

Au3593_half title 1/17/06 3:45 PM Page 1

Software Sizing,
Estimation, and

Risk Management

The Complete Project Management
Office Handbook

Gerard M. Hill
0-8493-2173-5

Complex IT Project Management:
16 Steps to Success

Peter Schulte
0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java

Charles W. Kann
0-8493-1499-2

The Hands-On Project Office:
Guaranteeing ROI and On-Time Delivery

Richard M. Kesner
0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach

Margaret Kulpa and Kent Johnson
0-8493-1654-5

ISO 9001:2000 for Software and Systems
Providers: An Engineering Approach

Robert Bamford and William John Deibler II
0-8493-2063-1

The Laws of Software Process:
A New Model for the Production
and Management of Software

Phillip G. Armour
0-8493-1489-5

Real Process Improvement Using
the CMMI®

Michael West
0-8493-2109-3

Six Sigma Software Development

Christine Tayntor
0-8493-1193-4

Software Architecture Design Patterns
in Java

Partha Kuchana
0-8493-2142-5

Software Configuration Management

Jessica Keyes
0-8493-1976-5

Software Engineering for Image
Processing

Phillip A. Laplante
0-8493-1376-7

Software Engineering Handbook

Jessica Keyes
0-8493-1479-8

Software Engineering Measurement

John C. Munson
0-8493-1503-4

Software Metrics: A Guide to Planning,
Analysis, and Application

C.R. Pandian
0-8493-1661-8

Software Testing: A Craftsman’s
Approach, Second Edition

Paul C. Jorgensen
0-8493-0809-7

Software Testing and Continuous Quality
Improvement, Second Edition

William E. Lewis
0-8493-2524-2

IS Management Handbook, 8th Edition

Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures

Fenix Theuerkorn
0-8493-2114-X

Outsourcing Software Development
Offshore: Making It Work

Tandy Gold
0-8493-1943-9

Maximizing ROI on Software Development

Vijay Sikka
0-8493-2312-6

Implementing the IT Balanced Scorecard

Jessica Keyes
0-8493-2621-4

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401

E-mail: orders@crcpress.com

Other Auerbach Publications in Software Development,
Software Engineering, and Project Management

Series_AU_001 Page 1 Thursday, April 21, 2005 3:24 PM

Au3593_title 1/17/06 3:44 PM Page 1

Boca Raton New York

Software Sizing,
Estimation, and

Risk Management

Daniel D. Galorath • Michael W. Evans

When Performance is Measured
Performance Improves

Forewords by Dr. Barry Boehm & Donald Reifer

Published in 2006 by
Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-3593-0 (Hardcover)
International Standard Book Number-13: 978-0-8493-3593-8 (Hardcover)
Library of Congress Card Number 2005058144

This book contains information obtained from authentic and highly regarded sources. Reprinted material is
quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts
have been made to publish reliable data and information, but the author and the publisher cannot assume
responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration
for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate
system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Galorath, Daniel D.
Software sizing, estimation, and risk management : when performance is measured performance

improves / Daniel D. Galorath, Michael W. Evans.
p. cm.

Includes bibliographical references and index.
ISBN 0-8493-3593-0 (alk. paper)
1. Computer software--Development. 2. Risk management. I. Evans, Michael W. II. Title.

QA76.76.D47G347 2006
005.1--dc22 2005058144

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Publications Web site at
http://www.auerbach-publications.com

Taylor & Francis Group
is the Academic Division of Informa plc.

AU3593_Discl.fm Page 1 Monday, December 19, 2005 2:26 PM

Dedication

Dan Galorath dedicates this book to my wife

Judy Galorath

who is an inspiration in all areas of my life and without whom this
book may have never gotten finished.

Mike Evans dedicates this book to the memory of

Elliot Needleman

“A Friend, a Mentor and a Heck of a Good Guy”

vii

Contents

Foreword: Under the Tip of the Estimation Iceberg

by Barry Boehm

.... xvii
Foreword

by Donald J. Reifer

... xix
Preface .. xxi

How This Book Came about from a Galorath Viewpoint xxi
Audience .. xxiii
Structure of the Book .. xxv
What Can You Expect from the Book?.. xxv

Acknowledgments ... xxvii
The Authors.. xxix

1

The Problem ...1

Introduction ... 1
Focus of the Book.. 4
Why Software Projects Fail .. 4
Why Software Projects Fail: Problems with Estimation................................. 7
Why Software Projects Fail: Size Estimates .. 9
Why Estimates Fail.. 13
Historical Data... 14
Overly Optimistic Leadership and Management .. 16

Failure to Use Estimate.. 16
Failure to Keep Estimate Current ... 18

Role of Risk Management in Estimating ... 18
The Solution: Software Estimation — Ten-Step Process 20
Summary .. 21

Endnotes.. 21

2

Introduction to Software Estimation Techniques and
Estimate Planning...25

Introduction and Chapter Goals .. 25
Need for Efficient Software Project Management Metrics 26
Core Metrics Categories.. 28

viii

�

Software Sizing, Estimation, and Risk Management

Software Project Estimates: Foundations of Software Project
Management .. 30
Software Estimation Concepts.. 34
Project Estimation Process.. 35

Step One: Establish Estimate Scope and Purpose 36
Step Two: Establish Technical Baseline, Ground Rules, and
Assumptions.. 38
Step Three: Collect Data ... 39

Underlying Information .. 39
Interview with Judy Galorath .. 45
Software Data Collection Process.. 48
Software Data Collection Lessons Learned... 50
Prioritizing Estimation Effort .. 54
Summary .. 54

Endnotes.. 54

3

Executing the Estimate ..57

Introduction and Chapter Goal.. 57
Step Four: Software Sizing ... 57

Predicting Size .. 58
Size Estimation Approaches .. 60
Deciding on a Metric... 61

When to Use SLOC... 63
When to Use Function Points .. 63

Steps to Estimating Software Size... 64
Sizing Step 1: Baseline Definition of the Size Metric You Will Use ... 65
Sizing Step 2: Define Sizing Objectives .. 65
Sizing Step 3: Plan Data and Resource Requirements....................... 66
Sizing Step 4: Identify and Evaluate Software Requirements............ 66
Sizing Step 5: Use Several Independent Techniques and Sources... 66
Sizing Step 6: Tracking ... 68

Sizing Databases... 68
Legacy Software Rework ... 69

Sizing Number of Functions to Be Learned, Used, and Integrated
for COTS .. 70

Step Five: Prepare Baseline Estimate .. 70
Software Productivity Laws ... 72
Bottom-Up Estimating.. 78
Software Cost Models .. 78
Organizing the Estimating Process ... 86
Delphi and Wideband Delphi... 87
Activity-Based Estimates .. 89

Step Six: Quantify Risks and Risk Analysis .. 99
Cost Estimation Risks... 99

Summary .. 102
Endnotes.. 102

Contents

�

ix

4

Planning and Controlling the Project via the Estimate105

Introduction ... 105
Step Seven: Estimate Validation and Review.. 105

Estimate Review Process ... 107
Estimate Review Activities ... 108
Cost per Unit of Code Developed ... 109

Magic Bullets (Otherwise Known as Technical Leaps) 109
Unrealistic Schedules .. 110
Inaccurate Sizing ... 110
Complexity versus Risk... 111
Careful Evaluation of Preexisting and COTS Software 112
Off-the-Shelf Integration ... 112

Function Point Counting Checklist ... 113
Sanity Counts ... 113
Lack of Convergence .. 113
Double Counting... 113
Sample and Statistical Concerns .. 114
Probability Level.. 114
Falsely Bounded Risk ... 114

Costs .. 115
Are Staff Costs Fully Burdened?... 115
How Many Hours Are in a Staff Month? .. 115

Staff and Effort Accounting ... 115
Does Overtime Count?.. 115
What Level of Management Participates? .. 115
How Efficiently Is Staff Allocated?... 116
Are Experience Levels Honestly Rated? .. 116

Schedules .. 116
What Is the Proportion of Daily Billable Work Done? 116
Will Development Have Lags? ... 116
If Several Software Elements Are Developed, How Are They
Scheduled? ... 116
Is It More Important to Save Time or Staff Cost? 117
Sanity Check .. 117

Estimate Process Questionnaire ... 117
Step Eight: Generate Project Plan ... 128

Action Items by Project Phase .. 129
Determining Costs from Effort Estimates ... 133

Estimating Personnel Mix ... 133
Labor Proportions... 134
Other Costs ... 134

Travel Costs ... 134
Personnel Costs ... 134
Depreciation Costs .. 137
Training Costs .. 137

x

�

Software Sizing, Estimation, and Risk Management

Independent Verification and Validation or Independent Quality
Assurance ... 137
Inflation .. 137
Overhead.. 138

Estimating Schedule in Calendar Months... 138
Effect of Management and Process on Estimates 138
Impact of Software Project Management on Software Development
Plan ... 138
Effect of Software Processes on Software Development Plan 141

Step Nine: Document Estimate and Lessons Learned 143
Conducting Lessons-Learned Review ... 144
Cause Segment ... 145
Effects Segment .. 145
Modeling Improvement Segment.. 146

Step Ten: Track Project throughout Development 146
Refining Estimates throughout Project ... 146

Summary .. 147
Endnotes.. 148

5

Source Lines of Code ...149

Introduction ... 149
Terminology and Definitions ... 150
SLOC Realities and Risks.. 152
Using SLOC ... 153
Logical SLOC Counting Details .. 155
Logical SLOC Detailed Definitions .. 155

Executable Statements ... 155
Data Declaration Statements ... 158
Compiler Directives.. 158
Line Counting Example ... 161
Estimation versus Counting SLOC .. 162
SLOC Considerations for Sizing Databases .. 162
Language Impact on Size Conversion.. 163
Effective Size .. 164
Productivity Based on Effective Size.. 164
Accounting for SLOC Growth ... 164
Estimating Size Growth Conclusions.. 166

Finding Automated Code Counters for Existing Systems 167
Pros and Cons of SLOC ... 169

Arguments against Use of Lines of Code as Sizing Metric 170
Risks Resulting from Using SLOC to Estimate....................................... 170
Risk Management and Control of SLOC Estimates 171

Summary .. 171

Contents

�

xi

SEI Checklist.. 172
SEI Definition Checklist for Source Statement Counts 172

Codes for Various Programming Languages... 176
Endnotes.. 185

6

Function-Based Sizing ..187

Introduction ... 187
Origins and History of Functional Metrics ... 188
ISO Involvement ... 190
International Function Point User Group Counting Standards: Basic
Process Definition ... 191
IFPUG Definitions ... 192
IFPUG Steps .. 192

Step 1: Determine Type of Function Point Count 192
Step 2: Determine Application Boundary .. 194
Step 3: Identify Functional Categories ... 195

External Input (EI) .. 196
External Output (EO).. 199
External Inquiry (EQ) ... 201
External Interface File (EIF) ... 204
Internal Logical File (ILF) ... 206

Step 4: Count Data Functions (ILFs and EIFs) 209
Step 5: Count Transactional Functions (EIs, EOs, and EQs) 210
Step 6: Evaluate Value Adjustment Factors.. 211
Step 7: Compute Unadjusted and Adjusted Function Point Counts.... 222

SEER-Function-Based Sizing (SEER-FBS)... 224
SEER-FBS External Inputs (EIs) .. 225

SEER-FBS Subcategories for External Inputs 226
Rating Complexity for External Inputs .. 226

SEER-FBS External Outputs (EOs).. 226
SEER-FBS Subcategories for External Outputs.................................. 227
Rating Complexity for External Outputs ... 227

SEER-FBS External Inquiries (EQs)... 227
Rating Complexity for External Inquiries.. 228
SEER-FBS Subcategories for External Inquiries 228

SEER-FBS External Interface Files (EIFs) ... 228
SEER-FBS Subcategories for External Interface Files 228
Rating Complexity for External Interface Files................................. 229

SEER-FBS Internal Logical Files (ILFs) ... 229
SEER-FBS Subcategories for Internal Logical Files 229
Rating Complexity for Internal Logical Files 229

SEER-FBS Extended Category: Internal Functions................................. 230
Effective Function Points.. 230

Using Function Points.. 233
Early Function Point Counting (Estimating) .. 236

xii

�

Software Sizing, Estimation, and Risk Management

Analysis of Function Point Rules in Tree-Based Framework.................... 236
Description of Tree and Results ... 237

Backfiring ... 237
Possible Errors in Function Point Counting...................................... 239

Pros and Cons of Function Points .. 240
Pros of Function Points ... 240
Cons of Function Points .. 241
When to Use Function Points... 242

Function Point Risk Management.. 242
Function Point Counting Risk Checklist ... 243
Summary .. 243

Endnotes.. 251

7

Object-Oriented Sizing: Object and Use-Case Sizing253

Introduction ... 253
Background of Object-Oriented Design ... 254
Overview of Object-Oriented Techniques .. 255

Object Points .. 256
Performing Object Point Counts .. 256

Object Point Definitions .. 256
Classes .. 256
Services (Methods) .. 259

Predictive Object Points .. 262
Development of Use-Case Metric ... 262

Calculation of Unadjusted Use-Case Points .. 263
Adjustment of Use-Case Point Count (Optional) 265
Concluding Comments about Use-Case Points 265
Sizing Web Development .. 265

Risk Associated with Object-Oriented Projects .. 267
Summary .. 272

Endnotes.. 273

8

Software Reuse and Commercial Off-the-Shelf Software275

Introduction ... 275
Reusable Software... 277
Integrating Commercial Off-the-Shelf Software .. 279

Fundamental Differences between COTS Software and Custom
Development .. 282
Items Not Estimated as COTS... 283
Weighing Use of COTS.. 284

Case Studies: Real-World Experiences with COTS..................................... 284
Case 1: Components Had Critical Defects and Were Modified by
Developer ... 284
Case 2: Powerful (and Defect-Ridden) COTS Component................... 285
Case 3: Application Integrated (Loosely Coupled) without Problems... 285

Evaluating and Estimating COTS ... 285
Three Components of COTS Integration ... 286

Contents

�

xiii

Estimating COTS Integration .. 287
Using Function Points and Estimating Model Lacking COTS-Specific
Capability .. 287

Integration of Stand-Alone COTS Software....................................... 288
Stand-Alone COTS Software with Significant Configuration 288

Using SEER-SEM Cost Drivers to Estimate COTS.................................. 288
Object Sizing.. 291
Feature Sizing .. 291

Rules of Thumb for COTS Integration ... 293
Experience with COTS Product ... 293
Scope of COTS .. 293

Evaluation and Selection of COTS Products .. 294
COTS Risks .. 294

Risk Reduction.. 296
Risks Associated with Reuse and COTS ... 297
Summary .. 297

Endnotes.. 301

9

Performing to Estimate: Managing and Monitoring
Development...303

Introduction ... 303
Metric Reporting.. 304
Metrics Sets.. 309

Productivity ... 309
Productivity Monitoring .. 309
Using Earned Value Management.. 318

When Reality Sets In ... 323
“Shoestring” Project Environments ... 324
Process Performance.. 325
Technology Solutions... 326
Understanding Process Selection Constraints .. 327
Product Quality and Stability .. 330
Defects .. 331
Code Inspections.. 333
Staffing Levels... 335
Team Performance ... 335

Summary .. 337
Endnotes.. 337

10

Risk Management Process ...339

Introduction ... 339
History of Risk Management.. 340

Cultural Obstacles to Managing Risk ... 343
Risks versus Problems .. 345
Risk Management Success Factors... 347
Essential Risk Management Definitions... 349
Introduction to Risk Management Concepts .. 350

xiv

�

Software Sizing, Estimation, and Risk Management

Computing a Risk Index.. 352
Risk Management Processes.. 356

Seven Steps to Risk Management.. 359
Step 1: Establish Risk Policy, Obtain Commitment to Manage Risk,
and Develop Plan .. 359

Risk Management Planning .. 360
“How-To” Procedures: Essential Planning Elements 362

Step 2: Designate Risk Officer .. 368
Risk Officer Case Study .. 371
Relationship of Risk Officer and Management 371

Step 3: Identify Risks ... 372
Risk Identification Techniques ... 374
Risk Characterization... 377
Potential Risk Identification Activities during Estimation 378

Step 4: Risk Analysis.. 381
Use of Metrics ... 382
Use of Quantitative Triggers .. 382

Step 5: Prioritize Risks ... 383
Step 6: Report Risks... 384

Reporting Problems versus Risks... 384
Risk Reporting by Exposure... 385

Step 7: Establish Risk Reserve .. 386
Basic Risk Management Rules ... 387
Risk Analysis Viewed as Uncertainty Analysis ... 387

Establishing Risk Reserve Using Commercial Grade Models 388
Risk Management Dealing with Cost Uncertainty................................. 388
Risk Analysis at the Work Element Level .. 389

Pert Distribution Characteristics ... 390
Probability and Intuition.. 391
Probability-Based Risk Outputs .. 392
Project and Roll-Up Risk Calculation ... 392

Summary .. 393
Endnotes.. 395

11

Applying SEER-SEM to Estimation Processes397

Introduction to SEER-SEM Project Manager Edition Tools........................ 398
Details and Uses ... 401
Summary Input and Output Definitions ... 402
SEER-SEM Concept.. 403
SEER-SEM Sizing ... 405
SEER-SEM Programmatic Architecture ... 406

Open Databases ... 406
Communicating with SEER-SEM via Microsoft COM 407
Server Mode.. 407

Applying SEER-SEM Project Manager Edition to the Estimation
Process ... 407

Contents

�

xv

Steps 1 through 3: Establish Estimate Scope and Purpose;
Establish Technical Baseline, Ground Rules, and Assumptions; and
Collect Data .. 407
SEER-SEM Software Sizing (Step 4) .. 409

Manual Sizing .. 410
Automated Sizing with SEER-AccuScope .. 410
Choosing Knowledge Bases for Reuse Estimation..................................... 412
Using SEER Function-Based Sizing for Size Estimates............................... 420
Using Number of Programs Included in Size .. 420

SEER-SEM Estimation Process (Step 5) ... 421
SEER-SEM Estimation Process Step 5b: Select Knowledge Bases......... 423
SEER-SEM Estimation Process Step 5c: Specify Project Constraints...... 424
SEER-SEM Estimation Process Step 5d: Adjust Individual Parameters... 425
SEER-SEM Estimation Process Step 6: Quantify Risks and Risk
Analysis ... 426

Distributions... 427
Probability Distribution of Output Ranges.. 428

Risk Factor Analysis with Sensitivity Charts .. 429
Ranked Risks with Top Ten Cost Drivers Chart 431
Precise Estimate Distributions through Risk Analysis Report............... 431
SEER-SEM Estimation Process Step 7: Review, Verify, and Validate
Estimate... 432
SEER-SEM Estimation Process Step 8: Generate Project Plan 434
SEER-SEM Estimation Process Step 9: Document Estimate and
Lessons Learned ... 435
Custom Knowledge Bases and Calibration.. 435

Calibration (Part of Lessons Learned) ... 435
Constructing Calibration Factors .. 436

SEER-SEM Estimation Process Step 10: Track Project................................ 436
SEER-SEM Internals ... 436

SEER-SEM Basic Size Definition.. 437
SEER-SEM Staff Hour Definition ... 437
SEER-SEM Mathematical Model Overview ... 437

Effective Size Mathematics.. 437
Function-Based Sizing Mathematics... 442
Parameters.. 442
Knowledge Bases .. 442
Effective Technology Calculation... 443

Effort, Schedule, and Staffing Calculations .. 445
Basic Definitions.. 445
Basic Effort and Schedule Equations... 445
Optimal Effort Calculations .. 446
Relaxed Schedule Calculations... 447
Applying Adjustment Factors ... 448

SEER-SEM Parameter Definitions ... 448
Contents .. 448
Sizing Parameters ... 449

xvi

�

Software Sizing, Estimation, and Risk Management

Technology and Environment Parameters ... 453
Commercial Off-the-Shelf (COTS) Parameters 476
Other Parameters.. 484

Summary .. 496
Endnotes.. 497

12

SEER-SEM Solutions for Project Management and
Control ..499

Introduction ... 499
CMMI Process Areas for Project Management ... 500

Solution 1: Application of Basic SEER-SEM for Project Management
and Control... 501
Solution 2: SEER-SEM Client for Microsoft Project................................ 503
Using the Client for Detailed Project Planning 504
Solution 3: SEER-PPMC (Parametric Project Monitoring and
Control) ... 506

Implementing Planning and Control Process with SEER-PPMC 510
Earned Value Metrics and Calculations Used in SEER-PPMC 512
Summary .. 518

Endnotes.. 518

Index..519

xvii

Foreword: Under the Tip

of the Estimation Iceberg

Many people who acquire a software estimation model assume that its
use involves furnishing it with a few project parameters, taking the
resulting outputs, and plugging them into proposals, project plans, work
breakdown structures, budgets, and schedules.

However, people experienced in software estimation have learned that
running the model is just the small tip of a very large iceberg of activities
essential to successful estimates, projects, and enterprises. Those activities
include:

�

Identifying what is being estimated and why.

 One early cost
model’s answer to questions asking whether the model estimates
included costs of management or quality assurance was, “What
would you like the estimates to include?” This is not a strong
confidence builder.

�

Defining the project’s requirements and design as well as
possible.

 If you don’t know whether a product function will be
fulfilled by new, modified, or commercial software, your estimates
can be way off.

�

Using several perspectives to estimate software size, cost, and
schedule.

 Otherwise, there is no way to tell whether your estimates
are reasonably accurate or not.

�

Identifying ranges of uncertainty in the project parameters.

This enables techniques such as Monte Carlo analysis to determine
the likelihood of finishing within a given budget or schedule. Just
using a “most likely” point estimate will overrun roughly half of
the time.

xviii

�

Software Sizing, Estimation, and Risk Management

�

Performing a business case relating estimated costs to esti-
mated benefits and return on investment.

 Otherwise, scarce
resources are likely to be spent on low-payoff capabilities.

�

Negotiation of trade-offs among cost, schedule, quality, per-
formance, and functionality.

 Optimizing on one of these param-
eters at the expense of the others has been the source of many
failed projects.

�

Matching desired capabilities to available budgets, schedules,
and skilled personnel.

 Neglecting this activity has been the
source of many project overruns.

�

Tracking not only cost and progress with respect to original
cost and schedule estimates, but also changes in cost driver
parameters.

 Tracking to obsolete estimates has been the source
of many painful surprises.

The authors of this book, Daniel Galorath and Michael Evans, are both
highly experienced estimators and project managers. Much of this book
is devoted to their helping you understand and apply these “under the
tip of the iceberg” activities. Their ten-step approach to software estimation
provides a logical progression of estimation activities that help you avoid
these sources of project overruns and failures.

The book naturally focuses on the use of Galorath Incorporated’s SEER-
SEM software cost model to address software estimation activities. But it
does so in the context of advice to use multiple perspectives in size, cost,
and schedule estimation. And it provides a lot of valuable information
about the SEER-SEM cost and size drivers that are often not available for
proprietary cost models. It also shows how to use your estimation and
project tracking data to improve your estimation accuracy and to identify
the best investments for improving your software productivity and cycle
time. Investing in acquiring this book and following its advice is highly
likely to provide you with a robust return on your investment.

Barry Boehm

Another veteran of the consequences
of neglecting the bottom of the iceberg

xix

Foreword

In order to survive the pressures of today’s fast-paced software develop-
ment projects, all software professionals need to develop estimates. The
project manager needs estimates to develop schedules and budgets. The
engineers working on the project need estimates to set realistic expecta-
tions and pace their work. Customers need estimates to determine whether
the project’s value is worth the forecasted cost. However, like most forecasts
involving time and money, numbers generated are both used and abused
for a variety of reasons. Numbers are frightful when you think about it
because those in control put such relevance on them.

In my experience, nobody likes to prepare an estimate. Why? Simply,
because most of the time it is wrong. Worse yet, your bosses will remind
you that you were wrong just when you do not want to hear it. Why are
you wrong? There are many reasons for poor estimates. Probably the
biggest cause is the lack of knowledge. To estimate well, you need to
understand how to estimate and have details about what you are estimat-
ing. That is why this book should be helpful. It starts by providing you
with a ten-step estimation process. As it takes you through the process,
it then highlights the information you have to gather in order to estimate
the job more accurately.

This book is also about estimating software effort and duration using
the SEER-SEM model. While I do not endorse any one model, I do endorse
their use for estimating. Cost models like SEER-SEM are valuable tools
because they capture a communal knowledge base of experience that
their users can employ to generate more accurate estimates of the resources
that they will need to deliver software products and services. Such tools
also provide their users with insight into the many trade-offs that occur
as they plan and execute their projects.

The book addresses estimating in the context of both current and
future topics in software engineering. It focuses on using estimates for

xx

�

Software Sizing, Estimation, and Risk Management

planning and control. It talks to the strengths and weaknesses that exist
in source lines of code and function points as measures of software size.
It provides guidance on how to estimate resources for projects that employ
both conventional and object-oriented techniques, systematic reuse con-
cepts, and commercial off-the-shelf (COTS) packages. It touches on use
cases as a future measure of size and discusses Web Objects. Most
important, the book focuses on how to use the estimate to control risk,
and manage and monitor performance. I have often said when people
have told me that they have an estimate, “So what, how are you going
to use it once your schedules and budgets have been established?”

I have known both authors for more years than I would like to report.
Both have grown up in the trenches. I have worked with them and seen
them grow. Both have held many positions and been through the wars.
I have seen them under pressure and relaxed. Both are practitioners whose
advice is useful and actionable. Be sensitive to the pointers that they
sprinkle throughout the pages. These are what I got from this book. Look
for and use the “golden gems” within this book. You will be glad that
you did.

Donald J. Reifer

Author, practitioner, and friend

xxi

Preface

This book is the blend of a software project cost/schedule expert (Dan
Galorath) with a software risk expert’s (Mike Evans) work. This book
comes from years of experience in software project management, and
building and applying tools to understand and manage software cost,
schedule, and risk. Galorath’s disciplines of project planning and control
fit like a glove with the risk management and project assessment approaches
of Evans.

How This Book Came about from a Galorath Viewpoint

From a Galorath viewpoint, this book is a product of a commitment to
better software project planning and control. Many years ago a project
was never developed because of my realistic, but politically incorrect
estimate. I wondered if I had done the right thing, which was try to
provide an achievable project plan and a realistic estimate, even though
that estimate was longer than the company desired. This experience made
me wonder if I had failed as a manager. However, some years later I tried
to reproduce the estimate using SEER-SEM and discovered that I had
significantly underestimated the project. SEER-SEM enabled me to under-
stand that I had not failed and that my refusal to give in to the division
head’s pressure had been the best thing for that company.

This experience was the beginning of my mission to understand how
long software development should take and how many people are needed.
A few years later Don Reifer and I were tasked with developing a concept
for software estimation within NASA JPL. The results of the study prompted
the development of the JPL Softcost software estimation model.*

* Tausworth, R.

Softcost.

 Pasadena: Jet Propulsion Laboratory, 1981.

xxii

�

Software Sizing, Estimation, and Risk Management

In 1981, when Dr. Barry Boehm’s classic book,

Software Engineering
Economics

, was published, I was operating a consulting business that
remedied failing projects. I still used the early Softcost model which was
automated, and performed risk and trade-off analysis. In 1984 I began
consulting for Computer Economics, Inc., where I met Dr. Randall Jensen
and was introduced to the “Jensen model.” This model had been imple-
mented as the JS-2. I recognized its strengths, which were its ability to
conduct uncertainty estimation and minimum time estimation, but from a
product viewpoint it had challenges. After redesign, it was released as the
CEI System-3, which was relatively successful in helping people answer
the difficult questions surrounding software development.

In 1988

Galorath Incorporated

began developing SEER-SEM, deciding
to implement it under Microsoft Windows version 2 (version 2.03 to be
exact). The initial product, which was approximately 22,000 lines of code,
relied heavily on the mathematics that served as the foundation of Jensen’s
public domain model. We shipped a run-time version of Windows on 13,
5.25 in. floppies. DOS was pervasive at this time, and some people
complained about being required to use Microsoft Windows, but this
decision was critical to SEER-SEM’s early success. At one time there were
Macintosh and Sun Solaris versions of SEER-SEM as well, but both were
based on the Windows code baseline.

As the state of software development progressed, and as user demand
grew more sophisticated, SEER-SEM continually required more robust and
advanced mathematics and refined knowledge bases to handle the situa-
tions our users found themselves confronting. Users wanted to know the
answers to questions such as: “How do I plan with my real-world staffing
constraints?”; “How do I estimate my COTS software?”; “Do risk and
uncertainty affect schedule independently of effort?”; “How can I calibrate
for special situations or to my particular environment?”; and a host of
other situations. SEER-SEM has also evolved from using lines of code as
the only size input to function points, developing its own function-based
sizing and the ability to accommodate objects, Web pages, use cases,
classes, and a host of other sizing methods.

Most software estimation models have common ancestors, and SEER-
SEM is no different. SEER-SEM, which was based on the Jensen model
developed at Hughes Aircraft Company, diverged significantly in the early
1990s. Earlier work by Doty Associates introduced the idea of factoring
in development environment influences via parameters. Barry Boehm’s
COCOMO work contributed to the original Jensen model technology
parameters and has been a valuable cross-check to the SEER work.
Research with Don Reifer that stimulated work on the NASA Softcost
model also influenced SEER-SEM, as did Halstead’s software science

Preface

�

xxiii

metrics and McCabe’s complexity metrics. Today, through the process of
Galorath Incorporated’s “continuous product improvement,” the SEER-SEM
suite has grown to nearly 200,000 lines of code. Using this process,
Galorath engineers analyze and begin to address software industry trends
even before the trends become visible in the mainstream. The SEER models
continue to evolve with data collection, application, research and devel-
opment being conducted continuously.

At a high level, software sizing and estimation risks are the root of
numerous project failures: unachievable commitments made by projects
based on incorrect projections of cost, schedule, and resources. Thus Mike
Evans entered the picture.

This book explores the various software sizing techniques, how these
size projections are used to project cost and schedule, how projects can
manage against these constraints and what risks result from constraints
that are unrealistic or not achievable. This book describes how the risks
can be managed and how tools, models, and other automated facilities
can be used to enable better estimation and lower project risk.

In the chapters that follow, software sizing metrics and other software
estimation factors are discussed. This book also covers the software
estimation state of the practice, and leading trends and practices in
software sizing technology.

While software size has the biggest impact on estimation, other factors
such as technology, environment, complexity factors, staffing, scheduling,
risk, and probability are also key. This book focuses on the techniques
of the SEER family of cost, schedule risk, reliability models from Galorath
Incorporated, as well as a brief look at the software project management
life cycle and how software estimation makes a perfect management tool.
The book is unique in that it doesn’t stop at describing the sizing and
estimation process but goes further in describing the core risks that result
from the estimation process and commonly cause programs to not perform
in accordance with the initial estimates. The specific methods for managing
these risks, mitigating them, and getting the program completed success-
fully are provided.

Audience

This book is written for people who manage, engineer and assure software,
stakeholders who need to understand software estimation techniques and
metrics, and, finally, how to identify, manage, and mitigate estimate risks
and their project impacts. The book is important to individual readers as
follows:

xxiv

�

Software Sizing, Estimation, and Risk Management

�

Senior Management

 –— Provides insight into the estimation
process; the effects that management and corporate decisions,
attitudes, and culture have on the integrity of estimates; and the
risks that result from these estimates, which place systems and
software intensive projects in jeopardy.

�

Customers and Users

–— Provides customers and users essential
insight into how estimates are developed; and cultural factors and
management attitudes, which could impact integrity of the estimate
and the resulting risks.

�

Stakeholders

–— Provides insights into the processes and risks
associated with software estimates and methods that can be used
to monitor project progress and determine the risk of receiving a
product that will meet the needs and expectations of the user
developed within the cost and schedule constraints.

�

Engineering Management

–— Provides engineering management
insight into the estimation process and how engineering decisions,
shortcuts, trade studies and trade-offs, and other engineering factors
affect the integrity of the estimate and the resultant risk to the project.

�

Project Management

–— Provides specific factors which can be
used to understand how estimates are developed and the essential
relationship that exists between the initial estimates and the need
to perform at a productivity rate consistent with the estimate.

�

System Engineers

–— Provides specific factors to consider when
establishing the essential system relationships and operational specifi-
cations that impact the estimate and increase the risk of meeting plans.

�

Software Engineers

–— Provides comprehensive information that
software engineers can use to develop more accurate estimates,
project resource requirements and schedule, and determine poten-
tial threats to software integrity, quality, and system effectiveness.

�

Quality Assurance

–— Provides specific information concerning
the cost of adding various quality factors to the product, and the
added costs of assuring the quality of the product or the effective-
ness of the processes used.

�

Test Personnel

–— Identifies cost factors which should be con-
sidered when planning, implementing, or evaluating the results of
a test program, and the estimation of defects insertion and removal.

�

Risk Management Personnel

–— Identifies specific risks related
to estimates and describes risk management strategies that can be
used to identify and control their impacts.

�

Students

–— Helps students understand how estimation and risk
management are important to the complete understanding of the
costs associated with management, engineering, assurance, and
monitoring of software products and systems.

Preface

�

xxv

Structure of the Book

This book is divided into four major parts, which describe the estimation
issues, the various estimation steps, the various metrics and special esti-
mation cases, and the use of the SEER family of tools to assist in developing
more accurate estimates faster.

Part I: Estimation Issues. Chapter 1 discusses specific issues that
impact the validity of estimates and the difficulty of the process.
Part II: Estimation Process. Chapters 2, 3, and 4 discuss the
various steps involved in developing and validating estimates.
Part III: Metrics and Special Estimation Cases. Chapters 5
through 9 discuss the various size measures and special estimation
cases.
Part IV: Risk Management and Estimation Tools and Tech-
niques. Chapters 10 through 12 discuss the risk management
process and how the SEER family of tools can be used to expedite
the estimation process and generate more accurate estimates.

What Can You Expect from the Book?
Before discussing what can be expected from the book it is important
that it is clear what it is not. It is not an academic text describing estimation
theories or concepts. It is a practical, hands-on discussion of critical factors
and considerations that impact estimates, how to select and apply the
appropriate measures to project and document size, and how to identify
and manage risks. The authors, Mike Evans and Dan Galorath, are rec-
ognized experts in estimation, process engineering, and risk management.
The book captures much of their unique experience providing practical
solutions to many of the difficult problems that make estimates invalid or
high risk. The information is presented in a way that will help readers
identify and deal with project actions and attitudes that can result in an
invalid estimate or high risk projects because of inadequate estimates. The
content of the book will provide insight not readily available through
other sources, which will help organizations recognize and avoid down-
stream impacts that can be caused by poor estimates.

Without a map (or GPS) there is no way to determine which way to
go or how long it will take to get there. This book provides a map for
successful software project planning and control — helping developers
plan which way to go, how long it will take to get there, and minimize
the side trips, detours, and flat tires. While writing this book, the motto
for the text became: “Preparation precedes performance. When perfor-
mance is measured performance improves.”

xxvii

Acknowledgments

Many people helped and supported us in the development of this book.
First, we’d like to thank Mike’s wife, Charlotte, for again supporting

him in the painful process of developing a manuscript, bringing him
sandwiches, putting up with his moods, and acting as a sounding board
when he got stuck. This support is much appreciated. Carl Blitz’s thorough
review of early drafts and honest comments made us rethink where we
were headed. The results of this early soul searching made this a better
book. Special thanks to Dan’s wife, Judy Galorath, who should have been
listed as coauthor thanks to her diligent work in reading, writing, and
editing for many months, including an entire week on vacation in Jamaica.
Many of the ideas in all sections are Judy’s. Ian Brown’s review of
functional sizing was invaluable in ensuring the book covers both today
and the future. Karen McRitchie’s support throughout the process and
diligent review were invaluable. Special thanks to Evin Stump who was
brutal in his review of certain chapters, and Chris Hutchings and Corinne
Segura for their diligent reviews of the risk component. Brian Glauser’s
reading of the manuscript also found several items that, when corrected,
made this a better book. Thanks to Don Reifer for his suggesting this
book be written and for his review comments. Thanks go as well to
Dr. Ricardo Valerdi who poured over pages of drafts and provided many
comments and suggestions. Ricardo did all this while working on his
Ph.D. thesis, his wedding, and his move cross-country. Special thanks to
Lee Fischman for his work and editing of functional and object size
chapters, some even twice. Thanks to Cheryl Kung who prepared the
figures and did many other production tasks.

Finally, we would like to thank all those whose work and publications
provided a strong basis for the book. Barry Boehm, Fredrick Brooks, Tom
DeMarco, Lee Fishman, David Garmus, Randy Jensen, Capers Jones, Tim

xxviii � Software Sizing, Estimation, and Risk Management

Lister, Karen McRitchie, Bob Park, Larry Putnam, Don Reifer, Richard
Stutzke, Mike Ross, and a host of others established a rich body of
knowledge, which is the basis for much of the book’s content.

xxix

The Authors

Daniel D. Galorath has over 35 years of experience in the software
industry where he has solved a variety of management, costing, systems,
and software problems, and performed all aspects of software develop-
ment and management. Mr. Galorath is founder and president of Galorath
Incorporated, maker of the SEER suite of estimation tools.

Galorath Incorporated has developed tools, methods, and training for
software cost, schedule, risk analysis, and management decision support.
Mr. Galorath is one of the principal developers of the SEER-SEM™ Software
Estimation Model and has been involved in the concepts and evolution
of the SEER suite of models. He has participated in numerous software
sizing and costing studies, both using his company’s tools and performing
such studies manually.

One of Mr. Galorath’s strengths has been reorganizing troubled software
projects, assessing their progress, applying methodology and plans for
completion, and managing them to completion. In this role, he applied
the earned value, cost and schedule management, and defect tracking
techniques discussed in this book. He has created and implemented
software management policies, and reorganized (as well as designed and
managed) development projects.

Mr. Galorath’s teaching experience includes development and presen-
tation of courses in software cost, schedule, and risk analysis; software
management; software engineering; systems architecture; and others. He
has lectured internationally and is the author of many papers about
software project management and software cost, schedule, and risk anal-
ysis. Among these published works are papers encompassing software
cost modeling, testing theory, software life cycle error prediction and
reduction, and software and systems requirements definition.

Mr. Galorath completed his undergraduate work and MBA from Cali-
fornia State Universities. He is a member of the International Society of

xxx � Software Sizing, Estimation, and Risk Management

Parametric Analysis (ISPA), Society of Cost Estimation and Analysis (SCEA),
IEEE, the International Function Point Users Group (IFPUG), and the
Association of Computing Machinery (ACM). He was honored with the
Freiman Award, recognizing his long-term contributions to the field of
parametric analysis.

Michael W. Evans is an executive vice president of American Systems
Corporation, responsible for software and software risk management pro-
grams. He founded and served as president of Integrated Computer
Engineering, Inc. (ICE), where he worked on software risk management
approaches, software technical, management, and risk project assessments.
His IT and software experience extends back to 1963 when he worked
on the development and modification of compilers for the U.S. Army and
then for Univac. During the ensuing years, he worked with IBM, Litton
Industries, Ford Aerospace, and other companies in development, docu-
mentation, and application of standards, processes, and process improve-
ment. As an adjunct to this effort, he developed and implemented a
quantitative and objective assessment process.

Mr. Evans founded Expertware Inc. and, among other activities, worked
with NASA, supporting the Software Management and Productivity Council
for over four years. In this capacity he developed Versions 3 and 4 of the
NASA software standard applied as an agencywide requirement. In the
late 1980s, he founded CANDCA Associates, which later became ICE.

He was a founding member of the Software Program Managers Network
(SPMN). He is a member of the Airlie Council, a group of industry leaders
who advised the U.S. Department of Defense on practices and other areas
that focused on project improvement and improvement in the bottom line
metrics of cost schedule, quality, and user satisfaction. SPMN has over
10,000 members and at its peak was involved with more than 250 large-
scale software programs across the DoD.

Mr. Evans is experienced in providing direct technical services and
support in software engineering methods and processes, software stan-
dards, quality assurance, and configuration management, and testing. He
is the author of over 250 papers along with Principles of Productive
Software Management, Productive Test Management, Software Quality
Assurance and Management, and The Software Factory published by John
Wiley & Sons.

1

Chapter 1

The Problem

I have not seen any problem, however complicated, which,
when you looked at it in the right way, did not become still
more complicated.

Paul Anderson

Introduction
In 1976, early in my career, I became interested in effort and schedule
estimation as a result of a confrontation with a vice president at a company
for which I worked. Unknown to me, the organization had an unstated
effort and schedule in mind. I was a software project manager while
working on my MBA. There were no software estimation models available
to me at the time. I was told to prepare an estimate for a four-terminal
cluster system. Using the techniques learned through my MBA and my
knowledge and experience as a software developer and project manager,
I developed the estimate manually. It included a range of effort accom-
panied with estimates for risk and uncertainty.

When presenting the estimate to the VP, I was told, “This estimate is
too high, go cut it by a third.” When I said “I can’t,” the VP then said,
“You have assumed people would work only eight hours per day. Go
away and assume they will work twelve hours.” I said something to the
effect of, “I did assume eight hours per day. I assumed the other four
hours would cover the things that go wrong that I haven’t thought of.”

2 � Software Sizing, Estimation, and Risk Management

The VP provided several more ideas on how to cut the schedule and
effort estimates, all of which I stated were impractical. The VP was insistent
that the estimate be cut by a third. Whether I was naive or a hero has
never been determined. I stood by the estimate and the project was
cancelled. Some years later, I reestimated the project by using a parametric
cost model and determined that my original estimate was significantly
low. There simply wasn’t enough time and money projected and, if the
project had gone forward, it would have failed miserably.1

“Far too many … software projects have become unaffordable and
unable to deliver needed quality, reliability, and capability within the
required time frame. Their outputs are not predictable. Their processes
are little more than chaotic and do not effectively utilize the kinds of
disciplines necessary to achieve success.”2 “Unaffordable and unable to
deliver,” “not predictable,” and “chaotic.” These are words that no one
wants to have associated with his or her software project. But the reality
is that these situations are manifested in far too many projects.

Several years ago a commercial company hired consultants to assess
a large software project that would significantly affect the organization’s
business processes. The discovery was soon made that the project had
been plagued with problems from the beginning. Initially the organization
had difficulty defining a set of requirements on which all stakeholders
could agree. In order to hold to critical schedules, the project leaders
were forced to delay functionality to later releases. Additionally, they built
significant concurrency into the project to try to recover the schedule.
Unfortunately, by developing different aspects of the project concurrently,
the project team never seemed to have the resources to support all the
activities required to meet the schedule.

To understand the project’s dynamics, the consultants first interviewed
the project management team, who admitted that the project was slow to
begin but asserted they now had a good handle on their problems. The
project management team said they were taking steps to address the
troublesome but manageable schedule problems and they projected that
they would turn the corner sometime in the third quarter.

Staff members were interviewed next. They presented a far different
story. An obviously overworked engineer told of having to work 12 to
16 hours a day for seven days a week for months on end under unrea-
sonable pressure. As soon as they could find jobs, he and many of his
associates were planning to leave. Obviously the consultants were inter-
ested in why this had happened and asked the engineer if he thought
the situation would change. He explained:

We started on a bad foot with an initial estimate that was
unreasonable. Management knew the amount that had been

The Problem � 3

budgeted for the system and had committed to build it for
60 percent of that number with a 40 percent reserve. A team
of consultants brought in by management estimated the project
would cost three times what was finally presented to the cus-
tomer, based on a size projection that was two times what had
been previously estimated. In addition to the discrepancy in
the size projection, the consultants felt that the productivity
projections used by management were not based on the his-
torical performance of the organization and had not included
many tasks essential for the project to succeed. These indepen-
dent estimates were dismissed by management as being done
by an organization who were not team players and who didn’t
understand the dramatic productivity benefits modern software
engineering would provide.

Despite the rocky start the project was funded and the team
was hired, although staffing took four months longer than
projected and project experience was minimal. As the schedules
started to erode, management took a “hands on” role in resolv-
ing the problems. Critical functions such as risk management,
inspections, trade-off studies and independent QA were gutted
or not done at all in the name of schedule and cost reduction.
The result is the situation we are now in; too much work that
is expanding at a rapid pace due to unanticipated rework and
too many defects, not enough money or time to do even the
basic things necessary to get the project back on schedule and
keep it on track. Management’s attempts at restructuring the
project by moving tasks in parallel have compounded the prob-
lem by further compressing the schedule. It’s so bad now we
seem to lose a half day every day we work because of new
tasks we identify or defects we uncover. I can’t see this problem
getting any better soon.3

This engineer had a far more realistic view of what goes on in real-
world projects than many managers or experts in the field. He understood
that estimates are only as good as the size projections that they are based
on. He also understood that projections of productivity must consider all
the costs and tasks associated with a project — not only those related to
production.

As Tom DeMarco4 pointed out, “Are overruns and busted budgets
happening too frequently? When performance doesn’t meet the estimate,
there are two possible causes: poor performance or poor estimates. In
the software world, we have ample evidence that our estimates stink, but

4 � Software Sizing, Estimation, and Risk Management

virtually no evidence that people in general don’t work hard enough or
intelligently enough.”

In the situation noted above, the management team lost sight of the
fundamental elements of successful project management: that estimates
for project cost and schedule should be based on reality, and there is a
minimum time required for any software development. Successful project
management also requires an estimate that corresponds to and is driven
by (a) how the process is to be managed, monitored, and controlled, and
(b) how risks are to be identified, managed, and mitigated.

Managers and project staff often recognize the potential for
impending productivity shortfalls but assume that things will
work out even though the available evidence points to the
contrary. Managers often flock to unproven or unrealistic “silver
bullets” rather than addressing the true nature of a problem. “If
we can only get the tool installed by Friday we’ll be OK.” “If Joe
doesn’t quit….” “If we can squeeze 86 hours from the staff next
week….” “Changing our method will give us the productivity
we need.” “They probably won’t catch that defect.” These are
typical comments in projects falling into this behavior.5

Focus of the Book
The focus of this book is how to make software projects more successful
by properly estimating and planning costs, schedules, risks, and resources.
The examples cited of unreasonable software project estimation expose
some of the fundamental problems: not planning up front; failure to use
viable estimates as the basis of an achievable project plan, not updating
the plan and estimates when a project changes, and failing to consider
the uncertainties inherent in estimates. Most estimates are prepared early
on in the life cycle of a project, when there are typically a large number
of undefined areas related to the project. The steps presented in this book
provide a method for developing realistic estimates and plans, as well as
managing the risk associated with estimates.

Why Software Projects Fail
A recent search of the World Wide Web identified over 2100 sites that
describe over 5000 reasons that software projects fail, ranging from the
poor use of technology to lack of communication to management inatten-
tion. While certainly these factors can contribute to the failure of a project,

The Problem � 5

the most pertinent reasons include (1) a lack of understanding of the
requirements of a project, (2) insufficient time or discipline to plan the
project properly from the first day, and (3) a loss of focus when the project
is under way.

In his book Winning with Software, 6 Watts Humphrey identifies several
causes for software project failure, including unrealistic schedules, inap-
propriate staffing, changing requirements, poor quality work, and believing
in magic. It is interesting to note that in both references cited, technology
issues are not factors and that Humphrey lists management and sociolog-
ical issues as primary causes of dysfunctional projects. Many software
managers focus on the “technology of the software process” and fail to
acknowledge or even recognize the sociological factors that make projects
work.7 These factors include the need to:

1. Adequately project the resources and time required to deliver a
quality product that meets the commitments of the project and the
expectations of the users.

2. Be sensitive and responsive to the needs, frustrations, and concerns
of the staff and foster a project environment based on the project
team.

3. Adequately and effectively plan and provide sufficient time and
resources to accomplish the project and recognize that technology-
based “silver bullets” cannot substitute for adequate planning.

4. Understand that risk is an inherent part of any worthwhile
endeavor; that risk can be identified and managed before the
project is affected; and that addressing risk is a responsible man-
agement function and does not reflect badly on the state of the
project or its potential for success.

5. Deny additional customer requests to prevent disruptions to the
project’s process or unspecified changes to the product.

6. Treat product quality and project commitments as absolute com-
mitments.

7. Collect meaningful, objective status data concerning progress, qual-
ity, productivity, and risk.

8. Define the expectations and true requirements of the user.
9. Address issues that threaten the project with effective and timely

solutions.

“A maxim of project management is that projects don’t fail in imple-
mentation; they fail in the planning stage.”8 If this is true, why then do
competent managers agree to budgets, schedules, and technical commit-
ments that they have no idea how to meet? Why do seasoned, rational
executives pursue irrational solutions to project issues when the engineers

6 � Software Sizing, Estimation, and Risk Management

offer no evidence that the solutions can meet those commitments? As
Humphrey notes, “Where software is concerned, many otherwise hard-
headed executives willingly accept vague promises and incomplete plans.
Management’s undisciplined approach to schedule commitments contrib-
utes to every one of the … most common causes of project failure.”9

Almost all software-intensive projects start with the potential for some
degree of failure. The first risk of any software project is rooted in the
initial estimate used to forecast needed resources. The basic equation
traditionally used to estimate the project effort is:

At the beginning of any project the three variables in the equation are
unknown. A baseline set of validated requirements is lacking so what
needs to be built cannot be accurately defined; the trade-off analyses and
architecture are not complete, so complexity is still unknown; and the
team has not been formed or, if it has, the team members have not yet
gone through the “forming, storming, norming, and performing”10 steps
that are essential for team success. All these unknown factors mean
productivity projections are little better than educated guesses.

The question then arising is where does that leave the project manager?
Is the project doomed to success or failure based on the whims of fate
or the clairvoyance of an estimator? No. Over the years, estimation methods
and tools that significantly lower the initial estimation risks have been
developed. However, failure to realize the potential imprecise natures of
initial estimates and effectively manage and control the risks associated
with them certainly is a major contributor to downstream problems,
including project failure.

Although software development organizations range from the com-
pletely ad hoc to the fully process-driven, most of them use some manner
of software estimates at the beginning of a project. Ad hoc organizations
may use off-the-cuff, back-of-the-napkin methods, while others may pro-
ceed in a very well thought out fashion, defining the risks and uncertainties
up front. Sometimes the customer for a project is an internal organization,
while other projects must be bid and awarded; alternatively they may be
outsourced to organizations that respond to formal requests for proposals
(RFPs). This book addresses projects for both internal and external cus-
tomers. Some of the case studies and examples cited come from the
outside contractor’s world and others are based on in-house projects.

Effort
Size Complexity

Productivity
= ()

The Problem � 7

Why Software Projects Fail: Problems with Estimation
Accurately projecting and tracking software costs is difficult, and cost
overruns often occur. It is very important, therefore, to understand software
estimating processes and methods. According to the Parametric Estimating
Handbook of the International Society of Parametric Analysis (ISPA),11

software estimating problems often occur because of the:

� Inability to accurately size a software project
� Inability to accurately specify an appropriate software development

and support environment
� Improper assessment of staffing levels and skills
� Lack of well-defined requirements for the software activity estimated

Problems resulting from poor software estimation are some of the most
difficult problems a software development team will face. Many people
think that it is impossible to accurately project the time required to develop
or update a product, the size of an application, or productivity, and that
the best that can be done is to establish targets. Some experts feel that
software estimation is not precise enough to ever satisfy business expec-
tations.12 Often, engineers who are not software specialists will prepare
estimates while attempting to satisfy ulterior agendas that are unconcerned
with determining the true cost of development. Estimates are frequently
overly optimistic, attempting to achieve a number that will satisfy a budget
constraint. Sometimes they are unrealistic in an effort to “take the heat
off” a manager who must defend them, or they may be trimmed to provide
stretch goals to help motivate staff. In the words of Capers Jones, “Most
software projects still tend to run late because of arbitrary estimate over-
ruling by customers and senior executives, creeping requirements, and
inadequate early quality control.”13

If used properly, estimates can provide basic constraints that potentially
limit the options available when planning a project. The estimates also
identify the resource limitations that must be considered when scheduling
a project, which in turn may dictate the selection of methods and tools.
Budget and resource constraints affect a project’s schedule, the phasing
of activities, the logical relationships of the work activities, and the
structuring and packaging of the products. In addition, the estimate
determines the options available to increase the quality of the products,
either precluding or enabling the use of practices such as structured
inspections or enhanced testing.

Software estimation methods have been applied with varying degrees
of success, to small and large projects. Table 1.1 summarizes popular
estimation methods.

8 � Software Sizing, Estimation, and Risk Management

Table 1.1 Estimation Methods14

Estimation
Method Objective Advantages Limitations

Analogy Compare project
with past similar
projects

Estimates are
based on actual
experience

Truly similar
projects must exist

Expert
judgment

Consult with one
or more experts

Little or no
historical data is
needed; good for
new or unique
projects

Experts tend to be
biased; knowledge
level is sometimes
questionable; may
not be consistent

Top-down
estimation

A hierarchical
decomposition
of the system
into
progressively
smaller
components is
used to estimate
the size of a
software
component

Provides an
estimate linked
to requirements
and allows
common
libraries to size
lower-level
components

Need valid
requirements;
difficult to track
architecture;
engineering bias
may lead to
underestimation

Bottom-up
estimation

Individuals
assess each
component;
estimates are
summed to
calculate the
total estimate

Accurate
estimates are
possible because
of detailed basis
of estimate
(BOE); promotes
individual
responsibility

Methods are time-
consuming;
detailed data may
not be available,
especially early in a
program;
integration costs
are sometimes
disregarded;
engineering bias
often leads to
underestimation

Design to
cost

Uses expert
judgment to
determine how
much
functionality can
be provided for
given budget

Easy to get under
customer
number

Need reasonable
assessment of cost
of defined
functionality; may
have little
engineering basis

The Problem � 9

Why Software Projects Fail: Size Estimates
As shown earlier, one of the main inputs to software development effort
is software size. If size is estimated correctly, the effort estimate will be
realistic and will translate to a realistic cost estimate. This is illustrated by
the following example.

Before asking, “How many people over what period of time should it
take to move this pile of dirt from my front yard to my back yard?” one
should answer, “How big is the pile?” While other questions may have
related to the capabilities of the people doing the work, the availabilities
of various tools, access to the back yard, and other factors, intuition
suggests that the size of the pile is probably the key element in this
problem.

Relating this physical example to software development, the likely first
question should be, “How much software are we going to develop?”
Unfortunately, we have no pile of software to measure at the beginning of
the project; we have only an idea about what is desired. We therefore need
ways to predict software size given whatever knowledge we have about
that software. Since this evolving knowledge manifests itself in one or
more evolving abstractions, we need to count elements of these abstrac-
tions and somehow relate them to work.15

In the physical world, size is a measure of volume or mass. In the
software world, size is a measure of functionality. Various expressions of
size include measures such as lines of code, number of features, or
functions, function points and their derivatives, SEER function-based sizing,

Table 1.1 (continued) Estimation Methods14

Estimation
Method Objective Advantages Limitations

Parametric
models

Perform overall
estimate using
design
parameters and
mathematical
algorithms

Models are
usually fast and
easy to use, and
useful early in a
program; they
are also objective
and repeatable

Models can be
inaccurate if not
properly applied;
underestimation of
size will
underestimate
scope; excessive
optimism in
parameters may
lead to
underestimation

10 � Software Sizing, Estimation, and Risk Management

use cases, and objects. Additionally, the amount of rework of existing
systems is a key size measure for modifications. Software size is the main
driver of software development effort, cost and schedule via parametric
models, and base productivity measures.16

Sizing measures that enable valid comparisons across (or within)
systems based on the relative sizes of each system are the yardsticks used
to project how big a product will be and the amount of effort necessary to
produce it. It is not easy to project productivity without a consistent and
current sizing measure of the software to be developed. Despite the
importance of these measures, neither a generally accepted unit of measure
nor a common definition of how one should be computed currently exists.

What effect does a lack of standards have on the software sizing and
estimation process? To begin with, definitions for a unit of measure are
inconsistent for numerous size definitions such as function points, feature
points, and lines of code. Individual approaches such as expert opinion,
analogy, parametric modeling, and others can be applied without consis-
tent guidance. Sizing estimates are accepted without consistent guidance
as to what constitutes quality. Without guidance, the acceptance and
management of the sizing metrics are left to each project to determine.
In short, the lack of realistic, accepted software sizing standards precludes,
or at least makes difficult, consistency of the estimation process.

Two software sizing measures are widely used today: source lines of
code (SLOC or LOC) and function points (FP). While both are sizing
measures, they actually measure different things and have very different
characteristics.

In the past, most parametric models determined software costs
based on an estimated number of source lines of code. Many
of these experienced an extremely high error rate (up to 400
percent) associated with estimating software costs using source
lines of code-based parametric software models early in the
lifecycle. The problem lies not with the accuracy of the algo-
rithms in the models, but with the inaccuracy of the size
measurements fed into the models.17

Source lines of code — SLOC is a software metric used to measure
the amount of code in a program. SLOC is typically used to estimate the
amount of effort that will be required to develop a program as well as
to quantify productivity or effort once the software is produced.

One of the problems with using SLOC has been the lack of a standard-
ized definition. Physical SLOC measures (counting physical line endings
like lines on a page) are sensitive to the formatting and style conventions
of the language used to develop the code. Logical SLOC measures the
number of “statements.” Logical SLOC definitions are tied to particular

The Problem � 11

computer languages. Logical SLOC is less sensitive to formatting and style
conventions, but is sensitive to programming language and technology.
SLOC measures are often stated without a definition, which constitutes a
problem because the SLOC represents a count of unknown units. Addi-
tionally, SLOC that are hand-generated should be separately identified
from autogenerated SLOC, and new SLOC must be separated from reused
SLOC. Despite these problems, SLOC counts have been and will continue
to be successfully used by many companies, organizations, and projects
as units of software size.

Function points — Function points measure delivered functionality
in a way that is independent of the technology used to develop the system.
function points compute size by counting functional components (inputs,
outputs, external interfaces, files, and inquiries). As illustrated in Figure
1.1, function points project what will be provided by the system rather
than how big the end product will be. This approach is analogous to
projecting the cost of a car by anticipating what capabilities it will have
rather than by its size. Table 1.2 illustrates some advantages and disadvan-
tages of SLOC counts and function points.

When the size of a proposed software product is projected from
requirements, the project has taken the first essential step toward estimat-
ing the cost and time that will be needed for its development. “The
problem of project management, like that of most management, [is] to
find an acceptable balance among time, cost, and performance.”20 “When
a project moves out of balance a risk results. Often schedule performance
becomes most important due to customer pressures, so cost and product
performance lose emphasis. Often the product takes center stage due to
a customer review so cost and schedule performance focus drifts out of
the shadows. What was once well controlled now becomes less well
managed, resulting in risk.”21 The means by which software projects

Figure 1.1 Function points — a user’s perspective.18

 External input

 External output

External
inquiry

External
interface files

 External input

External output

External
inquiry

Internal
logical

file

Function points are a unit of measure
- Functionality as viewed from the user's perspective.
- A user is one who writes the system requirements, not just a software operator.

12 � Software Sizing, Estimation, and Risk Management

establish such balance is through the size projections used to estimate the
work, develop the schedule, and monitor the changing size projections,
which alter the balance point. If these projections are flawed, either
through poor application of process, incorrect use of historical information,
or management malpractice,22 this essential balance cannot be reached.

Incorrect size projections are often the culprits when bad or unachiev-
able estimates are made. Projecting size, whether you use SLOC, function
points, or another measure, is probably the most difficult step in the
estimation process and, because of this, is often ignored, performed in a
hurry to deal with management pressure, or completed superficially to
ensure the resultant estimate is below a target cost. (It is NOT uncommon
for a developer to use either the schedule or budget and the expected
productivity to compute a size!) There is often insufficient information
available, estimators are often under intense pressure to “get under a
number” and the easiest way is to do this is to manipulate the size

Table 1.2 Advantages and Disadvantages of SLOC and Function
Point Counts19

Advantages Disadvantages

Lines of
Code

Easy to compute No incentive to optimize code

Intuitive Multiple definitions for what
constitutes a line of code;
autogenerated code may artificially
inflate a SLOC count

Granular Varies dramatically based on
technology used

Natural by-product of
process

Difficult to relate to requirements
early in the project

Some languages difficult to count
automatically

Function
Points

Measures system from
user perspective

User perspective must be available
for detailed count

Better defined counting
rules

Not all information available early
in project

Relatively independent
of technology

Not intuitive to managers

Maintains link to
functionality

Counters must be trained

The Problem � 13

projection. However, if you don’t know what you have to develop you
really don’t have a good base from which to predict how big the project
will be or a solid basis to evaluate the estimate once it’s completed.

Why Estimates Fail
Capers Jones’s definition of software estimation,23 “Predicting the future
outcome of a project in terms of various factors, including sizes, schedules,
effort, costs, value, and risk,” highlights the difficulty of the software sizing
and estimation process. Many components are critical to the accuracy and
usefulness of an estimate, but very few are common, accurate, and
available when an estimate is made. The problems associated with gen-
erating consistent, reliable, and repeatable estimates are compounded by
the inconsistency of the process; by differences in what the basic elements
in the estimate are and how they should be represented; and by differences
in the motivations, experience, training, and biases that individual estima-
tors bring to the process.

It is often difficult to achieve acceptance of a realistic estimate by
management and customers. Everyone wants things cheaper, but for any
project there is a real cost that will allow that project to include the
required functionality and produce a quality output. Project managers
have to determine what you can do for a particular price and educate all
stakeholders about what is and what is not possible. This opens up the
greatest threat to realistic sizing projections: management denial.

Software estimation techniques used in various combinations have
varying degrees of success. One study conducted in England of thousands
of software products revealed that 66 percent overran time schedules, 55
percent were over budget, and 58 percent experienced unexpected major
problems. Another study showed that between 30 and 70 percent of
estimates were incorrect.24

Estimates can be set up for failure if a point estimate is used. Estimates
might be treated as a range of possible outcomes by saying, for example,
that a project will take five to seven months instead of stating it will be
complete on June 15. Many experienced estimators express uncertainty
as an accompanying probability value by qualifying the estimate, for
example, as an 80 percent probability that a project will complete on or
before June 15. As Karl Wiegers stated,

Most software professionals must provide estimates for their
work, but few of us are skillful estimators. Many of us haven’t
been trained in estimation techniques. We’re too optimistic, with
short memories that mask the painful overruns from previous

14 � Software Sizing, Estimation, and Risk Management

projects. We don’t incorporate contingency buffers to accom-
modate unexpected events or risks that materialize. And we
often overlook necessary aspects of an activity, so that when
we eventually confront those tasks, we either perform them —
thereby exceeding our estimates — or skip them, perhaps
compromising quality in the process.25

It often is difficult for management to understand or accept these
probabilities in basic estimates, especially if one of the numbers happens
to match management’s preconceived number or the budget of a known
customer or stakeholder. Management will often disregard estimates that
are inconsistent with immediate needs while embracing those that are
immediately useful in gaining the work and initiating the effort.

Due to the number of variables in the estimation process, an estimation
range should be used. This range, which can be designated as optimistic,
most likely, and pessimistic, allows projects to link the initial estimates to
the performance monitoring and risk management processes from the
outset. It provides a prenegotiated set of targets that reflects realistic project
scenarios and it provides management some flexibility should progress
not proceed exactly as planned. Providing and working toward a single
point estimate provides none of these advantages. As shown in Figure
1.2, software estimates are generally inaccurate at inception, although this
inaccuracy can be minimized through the use of reputable sizing and cost
models. Unfortunately, the need for rapid estimates has bred an estimation
process that is prone to error. In addition to the size and other issues
discussed above, several of the major reasons for estimation failure include:

� Lack of or misuse of historical data
� Overoptimistic leadership or management (failure to build the

estimate on a solid foundation)
� Failure to use the estimate
� Failure to keep the estimate current

Historical Data
Many organizations fail to collect and evaluate historical information on
the true cost, schedule, quality, and risk performance of development,
which is often perceived as threatening individual managers rather than
serving as an essential element of an effective process to lower risk. The
use of historical information provides estimators a quantitative way to
establish what has been done in the past so they can project future
performance with some accuracy. It is essential that organizations that

The Problem � 15

want to lower project risk related to cost and schedule projections establish
some fundamental project metrics that can be collected for every project
and used to predict the size of future applications and expected team
performance.

Although not a universal practice, some organizations do keep historical
records of how much projects of various types cost and how long they
took. Fewer organizations, on the other hand, keep useful records of what
went wrong on a project, what productivity impacts were experienced,
what risks were addressed and which risks weren’t, what unanticipated
problems affected the project, and how large the effects were. While cost
and schedule information is useful, it does not explain the reasons for
the reported cost performance and why a project ended up costing so
much or so little; such information is therefore of marginal use when
developing an estimate for a new project. To paraphrase Tim Lister, each
project is unique. Each has its own quirky clients, its own unique staff,
and its own expectations of success. Could it be that adaptation of process
is 90 percent of the problem and the common processes are marginal?27

Productivity and project performance are keyed to the processes applied
to each project, and even in the world of common process each imple-
mentation is unique. While cost and schedule histories are important, these
factors must be tempered with the unique circumstances of each project.

Figure 1.2 Estimate convergence graph.26

16 � Software Sizing, Estimation, and Risk Management

Finally, management must believe the history, even when it provides
an answer they don’t want to hear. Past histories can often provide insights
that conflict with the customer’s views of what it will take to complete the
project, with senior management’s desire to win the work, and with the
user’s desire for something cheap and fast. Unless project management is
willing to dig in their heels, they will quickly slide into a high risk project
that will only succeed if corners are cut and critical processes are ignored.

Overly Optimistic Leadership and Management
In the early stages of a development or maintenance project, everyone is
caught up in the euphoria of a new project and is optimistic that the same
mistakes won’t be repeated, effectively denying that the problems of
previous projects will be repeated. Such denial leads many project stake-
holders to believe that, with a little luck, the customer’s budget requirements
can be met despite evidence to the contrary.

In some cases, a program must be managed at a loss because of its
strategic importance. Details such as size projections that do not fit the
pricing model, productivity estimates that are incompatible with cost and
schedule constraints, and risk scenarios that fail to match the early opti-
mism are rejected as painting a doomsday scenario, leading managers to
agree to impossible commitments in the interest of being team players.
Only when the harsh reality of the project execution becomes evident are
these commitments questioned and the optimism tempered. Only then
are size projections believed, early dissenting views given credence, and
previously ignored risks addressed. Too many times this awareness of
reality is too late, and a project is headed for rough times.

Failure to Use Estimate

As Judy Galorath explains, “Contractors and developers sometimes don’t
do a realistic estimate — they build an estimate to give the results that
match the budget or schedule that has been dictated to them. The models
really aren’t that far off. It is the misuse of the models that creates the
huge variance.”28

The best estimate is only as good as the project leadership’s commit-
ment to manage, control, and track the process, the work, and the quality
of the product and the staff productivity. Even a well-planned software
project will encounter many unexpected events, unanticipated issues
and problems, and planned or unplanned delays that can negatively affect
productivity, divert the project from its planned course, or sink it alto-
gether. Unstable requirements, personnel issues, and changing technology

The Problem � 17

can delay progress and force a project into alternative strategies such as
increased schedule concurrency. Factors beyond anyone’s control can
create insurmountable obstacles for a project and preclude successful
satisfaction of basic commitments. When planning has been rushed or is
less than adequate, the effects of problems are amplified.

To steer a software project successfully to completion, a project man-
ager needs a way to constantly monitor variances from the original project
plan, project the potential impacts, and institute preplanned mitigation
strategies that will minimize the effects. If variances are not addressed in
a timely fashion, a project can quickly spin out of control and lead straight
to disaster. A successful project manager should carefully plan and apply
effective processes, support them as required, and trust them. Effective
processes include measurement, risk management, frequent project reviews,
and independent assessments. Project measurement should be issue-
based,29 focusing on schedule and budget progress, product quality and
performance, compliance to established and agreed to commitments, and
productivity against projections. While the measures are collected at a
specific frequency, it is essential that decisions are based on trend infor-
mation that enables the project manager to track individual data points
against threshold values.

Project managers require a method or process for maintaining schedule,
budget, and productivity performance in the face of uncontrolled external
circumstances to maintain control. The most commonly applied process
for controlling projects is commonly referred to as earned value. Earned
value requires a good baseline estimate. As described by the Software
Project Managers Network:

Earned value project management uses project performance
measurements and charts to plan work, assign a value to
planned work, track progress as work is completed, and predict
the future performance of the project. To guide a project to
completion, the project manager is concerned primarily with
three factors: cost, schedule, and completed work.30

As Hayes and Over explained:

A particular task’s earned value is based on the percentage of
the total planned project effort that the task will take. As tasks
are completed, the task’s planned value becomes earned value
for the project. The project’s earned value then becomes an
indicator of the percentage of completed work. When tracked
week by week, the project’s earned value can be compared to
its planned value to determine status, to estimate rate of
progress, and to project the completion date for the project.31

18 � Software Sizing, Estimation, and Risk Management

Earned value can serve as an important “early warning” that enables
managers to identify and control problems before they become insur-
mountable. This topic is covered in detail in Chapter 9.

Failure to Keep Estimate Current

As illustrated in Figure 1.3, many project factors are critical considerations
for estimating software application development or maintenance. Over
time, the relative importance of these factors changes and their impact
on an estimate may become either more or less critical to the accuracy of
the estimate, depending on the characteristics of the factor and its role in
the estimation process. While some of the factors are sensitive to the
specific time phase of the estimate, others span the entire software project.
In fact, some are not finalized until the project is completed and delivered
to the customer.

Role of Risk Management in Estimating
All software projects, when they are initially conceived, structured, and
planned, include the potential for failure, regardless of the quality of the
requirements, the maturity of the organization, the detail of the plan, or
the repeatability of key processes used. Many projects share an initial
sizing and cost estimate that in actuality is a projection based on incom-
plete information that often has not been validated.

Figure 1.3 Critical considerations for estimating software application develop-
ment.32

The Problem � 19

A project that succeeds often seems to have more than its share of
luck or benefits from a management team experienced at anticipating and
responding to problems as they occur. Such management teams know the
vulnerabilities of the project should growth occur in software size and
they understand the threat to the validity of the software estimates and the
need to reestimate if growth occurs. They put processes in place to monitor
specific conditions and take action sufficiently early to minimize the
impact, or they put measures in place that provide early warning as to
performance problems that could invalidate the software estimate. These
steps constitute risk management, and a culturally integrated risk man-
agement process is what distinguishes a successful project.

In order to adequately address the true nature of the threats affecting
software projects resulting from the initial sizing, resource, and cost
estimates, a robust and consistent risk management process should be in
place from the very beginning of a project. Budhram noted that:

Risk surrounds all aspects of life …. One must therefore confront
it, analyze it, quantify it, and determine whether to avoid it,
pass it on, or minimize it. Use of a risk management model,
including risk identification, quantification, response develop-
ment and response control, is vitally important to a project’s
success.33

Many project managers find themselves unable to adequately identify
and manage risks and take mitigation steps when the results of the
mitigation will have the most effect. Budhram again:

The program managers (PMs) who were unaccustomed to dealing
with risks were unable to effectively quantify and manage them.
They tended to handle risks as ‘new crises’ and consequently
scrambled to look after them. This type of risk management
can be classified as the ‘fire fighter approach.’ Instead of antici-
pating potential risks and preparing contingency plans, the PMs
dealt with the consequences of each problem as they developed.
This reactive form of management — crisis management — can
be both inefficient and ineffective, potentially leading to project
failure. As a result of this crisis management mentality, risks
may not be fully understood within project management.34

Risk resolution cost is usually manageable if the risk is identified early,
the mitigation is planned, and effective action is taken early enough to
minimize or avoid the impacts associated with the risk. The impact of the

20 � Software Sizing, Estimation, and Risk Management

risk increases dramatically as the project progresses. Despite the impor-
tance of the process, most software projects only give lip service to risk
management. The absence of a comprehensive risk management program
is a leading indicator of incipient project failure. Effective risk management
requires acceptance and decriminalization of risk as a major consideration
for software program management; commitment of program resources;
and use of formal methods for identifying, monitoring, and managing risk.
Chapter 10 discusses the risk management process in detail.

Instead of asking why software costs so much, we need to begin asking
what we have done to make it possible for today’s software to cost so
little.35 Several important studies of software development have concluded
that most problems are management problems — not technical problems.
The risks associated with these problems are particularly insidious because
they are difficult to monitor until the problems associated with the risk
become visible. The same individual who caused the risks, often the
manager, is also the one who must identify, monitor, and respond to them.

Because risk management is so important to the health and well-being
of a project, it is difficult to understand why projects do not embrace it
as a core project discipline. The answer lies in the nature of the risk
management process. The process focuses on what can go wrong in a
project instead of highlighting the potential for success. Glass stated:

Our cultures guide us to think only of success, to concentrate
on winning, not losing. The plan-for-success mentality sounds
great, but it makes risk management almost impossible. And
risk management is your most effective tool in a risk-intensive
world. To do real risk management, you have to develop a
deep understanding of the factors that have undone those who
have gone before you, understand how these factors acted, and
what measures proved insufficient to contain them. If such
factors proved fatal to your predecessors, they may prove
equally fatal to you.36

It is often said that failure is not an option, and this is true, as no one
would ever choose to fail. But failure certainly is a possibility and it is
best to be prepared to deal with those factors that could lead to it.

The Solution: Software Estimation — Ten-Step Process
An effective software estimate provides the information needed to design
a workable software development plan. This book provides a ten-step
process to aid in the management of software estimation risk. The ten
steps are covered in Chapters 2 through 4:

The Problem � 21

Chapter 2:

Step One: Establish the software estimate scope and purpose
Step Two: Establish technical baseline, ground rules, and assumptions
Step Three: Collect data

Chapter 3:

Step Four: Software sizing
Step Five: Prepare baseline estimate
Step Six: Quantify risks and risk analysis

Chapter 4:

Step Seven: Review, verify, and validate estimate
Step Eight: Generate a project plan
Step Nine: Document the estimate and lessons learned
Step Ten: Track project throughout development

Summary
This chapter has discussed the major contributors to software development
project and estimation failure. Evidence shows that more projects fail due
to poor planning than technological issues.37 The message of the remainder
of this book is that software development can be successful. This book
will address the processes and critical information that will help make
size and cost estimates more accurate, relevant in relation to the specific
project environment, and consistent in relation to the real experience of
the organization performing the work.

Endnotes
1. Galorath, Dan. Personal experience.
2. Software Program Managers Network. The Program Manager’s Guide to

Software Acquisition Best Practices. Ver. 2.1. Arlington: Computers and
Concepts Associates, April 1998. Preface.

3. Evans, Michael. Personal experience.
4. DeMarco, Tom. Why Does Software Cost So Much? New York: Dorsett House

Publishing, 1995. 144.
5. Evans Michael, Alex Abela, and Tom Beltz. “Seven Characteristics of

Dysfunctional Software Projects.” CrossTalk: The Journal of Defense Soft-
ware Engineering, April 2002.

22 � Software Sizing, Estimation, and Risk Management

6. Humphrey, Watts. Winning with Software: An Executive Strategy. Boston:
Addison-Wesley, 2002.

7. DeMarco, Tom. Why Does Software Cost So Much? New York: Dorsett House
Publishing, 1995. 141.

8. Wells, George. “Why Projects Fail.” Management Science Journal, March
22, 2003.

9. Humphrey, Watts. Winning With Software: An Executive Strategy. Boston:
Addison-Wesley, 2002.

10. Streibel, Barbara, Brian L. Joiner, and Peter R. Scholtes. The Team Hand-
book. 2nd ed. Madison: Joiner/Oriel Inc., 1996.

11. International Society of Parametric Analysts. Parametric Estimating Hand-
book. 3rd ed. Sponsored by the U.S. Department of Defense. Chandler:
ISPA, 2003. Chap 6. <http://www.ispa-cost.org/PEIWeb/newbook.htm>

12. Lewis, J.P. “Large Limits to Software Estimation.” ACM Software Engineering
Notes. 26.4, 2001. 54-59.

13. Jones, Capers. “Software Cost Estimation in 2002.” CrossTalk: The Journal
of Defense Software Engineering, June 2002. 4.

14. International Society of Parametric Analysts. Parametric Estimating Hand-
book. 3rd ed. Sponsored by the U.S. Department of Defense. Chandler:
ISPA, 2003. Chap. 6. <http://www.ispa-cost.org/PEIWeb/newbook.htm>

15. Ross, Michael. “Software Project Management Process Estimation.” El Se-
gundo: Galorath Incorporated, 2004.

16. Galorath, Daniel D. and Daniel V. Ferens. “A Software Model Based on
Architecture,” SCEA National Conference, Scottsdale, 2002.

17. Nelson, Mike, James Clark, and Martha Ann Spurlock. “Curing the Software
Requirements and Cost Estimating Blues: The Fix is Easier Than You Might
Think.” Program Manager Magazine, December 1999.

18. International Function Point Users Group (IFPUG). “Introduction to the
International Function Point Users Group.” IFPUG Introductory Briefing,
1999.

19. Mosaic Inc. “Software Sizing Measures.” Sizing Using Testable Requirements:
Overview of Testable Requirements Concepts. 2001–2004, 9 Sept. 2005.
<http://www.testablerequirements.com/testablerequirements/soft_
size_meas.htm>.

20. Norden, P.V., and B.V. Dean, Eds. Useful Tools For Project Management,
Operations Research in Research and Development. New York: John Wiley &
Sons, 1963.

21. Evans Michael, Alex Abela, and Tom Beltz. “Seven Characteristics of
Dysfunctional Software Projects.” CrossTalk: The Journal of Defense Soft-
ware Engineering, April 2002.

22. Jones, T. Capers. Software Assessments, Benchmarks, and Best Practices.
Boston: Addison Wesley, 2000.

23. Jones, T. Capers. Assessment and Control of Software Risks. Indianapolis:
Yourdon Press Computing Series, Prentice Hall, 1994.

24. Cost As An Independent Variable. Course for Software Acquisition, Naval
Postgraduate School. 9 Sept. 2005. <http://www.nps.navy.mil/wings/
acq_topics/caiv.htm>

The Problem � 23

25. Weigers, Karl E. “Stop Promising Miracles.” Process Impact Publications:
Software Management. 9 Sept. 2005. <http://www.processimpact.com/
articles/delphi.html>

26. Weber, Christopher R. “The Software Estimation Story.” DSW Group:
Resources. 9 Sept. 2005. <http://www.thedswgroup.com/HTML/reference/
SoftwareEst.html>

27. Lister, Tim. “Software Management For Adults,” Software Technology Con-
ference. Salt Lake City, 1996.

28. Galorath, Judy. Personal interview, July 2000.
29. Practical Software and System Measurement (PSM). “Practical Software and

Systems Measurement: A Foundation for Objective Project Management.”
October 2000, Ver. 4.0b. Sponsored by the U.S. Department of Defense
and the U.S. Army. 10 Oct. 2000. <www.psmsc.com>

30. Software Program Managers Network. Practice Area Development: Earned
Value Metrics. Arlington: Computers and Concepts Associates, 1998.

31. Hayes, W. and J. W. Over. The Personal Software Process: An Empirical
Study of the Impact of PSP on Individual Engineers. Pittsburgh: Carnegie
Mellon Software Engineering Institute, 1997.

32. Galorath Incorporated. SEER-SEM v 7.1.30. El Segundo, 2005.
33. Budhram, Stanley C. and J. Edward Kunz. “Risk Management and the Photo-

grammetric Project Manager.” Earth Observation Magazine, December 2000.
Reprinted courtesy of Professional Surveyor Magazine (www.profsurv.com).

34. Budhram, Stanley C. and J. Edward Kunz. “Risk Management and the Photo-
grammetric Project Manager.” Earth Observation Magazine, December 2000.
Reprinted courtesy of Professional Surveyor Magazine (www.profsurv.com).

35. DeMarco, Tom. Why Does Software Cost So Much? New York: Dorsett House
Publishing, 1995.

36. Glass, Robert L. ComputingFailure.com: War Stories from the Electronic
Revolution. Upper Saddle River: Prentice Hall, 2001.

37. United States. Office of the Under Secretary of Defense, Acquisition and
Technology, Defense Science Board. Report of Defense Science Board Task
Force on Defense Software, November 2001.

25

Chapter 2

Introduction to Software
Estimation Techniques
and Estimate Planning

We do not what we ought,

What we ought not, we do,

And lean upon the thought

That Chance will bring us through.

Matthew Arnold

Introduction and Chapter Goals
An effective software estimate provides the information needed to design
a workable software development plan. “Good estimates are key to project
(and product) success. Estimates provide information to make decisions,
define feasible performance, objectives and plans … bad estimates affect
everyone associated with the project …”1 This chapter addresses the need
for project metrics and the fundamental software estimation concepts and
discusses the first three steps in the software estimation process.

26 � Software Sizing, Estimation, and Risk Management

Need for Efficient Software Project
Management Metrics
When some managers insist that “you can’t manage what you can’t
measure,”2 they are focusing on the ideal and ignoring the real. The fact
is we manage things we can’t measure all the time. Pure research, product
design, and manuscript development are managed without metrics or by
using metrics that at best are inadequate and at worst are misleading. In
reality, metrics used to manage intellectual and creative processes often
do not provide the insights managers would like to have. They do not
answer questions such as: How good are the processes we are using?
What quality can we expect? When can we finish this effort? How much
will it cost? As a result, managers tend to measure intellectual processes,
including software engineering, qualitatively rather than quantitatively.

Alternate strategies to quantitatively measure the progress of intellectual
and creative activities do exist, although they are best suited for measuring
specific issues such as defect rates rather than broader issues such as
quality. Indeed, monitoring intellectual activities such as software devel-
opment by using metrics to evaluate broad issues such as project progress
is often counterproductive. However, measuring specific progress against
an identified quantitative constraint to determine the likelihood of meeting
that constraint is a realistic goal. For example, quantitative measures can
be used to monitor specific issues such as defect rates, the sufficiency of
assigned resources, and whether enough money or time is left to complete
the project based on the task completion rate.

Many organizations employ this type of issue-based measurement,
which is a tested and mature process, and resources are available to help
determine effective metrics. For example, Practical Software and Systems
Measurement,3 a guide describing a useful process with supporting mea-
sures, and Sixteen Critical Software Practices, a program manager’s guide,4

provide issue-based metrics linked to specific project practices. The prac-
tical software measurement (PSM) process can be applied to all stages of
a software project: planning, requirements analysis, design, implementa-
tion, and integration of hardware and software. It provides a means to
collect and analyze project data — includes estimates, plans, changes to
plans, and counts of actual activities, products, and expenditures — at a
sufficient level of detail to identify and isolate problems.

These resources provide measurement structures that address the needs
of software managers. They rely on reasonable projections of targets and
they evaluate narrow project factors or attributes against established project
goals and issues. Issue-based measurement helps you make statements
such as, “Based on your current milestone completion rate you will (or
will not) meet the September 7 deadline.” This measurement process

Software Estimation Techniques and Estimate Planning � 27

provides objective and quantitative information required to make informed
decisions that affect project cost, schedule, and technical performance
objectives.

Metrics should be set and decided on as part of a software development
plan before development begins. By measuring specific project factors,
project teams can gain the information needed to monitor key issues
related to progress and quality and performance against the plan. With
current objective information, managers can also answer critical questions
and take corrective actions early enough to avoid or minimize problems
before they get out of hand.

Crucial to the measurement process is the ability to distinguish a metric,
a measure, and an indicator. A metric is a parameter that provides a
quantitative standard of measurement of the degree to which a system,
component, or process possesses a given attribute. Software lines of code
(SLOC) is a metric used throughout this book. A measure is quantitative
evidence of the extent, amount, dimensions, capacity, or size of a specific
attribute (metric) of a product or process. For example, we would show
the measure of software size (software size is the metric) by saying it is
comprised of 150,000 source lines of code (the measure of the metric).
An indicator is a metric or combination of metrics that provides qualitative
information describing the state of a process, a project, or the product
itself, for example, number of defects per SLOC might be an indicator of
project testing or quality. A software project benefits from an effective
measurement process by acquiring the information needed to:

� Enable effective communication — Keeping information current
enables effective communication among stakeholders throughout
all levels of an organization, reduces ambiguity, and enables sup-
plier and acquirer organizations to accurately communicate status.

� Make timely trade-offs — With accurate information, software
managers can objectively assess the effects of their decisions, which
enables them to evaluate viable trade-offs that will better support
project objectives.

� Monitor progress toward meeting specific project objectives —
Quantitative information enables managers to answer questions
such as: Will the project meet its schedule if we continue with the
same productivity? Can we anticipate excessive rework if our
productivity continues at the current level? Will we deliver a
product with too many defects to meet user expectations? The
answers to such questions allow managers to track progress toward
project and organizational objectives.

� Identify and correct problems and address risk early — Mea-
surement provides the information software managers and project

28 � Software Sizing, Estimation, and Risk Management

staff need to effectively identify and manage potential problems
before they become intractable.

� Manage, control, and contain risk — Measurement processes
are integral components of risk management, which is a core best
practice of any software project (see Chapter 10). Many software
project measurements are leading indicators, the analysis of which
enables managers to forecast project conditions. (Trailing indicators,
on the other hand, provide information about past performance.)
By analyzing leading indicators based on quantitative information,
managers can identify risks while it is possible to mitigate them
effectively and will have the information required to analyze a
specific risk’s likelihood of occurrence and likely impact. In addi-
tion, the objective information that results from effective measure-
ment enables managers to consistently monitor potential risks by
setting realistic thresholds against which they can evaluate risks
and monitor project performance against established metrics.

� Defend and justify decisions — By measuring specific project
factors, managers are provided the objective information regarding
performance (i.e., current, historical, and trend) they need to make
effective decisions regarding schedule, cost, product (or code)
growth, quality, developer capability and process maturity, technol-
ogy, and user satisfaction. Such information enables project man-
agement, stakeholders and staff to accurately determine whether
a project is meeting its goals and requirements.

As important as measurement is, it should be noted that not all
indicators of a project’s success are measurable. Many indicators are
subjective or result from qualitative factors. For example, no quantifiable
metric exists to objectively measure morale. Managers can get a feel for
the state of staff morale, but any objective measure would for all practical
purposes be meaningless. The effects of poor morale, however, can
potentially be identified by tracking project performance through earned
value, which measures output against effort. (For a detailed discussion on
earned value see Chapter 9.)

Core Metrics Categories
Ideally, the following attributes of a software project would be measured:

1. Cost
a. Staff effort
b. Phase effort
c. Total effort

Software Estimation Techniques and Estimate Planning � 29

2. Defects
a. Found or corrected
b. Effort required
c. Defect source and class
d. Defect density

3. Process characteristics
a. Development language
b. Process model
c. Technology

4. Project dynamics
a. Changes or growth in requirements or code
b. Schedule and schedule compression5

5. Project progress (earned value; see Chapter 9)
a. Development dates
b. Project size
c. Total effort
d. Budget performance
e. Schedule performance
f. Cost performance index (CPI)6

g. Schedule performance index (SPI)7

h. To-complete performance index (TCPI)8

6. Software structure
a. Size
b. Complexity

Project managers, stakeholders, and staff members can use software
metrics to more accurately estimate progress toward project milestones,
especially when historical (trailing) indicators or trend data are available.
Measurement enables project participants to plot weekly or monthly
changes that can reveal trends, and in turn this information can enable
prediction of problem areas such that action can be taken.

These metrics and others have their basis in the size projections, cost
estimates, and schedules and work plans that are based on them. Size
and cost estimates serve as basis for many project measures. They are the
basic criteria used to evaluate project performance, progress against plans,
product quality based on defect density, and other measures that are
needed to accurately monitor schedule, cost, product (or code) growth,
quality, and other key factors.

Size and cost estimates are not the same as targets, although estimates
may be used as targets. In principle, estimates should be used to assess
the feasibility of targets (i.e., budget or schedule constraints) and to confirm
that the current status of a project indicates that final project targets are
feasible.

30 � Software Sizing, Estimation, and Risk Management

Software Project Estimates: Foundations of Software
Project Management
Many elements are involved in determining the structure of a project,
including requirements, architecture, quality provisions, and staffing mix.
Perhaps the most important element in the success or failure of a project
is the initial estimate of its scope, in terms of both the time and cost that
will be required. The initial estimate drives every aspect of the project,
constrains the actions that can be taken in the development or upgrade
of a product, and limits available options. Although many people think
they can estimate project scope based on their engineering or management
experience, most off-the-cuff estimates are incorrect and are most often
based on simple assumptions and over-optimism, or worse, are made to
accord with what others want to hear. Needless to say, such estimates
often lead to disaster. The variability in these estimates was previously
shown in an estimate convergence graph (Figure 1.2 in Chapter 1).

A software project estimate is the most knowledgeable statement that
can be made at a particular point in time regarding effort, cost, schedule,
and risk. A complete estimate covers definitions, uncertainties, ground
rules, and assumptions. Too often an analyst is requested to prepare an
estimate on short notice and with limited information. Upon investigation
of the estimate requirement, he finds that (1) the proposal schedule
requires that the estimate be available in less than a week, (2) few if any
software requirements documents describe the product, (3) no decisions
have been made regarding architecture, (4) the company maintains inad-
equate documentation of similar jobs, and (5) both management and the
customer have preconceived ideas on what estimate (dollars and/or sched-
ule) is required to win the work. Given these constraints, the analyst still
must quickly build a team to develop the estimate which, at best, can be
considered a rough order of magnitude.

Unfortunately the rough order of magnitude is often the best case
scenario. If so inclined, the analyst will merely make an off-the-cuff
estimate based on the best recollection of the last project in which he
was involved. Nevertheless, the estimate will be highly imprecise, although
more often than not the proposal team will be faced with a projected
cost that is larger than the available customer budget. If the analyst is
thorough, the estimate will include a description of the ground rules used
and assumptions made as well as a range of risk and uncertainty. Without
these details, the proposal team will be working with a number with very
little contextual meaning.

Too often hapless analysts are berated for not understanding what it
takes to win a job, and if they argue that any lower number will result

Software Estimation Techniques and Estimate Planning � 31

in an unacceptable risk that the project will be unable to perform, their
arguments will be considered unrealistic. Faced with discomfiting initial
estimates, management too often hopes for luck, assumes the customer
will be willing to cooperate, and tells the estimating team to sharpen their
pencils and try again.

When the estimate is finally scrubbed to a number management can
live with, it is integrated into an overall project estimate that is then
compared against the known or suspected customer budget. If the aggre-
gate number is too high, the software estimate is cut again. After the
proposal is submitted to the customer, estimates are often cut again to
meet a “competitive range” and finally to present a “best and final offer”
based on a fairy tale, at least as far as the software component of the job
is concerned. Even if winning the job means bidding a number below
what the software development will actually take, managing to a fairy tale
will generally yield disastrous results. After all of these “gyrations,” one
can be left with an estimate that is unrelated to the software development
effort. The moral of the story is to prepare and keep viable project
estimates even if bidding something else.

Now let us investigate how an estimate should be conducted. Recently
we were involved in preparing an estimate for a fixed-price enhancement
project using the SEER-SEM cost model. In addition to providing a product
for the contracting agency, this work had strategic value to the developer
because the resulting product enhancements could be made available to
all users of the product and would open up a new vertical market. Because
it was a fixed-price situation, the developer’s team assumed an 80 percent
probability of achieving the projected cost and prepared a most-likely
schedule. The developer team used its sizing database and the SEER-
AccuScope tool to determine the range of size for the new functionality,
which gave the project leads meaningful insight into what to expect.
Because the existing product infrastructure would need to be changed
and its baseline retested, the developer team recognized the bid would
be higher than expected, so the developer consciously decided to “cost
share,” that is, they agreed among themselves that the developer would
ask the customer to pay for the new custom work and the developer
would absorb the cost of integrating the new work into the existing
product baseline and conducting the necessary tests.

Unfortunately, the customer still had sticker shock, but because of the
work’s strategic value, the developer’s team agreed to take on more of
the risk, reestimating the project using 50 percent as a most likely prob-
ability and presenting the reduction to the customer as an additional
developer cost share. Everyone inside the development organization
understood the additional risk, and management agreed to take it on.

32 � Software Sizing, Estimation, and Risk Management

Because the development team estimated the most likely schedule to be
several months longer than the customer’s requirement, it structured an
incremental delivery plan that provided the most sought-after features first.

The incremental delivery had a negative impact on the overall project
schedule and cost. The point is that by using this rigorous methodology,
uncertainty was defined up front and all parties understood the realm of
possibilities before the project started. Knowledge is power — the project
was completed close to the estimates (before the cuts and cost share
options) and won an award as “Product of the Year.”

Steve McConnell, in “Ten Deadly Sins of Software Estimation,”9 defined
the ten common mistakes people make in estimating the scope of a
software project. In the first scenario described above, the project team
committed almost all the “sins” cited in his article. In the second, the
project team was nearly flawless. The sins are:

1. Confusing estimates with targets — Targets such as trade shows
and sales are set without any analysis. Target setting is a very
important step in software estimation. Best treated as an iterative
process that brings target and estimate into alignment.

2. Saying yes when really meaning no — Vigorous, job-defending
estimation based on insufficient data or quantities. Problems in
schedule negotiation between young, junior, introvert software
engineer and sales person who is more experienced, senior, and
extrovert.

3. Committing too early with lots of uncertainties — Based on
the “cone of uncertainty,” uncertainties decrease as the project
comes near to the end. Early in the software development life cycle,
the tendency is to underestimate.

4. Assuming underestimation has no impact on project result —
Overestimation shows linear impact on project according to Par-
kinson’s law (work expands to fill the time available), whereas
underestimation brings higher, nonlinear impact.

5. Estimating in the “impossible zone” — Estimations are proba-
bility statements, not single points. Schedule compression increases
the total cost or effort for the project. The impossible zone is a
compressed schedule with a zero chance of success.

6. Overestimating savings from new tools or methods — Payoff
is less than expected. Assume the productivity loss from initial use
of new tools or methods, considering learning curve and error
proneness.

7. Using only one estimation technique — Estimate via different
ways and different views. Multiple approaches contribute to

Software Estimation Techniques and Estimate Planning � 33

Brooks’ “vigorous defense” (difficult to defend without supporting
data).

8. Not using estimation software — Use of software can bring
more credibility. The science of estimation is supported by the
tools.

9. Not including risk impact — New technology does not meet
expectations at times. Team members can get sick or have family
emergencies. Government regulations can change. Risk exposure
is where “risk buffer planning” starts.

10. Providing off-the-cuff estimates — Treat estimation as a mini-
project. Simple arithmetic is better than guessing or intuition. Define
a standardized estimation procedure (multiple approaches, descrip-
tion of imprecision, reestimate schedule, point of estimate becoming
commitment). Decompose big estimates into smaller ones (system
modules).

The problems inherent in accurately estimating the resources required
to develop software have been understood and have received significant
attention for the past 20 years, and many tools and methods have been
developed to address them. As a result, many people have high expec-
tations that the software delivery process has been improved such that
these problems have been removed altogether. But the tools are not used
widely enough, and overzealous managers still attempt to misuse them
to justify unreasonable plans that result in insufficient resources to develop
a quality product on time and within budget. As Lorin May stated:

This problem occurs any time someone ‘makes up a number
and won’t listen to anyone about how long other projects took.’
According to DeMarco, projects are often intentionally underbid
‘because of the attitude that putting a development team under
sufficient pressure can get them to deliver almost anything.’

The opposite is what usually happens. For example, if a pro-
gram should realistically take five programmers one year to
complete, but instead you are given four programmers and
eight months, you will have to skimp on design time and on
quality checks to reach project milestones.

‘Cutting a corner that undermines the entire foundation of the
project is not cutting the corner,’ states Robert Gezelter, a
software consultant in Flushing, New York. ‘There will be
heavily disproportionate costs downstream.’ Skimping leads to

34 � Software Sizing, Estimation, and Risk Management

weak designs, dramatically higher defect densities, much more
rework, and virtually endless testing. In the end, the project
will cost more, take longer, and have worse quality than would
have been possible if a realistic schedule and budget had been
followed.10

As this section has demonstrated, a sound and reliable estimate is the
linchpin of a realistic software project plan. The assumptions, requirements,
and projections on which the estimate is based allow you to plan a project
or define a product with a realistic understanding of the limits that constrain
what can actually be done. If the estimate is unrealistically low, the project
will be understaffed from its outset and, worse still, the resulting excessive
overtime or staff burnout will cause attrition and compound the problems
facing the project. If the estimate of the required quality assurance effort
is too low, the project may produce low quality deliverables that necessitate
excessive, unanticipated rework. Poorly developed estimates may result in
schedules that are too short, demoralizing the staff and resulting in loss of
credibility as key milestones are missed. “Not knowing what you don’t
know” causes project staff and management to think they can accomplish
what they can’t.11

Overestimation is not the answer. Simply inflating the estimate to lower
risk without sufficient scope controls leads to other problems, such as
Parkinson’s law (work expands so as to fill the time available for its
completion). Indeed, overestimating a project can have the same effects
as any other inaccurate estimate. The customer will have unrealistic
expectations about project performance and product quality, and the
project will likely cost more than it should, take longer to deliver, and
delay the use of resources on the next project. As we have learned, sound
estimates are based on a viable approach, accurate size projections,
meaningful productivity projections, and requirements that reflect agree-
ments with customers and users.

Software Estimation Concepts
Many project managers and project management offices have unrealistic
expectations about estimates. The definition of the verb estimate is to
produce a statement of the approximate value of some quantity. Estimates
are based upon incomplete, imperfect knowledge and assumptions about
the future. For these reasons, many estimates of software costs tend to
be too low due to omissions of important product functions and project
activities. Most importantly, however, all estimates have uncertainty. There
is no such thing as a precise, single-value estimate. Managers should always

Software Estimation Techniques and Estimate Planning � 35

ask how large the uncertainty of an estimate is! A manager can use the
size of this uncertainty in conjunction with other factors such as perceived
risks, funding constraints, and business objectives to make decisions about
a project.12

How can projects address the uncertainty of poor estimates? How can
the risks associated with initial estimates be identified, managed, and con-
trolled? The answer is straightforward: by defining, establishing, planning,
and applying a consistent, repeatable, and effective estimation process.

A software estimation process that is integrated with the software
development process can help projects establish realistic and credible
plans to implement the project requirements and satisfy commitments. It
also can support other management activities by providing accurate and
timely planning information.

Any software project that wants to be successful requires realistic,
credible plans that describe how the project will meet specified objectives,
and credible plans must be based on accurate estimates of the required
effort, duration, and cost of the project. Realistic plans will also describe
how the resources that are required to undertake the initiative in accor-
dance with the schedule will be secured. The planning process, as critical
as it is, is difficult and takes time to perform correctly.

Managers often truncate the planning process by using “easily avail-
able” information that is often inadequate; by employing whoever has the
time, even if those individuals are not qualified to perform the estimate;
and by using only one estimation method to save time.

Successful software engineering requires the application of engineering
principles guided by informed management. The principles must them-
selves be rooted in sound theory. While it is tempting to search for miracles
and panaceas, it is unlikely that they will appear. The best course of action
is to stick to age-old engineering principles. There simply are no silver
bullets.13

Cost estimates are projections of required effort, time, and staffing
levels. Because all estimates, particularly those made at the beginning of
a project, are based on assumptions, they should be considered probabi-
listic. Cost estimates in particular should provide a range with an indication
of accuracy, i.e., least, probable, and most, with the least and most values
representing the upper and lower bounds of the projected cost.

Project Estimation Process
Ideally an estimate should be produced using the ten-step process described
in Figure 2.1. This chapter focuses on the first three steps. Subsequent
chapters address the remaining steps.

36 � Software Sizing, Estimation, and Risk Management

Step One: Establish Estimate Scope and Purpose

Any project will benefit if the participants establish and understand the
scope and purpose of the project estimates. Ideally, stakeholders will
define what is required and agree to written specifications before an
estimate is completed. However, this is often not the case and estimates
must be performed with incomplete information. By explicitly defining
and documenting expectations, the project will be provided a baseline
against which the effect of future changes on existing plans and estimates
can be assessed. In addition, if expectations are defined beforehand, the
following risks can be exposed and discussed, thus reducing the chance
that they will occur during the course of the project:

Figure 2.1 Ten-step project estimation process.

1. Establish estimate scope

2. Establish technical
 baseline, groundrules
 & assumptions

3. Collect data

4. Size software

5. Prepare baseline
 estimates

6. Quantify risks &
 risk analysis

7. Review, verify,
 validate estimate

8. Generate a
 project plan

9. Document estimate
 & lessons learned

10. Track project
 throughout
 development

Software Estimation Techniques and Estimate Planning � 37

� Misunderstandings about what is expected
� Contradictory assumptions
� Business, technical, or practical details that could prevent risk

exposure

By documenting and agreeing to specifications, the project will gain
valuable input for estimating the resources required to develop an appli-
cation. Specifications usually provide insight into the global (business)
context of a project and provide information regarding what will be needed
to develop, deploy, and certify the product before it is placed into
operational use. Specifications identify how products may be used within
or across discrete business areas and can identify interface or external
dependencies that must be explicitly addressed. Such dependencies could
have a bearing on relative priorities, resource allocation, the sequence of
events, and timing. By exposing them, the project will have a basis for
establishing realistic development or assurance costs and the cost of
transitioning the product into operational configurations.

Any specification, from a statement of intent to a business requirement
specification or project definition, is of benefit to the estimation process.
Of course, the amount and quality of the detail that is provided have a
direct bearing on the quality of the estimates produced and dramatically
affect the ability to identify and control the overall risks to the project.
The more detailed the specification, the better the estimate.

Any information used to produce an estimate should be considered
as dynamic and thus should be subject to change control. Because
subsequent estimates, management monitoring, and progress tracking, as
well as the technical and assurance aspects of the project, are all based
on this information, if it changes, the changes must be documented and
accounted for in the estimates. Otherwise, the integrity of the initial
estimates can quickly erode and a project can rapidly descend into chaos.

Although this book focuses on the estimation of software development
costs, it is important to understand that many other factors influence the
estimate of overall project costs, including the costs associated with
hardware and software purchases or rentals, travel for meeting or testing
purposes, telecommunications (e.g., long distance phone calls, videocon-
ferences, dedicated lines for testing, etc.), training courses, and required
office space, among other expenses.

The estimation process is extremely sensitive to how an organization
allocates or tracks costs. Some costs may be treated by adding an overhead
value to labor rates (dollars per hour) and are not tracked within individual
projects. Many managers estimate only labor costs and identify any addi-
tional project costs as organizational overhead. It is very important that

38 � Software Sizing, Estimation, and Risk Management

cost considerations be understood from the outset of a project because
this information is necessary to produce a complete and accurate estimate.
By understanding what is needed, estimators will be able to determine
whether the required information is available from historical databases
or whether an external resources such as program controls or finance
offices should be involved.

Step Two: Establish Technical Baseline, Ground Rules,
and Assumptions

Establishing a technical baseline — In the most basic terms, a technical
baseline is a complete definition of the functionality that must be estimated.
In order for the estimate to be used properly in the generation of a
software development plan, all functionality included in the estimate must
be clearly defined. To establish an accurate baseline, the estimator must
understand the constraints associated with the application and the project.
Because the cost of building functionality versus buying functionality can
be great, the analyst must understand what must be developed and what
can be met by using commercial off-the-shelf (COTS) software or reusing
existing software. For example, by using a standard graphics library instead
of building all the graphics software, the cost of project software devel-
opment can be significantly reduced. Of course, if such decisions have
not yet been made, the uncertainty can be factored into the estimate range.

Establishing ground rules and assumptions — Ground rules are
concise statements that describe the basis from which the estimate is
made. “This estimate includes functions a, b, and c only; no costs asso-
ciated with travel are included” is an example of a ground rule. Assump-
tions are suppositions that describe unknown variables that will affect an
estimate. “This estimate assumes the software developer will use devel-
opment system X” is an example of an assumption. As an estimate is
refined as more information becomes available, many assumptions will
be confirmed and will thus become ground rules.

Because the initial ground rules and assumptions serve to frame
estimates, particularly at the start of a project, they have a direct bearing
on the validity of the estimates. Although they are preliminary in nature
and therefore encompass a range of uncertainty, they must be credible
and they must be documented and reviewed as the estimate is refined.
Because many factors of a project — including requirements, interfaces,
resources, qualified personnel; factors that influence the complexity of a
project, such as security, safety, and stringent reliability or performance
constraints; and many others — can dramatically affect the estimate,
ground rules and assumptions must be established and documented.

Software Estimation Techniques and Estimate Planning � 39

Step Three: Collect Data

Underlying Information

“You can’t measure pure thought stuff,” sniffed the young programmer,
loosening the laces of his tennis shoes to let more blood flow to his brain.
“Maybe not,” grunted the old timer, “but we used to weigh the box of
punch cards containing the program.” “But the program was the holes,”
the young programmer shot back. “They don’t weigh anything.”14

The validity of an estimate is based on how detailed it is and on the
range of its uncertainty. In order to establish that range, all estimate inputs
should be characterized as least, likely, and most, rather than expressed
as a single point. Even if the scope of the system is not well known,
using ranges for inputs can bound the problem and allow the development
of viable estimates for planning purposes.

In order to ensure consistency in the estimating process, certain core
information is required from the outset. This core information will enable
the analyst to conduct the estimate process in an efficient and effective
manner and thus ensure valid outputs; it will also enable him to validate
the estimates, which in turn will serve to support future estimates and
thus narrow their range of uncertainty. Not all of this information may be
available when an estimate is being planned or during its initial stages,
but it is critical that it be provided as it is needed during the process. It
should also be noted that not all this information will be available from
within the team. Stakeholder organizations, external engineering organi-
zations, and management must provide some of it, and much of it will
result from extrapolations of validated historical information. Table 2.1
indicates categories of information that must be collected and used in the
estimation process.* The column heads cited in the table are defined as
follows:

Attribute ID provides a unique identifier for each attribute. The letter
indicators describe the attribute (G = general descriptor; S = sizing; C =
complexity; P = productivity).

Attribute Description identifies the attribute, including, in some cases,
examples of information elements.

When Required indicates whether the attribute is required at the start
of the estimate or whether it will evolve as the estimate proceeds.

Information Source provides an indication whether the information
can be derived by the responsible organization or whether it must be
solicited from external or stakeholder sources.

* Data collection forms can be obtained from www.galorath.com/estimationbook2006.

40 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
2.

1
Es

ti
m

at
io

n
In

fo
rm

at
io

n

A
tt

ri
b

u
te

W
h

en
 R

eq
u

ir
ed

In
fo

rm
at

io
n

So

u
rc

e
In

fo
rm

at
io

n
 F

o
rm

A
tt

ri
b

u
te

ID
A

tt
ri

b
u

te
 D

es
cr

ip
ti

o
n

In
it

ia
l

Pa
ra

m
et

er
Ev

o
lv

in
g

Pa
ra

m
et

er
Lo

ca
l

Ex
te

rn
al

D
es

cr
ip

ti
ve

Q
u

an
ti

ta
ti

ve
In

d
ic

at
o

r

1G
Pu

rp
o

se
 o

f
es

ti
m

at
e

X

X

X

2G
D

es
cr

ip
ti

o
n

 o
f p

ro
je

ct
 (p

ro
se

p

lu
s

p
la

tf
o

rm
, a

p
p

lic
at

io
n

)
X

X

X

3S
Si

ze
 (

n
ew

, r
eu

se
d

, C
O

TS
)

X
X

X
X

X

4S
,C

Le
ga

cy
 p

er
ce

n
ta

ge
s

(a
s

is

d
efi

n
ed

, a
s

is
 u

n
d

efi
n

ed
, t

o

b
e

d
efi

n
ed

, t
o

 b
e

u
n

d
efi

n
ed

)

X

X
X

X

5S
,C

C
O

TS
 a

n
d

 re
u

se
 p

er
ce

n
ta

ge
s

(r
ed

es
ig

n
 p

er
ce

n
ta

ge
,

re
im

p
le

m
en

ta
ti

o
n

p

er
ce

n
ta

ge
, r

et
es

t
p

er
ce

n
ta

ge
)

X

X
X

X
X

6S
R

eq
u

ir
em

en
ts

 (
p

ro
je

ct
ed

fu

n
ct

io
n

al
, i

n
te

rf
ac

e,

in
te

ro
p

er
ab

ili
ty

, u
n

iq
u

e
p

ro
d

u
ct

 r
eq

u
ir

em
en

t,
p

ro
je

ct
ed

 v
o

la
ti

lit
y)

 X
X

X
X

X
X

Software Estimation Techniques and Estimate Planning � 41
7C

Sp
ec

ia
liz

ed
 p

ro
je

ct

re
q

u
ir

em
en

ts
 (

sa
fe

ty
,

se
cu

ri
ty

, p
ri

va
cy

…
)

X
X

X
X

X

8C
U

n
iq

u
e

o
p

er
at

io
n

al

re
q

u
ir

em
en

ts
 (

re
lia

b
ili

ty
,

p
er

fo
rm

an
ce

,
m

ai
n

ta
in

ab
ili

ty
…

)

X

X
X

X
X

9C
Pr

o
je

ct
ed

 c
er

ti
fi

ca
ti

o
n

re

q
u

ir
em

en
ts

 (
se

cu
ri

ty
,

sa
fe

ty
, i

n
te

ro
p

er
ab

ili
ty

,
le

gi
sl

at
iv

e…
)

X
X

X
X

10
P

Te
am

 c
o

m
p

o
si

ti
o

n

(e
st

ab
lis

h
ed

-t
ra

in
ed

,
es

ta
b

lis
h

ed
-u

n
tr

ai
n

ed
,

n
ew

ly
 fo

rm
ed

-t
ra

in
ed

, n
ew

ly

fo
rm

ed
-u

n
tr

ai
n

ed
,

u
n

kn
o

w
n

)

X

X
X

X
X

11
C

,P
G

eo
gr

ap
h

ic
al

 t
ea

m

d
is

tr
ib

u
ti

o
n

X

X
X

X
X

12
C

,P
O

rg
an

iz
at

io
n

al
 t

ea
m

d

is
tr

ib
u

ti
o

n

X
X

X
X

X

42 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
2.

