communicate products are complete, effi-
cient, and well documented.

•	 Proposed configuration changes are identified and communicated in a use-
ful manner.

•	 Configuration changes are evaluated accurately with respect to cost, sched-
ule, and technical impacts.

•	 Configuration changes are controlled.
•	 Configuration change decisions are appropriate.

Quality control process goals are as follows:

•	 Tasks to achieve error-free and robust products are complete, efficient, and 
well documented.

•	 Product acceptance standards are complete and well documented.
•	 Inspectors are utilized in an appropriate manner.
•	 Noncompliance issues are tracked to closure.

Risk management process goals are as follows:

•	 Tasks to identify, assess, and mitigate risks are complete, efficient, and 
well documented.

•	 Technical, cost, and schedule risks are identified and assessed.
•	 Actions are taken to mitigate risks.
•	 Risk mitigation actions are monitored.
•	 Risk status is communicated and coordinated across affected groups.
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Training process goals are as follows:

•	 Training tasks to benefit program personnel are complete, efficient, and 
well documented.

•	 People on the program are fully qualified to do their jobs.
•	 Training meets the needs of the people on the program.
•	 Training effectiveness is measured to provide feedback for additional train-

ing needs.

Technology management process goals are as follows:

•	 Tasks to identify and select appropriate technologies to utilize are com-
plete, efficient, and well documented.

•	 Technologies are selected for use that support the business goals.
•	 Technology innovations are implemented that improve processes.
•	 Technology innovations are implemented that improve products.

Environment and tool support process goals are as follows:

•	 Tasks to acquire and make available facilities, procedures, and tools are 
complete, efficient, and well documented.

•	 Facilities, procedures, and tools are provided which enable completing 
tasks within cost and schedule constraints.

•	 Facilities, procedures, and tools support intergroup interaction.
•	 Tools used are compatible and enhance efficiency.

Integrated engineering analysis process goals are as follows:

•	 An integrated multidisciplinary approach to problem solving is coached 
and fostered.

•	 Analysis tasks are complete, efficient, and well documented.
•	 All relevant groups are involved that need to be involved in making decisions.
•	 Methodology and criteria for making decisions are clear, complete, appro-

priate, and consistently applied.
•	 Analyses are sufficient, accurate, and timely enough to best guide deci-

sion making.

System concept development process goals are as follows:

•	 Tasks to determine best solution to offer customer and users are complete, 
efficient, and well documented.

•	 Customer and user needs are accurately documented in a useful manner.
•	 Derived requirements are traceable to customer and user needs and well 

documented.
•	 Chosen end items are allocated appropriate and complete functional and 

performance requirements.
•	 Chosen concept features best satisfy customer and user needs.
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System requirements process goals are as follows:

•	 Tasks to determine performance requirements for all eight primary func-
tions are complete, efficient, and well documented.

•	 All requirement attributes are logical, documented, and easy to find and 
comprehend.

•	 The functional and performance requirements enable appropriate imple-
mentation options.

•	 All groups have all the requirements they need to do their jobs.

System design process goals are as follows:

•	 Tasks to determine instructions to produce the end items are complete, effi-
cient, and well documented.

•	 Design requirements are traceable to customer and user requirements.
•	 Production, test, training, and support implications of design are deter-

mined and acceptable.
•	 Design baseline is established and is the best solution.

System integration process goals are as follows:

•	 Tasks to achieve internal and external interfaces are complete, efficient, and 
well documented.

•	 Interface requirements between end items are clear, complete, and unambiguous.
•	 Interface requirements with external entities are clear, complete, and 

unambiguous.
•	 The end items will assemble into a uniform whole that meets system-

level requirements.

System verification process goals are as follows:

•	 Requirement set verification criteria and tasks are complete, efficient, and 
well documented.

•	 Simulation verification criteria and tasks are complete, efficient, and 
well documented.

•	 End item design verification criteria and tasks are complete, efficient, and 
well documented.

•	 Produced end items verification criteria and tasks are complete, efficient, 
and well documented.

•	 System verification criteria and tasks are complete, efficient, and well 
documented.

•	 Verification evidence obtained is documented in a useful manner.
•	 All verification evidence obtained so far indicates that requirements are 

being appropriately met.
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5.3.2  �Architecting Process Quality

For architecting, the process area goals are as follows.
Planning process goals are as follows:

•	 Work tasks are complete, efficient, and well documented.
•	 Cost, schedule, and technical objectives are achievable.

Tracking and oversight process goals are as follows:

•	 Tasks to track and oversee architecting activities are complete, efficient, 
and well documented.

•	 Current cost, schedule, and technical status is accurately known.
•	 Actions taken to achieve cost, schedule, or technical goals best balance the 

impact on impacted groups.
•	 Work effort to track and oversee activities is appropriate and productive.

Subcontractor management process goals are as follows:

•	 Select fully qualified subcontractors who are contributing to a successful 
architecting effort.

•	 Subcontractor tasks are complete, efficient, and well documented.
•	 Subcontractor cost, schedule, and technical goals are achievable and agreed to.
•	 Subcontractor cost, schedule, and technical accomplishments are tracked, 

enabling timely issue resolution.
•	 Actions to resolve subcontractor cost, schedule, or technical issues best bal-

ance impact to all groups.