1
(c

on
ti

nu
ed

)
Es

ti
m

at
io

n
In

fo
rm

at
io

n

A
tt

ri
b

u
te

W
h

en
 R

eq
u

ir
ed

In
fo

rm
at

io
n

So

u
rc

e
In

fo
rm

at
io

n
 F

o
rm

A
tt

ri
b

u
te

ID
A

tt
ri

b
u

te
 D

es
cr

ip
ti

o
n

In
it

ia
l

Pa
ra

m
et

er
Ev

o
lv

in
g

Pa
ra

m
et

er
Lo

ca
l

Ex
te

rn
al

D
es

cr
ip

ti
ve

Q
u

an
ti

ta
ti

ve
In

d
ic

at
o

r

13
P

Te
am

 e
xp

er
ti

se
 (

le
ve

l
o

f
ca

p
ab

ili
ty

 o
f

an
al

ys
ts

w

o
rk

in
g

o
n

 s
o

ft
w

ar
e

p
ro

d
u

ct
, l

ev
el

 o
f

ap
p

lic
at

io
n

s
ex

p
er

ie
n

ce
 o

f
p

ro
je

ct
 t

ea
m

 d
ev

el
o

p
in

g
so

ft
w

ar
e

p
ro

d
u

ct
, l

ev
el

 o
f

ca
p

ab
ili

ty
 o

f
p

ro
gr

am
m

er
s

w
o

rk
in

g
o

n
 s

o
ft

w
ar

e
p

ro
d

u
ct

, l
ev

el
 o

f h
o

st
, t

ar
ge

t
m

ac
h

in
e

ex
p

er
ie

n
ce

 o
f

p
ro

je
ct

 t
ea

m
 d

ev
el

o
p

in
g

p
ro

d
u

ct
, l

ev
el

 o
f

p
ro

gr
am

m
in

g
la

n
gu

ag
e

ex
p

er
ie

n
ce

 o
f

p
ro

je
ct

 t
ea

m

d
ev

el
o

p
in

g
p

ro
d

u
ct

, p
ro

ce
ss

ex

p
er

ie
n

ce
)

X

X
X

X
X

14
G

Sc
o

p
e

o
f

es
ti

m
at

e
(r

an
ge

)
X

X

X

Software Estimation Techniques and Estimate Planning � 43
15

C
Pr

o
d

u
ct

 a
tt

ri
b

u
te

s
(n

u
m

b
er

an

d
 r

el
at

iv
e

fr
eq

u
en

cy
 o

f
d

at
a

in
te

ra
ct

io
n

s
re

q
u

ir
ed

,
sp

ec
ia

l
d

is
p

la
y

re
q

u
ir

em
en

ts
, s

ec
u

ri
ty

re

q
u

ir
em

en
ts

, r
es

p
o

n
se

ti

m
e

co
n

st
ra

in
ts

)

X

X
X

X
X

16
C

So
ft

w
ar

e
p

ro
d

u
ct

co

m
p

le
xi

ty
 (

le
ve

l
o

f
co

m
p

le
xi

ty
 o

f
p

ro
d

u
ct

 t
o

 b
e

d
ev

el
o

p
ed

)

X

X
X

X
X

X

17
C

C
o

m
p

u
te

r
at

tr
ib

u
te

s
(e

xe
cu

ti
o

n
 t

im
e

co
n

st
ra

in
t,

d
eg

re
e

o
f

ex
ec

u
ti

o
n

co

n
st

ra
in

t
im

p
o

se
d

 u
p

o
n

so

ft
w

ar
e

p
ro

d
u

ct
; m

ai
n

st

o
ra

ge
 c

o
n

st
ra

in
t,

d
eg

re
e

o
f

m
ai

n
 s

to
ra

ge
 c

o
n

st
ra

in
t

im
p

o
se

d
 u

p
o

n
 s

o
ft

w
ar

e
p

ro
d

u
ct

; h
o

st
 a

n
d

 t
ar

ge
t

vo
la

ti
lit

y;
 t

u
rn

ar
o

u
n

d
 t

im
e,

le

ve
l

o
f

co
m

p
u

te
r

re
sp

o
n

se

ti
m

e
ex

p
er

ie
n

ce
d

 b
y

p
ro

je
ct

te

am
 d

ev
el

o
p

in
g

p
ro

d
u

ct
)

X

X
X

X
X

X

44 � Software Sizing, Estimation, and Risk Management
Ta

bl
e

2.
1

(c
on

ti
nu

ed
)

Es
ti

m
at

io
n

In
fo

rm
at

io
n

A
tt

ri
b

u
te

W
h

en
 R

eq
u

ir
ed

In
fo

rm
at

io
n

So

u
rc

e
In

fo
rm

at
io

n
 F

o
rm

A
tt

ri
b

u
te

ID
A

tt
ri

b
u

te
 D

es
cr

ip
ti

o
n

In
it

ia
l

Pa
ra

m
et

er
Ev

o
lv

in
g

Pa
ra

m
et

er
Lo

ca
l

Ex
te

rn
al

D
es

cr
ip

ti
ve

Q
u

an
ti

ta
ti

ve
In

d
ic

at
o

r

18
C

Pr
o

je
ct

 a
tt

ri
b

u
te

s
(u

se
 o

f
m

o
d

er
n

 p
ro

gr
am

m
in

g
p

ra
ct

ic
es

 [
M

PP
s]

, d
eg

re
e

to

w
h

ic
h

 M
PP

s
ar

e
u

se
d

 i
n

d

ev
el

o
p

in
g

so
ft

w
ar

e
p

ro
-

d
u

ct
; u

se
 o

f
so

ft
w

ar
e

to
o

ls
,

d
eg

re
e

to
 w

h
ic

h
 s

o
ft

w
ar

e
to

o
ls

 a
re

 u
se

d
 in

 d
ev

el
o

p
in

g
so

ft
w

ar
e

p
ro

d
u

ct
; s

ch
ed

u
le

co

n
st

ra
in

t,
le

ve
l o

f s
ch

ed
u

le

co
n

st
ra

in
t

im
p

o
se

d
 u

p
o

n

p
ro

je
ct

 t
ea

m
 d

ev
el

o
p

in
g

so
ft

w
ar

e
p

ro
d

u
ct

)

X

X
X

X
X

X

19
G

Pr
o

je
ct

ed
 te

ch
n

o
lo

gi
es

 to
 b

e
u

se
d

 (p
ro

ve
n

, n
ew

, u
n

kn
o

w
n

)

X
X

X
X

20
P

D
ev

el
o

p
er

 i
n

fo
rm

at
io

n

(d
o

m
ai

n
 e

xp
er

ti
se

, p
ro

ce
ss

ex

p
er

ti
se

, t
o

o
l

ex
p

er
ti

se
,

av
ai

la
b

le
 s

ta
ff

 r
es

o
u

rc
es

,
m

at
u

ri
ty

 l
ev

el
, h

is
to

ri
ca

l
p

er
fo

rm
an

ce
)

X

X
X

X
X

X

Software Estimation Techniques and Estimate Planning � 45

Information Form indicates the predominant form of the information
(Descriptive = primarily textual describing an element; Quantitative = an
individual value or series of values providing quantitative information to
be used in the development, validation, or update of an estimate;
Indicator = an indication of the existence of a condition or factor, the
occurrence of an event, or the presence of an essential or undesired factor).

Interview with Judy Galorath
In the following interview, Judy Galorath, a principal analyst at Galorath,
Incorporated, describes how this information is gathered and evaluated.
She outlines the key considerations she is concerned about when prepar-
ing for and conducting an assessment. While her answers to the interview
questions focus on the use of the SEER-SEM cost model, the information
she provides can also support the application of manual procedures and
other models.

Q: Is the software architecture sufficiently well defined to sup-
port a valid estimate?

A: Even though SEER-SEM provides the ability to estimate the software
as one WBS item with a parameter to tell it how many separate
computer programs are included in the size, it is much better to
have the software broken down by major computer program. When
this information has not been provided to us, it is one of the first
things that I do. This accomplishes two things: (1) it provides a
more detailed and accurate estimate and (2) it gives a clear defi-
nition of the functionality that we have included in the estimate
(in briefings to the customer it is easy to verify whether we have
included or excluded all the expected functionality).

Q: Do you understand the purpose of the estimate?
A: I like to know why they want an estimate done. If I know why

they want an estimate (i.e., for a new project plan, remediation
with a struggling subcontractor, impacts of trying new technology),
then I know more specifically the type of information to look for.

Q: Do you customize a questionnaire for the assessment?
A: Usually, I start with the SEER-SEM data collection form, and then

I customize it for the job. The simplest form is to delete all the
parameters that have nothing to do with the current estimate and
the parameters associated with the information that can be obtained
from the provided documentation. The fewer questions you need
to ask the customer, the better response and cooperation you get.

46 � Software Sizing, Estimation, and Risk Management

Q: Is this a cost-to-complete, earned-value, or estimate-to-com-
plete assessment?

A: SEER-SEM and SEER-PPMC provide the capabilities necessary to
estimate and/or track the different scenarios. The key is collecting
the data from the contractor necessary to figure out what portion of
each software development activity has been completed and then
input that into SEER-SEM.

Q: Do you understand the ground rules and assumptions and
is it the same list that the client understands?

A: From the very first day I keep a constant list of all the assumptions
and ground rules that impact the estimate. I don’t want the person
who looks at the estimate to think that the costs associated with
requirements are excluded when they are actually included and
vice versa.

Q: Besides the data that you normally collect as input to the
SEER-SEM model, do you conduct basic data collection to
find out what else is important to the customer?

A: In addition to collecting the data necessary for input into SEER-
SEM, I also try to collect “non-input” data that may have an impact
on the development in some way, such as contract award delays,
availability of software packages, personnel availability and other
staffing challenges, hardware availability and dependencies.

Q: Do you understand or try to identify, document, and analyze
risks as you are conducting an assessment?

A: During data collection I also try to collect risk-related information.
There are several choices for risk evaluation. One is SEER-SEM’s
probability inputs, but some customers like to see the risk items
identified and quantified. This requires a little more work (and
according to an independent study I did several years ago, no
more accuracy), but it gives a nice detailed report to the people
using the information and allows them to make decisions to
mitigate the risk factors. I also ask each person from whom I collect
data to identify his or her five top risk items.15

Table 2.2 illustrates representative data requirements for the estimate and
potential sources where they may be found. If this information is unavail-
able, the estimate is potentially limited to estimating based on industry or
customer sources not specifically tied to the project.

Software Estimation Techniques and Estimate Planning � 47

Table 2.2 Potential Data Sources

Data Needed for
Software Estimate

Potential Data Sources

Developer/
Potential

Developer
Acquisition Office
(Program Office) Estimation Team

Software size
range (functions,
lines, objects)

Best source
(closest to
requirements
definition)

Excellent
source; can use
program
documents to
prepare
estimates;
provides
independent
evaluation

Amount of new,
reused, and
COTS software;
work required to
reuse existing
software

Best source (if
they are using
their own
existing
software)

May have control
over this
information if it
dictates software
that must be
reused

Best source if
existing
software will be
provided to
contractor

Software
development
environment:
processes,
methods, tools,
practices

Best source
because they
will actually
do the
development

Source selection
requirements

Can provide
industry
standards;
extract
historical data
from
contractor; or
combination

Capability of
development
team

Best source
if the develop-
ment team has
been selected;
knows
capabilities
that are
necessary
for team

May be dictated by
constraints put on
program (e.g.,
cost, schedule,
CMMI required
minimum rating)

Can provide
industry
standards;
extract
historical data
from
contractor; or
combination

Difficulty of
application

Gets
information
from the
requirements
specifications

Provided in
requirements
specifications

Gets
information
from
requirements
specifications

48 � Software Sizing, Estimation, and Risk Management

Software Data Collection Process
Figure 2.2 illustrates a general process for collecting software data. It
assumes sufficient personnel are available to participate in the required
interviews and to clarify the data. The text that follows describes what
each activity entails.

Table 2.2 (continued) Potential Data Sources

Data Needed for
Software Estimate

Potential Data Sources

Developer/
Potential

Developer
Acquisition Office
(Program Office) Estimation Team

Amount and
type of
documentation
required

Gets
information
from program
office

Dictates required
specifications

Gets informa-
tion from
contracting/
program office

Project staffing
constraints

Best source
for providing
actual
personnel
available to
work on
project

Best source for
estimating
required
personnel to
meet cost and
schedule
constraints

Cost and
schedule
constraints

Budget and
schedule are
given by
program
office;
contractor can
show expected
deviations, if
any

Dictates budget
and desired
and/or required
schedule

Can provide
alternative
development
scenarios if
desired end
product cannot
be completed
within given
constraints

Level of
acceptable risk

Can identify
factors at risk
and show
various alter-
natives for
reducing risk

Can decide
acceptable risk for
cost and schedule

Can identify
factors at risk
and show
various
alternatives for
reducing risk

Software Estimation Techniques and Estimate Planning � 49

1. Get buy-in from potential data provider — Inform the organi-
zation that will provide the information of your needs and persuade
them of the value it will bring to the process.

2. Obtain necessary nondisclosures — Some organizations may
ask for nondisclosure agreements in order to share their data. If
possible, the data can be made generic, precluding the need for
an agreement. If one is required, start the process early and follow
up regularly to ensure you will have access to the data you need.

3. Send forms and instructions — When soliciting data, provide
the forms as early as possible in both hard copy and electronically
to facilitate data collection. Follow up with the recipient to encour-
age a timely response, realizing that no action will probably be

Figure 2.2 Software data collection process.

2. Obtain nondisclosures
 if necessary

1. Get buy-in from
 potential data provider

3. Send forms and
 instructions

4. Have developers fill in
 draft forms

5. Have face-to-face
 interview with
 developer and draft
 forms

6. Publish final data form
 with corrections from
 interview

7. Apply normalization
 process and run data
 quality metrics on
 these data points

8. Enter data into
 the software database

50 � Software Sizing, Estimation, and Risk Management

taken until the interviewer arrives. If you are having trouble obtain-
ing data, filling in the information, then asking the interviewee to
correct anything he or she disagrees with can be an effective
technique.

4. Have developers complete draft forms — Ensure data providers
review the instructions and provide draft information.

5. Interview developer in person to review draft forms —
Review the completed draft forms with the developer to ensure
the data is reasonable and consistent with the project description.
The interviewer should be knowledgeable in order to ask pertinent
questions and able to determine that the data is realistic and valid
insofar as possible. If interviewer is not available, a knowledgeable
person should review the forms before the data is entered into the
database.

6. Publish final data with corrections obtained via interview —
If corrections or updates to the draft forms are necessary, ensure
the final forms reflect them and are segregated from the draft forms
to populate the database.

7. Normalize and run data quality metrics on these data points —
You should have a process in place to resolve issues as they arise,
e.g., what labor categories, activities, etc. should be included or
excluded? Determine the realism of data points against a set of
established metrics. For example, a data point indicating that
100,000 lines of code was developed in one month is not reason-
able. Rate the quality of the data to guide your analysts. Identify
raw and normalized data and enter both sets into the database.

8. Enter data into the software database — If possible, establish
a true database in which your data can be stored and analyzed
(rather than an ad hoc Excel spreadsheet). This will help to ensure
the data is consistent and facilitate configuration management.

Software Data Collection Lessons Learned
Collecting software data can be frustrating for many reasons and may
even cause unforeseen problems. Sometimes the data simply does not
exist. Those who have the data may not want to provide it for fear of
exposing a problem, while others may consider data to be proprietary
and will refuse to share it. Through years of experience, we have learned
many lessons about how best to collect the data needed. First and
foremost, the forms you use to collect the data should be tailored to your
organization’s specific needs. A sample data collection form can be
obtained electronically from www.galorath.com/estimationbook2006.

Software Estimation Techniques and Estimate Planning � 51

Clearly define the data you are soliciting — Even if you do
provide clear definitions, your respondent may ignore them, but
providing clear and detailed definitions will increase your chances
of obtaining the data you need.
Send respondents the forms in advance of making a personal
visit to interview them — This gives respondents an advanced
opportunity to familiarize themselves with the format and scope
of the data collection process.
People will not always read the instructions — Even if you
provide clear instructions and definitions in the software data
collection package, many respondents may ignore them and provide
answers with little thought. Some respondents may misrepresent
the data intentionally to make themselves look better or complete
one form in response to a program and use it inappropriately to
respond to other programs.
Respondents may cite proprietary restrictions as excuses for
not providing required data — To attempt to overcome this
obstacle, ensure the respondent that the data will be made generic
so that the program and organization cannot be identified.
Prime contractors will not want to provide subcontractor
data — To address this difficult issue, contact subcontractors
directly if possible and get their commitments.
Developers can have valid concerns regarding data distribu-
tion — Some developers do not want to enable their competitors
to determine their productivity and other factors or enable their
customers to use certain information in negotiations. Although
sanitizing the data can help, you must assure your respondents
that you are collecting data to improve the process and your ability
to fund programs, not to increase their exposure.
Program offices often do not have required data — Developers
are the most probable sources, but be sure the program office
understands that the data being collected will improve everyone’s
ability to estimate and substantiate the project.
Developers may use the cost of data collection as an excuse to
not cooperate — If a developer complains of the costs or claims it
was not paid to provide data, determine its claimed CMM or CMMI
rating. If the developer is assessed at a level 3 or above, it should
be collecting data for its own use. Although the developer will likely
still resist, ask for the data in the developer’s format and offer to
complete the form. Some will not have data even though they should.
Use a known good code counter for collecting size of com-
pleted software — Although code counters are available on the
Web, many have significant defects. Recommend one or two that

52 � Software Sizing, Estimation, and Risk Management

are known to work, such as the no-cost code counters available
from Galorath.com and USC (University of Southern California).
The Galorath version is available in source code so it can be
compiled on whatever platform is necessary (see Chapter 5 for a
more detailed discussion).
Both hard copy and electronic collection forms can be
useful — Some organizations prefer hard copy because it facilitates
their ability to collect the data, while others prefer electronic to
reduce paper use and facilitate editing. In any case, have hard
copies available for the interviews.
Be sure to discriminate autogenerated code from hand-
generated code — Because autogenerated code does not have
the same correlation to effort as hand-generated code, make sure
you know what data you are getting.
Do not let a data collection contractor lock up your
database — Sometimes a contractor will execute an exclusive
nondisclosure agreement with the development contractors that
keeps other contractors from seeing the data at all. This situation
limits the usefulness of the data.
Collect completed project actuals first — Collect information
from completed projects rather than estimates from underway
projects. Estimate data is good to have to determine growth and
other information, but collect actual data first, if available, for use
in forecasting new projects.
Qualify the data quality — Despite your best effort, some data
you collect will not make sense. You can eliminate this data, which
is not recommended because the data will be lost, or you can
mark it with a qualifier. For example, rate it A through F to indicate
to your analyst the level of associated risk.
Capture both total size and amount of reuse — Because reuse
is an essential part of software size, it is necessary to collect new,
reuse, and redesign reimplementation and retest for the reuse from
the developers. Total size does not necessarily correlate with effort
because it does not indicate the amount of reuse. Simply collecting
effective size does not fully indicate size estimation of the delivered
systems (the amount of new versus reuse is unknown). You can
compute the effective size and add it to the database, but always
collect the individual numbers for the reasons indicated.
Make it easy (but not too easy) for the developer to provide
the data — You can categorize the data you request as required,
highly desirable, or desirable. Do not ask for so little data that the
resulting database is not useful. Make sure the data collection form
used is clear and simple.

Software Estimation Techniques and Estimate Planning � 53

Do not rely only on past program productivity — The pro-
ductivity of a completed program should not be used as the basis
for a new program because it will not account for the idiosyncrasies
of the new program, such as security, rehosting, complexity,
entropy, etc. Use productivity to check parametrics and vice versa.
Do not eliminate data points just because of the program-
ming language — Because size can be converted from one
language to another, do not eliminate data points that are not in
your language of interest.
Ensure that COTS items really are COTS — Developers will
sometimes include items in their sizes that were not developed
(COTS or other high quality reusable software application) by this
application to make their projects look bigger. Separate such items
in the database so project size is not inflated or misstated.
Nondisclosure agreements — It is much easier to have non-
disclosure agreements approved when companies use their own
internal templates.16

No-destruction clauses — When NDAs are provided, the data
collector must make sure that there are no clauses that require the
destruction of the data after a certain period of time or intellectual
property clauses that may jeopardize the status of the model being
used.17

Implement a process to normalize the data and store it in
both raw and normalized forms — Collected data will likely
describe varying phases, labor categories, size definitions, etc. Keep
this raw data in the database. You should implement and rigorously
follow a standard, well documented process to normalize the data
to a standard set of activities, phases, etc.
Have a structure for data storage — Although you can use an
Excel spreadsheet to capture data, it will become unwieldy as the
database grows and your data entry personnel can easily enter
data in the wrong format. Develop an open database as soon as
practical.
Offer your respondents something in return as an incentive
if possible for cases where a data product is being developed —
You could offer them a sanitized copy of the database (if you can
obtain buy-in across the domain), or at least offer a benchmark
that shows how their data fits with the rest of the database.

During the collection process, project management should:

� Identify the activities necessary to accomplish the project’s
purpose.

� Determine dependencies among activities.

54 � Software Sizing, Estimation, and Risk Management

� Define a schedule for conducting the required activities.
� Define and locate the resources needed to accomplish the

activities and determine how much they will cost (by resource
or category).

� Monitor and control the resources in order to achieve the
required result on schedule.

Prioritizing Estimation Effort
If you lack the time to complete all the activities described in the ten-
step process, use the following list to help prioritize the estimation effort:

� Spend the bulk of the time available on sizing (sizing databases
and tools like SEER-AccuScope can help save time in this process).

� Using an automated software cost and schedule tool like SEER-
SEM can provide the analyst with time-saving tools (SEER-SEM
knowledge bases save time in the data collection process).

� Use ranges (least, likely, and most) for the inputs.
� Outputs and results should be presented as most likely and as

risks to bound the uncertainties associated with the estimated.

Summary
This chapter provided an overview of the ten-step project estimation
process. It focused on the first three steps of the process and provided a
set of lessons learned that can aid in the data collection process. The
succeeding chapters address the remaining seven steps in the process and
venture into other important areas of software cost, size, schedule, and risk.

Endnotes
1. Stutzke, Richard D. Estimating Software-Intensive Systems. Upper Saddle

River: Pearson Education Inc., 2005.
2. DeMarco, Tom. Controlling Software Projects: Management, Measurement,

and Estimation. Englewood Cliffs: Yourdon Press, 1998.
3. Florac, William A., Robert Park, and Anita D. Carleton. Practical Software

Measurement: Measuring for Process Management and Improvement. Pitts-
burgh: Carnegie Mellon Software Engineering Institute, 1997.

4. Software Program Managers Network. Sixteen Critical Software Practices:
Program Manager’s Guide Based on the 16-Point Plan and Related Metrics.
Ver. 1.0. Chesapeake: American Systems Corporation, 2002.

Software Estimation Techniques and Estimate Planning � 55

5. Schedule compression involves a reduction in the overall duration of
project, without reducing the project scope.

6. CPI represents how much work was performed for each dollar spent, or
“bang for the buck.” When CPI has a value of 1.0, the project team is
delivering a dollar of planned work for each dollar of cost. When CPI is
less than 1.0, there is a possible productivity problem. For example, a CPI
of .80 means that you received 80 cents’ worth of planned work for each
dollar you paid in cost. A CPI of less than 1.0 may indicate that the project
team did not perform as well as expected or that the original budget was
too aggressive for the amount of work to be performed.

7. SPI indicates performance as compared to the schedule. The CPI and SPI
indices represent the standard cost and schedule performance measures
for both government and industry. The closer the CPI and SPI are to a
value of 1.00, the more successful a project can be considered, at least in
terms of cost and schedule. These metrics help establish per formance
baselines against which a project can compare actual performance data.

8. TCPI must be used in conjunction with CPI. TCPI should be compared
with CPI to determine how realistic the most recent estimated total cost
(EAC) is for a project. Note that CPI measures the average historic pro-
ductivity to date. If TCPI is greater than CPI or, stated differently, if the
ratio of the two measures is less than 1, then the project team is anticipating
an efficiency improvement to make it more productive.

9. McConnell, Steve. Adapted with permission from “Ten Deadly Sins of
Software Estimation.” in the Software Developers Conference. Wellington
and Melbourne, 2002; and Steve MConnell, Software Estimation: Demysti-
fying the Black Art. Redmond, WA: Microsoft Press, 2006.

10. May, Lorin J. “Major Causes of Software Project Failures.” Crosstalk: The
Journal of Defense Software Engineering, July 1998.

11. Evans Michael, Alex Abela, and Tom Beltz. “Seven Characteristics of
Dysfunctional Software Projects.” CrossTalk: The Journal of Defense Soft-
ware Engineering, April 2002.

12. Stutzke, Richard D. “How To Prepare Good Software Estimates.” Software
Technology Conference, Salt Lake City, 2000.

13. Ghezzi, C., M. Jazayeri, and D. Mandrioli. Fundamentals of Software
Engineering. Englewood Cliffs: Prentice Hall, 1991.

14. Putnam, Lawrence H., and Ware Meyers. Industrial Strength Software,
Effective Management Using Measurement. Washington, D.C.: IEEE Com-
puter Press, 1997. 55.

15. Galorath, Judy. Personal interview, July 2005.
16. Valerdi, R. “Lessons Learned From Collecting Systems Engineering Data.”

Second Annual Conference on Systems Engineering Research. Hoboken,
2004.

17. Valerdi, R. “Lessons Learned From Collecting Systems Engineering Data.”
Second Annual Conference on Systems Engineering Research. Hoboken.
2004.

57

Chapter 3

Executing the Estimate

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Introduction and Chapter Goal
The goal of this chapter is to discuss the work required to actually generate
an estimate. The steps involved include sizing the software, generating the
actual software project estimate, and performing risk/uncertainty analysis.

Step Four: Software Sizing
“One of the most important steps in any software estimate is to predict
the size of the deliverables that must be constructed.”1 In order for size
estimates to be accurate, the analyst must possess a significant under-
standing of the project and the application or at least its relative size. Size
is generally the most significant cost and schedule driver. However, it is
important to understand that many other factors in addition to size form
the basis of accurate software estimates. These include project labor rates,
requirements, the required schedule, customer expectations, and costs
associated with nonlabor activities among many others.

Overall scope of a software project is defined by identifying not only
the amount of new software that must be developed, but also must include

58 � Software Sizing, Estimation, and Risk Management

the amount of preexisting, COTS, and other software that will be integrated
into the new system. In addition to estimating product size, you will need
to estimate any rework that will be required to develop the product, which
will generally be expressed as source lines of code (SLOC) or function
points (FPs), although there are other possible units of measure. The size
estimate should be expressed as a range, least size (smallest it could be),
likely (size it is expected to be), and most (largest it could be). These
ranges will help to establish the overall uncertainty. At this point in the
process, you should have enough information to confirm your assumptions
regarding the reuse of software, the benefits to be gained by using COTS,
and enough information to bound the uncertainty of your assumptions.

Predicting Size

Whenever possible, start the process of size estimation using formal descrip-
tions of the requirements such as the customer’s requirements specification
or request for proposal, a system specification, or a software requirements
specification. Even if you do not have a formal document (and often you
may have only a verbal description or a whiteboard outline), you must
make an initial project estimate and communicate its levels of risk and
uncertainty to all concerned. You should reestimate the project as soon as
more scope information is determined. During later phases of the project’s
life cycle, you can use design documents to provide additional detail and
use your initial estimate as a useful baseline upon which to base the later
estimate. The most widely used methods of estimating product size are:

� Expert opinion — This is an estimate based on recollection of
prior systems and assumptions regarding what will happen with
this system, and the experts’ past experience.

� Analogy — The analogy estimation method follows these rough
guidelines:
– Understand the system to be estimated as well as possible.
– Obtain descriptions and accurate sizes for as many similar

systems as you can. Try to match the level of detail for the
target system, that is, if you know the system being estimated
down to its functions, then comparisons to it are also best made
at the functional level.

– Compare each proposed component to known components,
finding the closest match.

– Most matches will be approximate. Therefore, for each closest
match, make additional size adjustments as necessary. For exam-
ple, if the proposed component looks slightly less complicated

Executing the Estimate � 59

than the known component, adjust the size of the proposed
component downward.

A relative sizing approach such as SEER-AccuScopeTM can provide
viable size ranges based on comparisons to known projects. Alter-
natively, other characteristics may be reasonable early predictors
of size. For example, in some development organizations, a soft-
ware program may generally range from 20K SLOC to 60K SLOC.
If the developers estimate that a particular project will amount to
five software programs, it can reasonably be expected that the
project will average out to about 100K SLOC to 300K SLOC.

� Formalized methodology — Use of automated tools and/or pre-
defined algorithms such as counting the number of subsystems or
classes and converting them to function points.

� Statistical sizing — This method provides a range of potential
sizes that is characterized by least, likely, and most. In our expe-
rience with this method, it is best to initially ask a developer, “What
do you think the size of the product will be?” and record that
answer. Then, ask the developer, “What is the best case (if every-
thing goes right)?” Most often the answers to these first two
questions will be the same. Now, ask the developer again for the
expected size of the product, then ask, “Does your estimate account
for any unanticipated problems that the software will need to
correct, such as fixing hardware problems or addressing anomaly
conditions?” The developer will often answer, “No.” You are using
this methodology to bound the risk. You can continue this exercise
by asking, “What if everything that can go wrong does?” If you
account for this extreme condition, you can be 99 percent assured
that the size of the product will not exceed this estimate. Of course,
when your analyst realizes that the original estimate was nowhere
near accurate, she may want to take a little revenge. She may
think, “If everything goes wrong and we have to rewrite the
operating system and enter it back into the computer in binary,
the size will be X!” This, of course, is way beyond the 99 percent
probability. We really want to know the largest size this software
reasonably can be. The end result of this exercise should be:
– Least = What is the best case?
– Likely = What is the expected size?*
– Most = What is the worst case size — including things that may

go wrong?

* Asked the second time.

60 � Software Sizing, Estimation, and Risk Management

One way to use the statistical sizing method works as follows. Use the
following formula to determine the expected value:

Expected value = [Least + (4 ¥ Likely) + Most]/6

The standard deviation of the expected value shown above will be:

Standard deviation = Most – Least

With the standard deviation known, and using the normal “bell curve”
probability table, you can calculate expected size at any probability level.
For example, if you want to find a prospective size figure for which the
actual size has a 70 percent probability of being lower than the estimated
size, you would do the following:

1. Use a normal probability table (or the corresponding function in
an electronic spreadsheet) to look up the value corresponding to
70 percent.

2. Multiply this value by the standard deviation.
3. Take the resulting number and add it to the expected value. The

result is projected size at the 70 percent probability or confidence
level.

Of the many metrics available to measure software, size metrics are most
widely used; the most widely accepted software size metrics are SLOC
and function points. In our experience, both can be effectively used to
measure product size. Alternatively a binormal distribution will more
accurately reflect the skew toward larger size estimates.

Size Estimation Approaches

Approaches to size estimation can generally be characterized as: bottom-up
and top-down. Estimation by expert opinion, analogy, or cost model can
employ a top-down or bottom-up approach, but decomposition is inherently
a top-down (i.e., starting with the entire software program and decompos-
ing it into smaller pieces) method. No matter which approach you choose,
the two predominant sizing measures are SLOC and function points.

� SLOC are straightforward measures of the number of lines of pro-
grammed code in an item of software. SLOC was among the first,
and remains the most common, sizing measure because lines can
be very easily and precisely — even automatically — counted. The
SLOC method provides a firm indication of the volume of software
developed, which is a critical first step in making comparisons and
predictions. SLOC estimates are most accurate at the end of a

Executing the Estimate � 61

project when lines of code can be counted. At project start, when
few accurate project descriptors exist, the SLOC may have a wide
range in its least, likely, and most values.

� Function Points — SLOC has been criticized as being too indis-
criminate, in that it is simply a measure of size and does not
specifically indicate how much functionality an item of software
contains. Furthermore, it is not easy to estimate the number of
lines of code before they have been written. Function points provide
a logical (functional) unit of measure (size) for the software func-
tions of a system as seen by the user. They provide the essential
value of what the software is and what it does with data from a
user’s point of view. It includes internal logical files, external interface
files, external inputs, external outputs, and external inquires. Its
power comes from the emphasis on the external point of view.
Function points alone do not capture the impacts of requirements
volatility and scope creep (additional requirements).

You can also use estimation methods, such as the SEER function-based
sizing method, to approximate functions without requiring function point
training. Additionally, for algorithmic intense systems, SEER function-based
sizing captures the functionality not included in traditional function points.
(See Chapter 6 for a detailed discussion of SEER function-based sizing.)

Deciding on a Metric

Both SLOC and function points metrics are uniquely powerful, are useful,
and can be used individually or in combination. Each has its own strengths
and weaknesses. Table 3.1 provides an overview of both metrics.

You can use Table 3.1 to compare the characteristics of each metric
and as a guide to decide which to use. It should be noted that in order
to count function points you must have resources in house that are trained
in function point analysis or hire knowledgeable consultants. It generally
takes one to two weeks to learn basic function point counting skills, and
a trainee must count a few thousand function points to become adept with
this method.

To date, no reliable automatic function point counter has been devel-
oped that can accurately count function points of development artifacts;
counts must either be compiled by hand or estimated using a sizing model
such as SEER-AccuScope. New product SEER enhancements automatically
extract artifacts from use case models in order to arrive at an estimate early
in the development process that expresses a range of software size.2 This
capability will augment other sizing methods, serve as a sanity check of
other sizing methods, and provide an entry in the size methodology table.

62 � Software Sizing, Estimation, and Risk Management

Table 3.1 Estimation Measures

Issue Source Lines of Code Function Points

Nature of metric Quantitative: simply a count of
existing lines

Quantitative and
qualitative: takes the
software’s final
functionality into
account

Consistency of
independent
estimates

Consistent if SLOC counting
standards are followed
Potentially inconsistent if poor or
undocumented definitions are
used

Potentially
inconsistent; two
counters may estimate
the same project
differently

Dependence on
development
implementation
methods

Dependent: must be adjusted for
factors such as language and
approach

Independent; tied to
basic specifications

Adjustments for
implementation
complexity

Unadjusted; unless represented
with other complexity measures,
significance of any given size is
not clearly represented

Adjusted (for adjusted
function point counts
only); complexity
adjustments are built
in; however, these
adjustments may be
too arbitrary

Work-up speed Fast: can be done automatically
for existing systems

Slow: requires training
and experience; there
are approximation
methods which can be
used quickly

Comprehension Easy: analogous to a basic
measure of volume

Harder: function point
definition not well
understood by
managers

Usefulness Basic measure of productivity A more elaborate mea-
sure of productivity

Estimation
accuracy

Accurate: final counts have been
shown to be highly accurate; this
simple size metric does not miss
anything as long as hand-
generated lines are segregated
from autogenerated lines and
new lines are distinguished from
reuse lines

Generally accurate;
may be as accurate;
however, standard
function points do not
address some highly
algorithmic
functionality

Executing the Estimate � 63

When to Use SLOC

SLOC has been the dominant method for sizing complicated, real time or
embedded systems and works well for hand-generated systems in general.
Use lines of code when SLOC-based historical data exists, when the
development organization is comfortable with SLOC estimates, when add-
ons to existing systems allow counting of actual SLOC in a system, and
as a relatively easy check on other methods.

The great strength of SLOC is that it is easy to obtain. All other factors
aside, it remains a fairly accurate predictor of development effort. By
comparing code counts from past projects against a “rough order of
magnitude” estimate for a proposed project, you can gain your first real
understanding of project scope. By pairing SLOC estimates with other
development factors, you will generally have enough information to
develop a reliable estimate.

SLOC counts provide a firm indication of the volume of software
generated, which is a first critical step for making comparisons and
predictions. Despite the dominance of SLOC measures, some confusion
exists regarding which types of lines to count, which has led to difficulty
in comparing methods of counting SLOC. However, within the past several
years, code counting methods have become more standardized. See Chap-
ter 5 for a detailed discussion of lines of code.

When to Use Function Points

It is best to develop estimates based on function points when your project
is largely comprised of information technology and the system’s functions

Table 3.1 (continued) Estimation Measures

Issue Source Lines of Code Function Points

Postmortem use Useful; easy to compare before-
and-after results

Useful: easy to
compare before-and-
after results; easy to
see exactly where
variation occurred

Expense of
estimate

Low: rapid and very inexpensive Moderate to high;
slower and potentially
expensive

Ability to
estimate with
automated tools

High: tools such as SEER-
AccuScope can estimate lines
with relative ease

High; tools such as
SEER-AccuScope can
estimate function
points with relative ease

64 � Software Sizing, Estimation, and Risk Management

are adequately specified. Alternatively, you can estimate a function point
count using other means such as SEER-AccuScope to estimate size. In
addition, you should use function points when sizing by SLOC could be
misleading. For example, code generators can automatically generate many
lines of code, which makes the number of lines generated an unreliable
predictor of the amount of effort required. The great strength of function
point counts is that they are developed directly from specifications, inde-
pendent of implementation, which means estimates of project scope are
more comparable across projects.

Counting function points is a sophisticated method that cannot be done
automatically. There are few shortcuts; you must ensure that it will be
done properly by assigning adequately trained and experienced personnel.
If you have counts from previous similar projects, be sure to study those
counts carefully to ensure that the work performed on your current project
is consistent with the method used on those projects. Although experi-
enced counters can accomplish this method fairly quickly and efficiently,
it is very important that the counts be performed correctly and consistently.

The function point counting process should be put in perspective. An
experienced function point counter is usually able to count project spec-
ifications amounting to about 600 function points per day. As a typical
MIS database project of this size might take a bit more than a year to
develop and consume a bit more than a hundred person-months of effort,
using function points does not necessarily involve a big investment in up-
front planning. Many large organizations therefore keep a function point
counter on staff or hire outside consultants when necessary. By using the
SEER function-based sizing method, function points can be estimated
without conducting detailed counts. Finally, it is important to understand
that a combination of SLOC and function-based sizing can be the most
appropriate way of estimating the size of an existing system to which
functional enhancements are being made.

Steps to Estimating Software Size

Managers of software development projects are responsible for ascertaining
progress, risk, productivity, and a host of other factors that are critical to
success of their projects. Two important factors are the size of the product
and the subsequent effort that will be required to develop it. If you want
to contain the risk of unexpected cost growth for your project, it is essential
that you use a software sizing method that is consistent and repeatable.

In order to usefully apply the general concepts and techniques of
managing risk to your software engineering project, it is also essential
that you regularly reestimate the size of the product and the associated
cost of the project as project conditions change or product specifications

Executing the Estimate � 65

are modified. Unless the size estimates reflect the true state of the product
(or at least the range), you cannot assume that your estimates are accurate
and thus the analyses that flow from them will be suspect. The techniques
used to estimate effort and schedule also provide the foundation for
effective software management and many of the measures managers need
to carry out their responsibilities.

By applying the sizing steps described below, you can make consistent
and relevant size projections and use them to derive cost estimates.

Sizing Step 1: Baseline Definition of the Size Metric You Will Use

There are numerous idiosyncrasies in using any size metric (i.e., Function
Points Version 3, Mark II Function Points, Function Points Version 4,
Feature Points). Identify the definition that will be used for the current
project and a normalization process that will be used if size information
is provided in a format different from the definition chosen.

Sizing Step 2: Define Sizing Objectives

Accurate size estimates are needed to support the software project estimate
for cost and schedule at any point during the software development
lifecycle. Examples of the major objectives are:

� Product/portfolio planning — A rough-order-of-magnitude
(ROM) can be completed using the limited documentation and
time available.

� Project budgeting — A more detailed size estimate that describes
individual computer programs. A more detailed statement of objec-
tives for the software should be available for use at this point.

� Major milestone project planning — Increased detail in the size
estimate. Software can be broken into detailed components includ-
ing the use of COTS and preexisting software to be reused. At
least a strawman software architecture should exist at this point to
assist in the size estimation process.

� Detailed project planning — Increased detail and decomposition
of size for day-to-day management of a project. A detailed definition
of the project, including work packages or something similar,
should be available for use in the size estimation exercise.

� Project tracking and replanning — Adjusting the size estimates
based on project dynamics, e.g., requirements growth increases
the software size estimates.

If all of the functions the software must perform are analyzed in detail up
front, it is less likely that you will fail to size the less notable components.

66 � Software Sizing, Estimation, and Risk Management

It is imperative that you understand the job at hand, the basic tendency
to underestimate software size, and that you apply this understanding as
you conduct the necessary software sizing activities.

Sizing Step 3: Plan Data and Resource Requirements

If you treat the software sizing activity as a small project, then you will
generate an estimation plan early in the process. The plan need be nothing
more than a set of preliminary notes covering the who, what, why, where,
when, and how much of the sizing activity.

Sizing Step 4: Identify and Evaluate Software Requirements

It is helpful to have a set of software specifications that are as unambiguous
as possible (which of course are subject to qualifications with respect to
the estimating objectives). This documentation can help provide a defini-
tion of the scope of the software to be sized. In lieu of this documentation,
at least a statement of concept or objectives is needed.

Sizing Step 5: Use Several Independent Techniques and Sources

Kathleen Peters noted that:

None of the different techniques for software sizing is better than
the others from all aspects, their strengths and weaknesses are
complementary. It is important to use a combination of techniques
in order to avoid the weakness of any single method and to
capitalize on their joint strengths. Just as different techniques
provide better results, attacking estimator differences through
use of Delphi techniques will address bias and other differences
between estimators. Use several different people to estimate
and use several different estimation techniques (using an esti-
mation tool should be considered as one of the techniques),
and compare the results. Look at the convergence or spread
among the estimates. Convergence tells you that you’ve prob-
ably got a good estimate. Spread means that there are probably
things that have been overlooked and that you need to under-
stand better. The Delphi approach or Wideband Delphi can be
used to gather and discuss estimates using a group of people,
the intention being to produce an accurate, unbiased estimate.3

Figure 3.1 depicts the Galorath sizing methodology. Size estimates and
data are collected in as many different ways as possible. The results from

Executing the Estimate � 67

each of these sources is entered into a table. With all of the data points
in one place, you are ready to convert all of these data points into a size
estimate.

1. Collect size estimates from as many different sources as possible,
such as:
� Expert judgment
� Analogy/sizing database
� Functional analysis
� Delphi analysis
� Sizing tools

2. Rank the data sources for each data point in order of reliability.
3. The smallest size in the least column is deleted from the group. This

is done because history has shown that size is rarely underestimated.
4. If the most column contains a number that is extremely out of

range from the other numbers in that column, it is deleted also.
(This rarely happens, and if the source of the data point is the
most reliable source, the data point would not be thrown out.)

5. Choose the remaining smallest number in the least column for the
least size.

6. Choose from the likely column the number from your most reliable
source or, alternatively, depending on the reliability of the source,

Figure 3.1 Galorath size methodology estimation measures.

Total size estimates Least Likely Most

Expert judgment 12000 15500 17000
Relevant range by analogy 19850

8000
24750 32540

Sizing database 46000
Functional analysis 27540
SEER-AccuScope 15450 22650 29850
Delphi analysis 16788 19750 22713

Composite 12000 22650 46000

New size

Preexisting

size (rework)

Generated

code

COTS/GOTS

Glue code

Integrated

code

Expert

judgment

Functional

analysis

SEER-AccuScope
analysis

Counts for

preexisting

Sizing

databases

Analogies

Evaluate all sources of software size...

...Using multiple methods

Multiple size

estimates

Viable size

range

Apply size estimation methodology

68 � Software Sizing, Estimation, and Risk Management

average all the numbers in the column. This becomes the most
likely size.

7. For the most, choose the largest number remaining in the most
column.

As a sanity check, verify that the size ranges are not unreasonable (for
example a range of 2,000 to 500,000 lines) for a single program. If a range
is unreasonable, go back and verify that your data selections are appropriate.

Sizing Step 6: Tracking

Once a software project is started, it is essential to gather data regarding
its actual size, costs, and progress, and compare this data to the estimates.
Because software sizing is based on imperfect information, it is critical
that you reestimate the product size periodically with actual data both to
improve the sizing models and to obtain a more realistic basis for managing
the project.

Reestimation is also necessary because available sizing techniques don’t
always match the project exactly. In order to arrive at the most accurate
estimates as the project progresses, you will need feedback. Software
projects tend to be volatile (components are added, split up, re-scoped,
or combined in unforeseeable ways as the project progresses); the project
manager must identify these changes and realistically update the projected
product size.

Sizing Databases

Sizing databases for both defense and commercial projects exist and may
be useful for understanding the basic size ranges for the type of project
you are estimating. Because analogy estimates rely on good historical
data, sizing databases are good tools for comparing the actual code counts
of past projects to the software that you must estimate. However, because
the detailed specifications for these projects are not provided, it is not
possible to conduct detailed comparison-based sizing.

Proprietary in-house sizing databases can include much more relevant
information about past projects. If your organization does not already
have such a database, you should consider establishing one. Not only can
internal sizing databases have very specific and revealing contents, but
they describe work that your organization has done — such databases
are clearly appropriate for future internal estimates and should contain,
for instance:

Executing the Estimate � 69

� Project name
� Description of program
� Detailed description of each module
� Description of key features, such as the number of inputs, outputs,

screens, and files
� Rating categories that are commonly found in software estimating

models
� A quantitative appraisal of each module’s features using, for exam-

ple, function points
� Actual size of completed program and/or modules

The payoff for time spent establishing an internal software sizing
database that includes both size estimates and summary specifications for
completed projects comes with the very first estimate. As you refine the
database, you can increase its granularity and add entries that describe
not only whole programs but lower level modules as well, which will
enable you to make more accurate comparisons. A well developed sizing
database will also enable you to produce detailed bottom-up estimates
significantly more quickly than if you had to develop such estimates from
scratch.

Legacy Software Rework

The maxim for software is that not all code is created at once. In fact,
use of preexisting or legacy code that has a definite cost associated with
it and the rework required are substantial issues in many development
projects. Rework encompasses the effort required to understand the legacy
code, modify it to a new project, and retest it once it is incorporated.
Rework is composed of three basic activities that are typically expressed
in terms of percentage:

� Redesign
� Reimplementation
� Retest

Applying rework percentages to preexisting software measures results
in an effective volume measure that describes rework effort in terms of
what effort would be required to develop new lines of code. See Chapter
8, “Software Reuse and Commercial Off-the-Shelf Software,” for a detailed
discussion of software reuse.

70 � Software Sizing, Estimation, and Risk Management

Sizing Number of Functions to Be Learned, Used
and Integrated for COTS

When your project is integrating a COTS product, your software estimate
should only include that portion of the COTS product your project will
actually use. For example, if your project is using a small set of a COTS
product’s large library of function calls or visual tools, in estimating the
size of your product you would only count the set your product actually
uses. You should also count only those portions of the overall architecture
that your product will use. Some COTS packages may be intended as
developer’s tools, for example, as debuggers and editors, but not for
installment in final deliverables. Of course, you would not count these in
estimating the size of your product. For a full treatment of COTS sizing
issues, see Chapter 8.

There are other considerations regarding the use of COTS or reused
components in making size estimates. Often the developer does not have
the source code, so using measures such as SLOC is not feasible. Of
course, function points can be counted for COTS systems, but in estimating
the required size and effort, remember the developer needs only to
understand, integrate, and test that portion of a component’s interfaces
and functionality that is actually used. Table 3.2 identifies sizing mistakes
and their consequences.

Step Five: Prepare Baseline Estimate
Capers Jones noted that good cost estimators generally estimate the cost
of a project within 20 percent of the actual cost at delivery. According to

Table 3.2 Lessons Learned from Software Sizing Efforts

Size Mistake Consequence

Failure to spend sufficient time on
software sizing

Size estimates do not reflect the
program; programs overrun cost
and schedule estimates

Failure to use clear definitions of
size

Size measures are unreliable for
cost and schedule estimates

Failure to consider size growth in
estimates or reducing size estimates
to achieve desired costs

Optimistic schedules and costs;
programs overrun

Ignoring historical estimates as
basis for analogy due to differences
in languages and methodology

Lost opportunity to forecast future
better from the past

Executing the Estimate � 71

Jones, a good schedule estimate should be within 5 percent of actual
schedule at least 95 percent of the time and should not underestimate the
actual schedule by more than 12 percent.4 SEER-SEM users have docu-
mented accuracy within ±5 percent.5

An estimate must be adequate to the task at hand, consistent, repeat-
able, and accurately describe what it will actually take to accomplish a
project. If the estimate does not have all of these characteristics, the
resulting budgets and schedules will be based on bad information and
you most likely will find it impossible to perform within these constraints.
Given the importance of the estimation task, developers who want to
improve their software estimation skills should understand and embrace
some basic practices. First, trained, experienced, and skilled people should
be assigned to size the software and prepare the estimates. Second, it is
critically important that they be given the proper technology and tools.
And third, the project manager must define and implement a mature,
documented, and repeatable estimation process, which is at least as
important as the quality of the people assigned and the technology they use.

To prepare the baseline estimate there are various approaches that can
be used, including guessing, using existing productivity data exclusively,
the bottom-up approach, expert judgment, and cost models. Table 1.1 in
Chapter 1 summarized the advantages and disadvantages of these
approaches.

Guessing — This may be the most common approach. However,
guesses are almost always incorrect. Pure guessing should be avoided.

Estimating exclusively from productivity data — To obtain a cost
estimate, some analysts will divide the estimated size of their application
by some nominal productivity data that has been established from com-
pleted projects. This approach assumes that the organization’s productivity
is constant and ignores entropy (the bigger the program is, the lower the
productivity will be). This approach can work if the domain is very stable
and the applications are of similar size and use similar technology, and
if the same or similar people and tools are used to develop the new
application. However, if any of these factors do not pertain to your new
project, this approach is bound to be highly inaccurate. Alternatively, the
analysts can make adjustments based on the differences between past
projects and the one being estimated. For example, they could increase the
estimate by 10 percent if new tools are being used, decrease it by 15 percent
if seasoned personnel have been assigned, etc. This technique leads to a
kind of home-grown parametric model, but one that lacks the robustness
of a commercially available model.

To ensure the validity of the projections, all three elements: people,
technology, and process, must be incorporated into the effort. It is not

72 � Software Sizing, Estimation, and Risk Management

enough that skilled people be assigned if they are given improper tools
or use a poorly defined process.

Brad Clark, in “Quantifying the Effect of Process Improvement,” has a
startling message for more process-oriented readers:

A one-CMM level improvement by itself accounts for only an
11 percent increase in productivity. In comparing medium-size
projects (100,000 lines of code), the one with the worst process
will require 1.43 times as much effort as the one with the best
process, all other things being equal. In other words, the
maximum influence of process maturity on a project’s produc-
tivity is 1.43.6

Software Productivity Laws

The following list describes the laws of software productivity. These laws
help explain the dynamics of an engineering development project. These
are used in models such as SEER-SEM to estimate schedule and cost.
These laws illustrate some of the reasons that just using productivity to
estimate is inadequate.7 Figure 3.2 illustrates a staffing profile for use in
conjunction with the software productivity laws.

Figure 3.2 Staffing profile. (”””” Galorath Incorporated, 2003. Reprinted with
permission.)

Schedule

slip

12 24 36 48

4

8

10

Elapsed calendar time (months)

A

B

C

D

= Effective staffingA B C D= Staffing beyond plan = Understaffed= Overstaffed

Actual

 delivery

Level

staffing

Optimal

staffing
Unaccomplished

work

Planned

 delivery

Cost

overrun

Executing the Estimate � 73

Law 1 — Smaller teams are more efficient. The smaller the team,
the higher the productivity of each individual person. Theoretically
the most efficient team from an effort viewpoint is two people
working closely together. Of course, schedules could not be met
for most systems with such a small team.
Law 2 — Some schedule compression can be bought. Adding
people to a project, to a point, decreases the time and increases
the cost as larger teams work together.
Law 3 — Every project has a minimum time. There is an incremental
person who consumes more energy than he or she produces. Team
size beyond this point decreases productivity and increases time.
(Law 3 is also known as Brooks’ law.)
Law 4 — Productivity is scalable. Projects of larger software size
can use larger teams without violating Law 3.
Law 5 — Complexity limits staffing. As complexity increases, the
number of people that can effectively work on the project and the
rate at which they can be added decreases.
Law 6 — Staffing can be optimized. There exists an optimal staffing
function (shape) that is generally modeled by the Rayleigh function.
Flat (level of effort) staffing is rarely optimal.
Law 7 — Projects that get behind, stay behind. It is extremely
difficult to bring a project that is behind schedule back on plan.
Law 8 — Work expands to fill the available volume. It is possible
to allow too much time to complete a project. (Law 8 is also known
as Parkinson’s law.)
Law 9 —Better technology yields higher productivity. More capable
teams, better tools, and advanced, stable processes yield higher
productivity.
Law 10 — There are no silver bullets. There is no methodology,
tool, or process improvement strategy available that yields revolu-
tionary improvements in project efficiency.

In order to determine the effort that will be required to complete your
project, you will need information that describes the personnel who are
available — in terms of their qualifications and the optimal composition
of the team — and you will need to develop an initial estimate of how
long it will take them to fulfill the project requirements. Productivity is a
measure of the effectiveness of an organization in producing units of
measure (that are based on the units used to size the product) over a
given period. In the most basic terms, productivity is simply a measure
of software production expressed as SLOC or function points one person
can produce in an hour, a week, or a month. There is a base productivity
figure that reflects what individual team members could perform if their
only job was to produce software.

74 � Software Sizing, Estimation, and Risk Management

Table 3.3 summarizes the relative impact that SEER-SEM technology
and environment parameters have on a developer’s potential for produc-
tivity on the specific program being evaluated. This table is effective in
isolating the effects of different cost drivers on the overall estimate. These
numbers illustrate the full impact of each parameter on effective technol-
ogy. Impacts on cost are somewhat larger but similar in scope. For example,
the impact of programmer capabilities from worst to best is 67 percent.

Table 3.4 provides a second view of the effects of cost drivers extracted
from the COCOMO II model. When these are input into the estimation
process or into the cost model, they modify the productivity projections
the model provides to reflect the specifics of the project.

As can be seen from these two examples changing the way that a
project is planned and modifying certain product assumptions can have
a dramatic effect on both the projected productivity and the projected
cost. Adapting the process productivity projections to the realities of the
application and organization is critical if your projections of required effort
are to be realistic.

In projecting staff productivity, you must also consider the effect that
certain factors related to the dynamics of your team and the environment
in which they will be performing the product development will have on
the productivity of your staff. Much useful work has been done on the
effect of team dynamics on the productivities of individuals who comprise
the team. Landmark works such as the Team Handbook,10 Peopleware:
Productive Projects and Teams,11 and others have pointed out that the
formation, performance, and enlightened management of “jelled teams”
can lead to significant productivity benefits. As Grady Booch wrote:

Staffing a project with the right people who have the right skills
is important, but that alone does not explain the differences in
productivity one sees among such teams. In this context,
DeMarco and Lister speak of a ‘jelled team,’ which they define
as ‘a group of people so strongly knit that the whole is greater
than the sum of the parts. The productivity of such a team is
greater than that of the same people working in unjelled form.
Once a team begins to jell, the probability of success goes up
dramatically.’ Essential to the formation of jelled teams is this
precondition: a project must honor and respect the role of every
one of its developers. This means that each project must rec-
ognize that its developers are not interchangeable parts, and
that each brings to the table unique skills and idiosyncrasies
that must be matched to the needs at hand and calibrated within
the organization’s development culture. This is one of the five

Executing the Estimate � 75

Table 3.3 Approximate Effective Technology Offsets in SEER-SEM8

Parameter

Relative
Contribution

(Percent) Parameter

Relative
Contribution

(Percent)

Security
requirements

347 Resource
dedication

25

Rehost from develop-
ment to target

93 Process volatility 24

Analyst capabilities 71 Specification level;
reliability

22

Programmer
capabilities

67 Logon through
hardcopy
turnaround

22

Time constraints 60 Real time code 21

Practices and
methods experience/
process improvement

47 Test level 21

Requirements
volatility

47 Host system
volatility

19

Product reusability 44 Target system
volatility

16

Analyst’s application
experience/
application class
complexity

40 Host development
system experience/
complexity

15

Automated tool use 35 Multiple site
development

24

Memory constraints 33 Terminal response
time

13

Modern
development
practices

31 Special display
requirements

11

Programmer’s
language experience/
language complexity

30 Target system
experience/
complexity

7

Resource and
support location

28 QA level 6

76 � Software Sizing, Estimation, and Risk Management

basic principles of software staffing that Boehm describes: ‘fit
the tasks to the skills and motivation of the people available.’12

Productivity can improve dramatically if you do have a team that jells
and continues to produce at a high level, and you will see other benefits
as well. Staff attrition will be minimal and your team will be absolutely

Table 3.4 Example COCOMO II Cost Drivers9

Rating

Attribute VL LO NM HI VH XH

Required reliability (RELY) 0.82 0.92 1.00 1.10 1.26

Database size (DATA) 0.90 1.00 1.14 1.28

Product complexity (CPLX) 0.73 0.87 1.00 1.17 1.34 1.74

Required reusability (RUSE) 0.95 1.00 1.07 1.15 1.24

Documentation required (DOCU) 0.81 0.91 1.00 1.11 1.23

Execution time constraints (TIME) 1.00 1.11 1.29 1.63

Main storage constraint (STOR) 1.00 1.05 1.17 1.46

Platform volatility (PVOL) 0.87 1.00 1.15 1.30

Analyst capability (ACAP) 1.42 1.19 1.00 0.85 0.71

Applications experience (APEX) 1.22 1.10 1.00 0.88 0.81

Programmer capability (PCAP) 1.34 1.15 1.00 0.88 0.76

Personnel continuity (PCON) 1.29 1.12 1.00 0.90 0.81

Platform experience (PLEX) 1.19 1.09 1.00 0.91 0.85

Language and tools experience
(LTEX)

1.20 1.09 1.00 0.91 0.84

Use of software tools (TOOL) 1.17 1.09 1.00 0.90 0.78

Multiple site development (SITE) 1.22 1.09 1.00 0.93 0.86 0.80

Required development schedule
(SCED)

1.43 1.14 1.00 1.00 1.00

VL = very low; productivity effects minimal or negative.
LO = low; productivity impact negligible, little or no offset.
NM = normal; productivity scaled to cost driver.
HI = high; nominal impacts to productivity.
VH = very high; significant productivity impacts.
XH = extra high; high productivity impact.

Executing the Estimate � 77

focused on its goals, such as the established quality targets. However, a
jelled team in and of itself will not necessarily lead to improved produc-
tivity. If it is not managed effectively, you can also see dramatic negative
effects on productivity. If there is no effective organizational framework
that honors and respects the role of every one of its developers, chaos
can result. For example, attrition may be high for your best people, those
who can find other work.

If you are forced to compress your schedule because you assumed a
level of productivity that did not occur, excessive overtime and further
attrition will result and morale will become a joke. The point is that you
cannot foresee early in a project how your team dynamics will play out as
the project proceeds. Although management often likes to flatter itself and
its customers on the ability to form a smoothly functioning team and assumes
a high level of productivity in an initial estimate, simple prudence dictates
that you should estimate normal productivity factors based on historical
performance. If you do indeed achieve higher productivity, then significant
benefits will accrue to your project and your reputation as a manager.

Table 3.5 summarizes some of the team and environmental factors you
should consider when addressing team productivity. These factors, which
are included in the cost models, provide realistic examples of cost factors
that can be safely applied.

Table 3.5 Team and Environmental Productivity Factors

Attribute Description

Application
domain

Knowledge of the application domain is essential for
effective software development; engineers who already
understand a domain are likely to be the most productive;
the use of less knowledgeable developers reduces
productivity until they become more familiar with the
application domain

Process quality The development process used can have a significant
effect on productivity

Project size If your project is very large, you will need to spend
significant time communicating with your team and thus
less time will be available for development; individual
productivity will be reduced as a result

Technology
support

Good support technology such as advanced tools and
configuration management systems can improve
productivity

Working
environment

A quiet working environment with private work areas
contributes to improved productivity

78 � Software Sizing, Estimation, and Risk Management

Bottom-Up Estimating

Bottom-up estimating, which is also referred to as “grassroots” or “engi-
neering” estimating, entails decomposing the software to its lowest levels
by function or task and then summing the resulting data into work
elements. This approach can be very effective for estimating the costs of
smaller systems. It breaks down the required effort into traceable com-
ponents that can be effectively sized, estimated, and tracked; the compo-
nent estimates can then be rolled up to provide a traceable estimate that
is comprised of individual components that are more easily managed. You
thus end up with a detailed basis for your overall estimate. However, if
certain conditions are not understood and controlled, this approach can
lead to problems:

1. The project team must have a clear vision of the project’s scope
in order to ensure it is decomposed into all of its constituent
elements. Some experts are of the opinion that the bottom-up
approach cannot be effective until the detailed design is complete,
which is much too late for project planning purposes.13

2. Optimism about the resources required to complete individual tasks
must be kept in check.

3. Because this approach does not automatically capture the costs
associated with integrating units to form higher level components
and major programs, estimates can easily omit the work required
to integrate the lowest level units. Integration costs must be sep-
arately estimated.

4. This approach can be very time consuming for larger systems,
making it inappropriate when sufficient time or adequate personnel
are not available.

5. Excessive decomposition can lead to justification of unnecessary
functionality.14

Software Cost Models

Capers Jones noted in a 2002 article that:

Software cost estimation is simple in concept, but difficult and
complex in reality. The difficulty and complexity required for
successful estimates exceed the capabilities of most software
project managers. As a result, manual estimates are not sufficient
for large applications above roughly 1,000 function points in
size.15

Executing the Estimate � 79

Different cost models have different information requirements. How-
ever, any cost model will require the user to provide at least a few —
and sometimes many — project attributes or parameters. This information
serves to describe the project, its characteristics, the team’s experience
and training levels, and various other attributes the model requires to be
effective, such as the processes, methods, and tools that will be used.
However, the process of gathering this information can benefit the project
in and of itself. Rick Grehan has said, “I suspect that SEER-SEM’s greatest
benefit is largely hidden. As you fill in the blanks, you are forced to dig
up information about the project that cannot help but lead you to a greater
understanding of it. The journey becomes its own reward.”16 By collecting
detailed, accurate information as early in the project as possible, you will
significantly improve the quality of your estimate, produce a better project
plan, and have a greater understanding of just what your project will entail.

Parametric cost models offer significant advantages to a project in that
they provide a means for applying a consistent method for subjecting
uncertain situations to rigorous mathematical and statistical analysis. Thus
they are more comprehensive than other estimating techniques and help
to reduce the amount of bias that goes into estimating software projects.
They also provide a means for organizing the information that serves to
describe the project, which facilitates the identification and analysis of
risk. Despite their proven benefits, they can have certain disadvantages.
For example, they allow unscrupulous estimators to enter inaccurate
information to justify an unachievable plan and can give a false sense of
security when poor size ranges have been entered.

A cost model uses various algorithms to project the schedule and cost
of a product from specific inputs. Those who attempt to merely estimate
size and divide it by a productivity factor are sorely missing the mark.
The people, the products, and the process are all key components of a
successful software project. Cost models typically use a historical database
calibrated to the organization to derive the estimates, or, if this information
is unavailable, they use typical information that is derived from industry
or vendor sources. Cost models range from simple, single formula models
to complex models that involve hundreds or even thousands of calcula-
tions. Numerous well known models exist to estimate software cost and
effort, including: Boehm’s COCOMO suite of models, Putnam’s SLIM
model, and Galorath’s family of SEER models. Generally speaking, these
models estimate effort by making effort a (predefined) function of one or
more variables, e.g., size of product, complexity, available staff.

Software estimation models fall into two broad categories: cost models
and constraint models. Cost models provide direct estimates of effort or
duration from one main input (some measure of product size) and several

80 � Software Sizing, Estimation, and Risk Management

adjustment factors (cost drivers). These factors typically influence produc-
tivity and have a significant effect on the project effort.

Constraint models, on the other hand, derive their estimates from the
relationship over time between two or more cost parameters, e.g., effort,
duration, and staffing level. The Rayleigh curve model developed by
Norden17 and refined by Putnam, Jensen, and Galorath Incorporated’s
McRitchie, is a typical example of a constraint model.

Most current models allow calibration to reflect the actual experience
of the organization. The organization must collect data related to its own
projects and must develop cost estimation procedures that evolve when
data on more projects becomes available. SEER-SEM provides knowledge
bases that include the range of inputs and calibrations, so users generally
must change only the input parameters to perform their calibrations if
desired. The best estimates are produced by the project manager and
trained users of automated models. When the project manager takes
ownership of the model he becomes committed to the estimate and it
becomes part of the software development plan.

Organizations that want to use more than one technique to arrive at
a comparative estimate should develop and embed cost estimation pro-
cesses. If your organization uses cost models as its primary method of
estimating effort and duration, using two different models, a single model
with built-in cross checks, or multiple sizing techniques18 can give better
results than a single estimate. Whether an estimate is arrived at manually,
via application of a cost model, or with one or more techniques, the process
is still dependent on the information available when the estimate is done.
Table 3.6 describes the majority of commercial models available today.

When selecting a cost model, it is important that you clearly understand
the model’s maturity, compatibility with the requirements of the estimation,
ability of the staff to use the model, its accuracy in the specific domain
of the estimate, its consistency across estimates, and the objectivity of the
parameters used to derive the projection. The following criteria are helpful
in evaluating the utility of a software cost model for practical estimation
purposes.19

� Definition — Has the model clearly defined the costs it is esti-
mating and the costs it is excluding?

� Fidelity — Are the estimates close to the actual costs expended
on the projects?

� Objectivity — Does the model avoid allocating most of the soft-
ware cost variance to poorly calibrated subjective factors (such as
complexity)?

Executing the Estimate � 81

Ta
bl

e
3.

6
C

om
m

er
ci

al
 M

od
el

 O
ve

rv
ie

w

D
es

cr
ip

ti
o

n
Pl

at
fo

rm
W

eb
 S

ite

C
O

C
O

M
O

 I
I

C
O

C
O

M
O

 II
 is

 th
e

se
co

n
d

 g
en

er
at

io
n

 C
O

C
O

M
O

 m
o

d
el

 d
ev

el
o

p
ed

 b
y

D
r.

B
ar

ry

B
o

eh
m

’s
 t

ea
m

 a
t

th
e

U
n

iv
er

si
ty

 o
f

So
u

th
er

n
 C

al
if

o
rn

ia
 w

it
h

 i
n

d
u

st
ry

sp

o
n

so
rs

h
ip

. C
O

C
O

M
O

 I
I

is
 r

ea
lly

 t
h

re
e

d
if

fe
re

n
t

m
o

d
el

s:
 (

1)
 t

h
e

A
p

p
lic

at
io

n

C
o

m
p

o
si

ti
o

n
 M

o
d

el
 is

 s
u

it
ab

le
 fo

r
p

ro
je

ct
s

b
u

ilt
 w

it
h

 m
o

d
er

n
 G

U
I-

b
u

ild
er

 to
o

ls

an
d

 fo
r

ad
d

re
ss

in
g

C
O

TS
 a

n
d

 o
th

er
 s

o
ft

w
ar

e
is

su
es

; (
2)

 t
h

e
Ea

rl
y

D
es

ig
n

 M
o

d
el

p

ro
vi

d
es

 r
o

u
gh

 e
st

im
at

es
 o

f
co

st
 a

n
d

 d
u

ra
ti

o
n

 b
ef

o
re

 t
h

e
d

es
ig

n
’ s

 e
n

ti
re

ar

ch
it

ec
tu

re
 h

as
 b

ee
n

 d
et

er
m

in
ed

, u
si

n
g

a
sm

al
l

se
t

o
f

co
st

 d
ri

v e
rs

 a
n

d
 u

si
n

g
fu

n
ct

io
n

 p
o

in
ts

 o
r

SL
O

C
; (

3)
 t

h
e

Po
st

-A
rc

h
it

ec
tu

re
 M

o
d

el
 i

s
th

e
m

o
st

 d
et

ai
le

d

an
d

 is
 in

te
n

d
ed

 t
o

 b
e

u
se

d
 a

ft
er

 t
h

e
p

ro
je

ct
 a

rc
h

it
ec

tu
re

 is
 d

ev
el

o
p

ed
. S

ev
er

al

co
m

m
er

ci
al

 p
ro

d
u

ct
s

al
so

 i
m

p
le

m
en

t
th

e
C

O
C

O
M

O
 I

I
m

o
d

el
.

W
in

d
o

w
s

h
tt

p
://

su
n

se
t.u

sc
.e

d
u

/
re

se
ar

ch
/C

O
C

O
M

O
II

/

C
O

N
ST

R
U

X

C
o

n
st

ru
x

Es
ti

m
at

e
le

ve
ra

ge
s

a
b

le
n

d
 o

f
th

e
C

O
C

O
M

O
 a

n
d

 P
u

tn
am

 e
st

im
at

io
n

m

o
d

el
s

an
d

 M
o

n
te

 C
ar

lo
 a

n
al

ys
is

 to
 p

re
d

ic
t e

ff
o

rt
, b

u
d

ge
t,

an
d

 s
ch

ed
u

le
 b

as
ed

o

n
 s

iz
e

es
ti

m
at

es
. E

st
im

at
e

co
m

es
 c

al
ib

ra
te

d
 w

it
h

 i
n

d
u

st
ry

 d
at

a
an

d
 m

ay
 b

e
ca

lib
ra

te
d

 w
it

h
 o

rg
an

iz
at

io
n

-s
p

ec
ifi

c
d

at
a.

 C
o

n
st

ru
x

su
p

p
o

rt
s

fu
n

ct
io

n
 p

o
in

t a
n

d

SL
O

C
 t

o
 c

re
at

e
d

et
ai

le
d

 e
ff

o
rt

 a
n

d
 s

ch
ed

u
le

 e
st

im
at

es
 a

n
d

 e
n

ab
le

s
es

ti
m

at
io

n

o
f

m
u

lt
ip

le
 m

o
d

u
le

s.
 U

se
rs

 m
ay

 e
n

te
r

co
n

st
ra

in
ts

 o
n

 c
o

st
, s

ch
ed

u
le

, p
ea

k
st

af
f,

an
d

 m
ax

im
u

m
 e

ff
o

rt
 a

llo
w

ed
. T

h
is

 t
o

o
l

is
 n

o
w

 o
ff

er
ed

 b
y

B
o

rl
an

d
.

W
in

d
o

w
s

h
tt

p
://

w
w

w
.b

o
rl

an
d

.c
o

m
/

82 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
3.

6
(c

on
ti

nu
ed

)
C

om
m

er
ci

al
 M

od
el

 O
ve

rv
ie

w

D
es

cr
ip

ti
o

n
Pl

at
fo

rm
W

eb
 S

ite

C
O

ST
 X

PE
RT

C
o

st
 X

p
er

t
is

 a
 C

O
C

O
M

O
 c

o
m

p
lia

n
t

co
st

 e
st

im
at

io
n

 m
o

d
el

 t
h

at
 i

n
te

gr
at

es

m
u

lt
ip

le
 s

o
ft

w
ar

e
si

zi
n

g
m

et
h

o
d

s
an

d
 g

en
er

at
es

 a
 W

B
S

th
at

 c
an

 b
e

u
se

d
 a

s
a

st
ar

ti
n

g
p

o
in

t
fo

r
a

p
ro

je
ct

 p
la

n
. C

o
st

 X
p

er
t

al
lo

w
s

in
co

rp
o

ra
ti

o
n

 o
f

h
is

to
ri

ca
l

in
fo

rm
at

io
n

 i
n

to
 t

h
e

es
ti

m
at

e,
 a

llo
w

in
g

b
en

ch
m

ar
ki

n
g.

W
in

d
o

w
s

h
tt

p
://

w
w

w
.c

o
st

xp
er

t.c
o

m
/

C
O

ST
A

R

A
 u

se
r-

fr
ie

n
d

ly
 v

er
si

o
n

 o
f C

O
C

O
M

O
, C

o
st

ar
 is

 a
n

 im
p

le
m

en
ta

ti
o

n
 o

f t
h

e
o

ri
gi

n
al

C

O
C

O
M

O
, C

O
C

O
M

O
 I

I,
an

d
 o

th
er

 C
O

C
O

M
O

 d
er

iv
at

iv
es

.
W

in
d

o
w

s
h

tt
p

://
w

w
w

.s
o

ft
st

ar
sy

st
em

s.
co

m

PR
IC

E
S

D
ev

el
o

p
ed

 b
y

Pr
ic

e
Sy

st
em

s,
 P

R
IC

E
S

is
 b

as
ed

 o
n

 c
o

st
 e

st
im

at
io

n
 r

el
at

io
n

sh
ip

s
(C

ER
s)

 t
h

at
 m

ak
e

u
se

 o
f

p
ro

d
u

ct
 c

h
ar

ac
te

ri
st

ic
s

to
 g

en
er

at
e

es
ti

m
at

es
. A

 m
aj

o
r

in
p

u
t

to
 P

R
IC

E
S

is
 S

LO
C

. S
o

ft
w

ar
e

si
ze

 m
ay

 b
e

in
p

u
t

d
ir

ec
tl

y
o

r
au

to
m

at
ic

al
ly

ca

lc
u

la
te

d
 f

ro
m

 q
u

an
ti

ta
ti

ve
 d

es
cr

ip
ti

o
n

s
(f

u
n

ct
io

n
 p

o
in

t
si

zi
n

g)
. O

th
er

 i
n

p
u

ts

in
cl

u
d

e
so

ft
w

ar
e

fu
n

ct
io

n
, o

p
er

at
in

g
en

vi
ro

n
m

en
t,

so
ft

w
ar

e
re

u
se

, c
o

m
p

le
xi

ty

fa
ct

o
rs

, p
ro

d
u

ct
iv

it
y

fa
ct

o
rs

, a
n

d
 r

is
k

an
al

ys
is

 f
ac

to
rs

. S
u

cc
es

sf
u

l u
se

 o
f

PR
IC

E
S

d
ep

en
d

s
o

n
 th

e
ab

ili
ty

 o
f t

h
e

u
se

r t
o

 d
efi

n
e

in
p

u
ts

 c
o

rr
ec

tl
y.

 It
 c

an
 b

e
cu

st
o

m
iz

ed

an
d

 c
al

ib
ra

te
d

 t
o

 t
h

e
n

ee
d

s
o

f
th

e
u

se
r.

W
in

d
o

w
s

h
tt

p
://

w
w

w
.p

ri
ce

sy
st

em
s.

co
m

/

Executing the Estimate � 83

SA
G

E

D
ev

el
o

p
ed

 b
y

D
r.

R
an

d
al

 J
en

se
n

, S
ag

e
im

p
le

m
en

ts
 t

h
e

o
ri

gi
n

al
 J

en
se

n
 m

o
d

el

an
d

 i
n

co
rp

o
ra

te
s

q
u

al
it

at
iv

e
m

ea
su

re
s

o
f

p
er

so
n

al
, m

an
ag

em
en

t,
an

d

en
vi

ro
n

m
en

t
ef

fe
ct

iv
en

es
s,

 p
ro

ce
ss

 t
ec

h
n

o
lo

gy
, a

n
d

 p
ro

d
u

ct
 c

h
ar

ac
te

ri
st

ic
s.

Sa

ge
 e

st
im

at
es

 t
ar

ge
t

w
o

rs
t-

ca
se

 c
o

st
 a

n
d

 s
ch

ed
u

le
 p

re
d

ic
ti

o
n

s,
 c

o
st

 a
n

d

sc
h

ed
u

le
 r

is
k

es
ti

m
at

es
 i

n
cl

u
d

in
g

o
p

ti
o

n
al

 g
ro

w
th

.

W
in

d
o

w
s

w
w

w
.s

ei
sa

ge
.c

o
m

SE
ER

-A
C

C
U

SC
O

PE

D
ev

el
o

p
ed

 b
y

G
al

o
ra

th
, I

n
co

rp
o

ra
te

d
, S

EE
R-

A
cc

u
Sc

o
p

e
p

ro
d

u
ce

s
so

ft
w

ar
e

si
ze

es

ti
m

at
es

 i
n

 S
LO

C
, f

u
n

ct
io

n
 p

o
in

ts
, a

n
d

 a
n

y
o

th
er

 m
et

ri
c.

 I
t

al
so

 p
ro

vi
d

es
 i

ts

o
w

n
 h

is
to

ri
ca

l d
at

ab
as

e
in

 p
ro

d
u

ci
n

g
th

e
si

ze
 e

st
im

at
e.

 S
EE

R
-A

cc
u

Sc
o

p
e

w
o

rk
s

w
it

h
 t

h
e

SE
ER

-S
EM

 s
o

ft
w

ar
e

es
ti

m
at

in
g

to
o

l
o

r
o

n
 a

 s
ta

n
d

-a
lo

n
e

b
as

is
.

W
in

d
o

w
s

w
w

w
.g

al
o

ra
th

.c
o

m

SE
ER

-S
EM

D
ev

el
o

p
ed

 b
y

G
al

o
ra

th
, I

n
co

rp
o

ra
te

d
, S

EE
R-

SE
M

 p
ro

vi
d

es
 s

o
ft

w
ar

e
es

ti
m

at
es

w

it
h

 k
n

o
w

le
d

ge
 b

as
es

 d
ev

el
o

p
ed

 f
ro

m
 m

an
y

ye
ar

s
o

f
co

m
p

le
te

d
 p

ro
je

ct
s.

 T
h

e
kn

o
w

le
d

ge
 b

as
e

al
lo

w
s

es
ti

m
at

es
 w

it
h

 o
n

ly
 m

in
im

al
 h

ig
h

 le
ve

l i
n

p
u

ts
 o

r
u

se
rs

m

ay
 d

ri
ll

d
o

w
n

 i
n

 d
et

ai
l.

A
 u

se
r

n
ee

d
 o

n
ly

 t
o

 s
el

ec
t

th
e

p
la

tf
o

rm

(i
.e

.,
gr

o
u

n
d

, u
n

m
an

n
ed

 s
p

ac
e,

 e
tc

.),
 a

p
p

lic
at

io
n

 (
i.e

.,
co

m
m

an
d

 a
n

d
 c

o
n

tr
o

l,
d

ia
gn

o
st

ic
),

d
ev

el
o

p
m

en
t

m
et

h
o

d
 (

i.e
.,

p
ro

to
ty

p
e,

 i
n

cr
em

en
ta

l)
, a

n
d

d

ev
el

o
p

m
en

t s
ta

n
d

ar
d

s.
 S

EE
R-

SE
M

 is
 a

p
p

lic
ab

le
 to

 a
ll

ty
p

es
 o

f s
o

f t
w

ar
e

p
ro

je
ct

s
an

d
 c

o
n

si
d

er
s

al
l p

h
as

es
 o

f s
o

ft
w

ar
e

d
ev

el
o

p
m

en
t.

SE
ER

-S
EM

 a
ls

o
 e

st
im

at
es

 to
ta

l
lif

e-
cy

cl
e

co
st

s,
 t

ra
ck

s
d

ev
el

o
p

m
en

t
th

ro
u

gh
o

u
t

th
e

lif
e

cy
cl

e,
 a

n
d

 t
ra

ck
s

an
d

es

ti
m

at
es

 d
ef

ec
ts

.

W
in

d
o

w
s

w
w

w
.g

al
o

ra
th

.c
o

m

84 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
3.

6
(c

on
ti

nu
ed

)
C

om
m

er
ci

al
 M

od
el

 O
ve

rv
ie

w

D
es

cr
ip

ti
o

n
Pl

at
fo

rm
W

eb
 S

ite

SE
ER

-S
SM

D
ev

el
o

p
ed

 b
y

D
r.

G
eo

rg
e

B
o

zo
ki

, S
EE

R
-S

SM
 p

ro
d

u
ce

s
si

ze
 e

st
im

at
es

 i
n

 S
LO

C

o
r

fu
n

ct
io

n
 p

o
in

ts
 a

n
d

 a
d

ju
st

s
si

ze
s

b
as

ed
 o

n
 la

n
gu

ag
e.

 S
EE

R
-S

SM
 a

llo
w

s
ex

p
er

t
ju

d
gm

en
t

to
 b

e
ap

p
lie

d
 t

o
 t

h
e

p
ro

b
le

m
 o

f
so

ft
w

ar
e

si
zi

n
g

an
d

 g
en

er
at

es
 a

 s
iz

e
ra

n
ge

 o
f

le
as

t ,
lik

el
y,

 a
n

d
 m

o
st

.

W
in

d
o

w
s

w
w

w
.g

al
o

ra
th

.c
o

m

SL
IM

Th
e

So
ft

w
ar

e
Li

fe
 C

yc
le

 M
o

d
el

 (
SL

IM
)

is
 m

ar
ke

te
d

 b
y

Q
u

an
ti

ta
ti

ve
 S

o
ft

w
ar

e
M

an
ag

em
en

t
(Q

SM
).

SL
IM

 c
an

 b
e

cu
st

o
m

iz
ed

 f
o

r
th

e
u

se
r’s

 d
ev

el
o

p
m

en
t

en
vi

ro
n

m
en

t.
Su

cc
es

s
in

 u
si

n
g

SL
IM

 d
ep

en
d

s
o

n
 t

h
e

u
se

r’s
 a

b
ili

ty
 t

o
 c

u
st

o
m

iz
e

th
e

to
o

l
to

 fi
t

th
e

so
ft

w
ar

e
d

ev
el

o
p

m
en

t
en

vi
ro

n
m

en
t

an
d

 t
o

 e
st

im
at

e
b

o
th

 a

Pr
o

d
u

ct
iv

it
y

In
d

ex
 (

a
m

ea
su

re
 o

f
th

e
so

ft
w

ar
e

d
ev

el
o

p
er

’s
 e

ffi
ci

en
c y

)
an

d
 a

M

an
p

o
w

er
 B

u
ild

u
p

 I
n

d
ex

 (
a

m
ea

su
re

 o
f

th
e

so
ft

w
ar

e
d

ev
el

o
p

er
’s

 s
ta

f fi
n

g
ca

p
ab

ili
ty

).
SL

IM
 a

ls
o

 p
ro

vi
d

es
 a

 l
ife

 c
yc

le
 o

p
ti

o
n

 w
h

ic
h

 e
xt

ra
p

o
la

te
s

d
ev

el
o

p
m

en
t

co
st

s
in

to
 t

h
e

m
ai

n
te

n
an

ce
 p

h
as

e.
 Q

SM
 a

ls
o

 p
ro

vi
d

es

p
er

fo
rm

an
ce

 m
ea

su
re

m
en

t
an

d
 m

et
ri

cs
.

W
in

d
o

w
s

w
w

w
.q

sm
.c

o
m

Executing the Estimate � 85

� Constructiveness — Can a user tell why the model gives the
estimates it does? Does it help the user understand the software
job to be done?

� Detail — Does the model easily accommodate the estimation of
a software system consisting of a number of subsystems and units?
Does it give (accurate) phase and activity breakdowns?

� Stability — Do small differences in inputs produce small differ-
ences in output cost estimates?

� Scope — Does the model cover the class of software projects
whose costs you need to estimate?

� Ease of use — Are the model inputs, outputs and options easy
to understand and specify?

� Prospectiveness — Does the model avoid the use of information
that will not be well known until the project is complete?20

When you evaluate a model, keep in mind that the required functional
capabilities are based on the needs and desired capabilities specific to
the project and will differ from project to project. Match the available
tools with the overall needs of the project. In general, estimation tools
should:

� Allow easy adaptation to an organization’s development environ-
ment. You must be able to customize the tool to fit your develop-
ment environment, which will enable you to continuously improve
its estimation capability since the software estimate generated will
include your organization’s historical data and current project data.

� Be relatively easy to learn and use. The tool, including the methods
and equations it uses, should be well documented at an easily
understandable level. It should include help menus and examples
that are sufficient to train the support staff and answer their
questions. It should require minimal formal training to use, required
inputs should be well defined, and visibility into internal equations
and theories should be provided.

� Provide early estimates. The tool should be capable of generating
estimates early and quickly in the life-cycle process when require-
ments and development environments are not fully defined. It
should also allow task detail to be added incrementally as functions,
activities, and other information become more completely defined.
Since many unknowns exist early in the estimating process, the
tool should reflect degrees of uncertainty based on the level of
detail input (risk analysis). In general, the tool should provide
sufficient information to allow initial project resource planning as
well as reasonably early go or no-go decisions.

86 � Software Sizing, Estimation, and Risk Management

� Be based on software life-cycle phases and activities. The tool
should be capable of providing estimates for all phases and activ-
ities of the most commonly used software life-cycle models. It
should allow the organization to decompose and map software
development tasks into those phases and activities, as well as
support a program WBS. In addition, it should allow for what-if
situations and include factors for design trade-off studies.

� Understand language and application impacts. It should allow for
variations in application languages and application function. It is
very important that the tool provide estimates specific to the
application of the software project, since the associated cost driver
settings, and life-cycle phases could be unique to each application.

� Provide accurate size estimates. The size of a software development
project is a major cost driver in most estimating tools, yet size is
one of the most difficult input parameters to estimate accurately.
The tool should include the capability to help estimate the size of
the software development project or at least help define a method
for estimating the size.

� Provide accurate schedule estimates. Schedule overruns are com-
mon and can be extremely costly. The software estimating tool
should be able to provide accurate schedule estimates. The purpose
of scheduling is not only to predict task completion given task
sequence and available resources, but also to establish starting and
ending dates for the associated work packages and life-cycle phases.

� Provide maintenance estimates separately. The software estimating
tool should be able to provide software maintenance estimates as a
separate item. Software maintenance includes such activities as cor-
recting errors, modifying the software to accommodate changes in
requirements, and extending and enhancing software performance.21

Organizing the Estimating Process

While a rigorous, repeatable estimation process will most likely result in
an accurate range projection of the size and cost of an application,
estimator inexperience or bias and the different experience levels of
different estimators can undermine the potential for achieving a valid and
accurate estimate. To overcome this basic fact of life, you must use a
documented and standardized estimation process and apply standardized
templates to collect and itemize tasks. Doing so will help ensure the
information you gather is complete and that the subsequent analysis
follows a proven process. It will also help you document, for historical
purposes, the processes and assumptions you have used to develop the

Executing the Estimate � 87

estimate and to record the results of each estimation activity. See the
Postestimation Process Evaluation Questionnaire (in Chapter 4) for assess-
ment checklists.

Delphi and Wideband Delphi

Following a rigorous process is essential to arriving at a useful estimate that
is relatively free of the bias that results from estimators who have prede-
termined opinions or agendas, who are inexperienced, or who have
divergent objectives or hidden agendas. You can further offset the effects
of these factors that lead to biased estimates by implementing the Delphi
estimation method as an integral part of the estimation process. With this
method, several expert teams or individuals, each with an equal voice
and an understanding up front that there are no correct answers, start
with the same description of the task at hand and generate estimates
anonymously, repeating the process until consensus is reached. Creating
multiple estimates serves to eliminate any biases and hidden agendas.

Barry Boehm developed an alternative to the standard Delphi
approach, known as Wideband Delphi.22 Wideband Delphi facilitates
interactions of estimation teams and helps them to draw on their actual
experience to build a complete task list or detailed work breakdown
structure for major activities, which is necessary to estimate the size of
the project, conduct bottom-up estimates of the required effort, and
develop and time-phase the activity network. It is an effective technique
for addressing many problems in the estimation process, such as deter-
mining how large subsystems will be, how complex the components will
need to be to implement a specific subsystem, what productivity can be
expected, and what effect reaching Level 3 in the CMMI will have on
productivity projections.

A Wideband Delphi session is initiated by presenting to the participants
a specification of the problem or a high-level task list or project schedule.
Starting with this information, each participant produces a detailed project
task list; a list of associated quality, process, and overhead tasks; a
description of estimation assumptions; and a set of estimates describing
the tasks and the overall project. Figure 3.3 illustrates the seven steps that
comprise the Wideband Delphi method.

The planning step entails defining the problem to be estimated, select-
ing the participants, and briefing them on the requirements at a kickoff
meeting. At the meeting, project management focuses the attention of the
participants on the estimation problem, identifies expectations and require-
ments, recommends an estimation method, technique, or tool, and identifies
the exit criteria that, when met, will end the process. Each participant

88 � Software Sizing, Estimation, and Risk Management

then applies the recommended method, etc., to the core assumptions and
prepares initial task lists and estimates. The participants then convene for
the estimation meeting, during which a moderator presents the independent
estimates without identifying their authors. Step 3 (individual preparation)
may be repeated several times in order to produce a more comprehensive
task list and to refine the estimates toward the exit criteria. In Step 5
(assembling tasks), the moderator or project manager consolidates the
individual estimates, after which the entire team reviews the results. If the
exit criteria have been satisfied, the process is concluded. The final result
is a range of estimates that represent a more realistic projection of tasks,
size, cost, or schedule than could result from a single estimate.

The process of estimation in general leads to an imprecise, albeit
educated, projection of a project’s size, cost, schedule, and required tasks
as well as an initial identification of the risks that could occur during the
acquisition, development, or update of the software product. If the esti-
mates were completely accurate and could be verified as such, they would
be predictions, not estimates. The major benefit of the Wideband Delphi
technique is that it elicits the perspectives of multiple experts to arrive at
a range of estimates that can then be normalized to filter out the initial
extreme values that may result from differences in estimator experience,
their biases, and their agendas, and reach a realistic projection. You may
be wondering at this point if this seemingly major effort is worth the

Figure 3.3 Wideband Delphi method.

Kickoff

Planning

Individual preparation

Estimation meeting

Assembling tasks

Review results

Completing
 the estimate

Executing the Estimate � 89

money and time it requires. If you consider the dramatic effects inaccurate
estimates have on a project and the significant risks that result, you may
well consider this method to be relatively inexpensive insurance.

Activity-Based Estimates

Another way to estimate the various elements of a software project is to
begin with the requirements of the project and the size of the application,
and then, based on this information, define the required tasks, which will
serve to identify the overall effort that will be required. Table 3.7 provides
a summary of the numerous ancillary tasks a successful project must
consider in addition to those that must be conducted to actually develop
the software product.

As Table 3.7 demonstrates, the major cost drivers on a typical project
are focused on the non-coding tasks that must be adequately considered,
planned for, and included in any estimate of required effort. Of course,
not every project will require all of these tasks, and you should tailor the
list to the specific requirements of your project, adding and deleting tasks
as necessary and modifying task descriptions if required, and then build
a task hierarchy — that usually takes the form of a WBS — that represents
how the work will be organized and performed.

The resulting work breakdown structure is the backbone of the project
plan and provides a means to identify the tasks to be implemented on a
specific project. It is not a to-do list of every possible activity required
for the project; it does provide a structure of tasks that, when completed,
will result in satisfaction of all project commitments. With this approach,
the development of the WBS is especially critical for deriving an accurate
cost projection because it identifies what work has to be performed and
the overall relationships of the tasks that comprise the work.

The WBS is an important element of the estimation process for three
reasons. First, it enables the estimator, early in the process, to perform a
bottom-up estimate based on projected work activities that are scaled to
the size of the project and the projected tasks that must be performed.
Second, with a detailed WBS, project management can develop an opti-
mum projection of the tasks to be performed versus effort to be expended
by trading off the tasks defined in the WBS against the available funding.
Third the WBS is critical to estimating a project, because not understanding
the full range of tasks required to support a project can create a host of
problems such as incorrect staffing levels (overstaffing or understaffing),
assigning the wrong personnel mix, overselling, overworking, the need
to condense activities, etc., that will ultimately lead to missed delivery
dates, poor deliverable quality, the disenchantment and poor morale of
the project team. and the disappointment of the stakeholders.

90 � Software Sizing, Estimation, and Risk Management

Table 3.7 Sample Project Task Summary

Task Area Task Description

Management and
Project Support

Investment. Plan and implement the procedures and
tools required to achieve and initially sustain full
operational capability (FOC) [and the operational and
economic return on investment estimated in the
project’s benefit analysis ROI and economic analysis].
Activities are conducted from the time of program
initiation through the complete fielding,
implementation, and testing required to meet FOC
requirements. This activity includes elements from the
beginning of the program through purchases of
operational systems, upgrades to the system to satisfy
approved requirements, and other initial items (e.g.,
initial training, spares, supplies, etc.). Also included are
the elements to implement the system, such as
implementation and acceptance team testing, facility
construction, and site activation, upgrades, and disposal
or reuse.

Project management. These tasks provide project
planning, administrative services, project control, and
support and will establish the environment essential for
controlling the project. The tasks define the business
and administrative planning, organization, direction,
coordination, control, and approval actions designated
to accomplish overall program objectives. Examples of
the activities are cost, schedule, performance
measurement management, warranty administration,
contract management, data management, vendor
liaison, subcontract management, etc.

Contracting and contract monitoring. These tasks plan
and execute the requirements for contracting and
contract monitoring and the acceptance of deliverables.

Customer and user support. Planning, execution, and
support of a customer and user program to ensure these
parties are adequately involved during the project.

Documentation. These tasks will develop, document,
conduct, and support the contractual training
requirement.

Metrics and measures. These tasks will plan, identify,
collect, evaluate and report issue based metrics to
monitor quality, project status and health, progress, and
risk.

Executing the Estimate � 91

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Management and
Project Support

Risk management. All technical effort required to
identify program risks of all types; assess and quantify
their likelihood of occurrence and potential adverse
impact; develop risk mitigation strategies and plans; and
monitor measures to indicate the need to implement
mitigation plans.

Data management. All management activities required
to identify required data items; select and tailor project
data requirements; prepare contracting requirements
and delivery structure; monitor delivery, review, and
acceptance of data deliveries; and archive and distribute
data items.

Budget, schedule, and financial management. All
management activities required to identify required
documentation structure, and content; prepare and
execute the contract; monitor delivery, review, and
acceptance of data deliveries; and archive and distribute
data items.

Process and product standards, method and tool
selection, documentation, implementation, and
monitoring. This area includes all tasks needed to
establish the standards for the project and to develop
the standards required for all major processes and
underlying methods as well as standards for products,
artifacts, and documentation that are consistent with the
methods used. Also included are criteria that can be
used to evaluate compliance with the standards and the
acceptability of the products developed or acquired.

Technical Concept exploration. This task includes all activities
associated with the study, analysis, design development,
and testing involved in investigating alternative methods
of delivering prototype(s) or end item(s) to fulfill a
requirement.

System engineering. This task area involves the
technical and management efforts of directing and
controlling a totally integrated engineering effort of a
system or program. It encompasses the systems
engineering effort to define system alternatives and
associated integrated planning and control of the
technical program efforts of design engineering,
specialty engineering, production engineering, and

92 � Software Sizing, Estimation, and Risk Management

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Technical integrated test planning. It also includes the systems
engineering efforts required to transform an
operational need or new requirement into a description
of system requirements and a preferred system
configuration; and the technical planning and control
effort required to plan, monitor, measure, evaluate, and
direct the management of the technical program.

Database standards, definition, and development. This
is the effort required to plan, implement, and execute
in an integrated fashion the activities associated with
the development of database definition standards and
a single database dictionary to support multiple
applications, functional disciplines, and the operational
(service) units that will be supported.

Requirements specification and validation. This is the
effort required to plan, define, specify, and validate the
basic requirements for the system. These requirements
will provide the basis for the functional capabilities to
be supported by the software configuration.

Requirements translation. The effort required to
translate requirements into a functional set of
requirements to be allocated to the software
organization for implementation.

Trade-off analysis. Conduct whatever trade-off analyses
are required to validate system assumptions or select a
design approach for either the total system or for the
software component alone. Where required, the
software development organization will support the
conduct of these trade-off analyses.

Design synthesis. Defining and documenting the top-
level design of the system and specifying to the
subsystem level the functional requirements for each of
the three software subsystems and the database. In
addition, the systems engineering organization will
define the top-level requirements for the database and
specify the technical requirements for accessing the
database for each of the remote sites as well as the
centralized facility.

Executing the Estimate � 93

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Technical Systems design. These tasks will define the basic
requirements of the application and translate these into
subsystem architecture for implementation by the
development organizations.

Subsystem design. These tasks will translate the system
design into subsystem architecture for implementation
by the development organizations.

Software architecture definition. Defining and
documenting a high-level architecture from the
functional specifications and system design provided by
the systems engineering organization.

Software development. This task encompasses the
effort required to plan, implement and execute all
activities required to develop the software deliverable.
It may include the lease, purchase, or modification of
products that assist in the planning, design, testing, de-
bugging, validation, and documentation of the
application software necessary to automate a specific
function or operation and integrate that function into
the overall system. In the case of legacy software
development, these activities should reflect the amount
of code to be transferred without modification,
transferred with minor modification, bridged,
redesigned, and eliminated. For contractor-developed
software, include architecture and unit definition,
coding, and unit test completed prior to integration
testing and other contractor-related activities.

Database development. This task captures the activities
associated with a variety of data types and includes all
design of the logical data model to support the
applications: DBMS requirements analysis; file design;
data standardization and configuration management;
data transitioning, conversion and migration; and data
validation. Include all activities associated with the
requirements for conforming with data standards or
participation in activity for the data element dictionary
development. Included are the COTS DBMS licenses to
support the application development.

94 � Software Sizing, Estimation, and Risk Management

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Assurance Quality assurance. The activity required to plan,
implement, execute, and analyze the quality assurance
process to evaluate products and processes against
project requirements, contracts, and standards.

Support analyses. Planning and conduct of any analyses
required to verify the system design project, evaluate
the expected performance, or investigate the technical
integrity of the system. These analyses can be requested
by any organization within the project and may require
support from the software organization or other project
organizations such as logistics.

Structured inspections. These tasks plan, execute,
evaluate, and monitor the structured inspection process
required to identify and remove defects and track
against rework projections.

Hardware–software integration. If the system software
will be assembled and integrated in a series of
progressive builds, all of the technical effort required to
verify that the build of the software product will load
and operate on the operationally configured hardware
suite.

System architecture validation. These tasks encompass
the activity necessary to plan, develop, chair, and
conduct all project reviews. Those conducting these
tasks will be technically responsible for all project
documentation submitted to the customer and for any
updates or notifications released; will also chair all
program technical boards or committees and serve as
program office technical representative at the customer
review meetings.

Development testing. These tasks include the test and
evaluation conducted to: (a) demonstrate that the
engineering design and development process is
complete; (b) demonstrate that the design risks have
been minimized; (c) demonstrate that the system will
meet specifications; (d) estimate the system’s utility
when introduced; (e) determine whether the

Executing the Estimate � 95

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Assurance engineering design is supportable for operational use;
(f) provide test data with which to examine and evaluate
trade-offs against specification requirements, life-cycle
cost, and schedule; and (g) perform the logistics testing
efforts to evaluate the achievement of supportability
goals and the adequacy of the support package for the
system (e.g., deliverable maintenance tools, test
equipment, technical publications, maintenance
instructions, and personnel skills and training
requirements, etc.). Development test and evaluation
includes all contractor and in-house effort and is
planned, conducted, and monitored by the customer.

Technical monitoring. This task encompasses the activity
required to plan, define criteria for, execute, and analyze
the technical integrity of all data developed or used by
the project. Through a series of project reviews and
audits, the technical monitoring organization will assess
the status of the program.

Independent verification and validation (IV&V).
Planning, implementation, and execution of all activities
associated with the independent study, analysis,
modeling, and testing involved in the independent
evaluation of products against their requirements and
the integrity of technical baselines to fulfill a
requirement. This element encompasses the systems
engineering effort required to analyze the technical
program efforts of design engineering, specialty
engineering, production engineering, and integrated
test planning. It also includes the project efforts to
transform an operational need or statement of
deficiency into a description of system requirements
and a preferred system configuration; and the technical
planning and control effort for planning, monitoring,
measuring, evaluating, directing, and executing the
technical program. It specifically excludes the actual
design engineering and the production engineering
tasks performed by the project.

96 � Software Sizing, Estimation, and Risk Management

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Assurance Operational testing. These tasks include support of tests
conducted by organizations other than the developer
to assess the prospective system’s utility, operational
effectiveness, operational suitability, logistics
supportability, cost of ownership, and needs for
modifications. These tasks encompass such tests as
system demonstration, qualification, operational test
and evaluation, etc., and support of testing that
demonstrates the operational capability of the delivered
system. They include developer support provided
during this phase of the testing and also performing the
logistics testing efforts required to evaluate the
achievement of supportability goals and the adequacy
of the support for the system.

System test and evaluation. These tasks will plan,
develop, execute, and support the functional and
system testing.

Software integration and testing. These tasks involve
testing and integrating all software in accordance with
project requirements and releasing integrated builds to
the test and evaluation organization for functional
testing.

Specialized testing. These tasks will plan, implement,
execute and analyze tests specifically required to
demonstrate product or process compliance to external
requirements such as safety, security, operational factors.

Certification. These tasks support all activities required
to certify the product prior to operational use, including
security certification, privacy certification, safety
certification, interoperability certification, operational
certification, etc., that are unique to each project.

Documentation User documentation. Includes the preparation of all
technical publications required to use, operate, and
maintain the system hardware and software.

System operating manuals. All efforts to prepare
manuals that explain how the user will interact with the
systems application software to perform day-to-day
operational functions.

System administration manuals. All efforts to prepare
manuals for use by system administrators and system

Executing the Estimate � 97

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Documentation operators that describe the procedures for registering,
changing, and deleting users; entering their individual
access privileges; updating system databases; starting
up and rebooting the system; archiving and restoring
data, etc.

System operator manuals. All work to prepare the
manuals system operators and maintainers require to
troubleshoot system problems, make necessary minor
repairs or component replacements, and restore the
system or subsystem to operational use.

Training plan. This activity includes all work required to
prepare an overall plan for accomplishing system
training, including the identification of overall training
objectives, audience skill and knowledge levels, course
types and content, delivery and instructional methods,
unique training resource requirements, etc.

Training curricula development. All effort required to
prepare detailed course curricula, including course
objectives, training module flow and content, unique
course material requirements, performance
measurement techniques, etc.

Training course development. All work required to
prepare unique course materials, which typically
include instructor guides, student workbooks,
presentations, student exercises, instructional videos,
computer-based training software, etc.

Technical documentation. Activities associated with the
preparation, revision, and reproduction of drawings,
technical documents, plans, procedures, manuals, and
other system documentation required by the contract
or requested by the customer.

Delivery and
Support

System maintenance. Includes providing maintenance
and repair for the system regardless of who has
ownership. These activities include problem
identification and analysis, defect correction, system
update, programmed maintenance, component repair,
minor facilities modifications and upkeep, support
equipment acquisition and support, tool calibration,
support data, and administrative support required for
maintenance operations.

98 � Software Sizing, Estimation, and Risk Management

Table 3.7 (continued) Sample Project Task Summary

Task Area Task Description

Delivery and
Support

Site surveys. All the effort required to characterize the
site environment, locate the proposed equipment,
design the equipment installation, identify needed
communications and facility upgrades, and acquire
other site unique information required to successfully
field the system.

Site preparation. All work needed to prepare the site for
system installation. Typical tasks include providing
additional ventilation, cooling, and electrical power;
upgrading or adding LAN connections; minor facility
construction; etc.

Site assembly and installation. All the efforts and minor
materials required to assemble the system hardware and
software components, install them at their site locations,
and check the operation of the integrated system prior
to formal system testing.

System operations and support. Include all activities
required to operate and sustain the system after
installation at all sites prior to system turnover. They
include the activities required to manage and maintain
the hardware and software, whether centrally or at each
unit, to sustain operations throughout the lifecycle
along with all activities associated with the operations
of the system and conducting operator familiarization
at user sites.

Site testing and acceptance. These tasks include
activities for system-related production test activities
associated with the integration and evaluation of the
system at a user site, including the test equipment,
hardware, and/or software required to obtain or validate
data. This activity also includes the planning, execution,
support, data reduction, and reports from such testing
and test items consumed in the conduct of such
operations, and any contracts, as well as the design and
production of models, specimens, fixtures, and
instrumentation in support of the test program. It also
includes the system operational test activities to ensure
proper system installation and operation and all efforts
associated with the design and production of models,
fixtures, and the instrumentation in support of the test
program.

Executing the Estimate � 99

Step Six: Quantify Risks and Risk Analysis

Cost Estimation Risks

“What distinguishes the best organizations and best managers is not just
how well they do in their successful efforts, but how well they contain
their failures.”23 The best managers of software projects seem to have an
uncanny ability to anticipate what can happen to their projects and devise
just-in-time mitigation approaches to avoid the full impacts of the prob-
lems. In reality, this ability is not magic nor is there anything uncanny
about it. It is simply the skillful application of well known risk management
techniques to the well known problems of software management. Unfor-
tunately, too many software managers are skilled in seeing potential risks
and then ignoring them outright.

“The problem of project management, like that of most management
[is] to find an acceptable balance among time, cost and performance.”24

What was once well controlled now becomes less well managed, resulting
in risk. “An effective risk-management program is dynamic and ongoing
throughout the development process and requires the participation of
everyone involved.”25

Before we explore the risk management process and how to apply it
to the risks associated with sizing and estimation, it is important to
understand what a risk is and that a risk, in itself, does not necessarily
pose a threat to a software project if it is recognized and addressed before
it becomes a problem. Many events occur during software development.
As Pfleeger explained:

We distinguish risks from other project events by looking for
three things:

1. A loss associated with the event. The event must create a situation
where something negative happens to the project: loss of time,
quality, money, control, understanding, and so on. For example,
if requirements change dramatically after the design is done, then
the project can suffer from loss of control and understanding if
the new requirements are for functions or features with which
the design team is unfamiliar. A radical change in requirements
is likely to lead to losses of time and money if the design is not
flexible enough to be changed quickly and easily. The loss
associated with a risk is called the risk impact.

2. The likelihood that the event will occur. We must have some idea
of the probability that the event will occur. For example, suppose
a project is being developed on one machine and will be ported
to another when the system is fully tested. If the second machine

100 � Software Sizing, Estimation, and Risk Management

is a new model to be delivered by the vendor, we must estimate
the likelihood that it will not be ready on time. The likelihood
of the risk, measured from 0 (impossible) to 1 (certainty) is called
the risk probability. When the risk probability is 1, then the risk
is called a problem, since it is certain to happen.

3. The degree to which we can change the outcome. For each risk,
we must determine what we can do to minimize or avoid the
impact of the event. Risk control involves a set of actions taken
to reduce or eliminate a risk. For example, if the requirements
may change after design, we can minimize the impact of the
change by creating a flexible design. If the second machine is
not ready when the software is tested, we may be able to identify
other models or brands that have the same functionality and
performance and can run our new software until the new model
is delivered.”26

Risk management enables you to identify and address potential threats to
a project, whether they result from internal issues or conditions or from
external factors that you may not be able to control. As we have discussed,
problems associated with sizing and estimating software potentially can
have dramatic negative effects. The key word here is potentially, which
means that if problems can be foreseen and their causes acted upon in
time, effects can be mitigated. The risk management process is the means
of doing so.

The risk management process is straightforward and, from a process
standpoint, one of the easier disciplines to plan and implement. You
should be able to complete a fully functional risk management process —
that is, devise a policy, plan, and procedures, perform essential training,
implement a tool loaded with an initial set of risks, and conduct an initial
risk identification session — within 30 days of identifying your require-
ment. That is the easy part. Ideally, an organization’s management will
recognize that the risk management process is an essential management
tool and thus value, support, and effectively use it. However, in reality,
the bias against risk management is often so strong that it may take years
to achieve cultural acceptance and integration of the process if they can
be achieved at all. This peculiar bias has three primary causes:

� Risk management is the antithesis of the can-do attitude. Risks
highlight the potential for failure and remind management of factors
which, should they occur, will affect the expected success of a
plan or endeavor.

� Upper management often buys into the stereotype that risk man-
agement is merely an attempt to establish excuses to justify future
failures, and thus will not pursue or encourage the discipline.

Executing the Estimate � 101

� An organization often possesses an arrogance that leads to a
corporate culture in which the lone hero slays the dragons one at
a time, which is characterized by the attitude: “There is nothing I
can’t overcome with hard work, just bring it on.” Risk management
removes the hero from the process because problems are antici-
pated and addressed as a normal course of business.

Many managers incorrectly perceive that if they identify risks that subse-
quently become problems they will be held responsible for the problems.
In fact, the opposite is true. By using risk management techniques to
anticipate potential risks, the manager is protected against liability because
if the problem does occur, it can be demonstrated that the cause was beyond
what any prudent manager could have foreseen. As Capers Jones states:

There is a major cultural barrier to accurate estimation [and
schedules] which must be highlighted …. If an early estimate
[or schedule] predicts higher cost, longer schedules or lower
quality than client or manager expectations, there is a strong
tendency to challenge the validity of the estimate. What often
occurs in this situation is that the project manager is directed
to recast the estimate so that it falls within preset and arbitrary
boundary conditions.”27

This situation is what leads to the bias against risk management, because,
as the Bible saying goes, “A prophet is not without honor, except in his
own country.” Managers do not necessarily want to be told that an estimate
is considered high risk, especially before the estimate is used to establish
a firm project commitment, when they are challenged by a customer to
“come in under a number” or “deliver by a given date.”

In order for risk management to become a cultural imperative, that is,
a discipline that is essential to the health of their enterprise, senior
management must be convinced that it will maximize the organization’s
potential by maximizing the time and resources available to successfully
address risks before they become problems and damage the organization
as a whole. Indeed, risk management will become an imperative if senior
management understands that having a method in place to anticipate risks
and prepare mitigation plans will eliminate the need for crisis management
that requires the application of any and all resources to address a problem,
at considerable expense to other long-term activities and commitments.

Although cost, schedule, and product performance risks are inter-
related, they can also be analyzed independently. Various methods are
used to quantify risks associated with these elements of a project, including
table methods, analytical methods, knowledge-based techniques, and
questionnaire-based methods. In practice, risks must be identified as

102 � Software Sizing, Estimation, and Risk Management

specific instances in order to be manageable. Chapter 10 titled “Risk Man-
agement Process” discusses risk and risk handling in detail.

Summary
This chapter covered Steps 4 through 6 of the ten-step estimation process:
software sizing, preparing the baseline estimate, and quantifying risk and
risk analysis. Completing these steps forms the foundation for the rest of
the estimation, planning, and successful execution process.

Endnotes
1. Jones, Capers. “Software Cost Estimation in 2002.” CrossTalk: The Journal

of Defense Software Engineering, June 2002. 4.
2. Ferens, Daniel, L. Fischman, T. Fitzpatrick, D. Galorath, and D. Tarbet.

“Automated Software Project Size Estimation via Use Case Points.” Report
to the U.S. Government, January 2002.

3. Peters, Kathleen. “Software Estimation.” Software Productivity Centre:
Resources: Estimation. 1999. 9 Sept. 2005. <http://www.spc.ca/downloads/
resources/estimate/estbasics.pdf>

4. Jones, Capers. Estimating Software Costs. New York: McGraw-Hill, 1998.
5. Porter, Ralph, and Joseph Lees. “Improve Software Cost Estimating.” Case

Studies: General Dynamics Electronic Systems. 2002. 3 Jan. 2003.
<http://www.galorath.com/customer_case-dynamics.html>

6. Clark, Brad. “Quantifying the Effect of Process Improvement.” IEEE Soft-
ware, 17. no. 6, November–December 2000. © IEEE 2000.

7. Galorath, Dan. “Software Productivity Laws.” Arthur Anderson Symposium,
1997.

8. Galorath Incorporated. SEER-SEM Internal Mathematical Specification. El
Segundo, 2004.

9. International Society of Parametric Analysis. Parametric Estimating Hand-
book, 2nd ed. Sponsored by the U.S. Department of Defense. Chandler,
2002. <http://www.ispa-cost.org/PEIWeb/newbook.htm>

10. Streibel, Barbara, Brian L. Joiner, and Peter R. Scholtes. The Team Hand-
book, 2nd ed., Madison: Joiner/Oriel Inc., 1996.

11. DeMarco, Tom and Tim Lister. Peopleware; Productive Projects and Teams,
2nd ed. New York: Dorsett House, 1999.

12. Booch, Grady. The Software Development Team Whitepaper. Cupertino:
Rational Software Corporation, 1999.

13. Federal Aviation Administration Acquisition System Toolset. FAA Govern-
ment Pricing Handbook. Sponsored by Federal Aviation Administration,
March 1999. <http://fast.faa.gov/pricing/>

14. Webber, Blaine. Personal interview, 2004.

Executing the Estimate � 103

15. Jones, Capers. “Software Cost Estimation in 2002.” CrossTalk: The Journal
of Defense Software Engineering, June 2002. 4.

16. Grehan, Rick. “SEER-SEM Offers Realistic Forecasting for Programmers.” Byte
Magazine, September 1994. <http://www.byte.com/art/9409/sec4/art6.htm>

17. Norden, P.V. and B.V. Dean, Eds., Useful Tools for Project Management,
Operations Research in Research and Development. New York: John Wiley &
Sons, 1963.

18. Galorath, Dan, Lee Fischman, and Dan Ferens. “Critical Mass: Advancing
the Software Sizing State of the Art, Progress and Lessons Learned.”
International ISPA Conference, Frascati, Italy, 2004.

19. Boehm, B.W., C. Abts, A.W. Brown, S. Chulani, B. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece. Software Cost Estimation with COCOMO
II. Upper Saddle River: Prentice Hall, 2000.

20. Globaltester.com. “Software Cost Estimation,” 2004. <www.globaltester.com>
21. International Society of Parametric Analysts. Parametric Estimating Hand-

book, 2nd ed. Sponsored by the U.S. Department of Defense. Chandler,
2002. <http://www.ispa-cost.org/PEIWeb/newbook.htm>

22. Boehm, Barry. Software Engineering Economics. Upper Saddle River: Pren-
tice Hall, 1981.

23. DeMarco, Tom. Why Does Software Cost So Much? New York: Dorsett
House, 1995. 62.

24. Norden, P.V. and B.V. Dean, Eds., Useful Tools for Project Management,
Operations Research in Research and Development. New York: John Wiley &
Sons, 1963.

25. Molt, George. “Risk Management Fundamentals in Software Development.”
CrossTalk: The Journal of Defense Software Engineering, August 2000.

26. Pfleeger, Shari Lawrence. Software Engineering: Theory and Practice, 2nd ed.
Englewood Cliffs: Prentice Hall, February 2001.

27. Jones, Capers T. Assessment and Control of Software Risks. Englewood
Cliffs: Prentice Hall, February 1994. 158.

105

Chapter 4

Planning and
Controlling the Project
via the Estimate

For which one of you, when he wants to build a tower, does
not first sit down and count the cost, to see if he has enough
to complete it? Otherwise, when he has laid a foundation, and
is not able to finish, all who observe it begin to ridicule him,
saying, “This man began to build and was not able to finish.”

Luke 14:28
“The Interlinear NASB-NIV”

Introduction
In the previous chapters we focused on how to build a viable project
estimate. This chapter encompasses validation of the estimate, obtaining
lessons learned, and use of the estimate throughout the project.

Step Seven: Estimate Validation and Review
Once you have accomplished the first six of the ten steps, you should
have a reasonably good estimate, but should have does not mean do have.

106 � Software Sizing, Estimation, and Risk Management

In order to make certain that the estimate is viable, it should be validated,
verified, and reviewed. Projects that fail to validate their estimates because
of tight schedules, fear of exposure, unavailability of resources, or any
other reason run the risk of providing an erroneous basis for the entire
project, the cost of which would far exceed any expenditures needed to
validate the estimates.

Estimate validation simply means reviewing and confirming the integrity
of the estimate, ensuring the estimate was performed properly, and that
the correct functionality was estimated. While the validation process is in
itself straightforward, its application can involve some complexity. There
are many ways to validate an estimate:

� Evaluate both the process used to derive an estimate and the
estimate that resulted.

� If possible, an independent and objective individual who was not
involved in preparing the estimate should conduct the validation.

� Use a separately derived set of inputs or use a method or tool
different from that used to derive the original estimate.

� Thresholds should be established in advance describing what
actions might be taken based on differences between the estimate
and the validation results (e.g., below 10 percent, use management
discretion; 10 to 30 percent, meet to resolve differences; 30 to 70
percent, analyze both estimates to identify the causes of the dif-
ference; 70 to 100 percent, reestimate).

A validation will also affirm the process used to develop the estimate and
the currency of the information used, and it will serve to expose analyst
bias and isolate errors or erroneous assumptions. In conducting the
validation, a standard checklist can be useful, such as that created by
Robert Park1 who proposed seven questions to ask when assessing your
willingness to rely on a cost and schedule estimate:

1. Are the objectives of the estimate clear and correct?
2. Has the task been appropriately sized?
3. Are the estimated cost and schedule consistent with demonstrated

accomplishments on other projects?
4. Have the factors that affect the estimate been identified and

explained?
5. Have steps been taken to ensure the integrity of the estimating

process?
6. Is the organization’s historical evidence capable of supporting a

reliable estimate?
7. Has the situation changed since the estimate was prepared?

Planning and Controlling the Project via the Estimate � 107

You may be asking at this point why an estimate must be validated at all
if a mature process has been followed and abundant information was
available upon which to base the estimate. The reason is that the estimation
process is most often conducted under considerable pressures, such as
those that result from having limited time and taking shortcuts, from having
to rely on participants who do not have the time to adequately support
the effort, and from basing the estimate on information that is not as
reliable as it was assumed to be at first blush.

In addition, a project will often include numerous stakeholders with
different agendas who are heavily invested in the success of the project.
This adds to the pressures on the estimation team and affects the team’s
ability to present a truly unbiased estimate of project size, cost, and
schedule. Validation is also important because so many risks can result
from even a reasonable estimate, let alone an inaccurate estimate. Valida-
tion will allow you to objectively evaluate the estimation process used
and the accuracy of the projections — which represents a clear path
toward understanding what your project will actually require to succeed.

A formal validation process, which is not without a cost in time and
effort, is planned and scheduled, and its execution adheres to a rigorous
process intended to maximize the potential to identify errors, inconsisten-
cies, breakdowns in process, and shortcuts and trade-offs that may have
degraded the validity of the estimate. It will identify the issues and
problems associated with the estimate and lead to their resolution or, at
least, to a greater understanding of them. Despite the effort required, it
is worthwhile considering the potential savings in time and money down
the line and the fact that validation will preserve the integrity of the project.

Estimate Review Process

The review process can provide the information you need to identify any
problems with the estimate. Then you can work to contain or mitigate
the associated risks so as to reduce the likelihood that they will occur or,
if they do, to mitigate their effects. If the risks you identify are not mitigated
and do become problems, you will be forced to make trade-offs to attempt
to recover lost schedule and resources. If you base your project on
incorrect estimates, you likely will find yourself without the resources to
achieve your project goals. This will most likely lead to uncontrolled
restructuring and then to an unrealistic compression of the schedule and
all of the problems concomitant to that action. If this scenario becomes
reality, your goals will be severely compromised or your project will fail
altogether.

The easiest way to avoid this scenario is to identify and correct any
problems in the estimate before it is used to establish budgets or constraints

108 � Software Sizing, Estimation, and Risk Management

on your project process or product engineering. You do so by conducting
a rigorous, structured, and formal validation of the estimate using objective
criteria to isolate problems with the estimate at their source. As we have
discussed, ideally you would assign an independent third party to ensure
an objective evaluation of the estimate, but in the real world this option
is usually off the table because of schedule constraints or because trained
resources that possess the required familiarity with the goals, requirements,
and expectations of the estimate are simply not available.

Estimate Review Activities

The following discussion focuses on alternative activities available when
you are reviewing an estimate.

Meta-analysis — This is the technique of using dif ferent project
estimating methods in conjunction with one another for validation pur-
poses. Analytic models are invaluable for quickly gaining insight into the
validity of an estimate.

High risk development concerns —Always assess the development
assumptions used to arrive at the estimate you are validating in order to
ensure they are accurate and can be sustained throughout the development
process. The following items should be considered high risk assumptions
regarding software development.

Below-the-line (BTL) costs — Costs for items such as compilers
and COTS tools, are considered “below the line” because, although
they are not directly associated with the development effort, they
are necessary to support it and frequently represent a sizable
proportion of project cost. In validating estimates, keep in mind
that effort estimates capture direct labor costs but not BTL costs.
Therefore, be sure to account for BTL costs by obtaining a detailed
accounting of all line items or take care to document the limited
scope in the ground rules and assumptions that went into the
estimate you are validating.
Extraordinary requirements — Work that explores new territory
carries more risk. Independently check to see how much of the
software that will be developed is routine and how much is exotic
(new technology).
“Not invented here” syndrome — Check to see that the devel-
opment staff is planning to maximize its use of outside resources.
If not, then time will be spent reinventing software wheels, which
are often the hardest things to reinvent! Here are some items to
look for:

Planning and Controlling the Project via the Estimate � 109

� The extent of the commercial basis of the overall development
environment included in the estimate. Are developers planning
to use a vendor-provided development environment and a
robust coding language?

� The extent to which code libraries will be used. Are the devel-
opers planning to purchase libraries or use those provided with
the development environment or language to accomplish cer-
tain tasks such as user and device interfacing or graphics? Is
the vendor viable?

� The extent to which the operating environment will be custom-
ized. Are the developers planning to “twiddle the bits” on OS
level routines and, if so, is it absolutely necessary that they do
so?

Requirements creep — Does the project have open-ended func-
tionality commitments or even a too-cozy relationship with end-
users that influenced the estimate? Has the project manager shown
iron-willed determination to freeze requirements and save changes
for future builds? Are there any to-be-determined (TBD) items in
the requirements documentation? If so, has a risk assessment been
done to define the potential risk of each TBD? Requirements creep
affects the size and architectural baseline; it has been repeatedly
identified as a major source of uncertainty in estimates of schedule
and effort.
Overstated productivity — This is a common assumption in
software estimates. Compare industry average estimates for pro-
ductivity against the developer’s own assessment. If the numbers
disagree by 10 to 15 percent or more, you should try to reconcile
them. Table 4.1 indicates productivity per effort-month for industry
averages and serves as a rule-of-thumb sanity check.

Cost per Unit of Code Developed

Cost per unit of code can be a useful metric for validation when you
know exactly what is and is not included. The key issue when using cost
per unit of code is consistency. What is included in the cost? What
comprises a line of code or function point?

Magic Bullets (Otherwise Known as Technical Leaps)

Some projects hinge upon a key technology or assumption. Magic bullets
can actually work or they can operate as blunt instruments that developers

110 � Software Sizing, Estimation, and Risk Management

have inadequate experience with. Identify each magic bullet, its chance
of failure, and what the impact of a failure will be. A PERT network is
useful for assessing a misfired magic bullet’s likely effect on a schedule.

Unrealistic Schedules

Unrealistic development schedules will lead to schedule overruns even if
the staff works overtime, partly because overworked developers are not
as efficient. One possibility for improvement is evaluating a schedule for
parallelizing development tasks, but be careful because this has often
been a failed silver bullet. Check with relevant software engineers to see
how separable development tasks are. Generally the best solution is to
build less software within the schedule or replan with an achievable
schedule.

Inaccurate Sizing

Because sizing directly drives the magnitude of an estimate, the uncertainty
and risk in software size translate directly into estimate risk and uncertainty.
The best way to attack this issue is to use several different methods of
sizing, including rough-order-of-magnitude, Delphi, bottom-up versus top-
down, and analogy to validate the sizing estimate. The Galorath size
methodology described in Figure 3.1 is extremely useful in clarifying size
ranges.

Table 4.1 Typical SLOC Productivity per Person-Month

Application Type
Least Lines
per Month

Likely Lines
per Month

Most Lines
per Month

Business mission critical 130 193 236

Business application 154 213 272

Command and control 118 173 224

Avionics flight 64 98 136

Manned space 29 57 86

Derived from simple SEER-SEM analysis based on 50,000 lines new, 20,
50, and 80 percent probabilities; includes effort from requirements
analysis through system integration and testing and the following labor
categories: direct labor software management, requirements analysis
design, code, test, configuration management, quality assurance, data
preparation.

Planning and Controlling the Project via the Estimate � 111

Source Lines of Code (SLOC) Definition

SLOC is a common metric in use today; unfortunately, SLOC has no
universal definition. If you receive an estimate of SLOC, the first thing to
do is ask what the definition is. If the definition is not consistent with
your standard, request a new count or ask for a sample of the code that
will reveal what percentage of lines is accounted for by items left in or
out. You can then adjust the SLOC estimate as appropriate. (See Chapter 5
for a detailed discussion on counting SLOC.)

Code Growth

Make sure that estimates for size include growth. Size estimates completed
early in a life cycle must have growth added to account for the unknowns
at the time of the estimate. (See Chapter 5 for code growth guidelines.)

Skepticism about Reported Size (Particularly with SLOC)

Developers who provide SLOC estimates often use quite rudimentary
means. Ask exactly how SLOC estimates were determined and try to find
secondary size estimates to serve as sanity checks. Also be certain that
all functionality in the specifications has been accounted for in the size
estimate. Refer to Chapter 5 for information on how to do so. If necessary,
help the developer construct a proper size estimate.

Counting Code

Some organizations count all delivered code, including reused or modified
code. Be certain of what is being delivered, and whether it is new, reused,
or modified.

Examining Range

An even-sized range distribution may mean range analysis was not applied
and instead a simple plus–minus percentage was applied to a single point
estimate. Ideally, three independent values are estimated for least, likely,
and most.

Complexity versus Risk

More complex modules mean higher risk. Obtain a comparative risk assess-
ment for the different modules being developed. Use the risk assessment

112 � Software Sizing, Estimation, and Risk Management

to further understand the stability of estimates for high risk modules versus
lower risk modules. If necessary, vary the size range used in each module.
This can be done by replacing the estimate for the least size with the
likely size value. Or use different probability levels for estimates of different
major computer programs to capture unusual risk, but document this
choice carefully. It is not normally done.

Careful Evaluation of Preexisting and COTS Software

Evaluate preexisting and COTS software very carefully. In validating esti-
mates, answer the following questions. What proportion of code will be
reused? Will reuse eliminate security concerns or solve the most complex
parts of the project? Is the additional code in fact COTS or will it require
substantial rework?

Off-the-Shelf Integration

When validating estimates associated with integration efforts, ask the set
of questions presented in Table 4.2.

Table 4.2 Integration Questions

COTS Characteristic
Cost Estimation Impact
on COTS Integration

Does the developer’s organization
already have experience with this
COTS software?

Yes reduces cost.

Is the COTS software vendor an
established company or a garage-
shop operation?

Use of an established firm will
reduce risk.

Is source code available? Yes reduces risk if the vendor is
shaky.

Is the developer planning on using
modified COTS?

Yes means higher costs associated
with rework.

Were COTS cognition estimates
based on product evaluations or
guesses?

Product evaluations offer greater
confidence.

Were round numbers used for size
estimates without backup?

Yes means the developer may have
guessed rather than analyzed.

Planning and Controlling the Project via the Estimate � 113

Function Point Counting Checklist

When presented with a function point count, carefully consider the fol-
lowing information.

Sanity Counts

Function point counts vary with counters. It is therefore useful to have a
second counter double check (conduct a sanity count) of some part of a
count before the entire count has been completed. By doing this, counting
methodology questions can be resolved early. Alternately, using a sizing
model can approximate the count quickly.

Lack of Convergence

Unless a counter is very experienced, a function point count should be
conducted over several iterations. The more experience a counter has,
the better he or she will understand the technique and be able to converge
on a reliable number.

Double Counting

Keep careful track of requirements and the resulting function point counts
to make sure that counts have not been replicated. The following are
some typical sources of double counting:

� Referencing a File More than Once
Files should be counted in relation to the boundary of the entire
application. For example, an external interface file is created com-
pletely outside the application boundary. On the other hand, an
internal logical file is created completely within the application
boundary. It should be clear that external and internal logical files
are counted only once in a particular application, regardless of
how often they are used.

� Confusing Designer’s and User’s Perspectives
Counting occurs from the user’s perspective, which means that
certain architectural details may remain hidden from the count and
will legitimately not be counted. Another source of perspective-
related confusion is the difference between physical and logical
files. Sometimes, what the user sees as one logical file may actually
reside in several physical files, while the opposite may also be

114 � Software Sizing, Estimation, and Risk Management

true. In either case, conduct the count as the user would see the
components.

Sample and Statistical Concerns

When validating estimates based on project histories, be sure to assess
the samples and statistics used and their associated risks.

Probability Level

The acquisition type of the project can determine the probability level of
the estimate. When comparing contractor estimates with your own, be
aware that a contractor’s acceptable risk varies with the type of contract.
A contractor may choose an estimate other than at the 50 percent prob-
ability. (Internal developments may also have the same issues with the
use of probability.)

On cost plus jobs, a developer’s overriding interest is in winning the
contract, and so he may offer a more daring estimate. An estimate
probability of 40 percent and even 30 percent may be chosen and could
lead to a 60 or 70 percent chance of a cost overrun.

On a fixed price award, a developer bears the expense of a cost overrun
and so is more fearful of bidding lower than practical. For such projects,
an estimate probability of 60 percent or even 80 percent might be chosen.

Compare your estimate range and the actual bid. If the bid lies at the
probability level in your estimate range that would be predicted by the type
of contract, then the estimates probably agree. You can sometimes directly
ask a contractor what probability level was chosen, but this information
may or may not be available to you.

Falsely Bounded Risk

A risk analysis may be populated with engineers’ and estimators’ assump-
tions that may not admit the full range of possible outcomes. One useful
countermeasure is comparing assumptions from different people and
program components (such as separate computer programs) so that you
can reconcile inconsistencies.

Bias

You must be careful to obtain a balanced sample, one that is not biased
in any way, and particularly by factors that are unrelated to the project
you are analyzing. Sample bias is a particular problem with small samples.

Planning and Controlling the Project via the Estimate � 115

Try to obtain a sample with characteristics that are consistent with the
project you are estimating.

Outliers

When assembling a sample to help you validate the estimate of a current
project, some values can lie well outside the common range; these are
called outliers. Outliers must be separately examined. An outlier may be
an unrepresentative event that should be ignored or it may offer special
lessons. An outlier that is valuable should not necessarily be included in
the main sample and in the sample statistics. It may instead be used to
offer instructive lessons outside the conventional statistical analysis.

Costs

Are Staff Costs Fully Burdened?

Ask the developer what its staff costs are, and make certain that the
monthly staff rate has been agreed to. Understand whether costs are fully
burdened or whether additional charges will be incurred; if so, ensure
that these costs are included in the complete cost estimate.

How Many Hours Are in a Staff Month?

A common United States standard is 152 hours per staf f month. If a
developer’s hours per month vary from what the estimate uses, you must
normalize the results to make a viable comparison. Multiply all effort-
month figures by the developer’s hours per month and then divide this
number by the hours per month that you are using. (Automated cost
models like SEER-SEM do this automatically.)

Staff and Effort Accounting

Does Overtime Count?

If the development staff is planning to use unreported overtime, this will
cause variation from the estimate.

What Level of Management Participates?

Account for labor directly applied to this project only. Confirm that the
developer has not included upper level (executive) management.

116 � Software Sizing, Estimation, and Risk Management

How Efficiently Is Staff Allocated?

Estimates most often assume an optimal staff profile. However, this optimal
profile is often not possible and you should check with the developer to
learn the true staffing plan.

Are Experience Levels Honestly Rated?

Developers often overstate the abilities of their people. Ensure that staff
ratings are determined on the basis of time-based experience rather than
more subjective evaluations. Also confirm that the staff being rated will
regularly be on this job; otherwise adjust the staff ratings.

Schedules

What Is the Proportion of Daily Billable Work Done?

Development staff do not always devote all their time to projects, partic-
ularly during the concept and early requirements phases. This circumstance
may cause the schedule to be lengthened beyond the estimate, which
often does not accept fractional staff amounts. Remember too that holidays
matter on a small project.

Will Development Have Lags?

When a development project is lagged, schedule estimates need to be
likewise adjusted. However, under certain circumstances an elongated
schedule may increase efficiency and save money. A sophisticated esti-
mating method will reflect this. Also consider a situation where you may
have to pay for a standing army while you wait for test facilities, other
projects work products, etc.

If Several Software Elements Are Developed,
How Are They Scheduled?

Undertaking the development of several software elements means that
the schedules for all of them must be coordinated, as shown in Figure 4.1

Developing all software elements at once may require too many staff
members; developing them serially conserves staff but may take too long.
Ask the development team for its phasing plan. Some elements may be
dependent on other elements (for example, element B cannot start until
element A is complete). These dependencies must be accounted for in
the detailed development schedule.

Planning and Controlling the Project via the Estimate � 117

Is It More Important to Save Time or Staff Cost?

Analytic models often determine an optimal solution based either on time
or effort. You must specify which to use and therefore must understand
what the developer’s goals are.

Sanity Check

When using a model like SEER-SEM the entire estimate can be compared
against an industry range. This can help identify areas of the estimate that
may have been overlooked or misunderstood. Also, check the top cost
drivers and ensure they are correct for this project. For example, if the
top driver is multiple site development make sure that is correct and
evaluate possibilities of performing a single site development.

Estimate Process Questionnaire
Table 4.3 is a sample checklist based on the SEI estimation checklist.28 It
has several fields including:

� Primary factor — The principal estimation factor that has a major
impact on the accuracy and relevancy of the estimate.

� Secondary factors — Contributing factors that enable the primary
factor and influence its accuracy, relevance, and consistency with
the requirements of the estimation requirement.

� Rating field — Allows rating of factors as high, medium, or low
to be assigned by the individual or team leader based on recent

Figure 4.1 Sample schedule correlation.

Trading support system

2005

Trading support system
New York hemisphere
Analyst support
Vendor data mining solution
Trading support
Client-server support infrastructure
Report system (SQL)
Chicago hemisphere
Prices database
Intranet library (Perl)
Report system

2006 2007

118 � Software Sizing, Estimation, and Risk Management

Table 4.3 Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

Did the estimation team have a clear
understanding of why they were doing
the estimate, what the organization
receiving it expected, and what their
specific objectives were?

� Were the objectives of the
estimate stated in writing and did
the organization receiving it agree
with them?

� Does the organization requesting
the assessment have a
documented life cycle to which
the estimate applies and was it
defined at the time the estimate
was developed?

� Did the estimation team identify
and document the tasks and
activities included in (and
excluded from) the estimate?

� Did the estimators ensure that the
tasks and activities included in the
estimate were consistent with the
objectives of the estimate and
were consistent with the
capabilities of the organization to
implement within the estimate’s
constraints?

Did the estimation team follow a
rigorous, documented sizing process
and validate the result through a
second size projection?

� Did the estimators follow a
structured process to estimate and
describe the size of the software
product, and was the team trained
and experienced in the process
used?

Planning and Controlling the Project via the Estimate � 119

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Did the rigorous process used by
the estimation team estimate and
describe the extent of reuse and
factor it into the estimate using
historical experience and
parameters?

� Were the processes used for
estimating size and reuse
documented and applied
consistently with the documented
process?

� Did the size and reuse
descriptions identify what was
included in (and excluded from)
the size and reuse measures used,
and did the estimators consistently
use the factors when developing
the estimate?

� Did the reuse measures
distinguish between modified
code and code that will be
integrated as-is into the system?

� Was size growth potential
documented and applied
consistently with the documented
processes?

� Did the estimators use definitions,
measures, and rules to describe
size and reuse that were
documented and consistent with
the requirements (and
calibrations) of the models used to
estimate cost and schedule?

Did the estimation team follow a
rigorous documented estimation
process?

120 � Software Sizing, Estimation, and Risk Management

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Did the estimators have training
and experience in the document-
ed, structured organizational
process that they used to relate
estimates to actual costs and
schedules of completed work?

� Were the cost and schedule
models used calibrated to relevant
historical data and was the calibra-
tion current with the planned
process and characteristics of the
product?

� Did the cost and schedule models
quantify demonstrated organiza-
tional performance in ways that
normalize for differences among
software products and projects
and for the specific specialized
requirements (safety, security,
operational factors) of the product
being estimated?

� Was the basis for the estimate the
requirements and needs of the
application rather than only an
un-normalized source line
projection?

� Were the cost and schedule model
parameters used for the estimate
validated when compared to
values that fit the models well to
past projects?

� Did the estimate address activities
such as interface design,
modification, integration, testing,
and documentation associated
with the project for newly
developed software and reuse
components?

Planning and Controlling the Project via the Estimate � 121

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Did the estimation team consider
data from projects that
implemented applications similar
to the one being projected, and
when required, were adjustments
made to reflect the specific
implementation characteristics of
the estimate being performed?

� Were all assumptions made in
support of the estimate identified,
documented, and explained?

� While preparing the estimate, was
a structured process used that
included such tools as templates
or checklists to ensure that key
factors were not overlooked, and
was the process validated during
and after the estimate was
completed?

� For this assessment, were any
uncertainties in parameter values
identified, quantified, and used to
establish an initial set of risks for
the organization?

� For the risks identified, was a risk
analysis performed and were the
risks that affect costs and
schedules identified and
documented?

� Were issues such as probability of
occurrence, effects on parameter
values, cost impacts, schedule
impacts, and interactions with
other organizations identified and
used to characterize the risk?

� Did management review and agree
to values for all descriptive
parameters?

122 � Software Sizing, Estimation, and Risk Management

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Were any adjustments to
parameter values to meet a
desired cost or schedule
documented, and were the
reasons for the adjustments
reviewed, approved, and agreed to
by stakeholders and the team who
must do the work?

� Was the size estimate confirmed
by relating it to measured sizes of
other software products or
components, and was it validated
by comparing it against a second,
independently derived projection
using a different method or tool?

� Was the size estimating process
confirmed by testing its predictive
capabilities against measured sizes
of completed products, and was
the last evaluation reasonably
current and done against a similar
type application?

Was the process used to estimate cost
and schedule proven consistent with
demonstrated accomplishments on
other projects similar in size, scope,
and type to this one?

� Did the organization follow a
rigorous, documented process for
relating estimates to actual costs
and schedules of completed work,
and was the process applied to this
estimate and was it followed?

� Were the cost and schedule
models used calibrated to relevant
historical data for this type
application and for the planned
process to be followed?

Planning and Controlling the Project via the Estimate � 123

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Were the cost and schedule
models normalized for differences
among software products and
projects to quantify and normalize
demonstrated organizational
performance such that simple,
un-normalized, lines of code per
staff-month extrapolation did not
become the basis for the estimate?

� Has the consistency achieved
when fitting the cost and schedule
models to historical data been
measured and reported?

� Did the values used for cost and
schedule model parameters
appear valid when compared to
values that fit the models well in
past projects, and was this process
completed before the estimate
was completed?

� Was the calibration of cost and
schedule models done with the
same versions of the models used
to prepare the estimate, and was
this calibration performed before
the estimate was completed using
data similar to the product and
process being estimated?

� Did the methods used to account
for reuse account for activities
such as interface design,
modification, integration, testing,
and documentation associated
with effective reuse?

124 � Software Sizing, Estimation, and Risk Management

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Were extrapolations from past
projects used to account for
differences in application tech-
nology, and was data from projects
that implemented different tech-
nical solutions from those being
proposed adjusted to provide a
valid basis for estimating, or was it
confirmed that the cost models
provide these capabilities?

Were all critical factors that affect the
estimate identified and explained and
where an explanation was not
satisfactory was a risk identified and
documented?

� Were extrapolations from past
projects used to account for
observed, long-term trends in
software technology improvement,
and was the cost model used and
calibrated to reflect historical
organizational performance?

� Did the estimate consider the
CMII rating of the organization
planning to perform the task, and
were the factors used to project
productivity based on real values
calibrated to the organization and
the type of product to be
developed?

� Were extrapolations from past
projects used to account for the
effects of introducing new
software technology or processes
required for the project, and did
the estimate consider training and
productivity impacts and rework
normally associated with the
introduction of new technologies?

Planning and Controlling the Project via the Estimate � 125

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Was an analysis conducted to
evaluate the proposed workflow
against past projects to determine
how this project is similar to (and
how it differs from) projects used
to characterize the organization’s
past performance?

Did the estimate follow a process to
ensure the integrity of the estimating
process, and were discrepancies
identified, resolved, and used to
identify risks?

� Did a written summary of
parameter values and their
rationales accompany the estimate
produced, and was it validated
prior to the assessment?

� Were all assumptions made in
support of the estimate identified,
documented, and explained?

� While conducting the estimate,
was a structured process including
such tools as templates or
checklists used to ensure that key
factors were not overlooked, and
was the process used validated
during the estimate and after it was
completed?

� Was a dictated schedule imposed,
and, if so, was the estimate
accompanied by an estimate of the
normal schedule and the
additional expenditures required
to meet the dictated schedule?

126 � Software Sizing, Estimation, and Risk Management

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Were any uncertainties in
parameter values identified and
quantified before the estimate was
completed, and, if they were
unresolved, was a risk identified,
analyzed, and entered into the risk
management system for tracking?

� Were adjustments made to
parameter values to meet a
desired cost or schedule, and were
they accompanied by manage-
ment action that makes the values
realistic, or were they just used in
the estimate without analysis?

� For the risks identified, was a risk
analysis performed, and were the
risks that affect cost or schedule
identified and documented?

� Were issues such as probability of
occurrence, effects on parameter
values, cost impacts, schedule
impacts, and interactions with
other organizations identified and
used to characterize the risk?

Did the organizations take steps to
ensure the integrity of the estimating
process, and did these steps involve
using independent objective analysts
familiar with the process and the
models used?

� Did the groups that will do the
work accept the estimate as an
achievable target, and were any
discrepancies or disagreements
documented and entered as risks?

Planning and Controlling the Project via the Estimate � 127

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Were memoranda of agreement
completed and signed with the
other organizations whose
contributions affect cost or
schedule, and did these
stakeholders review the final
estimates?

� Was a dictated schedule imposed,
and, if so, was the estimate
accompanied by an estimate of the
normal schedule and the
additional expenditures required
to meet the dictated schedule?

� Were adjustments made to
parameter values to meet a
desired cost or schedule, and were
they accompanied by manage-
ment action that makes the values
realistic, or were they only used in
the estimate without analysis?

� Was more than one cost model or
estimating approach used to
validate the estimate, and were the
differences in results analyzed and
explained?

� Were individuals from related but
different projects or disciplines
involved in preparing the estimate,
and were they used in its
validation?

� Was at least one member of the
estimating team an experienced
estimator trained in the cost
models used, familiar with the
process followed and the technical
characteristics and requirements
of the product to be produced?

128 � Software Sizing, Estimation, and Risk Management

assessment experiences. A high rating means that the factor was
a significant concern of the estimation team. A medium rating
indicates that the factor was a concern but did not warrant special
effort. A low rating means that the factor was not adequately
addressed by the estimation team. For all medium and low scores,
identify the trade-offs or decisions that led to the lack of emphasis
and focus on the relevant factors.

The questionnaire is model- and method-independent. Therefore it can
be used with not only commercial models, but internally developed
models, and with other manual methods of estimating. The questionnaire
is intended to be specific to each organization and assessment. You must
refine or adapt the primary and secondary factors to the specific goals,
needs, and requirement of the estimate and the specific characteristics of
the project.

Step Eight: Generate Project Plan
The process of generating a project plan includes taking the estimate and
allocating the cost and schedule to a function and task-oriented work
breakdown structure. Models such as SEER Client for Microsoft perform
this function automatically. The eight major software development phases

Table 4.3 (continued) Postestimation Process Evaluation Questionnaire

Primary Factor (in bold) Rating
Reason for
Low Score EffectSecondary Factors (with bullets) High Medium Low

� Did experienced, trained
estimators independent of the
performing organization concur
with the reasonableness of the
parameter values and estimating
methodology, and was their
concurrence documented and
based on a thorough analysis of
the estimation process?

� Did the groups that will do the
work accept the estimate as an
achievable target, and were any
discrepancies or disagreements
documented and entered as risks?

Planning and Controlling the Project via the Estimate � 129

are: (1) concept, (2) acquisition, (3) requirements, (4) design, (5) code and
unit test, (6) integration, (7) acceptance, and (8) postdeployment.2 As illus-
trated in Tables 4.4 through Table 4.11, the Software Engineering Process
Organization at SPAWAR (a U.S. Navy program) has linked risks to specific
project activities.3

Action Items by Project Phase

Table 4.4 Concept Phase

Action Product Risk If Action Not Taken

1. Define preliminary
system functional
requirements

Prioritized list of
potential functions

Future requirements
traceability problems

2. Establish method to
estimate resources

Plan of action No specific course of
action on how project
resources will be
estimated

3. Identify similar
functions from
completed projects

List of functions with
historical data

Lack of understanding
of complexity and
scope of project

4. Develop size
estimates for
functions with
historical data

Size estimates for
familiar functions

Increased uncertainty
in scope and cost of
project

5. Develop size
estimates for new
functions

Preliminary size
estimate for total
software product

Lack of basic
parameters for cost
and schedule estimate

6. Develop least, likely,
and most cost and
schedule estimates

Preliminary budget
and schedule
requirements

Lack of control in
forecasting and
justifying budget
requirements

7. Identify potential
cost, size, schedule
risk areas

Definition of areas of
uncertainty

Unrealistic
expectations

8. Review and refine
with project
personnel; repeat as
necessary

Estimations with
increasing credibility

Preliminary estimate
will continue

130 � Software Sizing, Estimation, and Risk Management

Table 4.5 Acquisition Phase

Action Product Risk If Action Not Taken

1. Clearly and concise-
ly define software
requirements

Understandable
software requirements

Future requirement
traceability problems

2. Establish software
estimate file

Preliminary format to
document all future
estimates

Lack of traceability for
budget justifications

3. Develop preliminary
WBS

Top-level functional
WBS

Lack of method to
track progress

4. Develop baseline
software estimates

Independent cost
estimate

No foundation to verify
other estimates

5. Develop risk profile Definition of risk
factors, monitoring
and contingency
procedures

Higher probability of
future cost and sche-
dule overruns due to
unforeseen problems

6. Conduct formal
review or inspection
of estimate

Estimate agreed to and
validated by project
team

Unconfirmed or
inconsistent process

7. Refine and record
estimates on
periodic basis

Establishment of cost
metrics

Lack of management
indicators for
monitoring cost, size,
schedule trends

Table 4.6 Requirements Phase

Action Product Risk If Action Not Taken

1. Develop detailed
WBS

WBS that breaks work
down by major
function

Lack of definition of
finite units of work

2. Develop baseline
estimates by phase

Baseline estimate for
basis of project cost
and schedule tracking

Incomplete project
plan

3. Update and revise
risk assessment

Comprehensive plan
to monitor and
neutralize potential
risks

Unrealistic optimism
and lack of visibility

4. Conduct formal
review or inspection

Validated estimate
agreed to by
management

Unconfirmed estimate

Planning and Controlling the Project via the Estimate � 131

Table 4.6 (continued) Requirements Phase

Action Product Risk If Action Not Taken

5. Refine and record
software estimates

Final format of method
to track cost and
schedule

Lack of formal vehicle
to monitor project
cost/schedule

Table 4.7 Design Phase

Action Product Risk If Action Not Taken

1. Refine WBS as
necessary

Detailed WBS that
accurately reflects
project tasks

Possible misconcep-
tions regarding task
breakdown and
progress

2. Develop cost-to-
complete estimates

Increased accuracy of
software product size,
schedule, and costs

Lack of validated
estimates derived from
most recent
information

3. Update and revise
risk assessment

Improved insight into
potential problems

Reliance on outdated
information

4. Conduct formal
review or inspection

Validated estimate
agreed to by
management

Lack of formal vehicle
to track cost/schedule

5. Refine and record
estimates

Timely and accurate
cost status

Inability to recognize
potential overruns

Table 4.8 Code and Unit Test Phase

Action Product Risk If Action Not Taken

1. Review and Refine
detailed WBS

More accurate task
breakdown for final
phases of project

Possible misconcep-
tions regarding task
breakdown and
progress

2. Update and revise
cost-to-complete
estimates

Realistic estimate of
cost to complete

Lack of visibility into
potential cost and
schedule problems

3. Update and revise
risk assessment

Risk profile that reflects
current stage of project

Reliance on outdated
information

4. Develop preliminary
estimate for soft-
ware operations and
maintenance (O&M)

Preliminary inputs to
computer resources
life cycle management
plan (CRLCMP)

Lack of visibility
necessary for turnover
to operations group

132 � Software Sizing, Estimation, and Risk Management

Table 4.9 Integration Phase

Action Product Risk If Action Not Taken

1. Review and refine
detailed WBS

Increased awareness
of O&M issues

Lack of visibility into
current and future
issues

2. Update and revise
cost-to-complete
estimates

Realistic estimate of
cost to complete

Lack of ability to
perform cost and
schedule trend
analysis

3. Update and revise
risk assessments

Risk plan addressing
current issues

Increased probability
of unexpected
problems; lack of
contingency plans

4. Update and revise
estimates for
software O&M

Revised life cycle
management plan

Non-comprehensive
understanding of
O&M issues and needs

Table 4.10 Acceptance (Transition to Operation) Phase

Action Product Risk If Action Not Taken

1. Close out
development
metrics: final cost,
schedule, WBS, etc.

Final report for project No history to pass on
to future projects

2. Update O&M
estimates and WBS

Baseline estimates and
WBS for O&M

Reliance on outdated
information

Table 4.11 Postdeployment (Software Support Activity) Phase

Action Product Risk If Action Not Taken

1. Review and Refine
estimates and WBS

Updated baselines Reliance on outdated
information

2. Institute O&M
metrics collection
program and
database

Process to continually
enhance estimate of
future O&M resource
requirements

Lack of O&M data for
cost trend analysis

Planning and Controlling the Project via the Estimate � 133

Determining Costs from Effort Estimates

At this point in the estimation process, you should have a reasonably
accurate projection of your project’s size and required effort, that is, an
estimate of the number of person-hours by component and a sum of these
projections, and you can now begin to price the estimate. As software
estimation models generally account only for costs related directly to
development, you may need to translate the required effort to a cost and
finalize the estimate by adding in essential nonlabor costs. You can do
so by answering the following questions:

What types of individuals do I need and when do I need them?
Identify the specific personnel requirements by task area by addressing
the factors listed below. Develop a strawman schedule from the work
breakdown structure or a staffing plan such as the one produced by SEER-
SEM. Identify what personnel in what mix are required to support each task.

Estimating Personnel Mix

The estimation process needs to define the optimum personnel mix to
complete the project within the cost and schedule. A typical WBS includes
the following elements:

� Direct software management — Direct software management,
which by definition does not include executive-level activities.
Project cost accounting usually excludes workers who are not
involved in directly billable work.

� Software systems engineering — Development of software
requirements and specifications.

� Design — Definition of software architecture, preparation of
design specifications, specification of layouts of physical data struc-
tures and interfaces, and meeting other requirements with addi-
tional necessary design.

� Programming — Coding, unit testing, and maintaining appropri-
ate low-level documentation.

� Quality assurance — Quality engineering, inspection, and audits.
� Configuration management — Program configuration identifi-

cation, change control, status accounting, etc.
� Data preparation — Preparation of specifications, standards, draft

manuals, etc.
� Testing — Preparation and execution of test cases and test out-

come reporting.

Each task identified in the WBS requires some allocation of effort.
Arriving at a cost estimate for the labor mix is not always a straightforward

134 � Software Sizing, Estimation, and Risk Management

task. One reason is that labor rates vary tremendously by region, and they
also differ dramatically by the segment of the industry for which the
estimate is being prepared. The National Bureau of Labor Statistics pub-
lishes labor rates at www.bls.gov.

Labor Proportions

In regard to estimating effort, initial work allocations are also nominal
and must be tailored to the characteristics of the application, the needs
and expectations of the user, and the operational and deployment require-
ments that must be met. The analyst must address factors such as security,
required certifications, unique testing requirements, and essential customer
and user involvement, tailoring the cost model results to these factors as
they apply to the project being estimated. While the WBS at this point
may be reasonably complete, usually the process of planning the work
is conducted in parallel with the process of estimating the work. Therefore
both processes must be repeated as the project proceeds. Table 4.12 offers
a general allocation of labor that may be used as a cross-check on a
planned labor mix.

How experienced do they have to be? Assign specific staff levels
to the task requirements and identify the level of experience required to
satisfy the task.

Some of the automated cost models will identify the tasks and develop
a task-based schedule, which will minimize but not eliminate all of the
work required to produce the software development plan. Table 4.13
shows the typical costs included by automated cost models.

Other Costs

Travel Costs

Projects conducted in different locations will require occasional face-to-
face meetings for coordination purposes. Travel costs will depend on the
size of staff, the distances between their locations, the extent and sophis-
tication of virtual collaboration tools (teleconferencing, digital white
boards, etc.), and the need for collaboration.

Personnel Costs

Software projects commonly augment permanent staff with outside consult-
ants, which is often more expensive than using in-house staff. Augmenting
internal staff by outsourcing cheaper foreign labor can reduce costs to a
certain extent.

Planning and Controlling the Project via the Estimate � 135

Ta
bl

e
4.

12
Pe

rc
en

t
Ef

fo
rt

 b
y

La
bo

r
C

at
eg

or
y

A
ct

iv
it

y
M

an
ag

em
en

t
S/

W

Re
q

u
ir

em
en

ts
D

es
ig

n
C

o
d

e
D

at
a

Pr
ep

ar
at

io
n

Te
st

C
M

Q
A

Sy
st

em
 r

eq
u

ir
em

en
ts

 d
es

ig
n

12
52

14
0

6
12

2
2

S/
W

 r
eq

u
ir

em
en

ts
 a

n
al

ys
is

12
46

14
6

6
12

2
2

Pr
el

im
in

ar
y

d
es

ig
n

11
10

41
12

8
14

2
2

D
et

ai
le

d
 d

es
ig

n
11

10
41

12
8

14
2

2

C
o

d
e

an
d

 u
n

it
 t

es
t

7
3

6
55

6
1

4
4

C
o

m
p

o
n

en
t

in
te

gr
at

io
n

 a
n

d
 t

es
t

8
2

4
39

8
29

5
5

Pr
o

gr
am

 t
es

t
8

2
4

39
8

29
5

5

Sy
st

em
 i

n
te

gr
at

io
n

 t
h

ro
u

gh
 O

T&
E

8
2

4
19

1
59

5
2

M
ai

n
te

n
an

ce
8

2
4

38
1

40
5

2

S/
W

 =
 s

o
ft

w
ar

e.
 C

M
 =

 c
o

n
fi

gu
ra

ti
o

n
 m

an
ag

em
en

t.
Q

A
 =

 q
u

al
it

y
as

su
ra

n
ce

. O
T&

E
=

 o
p

er
at

io
n

al
 t

es
t

an
d

 e
va

lu
at

io
n

.

136 � Software Sizing, Estimation, and Risk Management

Table 4.13 Sample Cost Model Coverage

WBS Elements Portion Included by Cost Model

Software development Model includes all software
development costs

Test software Model includes cost to build all
necessary test software

System development support All

Software support facility (SSF)
hardware

Model does not include hardware
costs for SSF

Software support facility (SSF)
software

Model does not include software to
be purchased for SSF

Requirements engineering and
analysis

All if COTS hardware; part if
developmental hardware

Logistics engineering None

Specialty engineering None

Technical reviews and audits All if COTS hardware; part if
developmental hardware

Production engineering None

Engineering change analysis All if COTS hardware; part if
developmental hardware

Subcontractor engineering Part: include software portion of
subcontractor engineering; for
software included in estimate

Systems engineering Software systems engineering only

Software engineering All

Program management office None

Product assurance Part

Program control None

Training plan and analysis None

Test planning All if COTS hardware; part if
developmental hardware

Test conduct All if COTS hardware; part if
developmental hardware

Test reporting All if COTS hardware; part if
developmental hardware

Planning and Controlling the Project via the Estimate � 137

Depreciation Costs

Contractors may be allowed to deduct depreciation costs for tangible
capital assets.

Training Costs

Costs are often associated with training the development staff in the use
of new tools and/or methodologies. Remember to include the cost of
downtime while personnel are in training rather than working on the
project. Training costs may also be associated with designing and deliv-
ering a training course that accompanies the software being built.

Independent Verification and Validation or Independent
Quality Assurance

Often these two independent and optional activities are excluded from
cost models. If they are considered parts of the development activities,
they must also be included in the costs.

Inflation

Because projects may cover multiple years, analysts must also account for
factors that will vary over time. Multiyear projects can be subject to
substantial inflation. The higher the inflation rate and lengthier the devel-
opment period, the more current-year costs will rise. In order to accurately
account for this, make certain the inflation rate is taken into account as
part of the estimate.

Table 4.13 (continued) Sample Cost Model Coverage

WBS Elements Portion Included by Cost Model

Site O&M None

OT&E support Part

Initial operational test and
evaluation

All if COTS hardware; part if
developmental hardware

Development data All if COTS hardware; part if
developmental hardware

Install and check out None

Site activation travel and living None

138 � Software Sizing, Estimation, and Risk Management

Overhead

Accurate estimates must also account for many other costs. Expenses such
as 401(k) contributions, clerical support, customer support, cost of money,
etc., are not projected by the models but are addressed as an overhead
percentage applied to the cost and general and administrative (G&A)
calculation. At this point in the process, projections of these costs must
be converted into a cost estimate, including all costs necessary to complete
the project.

Estimating Schedule in Calendar Months

Projecting a schedule requires development of a preliminary work plan
that describes the tasks and their sequence, dependencies and constraints
that will limit scheduling options, cost and schedule trade-offs that are
essential in defining a viable schedule, projected delays due to non-
availability of resources or other factors, and additional items such as
customer-unique requirements. While the schedule need not be considered
final, it should be sufficiently well structured to provide a high probability
that the projected calendar months reflect how long the actual project will
take. Just as with effort, the estimate should describe a range characterized
as least, likely, and most.

Effect of Management and Process on Estimates

Management and process maturity are critical factors in the projection of
productivity. They affect the personnel capability parameters or calibra-
tions in models such as SEER-SEM. A rating based only on process maturity
factors can make any estimate invalid unless the risks are managed and
controlled or unless the model is run with a higher confidence level. Man-
agement factors determine the project environment and how focused it
will be on addressing and completing project commitments. Process
maturity will determine how effective the organization will be in meeting
its stated productivity targets.

Impact of Software Project Management on Software
Development Plan

To avoid tomorrow’s catastrophes, a software manager must confront
today’s challenges. A good software manager must possess a broad range
of technical software development experience and domain knowledge,
and must be able to manage people and the unique dynamics of a team

Planning and Controlling the Project via the Estimate � 139

environment, recognize project and staff dysfunction, and lead so as to
achieve the expected or essential result. To paraphrase Tom DeMarco,
“Managers … make the craziness go away.”4

However, too often software managers are not equipped with these
necessary skills and therefore the projects they manage run into predictable
problems.

Many managers of software projects were promoted from within the
company and have no training other than their engineering backgrounds.
One day a manager is told he is responsible for a software project that
is “so complex no one will know how it works,”5 and by the time the
dust settles, the problems he caused have resulted in poor cost and
schedule performance. We have observed two types of “problem manag-
ers.” The first has technical and domain level experience, often excelling
in these attributes, but lacks the required leadership, personnel manage-
ment, and programmatic skills. In addition, this type generally will focus
on his or her area of familiarity and expertise, such as writing good code,
and give little attention to meeting a program’s high level objectives.

The second type of problem manager is promoted from a non-software
discipline (finance, QA, human resources) and possesses a limited under-
standing, if any, of software engineering essentials. While he or she may
possess competent management skills, this type of manager tends to trade
off essential engineering steps (inspections, test steps, design rigor, sim-
ulations) to save costs, improve project image, or convince someone the
project can accomplish something it can’t. Both types, although they may
mean well, either lead a project to an unintended conclusion or, worse,
drift down the road to disaster.

“Poor project management will defeat good engineering, and is the
most frequent cause of project failure.”6 As for the second management
type described above, too often the people charged with managing large
scale software projects have never developed software or were trained in
an academic environment where they were asked to code small-scale
projects over the course of a single semester. Building 5,000 lines of Visual
Basic or C++ software to achieve a grade hardly prepares a manager for
building 3.5M lines of software intended to run a company’s finances,
drive a tank, or fly an airplane. The only common issue of these two
types of managers is the word software.

While the manager you assign may possess adequate management
skills and have extensive experience on non-software-intensive projects,
you can expect to run into problems if the manager lacks specific expe-
rience managing large-scale software projects that employ many creative
engineers who are developing many intangible products. If a project is
large, the manager cannot think small. This problem increases exponen-
tially when the task is integration of a large program.

140 � Software Sizing, Estimation, and Risk Management

The type-one manager (who has technical and domain level experi-
ence, but lacks the required leadership, personnel management, and
programmatic skills) presents a different set of problems that can lead to
the same results. Often a highly effective software engineering professional
displays staggering skills and has a reputation for on-time, quality pro-
duction as part of a team. As a result, the company wants to recognize
his achievements and not lose him to the competition, so they promote
him to a management position. Far too frequently a company provides
no training in managing people and teams, does not develop required
skills such as estimation and scheduling, provides no mentoring program
to smooth the transition, and has no help desk to furnish assistance when
his knowledge fails. The manager simply receives a slap on the back, a
bigger paycheck, responsibility for $2 million of a client’s money, and,
by the way, is assigned to manage a staff that doesn’t think much of
managers. This manager does not possess the skills, the seasoning, or the
basic experience to address the day-to-day crises that must be overcome
to successfully manage a software project.

Software management problems have been recognized for decades as
the leading causes of software project failures. In addition to the types of
management choices discussed above, three other issues contribute to
project failure: bad management decisions, incorrect focus, and destructive
politics. Models such as SEER-SEM handle these issues by guiding you in
making appropriate changes in the environment related to people, process,
and products.

Bad management decisions not only affect a project’s potential for
success, they can eliminate that potential altogether. Software project
managers have many opportunities to make bad decisions: making inap-
propriate trade-offs, dropping essential activities, making bad personnel
decisions, and focusing on the wrong customer and product goals. Two
factors may lead to poor decisions. First, many managers, mainly due to
lack of experience, are not able to evaluate what effects their decisions
will have over the long run, They either lack necessary information or
incorrectly believe if they take the time to develop that information, the
project will suffer as a result.

Second, and even sorrier, managers make decisions based on what
they think higher management wants to hear. “Project reality be damned,
I’m not going to buck the vice president of engineering. We’ll deliver
February 12.”7 This attitude is a guaranteed ticket to disaster. A good
software manager will understand what a project can realistically achieve,
even if it’s not what higher management wants. His job is to explain the
reality in language his managers can understand.

Planning and Controlling the Project via the Estimate � 141

Many factors related to management can affect the validity of an
estimate. Although an estimate, especially one prepared by a cost model,
may assume consistency in process, predictable productivity, and a flow
of work that follows the agreed to plan, an ineffective manager will push
the envelope of this predictability into a range that borders on chaos. As
a result, schedules will become impossibly compressed and predictability
will disappear. (This is one reason SEER-SEM’s minimum time estimate is
so valuable.) As the schedule is compressed, the staff becomes further
demoralized and productivity drops out of the acceptable range. The pro-
cesses that were so carefully planned are discarded in misguided attempts
to recover lost schedule, and risks that easily could have been addressed
become full blown problems with no plans to mitigate them. The result?
Disaster. Even replans probably can’t save a project in this situation.

Effect of Software Processes on Software Development Plan

If you want to understand the effects of improving your organization’s
software development processes, consider the following information. “One
way to project the potential of an organization to apply best practices and
experience the productivity windfall is to look at their Software Engineering
Institute (SEI) Capability Maturity Model (CMM or CMMI) ratings.”8 Dave
Card of the Software Productivity Consortium compiled a list of potential
benefits of improving processes and obtaining an SEI CMM rating.9

� A 4 to 11 percent increase in productivity for each increase of one
level in CMM maturity.10

� A 20 percent annual increase in productivity due to CMM and other
improvement initiatives.11

� Improvements by factors ranging from 2.9 to 16.8 in productivity
and defect density in reaching CMM Level 5.12 Results are broken
down by CMM maturity level.

� Significant reductions in performance variances measured by the
Cost Performance and Schedule Performance Indices.13

� Review effectiveness increased from 40 to 80 percent at CMM
Level 4.14

� Delivered defects reduced 94 percent at CMM Level 5.15

We should point out that just receiving a certification is not a silver
bullet to improved productivity. Careful adherence to certified processes
by trained professionals is required; and not all teams will achieve such
outstanding productivity even when trained.

142 � Software Sizing, Estimation, and Risk Management

The cost of process improvement can be significant. However, the
return on this investment can also be significant. A study performed by
the Air Force Materiel Command, indicates how much:

Table 4.14 summarizes the isolated statistics in U.S. industry on
the return for process improvement initiatives. Most of the
information is in the form of productivity and quality results,
particularly in response to the introduction of inspections into
an organization. The table summarizes, by category, the statistics
uncovered in the research. It was not the intent of this phase
of the research to provide extensive ROI data, only to identify
the sources of existing data; therefore, this data should be
construed as representative of the type of data available, not
of the amount of data available.16

Table 4.14 Process Improvement ROI

Metric
Category Measurement

Benefits Realized by Various
Software Organizationsa

Productivity Increase in
productivity

10 to 20 percent, 90 to 100 percent,
50 percent, 15 to 20 percent, 5 percent

130 percent, 12 percent, 2.5 to 6.3
percent, 35 percent

Quality Reduction in
defects

10 percent, 80 percent, 50 to
70 percent, 50 percent

Reduction in error
rate

45 percent

Product error rate From 2.0 down to 0.11 per thousand
SLOC

From 0.72 down to 0.13 per thousand
non-commented source statements

Cost Ratio of project
dollars saved to
dollars invested

1.5 to 1, 2.0 to 1, 4 to 1, 6 to 1, 7.7 to
1, 10 to 1, 1.26 to 1, 5 to 1

Project dollars
saved

$2 million to $3.4 million

Code problems
during integration

20 percent of original value

Decrease in cost of
retesting

50 percent

Planning and Controlling the Project via the Estimate � 143

Step Nine: Document Estimate and Lessons Learned
Each time you complete an estimate and again at the end of the software
development, you should document the pertinent information that con-
stitutes the estimate and record the lessons you learned. By doing so, you
will have evidence that your process was valid and that you generated
the estimate in good faith, and you will have actual results with which
to calibrate your estimation models. Be sure to document any missing or
incomplete information and the risks, issues, and problems that the process
addressed and any complications that arose from using the process. Also
document all the key decisions made during the conduct of the estimate
and their results and the effects of the actions you took. Finally, describe
and document the dynamics that occurred during the process, such as the
interactions of your estimation team, the interfaces with your clients, and
trade-offs you had to make to address issues identified during the process.

Table 4.14 (continued) Process Improvement ROI

Metric
Category Measurement

Benefits Realized by Various
Software Organizationsa

Cost savings of
metrics program

50 to 300 percent, 40 to 290 percent

Schedule Within estimate 5 percent of estimate

On-time
deliverables

From 51 percent up to 94 percent on
time

Project completion From 50 percent down to 1 percent
late

Savings in schedule 10 percent, 20 percent

Effort Reduction in
rework

5 to 10 percent

From 40 percent down to 25 percent
of effort

From 41 percent down to 11 percent
of project cost

Savings in test time 10 test hours per analysis hour

Note: Isolated statistics in U.S. industry on return for process improvement
initiatives.

a Benefits shown as range of results within a single organization; results from
different organizations are separated by commas. All organizations are not
represented.

144 � Software Sizing, Estimation, and Risk Management

Also, if you had to replan the project or restart it for any reason, record
the circumstances so you can avoid similar problems in the future. Cost
models, which are based on the actual costs of past projects, can be
calibrated and their accuracy can be demonstrated by comparing the costs
of your current estimates with both past project data and the actual costs of
your completed project, thereby adjusting the model input parameters to
improve future accuracy.

Conducting Lessons-Learned Review

You should conduct a lessons-learned session as soon as you can after
the completion of your project while the participants’ memories are still
fresh. Lessons-learned sessions can range from two team members meeting
to reach a consensus about the various issues that went into the estimation
process to highly structured meetings conducted by external facilitators
who employ formal questionnaires. No matter what form it may take, it
is always better to hold a lessons-learned meeting than not, even if the
meeting is a burden on those involved.

Every software project should be used as an opportunity to improve
the estimating process. To document the lessons learned, follow these
steps.

1. Conduct a postmortem to identify the reasons for significant esti-
mating variances.

2. Identify the major cost drivers.
3. Log each reason for project growth as well as the cost, size,

schedule, and effort impact.
4. Compare actuals to those of the similar systems used for estimating.
5. Identify any differences in estimating rationale and reality.
6. Assess the difficulty and complexity of the problem, technical staff

and management team characteristics, product and process char-
acteristics, and environment and user characteristics.17

The most accurate lessons-learned session would encompass three
reviews; one conducted after the estimate has been accepted and two
conducted upon completion of the project. The post-acceptance session
(cause segment) employs a questionnaire similar to the estimating process
questionnaire provided in Chapter 4 to rate the estimation process against
a standard set of criteria.

The purpose of this step is to capture the experiences and views of
the analysts in a structured framework and to compare what actually
occurred during the project with the model used. The second meeting
(effects segment) uses the same questionnaire to assess the effects of the

Planning and Controlling the Project via the Estimate � 145

ratings: high, medium, and low on the accuracy of the estimate process
and on the project as a whole. The third meeting (modeling improvement
segment) uses a different process to collect the information needed to
improve the modeling process. These sessions are important for answering
questions that are critical to the organization and for providing the infor-
mation needed to validate the accuracy of the cost models used.

Cause segment — What did we do and what trade-offs did we
make?
Effects segment — What were the effects of the shortcuts, trade-
offs, and assumptions we made and should these changes to the
process be incorporated into the standard process?
Modeling improvement segment — Based on the results of the
estimate, how should the cost and schedule models be applied to
more accurately reflect the process followed, the results of the project,
and the quantitative values of key model factors at the completion
of the project?

Cause Segment

Lessons-learned sessions are intended to assess current estimation activities
in order to make them more accurate or to make them more relevant to
future projects. Begin the cause segment of the session by asking each
participant to fill out the questionnaire (such as the one presented in
Table 4.3) to record the specific tasks each performed and what occurred
during the estimate. To the extent possible, the questions on the ques-
tionnaire should elicit specific answers that can be unambiguously rated
for quality using high, medium, and low criteria. After each participant
has completed the questionnaire, the moderator should review them with
the participants without judgment to determine why any factors in the
questionnaire were rated medium or low and why such factors did not
receive more attention during the estimation process.

Effects Segment

The effects segment, which can be conducted during the project in multiple
sessions or in one session upon project completion, is intended to deter-
mine the effects of the shortcuts, trade-offs, and assumptions made and
to decide whether the process should be changed as a result. It is most
beneficial to conduct this segment in multiple meetings during the project.
Doing so can help identify problems and risks that arise from estimation
issues early and minimize them or avoid them altogether. The estimation

146 � Software Sizing, Estimation, and Risk Management

team as well as management and staff members of the project team must
participate in the effects segment. This segment records actual project
experience and determines the extent to which that experience had an
effect on specific decisions or trade-offs made during the estimate. Not
all project experience is traceable to specific decisions, but if you can
determine the effects of your estimation decisions you will be better
positioned to avoid problems on future projects.

As a software manager, part of your responsibility is to improve the
performance of your staff over time. The effects segment helps you do
so by identifying estimation process activities that they found helpful and
thus should be repeated. It can also help isolate estimation process
activities that were detrimental to their efforts and should thus be avoided
in the future. This segment also helps to give your estimation and project
teams insight into what could have caused problems. Also you can see
how trade-offs made in the estimation process that appeared to have
short-term benefits actually produced a negative effect over the long term.
Such insights will enable future development teams to work more effec-
tively despite the pressures they inevitably face during any project. To
conclude this segment, participants should be asked to use the lessons
they have learned and to establish goals for their next project.

Modeling Improvement Segment

Because software estimation models provide a basic framework for esti-
mation, they should be refined or calibrated to the maximum extent
possible in order to produce the best estimates possible. Model refinement
is conducted to both improve the accuracy of estimates and to better suit
the people, processes, and products that are typically encountered. It can
also improve the estimating process by providing information necessary
for preconfiguring the model, thus shortening the learning curve on any
given estimate. The estimation team at the completion of the project
usually conducts the modeling improvement segment.

Step Ten: Track Project throughout Development

Refining Estimates throughout Project

Estimating software size, cost, and schedule should be an ongoing process.
Preliminary estimates may be required to bid a job or to initiate the
development process, or you may need to conduct a cost–benefit or
return-on-investment (ROI) analysis to evaluate a project’s feasibility.
Preliminary estimates are the hardest to develop and are the least accurate

Planning and Controlling the Project via the Estimate � 147

because of the incomplete nature of the information available and the
other factors discussed throughout this chapter.

You can improve the accuracy of a preliminary estimate by using the
sizing methodology identified in Step 4 defined in Chapter 3 or by using
two different estimation techniques and having your analysts normalize
the differences. There will still be a significant risk in using the preliminary
estimate to structure a project or to evaluate risk in the early stages of a
project life cycle.

Once a project has started, you will need to complete more detailed
estimates to accurately plan the project and throughout the conduct of
the project you will need to monitor the actual effort and duration of
tasks and/or phases against planned values to ensure you have the project
under control. Tracking is so important that multiple chapters are included
to detail the topic. Chapter 9 discusses earned value and other techniques
that can be used to track a project in detail. Chapter 12 discusses SEER-
PPMC and how components can be automated to provide complete
planning and control.

Summary
Software cost estimation is a difficult process but a necessary part of a
successful software development. You can help ensure useful results by
adopting a process that is standardized and repeatable. Several of the
steps we have discussed, particularly those that do not result directly in
the production of the estimate (Steps 1, 6, and 7) are often deferred or,
worse still, not performed at all, often for what appear to be good reasons
such as a lack of adequate time or resources or a reluctance to face the
need to devise a plan if a problem is detected. Sometimes you simply
have more work than you can handle and such steps don’t seem absolutely
necessary. As Capers Jones stated:

If an early estimate predicts higher cost, longer schedules or
lower quality … there is a strong tendency to challenge the
validity of the estimate. … the project manager is directed to
recast the estimate so that it falls within preset and arbitrary
boundary conditions.18

Sometimes management is reluctant to take these steps, not because the
resources are not available, but because managers do not want to really
know what they may learn as a result of scoping their estimates, quanti-
fying and analyzing risks, or validating their estimates. This can be a costly
attitude, because in reality every shortcut results in dramatic increases in
project risks.

148 � Software Sizing, Estimation, and Risk Management

Endnotes
1. Park, Robert E. A Manager’s Checklist for Validating Software Cost and

Schedule Estimates. Pittsburgh: Carnegie Mellon Software Engineering Insti-
tute, January 1995.

2. International Standards Organization. ISO/IEC Standard 12207, Software
Life Cycle Processes. Geneva, ISO: 2004.

3. Software Engineering Process Organization. Software Estimation Process 2.2,
August 31, 1999. 21.

4. DeMarco, Tom. Why Does Software Cost So Much? New York: Dorsett
House, 1995. 66.

5. Lister, Tim. “Software Management for Adults.” Software Technology Con-
ference. Salt Lake City, 1996.

6. Humphrey, Watts. “Three Dimensions of Process Improvement. Part I:
Process Improvement.” CrossTalk: The Journal of Defense Software Engi-
neering. February 1998.

7. Comment from a beleaguered software manager after much pressuring at
an assessment.

8. Ibrahim, Linda. “Using an Integrated Capability Maturity Model: The FAA
Experience.” Tenth Annual International Symposium of International
Council on Systems Engineering. Minneapolis, July 2000. 643.

9. Card, David N. Published Sources of Benchmarking Data. Herndon: Soft-
ware Productivity Consortium, March 2002.

10. Clark, B. “The Effect of SEI-CMM Maturity on Software Effort.” IEEE Software,
November 2000.

11. Card, David N. “The SEI Software Process Improvement Approach: A Case
Study.” Auerbach Software Engineering Strategies, December 1993.

12, Diaz, M. and J. King. “How CMM Impacts Quality, Productivity, Rework,
and the Bottom Line.” CrossTalk: The Journal of Defense Software Engi-
neering, March 2002. [Update of Diaz, M. and J. Sligo. “How Process
Improvement Helped Motorola.” IEEE Software. September 1997.]

13. Humphrey, W.S., T.R. Snyder, and R.R. Willis. “Software Process Improve-
ment at Hughes Aircraft.” IEEE Software, July 1991.

14. Keeni, G. “The Evolution of Quality Processes at Tata Consultancy Services.”
IEEE Software, July 2000.

15. Pitterman, B. “Telcordia Technologies: The Journey to High Maturity.” IEEE
Software, July 2000.

16. Brodman, Judith G. and Donna L. Johnson. “Return on Investment (ROI)
from Software Process Improvement as Measured by U.S. Industry.” Soft-
ware Process: Improvement and Practices (pilot issue), 1995.

17. Mathis, Randy. “Metric-Based Scheduling and Management.” CrossTalk: The
Journal of Defense Software Engineering, July 1997.

18. Jones, Capers T. Assessment and Control of Software Risks. Englewood
Cliffs: Prentice Hall, 1994. 158.

149

Chapter 5

Source Lines of Code

Not everything that can be counted counts and not everything
that counts can be counted.

Albert Einstein

Introduction
This chapter describes how to identify source lines of code (SLOC). It
addresses the many different facets of lines and gives clear direction on
the proper use and definition of lines. Included in these discussions are
physical and logical source lines and a checklist for source line definitions.
The chapter also describes how to handle issues and risks associated with
using SLOC to determine program size. It explains how the SLOC sizing
approach is affected by different computer languages, describes best
practices for approaching size for different languages, and explains the
proper use of the size metric. Throughout this chapter information, will
be provided for counting SLOC for a completed program and for a future
program in which SLOC must be estimated.

Some years ago, at a trade show, a man approached me and offered me
a database of sizes for 10,000 programs. Upon inquiry, the man said these
were both government and commercial programs. When asked how much,
the man replied “thirty-five dollars.” Trying not to salivate I reached for my
wallet. Before taking out the cash, I asked one final question: “What is the
definition of a line?” The seller squeamishly said he didn’t know. I then

150 � Software Sizing, Estimation, and Risk Management

asked if the sizes were non-comment source lines? “Some of them,” the seller
replied. “How about executable lines?” “Some of them,” he again responded.
“How about physical lines?” “Some of them, I believe,” the man responded.
“But how can I tell which is which?” “You cannot,” replied the seller.

The database without the definitions was not worth the advertised
price.1 This story exemplifies the problems of software sizing and software
sizing data. Inconsistent counting rules, unclear definitions of exactly what
was counted, and a myriad of other roadblocks can contaminate viable
software sizing. When consistently counted or when estimated with con-
sistent definitions, lines of code can serve as an excellent measure of
software size. Lines of code are reliable predictors for the amount of work
required to develop software — not only for the coding activities, but for
the effort and schedule associated with the entire software life cycle; from
requirements definition all the way through integration and testing.

When lines of code are estimated or counted without clear definitions,
these poor estimates of software size can produce even poorer estimates
of software cost and schedule. Additionally, when counting or estimating
SLOC, the source is extremely important. Counting hand-generated SLOC
is valuable because there is a direct correlation of hand-generated code,
effort, and schedule. Counting the code resulting from a code generator
is not very useful for eventual cost and schedule estimation or any
productivity calculations. Generated code may or may not be well corre-
lated with the effort involved in developing that code. Generated code is
best estimated using a function-based sizing approach or ratios of gener-
ated lines to effective size (see Chapter 8).

The most commonly used SLOC definition is noncomment, hand-
generated logical source lines. This definition provides excellent correla-
tion with effort and schedule and is the most common input of all SLOC
definitions into many software cost models such as SEER-SEM and
COCOMO II. These SLOC (noncomment, hand-generated logical source
lines) also work well for nearly any programming language, with a line
of code representing a unit of work.

If lines are counted using different definitions and those definitions
are known, line counts can be normalized to the most desirable definition
by developing conversion ratios. The Software Engineering Institute (SEI)
checklist included later in this chapter is intended to define alternative
sizing definitions.

Terminology and Definitions
SLOC and their derivations have been referred to by several names
including lines of code (LOC), executable lines of code (ELOC), and

Source Lines of Code � 151

delivered source instructions (DSI), to name a few. Unfortunately, defini-
tions may not be consistent even when common terminology is used. The
following are typical definitions.

Source lines of code (SLOC) — Generally nonblank, noncomment,
logical source lines. A K often precedes the designation to denote thou-
sands of SLOC (e.g., 15 KSLOC).

Lines of code (LOC) — generally a synonym for SLOC.
Delivered source instructions (DSI) — Generally DSI includes non-

comment, logical source lines but excludes data declarations, compiler
declarations, and other lines that do not generate executable instructions.
Executable instructions are items such as while, if, arithmetic statements,
and other functions that control the program logic.

Executable lines of code (ELOC) — ELOC are generally synonymous
with DSI.

Effective source lines of code (ESLOC) — ESLOC are SLOC that
have been adjusted by the amount of rework required for portions of the
system that were pre-existing at the start of the development. ESLOC
represent the number of effort units of work that will be developed rather
than the total lines of code that will be delivered upon completion. (For
a detailed discussion on ESLOC and how to compute it, see Chapter 8.)

Total lines of code (total SLOC) — Generally synonymous with SLOC;
represent the number of lines before any adjustments that result in ESLOC.

Figure 5.1 Size measures.

Total size

New size Pre-existing size

Redesign

reimplementation

retest

Effective size

152 � Software Sizing, Estimation, and Risk Management

These definitions carry assumptions that must be verified before moving
forward. This is due to the varied forms of use and, in some cases, misuse
of SLOC measures over the years. For example, analysts have been asked
to “back into a SLOC count” to meet a budget or customer expectation
(e.g., the budget is $1M and projected cost per line of code is $200,
therefore you “back into a SLOC count” of $1M/$200 independent of the
system definition). Even more tragic, the optimistic biases of analysts
(developers generally think of the best case) and project constraints have
been used as a basis to predetermine size estimates, regardless of how
many SLOC are needed to actually implement a project.

For example, a project manager could reason, “We have 10 people for
24 months and our productivity is 100 lines per person-month; therefore,
the SLOC count is equal to: (10 people ¥ 24 Months) ¥ 100 = 24,000
SLOC.” This is independent of the fact that a project may involve 50,000
SLOC over three years. Such misuse and other underlying problems can
be largely overcome through proper use of sizing definitions and estima-
tion models. Studies have indicated that as SLOC size increases,2 more
programs are cancelled, more defects are not detected, and are thus
delivered. This results in substantial rework and decreased productivity.
Therefore, when estimating cost and schedule, the impacts and risks of
large computer programs (large SLOC counts) should be handled carefully.

SLOC Realities and Risks
“In extensive research of over 20,000 software development projects
spanning 18 years, we found that more projects were doomed from poor
cost and schedule estimates than they ever were from technical, political,
or development team problems.”3 This is because the software project
estimate, which is based on the size estimate, establishes funding con-
straints and a project plan that can limit the management, engineering,
quality assurance, and reporting processes that can be used, the tools that
can be applied, and the ability to engage in rework and risk resolution.

Unrealistic estimates caused by analyst bias, customer or management
pressure, or any other factor will increase the risks to the project. Spending
time in software sizing and preparing the most viable range of software
sizing that serves as a foundation for the cost estimate most likely can do
more to reduce risk to a project than nearly any other factor including
program requirements, architecture, quality factors, and other issues that
affect the integrity of the process and the timely delivery of an acceptable
product within projected budgets. Figure 5.2 illustrates that size drives
estimates.

Source Lines of Code � 153

Using SLOC
SLOC can be used to measure either an existing program or a program
yet to be built. Using SLOC to measure the size of an existing program
is reasonably straightforward and involves little risk when appropriate
counting rules are applied to a sound technical baseline. This straightfor-
ward process becomes more complicated if it is used to answer questions
such as, “How big would the application have been if we had used a
different language?” or “What savings in code would result if we modified
the architecture?” Careful engineering analysis in concert with some rules
provided in this chapter can help make these trade-offs possible.

Program size is the most obvious and perhaps the most fundamental
measure of the amount of intellectual work needed for software devel-
opment. Physical lines of code are among the easiest measurements to
make; measurement simply involves counting the end-of-line markers. For
example the number of SLOC in Microsoft Windows can be found by
searching the Internet. However, without the definition of the SLOC, that
information is nearly meaningless (unless the goal is merely to “wow”
someone with big numbers). Thus, published information on software
measures that depend on SLOC is difficult to interpret and compare with
programs yet to be developed. Complicating the matter, many questions,
such as those related to costs, schedules, progress, reuse, and productivity

Figure 5.2 Size drives the estimate.

Project requirements,

attributes & expectations

Product attributes and

operational constraints

Platform attributes and

constraints

Development methods,

tools & team experience

Software costs and
resource requirements

Development
time and schedule

Process definitions
and tool selection

Activity distribution
and scheduling logic

Cost
estimation

Size drivers
Size

estimation

SLOC count

Historical
size

information

Personnel and team

attributes

154 � Software Sizing, Estimation, and Risk Management

may be unanswered. One SEI report says this about the measurement of
source code size:

Historically, the primary problem with measures of source code
size has not been in coming up with numbers — anyone can do
that. Rather, it has been in identifying and communicating the
attributes that describe exactly what those numbers represent.4

Robert E. Park, formerly of the Software Engineering Institute, devel-
oped a framework (the checklist included later in this chapter) for defining
SLOC values to enable people to carefully explain and define the SLOC
measure used in a project.4 Of the numerous types of SLOC measures,
three stand out as most used: physical carriage returns, physical SLOC,
and logical SLOC. They are defined below.

Physical Carriage Returns — Includes a count only of physical line
endings. Counting physical carriage returns has little value in estimation.
Counting the comment lines does not provide significant correlation with
effort. Comment lines do not involve any additional intellectual work
beyond what is encompassed in the code. They simply exist for docu-
mentation purposes. Blank lines can vary by 2 or 3 to 1 based only on
coding standards or personal preference on the number of blanks before
and after each comment and the standard for the code preamble.

It should be noted that ratios of comments to source lines may have
value from a quality viewpoint. Additionally, from a size perspective, the
ratio could be used to approximate a logical line count. In converting
physical carriage returns to an approximate logical SLOC count, we have
seen that ranges can vary from 20 to 70 percent (i.e., physical carriage
returns ¥ 20 percent = approximate logical SLOC). You can develop these
ratios for your software by doing manual counts on several samples of
code.

Physical SLOC — Expresses the physical length of code, which is
every single line of source code as seen by human eyes, excluding
comments and blanks but counting each physical line ending of all other
lines. A physical SLOC is most commonly defined as a count of non-
blank, non-comment lines in a program’s source code. The SEI technical
report on software size measurement states that, “Counts of physical lines
describe size in terms of the physical length of the code as it appears
when printed for people to read.”4

This is among the easiest measurements to make because it involves
counting the end-of-line markers rather than programming language-
specific syntax. You need to specify only how you will recognize the
statement types that you will not count, e.g., comments and blank lines.
It is relatively easy to build automated counters for physical source line

Source Lines of Code � 155

measures; however, measurement results can be more subject to variations
in programming style than results using other measures. Later in this
chapter, Table 5.3 details differences in line counting methods.

Logical SLOC — Measures the number of logical programming “state-
ments” that may or may not cross over more than one physical line. The
ideal count examines the language syntax and counts the statement types
(e.g., data declarations, math statements) explicitly. Many languages can
be counted more quickly by counting terminators (e.g., C-like languages
can be approximated by the number of line-terminating semicolons and
closing curly braces). The rules for counting logical statements should
specify how to recognize and count embedded statements for each source
language to be used. Logical SLOC is less sensitive to formatting and style
conventions than physical SLOC. According to the SEI technical report on
software size measurement:

The count of logical statements is an attempt to characterize
size in terms of number of software instructions, irrespective
of the physical format in which they appear.4

Logical source lines are the lines that carry programming instructions
and data declarations, that is, the implementation of the software design
represented by the actual instructions that convert to executable code and
data. Therefore, counting logical lines is the best measure of software
size. Much of the historical data that has been used to construct cost
models for project estimating is based on logical measures of source code
size.

Logical SLOC Counting Details
Table 5.1 contains detailed definitions for counting logical SLOC as used
in cost models such as SEER-SEM.

Note that the first category of attribute on Table 5.1 is what is included
or excluded. Table 5.2 states the rules that apply to this category.

Logical SLOC Detailed Definitions

Executable Statements

Executable statements are those that perform program execution and
control. While every language has its unique syntax and vocabulary,
generally executable statements include:

156 � Software Sizing, Estimation, and Risk Management

Table 5.1 Logical SLOC Definition Details

SLOC Attribute

What is included or excluded Included Excluded

Executable statements X

Nonexecutable data declaration statements and
compiler directives

X

 Comments, continuation lines, banners, blank
lines, instantiated SLOC, and nonblank spacers

X

How lines are produced Included Excluded

Manually/hand-programmed SLOC X

Lines developed for use as input to a source code
generator

X

Lines generated as output from a source code
generatora

X

Lines converted with automated code translatorsb X

Copied, reused, or modified lines of codec X

Deleted lines of code (rework percentages of
remaining SLOC account for the work to make the
program execute correctly without deleted lines)

X

Origins of lines Included Excluded

New lines developed from scratch X

Preexisting lines taken from a prior version, build,
or release

X

Invocation statements or preexisting lines requiring
rework from COTS or other off-the-shelf packages;
rework percentages need to be calculated

X

Invocation statements for modified vendor-
supplied or special support libraries, but not
unmodified library code itself

X

Modified vendor-supplied or special support
libraries, commercial libraries, reuse libraries, or
other software component libraries; rework
percentages should be calculated for modifying
these lines

X

Source Lines of Code � 157

Table 5.1 (continued) Logical SLOC Definition Details

SLOC Attribute

Origins of lines (continued) Included Excluded

Lines that are part of an unmodified vendor-
supplied operating system or utility or other
nondeveloped code

X

End usage of each line Included Excluded

Lines that are in or part of primary product X

Lines external to or in support of primary product
only if part of final or deliverable program

X

Lines external to or in support of primary product
but are not deliverable; any other nondeliverable
lines

X

a Software from a source code generator is estimated best via function point
sizing, not SLOC. Some people estimate generated lines by counting the total
number of generated lines and applying reuse factors to them to reduce the
effective size that will be used by the cost model.

b These lines should be considered as pre-existing lines of code and the
amount of rework required on the translated code should be defined
through the use of rework percentages. See Chapter 8 on software reuse.

c These lines should be considered as pre-existing SLOC.

Table 5.2 Logical Source Line Rules

Include Exclude

Control statements (DO WHILE, DO
UNTIL, GOTO, etc.)

Mathematical statements (I = a ¥ b)
Conditional statements (IF, THEN,

ELSE)
Deliverable job control (JCL)

statements
Data declarations
Data typing and equivalence

statements
INPUT/OUTPUT format statements

Comments
Blank lines
BEGIN statements from begin–end

pairs (count one line only for each
pair)

Nondelivered programmer
debugging statements

Continuation of formatting
statements

Machine- or library-generated data
statements

158 � Software Sizing, Estimation, and Risk Management

� Control statements (DO WHILE, REPEAT UNTIL, CALL)
� Mathematical statements (I = a ¥ b/c)
� Conditional statements (IF, THEN, ELSE)

Executable statements include procedure calls, assignment statements,
conditional and unconditional branching statements, conditional state-
ments, iterative statements, and code block identifiers. For programs
written in COBOL, procedure division statements are logical statements
identified by line-terminating periods.

Data Declaration Statements

Declarative statements are nonexecutable statements in a program that
define data used by the program including initialization statements, dec-
larations and definitions of constants, variables, modules, macros, and
various sections of source code. For example:

� Input/output and formatting
� Data declarations including data typing and equivalence (i.e., int

a, DIM array(16))

Types and usages of declarative statements vary by languages. The C
and COBOL languages require the programmer to declare variables and
constants before the executable instructions begin. These are counted as
logical lines.

Compiler Directives

Compiler directives may be a compiler vendor-specific feature. For exam-
ple, in the C language, #include <stdio.h> is counted as a statement.

COBOL allows a compiler directive like COPY, which may copy a
library of variables into the current program. In a C program, a compiler
directive like #include <[header file]> refers to a library of available
functions. Compiler directives may copy an entirely new program to the
current program. Each compiler directive is counted as one logical line.
(Counted or not, the number of compiler directives in a computer program
is generally insignificant.) However, a common mistake is to count the
size of the library or other program brought in by the compiler directive.
This should be counted only once, if you actually developed it, not for
every instantiation.

The second and third categories contained in Table 5.1 are “how lines
are produced” and “origins of lines.” Figure 5.3 shows software origins
(sources) and how software is produced. The software sources listed on
the figure are defined below.

Source Lines of Code � 159

New, hand-coded — Estimate these SLOC using logical SLOC counting
rules.

New, generated — Normally not included in code counts. The effort
associated with generated SLOC can be accounted for in one of two ways:
(1) use function-based sizing to describe the functionality that will be
provided by the generated SLOC; or (2) collect generated SLOC and effort
information and adjust the effective size value or calibration values to use
the generated SLOC for effort estimates.

Previous design, new hand-coded — SLOC that will be developed
new; the design documents already exist. Some reverse engineering of
the design may be required. Such SLOC should be handled as reused
with 100 percent reimplementation and a large amount of retesting. See
Chapter 8 for information on how to handle reuse.

Previous version, build, or release — SLOC developed prior to this
effort. Such SLOC should be handled as reused with appropriate percent-
ages applied to redesign, reimplementation, and retest. See Chapter 8.

Figure 5.3 How logical lines are produced.

Origin of software

New hand coded

New generated

Previous design,

new hand coded

Previous version,

build, release

COTS

GOTS

Other product

Language library

or OS

Commercial

Reuse library

Other
Removed

Modified

Copied

Converted

Used

unchanged

How produced

Programmed

Generated

Som
etim

es

Often

160 � Software Sizing, Estimation, and Risk Management

COTS (commercial off-the-shelf) — The work involved in applying
COTS software to the program is generally captured by counting the
number of functions that will be learned and used, and expressed in
function-based sizing. If you have the source code for the COTS, you may
apply the normal SLOC counting procedure and estimate this as pre-
existing software designed for reuse. Remember, if you modify the COTS
source, it is no longer COTS. You must plan on testing and maintaining
it within the project and this must be included in the estimation. When
sizing COTS software, there are generally three categories: (1) the COTS
cognition, estimation of the COTS integration itself, generally using func-
tion based sizing methods; (2) development of glue code, generally new
code developed to interface and control the COTS software; and (3) COTS
configuration, generally sized using function-based sizing as the number
of functions to be configured.

GOTS (government off-the-shelf) — GOTS is included for govern-
ment development projects. It is sized the same as COTS or preexisting
software, depending on the quality and/or maturity. Differences include
greater likelihood of receiving source code, limited documentation, and
possibly no warranties as to the software’s proper execution.

Other product — Generally include other systems that will be inte-
grated into the current system. Sizing of these products need not be done.
However, identifying these products and including integration costs
improves the effort and schedule estimation.

Language library or OS (operating system) — Language libraries
and operating system functionality should not be included in software
size. The SLOC required to set up and invoke such libraries and operating
system calls must be counted as normal SLOC.

Commercial library — Same as language library.
Reuse library — Same as language library.
Other components — Same as language library.

The final category on Table 5.1 is end usage. In counting logical SLOC,
count lines that are actually used in the delivered product. Exclude non-
deliverable software, such as stubs, nondeliverable test software, and
instrumentation. When using logical SLOC as an input to models such as
SEER-SEM, the effort to build the actual product includes the effort to
build this nondeliverable code.

Although different organizations have different standards for program-
ming and in-line documentation, these variations will generally not have
much impact on a logical SLOC count but can have a huge impact on
physical count definitions especially when statement terminators are put
on separate lines or when physical carriage returns including blanks and
comments are counted.

Source Lines of Code � 161

Line Counting Example

Table 5.3 illustrates the three methods discussed in this chapter along with
a comparison of logical lines with and without rules.

The example shown in Table 5.3 allows us to see size ranges from
9 lines to 36 lines, depending on the counting rules. This small example
demonstrates the importance of using a consistent definition for line
counting. Unfortunately, the physical carriage returns are the easiest to
count and often the definition assumed by programmers. The column
labeled logical lines assumes a line terminating parser was used. The
column labeled logical lines using language rules uses the basic statement
type counting rules shown in Table 5.2. In this small example, the variance
between the two logical line counting methods is approximately 10 percent
(logical lines = 9; logical lines using rules = 10). In larger programs, the
variance is generally less significant.

Table 5.3 Differences in Line Counting Methods

Example C++ Program
Physical
Carriage
Returns

Physical
Lines

Logical
Lines

Logical
Lines Using
Language

Rules

extern double MessageMonitor(double dfComplexity, double dfSuccessRate); 1 1 1 1

/** 2 comment

* function: ExampleFunction 3 comment

* 4 comment

* purpose: Demonstrate counting of C code 5 comment

* 6 comment

* arguments: x [IN]: first argument 7 comment

* y [IN]: second argument 8 comment

* bar [IN]: third argument, an array of… 9 comment

* 10 comment

* returns: return value 11 comment

* 12 comment

**/ 13 comment

double ExampleFunction(double x, double y, int *bar) { 14 2 partial 2

15 blank

int n = (int) ((x + y) / 2); 16 3 2 3

int SuccessfulAlert = 0; 17 4 3 4

18 Blank

if (x < MessageMonitor (y, n)) 19 5 Partial 5

20 Blank

/* this is a comment */ 21 Comment

22 Blank

SuccessfulAlert = bar[n] + 5; 23 6 4 6

24 Blank

else 25 7 Partial

26 Blank

while (n > 0) { 27 8 Partial 7

28 Blank

SuccessfulAlert += (int) MessageMonitor (x, n); 29 9 5 8

30 Blank

n--; 31 10 6 9

32 Blank

} 33 11 7

34 Blank

return (++x + SuccessfulAlert + bar(n)); 35 12 8 10

} 36 13 9

162 � Software Sizing, Estimation, and Risk Management

Estimation versus Counting SLOC

Two distinctive actions are involved when SLOC is used as a metric for
project size: (1) the actual predevelopment estimation and (2) post-
development code counting. When using SLOC to estimate size, an esti-
mation model or a manual process is used to project the application’s
size and associated cost. After the application has been developed, its
SLOC can be counted to update the historical database and compare to
its original estimates. As illustrated in Figure 5.2, SLOC is a primary input
to the process used to estimate the schedule and effort required to develop
a program.

When using SLOC as the basic metric for measuring or projecting/esti-
mating size, keep in mind the following points:

� Provide consistent definitions and rules for recognizing and count-
ing embedded statements for each source language.

� Clearly define what constitutes an executable statement and ensure
it is consistently applied. Clearly define any element you wish to
count, such as declarations, comments, and compiler directives,
and ensure that the definition is consistently followed.

� For all expression-based languages such as C and C++, clearly and
consistently define the rules for distinguishing between expressions
and statements.

Clear definitions are equally important in estimating and in counting. Often
analysts think in terms of past projects and their estimates may be based
on those sizes, with whatever definitions they happen to remember.

SLOC Considerations for Sizing Databases

Databases of historical projects can be extremely useful for developing
reliable SLOC estimates for new programs based on the analogy to
completed programs. However, as the story about the $35 database
recounted at the beginning of the chapter illustrates, a sizing database
must contain more than only numbers.

� In-house sizing databases, which are proprietary, should include
significant information about past projects. Not only can internal
sizing databases have very specific and revealing contents, they
describe work that your organization has done, and therefore an
internal sizing database is clearly most appropriate for making
internal estimates in the future. See Chapter 3 for a detailed
discussion of the contents of a sizing database. If your organization

Source Lines of Code � 163

does not already have such a database, we strongly recommend
establishing one.

� Public databases, which are readily available but for which the
information may have been provided “as is” may need sanity
checking and pruning to ensure useful information. For example,
sometimes in such databases, size and effort are included without
clear definition.

A well-developed sizing database will enable you to generate detailed
estimates without the considerable investment in time that such estimates
normally take if prepared from scratch. (For details on estimation of size
by analogy see Chapter 3.)

Language Impact on Size Conversion

When using historical size information from one language and converting
to another, it is important to normalize the historical size to the new
language. Over the years, general conversion factors have been developed
to assist in this conversion.

The conversion factors answer questions such as, “How big would a
50,000-source line Fortran program be if written in a fourth generation
language (4GL)?” The conversion factor is a percentage increase or decrease
from the existing source lines of code, yielding an estimate of the lines
of code in the target language. Table 5.4 shows the approximate percentage
change in the number of lines of code when converting from the source
language to the target language.

Table 5.4 General Language Conversion Factors

Target Language (Percent)

Source Language General 3GLsa 4GLs Ada Assembly PL-1/Pascal

General 3GLs — –65 22 435 19

4GL 185 — 248 1,424 238

Ada –18 –71 — 338 –3

Assembly –81 –93 –77 — –78

PL-1/Pascal –16 –70 3 351 —

How to read the table: if a program was written in Ada, then the same
functionality was written in Assembly, it would take 338 percent MORE
lines of code.

a ALGOL, BASIC, FORTRAN, JAVA, LISP, LOGO, C, C++, CMS-2, COBOL,
JOVIAL, PROLOG, etc.8

164 � Software Sizing, Estimation, and Risk Management

Effective Size

As defined earlier effective SLOC (ESLOC) is a measure of how much
work will be required to complete a project, factoring in new and reuse,
not a measure of the total SLOC to be delivered. A software project
comprising only new, build-from-scratch code may be said to have an
effective size equal to the total size (number of new lines of source code
equals effective lines).

When software projects economize by reusing preexisting functionality
from prior projects in combination with new development, total size may
be misleading because total size in this case can be used to describe
value, not effort. Effort would be computed by converting the new and
preexisting software into an effective (equivalent) number of size units
using formulas developed from experience.

Generally speaking, reusing existing functionality requires less effort than
developing equivalent new code. Typically, reuse involves three activities
(redesign, reimplementation, and retest), each of which increases the effort
and schedule. Redesign is necessary when the existing functionality may
not be exactly suited to the new task. When this is so, the application to
be reused will likely require some rework to support new functions, and
it may require reverse engineering to understand its current operation.

Some design changes may be in order as well. Changing design will
also result in reimplementation and coding changes. Even if redesign and
reimplementation are not required, retesting is almost always needed to
ensure the preexisting software operates properly in its new environment.
All this is captured in effective size. (See Chapter 8 covering reuse and
COTS software for a detailed discussion on computing effective size.)

Productivity Based on Effective Size

Effective size, as determined by the method described above, can be used
to compute productivity, for example, SLOC produced per person-month,
-hour, or -day. Effective SLOC and properly computed productivity values
are valuable indicators for determining total project effort. (See Chapter 9
for a detailed discussion of productivity computations.)

Accounting for SLOC Growth

For a given set of initial requirements, an initial size estimate will usually
expand over time. The reason is simple: the entire system cannot be
understood or grasped at the outset of a project. It is therefore wise to
build a growth factor into the estimate and to express the size estimate
as a range rather than as a discrete number. However, not all analysts

Source Lines of Code � 165

will do so, particularly those who have not systematically compared earlier
project estimates against actual outcomes.6 Figure 5.4 shows the results
of a study of size growth conducted by SEI.7 The following conclusions
were noted by SEI:

� Projects show periods of sharp growth in lines of code, separated
by periods of more moderate growth.

� Ten percent of the code may be produced after testing starts due
to requirements changes.

� Steady size growth from approximately development midpoint
through acceptance testing can occur due to response to trouble
reports.

� Changes often are driven by better understanding of the requirements.
� These changes impact schedule and staffing, and hence cost.

The bottom line: you must understand size and factor code growth into
your estimates or your effort and schedule projections probably will be
low. Project growth factors may be scalar size adjustments that are applied
against initial size estimates or discrete estimates of growth. For example:

� The development team estimates that a new job will take 10K lines
of code.

� A review of the team’s last few estimates reveals that they typically
underestimated by an average of 35 percent.

� As a result, a better estimate for this job would be 13.5K lines of
code.

Figure 5.4 SEI Size Growth Study results.

PDR

Total New

Reused

CDR TRR PCASSR

1 2 3 4 5 6 7 8 9 10

S
iz

e

166 � Software Sizing, Estimation, and Risk Management

Galorath Incorporated developed empirical software growth factors that
may be applied to SLOC or other size metrics. As shown in Table 5.5,
software growth factors decrease over time as system definition converges.

In addition to the empirical data of Galorath Incorporated (Table 5.5),
Watts Humphrey’s rules are shown on Table 5.6.

Barry Holchin developed an empirical growth method based on system
complexity and development phase as shown in Table 5.7.

Estimating Size Growth Conclusions

Galorath and others conduct ongoing research related to size growth and
SEER-PPMC can be used for capturing growth during development. The
current best methodology for determining size range (and therefore size

Table 5.5 Typical Software Growth Factors8

Project Phase When
Estimate is Prepared Least Growth Likely Growth Most Growth

Proposal 1.56 1.68 1.78

Requirements 1.52 1.61 1.71

Design 1.40 1.56 1.56

Code 1.18 1.20 1.24

Test 1.00 1.08 1.08

Done 1.00 1.00 1.02

Table 5.6 Humphrey Size Contingency Factors9

Phase at Estimate
Min. Contingency

(Percent)
Max. Contingency

(Percent)

Requirements 100 200

High-level design 75 150

Detailed design 50 100

Implementation 25 50

Function test 10 25

System test 0 10

Note: Treat these figures as rules of thumb. The author is
careful to point out that no good published data is
available to support these figures.

Source Lines of Code � 167

growth) is using relative size estimation methodologies. Relative sizing
using models such as SEER-AccuScope capture likely size and growth. It
has been found that when relative sizing is performed, analysts capture the
growth almost automatically because past projects have already experi-
enced growth and the range estimate includes likely and growth estimates.

Using the multiestimate size methodology described in Chapter 3,
developing as many size ranges as you can, any one or all the growth
factors covered here can provide rows in a size range table and provide
clarity and completeness to the size estimation process. For SLOC esti-
mates, SEER-SEM expects the analyst to provide the least, likely and most
SLOC. The likely and most should include growth.

Finding Automated Code Counters for Existing Systems
There are many reasons to count existing systems. Primary reasons include
obtaining scope so that rework for an incremental improvement can be
estimated and new system sizes can be estimated by analogy.

A free code counter can be obtained from www.galorath.com and it
can count most languages such as C, C++, and Ada that include line-
terminating semicolons. It is available in both ANSI C source code (so it
can be compiled on the required target computer and operating system)
and as an executable within Microsoft Windows.

Table 5.7 Holchin Size Growth Approximations10

Maturity >>> 0 10 20 30 40 50 60 70 80 90 100

Complexity ATP SDR SRR PDR CDR Test

Simple 0 1.15 1.14 1.12 1.11 1.09 1.08 1.06 1.05 1.03 1.02 1.00

1 1.29 1.26 1.23 1.20 1.17 1.14 1.11 1.09 1.06 1.03 1.00

2 1.42 1.38 1.34 1.29 1.25 1.21 1.17 1.13 1.08 1.04 1.00

3 1.56 1.50 1.44 1.39 1.33 1.28 1.22 1.17 1.11 1.06 1.00

4 1.69 1.62 1.55 1.48 1.41 1.35 1.28 1.21 1.14 1.07 1.00

5 1.83 1.74 1.66 1.58 1.50 1.41 1.33 1.25 1.17 1.08 1.00

6 1.96 1.86 1.77 1.67 1.58 1.48 1.38 1.29 1.19 1.10 1.00

7 2.10 1.99 1.88 1.77 1.66 1.55 1.44 1.33 1.22 1.11 1.00

8 2.23 2.11 1.98 1.86 1.74 1.62 1.49 1.37 1.25 1.12 1.00

9 2.37 2.23 2.09 1.96 1.82 1.68 1.55 1.41 1.27 1.14 1.00

Complex 10 2.50 2.35 2.20 2.05 1.90 1.75 1.60 1.45 1.30 1.15 1.00

168 � Software Sizing, Estimation, and Risk Management

Table 5.7 (continued) Holchin Size Growth Approximations10

System Knowledge Maturity Factor
Guidelines Complexity Factor Definition

Early System Concept phase. Few
studies have been completed.
Incomplete System Segment
Spec. Completely new concept
or minimal knowledge of
systems in which similar
concepts have been
implemented.

0

0 = Real time not an issue.
Extremely simple SW with
primarily straightforward code,
simple I/O, and internal storage
arrays.
1 = Between 0 and 2.
2 = Background processing.
Computational efficiency has
some impact on development
effort SAV is of low logical
complexity using
straightforward I/O and
primarily internal data storage.
3 = Between 2 and 4.
4 = New standalone system
developed on firm operating
system. Minimal I/F problems
exist.
5 = Typical C&C.
6 = Minor real time processing,
signficant logical complexity,
some changes to operating
system.
7 = Between 6 and 8.
8 = Challenging response time
requirements, new system with
significant I/F and interaction
requirements (e.g., OS and R/T
with signficant logical code).
9 = Between 8 and 10.
10 = Extremely large volumes of
data processing in short time,
signal processing system with
extremely complex I/Fs (e.g.,
parallel processing, microcode
applications).

Early System Requirements
Analysis. Often near proposal
and Award of Contract
Preliminary System Segment
Spec. completed (SRR) and
CSCIs identified.
Significant knowledge of similar
systems.

0.2

SDR completed. System
Functional Baseline,
Operationals Concept
Document, Software
Development Plan completed.

0.4

SRR completed. All CSCI
requirements identified and
defined (functional
performance, database, testing).
System Allocated Baseline
complete.

0.6

PDR 0.8

CDR 0.9

End of CSCI Testing 1.0

Note: Author points out that these factors are postulated based on anecdotal
information, not supported by hard data.

Source Lines of Code � 169

The Center for Software Engineering at the University of Southern
California (sunset.usc.edu) also provides a free tool named CodeCount™
which counts logical and physical SLOC. Languages supported include
Ada, Assembly, C and C++, COBOL, FORTRAN, Java, JOVIAL, Pascal, and
PL-1.The physical SLOC definition is based on Boehm’s deliverable source
instruction (DSI). It is programming language syntax-independent. This
enables it to collect other useful information such as comments, blank
lines, and overall size, all independent of information content. The logical
SLOC definitions will vary, depending on the programming language, due
to language-specific syntax.

Beware: simply finding and downloading any code counter from the
Internet can produce disastrous results. A code counter must be certified
before the results can be trusted. The author was involved in a major
program that had dramatically overestimated the number of preexisting
SLOC due to the use of a code counter containing a bug.

Additional issues to consider when counting code are (1) understand
what you are counting and (2) count hand-generated lines, not automat-
ically generated lines because effort is generally related to hand-generated
lines. If you have not separated automatically generated lines from code
counts, cost models will likely need calibration. Generated lines may not
correlate as well with effort.

The issue of counting automatically generated lines is similar to the
method of counting object code used years ago. At one time, counting
the number of words of executable instructions was consistent enough to
be used as a size measure. As programming languages evolved and became
less close to the physical computer architecture, such counts became nearly
useless for estimation purposes. In one example, a FORTRAN program of
about 3,000 source lines produced an executable program of about 8K
words of memory. Yet when the same FORTRAN program was recompiled
on a different computer, using a different compiler and architecture, the
same program grew to over 220K words.

As visual development environments provide increasing amounts of
generated code, similar expansions are common. The best approach is to
eliminate the automatically generated lines from the counts to avoid this
issue (of course, using functional measures can solve these concerns).
Alternately, develop ratios of hand-generated lines to automatically gen-
erated lines and adjust your code count or calibrate the cost model.

Pros and Cons of SLOC
The primary benefits of using SLOC as a sizing metric arise from the fact
that the metric has been used for years, can be well understood, and

170 � Software Sizing, Estimation, and Risk Management

correlates well with functionality and effort. SLOC metrics are relatively easy
to count using the counting standards described above. Many of the estima-
tion models are based on SLOC measures. Furthermore, other metrics can
be derived from the SLOC metric, for example, productivity (SLOC/staff-
month) and quality (defects/SLOC) measurements. SLOC counts can be used
to describe and compare such things as rates of defects or faults and failures.
In addition, costs of documentation can be computed based on SLOC counts.

Size measurement methods have played a key role in helping to solve
real-world problems of estimating, supplier and customer disputes, per-
formance improvement, and the management of outsourced contracts.11

Arguments against Use of Lines of Code as Sizing Metric

Despite the benefits noted above, the use of SLOC has some drawbacks
worth mentioning.

No SLOC exist at the onset of a project — During early activities
such as requirements analysis or design, few or no SLOC are produced.
Even when they are written, their value is minimal until they have been
tested. For this reason, using SLOC complete as an in-process metric is not
very useful. For example, during a development at Apple, lines of code
developed per week served as a metric. One week, as a developer made
the main algorithm for his program more efficient, he removed 2,000 lines
of code and made the software run about eight times faster. When he
was asked to report his productivity for that week, he wrote “minus 2,000
lines.”12 The project soon stopped collecting in-process size metrics
because they proved to be ineffective.

At micro-level, SLOC can be misleading — If a superstar program-
mer can write a function in fewer lines than a mediocre programmer,
does it make sense for the superstar to appear less productive?

Despite obvious benefits, using SLOC counts as a primary or only
measure of software size presents significant risk — A range should
be used to mitigate this risk. Lines of code can only be accurately counted
after the product is completed. SLOC counts do not easily accommodate
nonprocedural languages.

Risks Resulting from Using SLOC to Estimate

Even though SLOC counts are commonly used as sizing metrics and they
are essential to the analogy estimation method, they can potentially be
inaccurate, especially during the early phases of a software project before
the scope is understood. Although the SLOC metric is commonly used, not
least because management can understand a quantitative value, the ability
to estimate a project’s size quantitatively represents one of the principal risks

Source Lines of Code � 171

of using SLOC. The best that can be expected of a size projection using
SLOC is a range of accuracy, not a precise value, and management often
attributes a degree of accuracy to the metric that is not warranted. Using
sizing models, growth factors, and analogies for cross-checks can mitigate
risk. Software size estimation risk generally falls into three major categories:

Overoptimism — Underestimating size can prevent scaling the devel-
opment environment to reflect reality, which can lead to defining cost
drivers that may be inappropriate or incorrectly estimated. It may also cause
a misalignment of skills to tasks, miscalculation of schedules and level of
effort required, and unrealistic estimation of project staffing requirements.

Misuse of historical SLOC data — Erroneous, incomplete, inconsis-
tent, or irrelevant historical SLOC information can prevent accurate sizing
of a software project, which can lead to low initial budget estimates and
significant cost growth or even to loss of the project.

Poorly or loosely defined requirements and/or objectives —
These can cause unrealistic customer expectations or unconstrained
requirements growth during the software development life cycle. This can
result in constant changes in size and project goals, frustration, customer
dissatisfaction, cost overruns, and, ultimately, project failure.

Risk Management and Control of SLOC Estimates

One way to manage SLOC risk is to develop historical sizing information
whenever a product is completed and store it in a database for use in
projecting the sizes of future applications. Risks also exist in using a non-
current SLOC estimate. If an estimate is not updated, it will become less
valid as a project proceeds. Common results of not maintaining a current
size estimate for a project can be: uncontrolled size growth, functional
inconsistencies between historical size and the system being developed,
and schedule and budget issues.

To control the risks associated with a SLOC estimate, the steps neces-
sary to establish a formal estimate using SLOC and for revising and tracking
the estimate throughout the life of the project need to be linked to the
risk management process. See Chapter 10 for a detailed discussion of the
risk management process. Because of these potential issues, extreme care
should be taken to keep current SLOC estimates as a project proceeds.

Summary
Both the followers and detractors of SLOC have interesting points to make.
One author went so far as to say that using lines of code for estimation
constituted “professional malpractice.”13 While the use of the method is
not professional malpractice, the statement emphasizes the dangers in

172 � Software Sizing, Estimation, and Risk Management

misusing SLOC as a size metric. If defined consistently, SLOC can work
well for estimating most types of systems, but using SLOC without under-
standing the definitions certainly can cause significant confusion. SLOC
can seem confusing and inaccurate because there are so many factors to
consider, such as physical versus logical lines, total size versus effective
size, and hand-generated code versus total generated code.

However, the great advantage of SLOC over function-based sizing
methods is that SLOC serve as actual artifacts of a developer’s work and
can be automatically counted when a project is completed. The count
provides valuable historical data that enables you to develop an analogy
base that will facilitate the development of new estimates.

In identifying the source lines, we defined both physical and logical
source lines, provided a recommended definition, and include SEI’s source
line definition checklist below.

We also considered why different computer languages can impact SLOC
counts along with the best practices for approaching size and language
conversion. The risks associated with size estimation and recommended
mitigation strategies were discussed. The checklist and code counting exam-
ples from various languages are included at the end of this chapter to assist
readers. The next chapter focuses on function-based sizing approaches.

SEI Checklist
The SEI checklist is useful if you receive SLOC counts defined with a non-
standard definition or when a definition needs to be ferreted out from
developers who may not understand the definitions clearly. It is always
best to get SLOC counts in logical, non-comment source statements and
not have to qualify a definition using these checklists.

Different languages represent a line of code differently due to con-
ceptual differences involved in accounting for executable statements and
data declarations. The purpose of SLOC as a quantitative size measure is
to provide an input to a future estimate that will determine how much
effort is required to develop or modify a program. To minimize the risk
of inconsistent definitions, the SEI developed a checklist for defining the
physical and logical lines of code measures.14

SEI Definition Checklist for Source Statement Counts

One helpful tool in counting source lines of code is preparing a checklist
of attributes and determining their values. Using checklists provides a
detailed definition of the source line of code counting methodology so
all parties involved have a clear concise definition to use. The following
checklist identifies suggested attributes for size measures.

Source Lines of Code � 173

The nine attributes on the checklist describe the types of software
statements for measuring the source lines of code:

1. Statement type
2. How produced
3. Origin
4. Usage
5. Delivery
6. Functionality
7. Replications
8. Development status
9. Language

These attributes take on values independently of each other. The
attributes and their respective values represent statement types that are
most commonly used by software development groups that seek and utilize
the results of size measurement. Using SLOC as a sizing metric has its own
trade-offs. It is important to identify and describe the attributes of size,
without which consistency in size measurements cannot be achieved.

Statement Type Includes Excludes

When a line or statement contains more than one type,
classify it as the type with the highest precedence.

Executable

Nonexecutable

Declarations

Compiler directives

Comments

On their own lines

On lines with source code

Banners and nonblank spacers

Blank (empty) comments

Blank lines

How Produced Includes Excludes

Programmed

Generated with source code generators

Converted with automated translators

174 � Software Sizing, Estimation, and Risk Management

How Produced (continued) Includes Excludes

Copied or reused without change

Modified

Removed

Origin Includes Excludes

New work: no prior existence

Prior work: taken or adapted from

A previous version, build, or release

Commercial, off-the-shelf software (COTS), other
than libraries

Government furnished software (GFS), other than
reuse libraries

Another product

A vendor-supplied language support library
(unmodified)

A vendor-supplied operating system or utility
(unmodified)

A local or modified language support library or
operating system

Other commercial library

A reuse library (software designed for reuse)

Other software component or library

Usage Includes Excludes

In or as part of primary product

External to or in support of primary product

Delivery Includes Excludes

Delivered

Delivered as source

Delivered in compiled or executable form, but not
as source

Source Lines of Code � 175

Delivery (continued) Includes Excludes

Not delivered

Under configuration control

Not under configuration control

Functionality Includes Excludes

Operative

Inoperative (dead, bypassed, unused, unreferenced,
or unaccessed)

Functional (intentional dead code, reactivated for
special purposes)

Nonfunctional (unintentionally present)

Replications Includes Excludes

Master source statements (originals)

Physical replications of master statements, stored in
master code

Copies inserted, instantiated, or expanded when
compiling or linking

Postproduction replicates as in distributed,
redundant, or reparameterized systems

Development Status Includes Excludes

Each statement has one and only one status, usually that
of its parent unit.

Estimated or planned

Designed

Coded

Unit test completed

Integrated into components

Test readiness review completed

Software [CSCI (computer software configuration
item)] tests completed

System tests completed

176 � Software Sizing, Estimation, and Risk Management

Codes for Various Programming Languages
We have included below the actual codes for a variety of languages that
implement the classic “Hello World” program used to test compilers and
made famous by Kerrigan and Ritchie’s book, The C Programming Lan-
guage.15 The codes are included here to allow readers to determine the
counting rules and differences among programming languages. For a more
comprehensive list of languages and their codes see:

http://www2.latech.edu/~acm/HelloWorld.shtml
http://www.roesler-ac.de/wolfram/hello.htm
http://en.wikipedia.org/wiki/Hello_world

Language: ABAP4

REPORT ZHB00001.

*Hello world in ABAP/4 *

WRITE: ‘Hello world’.

Language: Ada

-- Hello World in Ada

with TEXT_IO; use TEXT_IO;

procedure Hello is

 pragma MAIN;

begin

Language Includes Excludes

List each source language on a separate line.

Job control languages

Assembly languages

Third generation languages

Fourth generation languages

Microcode

Other

Source: SEI Report CMU/SEI-92-TR-20.

Source Lines of Code � 177

 PUT (“Hello World!”);

end Hello;

Language: Assembler IBM-370

ITLE ‘Hello World for IBM Assembler/370 (VM/CMS)’

HELLO START

BALR 12,0

USING *,12

*

WRTERM ‘Hello World!’

*

SR 15,15

BR 14

*

END HELLO

Back to index

Language: Assembler Intel

; Hello World for Intel Assembler (MSDOS)

mov ax,cs

mov ds,ax

mov ah,9

mov dx, offset Hello

int 21h

xor ax,ax

int 21h

Hello:

 db “Hello World!”,13,10,“$”

Language: Assembler PDP11

; Hello World in Assembler for the DEC PDP-11 with the

; RSX-11M-PLUS operating system

178 � Software Sizing, Estimation, and Risk Management

;

 .title Hello

 .ident /V0001A/

 .mcall qiow$s, exit$s

 .psect $code,ro,i

start: qiow$s #5,#5,,,,<#str, #len, #40>

 exit$s

 .psect $data,ro,d

str: .ascii / Hello World!/

 len=.-str

 .end start

Language: Basic

10 REM Hello World in BASIC

20 PRINT “Hello World!”

Language: C++

// Hello World in C++

#include <iostream.h>

main()

{

 cout << “Hello World!” << endl;

 return 0;

}

Language: C++ MFC

// Hello World in C++ for Microsoft Foundation Classes

// (Microsoft Visual C++).

#include <afxwin.h>

class CHello : public CFrameWnd

Source Lines of Code � 179

{

public:

 CHello()

 {

 Create(NULL,_T(“Hello World!”),
 WS_OVERLAPPEDWINDOW,rectDefault);

 }

};

class CHelloApp : public CWinApp

{

public:

 virtual BOOL InitInstance();

};

BOOL CHelloApp::InitInstance()

{

 m_pMainWnd = new CHello();

 m_pMainWnd->ShowWindow(m_nCmdShow);

 m_pMainWnd->UpdateWindow();

 return TRUE;

}

CHelloApp theApp;

Language: C-Ansi

/* Hello World in C, Ansi-style */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 puts(“Hello World!”);

 return EXIT_SUCCESS;

}

180 � Software Sizing, Estimation, and Risk Management

Language: C-Sharp

// Hello World in Microsoft C# (“C-Sharp”).

using System;

class HelloWorld

{

 public static int Main(String[] args)

 {

 Console.WriteLine(“Hello, World!”);

 return 0;

 }

}

Language: COBOL

 * Hello World in Cobol

IDENTIFICATION DIVISION.