Intergroup coordination process goals are as follows:

•	 Group roles and responsibilities are defined and are adequately unambiguous.
•	 Methods for intergroup coordination are documented in a useful manner.
•	 Appropriate groups are involved in resolving technical or program issues.
•	 All groups have the program and technical information they need, when 

they need it.

Configuration management process goals are as follows:

•	 Tasks to document, control, and communicate products are complete, effi-
cient, and well documented.

•	 Proposed configuration changes are identified and communicated in a use-
ful manner.
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•	 Configuration changes are evaluated accurately with respect to cost, sched-
ule, and technical impacts.

•	 Configuration changes are controlled.
•	 Configuration change decisions are appropriate.

Training process goals are as follows:

•	 Training tasks to benefit personnel are complete, efficient, and well documented.
•	 People on the architecting effort are fully qualified to do their jobs.
•	 Training meets the needs of the people on the architecting effort.
•	 Training effectiveness is measured to provide feedback for additional train-

ing needs.

Environment and tool support process goals are as follows:

•	 Tasks to acquire and make available facilities, procedures, and tools are 
complete, efficient, and well documented.

•	 Facilities, procedures, and tools are provided which enable completing 
tasks within cost and schedule constraints.

•	 Facilities, procedures, and tools support intergroup interaction.
•	 Tools used are compatible and enhance efficiency.

Establish the as-is architecture and its requirements:

•	 Architecture reference missions adequately represent the key purpose for 
the family of systems.

•	 Have data for the family of systems to assess performance, capability, suf-
ficiency, and utility.

•	 Organization relationships governing the existing family of systems opera-
tions are adequately defined.

•	 Information needed for the existing family of systems elements to perform 
mission is adequately defined.

Determine the as-is family of systems shortfalls:

•	 Accurate and efficient simulations exist to determine the family of system 
performance.

•	 Accurate and efficient simulations exist to determine the family of system 
capability.

•	 Accurate and efficient simulations exist to determine the family of 
system sufficiency.

•	 Accurate and efficient simulations exist to determine the family of 
system utility.

•	 People with authority to establish the to-be architecture easily comprehend 
the nature, cause, and impact of existing shortfalls.

Develop concepts to mitigate shortfalls:

•	 Adequate number and diversity of concepts are defined to address all 
key shortfalls.

•	 All concepts are realistic with respect to capability, availability, and cost.
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•	 Concept definitions enable determining performance, capability, suffi-
ciency, and utility.

•	 Concept definitions enable accurate cost estimates.
•	 Concept definitions are sufficiently detailed to serve as requirements 

for implementation.
•	 People with authority to establish the to-be architecture easily comprehend 

the candidate concepts.

Identify key enabling technologies to mitigate shortfalls:

•	 Advancements from the current state of the art that could mitigate short-
falls are adequately identified.

•	 The explicit performance level for technology advancements sought is 
quantitatively defined.

•	 Technology maturation experts can easily develop technology maturation 
plans based on the shortfall and technology need documentation.

Determine utility and cost of candidate family of systems:

•	 Data needed to assess individual systems are available.
•	 Data needed to assess combinations of systems are available.
•	 All credible families of systems combinations are assessed.
•	 Secondary system selection criteria were adequately explored for leading 

candidate family of system solutions.
•	 People with the authority to establish the to-be architecture have the best 

appropriate data to easily make the decision.

Establish the to-be architecture and its requirements:

•	 The requirements for systems constituents are accurately and com-
pletely documented.

•	 To-be organizational relationships are accurately and completely documented.
•	 To-be information flow requirements and solutions are accurately and com-

pletely documented.

5.4  �IMPROVE EFFICIENCY

The third and final area to improve is efficiency in producing the products.

5.4.1  �Systems Engineering Efficiency

As the primary job of systems engineering is to produce verified requirements, the 
fundamental efficiency metric is the number of verified requirements per effort 
expended. More specifically, the efficiency measure is

(Number of unique verified functional and performance requirements ‒ Number 
of sought requirements) / (Total cost of requirement establishment effort to date)
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The number of verified requirements will be essentially zero at the start of the 
project, grow as the system definition is matured, and ultimately reach a final count. 
Unique means needed with no duplications. Two requirements with different identi-
fications that have the same content, even if allocated to different end items, are NOT 
unique; they are duplicates, and would count as one requirement in the numerator. 
Recall that the word verified means different things at different times (see Chapter 
4). The number of sought requirements will initially be large, and will probably 
grow as the system becomes better understood, but will settle to 0 as the needs of 
the design, production, training, and support and operation communities are sat-
isfied. The total costs of the effort to date are all expenses made to produce the 
verified requirements. Early in the program these costs are those associated with 
finding, documenting, and communicating top-level system requirements, but recall, 
eventually, that verified means “show by a means that the allocated functional and 
performance requirements are achieved by the end item,” so the total cost of the 
verification effort ends up in the denominator. So this measure starts at minus infin-
ity at the start of a program, peaks at a positive value once the requirement set has 
settled out, then stays positive but decreases as the cost of verification effort grows.