PROGRAM-ID. HELLO.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

MAIN SECTION.

DISPLAY “Hello World!”

STOP RUN.

Language: Forth

: Hello World in Forth

 .” Hello World!” cr

;

Back to index

Source Lines of Code � 181

Language: FORTRAN

C Hello World in Fortran

PROGRAM HELLO

 WRITE (*,100)

 STOP

 100 FORMAT (‘ Hello World! ’/)

 END

Back to index

Language: Fortran 77

C Hello World in Fortran 77

 PROGRAM HELLO

 PRINT*, ‘Hello World!’

 END

Back to index

Language: Fortran IV

 PROGRAM HELLO

c

C Hello World in Fortran IV (supposedly for a TR440)

c

 WRITE (6,’(“ Hello World!”)’)

 END

Language: HTML

<HTML>

<!-- Hello World in HTML -->

<HEAD>

<TITLE>Hello World!</TITLE>

</HEAD>

<BODY>

182 � Software Sizing, Estimation, and Risk Management

Hello World!

</BODY>

</HTML>

Language: Java

class HelloWorld {

 public static void main (String args[]) {

 for (;;) {

 System.out.print(“Hello World”);

 }

 }

}

Language: JavaScript

<html>

<body>

<script language=“JavaScript” type=“text/javas-
cript”>

// Hello World in JavaScript

document.write(‘Hello World’);

</script>

</body>

</html>

Job Control Language (JCL)

//HERIB JOB , ‘HERIBERT OTTEN’,PRTY=12

//* Hello World for MVS

//HALLO EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSUT2 DD SYSOUT=T

//SYSUT1 DD *

Hello World!

/*

//

Source Lines of Code � 183

Language: Lisp

;;; Hello World in Common Lisp

(defun helloworld ()

 (print “Hello World!”)

)

Language: Pascal

{Hello World in Pascal}

program HelloWorld;

begin

 WriteLn(‘Hello World!’);

end.

Language: Pascal-Windows

{ Hello World in Borland Pascal 7 for MS-Windows}

PROGRAM HelloWorld;

USES

 WinCRT;

BEGIN

 InitWinCRT;

 WriteLn(‘Hello World!’);

 ReadLn;

 DoneWinCRT;

END.

Language: Smalltalk.simple

“Hello World in Smalltalk (simple version)”

Transcript show: ‘Hello World!’.

Smalltalk.window

184 � Software Sizing, Estimation, and Risk Management

“Hello World in Smalltalk (in an own window)”

“(to be entered in a special browser)”

VisualComponent subclass: #HelloWorldView

 instanceVariableNames: ”

 classVariableNames: ”

 poolDictionaries: ”

 category: ‘test’

displayOn: aGraphicsContext

 ‘Hello World!’ asComposedText displayOn:
 aGraphicsContext.

open

 |window|

 window := ScheduledWindow new.

 window label: ‘Hello World Demo:’.

 window component: self new.

 window open.

Language: VisualBasic

REM Hello World in Visual Basic for Windows

VERSION 2.00

Begin Form Form1

 Caption = “Form1”

 ClientHeight = 6096

 ClientLeft = 936

 ClientTop = 1572

 ClientWidth = 6468

 Height = 6540

 Left = 876

 LinkTopic = “Form1”

 ScaleHeight = 6096

 ScaleWidth = 6468

 Top = 1188

Source Lines of Code � 185

 Width = 6588

 Begin Label Label1

 Caption = “Hello World!”

 Height = 372

 Left = 2760

 TabIndex = 0

 Top = 2880

 Width = 972

 End

End

Option Explicit

Endnotes
1. Galorath, Daniel. Personal experience, circa 1986.
2. Jones, Capers. Patterns of Software Systems Failure and Success. Stamford:

Thompson, 1996. 31.
3. Roetzheim, William. Estimating Software Costs. Rancho San Diego: Cost

Xpert Group, 2005.
 4. Park, Robert E. et al. Software Size Measurement: A Framework for Count-

ing Source Statements: Technical Report. Pittsburgh: Software Engineering
Institute, 1992.

5. Galorath Incorporated. SEER-SEM User Manual. El Segundo, 2004.
6. Galorath Incorporated. OSD Software Estimation Guidebook. El Segundo,

1997.
7. Landis. Software Engineering Institute, 2004. <http://www.sei.cmu.edu/

sema/pdf/baumert.pdf>
8. Galorath Incorporated. SEER-SEM internal information, 2005.
9. Humphrey, Watts S. Managing the Software Process. Boston: Addison-Wesley,

1989. Table 6.1.
 10. Holchin, Barry, Code Growth Study. March 4, 1996. Text and table related

to maturity factor revised September 17, 2003.
11. Rule, Grant. “The Importance of the Size of Software Requirements.”

NASSCOM Conference, Mumbai, India, 2001.
12. <http://www.c2.com>
13. “The use of lines of code metrics for productivity and quality studies [is] to

be regarded as professional malpractice starting in 1995.” Capers Jones, 1996.
14. Goethert, Wolfhart B. et al. Software Effort and Schedule Measurement: A

Framework for Counting Staff-Hours and Reporting Schedule Information.
Pittsburgh: Software Engineering Institute, 1992.

 15. Kerrigan, Brian W. and Dennis Ritchie. The C Programming Language.
Upper Saddle River: Prentice Hall, 1988.

187

Chapter 6

Function-Based Sizing

What we see depends mainly on what we look for.

Sir John Lubbock

Introduction
This chapter describes function-based sizing for software size definition,
concentrating on the International Function Point User Group (IFPUG)
counting standards. Additionally SEER-FBS (function-based sizing), which
approximates function points with simple inputs for early estimation, is
discussed. Uncertainties and risk related to function-based sizing are also
examined. The David Consulting Group, authors of the primary book on
function point counting state:

The most important planning metrics are those having to do
with scope and size of the project. One of the most frequently
used sizing metrics is function points. Function points measure
functionality. A key advantage of function points is that they
can be counted before design and coding begin by reference
to the requirements specifications, assuming that those are, as
they should be, comprehensive with respect to what the soft-
ware product is supposed to do.1

188 � Software Sizing, Estimation, and Risk Management

Function points constitute a logical (functional) size measure. They
measure the functions of a software system as seen by the user. Of all
the function-based approaches, the IFPUG method is predominant, sup-
ported by strong training, a counting practice committee, and a body of
function point counting consultants.

Origins and History of Functional Metrics
In order to address some of the concerns with SLOC counting, in 1979
Allan Albrecht of IBM proposed a way to measure the size of software
in terms of its functionality as opposed to its physical components
(SLOC).2 Albrecht and his colleagues at IBM used both function points
and source lines of code (SLOC) metrics concurrently and introduced the
function point metric into the public domain.

The first international publication of the function point metric appeared
in Capers Jones’ 1981 book titled Programming Productivity: Issues for
the Eighties,3 published by the IEEE Computer Society Press. In this book,
Jones states: “Software organizations, looking for alternatives to the LOC
metric, were drawn to the function point metric as a way to link size to
the functional projections of a system.”

As the use of function points among IBM’s client base grew, this group
formed the core of IFPUG. The work done by Albrecht and IBM in 1984
was the first major revision to the function point counting rules and the
resultant method designated function point analysis evolved into the
IFPUG method.4

By the early 1990s, the IFPUG function point metric had become a
major tool for quantifying software size. The method has two components.
The first measures functional size and produces unadjusted function
points. The unadjusted function points are used by models such as
SEER-SEM as a size measure and represent the work independently of
people, work products, and process factors. The second component
measures the contribution to overall size of 14 technical and quality factors
which, when applied, yield adjusted function points. The adjusted function
point metric is not as widely used. Several deviations from the Albrecht–
IFPUG approach have been developed. The following are noteworthy:

Feature points — In his 1986 paper titled “The SPR Feature Point
Method,” Capers Jones5 extended the original work of Albrecht,
proposing a concept known as feature points. They extended the
metric to apply to scientific algorithms but this method was largely
abandoned.

Function-Based Sizing � 189

Mark II (MkII) function points — In the late 1980s in the United
Kingdom, Charles Symons developed the Mark II function point
method.6 The method, used largely for management systems, is
consistent with structured analysis methods, and is applicable in
early stages of a life cycle. Its primary use is for application-type
software. Symons enhanced Albrecht’s approach by improving the
way in which the internal complexity of data-rich business appli-
cation software is addressed. The MkII method assumes a model
of software in which all requirements or user functionalities are
expressed in terms of logical transactions (LTs). Each LT comprises
an input, some processing, and an output component. An LT is
defined as triggered by an event in the real world of interest to
the user or a request for information. The size of an input or output
component of an LT is proportional to the number of DETs (data
element types) on the component. The size of the processing
component is proportional to the number of entity types referenced
in the processing. The counts of input and output DETs and of
entity types referenced in the processing phase are then weighted
to give the MkII function point size of each LT. The size of an item
of software is then the sum of the MkII FP sizes of each of its LTs.
3D function points — Scott Whitmire, while at Boeing, developed
3D function points in the early 1990s.7 The technique was designed
to improve the Albrecht approach by (1) making counting simpler
and (2) improving application to scientific and real-time systems.
The 3D function point system is not widely used today.
NESMA — The Dutch Software Metrics Association (NESMA) pub-
lished a variant of the IFPUG method that aimed to simplify some
of the sizing rules. NESMA issued the first version of its manual
titled Definitions and Counting Guidelines for the Application of
Function Point Analysis in 1990 and subsequently updated it reg-
ularly to provide concrete, operational guidelines on complex
counting issues for helping counters.8 As a result, the counting
guidelines of NESMA and IFPUG continuously became more sim-
ilar. With the publication of IFPUG CPM 4.1 (January 1999), the
NESMA counting guidelines became generally the same as IFPUG
guidelines.
Full function points — Alain Abran’s LRGL group at the University
of Québec, Montréal, and others9 published the Full Function Point
Method, which used the IFPUG rules for business application
software and added extra components for sizing real-time software.
This approach addresses the measurement of software reuse from
a functional perspective rather than from a technical perspective.

190 � Software Sizing, Estimation, and Risk Management

In 1995, Abran and Desharnais proposed the first version of func-
tional reuse metrics based on the function point analysis (FPA)
technique. They illustrated how these metrics could be used to
take into account the benefits of reuse in a cost–benefit analysis.
The full function point system [COSMIC-FFP (ISO 19761)] is a
functional size measurement method that generalizes the measure-
ment process to address management information systems issues
as well as real-time and hybrid software projects. It provides, in
particular, criteria for measuring functional size and improves upon
the IFPUG function point analysis method so that the software of
real-time systems can also be targeted for measurement. With
COSMIC-FFP, the size of software can be determined from the
functions the user requires the software to perform. The functional
requirements of software are expressed as a set of functional
processes, each of which is expressed in turn by an ordered set
of data movements. An individual data movement is referred to as
a subprocess within the functional process in question. The result
of measurement in COSMIC-FFP is the number of data movements,
i.e., the number of subprocesses, taken to represent size.
Evolved function points — In 2000, Lee Fischman of Galorath
Incorporated set out to simplify the IFPUG method with relaxed
terminology and counting rules.10 This experiment was successful.
It is not in use today since Galorath Incorporated determined industry
would be best served by supporting the standard IFPUG approach.
SEER-FBS (function-based sizing) — In 1992, Galorath Incorpo-
rated introduced SEER-FBS. SEER-SEM’s basic IFPUG mode func-
tion-based sizing is consistent with IFPUG counting rules, asks the
counting questions in end user terminology, then rolls this up to
an IFPUG unadjusted function point range approximation.11 In its
advanced mode, SEER-FBS adds a sixth category (internal func-
tions) that allows users to account for highly algorithmic processes
of systems such as real-time and embedded-type systems. The
SEER-FBS approach can address the measurement of software reuse
from a functional perspective rather than from a technical perspec-
tive. This approach is available in SEER-SEM and has been made
available to the function point community at large.12

ISO Involvement
In 1994, Working Group 12 (WG12) of the International Organization for
Standardization/International Electrotechnical Commission (ISO/IEC) Joint
Technical Committee 1, deciding that no existing method was suitable for

Function-Based Sizing � 191

adoption as the world standard, set out to establish some basic principles
of functional size measurement (FSM). This work resulted in the publica-
tion of ISO/IEC 14143/1:1997, titled Information Technology: Software
Measurement — Functional Size Measurement — Definition of Concepts.
Other standards and technical reports in the 14143 series cover subjects
like conformance testing and verification of candidate FSM methods and
the definitions of types of software domains for FSM.

In late 1998, some members of WG12 decided to develop a new FSM
method, starting from basic established software engineering principles.
They were able to draw on the experience of the past 25 years of FSM
and aimed to be compliant with ISO/IEC 14143/1:2003 from the outset.
They also intended that the FSM method be equally applicable to MIS
and business software, to real-time and infrastructure software (e.g., oper-
ating system software), and to hybrids of these. They formed COSMIC,
the Common Software Measurement International Consortium. The
method, COSMIC-FFP, Version 2.0, was published in October 1999. Field
trials were carried out in 2000 and 2001 (Ref. 8). COSMIC published its
latest definition of the method (Version 2.2) in January 2003.

As a result of a decision of ISO/IEC to “let the market decide,”
international standards were published during 2002 and 2003 for the
COSMIC-FFP (ISO/IEC 19761), the IFPUG — for its functional size com-
ponent (ISO/IEC 20926), the MkII FPA (ISO/IEC 20968), and the NESMA
(ISO/IEC 24570) methods. The IFPUG method is the most widely used
today.

International Function Point User Group Counting
Standards: Basic Process Definition
According to IFPUG, function point analysis is a standard method for
measuring software development from the user’s point of view. The
process quantifies functionality of the software by providing a sizing
measurement based primarily on logical design. The IFPUG function point
analysis objectives13 are to:

1. Measure the requested functionality that the user receives.
2. Independently measure software development and maintenance

without considering the technology used for implementation.
3. Use a measurement that is simple enough to minimize the overhead

of the measurement process.
4. Apply a consistent measure among various projects and organiza-

tions. (Note: different versions of the IFPUG counting standards
can yield dramatically different counts for the same system. Know

192 � Software Sizing, Estimation, and Risk Management

what version of the rules were used on existing counts and which
version is required for new counts.) We recommend using the
latest counting rules because IFPUG continues to refine them.

IFPUG Definitions
The IFPUG’s Function Point Counting Practices Manual, Release 4.2 con-
tains the glossary terms listed below. Figure 6.1 illustrates the steps iden-
tified in the manual.

Control information — Data used by an application to influence an
elementary process.

Elementary process — Smallest unit of activity that is meaningful to
the user.

Processing logic— Any of the requirements specifically requested by
the user to complete an elementary process: validations, algorithms, cal-
culations, and reading or maintaining a file.

External input (EI) — Elementary process that processes data or control
information that comes from outside an application’s boundary.

Internal logical file (ILF) — User-identifiable group of logically related
data or control information maintained within the boundary of an application.

External inquiry (EQ) — Elementary process that sends retrieved data
or control information outside an application boundary.

External output (EO) — Elementary process that sends derived data
or control information outside an application’s boundary.

External interface file (EIF) — User-identifiable group of logically
related data or control information referenced by an application and
maintained within the boundary of another application.

Data functions — Internal local files and external interface files.
Transactional functions — External inputs, external outputs, inquiries.
Derived data — Data that does not necessarily update a file.
Function points — Per IFPUG, a method of estimating costs and

resources required for software development and maintenance.

IFPUG Steps

Step 1: Determine Type of Function Point Count

The first step in the function point counting procedure is to determine
the type of function point count. The three types of counts described in
the manual are:

Function-Based Sizing � 193

1. Development project function point count — A measure of the func-
tions provided to the user with the first installation of the software
delivered when the project is complete.

2. Enhancement project function point count —A measure of modifi-
cations to an existing application that add, change, or delete user
functions delivered when the project is complete. When the func-
tionality from an enhancement project is installed, the application
function point count must be updated to reflect changes in the
application’s functionality.

3. Application function point count — A measure of an installed appli-
cation. This measure, often called the baseline or installed function
point count, provides a measure of the current functions the appli-
cation provides the user. This number is initialized when the

Figure 6.1 IFPUG function point counting process.

2. Determine application
 boundary

1. Determine the type of
 function point count

3. Identify functional
 categories

4. Count the data
 functions

5. Count the transactional
 functions
 (Unadjusted FP
 count complete)

6. Evaluate the complexity
 of nonfunctional user
 constraints using a value
 adjustment factor

7. Compute adjusted
 function point count

194 � Software Sizing, Estimation, and Risk Management

development project function point count is completed. It is
updated every time completion of an enhancement project alters
the application’s functions.

This initial step documents the purpose of the function point count
through interaction with the organization requesting the count. Project
assumptions are clarified and documented. In this step the specific source
documents used as a basis for the count are identified, collected, and
evaluated. Traceability of logical functions included within the functional
requirements at a point in time is established and the historical base for
gauging future projects is defined. This step results in a definition of what
is to be included in the function point count, what information serves as
the basis for the count, and what the recipient of the count or estimate
expects to receive.

Step 2: Determine Application Boundary

The application boundary indicates the border between the software
measured and the user. The boundary defines what is external to the
application and serves as the conceptual interface between the internal
application and the external user environment. The boundary provides a
definition of the interface through which data processed by transactions
pass into and out of the application and bounds the logical data maintained
by the application. Definition of the boundary is one step in the identi-
fication of the logical data referenced by, but not maintained within, the
application. Successful definition of the application boundary requires an
understanding of the user’s external business view of the application that
is independent of technical and/or implementation considerations. This
application boundary is also referred to as the counting scope.

A project may include one or more applications or subsystems. The
purpose of this step is to define specifically the applications or subsystems
as they will ultimately be used. The application boundary is the logical
boundary that envelops self-contained user functions that must exist to
deliver the user requirements. This boundary separates the software from
the user domain (users can be people, objects, other software applications,
hardware devices, departments, and other organizations). Software may
span several physical platforms and include batch and online processes,
all of which are included within the logical application boundary.

As illustrated in Figure 6.2, the boundary definition encapsulates the
estimate to a defined set of functions executing within a given space.
Everything within that space is part of the estimate, including all code

Function-Based Sizing � 195

and data residing within the boundary. All data and functions residing
outside the boundary are external to the estimate.

Data stored within the application’s boundary is considered an internal
logical file. Data stored outside the boundary and referenced by the appli-
cation is considered an external interface file. Data crossing the boundary
constitutes a transaction (external input, external output, or external inquiry).

Step 3: Identify Functional Categories

The next step is to identify which functions of the system belong in which
categories. There are five categories of functions and all are described in
detail below.

Figure 6.2 Application boundary.

External

data

(EIF)

Internal

data

(ILF)

User interface:

Perspective from which

functional requirements matter

Application boundary:

All code & data lying

within object of count

196 � Software Sizing, Estimation, and Risk Management

� External input (EI)
� External output (EO)
� External inquiry (EQ)
� External interface file (EIF)
� Internal logical file (ILF)

As illustrated in Figure 6.3, these functional categories map to the ways
functions and data elements are supported in an application. The user
provides inputs to the system in the form of EIs. The user receives outputs
in the form of EOs and interacts with system functions through EQs.
Inputs are transformed through ILFs and the system interoperates with
other applications and external systems through EIFs, EIs, and EOs.

External Input (EI)

An EI is any function or transaction that moves data into an application.
Generally, this data is used to update an ILF in an application. An EI
should be considered unique if the logical design requires input processing
that is different from other EIs. During EI identification, all items that
update ILFs are identified. For each item identified: (1) consider each
unique format a separate EI; in some cases the same data can be received
in more than one format; (2) count one EI for each data maintenance
activity (e.g., add, change, and delete) performed.

To identify multiple EIs generated by one physical file, look at the
record types on the file. Exclude header and trailer records (unless required
for audit purposes) and record types required due to physical space
limitations. Look at the remaining record types for unique processing
requirements and associate an EI for each unique process. Data received
from outside the subsystem boundary that either maintain (add, change,
maintain, populate, or delete data in) an ILF or provide control functions
are identified as EIs. Data with unique processing requirements are
counted as separate EIs.

Figure 6.3 IFPUG application user view.14

External input

Internal

logical

file

Application being
considered

External
interface files

External input

External output

External
inquiry Other

applications

External output

External
inquiry

Function-Based Sizing � 197

EI Examples

In a banking system, customer data that is input into a customer account
file is an example of an external input. In a satellite surveillance system,
an example is the input from a ground system commanding a new pointing
position.

Duplicate EIs

Each different input process for the same operation is counted. An example
might be a banking system that accepts two identical deposit transactions,
one through an automated teller machine (ATM) transaction and a second
through a manual teller deposit transaction. Each transaction would be
counted as a separate EI.

Suspense File Updates

Input processes that maintain either ILFs or suspense/carry-around files
should be counted based on the following. If they are updateable by the
user, count them as ILFs and count an EI for each data maintenance
activity performed on an ILF. If a suspense/carry-around file cannot be
updated, count an EI for each data maintenance activity that the program
itself performs on the original ILF. In either case, the process of reapplying
data from a suspense/carry-around file to the ILF is not counted. Multiple
methods of invoking the same input logic, for example, entering either
A or Add on a command line and also using a function key for Add,
should be counted only once.

Not External Inputs

The following examples are not EIs: (1) reference data; EIFs utilized by
an application but not maintained by it; (2) input side of an external
inquiry; data input used to drive selection for data retrieval (see external
inquiry section below); (3) menu screens that simply facilitate navigation;
(4) log-on screens that facilitate entry into an application but do not
maintain ILFs.

Rating Complexity for External Inputs

Each EI is assigned a low, average, or high complexity rating based on
the number of file types referenced (FTR) and data element types (DETs).
DETs are usually unique, user-recognizable, nonrepeating fields or attributes,

198 � Software Sizing, Estimation, and Risk Management

including foreign key attributes that enter the boundary of the subsystem
or application.

Data element type identification — The DET count is the maximum
number of user-recognizable data elements that are maintained as ILFs
by the EIs. Each data element maintainable as an ILF by the EI is a DET
with the following exceptions:

� Duplicate fields created by the same user input. For example, an
account number or date that is physically stored in multiple fields
should be counted as one DET.

� Fields that appear more than once in the ILF because of technology
or implementation techniques should be counted only once; for
example, if an ILF is comprised of more than one table in a
relational database, the keys used to relate the tables would be
counted only once.

Additional DETs are credited to the EI for the following:

� Command lines or function keys that provide the capability to
specify the action to be taken by the EI — one additional DET
per EI, not per command or function key; navigational keys,
however, are not counted.

� Fields not entered by the user but maintained as ILFs through EIs
should be counted; for example, a system-generated sequenced
key maintained as an ILF would be counted as a DET.

� Error or confirmation messages resulting from input are each
counted as an additional DET for the input.

File type referenced identification — An FTR is counted for each ILF
item or file maintained or referenced and all EIF items or files referenced
during the processing of the EI. File types referenced, or more simply,
files referenced, totals the number of ILFs maintained, read, or referenced
and the EIFs read or referenced by the EI transaction. Rate the complexity
of each EI using Table 6.1.

Table 6.1 Complexity Rating Table for External Inputs

1 to 4 DETs 5 to 15 DETs 16 or More DETs

0 to 1 FTRs Low Low Average

2 FTRs Low Average High

3 or More FTRs Average High High

Function-Based Sizing � 199

External Output (EO)

An EO is any function or transaction that manipulates data and presents
it to a user. Weapons firing solutions, status reports, commands to other
systems, or outgoing e-mail can be counted as EOs. The key feature of
an EO is that the information presented outside the boundary must contain
derived or calculated information or update an ILF. Otherwise, the trans-
action is categorized as an external inquiry (EQ).

External Output Examples

An example of an EO in a banking system is a customer’s monthly
statement. A map sent back to the ground is an example from a satellite
surveillance system.

Reports

Each report produced by an application is counted as an EO. Two reports
that are identically formatted, but contain different information are counted
as two EOs because each requires unique processing logic and unique
calculations.

Duplicate Reports

Identical reports produced on different media due to specific user require-
ments are counted as separate EOs. The processing required to produce
different output media is considered unique processing logic. For example,
identical reports on paper and on microfiche are counted as two EOs.
(Note: This counting practice is undergoing review and may change in
future IFPUG releases.)

Graphical Formats

Graphical outputs should be counted as if presented in textual format.
Each different graphical display requested by the user should be counted
as an EO. Statistical data presented in a table, bar chart, pie chart, and
exploded pie chart should be counted as four EOs.

Report Generator

External output developed for the user with a report generator should be
counted as an EO for each specified unique report. If a report generator
facility is requested by the user as part of an application for do-it-yourself

200 � Software Sizing, Estimation, and Risk Management

report generation, one EI should be counted for each report definition
parameter or unique command (e.g., select, compare, sort, merge, extract,
calculate, summarize, or format) requested by the user to control report
generation; one EO should be counted for the total report program; and
one ILF should be counted if a new file is created and saved.

Not External Outputs

The following are not EOs:

� Help. See EI identification section.
� Error or confirmation messages; these generally are counted as

additional DETs for the transaction (external input, output, or
inquiry) with which they are associated.

� Multiple reports with unique data values; identical reports with the
same format and processing logic but unique data values are not
counted as separate EOs. For example, two reports, the first con-
taining customer names A through L and the second, customer
names M through Z, are counted as only one EO.

� Summary fields (column totals) in a detail report do not constitute
unique EOs.

� Ad hoc reporting. When a user is responsible for creating reports
through the use of a language such as FOCUS or SQL, no EOs are
counted.

Rating Complexity for External Outputs

Each EO function is assigned a low, average, or high complexity rating
based on the number of FTRs and DETs. EOs should be generated by
the application in a format that can be used by an external source. Identify
each unique format under which data will be output, whether to a screen,
external application, hard drive, or other device. (Note: This counting
practice is undergoing review and may change in future IFPUG releases.)

Data element type identification — A DET should be counted for each
user-recognizable, nonduplicate field that appears in the EO. Each field
in the EO is a DET within the following guidelines:

� User-recognizable duplicate fields (for example, account numbers
or dates physically stored in multiple fields) are counted as one DET.

� Count a DET in the EO for each unique command or parameter
in a report generator facility requested by the user for do-it-yourself
report generation.

Function-Based Sizing � 201

� Count a DET for each type of label and each type of numerical
equivalent in a graphical output; for example, a pie chart might
have two DETs, one for designating the category and one for the
applicable percentage.

� Do not count literals as DETs.
� Do not count paging variables or system generated date-time

stamps.

Additional DETs are credited to the EO for the following:

� Count additional DETs for each summary or total field on the EO.
� Count a DET for each distinct error or confirmation message

associated with the transaction.

File type referenced identification — An FTR should be counted for
all ILFS and EIFs referenced or maintained during the processing of the
EO. Rate the complexity for each EO using Table 6.2.

External Inquiry (EQ)

An EQ is a unique request that results in the retrieval of data. An EQ
request does not update or change any of the software ILFs. An EQ response
does not contain derived data; it simply retrieves existing information. An
EQ should be considered unique if the logical design requires processing
logic different from other EQs. For example, clicking on a drop-down
box invokes a response that reveals a dynamic list of items. This is an
EQ. The request is the mouse click on the drop-down box, and the
response is the display of the list of items. Processes other than direct
retrieval of information from ILFs or EIFs are not EQs. In order to identify
EQs, identify all processes by which an input triggers the retrieval of data
not derived by that process. For each process identified: (1) verify that
each input–output combination is unique and consider each unique input–
output combination a separate EQ; and (2) credit an EQ for each process.

Table 6.2 Complexity Rating Table for External Outputs

 1 to 5 DETs 6 to 19 DETs 20 or More DETs

0 to 1 FTRs Low Low Average

2 to 3 FTRs Low Average High

4 or More FTRs Average High High

202 � Software Sizing, Estimation, and Risk Management

External Inquiry Example

Retrieval of data: Selection of data retrieval based on data input.
Implied External Inquiries: Change or delete screens that retrieve data

prior to change or delete functionality are credited with an EQ, provided
the EQ capability can be and is used as a stand-alone function.

Duplicate Output Side: Identical queries produced on different media
due to specific user requirements are counted as separate EQs. (Note: This
counting practice is under review and may change in future IFPUG releases.)

Graphical Formats: Each different graphical display requested by the
user should be counted as an additional EQ. A log-on screen that provides
security functionality is counted as an EQ. Menu screens that provide
screen selection and data retrieval selection input for the called screen
are considered EQs, the menu being the input side of the EQ and the
called screen being the output side. Help involves an EQ pair in which
the input and output (explanatory text) are both unique. Credit help text
that can be accessed or displayed through different request techniques or
from different areas of an application only once. Two categories of help
are considered EQs:

� Full screen help. A help facility that depends on the application
screen to display help text relating to the calling screen.

� Field-sensitive help. A help facility, dependent on the location of
the cursor or some other method of identification, that displays
help documentation specific to that field. Credit this as one EQ
per screen.

Not External Inquiries

The following are not EQs:

� Error or confirmation messages. Counted as DETs on transaction
functions.

� Multiple methods of invoking the same EQ logic. Multiple methods
such as entering I or Ins on a command line or using a function
key are counted only once.

� Help text that can be accessed from multiple areas or screens of
an application or can be accessed and browsed independently of
the associated application is counted only once.

� Menu screens that provide only navigational selection functionality
are not counted.

� Derived data. A transaction containing derived data should be
categorized as an EO. System documentation that is available
online, in lieu of, or in addition to that available in hard copy is

Function-Based Sizing � 203

not counted. Online documentation alone should not be considered
a delivered software function.

� Test systems. Nondelivered, developer-only test systems are
included in system development only and should not be counted;
delivered test systems should be counted as normal.

� User-maintained help facility. This facility should be counted as a
separate application.

� Independent teaching (tutorial) systems. Computer-aided instruc-
tion (CAI), computer-based training (CBT), and other independent
software teaching systems that are different from the production
system and maintained separately should be counted as separate
applications; training systems identical to the production system
should be considered as additional sites; do not count them as
separate functions.

Rating Complexity for External Inquiries

Each EQ is assigned a low, average, or high complexity rating based on
the number of FTRs and DETs:

Data element type identification (input side) — A DET is counted for
fields entered that specify the EQ to be executed or specify data selection
criteria.

Data element type identification (external output side) — A DET is
counted for each user-recognizable, nonduplicate field that appears on
the output side of the EQ.

Each field appearing in the EQ is a DET with the following exceptions:

� Fields should be considered from the user’s perspective. For exam-
ple, an account number or date that is physically stored in multiple
fields but displayed as one is counted as one DET.

� Fields that, because of technology or implementation techniques,
appear more than once in the ILF should be counted only once.

� Do not count literals (fixed information within the program) as DETs.
� Do not count paging variables or system generated date-time stamps.

Additional DETs are credited to the EQ for the following:

� For full-screen help, credit a low complexity EQ per calling screen
regardless of the number of FTRs or DETs involved.

� For field-sensitive help, classify an EQ, using the input side, based
on the number of fields that are field-sensitive and the number of
FTRs. Each field-sensitive field corresponds to a DET.

� Count a DET for each distinct error or confirmation message
associated with the transaction.

204 � Software Sizing, Estimation, and Risk Management

File type referenced identification — An FTR is counted for each ILF
and EIF read during the processing of the EQ.

Rate the complexity for each EQ using Table 6.3.

External Interface File (EIF)

An EIF is a user-identifiable group of logically related data (data related
at such a level that an experienced user would identify the data as fulfilling
a specific user requirement of the application) or control information
utilized by the application but maintained by another application. EIFs
might be used by an application’s EOs or EQs. For example, when a
program references a file that contains data that is important to the operation
of the application but is not updated or maintained by the application
itself, it uses an EIF. In order to identify EIFs, identify all data that is:

� Stored externally to the application’s boundary
� Not maintained by the application
� Identified as a requirement of the application by the users

Group the data logically based on the user’s view:

� View data at the level of detail at which the user can first categorize
the data as satisfying unique requirements of the application.

� View the data logically. Although some storage technologies such
as tables in a relational database or sequential flat files relate closely
to EIFs, do not assume that one physical file equals one logical file.

Each type of data on the following list can relate to one or more EIFs,
depending on the user’s view.

External Interface File Examples

Examples of EIFs include reference data (data used by the application but
not maintained by the application), help messages, error messages, and
edit data (criteria).

Table 6.3 Complexity Rating Table for External Inquiries

1 to 5 DETs 6 to 19 DETs 20 or More DETs

0 to 1 FTRs Low Low Average

2 to 3 FTRs Low Average High

4 or More FTRs Average High High

Function-Based Sizing � 205

Not External Interface Files

The following are not EIFs:

� Data received from another application that adds, changes, or
deletes data in an ILF (counted as an EI)

� Data maintained by the application being counted but accessed
and utilized by another application

� Data formatted and processed for use by another application
(counted as an EO)

Rating Complexity for External Interface Files

Each EIF is assigned a low, average or high complexity rating based on
the number of RETs and DETs:

Data element type identification — These are user-recognizable, non-
duplicate fields residing in the EIF. Each field in an EIF may be a DET,
with the following exceptions:

� Fields should be viewed from the user’s perspective. For example,
an account number or date physically stored in multiple fields but
displayed only once should be counted as one DET.

� Fields that appear more than once in an EIF because of the
technology or implementation techniques should be counted only
once. For example, if an EIF is comprised of more than one record
type in a file, the record ID field used to identify the records would
be counted only once.

� Repeating fields that are identical in format and exist so that
multiple occurrences of a data value can occur are counted only
once. For example, EIFs containing 12 monthly budget amount
fields and an annual budget amount field would be credited with
two DETs: a DET for the monthly budget amount fields and a DET
for the annual budget amount field.

Record element type identification — These are logical subgroupings
based on the user’s view of the data. If there are no further logical
groupings to fields, then there is only one RET.

One way to identify different RETs is by record types. Exclude header
and trailer records, unless specifically requested for audit purposes, as
well as record types required by physical space limitations. Each unique
record type corresponds to a RET. Rate the complexity for each EIF using
Table 6.4.

206 � Software Sizing, Estimation, and Risk Management

Internal Logical File (ILF)

An ILF is a user-identifiable group of logically related data or control infor-
mation utilized and maintained by an application. ILFs might be accessed
by the EIs, EOs, or EQs of an application. As illustrated in Figure 6.4,
ILFs convert inputs or inquiries based on user-identifiable groups of
logically related information or visible data linked to a requirement.

The ILFs store information processed by an internal function resulting
in an EO. For example, the SEER-SEM knowledge bases are ILFs because
they are both used and maintained by the application. There are two
steps to identifying ILFs. First, identify all data that is:

� Stored internal to the application
� Maintained through a standardized process of the application
� Identified as a requirement of the application by the user.

Table 6.4 Complexity Rating Table for External Interface Files

1 to 19 DETs 20 to 50 DETs 51 or More DETs

0 to 1 RETs Low Low Average

2 to 5 RETs Low Average High

6 or More RETs Average High High

Figure 6.4 ILF relationships.

A user-identifiable group

of logically related data

ILF

Work element

information

Data that would be

visible in a requirement

Function-Based Sizing � 207

Next, group the data logically based on the user’s view:

� Group data at the level of detail at which the user can first categorize
the data as satisfying unique requirements of the application.

� View the data logically. Although some storage technologies such
as tables in a relational database or sequential flat files relate closely
to ILFs, do not assume that one physical file equals one logical file.

Figure 6.5 shows the relationship of an EI, an ILF, and an EO. To
identify potential ILFs, look at the type of data stored and how a user
would view or group the data (storage technologies such as tables, flat
files, indexes, and paths are irrelevant). Each type of data on the following
list can relate to one or more ILFs, depending on the user’s view:

� Application data (master files like tax information and personnel
information)

� Application security data
� Audit data
� Help messages
� Error messages
� Edit data

Figure 6.5 Relationship of EI, ILF, and EO.

Flows in
from external

inputs
ILF

208 � Software Sizing, Estimation, and Risk Management

Internal Logical File Examples

Two examples of ILFs are a customer account database in a banking system
and a topography database in a satellite surveillance system. Backup data
is counted only if specifically requested by a user due to legal or similar
requirements. ILFs maintained by more than one application are credited
to both applications at the time each is counted.

Not Internal Logical Files

Temporary files and work files are not ILFs.

Rating Complexity for Internal Logical Files

Each ILF item is assigned a low, average, or high classification based on
the number of RETs and DETs.

Data element type identification — These are user-recognizable, non-
duplicate fields residing in the ILF. Each field in an ILF may be a DET,
with the following exceptions:

� Fields should be considered from the point of view of the user.
For example, an account number or date that is stored physically
in multiple fields but displayed only once is counted as one DET.

� Fields that appear more than once in ILFs because of technology
or implementation techniques should be counted only once. For
example, if an ILF is comprised of more than one table in a
relational database, the keys used to relate the tables are counted
only once.

� Repeating fields that are identical in format and exist to allow
multiple occurrences of a data value are counted only once. For
example, ILFs containing 12 monthly budget amount fields and an
annual budget amount field would be credited with two DETs: a
DET for the monthly budget amount fields and a DET for the
annual budget amount field.

� Each unique command or parameter is counted as a DET if ILFs
are created and saved in a report generator facility requested by
the user for do-it-yourself report generation.

Record element type identification — These are logical subgroupings
based on a user’s view of the data. (The data analysis equivalents to such
logical groupings are data entities.) If there are no further logical groupings
to fields, then there is only one RET.

Function-Based Sizing � 209

One way to identify different RETs is by record types. Exclude header
and trailer records, unless specifically requested for audit purposes, as
well as record types required by physical space limitations. Each unique
record type corresponds to a RET. Rate the complexity for each ILF using
Table 6.5.

Step 4: Count Data Functions (ILFs and EIFs)

This step counts the ILFs and EIFs identified in Step 3. It considers internal
and external data entities and identifies logical data stores maintained or
stored within the subsystem. External data, transactions, messages, and
controls (external inputs) populate, revise, update, change or add to the
data stores. These logical data elements support EOs and/or EQs. A data
group should not be dependent upon or attributive to another data group
for its existence. Data groups are classified as either EIFs or ILFs. An ILF
is counted once per subsystem. When identifying ILFs, the data must
actually exist or may exist when the software is in use and it is dynamic,
not hard coded.

Identify, categorize, and count the ILFs that are persistent, logical
entities or data groups to be maintained through a standard function of
the software.

Identify, categorize, and count the EIFs that are persistent, logical
entities referenced from other applications but not maintained by this
application. Typically these data are used in editing, validation, or reporting
types of software processes.

When identifying and classifying the persistent logical entities as inter-
nal (maintained) and external (referenced only), it is helpful to draw
circles around the entities and their included subentities on a data model
or entity relationship diagram. If there is no data model or entity relation-
ship model, one is essentially created in this step by building on the
context diagram created in the previous application boundary step.

Note that hard-coded data or any tables and files created only because
of the physical or technical implementation are not counted. This step

Table 6.5 Complexity Rating Table for Internal Logical Files

1 to 19 DETs 20 to 50 DETs 51 or More DETs

0 to 1 RETs Low Low Average

2 to 5 RETs Low Average High

6 or More RETs Average High High

210 � Software Sizing, Estimation, and Risk Management

records the numbers and types of logical data elements if they are known
and if they are not already identified in the requirements. This provides
a checklist of data entities to gauge the consistency and completeness of
transactional (manipulation of data) functions.

Clarifications can be made by reviewing the entities to determine
whether they are on a data model or hand-drawn context diagram and
whether they are inside the application boundary (i.e., to be maintained
by the software) or external to the boundary (i.e., to be referenced only).
A typical question might be: “Why is that entity external? I thought we
needed to be able to update that entity.” Such questions could lead to a
discussion that either confirms the original requirements or reveals an
inconsistency in understanding and leads to a change in the diagram.
When the review is combined with the transactions outlined in the next
step, the majority of potential requirements mismatches are identified.

Step 5: Count Transactional Functions (EIs, EOs, and EQs)

Use the following information to count transactional functions identified
in Step 3. You should count:

� EIs that are the elementary processes whose primary intent is to
maintain the data in one or more persistent logical entities or to
control the behavior of the system. Note that these EIs are func-
tional unit processes and not physical data flows or data structures.

� EOs that are the elementary processes whose primary intent is to
deliver data out of the application boundary, and which include
at least one of the following: mathematical calculation(s), derive
new data elements, update an ILF (via calculations required to
compute outputs), or direct the behavior of the system.

� EQs that are the elementary processes whose primary intent is to
deliver data out of the application boundary purely by retrieval
from one or more of the ILFs or EIFs.

In this step, the majority of missed, incomplete, or inconsistent require-
ments are identified. The list below provides some examples of the types
of discoveries that can be made using function point analysis:

1. If a persistent, logical entity has been identified as an ILF, i.e.,
maintained through a standard maintenance function of the appli-
cation, and has no associated EIs, there are one or more mis-
matched requirements: (1) the entity is actually a reference-only
entity (in which case it would be an EIF), or (2) there is at least
one missing requirement to maintain the entity, such as add entity,
change entity, or delete entity.

Function-Based Sizing � 211

2. If there are data maintenance (or data administration) functions
identified for data, but there is no persistent logical entity to house
the data (ILF), the data model may be incomplete. This would
indicate the need to revisit the data requirements of the application.

3. If there is a data update function present for an entity identified as
reference only (EIF), this would indicate that the entity is actually an
ILF. The data requirements are inconsistent and need to be reviewed.

4. If there are data entities that need to be referenced by one or more
input, output, or query functions, and there is no such data source
identified on the data model/entity-relationship diagram/context
diagram, the data requirements are incomplete and need to be
revisited.

5. If there are output or query functions that specify data fields to
be output or displayed that have no data source (i.e., no ILF or
EIF), and the data is not hard-coded, there is a mismatch between
the data model and the user functions. This indicates a need to
revisit the data requirements.

6. Most maintained entities (ILFs) follow the AUDIO (add, update,
delete, inquiry, output) convention; each persistent logical entity
typically has a standard set of functions associated with it. Not all
entities will follow this pattern, but AUDIO is a good checklist to
use with ILFs.

7. Is this group of data visible to the user via an EI or EO? Because
groupings of data are evaluated at the EI or (provisionally) internal
layer, they naturally must be evident there.

8. Does this group of data logically belong together? If certain data
items are always associated, then they belong in a single group.
This categorization scheme reinforces the idea that function points
are based on specifics of design rather than implementation. Given
this condition, physical attributes (tables, flat files, etc.) often but
do not always delineate logical groupings of data.

9. Has this group of data been counted before? An ILF may be
encountered in a system many times, but it is designed — and so
counted — only once.

Step 6: Evaluate Value Adjustment Factors

This step applies to adjusted function point counts only. Skip this step and
go on to step 7 if you are computing an unadjusted function point count.

Evaluate the complexity of nonfunctional user constraints using a value
adjustment factor (IFPUG only; not an ISO standard). Through an evaluation
of the 14 general systems characteristics (GSCs shown in Table 6.6 include
performance, end-user efficiency, transaction volumes, and other factors),

212 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
6.

6
V

al
ue

 A
dj

us
tm

en
t

Fa
ct

or
 C

om
po

ne
nt

s

Va
lu

e
A

d
ju

st
m

en
t

Fa
ct

o
r

El
em

en
t

D
eg

re
e

o
f

In
fl

u
en

ce

0
1

2
3

4
5

1.
 D

at
a

co
m

m
u

n
ic

at
io

n
s

A
p

p
lic

at
io

n
 is

p

u
re

 b
at

ch

p
ro

ce
ss

in
g

o
r

st
an

d
-a

lo
n

e
ap

p
lic

at
io

n

A
p

p
lic

at
io

n
 i

s
p

u
re

 b
at

ch

p
ro

ce
ss

in
g

o
r

st
an

d
-a

lo
n

e
ap

p
lic

at
io

n

A
p

p
lic

at
io

n
 is

b

at
ch

 b
u

t
h

as

re
m

o
te

 d
at

a
en

tr
y

o
r

re
m

o
te

p

ri
n

ti
n

g

A
p

p
lic

at
io

n

in
cl

u
d

es
 o

n
lin

e
d

at
a

co
lle

ct
io

n
 o

r
TP

(t

el
ep

ro
ce

ss
in

g)

fr
o

n
t

en
d

 t
o

 a

b
at

ch
 p

ro
ce

ss
 o

r
q

u
er

y
sy

st
em

A
p

p
lic

at
io

n

m
o

re
 th

an
 a

 fr
o

n
t

en
d

 a
n

d

su
p

p
o

rt
s

o
n

ly

o
n

e
ty

p
e

o
f

TP

co
m

m
u

n
ic

at
io

n

A
p

p
lic

at
io

n
 m

o
re

th

an
 a

 f
ro

n
t

en
d

an

d
 s

u
p

p
o

rt
s

m
o

re
 t

h
an

 o
n

e
ty

p
e

o
f

TP

co
m

m
u

n
ic

at
io

n

p
ro

to
co

l

2.
 D

is
tr

ib
u

te
d

 d
at

a
p

ro
ce

ss
in

g
D

at
a

is
 n

o
t

tr
an

sf
er

re
d

 o
r

p
ro

ce
ss

ed
 o

n

an
o

th
er

co

m
p

o
n

en
t o

f
th

e
sy

st
em

D
at

a
p

re
p

ar
ed

fo

r
tr

an
sf

er
,

th
en

tr

an
sf

er
re

d

an
d

 p
ro

ce
ss

ed

o
n

 a
n

o
th

er

co
m

p
o

n
en

t
o

f
sy

st
em

 fo
r u

se
r

p
ro

ce
ss

in
g

D
at

a
p

re
p

ar
ed

fo

r
tr

an
sf

er
,

th
en

tr

an
sf

er
re

d

an
d

p

ro
ce

ss
ed

 o
n

an

o
th

er

co
m

p
o

n
en

t o
f

sy
st

em
; n

o
t

fo
r

u
se

r
p

ro
ce

ss
in

g

D
is

tr
ib

u
te

d

p
ro

ce
ss

in
g

an
d

d

at
a

tr
an

sf
er

o

n
lin

e
an

d
 in

 o
n

e
d

ir
ec

ti
o

n
 o

n
ly

D
is

tr
ib

u
te

d

p
ro

ce
ss

in
g

an
d

d

at
a

tr
an

sf
er

o

n
lin

e
an

d
 i

n

b
o

th
 d

ir
ec

ti
o

n
s

D
is

tr
ib

u
te

d

p
ro

ce
ss

in
g

an
d

d

at
a

tr
an

sf
er

o

n
lin

e
an

d

d
yn

am
ic

al
ly

p

er
fo

rm
ed

 o
n

m

o
st

 a
p

p
ro

p
ri

at
e

co
m

p
o

n
en

t
o

f
sy

st
em

Function-Based Sizing � 213
3.

 P
er

fo
rm

an
ce

N
o

 s
p

ec
ia

l
p

er
fo

rm
an

ce

re
q

u
ir

em
en

ts

st
at

ed
 b

y
u

se
r

Pe
rf

o
rm

an
ce

an

d
 d

es
ig

n

re
q

u
ir

em
en

ts

st
at

ed
 a

n
d

re

vi
ew

ed
 b

u
t

n
o

 s
p

ec
ia

l
ac

ti
o

n
s

re
q

u
ir

ed

R
es

p
o

n
se

ti

m
e

o
r

th
ro

u
gh

p
u

t
cr

it
ic

al
 d

u
ri

n
g

p
ea

k
h

o
u

rs
;

n
o

 s
p

ec
ia

l
d

es
ig

n
 f

o
r

C
PU

u

ti
liz

at
io

n

re
q

u
ir

ed
;

p
ro

ce
ss

in
g

d
ea

d
lin

e
is

 fo
r

n
ex

t
b

u
si

n
es

s
cy

cl
e

R
es

p
o

n
se

 ti
m

e
o

r
th

ro
u

gh
p

u
t

cr
it

ic
al

 d
u

ri
n

g
al

l
b

u
si

n
es

s
h

o
u

rs
;

n
o

 s
p

ec
ia

l d
es

ig
n

fo

r
C

PU

u
ti

liz
at

io
n

re

q
u

ir
ed

;
p

ro
ce

ss
in

g
d

ea
d

lin
e

re
q

u
ir

em
en

ts

w
it

h
 i

n
te

rf
ac

in
g

sy
st

em
s

ar
e

co
n

st
ra

in
in

g

St
at

ed
 u

se
r

p
er

fo
rm

an
ce

re

q
u

ir
em

en
ts

st

ri
n

ge
n

t e
n

o
u

gh

to
 r

eq
u

ir
e

p
er

fo
rm

an
ce

an

al
ys

is
 t

as
ks

 i
n

d

es
ig

n
 p

h
as

e

Pe
rf

o
rm

an
ce

an

al
ys

is
 t

o
o

ls

u
se

d
 i

n
 d

es
ig

n
,

d
ev

el
o

p
m

en
t,

an
d

/o
r

im
p

le
m

en
ta

ti
o

n

p
h

as
es

 t
o

 m
ee

t
st

at
ed

 u
se

r
p

er
fo

rm
an

ce

re
q

u
ir

em
en

ts

4.
 H

ea
vi

ly
 u

se
d

co

n
fi

gu
ra

ti
o

n
N

o
 e

xp
lic

it
 o

r
im

p
lic

it

o
p

er
at

io
n

al

re
st

ri
ct

io
n

s
in

cl
u

d
ed

O
p

er
at

io
n

al

re
st

ri
ct

io
n

s
ex

is
t,

b
u

t
ar

e
le

ss
 r

es
tr

ic
ti

ve

th
an

 a
 t

yp
ic

al

ap
p

lic
at

io
n

; n
o

sp

ec
ia

l
ef

fo
rt

n

ee
d

ed
 t

o

m
ee

t
re

st
ri

ct
io

n
s

O
p

er
at

io
n

al

re
st

ri
ct

io
n

s
ex

is
t

an
d

 a
re

ty

p
ic

al
 f

o
r

an

ap
p

lic
at

io
n

;
sp

ec
ia

l
ef

fo
rt

th

ro
u

gh

co
n

tr
o

lle
rs

 o
r

co
n

tr
o

l
p

ro
gr

am
s

n
ee

d
ed

 t
o

m

ee
t

re
st

ri
ct

io
n

s

St
at

ed

o
p

er
at

io
n

al

re
st

ri
ct

io
n

s
re

q
u

ir
e

sp
ec

ia
l

co
n

st
ra

in
ts

 o
n

o

n
e

p
ie

ce
 o

f
ap

p
lic

at
io

n
 i

n

ce
n

tr
al

 p
ro

ce
ss

o
r

o
r

d
ed

ic
at

ed

p
ro

ce
ss

o
r

St
at

ed

o
p

er
at

io
n

al

re
st

ri
ct

io
n

s
re

q
u

ir
e

sp
ec

ia
l

co
n

st
ra

in
ts

 o
n

en

ti
re

ap

p
lic

at
io

n
 i

n

ce
n

tr
al

p

ro
ce

ss
o

r
o

r
d

ed
ic

at
ed

p

ro
ce

ss
o

r

Sp
ec

ia
l

co
n

st
ra

in
ts

 o
n

ap

p
lic

at
io

n
 i

n

d
is

tr
ib

u
te

d

co
m

p
o

n
en

ts
 o

f
sy

st
em

214 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
6.

6
(c

on
ti

nu
ed

)
V

al
ue

 A
dj

us
tm

en
t

Fa
ct

or
 C

om
po

ne
nt

s

Va
lu

e
A

d
ju

st
m

en
t

Fa
ct

o
r

El
em

en
t

D
eg

re
e

o
f

In
fl

u
en

ce

0
1

2
3

4
5

5.
 T

ra
n

sa
ct

io
n

 r
at

e
N

o
 p

ea
k

tr
an

sa
ct

io
n

p

er
io

d

an
ti

ci
p

at
ed

Lo
w

tr

an
sa

ct
io

n

ra
te

s
h

av
e

m
in

im
al

 e
ff

ec
t

o
n

 d
es

ig
n

,
d

ev
el

o
p

m
en

t,
an

d

in
st

al
la

ti
o

n

p
h

as
es

A
ve

ra
ge

tr

an
sa

ct
io

n

ra
te

s
h

av
e

so
m

e
ef

fe
ct

o

n
 d

es
ig

n
,

d
ev

el
o

p
m

en
t,

an
d

in

st
al

la
ti

o
n

p

h
as

es

H
ig

h
 t

ra
n

sa
ct

io
n

ra

te
s

af
fe

ct

d
es

ig
n

,
d

ev
el

o
p

m
en

t,
an

d
/o

r
in

st
al

la
ti

o
n

p

h
as

es

H
ig

h
 t

ra
n

sa
ct

io
n

ra

te
(s

)
st

at
ed

 b
y

u
se

r
in

ap

p
lic

at
io

n

re
q

u
ir

em
en

ts
 o

r
se

rv
ic

e
le

ve
l

ag
re

em
en

ts
 h

ig
h

en

o
u

gh
 t

o

re
q

u
ir

e
p

er
fo

rm
an

ce

an
al

ys
is

 t
as

ks
 i

n

d
es

ig
n

,
d

ev
el

o
p

m
en

t,
an

d
/o

r
in

st
al

la
ti

o
n

p

h
as

es

H
ig

h
 t

ra
n

sa
ct

io
n

ra

te
(s

)
st

at
ed

 b
y

u
se

r
in

ap

p
lic

at
io

n

re
q

u
ir

em
en

ts
 o

r
se

rv
ic

e
le

ve
l

ag
re

em
en

ts
 h

ig
h

en

o
u

gh
 t

o

re
q

u
ir

e
p

er
fo

rm
an

ce

an
al

ys
is

 ta
sk

s a
n

d

re
q

u
ir

e
u

se
 o

f
p

er
fo

rm
an

ce

an
al

ys
is

 t
o

o
ls

 i
n

d

es
ig

n
,

d
ev

el
o

p
m

en
t,

an
d

/o
r

in
st

al
la

ti
o

n

p
h

as
es

6.
 O

n
lin

e
d

at
a

en
tr

y
A

ll
tr

an
sa

ct
io

n
s

p
ro

ce
ss

ed
 i

n

b
at

ch
 m

o
d

e

1
to

 7
 p

er
ce

n
t

o
f t

ra
n

sa
ct

io
n

s
in

te
ra

ct
iv

e

8
to

 1
5

p
er

ce
n

t
o

f
tr

an
s-

ac
ti

o
n

s
in

te
ra

ct
iv

e

16
 to

 2
3

p
er

ce
n

t o
f

tr
an

sa
ct

io
n

s
in

te
ra

ct
iv

e

24
 t

o
 3

0
p

er
ce

n
t

o
f

tr
an

sa
ct

io
n

s
in

te
ra

ct
iv

e

M
o

re
 t

h
an

30

 p
er

ce
n

t
o

f
tr

an
sa

ct
io

n
s

in
te

ra
ct

iv
e

Function-Based Sizing � 215
7.

 E
n

d
-u

se
r

ef
fi

ci
en

cy
 m

ad
e

u
p

o

f
n

av
ig

at
io

n
al

ai

d
s,

 m
en

u
s,

 o
n

-
lin

e
h

el
p

 a
n

d

d
o

cu
m

en
ts

,
au

to
m

at
ed

 c
u

rs
o

r
m

o
ve

m
en

t,
Sc

ro
lli

n
g,

 R
em

o
te

p

ri
n

ti
n

g
(v

ia
 o

n
lin

e
tr

an
sm

is
si

o
n

s)
,

p
re

as
si

gn
ed

fu

n
ct

io
n

 k
ey

s
(e

.g
.,

cl
ea

r
sc

re
en

,
re

q
u

es
t h

el
p

, c
lo

n
e

sc
re

en
),

b
at

ch
 jo

b
s

su
b

m
it

te
d

 fr
o

m
 o

n
-

lin
e

tr
an

sa
ct

io
n

s,

d
ro

p
-d

o
w

n
 l

is
t

b
o

x,
 h

ea
vy

 u
se

 o
f

re
ve

rs
e

vi
d

eo
,

h
ig

h
lig

h
ti

n
g,

co

lo
rs

,
u

n
d

er
lin

in
g,

 a
n

d

o
th

er
 i

n
d

ic
at

o
rs

,
h

ar
d

-c
o

p
y

d
o

cu
m

en
ta

ti
o

n
 o

f
o

n
lin

e
tr

an
sa

ct
io

n
s

N
o

n
e

o
f

th
e

it
em

s
lis

te
d

O
n

e
to

 t
h

re
e

o
f

th
e

it
em

s
lis

te
d

Fo
u

r
o

r
fi

ve
 o

f
th

e
it

em
s

lis
te

d

Si
x

o
r

m
o

re
 o

f t
h

e
it

em
s

lis
te

d
, b

u
t

n
o

 s
p

ec
ifi

c
u

se
r

re
q

u
ir

em
en

ts

re
la

te
d

 t
o

ef

fi
ci

en
cy

Si
x

o
r

m
o

re
 o

f
th

e
it

em
s

lis
te

d
;

st
at

ed

re
q

u
ir

em
en

ts
 fo

r
u

se
r

ef
fi

ci
en

cy

st
ro

n
g

en
o

u
gh

 to

re
q

u
ir

e
d

es
ig

n

ta
sk

s
fo

r
h

u
m

an

fa
ct

o
rs

 t
o

 b
e

in
cl

u
d

ed

Si
x

o
r

m
o

re
 o

f
th

e
it

em
s

lis
te

d
;

st
at

ed

re
q

u
ir

em
en

ts
 fo

r
u

se
r

ef
fi

ci
en

cy

st
ro

n
g

en
o

u
gh

 to

re
q

u
ir

e
u

se
 o

f
sp

ec
ia

l t
o

o
ls

 a
n

d

p
ro

ce
ss

es
 t

o

d
em

o
n

st
ra

te
 th

at

o
b

je
ct

iv
es

 h
av

e
b

ee
n

 a
ch

ie
ve

d

216 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
6.

6
(c

on
ti

nu
ed

)
V

al
ue

 A
dj

us
tm

en
t

Fa
ct

or
 C

om
po

ne
nt

s

Va
lu

e
A

d
ju

st
m

en
t

Fa
ct

o
r

El
em

en
t

D
eg

re
e

o
f

In
fl

u
en

ce

0
1

2
3

4
5

(e
.g

.,
sc

re
en

 p
ri

n
t)

,
m

o
u

se
 i

n
te

rf
ac

e,

p
o

p
-u

p
 w

in
d

o
w

s,

te
m

p
la

te
s

an
d

/o
r

d
ef

au
lt

s,
 b

ili
n

gu
al

su

p
p

o
rt

 (
tw

o

la
n

gu
ag

es
: c

o
u

n
t

as
 f

o
u

r
it

em
s)

 o
r

m
u

lt
ili

n
gu

al
 (

m
o

re

th
an

 t
w

o

la
n

gu
ag

es
: c

o
u

n
t

as
 s

ix
 i

te
m

s)

8.
 O

n
lin

e
u

p
d

at
e

N
o

n
e

O
n

lin
e

u
p

d
at

e
o

f o
n

e
to

 th
re

e
co

n
tr

o
l

fi
le

s
in

cl
u

d
ed

;
vo

lu
m

e
o

f
u

p
d

at
in

g
lo

w

an
d

 r
ec

o
ve

ry

ea
sy

O
n

lin
e

u
p

d
at

e
o

f f
o

u
r

o
r

m
o

re

co
n

tr
o

l
fi

le
s

in
cl

u
d

ed
;

vo
lu

m
e

o
f

u
p

d
at

in
g

lo
w

an

d
 r

ec
o

ve
ry

ea

sy

O
n

lin
e

u
p

d
at

e
o

f
m

aj
o

r
in

te
rn

al

lo
gi

ca
l

fi
le

s
in

cl
u

d
ed

Pr
o

te
ct

io
n

ag

ai
n

st
 d

at
a

lo
ss

es

se
n

ti
al

; h
as

b

ee
n

 s
p

ec
ia

lly

d
es

ig
n

ed
 a

n
d

p

ro
gr

am
m

ed
 i

n

sy
st

em

H
ig

h
 v

o
lu

m
es

b

ri
n

g
co

st

co
n

si
d

er
at

io
n

s
in

to
 r

ec
o

ve
ry

p

ro
ce

ss
; h

ig
h

ly

au
to

m
at

ed

re
co

ve
ry

p

ro
ce

d
u

re
s

w
it

h

m
in

im
u

m
 h

u
m

an

in
te

rv
en

ti
o

n

in
cl

u
d

ed

Function-Based Sizing � 217
9.

 C
o

m
p

le
x

p
ro

ce
ss

in
g

in
cl

u
d

in
g

se
n

si
ti

ve

co
n

tr
o

l
an

d
/o

r
ap

p
lic

at
io

n
-

sp
ec

ifi
c

se
cu

ri
ty

p

ro
ce

ss
in

g,

ex
te

n
si

ve
 l

o
gi

ca
l

p
ro

ce
ss

in
g,

ex

te
n

si
ve

m

at
h

em
at

ic
al

p

ro
ce

ss
in

g,
 m

u
ch

ex

ce
p

ti
o

n

p
ro

ce
ss

in
g,

re

su
lt

in
g

in

in
co

m
p

le
te

tr

an
sa

ct
io

n
s

th
at

m

u
st

 b
e

p
ro

ce
ss

ed

ag
ai

n
 o

r
co

m
p

le
x

p
ro

ce
ss

in
g

to

h
an

d
le

 m
u

lt
ip

le

in
p

u
t/

o
u

tp
u

t
p

o
ss

ib
ili

ti
es

N
o

n
e

o
f

th
e

it
em

s
lis

te
d

A
n

y
o

n
e

o
f t

h
e

it
em

s
lis

te
d

A
n

y
tw

o
 o

f t
h

e
it

em
s

lis
te

d
A

n
y

th
re

e
o

f
th

e
it

em
s

lis
te

d
A

n
y

fo
u

r
o

f
th

e
it

em
s

lis
te

d
A

ll
fi

ve
 o

f
th

e
it

em
s

lis
te

d

218 � Software Sizing, Estimation, and Risk Management
Ta

bl
e

6.
6

(c
on

ti
nu

ed
)

V
al

ue
 A

dj
us

tm
en

t
Fa

ct
or

 C
om

po
ne

nt
s

Va
lu

e
A

d
ju

st
m

en
t

Fa
ct

o
r

El
em

en
t

D
eg

re
e

o
f

In
fl

u
en

ce

0
1

2
3

4
5

10
. R

eu
sa

b
ili

ty
N

o
 r

eu
sa

b
le

co

d
e

R
eu

sa
b

le
 c

o
d

e
u

se
d

 w
it

h
in

ap

p
lic

at
io

n

Le
ss

 t
h

an
 1

0
p

er
ce

n
t

o
f

ap
p

lic
at

io
n

co

d
e

d
ev

el
o

p
ed

 i
s

in
te

n
d

ed
 f

o
r

u
se

 i
n

 m
o

re

th
an

 o
n

e
ap

p
lic

at
io

n

Te
n

 p
er

ce
n

t
o

r
m

o
re

 o
f

ap
p

lic
at

io
n

 c
o

d
e

d
ev

el
o

p
ed

in

te
n

d
ed

 f
o

r
u

se

in
 m

o
re

 t
h

an
 o

n
e

ap
p

lic
at

io
n

A
p

p
lic

at
io

n

sp
ec

ifi
ca

lly

p
ac

ka
ge

d
 a

n
d

/o
r

d
o

cu
m

en
te

d
 t

o

ea
se

 r
eu

se
;

ap
p

lic
at

io
n

cu

st
o

m
iz

ed
 a

t
so

u
rc

e
co

d
e

le
ve

l

A
p

p
lic

at
io

n

sp
ec

ifi
ca

lly

p
ac

ka
ge

d
 a

n
d

/o
r

d
o

cu
m

en
te

d
 t

o

ea
se

 r
eu

se
;

ap
p

lic
at

io
n

cu

st
o

m
iz

ed
 f

o
r

u
se

 b
y

m
ea

n
s

o
f

u
se

r
p

ar
am

et
er

m

ai
n

te
n

an
ce

11
. I

n
st

al
la

ti
o

n
 e

as
e

N
o

 s
p

ec
ia

l
co

n
si

d
er

at
io

n
s

st
at

ed
 b

y
u

se
r;

n

o
 s

p
ec

ia
l s

et
-

u
p

 r
eq

u
ir

ed

fo
r

in
st

al
la

ti
o

n

N
o

 s
p

ec
ia

l
co

n
si

d
er

at
io

n
s

st
at

ed
 b

y
u

se
r;

sp

ec
ia

l
se

t-
u

p

re
q

u
ir

ed
 f

o
r

in
st

al
la

ti
o

n

C
o

n
ve

rs
io

n

an
d

 i
n

st
al

la
-

ti
o

n
 r

eq
u

ir
e-

m
en

ts
 s

ta
te

d

b
y

u
se

r;

co
n

ve
rs

io
n

an

d
 i

n
st

al
la

-
ti

o
n

 g
u

id
es

p

ro
vi

d
ed

 a
n

d

te
st

ed
; i

m
p

ac
t

o
f

co
n

ve
rs

io
n

o

n
 p

ro
je

ct
 n

o
t

co
n

si
d

er
ed

im

p
o

rt
an

t

C
o

n
ve

rs
io

n
 a

n
d

in

st
al

la
ti

o
n

re

q
u

ir
em

en
ts

st

at
ed

 b
y

th
e

u
se

r;

co
n

ve
rs

io
n

 a
n

d

in
st

al
la

ti
o

n

gu
id

es
 p

ro
vi

d
ed

an

d
 t

es
te

d
;

im
p

ac
t

o
f

co
n

ve
rs

io
n

 o
n

p

ro
je

ct
 is

co

n
si

d
er

ed

im
p

o
rt

an
t

In
 a

d
d

it
io

n
 t

o

re
q

u
ir

em
en

ts
 fo

r
3,

 a
u

to
m

at
ed

co

n
ve

rs
io

n
 a

n
d

in

st
al

la
ti

o
n

 t
o

o
ls

p

ro
vi

d
ed

 a
n

d

te
st

ed

Sa
m

e
as

 4

Function-Based Sizing � 219
12

. O
p

er
at

io
n

al

ea
se

N
o

 s
p

ec
ia

l
o

p
er

at
io

n
al

co

n
si

d
er

a-
ti

o
n

s
o

th
er

th

an
 t

h
e

n
o

rm
al

b

ac
k-

u
p

p

ro
ce

d
u

re
s

st
at

ed
 b

y
u

se
r

[O
n

e,
 s

o
m

e,
 o

r
al

l o
f

th
e

fo
llo

w
in

g
it

em
s

ap
p

ly
 t

o
 a

p
p

lic
at

io
n

. S
el

ec
t

al
l

th
at

 a
p

p
ly

. E
ac

h
 i

te
m

 h
as

 a
 p

o
in

t
va

lu
e

o
f

o
n

e,
 e

xc
ep

t
as

 n
o

te
d

o

th
er

w
is

e.
]

�
St

ar
t-

u
p

,
b

ac
k-

u
p

,
an

d
 r

ec
o

ve
ry

 p
ro

ce
ss

es
 w

er
e

p
ro

vi
d

ed
,

b
u

t
h

u
m

an
 i

n
te

rv
en

ti
o

n
 i

s
re

q
u

ir
ed

.
�

St
ar

t-
u

p
,

b
ac

k-
u

p
,

an
d

 r
ec

o
ve

ry
 p

ro
ce

ss
es

 w
er

e
p

ro
vi

d
ed

,
b

u
t

n
o

 h
u

m
an

 i
n

te
rv

en
ti

o
n

 i
s

re
q

u
ir

ed
 (

co
u

n
t

as
 t

w
o

 i
te

m
s)

.
�

Th
e

ap
p

lic
at

io
n

 m
in

im
iz

es
 t

h
e

n
ee

d
 f

o
r

ta
p

e
m

o
u

n
ts

 a
n

d
/o

r
re

m
o

te
 d

at
a

ac
ce

ss
 r

eq
u

ir
in

g
h

u
m

an
 i

n
te

rv
en

ti
o

n
.

�
Th

e
ap

p
lic

at
io

n
 m

in
im

iz
es

 n
ee

d
 f

o
r

p
ap

er
 h

an
d

lin
g.

A
p

p
lic

at
io

n

d
es

ig
n

ed
 f

o
r

u
n

at
te

n
d

ed

o
p

er
at

io
n

 (
n

o

h
u

m
an

 i
n

te
r-

ve
n

ti
o

n
 r

eq
u

ir
ed

to

 o
p

er
at

e
sy

s-
te

m
 o

th
er

 th
an

 to

st
ar

t
o

r
sh

u
t

d
o

w
n

 a
p

p
lic

a-
ti

o
n

);
au

to
m

at
ic

er

ro
r

re
co

ve
ry

 is

fe
at

u
re

 o
f

ap
p

lic
at

io
n

13
. M

u
lt

ip
le

 s
it

es
N

ee
d

s
o

f o
n

ly

o
n

e
in

st
al

la
-

ti
o

n
 s

it
e

co
n

si
d

er
ed

 in

d
es

ig
n

N
ee

d
s

o
f m

o
re

th

an
 o

n
e

in
st

al
la

ti
o

n

co
n

si
d

er
ed

 i
n

d

es
ig

n
;

ap
p

lic
at

io
n

d

es
ig

n
ed

 t
o

o

p
er

at
e

o
n

ly

u
n

d
er

 id
en

ti
ca

l
h

ar
d

w
ar

e
an

d

so
ft

w
ar

e
en

vi
ro

n
m

en
ts

Th
e

n
ee

d
s

o
f

m
o

re
 t

h
an

o

n
e

in
st

al
la

-
ti

o
n

 s
it

e
w

er
e

co
n

si
d

er
ed

 in

th
e

d
es

ig
n

;
ap

p
lic

at
io

n

d
es

ig
n

ed
 t

o

o
p

er
at

e
o

n
ly

u

n
d

er
 s

im
ila

r
h

ar
d

w
ar

e
an

d
/o

r
so

ft
w

ar
e

en
vi

ro
n

m
en

ts

N
ee

d
s

o
f

m
o

re

th
an

 o
n

e
in

st
al

la
ti

o
n

 s
it

e
co

n
si

d
er

ed
 i

n

d
es

ig
n

;
ap

p
lic

at
io

n

d
es

ig
n

ed
 t

o

o
p

er
at

e
u

n
d

er

d
if

fe
re

n
t

h
ar

d
w

ar
e

an
d

/o
r

so
ft

w
ar

e
en

vi
ro

n
m

en
ts

D
o

cu
m

en
ta

ti
o

n

an
d

 s
u

p
p

o
rt

 p
la

n

p
ro

vi
d

ed
 a

n
d

te

st
ed

 to
 s

u
p

p
o

rt

ap
p

lic
at

io
n

 a
t

m
u

lt
ip

le

in
st

al
la

ti
o

n
 s

it
es

;
ap

p
lic

at
io

n
 i

s
as

d

es
cr

ib
ed

 b
y

2

D
o

cu
m

en
ta

ti
o

n

an
d

 s
u

p
p

o
rt

 p
la

n

p
ro

vi
d

ed
 a

n
d

te

st
ed

 to
 s

u
p

p
o

rt

ap
p

lic
at

io
n

 a
t

m
u

lt
ip

le

in
st

al
la

ti
o

n
 s

it
es

;
ap

p
lic

at
io

n
 i

s
as

d

es
cr

ib
ed

 b
y

3

220 � Software Sizing, Estimation, and Risk Management

Ta
bl

e
6.

6
(c

on
ti

nu
ed

)
V

al
ue

 A
dj

us
tm

en
t

Fa
ct

or
 C

om
po

ne
nt

s

Va
lu

e
A

d
ju

st
m

en
t

Fa
ct

o
r

El
em

en
t

D
eg

re
e

o
f

In
fl

u
en

ce

0
1

2
3

4
5

14
. F

ac
ili

ta
te

ch

an
ge

; t
h

e
fo

llo
w

in
g

ch
ar

ac
te

ri
st

ic
s

ca
n

ap

p
ly

 f
o

r
th

e
ap

p
lic

at
io

n
:

A
. F

le
xi

b
le

 q
u

er
ie

s:

1.
 F

le
xi

b
le

 q
u

er
y

an
d

 r
ep

o
rt

 f
ac

ili
ty

is

 p
ro

vi
d

ed
 t

h
at

ca

n
 h

an
d

le
 s

im
p

le

re
q

u
es

ts
. (

co
u

n
t a

s
1

it
em

)

2.
 F

le
xi

b
le

 q
u

er
y

an
d

 r
ep

o
rt

 f
ac

ili
ty

is

 p
ro

vi
d

ed
 t

h
at

ca

n
 h

an
d

le

re
q

u
es

ts
 o

f a
ve

ra
ge

co

m
p

le
xi

ty
. (

co
u

n
t

as
 2

 i
te

m
s)

N
o

n
e

o
f

th
e

it
em

s
o

n
 t

h
e

lis
t

To
ta

l
o

f
o

n
e

it
em

 f
ro

m
 l

is
t

A
 t

o
ta

l o
f

tw
o

it

em
s

fr
o

m
 li

st
A

 t
o

ta
l

o
f

th
re

e
it

em
s

fr
o

m
 l

is
t

A
 t

o
ta

l
o

f
fo

u
r

it
em

s
fr

o
m

 l
is

t
A

 t
o

ta
l

o
f

fi
ve

it

em
s

fr
o

m
 l

is
t

Function-Based Sizing � 221
3.

 F
le

xi
b

le
 q

u
er

y
an

d
 r

ep
o

rt
 f

ac
ili

ty

is
 p

ro
vi

d
ed

 t
h

at

ca
n

 h
an

d
le

co

m
p

le
x

re
q

u
es

ts
.

(c
o

u
n

t
as

 3
 i

te
m

s)

B
. B

u
si

n
es

s
co

n
tr

o
l

d
at

a:

1.
 B

u
si

n
es

s
co

n
tr

o
l

d
at

a
is

 k
ep

t i
n

 ta
b

le
s

th
at

 a
re

 m
ai

n
ta

in
ed

b

y
th

e
u

se
r

w
it

h

o
n

lin
e

in
te

ra
ct

iv
e

p
ro

ce
ss

es
, b

u
t

ch
an

ge
s

ta
ke

 e
ff

ec
t

o
n

ly
 o

n
 t

h
e

n
ex

t
b

u
si

n
es

s
cy

cl
e.

(c

o
u

n
t

as
 1

 i
te

m
)

2.
 B

u
si

n
es

s
co

n
tr

o
l

d
at

a
is

 k
ep

t i
n

 ta
b

le
s

th
at

 a
re

 m
ai

n
ta

in
ed

b

y
th

e
u

se
r

w
it

h

o
n

lin
e

in
te

ra
ct

iv
e

p
ro

ce
ss

es
, a

n
d

 t
h

e
ch

an
ge

s
ta

ke
 e

ff
ec

t
im

m
ed

ia
te

ly
.

(c
o

u
n

t
as

 2
 i

te
m

s)

222 � Software Sizing, Estimation, and Risk Management

a software complexity assessment can be made. The impact of user
constraints in these areas is often not enunciated or even addressed until
late in the software development life cycle, even though their influence
on the overall project can be significant.

The reason models like SEER-SEM that apply effort adjustments for
technology and complexity use unadjusted function points rather than
adjusted points is because the IFPUG GSCs would double count the impacts
of many of the complexity factors. For example, SEER-SEM accounts for
effort impacts of multiple site development which is one of the GSCs.

 Determine the Value Adjustment Factor (VAF). The VAF quantifies the
general functionality provided to the user of the application. It consists
of the 14 GSCs that are used to assess the general functionality of the
application. Each characteristic includes descriptions that help determine
the degree of influence of the characteristic. The degrees of influence
range on a scale of zero (no influence) to five (strong influence). The
14 GSCs are summarized into the value adjustment factor. When applied,
the value adjustment factor adjusts the unadjusted function point count
within ±35 percent to produce the adjusted function point count. Deter-
mining the value adjustment factor requires several steps:

1. Evaluate each of the 14 GSCs on a scale from zero to five to
determine the degree of influence (DI).

2. Add the degrees of influence for all 14 GSCs to produce the total
degree of influence (TDI).

3. Insert the TDI into the following equation to produce the VAF:

VAF = (TDI ¥ 0.01) + 0.65

For example, the following value adjustment factor is calculated if the
degree of influence for each of the 14 GSC descriptions is three:

(3 ¥ 14) = 42

VAF = (42 ¥ 0.01) + 0.65

VAF = 1.07

Table 6.6 summarizes the information used to calculate the value
adjustment factor.

Step 7: Compute Unadjusted and Adjusted Function
Point Counts

The unadjusted (raw) function point count adjusts the counts of the unique
function types (external inputs, external outputs, external queries, external

Function-Based Sizing � 223

interface files, and internal logical files) identified through the steps
described above. The unique function types that were individually assessed
for complexity (low, average, or high) are now given weighting values
that vary from 3 (for simple external inputs) to 15 (for complex internal
files).

Unadjusted function points (UFPs) are calculated as follows. The sum
of all the occurrences is computed by multiplying each function count
with a weighting and then adding all the values. The weighting is based
on the complexity of the feature counted. Table 6.7 shows weighting
values.

EI(total) = EI(low) ¥ 3 + EI(average) ¥ 4 + EI(high) ¥ 6

EO(total) = EO(low) ¥ 4 + EO(average) ¥ 5 + EO(high) ¥ 7

ILF(total) = ILF(low) ¥ 7 + ILF(average) ¥ 10 + ILF(high) ¥ 15

EIF(total) = EIF(low) ¥ 5 + EIF(average) ¥ 7 + EIF(high) ¥ 10

EQ(total) = EQ(low) ¥ 3 + EQ(average) ¥ 4 + EQ(high) ¥ 6

Unadjusted function point (UFP) count =
EI(total) + EO(total) + ILF(total) + EIF(total) + EQ(total)

At this point, the unadjusted function point count is complete. The next
calculation is required only if the goal is to calculate an adjusted function
point count.

The adjusted function point count is calculated using a specific formula
for a development project, enhancement project, or application (system
baseline) function point count. It is derived by multiplying the unadjusted
function point count by the VAF. As illustrated in Figure 6.6, offsetting the
unadjusted (raw) function point count by the functional complexity rating
and value adjusted factor yields the adjusted function count.

Table 6.7 Function Complexity Table

Function Type Low Average High

External Input (EI) ¥3 ¥4 ¥6

External Output (EO) ¥4 ¥5 ¥7

Internal Logical Files (ILF) ¥7 ¥10 ¥15

External Interface Files (EIF) ¥5 ¥7 ¥10

External Inquiry (EQ) ¥3 ¥4 ¥6

224 � Software Sizing, Estimation, and Risk Management

In order to find the adjusted function point (AFP) value, the UFP (the
raw function count weighted by the appropriate complexity shown in
Table 6.7) is multiplied by the VAF.

In other words, the UFP is adjusted by measuring it against the VAF.
The final AFP figure can then be calculated as:

AFP = UFP ¥ VAF

The VAF can range from 0.65 to 1.35: a VAF of 0.65 would result if all
the complexity factors had no influence, and a VAF of 1.35 would indicate
all the complexity factors had significant influence. Therefore, if a system
is relatively simple, with few constraints and a simple architecture, the
VAF would be lower than 1 because the majority of complexity factors
would have little influence. On the other hand, if the system to be
developed was complex and included stringent performance and reliability
requirements, the VAF would likely be greater than 1.

SEER-Function-Based Sizing (SEER-FBS)
SEER-FBS was developed to allow nonfunction point trained users to
(1) develop function-based estimates, (2) attribute cost and schedule to end
user items such as “one report,” and (3) to simplify use on scientific and
embedded software. Inputs can be entered using normal function point
complexities (low, average, or high).

SEER-FBS output approximates a range (least, likely, and most) of
function points and has two modes: (1) the traditional IFPUG mode that

Figure 6.6 Computing final adjusted function count.

Raw
function

point count

Apply functional
complexity

rating

Unadjusted
function

point count

IFPUG: Apply VAF
based on GSC

Final adjusted
function count

Function-Based Sizing � 225

supports the five function point categories and (2) the SEER-FBS extended
mode that supports the five IFPUG categories and adds a sixth titled
internal functions, supporting highly algorithmic processing often associ-
ated with real-time and embedded systems. The resulting function point
approximations are compatible with IFPUG counting rules. There are six
categories of functions as shown in Table 6.8.

SEER-FBS is available for use in estimation where rigorous function
point counts have not been completed, and to allow nonfunction point-
trained users to perform trade-offs, for example, determining the effort to
add one additional complex report. Because SEER-FBS is an approximation
of function points and does not profess to be an exact function point
count, and because it generates a range of function point estimates rather
than a single point estimate, it does not expect a user to be expert on
function point rules.

Users may classify functions as low, average, or high complexity using
function point-defined DETs, RETs, etc., or may simply assume all are
average if time is at a premium or if this detail is not known. Some
organizations use SEER-FBS as their ongoing size metric. Others perform
traditional function point counts later in their development cycles for
critical projects.

SEER-FBS External Inputs (EIs)

An EI is any function or transaction that moves data into an application.
Generally, this data is used to update an ILF in the application. An EI

Table 6.8 Comparison SEER-SEM Function Modes: IFPUG
and SEER-SEM

Functions
IFPUG

Compatible Mode
SEER-SEM

Extended Mode

External inputs (EIs) X X

External outputs (EOs) X X

External inquiries (EQs) X X

External interface files (EIFs) X X

Internal logical files (ILFs) X X

Internal functions X

Note: SEER-SEM, the cost model containing SEER-FBS, will also accept
unadjusted function point counts performed by traditional
counting.

226 � Software Sizing, Estimation, and Risk Management

should be considered unique if the logical design requires input processing
different from other EIs.

SEER-FBS Subcategories for External Inputs

Input Screens — Logical screens used to add, edit, or delete internally
stored data. Count one screen for each transaction type (add, change, or
delete). Input screens may be textual or graphical. One or more physical
screens may be processed as one transaction. Conversely, one physical
screen when viewed by processes can encompass multiple external inputs.

Interactive inputs — Single inputs by a user, such as selecting an
item from a list, that cause action to be taken by the software system.

Hardware inputs — Inputs from hardware devices (e.g., radar data,
analog signals, sensor readings) that are directly received and processed
by the software.

Batch input streams — Noninteractive inputs such as add, change,
or delete that provide a unique process to maintain ILFs. Batch inputs
should be identified based on their processes. One physical input can,
when viewed logically, correspond to a number of EIs. Conversely, two
or more physical inputs can correspond to one EI if the processing logic
and format are identical for each.

Rating Complexity for External Inputs

Each external input is assigned a low, average, or high complexity rating
based on the number of file types referenced (FTRs) and data element
types (DETs). See Table 6.9.

SEER-FBS External Outputs (EOs)

An EO is any function or transaction that manipulates data and presents
it to a user. Weapons firing solutions, status reports, commands to another
system, or outgoing e-mail could be counted as EOs. The key feature of
an EO is that the information presented outside the boundary must contain

Table 6.9 SEER-FBS Uses IFPUG Complexity Rating Table
for External Inputs

1 to 4 DETs 5 to 15 DETs 16 or More DETs

0 to 1 FTRs Low Low Average

2 FTRs Low Average High

3 or More FTRs Average High High

Function-Based Sizing � 227

derived or calculated information or update an ILF. Otherwise, the trans-
action is categorized as an external inquiry (EQ). See Table 6.10.

SEER-FBS Subcategories for External Outputs

Screen reports — Each unique report generated by the software that
is displayed on screen; they include text reports and 2-D or 3-D graphic
reports.

Printed reports — Each unique report generated by the software that
is printed by a printer or plotter; they include text reports and 2-D or 3-D
graphic reports.

Media external outputs — Each unique report generated by the
software that is directed to some output media other than a screen or
printer. External Output media types include microfiche, magnetic tapes,
audios, photographs, and videos.

Software external outputs — Data formats or messages to be output
for use by another software package.

Hardware external outputs — Types of messages sent or transmitted
to external hardware devices (e.g., calibration data, navigation solutions,
and signal requests).

Rating Complexity for External Outputs

Each external output is assigned a low, average, or high complexity rating
based on the number of file types referenced (FTRs) and data element
types (DETs). See Table 6.10.

SEER-FBS External Inquiries (EQs)

An EQ is a unique request that results in the retrieval of data. An EQ request
does not update or change any of the software ILFs. An EQ response does
not contain derived data; it simply retrieves existing information. An EQ
should be considered unique if the logical design requires processing
logic different from other EQs.

Table 6.10 SEER-FBS Uses IFPUG Complexity Rating Table
for External Outputs

1 to 5 DETs 6 to 19 DETs 20 or More DETs

0 to 1 FTRs Low Low Average

2 to 3 FTRs Low Average High

4 or More FTRs Average High High

228 � Software Sizing, Estimation, and Risk Management

Rating Complexity for External Inquiries

Each external inquiry is assigned a low, average, or high complexity rating
based on the number of file types referenced (FTRs) and data element
types (DETs). See Table 6.11.

SEER-FBS Subcategories for External Inquiries

Request–response — A transaction in which entered data invokes
immediate retrieval of other data.

Menus — Menu screens that provide screen selection and data retrieval
selection input for a called screen are counted as EQs; the menu is the
input side of the EQ and the called screen is the output side.

Context-sensitive help — Help text that can be accessed or displayed
for a particular screen or field that is selected.

Embedded computer external inquiries —Unique types of requests
for information from hardware devices (different from hardware inputs in
that they require responses).

SEER-FBS External Interface Files (EIFs)

An EIF contains data needed by the system to perform its required functions.
An EIF is a user-identifiable group of logically related data (data related
at such a level that an experienced user would identify the data as fulfilling
a specific user requirement of the application) or control information
utilized by the application but maintained by another application.

SEER-FBS Subcategories for External Interface Files

Reference data — Data groupings utilized by software but not
changed, e.g., look-up tables, read-only data files, and master lists.

Fixed messages — Messages used by software but not changed, e.g.,
error messages, help messages, and system status messages.

Shared data files — Data files or databases created externally to an
application but used by it.

Table 6.11 SEER-FBS Uses IFPUG Complexity Rating Table
for External Inquiries

1 to 5 DETs 6 to 19 DETs 20 or More DETs

0 to 1 FTRs Low Low Average

2 to 3 FTRs Low Average High

4 or More FTRs Average High High

Function-Based Sizing � 229

Rating Complexity for External Interface Files

Each external interface file is assigned a low, average, or high complexity
rating based on the number of file types referenced (FTRs) and data
element types (DETs). See Table 6.12.

SEER-FBS Internal Logical Files (ILFs)

An ILF is a user-identifiable group of logically related data or control
information utilized and maintained by the application. ILFs may be
accessed by an application’s EIs, EOs, EQs, or IFs.

SEER-FBS Subcategories for Internal Logical Files

Application data groups — Number of data files or other logical
groupings of data that are used, processed, derived, obtained, or changed
by the application. A mission planning system might have the following
application data groups: target data, weapon descriptions, aircraft data,
weather data, pilot preferences, and security access level. Input to SEER-FBS
for this example would be 6. The determination of low, average, or high
would depend on the number of data elements or parameters in the group.
If the target data contained 25 specific parameters (DETs), it would be
average.

Data tables — Number of data tables that must be created by the
software application. For example, in a mission planning system, an aircraft
configuration may be stored in a data table for future use.

Database files — Number of internal data groups or record groupings
that would be maintained as a database or record group within a database,
for example, a customer list, a mailing list, or an accounts receivable list.

Rating Complexity for Internal Logical Files

Each internal logical file is assigned a low, average, or high complexity
rating based on the number of file types referenced (FTRs) and data
element types (DETs). See Table 6.13.

Table 6.12 SEER-FBS Uses IFPUG Complexity Rating Table
for External Interface Files

1 to 19 DET 20 to 50 DET 51 or More DET

1 RET Low Low Average

2 to 5 RET Low Average High

6 or More RET Average High High

230 � Software Sizing, Estimation, and Risk Management

SEER-FBS Extended Category: Internal Functions

Internal functions represent SEER-SEM extensions to IFPUG methods. This
unique type is intended to account for functions that manipulate data
entirely within an application, or that for other reasons never crosses the
application boundary and thus are not EIs, EOs, or EQs.

Internal functions are basic processes performed by a program, for
example, data reduction, data analysis, monitoring, data compression,
encryption, and application-specific calculations. As an example, in a
route-planning program of a mission planning system, the application-
specific calculations might include automatic routing, take-off and landing
calculations, aircraft deconfliction, and fuel consumption. Low, average,
or high complexity ratings for internal functions are based on the guidelines
shown in Table 6.14. If the actual classification cannot be determined
from these guidelines, consider the function to be of average complexity.

Effective Function Points
Galorath Incorporated’s method of computing effective size is applicable
to function points and provides an “amount of work” versus the total

Table 6.13 SEER-FBS Uses IFPUG Complexity Rating Table
for Internal Logical Files18

1 to 19 DETs 20 to 50 DETs 51 or More DETs

1 RETs Low Low Average

2 to 5 RETs Low Average High

6 or More RETs Average High High

Table 6.14 Guidelines for Internal Function Classification

Complexity Function

Low Sorting routines

Average Reasonably complex functions such as commercial data
compression algorithms

High Signal processing or data reduction algorithms; other
functions of high logical complexity

Function-Based Sizing � 231

value view provided by development or application function point counts.
This method applies traditional reuse factors to function point counting
to compute the effective function points.15 This method is different from
but complementary to IFPUG’s enhancement project function point count
and provides a measure of how much work in effective function points
is required rather than determining the total function point count when
complete.

Effective function point counts capture the work of redesigning, reim-
plementing, and retesting function points when a system is developed in
multiple builds or undergoes major or minor enhancements or other
changes. (See Chapter 8, titled “Software Reuse and Commercial Off-the-
Shelf Software,” for detailed definitions of computing effective size for
any size metric including function points.)

The following worksheet can be used when performing a function
point count to be used with SEER-SEM:

SEER-FBS Function-Based Sizing Detailed Inputs

Project Name: ____________________ File Name: ________________________
Program Name: ___________________ Date: _____________________________

� New Functions
� Pre-Existing Functions, Not Designed for Reuse
� Pre-Existing Functions, Designed for Reuse

Parameter Low Average High Rationale

+ External Inputs (EIs)

Input screens (may be textual or
graphic; used to add, edit, delete;
count one screen for each transaction
type, i.e., add, edit, delete)

Interactive inputs (single inputs by a
user that cause an action to be taken by
software, e.g., pick an item from a list)

Hardware inputs (different types of
inputs from hardware devices, e.g.,
radar sensor)

Batch input streams (non-interactive
inputs)

232 � Software Sizing, Estimation, and Risk Management

Parameter Low Average High Rationale

+ External Outputs (EOs)

Screen reports

Printed reports

Media outputs (unique outputs to
magnetic tape, audio, video)

Software outputs (different data
format/message output to be used by
another software package)

Hardware outputs (different types of
messages sent to external hardware
devices, e.g., calibration data,
navigation solutions)

+ External Inquiries (EQs)

Request–response (entered data
invokes immediate retrieval)

Menus (menu screens that provide
screen selection and data retrieval)

Context-sensitive help

Embedded computer inquiries
(unique types of requests for
information from hardware; this is a
request for a hardware input; the
actual input was counted above)

+ External Interface Files (EIFs)

Reference data (data groupings that
are used but not changed, e.g., look-
up tables)

Fixed messages (messages used but
not changed by software, e.g., help,
errors, system status)

Shared data files (data files or
databases created external to this
application, but used by this
application)

Function-Based Sizing � 233

Using Function Points

Function point analysis should be performed by trained and experienced
personnel. If function point analysis is conducted by untrained personnel,
it is reasonable to assume the analysis will be performed incorrectly. The
personnel counting function points should utilize the most current version
of the Function Point Counting Practices Manual.13

Organizations use function points to satisfy many objectives. Consistent
use of the metric facilitates tracking and monitoring of scope creep by
counting function points at the various stages in a project and comparing
the count to the function points actually delivered. If the number of
function points increases, scope creep has occurred. An organization may
also use function points to track aggregate productivity across similar
project types. According to David Longstreet:

Current application documentation should be utilized to com-
plete a function point count. For example, screen formats, report
layouts, listing of interfaces with other systems and between
systems, logical and/or preliminary physical data models will
all assist in function points analysis. The task of counting
function points should be included as part of the overall project

Parameter Low Average High Rationale

+ Internal Logical files (ILFs)

Application data groups (data files or
other logical groupings of data that are
used, processed, derived, obtained, or
changed by the software, e.g., target
data, weather data, security access
level)

Data tables (must be created by this
application)

Database files (internal data groups or
record groupings that would be
maintained as a database or record
group, e.g., customer list, mailing list)

Internal functions (basic processes
performed by software, e.g., data
reduction, encryption, other
calculations)

234 � Software Sizing, Estimation, and Risk Management

plan. That is, counting function points should be scheduled
and planned. The first function point count should be devel-
oped to provide sizing used for estimating.16

Although much can be gleaned from system documentation, the most
accurate function point counts involve systems analysts who are able to
answer any questions the function point counters may have. They can
also provide system expertise where the documentation might leave gaps
and the function point counters would otherwise have to interpret or
make assumptions.17

Wise use of resources is a key factor when developing a software
development plan. The following information from David Consulting Group
(DCG) can be useful as a guideline.18

Function point approximation will quickly and effectively size
your current software application portfolio based upon the
accuracy level the client seeks. DCG conducted a detailed study
during 1999 to determine the cost and accuracy of various
counting techniques including full function point counting,
approximation, estimating and backfiring. The results illustrated
[in Table 6.15] indicate that it is not always practical or necessary
to invest in full counting for a given project or application.

Table 6.15 Cost Comparisons for
Function Point Counting18

Count Type
Accuracy
(Percent)

Effort
(Time)

IFPUG ±5 1 to 3 days

IFPUG Limited ±25 1 to 3 days

Approximation ±35 1/2 day

Ratio ±50 <1/2 day

Expert ±50 <1/2 day

Delphi ±100 <1/4 day

Backfire ±100 to 400a Varies

Note: Cost is based on an average size appli-
cation (250 to 1200 function points) and
will vary for applications outside that
size range.

a Variation based upon language levels.

Function-Based Sizing � 235

The study, conducted in 1999, was supported and participated
in by several client companies. As a result of the study, DCG
has recommended to clients that all baseline counts be accom-
plished with full disclosure as to the accuracy of the method
being utilized. The following high level overview of counting
criteria can be used by organizations to discuss and determine
which counting method is right for a given application.

IFPUG Detailed — A complete and detailed count; typically
performed on highly visible systems, systems that are core
to the business or systems that may be undergoing frequent
change requests.
IFPUG Limited — Similar to Detailed in that accuracy is a
primary concern, but average weightings are applied.
Approximation — The most robust of the many approx-
imation methods, used when accuracy is not of primary
concern, but full functionality needs to be recognized.
Ratio — Typically used in instances where all data can be
identified and logically parsed into user identifiable groupings.
Expert — Used in cases of commercial off-the-shelf pack-
ages or with common applications where the consultant is
familiar with similar types of applications.
Delphi — The least effective of the approximating and
estimating techniques, Delphi can be used when an orga-
nization’s portfolio has a certain percentage of Detailed or
Limited counts available.
Backfire Calibration — A backfire method that utilizes a
customized backfire value; used when accuracy is not an
issue, but a sense of overall functionality being supported
is necessary.
Backfire Calculation — Same as Calibration; only industry
backfire values are used.18

In using and applying a function point count, the general guidelines in
Table 6.16 can be a useful crosscheck or approximation method if counting
one or more components.

Using function points for estimating the effort and schedule of a new
system has all the hazards of SLOC and other size metrics. Merely using
function points per staff month as a productivity measure is insufficient
for estimating new systems unless the new systems have nearly the same
technology, people, process, and size. See Chapter 3 for discussion of
productivity issues.

236 � Software Sizing, Estimation, and Risk Management

Early Function Point Counting (Estimating)

Function point counting requires “the availability of a complete and
detailed set of descriptive documentation of the user functional require-
ments for any software application to be measured.”23 As discussed earlier
in this book, an estimate is often required before this level of documen-
tation is available. Various methodologies are available for estimating
function points. The author recommends using a tool such as SEER-
AccuScope when an early function point estimate is required.

“Counting function point should mean measuring software size through
the use of the standard IFPUG practices, while estimating function point
should denote an approximate evaluation of the same size through other
different means.”23

Analysis of Function Point Rules
in Tree-Based Framework24

Lee Fischman’s analysis of function point rules yielded a tree framework
that helps explain many counting rules. The basis for function point
counting is its rules that delineate the model into a set of closely linked
metrics. They give function points uniformity and they also give function
points the characteristics that correlate them well with a variety of outcomes.
The function point counting rules (FPCR) project sought to assemble these

Table 6.16 Using Historical Function Point Ratios for Estimating
New Systems

Total Unadjusted
Function Count

IFPUG
1996

(Percent)

Total
Metrics19

(Percent)
IFPUG20

(Percent)
GTE21

(Percent)

ISBSG
Benchmark22

(Percent)

Contribution to total
count from ILFs

24 24 23 40 22.3

Contribution to total
count from EIFs

4 12 8 5 3.8

Contribution to total
count from EIs

39 26 30 20 37.2

Contribution to total
count from EOs

22 24 23 25 23.5

Contribution to total
count from EQs

12 14 15 10 13.2

Function-Based Sizing � 237

rules into a common tree in which all potential outcomes are represented,
including those of all currently valid non-file function points.

Description of Tree and Results

The tree was synthesized in a relatively ad hoc manner. The design goal
was to include all rules and capture all valid outcomes, so alternate
arrangements of the rules tree may be possible. Some reduction in rules
has occurred so that commonality could be achieved, for instance, the
“unique processing” requirement refers either to unique logic or to unique
data requirements.

Ten separate rules were isolated, of which four are shared by all
function points. These may be considered core definitional rules of func-
tion points. The rules tree is at least four branches deep. A primary branch
occurs at the update ILF rule, resulting in one rich set of additional rule
lineages and another quite limited one.

All non-file function point outcomes are represented in the tree,
although not all outcomes correspond to formally recognized function
points. The simplest valid outcome corresponds to the definition of an
external input and requires five rules. The most complex outcome requires
eight rules and results in the finding of an external inquiry. The external
input and external output function points, perhaps notably, exist at similar
depths in the rules tree illustrated in Figure 6.7.

The established heuristics may permit the development of an automated
function point counting tool for already-developed code. These heuristics
would have to be mated with grammatically specific knowledge of par-
ticular programming languages.

Backfiring

Simply stated, backfiring is converting lines of code to function points by
dividing the line count by a conversion ratio. The author does not
recommend backfiring as an approach to generating function points for
reasons discussed in this section. The SEER estimation models equate
function points to the number of effective work units to implement them,
not the number of lines to develop them. The David Consulting Group
concurs but for slightly different reasons:

(We) do not consider backfiring as a recommended approach
for sizing …. We would use backfiring only when sizing an
organization’s installed applications. … we would validate our
numbers by sampling (performing actual function point counts

238 � Software Sizing, Estimation, and Risk Management

and comparing them to lines of code) and validating applica-
tions within the installed base at that organization.24

Table 6.17 illustrates why backfiring does not work well. Note the large
variance in lines of code per function point. The differences in lines to
functions may be attributed to several factors:

Figure 6.7 Function point rules tree.

Self-
contained?

Y

Y

Y

Y

Y

N

N N N

N

N

N Not an FP

Not an FP

Not an FP

Data exits
boundary?

May be an
internal
function

Request
enters

boundary?

Data
retrieved?

Not
derived?

External
inquiry

Not an FP

Not an FP

External
output

Inconclusive

No data in
or out?

Y

Y

Y

Y

N

N

Inconclusive
Y

Smallest
meaningful

activity?

Processing
unique?

Update
ILF?

Data enters
boundary?

External
input

Function-Based Sizing � 239

1. The definitions of lines of code (physical lines, logical lines, etc.)
were not consistent (see Chapter 5, “Source Lines of Code”).

2. The origins of the lines of code (hand coded, autogenerated, etc.)
were not defined or unclear (see Chapter 5, “Source Lines of
Code”).

3. Galorath’s numbers attempted to define effective effort units to
specific languages to use for estimating, not to estimate gross lines
of code.

4. The function point counting rule versions may be different.

Backfiring creates certain problems because expert findings and research
vary so widely on the conversion ratios and also because the definitions
of lines are not always clear, and if you are working with generated lines
of code, the problem becomes more difficult.

Possible Errors in Function Point Counting

While function points can potentially be used to accurately size a software
application based on functional characteristics, several factors can cause
errors in the count or in the projection:

Developers want “credit” — Some of the most obvious causes relate
to the estimate itself. When developers are involved in counting, they
tend to overestimate (or overcount existing systems) to “get credit” for
their work. (Recently, Galorath Incorporated worked with a manager who
tried to take credit for 20,000+ function points when in reality only 2,800
existed. In this case, the requirements volatility and complexity of the
application were misconstrued as size.) Managers also often fail to under-
stand the “logical” nature of function points.

Low counts due to forgotten functionality — Galorath analysts
found low function point counts calculated for existing systems in the
course of modernization because counters were not made aware of “for-
gotten” functionality (typically up to 20 percent in very old legacy systems).

Table 6.17 Conversion Ratios: Lines of Code per Function Point

Source Code
Language

DCG
Likely

Capers Jones
Galorath

LikelyLow Mean High

Basic Assembly 575 200 320 450 320

C 225 60 128 170 61

FORTRAN 210 75 107 160 58

C++ 80 30 53 125 59

240 � Software Sizing, Estimation, and Risk Management

Errors in counts based on incomplete information — Two func-
tion point counters working on the same system will normally produce
similar counts. However, Galorath noted counts in which the counts of
two competent individuals counting the same system independently showed
a 70 percent difference. Upon enquiry, it was found that the system lacked
formal requirements documents and each counter interviewed a separate
group of development personnel maintaining the existing system.

Function points can overlook system growth — Function points
often count a system early in its conceptual phase, before the system has
been completely defined and before requirements creep has emerged.
Such problems may be dealt with by providing function point ranges that
account for possible growth rather than single point counts.

Inconsistent function point counting rule application — Many
organizations perform make-your-own-rules function point counting. For
example, the author witnessed a large system development in which one
of the development organizations counted more than ten times as many
function points as the other organizations. This was openly attributed to
counters who made their own rules. Perhaps this wouldn’t be so bad if
they hadn’t called their results function points. In doing so, they caused
severe confusion.

Difficulty comparing function point counts from different count-
ing rule versions — The rules for IFPUG counting have changed dra-
matically over the years. An older IFPUG count could be twice as large
as one performed under current IPFUG rules. For example, one of the
author’s customers was livid because his system had half the function
points as a similar system. The customer refused to accept the count and
fired the counters. What no one realized then was the system that was
being compared was counted with older rules. The customer insisted that
the function point count was much bigger.

Pros and Cons of Function Points

Pros of Function Points

Function points are valuable measures of application size because:

� IFPUG function points constitute a widely used, accepted method.
� Many certified IPFUG function point counters are available.
� The calculation is objective.
� Unadjusted function points are independent of the technology used

to develop the application. Thus, they provide a single, consistent
measure of application size, which allows comparisons of productivity

Function-Based Sizing � 241

across applications regardless of their size, technology, or devel-
opment approach.

� Function point counts can be used early in the development cycle,
which allows the project schedule and effort to be estimated.

� Productivity history on completed projects with similar character-
istics can be used to refine the estimating process for future
projects.

� Function point counting standards and their application are sup-
ported by an active, worldwide user organization, the International
Function Point Users Group (IFPUG).

� Function points are successful in describing software size for cost
models. Models like SEER-SEM achieve the same high accuracy
using properly prepared function point counts as they do with
SLOC.

Cons of Function Points

Function points have a number of limitations. For example, managers,
customers, and others who are not trained function point counters have
difficulty grasping what a function point count tells them (the number of
function points for “one more report” gets lost in the count).

In an IEEE Software article, Kitchenham25 stated, “You cannot compare
function point counts numerically. An application of 1000 function points
is not twice as big, complex or functional as an application of 500 function
points. The first application is not twice the second in any meaningful
sense.”

� Semantic difficulties — Function point standards were codified in
the early 1980s by a standards body hailing from a traditional
management information system world. Since then, the standards
document has not been drastically overhauled. Its language reflects
this with seemingly arcane terms such as record element types and
external inputs. While such careful language insulates a relatively
complex metric from everyday misunderstanding, it also impedes
learning and acceptance by a wider audience.

� Incompleteness — Function points were defined from a user
interface vantage. Although a clever angle, this led to the major
criticism that all the functionality built into a software system might
not be captured. Many argued that substantial internal functionality,
without much manifestation at the user interface, might be missed.

� Lack of automatic count — No generally automated method is
available for counting function points, even in completed systems.

242 � Software Sizing, Estimation, and Risk Management

In contrast, lines of code counts can be obtained using simple line
counting utilities.

� Limited domain applicability — In a paper presented at a 1999
meeting, Nihal et al. stated, “Function point analysis uses the
amount of stored data as a significant factor in determining the
functional size of the application. Where data stored is simple but
the processing of stored values is complex, the functional size of
the application is underestimated.”26

Despite a long list of complaints concerning function points, the system
has proven to be a definitive indicator of development effort, and it is
still fundamentally sound.

When to Use Function Points

Use function point-based estimates on information technology and other
systems whenever you can afford to conduct a proper function point
count or when you can use analogy, sizing models, or other means to
estimate function points. In addition, you should use function points when
sizing by SLOC could be misleading. For example, code generators may
automatically generate many lines of code, but this may not correspond
to substantial manual contributions by programmers. For the analyst, the
great strength of function point counts is that they are developed directly
from specifications, independently of implementation, which means:

� Early estimates of project size are more likely to resemble the
project scope.

� Estimates of project scope are more comparable across projects.

Because function point counts are more sophisticated metrics that cannot
be handled automatically, you must make sure ahead of time that counts
will be done correctly. Make sure that whoever does the counting is
adequately trained and experienced. If prior counts have been performed
on projects that may later be related or compared in some way, those
counts should be carefully studied so that new work is consistent or the
prior counts are normalized to the current standard. Although counts can
eventually be done fairly quickly and efficiently, correct methods and
consistency are important.

Function Point Risk Management
Even though function point counts are commonly used as a sizing metric,
they can potentially be highly inaccurate, especially during the early phases

Function-Based Sizing � 243

of a software project when the application itself is not well understood.
Function point size estimation errors generally result in three major areas of
risk (note that these are essentially the same risk areas presented by SLOC):

1. Errors in function point counts can prevent scaling the development
environment to reflect reality, which can lead to defining cost drivers
that may be inappropriate, underestimated, or overestimated.

2. Incorrect sizing of the application can lead to a misalignment of
skills to tasks, miscalculation of schedules and level of effort required,
and either underestimation or overestimation of project staffing
requirements.

3. Unrealistic customer expectations, poorly defined objectives,
requirements, and specifications, or unconstrained requirements
growth during the software development life cycle can result in
changing counts, cost, and schedule overruns.

Function Point Counting Risk Checklist
An underlying set of error sources will affect the accuracy of the estimation
process and the ability of an organization to consistently count or estimate
using function points. These error sources can be grouped into five
categories: (1) estimation process integration and planning; (2) estimation
staffing and support resources; (3) information currency; (4) process
integrity; and (5) estimation scope. In order to implement effective count-
ing practices, it is imperative to learn how to deal with these issues, which
are not addressed in the baseline function point counting specifications.
Table 6.18 is a checklist that can be used to identify and thus prevent
potential errors and reduce the risk in the function counting process.

Summary
Function points serve as a viable method of describing software size but
require strict adherence to predefined counting rules to ensure validity.
Function point counts for completed systems may be kept in a sizing
database and used as analogy for new systems, even before detailed
function point count can be performed.

Merely using function points per staff month as a productivity measure
is insufficient for estimating new systems unless the new systems have
nearly the same technology, people, process, and size. Function points
are excellent for describing size to a cost model. While function points are
not a panacea, their use has proven to help organizations better control
their software projects and successfully deliver systems to their customers.

244 � Software Sizing, Estimation, and Risk Management

Table 6.18 Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

Estimation Process Integration and Planning

 Was the task of
counting function
points included in
the overall project
plan?

Inconsistent
estimation process
not integrated into
standard process.

Estimate may not
reflect project
standards, common
process or required
management,
engineering,
assurance, or
reporting
processes.

 All activities of the
project team
should be items in
the project plan.
Ensure that
adequate time has
been dedicated to
completing the
task.

Estimates may not
include sufficient
time, staff or other
resources to
accomplish task.

Resources
projected may be
insufficient,
precluding a
successful project
result.

 Were current
IFPUG Counting
Practices followed?

Estimate is
developed using
inconsistent or
home-grown
technique that may
not adequately
consider critical
factors in
relationships.

Any projections
based on function
point count may be
based on incorrect
information and
prove inadequate.

 Is this a function
point count
(completed code)
or a function point
estimate (code yet
to be developed)?
Has the count been
reviewed by an
independent
certified function
point specialist?

Individual
performing count
or estimate may
incorrectly apply
process or not
adequately
consider essential
information.

All estimates based
on function point
count may reflect
undocumented
estimator bias or
problems based on
incorrect
application of
counting process.

Function-Based Sizing � 245

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

Estimation Staffing and Support Resources

 Are the individuals
performing the
function point
count trained in
function point
counting? Are they
certified? Have they
ever used the
process? The
individuals
conducting counts
should be familiar
with IFPUG
counting rules as
applied to their
task. If the person
completing the
count passed the
IFPUG certification
exam, one has an
added degree of
certainty that, at a
minimum, the
person
understands the
counting or
estimating process.
While passing an
exam does not
guarantee accurate
counts, it does
guarantee a
minimal level of
competency which,
coupled with a
proven track record
of producing
function point
counts or
projections using

Function point
count or estimates
based on a count
done by an untrain-
ed individual or
one with limited
credentials may
have limited
accuracy and may
not be consistent
with established
counting
processes.

All estimates based
on function point
count may reflect
undocumented
estimator bias or
problems based on
incorrect
application of
counting process.

246 � Software Sizing, Estimation, and Risk Management

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

the process, can
lower the risk of an
incorrect estimate.

 Has the arithmetic
been reviewed?

Arithmetic errors in
the count may not
be caught, resulting
in significant
counting errors.

Simple errors in a
count may result in
significant errors or
inconsistencies in
the count or the
estimates based on
it.

 Has an
independent
review of the
estimate and
estimation process
been conducted?
Have identified
issues been
documented and
resolved?

Counting process
does not include
essential checks
and balances to
ensure that
standard process
was followed and
that critical issues,
risks, and
assumptions are
documented.

Count may prove
invalid due to
process issues in
performing the
count or
undocumented
realities that limit its
accuracy or
applicability.

 Information Currency

 Did the function
point counter use
current project
documentation to
count function
points? If not, how
old was the
documentation?
Were adjustments
made to the
function point
count based on the
phase in the
development life
cycle when the
count was done?