Clearly this measure motivates:

	 1.	Reduce the cost of efforts, as larger costs reduce the measure.
	 2.	Reuse, as that will tend to increase the number of verified requirements, 

reduce the number of sought requirements, and reduce the cost.
	 3.	Minimize the requirements needed, as any effort that produces nonunique 

requirements will add to the cost but not add to the numerator count.
	 4.	Get the user organizations the minimum requirements they need, as each 

user has the right and obligation to declare the requirements they need, but 
the system engineers will push back to keep the list small, both to maxi-
mize the numerator and to keep the cost low.

The efficiency achieved is comparable between programs at similar milestones, 
such as follows:

	 1.	System requirement review, when fundamental functional and performance 
requirements that affect the entire system are formally accepted

	 2.	Preliminary design review, when the fundamental functional and perfor-
mance requirements for system segments, elements, or subsystems are 
formally accepted

	 3.	Critical design review, when the detailed functional and performance 
requirements for all end items are formally accepted

	 4.	Functional configuration audit, when the efforts to show the individual end items 
achieve stipulated functional and performance requirements are completed

	 5.	Physical configuration audit, when the efforts to show the collective end 
items are assembled into an integrated whole that meets at least its stipu-
lated functional and performance requirements

	 6.	System delivery, when the customer takes possession of the system and 
hands it to the users
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5.4.2  �Architecting Efficiency

The architect is expected to determine what systems to have given the key features of 
candidate systems, and how those systems are to interact. The architecting effort does 
not include the development of the systems themselves. Prior to placing an architecture 
specification under configuration control, the primary architecting efficiency metric is

(Number of unique verified architecture functional and performance 
requirements – Number of sought requirements) / (Total cost of 
requirements establishment effort to date)

Once the architecture specification is under configuration control, the job is one 
of updating the architecture specification in the face of changes to the operating 
environment or mission goals. The less cost per change to incorporate, the more 
efficient, so the architecture specification maintenance efficiency metric is

(Number of requirement changes in a period) / (Total man-hours expended 
to maintain and update the architecture specification in period)

5.5  �USE SURVEYS TO DETERMINE WHAT IS MOST URGENT 
TO IMPROVE AT ANY POINT IN A PROGRAM

To help a program or architecting effort periodically assess and seek to improve pro-
cess, quality, and efficiency, it is recommended all participants, or at least a sample 
from organizations involved, as well as the customer if willing, be surveyed. The 
survey frequency is at least just after each major milestone, including the kickoff, or 
if the program is very long running with years or more between major milestones, 
then every three to six months. The survey consists of four parts. The first part 
defines the process areas. The second part establishes the relative importance of 
each process areas at that point in the program. The third part establishes the percep-
tion of the process maturity. The fourth part establishes the perception of how well 
each process achieves stated goals and allows for a free-form input from the survey 
participant.

Appendix 5A contains a survey for systems engineering and Appendix 5B con-
tains one for architecting.

The survey recipient is first asked to rate each process area on a scale from 1 to 9 
as to how important they perceive that process to success at this point in the program.

Second, the survey recipient is asked to assess the maturity of the process area on 
a scale from 1 to 7, with written descriptions for each level of maturity.

Third, the survey recipient is asked to assess how well each goal for each process 
area is currently being achieved on a scale from 1 to 9.

Finally, the survey recipient is asked to provide any optional comments regarding 
the process area.

The formal requirements ProgProcSurResults were created to automate the 
assessment of the program’s process survey. ProgProcSurResults takes the survey 
inputs, then calculates for each process area: relative importance, relative process 
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maturity, and relative process goal achievement. The routine then prints the geo-
metric mean of the input importance and maturity scores for each process area. The 
routine prints a plot of the process areas with respect to process maturity and impor-
tance. The routine calculates the geometric centroid of the points, and lists those 
process areas that are least mature that are most important, that is, have importance 
values more than the centroid and maturity values less than the centroid. The use 
of a centroid turns whatever scores the graders provided into relative scores, so no 
matter how inflated or deflated they are, there will always be a set of processes above 
and below the centroid values. The printed list is in order of decreasing “distance” 
of that process area data point from the centroid. That is, the process areas are listed 
in order from most important to improve at this time on the program. The routine 
then outputs the geometric mean of the survey inputs of process importance and goal 
satisfaction for each process goal. The routine then prints a plot of the process area 
goals with respect to goal achievement and process area importance (it is assumed 
the process area importance is the same for all goals associated with that process). 
The geometric centroid of the points is determined, and the routine prints those 
goals that have achievement scores below the centroid and importance scores above 
the centroid. The printed list is in order of decreasing “distance” of the goal from 
the centroid, again to help facilitate finding the goals most important to improve at 
this time.

As an example, assume there are three surveys providers, who provided the fol-
lowing scores between 1 and 9 for each of the 16 process areas:

Note, the number zero (“0”) is the survey input if the provider indicated don’t 
know or did not apply.