Information used as
the basis for the
function point
count may not
reflect the current,
documented state,
or current technical
baselines of system.

Users of function
point count may
assume the basis of
the count reflects
current system
baselines and thus
decisions or
estimates that are
based on it may be
incorrect.

Function-Based Sizing � 247

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

 Do the individual
function point
component (ILF, EIF,
EI, EO, and EQ) per-
centages conform
to industry ranges?
If not, is there a
valid reason?

Resultant counts
may be incorrect or
inconsistent with
similar system
counts.

Function point
counts may be
biased and may not
reflect the true size
of the application
based on
established
industry numbers.

 Has an inventory of
transactions (EI, EO,
and EQ) and files
(ILF and EIF) been
reviewed by the
project team? The
greatest error in
counting function
points is omission
(not including
everything). It is
important that the
application team
review the function
point count for
completeness and
accuracy.

Not including the
application team in
function point
counts may result in
failure to include
known issues and
concerns in the
count.

The function point
count may not
reflect the
understanding of
the team and there
may be limited
team support of any
estimates based on
the count.

 Are value
adjustment factors
needed for use with
the chosen
estimation
methodologies?
Unadjusted
function points
used with models
like SEER-SEM and
ISOSTD do not
include value
adjustment factors.

Value adjustment
factors (VAFS) used
must accurately
reflect the
conditions in the
enterprise and
must be consistent
with applications
made by the
organization.

Inconsistent or
incorrect VAFs
incorrectly offset
counts and have a
consistent and
incorrect basis for
estimates based on
adjusted counts.

248 � Software Sizing, Estimation, and Risk Management

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

 Have all the
assumptions
associated with the
function point
count been
documented?

If critical issues,
risks, and
assumptions that
need to be carried
with the estimate
are not
documented, use
of the count may be
based on an
incorrect
assumption that all
critical factors have
been addressed.

Count may prove
invalid due to
undocumented
realities that limit its
accuracy or
applicability.

 Are the
assumptions
consistent with
other projects?

Assumptions used
in estimate must be
credible, consistent
with the realities of
the enterprise, and
the historical
experience of the
organization, or
should be
evaluated for
consistency with
the experiences of
similar projects.

By not addressing
common
assumptions used
by other projects,
issues, problems,
and risks resulting
from organizational
factors may not be
considered when
counting or
estimating size
using function
points.

 Have all the
assumptions
impacting function
point counting
been forwarded to
a central function
point group? All
assumptions
should be reviewed
by the central
function point
group.

By not having a
central place that
coordinates use of
function points,
different
interpretations of
critical factors
relating to the
count or estimate
may occur and
information
needed for the
count or estimate
may not be
available.

Function point
count and
estimates that
result from it may
not reflect
assumptions and
experiences of
other projects,
causing the count
or estimate to be
invalid.

Function-Based Sizing � 249

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

Process Integrity

 Did the project
team participate in
the function point
count? The project
team should
include the most
knowledgeable
individuals
regarding the
functionality being
delivered to the
user. They are the
best source of
information about
the project.
Frequently the
project team is not
involved when a
function point
count is completed.
The function point
counter will
evaluate some
documentation,
eventually
generating a
function point
number.

By not adequately
involving the
project team in the
counting of
function points or
their use in
subsequent
estimation
activities, critical
insights and
undocumented
information may
not be factored into
the count or the
estimates.

The function point
count and
estimates that
result from it may
not reflect
assumptions and
experiences of the
project team,
causing the count
or estimate to be
invalid.

 Were internally
developed function
point counting
guidelines
followed?

Count or estimate is
developed using a
project-specific
process reflecting
biases and local
offsets that may not
adequately
consider critical
factors or
relationships.

Projections based
on function point
count may be based
on incorrect
information and
may prove
inadequate.

250 � Software Sizing, Estimation, and Risk Management

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

 Was the application
counted from the
user’s point of
view?

Count or estimate
does not reflect the
user’s view,
reflecting biases
and offsets that
only consider
project factors, and
critical user related
factors or
relationships may
not be adequately
considered.

Projections based
on function point
count may be based
on information that
does not consider
essential user
information and
requirements and
may prove
inadequate.

 Was the system
counted from a
logical and not a
physical point of
view?

System count does
not consider the
actual size of the
application, but
only interpretations
of information used
to extrapolate size
metrics.

Function point
count and
estimates that
result from it may
not be consistent
with actual size of
application.

Estimation Scope

 Does the
established
boundary for the
function point
count match the
boundaries of other
metrics (time
reporting, defect
tracking)? If not,
why?

Inconsistencies in
system boundaries
or boundaries of
the count may
result in metrics
that do not reflect a
common baseline.

Function point
counts and
estimates derived
from it may not be
based on a
common system
scope, precluding
consistency of
related metrics.

 If the function point
count was for an
enhancement, was
the boundary the
same as the
boundary for the
application? If not,
why?

Enhancement
boundary may
differ from the full
system boundary,
resulting in
incorrect
assumptions
concerning the

Function point
counts and
estimates derived
from it may not be
based on a correct
system boundary.

Function-Based Sizing � 251

Endnotes
1. Garmus, David and David Herron. Function Point Analysis. Boston: Add-

ison-Wesley, 2001.
2. Albrecht, A.J. “Measuring Application Development Productivity.” Proceed-

ings of IBM Applications Development Symposium. Monterey, 1979.
3. Jones, Capers. Programming Productivity: Issues for the Eighties. New York:

IEEE Press, 1981 (Revised 1986).
4. International Function Point Users Group. Function Points Counting Prac-

tices Manual, Release 4.1. Princeton Junction: IFPUG, 1999.
5. Jones, T.C. The SPR Feature Point Method. Boston: Software Productivity

Research Inc. 1986.
6. Symons, C.R. “Function Point Analysis: Difficulties and Improvements.”

14.1. IEEE Transactions: Software Engineering, January 1988.
7. Whitmire, S.A. “3D Function Points: Scientific and Real-time Extensions to

Function Points.” Pacific Northwest Software Quality Conference. Portland,
1992.

8. Netherlands Software Metrics Users Association (NESMA). Definitions and
Counting Guidelines for the Application of Function Point Analysis. Nether-
lands: NESMA, 2002.

9. Abran, Alain. Full Function Point Method. <http://www.dpo.it>
10. Fischman, Lee. “A Full Service Function Metric, Open for Business: Evolved

Function Points.” Software Technology Conference. Salt Lake City, 2001.
11. Galorath, Dan. “Parametric Cost Application to Function Points.” IFPUG

User Meeting, 1996.
12. International Function Point Users Group. IT Measurement: Practical

Advice from the Experts. Boston: Addison-Wesley, 2002.

Table 6.18 (continued) Function Point Counting Risk Checklist

Major
Issue Area Potential Error Risk Risk Effect

scope of the count
or the boundary of
future estimates
using the count.

 Has the boundary
changed? If so,
why?

If the boundary of
the count changes,
the resulting count
may be based on
incorrect
designation of key
factors and offsets.

Function point
counts and
estimates derived
from it may not be
based on correct
designation of
functions or offsets.

252 � Software Sizing, Estimation, and Risk Management

13. International Function Point Users Group. Function Point Counting Prac-
tices Manual, Release 4.2. Princeton Junction: IFPUG, 2004.

14. IFPUG standard briefing, IFPUG, 1999.
15. International Function Point Users Group. IT Measurement: Practical

Advice from the Experts. Boston: Addison-Wesley, 2002.
16. Longstreet, David. “Fundamentals of FPA.” Longstreet Consulting: Function

Point Counting, 2000. <http://www.softwaremetrics.com/fpafund.htm>
17. Brown, Ian. Personal correspondence, 2005.
18. The David Consulting Group. “Industry Data.” 9 Sept. 2005. <http://www.

davidconsultinggroup.com/indata.htm>
19. Desharnais, Jean-Marc and Pam Morris. “Post Measurement Validation

Procedure for Function Point Counts.” Software Engineering Standards
Issues. Montreal, 1996. <http://www.lrgl.uqam.ca/sponsored/ses96/paper/
desharna.html>

20. Galorath, Judy. Personal interview, July 2000.
21. Longstreet, David. “Fundamentals of FPA.” Longstreet Consulting: Function

Point Counting, 2000. <http://www.softwaremetrics.com/fpafund.htm>
22. Meli, Roberto and Luca Santillo. “Function Point Estimation Methods: A

Comparative Overview.” DPO Resources: Papers, 1999. <http://www.dpo.it/
english/resources/papers/1999-fesma-fpestmet-en.pdf>

23. Fischman, Lee, Personal interview, 2000.
24. The David Consulting Group. “Industry Data.” 9 Sept. 2005. <http://www.

davidconsultinggroup.com/indata.htm>
25. Kitchenham, B. “The Problem with Function Points.” IEEE Software,

March/April 1997.
26. Nihal, Kececi, Ming Li, and Carol Smidts. “Function Point Analysis: An

Application to a Nuclear Reactor Protection System.” International Topical
Meeting on Probabilistic Safety Assessment. Washington, D.C., 1999.

253

Chapter 7

Object-Oriented
Sizing: Object and
Use-Case Sizing

Nothing is particularly hard if you divide it into small jobs.

Henry Ford

Introduction
Whenever a new or different method of software development appears,
many people denounce existing methods of sizing and costing. They look
for new methods consistent with the latest revolution in software devel-
opment and believe that everything learned from the past is obsolete.
This was the original thinking of many in dealing with object-oriented
systems. One of the difficulties of object-oriented systems in general is
the belief of many people that they are building an object-oriented system
when they use a language like C++, independent of using object-oriented
design techniques.

Object-oriented design methodologies are true discriminators of object-
oriented systems. As early as the introduction of Ada in the early 1980s,
people claimed that object development was revolutionary and existing
estimation techniques were not viable. However, time has shown that

254 � Software Sizing, Estimation, and Risk Management

lines of code and function-based sizing perform just as well on object-
oriented systems as on others. The reason organizations such as Galorath
Incorporated explore object-oriented and use-case-oriented size metrics is
not because existing metrics do not work. It is because the closer we can
get to the actual artifacts the developers produce, the simpler it is to
obtain definitions of size that can be understood and measured easily.

This chapter examines object-oriented and use-case sizing. It also
reveals how to address risk and uncertainties associated with the use of
these alternative methods and describes methods for managing the risk
of using new or unproven estimation methods.

Background of Object-Oriented Design
Before exploring object-oriented (OO) metrics, it helps to appreciate the
background of OO design methodology. The origins of OO design and
development reaches back to the 1960s and 1970s when OO programming
languages such as Simula1 and Smalltalk2 were essential components in
the development of these methodologies. Developments remained infor-
mal until 1982 when Grady Booch devised the object-oriented design
term.3 During the 1980s other OOA/D (object-oriented analysis and design)
pioneers developed their ideas: Kent Beck, Peter Coad, Don Firesmith,
Ivar Jacobson, Steve Mellor, Bertrand Meyer, Jim Rumbaugh, and Rebecca
Wirfs-Brock, among others. Coad created a complete OOA/D method in
the late 1980s and published twin volumes titled Object-Oriented Analysis4

and Object-Oriented Design5 in 1990 and 1991.
As the methodology matured and its use expanded, Wirfs-Brock and

others described the responsibility-driven design approach to OOD in
their popular Designing Object-Oriented Software6 published in 1990.
During the 1990s and early 21st century, OO methodology matured and
experienced a surge of interest from software engineers applying the meth-
odology, researchers and practitioners who expanded and clarified the
methodology, and academics who promulgated its use and trained the next
generation of practitioners.

As might be expected, the long history of OO research and develop-
ment produced a corresponding cornucopia of proposed metrics. In 1993,
Chidamber et al.7 presented a suite of OO metrics, including some that
measure size. In 1996, Basili et. al.8 published 11 design metrics that
include some well suited for measuring size.9 Henderson-Sellers10 also
identified many metrics potentially able to measure the various dimensions
of OO software development effort. These early papers provided a foun-
dation for future metric proposals.

Object-Oriented Sizing: Object and Use-Case Sizing � 255

In 1994, Booch and Rumbaugh combined their two methods — the
Booch and OMT methods — to create a common notation known as
Unified Modeling Language™ (UML). The common notation eventually
incorporated the objectory method developed by Ivar Jacobson. Booch
and Rumbaugh decided to reduce the scope of their effort by focusing
on a common diagramming notation — the UML — rather than a common
method. This scope-reducing effort in 1997 resulted in the formation of
an industry body for devising OO-related standards. Known as the Object
Management Group (OMG), it developed an open standard leading to
the initial UML Version 1.0. Since then, the standard has been subject to
ongoing refinements, with UML Version 2.0 released in 2004. The UML
has emerged as the de facto standard diagramming notation for OO
modeling and continues to be refined by the OMG.

Overview of Object-Oriented Techniques
Object-oriented techniques differ from traditional structured programming.
Data and the procedures that act on them are combined in objects but
kept separate in other development methodologies. Figure 7.1 illustrates
this for the case of three classes of objects (Program, Current_Config, and
Event_Log). The attributes associated with each class are shown in the
middle of each box (Program has none; Current_Config: sensorsettings,
activated; Event_Log: events). The methods are shown in the bottom of
each box (user_program, set_config, eval_event, reset, record_event, and
monitor).

As might be expected, the most natural thing to count is the number
of classes, as most proposed OO metrics do. Classes do vary in their
number of methods, attributes, and in the complexity of both methods
and attributes. These can be seen in detail in the methodology described
later in this chapter.

Figure 7.1 Class diagram.

Program

Class diagram Current_Config

Sensorsettings
activated

set_config
eval_event Event_Log

Events

Reset
record_event

Monitor
An alarm system...

user_program

256 � Software Sizing, Estimation, and Risk Management

Object Points

As with other systems, objects typically are composed of screens, reports,
and modules. While not directly related to objects, some parallelism exists
between what is counted for function points versus object points. Getting
an object point is very similar to the function point counting method
described in Chapter 6 of this book. Adjustments are made to the raw
count for complexity and summed to achieve a final count — just like
for function points. Object points have a number of advantages. They
usually require less effort to count than function points, the results are
comparable, and object points better suit OO-based systems.

Counting object points is in some ways easier than counting function
points because less judgment is involved and less experience is required.
OO artifacts such as classes can be counted directly, while services
(methods) are evaluated using standard IFPUG rules. It can take less time
to obtain comprehensive sizing information from an OO system than from
a similar nonobject system.

Performing Object Point Counts

Three steps are involved with performing an object point count:

1. Determine whether you have been supplied with the classes and
methods of an OO system.

2. Determine whether the classes lie inside or outside the application.
Count the number of unique subclasses for each class, then count
the number of attributes in each class, including those defined in
subclasses. Use these subclass and attribute counts to determine
the complexity of each class.

3. Note the methods (service) in each class. Count the number of
classes referenced by each method and the number of attributes
referenced by each method. Use these class and attribute counts
to determine the complexity of each method (service).

Table 7.1 shows how to incorporate each element of OO technology into
an object point count. Parentheses indicate analogous function point terms.

Object Point Definitions

Classes

A class includes one or more objects with a uniform set of attributes and
services. Objects are defined as members of a class of objects.

Object-Oriented Sizing: Object and Use-Case Sizing � 257

Classes are essentially templates for the creation of objects. Classes
exist as hierarchies; the top level of the hierarchy can be considered the
base class; unique variations of the base class are descendants. Objects
created from a base class or descendant class are termed instances.

Classes may be sized into either internal or external classes, depending
on which side of the application boundary they lie. In IFPUG terminology,
classes can be compared to external interface files or internal logical files.

You should count base (highest level) classes only, and not descendant
classes. Descendant classes are those that inherit the properties of higher
level classes while adding additional attributes or services. Remember that
you should count a class but not its instances, (i.e., objects created from
the class).

The application boundary defines what is and is not a part of any
application; it is an important concept for classifying function point counts
and object counts. Application boundaries are determined by the designer
and depend secondarily on the goal and scope of development. When

Table 7.1 Object Points and Function Points

Object Point Corresponds To Complexity Corresponds To

Internal
class

(Internal
logical files)

Total
subclasses

(Record element types)

Total attributes (Data element types)

External
class

(External
interface files)

Total
subclasses

(Record element types)

Total attributes (Data element types)

Inquiry
service

(External
inquiries)

Total classes (File types referenced)

Total attributes (Data element types)

Output
service

(External
outputs)

Total classes (File types referenced)

Total attributes (Data element types)

Input
service

(External
inputs)

Total classes (File types referenced)

Total attributes (Data element types)

258 � Software Sizing, Estimation, and Risk Management

counting in an OO environment, the application boundary may correspond
to the subject. In OO design, the subject is defined as:

A mechanism for guiding a reader (analyst, problem domain
expert, manager, client) through a large, complex model. Sub-
jects are also helpful for organizing work packages on larger
projects, based upon initial OOA investigations.11

Internal Class

Each class of objects residing inside the application boundary is treated
analogously to an IFPUG standard internal logical file (ILF). See Chapter 6
for details on IFPUG standards.

External Class

Each class of objects residing outside the application boundary is treated
analogously to an IFPUG standard external interface file (EIF).

Class Complexity

To determine the complexity of a class, you must evaluate the character-
istics described below: attributes, and descendant classes. These charac-
teristics will then be translated to standard function point measures.

Attributes — Count the number of unique attributes in the class,
including attributes that may be defined in its instances but not in the
parent class itself. Each attribute should be considered a DET.

Descendant classes (subgroups, subclasses) — Descendant or child
classes inherit many of their properties from a base class. In IFPUG
terminology, each unique instantiation of a base class is counted as a
record element type (RET). As with RETs in standard function point counts,
descendant classes thus help determine the complexity of function points.
Count the number of unique descendant classes for this class; each should
be considered an RET. (If the class you are examining actually inherited
its properties from a higher class, you should count the higher class as
the ILF, not this one.) Descendant classes may also be known as:

� Subgroups (used by IFPUG)
� Subtypes (semantic data modeling)
� Subclasses (some OOPLs)
� Child classes

Object-Oriented Sizing: Object and Use-Case Sizing � 259

Count the number of unique subclasses of this class. For example, if
the class is “airplane,” an object may be a crop duster or jet fighter.
Subclasses may also be called subgroups, subtypes or descendant classes.

Rate the complexity for each internal class using Table 7.2.

Rate the complexity for each external class using Table 7.3.

Services (Methods)

Services, also known as methods, are specific behaviors endowed and
expected of an object. This definition should be used when deciding the
function point category under which a particular service should be defined.
Services essentially are functions contained within an object. A service may
be instantiated at the class level or lower, within a specific instance. The
complexity of a service is determined on the basis of how many classes
(analogous to FTRs) and attributes (analogous to DETs) are referenced.

Inquiry service — This is an IFPUG standard external inquiry that
resides as a service (method) within an object class.

Output service — This is an IFPUG standard external output that
resides as a service within an object class.

Input service — This is an IFPUG standard external input that resides
as a service (method) within an object class.

Determining complexity for input, output, and inquiry services —
All descendants of a single base class that are referenced by a service are
counted as only one file type referenced (FTR).

Table 7.2 Object Point Complexity Rating Table for Internal Classes

1 to 19 DETs 20 to 50 DETs 51 or more DETs

0 to 1 RETs Low Low Average

2 to 5 RETs Low Average High

6 or more RETs Average High High

Table 7.3 Object Point Complexity Rating Table for External Classes

1 to 19 DETs 20 to 50 DETs 51 or more DETs

0 to 1 RETs Low Low Average

2 to 5 RETs Low Average High

6 or more RETs Average High High

260 � Software Sizing, Estimation, and Risk Management

Attributes — Count the total number of attributes and messages
received by the service. Each is equivalent to a data element type (DET).

Classes — Each base class referenced by a service is counted as one
FTR. Include all descendant classes within the base class that are refer-
enced as part of the base class.

Message connection (definition) — The processing dependency of
an object, indicating a need for services (from outside the immediate
object) in order to fulfill its responsibilities. Message connections involve
a sender and a receiver. The sender sends a message to the receiver,
asking the receiver to do certain work. Message connections exist only
for services.12

Message connections should be considered additional, unique FTRs
for EIs, EOs, and EQs that employ them. There are processing requirements
of both sender and receiver and should be evaluated separately.

Rate the complexity for each inquiry service using Table 7.4.

Rate the complexity for each output service using Table 7.5.

Rate the complexity of each input service using Table 7.6.

Table 7.4 Object Point Complexity Rating Table for Inquiry Services

1 to 5 DETs 6 to 19 DETs 20 or more DETs

0 to 1 FTRs Low Low Average

2 to 3 FTRs Low Average High

4 or more FTRs Average High High

Table 7.5 Object Point Complexity Rating Table for Output Services

 1 to 5 DETs 6 to 19 DETs 20 or more DETs

0 to 1 FTRs Low Low Average

2 to 3 FTRs Low Average High

4 or more FTRs Average High High

Table 7.6 Object Point Complexity Rating Table for Input Services

1 to 4 DETs 5 to 15 DETs 16 or more DETs

0 to 1 FTRs Low Low Average

2 FTRs Low Average High

3 or more FTRs Average High High

Object-Oriented Sizing: Object and Use-Case Sizing � 261

The unadjusted (raw) object point count is the count of unique objects
that were identified through the steps described above. The unique object
types counted are:

Internal class
External class
Inquiry service
Output service
Input service

The unique function types that were individually assessed for com-
plexity (low, average, or high) are now given a weighting value that varies
from 3 (for simple external inputs) to 15 (for complex internal files).
Unadjusted object points (UOPs) are calculated as follows. The sum of
all the occurrences is computed by multiplying each function count with
a weighting and then adding all the values. The weights are based on the
complexity of the feature counted. Table 7.7 shows the weighting values.

IC(total) = IC(low) ¥ 7 + IC(average) ¥ 10 + IC(high) ¥ 15

EC(total) = EC(low) ¥ 5 + EC(average) ¥ 7 + EC(high) ¥ 10

QS(total) = QS(low) ¥ 3 + QS(average) ¥ 4 + QS(high) ¥ 6

OS(total) = OS(low) ¥ 4 + OS(average) ¥ 5 + OS(high) ¥ 7

IS(total) = IS(low) ¥ 3 + IS(average) ¥ 4 + IS(high) ¥ 6

Unadjusted object point count =
IC(total) + EC(total) + QS(total) + OS(total) + IS(total)

The unadjusted object point count is now complete.

Table 7.7 Object Point Function Complexity

Function Type Low Average High

Internal class (IC) ¥7 ¥10 ¥15

External class (EC) ¥5 ¥7 ¥10

Inquiry service (QS) ¥3 ¥4 ¥6

Output service (OS) ¥4 ¥5 ¥7

Input service (IS) ¥3 ¥4 ¥6

262 � Software Sizing, Estimation, and Risk Management

Predictive Object Points

Unlike traditional measures, predictive object points (POPs) are based on
an object-oriented paradigm, encapsulating object behavior and the inter-
actions of objects. POPs combine several contemporary metrics to establish
an overall measure suitable for predicting effort and/or tracking produc-
tivity.13 However, the amount of information required may make them
difficult to obtain in practice.

Development of Use-Case Metric

Use cases utilize a very simple graphical language. The artifacts in a use-
case diagram are its actors (stick figures in Figure 7.2), use cases (circles),
and relations (arrows). Relations between use cases, rather than actors,
are differentiated by whether they include or extend the functions of
another use case. Use cases are deliberately simple and use-case metrics
could hardly be any more complex.

The relationship between use cases and project effort was explored
by Gustav Karner14 who identified a relationship between metrics desig-
nated unadjusted use-case points (UUCPs) and the effort needed to
develop a software project as defined by that use-case model. Galorath
Incorporated and others further applied this work to project sizing and
estimation.15

It is not accidental that use-case points and function points share part
of a name. Use-case points took some inspiration from function points,
particularly in the application of technical weighting factors to a baseline
count of observed artifacts.

Figure 7.2 Two use cases describing a simple alarm system.

Program

alarm

Trip

alarm

Object-Oriented Sizing: Object and Use-Case Sizing � 263

Use Cases

No discussion of OO metrics would be complete without considering use
cases. In the object-oriented UML, the use-case view is used alongside
class and other diagrams during the design process. The advantage of use
cases is that they are developed at the earliest or notional stages of system
design, and so afford opportunities to understand the scope of a system
early in its life cycle.

When estimating projects that will use object-based methodologies, the
starting place is project requirements — just as with other sizing method-
ologies. In this case, however, the requirements are defined by a use-case
model that is used to compute an initial project effort estimate rather than
shall statements or user-based scenarios. The use-case model defined in
UML uses a standardized notational language with defined standards to
document project requirements, design, and development. The model is
used initially to capture the requirements, then expanded to include design
details as the project progresses. Use cases described in UML allow a
reasonably accurate initial range estimate to be made and this estimate
can become even more accurate as a project progresses.

A set of use cases describes the elemental tasks a system is to perform
and the relation between these tasks and the outside world. Each use
case is a single task having some useful outcome; it is performed by the
end user of a system. An end user could be a person or an automated
entity, a subsystem, etc. The nature of the outcome can vary radically
from use case to use case, as long as it has perceived value. Jacobson,
Booch, and Rumbaugh define a use case as “a description of a set or
sequence of actions, including variants, that a system performs that yields
an observable result of value to a particular actor.”16

Use cases help designers elicit desirable system behavior early in
development. They allow interactions to be described in forms that are
easy for people to understand and remember, e.g., as narratives or
dialogues. This lets end users, stakeholders, and other nondevelopers
become directly involved in capturing requirements and determining
specifications.

Calculation of Unadjusted Use-Case Points
Unadjusted use-case points are calculated in three stages. An optional
fourth stage is required to complete an adjusted use-case point count.
First, the basic artifacts of a use-case diagram, namely actors and the use
cases themselves, are ranked by their complexity. Next, each is separately
summed while being weighted for complexity. The sums are then added

264 � Software Sizing, Estimation, and Risk Management

to arrive at an unadjusted use-case point count. As an optional step, the
unadjusted count can be adjusted by technical and environmental factors.
Unadjusted use-case points equal the sum of all actors and use cases,
each weighted by its complexity:

Unadjusted use-case point (UUCP) =
Actor_WeightFactor + UseCase_WeightFactor

Table 7.8 summarizes the calculation of total weighted use case and
UseCase_WeightFactor. Table 7.9 describes the calculation of total
weighted actor and Actor_WeightFactor.

The weighting factors U1, U2, and U3 in Table 7.8 are normally given
the values 10, 15, and 20 while the factors A1, A2, and A3 shown in
Table 7.9 are assigned values of 1, 2, and 4. However, these factors may
vary, depending on the type of application, use-case specifying style, etc.
Weights should be reevaluated based on circumstances.

Table 7.8 Calculation of Total Weighted Use Case

Use-Case
Type Description Factor

Number of
Use Cases Results

Simple 1 to 3
transactions

U1 N_U1 U1 ¥ N_U1

Average 4 to 7
transactions

U2 N_U2 U2 ¥ N_U2

Complex 8 or more
transactions

U3 N_U3 U3 ¥ N_U3

Total Use-Case Weight Factor UseCase_WeightFactor

Table 7.9 Calculation of Total Weighted Actor

Actor Type Description Factor
Number
of Actors Result

Simple System interface A1 N_A1 A1 ¥ N_A1

Average Interactive or
protocol-driven
interface

A2 N_A2 A2 ¥ N_A2

Complex Graphical interface A3 N_A3 A3 ¥ N_A3

Total Actor Weight Factor Actor_WeightFactor

Object-Oriented Sizing: Object and Use-Case Sizing � 265

Adjustment of Use-Case Point Count (Optional)

After the UUCP count is completed, an adjusted use-case point count
(AUCP) can be calculated by applying adjustments driven by project-
specific technical and development environment considerations. The
adjustment is made by multiplying the respective weighting factors by the
unadjusted use-case point count:

AUCP = UUCP ¥ TF ¥ EF such that:

Technical factor (TF) = 0.6 + (0.01 ¥ TWF)

Environmental factor (EF) = 1.4 + (–0.03 ¥ EWF)

Table 7.10 and Table 7.11 summarize the calculation of these factors. The
assessed values in both tables are rated using the following scale:

0 = no influence throughout development
3 = average influence throughout development
5 = strong influence throughout development

Weights given in these tables were suggested by Banerjee and may need
significant tuning to represent a particular organization.

Most estimation models such as SEER-SEM use UUCPs and do not use
the technical or environmental weighting factors for the same reasons
discussed with function points: applying such factors could cause double
counting when applying estimation technology factors.

Concluding Comments about Use-Case Points

The lack of clearly accepted weights is one reason that use-case points
have not achieved the status of a fully accepted metric. However, they
have repeatedly been shown to be significant and consistent estimators
of project effort. Recent research at Galorath Incorporated and use of use-
case points in its consulting projects confirm this finding.

Sizing Web Development

This discussion is drawn from work done by Don Reifer.18 The large
projects that served as standards in the software engineering community
are now being replaced by many small Web developments using different
technologies and working against what had been considered impossible

266 � Software Sizing, Estimation, and Risk Management

development schedules. From an estimator’s standpoint, the move to agile
methods,19 extreme programming,20 component-based engineering,21 and
other techniques have changed the expectations of customers and users
of the technologies we develop. Web-based applications have significantly
lowered the bar in determining time-to-market for Web-based software
applications.

Table 7.10 Calculation of Use Case Points Technical Weighting Factor

Technical
Factor17 Weight

Assessed
Value

Calculated Factor
(Weight ¥ Assessed Value) Comment

1 2 V1 2 ¥ V1 Distributed
system

2 2 V2 2 ¥ V2 Response
objectives

3 1 V3 1 ¥ V3 End-user
efficiency
(online)

4 1 V4 1 ¥ V4 Complex
internal
processing

5 1 V5 1 ¥ V5 Reusable

6 0.5 V6 0.5 ¥ V6 Ease of
installation

7 0.5 V7 0.5 ¥ V7 Ease of use

8 2 V8 2 ¥ V8 Portability

9 1 V9 1 ¥ V9 Ease of
change

10 1 V10 1 ¥ V10 Concurrent
processing

11 1 V11 1 ¥ V11 Security
feature

12 1 V12 1 ¥ V12 Third party
access

13 1 V13 1 ¥ V13 Special user
training
requirements

Technical weighting factor (TWF) = sum of calculated factors.

Object-Oriented Sizing: Object and Use-Case Sizing � 267

While many differences arise when estimating traditional versus Web-
based development projects, the differences seem to center around two
primary factors. First, Web development projects now combine compo-
nents using agile instead of traditional methods that develop or reuse
applications. Second, estimates are based on what can be provided for a
certain amount of money rather than “building a product of this size will
cost X dollars.” Considering these differences, the two major challenges
are accurately estimating size and duration.22

While size remains a viable basis for projecting effort, the traditional
metrics of SLOCs and function points do not adequately address the
product content without a method of sizing COTS applications and com-
ponents. Web applications are typically developed by combining objects
like shopping carts, Java scripts, and building blocks like cookies, ActiveX
controls, and component object model components.22

Risk Associated with Object-Oriented Projects
In 1999, we conducted an assessment of a large information technology
project that had obvious schedule problems. The managers extended the
development duration but were allocating less and less time to testing.
We brought this up when interviewing a senior manager and he said, “No

Table 7.11 Calculation of Use Case Points Environmental Weighting Factor

Environment
Factors Weight

Assessed
Value

Calculated
Factor Comments

1 1.5 V1 1.5 ¥ V1 Familiarity with life
cycle process

2 0.5 V2 0.5 ¥ V2 Application experience

3 1 V3 1 ¥ V3 Object-oriented
experience

4 0.5 V4 0.5 ¥ V4 Lead analyst capability

5 1 V5 1 ¥ V5 Team motivation

6 2 V6 2 ¥ V6 Requirements stability

7 –1 V7 –1 ¥ V7 Part-time workers

8 2 V8 2 ¥ V8 Programming language
difficulty

Environmental weighting factor (EWF) = sum of calculated factors.

268 � Software Sizing, Estimation, and Risk Management

worries. I have been assured by my senior technical staff that object-
oriented systems need less testing.”23

OO systems are indeed different; the danger is that they are thought
of as either too different or not different enough. This section outlines a
few risk areas and other considerations that have been encountered in
evaluating OO-based systems. In his excellent article titled “Inherent Risks
in Object-Oriented Development,”24 Peter Hantos discussed certain risk areas
that have the potential to impact the ability to complete an OO-based
project within the desired cost and schedule constraints.

Fully object-oriented projects require significant shifts in development
process and design thinking. They differ dramatically from legacy func-
tional decomposition methods for architecting systems or implementing
programming constructs. Teams that have long used structured approaches
seem to have the most difficulty moving to OO processes. Passive resis-
tance to OO methods at the team level often precludes “jelling” of a team25

and results in schedule delays, loss of productivity, and friction within
the teams and the project as a whole. Many of the arguments that lead
organizations to adopt OO methodologies are often not correct and lead
to unrealistic schedules and budgets:26

Optimistic assumption — OO is better at organizing inherent
complexity and abstract data types make it easier to model the
application.
Optimistic assumption — OO systems are more resilient to
change due to encapsulation and data hiding.
Optimistic assumption — OO design often results in smaller
systems because of reuse, resulting in overall effort savings. This
higher level of reuse in OO systems is attributed to the inheritance
property.
Optimistic assumption — It is easier to evolve OO systems over
time because of polymorphism.

When OO is introduced for the first time, expectations are often exagger-
ated, while the costs and risks are frequently minimized:

� Building class libraries is time consuming or, in case of purchase,
libraries represent major, up-front investments.

� To achieve high returns on investments, reuse must take place in
a very large project or on multiple projects.

When using OO methods, the design process becomes more important
than it is for non-OO projects. With encapsulation, data hiding, and reuse,
design complexity moves out of the code space and into the design space.

Object-Oriented Sizing: Object and Use-Case Sizing � 269

Increased design complexity has testing consequences and even if incre-
mental integration is applied, more sophisticated integration test suites
need to be created to test systems with potentially large numbers of highly
coupled objects.

OO concepts actually make system comprehension easier during anal-
ysis and design, which makes testing and debugging consequently more
difficult. All debugging methodologies and tools need to work with abstract
data types and instances. It is a common myth that only black box testing
is needed and OO implementation specifics are unimportant.27 Inheritance,
encapsulation, and polymorphism increase the potential for coding errors
when using OO that is not present with conventional languages.

Personnel shortfalls — One cornerstone of any estimate projecting
the size or cost of an object-based application is the availability in adequate
numbers of trained, capable individuals familiar with the methodologies
when required. The success of these projects depends primarily on the
people in the organization and, when the specialized skills associated
with OO are not available when required, the project impacts, particularly
those related to cost and schedule performance, can be significant.

The organization must understand the risks associated with the cost
and schedule constraints in relation to the delivery, quality, and operational
support commitments of the project. It must strike the correct balance
between application domain knowledge and OO knowledge in such a
way that the project can perform within constraints while still meeting
the organization’s commitments. This is not always a straightforward
process because it is often difficult to find people skilled in the required
disciplines in timeframes consistent with a project schedule and within
budgetary constraints.

A second issue involves the number and distribution of available
people. While OO knowledge is a requirement for most individuals on
this type of project, the depth and distribution of knowledge is critical to
the ability to meet the goals and constraints of the project. It is important
that all managers, architects, developers, and testers have or acquire via
training the appropriate OO skills. The executives who create, manage,
or sponsor the development organization in order to chart a reasonable
course for the project will authorize resource levels and availability and
determine staffing levels and availability for the project.

While OO experience is an asset for managers, it is a necessity for
those who will develop the project. Having experienced and trained
personnel assigned as system engineers, architects, developers, quality
technicians, testers and to other key roles in the project as well as seeding
of all teams with OO mentors is essential to jump-start and facilitate OO
development and meet the cost, schedule, delivery and operational com-
mitments.

270 � Software Sizing, Estimation, and Risk Management

The estimation methodology for OO projects differs somewhat from
procedures discussed in earlier chapters. It goes beyond metrics to issues
of actual implementation: OO estimates must consider data-based decom-
position, new means of reuse, and component-driven development,
among other factors.

Earlier chapters explore misconceptions about the estimating process
which often contribute to the failure of software projects. OO methods
exacerbate these issues:

� Estimation experience — Few organizations have extensive expe-
rience estimating OO projects. The processes are new to many
organizations. Prior size data can be used for OO projects but
some people just want to assume everything is completely different.

� Scope of estimate — A failure to include essential project activities
and products within the scope of the estimates will result in sizing
or cost errors and inconsistencies. Every estimate, whether a pro-
jection of size or an estimate of the cost of a project, makes
assumptions about the scope and boundaries of the application.
The OO methodology differs significantly from the more classical
structured development models. New technologies such as UML,
OO frameworks, OOA/D patterns, OO architectures, and OO com-
ponents that take advantage of OO design principles result in
different process steps and dramatically different documentation
and quality assurance steps.28 If projections of size and cost are to
be accurate, the models used and the estimation factors applied
must reflect the true nature of the methodology and the products
developed.

� Estimation expectations and assumptions — Misunderstanding the
process requirements and the benefits, restrictions, and capabilities
of OO methods leads to unrealistic plans and expectations. Aggressive
claims made concerning the levels of productivity, quality, and
reuse obtained from OO methods are not always realized. Models
such as SEER-SEM and COCOMO incorporate limits that are used
to evaluate the reasonableness, risk, and relevance of the estimates
they produce.

� Shortfalls in COTS, external components, and legacy software — A
core component of the OO process is inheritance which relies on
the use of COTS and other externally developed or legacy com-
ponents. This presents some difficulties for structural comprehen-
sion and architectural design. These external components, their
architecture, interfaces, and documentation may not be consistent
with the class and object architecture, communication mechanisms,
and view models of the system being developed.

Object-Oriented Sizing: Object and Use-Case Sizing � 271

The interface of object database implementations with tradi-
tional relational database management systems potentially could
cause cost, schedule, and other problems in OO applications where
multiple new technologies merge (in the use of Java-specific OO
COTS products — Enterprise Java Beans, Java Message Service,
etc.) to develop application services on standard IBM, Sun, and
Oracle platforms.

� Requirements or user interface mismatch — Use cases are used
almost exclusively to develop requirements in OO systems. Use
cases only capture functional requirements. Additional process
steps are needed to develop and implement quality-related, non-
functional requirements.

The following looks at Boehm’s Consolidated Risk List in relation to
OO methodologies.29

Shortfalls in architecture, performance, and quality — Data
abstraction, encapsulation, polymorphism, and the use of distrib-
uted objects increase architectural clarity, but at a price: substantial
overhead due to the introduced layers of indirection. There are
additional layers of architecture definition. Unless the system is
carefully architected and sound performance engineering practices
are implemented from the beginning, satisfying both performance
and quality objectives becomes difficult. In the case of real-time
applications, the system architect must determine the optimal sys-
tem cohesion. Most real-time performance issues can be resolved
if you are willing to suffer increased coupling and the consequent
loss of flexibility in the architecture.

“Another sensitive part of OO systems is memory management
in general and the implementation of garbage collection in particular.
Garbage collection is an integral part of most OO run-time envi-
ronments. It is a popular technique to ensure that memory blocks
that were dynamically allocated by the programmer are released
and returned to the free memory pool when they are no longer
needed. A typical OO application of this feature is the dynamic
creation and destruction of objects. The problem is that in con-
ventional systems, the execution of the main process needs to be
interrupted while the garbage collector does its job. This randomly
invoked process with variable durations disrupts the real-time
behavior of the system.”29

Most software development organizations that use OO do so
because managers feel that they will save money and time through

272 � Software Sizing, Estimation, and Risk Management

increased reuse. Without an explicit reuse agenda and a systematic,
reuse-directed software process, most of these OO efforts do not
lead to successful, large scale reuses. OO promises a high level of
reuse via the inheritance features and the use of class libraries.
However, development teams producing software without explicit
reuse objects and criteria do not achieve those savings. Even when
functional reuse is accomplished, timing and sizing requirements
for embedded systems may not accommodate the reused software.
Continuing stream of requirement changes — While this is prima-
rily caused by customer behavior, the use of OO does tend to
support the impression that the systems are more flexible from the
perspective of requirements churn than other, more standard
approaches. While OO architectural considerations, encapsulation,
and data hiding increase the resiliency of the developed system
to requirements volatility, any change in requirements during devel-
opment increases the cost of the application, increases the risk,
and stretches the schedule, particularly if the change comes late
in the development.
Shortfalls in externally performed tasks — This risk, while caused
by contractor behavior, is often exacerbated by the unavailability
of trained OO personnel, a lack of OO knowledge on the part of
estimators and schedulers who lay out the project structure,
and inexperience in applying the methodologies to real project
environments.
Straining computer science capabilities — The appeal of the OO
concepts that are theoretical in nature inspires system architects to
use OO in designing complex systems. This risk item refers to the
persistent tension between the theoretical concepts and their imple-
mentation, and the delicate balance that must be maintained among
programming languages, developing environments, and analysis
and design methods.29

These elements have to be continually verified against the
developed system’s architecture and the cost, schedule, quality,
and operational commitments of the project to assure sufficient
“bench strength” within the development organization to meet
them.

Summary
OO is not new; it has been around for over 20 years. However, many
organizations today are trying OO for the first time. Traditional sizing
measures work for OO systems. Additional size metrics are available and

Object-Oriented Sizing: Object and Use-Case Sizing � 273

are being refined to work with OO artifacts. OO is not a silver bullet.
Beware of estimates that are significantly (and artificially) reduced based
on the use of OO. Most first-time projects using OO experience significant
cost and schedule growth.

Endnotes
1. Sklenar, J. (jaroslav.sklenar@um.edu.mt) 1997.
2. Kay, Alan. The Early History of Small Talk. New York: ACM Press, 1993. 69.
3. Booch, G. “Object-Oriented Design 1.3.” Ada Letters, March–April 1982, 64.
4. Coad, P. and E. Yourdan. Object-Oriented Analysis. Englewood Cliffs:

Yourdan Press, 1990.
5. Coad, P. and E. Yourdan. Object-Oriented Design. Englewood Cliffs: Your-

don Press, 1991.
6. Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing

Object-Oriented Software. Upper Saddle River: Prentice-Hall, 1990.
7. Chidamber, Shyam R. and Chris F. Kemerer. A Metrics Suite for Object-

Oriented Design. Cambridge: Massachusetts Institute of Technology, Sloan
School of Management, E53-315, 1993.

8. Basili,Victor, Lionel Briand, and Walcelio Melo. “A Validation of Object-
Oriented Design Metrics as Quality Indicators.” 22.10. IEEE Transactions
on Software Engineering, October 1996.

9. Lorenz, M. and J. Kidd. Object-Oriented Software Metrics. Englewood Cliffs:
Prentice Hall, 1994.

10. Henderson-Sellers, Brian. Object-Oriented Metrics: Measures of Complexity.
Upper Saddle River: Prentice Hall, 1996.

11. Coad, P. and E. Yourdon. Object-Oriented Analysis, 2nd ed., Englewood
Cliffs: Prentice Hall, 1990.

12. Coad, P. and E. Yourdon. Object-Oriented Analysis, 2nd ed., Englewood
Cliffs: Prentice Hall, 1990.

13. Minkiewicz, A. Measuring Object-Oriented Software with Predictive Object
Points. Price Systems LLC, 1998.

14. Karner, Gustav. Metrics of Objectory, Thesis. Linkoping University, 1993.
15. Ferens, D., L. Fischman, T. Fitzpatrick, D. Galorath, and D. Tarbet. Auto-

mated Software Project Size Estimation via Use Case Points. El Segundo:
Galorath Incorporated, 2002.

16. Jacobson, Ivar, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Boston: Addison-Wesley, 1999.

17. Banerjee, Gautam. Use Case Points: An Estimation Approach, 2001.
http://www.bfpug.com.br/Artigos/UCP/Banerjee-UCP_An_Estimation_
Approach.pdf

18. Reifer, Donald J. “WEBMO: Estimating the Cost of Web Software Devel-
opments.” Software Technology Conference, Salt Lake City, 2001.

19. Highsmith, Jim and Alistar Cockburn. “Agile Software Development: The
Business of Innovation.” IEEE Computer, November 2001. 120.

274 � Software Sizing, Estimation, and Risk Management

20. Beck, Kent. Extreme Programming Explained. Boston: Addison-Wesley,
2000.

21. Heineman, George T. and William T. Councill. Component-Based Software
Engineering. Boston: Addison-Wesley, 2001.

22. Reifer, Donald J. “Estimating Web Development Costs: There Are Differ-
ences.” CrossTalk: The Journal of Defense Software Engineering, June 2002.

23. Evans, Mike, interview with software project manager, 1999.
24. Hantos, Peter. “Inherent Risks in Object-Oriented Development.” CrossTalk:

The Journal of Defense Software Engineering, February 2005.
25. DeMarco, Tom and Tim Lister. Peopleware; Productive Projects and Teams,

2nd ed. New York: Dorsett House, 1999.
26. Flanagan, E.B. “Risky Business.” C++ Report, March–April 1995.
27. Binder, R.V. “Object-Oriented Testing: Myth and Reality.” Object Magazine,

May 1995.
28. Jacobson, I. Object-Oriented Software Engineering: A Use-Case Driven

Approach. Boston: Addison-Wesley, 1992.
29. Boehm, B. IEEE Tutorial on Software Risk Management. New York: IEEE

Computer Society Press, 1989.

275

Chapter 8

Software Reuse
and Commercial
Off-the-Shelf Software

The most radical possible solution for constructing software is
not to construct it at all.

Fred Brooks

Introduction
Organizations faced with the difficulties and costs associated with the
development of software have turned to the reuse of existing software or
using commercial off-the-shelf (COTS) software as an option. Reuse,
whether involving home-grown or COTS components, certainly promises
lower cost, better quality, a decrease in risk, and the potential for a less
stressful development process. Many such efforts succeed, but the prom-
ises of decreased cost and risk are not always realized. Requirements,
algorithms, functions, business rules, architecture, source code, test cases,
input data, and scripts can all be reused. Architecture is a key for reuse.1

Many programs that plan substantial reuse find that the assumptions
made concerning how much functionality could be achieved were overly
optimistic. They are then disappointed when the amount is less than

276 � Software Sizing, Estimation, and Risk Management

projected or they experience much higher costs for reuse than had been
estimated. Reuse is not a panacea, the ultimate saver of schedule, or cost
reduction measure that optimistic estimators or zealous managers promise.
In reality, reuse or COTS can lower cost, but only partially. COTS appli-
cation software often satisfies less than 40 percent of the functionality of
an application.

Even when functional requirements are reasonably well satisfied, crit-
ical nonfunctional requirements such as security, reliability, and perfor-
mance must be addressed, resulting in schedule and cost impacts. If the
functional or interface requirements are not satisfied, wrappers (additional
code required to make the new development able to use the existing
software) must be planned, designed, developed, and tested.

In all cases, the system or software architecture must be sufficiently
mature to allow the detailed design of critical interfaces and the conduct
of reasonable trade-offs to enable the evaluation, selection, acquisition,
and integration of the capability into the system or software architecture.
Only when components are produced like hardware chips, that is, com-
ponents that are designed for reuse, include appropriate inputs and
outputs, and have been fully tested for the environment can the risk of
reusing someone else’s code be reduced.

When working with embedded systems (software embedded with
hardware), critical system, hardware, and operational considerations
greatly complicate the evaluation trade-offs and the selection process by
forcing the analysis to address external considerations and usability factors
at the same depth as internal system and software considerations. The
decision to use COTS or reuse a legacy component cannot be made simply
because the items “fit in the architecture.” The use must be based on a
certainty that the components will prove operationally sound across the
full range of operational scenarios they must support.

Often reuse decisions are made by defining high level views of what
might be needed and identifying off-the-shelf components, preexisting
functional designs, and reuse components that roughly satisfy the identified
requirement from catalogs or vendors’ cost sheets. These decisions then
make their way into the estimate only to be reversed later — above the
projected cost and outside the projected schedule.

When discussing reuse, it is important to identify the type of reuse.
Most reuse falls into one of the following categories: incidental reuse,
planned reuse, incremental capability, or COTS.

� Incidental reuse — The most common form of reuse involves
an attempt to use software developed for one purpose or appli-
cation in a new application. This approach is far from cost-free.

Software Reuse and Commercial Off-the-Shelf Software � 277

The software must be partially redesigned, reimplemented, and
then retested to ensure it does what it should do, and does not
do what it should not do. This can be a potential minefield that
can cause an organization to inherit all the problems of the pre-
existing software and reap few of the benefits. Reuse may actually
cost more than developing new software because of the poor state
or lack of fit of the reused components. Many managers, when
planning for software reuse, forget that the reuse software must
be tested in the new environment.

� Planned reuse — This involves software developed with reuse
as a goal during its development. Developers spent extra effort to
ensure it would be reusable within the intended domains. The
additional cost during development may have been significant but
the resulting product can achieve dramatic savings over a number
of projects. The SEER-SEM estimation model shows that the addi-
tional costs of building software designed for reuse can be up to
63 percent more than building with no consideration for reusability.

� Incremental capability — This is the addition of functionality to
an existing system, whether through upgrade or incremental deliv-
eries of a system under development. The analysis required is
identical to those used for other planned and unplanned reuse;
the product is an additional capability added to the existing system.

� COTS — The COTS term is applied to almost all retail software.
COTS components can be anything from an operating system to
a word processor, a language compiler, or a component that is
invisibly integrated into a software program.

More systems today take advantage of reuse of preexisting software
in the development of new systems. Many like to think of reuse as a
silver bullet. In fact, reuse can be Pandora’s box if inappropriate assump-
tions are made about the applicability of the software to be reused or if
the reused software has inherent problems.

Reusable Software
Table 8.1 outlines the characteristic differences among types of reusable
software.

The effort required for reuse of existing software depends on several
factors that must be well understood before a determination to reuse
functionality is made. An efficient approach is to convert the preexisting
software into an effective (equivalent) number of size units (lines, function
points, or other units) using formulas developed from experience.

278 � Software Sizing, Estimation, and Risk Management

Reuse involves three activities, each of which has a price: redesign,
reimplementation, and retesting. Redesign arises because the existing
functionality may not be exactly suited to the new task; it likely will
require some rework to support new functions, and will likely require
reverse engineering to reveal its current operation. Some design changes
may be in order. This will result also in reimplementation, which generally
takes the form of coding changes. Whether or not redesign and reimple-
mentation are needed, plan to conduct some retesting to be sure the
preexisting software operates properly in its new environment.

The effective size of the existing software can be determined using
the formula:2

Effective size = existing size ¥ (0.4 ¥ redesign % + 0.25 ¥
reimplementation % + 0.35 ¥ retest %)

Table 8.1 Comparison of Types of Reusable Software

COTS GOTS
Planned
Reuse

Incidental
Reuse

Ready to
use and
documented

Yes Sometimes Often Sometimes

Allows
programs to
offset rising
development
costs

Often Often Often Often

Tends to
follow open
standards,
making
integration
easier

Often Sometimes Sometimes Occasionally

Designed for
reuse,
generalized
and well
tested

Usually Often Sometimes Occasionally

Often
updated and
improved

Usually, due
to competitive
pressure

Occasionally Sometimes Seldom

Software Reuse and Commercial Off-the-Shelf Software � 279

The various redesign, reimplementation, and retest components can be
estimated by breaking each one down into its several components, then
using some additional formulas gained from experience. Table 8.2 shows
the components and formulas. The procedure should be tailored for an
organization’s process specifics. For example, the five components of rede-
sign (as shown in the table) are: (A) architectural design change, (B) detailed
design change, (C) reverse engineering required, (D) redocumentation
required, and (E) revalidation required.

Table 8.3 illustrates a calculation of reimplementation based on 30
percent recoding required, 32 percent code review, and 35 percent unit
testing.

After using the formula provided in Table 8.2 to compute the redesign,
reimplementation, and retest percentages, the following equation is used
to compute effective size:2

Effective size = new code + preexisting code ¥
(0.4 ¥ redesign % + 0.25 ¥ reimplementation % + 0.35 ¥ retest %)

For example, if there are 750 preexisting function points and the redesign
is 15 percent, reimplementation is 10 percent, and retest is 18 percent,
the following formula would be used to determine effective function point
rating and the result would be 116 effective function points.

750 ¥ (0.4 ¥ 15% + 0.25 ¥ 10% + 0.35 ¥ 18%)

With an additional 140 new function points, the combined effective size
would equal the effective preexisting function points (116) plus the
number of new function points (140), for a total of 256 effective function
points. This effective function point measure quantifies the work to be
performed and forms a basis for tracking completion.

Integrating Commercial Off-the-Shelf Software
In hardware design, standardized chips are good examples of standard
parts. They are well understood components listed in catalogues and they
perform very specific functions: they are the physical building blocks of
larger designs. Now imagine preexisting, pretested software components
that can be inserted right into new software programs.

These pieces of pretested software are like little black boxes. Just like
a standard hardware part, commercial off-the-shelf software is meant to
be cheaper and more reliable than a home-grown solution. The following
are common subcategories for commercial off-the-shelf software:

280 � Software Sizing, Estimation, and Risk Management

Table 8.2 Redesign and Reimplementation Breakdown

Redesign Breakdown

Formula to compute
redesign percentage:

0.22 ¥ A + 0.78 ¥ B + 0.5 ¥ C + 0.3 ¥
(1 – (0.22 ¥ A + 0.78 ¥ B) ¥ (3 ¥ D + E)/4

Weight Redesign Component Definitions

0.22 Architectural design
change (A)

Percentage of preexisting software
requiring architectural design change

0.78 Detailed design change
(B)

Percentage of preexisting software
requiring detailed design change

0.5 Reverse engineering
required (C)

Percentage of preexisting software not
familiar to developers; requires
understanding and/or reverse
engineering to achieve modification

0.225 Redocumentation
required (D)

Percentage of preexisting software
requiring design redocumentation

0.075 Revalidation required
(E)

Percentage of preexisting software
requiring revalidation with new design

Reimplementation Breakdown

Formula to compute
re-implementation
percentage:

0.37 ¥ F + 0.11 ¥ G + 0.52 ¥ H

Weight Inputs Definitions

0.37 Recoding required (F) Percentage of preexisting software
requiring actual code changes

0.11 Code review required
(G)

Percentage of preexisting software
needing code reviews

0.52 Unit testing required
(H)

Percentage of preexisting software
requiring unit testing

Retest Breakdown

Formula to compute
retest percentage:

0.10 ¥ J + 0.04 ¥ K + 0.13 ¥ L + 0.25 ¥ M +
0.36 ¥ N + 0.12 ¥ P

0.1 Test plans required (J) Percentage requiring test plans to be
rewritten

Software Reuse and Commercial Off-the-Shelf Software � 281

COTS components — Program parts designed to be included within
developed software to provide additional functionality. These parts are
designed, developed, tested, documented, and usually maintained by their
suppliers. Because COTS components are developed and tested with reuse
in mind, they are more generically designed than typical custom software.

COTS applications — Stand-alone applications available for sale to
businesses, government, and the general public. For example, word pro-
cessors such as Microsoft Word or WordPerfect may be considered COTS
applications when they are used to fulfill user requirements. COTS appli-
cations are clearly tempting because they provide turnkey functionality.
However, specific needs may not be perfectly addressed by these general
applications.

GOTS (government off-the-shelf) — Similar to COTS, except that
the software was developed by or for the government and may not be

Table 8.2 (continued) Redesign and Reimplementation Breakdown

Weight Inputs Definitions

0.04 Test procedures
required (K)

Percentage requiring test procedures
to be identified and written

0.13 Test reports required
(L)

Percentage requiring documented test
reports

0.25 Test drivers required
(M)

Percentage requiring test drivers and
simulators to be rewritten

0.36 Integration testing (N) Percentage requiring integration
testing

0.12 Formal testing (P) Percentage requiring formal
demonstration testing

Table 8.3 Example of Reimplementation Calculation

Formula: 0.37 ¥ F + 0.11 ¥ G + 0.52 ¥ H

Reimplementation result: 32.82 Percent

Weight Inputs Likely Percent

0.37 Recoding required (F) 30

0.11 Code review required (G) 32

0.52 Unit testing required (H) 35

282 � Software Sizing, Estimation, and Risk Management

widely available. GOTS software is generally provided at no cost to gov-
ernment organizations and often to software developers contracting to the
government. However, support and updates are not necessarily included
or forthcoming. GOTS software may or may not be accompanied by
satisfactory documentation. Often it is provided as government-furnished
information (GFI) — software without guarantees or warranties — and
the developer using it is left with the task of determining how usable it
is and what if any of the functionality needed is actually provided.

Examples of COTS software include:

� Stand-alone packages such as word processors, supply chain soft-
ware, and spreadsheets

� Libraries requiring linkage into application code, for example
graphics engines, Windows DLLs

� Development environments with runtime modules, for example,
Visual Basic‘ and Sybase‘

� Vendor-supplied device drivers such as printers, displays, and
multimedia

� Information retrieval applications such as hypertext and data min-
ing tools

� Operating system utilities such as file operations and memory
management

Use of a COTS product implies a certain trust of its vendor. It is often
useful, therefore, to learn as much as possible about the vendor — what
are its other business obligations and what is its financial condition —
before deciding to use its product.

Fundamental Differences between COTS Software
and Custom Development

Here is a list of considerations surrounding any evaluation of COTS versus
custom development:

� An “infrastructure” may be required to demonstrate and validate
the package.

� The COTS package may dictate standards, architecture, and design.
� Because it has a prespecified design and certain input and output

restrictions, COTS may also influence work flow.
� Choosing the wrong COTS package may be more expensive than

fixing problems in custom software.

Software Reuse and Commercial Off-the-Shelf Software � 283

� Resolution of COTS-related issues may be complicated because of
the addition of a third party (vendor).

� There may be no source code available and no way to correct a
defect.

Items Not Estimated as COTS

When estimating development costs, confusion sometimes arises as to
what constitutes COTS and what does not. In general, anything that is
purchased for use in a development project is potentially a COTS item.
However, software that is used to create software but is not part of a
finished product is not COTS; it is a development tool.

Do not cost standard operating systems and development tools as
COTS — The impacts of operating systems and development tools are
handled explicitly by experience parameters in various estimating models.
These items generally are tools that aid in the development of an end
product. Other examples include code scanners, code generators, auto-
matic testers, requirements tools, and configuration management tools.

To consider the use of development tools in an estimate, look at the
ratings for such parameters as automated tool use, requirements definition
formality, function implementation mechanism, and others that relate to
the development environment and processes. Acquisition costs associated
with these tools must be included in a complete estimate.

Do not estimate modified COTS in the same manner as nonmodified
COTS — Just as electronics equipment warranties are no longer valid after
a seal is broken, COTS software is no longer COTS after its source code
is modified. It may still be estimated as reusable software, but potential
COTS advantages are lost:

� The COTS supplier no longer maintains your documentation and
source code.

� You no longer know what you are getting because modifications
may or may not be consistent with the original software design.

� New updates to the baseline COTS software may not be usable
unless modified to suit whatever changes you have made.

� Modified COTS should be handled as incidental or planned reused
software (depending on the modifications made); this is still less
costly than new development, but not as cost effective as unmod-
ified COTS.

Do not cost incidental and planned reuse software as COTS — Neither
of these software types should be treated as COTS software because they

284 � Software Sizing, Estimation, and Risk Management

are not commercially available and because source code will be worked
with.

Weighing Use of COTS

When properly applied, COTS can truly reduce costs, schedules, and
development risks. However, several issues related to the use of COTS
software must be considered. More than money must often be invested
to make a COTS investment work. Listed below are some advantages and
disadvantages developers see when evaluating COTS:

Case Studies: Real-World Experiences with COTS
The following case studies are actual examples from the authors’ experi-
ences. COTS usage has been both a blessing a curse.

Case 1: Components Had Critical Defects and Were Modified
by Developer

A COTS library was chosen to store and provide instant access to thousands
of items of text data associated with inputs. Defects in delivered COTS
and its interaction with the developed application made it necessary for
the developer to procure source code and debug and/or correct the
previously COTS software. When the COTS vendor moved to a newer
version, the developer was stuck with the modified previous version. The

Advantages Disadvantages

Quicker time to market Use involves learning curve; need
for integration and further
customization

Better reliability May not meet all user requirements
because it is intended for general
use

More end user functionality when
compared to custom-developed
components

Can be difficult to support because
source code may not be provided

Support for components across
different hardware and
environments

Vendors may discontinue support
or cease business

Stricter requirements because of its
release for general use

Software Reuse and Commercial Off-the-Shelf Software � 285

result was that the developer had to maintain what was once the COTS
portion on its own; the advantages of increased functionality from new
versions of the COTS were lost forever. Cost and performance savings
over “native” code were still realized, although nowhere near the amounts
projected. Fortunately, the COTS vendor made source code available. If
source code had not been available (at a price) for this project, the costs
would have been even greater, schedule penalties could have been
imposed, and development of new solutions would have been required.

Case 2: Powerful (and Defect-Ridden) COTS Component

This project had a graphics display COTS component that was provided
as an executable program only, with no source code available. The
developer decided to use this COTS package because it provided the best
functionality on the market. However, the documentation was poor and
the initial releases were defect-ridden. Support was also poor — calls
were not always returned. When problems could not be solved, the
software requirements were relaxed to make the COTS acceptable. As
newer versions of the operating system appeared, however, the COTS
software did not always execute properly and vendor support continued
to be inconsistent. In addition, the COTS component was available on
only one platform. Despite this, the developer assumed that equivalent
functionality would be available by the time a second platform was
required. The developer also assumed that glue code would be developed
to convert calling sequences. No adequate functionality was ever devel-
oped for the second platform by the vendor, and the developer was
required to develop this functionality from scratch.

Case 3: Application Integrated (Loosely Coupled)
without Problems

This application required a simple text editor. There was no requirement
for tight data coupling; the only requirement was executing the application.
The development team used the operating system’s editor. In this case,
invoking the stand-alone COTS application was simple, it ran smoothly,
and required almost no development time.

Evaluating and Estimating COTS
Imagine that all the work required to integrate a COTS component with
the target software is a blob as represented in Figure 8.1. The interface
with the COTS functionality appears on the right side. The target software

286 � Software Sizing, Estimation, and Risk Management

interface or resultant functionality impacted is represented on the left side.
The area in the middle represents the required work.

The amount of COTS functionality, the impacted target functionality,
and integration work together to determine the size of the blob, and thus
the job. A lot of integration work means a longer blob and more func-
tionality makes it wider. A fourth factor is complexity, and this is repre-
sented by shading. Although complexity is positively correlated with
integration work, sometimes a small amount of work will be very complex
and vice versa. Figure 8.2 illustrates two examples of blobs in practice.
It can be used as a framework to better explain the scope of any COTS
integration work.

Three Components of COTS Integration

Figure 8.3 illustrates the three basic components required when estimating
the effort involved in integrating COTS software.

Glue code is software that binds COTS software with development soft-
ware. Glue code can actually serve as an integral part of development
software or it can be developed as a separate module inserted between
the system being developed and the COTS components. Glue code should

Figure 8.1 Integration of COTS component with target software.

Figure 8.2 Examples of blobs in practice.

Target
COTS component

Depth of function varies with the

extent of integration required

Shade varies with

complexity

Not much integration, but rather complex A lot of integration, although simple

Functionality is
being widely used
in the target
software

Limited functionality
in the COTS
component is
actually being used

Functionality is
sparingly used in
the target software

Substantial
functionality in
COTS component

Software Reuse and Commercial Off-the-Shelf Software � 287

normally be modeled as any other coding effort is. It can be sized using
either source lines or functions.

Developmental software is generally developed from scratch to meet
the stated requirements of a project.

COTS cognition or learning is not a cost-free activity. Even when a
developer can directly put a COTS component or application to use,
understanding how to use third-party software takes time, effort, and
diligence. COTS cognition involves identifying the number of COTS func-
tions that must be learned, used, and tested.

Estimating COTS Integration
This section outlines three different methodologies that can be used to
estimate the integration of COTS software: (1) using function points and
an estimating model lacking COTS-specific capability; (2) using SEER-SEM
cost drivers to estimate COTS; and (3) rules of thumb.

Using Function Points and Estimating Model Lacking
COTS-Specific Capability

For the COTS software, perform the following steps:

1. Count the functionality to be learned or used by the developers.
In the language of function points, these will usually be internal
logical files.

2. Count only the function calls used by the host application as
external inquiries.

3. Count any error messages used as external interface files.
4. Count screen, printed, and clipboard outputs individually as exter-

nal outputs.

Figure 8.3 Glue code integrating developmental software and COTS software.

Developmental

software

COTS

software

COTS

cognition

G
lu

e
co

d
e

288 � Software Sizing, Estimation, and Risk Management

5. Count user interactions with library functions as external inputs.
6. In general, count inputs and outputs within the boundary of the

host application.

Integration of Stand-Alone COTS Software

What about stand-alone packages that are simply launched from a host
application? For example, a mission control system may have an option
to launch a word processor. The effort associated with such types of
turnkey integration is captured in the host application’s development
effort. This is appropriate only for COTS packages that are used as-is with
no further understanding required. The only required testing would be
verification that the host application successfully launches the COTS
application with no unwanted side effects.

Stand-Alone COTS Software with Significant Configuration

Some stand-alone packages require significant configuration. For example,
a mail system often requires extensive hardware-dependent setup and
may involve script and initialization file edits, 4GL code, etc. Configuration
should be modeled within a sizing framework, that is, determine the size
of each item to be configured. Use the following guidelines for estimating
configuration work:

1. Count setup files as internal logical files (function points).
2. If the configuration is performed from scratch, count whatever is

created either as SLOC or functions.
3. If configuration templates are provided, count them as preexisting

SLOC or functions.
4. For cost drivers when estimating COTS integration without a COTS

estimating tool, evaluate the Table 8.4 factors after completing the
function point count for the COTS. Even though Table 8.4 expresses
the cost drivers in terms of SEER-SEM parameters, they must be
evaluated whether using a cost model or simply performing a
manual cost study.

Using SEER-SEM Cost Drivers to Estimate COTS

COTS estimation mainly involves sizing the core new developmental code,
COTS glue code, and any “cognition” required to integrate and understand
the COTS component or application (see Figure 8.3). Sizing the new and
the glue code follows the same principles defined in Chapters 5 through 7.
COTS configuration can also be estimated based on material in Chapters 5

Software Reuse and Commercial Off-the-Shelf Software � 289

Table 8.4 Cost Drivers, Descriptions, and Typical Settings

Potential Cost Driver Description Considerations

Resource and
support location

Degree of access (by
proximity) to COTS
software vendor
resources and support

COTS software vendors
are usually
geographically remote
and support levels can
vary tremendously; may
be a critical issue if
software is complex and
challenging to use

Host system
volatility

Determines difficulty
caused by changes to
development virtual
machine; impacted by
how often COTS
software is updated

Volatility may be high if
developers want to keep
up-to-date with vendor
releases

Specification level
(reliability)

Level of documentation
required

Should be adjusted to
reflect specifications
that will have to be
written to support use
of COTS product

Test level Level to which COTS
software will be tested

Stringent internal QA
levels may require
detailed retesting of
vendor-supplied
software before internal
acceptance

Quality assurance
(QA) level

QA level to which COTS
software was built

Highly vendor- and
product-specific

Requirements
volatility (change)

Anticipated frequency
and scope of change in
requirements once
baselined (after
preliminary design
starts)

Rate based on
requirements for COTS
portion of the project,
not overall project

Language type
(complexity)

Difficulty of
programming languages
used in development;
parameter is closely
related to function
implementation
mechanism

Rate COTS software
based on complexity of
its programming
support tools and
interface

290 � Software Sizing, Estimation, and Risk Management

Table 8.4 (continued) Cost Drivers, Descriptions, and Typical Settings

Potential Cost Driver Description Considerations

Memory
constraints

Anticipated effort to
reduce memory usage

COTS software may use
so much memory that
conservation measures
must be undertaken
elsewhere in developed
code

Time constraints Percentage of software
that must undergo
specific (coding) effort
to enhance timing
performance

If COTS software is too
slow, nothing generally
can be done about it;
requirements relief or
different solution is
needed

Real-time code Amount of software
involved in real-time
functions driven by a
clock external to the
software, e.g., gathering
data from hardware
devices or time-sensitive
control of such devices
where waiting can alter
or lose data

Software that lacks
definite and extremely
tight time constraints is
not real-time code; if
COTS has real-time
considerations that
cannot be met, a
different solution is
needed

Target system
complexity

Complexity of target
operating systems,
compilers, controllers,
and other attached
processors

Target system is host
development environ-
ment; parameter varies
with extent of change in
that environment

Target system
volatility

Determines difficulty
caused by changes to
virtual machine; may be
changes in program
editors, compilers or
other tools, changes in
command languages, or
changes in target
hardware

Target system is host
development environ-
ment; parameter varies
with extent of change in
that environment

Security
requirements

Development impacts of
security requirements
for delivered target
system

COTS security levels
must usually be
accepted as-is; contact
vendor for security
certification rating

Software Reuse and Commercial Off-the-Shelf Software � 291

through 7. Table 8.4 illustrates some opportunities and risks, and parameter
settings that are associated with COTS software based on SEER-SEM cost
drivers. The method of estimating COTS cognition is described below.

A key driver behind COTS estimates is the scope of the integration
effort. While traditional size metrics such as lines of code or function
points are used to scope traditional work, size is typically not known for
COTS integration efforts. In addition, the size of a COTS product is not
always correlated with the effort required to integrate it.

For a COTS element, “size” describes the functionality that must be
understood by the integrator. This perspective on sizing has been called
COTS cognition.

SEER-SEM provides a number of COTS cognition sizing methods:
(1) object sizing, (2) feature sizing, and (3) quick sizing which allows an
analyst to estimate by drawing analogies. The options for COTS sizing are
detailed below:

Object Sizing

If the COTS software is object-oriented, there is no better choice than this
metric that was carefully adapted from IFPUG’s object-oriented function
point specification. Identify the parts of the COTS that will be learned
and used, not the entire COTS application. Object points are covered in
detail in Chapter 7.

Feature Sizing

This technique was specially developed for use in the COTS WBS element.
Developed from function points, feature sizing allows you to model
functions as they appear from the developer’s perspective. Feature sizing
is broken down into three categories: unique functions, data tables refer-
enced, and data tables configured.

Unique Functions: Defined as the number of unique functions
that must be understood to integrate the component, functions
may reside in APIs, program libraries, etc. A function may pass
data, receive data, or both pass and receive data. Count the number
of unique functions used or those that must simply be understood.
Data Tables Referenced: This category represents the number of
unique data tables referenced including configuration files, data-
bases, external data structures, etc. A single database having several
closely related tables should be referenced once only unless those
tables are sufficiently different from one another. These data group-
ings are referenced only and not changed.

292 � Software Sizing, Estimation, and Risk Management

Data Tables Configured: The final category includes the number
of data tables that must be configured, changed or created in order
to integrate the component. Data tables include configuration files,
databases, and external data structures. A single database having
several closely related tables should be counted once only, unless
those tables are sufficiently different from one another. Count each
table being created or configured. If an already existing table is
being used only to learn how tables should be created or config-
ured, do not count it.

Quick Sizing

This is a method for approximating size by analogy against common
application types. Two categories of COTS software are outlined and dis-
cussed here: embedded COTS software and components. Embedded COTS
software is integrated directly into the delivered software. Embedded
COTS software items are broken down further into those that are adapted
and those that are components, that is, directly integrated into the com-
puter program.

Components are intended for reuse; source code often is not available
and usually requires no modification such as libraries, object classes, and
applications.

What distinguishes the COTS WBS element in SEER-SEM is its list of
specialized parameters developed after much research into the critical
factors underlying the use of COTS software. This section contains a quick
overview of COTS WBS element parameter categories.

Off-the-shelf product characteristics — This category of parameters
describes issues faced by users of off-the-shelf components. Integration
experiences show that these issues differ from standard development issues,
and particularly involve product support and integration complexity. Param-
eters in this category include component type, component volatility, com-
ponent application complexity, interface complexity, and product support.

Use parameters relate to the quality of the experience developers will
have in using these components. Many issues surrounding component
integration involve learning how to use components and checking their
integrity. The use parameters focus on these factors and include compo-
nent selection completeness, experience with component, learning rate,
reverse engineering, component integration and testing, and test level.

Cost parameters are both recurring (e.g., annual licensing fees) and
nonrecurring (e.g., one-time purchasing and training costs) associated with
the COTS product.

Evaluating COTS-intensive software goes beyond simple recipes. Fore-
most are cost-performance trade-offs. As an analogy, imagine a prefabricated

Software Reuse and Commercial Off-the-Shelf Software � 293

house. While such a house can be built economically, the placements of
doors and windows are prescribed and customizing such a house can be
difficult. The same principle applies to COTS software, where savings of
time and effort may be traded for flexibility. Your task is to evaluate the
additional costs such losses in flexibility may entail.

Rules of Thumb for COTS Integration

Table 8.5 provides general guidance on COTS integration. Use this table
to perform sanity checks on integration efforts from the time necessary to
understand the COTS component (cognition) through the time necessary
to complete integration (completion of glue code and other necessary con-
figurations). COTS projects vary widely in the level of required integration,
the type of integration carried out, the type of product, ease of use, and
many other factors. Because of this, this table must be evaluated skepti-
cally; use it only to understand probable ranges for COTS efforts.

Experience with COTS Product

This factor describes the developers’ previous experience in integrating
developed software with this COTS product:

Limited: nearly no experience with product
Functional: one or two limited instances of dealing with product
Fully proficient: fully knowledgeable and practiced in integration
issues with product

Scope of COTS

Scope is the combined functionality and complexity of the COTS product:

Limited: typical desktop-level software products such as a PC-
based accounting system or operating system changeover

Table 8.5 Rough Scope of COTS Implementation3

Scope of COTS (Effort Months)

Experience Limited Moderate Complex

Limited 2.3 to 22 19 to 99 143 to 787

Functional 1.5 to 16 13 to 72 96 to 582

Fully proficient 1.4 to 13 11 to 58 84 to 464

294 � Software Sizing, Estimation, and Risk Management

Moderate: medium-sized company tools such as a human
resources system, shop floor automation, shipping, and operating
system changeovers
Complex: mainframe-class products such as SAP R/3, a broadly
deployed reservations system, or a system with complex real-world
interactions that do not become fully apparent except over time

Table 8.5 does not consider outliers. For example, consider a simple
fire-and-forget COTS integration of launching a dedicated word processor.
This application, called from a host application, may have a great deal of
functionality but could be quite simple to integrate. While experience with
an application may be limited, integration can be a trivial matter. COTS
integration outliers are more pronounced on the downside of the above
estimates.

Evaluation and Selection of COTS Products
Although evaluation and selection (E&S) is often a time-consuming process
in its own right, no strong methodology that can be used to estimate this
task is available. Look to previous E&S efforts to get a sense for how long
a particular effort should take. However, E&S cost is more often a function
of budget, continuing until either a best selection is found or until funds
are exhausted. Table 8.6 provides a starting checklist for selecting and
evaluating COTS products.

COTS Risks
Because COTS software is designed to address common needs, the spec-
ifications for this software often sound very appealing. However, a number
of common assumptions should be questioned:

� Assumption — A COTS package is relatively bug-free.
Reality — Although the marketplace tries to ensure that bugs are
discovered and fixed promptly, newer, less tested versions cause
defects to reappear. Shop for a mature COTS package (or version).

� Assumption — System integrators know the functionality and
interface nuances of the COTS packages that they propose to use.
Reality — Manuals do not always tell the whole story, especially
with programming components. Use of almost any COTS involves
a learning curve. Look for previous experience with the specific
COTS package.

Software Reuse and Commercial Off-the-Shelf Software � 295

� Assumption —Glue code is very easy to write. Therefore, only a
minimum amount of time is required to design and implement it.
Reality — Because glue code interfaces independent sets of code,
it can be extremely complex.

Table 8.6 Checklist for COTS Evaluation and Selection

COTS Characteristic Estimation Impact

Does developer’s
organization already have
experience with this COTS
software?

Yes, reduces cost

Is COTS software vendor an
established company or a
garage shop operation?

Established firms reduce risk

Is source code available? Yes, reduces risk if vendor is shaky

Does developer plan to use
modified COTS?

Yes, means higher costs of rework

What are licensing terms
for COTS?

Difficult licensing agreements can cause
delay in delivery of product to development
organization; licensing fees can significantly
impact life cycle costs of software

What are vendor’s
commitments to upgrades?

If vendor has no commitment to future
upgrades, COTS product can require
significant modifications by development
team; in a worst case, a new product may
need to be purchased or functionality may
need to be developed

What are software
developer’s commitments
to upgrades (i.e., is
delivered product required
to be delivered with most
recent COTS version)?

If version 1.0 works well in software
development, but you are required to
deliver the latest version and it does not
work the same as version 1.0, costs increase;
if version 1.0 requires development team to
design work-arounds when the new version
comes out, these may no longer be valid

Quality and reliability of
COTS product?

Quality and reliability of COTS product will
have a direct correlation to the number of
modifications and work-arounds required;
unreliable COTS can cause entire
application to be unreliable

296 � Software Sizing, Estimation, and Risk Management

� Assumption — COTS software works and no special testing
beyond integration testing is needed.
Reality — The golden rule behind COTS software is “trust but
verify.”

� Assumption — User requirements will be met by the finished
system.
Reality — In general, COTS packages need to be extended to meet
100 percent of user requirements.

� Assumption — COTS is mass-produced and priced at dramatic
economies of scale.
Reality — Keep in mind that although COTS software may be sold
to many people, developers must still make decent returns on their
investments.

Risk Reduction

Maximize the use of COTS components that:

� Perform relatively well defined functions.
� Are mature, replaceable, and have equivalents from alternate,

competitive sources. This means studying the market since products
are not generally standardized.

� Have well defined and predictable inputs and outputs. This requires
looking at product architecture in some detail.

Minimize the use of COTS components that:

� Combine many functions in an integrated solution, all of which
must be used or purchased and maintained. Ask whether you can
use a portion of the COTS product or package.

� Do not have well defined internal and external interfaces.

Incorporate the other rules of estimation. All the other cautions related to
estimation of software projects are applicable to projects incorporating
COTS software:

� Experience levels with languages, tools, and practices are just as
important as the languages, tools, and practices being used.

� Simply having tools available does not mean they will be used.

Software Reuse and Commercial Off-the-Shelf Software � 297

� The complexity of an application is related to how quickly you
can add people to the project.

� There is no such thing as a free lunch! COTS integration is never
free.

Risks Associated with Reuse and COTS
While reuse or COTS software can provide the potential to significantly
reduce cost, schedule, or quality exposure of a project, opting for reused
or COTS software by no means ensures success. Many risks can arise. If
not managed and successfully mitigated, they can develop into problems
and negate any savings projected. The risks generally fall into three
categories:

1. The process used to select the components or criteria used in
trade-offs resulting in the selection

2. A need to modify, extend, or upgrade reused or COTS components
to support operational or application requirements

3. The need to maintain or sustain the reused or COTS components
during periods of operational support

Table 8.7 identifies certain issues that should be considered when selecting
COTS or reused components and the risks that may result. Ignoring these
issues and failing to manage the risks can quickly preclude meeting the
cost and schedule savings.

Summary
The primary difference between reuse and COTS is the origin of the
software. COTS is generally purchased. Incidental reuse has been occurring
ever since software was invented and has been a hoped for silver bullet.
Reuse is not free nor is it generally inexpensive. Planned reuse can reduce
cost but costs more to develop.

COTS product integration has expanded dramatically in recent years
as an important strategy for achieving cost-effective software systems.
Success of this reuse type has been based on the increasing quality of
COTS software products and the growth of technologies supporting the
integration of architectural styles such as middleware. Financial issues and
concerns as well as improved returns on investments resulting from better
products have increased the pressure to achieve more with development

298 � Software Sizing, Estimation, and Risk Management

Table 8.7 COTS Issues and Risks

Reuse Issue Area Risk

Component Selection Issues and Risks

Reuse code or COTS not adequately
analyzed at program inception
before start of architecture design

Component does not integrate with
architecture

Inadequate quantified selection
criteria and acceptability thresholds

Components inconsistent with
application requirements and must
be modified or replaced

Fit of functionality to current
application not adequately
evaluated prior to selection

Component functionality must be
modified or enhanced

Adequate cost analysis or trade-off
not conducted to identify specific
possible cost savings by minimizing
code and design modifications and
cost of integration related to
selection and use of reused or COTS
component

Projected savings may prove
unreasonable

Compliance of external and system
software interfaces with external
engineering interface, application
program interface, and data
interoperability standards not
confirmed prior to selection

Component fails to interoperate
with other software components;
must be modified

Component Modification Issues and Risks

Interfaces inconsistent with
software architecture operating
systems and middleware

Component fails to interoperate
with other software components;
must be modified

Reuse architecture to which
designed is inconsistent with
project quality standards or
software architecture

Components inconsistent with
application requirements; must be
modified or replaced

Component will not perform
adequately under stress conditions

Components inconsistent with
application requirements; must be
modified or replaced

Range of values for input variables
inconsistent with those required by
software architecture

Components inconsistent with
application requirements; must be
modified or replaced

Software Reuse and Commercial Off-the-Shelf Software � 299

Table 8.7 (continued) COTS Issues and Risks

Reuse Issue Area Risk

Security characteristics of
component inconsistent with those
required for application

Components are inconsistent with
application requirements and must
be modified or replaced.

Documentation or support
elements related to component may
be of insufficient quality to be used,
may not be current, or may not meet
project standards

Documentation or support
elements may require modification
or replacement; costs may increase
for reverse engineering effort
required to understand poorly
documented COTS

COTS or reuse code may not be a fit
with functional requirements it is
designed to satisfy

May require design modifications
and recoding that will increase cost
of integration

No trade study conducted to
evaluate reuse or COTS code before
or after architecture design

Components inconsistent with
architecture requirements; must be
modified or replaced

Architecture was designed before
reuse or COTS code modules were
selected, making integration into
architecture with least modification
unlikely

Architecture inconsistent with
reuse or COTS requirements;
component or architecture must be
modified or replaced to use it

Need for costly development of
“wrappers” to translate reuse or
COTS software external interfaces

Unexpected costs or schedule may
result from need to develop and
qualify wrappers essential to
integrate components into software
architecture

Sustainment Issues and Risks

Proprietary features of COTS
product and positive and negative
impacts of all features not identified
early

Maintenance of product is impacted
or precluded due to proprietary
nature of COTS or reused
components

Processes used to develop or update
COTS or reuse product not suffi-
ciently rigorous to assure that excess-
ive defects do not remain in product

Product may not perform well
enough to support needs of
application

Applications operating on
client–server network must analyze
ease of distributing COTS product
and its output data on network

Licenses for COTS components may
restrict use to limited number of
machines

300 � Software Sizing, Estimation, and Risk Management

Table 8.7 (continued) COTS Issues and Risks

Reuse Issue Area Risk

Analysis of sustainment costs for
each candidate module not
conducted before selection of
COTS or reuse software

The cost of sustainment may exceed
initial projections

Cost of upgrading to new versions
including incorporating previously
made modifications and additions
not identified before selecting
product

Sustainment costs may exceed
projected costs and schedule

Costs of licenses not adequately
determined prior to selecting COTS
component

COTS licensing costs may exceed
projections

Costs of replacing product due to
proprietary features may not have
been calculated or were calculated
improperly

Costs for COTS components
requiring replacement due to
proprietary factors may be excessive

Process used for sustainment of
COTS or reused components may
not be sufficiently robust to assure
long-term integrity of component

As product modifications are
applied, integrity of component
may degrade

Inadequate funding to keep reuse
or COTS current with evolving
hardware and system software

It may not be possible to keep
components current with
technology or application
requirements due to resource
limitations

Configuration management and
control of COTS and reuse products
by sustainment organization may
prove inadequate to control
product releases and changes

COTS and reused component
baselines may be lost and
unauthorized changes may be
applied

Product help desk inadequate to
assist users of COTS or reuse
components who require assistance

COTS or reuse users may not be
able to resolve issues with
components

COTS vendor may go out of
business

If source code was delivered,
development organization may
have to take over maintenance of
package or new COTS package may
need to be purchased, integrated,
and deployed

Software Reuse and Commercial Off-the-Shelf Software � 301

dollars in less time, thus driving system architects to accept and use COTS.
These cost factors constitute the primary reason that many organizations
are integrating existing systems with new systems and developing software
applications that make heavy use of COTS solutions. Only through method-
ical software reuse, systematic evaluation techniques, and improved under-
standing of integration can development dollars, time, and effort be more
effectively realized with a COTS or reuse development strategy.

Every day, reusing software or applying a piece of COTS software to
satisfy an operational or user need becomes easier as more and more
vendors offer more and better software products for a dizzying variety of
applications.4 As Northrop Grumman found, COTS effort can be estimated
successfully: “The overall effort and schedule predicted were within two
percent of the program actuals.”5

Endnotes
1. Reifer, Donald J. Practical Software Reuse. New York: John Wiley & Sons,

1997.
2. Galorath Incorporated. SEER-SEM User Manual. El Segundo: Galorath Incor-

porated, 2004.
3. Galorath Incorporated. OSD Software Estimation Guidebook. El Segundo:

Galorath Incorporated, 1997.
4. Brooks, Frederick P., Jr. “No Silver Bullet: Essence and Accidents of Software

Engineering.” Software Magazine, 1995.
5. Bradford, Kathy and Lori Vaughan. Improve Commercial-off-the-Shelf

(COTS) Integration Estimates. Redondo Beach: Northrop Grumman Mission
Systems, 2004.

303

Chapter 9

Performing to Estimate:
Managing and
Monitoring Development

Preparation precedes performance.

When performance is measured, performance improves. When
performance is measured and reported, the rate of improvement
accelerates.

Thomas S. Monson

Introduction
The previous chapters discussed the processes used to develop the best
possible estimate. When agreed to by the organization funding the effort
and the stakeholders who participate in the activity or ultimately will use
the product, an estimate becomes more than a projection of what it will
take to deliver an acceptable product. The estimate becomes a commitment
on the part of the developer to deliver an acceptable product within the
defined schedule for the desired cost. This chapter will explore how metrics
and measures as well as the use of earned value techniques can help

304 � Software Sizing, Estimation, and Risk Management

development organizations monitor project performance and productivity
against assumptions in the estimate and identify problems before their
impacts affect the ability of the developer to meet its basic commitments.

Meeting the productivity commitments should be a concern of software
managers from the beginning to the final product delivery. Even though
software productivity is highly subject to the skills of the individuals
involved in the development life cycle, improved processes and tools can
help increase overall productivity. In order to meet productivity commit-
ments and significantly reduce software project productivity risk, it is
important to simultaneously evaluate the processes, tools, and skills that
characterize a project and its personnel.

Managers must recognize and address the factors that affect software
productivity and have a process and metrics in place to monitor productivity
and take action when it falls below a predefined threshold. “Measuring
provides insights to improve the performance of processes and products.”1

Years ago, I was asked to straighten out a failing software project. The
hardware people and management were convinced that the software per-
sonnel were not competent. The hard deadline for release was approaching
(the project concerned a consumer printer product targeted for Christmas).
I found little documentation, no metrics, and virtually no structure to the
entire software effort.

In the course of correcting the project, I first looked for the “meatballs
in the spaghetti” by identifying possible units of development that could
be tracked. Unit development folders were created for each unit (meatball).
Earned value metrics were assigned for the individual activities of each
of these units. This established a method for tracking progress. A large
wall chart showed expected completion dates for all activities and the
amounts of value earned by completing each one.

Weekly reviews were held for each unit. The developers and management
started seeing progress and could also see where units were floundering.
These units received additional technical review and attention. Addition-
ally, using the limited parametrics available at the time, a cost–benefit
analysis was quantified and a change in ROM size was approved. Peer
reviews were instituted to improve product quality. These changes, com-
bined with the metric approach, allowed the project to be completed
within the schedule constraint.2

Metric Reporting
Product and process measurement is a core process component for man-
aging project productivity. As stated by the Software Engineering Institute
when describing practical software measurement (PSM): “Measurement is

Performing to Estimate: Managing and Monitoring Development � 305

a key element of successful management in every well-established engi-
neering discipline.”3 Despite the importance of metrics, many organizations
are reluctant to implement the discipline for a variety of reasons including:

� Difficulty of acquiring information to support the metrics require-
ment due to the nonquantitative information produced by the
project’s processes

� Fear that accurate quantitative information will cast a bad light on
the project, resulting in the raising of issues that cannot easily be
handled

� Concern that accurate metrics information will provide the cus-
tomer insights into project performance and product quality and
progress that cannot be explained away

As a result, projects that follow effective software engineering processes
are not always committed to the timely collection and reporting of metrics.
Such projects may result in successful development while ignoring all
opportunities for improvement provided by metrics.

Projects that do not measure find it impossible to determine the state
of software development and quantify progress toward schedule, cost,
and quality targets. Alexander’s first law states that “Metrics are hard to
get on projects which don’t keep records.”4 As simplistic and obvious as
this statement sounds, the number of projects that do not involve metrics
is astounding.

Software measurement is the means by which customers, managers,
and developers achieve a common quantitative picture of progress made,
issues that must be addressed, risks that are being managed, effectiveness
of the process used, and the quality of the products produced. The
objective of the measurement process is to provide information required
to make informed decisions that impact project cost, schedule, and tech-
nical objectives.

The metrics collection process must be a systematic but flexible activity
that serves as an integral part of the overall project management structure.
Project issues should drive the measurement process.5 A metric in isolation
is not sufficient to determine program status. A set of metrics and their
trends are usually needed to make a judgment. For example, when a
metric such as testing requirements coverage indicates unacceptable
requirements for a given testing period, the metrics process should not
only indicate the problem with testing but also the links to related
quantitative information and other measurements that can be evaluated
to isolate the specific cause or causes of the problem. In this way, the
corrective action taken addresses the problem, not simply the symptoms.
This process is often called root cause analysis.

306 � Software Sizing, Estimation, and Risk Management

A useful and effective way to identify metrics and establish a process
consistent with the needs and capabilities of the organization is to apply
the goal–question–metric (GQM) paradigm defined as part of the PSM
process. Figure 9.1 illustrates the relationship of the GQM components.

At its top level, an organization establishes certain goals that should
be met to satisfy its commitments and objectives. From these goals, specific
questions may be asked related to what is required to meet the goals and
metrics are developed from these questions. For example, a project may
have a goal of meeting the cost commitments made through the estimate.
Several questions that might arise and related metrics are shown in Table
9.1. These questions allow the definition of specific metrics that will
provide quantitative answers to the question and insights into how the
organization is addressing them.

The spaghetti-and-meatball story above showed that the goal was to
meet schedule constraints. The questions were whether the product was
too large, whether the product was produced quickly enough, and whether
the processes were working. The metrics used were program (ROM) size,
earned value, and defect rates.

The GQM paradigm is based on the theory that all measurement should
be goal-oriented. An organization should have some rationale for collecting

Figure 9.1 Goal–question–metric paradigm.

Table 9.1 Sample Questions and Metrics

Sample Question Sample Metric

Do I have enough people? Staffing profile

Are my requirements sound? Requirements defects

Do I have enough resources available when
I need them?

Resource availability

Organizational goals

Questions

Metrics

Performing to Estimate: Managing and Monitoring Development � 307

measurements and would have no need to collect metrics simply for the
sake of collecting them. Each metric collected is stated in terms of the
major goals of the project. Questions are then derived from the goals and
help to refine, articulate, and determine whether the goals can be achieved.
The metrics collected are then used to answer the questions in a quanti-
fiable manner.

While many approaches for measurement have been presented over
the years, the most relevant and perhaps the most consistent with the
realities of monitoring productivity is based on the PSM approach devel-
oped by the U.S. Department of Defense.6 The GQM paradigm shown in
Figure 9.1 is an integral part of the PSM process.

PSM7 is built around nine measurement principles:

1. Objectives and issues are used to drive the measurement require-
ments. Project objectives are goals and requirements: cost, sched-
ule, quality, functionality, and technical performance. Issues are
areas of concern that present obstacles: problems, risks and lack
of information.

2. Define and collect measures based on the technical and manage-
ment processes. Measures should be collected as natural by-products
of work performed. Consider the processes of other team members
and subcontractors along with your own project processes.

3. Collect and analyze data at a level of detail sufficient to identify
and isolate problems. Periodically collect, process, and analyze
measurement data. Specific data depends on project objectives and
issues and the kinds of questions that must be answered.

4. Implement independent analysis capability. An independent group
should assess measurement data to ensure objectivity and accurate,
unbiased assessment of project status.

5. Use a systematic analysis process to trace the measures related to
the decisions. The meanings of the numbers must be understood.
There should be a clear flow from the data through the analysis
to the conclusions. The analysis process should provide repeatable
results.

6. Interpret the measurement results in the context of other project
information. No single measurement result is good or bad. A
variance between planned and actual indicates a possible problem,
not the cause.

7. Integrate measurement into the project management process. Mea-
surement provides insight into the current phase. It also can project
consequences of current actions on later phases.

308 � Software Sizing, Estimation, and Risk Management

8. Use the measurement process as a basis for objective communi-
cations. Involve the entire project in developing the measurement
process. All parties should use the same data and have a common
understanding of the data definitions and commitment to the value
of the measurement program.

9. Focus initially on project-level analysis. Project success means
meeting specific objectives. Implement a consistent measurement
process on all projects. Organization-level data can be derived from
well defined project measures.

When the metrics process is functioning, management and develop-
ment teams will have quantitative information available to answer the
following questions regarding their projects:

� Is the program still on track to complete within cost, schedule and
performance criteria?

� What are the natures of the problems and issues that adversely
affect the project and what can happen if they are not handled?

� What risks may impede the completion of the program within cost,
schedule, and performance criteria?

� What problems and risks are already being addressed? Are addi-
tional adjustments or corrections to the approach required?

� What indicators will reveal the emergence of future problems and
issues?

� What indicators will reveal the emergence of negative changes?
� On what issues and in which areas should the program manager

focus to ensure the success of the program?

Answers to these questions can serve two primary purposes. First, they
provide a record of events that can be used to identify trends related to
productivity, project performance, issues or risks, and product quality.
The record can be used to determine what occurred, determine issues or
impediments to meeting cost or schedule targets, and readjust the prob-
ability that a risk or issue will transition into a problem.

The second purpose is using the metric information to make realistic
projections of what can potentially occur and determine when predefined
corrective actions should be started. By projecting trend information and
analyzing the causes of identified shortfalls, a reasonable extrapolation of
potential future problems and issues can be made based on current project
factors. Both activities provide critical, on-the-ground insights into the cost
and schedule performance of a project and reveal why growth is being
experienced and what can be expected in the future. Without this data,
management is “flying blind.”

Performing to Estimate: Managing and Monitoring Development � 309

Metrics Sets
The basic GQM relationship is defined in Table 9.2 within the context of
PSM. The table was adapted from information provided from the PSM
process.

Table 9.3 lists examples of typical performance measures used on many
software projects. Performance measures provide managers specific infor-
mation concerning the state of the project, the rate of expenditure of
resources, and progress toward completion. While the entries under the
Goal/Question and Metrics columns are fairly representative of the measures
used by software projects in general, the entries in the Measure of Success
column vary greatly and should be established specifically for each project.

Productivity

Productivity has one basic definition: productivity = size/effort. However,
multiple definitions describe effort and size. Many of the different size
definitions are described in previous chapters in this book. Values used
for effort can include or exclude any of the software development activities
and labor categories. To ensure apples-to-apples comparisons size and
effort definitions need to be standardized. Table 9.4 is useful for computing
a productivity value that can actually be used for measurement.

Productivity Monitoring
Earned value (EV) is the gold standard for productivity monitoring used
to monitor project performance of both government and commercial
projects. While the process can follow different rules, the core process
remains the same. Examples of rules include the 50/50 (half credit when
the task is started and the balance at completion), binary completion (100
percent credit at completion, no credit until then), and apportioned credit
(percentages of credit as the task proceeds).

EV distinguishes true progress from effort or cost expended. Physical
measurements are usually made by comparison with some standard. To
measure the width of a room, you wold use a yardstick as the basic
measure. While a yardstick, for some reason, does not correspond precisely
to the official yard designated by the National Bureau of Standards, it will
invariably provide a fairly correct measurement of the width of a room.

The same principle applies to measuring the EV of a project. The goal
of EV is to measure progress against plan. When performed correctly, it
provides useful management information to aid decision making. Many

310 � Software Sizing, Estimation, and Risk Management

Table 9.2 Example PSM Issue Areas

Goal–Question—Metric (GQM)

Goal Areas Question Category Metric

Schedule
and progress

Milestone
performance

Milestone dates

Critical path performance

Requirements status

Problem report status

Review status

Change request status

Component status

Test status

Action item status

Incremental capability Increment content —
components

Increment content — functions

Resources
and costs

Personnel Effort

Staff experience

Staff turnover

Financial performance Earned value

Cost

Environment and
support

Resource availability

Resources Resource utilization

Product size
and stability

Physical size and
stability

Database size

Component interfaces

Lines of code

Memory size

Functional size and
stability

Requirements

Functional change workload

Function points

Performing to Estimate: Managing and Monitoring Development � 311

Table 9.2 (continued) Example PSM Issue Areas

Goal–Question—Metric (GQM)

Goal Areas Question Category Metric

Product
quality

Functional correctness Defects

Technical performance

Supportability and
maintainability

Time to restore

Cyclomatic complexity

Maintenance actions

Efficiency Utilization throughput

Timing

Portability Standards compliance

Usability Operator errors

Dependability Failures

Fault tolerance

Process
performance

Process compliance Reference model rating

Process audit findings

Process efficiency Productivity

Cycle time

Process effectiveness Defect containment

Rework

Technology
effectiveness

Technology suitability Requirements coverage

Impact Technology impact

Technology volatility Baseline changes

Customer
satisfaction

Customer feedback Survey results

Performance rating

Customer support Requests for support

Support time

312 � Software Sizing, Estimation, and Risk Management

Table 9.3 Examples of Performance Measures

Performance Measures

Goal/Question Metrics Purpose
Measure of
Success

Schedule
Performance

Tasks completed
versus tasks
planned at a
point in time

Assess project
progress. Apply
project resources

100% completion
of tasks on
critical path; 90%
all others

Major milestones
met versus
milestones
planned

Measure time
efficiency

90% of major
milestones met
versus number
planned during
period

Revisions to
approved plan

Understand and
control project
“churn”

All revisions
reviewed and
approved

Changes to
customer
requirements

Understand and
manage scope
and schedule

All changes
managed
through
approved change
process

Project
completion date

Award or
penalize
(depending on
contract type)

Project
completed on
schedule (per
approved plan)

Budget
Performance

Revisions to cost
estimates

Assess and
manage project
cost

100% of revisions
are reviewed and
approved

Dollars spent
versus dollars
budgeted

Measure cost
efficiency

Project
completed
within approved
cost parameters

Return on
investment (ROI)

Track and assess
performance of
project
investment
portfolio

ROI (positive
cash flow) begins
according to plan

Acquisition cost
control

Assess and
manage
acquisition
dollars

All applicable
acquisition
guidelines
followed

Performing to Estimate: Managing and Monitoring Development � 313

Table 9.3 (continued) Examples of Performance Measures

Performance Measures

Goal/Question Metrics Purpose
Measure of
Success

Product
Quality

Defects
identified
through quality
activities

Track progress in,
and effectiveness
of, defect
removal

90% of expected
defects identified
(e.g., via peer
reviews,
inspections)

Test case failures
versus number of
cases planned

Assess product
functionality and
absence of
defects

100% of planned
test cases
execute
successfully
(without errors)

Number of
service calls

Track customer
problems

75% reduction
after three
months of
operation

Customer
satisfaction index

Identify trends 95% positive
rating

Customer
satisfaction trend

Improve
customer
satisfaction

5% improvement
each quarter

Number of
repeat customers

Determine if
customers are
using the
product multiple
times (could
indicate
satisfaction with
the product)

“X”% of
customers use
the product “X”
times during a
specified time
period

Number of
problems
reported by
customers

Assess quality of
project
deliverables

100% of reported
problems
addressed within
72 hours

Compliance Compliance with
enterprise
architecture
model
requirements

Track progress
toward
department-wide
architecture
model

Zero deviations
without proper
approvals

314 � Software Sizing, Estimation, and Risk Management

Table 9.3 (continued) Examples of Performance Measures

Performance Measures

Goal/Question Metrics Purpose
Measure of
Success

Compliance with
interoperability
requirements

Track progress
toward system
interoperability

Product works
effectively within
system portfolio

Compliance with
standards

Alignment,
interoperability,
consistency

No significant
negative findings
during architect
assessments

For Web site
projects,
compliance with
style guide

To ensure
standardization
of Web site

All web sites have
the same “look
and feel”

Compliance with
Section 508 for
use by disabled
persons

To meet
regulatory
requirements

Persons with
disabilities may
access and utilize
the functionality
of the system

Redundancy Elimination of
duplicate or
overlapping
systems

Ensure return on
investment

Retirement of
100% of
identified
systems

Decreased
number of
duplicate data
elements

Reduce input
redundancy and
increase data
integrity

Data elements
are entered once
and stored in one
database

Consolidate help
desk functions

Reduce $ spent
on help desk
support

Approved
consolidation
plan

Cost
Avoidance

Easily upgraded
system

Take advantage
of COTS
upgrades

Subsequent
releases do not
require major
glue code project
to upgrade

Avoid costs of
maintaining
duplicate
systems

Reduce IT costs 100% of duplicate
systems have
been identified
and eliminated

Performing to Estimate: Managing and Monitoring Development � 315

Table 9.3 (continued) Examples of Performance Measures

Performance Measures

Goal/Question Metrics Purpose
Measure of
Success

System is
maintainable

Reduce
maintenance
costs

New version (of
COTS) does not
require rework of
glue code

Customer
Satisfaction

System
availability (up
time)

Measure system
availability

100% of require-
ment is met (e.g.,
99% M-F, 8am to
6pm, and 90%
S & S, 8am to
5pm)

System function-
ality (meets
customer’s
and/or user’s
needs)

Measure how
well customer
needs are being
met

Positive trend in
customer
satisfaction
survey(s)

Absence of
defects that
impact customer

Number of
defects removed
during project
life cycle

90% of defects
expected were
removed

Ease of learning
and use

Measure time to
becoming
productive

Positive trend in
training survey(s)

Time needed to
answer calls for
help

Manage/reduce
response times

95% of severity
one calls
answered within
3 hours

Rating of training
course

Assess
effectiveness and
quality of training

90% of responses
“good” or better

Business
Goals/Mission

Functionality
tracks reportable
inventory

Validate system
supports
program mission

All reportable
inventory is
tracked in system

Turnaround time
in responding to
Congressional
queries

Improve custom-
er satisfaction
and national
interests

Improve
turnaround time
from 2 days to
4 hours

316 � Software Sizing, Estimation, and Risk Management

projects have trouble implementing effective earned value processes. The
reasons center around the implementation of adequate basic information
to support the EV process. To perform effectively, EV requires (1) a current
schedule, (2) a current work breakdown structure (WBS), (3) realistic cost
projections allocated to task areas, and (4) a nonambiguous process for
reporting milestone completion. Many software intensive projects do not
have such data available for reasons already discussed, resulting in
reported EV that does not reflect the true state of the program.

While there is not a single, consistent, accepted standard against which
a project’s EV is measured, the project develops this standard with the
plan at inception. If this EV standard is flawed due to a poor plan or
uncontrolled plan change, the productivity projections measured will be
flawed. The standard for measuring EV throughout a system development
project is a project activity network with the total project cost estimate
allocated among the tasks in the activity network. Creating this activity
network is the most difficult part of implementing the EV metric. Once

Table 9.3 (continued) Examples of Performance Measures

Performance Measures

Goal/Question Metrics Purpose
Measure of
Success

Maintenance
costs

Track reduction
of costs to
maintain system

Reduce
maintenance
costs by 2/3 over
3-year period

Standard
desktop platform

Reduce costs
associated with
upgrading user’s
systems

Reduce upgrade
costs by 40%

Productivity Time needed to
complete tasks

To evaluate
estimates

Completions are
within 10% of
estimates

Number of
deliverables
produced

Assess capability
to deliver
products

Improve product
delivery 10% in
each of the next
3 years

Number of lines,
functions, etc.,
completed per
unit time

Measure
developers work
rate

Produced
product within
10% of
forecasted rate

Performing to Estimate: Managing and Monitoring Development � 317

Table 9.4 Productivity Computation Worksheet

Effort Included Excluded

Software requirements analysis +

Preliminary design +

Detailed design +

Code and unit test +

CSC (component) integration and testing +

CSCI (program unit) test +

System integration through OT&E

For each software life cycle phase marked above, the
following labor categories are included:

Software management +

System/software engineers +

Software designers +

Software programmers +

Software testers

Is effort measured in person months or hours? _____

SLOC Included Excluded

Handwritten source lines of code +

Data declaration statements +

Comment statements +

Automatically generated lines of code +

Blank lines

Continuation lines (if a logical line is physically
written on more than one line, count the additional
lines)

New lines +

Portion of preexisting software to be modified +

Preexisting software not modified

318 � Software Sizing, Estimation, and Risk Management

this is done, measuring EV regularly throughout the life of a project is
straightforward. According to Hayes and Over:

A particular task’s earned value is based on the percentage of
the total planned project effort that the task will take. As tasks
are completed, the task’s planned value becomes earned value
for the project. The project’s earned value then becomes an
indicator of the percentage of completed work. When tracked
week by week, the project’s earned value can be compared to
its planned value to determine status, to estimate rate of
progress, and to project the completion date for the project.9

Essential elements of an EV management (EVM) process are the allo-
cation and specification of work to be performed through a work break-
down structure (WBS), a technique that allows you to break a large project
into small manageable units of work that can be monitored and whose
effectiveness can be tracked. A large project can be partitioned into smaller
tasks that in turn can be subdivided, and so on. These tasks can be
prioritized and scheduled over time so they can be addressed in a logical
order consistent with the labor, material, and other resource constraints.
The lowest level tasks in the WBS are known as work packages.

EV, WBS, and other techniques discussed here are applicable to any
project of sufficient size when a single individual cannot perform it alone.
They are just as appropriate for commercial activities such as banking as
they are for aerospace projects such as satellite surveillance systems.

Using Earned Value Management
This section is intended as a brief overview of EVM. For readers who
want more detail, many books and courses are dedicated to the topic.
Earned value project management relies on the concepts of planned value

Table 9.4 (continued) Productivity Computation Worksheet

If size is measured in functions:

Functions Included Excluded

New functions +

Existing functions to be used as-is +

Enhancements made to existing functions +

Functionality provided by COTS packages +

Other (define)

Performing to Estimate: Managing and Monitoring Development � 319

and earned value. Each work package is assigned a budget along with
start and end dates during project planning. The budget is known as
planned value and is typically expressed in dollars (although it may be
expressed in other units such as person hours).

The work package budget represents some portion of the overall
resources budgeted to the project and is expressed in units that can be
easily measured after work begins. The term value is used because it
represents the positive contribution the work package makes to the project,
as opposed to cost, which has the negative connotation — resources leaving
the project. Each work package is scheduled and a planned value allocated
to each work package. The budget at completion (BAC) is the total planned
value for all the work packages. It is really a budget for completion.

As a project proceeds, work package progress can be tracked by record-
ing the completed work by work package. This is called earned value
because it represents the planned value earned by completing scheduled
work. EV or completed work can be directly compared with planned value
(scheduled work) and with the actual cost expended to perform the work
in order to obtain a clear indication of how the project is progressing.

As illustrated in Figure 9.2, tracking progress through EV is accom-
plished through an S curve, a graph that shows cumulatively how a project
budget is planned to be spent over time. The curve provides a graphical
representation of how much value has been earned based on work
completed versus how much money has been spent. The value of the
curve is it provides an accurate representation of how the project is
performing against plan based on actual progress, not by opinions or
“spin.” (Note: in standard EV terminology, schedule variance is not cal-
endar time variance but variance in progress, that is, the difference
between EV and the baseline plan expressed as hours or costs. Some
models such as SEER-SEM have added a time variance as well quantifying
variance in elapsed time.)

Figure 9.2 illustrates the actual costs of doing the work over a given
period compared to the budget for the work performed and the budget
for all work planned. The same graph can show how the value of the
product increases over the same period based on work accomplished.
Table 9.5 summarizes the values illustrated in Figure 9.2 that will be used
in the EV examples.

The three curves on the graph represent:

Budgeted Cost for Work Scheduled (BCWS) — Cumulative, time-
phased budgets for all planned activities
Actual Cost of Work Performed (ACWP) — Cumulative, time-
phased real costs of work charged against completed activities
Budgeted Cost of Work Performed (BCWP) — Cumulative, time-
phased, planned costs of the work; allocated to completed activities

320 � Software Sizing, Estimation, and Risk Management

The BCWS curve is derived from the WBS, the project budget, and
the project master schedule. The cost of each work package is calculated
and the cumulative cost of completed work packages is shown based on
the planned completion dates shown in the master schedule.

The ACWP curve is determined by actual measurement of the work
completed. Sources could be actual costs recorded from invoices and time
sheets. This may appear to be a daunting task but it can be very simple
with sufficient planning and organizing.

The BCWP is calculated from the measured work complete and the
budgeted costs for that work.

Figure 9.2 Earned value S curve.10

Table 9.5 Earned Value Numbers Based on Figure 9.2

Name Acronym Value from Figure 9.2

Budgeted cost for work performed BCWP 10 (time now)

Budgeted cost for work scheduled BCWS 14 (time now)

Actual cost for work performed ACWP 16 (time now)

Budget at complete BAC 17 (time complete)

Estimate at complete EAC 23 (time complete)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time

0

5

10

15

20

25

D
o

ll
ar

s Cost
variance Schedule

variance

BCWP

BCWS

ACWP

BAC

Scheduled

completion

dateTime now

EAC

Performing to Estimate: Managing and Monitoring Development � 321

Both schedule and cost variances can be calculated in monetary terms
from the data needed to produce the S curves. Schedule variance is the
difference between the EV and the planned budget.

SV = BCWP – BCWS

Cost variance is the difference between the EV and the actual costs of
the work.

CV = BCWP – ACWP

The S curve shown in Figure 9.2 shows that the cost to date (ACWP)
is higher than estimated cost (BCWP). Based on this information, what is
a reasonable estimate of the cost at project completion? Or in EVM terms,
what is a reasonable estimate at completion (EAC)? Is it reasonable for
the project manager to take the position that the project cannot make up
the cost overrun to date, but that from this point on the project will meet
the budget (initial estimated cost) for each task? The cost performance
index (CPI) and to-complete performance index (TCPI) quantify the rea-
sonableness of the EAC. The CPI metric is calculated as the following ratio:

CPI = BCWP/ACWP

The CPI at the report date (Time Now on the graph) of Figure 9.2 is
0.625 (CPI = 10/16 = 0.625). This is a measure of productivity in meeting
the estimated cost. When CPI is less than 1, actual project productivity is
less than that needed to meet the cost estimate. When CPI is greater
than 1, actual project productivity is better than that needed to meet the
estimated cost. A CPI of 1 means that the productivity to date is exactly
what is needed to meet the estimated cost.