Similarly, the three survey recipients would provide a number between 1 and 7 to 
indicate the process maturity at this time:

Last, the three surveys recipients provided the following scores from 1 to 9 for the 
71 process area goals, with their opinions of don’t know or not applicable recorded 
as 0:
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Given these inputs, ProgProcSurResults provides the following survey tabulation:
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ArchProcSurResults provides architecting process survey results.
As an example, presume there are four survey inputs, and the process importance 

scores are as follows:

And the process area maturities are
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And goal satisfaction is as follows:

Then ArchProcSurResults provides the survey results as follows:
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APPENDIX 5A: SYSTEMS ENGINEERING EFFECTIVENESS SURVEY

PLEASE READ FIRST

Please complete and return this survey to [insert name] by [insert time and 
date].

Your response is confidential.
Your participation is critical to determine how best to improve our systems 

engineering efforts.
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The survey has four sections:
Section 1 defines the 16 process areas.
Section 2 obtains your assessment of the relative importance of improving 

each process area at this time. 
Section 3 obtains your assessment of the maturity of each process area at 

this time.
Section 4 obtains your assessment of the product quality of each process 

area at this time.
Thank you for taking the time to provide this information.
If you have any questions, please contact [insert name, phone number, and 

email address].
To improve the survey process, please answer the following questions after 

completing the survey:
	 1.	 Approximately how many minutes were needed for you to complete 

this survey? _________________

	 2.	 How would you improve this survey? 

SECTION 1: PROCESS AREA DEFINITIONS

Planning: Identify, define, and integrate tasks, responsibilities, resources, and 
schedules associated with program activities.

Tracking and oversight: Tracking establishes metrics associated with planned 
tasks and products. Oversight assesses these metrics and then initiates cor-
rective actions as required to resolve or otherwise mitigate deficiencies.

Subcontractor management: Select, track, and oversee subcontractors engaged in 
the effort. 

Intergroup coordination: Enable and achieve effective communication and issue 
resolution between a program’s groups. 

Configuration management: The planning, identification, change control, status 
accounting, and auditing of the product elements, which include require-
ments, interfaces, design representations, production procedures, test plans 
and results, and end items.

Quality assurance: Evaluate and assess products and processes to reduce noncom-
pliance rates and enhance robustness.

Risk management: Involves three related activities: risk identification, risk analy-
sis, and risk mitigation. Risk identification determines what might impact 
technical performance, cost, or schedule. Risk analysis determines the 
likelihood of the impact and the magnitude of the consequences. Risk 
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mitigation determines and executes actions to deal with the identified 
risks.

Training: Ensure that program participants are prepared and qualified to perform 
defined program tasks. 

Technology management: Identify, evaluate, and select appropriate technologies 
for the program’s products and processes.

Environment and tool support: Determine and make available appropriate facili-
ties, procedures, and tools for the tasks to be performed within cost and 
schedule constraints.

Integrated engineering analysis: Create simulations and conduct analyses to assess 
requirements to determine the best set with respect to development, produc-
tion, deployment, training, operations, support, and disposal effectiveness, 
cost, and schedule.

System concept definition: Establish a top-level description of the solution to meet 
customer and user needs that is consistent with technological, cost, or 
schedule limitations and risk tolerance level.

System requirements: Identify, refine, allocate, and communicate the necessary 
and sufficient information to define performance goals or constraints for 
the system to achieve for each of the following primary functions: devel-
opment, design, production, deployment, training, operation, support, and 
disposal.

System design: Allocate functions with associated performance requirements and 
constraints to implementing end items.

System integration: Define and control internal and external interfaces to ensure 
that the end items come together as a complete system that satisfies the 
system-level requirements within the defined operating environment. 

System verification: Ensure that the completed system satisfies the system-level 
requirements. Successively applied to the requirements set, simulations 
used, end-item design, produced end items, and the total system.

SECTION 2: ASSESS THE RELATIVE IMPORTANCE 
OF IMPROVING EACH PROCESS AREA

For each listed process area defined in Section 1, please mark an X or checkmark 
in the column indicating your perception of the relative importance of the pro-
cess area at this time for the program, from 1 for least important to 9 for most 
important.
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If you perceive some subprocess areas to be equally important at some level 
between 1 and 9, then mark all those subprocess areas at that same level.

Process Area Defined in 
Section 1

Process Area Importance at This Time
Least…………………………………………….Most

1 2 3 4 5 6 7 8 9

Planning

Tracking and oversight

Subcontractor management

Intergroup coordination

Configuration management

Quality assurance

Risk management

Training

Technology management

Environment and tool support

Integrated engineering analysis

System concept definition

System requirements

System design

System integration

System verification 

SECTION 3: ASSESS THE MATURITY OF EACH PROCESS AREA

For each listed process area defined in Section 1, please mark an X or checkmark in 
the column that you believe best describes the maturity level of the process at this 
time.