The schedule performance index (SPI) is defined as:

SPI = BCWP/BCWS

If the SPI is less than 1, the project is earning less value than was
originally scheduled. In the example, SPI is 0.71 (SPI = 10/14 = 0.71).

The following definitions are provided as a quick summary of the basic
concepts and formulas used in the earned value process.

Estimate at completion (EAC)min = (BAC – BCWP) + ACWP

EACmin assumes that although there was an overrun to date, the rest
of the project will perform to budget.

Estimate at completion (EAC)mid = [(BAC – BCWP)/CPI] + ACWP

322 � Software Sizing, Estimation, and Risk Management

EACmid assumes the overrun to date and that the rest of the project
will perform at the same level demonstrated to date.

Estimate at completion (EAC)max = [(BAC – BCWP)/(CPI x SPI)] + ACWP

EACmax assumes that the overruns to date are indicative of faulty
processes and will continue to degrade throughout the remaining portion
of the project.

In our example from Figure 9.2:

EACmin = (17 – 10) + 16 = 23

EACmid = [(17 – 10)/0.625] + 16 = 27.2

EACmax = [(17 – 10)/(0.625 ¥ 0.71)] + 16 = 31.8

TCPI is the same productivity measure as CPI, but applies to the
remainder of the project where this productivity measure is based on the
value chosen for EAC. The equation is:

TCPI = (BAC – BCWP)/(EAC – ACWP)

TCPImin = (BAC – BCWP)/(EACmin – ACWP) = (17 – 10)/(23 – 16) = 1.*

TCPImid = (BAC – BCWP)/(EACmid – ACWP) = (17 – 10)/(27.2 – 16) = 0.625

TCPImax = (BAC – BCWP)/(EACmax – ACWP) = (17 – 10)/(31.8 – 16) = 0.44

EACmin is based on achieving the budgeted productivity from the report
date all the way to the end of the development. In this example, the
budget productivity is much higher than the actual productivity to date.
This sudden, extreme improvement in productivity (from 0.625 to 1) is
nearly impossible for a software development team that has performed
below planned productivity up to this point in a project.

Estimating EACmin in Figure 9.2 to be $23M by assuming the cost
overrun to date would not be overcome and assuming from this point on
all tasks will be completed at the allocated budget does not seem rea-
sonable. Experience shows such feats rarely happen. Unless specific
measures are put in place immediately to significantly improve produc-
tivity, the $27.2M or $31.8M estimate for EAC is much more realistic than
the $23M.

* By definition, TCPImin will always equal 1 because TCPI is the productivity for the
remainder of the project and EACmin is based on performing to budget for the remainder
of the project.

Performing to Estimate: Managing and Monitoring Development � 323

When Reality Sets In

Brian Marick, a long-time professional software testing consultant, pointed
out the real issue that impacts the ability of an organization to meet its
initial productivity projections:

The real complexity in our jobs is that all planning is done
under conditions of uncertainty and ignorance. The code isn’t
the only thing that changes. Schedules slip. New milestones are
added for new features. Features are cut from the release.
During development, everyone — marketers, developers and
testers — comes to understand better what the product is really
for.11

Dwight Eisenhower pointed out one issue that defeats planning suc-
cess: “The plan is nothing; the planning is everything.” Many software
organizations focus on the physical documents, the project plans, and
forget their real value as blueprints to enable a project to meet its
commitments. The plans made at the beginning of a project, that select
and frame the processes, determine the practices used, and provide
management controls establish how the commitments of the program are
to be met.

When initial estimates are made and initial plans for development are
produced, there is a certainty that “this time we’ll get it right, we won’t
make the same mistakes we made last time.” Only when the imprecisions
of the real project environment take over does reality set in. If a project
cannot produce quickly enough for any reason (act of God, technology
shortfall, management or staff attitude or culture, process uncertainty or
if its size or complexity grows substantially), the estimate used to develop
the plan is compromised and may be largely invalidated.

Despite the desires of managers to plan and implement truly risk-free
projects, and deliver products expected by their customers within cost
and schedule constraints, a difficult reality must be addressed: software
projects can only implement those processes that can be accommodated
by the money, time, people, and other resources available.

Organizations must understand their resource limitations and creatively
plan the best possible processes that will result in the lowest risk projects.
Often, increasing early spending on practices such as inspections may
increase the short-term budgets while decreasing the long-term cost expo-
sure of the project by significantly lowering rework. More money and
time spent on defining, analyzing, and specifying good requirements
lowers potential exposure during implementation, testing, and delivery.
Tighter configuration management (CM) processes implemented from the

324 � Software Sizing, Estimation, and Risk Management

onset minimize the risk of wasted effort. Sometimes, when budget and
time are unrealistic, you must invest in the process in order to minimize
downstream costs and schedule requirements.

“Shoestring” Project Environments

Few projects have sufficient money or time to implement the processes
and schedules they feel are required to satisfy the project commitments
and expectations of the users with little or no risk. This is often not the
result of poor or flawed estimates, but rather, the result of a flawed
negotiation in which management and customer struggle to fit user require-
ments into a predetermined budget or schedule constraint. Many factors
that may contribute to this problem are often not addressed by the
negotiation team:

� Management pressure to “get it done”
� Failure of negotiators to understand the reasons for processes that

underlie the estimate
� Lack of understanding of software to be produced and the required

process steps
� Audits and special tests required prior to delivery
� A host of other factors that drive the estimate

Once agreements on price and schedule are reached, a project takes
on a life of its own. A baseline is set and cannot be changed without
major difficulty even if the time or available funds prove inadequate when
the real requirements of the project become obvious.

When this happens, when project commitments seem to exceed the
available money or time, the answer is to renegotiate the commitments,
hope for the best, or address and manage the risk through implementation
of a project environment that provides the maximum potential of meeting
the commitments within the agreed budget and schedule. This “shoestring”
project environment requires the management of productivity with as
much rigor as is usually applied to the management of the cost, schedule,
technical, and contractual aspects of the project.

While productivity management should be the concern of all project
managers, it is an absolute requirement of those who are resource- or
schedule-challenged. This planning and subsequent tracking against pre-
defined productivity goals must be in place early in a project and pursued
vigorously throughout its life. Tom DeMarco, in his novel, The Deadline,12

noted how productivity is lost on a software project:

Performing to Estimate: Managing and Monitoring Development � 325

A day lost at the beginning of a project hurts just as much as
a day lost at the end … There are infinitely many ways to lose
a day … but not even one way to get one back.

Process Performance

Every software project, whether large or small, complex or simple, in-
house or supporting a client, follows a process to fulfill its commitments.
A process is the integration of:

� Project rules — product and process standards
� Tools — automated and manual facilities that enable the imple-

mentation of the process requirements
� Procedures — a specific set of practices that determine how the

project implements the process requirements

The various processes used significantly influence and constrain how
a project is managed. For example, a project that does not rigorously
develop and maintain a schedule will have difficulty tracking earned value
against it. Projects that use highly concurrent engineering methods may
find it difficult to perform configuration management and maintain trace-
ability between architecture and requirements.

Next to people skills, the processes used are the single most important
determinants of productivity and major sources of project risk. The pro-
cesses must be planned, scaled to the cost, schedule, and customer
constraints, and rigorously enforced. They (project rules, tools, and pro-
cedures) involve the integration of many disparate methodologies that
must work seamlessly to fulfill the objectives of the project within the
established constraints and commitments. The project environment must
be integrated into a cohesive and seamless process consistent with its
specific needs, objectives and constraints and the goals of the organization
that has project responsibility.

Many overcommitted projects with serious cost and schedule con-
straints often try to address the environment needs through bizarre,
unproven processes that promise great productivity gains, but allow only
limited time, money, and other resources to deal with any productivity
impacts when the gains are not fully realized. These impacts can result
from needs for staff to receive unplanned training, implementation diffi-
culties, staff resistance, or simply the failure of cutting-edge methodologies
to fulfill their promised benefits. Others — worse — rush to the cheapest
solution they can find in an attempt to save time and money. This price-

326 � Software Sizing, Estimation, and Risk Management

first mentality can result in the applications of methods or tools that are
worse than nothing. They do not fulfill project needs, they consume
significant resources, and they must be replaced during the project to
meet requirements or to correct issues related to use of the method or tool.

For example, on an assessment completed some years ago, an inex-
perienced manager tried to explain at great length that he had no need
for testing because he was using object-oriented design. It was obvious
to everyone except that manager that the lack of testing would result in
unacceptable quality and a product — if one was produced —that would
not meet user expectations.13

Technology Solutions

Problems related to defining a process such as consistency with basic
requirements, ability of staff to implement process, experience of the
customer, and availability of essential support infrastructure are often
compounded by technology professionals who are asked their opinion
by management concerning which method or tool to use but are not well
equipped to account for productivity realities related to resource limitations.

A technology-centric focus on technical flash, efficiency of design, and
cutting edge technologies can result in projects that are more expensive
than they need to be, even though the method or tool promised better
performance at lower cost and in a shortened time frame: the silver bullet.

It is very tempting for managers to jump to a “right solution” based
on promises made by the developers or vendors of the method or tool,
but the right solution is the wrong solution if the project cannot afford
to build and support it. Certain questions must be asked to ensure the
solution is really appropriate:

� What specifically is the need to be addressed through the selection
and use of the method or tool?

� Has anyone in the project used it before and, if so, what was his
or her experience?

� Are any other solutions available; if there are, why have we not
considered them?

� How will this method deal with the cost, resource, and schedule
constraints we face?

� Is there any quantitative evidence that the solution will address
the projected resource or schedule shortfalls facing the project?

� Will the methods or tools integrate with other methods and tools
used by the project and provide products that can be inspected
to reveal and remove defects?

Performing to Estimate: Managing and Monitoring Development � 327

� What resources are available to support the application of the
methods or tools; are they the right ones based on the risk of the
solution?

� Considering the experience of the staff, the expectations of the
customer, and the reality of the constraints, can we creatively define
a way to use this method or tool to meet and satisfy the project
requirements within acceptable risk?

Understanding Process Selection Constraints

Ideally all process decisions should be definite before completion of the
estimate and agreements by the various stakeholders, but this is rarely
the case. The organization responsible for the development must address
a single, specific issue: what processes, when integrated together, will
support the productivity commitments made by the project through the
estimate? When selecting and planning, several items constrain the selection:

� Do we have enough money, time, qualified personnel, and other
resources to adequately satisfy the commitments made to users if
we use this process, method, or tool?

� Do we understand why the technology is needed and how it will
better position the project to achieve its commitments within the
cost and schedule constraints?

� What are the essential training, installation, and support require-
ments to fully realize the promised productivity and schedule
benefits?

� Do we have evidence that the promised benefits will actually be
realized in time to help this project?

It is tempting to start with a technical solution in mind: we need to
use XYZ design method and the ABC suite of tools so we can reduce
our costs by 10 percent and shorten our schedule by 6 months. This
approach, however, specifies a solution before the problem is understood.
Using a model like SEER-SEM enables you to make realistic evaluations
of such choices.

Perhaps a different approach — evaluating why the estimate and
schedule are inadequate and by how much and what risks and obstacles
realistically can impact them — will serve your goals as well or better. If
you start by defining the specifics of the problem, you can brainstorm
many options that fill these needs in different ways. One way to help
define the specific problems is by looking at the top ten cost drivers of
your program. Some (such as security requirements) will be uncontrollable.

328 � Software Sizing, Estimation, and Risk Management

Others will be controllable by management decisions. Figure 9.3 is a top
ten chart illustrating effort–cost impacts. Note that the top ten drivers will
vary from project to project.

Five simple steps that will allow a better selection of appropriate
methodologies and help define a process for realistic and responsive
software process are listed below.

1. Define high level process considerations that have the potential to
negatively impact the project, raise project risk, or delay completion
of acceptable deliverables. Projects with significant cost and sched-
ule risk often try to use less mature or unproven processes to
satisfy aggressive schedule or cost commitments. Also, a project
may consider increasing short-term investments in activities or
disciplines such as structured inspections or peer reviews of
requirements, plans, and architectures of other project-related prod-
ucts to lower the risk of unplanned for, late stage rework — a
genuine productivity killer. Many studies have shown that without
early identification and control of defects, late stage rework can
exceed 50 percent of total program cost.14 One study showed the
effort required just to find a defect increased from 1.2 hours early
in the project to 1.5 hours late in the project for nonsevere defects
and 1.4 early in the project to 3 hours in the project for severe
defects.15

2. Define the user expectations for the system and rigorously control
development to meet them. Understanding who will use the system
and how it will be used can significantly reduce the difficulty

Figure 9.3 Example top ten effort–cost impacts.

Performing to Estimate: Managing and Monitoring Development � 329

meeting the needs of the user and controlling the requirements
growth. By involving the user in the development process and
assuring that they play a primary role in defining and evaluating
requirements, the complexity of the system can usually be reduced
and delays associated with user-caused rework can be minimized
or even avoided.

3. Develop and enforce a management, project monitoring, and
reporting process that will provide positive control over the expen-
ditures of resources and allow the anticipation of problems through
metrics and rigorous risk management. While all projects should
include these processes, the degree of rigor and the expenditure
of resources to support them will increase based on how restrictive
the cost and schedule constraints become. Project surprises that
result in resource or schedule growth must be minimized, partic-
ularly if they impact already constrained baselines.

4. Understand and focus on the nonfunctional requirements such as
security, performance, and reliability determining whether the user
needs 24–7–365 support without failure, the real degree of protec-
tion required, and the minimum acceptable response time required
based on actual operational needs rather than perceived wants. Is
it sufficient if the system is available 95 percent of the time during
working hours and casual browsers will not stumble into it by
accident? How serious are the impacts of security breaches and
availability failures? Does your system contain sensitive or contro-
versial information that would make you a target for attacks? Very
reliable and secure solutions are expensive, often exceeding the
cost of less secure systems dramatically.

5. As cost and schedule constraints become more stringent, the man-
agement of the basic project baseline must move from emphasizing
control of productivity to increased control of product size, require-
ments, and functional capabilities. There is a strong and direct
correlation of the size of the product, the costs of developing it,
and the time required to develop it. Figure 9.4 illustrates this
size–cost relationship. Traceability must be established and main-
tained and an allocated size budget must be maintained and verified
as the architecture and code are developed. As product size grows,
the productivity impacts must be addressed and, if required,
resolved through the adjustment of product functionality. (Proper
size estimates with growth included can reduce the impact of this
issue. See Chapter 5.)

You must define a process that matches the reality of the project
constraints. Then select specific methodologies and tools that provide the

330 � Software Sizing, Estimation, and Risk Management

highest potential to support the productivity required to meet the cost
and schedule commitments (not arbitrary profit goals — real contractual
or agreed-to budgets and schedules). These methodologies must be proven
and be consistent with the capabilities of the organization and the project
staff. They must be sufficiently mature so that unexpected negative results
caused by methodology shortfalls, inconsistencies, or implementation
problems do not arise. When planning for and selecting methodologies
and defining the software process, keep in mind that as the schedule and
budget tighten, management acceptance of more risk in the form of using
cutting-edge or less mature methodologies is usually the by-product.

Product Quality and Stability

Richard Stevens (inventor of the DOORS Requirements Tool) once stated,
“You want a hundred million dollar system by next month with no defined
acceptance criteria. I can build it!”16 This statement points out the need
to negotiate what your customer wants, when your customer wants it,
and what the product needs to look like early, before you start to work.
If projects are to meet established productivity targets, you must have a
clear definition of what products are to be delivered, what they have to
look like, and what the acceptable minimum level of quality is.

Quality has a number of different meanings when it relates to a
software project. One meaning deals with the conformance of the various
deliverables with requirements or expectations of the customer. A second
deals with the density of defects in the requirements, architecture, code,
or critical project information. A third definition deals with the adequacy

Figure 9.4 Size–cost relationship.

Performing to Estimate: Managing and Monitoring Development � 331

of the product to meet the operational needs, expectations, and realities
of the user. Every project must decide what quality means based on the
program objectives. Unplanned rework can destroy any hope a project
has to meet or exceed productivity projections that serve as the basis of
any software estimate.

Defects

A defect is defined as a situation in which a product does not meet a
specified characteristic or as deviations from the expected outcome of a
task. Defect removal is costly and it is virtually impossible to remove all
defects without unlimited staff and an unlimited schedule. Evidence indi-
cates that a significant number of problems (around 80 percent) in software
development such as, defects, rework, changes, and maintenance efforts,
are actually caused by a small proportion of modules (around 20 percent).
This is known as the 80:20 rule and it allows the early prediction and
identification of a small proportion of risky modules.

A corollary to the 80:20 rule is Barry Boehm’s 20:80 rule stating that
20 percent of the system executes 80 percent of the time. The risky
modules should be selected from this 20 percent. This concept allows
software developers to focus quality assurance activities such as testing
and inspections on those modules that can result in a significant improve-
ment in the quality of the software products and the presence and density
of defects.

Defects should be tracked formally at each project phase or activity.
Figure 9.5 is a sample defect tracking chart that can be used to track
insertion and removal versus estimated or expected number of defects. If
defect discovery is slower than the estimate, it could be a sign of oncoming
schedule slippage. Data should be collected to determine the effectiveness
of methods used to discover defects and to correct them. This approach
will not accommodate a private defect —one that is detected and removed
without being recorded. Defect tracking allows an organization to char-
acterize error propensity and then focus its resources appropriately.

It is more economical and effective to find and fix defects before they
are discovered during testing. Inspections can detect potential defects and
focus corrective action toward the work product and the processes that
produce the work product. An inspection is a formal facilitated meeting
conducted to find defects in software and other products at or near the
point of insertion of the defect.

This early identification results in the need for a project to expend
significantly fewer resources for rework. Although numbers vary by project
and environment, the average cost to fix a defect conforms to what is
known as the 1:10:100 rule: a defect that costs $1 to fix in requirements

332 � Software Sizing, Estimation, and Risk Management

or design costs $10 to fix in a traditional test phase and $100 to fix after
the product goes into production (live) use. A number of factors increase
defect removal costs as a project progresses; they include:

� The ripple effect of changes throughout a system or application;
the ripple leads to essential changes to related components as the
product is more completely developed.

� Repeating past tasks (updating requirements, redesigns, recoding)
to correct observed defects and updating completed documentation
and support products.

� Notifying project workers and users of changes and requalifying
releases and installed system configurations.

While some degree of rework is a factor in all estimates, late defect
removal is costly and time consuming. Changes at the end of a project add
risk and the options available for correcting a defect may decrease greatly
as a project moves to completion. Additionally, the developers who
produced the defective design or code may no longer be available. The
need to find defects as early as possible in a project places an emphasis
on defect prevention accomplished through defect measurement and
analysis. This measurement and analysis information is then used to modify
the processes based on feedback to identify the causes of the existing
defect insertion and correct the process to avoid future defect insertion.

Figure 9.5 Defect tracking chart.

Performing to Estimate: Managing and Monitoring Development � 333

Code Inspections

Inspections can be performed on any product (test plans, procedures,
users manuals, codes, code fixes) to improve defect detection efficiency
of any process that creates the product. Inspections are based on the
inspection process developed by Fagan.17

Inspections are more rigorous and formal processes than walk-
throughs. Users of the method report significant improvements in quality,
development costs, and maintenance costs. Capers Jones18 estimates that
the average software company in the United States releases products with
15 percent of the defects still in the product. Companies that rigorously
employ inspections are approaching 1 percent defects remaining in
released products. Jones noted that a company can never have satisfied
customers if it tolerates 15 percent defects in released products. Inspections
differ from more classical reviews in several respects:

� Statistical quality control on the document; inspections track a
number of metrics designed to improve the inspection process

� Statistical process control of the producing organization
� Emphasis on earliest possible defect detection
� Emphasis on immediate and controlled correction; tracking to

assure correction
� Trained and certified inspection leaders (moderators)
� Moderator leadership (chief moderator concept)
� Specialized roles to increase defect total find rate for team
� Specialized checklists for each document type
� Formal entry criteria for inspections start-up
� Formal exit criteria for inspection completion
� Measurable criteria for repeating unsatisfactory inspections
� Pareto analysis: identifying error-prone components
� Experiential optimum rates of work enforced
� Specific devices and techniques for avoiding individual blame
� Restriction of author from leading, reading, explaining, or defend-

ing documents
� Prohibition of discussion of defect assertion
� Author-only control over correction
� Subjection of all important documents to inspection
� Peer inspection; everyone learns on the job
� Two-hour maximum duration to combat tiredness factor

The purpose of an inspection is to identify as many potential defects
as possible in the work product being inspected. An inspection requires
preparation before the meeting, a skilled meeting leader, knowledgeable
inspectors, and follow-up after the meeting to ensure that any necessary

334 � Software Sizing, Estimation, and Risk Management

rework is accomplished. The author of the work product being inspected
has final determination of which potential defects are actual defects. Data
captured from inspections can be used to identify patterns in defect
detection and prevention. Figure 9.6 illustrates error-prone modules.

Staff members who participate in the inspection process should be
trained in the process and in the facilitation skills essential to the success
of inspection-based techniques. Many attempts at implementing inspec-
tions fail due to damaged relationships caused by inspections, usually
because the reviewers have not been trained in giving interactive criticism.
In addition, it is easy to drift into critiquing the producer instead of the
product.

While it appears on the surface that inspections will take more time,
they can actually reduce overall project time by as much as 15 percent.
Lower defect rates will reduce costs and increase the quality of the release.
Walk-throughs and inspections are certainly affected by cultural issues.
While cultural resistance to formal and intrusive processes such as inspec-
tions often precludes their acceptance, the obvious benefits and critical
role such procedures play in minimizing rework impacts makes manage-
ment persistence in pursuing their use a critical factor in managing risks.

The use of inspections, the management, and the assurance of the
product against quality targets requires that a project follow consistent
processes that can accommodate the inspection requirement. Management
must reinforce the importance of processes or else participants will ignore
them. There are simple and effective ways to dramatically improve the
quality of software and reduce the costs and schedule related to rework.
Not only is overall quality improved, but project time is reduced. The

Figure 9.6 Chart of error-prone modules.

Defect tracking by module

0

20

40

60

80

100

120

D
at

ab
as

e

m
an

ag
em

en
t

A
ir

cr
af

t

co
n

tr
o

l

M
ap

 d
is

p
la

ys

F
u

el

co
n

su
m

p
ti

o
n

R
o

u
te

p
la

n
n

in
g

#
 o

f
d

ef
ec

ts

Defects estimated

Defects found

Performing to Estimate: Managing and Monitoring Development � 335

keys to success are having an inspection process in place and remaining
aware of interpersonal issues.

Staffing Levels

One of the easiest metrics to track against plan is the actual number of
staff performing the work. If this metric deviates more than 10 percent
from the initial plan, immediate steps must be taken to correct the over-
or under staffing. When a project falls behind schedule, one of the first
places to look is staff level. Figure 9.7 shows tracking of planned against
actual staffing. The project illustrated started out in trouble and over the
next few months appears to have made no successful attempts to correct
the problem.

The use of automated tools such as SEER-SEM PPMC (described in
Chapter 12) can greatly increase the effectiveness of these processes in
managing large or small software developments.

Team Performance

The equalizer in adjusting productivity projections to unrealistic constraints
is for management to focus on the management and “jelling” of teams
rather than more classical management techniques that concentrate on
individuals. The management processes used to maximize team cohesion
differ significantly from the normal, classical approaches but the produc-
tivity payoff can be enormous. As discussed in the second edition of

Figure 9.7 Actual staff versus planned staff.

0

5

10

15

20

25

30

35

40

45

50

Jan
-0

6

F
eb

-0
6

M
ar-0

6

A
p

r-0
6

M
ay-0

6

Ju
n

-0
6

Ju
l-0

6

A
u

g-0
6

S
ep

-0
6

O
ct-0

6

N
o

v-0
6

D
ec-0

6

Jan
-0

7

F
eb

-0
7

M
ar-0

7

A
p

r-0
7

M
ay-0

7

Ju
n

-0
7

Ju
l-0

7

A
u

g-0
7

Estimate/plan

Actual development staff

336 � Software Sizing, Estimation, and Risk Management

Peopleware by DeMarco and Lister,19 for virtually any performance metric
you define, you can expect the following:

� The best people outperform the worst by about 10:1.
� The best performer is about 2.5 times better than the median

performer.
� The half who are better-than-median performers outdo the other

half by more than 2:1.

While it is difficult to assure that a team will jell, the productivity
benefits, particularly on severely cost- and schedule-constrained projects,
make the attempt an essential element in managing a project to achieve
productivity commitments. Most managers do not manage as if they have
more people worries than technical worries; they manage as if technology
is their principal concern. They tend to focus on the technical instead of
the human side of work because it is easier. Human interactions are
complicated but in organizations with the best chemistry, managers devote
their energy to building and maintaining healthy staff chemistries.

Elements of this strategy may include making a cult of quality: only
perfect is close enough for us. Quality is one of the strongest catalysts
for team formation, setting an effective team apart from the rest of the
organization that does not have the same focus. While extraordinary quality
does not make good short-term economic sense, it always pays off in the
long term. A team takes pride in achieving an extraordinary standard and
working as a team to achieve it.

A manager who focuses on team management provides a satisfying
closure to a project: a successful finish of the work assigned, plus perhaps
an occasional confirmation along the way that everything is on target.
Team members must acquire the habit of succeeding together and liking
it. Effective team managers take pains to partition the work into pieces
and make sure that each piece has a substantive demonstration of its own
completion.

While many other management techniques can lead to jelled teams,
the goal is to build a sense of teamwork. The essence of successful team
management is to have everyone pull in the same direction and then
motivate team members to the point where nothing, not even their
manager, can stop the progress. One of the hardest management chal-
lenges is to provide strategic rather than tactical direction. Teams consist
of peers, equals who function as equals. Team-based management rec-
ognizes that the structure of a team is network, not a hierarchy. Good
teams require little leadership.

Performing to Estimate: Managing and Monitoring Development � 337

Summary
Managing to productivity targets has been a challenge facing software
projects for many years. Barry Boehm documented many of today’s
software management problems20 in 1976:

Poor planning — Leads to large amounts of wasted effort because
tasks are unnecessarily performed, overdone, poorly synchronized,
or poorly interfaced.
Poor control — Even a good plan is useless when it is not kept
up to date and used to manage the project.
Poor resource estimation — Without a firm idea of how much
time and effort a task should take, a manager is in a poor position
to exercise control.
Unsuitable management personnel — Software personnel tend
to respond to problem situations as designers rather than as managers.
Poor accountability structure — Projects are generally organized
and run with diffuse delineation of responsibilities.
Inappropriate success criteria — Minimizing development costs
and schedules will generally yield a hard-to-maintain product.

There is little argument that while the dimensions and characteristics
of the problems have changed, this core set still applies to today’s projects.
Applying the processes and techniques detailed in this chapter can make
it possible for program managers to manage to productivity targets for
successful project completion.

Endnotes
1. Stutzke, Richard D. Estimating Software-Intensive Systems. Upper Saddle

River: Pearson Education Inc., 2005.
2. Galorath, Dan. Personal experience.
3. Joint Logistics Commanders Joint Group on Systems Engineering. Practical

Software Measurement: A Guide to Objective Program Insight 2.1, March
1996.

4. Alexander, Ian. “Metrics, Sizing and Cost Estimation Quotations.” Proverbs:
Requirements Engineering Proverbs, Sayings, Maxims, and Quotations,
1997–2004. http://easyweb.easynet.co.uk/~iany/consultancy/proverbs.htm

5. U.S. Department of Defense. Practical Software Measurement (PSM): A
Foundation for Objective Project Management 3.1a. Washington, D.C.,
1998.

338 � Software Sizing, Estimation, and Risk Management

6. Florac, William A., Robert Park, and Anita D. Carleton. Practical Software
Measurement: Measuring for Process Management and Improvement. Pitts-
burgh: Software Engineering Institute, 1997.

7. Florac, William A., Robert Park, and Anita D. Carleton. Practical Software
Measurement: Measuring for Process Management and Improvement. Pitts-
burgh: Software Engineering Institute, 1997.

8. U.S. Department of Energy. Basic Performance Measures for Information
Technology Projects. Washington, D.C., January 15, 2002.

9. Hayes, W. and J. W. Over. The Personal Software Process: An Empirical
Study of the Impact of PSP on Individual Engineers. Pittsburgh: Software
Engineering Institute, December 1997.

10. Anonymous. “Earned Value Management Part 1.” Project Magazine, Novem-
ber 2000. http://www.projectmagazine.com/nov00/evm1.html [September
2004]

11. Sehl, Georg. “Quotations.” Software Testing and Quality Assurance: Quo-
tations from Books and Articles. December 2004. http://gsehl.editme.com/
TestingQuotes

12. DeMarco, Tom. The Deadline. New York: Dorset House, 1997.
13. Evans, Mike. Personal experience.
14. Boehm, Barry W. and Victor Basili. “Software Defect Reduction: Top Ten

List.” IEEE Software, January 2001.
15. Shull, Forrest et al. “What We Have Learned about Fighting Defects.”

Proceedings of Eighth IEEE Symposium on Software Metrics, 2002.
16. Alexander, Ian. “Metrics, Sizing and Cost Estimation Quotations.” Proverbs:

Requirements Engineering Proverbs, Sayings, Maxims, and Quotations,
1997–2004. http://easyweb.easynet.co.uk/~iany/consultancy/proverbs.htm

16a. http://cs.mwsu.edu/~stringfe/courseinfo/5443lectures/Pareto.ppt#276,3,
BasicCodeMetrics

17. Fagan, M.E. “Advances in Software Inspections,” SE-12.7. IEEE Transactions
on Software Engineering, July 1986. 744.

18. Jones, C. “The Pragmatics of Software Process Improvements.” Software
Engineering Technical Council Newsletter, Winter 1996, 1.

19. Demarco, Tom and Timothy Lister. Peopleware: Productive Projects and
Teams. New York: Dorset House, 1999.

20. Yourdon, Ed. Classics in Software Engineering. Indianapolis: Yourdon
Press, 1979.

339

Chapter 10

Risk Management Process

The time to repair the roof is when the sun is shining.

John F. Kennedy

Introduction
The risk management process has long been a means to manage the
uncertainty that exists in all endeavors, and more to the point in projects
whose goal is to provide a product with significant software content to
satisfy some identified set of needs and requirements. In today’s world,
where profit margins are shrinking, the competition to acquire work is
significant, users and customers may have inflated views of what is
possible, and the frequency and magnitude of technological change are
dramatic and increasing, the management of risk is not an option. It is
an absolute necessity if project success must be more than an accident.

This chapter describes the essential relationship between estimation
and risk management. It describes the differences between those factors
that are actual risks and those that represent problems, issues, and concerns.
It describes the birth, life, and death of a risk and explains how this cycle
layers on the project cycle. It also describes how realistic, nonbureaucratic,
and lean risk management processes can be planned, implemented, and
supported to help managers avoid the impacts that flow from estimates.

These risks normally result from estimates that were not representative
of the reasonable size and resource realities of the project or became

340 � Software Sizing, Estimation, and Risk Management

obsolete because of changing product requirements or processes. This
chapter also provides examples of worksheets and describes risks and
indicators related to size and cost estimation issues, shortfalls, and trade-
offs. Finally, it discusses the costs versus benefits associated with the
application of risk management in a typical project.

History of Risk Management
While the need to be aware of and avoid risks in software projects has
always existed, risk management did not really gain traction within the
software community until the late 1980s. Barry Boehm, a leading expert
in software processes, developed and published his concept of the spiral
model1 — a risk-driven, iterative model that capitalizes on the evolutionary
nature of the software development process to define a life-cycle model
that allows for requirements evolution and growth while minimizing the
risk of uncontrolled change that has plagued software projects since the
inception of the industry.2

Many initiatives within academia, government, and the private sector
have focused on the management of risk in project environments, but
risk management gained popularity only through initiatives conducted by
the Software Engineering Institute (SEI) at Carnegie Mellon University and
the Best Practices Initiative conducted by the Software Program Managers
Network (SPMN) for the U.S. Department of Defense (DoD). In 1990, the
SEI Risk Program was chartered to develop risk methods and act as a
technology transfer agent to bring the discipline to industry. The program
led to development of the risk management paradigm and the process of
taxonomy-based risk identification that became widely used.

The SPMN chartered a group known as the Airlie Software Council (a
group of leading software experts) to identify and document best practices
proven to improve productivity while lowering cost and reducing risk.3

The SPMN then used a variety of methods to bring these practices to
academic, government, and private sector organizations intent on improv-
ing their processes and the bottom line metrics of cost, schedule, and
user satisfaction.

The initial nine best practices were released in 1995 and then updated
in 1999 as a set of sixteen. In both the initial and later releases, members
of the Airlie Software Council reached an absolute consensus that the
number one best practice — the one that had the most significant impact
on the success of a project — was risk management. While not imple-
menting risk management did not guarantee project failure, implementing
the process effectively went a long way to enabling success. Risk man-
agement is now a required discipline both for DoD programs and for

Risk Management Process � 341

many private sector organizations seeking to improve their software pro-
cesses and gain more predictable and consistent project results.

Why does this book on size and cost estimation have a secondary
focus on risk management? Many of the really critical issues that make it
difficult for a project to meet budget, schedule, quality, and operational
commitments are rooted in the decisions and trade-offs made during the
estimation process and in the degree of rigor used. Schedule, cost, and
reliability are major risks in and of themselves that must be managed.
During the estimation process, future project risks can seem to be little
more than issues to be ignored, addressed, or deferred. Such issues include
insufficient time to perform the estimate, few or inadequate requirements,
volatile system concepts or requirements, lack of user or stakeholder
participation, unproven teams or techniques, and unknown or changing
predeployment certification requirements.

Over the past years we have been involved with many projects, some
large, some small; some in the public sector, and others in the private
and academic sectors. Although the risks varied by potential impact,
category, type, and specifics, every project involved some risk. A basic
thread, however, ran through every one of them: it is much better to
know about a risk early than to experience the impact that results when
the problem occurs.

Frank Doherty, a senior manager supporting large government pro-
grams, in a recent interview4 discussed how the early visibility of risks
can significantly benefit any project. He outlined the key benefits and
why the process is essential to a project’s health and well-being.

Q. Why do think risk management has worked so well in your
organization?

A. We start early. We capture risks before they have a chance to transition
to problems. We continuously look for risk in the plans we make,
the estimates we produce, the concepts and requirements we
develop, and in any other factors that we use to define the con-
straints of the project and the commitments made by the organi-
zation while we can still change them without significant cost or
project turmoil. We really take risk management seriously.

Q. Give me some examples.
A. As we define our processes we bring in an objective third party

to ask what can go wrong. They often find many issues that we
treat as high impact risks. In many cases we change the processes
to minimize the potential effects. In others, we track the risk and
look for increasing probability of occurrence and the need to
mitigate the effect. This early mitigation helps us to avoid associated

342 � Software Sizing, Estimation, and Risk Management

cost, schedule slips, and potential rework due to excessive defects,
all of which can be significant.

Q. Did the organizations interfacing with the project have as high an
opinion of the benefits of risk management as you do?

A. Our current project is really unique in that risk management is a
priority, not only in my shop, but it is also supported by our current
customers, stakeholders, and others interfacing with the project.
The attitude toward risk is that risks found and mitigated early are
better than risks we don’t know about. In my experience, this
general acceptance of risk management is not usual. Most managers
that I have worked with are not as open to candid views of what
can go wrong. It’s refreshing and is working well on this project.

Q. Where do you think this will go?
A. I can’t see any reason why the emphasis on risk management

should change. The process is working well; we have identified
and are mitigating significant risks and thus avoiding potential
disasters. On a project as complex as this, there are many risks
that, if they became problems, the impacts on the project might
not be controllable. By identifying risks early and taking steps to
mitigate them, we avoid the impact, minimize the problems that
we have to deal with, and ensure that most of the commitments
we made are realistic.

The commitment to manage risk early in a project — particularly when
the initial estimates are produced and during the process of developing the
system concepts and initial requirements — and to maintain the process
as an integral part of the project culture often means the difference
between success and failure. Successful project managers maintain focus
on their project’s critical success factors.5

Despite the many arguments in favor of risk management and its
obvious benefits, the myriad of examples of its success, endorsements by
organizations that buy or build software, and the obvious need to antic-
ipate and manage the frequency and impact of unexpected problems, it
is still a hard sell. Real risk management is not just having a plan and
providing some resources to “fill a square.” To be effective, risk manage-
ment must involve proactive participation by all levels in the acquirer and
supplier organizations, continuous identification and analysis of risk based
on a preplanned process, and a commitment by project management to
use the information to make decisions and manage the project.

In performing project assessments over many years, we have observed
numerous factors that contribute to a resistance to risk management. Two

Risk Management Process � 343

seem to be most common: the organizational culture and the difficulty in
distinguishing between common problems and true risks. We have found
that an organization’s culture can inhibit project managers from both
understanding the true natures of risks and reporting them to higher
management, despite the fact that risk management processes and tools
are straightforward and easy to plan and implement.

Secondly, the problems that are common to all projects, such as
unexpected attrition, loss of funding, and unanticipated requirements do not
necessarily in and of themselves constitute risks. The inability to distinguish
them can lead to the belief that identified risks translate to immediate
problems that require prompt and often dramatic action and to the belief
that common problems constitute dire risk. By confusing the two, project
managers are often inhibited in honestly reporting actual risks to man-
agement, customers, and stakeholders.

Cultural Obstacles to Managing Risk

Many organizations create cultures that emphasize achievement of goals
in the face of overwhelming challenges. This is an essential attitude for
any successful organization, but if taken to extremes, this attitude makes
it very difficult for management to accept risk and believe in and support
risk management as an important discipline. There is an underlying belief
that all will be well. Management is confident that the software gods will
shine on this deserving project.

When managing or participating in a software-intensive project, there
is no reason to be optimistic; history doesn’t support it.6 Yet, for many
reasons, optimism slips into projects time after time. When a project begins,
the team genuinely desires to do well and assumes the lessons learned
from the last project will take hold this time. After all, many aspects of
the last project went well and it seems reasonable to assume that such
success will continue.

Hope always has a way of triumphing over experience. For example,
a young programmer was assigned to solve a problem with a critical
interrupt handler in a real-time system. Rather than repair it once again,
he decided to rewrite about 300 lines of assembler code. He worked day
and night for 60 hours straight. When he was done, the interrupt handler
was tested and deployed without a flaw. Sweet success! By remembering
the success, the programmer believed the next time he could write 300
lines of code in a day (his lack of sleep blurred his perception of time).
He forgot that in actuality the project took 60 hours and violated every
company quality policy. Once again hope triumphed. Software people in
particular need such successes to keep from losing their self esteem

344 � Software Sizing, Estimation, and Risk Management

because much of their work requires them to confront today the mistakes
made yesterday.

It is only human nature (optimism bias) to believe that all will be well,
which is why process-based risk management cannot be truly effective
without management support and staff acceptance. Management often
chooses to dismiss evidence that contradicts its belief that a project is
proceeding to plan, even if that evidence results from critical processes
such as quality assurance, metrics, and process improvement that provide
objective, often quantitative information that accurately describes project
status.

This attitude also prevails when management is confronted with the
information that results from risk management. To paraphrase Tom
DeMarco, there are many individuals and activities within a project orga-
nization whose focus is to reinforce what is going right in a project; risk
management’s job is to point out what can go wrong. Therein lies the
problem. Managers and staff who are committed to making the project
succeed and who are working long hours under intense pressure do not
want to be reminded that one crisis can lead to another. Senior manage-
ment, customers, and stakeholders often adopt the Nike philosophy: just
do it! Their interests lie in minimizing the reality of risk, not in embracing
the fact that risk is a normal part of all projects that cannot be ignored.
Risk management hands them more reality than they want to deal with.

An organization’s culture is also defined by the manner in which its
members communicate. Experience shows that many failures in regard to
risk management are caused by imperfections in the human communica-
tion process. For example, many program managers, especially those
facing more problems than they can handle, unconsciously signal to their
teams that they do not want to hear about any new risks, even if they
explicitly support good risk management processes. Their teams thus
become reluctant to identify and report risks even though they could
significantly affect the project.

Because “the spouting whale gets the spear,” team members become
deaf and blind to essential information that would enable them to mitigate
long-term threats and are forced to respond to problems as they arise,
often in crisis mode. The project manager will tend to assign part or all
of the responsibility for mitigating a risk to whoever identifies it. Such a
response can communicate to team members that it is dangerous to identify
new risks, because they will be stuck with mitigating the risk while
performing their regular duties, most often without appropriate resources.

Continuous, proactive risk management can overcome these cultural
barriers when it openly involves all members of an organization or
participants in a project. It helps managers, staff, and stakeholders make
correct, informed decisions by allowing them to anticipate what can go

Risk Management Process � 345

wrong rather than waiting to react to it. When performed correctly, risk
management dispels the myth of the no-risk project. To the benefit of the
project, it confronts assumptions and projections that do not include
contingency factors. It questions commitments and agreements that assume
rigid adherence to plans while omitting options to address the reality that
a potential risk can occur.

It takes a truly mature manager and a savvy customer to embrace the
benefits of risk management because the message is not entirely pleasant.
Risk management tells them they must recognize that if risks are not
addressed when identified, they are likely to negatively affect a project
in the future. That is an unpleasant reality, but a manager ignores that
reality at his or her peril. The positive aspect of the message is that it is
within a manager’s control to determine the degree of impact of a risk
based on the actions he or she takes take today.

Risks versus Problems
The concept of risk management is based on a fundamental premise: risk
management addresses those factors that have the potential to impact a
project; problem management addresses those factors that are already
causing impacts. Risk management is strategic in nature because it
addresses current realities to identify risks that could cause problems in
the future. It therefore enables management to plan and implement both
strategic and tactical actions before a problem occurs. Problem manage-
ment, on the other hand, is tactical in nature because it can only address,
using short-term solutions, a situation that is already affecting a project.
Both disciplines are essential, but they are different and should be treated
as such. For example, fire prevention is risk management versus fire
fighting which is problem management.

Risk management — Elaine Hall wrote that, “Risk is a consequence
of the uncertainty in our work, not a reflection of our own ability.”7 Risk
management is almost exclusively focused on potential threats and their
impacts rather than on current project performance or occurring events.
Risk management enables project management to anticipate and control
events. It provides the means to monitor project indicators such as per-
formance trends and recurring issues and problems, identify, analyze, and
document the risk. Project managers can then define appropriate mitiga-
tions and implement them when a risk meets a predetermined threshold
based on a risk index or occurrence of a predefined event or condition.

In the risk management process the staff, stakeholders, management,
and customers are asked where they think the project is headed and what
can get in the way. Asking these questions allows management to identify

346 � Software Sizing, Estimation, and Risk Management

potential risks, and by implementing effective mitigation strategies at the
right time, projects can minimize or avoid the impacts should the risks
become problems. The best way to look at risk management is to use
the bouncing ball analogy8 noting that every ball bouncing into the street
is followed by a child. Likewise, the presence of certain project indicators
means you should assume a risk exists. Stakeholders sometimes have their
own agendas that may bias the process.

Problem management — Problem management focuses on the cur-
rent condition of a project and deals with issues the impacts of which are
immediate and affect the project to some degree — unexpected attrition,
loss of funding, unanticipated requirements, failure of hardware to perform
to specifications, excessive defect and rework rates and a host of other
factors. Problem management is a four-step process: (1) identify, (2) ana-
lyze, (3) implement, and (4) monitor.

Problems are usually identified through the presence of a straightfor-
ward indicator, for example, your boss standing over your shoulder with
a scowl on his face and papers in his hands or a comment such as “I’ve
got good news and bad news. Which do you want first?” More subtle
signs are unexpected indicators in metrics performance, negative project
trends that do not improve, and increased management or customer
pressure to accomplish tasks not included in task statements or baselines.
However the problem is indicated, its successful resolution depends on
the timeliness of the attention it receives, the relevance of the actions
taken, their effectiveness, and sufficient management focus on implement-
ing a solution. The most essential element is time. By not conducting the
risk management activities that could have anticipated the problem, man-
agement sacrificed the time required to establish mitigation procedures,
negotiate with customers and suppliers in a meaningful way, and vary
specifications or change architectures. As a result, the project is overtaken
by events and, based on the impact of the problem, it could very well
fail altogether.

In order to be effective, problem management must address the under-
lying cause of the problem rather than its symptoms. For example, staff
attrition surely indicates a problem, but by simply reorganizing or hiring
new people, management misses the true cause which may be: too much
overtime caused by unrealistic schedules fueled by unreasonable customer
pressures. Unless management gets to the root of the problem and reduces
or eliminates the pressures from the customer, the schedules will continue
to be unrealistic, the overtime will continue, and the staff will continue
to leave. By taking the time beforehand to identify potential risks, man-
agement can add staff attrition to the risk list, monitor the conditions that
can cause it, and take appropriate steps to mitigate it should it occur.

Risk Management Process � 347

Risk Management Success Factors
Risk management requires top-level management support, acknowledg-
ment that risks are realities, and a commitment to identify and manage
them. One discriminator of a successful organization or project is the use
of risk management to anticipate potential negative conditions, problems,
and realities. Ineffective projects are forced to react to problems; effective
projects anticipate them. “Your organization will be much better once it
moves away from reacting to change, and toward proactive anticipation
and management of change.”9

Formal risk management must be an integral part of the entire program
management structure and processes. In fact, risk management should be
the program manager’s number one priority. Risks that become problems
can negatively affect cost, schedule, productivity, product quality, and/or
system performance. The program manager must plan and establish formal
methods for identifying, monitoring, and managing risks and ensure that
sufficient resources are available to conduct related activities. An effective
risk management plan helps ensure that a quality system is delivered on
time and within budget and that it performs to user requirements — the
first time.

Tom DeMarco10 captured the essence of risk management:

The most important aspect of managing risks is to face up to
uncertainty … for instance, if you said, ‘I can’t tell you for sure
whether we’ll be done June 15 or June 30,’ people will accept
that as a reasonable window. Now, unfortunately, that’s not a
reasonable window at all … saying it will take from 18 to 30
months to get this job done, that would declare uncertainty that
is consistent with a kind of uncertainty we’ve seen in the past.
But that would be politically unacceptable … The truth of the
matter of is, there is a lot of uncertainty. And the thing that is
really hard about risk management is it forces you to declare
your uncertainty, to show the entire range.

As DeMarco indicates, far too many software projects will identify a
potential risk and then ignore the possible impacts. Too often, managers
do not want to know what risk management tells them, which in effect
is that a significant number of issues can get in the way of success and
a can-do attitude is not sufficient to overcome them.

“The problem of project management, like that of most management
[is] to find an acceptable balance among time, cost and performance.”11

When a project moves out of balance, risk results. For example, schedule
performance often becomes most important due to customer pressures,

348 � Software Sizing, Estimation, and Risk Management

so cost and product performance lose emphasis. Or product performance
takes center stage due to a customer review, so the focus drifts away
from cost and schedule performance. As a result of this imbalance in
priorities, what was once well controlled now becomes less well managed
and risk results. Risk management can address such imbalances if they
occur throughout a project. “An effective risk management program is
dynamic and ongoing throughout the development process and requires
the participation of everyone involved.”12

While every project we assess professes to implement risk management,
we have observed two very different focuses in its application. Some
managers focus on the process and some focus on making risk manage-
ment a cultural imperative. A manager who focuses on the process has
a risk manager who makes sure that the seven steps of risk management
(described later in this chapter) are visible in the project and to all
stakeholders.

This focus is certainly a necessary part of risk management, but in a
certain respect it is a mechanical approach that can convey a false sense
of security. The organizations that focus on the process tend to be more
concerned with the appearance of process integrity than the result of the
process. In these organizations, the project manager will give “lip service”
to how important risk management is to the project but will never use
risks to influence decisions or plot a future course. He will build a close-
looped system where actual risks never leak out. Indeed, there have been
situations where a manager dictated the types of risks that could be
identified. During one assessment, an engineer related to us the instruc-
tions he had received from the manager of a major commercial program:
“Don’t give me any cost, schedule, or process risks because, if they get
out, they will make the project look bad.”

In our experience, we have found that very few projects implement
risk management as a cultural imperative where it is at the core of the
management process and where the output of the process, the prioritized
risk list, drives all project decisions and activities. Where risk management
is a cultural imperative, risks serve as the focus of all project reviews and
reporting and the process is an open system that encourages all team
members and stakeholders to review and comment on a risk list that is
kept current.

In addition, the process is linked to predetermined metrics that are
continually collected, that indicate an anticipated project state, and that
form the basis for mandatory triggering of mitigations and actions. “A
pattern of measurement enables projects to establish realistic plans and
then gauge where they are against the plan.”13 When the project falls out
of balance, plans invariably are compromised, and when plans are com-
promised, risks result. Where risk management is a cultural imperative,

Risk Management Process � 349

management has documented effective metrics that allow identification of
risks and assessment of their likelihood of becoming problems.

Essential Risk Management Definitions
Adequate risk reserve to cover cost — Risks without reserves often

cannot be successfully dealt with. A quick and easy method of calculating
a required risk reserve is: (1) determine the probability of risk occurrence
as a percentage (e.g., the probability of missing an established milestone
is 30 percent); (2) determine what such a schedule slip would cost (e.g.,
$50,000 in penalties or additional labor); and (3) multiply the two figures
to arrive at the estimated reserve required to mitigate this risk (30 percent ¥
$50,000 = $15,000).

Likelihood of occurrence — Probability that a particular risk will
transition to a problem. Likelihood is often expressed as a grid:

0 to 20 percent: low probability of occurrence
21 to 40 percent: potential for transition
41 to 60 percent: transition to problem probable
61 to 80 percent: transition probable
81 to 100 percent: transition imminent

Metrics-based risk management — Quantitative approach to cate-
gorizing, monitoring, assessing, and controlling risks. The use of metrics
to track a supplier’s progress toward meeting a deadline can serve as an
invaluable “trip wire” that affords a program manager ample early warning
of impending schedule slippage.

Negative impact — Inability to achieve a part of a plan, including
cost and schedule constraints and technical aspects such as safety, utility,
efficiency, and mission effectiveness that affects customer acceptance of
the product.

Opportunity — Event, tendency, or situation that may open an
opportunity to improve on the project plan (emphasis on may — if the
opportunity is staring you in the face right now, it’s a decision problem,
not a risk problem).

Parametric risk estimation — Quantitative approach to estimating
uncertainty in which a higher probability of occurrence requires increases
in cost and extensions in schedule to mitigate. The most sophisticated
parametric models allow the specification of cost and schedule probability
separately.

Problem — Risk that has occurred and negatively affects a project.
Risk — Any potential situation or event that could negatively affect a

project’s ability to achieve objectives within defined cost and schedule

350 � Software Sizing, Estimation, and Risk Management

constraints if it is not mitigated. Risk occurs in every project and can
include effects that are beyond the manager’s control. An event that is
certain to occur is not a risk and should be addressed by normal planning
and management activities.

Risk aggregation — Risks that occur together to cause a negative
impact.

Risk avoidance — Choice of not acting to try to prevent a risk from
occurring, such as choosing not to build a component that is critical to
the safety of the system to avoid the risk of failure to deliver a safe system.

Risk chaining — One risk may create another risk, which may create
another risk, until eventually cost, schedule, and technical impacts are
felt. For example, a key person’s resignation (Problem 1) may cause a
project to be understaffed (Problem 2), which may cause a late delivery
of a component (Problem 3), which may lead to late product delivery
(schedule impact) that may be unacceptable to the customer (impact).
The strategy of mitigating the effects of risks is to interrupt the chain,
thereby minimizing or eliminating the impacts. Each risk should be
addressed on its own to forestall the chain from continuing.

Risk containment — Process of mitigation to control the effects of
a risk that has occurred.

Risk evasion — Failure to establish the reserves and conduct the
planning necessary to mitigate risks in order to save resources.

Risk index — Prioritized list of risks that are identified and tracked
by the program. Priority is determined by calculating impact ¥ probability
of occurrence.

Risk management — Practices and procedures that enable managers
to identify, assess, categorize, monitor, control, and mitigate risks.

Risk mitigation — Process of planning responses to specific risks,
such as identifying a second supplier that can deliver if a primary supplier
cannot meet a deadline.

Risk trigger; risk transition — Measured event or circumstance that
causes a risk to become a problem. In the risk management process,
specific risk triggers with metrics and thresholds are identified. This enables
the project manager to determine when the risk can transition to a problem
and thus act to mitigate its effects.

Introduction to Risk Management Concepts
Both success and failure in software-intensive projects can have different
definitions. Whenever an organization commits to buy or build a product
with significant software content, that choice will either have a successful
outcome or become a failure. The outcome depends on numerous factors

Risk Management Process � 351

and can be subjective, as the customer and user community determine,
even if all the cost, schedule, and technical objectives have been met. For
example, a project may deliver a product on time, within budget, and
with full functionality, but an overlooked security flaw may prevent
deployment. Or a project may deliver only 80 percent of promised
functionality and still provide the end users what they needed and
expected. Which example is a failure and which is a success?

Risk management is a method of identifying and assessing the prob-
ability that a risk will occur, determining the severity of its consequences,
and prioritizing identified risks based on that data. Using risk management,
the project manager can thus distinguish between risks that can cause
significant impacts but be mitigated and risks that can cause a project to
fail by delivering a product that cannot be used in an operational envi-
ronment. By doing so, management is prepared to provide the time and
resources required to mitigate the risks with the highest potential to cause
project failure.

Determining the severity of a risk requires determining its conse-
quences should it occur and also its potential to trigger more severe risks.
Although risks are analyzed and rated individually, this method also
involves understanding potential consequences of risks by understanding
the relationships between them. This enables management to focus on
ensuring the commitments made by developer, customers, and end users
are accomplished by determining which risks would have the most severe
impacts and could preclude the project from meeting its basic commit-
ments. In this way, risk management provides a means of avoiding or
minimizing an impact to a project and its associated loss.

The basic commitment of a provider to a customer is to deliver an
acceptable product within the cost and schedule constraints established
by the customer and assume the risks associated with meeting that
commitment. The provider organization has the most defined set of
commitments that include delivering a useful product in time to enable
its timely planning and installation and doing so with the money and
resources provided. The provider organization also commits to producing
the required functionality in a manner that enables the product to interact
with other systems and satisfies end user requirements. The provider must
be as certain as possible that it can deliver a product of sufficient quality
that performs properly in its operational environment to the satisfaction
of customers, users, and other stakeholders within the cost, schedule, and
operational constraints.

The interrelated commitments of customers, users, stakeholders, and
providers create a trade space in which goals related to technical require-
ments (cost, schedule, performance, and quality) can be traded off to
ensure the product is delivered. When the constraints created by these

352 � Software Sizing, Estimation, and Risk Management

relationships form a narrow space (i.e., tight schedules lead to tight
budgets which engender more stringent development or quality require-
ments), the higher the risk that a project will fail to deliver a product that
meets customer expectations. Risk accordingly is lowered when these
relationships create a broader space. Risk management is a key to setting
smart objectives for a project.

The provider uses the risk management process to monitor progress
in meeting its basic commitment and track the associated risks using
objective, quantitative metrics related to the required development tasks.
These metrics are critical to triggering recovery or mitigation procedures
that are initiated when pre-established threshold values indicating an
increased probability of risk, an increase in its impact, or its proximity to
occurrence are approached.

In order to understand the risks involved and deliver a successful
product, a developer must not only understand the technical requirements,
but just as importantly understand the needs and expectations of the users
and stakeholders. Understanding the risks, the developer must ensure that
each component of the project organization, especially the user, is involved
in defining, reviewing, and monitoring the product during its evaluation
for acquisition or during its development.

The developer must establish the means to involve users and stake-
holders with requirements development, project management, quality
control and assurance, testing, and other aspects of the project and involve
them in the conduct of risk management. Their involvement ensures all
participants understand each other’s needs and expectations and the
absolute requirements that must be met to ensure the product can be
deployed, operated, and supported in its intended environment. The key
lies in clear communication with the user in addressing its requirements
to avoid the rework caused by inserted defects when requirements are
not clear.

Computing a Risk Index

Risk is expressed both as a measure of the probability of failure to achieve
a particular outcome and as a measure of the consequences of failing to
achieve that outcome. For processes, the metric is the difference between
the results that would occur from the best practice of that process and
the results of actual performance.

As risks are identified, they can be categorized by impact (I). A Level
5 risk represents the highest potential loss that results from a risk that
occurs and is not mitigated. Risks are also categorized by likelihood of
occurrence (LO). A Level 5 risk is defined as the most likely to occur.
When these two factors are multiplied, a risk can be characterized as high,

Risk Management Process � 353

medium, or low and prioritized within a risk index (RI) by a single measure
that determines its importance to the project and the relative visibility,
response, and reporting required.

RI = I ¥ LO

This technique provides the ability to prioritize risks by quantitatively
describing them. Table 10.1 lists the criteria used to characterize individual
risks, determine the impact horizon and LO, and consistently define the
RI. The attributes, probability and impact are the basis for computing the
RI — a dynamic value that changes as project conditions force changes
in either the potential impact or the likelihood that a risk might occur.

Risks are rated at three degrees of urgency:

Low — treated as routine business
Medium — risk can negatively affect or preclude an organization
from meeting a commitment
High — risk could preclude delivery or completion of project (see
Figure 10.1)

It is important to rate risks because they are analyzed, prioritized, and
reported based on their perceived impacts and probabilities. Risks rated
medium receive more attention than low risks until the threat to the project
commitment is effectively removed. High-rated risks warrant the highest
priority, must be addressed before the less severe classes of risks, and
should be tracked until they can be downgraded.

When analyzing risks identified through the estimation process, two
factors are important to consider. First, these risks are almost always rated
high because they usually affect the accuracy or relevance of a basic
commitment made by the supplier of the product to its stakeholders and
will produce significant effects if they transition to problems. Second, any
uncertainties and risks associated with an estimate can limit the options
the project has to apply management, engineering, assurance, monitoring,
and reporting practices and tools or address issues or problems. Estimates
that are too high or low can dramatically change the risk of a project by
forcing actions not based on the reality of available resources.

 The nature of the risks can change over time; and their impacts may
lessen as mitigations are put in place, project conditions change, and the
likelihood of occurrence changes. Figure 10.1 provides an overview of
the risk assessment process.

Table 10.2 lists impacts that can result in exposure to risk in different
areas, including cost, budget, schedule, attrition and staff availability,
product quality, and user satisfaction. Every project has unique risk exposure

354 � Software Sizing, Estimation, and Risk Management

Table 10.1 Example Risk Characterization Criteria

Attribute
Risk

Rating Value Description

Probability 1 Remote (L) Low chance (0 to 20 percent)
risk will occur and cause a
problem

2 Unlikely (M) Medium chance (20 to
40 percent) risk will occur and
cause problem

3 Likely (M) Medium chance (40 to
70 percent) risk will occur and
cause problem

4 Highly likely (H) High chance (70 to 90 percent)
risk will occur (potential
problem)

5 Nearly certain (H) High chance (90 to 100 percent)
risk will occur (potential
problem)

Impact 1 Minimal or no
impact (L)

Minor system damage, recover-
able loss of operational capa-
city; internal slips to schedule
and budget <10 percent

2 Small, acceptable
with some
reduction in
margin need
dates (L)

Some system damage,
recoverable loss of operational
capacity; internal slips to
schedule and budget
<15 percent

3 Acceptable with
significant
reduction in
margin (M)

Moderate system damage with
partially recoverable
operational capacity; schedule
slip >10 percent; budget slip
>10 percent

4 Large,
acceptable, no
remaining
margin (H)

Loss of system; significant
impact to operational support;
schedule slip >50 percent;
budget slip >50 percent

5 Significant,
unacceptable (H)

Loss of system; failure of project
operations; schedule slip
>60 percent; budget slip
>60 percent

Risk Management Process � 355

requirements. The analysis team should develop a table based on this
example and tailored to project thresholds as a means of normalizing risk
impacts based on predetermined criteria and assessing impacts consistently
across a range of important or relevant factors.

After risks are assessed, they must be analyzed to determine strategies
for monitoring and managing them to resolution or retirement, a risk
management strategy and process must be developed, and risks must be
monitored using the RI. The RI provides a consistent means of weighting
risks based on threats and vulnerability, ranking them in accordance with
their exposure levels and relative to one another, and focusing attention
on the most critical risks.

Figure 10.2 is a risk grid — a common method of visually representing
risk relationships while factoring likelihood of occurrence and impact. The
grid provides a consistent means of correlating risk severity and likelihood,
allowing both to be considered in regard to their potential to lead to
problems.

One consideration in establishing an RI is understanding the impact
of a risk if it does occur along with its long-term effects. Not all risks are
created equal. For example, if a project goes over budget by 200 percent
but the product is delivered on time, deploys properly, and achieves
customer and user acceptance, how do you prioritize risks that result in
cost overruns but lead to fulfilling projects goals? They thus take on a
lower priority than risks that could impact performance. Such factors are
used to weight the risk and provide a measure of realism.

Realism is required to distinguish risks that could potentially terminate
a project and fail to deliver a product, risks that can lead to a failure to
achieve user acceptance, and risks that can cause an impact to a com-
mitment without jeopardizing successful delivery or use. The most severe
risks receive the most weight and are prioritized accordingly.

The RI addresses what is known to be unknown and enables a project
team to plan accordingly. Donald Rumsfeld observed that, “There are also
unknown unknowns — the ones we don’t know we don’t know.”14 What
is not known cannot possibly be predicted as a risk and planned for, such

Table 10.1 (continued) Example Risk Characterization Criteria

Attribute
Risk

Rating Value Description

Impact horizon
(when action must
be taken to mitigate
risk)

Near-term (N) In next month

Mid-term (M) One to two months from now

Far-term (F) Three or more months from
now

356 � Software Sizing, Estimation, and Risk Management

as a sudden natural catastrophe. The risk management process focuses
on the known unknowns; for unknown unknowns, management can
determine a reserve that at best will not be necessary to use. Unknown
unknowns generally require the facilitation of additional agreements out-
side the risk agreed to in the contract.

Risk Management Processes

Risk management is achieved by conducting processes to identify, assess,
monitor, and mitigate risk and to provide contingency planning throughout
system development, fielding, and postdelivery maintenance and support.
The risk management process monitors key development and management
practices by implementing the metrics and establishing the risk indicators
managers require to identify, prioritize, track, and mitigate risks, and to
measure the effectiveness of the risk management plan. The effectiveness
of the plan in identifying and managing program risks is in large part
determined by management’s commitment to conduct continuous risk
management.

Figure 10.1 Risk assessment process.

Level

1

2

3

4

5

Technical
performance

Acceptable with some
reduction in margin

need dates

Acceptable with
significant reduction in

margin

Acceptable, no
remaining margin

Unacceptable major
program milestone

Minimal or no impact Minimal or no impact Minimal or no impact None

Some impact

Moderate impact

Major impact

Unacceptable

Additional resources
required; able to meet

Minor slip in key
milestones; notable to

meet need date

Major slip in key
milestone or critical path

impacted

Can’t achieve key team
or

program milestone
>10%

7–10%

5–7%

<5%

Schedule Cost
Impact on

other teams

Level
What is the likelihood the
risk event will happen?

L
ik

el
ih

o
o

d

1

2

3

4

5

Remote

Unlikely

Likely

Highly likely

Near certainty

5 L M H H H

L M M H H

L M M M H

L L L M M

L L L L M

4

3

2

1

1 2 3

Impact

Assessment guide

Risk assessment process

4 5

Low - Minimum impact.
Minimum oversight needed to
ensure risk remains low.

Moderate - Some disruption.
Different approach may be
required. Additional
management attention may be
needed.

High - Unacceptable, major
disruption likely. Different
approach required. Priority
management attention required.

Risk assessment

Risk Management Process � 357

Table 10.2 Example Risk Normalization Tablea

Risk Area Potential Impact

Budget

0 to 5 percent overrun 1

5.1 to 10 percent overrun 2

10.1 to 15 percent overrun 3

15.1 to 25 percent overrun 4

Over 25 percent overrun 5

Schedule Impact

0 to 3 month slip 1

3 to 6 month slip 2

6 to 12 month slip 3

12 to 18 month slip 4

Over 18 months 5

Staff and Other Resources

0 to 5 percent resource shortfall 1

5.1 to 10 percent resource shortfall 2

10.1 to 15 percent resource shortfall 3

15.1 to 25 percent resource shortfall 4

Over 25 percent resource shortfall 5

Quality Impact

0 to 5 percent quality gate failure 1

5.1 to 10 percent quality gate failure 2

10.1 to 15 percent quality gate failure 3

15.1 to 25 percent quality gate failure 4

Over 25 percent quality gate failure 5

User Satisfaction Impact

0 to 5 unresolved user comments 1

6 to 12 unresolved user comments 2

358 � Software Sizing, Estimation, and Risk Management

Failure to act will doom a risk management program, even if manage-
ment, customers, and stakeholders recognize the need to manage risk and
a formal risk management system is put in place. In this situation, the
risks identified by the formal process and documented in the risk man-
agement plan receive only marginal attention, and thus the project man-
ager is reduced to informal risk management based on intuition and limited
information. Because a formal process exists, the customer, stakeholders,
and/or higher management assume it is effectively executed. When it is

Table 10.2 (continued) Example Risk Normalization Tablea

Risk Area Potential Impact

13 to 25 unresolved user comments 3

26 to 50 unresolved user comments 4

Over 50 unresolved user comments 5

a Actual project thresholds vary.

Figure 10.2 Risk grid.

Medium

Risk level (risk exposure)

P
ro

b
ab

il
it

y

Medium

Medium Medium High

High High High

High

HighMedium Medium Medium

Medium Medium Medium

Low

Low

Low Low

Low

2 3

Impact

4 5

Low Low LowLow

High = Unacceptable. Major disruption is likely. Different approach

required. Priority management decision required.

Medium = Moderate. Some disruption approach may be required.

Additional management attention may be needed.

Low = Minimum impact. Minimum oversight needed to ensure risk

remains low.

1

5

4

3

2

1

Risk Management Process � 359

not, the risks as reported do not accurately describe the true risk and as
a consequence appropriate actions are not taken.

If risk management measures operate effectively early in a program
and then receive inadequate attention and action, risks that do occur can
cause problems that compound one another until they reach a critical
mass that the project personnel cannot comfortably handle. This dynamic
is known as a risk chain. It is more likely to occur where resources are
inadequate to mitigate risks and can cause the team to stop identifying
significant new risks, which in turn makes program failure more likely.

Seven Steps to Risk Management
The risk management process involving the seven steps described below
is straightforward and, from a process standpoint, one of the easier
disciplines to plan and implement. A fully functional process including
policy, plan, procedures, essential training, an initial risk identification
session, and a tool loaded with the initial RI can be established within
30 days. The seven steps do not necessarily occur sequentially. Some
overlap as multiple risks are identified, analyzed, mitigated, or retired.
The process, if executed in an ongoing and disciplined manner, can greatly
increase the probability of success for a software project.

Step 1: Establish Risk Policy, Obtain Commitment
to Manage Risk, and Develop Plan

The output of this step is the development and distribution of a risk
management policy that empowers management to act. The management
and staff must be committed to actively managing risks. This step is
achieved by establishing an understanding of the need for risk manage-
ment and obtaining the commitment of management and the staff to
manage risk.

Senior management must commit to risk management as a policy,
provide education and training to ensure it is supported continuously
throughout the organization, and ensure an effective risk policy and plan
are developed, documented, and implemented, with all management levels
accountable for its effectiveness. The policy should legitimize risk man-
agement as an essential activity, stress effective implementation of the
process, and empower program managers and supporting elements to
expend resources to manage risks. When effectively implemented, a risk
management policy provides the information required to:

360 � Software Sizing, Estimation, and Risk Management

� Develop alternatives to achieve cost, schedule, and performance goals
� Establish budget and funding priorities
� Make milestone decisions
� Monitor program status in real time

Project personnel must be trained on the process used to manage risk.
An appropriate combination of training, mentoring, and management
emphasis is required to implement risk management within an organiza-
tional culture. A risk policy concisely delineating basic requirements and
signed by the program manager empowers staff to expend resources,
assigns responsibility for planning and implementing the risk management
process, and establishes a means for training staff. Table 10.3 lists sample
policy statements. Each major program component should conduct ses-
sions to identify risks and present findings at regularly scheduled program
reviews. To further ingrain the importance of risk management and estab-
lish staff buy-in, incentives (financial or otherwise) can be established.

Risk Management Planning

After the policy is agreed to and management and staff are committed to
managing risks, a risk management plan will provide structure to the
process and comprehensively describe the required procedures, organi-
zation, roles, and responsibilities. The plan should define the process and
allow change as necessary in response to changing conditions.

A core risk management plan should describe the overall organizational
requirements, and each organization should develop a concise risk man-
agement plan that is specific to its needs and goals, with appendices added
to describe planning requirements specific to the program organization,
any waivers or deviations from the core plan, and issues affecting imple-
mentation. It should describe required tasks, measures of success, the
organizational structure, and associated roles and responsibilities.

It is important to initiate detailed planning early to assure the processes
to manage risk are in place, general guidelines for implementing them
within the organization are defined, and the project resources are available
to support them. Having these issues defined early means that the critical
risks associated with sizing, estimation, and scheduling will be identified,
characterized, and tracked.

The risk management plan should be updated as planning progresses
and as additional information becomes available. It should also reflect
changes in the risk management process and it should also describe
specific roles and responsibilities.

Risk Management Process � 361

Table 10.3 Sample Policy Statements

All organizations and programs shall have risk management plans.

All managers shall ensure that risk management is an integral part of a
project’s defined process.

All organizations shall identify and deal with risk in a positive manner such
that identification is recognized and rewarded, and results in positive
mitigation actions.

All organizations shall charter entities responsible for coordinating risk
management activities.

All organizations shall provide adequate resources for risk management
activities.

All organizations shall require training of individuals performing risk
management activities.

All organizations shall integrate risk identification, analysis, and mitigation
activities into planning.

All organizations shall develop risk management plans according to the
program risk management policy.

All organizations shall identify, analyze, and take appropriate software risk
mitigation actions during development planning.

All organizations shall track software risk mitigation actions to completion.

All organizations shall make and use measurements to determine the status
of risk management activities.

All organizations shall record and track resources expended for risk
management activities.

All organizations shall review the risk management activities with senior
management on a periodic basis.

All organizations shall review risk management activities with the project
manager on both periodic and event-driven basis.

Each project’s program manager is responsible for implementing the
empowerment policy.

Within any organization, an independent risk officer will serve as the focal
point responsible for risk management, implement the policy, and write
and implement the plan.

362 � Software Sizing, Estimation, and Risk Management

“How-To” Procedures: Essential Planning Elements

The development of a risk management plan is not enough. All specific
procedures to be used must be detailed or they will not be implemented
consistently. For software projects, the planning and development of
specific project requirements that culminate in a risk management plan
must be completed earliest, as the requirements provide the framework
required to direct the project; procedural development is a continuous
activity that refines procedures to reflect changing conditions.

Procedures for conducting sizing and cost estimation risk management
should be developed, reviewed, tested, and documented by project start-
up, including those required to address risks associated with planning,
budgeting, work definition, and scheduling. These procedures guide the
activities required to identify, analyze, prioritize, and report risks associated
with planning the project. All risk management procedures should be
developed in a consistent manner or by following an acquisition model
such as IEEE/EIA Standard 12207,15 which describes the major component
processes of a complete software life cycle and the high-level relations
that govern their interactions and covers the life cycle of software from
acquisition to migration and retirement. It addresses the five primary
processes that support the buyers (acquirers) and builders (developers)
that initiate or perform the development, operation, and maintenance of
software products. The five primary processes are:

� Acquisition — The various activities of the acquirer of systems
and software products or services.

� Supply — The various activities of suppliers of system, software
products, or services.

� Development — A set of activities performed by the developer
defining and developing software products.

� Operation — The activities performed by an operator to provide
computer system operation in a live user environment.

� Maintenance — Software maintenance activities including man-
aging modifications, keeping the product current and operationally
sound, migration, and retirement.

The models described in Standard 12207 define common frameworks that
facilitate the planning and sequencing of a project. They are intended to
facilitate the development of documents such as project plans, work
breakdown structures, size and cost estimates, and schedules. The discus-
sion that follows focuses on the acquisition and supply processes.

Table 10.4 lists risks that are common to software projects and relates
them to process steps defined in Standard 12207. While the table covers
only a small subset of the full set of seven tables, it illustrates the reality

Risk Management Process � 363

that risk encompasses all aspects of a software process and shows how
a number of potential areas of risk (risk enablers) associated with a project
increases significantly as a project moves forward.

The risk factors were identified from the 350 software project assess-
ments we have conducted for customers in the public and private sectors
in the past 12 years, including banking, insurance, defense contractor,
government, accounting, and many other applications. We reviewed the
results of many representative assessments to identify typical risks. We
extracted primary risk data from assessment reports and other information
and analyzed the secondary risks and indicators documented as causes
in reports provided to customers. We then correlated these risks to the
IEEE/EIA 12207 activities.

As seen in the tables, many of the sources of risk become similar as
a project moves from activity to activity, but the characteristics of the risk
enablers, the specific factors and the means by which these factors are
identified and evaluated, differ somewhat between activity areas.

It is essential to identify risk factors for a project because they drive
development of the risk management plan and procedures. The types of
risk factors identified will indicate what risk identification and analysis
techniques should be used, for example, and the organizations that will
need to be involved. By identifying the risk factors, specific risk manage-
ment techniques can be phased into the project as needed and resources
can be allocated more effectively. The enablers identified in the tables are
representative and must be defined specifically for each project situation.

Management has many choices for setting up a reasonably low risk
project structure, but these choices are usually restricted by internal and
external realities of the project, for example, pressures from customers,
higher management, stakeholders, and vendors, whose expectations can
severely undermine the effectiveness of risk management.

The responsible manager faces a “Hobson’s choice,” which is no choice
at all. If he does not plan the project in the aggressive, unrealistic, and
high risk way expected by upper management and the customer, his
company may not get the work and he may not keep his job. If he
proceeds, he may commit his organization to an estimate, schedule, or
plan that is high risk at best and not executable at worst. If he realistically
identifies risks, he may well hear that:

� It can’t possibly cost that much.
� What you propose isn’t technically elegant.
� I understand your concerns but I really need it six months earlier.
� If I had the kind of money you’re talking about, I wouldn’t need

the system you’re proposing.

Such pressures can quickly restrict the options available to a manager.

364 � Software Sizing, Estimation, and Risk Management

Table 10.4 Standard 12207 Acquisition Process and Typical Risk Enablers

Risk Management Implementation Considerations (Acquirer)

12207 Acquisition Area
Procedure
Need Date Typical Risk Enablers

Initiation Program start Unrealistic system concept;
incomplete, inconsistent system
requirements; unrealistic
trade-offs; unrealistic
expectations; incorrect estimates;
customer and stakeholder
pressure and bias; unrealistic
budget and schedule constraints

Concept description
or need definition

Project start Unrealistic expectations;
unrealistic trade-offs; as-is
definition shortfalls; limited
enterprise models; incorrect
estimates; customer and
stakeholder pressure and bias;
unrealistic budget and schedule
constraints

Definition and
analysis of system
requirements

Prior to start
of
requirements
elicitation

Undocumented expectations;
undocumented defects; schedule
compression; concept
uncertainty; incorrect trade-offs;
management optimism; user
uncertainty; inadequacy of
enterprise models; interface
instability; system expectations;
understanding of reality; process
inadequacy

Schedules for timely
completion of tasks

Program start Unreasonable customer,
stakeholder, user, or vendor
pressure, bias, and management
and/or staff optimism;
nonrepresentative or absent
historical data; incorrect or
inadequate work identification
and/or allocation; incorrect or
inconsistent estimates; incorrect
or inadequate requirements;
undefined expectations

Risk Management Process � 365

As shown in Table 10.5, each risk enabler is rated as high, medium,
or low. The table lists only a small sample of typical 12207 activities but
it provides a means for scaling the process- and phasing-specific proce-
dures as needed to effectively identify, analyze, prioritize, track, and report
risk as appropriate to its rating.
Several factors must be considered when planning a risk management
process:

1. The process must focus on a practical, straightforward implemen-
tation that minimizes bureaucracy, simplifies the organizational inter-
action, and engages staff, management, stakeholders, and other
affected organizations in a nonthreatening, effective manner.

2. The process should be structured to be culturally consistent with
the project and with the budgets, schedules, and available resources.

3. Whatever process is used, adequate training in procedures is required
so that all organizations understand their roles and responsibilities.

Table 10.4 (continued) Standard 12207 Acquisition Process and Typical
Risk Enablers

Risk Management Implementation Considerations (Acquirer)

12207 Acquisition Area
Procedure
Need Date Typical Risk Enablers

Estimation of effort Program start Unreasonable customer,
stakeholder, user, or vendor
pressure, bias, and management
and/or staff optimism; inade-
quate, inconsistent, or incorrect
requirement; nonrepresentative
or absent historical data;
incorrect or inadequate work
identification and/or allocation;
incorrect or inconsistent sizing;
undefined expectations

Process
implementation

Prior to
development
of program
plan

Incorrect sizing; incorrect
estimates; cost, schedule,
process, and tool trade-offs;
incorrect trade-offs; staff
shortfalls; customer expectations;
management, customer, and
stakeholder pressures; enterprise
bias; project complexity

366 � Software Sizing, Estimation, and Risk Management

Table 10.5 Risk Impact Projection

Initial
Evaluation
Point Activity/Risk Causal Factor H M L

Reevaluation
Point H M L

Initiation At program
start

Unrealistic system
concept

 Incomplete,
inconsistent system
requirements

Unrealistic trade-offs

Unrealistic expectations

Incorrect estimates

Customer and/or
stakeholder pressure
and bias

Unrealistic budget and
schedule constraints

Request-for-
proposal
(RFP or
tender)
preparation

 Prior to RFP
release

Incomplete
requirements

Incomplete,
inconsistent, or
unrealistic size and cost
estimates

Unrealistic trade-offs

Customer and/or
stakeholder pressure

Vendor pressure

Customer and/or
stakeholder bias

Irrelevant boilerplate

Risk Management Process � 367

Table 10.5 (continued) Risk Impact Projection

Initial
Evaluation
Point Activity/Risk Causal Factor H M L

Reevaluation
Point H M L

Contract
preparation
and update

 Prior to
contractor
selection

Unrestrained customer
and/or stakeholder
expectations

Unrealistic, unjustified
trade-offs

Incomplete, incorrect
work definition and
allocation

Unrealistic schedules;
inconsistent or
unrealistic size and cost
estimates

Supplier
monitoring

 Prior to
contract
award

Nonquantitative
supplier reporting

Contract inadequacies

Vendor pressure

User and/or stakeholder
pressures and biases

Schedule compression

Increasing rework

Requirements “churn”

Unrealistic, unjustified
trade-off

Contractor performance
issues

Resource shortfalls

368 � Software Sizing, Estimation, and Risk Management

4. Management should measure the numbers, types, criticalities, and
dispositions of risks using predefined metrics and frequently assess
the effectiveness of the risk management process.

5. Management should constantly reinforce the need for risk man-
agement, provide incentives for its effective application and disin-
centives for its improper use, and use the results to effectively
manage the project.

Step 2: Designate Risk Officer

The output of this step is the assignment of a risk officer — an individual
responsible for developing and implementing the risk management pro-
cess and carrying out the policy for the managers it supports. Risk officer

Table 10.5 (continued) Risk Impact Projection

Initial
Evaluation
Point Activity/Risk Causal Factor H M L

Reevaluation
Point H M L

Acceptance
and
completion

 Prior to
acceptance
test planning

Incomplete or
untestable requirements

 Inadequate traceability

Customer and stake-
holder attitudes and bias

Adequacy of concepts
and requirements

Testing adequacy

Issue documentation
and resolution

Product completeness

Trade-off resolution

Defect identification and
resolution

Contractual restrictions
and terms

H = high. M = medium. L = low.

Risk Management Process � 369

is a staff position in large projects. Risk officers are responsible for
identifying, analyzing, prioritizing and reporting risks; tracking risk triggers;
and making recommendations for management action. In small projects,
the role should be assigned as an additional responsibility.

Every organization involved in a large project is faced with a dilemma:
how to ensure risk is consistently and objectively identified, analyzed,
prioritized, and reported without funding a disruptive and delaying bureau-
cracy to do so. The answer is simple. Create an independent staff position,
the risk officer, who will handle responsibility for risk management.

Why is designating a risk officer a good idea? The independent status
of the risk officer removes the burden from other managers who have
little incentive to aggressively pursue risks and objectively assess and
report them. Other managers are often reluctant to accept the possibility
that other problems can occur when they are already dealing with daily
crises. “It can’t happen so why should I worry about it”’ is a common
lament.

Managers often think that if they accurately report risk to higher
management, they will invite increased oversight, unwanted help, and
excessive management visibility. In situations where risk management is
not a priority, this is a valid concern. Organizations often misunderstand
risk and believe it is an immediate problem that requires crisis management
rather than a potential problem that can be addressed and avoided or
mitigated in a timely manner. Still, every project manager has an obligation
to inform senior management, stakeholders, customers, and users of the
potential for problems as documented in the risks that have been identified
in sufficient time to enable them to plan for a problem should it occur.
Failure to do this limits the ability of these external organizations to
respond to risks as they occur and mitigate their impacts.

Designating a risk officer for each organizational level provides orga-
nizational focus and ensures that potential problems are visible to those
who are responsible for the project and organization. The risk officer is
responsible for implementing risk procedures throughout the organization.
To paraphrase Tom DeMarco, most projects have many can-do people;
they also need a can’t-do person, and that’s the risk officer.

While the risk officer must fully understand the technical, administra-
tive, and operational underpinnings of the application and infrastructure,
the sole focus is identifying and managing risk within the organization.
The independent risk officer should also have the authority to dictate the
process. The job involves reporting risks, not initiating mitigation strategies
and committing program resources.

The risk officer need not be a full-time position. However, sufficient
time must be allocated to maintain a current risk list and advise the
manager to whom he or she reports about the most critical risks, potential

370 � Software Sizing, Estimation, and Risk Management

mitigations, and risks that have transitioned or are about to transition to
problems. A risk officer should:

� Identify, along with others, risks by determining what actual and
potential risks the program faces.

� Characterize risks.
� Compile a list of past risks to help identify present or future risks.
� Seek out risks by asking project staff members what risks they are

aware of or foresee.
� Prioritize risks, establish and maintain a top-ten risk list, and report

risks frequently to the appropriate program manager.
� Monitor the progress of risk mitigation activities by individual

project team members.
� Ensure consistent risk focus throughout all project organizational

levels by fostering open and honest risk awareness among project
staff members.

� Have an agreed-to and signed charter with his or her manager that
empowers the position and establishes its specific roles, responsi-
bilities, and limitations.

� Not be a manager; should be a nonmanagement individual with
an independent reporting chain to his manager, and he should
assume a principal leadership role in the risk management process.

� Establish and chair a risk management review board or working
group and implement a risk reporting process that allows anony-
mous risk reporting from all organizational levels and permits
monitoring and frequent reporting of risks and risk reserve status
to the appropriate manager.

� Use risk tools to document all identified risks.

The risk officer is largely responsible for conducting a continuous process
of risk identification throughout the life cycle of a project. He should also
ensure a streamlined means of communication exists so that all program
participants including developer and customer entities can easily report
identified risks to the risk officer to promote and facilitate early risk iden-
tification and reporting. A system by which individuals can report anon-
ymously to the risk officer is one option. Anonymity encourages candid
reporting of risks without fear of retribution. It can allow identification of
obscure risks that might have otherwise gone unnoticed. The risk officer is
also responsible for recording and monitoring identified risks and estab-
lishing a risk database that should be accessible to all project stakeholders.

In order to effectively achieve this critical function, the individual
assigned as the risk officer should be empowered, respected, tenacious,
a strong communicator, committed, a comprehensive and integrative thinker,

Risk Management Process � 371

and a good coordinator and facilitator who can balance a variety of
interests and strategic demands. Program management must have an open
door policy and be willing to listen.

Risk Officer Case Study

We helped a large government project implement risk management across
the organization. We helped the agency write policies, plans, and proce-
dures; trained the management, staff, and external organizations affected
by the process; and conducted a series of assessments to identify risk.
The entire process was effective and began providing useful information
within a short time. However, the risk officer assigned proved to be
ineffective, spending time attending conferences, writing reports on how
good things were, and conducting or attending meetings at which no one
took notes. The process quickly became a token that served to placate
corporate governance individuals who wanted to cite the process but not
deal with the results.

“Black Monday” arrived after an external audit. The risk officer was ill
prepared for the result. The audit recommended that the project fix the
risk management process or cut off funding and pointed to the risk officer
as the cause of the process problems. After much wringing of hands, he
was replaced with a committed, aggressive engineer who had a reputation
as a comprehensive, integrative thinker, a good communicator, coordina-
tor, and facilitator who balanced a variety of interests and strategic
demands. The new risk officer quickly established an independent project
risk management group with reporting through an executive steering
committee. She reinvigorated the initially established process and reviewed
and updated the risk list and tracking procedures. Within 30 days, risk
management went from “bust to best.” The only variable was the effec-
tiveness of the risk officer.

Relationship of Risk Officer and Management

When his function is performed effectively, the risk officer provides
management a critical dimension that is not necessarily available through
any other means. A risk manager can provide management with time to
react. This can make an organization more effective and reduce the
complexity of the problems managers must handle.

Management is obviously the critical coordination point. The managers
ultimately own all risks and are responsible for their management. Many
administrative, technical, and physical controls used to manage risk are
funded and driven through project processes and technologies. While a

372 � Software Sizing, Estimation, and Risk Management

risk officer provides organizational direction and oversight of risk objec-
tives and programs, the various project organizations must identify, select,
and implement the necessary control solutions. Friction between the risk
officer and project organizations may arise if the roles are not well defined
or if the risk officer tries to replicate functions not within the charter of
the position.

The timely and accurate reporting of identified risks is a key problem.
Managers naturally wish to ignore or defer reporting critical risks to higher
management and try to resolve them locally, even when the risks materially
affect the integrity of the risk management process in the external orga-
nizations. An effective way of countering this tendency is to establish a
reporting chain that allows a risk to be escalated when risk triggers occur.
The triggers should be negotiated and approved by the manager to whom
the risk officer reports during the risk identification process. This approach
ensures that risks transitioning into problems are escalated in a controlled
and agreed-to manner and also allows all interested organizations maxi-
mum time to address the problem.

Step 3: Identify Risks

The output of this step is a comprehensive list of the potential program
risks. Risk identification involves assessing the program to identify critical
events that would prevent the program from achieving its objectives. A
risk tool should be used to describe the risks and their contexts and any
condition or situation causing concern.

Active and continuous risk identification is extremely important because
unidentified risks that have not been prepared for can kill a project. Risks
can be based on two factors: threats and vulnerabilities. It is important
to distinguish them and that requires understanding of a few terms:

Critical event — An event that may serve to change the course
of a project.
Event — A distinguishable point at which the occurrence of an
action or a change in a project condition can be identified as
having occurred.
Threat — (1) A potential cause of an unwanted event that could
cause harm to a project and its assets. (2) A way of harming the
project or its assets. The presence of threats indicates that vulner-
abilities exist in a process, activity, or information asset.
Vulnerability — An observed characteristic of a process, activity,
information asset, or group of information assets (including a weak-
ness) that can be exploited by a threat. Vulnerabilities result from
weaknesses in processes, controls, environment, assets, and data.

Risk Management Process � 373

Weakness — A process component that, for some reason, may
be prone to not supporting the overall process as expected if
certain conditions exist or occur. In the case of a product, a
weakness appears when the requirements, architecture, physical
product, or other artifacts have not adequately addressed the
operational or support needs of the user or where the products
were developed without applying a mature, adequate, or effective
engineering or assurance process.

Threats can exist to all aspects of a project, including its information
assets, processes, organization, infrastructure, and project culture. Infor-
mation can be vulnerable to threats that result from weaknesses in its
consistency, accuracy, currency, or availability. Processes can be vulner-
able to management interference, bias, process maturity, staff experience,
process integration, or support. Threats to the organization include size,
cost and schedule estimation realism, staff morale and attrition, excessive
pressure or overtime, management inconsistency or effectiveness, project
focus, and requirements churn. The infrastructure can be threatened by
availability of IT resources, tool availability, communication resources,
network resources, funding shortfalls, schedule constraints, and commu-
nication and network, physical, or information security. Finally, the project
culture can be threatened when either staff or external stakeholders lose
trust in factors such as project cost or schedule performance, quality of
deliverables, management failures, performance to agreements and com-
mitments, or otherwise perceive the project to be unsuccessful.

When judged by their probability or potential impact, risks that result
from threats and vulnerabilities are about the same. Risks that result from
threats are of near-term concern, while risks from vulnerabilities are of
concern over the long term, with more time available to mitigate them.

The basic risk identification process entails using a variety of techniques
to examine all parts of the organization and determine what critical events
would prevent a program from achieving its objectives. Risk indicators
include:

� Lack of stability, clarity, or understanding of requirements —
When requirements change or are not clearly stated, risks to
performance, cost, and schedule can result.

� Failure to use best practices — The further a developer deviates
from best practices, the higher the degree of risk.

� New processes — With any new process, whether related to
design, analysis, or production, risks decrease as the processes are
documented and validated, staff members are trained, and they
successfully use the process over time. Process rigor is indicated

374 � Software Sizing, Estimation, and Risk Management

by documentation, validation, process maturity, and quality of
implementation, which will reduce risk.

� Insufficient resources — Risk to process implementation can
result from inadequacies in staffing, including qualifications, funds,
schedules, and tools.

� Test failure — Risks can result when a corrective action necessary
to address a test failure strains available resources or schedule, for
example.

� Qualified supplier availability — Risks can result from the
unavailability of qualified outsource suppliers or from their inex-
perience or lack of qualifications in the specified design and
production processes.

� Negative trends or forecasts — Risks can result when the specific
actions required to respond to a negative trend or forecast are not
taken.

During the risk identification process, you should be attentive to factors
that can minimize the visibility or awareness or otherwise mask indicators
of critical risk. For example, a schedule risk indicated by a missed
milestone can be masked by the fact that all schedules were increased
an arbitrary 30 percent as a risk reserve. Schedule risk is less a function
of remaining time than it is a function of milestone definition. As Putnam
noted, “Schedule refers to the elapsed calendar time from the beginning
of some phase of development to the end of that phase … Measuring
time is easy, of course. The difficulty lies in establishing unambiguous
beginning and ending points.”16 If logical and achievable milestones are
not defined, a schedule is already compromised.

Risk Identification Techniques

A risk officer can use a number of techniques to identify risks.

Commitment-Based Risk Management (CBRM)

This technique has two parts: commitment identification and commitment
treeing.

Commitment identification — The first step is to identify and doc-
ument basic organizational commitments by examining basic contractual
documentation and amendments and other formal correspondence
between developer organizations and between the developer and external
organizations. For example, each organization has a basic commitment to
its customer to deliver an acceptable product within cost and schedule

Risk Management Process � 375

constraints; and internal developer organizations have commitments with
each other.

Commitments are categorized as either formal or informal. Formal
commitments are documented obligations the project must meet to fulfill
the contract. Informally, a project is committed to the subjective expec-
tations of the customer related to any aspect of the project that carries
particular risk. Customer expectations with regard to product performance,
the development process, the degree of their involvement, reporting
requirements, and the form, structure, quality, frequency and timeliness
of deliveries must be fulfilled.

Commitment treeing — This technique creates a commitment tree or
taxonomy that maps risks related to failures to meet project commitments,
including failures to meet internal organization commitments to fulfill
specific delivery, operational product support, schedule, budget, and scope
obligations. The risk officer maps risks according to their effects on
commitments made throughout all levels of the organization. The project
manager can then use this information to assign responsibility for moni-
toring and/or mitigating risks at all levels in consultation with the risk
officer. The risk owner is required to report risk metrics that will enable
the likelihood of occurrence of the risk to be quantitatively assessed.

Commitment-based risk management is effective because it provides
visibility to the highest impact risks by creating a project-specific taxonomy
of commitments related to completing the project and satisfying customer
expectations, which are the sources of risk in all its forms, and by enabling
project management to use the organizational relationships within the
project to mitigate them. It provides program managers, developers, and
stakeholders a means to anticipate problems and mitigate their impacts if
they occur.

Commitment-based risk management provides structure to the process,
thus minimizing the difficulty and reducing the cost and time required to
identify and track risks and understand their interrelated effects throughout
the organization. It also enables a risk officer to focus attention on the
most critical risks and assign risk responsibility to the right owner.

Staff Involvement

This technique involves all staff members in identifying and reporting risks
from their own perspectives. The individuals involved with the day-to-
day technical, cost, and scheduling aspects of the program are most aware
of risks that must be managed. A risk officer can facilitate effective staff
involvement by addressing two factors that can inhibit risk reporting: fear
of retribution and passivity. Fear of retribution and other undesirable

376 � Software Sizing, Estimation, and Risk Management

consequences can override any desire or requirement to report risks as
they arise. An anonymous system of reporting can counter this fear.
Passivity can result when a risk owner does not realize the severity of
the consequences of a risk assessed by a risk officer who understands its
consequences throughout the organization. Passivity can be overcome by
providing incentives to encourage risk reporting.

Staff involvement is the most straightforward way to identify risks, but
it has advantages and disadvantages. It is an effective way of identifying
real risks that would otherwise not be identified, for example, sliding test
schedules, potential design shortfalls, impending attrition, and other issues
not visible to higher management or the risk officer. However, it is less
effective than commitment-based risk management for identifying rela-
tionships between risks. Many risks that are reported are not-yet-visible
problems. Their reporting tends to discourage the effective practice of risk
management because project management sees a seemingly endless stream
of bad news coming from the process. Additionally, the person who goes
to the trouble to identify, document, and characterize a risk expects a
certain response, and when none is forthcoming, morale can suffer.

Risk Assessments and Surveys

In this technique, an independent assessor uses assessments or surveys
that compare a project against a predefined model to identify and char-
acterize risk. This technique is more difficult than the others but it is an
effective way to identify risk that requires little setup. Also, it does not
assess process effectiveness or rate the capability of an organization to
perform the work required except as related to individual risks.

The model selected should provide a comprehensive look at high-risk
project areas — an assessment of each area conducted by asking a series
of questions designed to identify risks and underlying causes. The types
of risks include:

� Technical risks — Those associated with developing or modifying
a design in an effort to provide improved system performance or
interoperability with other systems.

� Program risks — Those associated with acquiring and using
resources that are not within the control of the system developer
or program manager and directly or indirectly affect project success.

� Maintainability risks — Those associated with fielding and main-
taining the system, including hardware, software, help desk sup-
port, training, manpower and resources, and contractor support.

� Cost risks — Those associated with project growth and funding
instability.

Risk Management Process � 377

� Schedule risks — Those associated with schedule slippage during
the system acquisition life cycle, including schedule slippage in
interfacing projects and systems.

� User acceptance risks — Those associated with overall customer
satisfaction and system performance against defined requirements.

We recently captured 195 separate observations during a 3-hour review.
These observations revealed 38 previously unidentified risks, 14 of which
were high impact, high probability risks that required immediate attention.
A risk officer will typically listen for comments that may indicate risk:

� I’m assuming the tool works as you described it.
� There is a 90 percent chance they’ll deliver on time.
� The customer really wants this product and I’m sure they’ll spread

roses at our feet if we give it to them.

The risk officer who hears such comments should ask questions designed
to elicit further information:

� What if your perception is wrong?
� How can we plan for things not working out as planned?
� If things don’t work out as planned, what mitigations make sense?

The risk officer then works with the person who made the comment to
characterize the risk and enter it into the system.

Miscellaneous Other Methods

Many other methods of identifying risks can be applied. These include
system safety techniques such as failure modes and effects analysis
(FMEA),17 security assessment techniques such as threat or vulnerability
analysis,18 SWOT analysis,19 and a host of other quantitative and qualitative
methods.

Risk Characterization

Risk characterization is part of the risk identification process. The purpose
of risk characterization is to improve understanding of the risk and
determine criticality, specific factors involved in gaining such understand-
ing and deciding what can be done to mitigate the problem if the risk
transitions to that level. Throughout this process, the information collected
as part of the risk identification is translated into a usable form.

378 � Software Sizing, Estimation, and Risk Management

Risk characterization involves complex judgments and needs to project
the impact and quantify the probability of occurrence. The detailed infor-
mation essential for determining the best way to address risks is not
necessarily available to the people responsible for making the decisions
and the people affected by them. Much of this knowledge resides only
with the organization that identifies the risk and it needs to be captured
while the risk understanding and visibility are fresh.

To characterize risks, a risk officer integrates and assesses two com-
ponents: the nature of the hazard and the exposure that the potential
hazard presents. (A hazard is a threat or vulnerability that may result in
a negative impact.) The purpose of this analysis is to determine the impact
and probability of the resultant risk and the criticality of potential adverse
outcomes. The risk officer works with the person who identified the risk
(where possible) and, if assigned, the risk owner, to gather data needed
to estimate the hazard and exposure; characterize the risk (combining the
factors); and estimate the magnitude and probability of the anticipated
adverse effect. The risk officer will work with the appropriate individual
to collect the required information and record it on a risk characterization
form. Table 10.6 is an example of such a form.

This form is intended to capture the information collected by the risk
officer through consultations with technical experts and affected stake-
holders who may have essential information or substantial influence over
the project. The form should be completed as soon as a risk is identified —
before this information is lost. Revising risk characterizations as conditions
change facilitates future risk analysis requirements. By consulting with the
individuals involved, a project culture of understanding and ownership is
created.

“As in all things, ownership is a key component of success. People
care more about the things they own, and software development projects
are no exception. Fostering a team-wide sense of ownership makes each
member accountable for the success of the project.”20

Potential Risk Identification Activities during Estimation

Risk identification should be an essential part of the project cost estimation
process. Risks are identified, characterized, and entered into the risk
management system at three points: (1) during planning for the estimate,
(2) during development of the estimate, and (3) during the validation and
lessons learned phase.

Planning the estimate — The estimation team should collect estima-
tion risks and account for them in the estimation process. The team should
identify any item that results in some uncertainty as a risk, for example,

Risk Management Process � 379

Table 10.6 Risk Characterization Form

Risk Title:

Description:

Status: Risk basis:

Threat (T)

Vulnerability (V)

Probability:

Likelihood of occurrence: (1 = very low; 5 = very high)

Direct impact on organizational commitment? (Y or N)

Impact (1 = very low; 5 = very high) Precludes delivery or completion?
(1.3 weighted impact)

Risk exposure:

Probability ¥ impact (1 = very low; 5 = very high)

Impact timeframe: Days-until-impact timeframe:

Earliest and latest dates of timeframe over which risk could occur:

Impact horizon:

Date risk first identified: Critical path:

Person responsible for managing risk:

Program areas affected by risk:

Affected phase WBS

Development phase

Risk area: Risk type:

Is responsibility for control of risk internal or external to organization:

Contingency plan

Risk mitigation description:

380 � Software Sizing, Estimation, and Risk Management

trade-offs made, unsupported assumptions, management or stakeholder
pressures, shortcuts taken, and lack of critical information. The estimation
team should designate a member to serve as the risk collector and establish
the team’s responsibilities and reporting requirements with the risk officer.
The team should look for “risk cues” that indicate situations or events
that could compromise completion of the project.

Perhaps the most important of the risks listed above is management
pressure to meet an unrealistic size, cost, or schedule target. Such pressure
can cause a developer to feel compelled to develop an unrealistic estimate
that is inconsistent with the available resources. Planning to address this
discrepancy will help to minimize but cannot eliminate the risk. Unrealistic
estimates assume certain progress and do not account for such risk cues
as immature requirements, undefined interfaces, inadequate historical
information, absence of standards for sizing the product, and poorly
defined objectives, expectations, or goals. All these factors increase the
risk that an estimate will not meet expectations. Risks should be resolved
or addressed in the estimate as it is evaluated.

Developing the estimate — Most risks during estimate development
are caused by inadequacy, incompleteness, and lack of relevant informa-
tion on which the estimate is based. To ensure a project has a credible
chance of meeting its commitments, the estimation team should identify
and document any unusual circumstances that cause uncertainty in the
estimate, such as trade-offs, assumptions, and inabilities to complete
essential activities. The team should capture this information on a risk list

Table 10.6 (continued) Risk Characterization Form

Risk Mitigation Steps (Optional):

Step Description Person Due Date Done

Metrics and Triggers:

Metrics
Selection
Rationale Analysis Trigger

Reporting
Trigger Action Trigger

Date Person Event

Risk Management Process � 381

in order of priority, with a focus on core risks that may cause a chain of
other risks to occur. It is important to describe the conditions that could
cause an identified risk to become visible and establish risk triggers if
possible. It is not essential that these risks be characterized, but to facilitate
subsequent analysis and increase its relevance, it is important to capture
the risk impact, likelihood of occurrence, potential mitigation strategies,
and other information as it is identified.

Validation, lessons learned, and uncertainties — Most risks to an
estimate are identified in the validation phase and include shortcuts taken,
assumptions, and unresolved issues. It is important that risk identification
be pursued rigorously during this phase to provide an objective and
forthright assessment of estimate validity. If the process is not followed
or is poorly conducted, the estimate released to the customer can contain
incorrect assumptions that create a false sense of well-being when in
reality the project is set up for disaster. An estimate team member can
record risks identified or management may want to assign the risk officer
to perform this function to increase their visibility. The risk recorder should
meet with the estimation team and document any anomalies or uncer-
tainties they describe and work with them to evaluate the observations,
looking for and documenting common threads that could require further
analysis.

Step 4: Risk Analysis

The output of this step is the initial risk index. Risk analysis includes
evaluating risk areas to determine risk events, assigning likelihood and
consequences to each risk event, and creating a risk index. Project
components such as systems engineering and personnel should undergo
risk analysis. Risk analysis comprises a number of activities:

� Evaluation of identified risk events and determination of possible
outcomes

� Identification of critical variances from known best practices
� Determination of likelihoods that the events will occur
� Descriptions of possible consequences

Evaluation — Each identified risk can be rated against the program
criteria and assigned a low, moderate, or high rating (see Figure 10.1).

Critical variance — For each risk event related to process, the analysis
team must determine the variance of the process from known standards
or best practices and rate it. As shown in Figure 10.2, the risk assessment
process has five levels (1 through 5). No variance equals no risk.

382 � Software Sizing, Estimation, and Risk Management

Likelihood or probability — The likelihood that each risk will occur
must also be determined. The subjective criteria are remote, unlikely,
likely, highly likely, and near certainty. Zero likelihood of an event means
no risk (see Figure 10.2).

Consequence — For each risk identified, the following question must
be answered: if the event occurs, what is the magnitude of the conse-
quence? Consequence levels are numbered 1 through 5. A consequence
is a multifaceted issue. Most often, four factors are considered when
determining consequence: technical performance, schedule, cost, and
impacts on other organizations. At least one of the four consequence areas
needs to apply for risk to be present. If no adverse consequences are
found in any areas, no risk exists.

Use of Metrics

Metrics provide managers with near real-time measures of project status
and preclude the need for subjective decision making. They furnish
quantitative planning goals and early risk warning triggers that require
timely corrective program management action.

Two important elements of an effective metrics program are manage-
ment support and a knowledgeable software support staff. Management
support is required to ensure funding for the metrics effort and to encour-
age the use of metrics in decision making. A knowledgeable staff under-
stands specific program and software system issues beyond the numbers
in the raw metrics data and can translate crude metrics data into valuable
information on program and system status.

Key management processes are implemented based on variances in
predefined thresholds or trip wires. Metrics program preparation activities
include:

� Identification of key metrics based on specific program decision
requirements

� Tailoring selected metrics to track identified program risks
� Ensuring that metrics tie closely to the risk management plan
� Definition of metric thresholds
� Determination of a metrics review process and exit criteria

Use of Quantitative Triggers

Each risk should have an indicator that can be tracked against quantitative
triggers to determine when action should be taken. When a risk is
characterized, a metric is selected to indicate the increase or decrease in
risk probability. This metric should be based on underlying risk conditions
providing a quantitative measure of the degree of a condition in a project

Risk Management Process � 383

environment, an attribute of a product, or any artifacts that describe it. For
example, a metric such as number of tests planned versus number success-
fully completed over a given period can be used to determine the state of
the testing process and the risks associated with failing to meet critical test
schedules. Product-based metrics such as defects per thousand lines of
code provide indications of the potential quality of a product and accurate
predictions of the risks of rework. Figure 10.3 illustrates sample triggers.

The risk officer is responsible for tracking the predefined thresholds
(established when the risk was defined and reviewed and approved by
the risk owner) tied to specific management-approved quantitative thresh-
olds. As these thresholds are crossed, predefined actions take place
automatically. Threshold categories can include:

� Analysis level: conducting secondary analysis using secondary mea-
sures and indicators to determine cause of condition

� Report level: reporting risk condition to risk officers in affected
organizations

� Action level: initiating staged mitigation based on likelihood of
occurrence

Triggers are quantitative. On a frequent basis, a risk officer should evaluate
risks in the higher categories (see Step 6: Report Risks) against the assigned
metrics to assess trigger status. When a trigger trips, the risk officer should
take the assigned action.

Step 5: Prioritize Risks

The output of this step is an updated risk index. From the risk index created
in Step 4, a prioritized list of risks weighted by specific offsets to address

Figure 10.3 Sample risk triggers.

T
ri

g
g

er
s

Internal review20%

30%

40%

Notify risk officer

at level above

Increase staff

in key areas

384 � Software Sizing, Estimation, and Risk Management

overarching critical requirements is prepared. Priorities are determined by
the severity of the consequences in areas such as safety, security, and
reliability that could jeopardize successful deployment. Stand-alone risk
tools, such as Microsoft Excel (used as a risk register), Active Risk Manager
(ARM), the Risk Rating System, Risk Radar, Risk Matrix, RiskNav, RiskTrak,
Technical Risk Identification and Mitigation System (TRIMS), the Program
Manager’s WorkStation (PMWS), or risk tools integrated into broader, inte-
grated project management tools such as PMTOOLBOX can be used to
create and maintain the risk index. Keep in mind that the risk index is
dynamic and it should reflect changes in likely impacts or probabilities.

Risks must be prioritized because no project has the resources to
mitigate every risk. You therefore need to know which risks pose the
greatest threat to a project and should receive priority. In addition, risks
must be continuously prioritized because of changing circumstances or
external forces that change the priorities of particular risks. The most
important risks must be identified because most organizations can only
actively mitigate a certain number of risks at a time. The risk officer should
focus on actively tracking the highest priority and most likely risks and
reporting to management those that may threaten project success.

A risk index can be used to track and prioritize risks based on criticality,
the time available for action, their effects on safety, security, critical system
operations, and other vital programmatic, operational, deployment, or enter-
prise factors. The risk index should include means of defining and assign-
ing weights to predefined management factors to track changing priorities.
Of course, some risks (designated opportunities) can generate desirable
results. Such risks should be studied and implemented as appropriate.

Step 6: Report Risks

The output of this step is the reporting of risks to project management and
stakeholders at a predetermined frequency based on priority, time to impact,
and potential influence on the project should they transition to problems.
Effective reporting results in timely mitigation of high priority risks.

Risks must be reported so that appropriate action can be taken. An
effective reporting structure should focus on reporting problems so that
they can be effectively resolved. The reporting structure should be actively
maintained and regularly reviewed to allow the project staff to focus on
the risks with the highest impacts.

Reporting Problems versus Risks

It is important to understand the differences between risks and problems
when defining a reporting structure so that management understands that

Risk Management Process � 385

not all information in a risk report requires immediate action or that the
enterprise, organization, or program has been affected. Risks represent
the potential for future problems that have not yet resulted in impacts.
An impact will result only if a risk transitions to a problem and is not
successfully mitigated. Problems are risks that were not successfully mit-
igated and thus impacted a project. An organization should therefore have
separate processes for both risk management and problem management.
The risk officer should scan the risk database to identify risks that will
produce problems based on the following criteria:

� Risk impact is 4 or 5
� Probability is 5
� Timeframe is near

Problems and risks require different reporting and management pro-
cesses. It is important to report the two as distinct categories of events
to ensure that project staff members understand that risks are not problems.

Risk Reporting by Exposure

In a typical project of any duration, an effective risk management process
will identify many risks, often hundreds of them. This will drown man-
agement in risks unless the risk officer maintains the risk list based on
priorities and utilizes a consistent and effective process to report risks.
The reporting levels are:

� Active level for highest priority risks — The risk officer reports
a certain number of highest priority risks — typically no more than
12 — to the manager on a frequent basis, normally several times
a week.

� Reporting level for medium priority risks — The risk officer
actively tracks and reviews risks at reporting level and they may
be evaluated by a risk review board regularly (normally weekly).
The number of risks reported typically does not exceed 30.

� Archive level for lowest priority risks — These risks are eval-
uated regularly but not necessarily frequently (normally every three
to four months).

The manager should work with the risk officer to determine how many
risks on the active list should be reviewed and how frequently. In our
experience, some managers have wanted the top three risks reported
daily; others require weekly reports of the top twenty.

386 � Software Sizing, Estimation, and Risk Management

Step 7: Establish Risk Reserve

The output of this step is the additional amount of time, money, or
personnel required to fund mitigation activities that will take a program
to successful completion. A risk reserve may be built into the estimates
by setting the probability within parametric models. When the estimate is
allocated to specific activities and elements of a project and the associated
costs are accounted for and budgeted through the work breakdown
structure, a reserve should be established to address potential problems.

The project manager should use a disciplined and comprehensive
method to assess project risk in the estimate. Estimates of the required
reserve should be defined and quantified throughout a project’s life cycle
as specific risk elements that can be used to provide adequate risk reserves.

By keeping and managing a risk reserve, an organization can fund
mitigation activities and react to risks that transition to problems. Man-
agement must understand that the processes and costs associated with
risk management are extremely cost-effective, while the cost of mitigation
can be significant. When the cost of risk management is balanced against
the cost of mitigation, both in dollars and reputation, risk management is
a bargain.

A risk reserve should be managed and always address reality. The risk
officer should offset the projected cost of mitigation by the number of
risks and then recommend a reserve to management based on these
calculations. The reserve should account for unanticipated or worst case
risks and be stated as one of three ranges: optimistic, most likely, and
pessimistic. The risk reserve should include the costs of the resources
required to identify and manage critical and high risk areas and also
include all projected estimates through risk resolution. The reserve should
be a true management asset owned by the manager and it should include
funds, resources, and potential staff required to address risks and their
potential effects.

Management should frequently reassess the reserve, identify resources
allocated to handle contingencies, and adjust the amount to account for
mitigation costs. Management should also frequently analyze new require-
ments for the reserve, manage requirements creep, and account for
potential expansion of work and its cost and schedule impacts. The risk
reserve should be reevaluated and updated as risk assessments occur and
account for such factors as:

� Time — Add to the schedule a percent above the estimated time
to delivery based on risk of delivery.

� Money — Increase budget to include potential additional staff,
tools, and time to potential project costs.

Risk Management Process � 387

� Staff and potential staff — The personnel organization should
continue to interview for good people and establish second sources
for single point staff risks.

� Resources — Identify second sources and mitigate key resource
risks.

Basic Risk Management Rules
Based on the seven risk management steps and a quantitative approach to
dealing with cost uncertainties, we propose six basic risk management rules:

� Rule 1: Projects that fail to manage risk are at risk. All true project
risk is plan-centered. If you do not know what your plan is, you
face no risk. If your plan is vague, your understanding of risk is
at least as vague.21

� Rule 2: Risk management is not free. Prepare to commit resources,
define a risk management process, and make a risk reserve available.

� Rule 3: Centralize risk management responsibility; distributed
responsibility must be coordinated.

� Rule 4: Prioritize risks and deal only with the most critical. All non-
negligible risks must have mitigation strategies.

� Rule 5: Program managers are responsible for action; risk managers
are responsible for risk identification and follow-up.

� Rule 6: The risk management process must be defined and con-
sistently implemented throughout an organization. Activities must
match the organization’s risk management policy.

Risk Analysis Viewed as Uncertainty Analysis
According to Evin Stump, a statistical risk (uncertainty) expert, the follow-
ing measures are popular forms of statistical and other quantitative risk
analyses:

Qualitative analysis — This analysis can be expressed in various
simple charts (high, medium, or low impact; high, medium, or low
probability, etc.). This tends to be performed at a high level of the
project. Converting qualitative to quantitative measures is a very
crude approximation. Limited accuracy is achieved by this method.
Algebraic approach — Usually calculated as

Risk = probability ¥ consequence or equivalent.

388 � Software Sizing, Estimation, and Risk Management

This is a very limited approach that does not provide a great
understanding of the risk.
Monte Carlo on work breakdown structure (WBS) cost totals
— Each WBS cost total is assigned a distribution (commonly
triangular). This is a very common approach.
Monte Carlo on a schedule network — Each task is assigned a
time-to-complete distribution. This approach reveals only schedule
risks. Schedule risk network analysis requires forward and back-
ward “passes” through the network to characterize the possibly
hundreds of paths, identify the critical path, slacks, etc. The
approach is similar to minimum path dynamic programming.
Monte Carlo on list of parameters driving cost and schedule
estimating relationships — Distributions are assigned to various
cost driving parameters. Intervening equations convert these to risk
distributions. SEER tools provide simulations of both costs and
schedules. This technique is approximately what SEER does at the
rollup level.
Monte Carlo simulation of cost and schedule estimating rela-
tionships at work element level — This covers costs and sched-
ules and relationships connecting costs and schedules and
accommodates “death stars” that fire bullets (big or small) at many
work elements, affecting both cost and duration. This approach
requires use of a schedule network processor.

The variations on these themes are too numerous to list here.22

Establishing Risk Reserve Using Commercial Grade Models

SEER-SEM can identify the amounts of schedule time and/or costs to be
held in reserve. Simply prepare the baseline plan at whatever probability
is desired — generally 50 percent, which is the most likely. Then set the
probability to the higher desired probability — 80 percent is often used.
Use the difference as the amount of risk reserve.

The following sections describe how SEER-SEM can help estimate the
minimum resources required to satisfy project commitments, deliver a
quality product within cost and schedule constraints, and meet the needs
and expectations of the end user.

Risk Management Dealing with Cost Uncertainty

Parametric models that are of most value to a project manager provide
risk and uncertainty data along with a likely estimate. As discussed

Risk Management Process � 389

elsewhere in this chapter, no single number can represent an absolute
estimate of the future but rather the result is a range of probable future
outcomes. Ranges are natural results of uncertainties specified in inputs.
Most parameters are entered in a least–likely–most format.23

Calculations made using SEER tools are obtained by running parametric
inputs through estimating machinery — equations and historical actuals —
to obtain an estimate. Now imagine that you know these parametric inputs
with absolute certainty (see Figure 10.4). You will then be able to predict
with absolute certainty.

Imagine instead, as is the norm, that you are not absolutely certain of
the parametric inputs in your work elements. You have specified each
parameter as a range from least to most. SEER uses these inputs to
characterize probability distributions. It then sends these probability dis-
tributions through its analytic machinery (see Figure 10.5). The resulting
estimate is a range of possible outcomes. Just as contributing factors
include uncertainties, there will be uncertainties in outcomes.

Risk Analysis at the Work Element Level

SEER-SEM parameters specified as ranges have three inputs: least, likely,
and most. SEER uses these inputs to construct a Pert (generalized beta)

Figure 10.4 Estimate example without uncertainty.

Figure 10.5 Estimate example including project uncertainty.

Certain Certain!
SEER

Calculation

Input 1 Input 2
SEER

calculation

Input 3 Input 4

Final estimate

390 � Software Sizing, Estimation, and Risk Management

distribution. Pert distributions are very common in risk analysis work
because they are intuitive, easy to work with, and form the basis of a
good assumption. SEER characteristics are similar to normal distributions.
Least is the lowest obtainable (left-most) value. Likely is the highest
possible (peak) value. Most is the most likely (right-most) value. Figure 10.6
depicts SEER inputs and outputs.

The key to the distributions shown in Figure 10.6 is variation in the
least, likely, and most inputs. If the parameter inputs had no variations,
the distributions would all be flat lines. The resulting estimate would be
a certainty. Estimates at 1 percent probability, 99 percent probability, and
all levels in between would be the same as in Figure 10.4.

The more inputs vary, the greater the variation in estimated outcomes.
Inputs vary based on a project’s uncertainties. For example, the extent of
instability in requirements during development may not be well under-
stood when a project is in its early planning stages. The uncertainties are
expressed as ranges describing the least (best), likely (expected), and
most (worst) cases. These expressions of uncertainty help SEER-SEM
bound the ranges of possible outcomes.

Pert Distribution Characteristics

The traditional Pert distribution has the following characteristics:

Figure 10.6 SEER inputs and outputs.

Are converted into

distributions ...

Resulting in a final

outcome

Parametric inputs by you ...

5

71

Nom(Nom, Nom+, Hi)

(1, 5, 7)

Nom+

0.027

0.0300.025
(0.025, 0.027, 0.030)

Hi Hi
SEER

calculation

Mean
Least Likely Most

Most Least

= + +

=

4

6

6

Risk Management Process � 391

For a SEER estimate at 50 percent probability, the Pert Mean is used. For
probabilities other than 50 percent, the derived standard deviation is used
to obtain the alternate probability level. Since the least and most values
may not be symmetrical in software development, SEER-SEM computes a
separate standard deviation for the positive and negative sides. When the
least and most inputs are symmetric about the likely input, this modified
Pert is equivalent to the traditional Pert.

For each input (least, likely, and most), a distribution is generated. The
probablity determines which value on the distribution to use for any particular
input. This value is then passed through the model for calculation.

To compute an estimate for a given probability, recall that all param-
eters with least, likely, and most inputs have Pert distributions. With
distributions known and specified by the parametric inputs, values at any
probability level can be obtained. Imagine that an estimate is desired at
the 40 percent level. SEER tools will obtain the estimate via the following
steps: (1) all parameter distributions are sampled for their values at the
40 percent level; (2) these values are passed through the SEER estimating
machinery. Because all parameters are set to the same probability level,
the process is equivalent to fully correlating them.

Correlation is defined as the extent to which two variables vary
together. SEER-SEM single WBS element estimates are normally calculated
on the basis of factors that are fully correlated with one another. Optionally,
users may invoke Monte Carlo analysis and view both correlated and
uncorrelated results.

Probability and Intuition

By choosing the estimate probability, you can control precisely the amount
of confidence or risk involved in a final estimate. Table 10.7 shows the
association between probability and management intuition.

The probability parameters correspond to the probability of successful
completion based on the inputs provided. When the probability parameters
are high, risk is low; when they are low, risk is high. For example, if
probabilities are set to 20 percent, SEER produces an estimate with an

Right
Most Mean

Left
Mean Least

=

=

3

3

392 � Software Sizing, Estimation, and Risk Management

80 percent chance of being exceeded in reality. If probabilities are set to
90 percent, there is only a 10 percent chance of being exceeded in reality.

Probability-Based Risk Outputs

Figure 10.7 is a cost risk chart showing the full range of probabilistic
outcomes.

Project and Roll-Up Risk Calculation

The project and roll-up risk calculation uses a special technique known
as Monte Carlo sampling to provide statistically valid estimates at the
project and roll-up levels. “The sum of the medians, not usually the median
of the sum.” Work element estimates are not static points; they are
distributions of possible outcomes, as shown in Figure 10.8.

Statistics describing the distribution of outcomes usually cannot simply
be added. For instance, if only the median cost of the distributions in
Figure 10.8 were known, to say that the sum of the medians is 7 is not
correct. The correct method for deriving the median of a combined
estimate is to first combine the estimate distributions using Monte Carlo
sampling and then derive a new median.

Monte Carlo is a type of statistical summing process by which distri-
butions are combined by drawing from each in a probabilistic manner,
adding the results of each draw, and creating a new sample from which
statistics will be derived. Each draw is called an iteration; the more
iterations, the larger the sample and the more accurate the resulting
statistics will be (see Figure 10.9).

When the samples are statistically summed, the new median is 6.6
rather than the expected 7. Apparently the first sample has more weight.
What we have done is akin to pulling one estimate from a “black box”,
another from a second box, summing the two, and thus developing a
new combined estimate distribution. Statistics to describe the new distri-
bution can then be derived.

Table 10.7 Probability and Intuition

Management Direction
Probability Level

(Percent)

Make sure your estimate is very conservative. 80

Let’s be very optimistic about things. 20

Give me a most likely estimate. 50

Risk Management Process � 393

Summary
In the previous sections, we discussed the seven essential steps that enable
a project to manage the risks facing the organization. The essential
relationships between risks and the size and cost estimates are used to

Figure 10.7 Cost risk chart.

10% corresponds to a
low confidence level.

Actual outcomes are
very likely to exceed the
estimated values.

90% corresponds to a
high confidence level.

Actual outcomes are not
likely to exceed the
estimated values

50% corresponds to a
likely estimate.

Actual outcomes are just
as likely to be higher or
lower than the estimated
values.

394 � Software Sizing, Estimation, and Risk Management

project what resources can be made available to the organization to meet
its delivery commitments to customers, users, and various stakeholders.
If the estimate is too low, the trade-offs and unacceptable shortcuts
necessary to keep costs within ceilings may result in unacceptable project
risk. If too high, Parkinson’s law may kick in, resulting in wasted resources
and unnecessary expenditures.

Figure 10.8 Work element distributions.

Figure 10.9 Combined work element distributions.

Median at 3

Distribution for

first work element

Distribution for

second work element

Median at 4

Median at 3

Median at 6.6

Median at 4

Distribution for

first work element

Distribution for

second work element

Draw randomly

Combined distribution

(sum of both random draws)

Draw randomly

Risk Management Process � 395

To be effective, risk management must involve proactive participation
by all levels of the acquirer and supplier organizations, continuous iden-
tification and analysis of risk based on a preplanned process, and a
commitment by project management to use the information to make
decisions and manage the project.

A project environment should include project-level risk management
integrated with software cost estimation techniques. The basic definition of
risk is the possibility of an undesirable outcome. Many undesirable outcomes
are rooted in estimates that were poorly prepared or were offset by man-
agement or stakeholder pressure or bias. Poorly prepared estimates that
serve as the basis for building software development plans lead to schedule
compression, product compromises for schedule’s sake, project shortcuts,
and frustrated and overworked staff trying to make up budget shortfalls.

Risk management involves both assessment and control of risks. Cost
models can be used in many ways to support both activities and can
provide ways to identify risks by providing proven and consistent project
descriptors. The cost factors included in models can serve as a checklist
of risk items that correlate to cost and schedule overruns. Cost models
also support various forms of cost and schedule risk analyses. Models
help prioritize risks and support risk management planning in deciding
the highest leverage options. Keep in mind though that cost estimation
techniques are only subsets of those that can be used in risk management.

All projects involve risks; risk assessment and risk management are
intended to address them. Risk management is a program management
tool for handling events that might adversely impact a program, thereby
increasing the likelihood of success. Risk management is a tool that will:

� Serve as a basis for identifying alternatives to achieve cost, sched-
ule, and performance goals

� Assist in making decisions on budget and funding priorities
� Provide risk information for milestone decisions
� Allow monitoring of the health of a program as it proceeds

Endnotes
1. Boehm, B. “A Spiral Model of Software Development and Enhancement.”

21.5. IEEE Computer, 1988. 61.
2. Weiss, David. “The Mudd Report: A Case Study of Navy Software Develop-

ment Practices.” Washington, D.C.: Naval Research Laboratory, May 21, 1975.
3. Evans, Michael W. “SPMN Director Identifies Sixteen Critical Software

Practices.” CrossTalk: The Journal of Defense Software Engineering, March
2001.

4. Doherty, Frank. Personal interview, September 2004.

396 � Software Sizing, Estimation, and Risk Management

5. Boehm, Barry. “Software Risk Management; Principles and Practices.” 8.1.
IEEE Software, 1991. 32.

6. Evans, Michael, Alex Abela, and Tom Beltz. “Seven Characteristics of
Dysfunctional Software Projects.” CrossTalk: The Journal of Defense Soft-
ware Engineering, April 2002.

7. Hall, Elaine. Managing Risk. Reading: Addison Wesley, 1997. 20.
8. DeMarco, Tom. “Risk Management-Management for Adults.” Software Tech-

nology Conference, Salt Lake City, 1996.
9. Boehm, Barry, Raymond Madachy, and Chris Abts. “Future Trends: Impli-

cations in Cost Estimation Models.” CrossTalk: The Journal of Defense
Software Engineering, April 2000.

10. Dekkers, Carol and Tom DeMarco. “e-Talk Radio: DeMarco, Tom.” 22
February 2001. www.Stickyminds.com

11. Norden, P.V. and B.V. Dean, Eds., Useful Tools For Project Management.
New York: John Wiley & Sons, 1963.

12. Molt, George. “Risk Management Fundamentals In Software Development.”
CrossTalk: The Journal of Defense Software Engineering, August 2000.

13. Putnam, Lawrence H. and Ware Meyers. Industrial Strength Software:
Effective Management Using Measurement. Washington, D.C.: IEEE Com-
puter Press, 1997. 27.

14. Rumsfeld, Donald. U.S. Department of Defense news briefing, February
12, 2002.

15. Institute of Electrical and Electronics Engineers and Electronic Industries
Alliance. IEEE/EIA Standard 12207. New York: IEEE, March 1998.

16. Putnam, Lawrence H., and Ware Meyers. Industrial Strength Software:
Effective Management Using Measurement. Washington, D.C.: IEEE Com-
puter Press, 1997. 71.

17. National Aeronautics & Space Administration. Software Safety Guidebook.
GB-8719.13. Washington, D.C., March 2004.

18. Information Technology Support Center. Security Risk Assessment Guide-
book. Washington D.C.: U.S. Department of Labor, September 2001.

19. Osgood, William R. “SWOT Analysis, Where Is My Business Headed and
Why? BUZGate: B2B Resources, 1999. http://buzgate.org/nh/bft_swot.html#

20. Holt,George. “Risk Management Fundamentals in Software Development.”
CrossTalk: The Journal of Defense Software Engineering, August 2000.

21. Stump, Evin. Personal correspondence, 2005.
22. Stump, Evin. Personal correspondence, 2005.
23. Galorath Incorporated Technical Note. Comprehensive Risk Treatment in

SEER Tools: How SEER Tools Handle Probability and Risk. El Segundo:
Galorath Incorporated, 2001.

397

Chapter 11

Applying SEER-SEM to
Estimation Processes

Adding manpower to a late software project makes it later.

Frederick P. Brooks1

This chapter introduces the SEER Software Estimating Model (SEER-SEM),
and provides basic definitions and concepts. The chapter illustrates how
SEER-SEM fits into the estimation process described in Chapters 2 through
4; how to use the size information discussed in Chapters 5 through 8; and
how it supports the risk management process defined in Chapter 10. (SEER
support of Chapter 9 “Performing to Estimate” concepts are covered in
Chapter 12.) Much of the information in this chapter was developed from
Galorath Incorporated internal documents and other documentation pub-
lished by Galorath. Therefore we acknowledge contributions by Karen
McRitchie (Vice President of Development) and Lee Fischman (Director of
Special Projects) who were the primary authors of many of these papers.
Mike Ross (Chief Engineer) also provided documents from which this
chapter was developed.

398 � Software Sizing, Estimation, and Risk Management

Introduction to SEER-SEM Project Manager
Edition Tools
SEER-SEM is the flagship product for software project estimation planning
and control. As shown in Figure 11.1, the Project Manager Edition com-
prises a suite of tools that enable the user to conduct software sizing,
software estimation, software project monitoring, and software project
control. These functions are all supported by SEER-SEM and its knowledge
bases. Additionally, for systems involving embedded software and hard-
ware, SEER-H (the hardware estimation tool with total system vision)
integrates software estimation with hardware estimation. It also provides
system-level costs such as systems engineering, system project manage-
ment, and system test operations for complex hardware and software
systems producing total ownership costs. The Project Manager Edition
includes ten components.

1. SEER-SEM™ — This is a powerful decision-support tool that
estimates software development and maintenance costs, labor, staff-
ing, schedule, reliability, and risk as a function of size, technology,

Figure 11.1 SEER Project Manager Edition, basic architecture.

2. SEER-AccuScope
 (Software Sizing) 3. SEER-ScatterPlot 4. SEER-SEM Client

 for Microsoft Project
TM

5. SEER-RAA
 Repository analysis
 application

1. SEER-SEM
 Software estimation
 model

9. SEER-DB
 Projects open database

7. SEER Local
 Project Files

6. SEER-SEM
 Knowledge Bases

8. SEER-RDB
 Corporate repository

10. SEER-PPMC
 Parametric project
 monitoring & control

External Apps
COTS or custom

Microsoft ProjectTM

Applying SEER-SEM to Estimation Processes � 399

complexity, and any project management constraints. SEER-SEM is
effective for all types of software projects, from commercial IT
business applications to communications, to real-time embedded
aerospace systems. It provides the information necessary to make
vital decisions about development and maintenance of software
products, ensuring project plans that are realistic and defensible.

2. SEER-AccuScope™ — This component allows you to ascertain
project size using comparative analogy techniques. It is extremely
useful for sizing, value assessment, and other quantitative mea-
surements whose estimations of absolute value are difficult. SEER-
AccuScope can also work with a repository of historical information
that can be automatically transferred to SEER-SEM for cost, schedule,
and risk analysis.

3. SEER-ScatterPlot™ — This is a repository analysis tool that allows
users to view past data, perform regressions, develop and display
trends, and compare them to new estimates for cross-checks and
confidence. Users may filter datasets to the points of interest based
on configurable criteria and may select individual points to examine
their values or drop outliers. SEER-ScatterPlot also generates an
equation based on the data and shows the correlation and other
statistics. It can be configured to work with an SQL or desktop
database.

4. SEER-SEM Client For Microsoft Project™ — This component
transforms Microsoft Project into a tool for planning software devel-
opment projects. The Client uses SEER-SEM’s estimation engine to
determine cost effort and schedule. The Client automatically con-
structs a complete project plan, letting you anticipate every aspect
of the development life cycle. You can also have the Client auto-
matically construct a complete project plan from your SEER-SEM
project estimate. You can create custom life-cycle templates that
build best practices directly into your project plans. You can also
customize labor categories to reflect the way that your organization
assigns tasks to departments or labor categories to accurately plan
staff allocation for a project.

5. SEER-RAA Repository Analysis Application — This application
allows users to add and edit data in the SEER repository (SEER-
RDB). Data may be imported and exported as well.

6. SEER-SEM knowledge bases — Contain information regarding
various project types and allow a range of estimates to be made
with only a few high level inputs. Knowledge bases are divided into
six categories for program, component, and unit elements and four
categories for COTS elements. The six program, component, and unit
knowledge bases are: (1) Platform, (2) Application, (3) Acquisition

400 � Software Sizing, Estimation, and Risk Management

Method, (4) Development Method, (5) Development Standard, and
(6) Class. A knowledge base is a set of parameter values based on
actual project, requirement, and environment data similar to an
estimating scenario that can be used to initialize parameter values
in WBS elements. Knowledge bases provide a relevant range of
values that serve as benchmarks or sanity checks to reference as
your project develops. They can be customized to reflect specific
factors, and users may also add their own knowledge bases.2

7. SEER Local Project Files — SEER-SEM may store project files in
its own internal format or an open database.

8. SEER-RDB™ — This is a corporate repository containing com-
pleted software project data. It may be used by SEER-SEM, SEER-
AccuScope, and SEER-ScatterPlot.

9. SEER-DB™ — This is an open SEER-SEM project database for
organizing project estimates, managing configuration, and allowing
corporate access. It allows for version control, estimate archiving,
and access control of project data. Additional applications may
integrate pre- or postprocess data contained in SEER-DB.

10. SEER-PPMC™ — The PPMC acronym stands for parametric project
monitoring and control (see Chapter 12). This component combines
earned value management methods with parametric estimating
methods and techniques and provides indications of project health
that are timely, accurate, and closely connected to the root cause
of potential trouble. The standard metrics are integral parts of the
status indications process and include schedule, cost, and time
variances, schedule and cost performance, and to-complete per-
formance indices.

The Project Manager Edition is only part of the SEER family of products.
Other SEER products worth mentioning in the context of this book are:

SEER-SEM Analyst Edition — This product suite includes a com-
pletely data-driven cross-check to a parametric estimate using SEER-
ProjectMinerTM technology.
SEER-H™ with Total System Vision — SEER-H is a robust deci-
sion-support tool that provides a means for estimating the life-cycle
cost for hardware projects of any size, from individual components
to a variety of complete product assemblies. Using parametric
algorithms, extensive knowledge bases, or user-supplied data,
SEER-H can reliably and accurately estimate the total cost of
ownership for new product development projects. It provides cost
and pricing vision from project inception to production, including
systems level, product development, production, operations and
support, and disposal costs. It also provides detailed insight into

Applying SEER-SEM to Estimation Processes � 401

the risks, uncertainties, and cost drivers associated with hardware
development, acquisition, and integration. SEER-H can also inte-
grate SEER-SEM and SEER-DFM (design for manufacturability) esti-
mates, maintaining full association to the source estimate to provide
the most complete and robust roll-up of an entire program or
project, complete with system level costs.
SEER-CriticalMass™ — This component makes software sizing,
often the most difficult part of software estimation, easier and more
accurate, bringing practitioners and estimators closer. It allows you
to automatically extract software size from requirements reposito-
ries or UML use cases. To accomplish this, SEER-CriticalMass inte-
grates directly with IBM Rational Rose and Rational Modeler tools
then exports sizing results directly to SEER-SEM.

Details and Uses
SEER-SEM is composed of a group of models that work together to provide
estimates of effort, duration, staffing, and defects. The models can be
briefly described based on the questions they can answer:

Sizing — How large is the software project being estimated?
Technology — How productive are the developers?
Effort and schedule calculation — What amounts of effort and
time are required to complete the project?
Constrained effort and schedule calculation —How does the
expected project outcome change when schedule and staffing
constraints are applied?
Activity and labor allocations — How should activities and labor
be allocated into the estimate?
Cost calculation — Based on the expected effort, duration, and
labor allocation, how much will the project cost?
Defect calculation — Based on product type, project duration,
and other information, what is the expected, objective quality of
the delivered software?
Maintenance effort calculation — How much effort will be
required to adequately maintain and upgrade a fielded software
system?3

SEER-SEM’s most basic concept revolves around Brooks’ law4 (there
is an incremental person when added to a software project that increases,
not decreases, the duration of a project). Minimum time is achieved by
staffing a project as quickly as possible, but not so quickly that the project
suffers from having too many people assigned. In this minimum time

402 � Software Sizing, Estimation, and Risk Management

scenario, effort will be greater but the project will be completed as quickly
as possible. The most important concept to understand is that there is a
minimum time required to complete a software project. In order to complete
a project more quickly, one must (1) build less software, (2) improve the
technology and environment so that productivity increases, or (3) accept
more risk (and possibly put the project on a death march5). Users may
then refine the initial estimate by specifying the individual parameters,
constraints, and other information. Trade-offs may then be performed until
an acceptable project plan is determined.

Summary Input and Output Definitions
SEER-SEM contains numerous parameters defining size, complexity, tech-
nology, risk, and uncertainty (see Figure 11.2). The parameters are con-
solidated into the following categories:

Figure 11.2 SEER-SEM summary inputs and outputs.

Effort

Schedule

Cost

Risk

Probability

Constraints:

staff,

schedule

Effective

complexity SEER-SEM

Estimation

processing

SEER-SEM summary input and output definitions

Effective

technology

Effective size

(effort units)

Defects

Applying SEER-SEM to Estimation Processes � 403

Effective size (effort units) — SEER-SEM derives internal size
units (sometimes called effective size or effort units) from lines of
code, function points, use cases, object points, or proxies that
could describe any other size metric, taking into account whether
the software is new or reused. Additionally, SEER-SEM tracks total
size, that is, the size when the project is completed, independent
of the effort required to build the product.
Effective technology — This is the measure of the developer’s
propensity for productivity based on the requirements of the prod-
uct being developed. The greater the effective technology, the
higher the propensity for productivity and the more productive the
development will be. Effective technology is the combined impact
of SEER-SEM’s 34 technology and environment parameters (detailed
later in the chapter). Effective technology may be used as an index
to and a benchmark of productivity of the project being estimated,
and these can be used to compare the productivity achieved on
other projects and by other organizations independent of size and
overall application complexity.
Effective complexity — This factor represents the difficulty of
the software job. The greater the complexity, the more difficult to
staff because of the complexity of the problem of completion in
minimum time.
Constraints — SEER-SEM’s constraints include user-supplied
schedule and staffing constraints.
Probability — The effort and schedule probability (confidence
level) at which estimates are calculated.
Effort — A measure of development effort expressed in months,
hours, and costs.
Schedule — Development schedule duration in months and by
date.
Risk — The range of risk and uncertainty in an estimate.
Defects — The number of defects produced and removed during
development and the number of defects latent in the completed
software.

Figure 11.3 illustrates SEER-SEM’s Quick Estimate screen showing sum-
mary inputs and outputs.

SEER-SEM Concept
SEER-SEM is based on the concept that if a user can describe the essential
characteristics of a project and range of size, SEER-SEM can provide

404 � Software Sizing, Estimation, and Risk Management

estimates of schedules, efforts, staffing, risks, uncertainties, and defects,
characterizing each as a most likely estimate or a risk estimate. Figure 11.4
illustrates the SEER-SEM screen that allows a user to create or modify
WBS elements. For initial estimates, users only need to select knowledge
bases from a list and input a size range, as follows:

� Platform (mission, e.g., financial processing, ERP, avionics)
� Application (function, e.g., database, business analysis tool, trans-

action processing)

Figure 11.3 SEER-SEM quick estimate showing summary inputs and outputs.

Figure 11.4 SEER-SEM’s Create/Modify WBS Element knowledge base selection.

Applying SEER-SEM to Estimation Processes � 405

� Acquisition method (source, e.g., new development, concept reuse,
major modification)

� Development method (paradigm, e.g., evolutionary, off-the-shelf
integration, RUP, Web site construction)

� Development standard (development process, e.g., ISO 9001, ANSI
J-016, none)

� Class (optional, user organization defined)
� Size (e.g., lines of code, function points, objects, use cases, screens)

SEER-SEM’s initial estimation mathematics then compute the minimum
time, effort hours, costs, delivered defects, risks, and uncertainties. The
original model worked only with the Raleigh curve models for schedule
and staffing. Today SEER-SEM will generate minimum time, optimal effort,
and work with real-world staffing constraints imposed on a project.

Optimal effort stretches the schedule in order to achieve a lower cost
plan. Constrained staffing uses comparisons to the actual staffing plan and
generates the schedule and effort based on that staff. Figure 11.5 illustrates
this.

SEER-SEM Sizing
In its initial versions, SEER-SEM used only lines of code as its baseline
size input. (See Chapter 5 for a detailed discussion of this topic.) While

Figure 11.5 Staffing impacts on schedule and effort.

Schedule

slip

12 24 36 48

4

8

10

Elapsed calendar time (months)

A

B

C

D

= Effective staffingA B C D= Staffing beyond plan = Understaffed= Overstaffed

Actual

 delivery

Level

staffing

Optimal

staffing
Unaccomplished

work

Planned

 delivery

Cost

overrun

406 � Software Sizing, Estimation, and Risk Management

source lines of code represent an accepted method of measuring size
from a developer’s perspective, metrics such as function points capture
software size functionally, from a user’s perspective. SEER-SEM’s function-
based sizing (FBS) metric extends function points so that hidden parts of
software such as complex algorithms can more readily be sized and users
can produce estimates even if they do not understand how to count
function points. The FBS metric approximates unadjusted function points.
(See Chapter 6 for a detailed discussion of function points and SEER
function-based sizing.)

With SEER-SEM, all size metrics are translated to effective size, including
those entered using function-based sizing. This is not a simple conversion.
Rather, the tool incorporates factors including phase at estimate, operating
environment, application, and application complexity. All of these con-
siderations significantly affect the mapping between functional size and
effective size. After function-based sizing is translated into function points,
it is then converted into effective functions as:

Effective functions increase in direct proportion to the amount of new
software being developed. They also increase by lesser amounts as pre-
existing code is reused in a project, depending on how much rework
(classified as redesign, reimplementation, and retest) is required to reuse
the code. Effective size is computed from effective functions as follows:

where Lx is a language-dependent expansion factor; AdjFactor is the
outcome of calculations involving other factors mentioned above (i.e.,
phase at estimate, etc.); and Entropy ranges from 1.04 to 1.2 depending
on the type of software being developed.7

SEER-SEM Programmatic Architecture

Open Databases

The full SEER suite includes two open databases that may or may not be
used in any particular installation. SEER-DB allows the storage, retrieval,
and configuration control of SEER project estimates from diverse locations

UFP NewSize ExistingSize

Redesign

e = +

+. .0 4 0 225 0 35+()Reimpl Retest.

S L AdjFactor UFPe x

Entropy
= ()(/ .)1 2

Applying SEER-SEM to Estimation Processes � 407

via Internet, intranet, VPN, etc. SEER-RDB stores data from completed
projects that can be accessed by SEER-AccuScope, SEER-ScatterPlot, and
other SEER tools as well as Microsoft Office and other third-party tools.

Communicating with SEER-SEM via Microsoft COM

SEER-SEM supports Microsoft COM so that users can have dynamic links
between SEER and other programs. For example, an Excel spreadsheet
may contain software size data linked into SEER-SEM. In this case, chang-
ing the size in the spreadsheet will automatically update the SEER-SEM
estimate. The SEER-SEM outputs can also be linked to any other programs
that support Microsoft COM.

Server Mode

SEER-SEM has the capability to execute a stream of commands, either
from the clipboard, a file, or via Microsoft automation. This feature quickly
and automatically allows you to build and edit SEER-SEM project files that
have input data coming from other sources. It is known as Server Mode
because SEER-SEM can act as an estimating server to other applications.8

Server Mode has been used for numerous applications, including Excel
spreadsheets, SEER-SEM Client for Microsoft Project, Tecolote’s Ace-It,9

Frontier Technologies’ ICE,10 Phoenix’s Model Center, and Engineous’
Fiper.11

Applying SEER-SEM Project Manager Edition
to the Estimation Process
The ten project estimation processes introduced in Chapters 2 through 4
can be efficiently executed using the SEER-SEM Project Manager Edition.
Steps 1 through 9 will be reiterated throughout this chapter. Step 10 is
covered in Chapter 12.

Steps 1 through 3: Establish Estimate Scope and Purpose;
Establish Technical Baseline, Ground Rules, and Assumptions;
and Collect Data

In Steven Covey’s Seven Habits of Highly Effective People, we learned to
“begin with the end in mind.”12 A SEER estimate also begins with the end
in mind — bounded or defined by completing the first three steps of the

408 � Software Sizing, Estimation, and Risk Management

estimation process. It is best to understand the purpose and scope, the
project being estimated, and the ground rules and assumptions before
developing a detailed estimate. A SEER-SEM estimate can be developed
using only a single line WBS or with a detailed, decomposed WBS. The
level of detail of the final estimate is determined by its scope and purpose.
For example, if the goal is simply to generate a rough-order-of-magnitude
(ROM) estimate, a high level trade-off, or a cross-check to another method,
a single line may be sufficient. If an estimate will serve as the basis of a
project plan, bid, or another high fidelity use, decomposing the WBS at
least to the major computer program level is appropriate.

When using the SEER-SEM Project Manager Edition, you must also
determine what activities will be included in the development effort. To
that end, SEER-SEM enables you to compose a WBS all the way down to
the lowest level component if desired. If the project will include mainte-
nance, you specify the number of years of maintenance to be provided.
SEER-SEM can also provide total ownership cost estimates, including
estimates of both development and maintenance costs.

In defining the end state of an estimate, you must also determine
whether the estimate will be most likely or risk-adjusted. If it will be
adjusted for risk, you must determine your tolerance level for risk. Often
estimates run at 50 percent probability (most likely), but for risk adjust-
ment, an 80 percent probability may be most appropriate. Schedule and
effort risk are controlled separately.

You may also determine the number and scope of releases if the system
will be developed incrementally and released in stages. Although this action
is not necessary for estimates made early in a project, we recommend
separating releases for project plan level estimates.

Additionally, reuse and COTS software should be identified. Using
SEER-SEM’s ranges, it is possible to identify a blend of project alternatives
and obtain most likely project costs and schedules even before detailed
project decisions are made. To do so, provide a range of least, likely, and
most of the various development alternatives. For example, 100 percent
of the code could be developed from scratch or 50 percent could be
developed from scratch with the other 50 percent provided by COTS.
Once the actual development approach has been determined, it should
be modeled using its range in SEER-SEM.

SEER-SEM helps establish and document the ground rules and assump-
tions upon which the estimate will be based by encouraging you to record
notes that describe each WBS element and parameter. This feature also
helps you document the source of estimate information and avoid some
of the most frustrating aspects of planning a project: reviewing planning
information and not remembering why you set your project parameters
as you did and not understanding your assumptions. To assist in the data

Applying SEER-SEM to Estimation Processes � 409

collection process, the SEER-SEM knowledge bases provide much of the
data needed to develop an initial estimate. In fact, you can use the
knowledge bases in conjunction with SEER-AccuScope to quickly generate
a viable first estimate.

In order to ensure the estimate you develop will be valid, it is critical
to ensure that definitions for each parameter are well understood. You
should also confirm that those definitions are being used. For example,
you must diligently verify the definition of size you are using, the defini-
tions of labor categories, the phase of the project you are estimating, and
other essential inputs. Failure to do so can render an estimate worse than
useless. For example, a support contractor once gave us a line of code
count and, when asked how a line of code was defined, provided an
unclear answer. We then read each definition of lines of code to the
contractor and asked whether the definition was the one used to produce
the count. Did the contractor use physical lines? Non-comment source lines?
Amazingly, the contractor finally said, “We didn’t get into that much detail.”
The contractor provided a size count for a deliverable product, without
understanding what it was counting. The company simply made up the
count. The Galorath size methodology matrix is designed to feed data
into SEER-SEM, with a range of least, likely, and most for each size.

Before actually developing an estimate, it is very useful to identify
specific goals in terms of schedules, costs, defects, and other issues. As
shown in Figure 11.6, when you enter your goal into SEER-SEM, it provides
useful feedback regarding the probability of achieving each goal based
on project parameters.

SEER-SEM Software Sizing (Step 4)

Because size is the most important input, SEER-SEM provides numerous
sizing tools and methods. Size can be described as lines of code, function
points, SEER function-based sizing, use cases, etc. SEER-AccuScope per-
forms relative sizing and numerous other alternatives using proxy features;
and a host of other methods are available.

Figure 11.6 SEER-SEM goals and probability of achieving estimation.

410 � Software Sizing, Estimation, and Risk Management

In the SEER context, software sizing refers to the estimation of
(1) developed size; (2) amount of reuse; and (3) COTS components. As
shown in Figure 11.7, users can enter lines of code and function points
in the same estimate. This is extremely useful for estimating enhancements
to an existing system. A code counter can be used to count the preexisting
lines of code, and then the estimate for new functionality can be expressed
in function points or SEER function based sizing.

Manual Sizing
Manually sizing (without a software sizing tool like SEER-AccuScope)
involves counting or estimating lines of code, function points, SEER
function-based sizing, etc., and determining how much is new, and how
much is preexisting. Additionally, preexisting should be designated as
designed for reuse and not designed for reuse so that the SEER-SEM reuse
factors can operate with most precision (SEER-SEM knowledge bases
provide different reuse factors for the preexisting code designed and not
designed for reuse). Specific techniques for manual sizing were discussed
in preceding chapters.

Automated Sizing with SEER-AccuScope
SEER-AccuScope enables you to automate the software sizing process at
an early stage when relatively little is known about size. It uses a relative
sizing process by which you can estimate project size by making judgment
comparisons regarding the size of other known items and other unknown

Figure 11.7 Partial SEER-SEM input view showing lines and functions.

Applying SEER-SEM to Estimation Processes � 411

items. As shown in Figure 11.8, SEER-AccuScope also includes a repository
of past projects and analogies (domain specific functional patterns of your
organization) that make relative sizing easier.

SEER-AccuScope’s central focus is its estimated and reference items
lists. It also accesses SEER-RDB for completed sizes and analogies. Initially,
SEER-AccuScope includes three software-specific analogy sets: (1) func-
tional; (2) desktop application; and (3) data-centric.

Functional analogies — The analogies in this set represent very
specific items that could be built into desktop software, such as input
screens, reports, and other items. This set is comprised of examples that
are closely associated with function points. Functional analogies let you
specify what an item under development most closely matches, and your
entry will directly result in a function point count.

Desktop application analogies — The analogies in this set correspond
to whole software applications of varying sizes. They let you compare
the software you are building to complete applications. They are most
useful if the modules you specify are relatively inclusive of functionality,
such as entire subsystems, rather than much smaller functional elements.

Data-centric analogies — These analogies are based on the idea that
you can anticipate system size by counting the number of key internal
data structures around which the system is being designed. Research has
provided some support for this idea, although these analogies are most
appropriate for more data-driven systems rather than those that are more
algorithmic. In industry parlance, counting data structures is sometimes
called sizing by inference.

Figure 11.8 SEER-AccuScope sample screen.

412 � Software Sizing, Estimation, and Risk Management

SEER-AccuScope supports the following size metrics:
Function points — The standard list of detailed function point entries.
Fast function points — The same set of detailed function point

entries, with each entry’s complexity all set to average, speeding entry.
Unadjusted function points — A weighted sum of the detailed func-

tion point entries that constitutes a useful summary form for function point
entry.

Source lines of code — The oldest and most commonly accepted
metric; particularly easy to obtain for completed code.

Function-based sizing — This SEER-SEM unique metric includes more
detail than traditional function points. This makes size estimation easier
while offering a clear accounting of the types of software artifacts counted.

Detailed object sizing — A detailed list of object points.
Base class — An object-oriented metric constituting the number of

base classes; a class from which other classes are derived through inher-
itance.

Top level classes — A class is a category of objects. A top level class
is another object-oriented metric that constitutes the number of top-level
classes.

Use cases — Another object-oriented metric that enables you to
estimate size at a very early stage of development.

User-defined metrics — Along with the standard list provided above,
you can create your own metrics.

SEER-AccuScope will send its resulting sizes and WBS directly back
into SEER-SEM for estimation processing, if desired. Figure 11.9 illustrates
the comparison capability of SEER-AccuScope.

Choosing Knowledge Bases for Reuse Estimation
Because reuse is an important consideration in software sizing, SEER-SEM
includes a wide range of reuse knowledge bases, each of which estimates
the amount of redesign, reimplementation, and retesting required for reused
software and categorizes the estimate as least, likely, and most. These
knowledge bases also include, as a separate item, percentages for software
designed for reuse and not designed for reuse. The following descriptive
list of SEER-SEM reuse knowledge bases (which is not all inclusive) shows
their associated amounts of estimated redesign, reimplementation, and
retesting to provide indications of how useful these knowledge bases can
be. Additionally, to provide further detail, the reengineering and modifica-
tion categories show percentages for both code designed for reuse and
code not designed for reuse. Note these values may be changed from time
to time based on data.

Applying SEER-SEM to Estimation Processes � 413

General — New and Preexisting

This knowledge base covers a combination of new and preexisting soft-
ware. It describes the amount of rework estimated to be required for a
wide range of preexisting software.

Code Generator

 This knowledge base addresses code developed via an automatic code
generation tool. Although automatically generated code does not require
detailed unit level testing and design, it does require the completion of
architecture, interface, and other design tasks. A system based on auto-
matically generated code also requires extensive testing, the estimation of
which this knowledge base is designed to facilitate. Normally the size of
generated code is expressed in terms of artifacts other than lines of code
because the number of lines is not the key effort driver. However in cases
where generated lines are the only size metrics available, the estimate of
generated code should be entered as preexisting lines.

Figure 11.9 SEER-AccuScope relative sizing comparisons.

General — New and Preexisting Least Likely Most

Redesign 5 percent 10 percent 40 percent

Reimplementation 1 percent 5 percent 10 percent

Retest 10 percent 40 percent 100 percent

414 � Software Sizing, Estimation, and Risk Management

Concept Reuse

This knowledge base addresses software design appropriated from a well
defined basic concept, including architectural definitions. Such work may
have been done previously and then shelved. Concept reuse requires full
coding and testing, but it could result in saving 10 to 20 percent in basic
design costs. Development language may not be the same.

Full Design Reuse

This knowledge base is for software utilizing a completely preexisting
design that was successfully implemented and that is now being abstracted
for reuse. Although this job is more like renovation than reuse, at least
some low level design can be reused. Full recoding and testing are
required, although design tasks are reduced 30 to 40 percent.

Integrate As-Is

This knowledge base supports integration as is, where no design or coding
is required — well built code that is considered reliable and was delivered
to the developer for virtually turnkey integration with the rest of the
system. The software also may originate from a commercial library and

Code Generator Least Likely Most

Redesign 20 percent 30 percent 40 percent

Reimplementation .01 percent .01 percent .01 percent

Retest 50 percent 65 percent 80 percent

Concept Reuse Least Likely Most

Redesign 80 percent 85 percent 90 percent

Reimplementation 100 percent 100 percent 100 percent

Retest 100 percent 100 percent 100 percent

Full Design Reuse Least Likely Most

Redesign 20 percent 30 percent 40 percent

Reimplementation 100 percent 100 percent 100 percent

Retest 100 percent 100 percent 100 percent

Applying SEER-SEM to Estimation Processes � 415

be designed for full reuse. While some testing is required to ensure
compliance and proper functioning, heavy internal testing of the delivered
code is not necessary. This knowledge base assumes that testing will
exercise about 10 to 30 percent of the delivered code.

Integrate with Configuration

This knowledge base supports use of an off-the-shelf software item
intended to be customized, either through code patches or through
extensive tables. The software must be customized (perhaps about 5
percent of the total delivered) in order to be useful. Testing will exercise
about 10 to 30 percent of the delivered code.

Language Conversion, Automated

Use this knowledge base for estimating the effort required to convert
software from one language to another (e.g., from Fortran to C++) using
an automated tool. This knowledge base assumes that no change need occur
in the software design beyond what is dictated by the language change. The
basic application and mission will remain intact. If there are further design
changes beyond language conversion, rework should be examined and
updated manually. While the automated tool used for conversion will account
for the coding effort, some manual reimplementation effort is assumed.

Integrate As-Is Least Likely Most

Redesign 0.01 percent 0.01 percent 0.01 percent

Reimplementation 0.01 percent 0.01 percent 0.01 percent

Retest 10 percent 20 percent 30 percent

Integrate with Configuration Least Likely Most

Redesign 4 percent 5 percent 7 percent

Reimplementation 0.01 percent 0.01 percent 0.01 percent

Retest 10 percent 20 percent 30 percent

Language Conversion, Automated Least Likely Most

Redesign 2 percent 6 percent 13 percent

Reimplementation 1 percent 3 percent 6 percent

Retest 44 percent 49 percent 61 percent

416 � Software Sizing, Estimation, and Risk Management

Language Conversion, Manual

Use this knowledge base for estimating the effort required to convert
software manually from one language to another (e.g., from Fortran to
C++). It assumes that no change need occur in the software design beyond
what is dictated by the language change. The basic application and mission
remain intact.

Modification, Major

This knowledge base supports a major modification to existing software.
Typically, the existing software will be used for a new application or
mission. It often involves a target environment change and assumes the
programming language will not have any significant changes.

Modification, Minor

This knowledge base supports a minor modification to existing software.
Typically, the existing software is used for the same mission, with some

Language Conversion, Manual Least Likely Most

Redesign 2 percent 6 percent 13 percent

Reimplementation 100 percent 100 percent 100 percent

Retest 44 percent 49 percent 100 percent

Modification, Major Least Likely Most

Redesign (code not designed for
reuse)

10 percent 25 percent 91 percent

Reimplementation (code not
designed for reuse)

6 percent 11 percent 22 percent

Retest (code not designed for
reuse)

38 percent 59 percent 100 percent

Redesign (code designed for
reuse)

2 percent 13 percent 23 percent

Reimplementation (code
designed for reuse)

6 percent 2 percent 11 percent

Retest (code designed for reuse) 19 percent 15 percent 100 percent

Applying SEER-SEM to Estimation Processes � 417

changes in functionality. The target environment and programming lan-
guage will not have any significant changes.

Redocumentation

This knowledge base is for estimating the effort required to make major
revisions to the software specifications and manuals. No change is made
to the software. It assumes some familiarity with the software, and that
some existing documentation (up to 25 percent) can be reused.

Reengineering, Major

This knowledge base supports major rework of an existing application to
improve program structure, documentation, and maintainability. This effort
will include moderate amounts of reverse engineering to ascertain the
program design. The knowledge base assumes the basic functionality of
the application will remain intact, and that the programming language
will stay the same.

Modification, Minor Least Likely Most

Redesign (code not designed for
reuse)

2 percent 7 percent 15 percent

Reimplementation (code not
designed for reuse)

1 percent 3 percent 7 percent

Retest (code not designed for
reuse)

1 percent 6 percent 12 percent

Redesign (code designed for
reuse)

0.01 percent 3 percent 4 percent

Reimplementation (code
designed for reuse)

1 percent 1 percent 3 percent

Retest (code designed for reuse) 1 percent 1 percent 12 percent

Redocumentation Least Likely Most

Redesign 17 percent 29 percent 48 percent

Reimplementation 0 percent 0 percent 0 percent

Retest 0 percent 0 percent 0 percent

418 � Software Sizing, Estimation, and Risk Management

Reengineering, Minor

This knowledge base supports minor rework of an existing application
to improve program structure and documentation. It assumes the basic
functionality of the application will remain intact, and that the program-
ming language will stay the same.

Rehost, Major

This knowledge base supports rehosting software from one target envi-
ronment to another. It assumes a change in operating systems, target
hardware, and development tools (e.g., a port of an application from
Windows to a Macintosh environment), that the basic functionality of the

Reengineering, Major Least Likely Most

Redesign (code not designed for
reuse)

30 percent 47 percent 104 percent

Reimplementation (code not
designed for reuse)

13 percent 50 percent 85 percent

Retest (code not designed for
reuse)

44 percent 59 percent 100 percent

Redesign (code designed for reuse) 5 percent 23 percent 26 percent

Reimplementation (code designed
for reuse)

13 percent 10 percent 43 percent

Retest (code designed for reuse) 22 percent 15 percent 100 percent

Reengineering, Minor Least Likely Most

Redesign (code not designed for
reuse)

15 percent 25 percent 84 percent

Reimplementation (code not
designed for reuse)

7 percent 15 percent 65 percent

Retest (code not designed for
reuse)

28 percent 39 percent 61 percent

Redesign (code designed for reuse) 3 percent 12 percent 21 percent

Reimplementation (code designed
for reuse)

3 percent 7 percent 32 percent

Retest (code designed for reuse) 10 percent 14 percent 61 percent

Applying SEER-SEM to Estimation Processes � 419

application will remain intact, and that the programming language will
stay the same.

Rehost, Minor

This knowledge base supports rehosting software from one target envi-
ronment to a similar environment. It assumes no major operating system
changes but accommodates differences in development tools between the
platforms (e.g., a port from an SGI Unix workstation to a Sun Unix
workstation). It also assumes the basic functionality of the application will
remain intact, and that the programming language will stay the same.

Rehost, Major Least Likely Most

Redesign (code not designed for
reuse)

3 percent 12 percent 25 percent

Reimplementation (code not
designed for reuse)

1 percent 7 percent 13 percent

Retest (code not designed for
reuse)

42 percent 50 percent 60 percent

Redesign (code designed for
reuse)

1 percent 6 percent 6 percent

Reimplementation (code
designed for reuse)

1 percent 1 percent 7 percent

Retest (code designed for reuse) 21 percent 12 percent 60 percent

 Rehost, Minor Least Likely Most

Redesign (code not designed for
reuse)

2 percent 7 percent 15 percent

Reimplementation (code not
designed for reuse)

1 percent 3 percent 7 percent

Retest (code not designed for
reuse)

20 percent 25 percent 35 percent

Redesign (code designed for
reuse)

0.01 percent 3 percent 4 percent

Reimplementation (code
designed for reuse)

1 percent 1 percent 3 percent

Retest (code designed for reuse) 6 percent 10 percent 35 percent

420 � Software Sizing, Estimation, and Risk Management

Salvage Code

This knowledge base supports code that is being salvaged from another
application where heavy redesign and coding must be applied to renovate
the system successfully. The percentage of redesign and recoding required
is probably more than half, and nearly full retesting is required. Salvaging
code requires major changes to design, development environment, and
even programming language.

Subsequent Incremental Build

Use this knowledge base for estimating a deliverable incremental releas-
able build other than the initial release. It assumes no requirements work
after the development of the baseline. Maintenance estimates of subse-
quent builds or releases refer only to the portion of software being added
and modified in this build.

Using SEER Function-Based Sizing for Size Estimates
As discussed in Chapter 6 titled “Function-Based Sizing,” SEER function-
based sizing is often the quickest and easiest method of sizing, especially
when it is employed interactively with sophisticated users or program
managers who can usually provide ad hoc but valid estimates of the
anticipated numbers of screens, databases, etc.

Using Number of Programs Included in Size
The number of programs included in the size estimate is an important
parameter when the WBS has multiple computer programs in a single

Salvage Code Least Likely Most

Redesign 40 percent 55 percent 70 percent

Reimplementation 40 percent 55 percent 70 percent

Retest 90 percent 95 percent 100 percent

Subsequent Incremental Build Least Likely Most

Redesign 1 percent 5 percent 10 percent

Reimplementation 1 percent 1 percent 5 percent

Retest 5 percent 10 percent 50 percent

Applying SEER-SEM to Estimation Processes � 421

WBS element. The number of programs included in size essentially takes
the effective size and divides it by the number of programs included,
estimates one of those programs, then multiplies by the number of
programs. The schedule estimate is based on the time required for one
program with schedule assuming parallel development. It is more precise
to estimate each program individually. However, before such details are
available, this allows reasonable effort estimates to be performed.

SEER-SEM Estimation Process (Step 5)

Figure 11.10 illustrates how SEER-SEM provides the functions needed to
prepare a baseline estimate. Designing a project work breakdown structure
(WBS) in SEER-SEM is the process of translating the technical baseline,
established in Step 2 of the ten-step estimation process and entering this
into SEER-SEM. To generate an estimate, you must create at least one
WBS element to represent a stand-alone program.

Figure 11.10 SEER-SEM estimation process. Steps 4 and 5 (size software and
prepare baseline estimate).

Estimate
(SEER-AccuScope,

SEER-SEM)

Estimate
reports and

charts

Detailed
project plan

reports

Plan
(SEER-SEM Client,
Microsoft Project)

Project
Estimate

Schedule
effort, staffing,

cost defects

Activities,
dependancies,

resources

5a Design
project

5b Select
knowledge

bases

4 Size
WBS

elements

5c Specify
project

constraints

5d Adjust
individual
parameters

Constraints

Parameter
settings

Project
structure

Size: New,
change,
COTS

Adjusted
parameter
settings

422 � Software Sizing, Estimation, and Risk Management

The SEER-SEM WBS is functional, involving the software to be devel-
oped. Additional task-oriented WBS activities are noted in SEER-SEM’s
various reports. Additionally, SEER-SEM Client for Microsoft Project (see
Chapter 12) generates a blend of a functional and activity levels for the
work breakdown structure. In a minimum case, the entire project can be
estimated as a single WBS element. The SEER-SEM parameter designated
programs included in size must be set to reflect the total number of
programs estimated so that SEER-SEM can properly project effort and
schedule. Figure 11.11 presents a partial view of SEER-SEM parameters.

Generally, a program WBS element is recommended for each major
computer program, which is defined as a cohesive program developed by
a single team. Figure 11.12 illustrates a SEER-SEM WBS for a sample project.
As shown in the illustration, programs can be subdivided into components
or elements such as language, reuse, and complexity that enable you to
define a project more accurately. The sigma symbols represent roll-ups of
lower work elements. For example, Item 1 (trading support system) is a
roll-up of Items 1.1 and 1.2 and their subitems. Item 1.1.1 (analyst support)
is a major computer program that has been subdivided into two Item
1.1.1.1 (analysis and query tools) and Item 1.1.1.2 (screen interface library).

Figure 11.11 Partial SEER-SEM parameter view.

Applying SEER-SEM to Estimation Processes � 423

SEER-SEM Estimation Process Step 5b: Select Knowledge Bases

The SEER-SEM user’s manual defines a knowledge base as “a set of param-
eter values, based on actual project, requirement, and environment data
similar to your estimating scenario, which can be used to initialize parameter
values in your WBS elements. Knowledge bases provide a relevant range
of values that serve as benchmarks or sanity checks to reference as your
project develops, and they can be customized to reflect specific factors.”

Knowledge bases provide ranges for all parameters as well as specific
calibration information based on industry ranges of data. The first category
(Platform) is the most general knowledge base of the set and contains
information regarding every parameter. Application and the other knowl-
edge bases refine the input contained in the Platform knowledge base.
In general, Application knowledge bases include specifics on complexity

Figure 11.12 Sample SEER-SEM functional work breakdown structure.

424 � Software Sizing, Estimation, and Risk Management

and calibration information relevant to application type. SEER-SEM has
numerous knowledge bases and users can add their own in the final
category (Class). This category is designed specifically to hold information
that is specific to the user’s organization, such as labor rates, tool and
practice ratings, etc. Organization-specific information will override infor-
mation obtained from the five other knowledge bases.

You may have to choose between two close candidates. Pick the one
that best represents or best describes the project. In some cases, you may
be able to break down Program into lower level elements in order to
pick individual knowledge bases (see Table 11.1 and Figure 11.13). You
can fine-tune parameters to account for other situations.

SEER-SEM Estimation Process Step 5c: Specify
Project Constraints

A software development project often has one overriding constraint: get
it done as quickly as possible. SEER-SEM can support this need by
estimating the minimum time, recommended staffing, and associated effort.
When constraints such as staffing, schedule, and acceptable risk exist,
SEER-SEM can be used to analyze trade-off scenarios between known

Table 11.1 Knowledge Base Categories

Developed WBS Items and Examples COTS WBS Elements and Examples

Platform: describes primary mission or
operating environment of software
under estimation (e.g., financial
processing, ground-based mission-
critical, or intranet development …)

Platform (same as developed WBS
items)

Application: primary function of
software (e.g., database, business
analysis tool, or embedded …)

Application(same as developed
WBS items)

Acquisition method (e.g., new
development, concept reuse, major
modification …)

Component type (database, plug-
in, class library)

Development method (e.g., incremental,
spiral, COTS integration …)

Development standard (e.g.,
commercial low, IEEE, ISO …)

Test rigor (same as developed
WBS development standard)

Class (organization-specific
knowledge)

Applying SEER-SEM to Estimation Processes � 425

constraints, for example, determining whether it is worth adding an
additional person to the effort or relaxing the schedule. Figure 11.14
illustrates a schedule constraint and trade-off. Figure 11.15 shows one
method by which users may perform staffing and other trade-offs.

SEER-SEM Estimation Process Step 5d: Adjust
Individual Parameters

If your goal is to establish a rough-order-of-magnitude estimate or perform
a sanity check of an existing estimate, it is probably sufficient to enter
size, knowledge bases, and use the output ranges of probability. While
these actions may be sufficient to your purpose, Galorath recommends
that you examine at least the top ten drivers to see whether you can
extract more specific information to use in SEER-SEM to achieve more
precise results.

If your purpose is to develop more detailed estimates to achieve
effective project planning and control, Galorath recommends that you

Figure 11.13 Selecting knowledge bases.

426 � Software Sizing, Estimation, and Risk Management

examine each parameter in order to provide SEER-SEM more specific
information than is available through use of the knowledge bases alone.
Individual parameters defined later in this chapter fall into these categories:

SEER-SEM Estimation Process Step 6: Quantify Risks
and Risk Analysis

The information provided in this section originated from material Galorath
Incorporated (primarily Lee Fishman) developed, including the OSD Soft-
ware Estimation Guidebook.13 In quantifying risks and performing risk

Figure 11.14 SEER-SEM estimate with staffing constraints.

� Lines
� Programs included in size
� Proxy sizing
� Development support environment
� Product reusability requirements
� Target environment
� Confidence level
� System integration
� Software maintenance
� Goals
� Functional implementation

mechanism

� Functions
� Personnel capabilities and

experience
� Product development

requirements
� Development environment

complexity
� Schedule and staffing

considerations
� Requirements
� Economic factors
� Software metrics

Applying SEER-SEM to Estimation Processes � 427

analysis, two essential issues must be addressed: (1) SEER-SEM’s least,
likely, and most inputs and how they are processed, and (2) how SEER-
SEM handles correlations at the parameter and program levels.

Distributions

Most parameters are entered into SEER-SEM using a least, likely, and most
format as illustrated in Figure 11.16:

Least: value at which 99 percent of actual outcomes are likely to
lie above.
Likely: 50 percent actual outcomes are likely to lie above this
point and 50 percent below it.
Most: value at which 99 percent of actual outcomes are likely to
lie below.

Figure 11.15 SEER-SEM Quick Planner for applying constraints.

428 � Software Sizing, Estimation, and Risk Management

SEER-SEM surveys and analyzes all these inputs to produce an estimate.
Because each input comprises a range, the resulting estimate provides a
range of outcomes, as illustrated in Figure 11.17.

All SEER-SEM’s risk-based outputs rely on the distribution of inputs.
SEER-SEM obtains estimates by collectively modulating parameters from
their lowest to highest settings, from 1 through 99 percent probability. At
each probability level, a new estimate is generated.

At the roll-up level, SEER-SEM will also perform a Monte Carlo analysis
of a project comprised of multiple programs and report the aggregated
results for schedule and costs. Figure 11.18 illustrates a representative Monte
Carlo output for schedule. The Monte Carlo analysis is performed both
with full correlation (dependent) and with no correlation (independent).
Partial correlation and other risk enhancements are planned.

Probability Distribution of Output Ranges

Probability distributions of output ranges vary, depending on the input
ranges the user has specified or the values in the knowledge bases if the
user has not varied the parameters from their knowledge base values.

Figure 11.16 SEER-SEM parameter uncertainty range.

Figure 11.17 SEER-SEM uncertainty ranges generate risk-adjusted result.

P
ro

b
ab

il
it

y

Likely

Least Most

Value

Input 1

Input 3 Input 4

Final estimate

SEER

calculation

Input 2

Applying SEER-SEM to Estimation Processes � 429

SEER-SEM’s risk evaluation capability falls into two basic categories:
probability distributions and sensitivity evaluation. Probability distribution
charts give estimates that range from 1 through 99 percent. Sensitivity
analyses show how the entire estimate will vary as specific parameters
are modulated. Most probability estimates are presented graphically, for
management review and analysis. Figure 11.19 is a representative proba-
bility estimate.

Risk profiles that are relatively level indicate that program risk is slight.
By contrast, a sharply increasing profile indicates the presence of substantial
risk where quite different outcomes are possible. Note that parameter
settings directly drive risk. If a risk profile sharply increases, it has
parameters with inputs that are set wide apart. The sensitivity charts in
the following section provide more information regarding risk.

Risk Factor Analysis with Sensitivity Charts

Sensitivity charts, such as those illustrated in Figure 11.20, allow you to
further examine the impacts of specific parameters to more accurately
identify the sources of risk.

Figure 11.18 SEER-SEM Monte Carlo analysis result.

430 � Software Sizing, Estimation, and Risk Management

Figure 11.19 Representative SEER-SEM probability estimate.

0 18 36 54 72 90
1%

10%

20%

30%

40%

50%

60%

70%

80%

90%

99%

P
ro

b
ab

il
it

y

Trading support

Defects risk

Defects

0 800 1600 2400 3200 4000
1%

10%

20%

30%

40%

50%

60%

70%

80%

90%

99%

E
ff

o
rt

 p
ro

b
ab

il
it

y

Cost (in K)

Trading support

Cost risk

0 6 12 18 24 36
1%

10%

20%

30%

40%

50%

60%

70%

80%

90%

99%

S
ch

ed
u

le
 p

ro
b

ab
il

it
y

Months

 Trading support

Schedule risk

Applying SEER-SEM to Estimation Processes � 431

Ranked Risks with Top Ten Cost Drivers Chart

A major part of a project manager’s mandate is to identify and mitigate
sources of risk. SEER-SEM offers an analogous automated capability
through its Top Ten Cost Drivers Chart (Figure 11.21), which rates the
extent to which each parameter setting drives estimated cost. Use its ratings
as guides to which parameters need a closer look.

Precise Estimate Distributions through Risk Analysis Report

After you have determined the probability level at which to extract
estimates, the next step is to use the risk analysis report to view the effort,
schedule, etc., at the desired probability. This report (Figure 11.22 is an
example) offers precise numbers in an easily viewed format.

Figure 11.20 Representative SEER-SEM sensitivity charts.

432 � Software Sizing, Estimation, and Risk Management

Figure 11.23 illustrates the confidence tuners for changing probability
and the differences in staff levels, effort, and schedule. In this example
it appears that the 80 percent probability increases the minimum time
schedule and the effort.

SEER-SEM Estimation Process Step 7: Review, Verify,
and Validate Estimate

I once visited a top-level official in the office of the Secretary of Defense
who expressed concerns that he had no way to understand whether an
estimate he received was valid. I then showed him the SEER-SEM estimate
assessment chart. Although he had seen many SEER-SEM estimates, no
one had ever shown him the estimate assessment chart. I was surprised
because the chart clearly revealed how the current project stacked up

Figure 11.21 Top ten cost drivers.

Figure 11.22 Representative risk analysis report.

Applying SEER-SEM to Estimation Processes � 433

against others and whether the input parameters were reasonable for the
system under estimation.14

Of the many internal sanity checks that SEER-SEM provides, the easiest
to use is the color-coded estimate assessment chart. Green, yellow, and
red are used to indicate how closely the estimate compares to the
knowledge base ranges. The need for such a tool became apparent when
I noticed that one of our new analysts was inappropriately changing
technology parameters. When asked if he had looked at the effective
technology and effective complexity based on the changes he made, he
froze and I then realized I could not depend on analysts to look at the
effective technology, effective complexity, and other sanity check numbers
in models. The estimate assessment became a simple means of comparison
as shown in Figure 11.24.

After an estimate is completed, it is often useful to compare it to
industry ranges and/or historical projects to compare with prior systems
and see where it falls in comparison to past projects. If results are
significantly higher or lower than history, the chart provides some insight
and allows the reasons for differences to be reconciled. This is illustrated
in Figure 11.25 and Figure 11.26.

Figure 11.23 SEER staffing levels.

434 � Software Sizing, Estimation, and Risk Management

SEER-SEM Estimation Process Step 8: Generate Project Plan

See Chapter 12, titled “SEER-SEM Solution for Project Management and
Control,” for a detailed discussion of how SEER-SEM can be used to
achieve this step in the software estimation process.

Figure 11.24 Estimate assessment chart.

Figure 11.25 Benchmark versus KBase shows how this project compares to
others.

Applying SEER-SEM to Estimation Processes � 435

SEER-SEM Estimation Process Step 9: Document Estimate
and Lessons Learned

The SEER-SEM method of software estimation automatically documents
the estimate and the lessons learned, including the WBS, project param-
eters, and any notes created.

Custom Knowledge Bases and Calibration

SEER-SEM provides the option of developing a custom knowledge base
to document a project for future reference. You can include such details
as calibration numbers from completed projects and parameter ranges for
particular development scenarios. Additionally, scenarios capture estimate
templates including multiple WBS elements, knowledge base selections,
and other information.

Calibration (Part of Lessons Learned)

You can calibrate SEER-SEM to your data or environment if desired by
changing individual parameters or using SEER-SEM’s calibration factors.

Figure 11.26 Scatterplot of effort versus size.

436 � Software Sizing, Estimation, and Risk Management

The information in this section was developed using information available
in Galorath’s OSD Software Estimation Guidebook.13

You can calibrate SEER-SEM in several ways, for example, changing
the input parameters to match the actual project or using calibration factors
to adjust future estimates. In order to calibrate SEER-SEM, information
regarding the original development of the application must be available,
particularly the time and effort required.

Constructing Calibration Factors

A calibration factor — which is an adjustment to a project estimate —
constitutes the difference between the default outcome of an estimate and
a range that is judged for a particular case in order to be more representative.
The most effective ways to find the best possible calibration factors are:

1. Reconstruct the original software project by specifying its knowl-
edge bases, size, operating environment, requirements, and other
related parameters. Obtain SEER-SEM schedule and effort estimates
for this project.

2. Compare the estimates to the actual schedule and effort data on
the project. The proportional difference or variance (actual divided
by estimate) is the initial calibration factor. Of course SEER-SEM
does the generation automatically.

3. If information on projects completed by the proposed development
team is available, generate SEER-SEM estimates for those projects
as well. Find the variances for those estimates.

4. You can now obtain a new calibration factor. Compare the variance
for the application under consideration with variances found for
projects the proposed development team has completed (see Figure
11.27).

5. Enter final calibration factors for effort or schedule (whichever is
available) into a class knowledge base.

SEER-SEM Estimation Process Step 10: Track Project
See Chapter 12 for a detailed discussion of the use of SEER-SEM and its
Project Manager Edition to track a project throughout its life cycle.

SEER-SEM Internals
The following material covers basic SEER-SEM mathematics as well as
definitions.

Applying SEER-SEM to Estimation Processes � 437

SEER-SEM Basic Size Definition

SEER-SEM uses the logical SLOC identified in Chapter 5 and unadjusted
function points. However, SEER-SEM can be recalibrated to your unique
size definition if desired.

SEER-SEM Staff Hour Definition

Table 11.2 identifies the labor included and excluded in an out-of-the-box
SEER-SEM estimate. You can calibrate SEER-SEM and include activities and
labor categories that SEER-SEM initially excludes or exclude activities
and labor categories that SEER-SEM normally includes.

SEER-SEM Mathematical Model Overview

This section describes significant mathematical relationships in the SEER-
SEM parametric software estimating model. The Figure 11.28 flowchart
provides a high level view into some of the major components of SEER-
SEM computations.

Effective Size Mathematics

Effective Size (Se) is used by SEER-SEM as a key input to compute effort,
schedule, and defects. Effective size is calculated from user inputs. Size

Figure 11.27 Identifying project variances.

Effort

The difference is

only in the effort

Complexity

Size

Original SEM estimate

Same development

team, different project-

difference in complexity

and size.

Actual outcome

for the project

438 � Software Sizing, Estimation, and Risk Management

Table 11.2 Basic SEER-SEM Staff Hour Definition

Type of Labor Totals Include (Full SEER-SEM)

Direct Included

Indirect Excluded

Hour Information

Regular time, salaried Included

Regular time, hourly Included

Overtime, salaried, compensated Included

Overtime, salaried, uncompensated Included

Employment Class

Reporting organization, full time Included

Reporting organization, part time Included

Temporary contractor Included if direct labor

Subcontractor working on task, reporting to
organization

Included if direct labor

Subcontractor working on subcontracted
task

If included in direct labor

Consultants If included in direct labor

Labor Class

Software Management

 Level 1 Included

 Level 2 Included if direct labor

 Level 3 Included if direct labor (rare)

 Level 4 Included if direct labor (rare)

Technical Analysts and Designers

System engineer Included for software work
only

Software engineer/analyst Included

Programmer Included

Test personnel Included

Applying SEER-SEM to Estimation Processes � 439

Table 11.2 (continued) Basic SEER-SEM Staff Hour Definition

Program-to-Program integration Included

IV&V Excluded

Test and evaluation group (HW–SW) Included

Software configuration management Internal CM included

Programmer librarian Included

Database administrator Excluded

Documentation/publications Excluded

Training personnel Excluded

Support staff Excluded

SEER-SEM Activities Totals Include (Full SEER-SEM)

 Primary development activity Included

Concept demo/prototypes Included if described by user

Tools development, acquisition, installation,
and support

Excluded

Nondelivered software and test driver Included

Maintenance

Repair Included

Enhancements and major updates Included if user requests

Program-Level Functions (Major Functional
Element)

Software requirements analysis Included

 Preliminary design Included

 Detailed design Included

Code and development testing Included

Program integration and testing Included

IV&V Excluded

Management Included

Software quality assurance Included

Configuration management Included

440 � Software Sizing, Estimation, and Risk Management

Table 11.2 (continued) Basic SEER-SEM Staff Hour Definition

Documentation Program specifications and
data

Rework software requirements Included

Redesign Included

Recoding Included

Retesting Included

Documentation Included

Program-to-Program Integration and Checkout Included

Hardware/software integration and testing Included

Management Included

Software quality assurance Included

Configuration management Included

Documentation Included

IV&V Excluded

System Level Functions (Software Effort Only)

System requirements and design Included

 Systems requirements analysis Included

 System design Included

Software requirements analysis Included

Integration, testing and evaluation Included

Production and deployment Excluded

Management Included

Software quality assurance Included

Configuration management Included

Data Included

Training

 Training of development employees Excluded

 Customer training Excluded

 Support Excluded

Applying SEER-SEM to Estimation Processes � 441

inputs in SEER-SEM can be entered via a variety of metrics including
source lines of code (SLOC) and unadjusted function points (UFP). Def-
initions of SLOC vary somewhat by language, but essentially SLOC include
logical lines of code, excluding comments, blanks, nondelivered utilities
and debug codes. Effective size considers new, reworked, and COTS code.
Effective size calculations are covered in detail in Chapter 8.

Figure 11.28 Core SEER-SEM mathematics overview.

Knowledge
Bases

User

Knowledge
Bases

Labor
spread

Past
performance

User

SEER-SEM

Compute
Effective

Size

Compute
schedule,

effort,
staffing

Compute
effective

technology

Allocate
effort

schedule,
staffing by
milestone

Convert
effort to cost

Compute
staff-constraine

d solution

Compute
maintenance

schedule,
effort, staffing

Conversion factors

Sizing (New,
preexisting,
rework %)

Sizing
proxies

Effective size

Risk/ probability,
complexity, phases

included, constraints

Parameter
settings

Platform, application,
acquisition method,

development method,
development standard,

user-defined

Schedule & activity
allocation, default labor

rates

Labor allocation

Effort by phase & labor category, effective
size, effective technology, staff-constrained

effort, schedule & staffing

Labor rates, inflation, base year,
start date, purchase items

Calibration
factors

Effective size,
effective technology,

effort, schedule,
staffing

Available staffing
(optional)

Software development project
plan reports & charts

Software development
project plan data

Software development
project plan data

Software maintenance
project plan data

Software
maintenance project
plan reports & charts Maintenance years,

environment, constraints,
labor rate

Effective size, effective
technology, staff-constrained
effort, schedule, & staffing

Effective technology

FBS platform
application
adjustment

442 � Software Sizing, Estimation, and Risk Management

Function-Based Sizing Mathematics

Function-based sizing (FBS) uses functional size measures to scope a
software project. SEER-SEM uses definitions of functions consistent with
the counting standards of the International Function Point Users Group
(IFPUG). Functional inputs may be entered at a very detailed level (input
screens, data tables), at a function count level (EI, EO, EQ, ILF, EIF, and
IF), or as UFP count. Effective Size (Se) is based on a given language and
expressed in effective effort units. The size can be calculated as:

Lx is the language expansion factor. AdjFactor is the product of the
complexity, count phase, platform, and application adjustments. Entropy
ranges from 1.04 to 1.2.

Parameters

The effort, schedule, staffing, and other calculations in SEER-SEM are
driven primarily by size but also by other parameters that characterize:

� Personnel capabilities and experience
� Development support environment
� Product development requirements
� Product reusability requirements
� Development environment complexity
� Target environment
� Schedule and staffing considerations
� Requirements
� System integration
� Economic factors
� Software maintenance

A complete list of SEER-SEM parameters and their definitions is avail-
able in the SEER-SEM User’s Manual.

Knowledge Bases

SEER-SEM incorporates knowledge bases that provide parameter settings
typical for a given software development scenario. To date, Galorath has
examined well over 8,000 software development projects and continues
to gather and analyze data to provide reasonable parameter settings that
reflect particular development scenarios. Knowledge bases will populate
all parameters, but any parameter setting may be overridden with user

S L AdjFactor UFPe x

Entropy
= ()(/ .)1 2

Applying SEER-SEM to Estimation Processes � 443

settings when the analyst has more specific knowledge. Knowledge bases
are segregated into several categories:

A platform knowledge base is a collection of input parameter settings
that characterize a particular host environment.

An application knowledge base is a set of parameter settings that
characterizes the primary function or application technology type.

An acquisition method knowledge base is a collection of input param-
eter settings that characterizes the source of the software and associated
rework requirements.

A development method knowledge base is a collection of input param-
eter settings that characterize the particular software development life
cycle method or paradigm that will be used.

A development standard knowledge base is a collection of input param-
eter settings that characterize a particular software development process
standard that will be used.

Effective Technology Calculation

The SEER-SEM parameters (from analyst capabilities to security require-
ments; see Figure 11.30) are combined in a quantitative measure called
effective technology (Cte). The effective technology and size parameters
are used in effort and schedule calculations. Effective technology measures
the potential to be productive on a project. It quantifies the combined
impact of the technology and environment parameters. The greater the
effective technology, the more productive the development will be. The
effective technology has a theoretical range of 0 to 20,000. An intermediate
value called basic technology (Ctb) is used in the calculation of effective
technology.

Basic technology calculation — Inputs going into the basic technology
are:

Each parameter has a sensitivity range that translates the low, nominal,
and high rating to a quantitative value. AEXPAPPL is the combined impact
of analyst application experience and application class complexity. Cal-
culations are as follows:

� Analyst capabilities (ACAP)
� Programmer capabilities (PCAP)
� Automated tool use (TOOL)
� Modern development prac-

tices (MODP)

� Analyst’s application experience (AEXP)
� Application class complexity (APPL)
� Log on through hardcopy turnaround

(TURN)
� Terminal response time (TERM)

ctbx ACAP AEXPAPPL MODP PCAP TOOL TERM=

444 � Software Sizing, Estimation, and Risk Management

Effective technology uses the computed Ctb along with the remaining
technology and environment parameters. Each parameter has a sensitivity
range that translates the low, nominal, high rating to a quantitative value.
The related experience and complexity parameters are combined into a
single sensitivity used in the calculation of effective technology. The
combined parameters include:

A single parameter adjustment is calculated using the sensitivity of the
remaining parameters along with the combined parameters:

ParmAdjustment = LANGLEXP ¥
TSYSTEXP ¥ DSYSDEXP ¥
PSYSPEXP ¥ SIBRREUS ¥
Multiple site development (MULT) ¥ Resource dedication (RDED) ¥
Resource and support location (RLOC) ¥ Development system volatility
(DSVL) ¥

Process volatility (PSVL) ¥ Requirements volatility (change) (RVOL) ¥
Specification level–reliability (SPEC) ¥ Test level (TEST) ¥
Quality assurance level (QUAL) ¥ Rehost from development to target
(RHST) ¥

Special display requirements (DISP) ¥ Memory constraints (MEMC) ¥
Time constraints (TIMC) ¥ Real-time code (RTIM) ¥
Security requirements (SECR) ¥ Target system volatility (TSVL)

Parameter Parameter Combined

Language type
(complexity) (LANG)

Programmer’s language
experience (LEXP)

LANGLEXP

Target system
complexity (TSYS)

Target system experience (TEXP) TSYSTEXP

Development system
complexity (DSYS)

Development system experience
(DEXP)

DSYSDEXP

Process improvement
(PSYS)

Practices and methods
experience (PEXP)

PSYSPEXP

Software impacted by
reuse (SIBR)

Reusability level required (REUS) SIBRREUS

C
. ctbx

.
TURN

tb =
()

2000
3 70945

4 11
5

exp
ln(

Applying SEER-SEM to Estimation Processes � 445

The basic technology is divided by the parameter adjustment to give
effective technology:

Effort, Schedule, and Staffing Calculations

Basic Definitions

Key Inputs

Se Effective size.
Cte Effective technology.
D Staffing complexity; quantitative value for the staffing complexity

parameter.
Pk Staff loading; place on the staffing curve where staff peaks; quan-

titative value that relates to the staff loading parameter.
Fs Staff loading scale factor computed from Pk.

Key Outputs

K Life-cycle effort; total area under staffing curve. Development effort
is generally the area under the staffing curve up until the effort
peaks. Development effort is about 40 percent of the area under
the curve. In its raw form, this represents effort in person years.
It is later converted to effort months and hours.

td Schedule to peak of staffing curve; in raw form it is expressed in
calendar years; is later converted to schedule months.

Basic Effort and Schedule Equations

Minimum Time

Effort and schedule calculations are based on key relationships among
size, complexity and effective technology:

Software equation:

Staffing:

C C
ParmAdjustmentte

tb=

S C K te te d=

M
F K

Pk t

s

d

=
()%

2

446 � Software Sizing, Estimation, and Risk Management

Complexity:

The minimum time estimate appears when the complexity equation and
software equation intersect. The first step is to take the software equation
and solve for td:

Then plug the td value into the complexity equation and solve for K:

Solving for K gives:

Plug K back into the software equation to get the schedule:

Optimal Effort Calculations

If an optimal effort solution is selected, the calculations are the same as
described in the previous section, but the effective complexity relating to
the staffing rate is adjusted. The minimum time estimate assumes the
software project is staffed as aggressively as possible to achieve the least
amount of time. When optimal effort is selected, the staffing rate is slowed
sufficiently so that the project takes longer but still maintains a cohesive
development team. The effective complexity is computed using the staffing
complexity input as follows:

D
K

t d

=
3

t
S

C K
d

e

te

=

D
K

t

K

S

C K

K
S

Cd
e

te

e

te

= = =
3 3

5

2

3

K D
S

C
e

te

= 0 4

1 2

.

.

t D
S

C
d

e

te

= 0 2

0 4

.

.

EffectiveD D= 0 55 0 9. .

Applying SEER-SEM to Estimation Processes � 447

EffectiveD is then used in the effort and schedule formulas (K and td)
described in the previous section. SEER-SEM illustrates the trade between
minimum time and optimal effort (Figure 11.29).

Relaxed Schedule Calculations

For cases where a required schedule input is entered and it is longer than
the minimum time schedule, effort that fits the schedule scenario must be
computed. This involves adjusting the input schedule so it does not include
requirements or integration and test schedule. After this adjustment, the effort
relating to that schedule is calculated using the software equation and
solving for K:

The basic mathematics included here provide the framework of SEER-
SEM’s hundreds of equations and models.

Calibration Calculations

Calibration mode includes additional parameters that are normally hidden
from view. At the top of the list of parameters are entries for actual effort
and actual schedule, along with flags for whether the requirements and
systems integration and test activities are included. At the bottom of the
list, a set of adjustment factors appears.

Figure 11.29 Time and effort trade-off.

20
Effort/schedule curve

17
H

o
u

rs
 (

in
 K

)

15

12

10
Opt effort

Min time

7
10 14 18

Schedule months

22 26 30

t Normalized InputScheduled = ()/12

K S
C t

e

te d

= ()
2

448 � Software Sizing, Estimation, and Risk Management

Computing Adjustment Factors

Calibration mode can use both actual effort and actual schedule to
compute effort and schedule adjustment factors. Each adjustment factor
is the ratio of actual to estimated.

EffortAdjustmentFactor =

ScheduleAdjustmentFactor =

Calculated results appear in a calibration summary report.

Applying Adjustment Factors

The effort adjustment factor is a multiplicative factor on the uncalibrated
effort estimate used to scale it to the specified actual effort. Similarly, the
schedule adjustment factor is a multiplicative factor on the uncalibrated
schedule estimate used to scale it to the specified actual schedule. SEER-
SEM also provides nonlinear technology and complexity calibration factors
that may alternately be used. After the adjustment factors have been
computed, they may be applied directly to a program or saved in a
knowledge base and used for future estimates.

CalibratedEffort = EstimatedEffort ¥ EffortAdjustmentFactor

CalibratedSchedule = EstimatedSchedule ¥ ScheduleAdjustmentFactor

SEER-SEM Parameter Definitions
The following definitions of SEER-SEM parameters are included with
permission from Galorath Incorporated. Parameter definitions are refined
occasionally, new ones are added, and occasionally parameters are
deleted. These definitions of input parameters are from SEER-SEM Version
7.1. This information is copyrighted and used by permission of Galorath
Incorporated.

Contents

SEER-SEM estimates are derived from parameter data. The set of param-
eters that define a particular work element is largely determined by its

ActualEffort

EstimatedEffort

ActualSchedule

EstimatedSchedule

Applying SEER-SEM to Estimation Processes � 449

WBS level (program, component, unit, COTS) in relation to the project
hierarchy (highest- to lowest-level member in a program group) and by
sizing metrics.

Sizing Parameters

The software size parameter categories are lines of code, functions, and
proxy sizing. A number of other proven sizing techniques are selectable
in proxy sizing. While all sizing parameters are available, they are used
for estimations only if you supply data to them. Two parameters closely
linked with size estimation also are: the function implementation mecha-
nism (language), and the number of programs included in size.

Parameters for COTS sizing are unique. The quick size, number of
features, and COTS object sizing systems apply to COTS components only.

If you are using more than one metric, be careful not to double count.
For each selected metric, an associated size category is presented for
input, although you can ignore categories or parameters that are not
relevant to a given work element.

In most categories, parameters classify software as new or preexisting
and further classify preexisting software as designed for reuse or not
designed for reuse.

SEER-SEM Size Parameters

Parameter Definition

LINES (Classic)

New lines
of code

Number of lines that will be completely developed (designed,
implemented and tested) from scratch. For an upgrade to an
existing system include lines that represent new functionality
added to existing code.

Preexists,
not
designed
for reuse

AND

preexists,
designed
for reuse

The computed effective size rather than an input.

450 � Software Sizing, Estimation, and Risk Management

SEER-SEM Size Parameters

Parameter Definition

Preexisting
lines of
code

Reused code is differentiated according to whether it was
designed for reuse. SEER-SEM knowledge bases assume that
software designed for reuse requires less rework to adapt,
modify, or integrate into the current system being developed
than software that was not so designed. Calculated values are
based on lower-level parameter data and are weighted by the
redesign, reimplementation, and retest percentages.

The following five parameters (line counts and rework
percentages) are included in both categories.

Lines to be
deleted in
preexisting

Number of lines of code that will be deleted outright from the
estimated number of reused lines before any work begins.
These have been included in the preexisting lines of code
parameter and are simply discarded before any calculations
begin. SEER-SEM does not calculate any effort to delete
preexisting code. The effort is accounted for on the redesign,
reimplementation, and retest of the software left after the
deletion.

Redesign
required

Percentage of existing software that must be redesigned to
make reused software functional. This includes the changes
to the overall design or system architecture that will be
required to reuse the existing design. Include amounts that
must be learned or reverse engineered, redocumented, or
revalidated to make the changes as well as the actual amount
of redesign work. Designing from scratch requires 100 percent
effort. Redesign may be greater than 100 percent if the work
involved in designing involves severe reverse engineering.
Several methods are available to compute redesign required
including knowledge bases, engineering analysis (see Chapter
8), and prior work analysis.

Reimple-
mentation
required

Percentage of existing software that must be reimplemented
(coded and tested at unit level) to make the reused software
functional. Include portions that must be learned or reverse
engineered to make the changes.

Retest
required

Estimate percentage of existing software that requires testing
(integration, component, and program testing) to ensure that
software functions within performance, reliability, and other
criteria after changes.

Applying SEER-SEM to Estimation Processes � 451

SEER-SEM Size Parameters

Parameter Definition

Function
implemen-
tation
mechanism

The programming language or implementation mechanism,
such as a code generator or screen generator that will be used
to build the current element. This parameter can significantly
impact other parameters, depending in part on the sizing
metrics, as discussed below.

For function-based estimates, language particularly impacts
the amount of effort required.

Choice of language affects defect estimates, as some
languages are more prone to defects than others.

Function implementation method is closely related to the
language type parameter. If one of these two parameters is
changed, the other should be checked to ensure consistency.
For example, if function implementation mechanism is
changed from SQL to C, language type should also be changed.

Programs
included in
size

The number of stand-alone computer programs defined
within this one. If you are performing early or system-level
estimation and know system-level sizing only, enter the
estimated number of computer programs (they can be
developed by separate teams, with their own schedules, and
often require their own documentation).

FUNCTIONS (Classic)

New
functions

All new functions that will be implemented from scratch or
added as new functionality to preexisting software.

Software phase at estimate

Phase Description

Proposal Early concept definition. The
functionality may not be well
understood yet. Function counts are
preliminary. Function growth will occur.

Requirements The detailed requirements are in the
process of being established. More
visibility to the software functionality is
available.

452 � Software Sizing, Estimation, and Risk Management

SEER-SEM Size Parameters

Parameter Definition

Phase Description

Design The design process is underway. Even
more visibility into required
functionality.

Code Implementation is proceeding.
Function counts are nearly stable and
have been recounted.

Test Software is under test. Function counts
are stable and accurate and have been
recounted.

Done Function counts are actuals counted
from a completed system.

Preexists,
not
designed
for reuse

AND

Preexists,
designed
for reuse

Same as defined above.

Preexisting
functions

The number of unadjusted function points (UFPs) from
preexisting functions (functions completed before this
development that will be reused). Functions are measured in
the total number of IFPUG unadjusted function points (UFPs).

Functions
to be
deleted in
preexisting

The number of functions that will be deleted outright from
the preexisting functions before any work begins.

Software
phase at
estimate

The current development phase, as described for new
functions.

Redesign
required

Same as defined above.

Reimple-
mentation
required

Same as defined above.

Applying SEER-SEM to Estimation Processes � 453

Technology and Environment Parameters

Figure 11.30 illustrates the technology and environment input parameters
and their relative total impacts on cost and effort. Parameters generally
are rated on a scale ranging from very low to extra high. Each rating may
be modified by a plus or minus to indicate actual ratings that are slightly
higher or lower than what is indicated on the scale. For example, nominal+

SEER-SEM Size Parameters

Parameter Definition

Retest
Required

Same as defined above.

Proxy
sizing

Proxy sizing allows you to select an existing proxy set for use
as a sizing metric. A proxy set can consist of one to ten
additional parameters, depending on how the set has been
defined. All sizing methods included are supported either
directly or as proxies. Use cases, objects, etc., fall into the
proxy category.

New All software that will be developed from scratch.

Parameter Definition

Software
phase at
estimate

The current development phase, as described for new
functions.

Preexists,
not
designed
for reuse

AND

preexists,
designed
for reuse

Same as defined above.

Redesign
required

Same as defined above.

Reimple-
mentation
required

Same as defined above.

Retest
required

Same as defined above.

454 � Software Sizing, Estimation, and Risk Management

would be slightly higher than nominal. Most parameters accept three
estimates: least, likely, and most. The probability or confidence levels of
the several technology parameter categories used to compute effort or
schedule can be independently assigned.

Figure 11.30 Relative impacts of parameters on cost and effort.

Personnel capabilities & experience

Analyst capabilities

Analyst’s application experience

Programmer capabilities

Programmer’s language experience

Host system experience

Target system experience

Practices & methods experience

Development support environment

Modern development practices

Automated tools use

Logon thru hardcopy turnaround

Terminal response time

Multiple site development

Resource dedication

Resource and support location

Host system volatility

Process volatility

Product development requirements

Requirements volatility (change)

Specification level - reliability

Test level

Quality assurance level

Rehost from development to target

Product reusability requirements

Reusability level required

Software impacted by reuse

Development environment complexity

Language type (complexity)

Host development system complexity

Application class complexity

Process improvement

Target environment

Special display requirements

Memory constraints

Time constraints

Real time code

Target system complexity

Target system volatility

Security requirements

0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

399%

200%

Applying SEER-SEM to Estimation Processes � 455

Parameter Definition

PERSONNEL CAPABILITIES and EXPERIENCE

Analyst
capabilities

Analysts include personnel developing software
requirements and specifications and preparing high-level
software design (architecture). A nominal team is quite
respectable, performing at an average level. Performance
may be impacted by inherent learning abilities, efficiency,
motivation, communication abilities, etc. Conflicts within
a team and an uncooperative environment can reduce
this rating.

Because capabilities should not be confused with
experience, this parameter rates the inherent potential of
individual team members and of the team as a whole,
independent of experience. More experienced personnel
are not necessarily more capable, and less experienced
personnel are also not necessarily less capable.

Rating Description

Very high Near-perfect functioning (90th percentile)

High Extraordinary (75th percentile)

Nominal Functional and effective (55th percentile)

Low Functional with low effectiveness (35th
percentile)

Very low Poorly functioning (15th percentile)

Very low Nonfunctional (5th percentile)

Analyst
application
experience

The analyst team’s relevant experience in designing
similar applications. This rates team experience when
design begins. For example, if a new program started with
three analysts, two of whom were fresh out of college,
and a third with ten years’ experience, the average
experience would be about three years or a nominal
rating on the analyst experience scale. A related
parameter is application class complexity. Less experience
with more difficult applications causes more difficulty
than the same experience with easier applications.

Rating Description

Very high 10+ years or reimplementation by same
team

High 6 years average

456 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Nominal 3 years average

Low 1 year average

Very low Less than 4 months average

Programmer
capabilities

Programmers perform “code to” detailed design
(program design languages, flowcharts, etc.), write code,
and prepare and run initial unit test cases. Rate the team,
not only the individuals. Consider inherent ability,
motivation, programming efficiency and thoroughness,
program quality, and the ability to communicate within
the development team.

As with analysts, capabilities should not be confused with
experience. This parameter rates the inherent potential
of the individual team members and the team as a whole
independent of experience.

Rating Description

Very high Near-perfect functioning (90th percentile)

High Extraordinary (75th percentile)

Nominal Functional and effective (55th percentile)

Low Functional with low effectiveness (35th
percentile)

Very low Poorly functioning (15th percentile)

Very low Nonfunctional (5th percentile)

Programmer
language
experience

At the start of development, the programming team’s
average experience with the programming language or
implementation mechanism used. Some experience may
be credited for similar languages. For example, a new
project begins with seven programmers, a lead
programmer with ten years of experience with the
language used, three programmers with two years’
experience each, and the other three with no applicable
experience with this language. The average experience
would be about two years or high on the rating scale. A
related parameter is language type complexity.
Inexperience with simpler languages causes less difficulty
than inexperience with more complicated languages.

Applying SEER-SEM to Estimation Processes � 457

Parameter Definition

Rating Description

Extra high 4+ years average

Very high 3 years average

High 2 years average

Nominal 1 year average

Low 4 months average

Very low Less than 4 months average

Development
system
experience

At the start of the project, the development team’s
average years of experience with the development
system, the combination of hardware, operating systems,
job control languages, and all the things the developers
will use to develop the software. Other parameters that
can be related to this parameter include development
system volatility and development system complexity.

Rating Description

Extra high 4+ years average

Very high 3 years average

High 2 years average

Nominal 1 year average

Low 4 months average

Very low Less than 4 months average

Target system
experience

The average years of experience the development team
has with the target (final) system on which the software
product under estimation will execute, including both the
hardware environment and the resident operating system,
if any. If the target system hardware and operating sys-
tems are under development, target system experience
will almost automatically be low because the system did
not exist previously. On the other hand, if the target
system is a workstation or PC, then target system
experience might be the same as development system
experience.

Other parameters that can be related to this parameter
include hardware integration level, target system
volatility, and target system complexity.

458 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Extra high 4+ years average

Very high 3 years average

High 2 years average

Nominal 1 year average

Low 4 months average

Very low Less than 4 months average

Practices and
methods
experience

At the beginning of development, the average number of
years of experience the team will have with the software
practices and methods that will be used.

Software practices are processes, methods, and tools that
establish the managerial and technical environment in
which software products are developed (e.g., design
reviews, quality assurance activities, and software
engineering methods).

Rating Description

Extra high 4+ years average

Very high 3 years average

High 2 years average

Nominal 1 year average

Low 4 months average

Very low Less than 4 months average

DEVELOPMENT SUPPORT ENVIRONMENT

Modern
development
practices use

The usage of modern software development practices
and methods at the time the software design begins,
including analysis and design, structured or object-
oriented methods, development practices for code
implementation, documentation, verification and
validation, database maintenance, and product baseline
control. Only successful incorporation of practices as
standard procedures within the organization and by this
team count as full use. Having books, a few experts, or
academic courses does not count as experience. This is
related to the process improvement parameter that

Applying SEER-SEM to Estimation Processes � 459

Parameter Definition

measures change (improvement) in development
practices over the course of the project under estimation.

Rating Description

Very high Routine use of a complete software
development process, SEI level 3 or above

High Reasonably experienced in most practices,
SEI level 2 or above

Nominal Reasonably experienced in some practices

Low Beginning experimental use of practices

Very low No use of modern development practices

Automated
tools use

The degree to which the software development practices
have been automated and will be used on this
development. Consider tool use across all aspects of the
software development process, not only programming
tools.

Rating Description

Very high Advanced fully integrated tool set

High + Modern fully automated application
development environment, including
requirements, design, and test analyzers

High Modern visual programming tools,
automated CM, test analyzers plus
requirements or design tools

Nominal + Visual programming, CM tools, and simple
test tools

Nominal Interactive, programmer work bench

Low Base batch tools (compiler, editor)

Very low Primitive tools (bit switches, dumps)

Turnaround
time

Computer turnaround time experienced by the project
team. Time required to access virtual environment, start
development environment, checkout source file, submit
to compile and link and receive the desired output. This
parameter is designed to measure the amount of lost time
doing nonproductive tasks associated with the
development computer.

460 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Very high Turnaround 8 hours

High Turnaround 4 hours

Rating Description

Nominal Turnaround 2 hours

Low Turnaround 30 minutes

Very low Less than 6 minutes

Response time Average transaction response time from the time a
developer presses a key until that key is acknowledged
and its action is completed. This parameter measures the
efficiency of interactive development operations.

Rating Description

Extra high >3 seconds

Very high 2 seconds

High 1 second

Nominal 0.5 second

Low <0.25 second

Multiple site
development

Organizational and site diversity within personnel
developing the software based on physical locations,
political boundaries, contractual issues, or even security
issues. Anything that would isolate one part of the
development team from another should be considered
for this parameter. A program developed in a mixed-
security level environment should be considered as
multiple organizations. Collaboration features and
networking techniques such as e-mail, WANs, Web
meetings, Web based collaboration tools, and
teleconferencing can reduce the impacts of physical
separation but will not negate it. For example,
development at two separate sites, normally would be
rated very high. If the two sites were connected by a WAN,
the impact might be reduced to high. On the other hand,
if the groups were separated by an international
boundary, the rating would be increased to extra high.

Applying SEER-SEM to Estimation Processes � 461

Parameter Definition

Rating Description

Extra high Multiple sites, located more than two
hours’ travel from each other, or
international participation

Very high Multiple sites, same general location, or
mixed clearance levels

High Single site and multiple organizations

Nominal Single site and single organization

Resource
dedication

The availability of the development and target resources
to the development organization. Physical interference
due to site operations (maintenance, testing) or
contending project organizations (on a data processing
facility operated by a separate organization) can result in
reduced access to the system. Limited licenses that can
reduce the number of people that are allowed to work in
parallel. Also, in secure or classified environments the
sharing of scarce hardware resources can lower resource
dedication if the developers are locked out.

Rating Description

Nominal 100 percent fully dedicated computing
resources

Low 70 percent access to computing resources

Very low 40 percent access to computing resources

Very low 10 percent access to computing resources

Resource and
support
location

The time required to access needed development
resources and support, such as outside system
consultants, programming language support, hardware
engineering support, and development tool support.
Corporate processes or support relationships may
contribute to support delays.

Rating Description

Extra high More than a day

Very high 5 hours

High 1.5 hours

Nominal Immediate development resources and
support

462 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Development
system
volatility

The difficulty caused by changes and/or upgrades to the
development system. These may be changes or upgrades
in program editors, compilers or other tools, changes in
the operating system and command languages, or
changes in the development hardware. If a development
operating system upgrade is released during
development, there will be no impact if developers
continue to use the old version rather than switch.

Rating Description

Extra high Major change every 2 weeks, minor 2 times
a week

Very high Major change every 2 months, minor each
week

High Major change every 6 months, minor every
2 weeks

Nominal Major change every 12 months, minor each
month

Low No major changes, minor change each year

Process
volatility

Process volatility is the frequency of changes to the
processes, methods, and tools that establish the
managerial and technical environment in which software
products are developed (design reviews, quality
assurance activities, software engineering methods). This
rating depends on the scope or magnitude of the changes
and the frequency with which they occur. A minor change
would have some impact on the development team but
would not require significant adjustments to the way in
which they work. For example, filling out an additional
form or consulting an additional management source for
a design decision approval is a minor change. A major
change would require a significant adjustment of the way
the development team works, and would have a
noticeable impact on the development effort.

Rating Description

Extra high Major change every 2 weeks, minor 2 times
a week

Very high Major change every 2 months, minor each
week

Applying SEER-SEM to Estimation Processes � 463

Parameter Definition

Rating Description

High Major change every 6 months, minor every
2 weeks

Nominal Major change every 12 months, minor each
month

Low No major changes, minor change each year

PRODUCT DEVELOPMENT REQUIREMENTS

Requirements
volatility
(change)

The anticipated frequency and scope of change in the
requirements after they are baselined (after preliminary
design starts). Detailed software requirements may change
while system-level requirements stay the same. Minor
changes may include work such as software subsystem
specification clarification of a user interface menu;
moderate changes are items such as tighter performance
requirements; major changes are items such as rework of
major system specifications related to mission changes.

Rating Description

Extra high Frequent major changes

Very high Frequent moderate and occasional major
changes

High + Evolutionary software development with
significant user interface requirements

High Occasional moderate redirections, typical
for evolutionary software developments

Nominal Small noncritical redirections

Low Essentially no requirements changes

Specification
level–reliability

The level of development specification required; refers
primarily to engineering level documentation, not
finished end user documentation. The level of
documentation is often dictated by the development
standard used. Specification level is related to system
reliability requirements. More reliable systems must be
specified more stringently during development to ensure
that they are sufficiently reliable to perform within
acceptable limits. This parameter is related to test level
and quality assurance level, both of which also are driven
by reliability requirements for most developments.

464 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Very high Highest reliability, public safety
requirements. Documentation required
for all aspects of system development,
including architecture, design,
programming, testing, and interface
specifications. Most documentation will
follow rigorous guidelines for content and
format. Documentation considered part of
software system, and if applicable,
delivered to customer.

High + Full military specification with IV&V,
remote financial transactions.

High Major financial loss. Typical military
specifications or other standards with full
documentation. Documentation usually
delivered with software system (e.g., full J
Standard 016, full Military Standard 498, full
IEEE, full DoD Standard 2167A, critical
financial transactions).

Nominal Moderate loss, recovery without extreme
penalty. Typical military specification or
other standard tailored to include
complete essential documentation.
Documentation usually delivered with
software system (e.g., tailored Military
Standard 498, tailored J Standard 016,
Military Standard 483/490, tailored DoD
Standard 2167A, FAA).

Low Low, easily recoverable, minimal
documentation. Examples include non-
mission-critical applications, business
systems, and commercial software. May
follow informal organizational standards
or highly tailored (relaxed) military
standards. Typical shrink-wrapped
software.

Applying SEER-SEM to Estimation Processes � 465

Parameter Definition

Rating Description

Very low Slight inconvenience. Documentation not
dictated or required. Any specifications
created are incidental. Examples include
prototypes, personal software,
entertainment, internally developed non-
mission-critical applications.

Test level Rigor and formality of software testing. Test level based
on potential for loss if software malfunctions during
operation. More reliable systems must be tested more
stringently during development to ensure sufficient
reliability to perform within acceptable limits. This
parameter is related to specification level and quality
assurance level which normally are driven by reliability
requirements.

Rating Description

Very high Highest reliability, public safety
requirements. Rigorous, formal testing
following prescribed plans, procedures,
and reporting to ensure highest reliability.

High Major financial loss, high potential loss.
Complete formal testing procedures,
reporting and sign-off on test results.
Major retest of unchanged functionality.

Nominal Moderate loss, recovery without extreme
penalty. Formal testing. Key software
features may follow specific testing
procedures where noncritical features will
not have special testing considerations.
Regression testing for unchanged
functionality (normal military standard
testing).

Low Low, easily recoverable. Informal testing.
Examples include non-mission-critical
applications, information systems, and
much shrink-wrapped software.

466 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Very low Slight inconvenience. Testing minimal;
does not follow any prescribed procedures
or processes. Examples include
prototypes, personal software,
entertainment, internally developed non-
mission-critical applications.

Quality
assurance
(QA) level

Evaluation of completeness of QA activities. QA level
usually is directly related to the impact that a software
failure would have during operational phase. More
reliable systems often have more stringent quality
assurance to ensure that they are sufficiently reliable to
perform within acceptable limits.

Rating Description

Very high Highest reliability, public safety
requirements. rigorous, formal QA
following prescribed plans, procedures,
and reporting to ensure highest reliability.

High Major financial loss, high potential loss.
Formal QA activities, quality engineering,
quality management.

Nominal Moderate loss, recovery without extreme
penalty. Formal (normal military standard)
QA.

Low Low, easily recoverable. Informal QA.
Examples include non-mission-critical
applications, information systems, and
commercial software.

Very low Slight inconvenience. No specific QA
activities; QA performed is incidental to
development. Examples include
prototypes, personal software, internally
developed nonmission-critical
applications.

Rehost from
development
to target

Effort to convert the software from the development
system (computers, operating systems, etc.) to the target
system on which the software will execute. This is related
to the difference between the development and target
environments, including both hardware and software
considerations.

Applying SEER-SEM to Estimation Processes � 467

Parameter Definition

Rating Description

Extra high Major language and system change

Very high Major language or system change

High Minor language and system change

Nominal No rehosting, same language and system

Product Reusability Requirements

Reusability
level required

Requirements for producing software designed to be
reusable within other programs.

Level of reusability required is determined by how widely
the final software will need to be reused and how much
the developer is willing to invest. This parameter is used
in conjunction with software impacted by reuse, which
establishes how much of the total code will be reused on
other systems. This parameter rating should be greater
than nominal only with a specific requirement for reuse.
Incidental reuse should not be included.

Note that software can be reused even if it was developed
with a nominal rating, but reuse normally is more costly.

Rating Description

Extra high Mission software developed with full
reusability required. All components of
software must be reusable. Reusability is a
primary objective of development
organization.

Very high Software will be reused within a single
product line. Reusability may impact
multiple development teams.

High Software will be reused within a single
application area.

Nominal No reusability requirement.

Software
impacted by
reuse

Amount of the software under development that is
required to be reusable. This parameter works in
conjunction with reusability level required.

468 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

100 percent 100 percent of this component must be
reusable

50 percent 50 percent of this component must be
reusable

25 percent 25 percent of this component must be
reusable

0 percent 0 percent of this component must be
reusable

DEVELOPMENT ENVIRONMENT COMPLEXITY

Language type
(complexity)

Difficulty of programming language(s) used in
development. The language type (complexity) parameter
estimates the difficulty of learning the programming
language that will be used during coding of the task. It
can be compared to the number of years of actual work
experience or study required to master all the features of
the language. This parameter is related to the function
implementation mechanism. If either of these two
parameters is changed, the other should be checked to
ensure that they are consistent.

Rating Description

Very high Full Ada, Pl/I Version F

High JOVIAL, CMS-2, mainframe assemblers

Nominal C++, C, C#, COBOL, Java, Pascal,
FORTRAN, PL/1 Subset G, Visual Basic, PC
Basic, micro assemblers, Ada without
tasking

Low Basic, many 4GLs

Development
system
complexity

Relative complexity of the development system,
compilers, JCL, file interfaces, and support environment.
This parameter is linked to development system
experience. More experienced personnel are not
penalized as heavily for working on a more complex
development system.

Applying SEER-SEM to Estimation Processes � 469

Parameter Definition

Rating Description

High Distributed network where developers
must have cognizance of the distributed
functionality

Nominal Multiuser systems (Windows server,
LINUX)

Low Single user machines (Windows, Mac),
stand-alone systems, may be networked

Application
class
complexity

Overall level of application difficulty. This parameter is
linked to analyst application experience. Very
experienced analysts are not penalized.

Rating Description

High Networks, operating systems, compilers,
fire control systems

Nominal Applications with complex systems or
complex file or user interfaces, such as
client–server systems, command and
control, communication networks and
systems

Low Business data processing applications,
interface systems

Process
improvement

Impact of improving development technology by
comparing current, established development practices
with those planned for this development. This is related
to modern development practices use (input parameter)
and the SEI equivalent rating (output metric).

Rating Description

Extra high Extreme change; organization improving
development technologies (any two-level
jump in SEI CMMI rating)

Very high Major change; organization improving
rating (moving from SEI CMMI level 1 to 2;
implementing ISO)

High Moderate change; organization improving
development technologies (any one-level
jump from SEI CMMI level 2 or above)

470 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Nominal No change in modern development
practices or SEI CMMI rating

TARGET ENVIRONMENT

Special display
requirements

The amount of effort required to implement user
interface display interaction involved with this computer
program. If the program has no user interface, such as
when the user interface is performed by another stand-
alone program, effort would be rated nominal. For
example, a Windows-based application with a simple
menu driven interface would be rated high. Even though
the application would accept mouse input, the mouse
interaction is handled by the operating system and is
“free” to the application. However, if the application also
includes advanced usage of mouse features directly,
special displays should be rated very high.

Rating Description

Extra high Complex: CAD/CAM, 3D solid modeling

Very high Interactive: light pen, mouse, touch
screen, Windows, etc., controlled by the
software being developed

High User-friendly: error recovery and menus,
basic Windows GUI not controlled by
application

Nominal Simple inputs and outputs: batch
programs

Memory
constraints

Anticipated effort by developers to reduce memory
usage. No memory constraint exists, even when the
available memory is 99 percent utilized, if no
conservation action is required by the development team
to conserve memory.

Rating Description

Extra high Complex memory management and
economic measures

Very high Extensive overlaying or segmentation

Applying SEER-SEM to Estimation Processes � 471

Parameter Definition

Rating Description

High Some overlaying or segmentation

Nominal No memory constraints

Time
constraints

Percentage of software that must have specific coding
effort to enhance timing performance. Rate only the
percentage of the code that receives special coding effort
to enhance timing performance, not simply a time budget
allocation.

Rating Description

Extra high 75 percent of code is time constrained

Very high 50 percent of code is time constrained

High 25 percent of code is time constrained

Nominal No time constraints

Real-time code Amount of software involved in real-time functions that
are driven by an external clock, e.g., gathering data from
hardware devices or time-sensitive control of such
devices where waiting can alter or lose data. Real-time
functions must be performed during the actual time that
an external process occurs so that the computation
results can be used to control, monitor, or respond in a
timely manner to the external process. Real-time code
manages data exchange across interfaces, but not the less
constrained processing of data. For example, telemetry is
gathered in real time, but is processed in non-real time.
Although real-time code is not directly related to time-
constrained code, some code may require timing
constraints because of real-time considerations.

Rating Description

Extra high 100 percent of code with real-time
considerations

Very high 50 percent of code with real-time
considerations

High 25 percent of code with real-time
considerations

Nominal 0 percent of code with real-time
considerations

472 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Target system
complexity

Level of complication of target operating systems,
compilers, controllers, and other attached processors the
developer must understand to perform the development
task. This parameter is related to target system
experience.

Rating Description

High Distributed network target; developers
must have cognizance of the distributed
functionality

Nominal Multiuser target systems (Windows Server,
LINUX)

Low Single user target machines (Windows,
Mac), stand-alone systems, may be
networked

Target system
volatility

Difficulty caused by changes to target system (system on
which the software will execute when implemented).
These may be changes in compilers, or other tools,
changes in command languages, or changes in target
hardware. Each change may cause developers to lose time
due to learning the system, changing code or procedures,
etc. More volatile target hardware will affect software-to-
hardware integration adversely.

Rating Description

Extra high Major change every 2 weeks, minor 2 times
a week

Very high Major change every 2 months, minor each
week

High Major change every 6 months, minor every
2 weeks

Nominal Major change every 12 months, minor each
month

Low No major changes, minor change each year

Security
requirements

Development impact of security and/or safety
requirements for the delivered target system. This
parameter captures special work to be performed during
this stand-alone program development only. If security
requirements will be met by the operating system, by
other software, or by a physically secure environment

Applying SEER-SEM to Estimation Processes � 473

Parameter Definition

(e.g., behind locked doors), security requirements should
be nominal. This parameter can be the single largest
driver in a software estimate. Higher security levels can
be extremely expensive to implement with software; it
usually is more cost effective to meet these requirements
with physical security than within your software
development.

Rating Description

Extra high + Class A1: Security formally verified by
mathematical proof (very rare).

DO178B – Level A: Software whose
anomalous behavior, as shown by the
system safety assessment process, would
cause or contribute to a failure of system
function resulting in a catastrophic failure
condition for aircraft.

Extra high Common Criteria – EAL 7: Formally verified
design and testing. The formal model is
supplemented by a formal presentation of
the functional specification and high level
design showing correspondence. Evidence
of developer “white box” testing and com-
plete independent confirmation of devel-
oper test results are required. Complexity
of the design must be minimized.

Very high + DO178B – Level B: Software whose
anomalous behavior as shown by the
system safety assessment process would
cause or contribute to a failure of system
function resulting in a hazardous or severe
major failure condition for aircraft.

Common Criteria – EAL 6: Semiformally
verified design and testing. Analysis is
supported by a modular and layered
approach to design and a structured
presentation of the implementation. The
independent search for vulnerabilities
must ensure high resistance to penetration
attack. The search for covert channels must
be systematic. Development environment
and configuration management controls
are further strengthened.

474 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Very high Class B3: System excludes code not
essential to security enforcement. Audit
capability is strengthened. System almost
completely resistant to penetration.

Common Criteria – EAL 5: Semiformally
designed and tested. Analysis includes all
implementation. Assurance is supple-
mented by formal model and semiformal
presentation of the functional specifica-
tion and high level design and a semiformal
demonstration of correspondence. The
search for vulnerabilities must ensure
relative resistance to penetration attack.
Covert channel analysis and modular
design are also required.

Very high – DO178B – Level C: Software whose
anomalous behavior as shown by the
system safety assessment process would
cause or contribute to a failure of system
function resulting in a major failure
condition for aircraft.