If you do not know a maturity level, please mark the last column.
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3
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Ad Hoc
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per Informal 
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5
Performed per 

Formal 
Definition

6
Performed per 

Formal 
Definition with 
Product Quality 

Assessed

7
Performed with 

Adjustments Made 
Based on Statistically 
Valid Product Quality 

Measures

0
I Do Not 

Know

Planning

Tracking and oversight

Subcontractor management

Intergroup coordination

Configuration management

Quality assurance

Risk management

Training

Technology management

Environment and tool 
support

Integrated engineering 
analysis

System concept definition

System requirements

System design

System integration

System verification 



376 Systems Engineering and Architecting: Creating Formal Requirements

SECTION 4: ASSESS THE EFFECTIVENESS OF EACH PROCESS AREA

Please Read First

What follows is a chart for each of the process areas defined in Section 1.
For each process area, goals are stated.
Please mark the box to indicate how well each goal is currently being achieved, 

from 1 for not at all to 9 for perfectly.
If you believe the goal is not applicable, or you do not know how well the goal 

is being achieved, then mark the far right box.
Each sheet provides space for you to record any input you care to provide.

Process Area: Planning

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal
Is Being Achieved:

Not at All…...Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
01.1 � Work tasks are complete, 

efficient, well documented, and 
achievable.

01.2 � Design, production, test, 
training, support, and operations 
tasks are well integrated.

01.3 � Cost, schedule, and technical 
objectives are achievable.

Optional comments:
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Process Area: Tracking and Oversight

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
02.1 � Tasks to track and oversee 

program activities are complete, 
efficient, and well documented.

02.2 � Current cost, schedule, and 
technical status are accurately 
known.

02.3 � Actions taken to achieve cost, 
schedule, or technical goals best 
balance impact to all groups.

02.4 � Work effort to track and oversee 
activities is appropriate and 
productive.

Optional comments:

Process Area: Subcontractor Management

Check the box to the right of each goal statement that best indicates how effectively 
the stated goal is being achieved.

The Goal
Is Being Achieved:

Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
03.1 � Selected fully qualified 

subcontractors who are contributing 
to a successful program.

03.2 � Subcontractor tasks are 
complete, efficient, and well 
documented.

03.3 � Subcontractor cost, schedule, 
and technical goals are 
achievable and agreed to.
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The Goal
Is Being Achieved:

Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
03.4 � Subcontractor cost, schedule, and 

technical accomplishments are 
tracked, enabling timely issue 
resolution.

03.5 � Actions to resolve subcontractor 
cost, schedule, and technical 
issues best balance impact to all 
groups.

Optional comments:

Process Area: Intergroup Coordination

Check the box to the right of each goal statement that best indicates how effectively 
the stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
04.1 � Group roles and 

responsibilities are defined and 
are adequately unambiguous.

04.2 � Methods for intergroup 
coordination are documented 
in a useful manner.

04.3 � Appropriate groups are 
involved in resolving technical 
or program issues.

04.4 � All groups have the program 
and technical information 
they need.

Optional comments:
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Process Area: Configuration Management

Check the box to the right of each goal statement that best indicates how effectively 
the stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9

05.1 � Tasks to document, control, 
and communicate products 
are complete, efficient, and 
well documented.

05.2 � Proposed configuration 
changes are identified and 
communicated in a 
useful manner.

05.3 � Configuration changes are 
evaluated accurately with 
respect to cost, schedule, 
and technical impacts.

05.4 � Configuration changes 
are controlled.

05.5 � Configuration change 
decisions are appropriate.

Optional comments:

Process Area: Quality Assurance

Check the box to the right of each goal statement that best indicates how effectively 
the stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9

06.1 � Tasks to achieve error-free and 
robust products are complete, 
efficient, and well documented.

06.2 � Product acceptance standards 
are well documented.

06.3 � Inspectors are utilized in an 
appropriate manner.

06.4 � Noncompliance issues are 
tracked to closure.

Optional comments:
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Process Area: Risk Management

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not 

Applicable
or

Do Not Know

1 2 3 4 5 6 7 8 9
07.1 � Tasks to identify, assess, and 

mitigate risks are complete, 
efficient, and well documented.

07.2 � Technical, cost, and schedule 
risks are identified and assessed.

07.3 � Actions are taken to mitigate 
risks.

07.4 � Risks mitigation actions are 
monitored.

07.5 � Risk status is communicated 
and coordinated across 
affected groups.

Optional comments:

Process Area: Training

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not Applicable

0
Not 

Applicable
or

Do Not Know

1 2 3 4 5 6 7 8 9
08.1 � Training tasks are complete, 

efficient, and well documented.

08.2 � People on the program are 
fully qualified to do their 
jobs.

08.3 � Training meets the needs of 
the people on the program.

08.4 � Training effectiveness is 
measured to provide 
feedback for additional 
training needs.

Optional comments:
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Process Area: Technology Management

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
09.1 � Tasks to identify and select 

appropriate technologies to utilize 
are complete, efficient, and 
well documented.

09.2 � Technologies are selected for uses 
that support the business goals.

09.3 � Technology innovations are 
implemented that improve 
processes.

09.4 � Technology innovations are 
implemented that improve products.

Optional comments:

Process Area: Environment and Tool Support

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not

Applicable
or

Do Not Know
1 2 3 4 5 6 7 8 9

10.1 � Tasks to acquire and make available 
facilities, procedures, and tools are 
complete, efficient, and well 
documented.