High + Class B2: System segregated into
protection-critical and non-protection-
critical elements. Overall system resistant
to penetration (critical financial
processing).

Common Criteria – EAL 4: Methodically
designed, tested, and reviewed. Analysis is
supported by the low-level design of the
modules of the target of evaluation (TOE)
and a subset of the implementation.
Testing supported by an independent
search for obvious vulnerabilities.
Development controls supported by a life-
cycle model, identification of tools, and
automated configuration management.

Applying SEER-SEM to Estimation Processes � 475

Parameter Definition

Rating Description

High Class B1: In addition to C2, data labeling
and mandatory access control present.
Flaws identified by testing are removed
(classified or financial processing).

Common Criteria – EAL 3: Methodically
tested and checked. Analysis supported by
“gray box” testing, selective independent
confirmation of the developer’s test
results, and evidence of a developer search
for obvious vulnerabilities. Development
environment controls and TOE
configuration management also required.

High – Class C2: Users individually accountable
via log-on operations, auditing of security
relevant events, and resource isolation
(typical multiuser operating system such as
Windows server, Linux).

DO178B – Level D: Software whose
anomalous behavior as shown by the
system safety assessment process would
cause or contribute to a failure of system
function resulting in a minor failure
condition for aircraft.

Common Criteria – EAL 2: Structurally
tested. Analysis of security functions using
a functional and interface specification and
high-level design of the subsystems of the
TOE. Independent testing of the security
functions, evidence of developer “black
box” testing, and evidence of a
development search for obvious
vulnerabilities.

Nominal + Class C1: Access limited. Based on system
controls accountable to individual user or
groups of users. Simple project-specific
password protection.

476 � Software Sizing, Estimation, and Risk Management

Commercial Off-the-Shelf (COTS) Parameters

Listed below are several parameter categories that apply specifically to
COTS elements. For convenience, sizing parameters that apply only to
COTS elements are documented.

Parameter Definition

Rating Description

Common Criteria – EAL 1: Functionally
tested. Provides analysis of the security
functions using a functional and interface
specification of the TOE to understand
security behavior. The analysis is
supported by independent testing of the
security functions.

Nominal Class D: Minimal protection – no security

DO178B – Level E: Software whose
anomalous behavior as shown by the
system safety assessment process would
cause or contribute to a failure of system
function with no effect on aircraft
operational capability or pilot workload.
After software has been confirmed as Level
E by the certification authority, no further
guidelines apply.

Common Criteria – EAL 0: Inadequate
assurance

Parameter Definition

QUICK SIZE (COTS only)

Application
type

This parameter is used in conjunction with functionality
required parameter to develop estimates as part of the
quick size feature. Based on practical considerations,
application type size estimates are approximate. If better
information about the size of an application is available,
use either the features or object sizing method rather than
the quick size method. The quick size application types
include small, medium, and large attributes for many
general application types.

Applying SEER-SEM to Estimation Processes � 477

Parameter Definition

Functionality
required

Portion of COTS component functionality that the
integrating developers are required to learn. This
parameter is directly related to the selection in the
application type parameter. Choose the percentage of total
component functionality that will be used. Developers
must have or acquire a working knowledge of this
functional portion.

Rating Description

Very high 100 percent of functionality

High 75 percent of functionality

Nominal 55 percent of functionality

Low 25 percent of functionality

Very low 0 percent of functionality

Number of
features used

Category of parameters designed to capture sizing
considerations for COTS components. Although
parameters are described in terms of functionality typically
seen in COTS components, they are translated into IFPUG
standard function points.

Unique
functions

Number of unique functions that must be understood to
integrate the component. Functions may reside in APIs,
program libraries, etc. A function may pass data, receive
data, or both pass and receive data.

Include the number of unique functions that are used or
must be understood.

Data tables
referenced

Number of unique data tables that are referenced. Unique
data tables include configuration files, databases, external
data structures, etc. A single database having several closely
related tables should be referenced once only, unless the
tables are sufficiently different from one another. These are
data groupings being referenced only, but not changed.

Data tables
configured

Total number of data tables that must be configured,
changed or created to integrate the component. Data
tables include configuration files, databases, and external
data structures. A single database having several closely
related tables should be counted once only, unless those
tables are sufficiently different from one another. Count

478 � Software Sizing, Estimation, and Risk Management

Parameter Definition

each table being created or configured. If an existing table
is being used only to learn how tables should be created
or configured, do not count it.

COTS OBJECT SIZING

Input services Number of external Inputs to be found as services in all
object classes. Use the standard IFPUG definition for an
external input.

Output
services

Number of external outputs to be found as services in all
object classes. Use the standard IFPUG definition for an
external output.

Inquiry
services

Number of external inquiries to be found as services in all
object classes. Use the standard IFPUG definition for an
external inquiry.

External class Number of object classes to be found outside the
application boundary. These will be treated like IFPUG
standard external logical files.

Internal class Number of object classes to be found inside the application
boundary. These will be treated like IFPUG standard
internal logical files.

OFF-THE-SHELF PRODUCT CHARACTERISTICS

Component
type

General form of the COTS component from the integrator’s
view. Consider how the component is packaged, the
manner in which it is integrated, and the level of code detail
that a programmer sees when implementing this
component.

Component
volatility

Probability of frequent, extensive, or fundamental vendor
modifications to a component. More volatility in a product
may make it more difficult to use or may force more
frequent updates by developers to keep pace with changes.

Rating Description

Very high The component is not well defined and could
undergo revisions that fundamentally alter its
use; this is typical of a prototype

High The component may undergo significant
change; this is typical of a beta release or
Version 1.0

Applying SEER-SEM to Estimation Processes � 479

Parameter Definition

Rating Description

Nominal The component may undergo significant
change over time, but moderate changes are
much more likely; this is typical of a Version
2.0 or higher

Low No new releases over the course of
development; a highly stable product having
already gone through several full release
cycles

Component
application
complexity

Overall difficulty of the application in terms of study or
experience required for an analyst to become proficient
(not expert) in its use. Differences between analysts with
higher levels of experience are very small.

Rating Description

High Applications that are quite complex and with
complex interfaces, such as within networks
or fire control; other complex components
intended for a highly complex environment or
a component that is tightly integrated with
another application

Nominal Applications that are fairly complex and which
may have more involved or context-
dependent files or user interfaces, such as
client–server and command–control communi-
cation systems or a component subsystem
integrated within another application

Low Applications that are inherently simple and
have discrete, well-isolated interfaces, such as
in business and data processing or a simple,
integrated component that is easily accessible
from within another application

Interface
complexity

Complexity of the integration effort, overhead, and
thought required to fulfill integration. In some ways this
integration effort has dynamics similar to a programming
language, in which a programmer must become proficient
at nuances and knowledgeable of many extensions.
Interface complexities also entail a significant discovery
process.

480 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Very high Serious complexity, making the integration a
considerable customization effort with a
serious learning curve; integration with
heterogeneous environments. Substantial
linkage of complexity issues

High Detailed configuration; knowledge of how the
component works required. Intimate glue
code typically required to make component
work correctly

Nominal Can be straightforward but easily permits a
more sophisticated approach

Low Straightforward; complexities hidden to the
integrator. Simple table setups, file and string
passing. Integrating component requires no
knowledge of data types, timing, etc.

Product
support

Degree of access (by proximity) to development resources
and support, such as system consultants, programming
language support, and development tool support.

Rating Description

Extra high Immediate and comprehensive on-site or
phone support

Very high Attentive support, good response time to
queries made

High Response times varying toward next-day
support

Nominal Spotty and unreliable vendor support

USE

Component
selection
completeness

Extent to which COTS component has been identified and
evaluated. This parameter will reflect how much work must
be dedicated to the selection and evaluation of alternative
COTS components. Consider the number and availability
of COTS component choices and differences among them.

Applying SEER-SEM to Estimation Processes � 481

Parameter Definition

Rating Description

High Off-the-shelf component has been selected.
No effort for identification and evaluation of
the component will be included in the
estimate

Nominal Evaluation among a small set of off-the-shelf
components is required. Alternative packages
have been identified; evaluation of
alternatives required

Low No evaluation of COTS components done.
Alternative components have yet to be
identified

Experience
with
component

Average experience among all programmers and analysts
with the component being used and their experience in
installing the component. Credit some experience with
similar applications. Assess the level of experience before
special training is received. Consider also whether each
integration of COTS component is a significantly new and
complex task or becomes a regular activity.

Rating Description

Extra high Expert, could almost be the developers of
component

Very high Able to handle any sophisticated task and
push use to edge of envelope

High Quite good and getting better at “tricks”

Nominal Effective with component

Low Still learning

Very low Without any real experience

Learning rate Speed at which people can learn while they are
implementing a component. With experience comes
efficiency; when working with a component, the learning-
while-doing process may have a substantial impact on
overall progress. Consider how learnable the activities
associated with the component are. With a conventional,
difficult programming language, programmers may
become efficient over the long term, perhaps a year or
more. By comparison, with a straightforward component,
learning may be far more efficient.

482 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Component complexity is one of several factors that can
affect learning rate; this parameter is a people-only
measurement.

Rating Description

Very high Implementation involves small tasks with
repetition or exceptional learning-while-
doing occurs

High Good opportunity for learning over the
course of installation

Nominal Only a few separable tasks and only moderate
progress on learning curve

Low One massive task or very little or no learning-
while-doing; each integration is new territory

Reverse
engineering

Percentage of component functionality that must be “taken
apart” to understand it well enough to use it. For example,
a 100 percent code review may imply a scan across all code,
but review really occurs only at the level of function calls;
contents of functions are not examined. In this case, the
percentage of reverse engineering is really far lower than
100 percent; it may even be 1 percent or less!

This parameter influences the effective size of the
application. This relationship is assumed because a need
for reverse engineering effectively increases the amount of
the application that a developer must know; hence the
application’s effective size is greater.

Rating Description

Extra high Complete or nearly complete review — 80 to
100 percent of the functionality reverse
engineered

Very high Quite thorough — 50 to 75 percent of the
functionality must be reviewed.

High A high level of reverse engineering — 20 to 50
percent of the functionality — that indicates
more than a simple need for understanding.
This level of reengineering may be required
to certify low-level specs or as preparation for
modifications

Applying SEER-SEM to Estimation Processes � 483

Parameter Definition

Rating Description

Nominal Careful level of reverse engineering — 10 to
20 percent of the functionality. Usually not
required except when modifications are
considered

Low Slight analysis — 5 to 10 percent; access to
detailed specifications is necessary

Very low Minimal — 0 to 5 percent; neither detailed
specifications nor source code available or
required

Component
integrate and
test

Integration effort required for this component. Rank it
against what typically is required to integrate an internally
developed unit of code into a software program. Include
in the rating the amount of testing that must be performed
to ensure this component functions within performance,
reliability, and other criteria after changes are made.

Rating Description

Very high Requires more integration than does an
“average” unit integration. This implies that
above-average, intimate dependencies must
be addressed and adjusted

High Requires as much integration effort into a
program as an “average” unit of internally
developed code. It is assumed that good
coding practice builds a fair amount of
separability at the unit level, but an iterative
adjustment may nonetheless be required,
typically through tables, scripts, settings, calls,
architecture modifications, etc.

Nominal Requires somewhat less integration effort
than an “average” unit of internal
development code. Component peculiarities
will require some “getting used to” and
specific allowances

Low Requires very little effort to be integrated into
program. Additional adjustments — even to
team members’ thinking — must be made to
suit the component to various
implementation specifics

484 � Software Sizing, Estimation, and Risk Management

Other Parameters

The parameters that follow are related neither to size nor to technology
and environment.

Parameter Definition

Rating Description

Very low Requires virtually no effort to be integrated
into program

Test level Same as defined above.

COSTS

Recurring
cost

Cost of using the component for a specified number of
years. Total nondevelopmental component costs, if they
recur, can be represented in this parameter. Outright initial
purchases should be categorized as nonrecurring costs.

Non-
recurring cost

This parameter should be used to capture total (one-time)
nondevelopmental costs for component that may include
purchase and one-time license costs and cost of initial
training. Training costs should include staff hours spent in
training.

Parameter Definition

SCHEDULE AND STAFFING CONSIDERATIONS

Required
schedule
(calendar
months)

Number of schedule months available for development,
including requirements analysis, systems integration, and
testing. Use this schedule only if you want the effort
computed for a fixed schedule; otherwise SEER-SEM will
compute a schedule. This parameter cannot be used to
compress a schedule below a minimum time
development; it can be used to “relax” a schedule. If you
want a schedule shorter than the minimum time, you
could (1) reduce the probability of completion, (2) build
less software, or (3) improve the development technology.

By using smaller development teams and lengthening the
total schedule, cost savings can be achieved. The relaxed
schedule generally should not be stretched more than 50
percent beyond the minimum time schedule.

Applying SEER-SEM to Estimation Processes � 485

Parameter Definition

Start date Date when the development is scheduled to begin. Start
date is used when evaluating the overall elapsed schedule
for all stand-alone programs in the project. It also is used
as an initial point on detailed monthly and annual cost
reports.

Complexity
(staffing)

A software system’s inherent difficulty in terms of the rate
at which staff can be added to a project. Highly complex
projects have highly complex interdependencies that
constrain the order in which engineering problems can
be solved and thus have lower staffing increase rates.
Complexity relates to the rate at which personnel can be
added to a development program and thus drives both
costs and schedule. Schedule constraints can override this
parameter setting. In other words, stretching the schedule
will cause staff to be added to a project more slowly than
what is dictated by this parameter, thus forcing the project
to work with smaller, more efficient teams and take longer
to complete while saving effort overall.

Rating Description

Extra high Development primarily using micro code
for the application, for example, a signal
processing system with extremely
complex interfaces and control logic

Very high + Top of the scale for 99 percent of all
defense software

Very high New systems with significant interfacing
and requirements for interaction within a
larger system structure. Examples include
operating systems and real-time
applications with significant logical code

High Applications with significant logical
complexity, perhaps requiring changes to
the operating system, minor real-time
processing or special displays and hardware

Nominal + Typical command–control programs

Nominal New stand-alone systems/applications
developed on firm operating systems.
Minimal interface problems with
underlying operating system or other
system parts. Complexity characteristics
also map into processing as follows:

486 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Control operations: mostly simple nesting,
some intermodule control

Computational operations: standard
mathematical and statistical functions

Device-dependent operations: device
selection, status checking

Error processing data management
operations: multifile inputs, single file,
simple structural changes.

Low Software of low logical complexity using
straightforward I/O and primarily internal
data storage (typical of component and
unit work elements). Additional staff may
be added easily to project

Very low Extremely simple software with primarily
straightforward code, simple I/O, and
internal storage arrays (typical of
component and unit work elements).
Staffing may increase rapidly

Staff loading Characterizes how a project is to be staffed in terms of
adding staff. Development method should be considered
when rating staff loading parameter.

Rating Description

Extra high Staff peaks toward front of project. Typical
of prototype and informal developments
(prototypes, spiral, evolutionary)

Very high Staff for integrated product team
development; also typical for object-
oriented developments

High Staff for incremental development (more
people added faster)

Nominal Staff for serial development (waterfall
process); staff peaks toward end of project

Applying SEER-SEM to Estimation Processes � 487

Parameter Definition

Minimum time
versus optimal
effort

Use this parameter to choose between optimizing the
schedule or optimizing the effort in the estimate.
Optimizing for schedule (minimum time) assumes the
development will be finished as quickly as possible. Staff
will be added as quickly as possible, but larger teams will
reduce efficiency. Although the project will be completed
sooner, it will cost more. Optimizing for effort assumes
the software will be developed in as economical a fashion
as possible, but will take longer to complete. Staffing will
be lower and thus smaller; more efficient teams will
realize cost savings.

Staffing
constraint

Category is designed to set minimum or maximum
staffing levels (or both) for a variable number of time
intervals, each represented as a parameter. It can illustrate
the effects of flat staffing.

Start month Month in which you want the constraint to
start. The first interval starts with Month 1.

Min staff Minimum staff planned. The staff
predicted by SEER-SEM will not be less
than the minimum staff entered.

Max staff Maximum staff available for this
development. The staff predicted by SEER-
SEM will not be more than the maximum
staff entered.

CONFIDENCE LEVEL

Effort
probability

Probability for which the effort estimate will be computed.

Rating Description

90 percent Sometimes used as a worst-case scenario

80 percent High confidence, potentially used for
fixed-price bids

50 percent Most likely outcome

20 percent Low confidence, sometimes used for
bidding cost-plus developments (not
recommended)

488 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Schedule
probability

Probability for which the schedule estimate will be
computed.

Rating Description

90 percent Sometimes used as a worst-case scenario

80 percent High confidence, potentially used for
fixed-price bids

50 percent Most likely outcome

20 percent Low confidence, sometimes used for
bidding cost-plus developments (not
recommended)

Size risk Probability or confidence level of the size estimate used
to compute effort or schedule, depending on selected
category. Size inputs include all those found within the
following categories: lines, functions, others (proxies,
user-defined size inputs).

Confidence
level–
technology
risk

Probability or confidence level of the technology inputs
used to compute effort or schedule, depending on
selected category.

Requirements
risk

Probability or confidence level of the requirements inputs
used to compute effort or schedule, depending on the
selected category.

System
integration
risk

Probability or confidence level of system integration
inputs used to compute effort or schedule, depending on
selected category.

System integration inputs include programs concurrently
integrating, concurrency of I&T schedule, and hardware
integration level.

Maintenance
risk

Probability or confidence level of maintenance inputs
used to compute maintenance effort.

Requirements
complete at
start

Amount of requirements effort that will have been
completed prior to the beginning of this project.

Rating Description

High Software requirements review complete
and requirements baselined; no require-
ments effort before baseline computed

Applying SEER-SEM to Estimation Processes � 489

Parameter Definition

Rating Description

Nominal Proposal-level requirements work
complete

Low No software requirements analysis
performed, still in system requirements
phase

Requirements
definition
formality

Detail and formality to which software requirements will
be analyzed and specified.

Rating Description

Extra high Formal requirements method and tool,
plus independent verification and
validation of requirements (does not
include independent cost of verification
and validation)

Very high Formal requirements method and tool
used

High Formal requirements method and tool
used, but not required deliverable

Nominal Mission-critical and military standard
software requirements analysis, no formal
requirements tool required

Low Informal requirements analysis and
specification

Very low No requirements analysis included in
estimate

Requirements
effort after
baseline

Option to choose whether software requirements effort
should be costed after up-front software requirements
activity is complete.

SYSTEM INTEGRATION COMPLEXITY

Programs
concurrently
integrating

Number of computer programs that will be integrated
with this program. Count only programs with which this
program must interface directly. This number will
determine how much software-to-software systems
integration and testing required. In the rating scale below,
the numbers in brackets represent the percentage

490 � Software Sizing, Estimation, and Risk Management

Parameter Definition

amounts of effort (preliminary design through program
test phases) added to the estimate for software-to-
software integration. If the programs included in size
parameter is greater than one count an average program.

Rating Description

8 Extra high [24 percent]

3 Very high [9 percent]

2 High [6 percent]

1 Nominal + [3 percent]

0 Nominal, no software to software
integration [0 percent]

Concurrency
of I&T
schedule

Degree of concurrency or overlap between development
activities and the integration and testing activities.

Rating Description

Extra high All systems integration will occur during
development; product will be fully
integrated and tested with the system
when delivered

Very high Most system integration will occur during
development before testing is complete

High System integration begins during software
integration testing

Nominal System integration occurs after software
WBS elements are completely tested
individually

Hardware
integration
level

Difficulty of integrating software with operational or
target hardware. This effort often is driven by concurrent
hardware development or the use of custom hardware.
The rating will determine how much software-to-
hardware systems integration and testing are required. In
the rating scale below, the numbers in brackets represent
the percentage amounts of effort (preliminary design
through program test phases) added to the estimate for
hardware integration.

Applying SEER-SEM to Estimation Processes � 491

Parameter Definition

Rating Description

Very high Significant integration with hardware, con-
current hardware development [32 percent]

High Significant integration with hardware,
some custom hardware in configuration
[28 percent]

Nominal Same type hardware, different
configuration [22 percent]

Low Same system or COTS hardware
[16 percent]

Very low No hardware integration [0 percent]

ECONOMIC FACTORS

Cost input
base year

Base year associated with cost inputs such as labor rates
and purchased items. This is used to calculate then-year
cost from base-year cost by applying the cost escalation
factor. Changing the cost input base year will not impact
the base-year cost unless the labor rate is changed
accordingly.

Purchased
items

Costs of any purchased software or COTS packages that
will be added to the final estimate or to any other
throughput costs.

Purchased items costs are reported separately from base-
year costs on the quick estimate and basic estimate
reports. Purchased items costs are included in the initial
fiscal year of base-year cost and then-year cost reports.
Detailed recurring and nonrecurring cost inputs are
available for COTS WBS elements.

Average
monthly labor
rate

This category can be used to itemize labor rates. A
composite average rate can be entered directly at the
category level to set all itemized rates to the average
composite.

Direct software management
Software system engineering
Software design
Software programming
Software data preparation
Software testing
Software configuration management
Software quality assurance

492 � Software Sizing, Estimation, and Risk Management

Parameter Definition

SOFTWARE MAINTENANCE

Years of
maintenance

Number of years for which software maintenance costs
will be estimated. Maintenance begins when operational
test and evaluation are completed.

Separate sites Number of separate operational sites where the software
will be installed and users will have significant input into
system enhancements.

Maintenance
growth over
life

Percentage of anticipated size growth from the point
immediately after the software is turned over to
maintenance to the end of the maintenance cycle. An
input of 100 percent means that the software will double
in size. Software growth may include additions of new
functionality. (Major enhancements should be modeled
separately as block changes or incremental builds rather
than as maintenance.)

Rating Description

100 percent Very high, major updates adding many
new functions

35 percent High, major updates adding some new
functions

20 percent Nominal, minor updates with
enhancements to existing functions

5 percent Low, minor enhancements

0 percent Very low, sustaining engineering only

Personnel
differences

Comparison of capabilities and experience of
maintenance and development personnel. If maintenance
is estimated as a separate program, this parameter should
be set to nominal, and the personnel capabilities and
experience parameters should be rated individually.

Rating Description

Very high Significantly better than development
personnel

High Slightly better than development
personnel

Nominal Same as development personnel

Applying SEER-SEM to Estimation Processes � 493

Parameter Definition

Rating Description

Low Somewhat less than development
personnel

Very low Significantly lower than development
personnel

Development
environment
differences

Quality of the maintenance environment in comparison
to the tools and practices used in the development
environment. If maintenance is estimated as a separate
program, this parameter should be set to nominal, and
the development support environment parameters
should be rated individually.

Rating Description

Very high Significantly better than development
environment

High Slightly better than development
environment

Nominal Same as development environment

Low Somewhat worse than development
environment

Very low Significantly worse than development
environment

Annual change
rate

Average percentage of software impacted by software
maintenance and sustaining engineering per year. This
could include changes, revalidation, reverse engineering,
redocumentation, or minor changes for new hardware or
recertification.

Rating Description

35 percent Very high

15 percent High

11 percent Nominal

 5 percent Low

 0 percent Very low

Maintenance
level (rigor)

Thoroughness with which maintenance activities will be
performed.

494 � Software Sizing, Estimation, and Risk Management

Parameter Definition

Rating Description

Very high Thorough maintenance for all types of
software maintenance activities, including
regular documentation updates. Software
maintenance is well planned in both the
long and short term with frequent reviews
of priorities. Dedicated staff assigned.
Software will remain useful for users and
will not degenerate over time

High Complete maintenance including
maintenance planning and priority review.
Software documentation is updated on a
semiregular basis. Software will not
degenerate over time

Nominal Average maintenance activity. Short-term
planning and prioritization of
maintenance activity. Documentation is
updated less than annually (change pages
and addenda). Software will become less
useful over time

Low Basic maintenance with most activities
reactive to emergencies and problems as
they arise. No planning of maintenance
activity. Documentation is updated only
with page and addenda changes. Software
will degenerate over time

Very low Bare-bones maintenance. Nondedicated
team making emergency repairs.
Maintenance performed on ad hoc,
sporadic basis. Little to no documentation
update. Software will degenerate rapidly.
Setting may represent sustaining
engineering effort of a delivered
incremental build by developers during
development of subsequent builds

Minimum
maintenance
staff (optional)

Minimum number of personnel who will be assigned to
maintain software. Use this parameter for fixed staffing or
level of effort maintenance.

Applying SEER-SEM to Estimation Processes � 495

Parameter Definition

Maximum
maintenance
staff (optional)

Maximum number of personnel who will be assigned to
maintain software. Use this parameter for fixed staffing or
level of effort maintenance.

Maintenance
monthly labor
rate

Average monthly labor rate for maintenance personnel.

Additional
annual
maintenance
cost

Annual throughput costs for maintenance.

Maintenance
start date

Date on which maintenance will begin. If no date is
entered, maintenance will begin when operational
evaluation and testing are completed.

Percent to be
maintained

Percentage of total that will be maintained. For example,
if some software is in a read-only memory and cannot be
changed, exclude this part of the computer program from
software maintenance costs by reducing this percentage.

Maintain total
system

Total size (yes) or effective size (no) should be used to
estimate maintenance. This parameter normally is set to
indicate total size so that maintenance is estimated based
on the entire completed program, and not on only
changes estimated.

Steady state
maintenance

Steady state staffing level estimated for maintenance
requirements.

Rating Description

Yes Estimate maintenance with fixed annual
staff level

No Estimate maintenance with additional
effort in the first years; appropriate for new
or immature systems that may have higher
levels of undetected defects

Software code
metrics

These parameters allow user inputs into various software
code metrics used to calculate reliability of the produced
code:

Halstead Software Science Metrics

McCabe Complexity Metrics

496 � Software Sizing, Estimation, and Risk Management

Summary
This chapter is intended as an introduction, not a complete SEER-SEM
user guide. It provides basic information and definitions for SEER-SEM
and illustrates its use as a critical project planning tool. Definitions for
most SEER-SEM inputs are provided. Additionally, it contains sufficient
mathematical foundations to provide the reader with a flavor of Brooks’
law and other key estimation concepts. A few of the input and output
reports and charts were included to show how SEER operates as a tool
in project planning and control. SEER-SEM Estimation Process Step 10
(Track Project throughout Development) is the focus of the next chapter.

Parameter Definition

Adjustment
factors

Function-based sizing (FBS) adjustment factors used
internally by function-based sizing to compensate for
different application- and platform-specific factors.

FBS
application
adjustment
factor

Captures additional effort based on platform type as part
of FBS; set by knowledge bases.

FBS platform
adjustment
factor

Captures additional effort based on platform type as part
of FBS; set by knowledge bases.

Calibration
effort
adjustment

Calibration adjustment for actual effort.

Calibration
schedule
adjustment

Calibration adjustment for actual schedule.

Calibration
technology
adjustment

Calibration adjustment factor for effective technology.
The adjusted effective technology rating is used in
calculating estimated effort and schedule.

Calibration
complexity
adjustment

Calibration adjustment factor for effective complexity. The
adjusted effective complexity rating is used in calculating
estimated effort and schedule.

Calibration
size
adjustment
(COTS only)

This parameter adjusts effective size to represent the
effective size of the COTS element being estimated.

Applying SEER-SEM to Estimation Processes � 497

See this book’s associated Web page (www.galorath.com/
estimationbook2006) for an electronic SEER-SEM input form, a data col-
lection form, and other useful materials.

Endnotes
1. Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engi-

neering. New York: Addison Wesley, 1995.
2. Galorath Incorporated. SEER-SEM User Manual. El Segundo: Galorath Incor-

porated, 2004.
3. Fischman, Lee, Karen McRitchie, and Dan Galorath. “Inside SEER-SEM.”

CrossTalk: The Journal of Defense Software Engineering, 2005.
4. Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engi-

neering. New York: Addison Wesley, 1995.
5. Yourdon, E. Death March, 2nd ed. Upper Saddle River: Prentice Hall, 2004.
6. Galorath Incorporated. SEER-SEM User Manual. El Segundo: Galorath Incor-

porated, 2004.
7. Fischman, Lee, Karen McRitchie, and Dan Galorath. “Inside SEER-SEM.”

CrossTalk: The Journal of Defense Software Engineering, 2005.
8. Galorath Incorporated. SEER-SEM User Manual. El Segundo: Galorath Incor-

porated, 2004.
9. ACEIT. ACEIT User Manual. Santa Barbara: Tecolote Research, Inc., 2004.

10. Frontier Technologies, Inc. ICE User Manual. Goleta: Frontier Technologies,
Inc., 2004.

11. Engineous Software. Fiper User Manual. Cary: Engineous Software, 2004.
12. Covey, Stephen R. The Seven Habits of Highly Effective People. New York:

Free Press, 1989.
13. Galorath Incorporated. OSD Software Estimation Guidebook. El Segundo:

Galorath Incorporated, 1997.
14. Galorath, Dan. Personal experience.

499

Chapter 12

SEER-SEM Solutions
for Project Management
and Control

What may be done at any time will be done at no time.

Scottish Proverb

Introduction
Simply put, software project management encompasses the work required
to plan, organize, manage, direct, and control the activities and resources
of a software project. Of course, this work is anything but simple. However,
effective tools exist to facilitate these important tasks. For project manage-
ment and control, this chapter introduces three solution areas: (1) appli-
cation of basic SEER-SEM,1 (2) use of SEER-SEM Client For Microsoft
Project,2 which converts a SEER-SEM estimate into a detailed plan (down
to root-level tasks) in Microsoft Project, and (3) the power of a SEER-SEM
add-on, Parametric Project Monitoring and Control (PPMC),3 for monitoring
and controlling projects. This chapter explains how to apply these tools
to increase efficiency and accuracy in managing and controlling a software
project.

500 � Software Sizing, Estimation, and Risk Management

These SEER tools empower you by providing the essential information
required to make decisions that are most appropriate to the specific
circumstances of your software project. These functions are important for
two steps in software cost and schedule estimation covered in Chapter 4:
Step 8, Generate Project Plan, and Step 10, Track Project throughout
Development. Much of this material comes from SEER manuals and internal
records of Galorath Incorporated. This chapter is intended to summarize
and inform regarding the process, not serve as a primary user’s manual.

CMMI Process Areas for Project Management
The SEER Software Estimation Suite of tools supports any development
process or quality initiative. Galorath internal documents4 show how this
suite provides project management support in three of the Software
Engineering Institute’s CMMI process areas that relate to software man-
agement and measurement.5

Each top-level element of the CMMI is called a process area. The SEER
suite has been structured to ensure that it provides both the methods and
tools to support these three process areas of the CMMI (see Figure 12.1).
These processes are crucial to effective and efficient software project
management as follows:

Figure 12.1 SEER and the CMMI Process.

Measurement and analysis
- Align measurement and analysis
 activities
- Provide measurement results

Project planning
- Establish estimates
- Develop a project plan
- Obtain commitment to the plan

¸ SEER-PPMC
(Parametric Project
Monitoring and Control)

¸ SEER-AccuScope
¸ SEER-SEM
¸ SEER-ProjectMiner
¸ SEER-SEM Client

Measure
&

Analyze

Monitor
&

Control

Estimate
&

Plan

¸ SEER-PPMC
(Parametric Project
Monitoring and Control)

SEER-PPMC
(Parametric Project
Monitoring and Control)

¸ SEER-AccuScope
¸ SEER-SEM
¸ SEER-ProjectMiner
¸ SEER-SEM Client

SEER-AccuScope
SEER-ProjectMiner
SEER-SEM Client
for Microsoft Project

¸ SEER-ScatterPlot
¸ SEER-RDB
¸ SEER-ScatterPlot
¸ SEER-RDB

SEER-ScatterPlot
SEER-RDB Measure

&
Analyze

Measure
&

Analyze

Monitor
&

Control

Monitor
&

Control

Estimate
&

Plan

Estimate
&

Plan

Project monitoring and control
- Monitor project against plan
- Manage corrective action to
 closure

TM

P
P

P

P
P
P

SEER-SEM Solutions for Project Management and Control � 501

1. Project planning — Establish estimates, develop a project plan, and
obtain commitment to the plan. Methods and tools within these
process areas include history-based sizing, direct measure sizing,
parametric estimation, estimation by data mining, and planning.

2. Project monitoring and control — Monitor project against plan and
manage corrective action to closure. Methods and tools within these
process areas include performance (earned value) measurement,
health and status indication, and performance-based forecasting.

3. Measurement and analysis — Align measurement and analysis
activities, and provide measurement results. Methods and tools
within these process areas include estimation accuracy assessment
and improvement, calibration, knowledge base management, and
benchmarking.

Solution 1: Application of Basic SEER-SEM for Project
Management and Control

SEER-SEM provides significant project management and control function-
ality even without the Project Manager Edition. After an initial plan is
established, you can employ SEER-SEM’s basic functionality to perform
trade studies to determine the effects on the project of changes, risks, and
opportunities as well as estimates to complete, recommended staffing
plans, and estimated defect insertion and removal for measuring progress.

When you update project constraints or parameters as new circum-
stances are identified, such as changes in staffing level, project risk levels,
volatility, etc., SEER-SEM will update the initial estimate and provide an
estimate of the resources required to complete the project as shown in
Figure 12.2. Its reference function enables you to identify differences
between the current estimate and the initial project plan; this information
will in turn enable you to refine the estimate, replan the project, redirect
effort, and update the completion forecast. SEER-SEM also enables you
to enter different levels of risk at different points in the project to provide
a range of estimates.

The developer’s actual staffing plan and actuals to date can be overlaid
on the SEER-SEM estimate as shown in Figure 12.3. This information
provides a manager with the necessary data to plan for future staff or
make schedule adjustments if required staffing levels cannot be or are
not being met. You can also use the actual and planned staff features to
determine whether the projected schedule with the current staff meets an
acceptable probability as shown in Figure 12.4.

502 � Software Sizing, Estimation, and Risk Management

Figure 12.4 indicates approximately a 28 percent chance of meeting
the schedule goal if the staffing continues as planned. This information
then can be used to make the decisions necessary to go forward. Perhaps
this particular WBS element is not as critical to the entire project as other
WBS elements that are consuming the resources needed here. Or the WBS
element may be on the critical path and resources will have to be

Figure 12.2 SEER-SEM requirements volatility trade-off.

Figure 12.3 Actual/planned staff versus estimated staff.

SEER-SEM Solutions for Project Management and Control � 503

redirected to decrease the damage that could be caused to the entire
project if this WBS element is delivered late.

Solution 2: SEER-SEM Client for Microsoft Project

SEER-SEM Client for Microsoft Project (commonly referred to as “the
Client”) starts with the initial SEER-SEM estimate and turns it into a detailed,
executable, project plan that managers can use to perform detailed plan-
ning and control for the project. SEER-SEM is used to estimate a project’s
schedule and resources and describe required labor categories. The Client
uses the SEER-SEM estimation engine and refines the estimate by allocating
effort, staff, and schedule to specialized SEER Microsoft Project plan
templates including mapping of schedule and staff that serve to describe
the software developer’s processes.

Life-cycle process templates are provided by the Client or can be created
in Microsoft Project. At the appropriate point in the project, you can use
these templates to plan the project as it develops and define the tasks and
interdependencies as they relate to the project life cycle. The Client can
be configured to describe the particular processes and activities your
organization uses. For example, you can configure the following elements:

� Master knowledge base — Customize the master knowledge base
to specify which SEER-SEM knowledge bases can be used with
each type of project to help enforce a standard set of assumptions
for all users.

� Life-cycle process — This element of the Client determines how
a project will be divided into tasks. Organization-specific life-cycle

Figure 12.4 Probability of meeting goals.

504 � Software Sizing, Estimation, and Risk Management

templates enable you to build best practices directly into your
plans. The Client can use any life-cycle that can be created in
Microsoft Project. Each Microsoft Project life-cycle template includes
instructions for allocating resources and determining a realistic
schedule that is appropriate to the particular stage of the project.

� Size analogies — This element enables you to set up analogies
to size projects using your own past projects or any other historical
data that is applicable to your company. Size analogies can be
very useful for estimating size in the early stages of a project before
specific data is available.

� Organizational resource allocations — You may tailor the
resource allocations to match your labor categories, work titles,
and allocation approaches to the work. In developing a project
estimate, the Client assigns effort to specific types of labor (often
called roles or resources), and you can customize these labor
category descriptions to reflect how your organization assigns tasks,
either at an individual or departmental level.

� Specific SEER-SEM Parameter Settings — The Client factors tab
(Figure 12.5) provides access to the full range of parameters that
SEER-SEM uses for refining estimates. You can configure the avail-
able factors to include only the parameters that specifically apply
to your organization and project type, and you can update them
as circumstances change.

The Client can be used alone to develop a plan from scratch or a
SEER-SEM estimate can be imported to generate the plan.

Developing plan from scratch — You can enter project specifics,
including size, constraints, knowledge bases, etc., using the tab dialogue
interface shown in Figure 12.6. When you are ready to generate your
project plan, the Client employs SEER-SEM as an estimation engine. Using
SEER-SEM, via automation and server remote commands, the Client obtains
an estimate for the project described in the Client, then allocates effort
resources and schedule. With this approach, the user need not have
knowledge of or access to SEER-SEM itself.

Importing existing SEER-SEM project — You can also use SEER-SEM
to generate a project estimate and then import it into the Client. The
advantage of this method is access to SEER-SEM’s entire range of functionality.
This access facilitates development of the estimate and different trade-offs.

Using the Client for Detailed Project Planning

The Client is a powerful tool that enables you to generate a detailed
project plan that allocates tasking, sequencing, and resources in accordance

SEER-SEM Solutions for Project Management and Control � 505

Figure 12.5 Client factors tab.

Figure 12.6 SEER-SEM Client for Microsoft Project description tab.

506 � Software Sizing, Estimation, and Risk Management

with the organizational standards and process defined in the template. It
also enables you to use your own judgment to refine a plan, e.g., reallocate
tasks, extend or shorten the duration of tasks, etc. Figure 12.7 illustrates
setting risk tolerance. If it becomes necessary to replan the project or
make essential trade-offs, the Client enables you to enter new project
parameters and constraints to determine the best approach. Figure 12.8
illustrates a partial plan developed for the Rational Unified Process.

The Client also provides access to all the power of Microsoft Project,
enabling you to set baselines, reschedule tasks, enter completion percent-
ages, etc., as the project progresses and to forecast the completion date
by moving schedule slips to the right.

Solution 3: SEER-PPMC (Parametric Project Monitoring
and Control)

Much of this information came from the Parametric Project Monitoring
and Control Users Manual.6 SEER-PPMC is a set of add-on features to
SEER-SEM that enable you to monitor and control a software project by
independently tracking progress, effort, growth, and defects. It also allows
you to refine the estimate in response to changing conditions and thus
accurately forecast a completion date. SEER-PPMC combines earned value

Figure 12.7 SEER-SEM Client for Microsoft Project goals and constraints tab.

SEER-SEM Solutions for Project Management and Control � 507

and performance-based forecasting with parametric analysis. It is intended
to complement the earned value management (EVM) process. SEER-PPMC’s
concepts and terminology use ANSI/EIA Standard 747 as a foundation.

As discussed in Chapter 9, earned value management is considered a
best practice for monitoring and controlling the progress of a software
project. SEER-PPMC combines accepted algorithms used for cost and
schedule estimation during the planning process with accepted equations
used for traditional earned value management, and then uses the power
of SEER-SEM to provide a parametric project completion forecast. SEER-
PPMC goes beyond the earned value management systems used on major
programs by allowing you to track progress at the root level when a
project is under way.

At the heart of PPMC is the ability to forecast the final outcome of a
project based on what has occurred to date, considering the assumptions
made for your baseline estimate (plan). Before your project starts, the
expected outcome (in terms of cost, effort, and schedule) is based on an
estimate. An estimate is, by definition, the best statement you can make
about something based on the information that you have. In SEER-SEM,
estimates consider your knowledge base selections (platform, application,

Figure 12.8 Resulting plan generated by SEER-SEM Client.

508 � Software Sizing, Estimation, and Risk Management

acquisition method, development method, and development standard)
along with your size estimate and parameter settings.

SEER-SEM is an accurate and reliable method for predicting a project
outcome. Once a project is started, the information you have becomes
more extensive. PPMC allows you to combine your baseline estimate with
actual project progress to compute an expected estimate at completion.
The basic approach to doing this is to replace part of the estimate with
the actual results to date. The estimate at completion would be actual
cost (or schedule) plus the estimate of the remaining cost (or schedule).

Because PPMC reforecasts schedule and effort, it considers actual
progress toward software development milestones to determine what
portion of the baseline estimate has been completed. This actual progress
is referred to as earned value. PPMC replaces the earned portion of the
estimate with the actual costs to date.

SEER-PPMC’s idea of combining earned value in parametrics goes all
the way back to a Department of Defense project in the early 1990s. A
group discovered that tracking earned value and combining that with the
SEER-SEM parametric estimate allowed them to estimate the actual com-
pletion of any contracted project that was underway within one month
and $50,000.

The earliest versions of SEER-SEM implemented a relatively simple
estimate-to-complete function that used basic earned value concepts whereby
actual achieved progress was determined and the schedule was slipped
to the right accordingly to determine a new estimated completion date.
SEER-PPMC took this approach to the next level, adding a performance-
based estimate-to-complete along with the concept of baselines, all based
on sophisticated mathematical analysis for a parametric estimate to com-
plete. This is far more sophisticated than the analysis of products such as
Microsoft Project which, when used alone, simply shift remaining work
to the right.

Figure 12.9 shows a representative SEER-PPMC view that combines
some of the available reports and charts. The upper left quadrant shows
the original planned schedule and effort and the currently forecasted
completion date. The original estimate has been overspent and the sched-
ule has slipped. The upper right quadrant shows performance indices that
indicate the project is in trouble, both in terms of schedule and effort
(cost and schedule performance indices less than 1).

The bottom left quadrant shows the actual amount spent and the actual
forecasted date of September 2005. You can clearly see that the project
has slipped by several months. The bottom right quadrant shows the
project’s health and status. These charts show at a glance that the project
is in trouble and will severely overrun its cost and schedule. With this

SEER-SEM Solutions for Project Management and Control � 509

information in hand, a manager can consider different approaches to reme-
diate a project and understand the new schedule and cost implications.

SEER-PPMC employs the following four EVM dimensions:7

� Activity completion: tracks actual progress made toward completion
of the project. This progress is independent of effort spent and is
measured as earned value.

� Expenditures: tracks actual hours spent independently of progress.
� Artifact completion: tracks the completion of the artifacts of the

software development activity, i.e., number of requirements com-
pleted, number of units completed, number of reviews successfully
completed.

� Defect discovery and removal: tracks defects including anticipated
defects inserted and removed and actual defects discovered and
removed.

The process for using SEER-PPMC may be summarized as five steps
described in the next section.

Figure 12.9 SEER-PPMC screen showing project progress versus effort spent.

510 � Software Sizing, Estimation, and Risk Management

Implementing Planning and Control Process
with SEER-PPMC

Step 1: Establish Best Project Estimate in SEER-SEM

Prepare the best estimate by establishing size, technology, complexity, and
constraints in your SEER-SEM estimate. This estimate will become the baseline
from which PPMC earned value planning and forecasting will be based.

Step 2: Determine Constraints and Probability Required
for Baseline

Baselines can be set at the most likely estimate or at any desired proba-
bility. Managers can also utilize two probabilities: the first with which they
manage the project (generally most likely) and the second the probability
at which they promised the customer (sometimes most likely, often a
higher probability to account for risk). For day-to-day project management,
the most likely estimate is used. In this way if the project begins to slip,
PPMC will show the problems early. For customer reviews, when appropriate,
the higher probability baseline may be used. If the schedule is slipping,
the project manager will know it early using the most likely estimate.

Step 3: Set Baseline

A baseline freezes the current estimate so that actual progress can be
reported and compared. The baseline provides the yardstick against which
a project is tracked and evaluated. A baseline is different from a current
estimate. Managers make changes to a current estimate while preserving
a baseline. This allows the ability to perform trade-offs on the current
estimates while maintaining the baseline plan. A baseline may also be
updated at any time, becoming a replan.

Step 4: Enter Work Complete

Figure 12.10 shows how SEER-PPMC combines earned value and estima-
tion. Work complete is entered in SEER-PPMC as snapshots. Each snapshot
includes work complete along with effort required to accomplish the work.
Additionally, software size growth and defects are tracked. A snapshot
depicts a project metric at any given point in time. Figures 12.11 and
12.12 typify the information captured in a snapshot: The two key com-
ponents of a snapshot are (1) work complete and (2) actual effort.
Snapshots can include organization specific information.

SEER-SEM Solutions for Project Management and Control � 511

Work complete is a description of progress in terms of milestone
completion. Actual effort covers measurable project metrics: (1) actual
hours to date, (2) defects reported and removed to date, and (3) size
completed to date.

Snapshots are flexible in terms of interval or frequency. Managers may
generate snapshots at regular intervals such as monthly or quarterly or
produce them as needed, for example, before a key project review.

Figure 12.10 SEER-PPMC high level flow chart.

Figure 12.11 SEER-PPMC work complete snapshot.

Current

estimate

Existing reports

& charts

Baseline

plan(s)

Earned value

charts & reports

Save as baseline

Revert to baseline

Actuals

Performance

Work complete

(in comparison to

baseline plan)

512 � Software Sizing, Estimation, and Risk Management

Step 5: Evaluate and Replan as Necessary

As discussed in Chapter 8, cost and schedule performance indices identify
project trends. One rule of thumb dictates that if a cost performance index
is below 0.90, and a project is more than 15 percent complete, the plan
cannot be achieved and a replan is necessary.8 SEER-PPMC automatically
provides a new forecasted schedule and effort based on performance to
date. Additionally, the project may be replanned and rebaselined.

Earned Value Metrics and Calculations Used
in SEER-PPMC
Table 12.1 and Table 12.2 have been extracted from the SEER-PPMC Users
Manual. They describe the basic calculations of SEER-PPMC and correlates
them with EVM terminology.9

Figure 12.12 SEER-PPMC actual effort snapshot.

Table 12.1 SEER-PPMC Basic Definitions

SEER-PPMC Parameter Earned Value Equivalent Definition

Development effort
hours

Budget at completion
(BAC)

Total budget

Baseline plan Budgeted cost of work
scheduled (BCWS)

Baseline plan

Earned value Budgeted cost of work
performed (BCWP)

Accomplished effort

Actual expenditures Actual cost of work
performed (ACWP)

Actual effort spent

SEER-SEM Solutions for Project Management and Control � 513

Table 12.2 SEER-PPMC Definitions and Formulas

SEER-PPMC
Value Definition Formulas

Cost
performance
index (CPI)

Achieved cost efficiency CPI = earned value/actual
effort

CPI = earned value through
latest snapshot/hours
through latest snapshot

CPI = BCWP/ACWP

Schedule
performance
index (SPI)

Achieved schedule
efficiency

SPI = earned value/baseline
plan

SPI = earned value through
latest snapshot/planned
hours through latest
snapshot

SPI = BCWP/BCWS

To-complete
performance
index (TCPI)

Assumed cost efficiency to
complete

TCPI = (development effort
hours – earned value
through latest
snapshot)/(estimate at
complete hours – hours
through latest snapshot)

TCPI = (BAC – BCWP)/(EAC –
ACWP)

TCPI = CPI ¥ SPI

Time
performance
index (TPI)

Achieved time (elapsed
schedule) efficiency

TPI = (elapsed time between
actual start date and
baseline date)/(elapsed time
between actual start date
and snapshot date)

Cost variance
(CV)

Difference between earned
value and actual effort
spent expressed in hours

CV = BCWP – ACWP

CV – earned value – actual
effort

CV – earned value through
latest snapshot – hours
through latest snapshot

Cost variance
percentage
(CV%)

Difference between earned
value and actual effort
spent expressed as a
percentage of earned value

CV% = (CV/earned value) ¥
100

CV% = [CV (hours)/earned
value through latest
snapshot] ¥ 100

514 � Software Sizing, Estimation, and Risk Management

Table 12.2 (continued) SEER-PPMC Definitions and Formulas

SEER-PPMC
Value Definition Formulas

Schedule
variance (SV)

Difference between earned
value and baseline plan
expressed in hours

SV = earned value – baseline
plan

SV = earned value through
latest snapshot – planned
hours through latest
snapshot

SV = BCWP – BCWS

Schedule
variance
percentage
(SV%)

Difference between earned
value and baseline plan
expressed as percentage of
baseline plan

SV% = (SV/baseline plan) ¥
100

SV% = (SV) hours/planned
hours through latest
snapshot) ¥ 100

SV% = (SV/BCWS) ¥ 100

Time variance
(TV)

Difference in schedule
months between earned
value and baseline plan;
when roll-up element is
selected, TV equals worst
TV of its subordinate
programs

 N/A

Time variance
percentage
(TV%)

Difference in time between
earned value and baseline
plan expressed as
percentage of baseline
plan

TV% = [TV/(planned
baseline date – start date)] ¥
100

Size growth
variance
(SGV)

Difference between
anticipated size at
completion and baseline
total size expressed as
percentage of baseline size

SGV (lines) = [(size at
complete SLOC/total lines
only) – 1] ¥ 100

SGV (UFPs) = [(size at
complete UFPs/total
functions only) – 1] ¥ 100

SGV (lines and UFPs) = [(size
at complete SLOC/total lines
only) – 1] ¥ 100

SEER-SEM Solutions for Project Management and Control � 515

Figure 12.13 allows a manager to track progress over time. Figure 12.14
illustrates schedule accomplishments and basic earned value concepts.

Table 12.2 (continued) SEER-PPMC Definitions and Formulas

SEER-PPMC
Value Definition Formulas

Baseline at
completion
(BAC)

Actual effort spent up to
latest snapshot plus
baseline to complete; or
budget at completion
divided by cost
performance index

BAC = actual effort + total
hours – earned value

BAC = hours through latest
snapshot + development
effort hours – earned value
through latest snapshot

BAC = total hours/CPI

BAC = development effort
hours/CPI

Estimate at
completion
(EAC)

Actual effort spent up to
latest snapshot plus
estimate to complete; or
budget at completion
divided by cost
performance index

EAC = actual effort + total
hours – earned value

EAC = hours through latest
snapshot development
effort hours – earned value
through latest snapshot

EAC = total hours/CPI

EAC = development effort
hours/CPI

Variance at
completion
(VAC)

Difference between what
total effort is supposed to
be and what total job is
now expected to be

VAC (effort) = baseline
development effort
months – baseline at
complete development
effort months

516 � Software Sizing, Estimation, and Risk Management

Figure 12.13 Representation of progress over time.

Click on any month
to see specific
information

See how actual and earned effort measure up to the baseline plan

Cost Performance Index (CPI)
The ratio of earned t o actual
cost of work performed.

Schedul e Performance Inde x
(SPI)
The percent of the investm ent
that has been complet ed.

Time Performance Inde x (TPI)
The ratio of elapsed time to
the snapshot date as
compared to the baseline.

See CPI, SPI & TPI trends over time

CPI

SPI

TPI

Looking at Progress Over Time

SEER-SEM Solutions for Project Management and Control � 517

Fi
gu

re
 1

2.
14

Sc
he

du
le

 a
cc

om
pl

is
hm

en
ts

 w
it

h
EV

M
 t

er
m

in
ol

og
y.

1
9

2

B
C

W
P

A
C

W
P

B
C

W
S

F
o

re
ca

st
ed

 d
at

e:
1

1
-0

7
F

o
re

ca
st

ed
 m

et
h

o
d

:
P

er
fo

rm
an

ce

T
V

/T
P

I

S
ch

ed
u

le

sl
ip

C
o

st

o
ve

rr
u

n B
V

/B
P

I

S
V

/S
P

I

C
V

/C
P

I

1
6

0

1
2

8

9
6

6
4

3
2 0

B
as

el
in

e
at

 c
o

m
p

le
te

: 5
5

7
7

7
 H

o
u

rs
: 3

4
.4

4
 m

o
n

th
s

C
D

R
 -

 s
n

ap
sh

o
t

M
o

n
th

s

1
-0

5
3

-0
5

5
-0

5
7

-0
5

9
-0

5
1

1
-0

5
1

-0
6

3
-0

6
5

-0
6

7
-0

6
9

-0
6

1
1

-0
6

1
-0

7
1

1
-0

7
9

-0
7

7
-0

7
5

-0
7

3
-0

7

% of baseline plan

518 � Software Sizing, Estimation, and Risk Management

Summary
SEER-SEM and the SEER-SEM Client for Microsoft Project provide insight
for project planning and control. The SEER-SEM Project Manager Edition
provides tools to implement software best practices for project estimation,
planning, and control. Monitoring in-process project performance provides
software managers the necessary information to find problems early and
remediate them, thus enabling control of the software development.

When performance is measured, performance improves. As illustrated
throughout this book, preparing good size estimates is key to providing
a viable estimate. Preparing a viable estimate is key to a well-planned
software project. Preparing a workable plan with a set baseline is the key
to measuring, controlling, and managing successful software projects.

Endnotes
1. Galorath Incorporated. SEER-SEM User Manual. El Segundo: Galorath Incor-

porated, 2005.
2. Galorath Incorporated. SEER-SEM Client for Microsoft Project User Manual.

El Segundo: Galorath Incorporated, 2004.
3. Galorath Incorporated. SEER-Parametric Project Management and Control

User Manual. El Segundo: Galorath Incorporated, 2005.
4. Galorath Incorporated. Internal documents, 2005.
5. “CMMI SE/SW Version 1.1.” Pittsburgh: Software Engineering Institute,

January 2002.
6. Galorath Incorporated. SEER-Parametric Project Management and Control

User Manual. El Segundo: Galorath Incorporated, 2005.
7. Ross, Mike. Parametric Project Monitoring and Control Performance-Based

Progress Assessment and Prediction. El Segundo: Galorath Incorporated,
2005.

8. U.S. Department of Defense. Survey Results, 2004. www.pmforum.org
9. Galorath Incorporated. SEER-Parametric Project Management and Control

User Manual. El Segundo: Galorath Incorporated, 2005.

519

Index

50/50 rule, 309
80:20 rule, 331

A
ABAP4 language codes, 176
Acceptance phase

action items, 132
risk impact projection for, 368

Acquisition Method knowledge base
category, 399–400, 405, 424, 443

Acquisition phase, 362
action items, 130

Action items
acceptance phase, 132
acquisition phase, 130
code and unit test phase, 131
concept phase, 129
design phase, 131
integration phase, 132
postdeployment phase, 132
requirements phase, 130–131

Active Risk Manager (ARM), 384
ActiveX controls, 267
Activity-based estimates, 89
Actors

calculating total weighted, 264
in use cases, 263

Actual cost of work performed (ACWP), 319
Actual effort snapshot, 511, 512
Actual staff, vs. planned staff, 335

Actuals to date, 501
Ada language codes, 176–177, 253
Add, Update, Delete, Inquiry, Output

(AUDIO) convention, 211
Adjusted function point counts, 188,

222–224
Adjustment factors, computing in SEER-

SEM, 448
Agile programming methods, 266, 267
Airlie Software Council, 340
Algebraic risk approach, 387–388
Algorithms, in cost models, 79
Analogy method, 8, 58–59, 67
Analyst capabilities, 443

in SEER-SEM, 75
as SEER-SEM parameter, 455

Analysts, 30–31
application experience, 75
level of capability, 42

Anderson, Paul, 1
Anonymous risk reporting, 376
Application boundary, 194–195, 210, 230

in object point counting, 257
Application class complexity, 443
Application data groups, 229
Application domain, effect on productivity,

77
Application function point count, 193–194
Application knowledge base category, 399,

404, 424, 443
Apportioned credit rule, 309
Architectural design change, 279

520 � Software Sizing, Estimation, and Risk Management

Architecture, 30, 45
additional layers in OO design, 271
definition, 93
as key for reuse, 275
OO shortfalls in, 271

Artifact completion, 509
Assembler IBM-370 codes, 177
Assembler Intel codes, 177
Assembler PDP11 codes, 177–178
Assumptions, 46, 408

establishing, 38
establishing with SEER-SEM, 407–409
in object-oriented development, 270

Assurance task summary, 94–96
Attribute description, 39
Attribute ID, 39
Attributes

and class complexity, 258
counting in object-oriented projects, 260

Automated tools, 59, 63, 443
code counters, 167–169
ease of use, 85
for establishing risk reserve, 388
for risk prioritization, 370
use of, 459

Automatic code generation tool, 413
Automatic function point counters, 61

B
Backfile calculation, 235
Backfire calibration, 235
Backfiring, 237–239
Bad management decisions, 140
Base class, 412
Baseline at completion, 515
Baseline estimate preparation, 70–72, 421

bottom-up estimating, 78
for SEER-PPMC, 510
software cost models, 78–86
software productivity laws, 72–77

Basic language codes, 178
Batch input streams, 226, 231
Bell curve probability tables, 60
Below-the-line (BTL) costs, 108
Best and final offer, 31
Best practices

failure to use, 373
risk management importance to,

340–341

Best Practices Initiative, 340
Bias, 114–115
Binary completion rule, 309
Blobs, 285–286
Boehm, Barry, 340
Boehm’s Consolidated Risk List, 271
Bottom-up estimation, 8, 60, 78
Brooks, Frederick P., 275, 397
Brooks’ law, 401
Budget at completion (BAC), 319
Budget management, 91
Budget performance, 312
Budget risk normalization, 357
Budgeted cost for work scheduled (BCWS),

319
Budgeted cost of work performed (BCWP),

319
Burnout, 34
Business control data, 221
Business goals metrics, 315–316
Buy-in, from potential data provider, 49

C
C-Ansi language codes, 179
C-Sharp language codes, 180
C++ language codes, 178
C++ MFC language codes, 178–179
Calibration

calculations in SEER-SEM, 447
in SEER-SEM, 435–436

Calibration factors, constructing, 436
Capability Maturity Model (CMM) ratings,

141
Cause segment, lessons learned review, 145
Certification, 96
Change facilitation, 220
Checklists, for estimate validation, 106
Child classes, 258
Class complexity, 258–259
Class knowledge base category, 400, 405,

424
Class libraries, 272

time-consuming nature of building, 268
Classes, 256–258

counting in object-oriented projects,
255, 260

Client for Microsoft Project
Description tab, 505
detailed project planning with, 504–506

Index � 521

Factors tab, 505
Goals and constraints tab, 506
project management with, 503–504

COBOL language codes, 180
COCOMO II, 79, 81

cost drivers, 76
use in object-oriented development, 270

Code and unit test, percent effort by labor
category, 135

Code counters, 51–52
for existing systems, 167–169

Code counting methods, 111
Code Generator knowledge base, 413–414
Code growth, 111
Code inspections, 333–335
Code libraries, 109
Code phase, action items, 131
Coding errors, potential in object-oriented

design, 269
Commercial libraries, 160
Commercial Off-the-Shelf (COTS)

parameters, 476
COTS object sizing, 478
Off-the-shelf product characteristics,

478–480
Quick Size, 476–478
Use, 480–484

Commercial Off-the-Shelf (COTS) software,
38, 47, 53, 58, 275–277

component modification issues and
risks, 298–299

component selection issues and risks,
298

cost drivers, descriptions, and settings,
289–290

counting lines of code in, 160
differences from custom development,

282–283
evaluating and estimating, 285–287
evaluation and selection of, 294, 295
evaluation during estimate review

phase, 112
experience with, 293
identifying in SEER-SEM estimates, 408
integrating, 270–284
integration components, 286–287
integration questions, 112
items not to estimate as, 283–284
percentages, 40
quick sizing, 292–293

real-world example experiences,
284–285

risk reduction for, 296–297
risks with, 294–297
rules of thumb for integration, 293–294
scope of, 293–294
shortfalls in object-oriented

development, 270
sizing functions to be integrated for, 70,

267
subcategories for, 279–282
sustainment issues and risks, 299–300
using function points with, 287–288
using SEER-SEM cost drivers to estimate,

288–293
weighing use of, 284

Commercial projects, sizing databases for,
68

Commitment-based risk management
(CBRM), 374–375

Commitment identification, 374–375
Commitment treeing, 375
Communication styles, and risk

management success, 344
Competitive range, 31
Compiler directives, 158–160
Complex processing, 217
Complexity

actors in use cases, 263
COTS products, 286
determining for input, output, inquiry

services, 259
in development environment, 468–470
function classification as

low/average/high, 225
target system for COTS, 290
vs. risk, 111–112

Complexity rating tables
external inputs, 198
external inquiries, 204
external outputs, 201
internal logical files, 209
SEER-FBS for external inquiries, 228
SEER-FBS for external interface files, 228
SEER-FBS internal logical files, 229

Compliance measures, 313–314
Component-based engineering, 266
Component-driven development, 270
Component integration, percent effort by

labor category, 135
Component object model components, 267

522 � Software Sizing, Estimation, and Risk Management

Computer attributes, 43
Concept exploration, 91
Concept phase, action items, 129
Concept Reuse knowledge base, 414
Concurrency, 17

dangers of, 2
difficulty of configuration management

with, 325
Conditional statements, 157, 158
Cone of uncertainty, 32
Confidence level parameter, 487–489
Configuration management, 133, 323
Consequences, in risk analysis, 382
Constraint models, 79, 80
Constraints

determining in SEER-SEM, 510
in SEER-SEM, 403
specifying in SEER-SEM, 424–425

CONSTRUX, 81
Contents, SEER-SEM parameter definition,

448–449
Context-sensitive help, as SEER-FBS

external inquiry subcategory, 228
Contract monitoring, 90
Contract preparation, risk impact projection

for, 367
Control information, 192
Control statements, 157, 158
Convergence, lack in function point

counting, 113
Conversion ratios, 239
Cookies, 267
Corrective actions, metrics as basis of, 308
Correlation, in SEER-SEM model, 391
Cost avoidance measures, 314–315
Cost-benefit analysis, 146, 304

in risk management, 340
Cost constraints, 48

balancing with time and performance,
347

reuse vs. custom development, 277
risk reserves and, 386

Cost drivers, 89, 327–328, 425
COCOMO II, 76
identifying in lessons-learned review,

144
SEER-SEM chart of, 431

Cost estimates
differentiating from targets, 29
hardware and software

purchases/rentals, 37

Cost estimation risks, 99–102
Cost metrics, 28
Cost models, 78–80. See also SEER-SEM

software cost model
COCOMO II, 81
CONSTRUX, 81
COST XPERT, 82
COSTAR, 82
PRICE S, 82
sample cost model coverage, 136–137
SEER-AccuScope, 83
SEER-SEM, 83
SEER-SSM, 84
SLIM, 84
utility criteria, 80

Cost overruns, 7
Cost parameters, COTS, 292
Cost per unit of code, 109–112
Cost performance index (CPI), 513
Cost plus jobs, probability level, 114
Cost risks, 376

chart, 393
Cost-to-complete assessment, 46
Cost to date, 321
Cost uncertainty, 388–389
Cost variance, 321
Cost variance percentage, 514
COST XPERT, 82
COSTAR, 82
COTS applications, 281

bug-free myths, 294
COTS cognition, 287
COTS components, 281
COTS object sizing parameter, 478
Counting criteria, 235
Counting scope, 194
Covey, Steven, 407
Creative activities, strategies for

measurement, 26
Critical event, 372
Critical variance, 381
Custom knowledge bases, in SEER-SEM,

435–436
Customer satisfaction measures, 315
Customer support, 90

D
3D function points, 189
Daily billable work, 116

Index � 523

Data-centric analogies, 411
Data collection, 5, 46

costs and cooperation, 51
in estimation process, 39–45
lessons learned, 50–54
sample collection form, 50
with SEER-SEM, 407–409

Data communications, 212
Data declarations, 157, 158
Data distribution, 51
Data element type identification, external

inputs, 198
Data functions, 192

counting, 209–210
Data management, 91
Data points, eliminating, 53
Data preparation, 133
Data quality metrics, 50, 52
Data requirements, 66
Data sources, 47
Data storage structures, 53
Data tables, 230
Data tables configured, in COTS sizing, 292
Data tables referenced, in COTS sizing, 291
Data typing/equivalence statements, 157
Data update function, 211
Database development, 93
Database files, 230
Database sizing, 68–69
Database standards, 92
David Consulting Group, 187, 234
Decision justification, 28
Defect density, 29, 34, 306

estimating in SEER-SEM, 403
poor estimation and, 3

Defect discovery and removal, 509
Defect estimates, in SEER-SEM, 401
Defect removal costs, 331–332
Defect tracking chart, 331, 332
Defects, 331–332
Defense projects, sizing databases for, 68
Deliverable job control (JCL), 157
Delivered source instructions (DSI), 151
Delivery task summary, 97–98
Delphi estimation method, 67, 87–89, 235
Demoralization, 141
Department of Defense (DoD), 307

risk management practices, 340
Dependencies, in detailed development

schedule, 116

Depreciation costs, 137
Derived data, 192
Descendant classes, 258
Design phase, 131, 133
Design synthesis, 92
Design-to-cost estimation, 8
Desktop application analogies, 411
Detailed design change, 279
Detailed object sizing, 412
Developer credit, 239
Developer information, 44
Developers

completion of draft forms, 50
interviews of, 50

Development environment, 47
complexity parameter, 468–470
specifying, 7

Development lags, 116
Development Method knowledge base

category, 400, 405, 424, 443
Development phase, 362
Development plan

effect of software process on, 141–143
impact of project management on,

138–141
Development project function point count,

193
Development Standard knowledge base

category, 400, 405, 424, 443
Development support environment,

458–463
Development system complexity, 444
Development system experience, 457
Development system volatility, 462
Development testing, 94–95
Development tools, 283
Developmental software, 287
Distributed data processing, 212
Distributions, in SEER-SEM, 427–428
Documentation, 90

estimation process in SEER-SEM, 435
requirements, 48
sample task summary, 96–97
user, 96

DOORS Requirements Tool, 330
Double counting, 113–114
Duration estimates, in SEER-SEM, 401
Dutch Software Metrics Association

(NESMA), 189
Dynamic object creation/destruction, 271

524 � Software Sizing, Estimation, and Risk Management

E
Earned value, 17, 18, 46, 147, 319

as gold standard for productivity
monitoring, 309

metrics and calculations in SEER-PPMC,
512–517

in SEER-SEM estimation methods, 400
work breakdown structure

requirements, 316
Earned value management, 318–322,

323–336, 507
code inspections and, 333–335
defects and, 331–332
process performance and, 325–326
product quality and stability in, 330–331
in shoestring project environments,

324–325
staffing levels and, 335
team performance and, 335–336
technology solutions and, 326–327
understanding process selection

constraints, 327–330
Earned value S curve, 320
Ease of use, software tools, 85
Economic factors parameter, 491–492
Economy of scale, COTS assumptions,

296
Effective complexity, in SEER-SEM, 403
Effective size, 164

computing in SEER-SEM, 406
estimating for COTS, 278
productivity based on, 164
in SEER-SEM, 403
SEER-SEM mathematics of, 438, 441

Effective source lines of code (ESLOC),
defined, 151

Effective technology
calculating in SEER-SEM, 443–445
in SEER-SEM, 403

Effective volume, 69
Effects analysis, 377
Effects segment, lessons learned review,

145–146
Efficiency, team size and, 73
Effort accounting, 115–116, 317

calculating optimal effort, 446–447
determining costs from, 133–134
percent effort by labor category, 135
and process improvement ROI, 143
in risk management, 365

in SEER-SEM, 401, 403, 445–448
trade-off with time, 447

Einstein, Albert, 57
Elementary process, 192
Embedded computer external inquiries, 228
Embedded systems, 276
Encapsulation, 269
End-user efficiency, 215
Engineering estimating, 78
Engineering principles, 35
Enhancement project function point count,

193
Enterprise Java Beans, 271
Environment parameters, in SEER-SEM,

453–476
Environmental factors, in use-case point

counting, 265, 267
Environmental productivity factors, 77
Error-prone modules chart, 334
Error propensity, 331
Estimate assessment chart, in SEER-SEM,

434
Estimate at completion (EAC), 321, 322, 515
Estimate convergence graph, 15, 30
Estimate development, risk identification

during, 380–381
Estimate process questionnaire, 117–128
Estimate review activities, 108–109
Estimate-to-complete assessment, 56, 508
Estimate validation, 105–107

cost per unit of code developed,
109–112

costs, 115
function point counting checklist,

113–115
process of, 107–108
review activities, 108–109
in SEER-SEM, 432–434
staff and effort accounting, 115–116

Estimated costs, 321. See also Budgeted cost
of work performed (BCWP)

Estimates
baseline estimate preparation, 70–98
as commitments, 303
confusing with targets, 32
difficulty in achieving acceptance of

realistic, 13
documenting, 143–146
executing, 57
expense of, 63
failure to keep current, 18

Index � 525

failure to use, 16–18
project planning and control via, 105
purpose of, 45
reasons for failure, 13–14
refining during project tracking, 146–147

Estimating
for object-oriented projects, 270
relationship to risk management, 339
risk identification activities during,

378–380
role of risk management in, 18–20

Estimating process, organizing, 86–87
Estimation concepts, 34–35
Estimation effort, prioritizing, 54
Estimation experience, in object-oriented

development, 270
Estimation information, 40–44
Estimation measures, 62–63
Estimation methods, 8–9

activity-based estimates, 89
Delphi and Wideband Delphi, 87–89
formalized methodology, 59
statistical sizing, 59

Estimation models, lacking COTS-specific
capability, 287–288

Estimation problems, 7–9
Estimation process, 35–36

data collection, 39–35
establishing scope and purpose, 36–38
establishing technical baseline, ground

rules, assumptions, 38
integration and planning, 244
potential risk identification activities

during, 378–381
Estimation purpose, 36–38
Estimation range, 14
Estimation scope, 250–251
Estimation techniques, 25

core metrics categories, 28–29
estimation process, 35–45
importance of using multiple, 32–33
need for metrics, 26–28
and project management, 30–34
software estimation concepts, 34–35

Estimation tools, 6
Event, defined, 372
Evolved function points, 190
Executable lines of code (ELOC), defined,

151
Executable statements, 155, 158
Expectations

defining and documenting, 36
in object-oriented development, 270

Expected value, 60
Experience levels, overstatement of, 116
Expert judgment method, 8, 67
Expert opinion method, 58
External classes, 258

object point complexity rating for, 259
as object points vs. function points, 257

External components, 270
External inputs, 192, 196–198, 210

complexity rating table, 198
duplicates, 197
examples, 197
exclusions from, 197
rating complexity, 197–198
SEER-FBS, 225–226
suspense file updates, 197

External inquiries (EQs), 192, 201–204, 210,
232

example, 202
exclusions from, 202–203
rating complexity for, 203–204
SEER-FBS, 227–228

External interface files (EIFs), 192, 204–206,
232

examples, 204
exclusions from, 205
rating complexity for, 205–206
SEER-FBS, 228–229

External interfaces, 11
External outputs, 192, 199–201, 210, 232

complexity rating table, 201
duplicates, 199
examples, 199
exclusions from, 200
graphical formats, 199
rating complexity, 200–201
report generator, 199–200
reports, 199
SEER-FBS, 226–227

Extreme programming, 266

F
Failure modes and effects analysis (FMEA),

377
Fairy tale, managing to, 31
Fast function points, 412
Feature points, 188

526 � Software Sizing, Estimation, and Risk Management

Features, number of, 9
File type referenced (FTR) identification,

201, 228, 230
Files, 11

double referencing, 113
Financial management, 91
Fixed messages, 229
Fixed price jobs, probability level, 114
Focus, loss of, 5
Ford, Henry, 253
Forgotten functionality, 239
Forms and instructions, 49–50
Forth language codes, 180
FORTRAN 77 language codes, 181
FORTRAN IV language codes, 181
FORTRAN language codes, 181
Full Design Reuse knowledge base, 414
Full function points, 189–190
Function-based sizing, 187–188, 409, 412

effective function points, 231–236
function point counting risk checklist,

243–251
function point pros and cons, 240–241
function point risk management,

242–243
function point rules in tree-based

framework, 236–237
IFPUG counting standards, 191–192
IFPUG definitions, 192
IFPUG steps, 192–224
ISO involvement, 190–191
origin and history, 188–190
SEER-Function-Based Sizing (SEER-

FBS), 224–230, 442
using SEER for, 420
when to use function points, 242

Function complexity table, 223
Function point counting checklist, 113,

243–251
bias, 114–115
double counting, 113–114
and falsely bounded risk, 114
lack of convergence, 113
outliers, 115
probability level, 114
sample and statistical concerns, 114
sanity counts, 113

Function point counting cost comparisons,
234

Function Point Counting Practices Manual,
192, 233

Function point counting rules (FPCR)
project, 236–237

Function point risk management, 242–243
Function point rules

backfiring, 237–239
inconsistent application of, 240
possible counting errors, 239–240
in tree-based framework, 236–237
tree description and results, 237–240

Function points, 9, 58, 60, 61, 62–63, 409,
412. See also Function-based sizing

advantages and disadvantages, 12
conversion ratios, 239
counting COTS setup files as, 288
counting in SEER-SEM, 406
defining effective, 231–233
early estimations, 236
IFPUG definition, 192
pros and cons, 240–241
semantic difficulties, 241
size estimation through, 11–13
using, 233–235
vs. object points, 256, 257
when to use, 63–64, 242

Functional analogies, 411
Functional analysis, 67
Functional categories, 195–196

external input (EI), 196–198
external inquiry (EQ), 201–204
external interface file (EIF), 204–206
external output (EO), 199–201
internal logical file (ILF), 206–209

Functional metrics, origins and history,
188–190

Functionality, 61, 188
COTS, 284
delaying, 2
size as measure of, 9
with software reuse, 275

G
Galorath, Judy, 45–46
Galorath Incorporated, 231

use of object-oriented size metrics, 254
Galorath size methodology matrix, 409
Galorath sizing methodology, 66–67,

110–111
General — New and Preexisting knowledge

base, 413

Index � 527

Generated code, 159
Geographical team distribution, 41
Glue code, 286–287

lack of ease of writing, 295
Goal-question-metric paradigm, 306
Goals, probability of meeting, 503
Government off-the-shelf (GOTS) software

line counting in, 160
use in COTS, 281–282

Grassroots estimating, 78
Ground rules, 38, 46, 408

establishing with SEER-SEM, 407–409

H
Hand-coded lines of code, 159
Hardware external outputs, as SEER-FBS

external output subcategory, 227
Hardware inputs, 231

as SEER-FBS external input subcategory,
226

Hardware purchase costs, 37
Hardware-software integration, 94
Hazards, defined, 378
Hello World code comparisons, 176–185
High priority risks, 353

active reporting level for, 385
Historical data, misuse of underuse of,

14–16
Historical function point ratios, 236
Hobson's choice, 363
Holchin size growth approximations, 167,

168
HTML codes, 181–182
Humphrey size contingency factors, 166

I
IBM Rational Rose/Rational Modeler tools,

401
IFPUG method, 188
Impact horizon, 355
Impacts

categorizing risks by, 352
risk characterization by, 354
in risks vs. problems, 345

Impossible zone, 32
Inaccurate sizing, 110–111

Incidental reuse, 276–277, 278, 283
Incremental capability, 277
Incremental delivery plan, 32
Independent assessments, 17

in sizing, 66–68
Independent quality assurance, 137
Independent verification and validation

(IV&V), 95, 137
Indicators, 45

distinguishing from metrics and
measures, 27

Inference, sizing by, 411
Inflation, 137
Information currency, 246–248
Information form, 45
Information retrieval applications, 282
Information source, 39
Inheritance, 270, 272

in object-oriented design, 269
Input definitions, SEER-SEM, 402–403
INPUT/OUTPUT format statements, 157
Input screens, 231

as SEER-FBS external input subcategory,
226

Input services, 259
object point complexity rating for, 260
as object points vs. function points, 257

Inputs, 11
ranges for, 54
in SEER-SEM calculations, 445

Inquiries, 11
Inquiry services, 259

object point complexity rating for, 260
as object points vs. function points, 257

Inspections, structured, 94
Installation ease, 218
Insufficient resources, 374
Integrate As-Is knowledge base, 414–415
Integrate with Configuration knowledge

base, 415
Integration

commercial off-the-shelf software,
279–284, 286–287

with COTS software, 112
reconfigured COTS software, 288
rules of thumb for COTS, 293–294
stand-alone COTS software, 288

Integration phase, action items, 132
Intellectual activities, strategies for

measurement, 26
Intentional underbidding, 33

528 � Software Sizing, Estimation, and Risk Management

Interactive inputs, 231
as SEER-FBS external input subcategory,

226
Internal classes, 258

object point complexity rating for, 259
as object points vs. function points, 257

Internal function classification guidelines,
230

Internal functions, 225
SEER-FBS extended category, 230

Internal logical files (ILFs), 192, 206–209,
233

complexity rating table, 209
examples, 208
exclusions from, 208
rating complexity for, 208–209
relationships, 206–207
SEER-FBS, 229–230

International Function Point User Group
(IFPUG), 187, 241

counting standards and process
definition, 191–192

definitions, 192
International Function Point User Group

(IFPUG) steps
computing unadjusted/adjusted function

point counts, 222–224
counting data functions (ILFs, EIFs),

209–210
counting transactional functions (EIs,

EOs, EQs), 210–211
determining application boundary,

194–195
determining type of function point

count, 192–194
evaluating value adjustment factors,

211–212
identifying functional categories,

195–209
International Organization for

Standardization, involvement in
function-based sizing, 190–191

International Society of Parametric Analysis
(ISPA), 7

Investment phase, 90

J
Java language codes, 182
Java Message Service, 271

Java scripts, 267
Java-specific COTS products, 271
JavaScript language codes, 182
Job Control Language (JCL) codes, 182

K
Kennedy, John F., 339
Knowledge bases, 507

categories in SEER-SEM, 399–400, 424
choosing for reuse estimation, 412–420
Code Generator, 413–414
Concept Reuse, 414
creating custom, 435
Full Design Reuse, 414
General – New and Preexisting, 413
Integrate As-Is, 414–415
Integrate with Configuration, 415
Language Conversion, Automated, 415
Modification, Major, 416
Modification, Minor, 416–417
Redocumentation, 417
Reengineering, Major, 417–418
Reengineering, Minor, 418
Rehost, Major, 418–419
Rehost, Minor, 419
Salvage Code, 420
in SEER-SEM, 80, 399–400, 442–443
selecting in SEER-SEM, 423–424, 425
Subsequent Incremental Build, 420

L
Labor costs, 37
Labor proportions, 134
Language conversion factors, 163
Language Conversion knowledge bases,

415
Language library, 160
Language type complexity, 444
Late defect removal, costs of, 332
Least/likely/most size estimation, 67–68,

112, 129, 389, 427
in SEER-FBS, 224

Legacy percentages, 40
in object-oriented development, 270

Legacy software rework, 69–70
Lessons learned, 70

Index � 529

cause segment, 145
conducting review, 144–145
documenting, 143–144
effects segment, 145–146
modeling improvement segment, 146
risk identification during, 381
in SEER-SEM, 435–436
software data collection, 50–54

Life-cycle cost, estimating for hardware
projects in SEER-SEM, 400

Life-cycle phases, 86
Life-cycle process, in Client, 503–504
Likelihood of occurrence (LO), 349

categorizing risks by, 352
Line counting example, 161
Line counting methods, differences in,

161
Lines of code (LOC), defined, 151
Lines of code size estimation, 9
Lisp language codes, 183
Logical SLOC, 10–11, 155

compiler directives, 158–160
counting details, 155–157
data declaration statements, 158
differences in line counting methods,

161
estimation vs. counting SLOC, 162
executable statements, 155, 158
line counting example, 161
line rules, 157
use by SEER-SEM, 437

Logical source line rules, 157
Low priority risks, 353

archive reporting level for, 385
Lubbock, Sir John, 187

M
Magic bullets, 109–110
Maintainability risks, 376
Maintenance estimates, 86
Maintenance phase, 362
Major milestones, 65
Management. See also Senior management

effect on estimates, 138
relationship to risk officer, 371–372

Management denial, 13
Management participation level, 115
Management pressure, 324
Management support

for risk analysis metrics, 382
and risk management success, 344
sample task summary, 90–91

Manual software sizing, 410
Mark II function points, 189
Master knowledge base, in Client, 503
Mathematical statements, 157, 158
Measurement, 17

as basis for objective communications,
308

Measures, distinguishing from metrics and
indicators, 27

Media external outputs, as SEER-FBS
external output subcategory, 227

Medium priority risks, 353
reporting level for, 385

Memory constraints, 75
COTS, 290

Memory management, in OO design, 271
Menus, as SEER-FBS external inquiry

subcategory, 228
Message connection, 260
Meta-analysis, 108
Methods, 259–261
Metric reporting, 304–308
Metrics, 90

baseline definition, size metrics, 65
core categories, 28–29
distinguishing from measures and

indicators, 27
for morale, 28
need for efficient, 26–28
as opportunities for improvement, 305
sample questions and, 306
selecting for software sizing, 61–64
use in risk analysis, 382

Metrics-based risk management, 349
Metrics sets, 309
Microsoft COM, communicating with SEER-

SEM via, 407
Microsoft Excel, as risk tool, 384
Minimum time, 73, 424

calculating in SEER-SEM, 445–446
estimating in SEER-SEM, 401

Modeling improvement segment, 146
Modern development practices use, 443,

458–459
Modification, Major knowledge base, 416
Modification, Minor knowledge base,

416–417
Modified COTS, 283

530 � Software Sizing, Estimation, and Risk Management

Monson, Thomas S., 303
Monte Carlo risk analysis, 388, 392
Morale, measurement of, 28
Most likely designation, 14
Multiple sites, 219

development at, 460–461

N
National Bureau of Labor Statistics, 134
Negative impact, 349
Negative trends/forecasts, 374
NESMA, 189
New processes, risk implications, 373–374
No-cost code counters, 52
No-destruction clauses, 53
Non-coding tasks, 89
Non-modified COTS, 283
Nondisclosures, 53

obtaining, 49
Nonfunctional requirements, 329
Normalization, 147
Not invented here syndrome, 108–109

O
Object classes, 255
Object Management Group (OMG), 255
Object-oriented design, 254

estimation methodology for, 270
exaggerated expectations for, 268
history of, 254–255
passive resistance to, 268

Object-oriented metrics, 254
Object-oriented sizing, 253–254

calculating unadjusted use-case points,
263–267

object-oriented design history, 254–255
and object-oriented techniques, 255–263
risks in object-oriented projects, 267–272

Object-oriented techniques, 255
object point definitions, 256–261
object points, 256
predictive object points, 262
use-case metric development, 262–263

Object point complexity rating
external classes, 259
for input services, 260

for inquiry services, 260
for internal classes, 259
for output services, 260

Object point counts, 256
Object point definitions, 256

class complexity, 258–259
classes, 256–258
external classes, 258
internal classes, 258
methods, 259–261
services, 259–261

Object point function complexity, 261
Object points, 256

definitions, 256–261
vs. function points, 256, 257

Off-the-shelf integration, 112
Off-the-shelf product characteristics, 292,

478–480
Office space, costs of, 37
Online data entry, 214
Online update, 216
Open databases, in SEER-SEM, 406–407
Operating environment, extent of

customization, 109
Operating system changes, 418
Operating system utilities, 282, 283
Operational ease, 219
Operational requirements, 41
Operational testing, 96
Operations phase, 362
Opportunity, 349
Optimal effort calculations, in SEER-SEM,

446–447
Optimistic designation, 14
Organizational arrogance, 101
Organizational culture, as obstacle to risk

management, 343–345
Organizational resource allocations, in

Client, 504
Organizational team distribution, 41
OSD Software Estimation Guidebook, 426
Outliers, 115
Output definitions, SEER-SEM, 402–403
Output ranges, probability distributions in

SEER-SEM, 428–429
Output services, 259

object point complexity rating for, 260
as object points vs. function points, 257

Outputs, 11
in SEER-SEM calculations, 445

Overhead costs, 138

Index � 531

Overoptimism, 30
with object-oriented development, 268
as obstacle to risk management, 343–345
and project failure, 16–18
and SLOC estimates, 171

Overtime, 115

P
Parallel development tasks, 110
Parameters

adjusting in SEER-SEM, 425–426
relative impacts on cost and effort, 454
in SEER-SEM mathematical model, 442
specific settings in Client, 504

Parametric Estimating Handbook, 7
Parametric models, 9
Parametric project monitoring and control

(PPMC), 400, 499
project management with, 506–509

Parametric risk estimation, 349
Parkinson's law, 34, 394
Pascal language codes, 183
Pascal-Windows language codes, 183
Past productivity, 53
Peer reviews, 304
Percent effort, by labor category, 135
Performance improvement, 146, 213

earned value management and, 318–336
metric reporting in, 304–308
metrics sets, 309
productivity monitoring and, 309–318

Performance measures, 312–316
Performance software measurement (PSM)

Department of Defense and, 307
example issues, 310–311
principles of, 307–308

Performing to estimate, 303–304
Personnel capabilities and experience,

SEER-SEM, 455–458
Personnel costs, 134
Personnel mix, estimating, 133–134
Personnel shortfalls, in object-oriented

development, 269
Pert distribution characteristics, 389,

390–391
Pessimistic designation, 14
Phase effort, 28
Physical carriage returns, 154
Physical SLOC, 154

Planned reuse, 277, 278, 283
Planned value, 318, 319
Planning and control process, with SEER-

PPMC, 510–512
Planning process

poor planning, 337
truncation of, 35

Platform knowledge base category, 399,
404, 423, 424, 443

PMTOOLBOX, 384
Polymorphism, in object-oriented design,

269
Portfolio planning, 65
Postdeployment phase, action items, 132
Postestimation Process Evaluation

Questionnaire, 87
Postmortems, 144, 145–146
Potential defects, and code inspections, 333
Potential impacts, 345
Practical software measurement (PSM), 26,

304
Practices and methods experience, 458
Predictability, loss of, 141
Predictive object points (POPs), 262
Preexisting software, 410
Price-first mentality, 325–326
PRICE S, 82
Principal estimation factor, 117
Printed reports, as SEER-FBS external

output subcategory, 227
Private defects, 331
Probability-based risk outputs, 392
Probability distributions, 429

in SEER-SEM, 409, 428–429
Probability inputs, 46, 382
Probability level, 114
Probability risk characterization, 354
Problem definition, 1–4

failure to keep estimates current, 18
historical data misuse, 14–16
problems with estimation, 7–9
reasons for failed estimates, 13–14
reasons for project failure, 4–6
risk management role in estimating,

18–20
size estimates, 9–13
ten-step estimation process, 20–21

Problem management, 346
Problem managers, 139
Problems, 349

vs. risks, 343, 345–346, 384–385

532 � Software Sizing, Estimation, and Risk Management

Procedures, 325
importance of adequate training, 365
for risk management, 362–368

Process
defining high level, 328
effect on estimates, 138
management reinforcement of

importance, 334
as most important determinant of

productivity and risk, 325
as requirement for earned value

reporting, 316
Process areas, 500–503
Process characteristics, 29
Process improvement, 444

return on investment, 142–143
Process integrity, 249
Process measurement, 304
Process performance, 325–326
Process quality, 77
Process selection constraints,

understanding, 327–330
Process volatility, 462–463
Processing dependency, 260
Processing logic, 192
Product attributes, 43
Product development requirements,

463–467
Product planning, 65
Product quality, 330–331

performance measures of, 313
Product reusability requirements, 467–468
Product size control, 329
Productivity

based on effective size, 164
defined, 309
metrics, 316
overstated, 109
per person-month, 110
and process improvement ROI, 142
projecting, 10
relationship to size and effort, 309
scalability of, 73

Productivity computation worksheet,
317–318

Productivity data, estimating from, 71
Productivity management, 324
Productivity monitoring, 309–318
Program Manager's WorkStation (PMWS),

384
Program offices, 51

Program risks, 376
Programmed code, 60. See also Source lines

of code (SLOC)
Programmer capabilities, 443

SEER-SEM, 456
Programmer language experience, 456–457
Programming language, 109

data point elimination due to, 53
effects on SLOC sizing approach, 149
impact on size conversion, 163
impacts of, 86
SEER-SEM technology offsets for, 75

Programming phase, 133
Progress monitoring, 27

vs. effort spent, 509
Progress over time, in SEER-PPMC, 516
Project activity network, 316
Project actuals, 52
Project attributes, 44
Project budgeting, 65
Project constraints, specifying in SEER-SEM,

424–425
Project dynamics, 29
Project failure, and software management

problems, 140
Project management, 90, 99

basic SEER-SEM for, 501–503
with Client for Microsoft Project,

503–506
CMMI process areas for, 500–503
estimates as foundation of, 30–34
impact on software development plan,

138–142
planning and control process with SEER-

PPMC, 510–512
with SEER-PPMC, 506–509
SEER-SEM solutions for, 499–500

Project monitoring procedures, 329
in SEER-SEM, 398

Project plan generation, 128–143
acceptance phase, 132
acquisition phase, 130
code and unit test phase, 131
concept phase, 129
cost determination from effort estimates,

133–134
depreciation costs, 137
design phase, 131
effect of management and process, 138
estimating personnel mix, 133–134

Index � 533

independent verification and validation,
137

inflation and, 137
integration phase, 132
labor proportions, 134
miscellaneous costs, 134–138
overhead costs, 138
personnel costs, 134
postdeployment phase, 132
requirements phase, 130–131
schedule estimation in calendar months,

138
from scratch or importing in Client, 504
in SEER-SEM, 434
training costs, 137
travel costs, 134

Project progress, 29
Project reviews, 17
Project rules, 325
Project size, 77
Project staffing constraints, 48
Project success, risk management and, 19
Project task summary sample, 90–98
Project time reductions, through code

inspections, 334
Project tracking, 65

in SEER-SEM, 436
Projected technologies, 44
Proprietary restrictions, 51

Q
Qualified supplier availability, 374
Qualitative information, 45
Qualitative risk analysis, 387
Quality

cult of, 336
definitions, 330–331
importance of testing to, 326

Quality assurance, 30, 34, 94, 133
independent verification of, 137
SEER-SEM parameters, 466

Quality impact, risk normalization for, 357
Quantitative information, 45
Quantitative triggers, 383

use in risk analysis, 382–383
Questionnaires, customized for assessment,

45
Quick size parameter, 476–478

R
Raleigh curve models, 405
Range distribution, 111
Rating categories, 69, 117, 128
Rating complexity

external inputs, 197–198
external inquiries, 203–204
for external interface files, 205–206
external outputs, 200–201
internal logical files, 208–209

Real-time code, 290
Realistic estimates, difficulty in obtaining

acceptance for, 13
Record element type identification, 208
Redesign, 69, 278, 280
Redocumentation, with COTS, 279
Redocumentation knowledge base, 417
Redundancy measures, 314
Reengineering, Major knowledge base,

417–418
Reengineering, Minor knowledge base, 418
Reference data, 229
Rehost

from development to target, 466–467
Major knowledge base, 418–419
Minor knowledge base, 419

Reimplementation, 69, 278, 280
calculation for, 281

Reliability, of COTS, 284
Repeatability, 71
Reports

external outputs, 199
problems vs. risks, 384–385

Repository analysis, in SEER-SEM, 399
Request-response, 228
Requests for proposals (RFPs), 6

risk impact projection for, 366
Requirement changes, 272
Requirements, 30, 40

baseline set of validated, 6
control of changes to, 329
danger of changing, 5
design and percent effort, 135
extraordinary, 108
failure to understand, 5
lack of stability or clarity, 373
lack of well-defined, 7
specialized, 41
as starting point for use cases, 263

Requirements creep, 109

534 � Software Sizing, Estimation, and Risk Management

Requirements mismatch, 271
Requirements phase, action items, 130–131
Requirements specification/validation, 92
Requirements volatility, 75, 463

trade-off in SEER-SEM, 502
Resource and support location, 461
Resource dedication, 461
Resource estimation, defects in, 337
Resource limitations, 323–324
Resource requirements, 66
Response time, 460
Responsibility-driven design approach, 254
Retesting, 69, 278, 280–281
Return on investment

for object-oriented development, 268
from process improvement, 142–143

Reusability, 218, 270, 275–277, 277–279
comparison of software types, 278
in object-oriented design, 268
product requirements, SEER-SEM,

467–468
and relative software costs, 276
risks associated with, 287
saving time and money through

increased, 272
in SEER-SEM, 75
three activities associated with, 278

Reuse, software impacted by, 444
Reuse library, 160
Reuse percentages, 40, 47, 52, 69
Revalidation, 279
Reverse engineering, 279, 482–483
Rework

as key size measure, 10
of legacy software, 69–70
unanticipated, 3, 34

Risk
benefits of early visibility, 341
categorizing by degrees of urgency, 353
with COTS, 294–297
defined, 349–350
documenting and identifying, 46
early addressing through estimates, 27
estimating in SEER-SEM, 403
evaluation of identified, 381
falsely bounded, 114
identifying and managing, 5
including impact in estimation, 33
level of acceptable, 48
in object-oriented projects, 267–272
quantification, 99–102

quantifying in SEER-SEM, 426–429
and SLOC estimates, 170–171
SLOC use, 152
vs. complexity, 111–112
vs. problems, 343, 345–346, 384–385

Risk aggregation, 350
Risk analysis, 99–102, 381–383

probability and intuition in, 391–392
probability-based risk outputs, 392
project and roll-up risk calculation in,

392–393
in SEER-SEM, 426–429
as uncertainty analysis, 387–393
at work element level, 389–391

Risk analysis report, in SEER-SEM, 431–432,
432

Risk assessments, 376–377
process, 356

Risk avoidance, 350
Risk chaining, 350, 359
Risk characterization, 377–378

example criteria, 354–355
sample form, 379–380

Risk containment, 350
Risk enablers, 363, 364–365
Risk evasion, 350
Risk factor analysis, in SEER-SEM, 429–430
Risk grid, 358
Risk identification, 100, 363, 372–374

commitment-based risk management
(CBRM), 374–375

potential activities during estimation,
378–381

risk assessments and surveys in, 376–377
risk characterization in, 377–378
staff involvement and, 375–376
techniques, 374–377

Risk impact projection, 366–368
Risk index, 350, 384

computing, 352–356
updating, 383–384

Risk indicators, 373–374
Risk management, 19, 28, 91, 100

and cost uncertainty, 388–389
cultural obstacles to, 343–345
defined, 350
essential definitions, 349–350
factors contributing to resistance to,

342–343
as hard sell, 342
history of, 340–345

Index � 535

lip service to, 20
metrics-based, 349
role in estimating, 18–20
success factors, 347–349

Risk management concepts, 350–352
risk index computation, 352–356
risk management processes, 356–359

Risk management plan, 360–361
Risk management processes, 339–340,

356–359
Risk management rules, 387
Risk management steps, 358

establishing risk policy, 359–368
establishing risk reserve, 387–388
obtaining commitment, 359–368
risk analysis, 381–383
risk identification, 372–381
risk management plan development,

359–368
risk officer designation, 368–372
risk prioritization, 383–384
risk reporting, 384–385

Risk Matrix, 384
Risk mitigation, 346, 350

funding through risk reserve, 386
Risk normalization table, 357–358
Risk officer

case study, 371
designation of, 368–371
relationship to management, 371–372

Risk policy statements, 360, 361
Risk prioritization, 383–384

by risk officer, 370
Risk profiles, in SEER-SEM, 429
Risk Radar, 384
Risk Rating System, 384
Risk reduction, COTS product use, 296–297
Risk reporting, 384

anonymous, 376
by exposure, 385
fear of retribution as inhibiting factor,

375–376
importance of timely, 372
passivity jeopardizing, 375–376
reporting problems vs. risks, 384–385

Risk reserves, 349
establishing, 387–388
using commercial-grade tools to

establish, 388
Risk resolution cost, 19
Risk tools, 370, 384

Risk triggers, 350
RiskNav, 384
RiskTrak, 384
Roles and responsibilities, in risk

management process, 360
Roll-up risk calculation, 392–393
Root cause analysis, 305
Runtime modules, 282

S
Salvage Code knowledge base, 420
Sample bias, 114
Sample cost model coverage, 136–137
Sample size, 114
Sanity counts, 113
Scatterplots, effort vs. size in SEER-SEM, 435
Schedule accomplishments, with EVM

terminology, 517
Schedule and staffing considerations, in

SEER-SEM parameters, 484–487
Schedule calculations, in SEER-SEM,

445–448
Schedule commitments, 34

in estimate review process, 116–117
multiple software elements, 116
process improvement ROI, 143
sanity check, 117
in SEER-SEM, 403
and staffing levels, 335
undisciplined management approach to,

6
unrealistic, 110

Schedule compression, 63, 77, 141
Schedule concurrency, 17
Schedule constraints, 48
Schedule correlation sample, 117
Schedule estimation, in calendar months,

138
Schedule growth, in OO development, 273
Schedule impact, risk normalization, 357
Schedule management, 91
Schedule performance, 312
Schedule performance index (SPI), 321, 513
Schedule risks, 377
Schedule variance, 319–320, 321, 514
Scope, 57, 250–251

COTS implementation, 293
establishing for estimation, 36–38
in object-oriented development, 270

536 � Software Sizing, Estimation, and Risk Management

Scope creep, 233
Screen reports, as SEER-FBS external output

subcategory, 227
Secondary estimation factors, 117
Security requirements, 329

COTS, 290
in SEER-SEM, 75
as top cost driver, 37

SEER
CMMI process and, 500
function-based sizing for size estimates,

420
SEER-AccuScope, 31, 59, 61, 83, 399

automated sizing with, 410–412
relative sizing comparisons, 413

SEER Client for Microsoft, 128
SEER CriticalMass, 401
SEER-DB, 400
SEER-DFM, 401
SEER function-based sizing, 9, 61
SEER-Function-Based Sizing (SEER-FBS),

187, 190, 224–225
external inputs (EIs), 225–226
external inquiries (EQs), 227–228
external interface files (EIFs), 228–229
external outputs (EOs), 226–227
internal functions category, 230
internal logical files (ILFs), 229–230

SEER-H with Total System Vision, 400–401
SEER Local Project Files, 400
SEER-PPMC, 400

actual effort snapshot, 511–512
basic definitions, 512–517
earned value metrics and calculations

in, 512–517
planning and control process with,

510–512high-level flow chart, 511
project management with, 506–509
work complete snapshot, 510–511

SEER-RAA Repository Analysis Application,
399

SEER-RDB, 400
SEER-ScatterPlot, 399
SEER-SEM, 398–399

applying to estimation processes, 397,
407–410

for basic project management, 501–503
Client for Microsoft Project, 503–506
concept, 403–405
Create/Modify WBS Element knowledge

base selection, 404

custom knowledge bases and
calibration, 435–436

details and uses, 401–402
goals, 409
input view, 410
precise estimate distributions through

risk analysis report, 431–432
probability estimate, 430
project management solutions, 499–500
Project Manager Edition tools

introduction, 398–401
ranked risks with top ten cost drivers

chart, 431
risk factor analysis with sensitivity

charts, 429–430
sizing with, 405–406
summary input and output definitions,

402–403
SEER-SEM Analyst Edition, 400
SEER-SEM Client for Microsoft Project, 399,

422, 499
SEER-SEM estimation steps, 407

adjusting individual parameters,
425–426

choosing knowledge bases for reuse
estimation, 412–420

data collection, 407–409
documenting estimate and lessons

learned, 435
establishing ground rules and

assumptions, 407–409
establishing scope and purpose,

407–409
establishing technical baseline, 407–409
estimation process, 421–422
generating project plan, 434
project tracking, 436
quantifying risks and risk analysis,

426–429
selecting knowledge bases, 423–424
software sizing, 409–410
specifying project constraints, 424–425
validating and reviewing estimate,

432–434
SEER-SEM internals, 436

applying adjustment factors in, 448
basic effort and schedule equations,

445–446
basic size definitions, 437
calibration calculations, 447
computing adjustment factors in, 448

Index � 537

effort, schedule, and staffing
calculations, 445–448

mathematical model overview, 437–445
minimum time calculations, 445–446
optimal effort calculations, 446–447
relaxed schedule calculations, 447–448
staff hour definition, 437, 438–440

SEER-SEM knowledge bases, 399–400
SEER-SEM mathematical model, 437

effective size mathematics, 438, 441
effective technology calculation,

443–445
function-based sizing mathematics, 442
knowledge bases in, 442–443
parameters, 442

SEER-SEM parameter definitions, 448
contents, 448–449
development support environment,

458–463
personnel capabilities and experience,

455–458
sizing parameters, 449–453
technology and environment

parameters, 453–476
SEER-SEM PPMC, tracking staffing levels

with, 335
SEER-SEM programmatic architecture, 406

communicating via Microsoft COM, 407
open databases, 406–407
Server Mode, 407

SEER-SEM quick estimates, 404
SEER-SEM Quick Planner, 427
SEER-SEM software cost model, 45, 83

effect on developer productivity, 64
effective technology offsets in, 75
effort adjustments, 222
establishing risk reserves with, 388
estimating COTS with, 288–293
feature sizing for COTS, 291–293
inputs and outputs, 390
knowledge bases in, 80
minimum time estimate in, 141
for object-oriented design, 270
object sizing for COTS, 291
probability inputs, 46
understanding process selection

constraints through, 327
SEER-SSM, 84
SEI checklist, 172

definitions for source statement counts,
172–176

Senior management, overoptimism by, 16
Sensitivity charts, 429

in SEER-SEM, 429–430, 431
Server Mode, in SEER-SEM, 407
Services, 259–261
Shared data files, 229
Shoestring project environments, 324–325
Shopping carts, 267
Shortcuts, and project risks, 147
Silver bullets, 73, 326
Simula, 254
Site assembly and installation, 98
Site preparation, 98
Site surveys, 98
Site testing and acceptance, 98
Size analogies, in Client, 504
Size-cost relationship, 329–330
Size definitions, SEER-SEM, 437
Size estimates, 3

analogy method, 58–59
approaches to, 60–61
differentiating from targets, 29
difficulty in estimation process, 12
expert opinion method, 58
and project failure, 9–13
skepticism about reported, 111
using number of programs in,

420–436
Size growth

accounting for, 164–166
estimating, 166–167

Size growth variance, 515
Size measures, 151
Size prediction, 58–60
Sizing by inference, 411
Sizing databases, SLOC considerations for,

162–163
Sizing objectives, defining, 65–66
Sizing parameters, in SEER-SEM, 449–453
Sizing Web development, 265–267
SLIM cost model, 79, 84
Smalltalk.simple language codes, 183–184,

254
Software cost models, 78–86
Software creep, 7. See also Requirements

creep
Software development task, 93
Software Engineering Institute (SEI)

Capability Maturity Model (CMM)
ratings, 141

SEI Risk Program, 340

538 � Software Sizing, Estimation, and Risk Management

Software estimation concepts, 34–35
in SEER-SEM, 398

Software external outputs, as SEER-FBS
external output subcategory, 227

Software growth factors, 166
Software integration/testing, 96
Software maintenance parameter, 492–496
Software management problems, 140, 337
Software measurement, 305
Software process

effect on development plan, 141–143
effect on estimates, 138
importance in object-oriented design,

268
Software product complexity, 43
Software productivity laws, 72–77
Software Program Managers Network

(SPMN), 340
Software project failure

estimation problems and, 7–9
reasons for, 4–6
size estimates and, 9–13

Software purchase costs, 37
Software requirements, identifying in sizing

process, 66
Software size, 9, 40, 47, 54

estimation measures, 62–63
inaccurate, 110–111
prediction methods, 58–60

Software sizing, 57–58, 421
automated with SEER-AccuScope,

410–412
baseline definition of size metric, 65
data and resource requirements

planning, 66
database sizing, 68–69
defining sizing objectives, 65–66
identifying software requirements, 66
independent techniques and sources in,

66–68
legacy software rework, 69–70
lessons learned, 70
manual, 410
metric selection, 61–64
with SEER-SEM, 405–406, 409–410
size estimation approaches, 60–61
size prediction methods, 58–60
steps to estimating, 64–68
tracking step, 68
use of function points in, 63–64
use of SLOC in, 63

Software structure, 29
Software systems engineering, 133
Source lines of code (SLOC), 10–11, 27, 58,

60, 62–63, 149–150, 409
ABAP4 codes, 176
Ada codes, 176–177
advantages and disadvantages, 12
arguments against use, 170
Assembler IBM-370 codes, 177
Assembler Intel codes, 177
Assembler PDP11 codes, 177–178
and automated code counters for

existing systems, 167–169
Basic codes, 178
C-Ansi codes, 179
C-Sharp codes, 180
C++ codes, 178
C++ MFC codes, 178–179
COBOL codes, 180
codes by programming language,

176–185
considerations for sizing databases,

162–163
definition, 111, 151
delivery, 174
development status, 175
effective size, 164
effects of language on, 176
end usage of lines, 157
estimating size growth, 166–167
estimation vs. counting, 162
Forth codes, 180
Fortran 77 codes, 181
FORTRAN codes, 181
Fortran IV codes, 181
functionality, 175
HTML codes, 181–182
inclusion/exclusion criteria, 156
Java codes, 182
JavaScript codes, 182
Job Control Language (JCL) codes, 182
language conversion factors, 163
language impact on size conversion, 163
line origins, 156–157
line production, 156
Lisp codes, 183
logical SLOC counting details, 155–157
misuse of historical data, 171
origin, 174
Pascal codes, 183
Pascal-Windows codes, 183

Index � 539

per function point, 239
physical carriage returns in, 154
productivity based on effective size,

164
in productivity computation, 317–318
productivity per person-month, 110
pros and cons, 169–171
realities and risks, 152
replications, 175
risk management and control of

estimates, 171
risk resulting from use in estimation,

170–171
in SEER-SEM, 406
SEI checklist, 172–176
and SLOC growth, 164–166
Smalltalk.simple codes, 183–184
terminology and definitions, 150–152
usage, 174
use in SEER-SEM, 441
using in estimates, 153–155
VisualBasic codes, 184–185
when to use, 63

Specification-level reliability, 463–465
Specifications, 37
Spiral model, 340
Staff acceptance, and risk management

effectiveness, 344
Staff accounting, 115–116
Staff allocation efficiency, 116
Staff attrition, 346
Staff costs, 115
Staff effort, 28
Staff hours, 115

SEER-SEM definition, 437, 438–440
Staff involvement, in risk identification,

375–376
Staff resistance, 325
Staffing, 30, 74, 424

actual vs. estimated, 502
calculating in SEER-SEM, 445–448
complexity as limitation on, 73
for function point estimation, 245
impacts on schedule and effort, 405
improper assessment of, 7
inappropriate, 5
optimizing, 63
risk normalization, 357
risk reserves and, 387
SEER-SEM parameters, 484–487

Staffing constraints, SEER-SEM estimate
with, 426

Staffing estimates, in SEER-SEM, 401
Staffing levels, 335

in SEER, 433
Staffing plan, 133
Staffing profile, 72
Standard 12207 acquisition process, 362,

364–365
Standard deviations, 60
Statements

measuring number of, 10–11
SEI types, 173

Statistical sizing, 59
Subclasses, 258
Subgroups, 258
Subsequent Incremental Build knowledge

base, 420
Subsystem design, 93
Supplier monitoring, risk impact projection

for, 367
Supply phase, 362
Support analysis, 94
Support task summary, 97–98
Suspense file updates, external inputs, 197
SWOT analysis, 377
System administration manuals, 96–97
System architecture validation, 94
System engineering, 91–92
System integration, 135
System integration complexity parameter,

489–491
System maintenance, 97
System operating manuals, 96
System operations/support, 98
System operator manuals, 97
System test/evaluation, 96
Systems design, 93

T
Target environment parameter, 470–476
Target system complexity, 444
Target system experience, 457–458
Targets

confusing with estimates, 32
differentiating from size estimates, 29

Team cohesion, maximizing, 335–336
Team composition, 41
Team dynamics, unpredictability of, 77

540 � Software Sizing, Estimation, and Risk Management

Team expertise, 42
Team performance, 335–336
Team productivity factors, 77
Team size, efficiency and, 73
Technical baseline, 38

establishing with SEER-SEM, 407–409
Technical documentation, 97
Technical factors, in use-case point

counting, 265
Technical leaps, 109–110
Technical monitoring, 95
Technical Risk Identification and Mitigation

System (TRIMS), 384
Technical risks, 376
Technical task summary, 91–93
Technical weighting factors, 266
Technology-centric focus, 326
Technology parameters, in SEER-SEM,

453–476
Technology solutions, 326–327
Technology support, 77
Ten-step estimation process, 20–21, 36
Terminal response time, 443
Test failure, 374
Test level parameter, 465
Testing, 133

COTS requirements, 296
lack and unacceptable quality, 326
reduced allocation of time to, 267–268

Threat, defined, 372
Threat analysis, 377
Time constraints

balancing with cost and performance,
347

risk reserve and, 386
in SEER-SEM, 75
vs. cost constraints, 117

Time-to-market
with COTS, 284
for Web-based software, 266

Time variance, 514
To-be-determined (TBD) items, 109
To-complete performance index (TCPI), 513
Tools, 325

overestimating savings from, 32
Top-down estimation, 8, 60
Top level classes, 412
Top ten cost drivers, 327–328
Total effort, 28
Total lines of code (total SLOC), 151

Tracking, 65, 146–147
against predefined productivity goals, 324
risk officer's responsibilities for, 383
in SEER-SEM, 436

Trade-offs, 402, 424
analysis of, 92
with COTS, 276
enabled by estimates, 27
time and effort, 447

Training costs, 137
Training courses

costs of, 37
development of, 97

Training curricula development, 97
Training plan, 97
Transaction rate, 214
Transactional functions, 192

counting, 210–211
Travel costs, 134
Turnaround time, 459–460

U
Unadjusted function point counts, 188,

222–224, 240, 412
use in SEER-SEM, 441

Unadjusted object point counts, 261
Unadjusted use-case points, 262, 263–267
Uncertainty

analysis as risk analysis, 387–392
declaring openly in risk management, 347
estimate including, 389
inherent in estimates, 34
risk identification for, 381

Uncertainty ranges, in SEER-SEM, 428
Underestimation, impact on project results,

32
Underlying information, collecting, 39
Unified Modeling Language (UML), 255
Unique functions, COTS feature sizing, 291
Unit test phase, action items, 131
Units of measure, 63
Update ILF rule, 237
Use-case metric development, 262–263
Use-case points, calculating unadjusted,

263–267
Use cases, 263, 409, 412

alarm system example, 262

Index � 541

Use parameters, 292, 480–484
User acceptance risks, 377
User-defined metrics, 412
User documentation, 96
User expectations, 328
User interface mismatch, 271
User satisfaction, risk normalization for,

357–358

V
Validation. See also Estimate validation

risk identification during, 381
Value adjustment factors, 211–212, 222
Variance at completion, 515
VisualBasic language codes, 184–185
Vulnerability, defined, 372
Vulnerability analysis, 377

W
Weakness, defined, 373
Web development sizing, 265–267
Weighting values

in object point counting, 261
in use cases, 264

Wideband Delphi, 87–89
Work breakdown structure (WBS), 89, 128

requirements for earned value, 316
in SEER-SEM, 422, 423

Work complete snapshot, in SEER-PPMC,
510–511

Work element distribution, 394
Work element estimates, 392
Work element level risk analysis, 389–391
Work package budget, 319
Work packages, 318
Working environment, effect on

productivity, 77
Wrappers, 276