10.2 � Facilities, procedures, and tools 
provided enable completing tasks 
within cost and schedule constraints.

10.3 � Facilities, procedures, and tools 
support intergroup interaction.

10.4 � Tools used are compatible and 
enhance efficiency.

Optional comments:
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Process Area: Integrated Engineering Analysis

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not

Applicable
or

Do Not Know

1 2 3 4 5 6 7 8 9
11.1 � An integrated, multidisciplinary 

approach to problem solving is 
coached and fostered.

11.2 � Analysis tasks are complete, 
efficient, and well documented.

11.3 � All relevant groups are involved 
that need to be involved in 
making decisions.

11.4 � Methodology and criteria for 
making decisions are clear, 
appropriate, and consistently 
applied.

11.5 � Analyses are sufficient, 
accurate, and timely enough to 
best guide decision making.

Optional comments:

Process Area: System Concept Development

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not

Applicable
or

Do Not Know

1 2 3 4 5 6 7 8 9
12.1 � Tasks to determine best 

solutions to offer 
customers and users are 
complete, efficient, and 
well documented.

12.2 � Customer and user needs 
are accurately documented 
in a useful manner.
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The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not

Applicable
or

Do Not Know

1 2 3 4 5 6 7 8 9
12.3 � Derived requirements are 

traceable to customer and 
user needs and are well 
documented.

12.4 � Chosen end items are 
allocated appropriate and 
complete functional and 
performance requirements.

12.5 � Chosen concept features 
best satisfy customer and 
user needs.

Optional comments:

Process Area: System Requirements

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
13.1 � Tasks to determine performance 

requirements for all eight 
primary functions are complete, 
efficient, and well documented.

13.2 � All requirement attributes are 
logical, documented, and easy 
to find and comprehend.

13.3 � The functional and performance 
requirements enable appropriate 
implementation options.

13.4 � All groups have all the 
requirements they need to do 
their jobs.

Optional comments:
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Process Area: System Design

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
14.1 � Tasks to determine instructions to 

produce the end items are complete, 
efficient, and well documented.

14.2 � Design requirements are traceable 
to customer and user requirements.

14.3 � Production, test, training, and 
support implications of design are 
determined and acceptable.

14.4 � Design baseline is established and is 
the best solution.

Optional comments:

Process Area: System Integration

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
15.1 � Tasks to achieve internal and external 

interfaces are complete, efficient, and 
well documented.

15.2 � Interface requirements between end items 
are clear, complete, and unambiguous.

15.3 � Interface requirements with external 
entities are clear, complete, and 
unambiguous.

15.4 � The end items will assemble into a 
uniform whole that meets system-level 
requirements.

Optional comments:
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Process Area: System Verification

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved:
Not at All…...Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
16.1 � Requirement set, verification 

criteria, and tasks are complete, 
efficient, and well documented.

16.2 � Simulation verification criteria and 
tasks are complete, efficient, and 
well documented.

16.3 � End-item design verification 
criteria and tasks are complete, 
efficient, and well documented.

16.4 � Produced end-item verification 
criteria and tasks are complete, 
efficient, and well documented.

16.5 � System verification criteria and 
tasks are complete, efficient, and 
well documented.

16.6 � Verification evidence obtained is 
documented in a useful manner.

16.7 � All verification evidence obtained 
so far indicates requirements are 
being appropriately met.

Optional comments:

APPENDIX 5B: ARCHITECTING EFFECTIVENESS SURVEY

PLEASE READ FIRST

Please complete and return this survey to [insert name] by [insert time and 
date].

Your response is confidential.
Your participation is critical to determine how best to improve our systems 

engineering efforts.
The survey has four sections:

Section 1 defines the 13 process areas.
Section 2 obtains your assessment of the relative importance of improving 

each process area at this time. 
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Section 3 obtains your assessment of the maturity of each process area at 
this time.

Section 4 obtains your assessment of the product quality of each process 
area at this time.

Thank you for taking the time to provide this information.
If you have any questions, please contact [insert name, phone number, and 

email address].
To improve the survey process, please answer the following questions after 

completing the survey:
	 1.	 Approximately how many minutes were needed for you to complete 

this survey? _________________
	 2.	 How would you improve this survey? 

SECTION 1: PROCESS AREA DEFINITIONS

Planning: Identify, define, and integrate tasks, responsibilities, resources, and 
schedules associated with activities underway.

Tracking and oversight: Tracking establishes metrics associated with planned 
tasks and products. Oversight assesses these metrics and then initiates cor-
rective actions as required to resolve or otherwise mitigate deficiencies.

Subcontractor management: Select, track, and oversee subcontractors engaged in 
the effort. 

Intergroup coordination: Enable and achieve effective communication and issue 
resolution among groups. 

Configuration management: The planning, identification, change control, status 
accounting, and auditing of the product elements, which include require-
ments, interfaces, design representations, production procedures, test plans 
and results, and end items.

Training: Ensure that program participants are prepared and qualified to perform 
defined program tasks. 

Environment and tool support: Determine and make available appropriate facili-
ties, procedures, and tools for the tasks to be performed within cost and 
schedule constraints.

Establish as-is architecture and requirements: Define the (1) scenarios or refer-
ence missions the family of systems are to accomplish; (2) existing family 
of systems; and (3) current organizational and information exchange inter-
face requirements.

Determine the as-is family of systems shortfalls: Conduct campaign, mission, 
engagement, and engineering analyses to explicitly identify the as-is fam-
ily of systems performance, capability, sufficiency, and/or utility shortfalls.

Develop concepts to mitigate shortfalls: Define candidate concepts to remove 
shortfalls in sufficient depth to enable accurate life cycle cost estimates.

Identify key enabling technologies: Define quantitatively technological advances 
that could mitigate shortfalls.
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Determine the utility of candidate families of systems: Identify and estimate the 
utility and cost of candidate families of systems.

Establish to-be architecture and requirements: Determine a desired family of 
systems consistent with cost constraints, and specify key requirements for 
each contributing system. Document time-phased acquisition and deploy-
ment plan from the as-is to the to-be family of systems showing the esti-
mated incremental improvement in sufficiency utility achieved and the 
required funding profile. Establish the to-be organizational and information 
exchange-implementing requirements.

SECTION 2: ASSESS THE RELATIVE IMPORTANCE 
OF IMPROVING EACH PROCESS AREA

For each listed process area defined in Section 1, please mark an X or checkmark 
in the column indicating your perception of the relative importance of the process 
area at this time for the program, from 1 for least important to 9 for most important.

If you perceive some subprocess areas to be equally important at some level 
between 1 and 9, then mark all those subprocess areas at that same level.

Process Area Defined in Section 1
Process Area Importance at This Time
Least………………………………Most

1 2 3 4 5 6 7 8 9
Planning

Tracking and oversight

Subcontractor management

Intergroup coordination

Configuration management

Training

Environment and tool support

Establish as-is architecture and requirements

Determine the as-is family of systems shortfalls

Develop concepts to mitigate shortfalls

Identify key enabling technologies

Determine the utility of candidate families of systems

Establish to-be architecture and requirements

SECTION 3: ASSESS THE MATURITY OF EACH PROCESS AREA

For each listed process area defined in Section 1, please mark an X or checkmark in 
the column that you believe best describes the maturity level of the process at this 
time.

If you do not know a maturity level, please mark the last column.
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SECTION 4: ASSESS THE EFFECTIVENESS OF EACH PROCESS AREA

Please Read First

What follows is a chart for each of the process areas defined in Section 1.
For each process area, goals are stated.
Please mark the box to indicate how well each goal is currently being achieved, 

from 1 for not at all to 9 for perfectly.
If you believe the goal is not applicable, or you do not know how well the goal 

is being achieved, then mark the far right box.
Each chart provides space for you to record any input you care to provide.

Process Area: Planning

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal
Is Being Achieved

Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
01.1 � Work tasks are complete, 

efficient, and well documented.

01.2 � Cost, schedule, and technical 
objectives are achievable.

Optional comments:

Process Area: Tracking and Oversight

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
02.1 � Tasks to track and oversee architecting 

activities are complete, efficient, and well 
documented.

02.2 � Current cost, schedule, and technical status 
are accurately known.

02.3 � Actions taken to achieve cost, schedule, or 
technical goals best balance impact on all 
affected groups.

02.4 � Work effort to track and oversee activities 
is appropriate and productive.

Optional comments:
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Process Area: Subcontractor Management

Check the box to the right of each goal statement that best indicates how effectively 
the stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
03.1 � Selected fully qualified subcontractors 

who are contributing to a successful 
architecting effort.

03.2 � Subcontractor tasks are complete, 
efficient, and well documented.

03.3 � Subcontractor cost, schedule, and 
technical goals are achievable and 
agreed to.

03.4 � Subcontractor cost, schedule, and 
technical accomplishments are tracked, 
enabling timely issue resolution.

03.5 � Actions to resolve subcontractor cost, 
schedule, or technical issues best 
balance impact to all groups.

Optional comments:

Process Area: Intergroup Coordination

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
04.1 � Group roles and responsibilities are 

defined and are adequately 
unambiguous.

04.2 � Methods for intergroup coordination 
are documented in a useful manner.

04.3 � Appropriate groups are involved in 
resolving technical or program issues.

04.4 � All groups have the program and 
technical information they need, when 
they need it.

Optional comments:
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Process Area: Configuration Management

Check the box to the right of each goal statement that best indicates how effectively 
the stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
05.1 � Tasks to document, control, and 

communicate products are complete, 
efficient, and well documented.

05.2 � Proposed configuration changes are 
identified and communicated in a 
useful manner.

05.3 � Configuration changes are evaluated 
accurately with respect to cost, 
schedule, and technical impacts.

05.4 � Configuration changes are 
controlled.

05.5 � Configuration change decisions are 
appropriate.

Optional comments:

Process Area: Training

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
06.1 � Training tasks to benefit 

personnel are complete, 
efficient, and well documented.

06.2 � People on the architecting 
effort are fully qualified to do 
their jobs.

06.3 � Training meets the needs of 
the people on the architecting 
effort.

06.4 � Training effectiveness is 
measured to provide feedback 
for additional training needs.

Optional comments:
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Process Area: Environment and Tool Support

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
07.1 � Tasks to acquire and make 

available facilities, procedures, 
and tools are complete, efficient, 
and well documented.

07.2 � Facilities, procedures, and tools 
are provided that enable 
completing tasks within cost 
and schedule constraints.

07.3 � Facilities, procedures, and tools 
support intergroup interaction.

07.4 � Tools used are compatible and 
enhance efficiency.

Optional comments:

Process Area: Establish As-Is Architecture and Requirements

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
08.1 � Scenarios or design reference 

missions adequately represent the key 
purpose for the family of systems.

08.2 � Have data for family of systems to 
assess performance, capability, 
sufficiency, and utility.

08.3 � Organization relationships governing 
the existing family of systems 
operations are adequately defined.

08.4 � Information needed for the existing 
family of systems elements to 
perform mission is adequately 
defined.

Optional comments:
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Process Area: Determine the As-Is Family of Systems Shortfalls

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
09.1 � Accurate and efficient 

simulations exist to determine the 
family of system performance.

09.2 � Accurate and efficient 
simulations exist to determine 
the family of system capability.

09.3 � Accurate and efficient 
simulations exist to determine 
the family of system sufficiency.

09.4 � Accurate and efficient 
simulations exist to determine 
the family of system utility.

09.5 � People with authority to 
establish the to-be architecture 
easily comprehend the nature, 
cause, and impact of existing 
shortfalls.

Optional comments:

Process Area: Develop Concepts to Mitigate Shortfalls

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
10.1 � Adequate number and diversity of 

concepts are defined to address all 
key shortfalls.

10.2 � All concepts are realistic with 
respect to capability, availability, 
and cost.

10.3 � Concept definitions enable 
determining performance, 
capability, sufficiency, and utility.
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The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
10.4 � Concept definitions enable accurate 

cost estimates.

10.5 � Concept definitions are sufficiently 
detailed to serve as requirements for 
implementation.

10.6 � People with authority to establish 
the to-be architecture easily 
comprehend the candidate concepts.

Optional comments:

Process Area: Identify Key Enabling Technologies to Mitigate Shortfalls

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not 

Applicable
or

Do Not 
Know

1 2 3 4 5 6 7 8 9
11.1 � Advancements from the current 

state of the art that could mitigate 
shortfalls are adequately identified.

11.2 � The explicit performance levels 
for technology advancements 
sought are quantitatively defined.

�11.3 � Technology maturation experts 
can easily develop technology 
maturation plans based on the 
shortfall and technology need 
documentation.

Optional comments:
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Process Area: Determine the Utility and Cost of Candidate Families 
of Systems

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal

Is Being Achieved
Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
12.1 � Data needed to assess 

individual systems 
are available.

12.2 � Data needed to 
assess combinations 
of systems are 
available.

12.3 � All credible 
family-of-system 
combinations are 
assessed.

12.4 � Secondary system 
selection criteria 
were adequately 
explored for leading 
candidate family-of-
system solutions.

12.5 � People with the 
authority to establish 
the to-be architecture 
have the best 
appropriate data to 
easily make the 
decision.

Optional comments
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Process Area: Establish To-Be Architecture and Requirements

Check the box to the right of each goal statement that indicates how effectively the 
stated goal is being achieved.

The Goal
Is Being Achieved

Not at All…...….Perfectly

0
Not Applicable

or
Do Not Know

1 2 3 4 5 6 7 8 9
13.1 � The requirements for systems 

constituents are accurately 
and completely documented.

13.2 � To-be organizational 
relationships are accurately 
and completely documented.

13.3 � To-be information flow 
requirements and solutions 
are accurately and completely 
documented.

Optional comments:
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Systems Engineering and Architecting: Creating Formal Requirements presents formal requirements
to help you accomplish key systems engineering and architecting activities more efficiently. The
formal requirements—explicit, executable, verifiable instructions—explain how to model systems
behavior, make decisions, establish natural language requirements, and improve your systems
engineering and architecting processes.

Each chapter opens with case studies and lessons learned, which supply the real-world context for
the formal requirements. Topics covered include how to use fuzzy logic and agents to model
uncertainty and how to make decisions when confronted with ambiguity. The book also clarifies
the differences between architecting and systems engineering.

Written in Mathematica ®, each formal requirement provides a tool or serves as the algorithm for
a more efficient implementation in another form. All of the requirements are available as an
open source library for anyone to use, improve upon, or add to. Worked examples, illustrations,
and example surveys help you apply the requirements to your own systems. The book also lists
heuristics to guide you in those systems engineering or architecting activities that cannot yet be
formally stipulated.

Acknowledging that much of the practice remains an art, this book brings as much scientific rigor
as possible to the tasks performed by systems engineers and architects. Written by a director of
engineering who led systems engineering or architecting efforts for the Space Shuttle Program,
Space Control Architecture Development, and others, this book shows you how to develop more
consistent processes for large-scale systems.
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